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Abstract. Reliably detecting anomalies in a given set of images is a task
of high practical relevance for visual quality inspection, surveillance, or
medical image analysis. Autoencoder neural networks learn to recon-
struct normal images, and hence can classify those images as anomalies,
where the reconstruction error exceeds some threshold. Here we analyze
a fundamental problem of this approach when the training set is contami-
nated with a small fraction of outliers. We find that continued training of
autoencoders inevitably reduces the reconstruction error of outliers, and
hence degrades the anomaly detection performance. In order to counter-
act this effect, an adversarial autoencoder architecture is adapted, which
imposes a prior distribution on the latent representation, typically plac-
ing anomalies into low likelihood-regions. Utilizing the likelihood model,
potential anomalies can be identified and rejected already during train-
ing, which results in an anomaly detector that is significantly more robust
to the presence of outliers during training.

Keywords: Anomaly detection · Robust learning · Adversarial
autoencoder

1 Introduction

The goal of anomaly detection is to identify observations in a dataset that sig-
nificantly deviate from the remaining observations [9]. Since anomalies are rare
and of diverse nature, it is not feasible to obtain a labeled dataset representa-
tive of all possible anomalies. A successful approach for anomaly detection is to
learn a model of the normal class, under the assumption that the training data
consists entirely of normal observations. If an observation deviates from that
learned model, it is classified as an anomaly [5].

Autoencoder neural networks have shown superior performance for detect-
ing anomalies on high dimensional data such as images. Autoencoders consist
of an encoder network, which performs nonlinear dimensionality reduction from
the input into a lower-dimensional latent representation, followed by a decoder
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network, which reconstructs the original image from this latent representation.
Autoencoders do not require label information since the input image also repre-
sents the desired output. By learning to extract features and to reconstruct the
original images, the network yields a model that generalizes to the reconstruc-
tion of images similar to those in the training set. Conversely, images which show
significant deviations from those observed during training will lead to reconstruc-
tion errors. The reconstruction error of an image can thus be used as an anomaly
score.

Although the autoencoder approach performs well on benchmark datasets
[22], we identify in this article several major shortcomings for real-world scenar-
ios. First, autoencoder methods for anomaly detection are based on the assump-
tion that the training data consists only of instances that were previously con-
firmed to be normal. In practice, however, a clean dataset cannot always be
guaranteed, e.g., because of annotation errors, or because inspection of large
datasets by domain experts is too expensive or too time consuming. It is there-
fore desirable to learn a model for anomaly detection from completely unlabeled
data, thereby risking that the training set is contaminated with a small propor-
tion of anomalies. However, we find that autoencoder-based anomaly detection
methods are very sensitive to even slight violations of the clean-dataset assump-
tion. A small number of anomalies contaminating the training might result in
the autoencoder learning to reconstruct anomalous observations as well as nor-
mal ones. We analyze the underlying causes for this vulnerability of standard
autoencoders, and present several key ideas that make anomaly detection with
autoencoders more robust to training anomalies, thereby improving the overall
anomaly detection performance.

In summary, our contributions are: First, we use adversarial autoencoders
[16], which allow to control the distribution of latent representations, thereby
defining a prior distribution in the bottleneck layer. While (adversarial) autoen-
coders have been used for anomaly detection before [15,24], we here propose a
novel criterion for detecting anomalies consisting of both reconstruction error
and likelihood in latent space. Since anomalies are expected to have a low like-
lihood under the given prior of the normal data, the combination of likelihood
and reconstruction error yields an improved anomaly score and therefore better
detection performance. Second, we define an iteration refinement method for
training sample rejection. Potential anomalies in the training set are identified
in the lower dimensional latent space by a variation of 1-class SVM [18], and
by rejecting the least normal observations we can increase robustness to con-
taminated data. Third, we propose a retraining method to increase separation
in both latent and image space. We compare our method to [10,16], which only
partially use the techniques combined in our approach, and show that our pro-
posed method results in a significantly more robust anomaly detector against
anomalies present during training.
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2 Related Work

