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Preface

We are delighted to introduce the proceedings of the 2019 edition of the European
Conference on Machine Learning and Principles and Practice of Knowledge Discovery
in Databases (ECML PKDD 2019). ECML PKDD is an annual conference that
provides an international forum for the latest research in all areas related to machine
learning and knowledge discovery in databases, including innovative applications. It is
the premier European machine learning and data mining conference and builds upon a
very successful series of ECML PKDD conferences.

ECML PKDD 2019 was held in Würzburg, Germany, during September 16–20,
2019. The conference attracted over 830 participants from 48 countries. It also received
substantial attention from industry, both through sponsorship and participation at the
conference.

The main conference program consisted of presentations and posters of 130
accepted papers and 5 keynote talks by the following distinguished speakers: Sumit
Gulwani (Microsoft Research), Aude Billard (EPFL), Indrė Žliobaitė (University of
Helsinki), Maria Florina Balcan (Carnegie Mellon University), and Tinne Tuytelaars
(KU Leuven). In addition, there were 24 workshops, 8 tutorials, and 4 discovery
challenges.

Papers were organized in three different tracks:

• Research Track: research or methodology papers from all areas in machine learning,
knowledge discovery, and data mining

• Applied Data Science Track: papers on novel applications of machine learning, data
mining, and knowledge discovery to solve real-world use cases, thereby bridging
the gap between practice and current theory

• Journal Track: papers that were published in special issues of the journals Machine
Learning and Data Mining and Knowledge Discovery

We received a record number of 733 submissions for the Research and Applied Data
Science Tracks combined. We accepted 130 (18%) of these: 102 papers in the Research
Track and 28 papers in the Applied Data Science Track. In addition, there were 32
papers from the Journal Track. All in all, the high-quality submissions allowed us to
put together a very rich and exciting program.

For 60% of accepted Research Track and Applied Data Science Track papers,
accompanying software and/or data were made available. These papers are flagged as
Reproducible Research (RR) papers in the proceedings. RR flags, in use since 2016 in
the ECML PKDD conference series, underline the importance given to RR in our
community.

The Awards Committee selected research papers that were considered to be of
exceptional quality and worthy of special recognition:

• Data Mining Best Student Paper Award: “FastPoint: Scalable Deep Point
Processes” by Ali Caner Türkmen, Yuyang Wang, and Alexander J. Smola



• Machine Learning Best Student Paper Award: “Agnostic feature selection” by
Guillaume Doquet and Michèle Sebag

• Test of Time Award for highest impact paper from ECML PKDD 2009: “Classifier
Chains for Multi-label Classification” by Jesse Read, Bernhard Pfahringer, Geoff
Holmes, and Eibe Frank

Besides the strong scientific program, ECML PKDD 2019 offered many opportu-
nities to socialize and to get to know Würzburg. We mention the opening ceremony at
the Neubau Church, the opening reception at the Residence Palace, the boat trip from
Veitshöchheim to Würzburg, the gala dinner at the Congress Center, the poster session
at the New University, and the poster session at the Residence Palace Wine Cellar.
There were also social events for subgroups of participants, such as the PhD Forum, in
which PhD students interacted with their peers and received constructive feedback on
their research progress, and the Women in Science Lunch, in which junior and senior
women met and discussed challenges and opportunities for women in science and
technology.

We would like to thank all participants, authors, reviewers, area chairs, and
organizers of workshops and tutorials for their contributions that helped make
ECML PKDD 2019 a great success. Special thanks go to the University of Würzburg,
especially to Lena Hettinger and the student volunteers, who did an amazing job. We
would also like to thank the ECML PKDD Steering Committee and all sponsors.
Finally, we thank Springer and Microsoft for their continuous support with the
proceedings and the conference software.

February 2020 Ulf Brefeld
Elisa Fromont
Andreas Hotho
Arno Knobbe

Marloes Maathuis
Céline Robardet
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Programming by Input-Output Examples

Sumit Gulwani

Microsoft Research

Abstract. Programming by examples (PBE) is a new frontier in AI that enables
computer users (99% of whom are non-programmers) to create programs from
input-output examples. PBE can enable 10-100x productivity increase for data
scientists and developers in various task domains like string/datatype transfor-
mations (e.g., converting “FirstName LastName” to “lastName, firstName”),
table extraction from semi-structured documents (like text-files, webpages,
spreadsheets, PDFs), and repetitive editing/refactoring for documents/code.
Creating usable PBE systems involves developing efficient search algorithms (to
search for programs over an underlying domain-specific programming lan-
guage), and ambiguity resolution techniques (to select an intended program from
among the many that satisfy the examples). Our effective solution builds over
interesting combination of logical reasoning and machine learning. Microsoft’s
PROSE SDK exposes these search and ranking algorithms to aid construction of
PBE capabilities for new domains. In this talk, I will describe this new
PBE-based programming paradigm: its applications, form factors inside differ-
ent products (like Excel, PowerBI, Visual Studio, Jupyter Notebooks), and the
science behind it.

Bio: Sumit Gulwani is a computer scientist seeking connections: between ideas,
between research and practice, and with people with varied roles. He is the inventor of
many intent-understanding, programming-by-example, and programming-by-natural-
language technologies including the popular Flash Fill feature in Excel used by hun-
dreds of millions of people. He founded and currently leads the PROSE research and
engineering team that develops APIs for program synthesis and incorporates them into
various products. He has published 120+ peer-reviewed papers in top-tier conferences
and journals across multiple computer science areas, delivered 45+ keynotes and
invited talks at various forums, and authored 50+ patent applications (granted and
pending). He was awarded the ACM SIGPLAN Robin Milner Young Researcher
Award in 2014 for his pioneering contributions to end-user programming and intelli-
gent tutoring systems. He obtained his PhD in Computer Science from UC-Berkeley,
and was awarded the ACM SIGPLAN Outstanding Doctoral Dissertation Award. He
obtained his BTech in Computer Science and Engineering from IIT Kanpur, and was
awarded the President’s Gold Medal.



Machine Learning for Robust and Fast Control
of Manipulation Under Disturbances

Aude Billard

École polytechnique fédérale de Lausanne

Abstract. Dexterous manipulation of objects is robotics’ primary goal. It
envisions robots capable of manipulating of packing a variety of objects and of
chopping vegetables, at high speed. To manipulate these objects cannot be done
with traditional control approaches, for lack of accurate models of objects and
contact dynamics. Robotics leverages, hence, the immense progress in machine
learning to encapsulate models of uncertainty and to support further advances on
adaptive and robust control. I will present applications of machine learning for
controlling robots to learn non-linear control laws and to model complex
deformations of objects. I will show applications of this to have robots peel and
grate vegetables, manipulate objects jointly with humans, and catch flying
objects.

Bio: Professor Aude Billard is head of the Learning Algorithms and Systems
Laboratory (LASA) at the School of Engineering at the EPFL. She received a MSc in
Physics from EPFL (1995), a MSc in Knowledge-based Systems (1996) and a PhD in
Artificial Intelligence (1998) from the University of Edinburgh. She was the recipient
of the Intel Corporation Teaching Award, the Swiss National Science Foundation
Career Award in 2002, the Outstanding Young Person in Science and Innovation from
the Swiss Chamber of Commerce, and the IEEE-RAS Best Reviewer Award. Aude
Billard served as an elected member of the Administrative Committee of the IEEE
Robotics and Automation society for two terms (2006–2008 and 2009–2011). She was
a plenary speaker at major robotics conferences (ROMAN, ICRA, Humanoids, HRI)
and acted on various positions on the Organization Committee of more than 15
International Conferences in Robotics. Her research on human-robot interaction and
robot learning from human demonstration is featured regularly in premier venues
(BBC, IEEE Spectrum, Wired) and received numerous Best Paper Awards at ICRA,
IROS and ROMAN, and the 2015 King-Sun Fu Memorial Award for the best 2014
IEEE Transaction in Robotics paper. Professor Billard is active in a number of research
organizations in Switzerland and abroad. She is currently a member of the Swiss
Science and Technology Council (SNSF) and a member of the Swiss Academy of
Engineering Sciences (SATW).



Palaeontology as a Computational Science

Indrė Žliobaitė

University of Helsinki

Abstract. Palaeontology studies the history of life and evolutionary principles.
While biology focuses on how life is, palaeontology is concerned with how life
forms change. This is particularly interesting in the context of today’s rapidly
changing world. The main material for palaeontological studies comes from
fossils – remains, traces or impressions of organisms that lived in the past,
preserved in rocks. Fossils are found in many places around the world where
ancient sediments have been exposed on the surface. Palaeontology has long
been a big data discipline; global fossil databases have been around for many
decades. Perhaps half of palaeontology research today is computationally-
driven, it strongly relies on advanced computational methods, including those of
machine learning, for analyzing ancestral relationships, biogeographic patterns
of life history, evolutionary processes of life, and its environmental concepts.
This talk will discuss what there is to compute in palaeontology, why it matters,
and what fundamental questions about the world in the past and today evolu-
tionary palaeontology aims at addressing.

Bio: Indrė Žliobaitė is an Assistant Professor at the University of Helsinki, Finland.
Her background is in machine learning with evolving data. In Helsinki she leads a
research group called Data Science and Evolution, which focuses on computational
analyses of the changing world. For the last five years Indrė has been actively involved
in evolutionary palaeontology research studying the mammalian fossil record. Results
of this work have been published in Nature, PNAS, Philosophical Transactions of the
Royal Society, and other prime venues for natural sciences. By now Indrė is as a
palaeontologist as she is a computer scientist. She is a long member of ECMLPKDD
community. She has taken chairing roles in several editions of the conference and
served as a member of the Steering Committee for ECMLPKDD.



Data Driven Algorithm Design

Maria Florina Balcan

Carnegie Mellon University

Abstract. Data driven algorithm design for combinatorial problems is an
important aspect of modern data science and algorithm design. Rather than
using off-the-shelf algorithms that only have worst case performance guarantees,
practitioners typically optimize over large families of parametrized algorithms
and tune the parameters of these algorithms using a training set of problem
instances from their domain to determine a configuration with high expected
performance over future instances. However, most of this work comes with no
performance guarantees. The challenge is that for many combinatorial problems,
including partitioning and subset selection problems, a small tweak to the
parameters can cause a cascade of changes in the algorithm’s behavior, so the
algorithm’s performance is a discontinuous function of its parameters. In this
talk, I will present new work that helps put data driven combinatorial algorithm
selection on firm foundations. We provide strong computational and statistical
performance guarantees for several subset selection and combinatorial parti-
tioning problems (including various forms of clustering), both for the batch and
online scenarios where a collection of typical problem instances from the given
application are presented either all at once or in an online fashion, respectively.

Bio: Maria Florina Balcan is an Associate Professor in the School of Computer Science
at Carnegie Mellon University. Her main research interests are machine learning,
computational aspects in economics and game theory, and algorithms. Her honors
include the CMU SCS Distinguished Dissertation Award, an NSF CAREER Award, a
Microsoft Faculty Research Fellowship, a Sloan Research Fellowship, and several
paper awards. She was a Program Committee co-chair for the Conference on Learning
Theory in 2014 and for the International Conference on Machine Learning in 2016. She
is currently board member of the International Machine Learning Society (since 2011),
a tutorial chair for ICML 2019, and a workshop chair for FOCS 2019.



The Quest for the Perfect Image
Representation

Tinne Tuytelaars

KU Leuven

Abstract. Throughout my research career, I’ve always been looking for the
‘optimal’ image representation: a representation that captures all relevant
information for a given task, including scene composition, 3D information,
illumination, and other cues; a representation that can easily generalize and
adapt to new tasks; a representation that can be updated over time with new
information, without forgetting what was learned before; a representation that is
explicit in the sense that it can easily be interpreted or explained; a represen-
tation, in short, that supports true understanding of the image content, ultimately
allowing the machine to reason and communicate about it in natural language. In
this talk, I will describe a few recent efforts in this direction.

Bio: Tinne Tuytelaars is Professor at KU Leuven, Belgium, working on computer
vision and, in particular, topics related to image representations, vision and language,
incremental learning, image generation, and more. She has been program chair for
ECCV 2014, general chair for CVPR 2016, and will again be program chair for CVPR
2021. She also served as associate-editor-in-chief of the IEEE Transactions on Pattern
Analysis and Machine Intelligence over the last four years. She was awarded an ERC
Starting Grant in 2009 and received the Koenderink Test-of-Time Award at ECCV
2016.
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Abstract. We strive to find contexts (i.e., subgroups of entities) under
which exceptional (dis-)agreement occurs among a group of individuals,
in any type of data featuring individuals (e.g., parliamentarians, cus-
tomers) performing observable actions (e.g., votes, ratings) on entities
(e.g., legislative procedures, movies). To this end, we introduce the prob-
lem of discovering statistically significant exceptional contextual intra-
group agreement patterns. To handle the sparsity inherent to voting
and rating data, we use Krippendorff’s Alpha measure for assessing
the agreement among individuals. We devise a branch-and-bound algo-
rithm, named DEvIANT, to discover such patterns. DEvIANT exploits
both closure operators and tight optimistic estimates. We derive analytic
approximations for the confidence intervals (CIs) associated with pat-
terns for a computationally efficient significance assessment. We prove
that these approximate CIs are nested along specialization of patterns.
This allows to incorporate pruning properties in DEvIANT to quickly
discard non-significant patterns. Empirical study on several datasets
demonstrates the efficiency and the usefulness of DEvIANT.

1 Introduction

Consider data describing voting behavior in the European Parliament (EP). Such
a dataset records the votes of each member (MEP) in voting sessions held in
the parliament, as well as the information on the parliamentarians (e.g., gender,
national party, European party alliance) and the sessions (e.g., topic, date). This
dataset offers opportunities to study the agreement or disagreement of coherent
subgroups, especially to highlight unexpected behavior. It is to be expected
that on the majority of voting sessions, MEPs will vote along the lines of their
European party alliance. However, when matters are of interest to a specific
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nation within Europe, alignments may change and agreements can be formed
or dissolved. For instance, when a legislative procedure on fishing rights is put
before the MEPs, the island nation of the UK can be expected to agree on a
specific course of action regardless of their party alliance, fostering an exceptional
agreement where strong polarization exists otherwise.

We aim to discover such exceptional (dis-)agreements. This is not limited to
just EP or voting data: members of the US congress also vote on bills, while
Amazon-like customers post ratings or reviews of products. A challenge when
considering such voting or rating data is to effectively handle the absence of
outcomes (sparsity), which is inherently high. For instance, in the European
parliament data, MEPs vote on average on only 3/4 of all sessions. These out-
comes are not missing at random: special workgroups are often formed of MEPs
tasked with studying a specific topic, and members of these workgroups are more
likely to vote on their topic of expertise. Hence, present values are likely asso-
ciated with more pressing votes, which means that missing values need to be
treated carefully. This problem becomes much worse when looking at Amazon
or Yelp rating data: the vast majority of customers will not have rated the vast
majority of products/places.

We introduce the problem of discovering significantly exceptional contex-
tual intra-group agreement patterns, rooted in the Subgroup Discovey (SD)
[28]/Exceptional Model Mining (EMM) [6] framework. To tackle the data spar-
sity issue, we measure the agreement among groups with Krippendorff’s alpha,
a measure developed in the context of content analysis [21] which handles
missing outcomes elegantly. We develop a branch-and-bound algorithm to find

Distribution of qualities for 
subsets of size X (σ≤X)

under the null hypothesis H0

Distribution of qualities for 
subsets of size Y (σ≤Y≤X)

under the null hypothesis H0

Optimistic estimate 
(OE) region
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Fig. 1. Main DEvIANT properties for safe sub-search space pruning. A subgroup is
reported as significant if its related Krippendorff’s Alpha falls in the critical region
of the corresponding empirical distribution of random subsets (DFD). When travers-
ing the search space downward (decreasing support size), the approximate confidence
intervals are nested. If the optimistic estimates region falls into the confidence interval
computed on the related DFD, the sub-search space can be safely pruned.
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subgroups featuring statistically significantly exceptional (dis-)agreement among
groups. This algorithm enables discarding non-significant subgroups by prun-
ing unpromising branches of the search space (cf. Fig. 1). Suppose that we are
interested in subgroups of entities (e.g., voting sessions) whose sizes are greater
than a support threshold σ. We gauge the exceptionality of a given subgroup
of size X ≥ σ, by its p-value: the probability that for a random subset of enti-
ties, we observe an intra-agreement at least as extreme as the one observed
for the subgroup. Thus we avoid reporting subgroups observing a low/high
intra-agreement due to chance only. To achieve this, we estimate the empiri-
cal distribution of the intra-agreement of random subsets (DFD: Distribution
of False Discoveries, cf. [7,25]) and establish, for a chosen critical value α, a
confidence interval CI1−α

X over the corresponding distribution under the null
hypothesis. If the subgroup intra-agreement is outside CI1−α

X , the subgroup is
statistically significant (p-value ≤ α); otherwise the subgroup is a spurious find-
ing. We prove that the analytic approximate confidence intervals are nested:
σ ≤ Y ≤ X ⇒ CI1−α

X ⊆ CI1−α
Y (i.e., when the support size grows, the confi-

dence interval shrinks). Moreover, we compute a tight optimistic estimate (OE)
[15] to define a lower and upper bounds of Krippendorff’s Alpha for any special-
ization of a subgroup having its size greater than σ. Combining these properties,
if the OE region falls into the corresponding CI, we can safely prune large parts
of the search space that do not contain significant subgroups. In summary, the
main contributions are:

(1) We introduce the problem of discovering statistically significant exceptional
contextual intra-group agreement patterns (Sect. 3).
(2) We derive an analytical approximation of the confidence intervals associ-
ated with subgroups. This allows a computationally efficient assessment of the
statistical significance of the findings. Furthermore, we show that approximate
confidence intervals are nested (Sect. 4). Particular attention is also paid to the
variability of outcomes among raters (Sect. 5).
(3) We devise a branch-and-bound algorithm to discover exceptional contextual
intra-group agreement patterns (Sect. 6). It exploits tight optimistic estimates
on Krippendorff’s alpha and the nesting property of approximate CIs.

2 Background and Related Work

The page limit, combined with the sheer volume of other material in this paper,
compels us to restrict this section to one page containing only the most relevant
research to this present work.

Measuring Agreement. Several measures of agreement focus on two targets
(Pearson’s ρ, Spearman’s ρ, Kendall’s τ , Association); most cannot handle miss-
ing values well. As pointed out by Krippendorff [21, p.244], using association
and correlation measures to assess agreement leads to particularly misleading
conclusions: when all data falls along a line Y = aX + b, correlation is perfect,
but agreement requires that Y = X. Cohen’s κ is a seminal measure of agree-
ment between two raters who classify items into a fixed number of mutually
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exclusive categories. Fleiss’ κ extends this notion to multiple raters and requires
that each item receives the exact same number of ratings. Krippendorff’s alpha
generalizes these measures while handling multiple raters, missing outcomes and
several metrics [21, p.232].

Discovering Significant Patterns. Statistical assessment of patterns has
received attention for a decade [17,27], especially for association rules [16,26].
Some work focused on statistical significance of results in SD/EMM during enu-
meration [7,25] or a posteriori [8] for statistical validation of the found subgroups.

Voting and Rating Data Analysis. Previous work [2] proposed a method to
discover exceptional inter -group agreement in voting or rating data. This method
does not allow to discover intra-group agreement. In rating datasets, groups are
uncovered whose members exhibit an agreement or discord [4] or a specific rat-
ing distribution [1] (e.g., polarized, homogeneous) given upfront by the end-user.
This is done by aggregating the ratings through an arithmetic mean or a rating
distribution. However, these methods do not allow to discover exceptional (dis-
)agreement within groups. Moreover, they may output misleading hypotheses
over the intra-group agreement, since aggregating ratings in a distribution (i)
is highly affected by data sparsity (e.g., two reviewers may significantly differ
in their number of expressed ratings) and (ii) may conceal the true nature of
the underlying intra-group agreement. For instance, a rating distribution com-
puted for a collection of movies may highlight a polarized distribution of ratings
(interpreted as a disagreement) while ratings over each movie may describe a
consensus between raters (movies are either highly or lowly rated or by the
majority of the group). These two issues are addressed by Krippendorff’s alpha.

3 Problem Definition

Our data consists of a set of individuals (e.g., social network users, parliamentar-
ians) who give outcomes (e.g., ratings, votes) on entities (e.g., movies, ballots).
We call this type of data a behavioral dataset (cf. Table 1).

Table 1. Example of behavioral dataset - European Parliament Voting dataset

(a) Entities (b) Individuals (c) Outcomes

ide themes date idi country group age idi ide o(i,e) idi ide o(i,e)

e1 1.20 Citizen’s rights 20/04/16 i1 France S&D 26 i1 e2 Against i3 e1 For

e2 5.05 Economic growth 16/05/16 i1 e5 For i3 e2 Against

e3 1.20 Citizen’s rights; i2 France PPE 30 i1 e6 Against i3 e3 For

7.30 Judicial Coop 04/06/16 i2 e1 For i3 e5 Against

e4 7 Security and Justice 11/06/16 i3 Germany S&D 40 i2 e3 Against i4 e1 For

e5 7.30 Judicial Coop 03/07/16 i2 e4 For i4 e4 For

e6 7.30 Judicial Coop 29/07/16 i4 Germany ALDE 45 i2 e5 For i4 e6 Against
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Definition 1 (Behavioral Dataset). A behavioral dataset B = 〈GI , GE , O, o〉
is defined by (i) a finite collection of Individuals GI , (ii) a finite collection of
Entities GE, (iii) a domain of possible Outcomes O, and (iv) a function o :
GI × GE → O that gives the outcome of an individual i over an entity e.

The elements from GI (resp. GE) are augmented with descriptive attributes
AI (resp. AE). Attributes a ∈ AI (resp. AE) may be Boolean, numerical or cat-
egorical, potentially organized in a taxonomy. Subgroups (subsets) of GI (resp.
GE) are defined using descriptions from DI (resp. DE). These descriptions are
formalized by conjunctions of conditions on the values of the attributes. Descrip-
tions of DI are called groups, denoted g. Descriptions of DE are called contexts,
denoted c. From now on, G (resp. D) denotes both collections GI (resp. DI) and
GE (resp. DE) if no confusion can arise. We denote by Gd the subset of records
characterized by the description d ∈ D. Descriptions from D are partially ordered
by a specialization operator denoted 
. A description d2 is a specialization of d1,
denoted d1 
 d2, if and only if d2 ⇒ d1 from a logical point of view. It follows
that Gd2 ⊆ Gd1 .

3.1 Intra-group Agreement Measure: Krippendorff’s Alpha (A)

Krippendorff’s Alpha (denoted A) measures the agreement among raters. This
measure has several properties that make it attractive in our setting, namely:
(i) it is applicable to any number of observers; (ii) it handles various domains
of outcomes (ordinal, numerical, categorical, time series); (iii) it handles missing
values; (iv) it corrects for the agreement expected by chance. A is defined as:

A = 1 − Dobs

Dexp
(1)

where Dobs (resp. Dexp) is a measure of the observed (resp. expected) disagree-
ment. Hence, when A = 1, the agreement is as large as it can possibly be (given
the class prior), and when A = 0, the agreement is indistinguishable to agree-
ment by chance. We can also have A < 0, where disagreement is larger than
expected by chance and which corresponds to systematic disagreement.

Given a behavioral dataset B, we want to measure Krippendorff’s alpha for
a given context c ∈ DE characterizing a subset of entities Gc

E ⊆ GE , which
indicates to what extent the individuals who comprise some selected group are
in agreement g ∈ DI . From Eq. (1), we have: A(S) = 1− Dobs(S)

Dexp
for any S ⊆ GE .

Note that the measure only considers entities having at least two outcomes; we
assume the entities not fulfilling this requirement to be removed upfront by a
preprocessing phase. We capture observed disagreement by:

Dobs(S) =
1

∑
e∈S me

∑

o1o2∈O2

δo1o2 ·
∑

e∈S

mo1
e · mo2

e

me − 1
(2)

where me is the number of expressed outcomes for the entity e and mo1
e (resp.

mo2
e ) represents the number of outcomes equal to o1 (resp. o2) expressed for the
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entity e. δo1o2 is a distance measure between outcomes, which can be defined
according to the domain of the outcomes (e.g., δo1o2 can correspond to the Iver-
son bracket indicator function [o1 �= o2] for categorical outcomes or distance
between ordinal values for ratings. Choices for the distance measure are dis-
cussed in [21]). The disagreement expected by chance is captured by:

Dexp =
1

m · (m − 1)

∑

o1,o2∈O2

δo1o2 · mo1 · mo2 (3)

where m is the number of all expressed outcomes, mo1 (resp. mo2) is the number
of expressed outcomes equal to o1 (resp. o2) observed in the entire behavioral
dataset. This corresponds to the disagreement by chance observed on the overall
marginal distribution of outcomes.

Table 2. Summarized Behavioral
Data; Dobs(e) =

∑
o1,o2∈O2 δo1o2

mo1
e · mo2

e

me · (me − 1)

[F]or [A]gainst

e1 e2 e3 e4 e5 e6

i1 A F A

i2 F A F F

i3 F A F A

i4 F F A

me 3 2 2 2 3 2

Dobs(e) 0 0 1 0 2
3

0

Example: Table 2 summarizes the behav-
ioral data from Table 1. The disagreement
expected by chance equals (given: mF =
8, mA = 6): Dexp = 48/91. To evalu-
ate intra-agreement among the four indi-
viduals in the global context (consider-
ing all entities), first we need to com-
pute the observed disagreement Dobs(GE).
This equals the weighted average of the
two last lines by considering the quanti-
ties me as the weights: Dobs(GE) = 4

14 .
Hence, for the global context, A(GE) =
0.46. Now, consider the context c =
〈themes ⊇ {7.30 Judicial Coop.}〉, hav-
ing as support: Gc

E = {e3, e5, e6}. The
observed disagreement is obtained by com-
puting the weighted average, only considering the entities belonging to the con-
text: Dobs(Gc

E) = 4
7 . Hence, the contextual intra-agreement is: A(Gc

E) = −0.08.
Comparing A(Gc

E) and A(GE) leads to the following statement: “while par-
liamentarians are slightly in agreement in overall terms, matters of judicial coop-
eration create systematic disagreement among them”.

3.2 Mining Significant Patterns with Krippendorff’s Alpha

We are interested in finding patterns of the form (g, c) ∈ P (with P = DI ×
DE), highlighting an exceptional intra-agreement between members of a group
of individuals g over a context c. We formalize this problem using the well-
established framework of SD/EMM [6], while giving particular attention to the
statistical significance and soundness of the discovered patterns [17].

Given a group of individuals g ∈ DI , we strive to find contexts c ∈ DE

where the observed intra-agreement, denoted Ag(Gc
E), significantly differs from

the expected intra-agreement occurring due to chance alone. In the spirit of
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[7,25,27], we evaluate pattern interestingness by statistical significance of the
contextual intra-agreement: we estimate the probability to observe the intra-
agreement Ag(Gc

E) or a more extreme value, which corresponds to the p-value
for some null hypothesis H0. The pattern is said to be significant if the estimated
probability is low enough (i.e., under some critical value α). The relevant null
hypothesis H0 is: the observed intra-agreement is generated by the distribution
of intra-agreements observed on a bag of i.i.d. random subsets drawn from the
entire collection of entities (DFD: Distributions of False Discoveries, cf. [7]).

Problem Statement. (Discovering Exceptional Contextual Intra-group Agree-
ment Patterns). Given a behavioral dataset B = 〈GI , GE , O, o〉, a minimum
group support threshold σI , a minimum context support threshold σE , a signif-
icance critical value α ∈]0, 1], and the null hypothesis H0 (the observed intra-
agreement is generated by the DFD); find the pattern set P ⊆ P such that:

P = {(g, c) ∈ DI × DE : |Gg
I | ≥ σI and |Gc

E | ≥ σE and p-valueg(c) ≤ α}
where p-valueg(c) is the probability (under H0) of obtaining an intra-agreement
A at least as extreme as Ag(Gc

E), the one observed over the current context.

4 Exceptional Contexts: Evaluation and Pruning

From now on we omit the exponent g if no confusion can arise, while keeping in
mind a selected group of individuals g ∈ DI related to a subset Gg

I ⊆ GI .
To evaluate the extent to which our findings are exceptional, we follow the

significant pattern mining paradigm1: we consider each context c as a hypothesis
test which returns a p-value. The p-value is the probability of obtaining an
intra-agreement at least as extreme as the one observed over the current context
A (Gc

E), assuming the truth of the null hypothesis H0. The pattern is accepted if
H0 is rejected. This happens if the p-value is under a critical significance value
α which amounts to test if the observed intra-agreement A (Gc

E) is outside the
confidence interval CI1−α established using the distribution assumed under H0.

H0 corresponds to the baseline finding: the observed contextual intra-agree-
ment is generated by the distribution of random subsets equally likely to occur,
a.k.a. Distribution of False Discoveries (DFD, cf. [7]). We evaluate the p-value
of the observed A against the distribution of random subsets of a cardinality
equal to the size of the observed subgroup Gc

E . The subsets are issued by uni-
form sampling without replacement (since the observed subgroup encompasses
distinct entities only) from the entity collection. Moreover, drawing samples only
from the collection of subsets of size equal to |Gc

E | allows to drive more judicious
conclusions: the variability of the statistic A is impacted by the size of the con-
sidered subgroups, since smaller subgroups are more likely to observe low/high
values of A. The same reasoning was followed in [25].

1 This paradigm naturally raises the question of how to address the multiple compar-
isons problem [19]. This is a non-trivial task in our setting, and solving it requires an
extension of the significant pattern mining paradigm as a whole: its scope is bigger
than this paper. We provide a brief discussion in Appendix C.
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We define θk : Fk → R as the random variable corresponding to the observed
intra-agreement A of k-sized subsets S ∈ GE . I.e., for any k ∈ [1, n] with n =
|GE |, we have θk(S) = A(S) and Fk = {S ∈ GE s.t. |S| = k}. Fk is then the set
of possible subsets which are equally likely to occur under the null hypothesis
H0. That is, P(S ∈ Fk) =

(
n
k

)−1. We denote by CI1−α
k the (1 − α) confidence

interval related to the probability distribution of θk under the null hypothesis
H0. To easily manipulate θk, we reformulate A using Eqs. (1)–(3):

A(S) =
∑

e∈S ve
∑

e∈S we
| we = me and ve = me − 1

Dexp

∑

o1,o2∈O2

δo1o2 · mo1
e · mo2

e

(me − 1)

(4)
Under the null hypothesis H0 and the assumption that the underlying distri-
bution of intra-agreements is a Normal distribution2 N (μk, σ2

k), one can define
CI1−α

k by computing μk = E[θk] and σ2
k = Var[θk]. Doing so requires either

empirically calculating estimators of such moments by drawing a large number r
of uniformly generated samples from Fk, or analytically deriving the formula of
E[θk] and Var[θk]. In the former case, the confidence interval CI1−α

k endpoints
are given by [14, p. 9]: μk ± t1− α

2 ,r−1σk

√
1 + (1/r), with μk and σk empirically

estimated on the r samples, and t1− α
2 ,r−1 the (1 − α

2 ) percentile of Student’s
t-distribution with r − 1 degrees of freedom. In the latter case, (μk and σk are
known/derived analytically), the (1−α) confidence interval can be computed in
its most basic form, that is CI1−α

k = [μk − z(1− α
2 )σk, μk + z(1− α

2 )σk] with z(1− α
2 )

the (1 − α
2 ) percentile of N (0, 1).

However, due to the problem setting, empirically establishing the confi-
dence interval is computationally expensive, since it must be calculated for
each enumerated context. Even for relatively small behavioral datasets, this
quickly becomes intractable. Alternatively, analytically deriving a computa-
tionally efficient form of E[θk] is notoriously difficult, given that E[θk] =
(
n
k

)−1 ∑
S∈Fk

∑
e∈S ve∑
e∈S we

and Var[θk] =
(
n
k

)−1 ∑
S∈Fk

( ∑
e∈S ve∑
e∈S we

− E[θk]
)2

.
Since θk can be seen as a weighted arithmetic mean, one can model the

random variable θk as the ratio Vk

Wk
, where Vk and Wk are two random vari-

ables Vk : Fk → R and Wk : Fk → R with Vk(S) = 1
k

∑
e∈S ve and

Wk(S) = 1
k

∑
e∈S we. An elegant way to deal with a ratio of two random vari-

ables is to approximate its moments using the Taylor series following the line of
reasoning of [9] and [20, p.351], since no easy analytic expression of E[θk] and
Var[θk] can be derived.

2 In the same line of reasoning of [5], one can assume that the underlying distribution
can be derived from what prior beliefs the end-user may have on such distribution.
If only the observed expectation μ and variance σ2 are given as constraints which
must hold for the underlying distribution, the maximum entropy distribution (taking
into account no other prior information than the given constraints) is known to be
the Normal distribution N (μ, σ2) [3, p.413].
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Proposition 1 (An Approximate Confidence Interval ĈI
1−α

k for θk).