Autoencoders were originally intended for nonlinear dimensionality reduction
and feature extraction [10], but it has been realized early on that their capa-
bility to model the training data distribution makes them suitable for anomaly
detection [11]. More recent work has proposed probabilistic interpretations of
deep autoencoders, which can directly model aspects of the data generating
process. Denoising autoencoders [20] learn reconstruction of images from noise
corrupted inputs. This form of regularization makes the latent representation
focus on a data manifold which encodes the most relevant image features. In
[1,2] it was shown that regularized autoencoders implicitly estimate the data
generating process, and have established links between reconstruction error and
the data generating density. [24] applied these concepts to anomaly detection
with deep structured energy based models, showing that a criterion based on
an energy score leads to better results than the reconstruction error criterion.
Adversarial autoencoders (AAE) [16] learn a generative model of the input data
by combining the reconstruction error with an adversarial training criterion [8].
A discriminator network learns to distinguish between samples coming from
the encoder and from a desired arbitrary prior distribution, which gives AAEs
great flexibility to represent assumptions about the data distribution. AAEs for
anomaly detection were first proposed in [15], using a Gaussian mixture model
as prior. It was found that a purely unsupervised approach did not separate
anomalies and normal images into different clusters, and it was proposed to
either condition on class labels, or train an explicit rejection class with random
images.

Almost all approaches for anomaly detection with autoencoders require the
training data to consist of normal examples only, but this alone is no guaran-
tee for anomalies to have large reconstruction errors. Robust deep autoencoders
[25] address this issue by combining denoising autoencoders with robust PCA,
thereby isolating noise and outliers from training of the reconstruction. The
method achieves significantly better results in the presence of anomalies in the
training set on MNIST. [19] proposed using a combination of robust loss function
for autoencoder training together with semi-supervised training of a classifier in
latent space to overcome the problem of corrupted training data. The method
achieves good detection performance, however, their evaluation shows that this
increase is mainly due to semi-supervised training. A combination of deep learn-
ing and kernel based methods for anomaly detection in high dimensional data
was proposed by [6], who combine a Deep Belief Network for feature extrac-
tion, and a 1-class SVM for anomaly detection in the compressed latent space.
Their method can deal with anomalies in the training data, but does not use
this information to refine the training set. In contrast, [17] directly optimized
the objective function of a variation of 1-class SVM in the output space during
network training. By doing so, anomalies can be detected immediately in the out-
put space but this information is not used during training for sample rejection.
When considering detection of potential adversarial examples, [7] have proposed
density based measures in a ConvNet to identify data points that lie outside
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the data manifold. They increase the robustness of their method by adding a
Bayesian uncertainty estimate, which handles complementary situations.

3 Autoencoders and Their Limitations

An autoencoder (AE) is a neural network that maps an input image x ∈ X = R
n

to an output image x′ ∈ X . It consists of an encoder function f : X → Z
and a decoder function g : Z → X , each implemented as a multi-layer neu-
ral network. They jointly compute x′ = g(f(x)). The output of the encoder
z = f(x) ∈ Z = R

m (m � n) is a low-dimensional latent representation
of x. This bottleneck prevents the AE from learning a trivial identity func-
tion. The autoencoder is trained to minimize the reconstruction error L(x,x′),
which is typically the pixelwise mean squared error or the Euclidean distance
in the image space X . After training, anomaly detection can be performed by
comparing L(x,x′) to a decision threshold Trec, classifying all images y with
L(y, g(f(y))) > Trec as anomalies. Trec is selected based on the distribution of
all reconstruction errors Ltrain on the training set Xtrain. Typical choices are
the maximum reconstruction error Trec = maxx∈Xtrain L(x,x′), or a large (e.g.,
90%) percentile Trec = p0.9(L(x,x′)|x ∈ Xtrain), which is more robust. Using
autoencoder networks for detecting anomalies with this procedure is based on the
assumption that all training examples should be reconstructed well, or in other
words that the training set is clean and consists only of normal observations.

3.1 Training with Anomalies

A standard autoencoder learns to reconstruct images from an intrinsic lower
dimensional latent representation, and by simultaneously learning a mapping
from image into latent space also learns in its weights an implicit model of the
data it has seen. For the task of anomaly detection this leads to a trade-off
between generating reconstructions of previously unseen normal images with
minimal error, while maximizing the reconstruction error of anomalous images.
Since no labels are available during training, neither of the criteria can be directly
optimized. Instead, the AE is trained to minimize reconstruction errors on the
entire training set, which will only directly optimize the first criterion if all train-
ing images are normal. During training, the objective rewards exact reconstruc-
tions of all training images, including anomalies. Overfitting singular anomalies
can be avoided by reducing model capacity or early stopping, such that the AE
focuses on reconstructing the majority class. Early stopping, however, may pre-
vent the autoencoder from learning a model which can precisely reconstruct the
majority of (normal) training observations, and may thus lead to false detections.