Given k ∈ [1, n] and α ∈]0, 1] (significance critical value), ĈI
1−α

k is given by:

ĈI
1−α

k =
[

Ê[θk] − z1− α
2

√

V̂ar[θk], Ê[θk] + z1− α
2

√

V̂ar[θk]
]

(5)

with Ê[θk] a Taylor approximation for the expectation E[θk] expanded around
(μVk

, μWk
), and V̂ar[θk] a Taylor approximation for Var[θk] given by:

Ê[θk] =
(n

k
− 1

) μv

μw
βw +

μv

μw
V̂ar[θk] =

(n

k
− 1

) μ2
v

μ2
w

(βv + βw) (6)

with:

μv =
1
n

∑

e∈GE

ve

μv2 =
1
n

∑

e∈GE

v2
e

μw =
1
n

∑

e∈GE

we

μw2 =
1
n

∑

e∈GE

w2
e

n = |GE |
μvw =

1
n

∑

e∈GE

vewe

and: βv =
1

n − 1

(
μv2

μ2
v

− μvw

μvμw

)

βw =
1

n − 1

(
μw2

μ2
w

− μvw

μvμw

)

For a proof of these equations, see Appendix A; all appendices are available at
https://hal.archives-ouvertes.fr/hal-02161309/document.

Note that the complexity of the computation of the approximate confidence
interval ĈI

1−α

k is O(n), with n the size of entities collection GE .

4.1 Pruning the Search Space

Optimistic Estimate on Krippendorff’s Alpha. To quickly prune unpro-
mising areas of the search space, we define a tight optimistic estimate [15] on
Krippendorff’s alpha. Eppstein and Hirschberg [11] propose a smart linear algo-
rithm Random-SMWA3 to find subsets with maximum weighted average. Recall
that A can be seen as a weighted average (cf. Eq. (4)).

In a nutshell, Random-SMWA seeks to remove k values to find a subset of S
having |S| − k values with maximum weighted average. The authors model the
problem as such: given |S| values decreasing linearly with time, find the time at
which the |S| − k maximum values add to zero. In the scope of this work, given
a user-defined support threshold σE on the minimum allowed size of context
extents, k is fixed to |S| − σE . The obtained subset corresponds to the smallest
allowed subset having support ≥ σE maximizing the weighted average quantity
A. The Random-SMWA algorithm can be tweaked4 to retrieve the smallest subset of
size ≥ σE having analogously the minimum possible weighted average quantity
A. We refer to the algorithm returning the maximum (resp. minimum) possible
weighted average by RandomSMWAmax (resp. RandomSMWAmin).
3 Random-SMWA: Randomized algorithm - Subset with Maximum Weighted Average.
4 Finding the subset having the minimum weighted average is a dual problem to finding

the subset having the maximum weighted average. To solve the former problem using
Random-SMWA, we modify the values of vi to −vi and keep the same weights wi.

https://hal.archives-ouvertes.fr/hal-02161309/document
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Proposition 2 (Upper and Lower Bounds for A). Given S ⊆ GE, mini-
mum context support threshold σE, and the following functions:

UB(S) = A (RandomSMWAmax(S, σE)) LB(S) = A
(
RandomSMWAmin(S, σE)

)

we know that LB (resp. UB) is a lower (resp. upper) bound for A, i.e.:

∀c, d ∈ DE : c 
 d ∧ |Gc
E | ≥ |Gd

E | ≥ σE ⇒ LB(Gc
E) ≤ A(Gd

E) ≤ UB(Gc
E)

Using these results, we define the optimistic estimate for A as an inter-
val bounded by the minimum and the maximum A measure that one can
observe from the subsets of a given subset S ⊆ GE , that is: OE(S, σE) =
[LB(S), UB(S)].

Nested Confidence Intervals for A. The desired property between two con-
fidence intervals of the same significance level α related to respectively k1, k2
with k1 ≤ k2 is that CI1−α

k1
encompasses CI1−α

k2
. Colloquially speaking, larger

samples lead to “narrower” confidence intervals. This property is intuitively plau-
sible, since the dispersion of the observed intra-agreement for smaller samples is
likely to be higher than the dispersion for larger samples. Having such a property
allows to prune the search subspace related to a context c when traversing the
search space downward if OE(Gc

E , σE) ⊆ CI1−α
|Gc

E |.

Proving CI1−α
k2

⊆ CI1−α
k1

for k1 ≤ k2 for the exact confidence interval is
nontrivial, since it requires to analytically derive E[θk] and Var[θk] for any 1 ≤
k ≤ n. Note that the expected value E[θk] varies when k varies. We study such

a property for the approximate confidence interval ĈI
1−α

k .

Proposition 3 (Minimum Cardinality Constraint for Nested Approx-
imate Confidence Intervals). Given a context support threshold σE and α.

If σE ≥ Cα =
4nβ2

w

z21− α
2
(βv + βw) + 4β2

w

,

then ∀k1, k2 ∈ N : σE ≤ k1 ≤ k2 ⇒ ĈI
1−α

k2
⊆ ĈI

1−α

k1

Combining Propositions 1, 2 and 3, we formalize the pruning region property
which answers: when to prune the sub-search space under a context c?

Corollary 1 (Pruning Regions). Given a behavioral dataset B, a context
support threshold σE ≥ Cα, and a significance critical value α ∈]0, 1]. For any
c, d ∈ DE such that c 
 d with |Gc

E | ≥ |Gd
E | ≥ σE, we have:

OE(Gc
E , σE) ⊆ ĈI

1−α

|Gc
E | ⇒ A(Gd

E) ∈ ĈI
1−α

|Gd
E | ⇒ p-value(d) > α

Proofs. All proofs of propositions and properties can be found in Appendix A.
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5 On Handling Variability of Outcomes Among Raters

In Sect. 4, we defined the confidence interval CI1−α established over the DFD.
By taking into consideration the variability induced by the selection of a sub-
set of entities, such a confidence interval enables to avoid reporting subgroups
indicating an intra-agreement likely (w.r.t. the critical value α) to be observed
by a random subset of entities. For more statistically sound results, one should
not only take into account the variability induced by the selection of subsets of
entities, but also the variability induced by the outcomes of the selected group
of individuals. This is well summarized by Hayes and Krippendorff [18]: “The
obtained value of A is subject to random sampling variability—specifically vari-
ability attributable to the selection of units (i.e., entities) in the reliability data
(i.e., behavioral data) and the variability of their judgments”. To address these
two questions, they recommend to employ a standard Efron & Tibshirani boot-
strapping approach [10] to empirically generate the sampling distribution of A
and produce an empirical confidence interval CI1−α

bootstrap.
Recall that we consider here a behavioral dataset B reduced to the outcomes

of a selected group of individuals g. Following the bootstrapping scheme proposed
by Krippendorff [18,21], the empirical confidence interval is computed by repeat-
edly performing the following steps: (1) resample n entities from GE with replace-
ment; (2) for each sampled entity, draw uniformly me ·(me−1) pairs of outcomes
according to the distribution of the observed pairs of outcomes; (3) compute
the observed disagreement and calculate Krippendorff’s alpha on the resulting
resample. This process, repeated b times, leads to a vector of bootstrap estimates
(sorted in ascending order) B̂ = [Â1, . . . , Âb]. Given the empirical distribution
B̂, the empirical confidence interval CI1−α

bootstrap is defined by the percentiles of
B̂, i.e., CI1−α

bootstrap = [Â� α
2 ·b�, Â�(1− α

2 )·b�]. We denote by MCI1−α (Merged CI)
the confidence interval that takes into consideration both CI1−α = [le1, re1] and
CI1−α

bootstrap = [le2, re2]. We have MCI1−α = [min(le1, le2),max(re1, re2)].

6 A Branch-and-Bound Solution: Algorithm DEvIANT

To detect exceptional contextual intra-group agreement patterns, we need to
enumerate candidates p = (g, c) ∈ (DI ,DE). Both heuristic (e.g., beam search
[23]) and exhaustive (e.g., GP-growth [24]) enumeration algorithms exist. We
exhaustively enumerate all candidate subgroups while leveraging closure opera-
tors [12] (since A computation only depends on the extent of a pattern). This
makes it possible to avoid redundancy and to substantially reduce the number
of visited patterns. With this aim in mind, and since the data we deal with
are of the same format as those handled in the previous work [2], we apply
EnumCC to enumerate subgroups g (resp. c) in DI (resp. DE). EnumCC follows
the line of algorithm CloseByOne [22]. Given a collection G of records (GE or
GI), EnumCC traverses the search space depth-first and enumerates only once
all closed descriptions fulfilling the minimum support constraint σ. EnumCC fol-
lows a yield and wait paradigm (similar to Python’s generators) which at each
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call yield the following candidate and wait for the next call. See Appendix B for
details.

DEvIANT implements an efficient branch-and-bound algorithm to Discover
statistically significant Exceptional Intra-group Agreement paTterns while
leveraging closure, tight optimistic estimates and pruning properties. DEvIANT
starts by selecting a group g of individuals. Next, the corresponding behavioral
dataset Bg is established by reducing the original dataset B to elements con-
cerning solely the individuals comprising Gg

I and entities having at least two
outcomes. Subsequently, the bootstrap confidence interval CI1−α

bootstrap is calcu-
lated.

Before searching for exceptional contexts, the minimum context support
threshold σE is adjusted to Cα(g) (cf. Proposition 3) if it is lower than Cα(g).
While in practice Cα(g) � σE , we keep this correction for algorithm soundness.
Next, contexts are enumerated by EnumCC. For each candidate context c, the
optimistic estimate interval OE(Gc

E) is computed (cf. Proposition 2). Accord-
ing to Corollary 1, if OE(Gc

E , σg
E) ⊆ MCI1−α

|Gc
E |, the search subspace under c can

be pruned. Otherwise, Ag(Gc
E) is computed and evaluated against MCI1−α

|Gc
E |. If

Ag(Gc
E) �∈ MCI1−α

|Gc
E |, then (g, c) is significant and kept in the result set P . To

reduce the number of reported patterns, we keep only the most general patterns
while ensuring that each significant pattern in P is represented by a pattern in
P . This formally translates to: ∀p′ = (g′, c′) ∈ P \P : p-valueg′

(c′) ≤ α ⇒ ∃p =
(g, c) ∈ P s.t. ext(q) ⊆ ext(p), with ext (q = (g′, c′)) ⊆ ext (p = (g, c)) defined by

Algorithm 1: DEvIANT(B, σE , σI , α)
Inputs : Behavioral dataset B = 〈GI , GE , O, o〉, minimum support threshold σE

of a context and σI of a group, and critical significance value α.
Output: Set of exceptional intra-group agreement patterns P .

1 P ← {}
2 foreach (g, Gg

I , contg) ∈ EnumCC(GI , ∗, σI , 0,True) do
3 GE(g) = {e ∈ E s.t. ng

e ≥ e}
4 Bg = 〈GE(g), Gg

I , O, o〉
5 CI1−α

bootstrap = [Â� α
2 ·b�, Â�(1− α

2 )·b�] � With B̂ = [Âg
1, ..., Â

g
b ] computed on

6 σg
E = max (Cα (g) , σE) respectively b resamples of Bg

7 foreach (c, Gc
E , contc) ∈ EnumCC(GE(g), ∗, σg

E , 0,True) do

8 MCI1−α
|Gc

E
| = merge

(
ĈI

1−α

|Gc
E

|, CI1−α
bootstrap

)

9 if OE(Gc
E , σg

E) ⊆ MCI1−α
|Gc

E
| then

10 contc ← False � Prune the unpromising search subspace under c

11 else if Ag(Gc
E) /∈ MCI1−α

|Gc
E

| then

12 pnew ← (g, c)
13 if �pold ∈ P s.t. ext(pnew) ⊆ ext(pold) then
14 P ← (P ∪ pnew) \ {pold ∈ P | ext(pold) ⊆ ext(pnew)}
15 contc ← False � Prune the sub search space (generality concept)

16 return P
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Table 3. Main characteristics of the behavioral datasets. C0.05 represents the minimum
context support threshold over which we have nested approximate CI property.

|GE | AE (Items-Scaling) |GI | AI (Items-Scaling) Outcomes Sparsity C0.05

EPD8a 4704 1H + 1N + 1C (437) 848 3C (82) 3.1M (C) 78.6% 	10−6

CHUSb 17350 1H + 2N (307) 1373 2C (261) 3M (C) 31.2% 	10−4

Movielensc 1681 1H + 1N (161) 943 3C (27) 100K (O) 06.3% 	0.065

Yelpd 127K 1H + 1C (851) 1M 3C (6) 4.15M (O) 0.003% 	1.14
aEighth European Parliament Voting Dataset (04/10/18).
b102nd-115th congresses of the US House of Representatives (Period: 1991-2015).
cMovie review dataset - https://grouplens.org/datasets/movielens/100k/.
dSocial network dataset - https://www.yelp.com/dataset/challenge (25/04/17).

Gg′
I ⊆ Gg

I and Gc′
E ⊆ Gc

E . This is based on the following postulate: the end-user
is more interested by exceptional (dis-)agreement within larger groups and/or
for larger contexts rather than local exceptional (dis-)agreement. Moreover, the
end-user can always refine their analysis to obtain more fine-grained results by
re-launching the algorithm starting from a specific context or group.

7 Empirical Evaluation

Our experiments aim to answer the following questions: (Q1) How well does
the Taylor-approximated CI approach the empirical CI? (Q2) How efficient is
the Taylor-approximated CI and the pruning properties? (Q3) Does DEvIANT
provide interpretable patterns? Source code and data are available on our com-
panion page: https://github.com/Adnene93/Deviant.

Datasets. Experiments were carried on four real-world behavioral datasets (cf.
Table 3): two voting (EPD8 and CHUS) and two rating datasets (Movielens
and Yelp). Each dataset features entities and individuals described by attributes
that are either categorical (C), numerical (N), or categorical augmented with
a taxonomy (H). We also report the equivalent number of items (in an itemset
language) corresponding to the descriptive attributes (ordinal scaling [13]).

Q1. First, we evaluate to what extent the empirically computed confidence inter-
val approximates the confidence interval computed by Taylor approximations.
We run 1000 experiments for subset sizes k uniformly randomly distributed in
[1, n = |GE |]. For each k, we compute the corresponding Taylor approximation

ĈI
1−α

k = [aT , bT ] and empirical confidence interval ECI1−α
k = [aE , bE ]. The

latter is calculated over 104 samples of size k from GE , on which we compute
the observed A which are then used to estimate the moments of the empirical
distribution required for establishing ECI1−α

k . Once both CIs are computed, we
measure their distance by Jaccard index. Table 4 reports the average μerr and the
standard deviation σerr of the observed distances (coverage error) over the 1000
experiments. Note that the difference between the analytic Taylor approximation
and the empirical approximation is negligible (μerr < 10−2). Therefore, the CIs

https://grouplens.org/datasets/movielens/100k/
https://www.yelp.com/dataset/challenge
https://github.com/Adnene93/Deviant
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Table 4. Coverage error between empirical CIs and Taylor CIs.

B μerr σerr B μerr σerr B μerr σerr B μerr σerr

CHUS 0.007 0.004 EPD8 0.007 0.004 Movielens 0.0075 0.0045 Yelp 0.007 0.004

Fig. 2. Comparison between DEvIANT and Naive when varying the size of the descrip-
tion space DI . Lines correspond to the execution time and bars correspond to the
number of output patterns. Parameters: σE = σI = 1% and α = 0.05.

Fig. 3. Effectiveness of DEvIANT on EPD8 when varying sizes of both search spaces
DE and DI , minimum context support threshold σE and the critical value α. Default
parameters: full search spaces DE and DI , σE = 0.1%, σI = 1% and α = 0.05.

approximated by the two methods are so close, that it does not matter which
method is used. Hence, the choice is guided by the computational efficiency.

Q2. To evaluate the pruning properties’ efficiency ((i) Taylor-approximated
CI, (ii) optimistic estimates and (iii) nested approximated CIs), we compare
DEvIANT with a Naive approach where the three aforementioned properties are
disabled. For a fair comparison, Naive pushes monotonic constraints (minimum
support threshold) and employs closure operators while empirically estimating
the CI by successive random trials from Fk. In both algorithms we disable the
bootstrap CI1−α

bootstrap computation, since its overhead is equal for both algo-
rithms. We vary the description space size related to groups of individuals DI

while considering the full entity description space. Figure 2 displays the results:
DEvIANT outperforms Naive in terms of runtime by nearly two orders of mag-
nitude while outputting the same number of the desired patterns.