We demonstrate this effect for a conventional autoencoder trained on two
classes of images of handwritten digits from MNIST [14]. A detailed description
of the architecture can be found in Sect. 5. The digit ‘0’ is arbitrarily defined as
the normal class, whereas digit ‘2’ is the anomaly class (different combinations
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Fig. 1. Limitations of conventional autoencoders for anomaly detection. (a) Mean
reconstruction error of a conventional AE trained on MNIST, where 95% of the images
are from the normal class (digit ‘0’, green, solid line), and 5% are anomalies (digit
‘2’, red, dashed line). The shaded area shows the standard deviation. As training pro-
gresses, the AE learns to reconstruct the anomalous as well as the normal images.
(b) Detection performance on test data from MNIST, measured by the True Positive
Rate (TPR), True Negative Rate (TNR), and Balanced Accuracy (BAcc), where the
reconstruction threshold is set to the 90th percentile. The gray lines indicate the mean
training reconstruction error as displayed in (a). As training progresses, the AE pro-
duces more and more false positives, since the distribution of reconstruction errors
between normal and anomalous images increasingly overlap (Color figure online).

of digits lead to similar results). In this experiment the training set includes
5% anomalies. Figure 1(a) shows the reconstruction error for a conventional AE
trained over 10000 epochs, which results in a network that reconstructs both
classes with very similar error. Using early stopping as proposed in [21,25], e.g.,
after only 100 or 1000 iterations results in a model that is better at reconstructing
normal compared to anomalous images, but it has not yet learned an accurate
reconstruction model for the normal class. Convergence is reached only after
more than 4000 epochs, but at that time the model reconstructs both normal
and anomalous images equally well. This results in poor performance as an
anomaly detector, as shown in Fig. 1(b).

We evaluate the True Positive Rate (TPR), True Negative Rate (TNR), and
Balanced Accuracy (BAcc) at different epochs (where an anomaly is a positive
event). BAcc is defined as TPR+TNR

2 ∈ [0, 1] and thus balances detection per-
formance [3]. We do not use the F1 score, which is commonly used in anomaly
detection, since it neglects the true negative prediction performance. Clearly, the
importance of each metric depends on the role that false negatives (i.e., missed
anomalies) and false alarms have for the task at hand. But obviously, approach-
ing a TPR of 1 at the cost of a TNR going towards 0 (as is the case for an
autoencoder trained until convergence) is not desirable. For the evaluation we
use the known labels of images, which are, however, never used during training.

An immediate observation from Fig. 1(b) is that continued training leads to
a drop in TNR and thus BAcc, which is due to increasing overlap between
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the distribution of reconstruction errors of normal and anomalous images.
A possible explanation for this behavior lies in the nature of stochastic gra-
dient descent, the method used to train autoencoders. In the initial phase, the
AE learns to reconstruct the normal class, which is heavily overrepresented in
the training set, and thus leads to more training updates. This effect is visible in
Fig. 1(a), where the reconstruction error of the normal class shrinks much faster
initially than that of anomalous examples. After a few hundred epochs, the error
for normal images continues to shrink slowly, but the error for anomalies falls
faster. This is due to the small gradient for normal examples, whereas anoma-
lies with still large errors result in large gradients, and therefore dominate the
direction of updates. As a result, the difference in reconstruction quality between
normal and anomalous images vanishes at later epochs. One strategy could be to
reduce model capacity, with the hope that in a smaller network only the major-
ity class can be accurately reconstructed. However, this strategy also results in
lower quality reconstructions for normal images, and therefore in a higher recon-
struction threshold, which is again prone to yielding many false negatives. A
similar argument explains why early stopping does not solve the issue.

3.2 Adversarial Autoencoders

Adversarial autoencoders (AAE) [16] extend the concept of autoencoders by
inducing a prior distribution p(z) in the latent space. A generative model of
the data distribution pdata(x) is thus obtained by applying the decoder to sam-
ples from the imposed prior in latent space. The main difference to Variational
autoencoders [13] is the use of an adversarial training criterion [8]. As a result,
AAEs can impose any prior distribution from which samples can be drawn, and
have smoothly varying outputs in data space for small changes in corresponding
latent space. An example of an AAE structure is displayed in Fig. 2.
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Fig. 2. Schematic structure of conventional autoencoder (blue dashed box) and the
extension to an adversarial autoencoder (Color figure online).

From the perspective of anomaly detection AAEs are interesting because
apart from the reconstruction error, the latent code provides an additional
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indication for anomalies [15]. Simply put, we expect anomalies x (characterized
by low pdata(x)) to map to latent representations with low density p(z|x), or
otherwise have high reconstruction error L(x,x′), because high likelihood latent
codes should be decoded into normal images (see Fig. 3).

Fig. 3. Reconstruction error and likelihood for an AAE trained on a clean subset of
Fashion-MNIST [23] containing only class ‘T-shirt’ (blue). Test data from the anomaly
class ‘Pullover’ (red) yield lower likelihood values and higher reconstruction errors
(Color figure online).

The previous analysis suggests a strategy to improve the robustness of
autoencoders for anomaly detection in the presence of anomalies in the training
set: If anomalies in the training set can be identified during training, there are
ways to prevent a further improvement of their reconstruction quality. The sim-
plest such strategy is to remove them from the training set, but other options are
possible. In the following we present a novel mechanism based on AAE, which
actively manipulates the training set during training by sample rejection, and
thereby focuses AE training on the normal class.

4 Robust Anomaly Detection

If the training set contains anomalies, then the AAE will model them as part
of its generative model for pdata, leading in principle to the same fundamental
problem encountered in conventional AE. However, depending on the imposed
prior, we can at least expect a separation in latent space between the normal
and anomalous instance encodings, since AAEs have smoothly varying outputs
for nearby points in latent space. This feature of AAEs can be explicitly utilized
by defining a prior distribution with a dedicated rejection class for anomalies
[15], but we have observed the same effect even in the case of unimodal priors
such as Gaussians.

Separation between anomalies and normal instances in latent space is par-
ticularly useful if a rough estimate of the training anomaly rate α is known. In
this case standard outlier detection methods such as 1-class SVM [18] can be
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employed on the latent representations, searching for a boundary that contains
a fraction of 1−α of the whole dataset. Once potential anomalies are identified,
they can be excluded for further training, or their contribution to the total loss
might be reweighted. Such procedure approximates the case of a clean train-
ing set, where the combination of reconstruction error and latent density yields
reliable results.

4.1 Likelihood-Based Anomaly Detection

Since AAEs impose a prior distribution p(z) on the latent representations z, the
likelihood p(ẑ) under the prior of a new code vector ẑ = f(x̂) can be used as
an anomaly score [15]. Anomalies are expected to have lower scores than normal
examples. However, it is also clear that p(ẑ) alone is an imperfect score, because
anomalies in local clusters with small support might indeed be assigned higher
scores than normal examples in boundary regions. Furthermore, the encoder
might not be able to learn a mapping that exactly reproduces the prior. Despite
these weaknesses, a likelihood-based criterion is able to identify most anomalies
with similar performance as a reconstruction-based approach, and in addition
allows a combination of both approaches. A decision threshold Tprior is defined by
measuring the likelihood p(f(x)) under the imposed prior for all training samples
x and then selecting a specified percentile in the distribution of p(f(x)) depend-
ing on the expected anomaly rate α. New examples y with p(f(y)) < Tprior are
then classified as anomalies. Ideally we could set Tprior to the α percentile, but in
practice the criterion is chosen slightly differently to compensate for approxima-
tion errors in the encoder and for biases induced by a finite training set. In our
scenarios, p0.1(f(x)) was chosen empirically as it showed most robust behavior
throughout all experiments. In the case of a clean dataset one can also fix the
threshold, e.g., to a specified number of standard deviations, without optimizing
on the training set. Likelihood-based anomaly detection can be easily combined
with reconstruction-based methods, and our results have shown that they com-
plement each other well. We choose a simple combination whereby a new exam-
ple y is classified as an anomaly if either L(y,y′) > Trec, or p(f(y)) < Tprior.
Alternative methods such as a 1-class SVM in the 2-dimensional space of recon-
struction errors and likelihoods did not improve our results. Although we focus
on these two measures, it is also straightforward to integrate more criteria, such
as denoising performance [20], or sensitivity-based measures [4].