Figure 3 reports the performance of DEvIANT in terms of runtime and num-
ber of output patterns. When varying the description space size, DEvIANT
requires more time to finish. Note that the size of individuals search space DI

substantially affects the runtime of DEvIANT. This is mainly because larger
DI leads to more candidate groups of individuals g which require DEvIANT
to: (i) generate CI1−α

bootstrap and (ii) mine for exceptional contexts c concerning
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Table 5. All the exceptional consensual/conflictual subjects among Republican
Party representatives (selected upfront, i.e. GI restricted over members of Repub-
lican party) in the 115th congress of the US House of Representatives. α = 0.01.

id group (g) context (c) Ag(∗) Ag(c) p-value IA

p1 Republicans 20.11 Government and Administration issues 0.83 0.32 <.001 Conflict

p2 Republicans 5 Labor 0.83 0.63 <.01 Conflict

p3 Republicans 20.05 Nominations and Appointments 0.83 0.92 <.001 Consensus

Fig. 4. Similarity matrix between Republicans, illustrating Pattern p1 from Table 5.
Each cell represents the ratio of voting sessions in which Republicans agreed. Green
cells report strong agreement; red cells highlight strong disagreement. (Color figure
online)

the candidate group g. Finally, when α decreases, the execution time required
for DEvIANT to finish increases while returning more patterns. This may seem
counter-intuitive, since fewer patterns are significant when α decreases. It is
a consequence of DEvIANT considering only the most general patterns. Hence,
when α decreases, DEvIANT goes deeper in the context search space: much more
candidate patterns are tested, enlarging the result set. The same conclusions are
found on the Yelp, Movielens, and CHUS datasets (cf. Appendix D).

Q3. Table 5 reports exceptional contexts observed among House Republicans
during the 115th Congress. Pattern p1, illustrated in Fig. 4, highlights a collec-
tion of voting sessions addressing Government and Administrative issues where
a clear polarization is observed between two clusters of Republicans. A roll
call vote in this context featuring significant disagreement between Repub-
licans is “House Vote 417” (cf. https://projects.propublica.org/represent/
votes/115/house/1/417) which was closely watched by the media (Washington
Post: https://wapo.st/2W32I9c; Reuters: https://reut.rs/2TF0dgV).

Table 6 depicts patterns returned by DEvIANT on the Movielens dataset.
Pattern p2 reports that “Middle-aged Men” observe an intra-group agreement

https://projects.propublica.org/represent/votes/115/house/1/417
https://projects.propublica.org/represent/votes/115/house/1/417
https://wapo.st/2W32I9c
https://reut.rs/2TF0dgV
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Table 6. Top-3 exceptionally consensual/conflictual genres between Movielens raters,
α = 0.01. Patterns are ranked by absolute difference between Ag(c) and Ag(∗).

id group (g) context (c) Ag(∗) Ag(c) p-value IA

p1 Old 1.Action & 2.Adventure & 6.Crime Movies −0.06 −0.29 < 0.01 Conflict

p2 Middle-aged Men 2.Adventure & 12.Musical Movies 0.05 0.21 < 0.01 Consensus

p3 Old 4.Children & 12.Musical Movies −0.06 −0.21 < 0.01 Conflict

significantly higher than overall, for movies labeled with both adventure and
musical genres (e.g., The Wizard of Oz (1939)).

8 Conclusion and Future Directions

We introduce the task to discover statistically significant exceptional contextual
intra-group agreement patterns. To efficiently search for such patterns, we devise
DEvIANT, a branch-and-bound algorithm leveraging closure operators, approx-
imate confidence intervals, tight optimistic estimates on Krippendorff’s Alpha
measure, and the property of nested CIs. Experiments demonstrate DEvIANT’s
performance on behavioral datasets in domains ranging from political analysis to
rating data analysis. In future work, we plan to (i) investigate how to tackle the
multiple comparison problem [17], (ii) investigate intra-group agreement which
is exceptional w.r.t. all individuals over the same context, and (iii) integrate the
option to choose which kind of exceptional consensus the end-user wants: is the
exceptional consensus caused by common preference or hatred for the context-
related entities? All this is to be done within a comprehensive framework and
tool (prototype available at http://contentcheck.liris.cnrs.fr) for behavioral data
analysis alongside exceptional inter-group agreement pattern discovery imple-
mented in [2].
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Abstract. Motivated by various binary classification problems in struc-
tured data (e.g., graphs or other relational and algebraic structures),
we investigate some algorithmic properties of closed set and half-space
separation in abstract closure systems. Assuming that the underlying
closure system is finite and given by the corresponding closure operator,
we formulate some negative and positive complexity results for these two
separation problems. In particular, we prove that deciding half-space sep-
arability in abstract closure systems is NP-complete in general. On the
other hand, for the relaxed problem of maximal closed set separation we
propose a simple greedy algorithm and show that it is efficient and has
the best possible lower bound on the number of closure operator calls.
As a second direction to overcome the negative result above, we consider
Kakutani closure systems and show first that our greedy algorithm pro-
vides an algorithmic characterization of this kind of set systems. As one
of the major potential application fields, we then focus on Kakutani clo-
sure systems over graphs and generalize a fundamental characterization
result based on the Pasch axiom to graph structure partitioning of finite
sets. Though the primary focus of this work is on the generality of the
results obtained, we experimentally demonstrate the practical usefulness
of our approach on vertex classification in different graph datasets.

Keywords: Closure systems · Half-space separation · Binary
classification

1 Introduction

The theory of binary separation in R
d by hyperplanes goes back to at least

Rosenblatt’s pioneer work on perceptron learning in the late fifties [12]. Since
then several deep results have been published on this topic including, among
others, Vapnik and his co-workers seminal paper on support vector machines [2].
The general problem of binary separation in R

d by hyperplanes can be regarded
as follows: Given two finite sets R,B ⊆ R

d, check whether their convex hulls are
disjoint, or not. If not then return the answer “No” indicating that R and B are
not separable by a hyperplane. Otherwise, there exists a hyperplane in R

d such
c© Springer Nature Switzerland AG 2020
U. Brefeld et al. (Eds.): ECML PKDD 2019, LNAI 11906, pp. 21–37, 2020.
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http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-46150-8_2&domain=pdf
https://doi.org/10.1007/978-3-030-46150-8_2


22 F. Seiffarth et al.

that the convex hull of R lies completely in one of the two half-spaces defined by
the hyperplane and that of B in the other one. The class of an unseen point in R

d

is then predicted by that of the training examples in the half-space it belongs
to. The correctness of this generic method for R

d is justified by the result of
Kakutani [9] that any two disjoint convex sets in R

d are always separable by a
hyperplane.

While hyperplane separation in R
d is a well-founded field, the adaptation

of the above idea to other types of data, such as graphs and other relational
and algebraic structures has received less attention by the machine learning
community. In contrast, the idea of abstract half-spaces over finite domains has
intensively been studied among others in geometry and theoretical computer
science (see, e.g., [4,5,10,15]). Using the fact that the set of all convex hulls in R

d

forms a closure system, the underlying idea of generalizing hyperplane separation
in R

d to arbitrary finite sets E is to consider some semantically meaningful
closure system C over E (see, e.g., [16] for abstract closure structures). A subset
H of E is then considered as an abstract half-space, if H and its complement both
belong to C. In this field of research there is a special focus on characterization
results of special closure systems, called Kakutani closure systems (see, e.g.,
[4,16]). This kind of closure systems satisfy the following property: If the closures
of two sets are disjoint then they are half-space separable in the closure system.

Utilizing the results of other research fields, in this work we deal with the algo-
rithmic aspects of half-space separation in closure systems over finite domains
(or ground sets) from the point of view of binary classification. In all results pre-
sented in this paper we assume that the abstract closure system is given implicitly
via the corresponding closure operator. This assumption is justified by the fact
that the cardinality of a closure system can be exponential in that of the domain.
The closure operator is regarded as an oracle (or black box) which returns in
unit time the closure of any subset of the domain. Using these assumptions, we
first show that deciding whether two subsets of the ground set are half-space
separable in the underlying abstract closure system is NP-complete.

In order to overcome this negative result, we then relax the problem setting
of half-space separation to maximal closed set1 separation. That is, to the prob-
lem of finding two closed sets in the closure system that are disjoint, contain
the two input subsets, and have no supersets in the closure system w.r.t. these
two properties. For this relaxed problem we give a simple efficient greedy algo-
rithm and show that it is optimal w.r.t. the number of closure operator calls in
the worst-case. As a second way to resolve the negative result mentioned above,
we then focus on Kakutani closure systems. We first show that any determin-
istic algorithm deciding whether a closure system is Kakutani or not requires
exponentially many closure operator calls in the worst-case. Despite this nega-
tive result, Kakutani closure systems remain highly interesting for our purpose
because there are various closure systems which are known to be Kakutani. We
also prove that the greedy algorithm mentioned above provides an algorithmic

1 Throughout this work we consistently use the nomenclature “closed sets” by noting
that “convex” and “closed” are synonyms by the standard terminology of this field.
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characterization of Kakutani closure systems. This implies that for these systems
the output is always a partitioning of the domain into two half-spaces containing
the closures of the input sets if and only if their closures are disjoint.

Regarding potential applications of maximal closed set and half-space sepa-
rations, we then turn our attention to graphs.2 Using the notion of convexity for
graphs induced by shortest paths [6], we generalize a fundamental characteriza-
tion result of Kakutani closure systems based on the Pasch axiom [4] to graph
structured partitioning of finite sets. Potential practical applications of this gen-
eralization result include e.g. graph clustering and partitioning or mining logical
formulas over graphs.

Besides the positive and negative theoretical results, we also present exten-
sive experimental results for binary vertex classification in graphs, by stressing
that our generic approach is not restricted to graphs. In the experiments we
first consider trees and then arbitrary graphs. Regarding trees, the closure sys-
tems considered are always Kakutani. Our results clearly demonstrate that a
remarkable predictive accuracy can be obtained even for such cases where the
two sets of vertices corresponding to the two classes do not form half-spaces in
the closure systems. Since the closure systems considered over arbitrary graphs
are not necessarily Kakutani, the case of vertex classification in arbitrary graphs
is reduced to that in trees as follows: Consider a set of random spanning trees of
the graph at hand and predict the vertex labels by the majority vote of the pre-
dictions in the spanning trees. Our experimental results show that this heuristic
results in considerable predictive performance on sparse graphs. We emphasize
that we deliberately have not exploited any domain specific properties in the
experiments, as our primary goal was to study the predictive performance of
our general purpose algorithm. We therefore also have not compared our results
with those of the state-of-the-art domain specific algorithms.

The rest of the paper is organized as follows. In Sect. 2 we collect the necessary
notions and fix the notation. Section 3 is concerned with the negative result
on the complexity of the half-space separation problem and with the relaxed
problem of maximal closed set separation. Section 4 is devoted to Kakutani and
Sect. 5 to non-Kakutani closure systems. Finally, in Sect. 6 we conclude and
formulate some open problems. Due to space limitations we omit the proofs
from this short version.

2 Preliminaries

In this section we collect the necessary notions and notation for set and closure
systems (see, e.g., [4,16] for references on closure systems and separation axioms).

For a set E, 2E denotes the power set of E. A set system over a ground
set E is a pair (E, C) with C ⊆ 2E ; (E, C) is a closure system if it fulfills the
following properties: ∅, E ∈ C and X ∩ Y ∈ C holds for all X,Y ∈ C. The reason
2 An entirely different application to binary classification in distributive lattices with

applications to inductive logic programming and formal concept analysis is discussed
in the long version of this paper.
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of requiring ∅ ∈ C is discussed below. Throughout this paper by closure systems
we always mean closure systems over finite ground sets (i.e., |E| < ∞). It is a
well-known fact that any closure system can be defined by a closure operator,
i.e., a function ρ : 2E → 2E satisfying for all X,Y ⊆ E: X ⊆ ρ(X) (extensivity),
ρ(X) ⊆ ρ(Y ) whenever X ⊆ Y (monotonicity), ρ(ρ(X)) = ρ(X) (idempotency).

For a closure operator ρ over E with ρ(∅) = ∅ the corresponding closure
system, denoted (E, Cρ), is defined by its fixed points, i.e., Cρ = {X ⊆ E :
ρ(X) = X}. Conversely, for a closure system (E, Cρ), the corresponding closure
operator ρ is defined by ρ(X) =

⋂{C : X ⊆ C ∧ C ∈ C} for all X ⊆ E.
Depending on the context we sometimes omit the underlying closure operator
from the notation and denote the closure system at hand by (E, C). The elements
of Cρ of a closure system (E, Cρ) will be referred to as closed or convex sets.

As an example, for any finite set E ⊂ R
d, the set system (E, C) with C =

{conv(X) ∩ E : X ⊆ E} forms a closure system, where conv(X) denotes the
convex hull of X in R

d. Note that in contrast to convexity in R
d, Cρ is not

atomic in general, i.e., singletons are not necessarily closed.
We now turn to the generalization of binary separation in R

d by hyperplanes
to that in abstract closure systems by half-spaces (cf. [16] for a detailed intro-
duction into this topic). In the context of machine learning, one of the most
relevant questions concerning a closure system (E, C) is whether two subsets of
E are separable in C, or not. To state the formal problem definition, we follow
the generalization of half-spaces in Euclidean spaces to closure systems from [4].
More precisely, let (E, C) be a closure system. Then H ⊆ E is called a half-space
in C if both H and its complement, denoted Hc, are closed (i.e., H,Hc ∈ C).
Note that Hc is also a half-space by definition. Two sets A,B ⊆ E are half-space
separable if there is a half-space H ∈ C such that A ⊆ H and B ⊆ Hc; H and
Hc together form a half-space separation of A and B. Since we are interested
in half-space separations, in the definition of closure systems above we require
∅ ∈ C, as otherwise there are no half-spaces in C. The following property will be
used many times in what follows:

Proposition 1. Let (E, Cρ) be a closure system, H ∈ C a half-space, and A,B ⊆
E. Then H and Hc are a half-space separation of A and B if and only if they
form a half-space separation of ρ(A) and ρ(B).

Notice that the above generalization does not preserve all natural properties
of half-space separability in R

d. For example, for any two finite subsets of R
d

it always holds that they are half-space separable if and only if their convex
hulls3 are disjoint. In contrast, this property does not hold for finite closure
systems in general. To see this, consider the closure system ({1, 2, 3}, C) with C =
{∅, {1}, {2}, {1, 2}, {1, 2, 3}}. Note that C is non-atomic, as {3} 
∈ C. Although
{1} and {2} are both closed and disjoint, they cannot be separated by a half-
space in C because the only half-space containing {1} contains also {2}.

3 Notice that the function mapping any subset of R
d to its convex hull is a closure

operator.
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3 Half-Space and Maximal Closed Set Separation

Our goal in this work is to investigate the algorithmic aspects of half-space and
closed set separations in abstract closure systems. That is, given two subsets A,B
of the ground set, we require the algorithm to return a half-space separation of A
and B in C, if such a half-separation exists; o/w the answer “No”. As mentioned
above, two finite subsets in R

d can always be separated by a hyperplane if and
only if their convex hulls are disjoint. Thus, to decide if two finite subsets of R

d

are separable by a hyperplane, it suffices to check whether their convex hulls are
disjoint, or not. As shown above, the situation is different for abstract closure
systems because the disjointness of the closures of A and B does not imply
their half-space separability in C. This difference makes, among others, our more
general problem setting computationally difficult, as shown in Theorem 3 below.
Similarly to the infinite closure system over R

d defined by the family of all convex
hulls in R

d, we also assume that the (abstract) closure system is given implicitly
via the closure operator. This is a natural assumption, as the cardinality of the
closure system is typically exponential in that of the ground set.

3.1 Half-Space Separation

In this section we formulate some results concerning the computational com-
plexity of the following decision problem:

Half-Space Separation (HSS) Problem: Given (i) a closure system (E, Cρ)
with |E| < ∞, where Cρ is given by the closure operator ρ which returns in unit
time for any X ⊆ E the closure ρ(X) ∈ Cρ and (ii) subsets A,B ⊆ E, decide
whether A and B are half-space separable in Cρ, or not.

Clearly, the answer is always “No” whenever ρ(A)∩ρ(B) 
= ∅, as ρ(A) (resp.
ρ(B)) are the smallest closed sets in C containing A (resp. B). The fact that
the disjointness of ρ(A) and ρ(B) does not imply the half-space separability of
A and B makes the HSS problem computationally intractable. To prove this
negative result, we adopt the definition of convex vertex sets of a graph defined
by shortest paths [6]. More precisely, for an undirected graph G = (V,E) we
consider the set system (V, Cγ) with

V ′ ∈ Cγ ⇐⇒ ∀u, v ∈ V ′,∀P ∈ Su,v : V (P ) ⊆ V ′ (1)

for all V ′ ⊆ V , where Su,v denotes the set of shortest paths connecting u and v
in G and V (P ) the set of vertices in P . Notice that (V, Cγ) is a closure system;
this follows directly from the fact that the intersection of any two convex subsets
of V is also convex, by noting that the empty set is also convex by definition.
Using the above definition of graph convexity, we consider the following problem
definition [1]:

Convex 2-Partitioning Problem: Given an undirected graph G = (V,E),
decide whether there is a proper partitioning of V into two convex sets.