To compare the individual performance to a combination of both measures,
we trained an AAE on a clean dataset consisting only of ‘T-shirt’s from Fashion-
MNIST [23] (cf. Fig. 3). For new test observations stemming from the normal
class and a previously unseen anomaly class (‘Pullover’), both the reconstruction
error and the likelihood estimate identify anomalies with similar performance
(BAcc: 0.72 and 0.73, respectively), and a combination of both criteria increases
performance (BAcc: 0.80). The architecture is described in detail in Sect. 5.
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4.2 Iterative Training Set Refinement (ITSR)

In order to improve the robustness against contaminated datasets, we propose
an iterative refinement of the training set. This method reduces the influence of
likely anomalies for further autoencoder training, thus learning a more accurate
model of the normal data distribution. If the adversarial autoencoder is trained
with an imposed unimodal prior, e.g., a multivariate Gaussian, we expect the
normal instances to cluster around the mode of the prior in latent space. This
assumption is reasonable whenever instances of the normal class can be expected
to be similar, e.g., in quality control. If anomalies are contained in the training
set, we observe that the AAE maps them to low-likelihood regions of the prior
(see Fig. 3). Anomalies either form their own clusters if they belong to reoc-
curring patterns (e.g., anomalies from a separate class), or will be represented
sparsely and distant from the peak. In order to identify likely anomalies, stan-
dard outlier detection methods such as 1-class SVM [18] are applied to the repre-
sentations of training images in the lower-dimensional latent space. The 1-class
SVM receives as a hyperparameter an upper bound on the expected fraction of
anomalies via the parameter ν. In our experiments, we use a 1-class SVM with
RBF kernel and fix ν = 0.02, since we assume to have no knowledge of the true
anomaly rate. If available, however, knowledge of the true anomaly rate can be
incorporated here.

The output of the 1-class SVM is a decision boundary, and a list of all normal
data points. All other data points can be considered potential anomalies, and can
be either completely removed from the training set, or weighted to contribute
less to the overall loss than normal points. After modifying the training set the
autoencoder is re-trained, yielding representations that better capture the true
data manifold of the normal class, and with less incentive to reconstruct outliers
accurately. In the following we describe our proposed training procedure in more
detail.

First, every training sample xi is associated with a weight wi, which is used
to compute a weighted reconstruction loss for the autoencoder:

Lw =
N∑

i=1

wiL(xi, g(f(xi))).

The autoencoder is trained to minimize the weighted reconstruction loss, where
weights can change over time. The same associated sample weight wi is used in
the adversarial training procedure.

To iteratively refine the training set to make the model robust to anomalies
present in training, the training procedure is split into three phases:

1. Pretraining: the AAE is initialized by training on the complete training set
for a fixed number of epochs where all weights are set to the identical value
wi = 1. This is the starting point for anomaly detection in latent space with
1-class SVM in the subsequent step.
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2. Detection and Refinement: a 1-class SVM is trained on the latent repre-
sentations with a constant expected anomaly rate ν, yielding a set of candi-
date anomalies denoted Â. All instances within Â are assigned a new weight
wi = 0, thereby removing it from further training. The model is then trained
on the reduced training set X \ Â for a short number of epochs. These two
steps are repeated d times where each repetition increases the total number
of detected training anomalies. By iteratively excluding candidate anomalies,
the model of the normal class is refined.

3. Re-training: after detecting anomalies in the training set and refining the
model of the normal class, the model is re-trained such that reconstruc-
tion errors on detected anomalies increase. This can be achieved by set-
ting wi < 0,xi ∈ Â, forcing a better separability of the two classes. The
method, however, created many false positive detections in the previous
refinement phase, which with this strict reweighting, would erroneously be
forced to be reconstructed worse. Since refining the model on normal obser-
vations still leads to good reconstructions of those false positive observa-
tions (they resemble the true normal observations), we define a threshold
Tretrain = pretrain(L(x, f(g(x)))|x ∈ Â) which is used as a new decision
threshold for reweighting the potential anomalies, i.e., wi = wanomaly < 0
if L(xi, f(g(xi))) > Tretrain, else wi = 0,xi ∈ Â. This forces the model to
learn a higher reconstruction error and lower likelihood for the detected can-
didate anomalies that exceed the threshold Tretrain.