26 F. Seiffarth et al.

Notice that the condition on properness is necessary, as otherwise ∅ and V
would always form a (trivial) solution. Note also the difference between the HSS
and the Convex 2-Partitioning problems that the latter one is concerned
with a property of G (i.e., has no additional input A,B). For the problem above,
the following negative result has been shown in [1]:

Theorem 2. The Convex 2-Partitioning problem is NP-complete.

Using the above concepts and result, we are ready to state the main negative
result for this section, by noting that its proof is based on a reduction from the
Convex 2-Partitioning problem.

Theorem 3. The HSS problem is NP-complete.

Furthermore, we can ask for the input (E, Cρ), A,B of the HSS problem
if there exist disjoint closed sets H1,H2 ∈ Cρ with A ⊆ H1 and B ⊆ H2 of
maximum combined cardinality (i.e., there are no disjoint closed sets H ′

1,H
′
2 ∈ Cρ

with A ⊆ H ′
1 and B ⊆ H ′

2 such that |H1| + |H2| < |H ′
1| + |H ′

2|). More precisely,
we are interested in the following problem:

Maximum Closed Set Separation Problem: Given (i) a closure system
(E, Cρ) as in the HSS problem definition, (ii) subsets A,B ⊆ E, and (iii)
an integer k > 0, decide whether there are disjoint closed sets H1,H2 ∈ Cρ

with A ⊆ H1, B ⊆ H2 such that |H1| + |H2| ≥ k.

Corollary 4 below is an immediate implication of Theorem 3.

Corollary 4. The Maximum Closed Set Separation problem is NP-
complete.

The negative results above motivate us to relax below the HSS and the
Maximum Closed Set Separation problems.

3.2 Maximal Closed Set Separation

One way to overcome the negative results formulated in Theorem 3 and Corol-
lary 4 is to relax the condition on half-space separability in the HSS problem to
the problem of maximal closed set separation:

Maximal Closed Set Separation (MCSS) Problem: Given (i) a closure
system (E, Cρ) as in the HSS problem definition, (ii) subsets A,B ⊆ E, find
two disjoint closed sets H1,H2 ∈ Cρ with A ⊆ H1 and B ⊆ H2, such that
there are no disjoint sets H ′

1,H
′
2 ∈ Cρ with H1 � H ′

1 and H2 � H ′
2, or return

“NO” if such sets do not exist.

In this section we present Algorithm 1, that solves the MCSS problem and
is optimal w.r.t. the worst-case number of closure operator calls. Algorithm 1
takes as input a closure system (E, Cρ) over some finite ground set E, where
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Algorithm 1: Maximal Closed Set Separation (MCSS)

Input: finite closure system (E, Cρ) given by a closure operator ρ and A, B ⊆ E
Output: maximal disjoint closed sets H1, H2 ∈ Cρ with A ⊆ H1 and B ⊆ H2 if

ρ(A) ∩ ρ(B) = ∅; “No” o/w

1 H1 ← ρ(A), H2 ← ρ(B)
2 if H1 ∩ H2 �= ∅ then
3 return “No”
4 end
5 F ← E \ (H1 ∪ H2)
6 while F �= ∅ do
7 choose e ∈ F and remove it from F
8 if ρ(H1 ∪ {e}) ∩ H2 = ∅ then
9 H1 ← ρ(H1 ∪ {e}), F ← F \ H1

10 else if ρ(H2 ∪ {e}) ∩ H1 = ∅ then
11 H2 ← ρ(H2 ∪ {e}), F ← F \ H2

12 end

13 end
14 return H1, H2

Cρ is given via the closure operator ρ, and subsets A,B of E. If the closures of
A and B are not disjoint, then it returns “NO” (cf. Lines 1–3). Otherwise, the
algorithm tries to extend one of the largest closed sets H1 ⊇ A and H2 ⊇ B
found so far consistently by an element e ∈ F , where F = E \ (H1 ∪ H2) is
the set of potential generators. By consistency we mean that the closure of the
extended set must be disjoint with the (unextended) other one (cf. Lines 8 and
10). Note that each element will be considered at most once for extension (cf.
Line 5). If H1 or H2 could be extended, then F will be correspondingly updated
(cf. Lines 9 and 11), by noting that e will be removed from F even in the case
it does not result in an extension (cf. Line 5). The algorithm repeatedly iterates
the above steps until F becomes empty; at this stage it returns H1 and H2 as a
solution. We have the following result for Algorithm 1:

Theorem 5. Algorithm 1 is correct and solves the MCSS problem by calling the
closure operator at most 2|E| − 2 times.

To state the optimality of Algorithm 1 w.r.t. the number of closure operator
calls in Corollary 7 below, we first state the following result.

Theorem 6. There exists no deterministic algorithm solving the MCSS problem
calling the closure operator less than 2|E| − 2 times in the worst-case.

The following corollary is immediate from Theorems 5 and 6.

Corollary 7. Algorithm 1 is optimal w.r.t. the worst-case number of closure
operator calls.

In Sect. 4 we consider Kakutani closure systems, a special kind of closure
systems, for which Algorithm 1 solves the HSS problem correctly and efficiently.
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4 Kakutani Closure Systems

A natural way to overcome the negative result stated in Theorem 3 is to consider
closure systems in which any two disjoint closed sets are half-space separable.
More precisely, for a closure operator ρ over a ground set E, the corresponding
closure system (E, Cρ) is Kakutani 4 if it fulfills the S4 separation axiom 5defined
as follows: For all A,B ⊆ E, A and B are half-space separable in (E, Cρ) if and
only if ρ(A) ∩ ρ(B) = ∅. By Proposition 1, any half-space separation of A,B in
Cρ is a half-space separation of ρ(A) and ρ(B) in Cρ. We recall that all closure
systems (E, C) considered in this work are finite (i.e., |E| < ∞). Clearly, the
HSS problem can be decided in linear time for Kakutani closure systems: For
any A,B ⊆ E just calculate ρ(A) and ρ(B) and check whether they are disjoint,
or not.

The following theorem, one of our main results in this paper, claims that
Algorithm 1 solving the MCSS problem provides also an algorithmic character-
ization of Kakutani closure systems.

Theorem 8. Let (E, Cρ) be a closure system with corresponding closure operator
ρ. Then (E, Cρ) is Kakutani if and only if for all A,B ⊆ E with ρ(A)∩ρ(B) = ∅,
the output of Algorithm 1 is a partitioning of E.

The characterization result formulated in Theorem 8 cannot, however, be
used to decide in time polynomial in |E|, whether a closure system (E, Cρ) is
Kakutani, or not if it is given by ρ. More precisely, in Theorem 9 below we have
a negative result for the following problem:

Kakutani Problem: Given a closure system (E, Cρ), where Cρ is given inten-
sionally via ρ, decide whether (E, Cρ) is Kakutani, or not.

Theorem 9. Any deterministic algorithm solving the Kakutani problem above
requires Ω

(
2|E|/2) closure operator calls.

While the exponential lower bound in Theorem 9 holds for arbitrary (finite)
closure systems, fortunately there is a broad class of closure systems that are
known to be Kakutani. In particular, as a generic application field of Kakutani
closure systems, in Sect. 4.1 we focus on graphs. We first present a generalization
of a fundamental result [4,5] characterizing Kakutani closure systems over graphs
by means of the Pasch axiom and mention some potential applications of this
generalization result.

4 A similar property was considered by the Japanese mathematician Shizou Kakutani
for Euclidean spaces (cf. [9]).

5 For a good reference on convexity structures satisfying the S4 separation property,
the reader is referred e.g. to [4].
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4.1 Kakutani Closure Systems over Graphs

As a generic application field of Kakutani closure systems, in this section we
focus our attention on graphs. For a graph G = (V,E), we consider the clo-
sure system (V, Cγ) defined in (1). The following fundamental result provides a
characterization of Kakutani closure systems over graphs.

Theorem 10. [4,5] Let G = (V,E) be a graph. Then (V, Cγ) defined in (1) is
Kakutani if and only if γ fulfills the Pasch axiom, i.e.,

x ∈ γ({u, v}) ∧ y ∈ γ({u,w}) implies γ({x,w}) ∩ γ({y, v}) 
= ∅

for all u, v, w, x, y ∈ V .

The theorem below is an application of Theorem 10 to trees6:

Theorem 11. Let G = (V,E) be a tree. Then (V, Cγ) defined in (1) is Kakutani.

Besides the direct application of Theorem 11 to vertex classification in trees,
it provides also a natural heuristic for vertex classification in arbitrary graphs;
we discuss this heuristic together with an empirical evaluation in Sect. 5.

Remark 12. We note that the converse of Theorem 11 does not hold. Indeed, let
G = (V,E) be a graph consisting of a single cycle. One can easily check that the
corresponding closure system (V, Cγ) defined in (1) is Kakutani, though G is not
a tree.

Motivated by potential theoretical and practical applications, in Theorem 13
below we generalize Theorem 10 to a certain type of structured set systems.
More precisely, a graph structure partitioning (GSP) is a triple G = (S,G,P),
where S is a finite set, G = (V,E) is a graph, and P = {bag(v) ⊆ S : v ∈ V }
is a partitioning of S into |V | non-empty subsets (i.e.,

⋃
v∈V bag(v) = S and

bag(u) ∩ bag(v) = ∅ for all u, v ∈ V with u 
= v). The set bag(v) associated with
v ∈ V is referred to as the bag of v.

For a GSP G = (S,G,P) with G = (V,E), let σ : 2S → 2S be defined by

σ : S′ �→
⋃

v∈V ′
bag(v) (2)

with
V ′ = γ({v ∈ V : bag(v) ∩ S′ 
= ∅})

for all S′ ⊆ S, where γ is the closure operator corresponding to (V, Cγ) defined
in (1). That is, take first the closure V ′ ⊆ V of the set of vertices of G that
are associated with a bag having a non-empty intersection with S′ and then the
union of the bags for the nodes in V ′. We have the following result for σ.

6 The claim holds for outerplanar graphs as well. For the sake of simplicity we formu-
late it in this short version for trees only, as it suffices for our purpose.
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Theorem 13. Let G = (S,G,P) be a GSP with G = (V,E). Then σ defined in
(2) is a closure operator on S. Furthermore, the corresponding closure system
(S, Cσ) is Kakutani whenever γ corresponding to (V, Cγ) fulfills the Pasch axiom
on G.

Clearly, Theorem 13 generalizes the result formulated in Theorem 10, as any
graph G = (V,E) can be regarded as the (trivial) GSP G = (V,G,P), where
all blocks in P are singletons with bag(v) = {v} for all v ∈ V . Theorem 13 has
several potential applications to graphs with vertices associated with the blocks
of a partitioning of some set in a bijective manner. This kind of graphs can be
obtained for example from graph clustering (see, e.g., [13]) or graph partitioning
(see, e.g., [3]) that play an important role e.g. in community network mining.

Another application of Theorem 13 may arise from quotient graphs; a graph
G = (V,E) is a quotient graph of a graph G′ = (V ′, E′) if V is formed by the
equivalence classes of V ′ with respect to some equivalence relation ρ (i.e., V =
V ′/ρ) and for all x, y ∈ V , {x, y} ∈ E if and only if x = [u]ρ, y = [v]ρ for some
u, v ∈ V ′ with {u, v} ∈ E′, where [u]ρ (resp. [v]ρ) denotes the equivalence class
of u (resp. v). Such a quotient graph can be regarded as a GSP G = (V ′, G,P),
where P is the partitioning of V ′ corresponding to the equivalence relation ρ
and for all v ∈ V , bag(v) = [v′]ρ if v = [v′]ρ for some v′ ∈ V ′. Quotient graphs
play an important role in logic based graph mining7 (see, e.g., [14]), which, in
turn, can be regarded as a subfield of inductive logic programming (ILP). More
precisely, regarding a graph G′ = (V ′, E′) as a first-order goal clause CG′ (see,
e.g., [14]), in ILP one may be interested in finding a subgraph G of G′, such
that CG′ logically implies the first-order goal clause CG representing G and
G is of minimum size with respect to this property. In ILP, CG is referred to
as a reduced clause (see [11] for further details on clause reduction); in graph
theory G is called the core of G′. By the characterization result of subsumptions
between clauses in [7], logical implication is equivalent to graph homomorphism
for the case considered. Thus, G can be considered as the quotient graph of G′

induced by ϕ, where all vertices v ∈ V are associated with the equivalence class
[v] = {u ∈ V ′ : ϕ(u) = v}; the vertices of G′ in [v] are regarded structurally
equivalent with respect to homomorphism. Note that G is a tree structure of
G′ whenever G′ is a tree, allowing for the same heuristic discussed in Sect. 5 for
arbitrary GSPs.

4.2 Experimental Results

In this section we empirically demonstrate the potential of Algorithm 1 on pre-
dictive problems over Kakutani closure systems. For this purpose we consider the
binary vertex classification problem over free trees. We stress that our main goal

7 While in ordinary graph mining the pattern matching is typically defined by sub-
graph isomorphism, it is the graph homomorphism in logic based graph mining, as
subsumption between first-order clauses reduces to homomorphism between graphs
(see [8] for a discussion).
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with these experiments is to demonstrate that a remarkable predictive perfor-
mance can be obtained already with the very general version of our algorithm as
described in Algorithm 1 and with its modification for the case that the closures
of the input two sets are not disjoint. The latter case can occur when the sets of
vertices belonging to the same class are not half-spaces. Since we do not utilize
any domain specific features in our experiments (e.g., some strategy for selecting
non-redundant training examples8), we do not compare our generic approach to
the state-of-the-art algorithms specific to the vertex classification problem.

We evaluate our algorithm on synthetic tree datasets with binary labeled
vertices (see below for the details). Formally, for a closure system (E, Cρ) let
Lr and Lb form a partitioning of E, where the elements of Lr (resp. Lb) will
be referred to as red (resp. blue) vertices. We consider the following supervised
learning task: Given a training set D = R ∪ B with R ⊆ Lr, B ⊆ Lb for some
unknown partitioning Lr, Lb of E and an element e ∈ E, predict whether e ∈ Lr

or e ∈ Lb. Depending on whether or not Lr (and hence, Lb) forms a half-space
in (E, Cρ), we consider the following two cases in our experiments:

(i) If Lr (and hence, Lb) is a half-space, then ρ(R) and ρ(B) are always disjoint
and hence the algorithm returns some half-spaces Hr,Hb ∈ (E, Cρ) with
R ⊆ Hr and B ⊆ Hb because (E, Cρ) is Kakutani. The class of e is then
predicted by blue if e ∈ Hb; o/w by red. Note that Hr and Hb can be different
from Lr and Lb, respectively.

(ii) If Lr (and hence, Lb) is not a half-space in (E, Cρ) then ρ(R) ∩ ρ(B) can be
non-empty. In case of ρ(R) ∩ ρ(B) = ∅, we run Algorithm 1 in its original
form; by the Kakutani property it always returns two half-spaces Hr and
Hb with R ⊆ Hr and B ⊆ Hb. The class of e is then predicted in the same
way as described in (i). Otherwise (i.e., ρ(R)∩ ρ(B) 
= ∅), we greedily select
a maximal subtree T ′ such that its vertices have not been considered so far
and the closures of the red and blue training examples in T ′ are disjoint in
the closure system corresponding to T ′; note that this is also Kakutani.9

We then run Algorithm 1 on this closure system and predict the class of the
unlabeled vertices of T ′ by the output half-spaces as above. We apply this
algorithm iteratively until all vertices have been processed.

For the empirical evaluation of the predictive performance of Algorithm 1 and
its variant described in (ii) above, we used the following synthetic datasets D1
and D2:

D1 For case (i) we considered random trees of size 100, 200, . . . , 1000, 2000, . . . ,
5000 (see the x-axes of Fig. 1). For each tree size we then generated 50 random
trees and partitioned the vertex set (i.e., E) of each tree into Lr and Lb such
that Lr and Lb are half-spaces in (E, Cρ) and satisfy 1

3 ≤ |Lr|
|Lb| ≤ 3.

8 In case of trees, such a non-redundant set could be obtained by considering only
leaves as training examples.

9 We formulate this heuristic for trees for simplicity. In the long version we show that
this idea can be generalized to any graph satisfying the Pasch axiom.
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Fig. 1. Accuracy of vertex classifications where labels are half-spaces (cf. dataset D1).
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Fig. 2. Accuracy of vertex classification where labels are not half-spaces and partition
the tree into around 10 subtrees, each of homogeneous labels (cf. dataset D2).

D2 For case (ii) we proceeded similarly except for the requirement that Lr, Lb

are half-spaces. Instead, the labels partition the tree into around 10 maximal
subtrees, each of homogeneous labels.

For all trees in D1 and D2 we generated 20 random training sets of different
cardinalities (see the y-axes in Fig. 1 and 2). In this way we obtained 1000
learning tasks (50 trees × 20 random training sets) for each tree size (x-axes)
and training set cardinality (y-axes).

The results are presented in Fig. 1 for D1 and in Fig. 2 for D2. For each tree
size (x-axes) and training set cardinality (y-axes) we plot the average accuracy
obtained for the 1000 learning settings considered. The accuracy is calculated in
the standard way, i.e., for a partitioning Hr,Hb of E returned by the algorithm
it is defined by

|{e ∈ E \ D : e is correctly classified}|
|E \ D| ,

where D denotes the training set.
Regarding D1 (Fig. 1) one can observe that a remarkable average accuracy

over 80% can be obtained already for 40 training examples even for trees of
size 1000. This corresponds to a relative size of 2.5% (see the LHS of Fig. 1).
With increasing tree size, the relative size of the training set reduces to 2%,
as we obtain a similar average accuracy already for 100 training examples for
trees of size 5000 (see the RHS of Fig. 1). The explanation of these surprisingly
considerable results raise some interesting theoretical questions for probabilistic



Maximal Closed Set and Half-Space Separations in Finite Closure Systems 33

combinatorics, as the output half-spaces can be inconsistent with the partitioning
formed by Lr, Lb.

Regarding D2 (Fig. 2), we need about 10% training examples to achieve an
accuracy of at least 80%, and for trees having at least 600 vertices (see the LHS
of Fig. 2). With increasing tree size, the relative amount of training examples
decreases to obtain a similar accuracy. In particular, for trees of size 5000, already
150 training examples (i.e., 3%) suffice to achieve 80% accuracy (see the RHS
of Fig. 2), indicating that the simple heuristic described in (ii) performs quite
well on larger trees. Our further experimental results not presented in this short
version suggest that the relative size of the training data depends sublinearly on
the number of label homogeneous subtrees.

5 Non-Kakutani Closure Systems

After the discussion of Kakutani closure systems including the negative result
on the Kakutani problem, in this section we consider non-Kakutani closure
systems and show how to extend some of the results of the previous section to this
kind of set systems. In particular, we first consider arbitrary graphs, which are
non-Kakutani, as they do not fulfill the Pasch axiom in general (cf. Theorem 10).
As a second type of non-Kakutani closure systems, we then consider finite point
configurations in R

d. Although none of these two types of closure systems are
Kakutani in general, the experimental results presented in this section show that
Algorithm 1, combined with a natural heuristic in case of graphs, can effectively
be applied to both cases.

The natural heuristic mentioned above reduces the vertex classification prob-
lem in non-Kakutani closure systems over arbitrary graphs to Kakutani closure
systems by considering random spanning trees of the underlying graph. More
precisely, given a graph G = (V,E) and training sets R ⊆ Lr and B ⊆ Lb, where
Lr and Lb form an unknown partitioning of V , we proceed as follows:

1. we pick a set of spanning trees, each uniformly at random,
2. apply (ii) from Sect. 4.2 to each spanning tree generated with input R and B,

and
3. predict the class of an unlabeled vertex by the majority vote of the vertex

classification obtained for the spanning trees.

5.1 Experimental Results

Similarly to Sect. 4.2 on Kakutani closure systems, in this section we empir-
ically demonstrate the potential of Algorithm 1 on predictive problems over
non-Kakutani closure systems. We first consider the binary vertex classification
problem over arbitrary graphs and then over finite point sets in R

d. Similarly
to the case of Kakutani closure systems, we do not utilize any domain specific
features, as our focus is on measuring the predictive performance of a general-
purpose algorithm. In particular, in case of point configurations in R

d we use
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only convex hulls (the underlying closure operator), and no other information
(e.g. distances). For the empirical evaluations on graphs and on finite point sets
in R

d we used the following synthetic datasets D3 and D4, respectively:

D3 We generated random connected graphs of size 500, 1000, 1500, 2000 and
edge density (i.e., #edges/#vertices) 1, 1.2, . . . , 3. In particular, for each
graph size and for each edge density value, 50 random graphs have been
picked. We partitioned the vertex set of each graph via that of a random
spanning tree into random half-spaces Lr and Lb w.r.t. to the tree’s Kaku-
tani closure system. For all labelled graphs generated, the ratio of the vertex
labels satisfies 1

3 ≤ |Lr|
|Lb| ≤ 3.

D4 We considered randomly generated finite point sets in R
d for d = 2, 3, 4 with

labels distributing around two centers. For every d = 2, 3, 4, we generated
100 different point sets in R

d, each of cardinality 1000.

For all graphs in D3 we generated 20 random training sets with 10% of
the size of the graphs. The results are presented in Fig. 3. For each number of
random spanning tree generated, edge density, and graph size (x-axes) we plot
the average accuracy obtained for the 1000 learning settings considered (i.e., 50
graphs × 20 training datasets). The accuracy is calculated in the same way as
above (cf. Sect. 4.2).

In Fig. 3a we first investigate the predictive accuracy depends on the number
of random spanning trees. One can see that classification via majority vote of
around 100 random spanning trees remarkably increases the accuracy over less
random spanning trees from 65% to 75%, while considering up to 500 spanning
trees has almost no further effect on it. As a trade-off between accuracy and run-
time we have therefore fixed the number of spanning trees to (the odd number)
101 for the other experiments.

The results concerning edge densities are presented in Fig. 3b. As expected,
the edge density has an important effect on the accuracy ranging from 90%
for edge density 1 (i.e., trees) to 65% for edge density 3. Notice that for edge
density 3, the results are very close to the default value, indicating that our
general approach has its remarkable performance on very sparse graphs only. (We
recall that except for the closure operator, our algorithm is entirely uninformed
regarding the structure.)

Finally, the graph size appears to have no significant effect on the predictive
performance, as shown in Fig. 3c. For the edge density of 1.2, the accuracy is
consistently around 75% for graphs with 500 nodes up to 2000. This is another
important positive feature of our algorithm.

For each classification task for finite point sets in R
d we considered ran-

dom training sets of different cardinalities for D4 and applied Algorithm 1 with
the convex hull operator in R

d to these training data. The prediction has been
made by the algorithm’s output consisting of two maximal disjoint closed sets.
(Note that they are not necessarily half-spaces because the closure system is not
Kakutani in general). Accordingly, some of the points have not been classified.
To evaluate our approach, we calculated the precision and recall for each problem



Maximal Closed Set and Half-Space Separations in Finite Closure Systems 35

0 100 200 300 400 500

60

65

70

75

Number of random spanning trees

A
cc
ur
ac
y
in

%

Accuracy
Default Value

(a) 500 nodes and 600
edges (ρ = 1.2) with train-
ing set size of 50.

1 1.5 2 2.5 3

60

70

80

90

Graph edge density ρ

A
cc
ur
ac
y
in

%

Accuracy
Default Value

(b) 500 nodes and differ-
ent edge numbers e = ρ ·n
with training set size of 50.

500 1,000 1,500 2,000

60

70

80

90

Graph size

A
cc
ur
ac
y
in

%

Accuracy
Default Value

(c) Edge density ρ = 1.2
and n

10
training examples.

Fig. 3. Vertex classification in graphs

20 40 60 80 100

60

80

100

Training set size

P
re
ci
si
on

in
%

R
2

R
3

R
4

(a) Point set size 1000.

20 40 60 80 100

60

80

100

Training set size

R
ec
al
li
n
%

R
2

R
3

R
4

(b) Point set size 1000.

Fig. 4. Classification in finite point sets

setting. The results are reported in Fig. 4. Figure 4a shows that the cardinality
of the training set has a significant effect on the accuracy, ranging from 70%
to 98% for 10 (i.e., 1%) to 100 (i.e., 10%) training examples, respectively. Note
that for small training sets, the precision is very sensitive to the dimension. In
particular, the difference is more than 10% for 10 training examples. However,
the difference vanishes with increasing training set size. We have carried out
experiments with larger datasets as well; the results not presented here for space
limitations clearly indicate that the precision remains quite stable w.r.t. the size
of the point set. For example, for a training set size of 40, it was consistently
around 94% for different cardinalities. Regarding the recall (cf. Fig. 4b), it was
at least 90% in most of the cases by noting that it shows a similar sensitivity to
the size of the training data as the precision.

In summary, our experimental results reported in this section clearly demon-
strate that surprisingly considerable predictive performance can be obtained
with Algorithm 1 even for non-Kakutani closure systems.

6 Concluding Remarks

The results of this paper show that despite several theoretical difficulties, impres-
sive predictive accuracy can be obtained by a simple greedy algorithm for binary
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classification problems over abstract closure systems. This is somewhat sur-
prising because the only information about the “nature” of the data has been
encoded in the underlying closure operator.

Our approach raises a number of interesting theoretical, algorithmic, and
practical questions. In particular, in this paper we deliberately have not utilized
any domain specific knowledge (and accordingly, not compared our results to any
state-of-the-art algorithm specific to some structure). It would be interesting to
specialize Algorithm 1 to some particular problem by enriching it with additional
information and compare only then its predictive performance to some specific
method.

For the theoretical and algorithmic issues, we note that it would be inter-
esting to study the relaxed notion of almost Kakutani closure systems, i.e., in
which the combined size of the output closed sets are close to the cardinality of
the ground set. Another interesting problem is to study algorithms solving the
HSS and MCSS problems for closure systems, for which an upper bound on the
VC-dimension is known in advance. The relevance of the VC-dimension in this
context is that for any closed set C ∈ Cρ of a closure system (E, Cρ) there exists a
set G ⊆ E with |G| ≤ d such that ρ(G) = C, where d is the VC-dimension of Cρ

(see, e.g., [8]). It is an interesting question whether the lower bound on the num-
ber of closure operator calls can be characterized in terms of the VC-dimension
of the underlying closure system.
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Abstract. Association rules are among the most important concepts in
data mining. Rules of the form X → Y are simple to understand, sim-
ple to act upon, yet can model important local dependencies in data.
The problem is, however, that there are so many of them. Both tradi-
tional and state-of-the-art frameworks typically yield millions of rules,
rather than identifying a small set of rules that capture the most impor-
tant dependencies of the data. In this paper, we define the problem of
association rule mining in terms of the Minimum Description Length
principle. That is, we identify the best set of rules as the one that most
succinctly describes the data. We show that the resulting optimization
problem does not lend itself for exact search, and hence propose Grab,
a greedy heuristic to efficiently discover good sets of noise-resistant rules
directly from data. Through extensive experiments we show that, unlike
the state-of-the-art, Grab does reliably recover the ground truth. On
real world data we show it finds reasonable numbers of rules, that upon
close inspection give clear insight in the local distribution of the data.

1 Introduction

Association rules are perhaps the most important primitive in data mining. Rules
of the form X → Y are not only simple to understand, but they are also simple
to act upon, and, most importantly, can express important local structure in the
data. The problem is, however, that there are so many of them, and that telling
the interesting from the uninteresting rules has so far proven impossible. Both
traditional algorithms based on support and confidence [1], as well as modern
approaches based on statistical tests [7] typically discover orders of magnitude
more rules than the data has rows – even when the data consists of nothing
but noise. In this paper we show how to discover a small, non-redundant set of
noise-resistant rules that together describe the data well.

To succinctly express subtly different structures in data, we allow multiple
items in the consequent of a rule. To illustrate, while rule sets R1 = {A →
B,A → C} and R3 = {A → BC} both express that B and C appear fre-
quently in the context of A, the former states they do so independently, while
the latter expresses a dependency between B and C. We additionally allow for
c© Springer Nature Switzerland AG 2020
U. Brefeld et al. (Eds.): ECML PKDD 2019, LNAI 11906, pp. 38–54, 2020.
https://doi.org/10.1007/978-3-030-46150-8_3
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{∅ → ABC}
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Fig. 1. Five toy databases with corresponding rule sets. (1) B and C occur in the
context of A but independently of each other, (2) C occurs in the context of B, which
in turn occurs in the context of A, (3) B and C show strong joint dependence in the
context of A, (4) A, B, C show strong unconditional dependence, and (5) a rule with
noise, BCD occuring jointly in the context of A.

patterns, which are simply rules like R4 = {∅ → ABC} and express uncondi-
tional dependencies. Real data is often noisy, and hence we can allow rules to
hold approximately. That is, for a transaction t = ABC, our models may infer
that rule R5 = {A → BCD} holds, even though item D is not present in t. We
call these noise-resistant, or robust rules. To determine the quality of a rule set
for given data, we rely on information theory.

In particular, we define the rule set mining problem in terms of the Minimum
Description Length (MDL) principle [6]. Loosely speaking, this means we identify
the best rule set as that one that compresses the data best. This set is naturally
non-redundant, and neither under- nor over-fitting, as we have to pay for every
additional rule we use, as well as for every error we make. We formally show
that the resulting problem is neither submodular, nor monotone, and as the
search space is enormous, we propose Grab, an efficient any-time algorithm to
heuristically discover good rule sets directly from data. Starting from a singleton-
only model, we iteratively refine our model by considering combinations of rules
in the current model. Using efficiently computable tight estimates we minimize
the number of candidate evaluations, and as the experiments show, Grab is
both fast in practice, and yields high quality rule sets. On synthetic data, Grab
recovers the ground truth, and on real-world data it recovers succinct models of
meaningful rules. In comparison, state of the art methods discover up to several
millions of rules for the same data, and are hence hardly useful.

2 Related Work

Pattern mining is arguably one of the most important and well-studied topics
in data mining. We aim to give a succinct overview of the work most relevant
to ours. The first, and perhaps most relevant proposal is that of association
rule mining [1], where in an unsupervised manner the goal is to find all rules
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of the form X → Y from the data that have high frequency and high confi-
dence. As it turns out to be straightforward to distill the high-confidence rules
from a given frequent itemset, research attention shifted to discovering frequent
itemsets efficiently [8,14,31], and non-redundantly [2,3,17]. Frequency alone is
a bad measure of interestingness, however, as it leads to spurious patterns [26].
To alleviate this, statistically sound measures were proposed that can mine pat-
terns with frequencies that deviate significantly from our expectation based on
margins [21,29], or richer background knowledge [4,9,24]. Perhaps because it is
already difficult enough to determine the interestingness of a pattern, let alone a
rule, most proposals restrict themselves to patterns. The key exception is King-
fisher, which proposes an upper bound for Fisher’s exact test that allows to
efficiently mine significant dependency rules using the branch-and-bound frame-
work [7]. Notably, however, Kingfisher can only discover exact rules with a
single item consequent. In addition, all these approaches suffer from the prob-
lems of multiple test correction, and return all patterns they deem significant,
rather than a small non-redundant set.

Less directly related to our problem setting, but still relevant, are supervised
methods that discover rules that explain a given target variable Y . Zimmermann
and Nijssen [32] give a good general overview. However, unlike Wang et al. [28]
and Papaxanthos et al. [19], we are not interested in rules that explain only Y ,
but rather aim for a set of rules that together explains all of the data well.

Our approach is therewith a clear example of pattern set mining [26]. That is,
rather than measuring the quality of individual patterns, we measure quality over
a set of patterns [5,27]. Information theoretic approaches, such as MDL and the
Maximum Entropy principle, have proven particularly successful for measuring
the quality of sets of patterns [13,27]. Most pattern set approaches do not account
for noise in the data, with Asso [15], Hyper+ [30], and Panda [12] as notable
exceptions. However, extending any of the above from patterns to rules turns
out to be far from trivial, because rules have different semantics than patterns.
Pack [25] uses MDL to mine a small decision tree per item in the data, and while
not technically a rule-mining method, we can interpret the paths of these trees
as rules. In our experiments we will compare to Kingfisher as the state-of-the-
art rule miner, Hyper+ as a representative of noise resilient pattern miner, and
Pack as a pattern miner, which output can be translated into rules.

3 Preliminaries

In this section we discuss preliminaries and introduce notation.

3.1 Notation

We consider binary transaction data D of size n-by-m, with n = |D| transactions
over an alphabet I of m = |I| items. In general, we denote sets of items as
X ⊆ I. A transaction t is an itemset, e.g. the products bought by a customer.
We write πX(D) := {t ∩ X | t ∈ D} for the projection of D on itemset X. The
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transaction set, or selection, T of itemset X is the multiset of all transactions
t ∈ D that contain X, i.e. TX = {t ∈ D | X ⊆ t}. We write nX = |TX | to denote
the cardinality of a transaction multiset. The support of an itemset X is then
simply the number of transactions in D that contain X, i.e. support(X) = |TX |.