Our proposed ITSR model yields an autoencoder which over time focuses
more and more on the reconstruction of normal images and matching their
latent-distribution to the expected prior, thereby increasing the robustness for
true normal observations in both training and test set. In Fig. 4, results for apply-
ing our ITSR model on MNIST with 5% anomalies in training are presented.
While during the refinement phase the model is trained to robustly represent
the normal class, the model increases separability between normal and anoma-
lous observations during re-training (Fig. 4(a)). Moreover, the expected effect
that anomalies represented in high-likelihood regions have a high reconstruction
error becomes more distinct (Fig. 4(b)). In Sect. 5, we also discuss how to set
the parameters ν for detecting candidate anomalies and the threshold Tretrain

for re-training in more detail.
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Fig. 4. Increasing the robustness of anomaly detection with iterative training set refine-
ment. (a) Reconstruction error over the three phases of ITSR. We show the mean
reconstruction error trained on MNIST, where 95% of the images are from the normal
class (digit ‘0’, green, solid line), and 5% are anomalies (digit ‘2’, red, dashed line).
The shaded area shows the standard deviation. (b) Reconstruction and likelihood of
all points in the training set after ITSR. Colors indicate the final classification result
produced by the 1-class SVM in ITSR: true normal (blue), false positive (green), true
positive (orange), false negative (red). Iteratively refining and re-training our model
increases separability between normal and anomalous observations. Additionally, the
expected behavior that anomalies that falsely lie in a high-density region are badly
reconstructed becomes even more evident (Color figure online).

5 Experimental Setup and Discussion of Results

Experimental Setup. Anomaly detection is evaluated on the classical MNIST
[14] dataset, and the more recent and more complex Fashion-MNIST [23]
database containing gray-level images of different pieces of clothing such as T-
shirts, boots, or pullovers, which in contrast has more ambiguity between classes.
Throughout our experiments, we use the original train-test splits, resulting in
60000 potential training (6000 per class) and 10000 test observations. From the
available classes in both datasets, we define one class to be normal and a second
class to be anomalous for training. In the case of MNIST, we arbitrarily select
digit ‘0’ as normal, and digit ‘2’ as anomaly. For Fashion-MNIST, we conduct
two experiments with increasing difficulty: in both cases, the class ‘T-shirt’ is
defined as normal. In the first experiment anomalies are from the class ‘Boot’,
which is easy to distinguish from T-shirts. In the second experiment, anoma-
lies stem from the class ‘Pullover’, which is visually more similar to T-shirts,
except for longer sleeves, and thus harder to detect. The final training data
consists of the two previously defined classes, but only α = {5%, 1%, 0.1%} of
the instances are from the anomalous class. The experiments with an anomaly
rate α = {1%, 0.1%} show that our approach performs also favorable if anomalies
occur even less frequently. Since our main focus is to improve AE-based anomaly
detection, we thus focus on a comparison to the methods that only partially use
the techniques that we combine in our approach. The complete code for our
evaluation is available on request from the authors.
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Test Set Split. Our proposed model increases robustness to anomalies that are
present during training. In order to evaluate whether this also increases robust-
ness to unobserved types of anomalies, we evaluate on an independent test set,
and split the anomalies into classes that were observed during training, and those
that were not part of training (e.g. new digit classes in MNIST). For the set con-
taining observed anomalies, the test set contains all normal test observations and
observations from the class of anomalies that was present during training. The
set containing unobserved anomalies consists again of the entire set of normal
test instances, and all instances from classes that were never observed during
training. For example for MNIST, the test set containing observed anomalies
consists of images of digit ‘0’ and digit ‘2’ (1000 observations each). The set
with unobserved anomalies contains again all images of digit ‘0’ and all images
of anomaly classes ‘1’, ‘3’-‘9’ (1000 observations each). This results in a ratio of
normal to anomalous observations in the test sets of 1:1 and 1:8, respectively,
but does not affect the anomaly rate during training.

Setting of Parameters ν and Re-training Threshold T retrain. For our
proposed Iterative Training Set Refinement, the parameters ν, which influences
how many candidate anomalies are detected during training, and the threshold
for re-training are crucial. In fact, setting the parameters depends on the prior
knowledge about the data. If the normal data are expected to be very homoge-
neous (e.g., in quality inspection), they will lie close in latent space and potential
anomalies will most likely lie outside this region, so a smaller ν will suffice. If, on
the other hand, the normal class is very heterogeneous (e.g., if different types of
anomalies are expected), more normal observations will spread over latent space
and more candidate anomalies (i.e., a larger ν) needs to be detected to ‘catch’
the true anomalies. In practice the true anomaly rate is not known precisely,
but our results show that it is not necessary to have a precise estimate for ν (we
know the true anomaly rate in the training data but fix ν = 0.02) and that our
proposed approach is robust.

For the threshold Tretrain for re-training, the relation between data homogene-
ity and parameter value is reversed: since this threshold defines the corresponding
percentile of the reconstruction error, a large value is possible for a homogeneous
normal class, whereas a lower value is required for heterogeneous normal data.
In more detail, the threshold Tretrain for re-training should depend on the upper
bound of falsely detected normal observations during refinement phase. In case
of perfect detection of all true anomalies the fraction of falsely detected normal
observations in Â is ν·d−α

ν·d . Since in general we do not know the true anomaly
rate α (but show robustness up to α = 0.05) and might also miss true anoma-
lies in the refinement process, we additionally expect 5% of false detections. For
our chosen parameter ν = 0.02 together with the number of refinement steps
d = 10 (see next subsection Architecture) this yields a re-training threshold of
Tretrain = p0.8(L(x, f(g(x)))|x ∈ Â).

Architecture. Encoder and decoder in the conventional autoencoder both con-
sist of 2 fully-connected layers with 1000 units each. The ReLU activation func-
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tion is used in all layers, with the exception of the final encoder layer (using
linear activation), and the last decoder layer (using sigmoid activation). The
latent space is restricted to 32 dimensions. This architecture is used in all exper-
iments, but for AAEs the latent space is reduced to 2 dimensions. On MNIST,
training is stopped after 4000 epochs, on Fashion-MNIST after 10000 epochs,
using Adam [12] to adapt learning rates. For the AAE, a discriminator net-
work is added, consisting of 2 fully connected layers with 1000 units each, and
sigmoid activation in the last layer. Following [16], batch normalization is per-
formed after each layer in the encoder. As latent prior we assume a 2-dimensional
Gaussian p(z) = [N(0, 1)]2. Training is stopped after 1000 epochs. Our pro-
posed method ITSR is applied to the same AAE architecture. First, pretrain-
ing is performed for 500 epochs, then d = 10 repetitions (each 100 epochs)
of the detection and refinement phase with ν = 0.02 are computed. Retrain-
ing is done for 1000 epochs on MNIST and 500 epochs on Fashion-MNIST
with wanomaly = −0.1. For the combined likelihood and reconstruction anomaly
score that is used as detection criterion for AAE and ITSR, the 90% percentile
Trec = p0.90(L(x,x∗)|x ∈ X) of reconstruction errors, and the 10% percentile of
likelihoods Tprior = p0.10(f(x)|x ∈ X) are used. Conventional AEs use the same
reconstruction-based threshold Trec.

Results and Discussion. Figure 5 shows that for all investigated scenarios
with α = 5% anomalies in the training set our ITSR model yields better bal-
anced accuracy than conventional autoencoders and adversarial autoencoders.
The AAE without refinement improves the anomaly detection performance on
MNIST, but has no beneficial effect for Fashion-MNIST. The results show the
desired increased robustness to the presence of anomalies in the training set, in
particular for the observed anomalies that stem from the same class that con-
taminates the training set, and which pose the greatest challenge for standard
AEs. ITSR improves the balanced accuracy compared to the conventional AE
by more than 30% for the experiment on MNIST (Fig. 5(a)), and by more than
20% over the AAE in general. The performance improvement over the AAE is
greatest (30%) for the most difficult case of detecting ‘Pullover’ anomalies in
the Fashion-MNIST dataset, with ‘T-shirt’s being normal (see Fig. 5(c)). Addi-
tional experiments in Table 1 show that even with a decreased anomaly rate
α = {1%, 0.1%} our method still performs favorable.