An association rule X → Y consists of two non-intersecting itemsets, the
antecedent or head X, and consequent or tail Y . A rule makes a statement
about the conditional occurrence of Y in the data where X holds. If X = ∅, we
can interpret a rule as a pattern, as it makes a statement on where in the whole
data the consequent holds. Throughout this manuscript, we will use A,B,C to
refer to sets of single items and X,Y,Z for itemsets of larger cardinality.

3.2 Minimum Description Length

The Minimum Description Length (MDL) principle [22] is a computable and
statistically well-founded approximation of Kolmogorov Complexity [11]. For
given data D, MDL identifies the best model M∗ in a given model class M as
that model that yields the best lossless compression. In one-part, or, refined MDL
we consider the length in bits of describing data D using the entire model class,
L(D | M), which gives strong optimality guarantees [6] but is only feasible for
certain model classes. In practice we hence often use two-part, or, crude MDL,
which is defined as L(M)+L(D | M). Here L(M) is the length of the description
of the model, and L(D | M) the length in bits of the description of the data using
M . We will use two-part codes where we have to, and one-part codes where we
can. Note that in MDL we are only concerned with code lengths, not materialized
codes. Also, as we are interested in measuring lengths in bits, all logarithms are
to base 2, and we follow the convention 0 log 0 = 0.

4 Theory

To use MDL in practice, we first need to define our model class M, how to
describe a model M in bits, and how to describe data D using a model M .
Before we do so formally, we first give the intuitions.

4.1 The Problem, Informally

Our goal is to find a set of rules that together succinctly describe the given data.
Our models M hence correspond to sets R of rules X → Y . A pattern ABC is
simply a rule with an empty head, i.e. ∅ → ABC. A rule applies to a transaction
t ∈ D if the transaction supports its head, i.e. X ⊆ t. For each transaction to
which the rule applies, the model specifies whether the rule holds, i.e. whether
Y is present according to the model. We can either be strict, and require that
rules only hold when Y ⊆ t, or, be more robust to noise and allow the rule to
hold even when not all items of Y are part of t, i.e. Y \ t �= ∅. In this setting,
the model may state that rule A → BCD holds for transaction t = ABC, even
though D /∈ t (see Fig. 1(5)). A model M hence needs to specify for every rule
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X → Y ∈ R a set of transactions ids TM
Y |X where it asserts that Y holds in the

context of X, and, implicitly also TM
� Y |X , the set of transactions where it asserts

Y does not hold. Last, for both these we have to transmit which items of Y are
actually in the data; the fewer errors we make here, the cheaper it will be to
transmit. To ensure that we encode any data D over I, we require that a model
M contains at least singleton rules, i.e. ∅ → A for all A ∈ I. Cyclic dependencies
would prevent us from decoding the data without loss. Any valid model M can
hence be represented as a directed acyclic graph (DAG), in which the vertices
of the graph correspond to rules in R, where vertex r = X → Y has incoming
edges from all vertices r′ = X ′ → Y ′ for which X ∩ Y ′ is non-empty.

We explicitly allow for rules with non-singleton tails, as this allows us to suc-
cinctly describe subtly different types of structure. When B happens indepen-
dently of C in TA (Fig. 1(1)), rule set R1 = {A → B,A → C} is a good descrip-
tion of this phenomenon. In turn, when C occurs often – but not always – in TB ,
which in turn happens often in TA (Fig. 1(2)) rule set R2 = {A → B,B → C}
is a good description. To succinctly describe that B and C are statistically
dependent in TA (Fig. 1(3)) we need rules with multiple items in its tail, i.e.
R3 = {A → BC}. Finally, if A,B, and C frequently occur jointly, but condition-
ally independent of any other variable, we need patterns to express this, which
are just consequents in the context of the whole database R4 = ∅ → ABC.

4.2 MDL for Rule Sets

Next, we formalize an MDL score for the above intuition. We start by defining
the cost of the data given a model, and then define the cost of a model.

Cost of the Data. We start with the cost of the data described by an individual
rule X → Y . For now, assume we know πX(D) and TX . We transmit the data
over Y in the context of X, i.e. DY |X = πY (TX), in three parts. First, we
transmit the transaction ids where model M specifies that both X and Y hold,
TM

Y |X , which implicitly gives TM
� Y |X = TX \ TM

Y |X . We now, in turn transmit
that part of DY |X corresponding to the transactions in TM

Y |X , resp. that part
corresponding to TM

� Y |X . We do so using optimal data-to-model codes, i.e. indices
over canonically ordered enumerations,

L(DY |X | M) = log
(

|TX |
|TM

Y |X |

)
+ log

(|TM
Y |X | × |Y |
1(TM

Y |X)

)
+ log

(|TM
� Y |X | × |Y |
1(TM

� Y |X)

)
,

where we write 1(TM
Y |X) for the number of 1s in TM

Y |X , i.e.

1(TM
Y |X) =

∑
t∈TM

Y |X

|t ∩ Y | ≤ |TM
Y |X | × |Y |.

We define 1(T � Y |X) analogue.
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When the model makes exact assertions on Y holding when X is present,
i.e. when TM

Y |X = TY |X , the second term vanishes, and analogously for the third
term when TM

� Y |X = T � Y |X . Both terms vanish simultaneously only when DY |X ∈
{∅, Y }|DX |. This is trivially the case when Y is a singleton.

The overall cost of the data given the model simply is the sum of the data
costs per rule,

L(D | M) =
∑

X→Y ∈M

L(DY |X | M)

To decode the data, the recipient will of course need to know each rule X → Y .
These are part of the model cost.

Cost of the Model. To encode a rule, we first encode the cardinalities of X
and Y using LN, the MDL-optimal code for integers z ≥ 1, which is defined
as LN(z) = log∗ z + log c0, where log∗ z = log z + log log z + ..., and c0 is a
normalization constant such that LN satisfies the Krafft-inequality [23]. We can
now encode the items of X, resp. Y , one by one using optimal prefix codes,
L(X) = −

∑
x∈X log sx∑

i∈I si
. Last, but not least we have to encode its parame-

ters, |TM
Y |X |, 1(TM

Y |X), and 1(T � Y |X). These we encode using a refined, mini-max
optimal MDL code. In particular, we use the regret of the Normalized Maximum
Likelihood code length [10] for the class of binomials,

Lpc(n) = log

(
n∑

k=0

n!
(n − k)!k!

(k

n

)k(n − k

n

)n−k
)

,

which is also known as the parametric complexity of a model class. Kontkanen
and Myllymäki [10] showed that this term can be computed in time O(n) in a
recursive manner. We obtain the model cost L(X → Y ) for a rule X → Y by

L(X → Y ) = LN(|X|) + L(X) + LN(|Y |) + L(Y )+

Lpc(|TX |) + Lpc(|TM
Y |X | × |Y |) + Lpc(|TM

� Y |X | × |Y |).

From how we encode the data we can simply ignore the last two terms for rules
with |Y | = 1. The overall cost of a model M then amounts to

L(M) = LN(|R|) +
∑

X→Y ∈R

L(X → Y ),

where we first send the size of rule set R, and then each of the rules in order
defined by the spanning tree of the dependency graph.

4.3 The Problem, Formally

We can now formally define the problem in terms of MDL.
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Definition 1 (Minimal Rule Set Problem). Given data D over items I, find
that rule set R and that set of T of transaction sets TM

Y |X for all X → Y ∈ R,
such that for model M = (R, T ) the total description length,

L(D,M) = L(M) + L(D | M)

is minimal.

Solving this problem involves enumerating all possible models M ∈ M. There
exist

∑|I|
i=0

((|I|
i

)
× 2i

)
= 3|I| possible rules – where the second term in the sum

describes all possible partitions of i items into head and tail, and the equality
is given by the binomial theorem. Assuming that the optimal TM

Y |X are given,

there are generally 23
|I|

possible models. The search space does not exhibit any
evident structure that can be leveraged to guide the search, which is captured
by the following two theorems. We postpone the proofs to the online Appendix.1

Theorem 1 (Submodularity). The search space of all possible sets of associ-
ation rules 2Ω, when fixing a dataset and using the description length L(D,M)
as set function, is not submodular. That is, there exists a data set D s.t.
∃X ⊂ Y ⊆ Ω, z ∈ Ω. L(D,X ∪ {z}) − L(D,X) ≤ L(D,Y ∪ {z}) − L(D,Y ).

Theorem 2 (Monotonicity). The description length L(D,M) on the space of
all possible sets of association rules 2Ω is not monotonously decreasing. That is,
there exists a data set D s.t. ∃X ⊂ Y ⊆ Ω. f(X) ≤ f(Y ).

Hence, we resort to heuristics.

5 Algorithm

In this section we introduce Grab, an efficient heuristic for discovering good
solutions to the Minimal Rule Set Problem. Grab consists of two steps, candi-
date generation and evaluation, that are executed iteratively until convergence
of L(D,M), starting with the singleton-only rule set R0 = {∅ → A | A ∈ I}.

Candidate Generation. From the current rule set R we iteratively discover that
refined rule set R′ that minimizes the gain ΔL = L(D,M ′) − L(D,M). As
refinements we consider the combination of two existing rules into a new rule.

We generate candidate refinements by considering all pairs r1 = X → Y, r2 =
X → Z ∈ R, assuming w.l.o.g. nXY ≥ nXZ , and merging the tails of r1 and
r2 to obtain candidate rule r′

1 = X → Y Z, and merging the tail of r1 with the
head to obtain candidate rule r′

2 = XY → Z. We now construct refined rule sets
R′

1 and R′
2 by adding rule r′

1 resp. r′
2. To reduce redundancy, we remove r2 from

both R′
1 and R′

2, and r1 from R′
1, taking care not to remove singleton rules. We

only evaluate those refined rule sets R′ for which the corresponding dependency
graph is acyclic, and select the one with minimal gain ΔL < 0. For completeness
we give the pseudocode in the online Appendix.
1 http://eda.mmci.uni-saarland.de/grab/.

http://eda.mmci.uni-saarland.de/grab/
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Fig. 2. Grab searches efficiently and estimates accurately. For DNA we show (left) the
convergence of the relative compression of model M at iteration i against the singleton
model Ms, %L = L(D,M)×100

L(D,Ms)
, and (right) the correlation between estimated and actual

gain of all evaluated candidates in real data.

Gain Estimation. To avoid naively evaluating the gain ΔL of every candidate,
we rely on accurate gain estimations. In particular, we consider two different
estimates; the first estimate is very inexpensive to compute, but overly optimistic
as it assumes a perfect overlap between the two rules. The second estimate is
computationally more costly, as it requires us to compute the intersection of the
selections of the two original rules. In practice, however, it is exact (see Fig. 2b).

Depending on how we combine two rules r1 and r2, we need different estimate
definitions. In the interest of space, we here consider one case in detail: that of
combining singleton rules r1 = ∅ → A and r2 = ∅ → B into r = A → B. For the
remaining definitions we refer to the online Appendix.

Following the general scheme described above, for the first estimate Δ̂1 we
assume that TB ⊆ TA. With singleton tails we do not transmit any errors. Thus,
we only subtract the old costs for r2 and add the estimated cost of sending where
the new rule r holds, as well as the estimated regret for the new matrices,

Δ̂1(r) = − log
(

n

nB

)
+ log

(
nA

nB

)
+Lpc(nA)+Lpc(nB)+Lpc(nA −nB)−Lpc(n).

For the tighter, second estimate Δ̂2 we instead need to retrieve the exact
number of usages of the rule by intersecting the transaction sets of merged rules.
The change in model costs L(M) by introducing r appearing in L(M) is trivially
computable and thus abbreviated by L̂(M). For formerly covered transactions
that are not covered by the new rule, we need to send singleton rules with adapted
costs, which is estimated through simple set operations on the transaction sets.
Additionally, we need to subtract the model costs for r2, in case B is completely
covered by r, ensured by the indicator variable I. We hence have

Δ̂2(r) = − log
(

n

nB

)
+ log

(
nA

|TA ∩ TB |

)
+ log

(
n

|TB \ TA|

)
+ L̂(M) + Lpc(nA)

+ Lpc(|TA ∩ TB |) + Lpc(nA − |TA ∩ TB |) − I(TB ⊆ TA) × Lpc(n).
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Grab first computes the first order estimate Δ̂1 per candidate, and only if
this shows potential improvement, it computes the second order estimate Δ̂2.
Out of those, it evaluates all candidates that have the potential to improve over
the best refinement found so far. In the next paragraph we describe how to
efficiently compute the overall score L(D,M).

Efficiently Computing L(D,M). To get the codelength of a rule set with a new
candidate, two steps are carried out, which we summarize in Algorithm 1. First,
the data is covered with the new rule to determine where the rule holds and what
error matrices to send. Covering the data is straightforward, but to find the error
matrices we have—unless we rely on a user-defined threshold—to optimize for
the best point to split between additive and destructive noise. We observe that
each rule encoding is independent of every other rule (except singletons), that
is, changing the error matrices for one rule does not change the matrices for any
other rule as we always encode all transactions where the antecedent is fulfilled.

With this in mind, it is clear that we can optimize the split point for each
rule X → Y separately. Thus, we find a partitioning of TX into TM

Y |X and TM
� Y |X

that minimizes the contribution of this rule to the overall costs:

ΔTX ,TM
Y |X ,TM

� Y |X ,1(TM
Y |X),1(TM

� Y |X) = Lpc(|TX |) + Lpc(|TM
Y |X | × |Y |)

+ Lpc(|TM
Y |X | × |Y |) + log

(|TM
Y |X | × |Y |
1(TM

Y |X)

)
+ log

(|TM
� Y |X | × |Y |
1(TM

� Y |X)

)
.

We can also view the problem from a different angle, namely, for each transaction
t ∈ TX we count how many items of Y are present, which yields a vector of counts
B, B[i] = |{t ∈ TX | |t ∩ Y | = i}|. For fixed split point k, we get the additive
and destructive matrix sizes 1(·)k and transaction set sizes | · |k:

|TM
Y |X |k :=

|B|+1∑
i=k

B[i] |TM
� Y |X |k :=

k−1∑
i=1

B[i]

1(TM
Y |X)k :=

|B|∑
i=k

B[i] × i 1(TM
� Y |X)k :=

k−1∑
i=0

B[i] × i.

To find the best split k∗ we optimize along k using the two equation sets
above, which is in time linear in the size of the consequent,

k∗ = arg min
k=1...|B|

(
ΔTX ,TM

Y |X ,TM
� Y |X ,1(TM

Y |X),1(TM
� Y |X)

)
. (1)

This yields the best splitpoint k∗ for how many items of the consequent are
required for a rule to hold in terms of our MDL score and thus implicitly gives
the error matrices.

Putting everything together, we have Grab, given in pseudo-code as
Algorithm 2.
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Algorithm 1: Cover

input : Database D, model M = (R, T ), refined rule set R′

output : Model M ′ = (R′, T ′)
1 TM′

Y |X ← according to Equation (1) ; // Initialize where new rule holds

2 for I ∈ I do // For each singleton

3 TM′
I ← TI ; // Reset usage to baseline model

4 for {X → Y ∈ R′ | I ∈ Y } do // For each rule tail containing I

5 TM′
I ← TM′

I \ TX ; // Remove these transactions from list

6 return (R′, {TM′
I | I ∈ I} ∪ {TM

U|V ∈ T | U → V ∈ R ∩ R′} ∪ {TM′
Y |X}) ;

Algorithm 2: Grab

input : Dataset D
output : Heuristic approximation to M

1 M ← {∅ → {A} | A ∈ I} ; // Initialize model with singletons
2 do
3 C ← generateCandidates(D, M);
4 M∗ ← M ; Δ∗ ← 0;

5 while C contains a refinement R with ̂Δ2 < Δ∗ do

6 R′ ← refinement R ∈ C with best ̂Δ2 ;
7 M ′ ← cover(D, M, R′) ; // Construct model M ′

8 Δ′ ← L(D, M ′) − L(D, M) ; // Compute exact gain
9 if Δ′ < Δ∗ then

10 M∗ ← M ′; Δ∗ ← Δ′;

11 if M∗ �= M then // Update best model
12 M ← M∗;

13 while L(D, M) < L(D, M∗);
14 return M

Complexity. In the worst case we generate all pairs of combinations of rules,
and hence at each step Grab evaluates a number of candidates quadratic in
the size of the rule table. Each evaluation of the O(32

m

) candidates requires a
database cover which costs time O(n×m), and singleton transaction set update,
thus giving an overall time in O(32

m × m × n). However, MDL ensures that the
number of rules is small, and hence a more useful statement about runtime is
given in the following theorems that are based on the size of the output or in
other words the number of mined rules. For the proofs, see the online Appendix.

Theorem 3 (Grab candidate evaluations). Given that we mine k rules for
a given dataset D, Grab evaluates O((m + k)3) candidates.