Comparing the performance on anomaly classes that were observed or unob-
served during training, we find that standard AEs and AAEs perform similarly
on both types. ITSR results in higher accuracy for anomalies observed during
training, which is the desired effect. This observations even holds if the training
set only contains 0.1% anomalies, or in other words, when the training data is
almost completely normal. Furthermore, our model performs at par or slightly
better than the other methods on unobserved anomalies. It is expected that the
effect for unobserved anomalies is smaller, since they cannot influence training,
and any improvement can only come from a more accurate model for the normal
class. We thus conclude that iterative refinement of the training set improves
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Fig. 5. Anomaly detection performance on an independent test set with an anomaly
rate of 5% in training. The images differ in their experimental setup as follows. (a),(d):
MNIST data with digit ‘0’ normal class and digit ‘2’ anomaly class. (b)–(c),(e)–(f):
Fashion-MNIST data with class ‘T-shirt’ defined as normal and ‘Boot’ ((b),(e)) or
‘Pullover’ ((c),(f)) as anomalous.
(a)–(c): We compare the BAcc of AE, AAE, and ITSR on a test set containing only
types of anomalies observed during training (left), and a set with unobserved anomalies
(right). The detection of anomalies during training in ITSR increases the robustness
against the type of anomalies contaminating the training set, while the performance on
novel anomalies is similar or slightly better. (d)—(f): Reconstruction error for ITSR for
normal (blue) and anomalous (orange) training observations. The reconstruction error
before and after ITSR is shown. Normal images are always accurately reconstructed,
but due to ITSR the error for anomalies increases, thus facilitating anomaly detection
(Color figure online).

anomaly detection with autoencoders in general, without negatively affecting
the detection of novel types of anomalies.

In order to understand the cause for the improved robustness, Fig. 5(d)–(f)
show the reconstruction errors on training set before and after ITSR, separately
for the normal and anomaly classes. We only visualize the case of α = 5%,
even though similar observations can be made for decreased anomaly rates. We
observe only minor changes for the normal class, but a strongly increased recon-
struction error for anomalies after ITSR. This implies that the ITSR model
has learned to robustly represent the normal class in the low-dimensional latent
space and reconstruct it to the original space, while becoming insensitive to the
anomalies present in training. There is still some overlap between the reconstruc-
tion errors of the two classes, but the increased separation results in a higher
balanced accuracy.
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Table 1. Balanced accuracy results for anomaly detection on an independent test set
with anomaly rate α = {1%, 0.1%} in training. We compare conventional autoencoder
(AE) and adversarial autoencoder (AAE) approaches to our proposed Iterative Train-
ing Set Refinement method (ITSR). The defined normal and anomaly class are similar
to Fig. 5(a)–(c), i.e., MNIST data with digit ‘0’ normal class and digit ‘2’ anomaly
class, and Fashion-MNIST data with class ‘T-shirt’ defined as normal and ‘Boot’ or
‘Pullover’ as anomalous. We split evaluation into a test set containing only types of
anomalies observed during training (left), and a set with unobserved anomalies (right).

Anomaly rate α = 1%

Observed anomaly type Unobserved anomaly type

Dataset AE AAE ITSR AE AAE ITSR

MNIST: ‘0’ vs. ‘2’ 0.69 0.91 0.94 0.69 0.91 0.93

Fashion-MNIST: T-shirt vs. Boot 0.74 0.89 0.92 0.73 0.78 0.79

Fashion-MNIST: T-shirt vs. Pull. 0.74 0.70 0.81 0.74 0.78 0.81

Anomaly rate α = 0.1%

Dataset AE AAE ITSR AE AAE ITSR

MNIST: ‘0’ vs. ‘2’ 0.68 0.90 0.91 0.68 0.89 0.90

Fashion-MNIST: T-shirt vs. Boot 0.74 0.89 0.90 0.73 0.77 0.80

Fashion-MNIST: T-shirt vs. Pull. 0.73 0.71 0.80 0.73 0.79 0.80

6 Conclusion

A novel method called Iterative Training Set Refinement (ITSR) for anomaly
detection in images is presented, which exploits the capabilities of adversarial
autoencoders in order to address the shortcomings of conventional autoencoders
in the presence of anomalies in the training set. Our method compares favorably
to state-of-the art methods, and its increased robustness reduces the need for
a clean training dataset, and thus the need for expert information. In practice
this makes the ITSR method very attractive for scenarios where it is known
that the anomaly rate is very low, e.g., in quality inspection. Instead of letting
experts inspect a potentially very large training set and picking only normal
instances, an unprocessed dataset can be used, leaving it to ITSR to exclude
potential anomalies from training. ITSR works directly in the latent space of
the adversarial autoencoder, and is a general method to focus the learning pro-
cess on the true manifold of the normal majority class. No label information
is necessary for this approach, but obviously our method can be extended to
a semi-supervised setting, or an active learning approach, where an interactive
query for labels for instances close to the border identified by the 1-class SVM is
performed. Although presented only on image data in this article, our approach
easily translates to other high-dimensional data types, e.g., spectrograms or time
series.
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