This theorem gives us insight in how many times Grab calls Cover. For
the runtime analysis, we know that in each step i our rule table has size m + i
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Fig. 3. Grab recovers ground truth. Results on random data (left) and synthetic data
with planted rules for different data dimensionalities (right).

and Grab has to compute the cover of the newest rule in time O(n × m) and
update the singleton costs in time O((m + i) × m × n).

Theorem 4 (Grab runtime). Given that we mine k rules for a given dataset
D, the overall runtime of Grab is O((m + k)4 × m × n).

In practice, however, this runtime is never reached both due to our gain
estimates and because we only allow to merge rules with the same head.

6 Experiments

In this section we empirically evaluate Grab quantitatively and qualitatively on
both synthetic and real-world data. We implemented Grab in C++. We make
all code and data available for research purposes.2 All experiments were executed
single-threaded on Intel Xeon E5-2643 v3 machines with 256 GB memory running
Linux. We report the wall-clock running times.

We compare to state of the art methods for mining statistically significant
patterns and association rules. In particular, we compare to Hyper+ [30], which
mines noise-resistant patterns, Kingfisher [7], which is arguably the current
state of the art for mining statistically significant rules under the Fisher-exact-
test3, and Pack [25], an MDL-based method that yields a binary tree per item
A ∈ I of which we can interpret the paths to leafs as rules X → A.

2 http://eda.mmci.uni-saarland.de/grab/.
3 No relation to the first author.

http://eda.mmci.uni-saarland.de/grab/
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Synthetic Data. First, we consider data with known ground truth. As a sanity
check, we start our experiments on data without any structure. We draw datasets
of 10000-by-100 of d% 1s, and report for each method the average results over
10 independent runs in Fig. 3a. We find that both Kingfisher and Hyper+
quickly discover up to millions of rules. This is easily explained, as the former
relies on statistical significance only, and lacks a notion of support, whereas the
latter does have a notion of support, but lacks a notion of significance. Pack
and Grab, however, retrieve the ground truth in all cases.

Next, we consider synthetic data with planted rules. We generate datasets of
n = 20000 transactions, and vary m from 10 to 1000 items. We generate rules
that together cover all features. We sample the cardinality of the heads and
tails from a Poisson with λ = 1.5. To avoid convoluting the ground truth via
overlap, or by rules forming chains, we ensure that every item A is used in at
most one rule. Per rule, we choose confidence c uniformly at random between 50
and 100%. We then randomly partition the n transactions into as many parts as
we have rules, and per part, set the items of the corresponding rule head X to
1, and set Y to 1 for c% of transactions within the part. Finally, we add noise
by flipping 1% of the items in the data – we use this low noise level to allow for
a fair comparison to the competitors that do not explicitly model noise.

We provide the results in Fig. 3b. We observe that unlike in the previous
experiment, here Pack strongly overestimates the number of rules – it runs out
of memory for data of more than 92 features. Kingfisher and Hyper+ both
discover over an order of magnitude more rules than the ground truth. Grab,
on the other hand, is the only one that reliably retrieves the ground truth.

Real-World Data. Second, we verify whether Grab also yields meaningful results
on real data. To this end we consider 8 data sets over a variety of domains. In
particular, from the UCI repository we consider Mushroom, Adult, Covtype, and
Plants. In addition we use data of Belgium traffic Accidents, DNA amplifica-
tion [18], Mammals [16], and ICDM Abstracts [25]. We give basic statistics in
Table 1, and provide more detailed information in the online Appendix.

We run each of the methods on each data set, and report the number of
discovered non-singleton rules for all methods and the average number of items
in head and tail for Grab in Table 1. We observe that Grab retrieves much
more succinct sets of rules than its competitors, typically in the order of tens,
rather than in the order of thousands to millions. The rules that Grab discovers
are also more informative, as it is not constrained to singleton-tail rules. This is
also reflected by the number of items in the consequent, where the average tail
size is much larger than 1 for e.g. Mammals and Plants, where we find multiple
rules with more than 10 items in the consequent.

To qualitatively evaluate the rules that Grab discovers, we investigate the
results on Abstracts and Mammals in closer detail. For Abstracts we find patterns
such as ∅ → {naive, bayes}, ∅ → {nearest ,neighbor}, ∅ → {pattern, frequency},
and, notably, ∅ → {association, rule}. Further, we find meaningful rules,
including {high} → {dimension}, {knowledge} → {discovery}, {ensembl} →
{bagging , boosting}, and {support} → {vector ,machin,SVM }. All patterns and
rules correspond to well-known concepts in the data mining community.
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Fig. 4. Example rules for mammals. Shown are the inferred presence (green) and
absence (red) of a pattern ∅ → {common squirrel, deer, ermine, marten, mice*} and b
rule {Southwest European cat} → {Mediterranean mice*, Iberian rabbit}. The intensity
of the colour indicates how many items of the tail hold – the ideal result is hence dark
green and light red. Yellow dots indicate presence of animals from tail of rule where
animals of head of rule were not sighted. (Color figure online)

On Mammals, Grab finds large patterns such as ∅ → {red deer, European
mole, European fitch, wild boar, marten, mice*}, and ∅ → {common squir-
rel, deer, ermine, marten, mice*}, that correspond to animals that commonly
occur across Europe, with multiple mouse species (items) indicated by mice*.
In addition, it also discovers specific patterns, e.g. ∅ → {snow rabbit, elk, lynx,
brown bear}, which are mammals that appear almost exclusively in northeastern
Europe. We visualized the second rule in Fig. 4a to show that the consequent
should hold in most of the cases, but not necessarily need to be always present.
Moreover, Grab is able to find meaningful rules in the presence of noise, e.g.
{Southwest European cat} → {Mediterranean mice*, Iberian rabbit}, where the
rule should only hold in southwest europe. For the rule that Grab discovers
this is indeed the case, although the data contains (likely spurious) sightings of
Iberian rabbits or Mediterranean mice in Norway (see Fig. 4b) and some sight-
ings of mice alone, along the Mediterranean sea.

Runtime and Scalability. Last, but not least, we investigate the runtime of
Grab. We first consider scalability with regard to number of features. For this,
in Fig. 5a we give the runtimes for the synthetic datasets we used above. From
the figure we see that while Grab is not as fast as Kingfisher and Hyper+,
it scales favourably with regard to the number of features. Although it considers
a much larger search space, Grab only needs seconds to minutes. On real data
Grab is the fastest method for five of the data sets, and only requires seconds
for the other datasets, whereas the other methods take up to hours for particular
instances (compare Fig. 5b).
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Table 1. For Grab, the size of the rule set and average size of head |X| and tail |Y |
are given. For the other methods, number of found rules are given, mem indicates an
aborted run due to memory usage >256GB.

Dataset n m Grab Hyper+ Kingfisher Pack

|X| |Y | |R| Number of discovered rules

Abstracts 859 3933 0.9 1.2 29 1508 42K 334

Accidents 339898 468 1 1.1 138 65M mem 69M

Adult 10830 97 1 1.1 27 26K 9K 68M

Covtype 581012 105 1.3 1.1 41 13K 43K 286M

DNA 1316 392 1 1.7 147 49 140K 451

Mammals 2183 121 1.5 2 38 mem ≥ 10M 2K

Mushroom 8124 119 1.6 1.5 65 13K 81K 7K

Plants 34781 69 1.2 3.2 20 6M mem 910

7 Discussion

The experiments show that Grab is fast and returns crisp, informative rule sets.
On synthetic data it recovers the ground truth, without picking up noise. On
real world data, it retrieves concise and easily interpretable rule sets, as opposed
to the state of the art that discovers thousands, up to millions of rules.

The results on the Mammals data clearly show Grab recovers known popula-
tion structures, even in the presence of noise. The results on the ICDM Abstracts
data are equally good, with rule {support} → {vector ,machin, svm} as a notable
example. In contrast to machine learning, in data mining “support” is ambigu-
ous. In the ICDM abstracts it means the support of a pattern, as well as support
vector machines, and the rule expresses this. To verify this, we additionally ran
Grab on abstracts from the Journal of Machine Learning Research (JMLR),
where it instead recovers the pattern ∅ → {support , vector ,machin, svm}.

Thanks to careful implementation and accurate gain estimates, Grab scales
very well in the number of transactions, as well as in the number of features. In
practice, Grab can consider up to several thousand features in reasonable time.
Ultimately, we are interested in bioinformatics applications, and are hence inter-
ested in rule set search strategies that scale up to millions of features or more. For
similar reasons we are interested in extending Grab towards continuous-valued,
and mixed-type data. This we also leave for future work.

Whereas the rules Grab discovers provide useful insight, they are not nec-
essarily actionable; that is only the case when X causes Y . Currently Grab can
only reward correlation, and we are interested in extending it towards addition-
ally identifying causal rules from observational data [20].
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Fig. 5. Scalability On the left side, runtimes are visualized on a logarithmic y-axis for
synthetic data of varying number of features (x-axis). On the right, runtimes (logarith-
mic y-axis) are depicted for 8 real world data sets (x-axis). Kingfisher did not finish
on Accident and Plants, Hyper+ did not finish on Mammals.

8 Conclusion

We considered the problem of non-parametrically discovering sets of associa-
tion rules for a given dataset. We proposed to mine small, non-redundant sets
of highly informative noise-resistant rules and patterns, that together succinctly
describe the data at hand. To do so, we defined a score based on solid information
theoretic grounds, showed the problem does not lend itself for efficient optimiza-
tion, and proposed Grab, a highly efficient heuristic that greedily approximates
the MDL optimal result. Grab is unique in that it can discover both patterns
and rules, is noise-resistant and allows rules and patterns to hold approximately,
and, can discover rules with non-singleton consequents. Through thorough exper-
iments we showed that unlike the state-of-the-art, Grab is able to recover the
ground truth in synthetic data, and discovers small sets of highly meaningful
rules from real world data.
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Abstract. The area of constrained clustering has been extensively
explored by researchers and used by practitioners. Constrained cluster-
ing formulations exist for popular algorithms such as k-means, mixture
models, and spectral clustering but have several limitations. A funda-
mental strength of deep learning is its flexibility, and here we explore
a deep learning framework for constrained clustering and in particular
explore how it can extend the field of constrained clustering. We show
that our framework can not only handle standard together/apart con-
straints (without the well documented negative effects reported earlier)
generated from labeled side information but more complex constraints
generated from new types of side information such as continuous val-
ues and high-level domain knowledge. (Source code available at: http://
github.com/blueocean92/deep constrained clustering)

Keywords: Constrained clustering · Deep learning · Semi-supervised
clustering · Reproducible research

1 Introduction

Constrained clustering has a long history in machine learning with many stan-
dard algorithms being adapted to be constrained [3] including EM [2], K-Means
[25] and spectral methods [26]. The addition of constraints generated from
ground truth labels allows a semi-supervised setting to increase accuracy [25]
when measured against the ground truth labeling.

However, there are several limitations in these methods and one purpose
of this paper is to explore how deep learning can make advances to the field
beyond what other methods have. In particular, we find that existing non-deep
formulations of constrained clustering have the following limitations:

– Limited Constraints and Side Information. Constraints are limited to simple
together/apart constraints typically generated from labels. In some domains,
experts may more naturally give guidance at the cluster level or generate
constraints from continuous side-information.

c© Springer Nature Switzerland AG 2020
U. Brefeld et al. (Eds.): ECML PKDD 2019, LNAI 11906, pp. 57–72, 2020.
https://doi.org/10.1007/978-3-030-46150-8_4
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– Negative Effect of Constraints. For some algorithms though constraints
improve performance when averaged over many constraint sets, individual
constraint sets produce results worse than using no constraints [8]. As prac-
titioners typically have one constraint set their use can be “hit or miss”.

– Intractability and Scalability Issues. Iterative algorithms that directly solve
for clustering assignments run into problems of intractability [7]. Relaxed
formulations (i.e. spectral methods [17,26]) require solving a full rank eigen-
decomposition problem which takes O(n3).

– Assumption of Good Features. A core requirement is that good features or
similarity function for complex data is already created.

Since deep learning is naturally scalable and able to find useful representa-
tions we focus on the first and second challenges but experimentally explore the
third and fourth. Though deep clustering with constraints has many potential
benefits to overcome these limitations it is not without its challenges. Our major
contributions in this paper are summarized as follows:

– We propose a deep constrained clustering formulation that cannot only encode
standard together/apart constraints but new triplet constraints (which can be
generated from continuous side information), instance difficulty constraints,
and cluster level balancing constraints (see Sect. 3).

– Deep constrained clustering overcomes a long term issue we reported in
PKDD earlier [8] with constrained clustering of profound practical impli-
cations: overcoming the negative effects of individual constraint sets.

– We show how the benefits of deep learning such as scalability and end-to-
end learning translate to our deep constrained clustering formulation. We
achieve better clustering results than traditional constrained clustering meth-
ods (with features generated from an auto-encoder) on challenging datasets
(see Table 2).

Our paper is organized as follows. First, we introduce the related work in
Sect. 2. We then propose four forms of constraints in Sect. 3 and introduce how to
train the clustering network with these constraints in Sect. 4. Then we compare
our approach to previous baselines and demonstrate the effectiveness of new
types of constraints in Sect. 5. Finally, we discuss future work and conclude in
Sect. 6.

2 Related Work

Constrained Clustering. Constrained clustering is an important area and
there is a large body of work that shows how side information can improve
the clustering performance [4,24–26,28]. Here the side information is typically
labeled data which is used to generate pairwise together/apart constraints used
to partially reveal the ground truth clustering to help the clustering algorithm.
Such constraints are easy to encode in matrices and enforce in procedural algo-
rithms though not with its challenges. In particular, we showed [8] performance
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improves with larger constraint sets when averaged over many constraint sets
generated from the ground truth labeling. However, for a significant fraction
(just not the majority) of these constraint sets performance is worse than using
no constraint set. We recreated some of these results in Table 2.

Moreover, side information can exist in different forms beyond labels (i.e.
continuous data), and domain experts can provide guidance beyond pairwise
constraints. Some work in the supervised classification setting [10,14,20,21] seek
alternatives such as relative/triplet guidance, but to our knowledge, such infor-
mation has not been explored in the non-hierarchical clustering setting. Com-
plex constraints for hierarchical clustering have been explored [1,5] but these are
tightly limited to the hierarchical structure (i.e., x must be joined with y before
z) and not directly translated to non-hierarchical (partitional) clustering.

Deep Clustering. Motivated by the success of deep neural networks in super-
vised learning, unsupervised deep learning approaches are now being explored
[11,13,22,27,30]. There are approaches [22,30] which learn an encoding that is
suitable for a clustering objective first and then applied an external clustering
method. Our work builds upon the most direct setting [11,27] which encodes
one self-training objective and finds the clustering allocations for all instances
within one neural network.

Deep Clustering with Pairwise Constraints. Most recently, the semi-
supervised clustering networks with pairwise constraints have been explored:
[12] uses pairwise constraints to enforce small divergence between similar pairs
while increasing the divergence between dissimilar pairs assignment probabil-
ity distributions. However, this approach did not leverage the unlabeled data,
hence requires lot’s of labeled data to achieve good results. Fogel et al. proposed
an unsupervised clustering network [9] by self-generating pairwise constraints
from mutual KNN graph and extends it to semi-supervised clustering by using
labeled connections queried from the human. However, this method cannot make
out-of-sample predictions and requires user-defined parameters for generating
constraints from mutual KNN graph.

3 Deep Constrained Clustering Framework

Here we outline our proposed framework for deep constrained clustering. Our
method of adding constraints to and training deep learning can be used for most
deep clustering method (so long as the network has a k unit output indicating the
degree of cluster membership) and here we choose the popular deep embedded
clustering method (DEC [27]). We sketch this method first for completeness.

3.1 Deep Embedded Clustering

We choose to apply our constraints formulation to the deep embedded clustering
method DEC [27] which starts with pre-training an autoencoder (xi = g(f(xi))
but then removes the decoder. The remaining encoder (zi = f(xi)) is then
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fine-tuned by optimizing an objective which takes first zi and converts it to a
soft allocation vector of length k which we term qi,j indicating the degree of
belief instance i belongs to cluster j. Then q is self-trained on to produce p a
unimodal “hard” allocation vector which allocates the instance to primarily only
one cluster. We now overview each step.

Conversion of z to Soft Cluster Allocation Vector q. Here DEC takes the
similarity between an embedded point zi and the cluster centroid uj measured
by Student’s t-distribution [18]. Note that v is a constant as v = 1 and qij is a
soft assignment:

qij =
(1 + ||zi − μj ||2/v)

− v+1
2

∑
j′ (1 + ||zi − μj′ ||2/v)

− v+1
2

(1)

Conversion of Q to Hard Cluster Assignments P . The above normalized
similarities between embedded points and centroids can be considered as soft
cluster assignments Q. However, we desire a target distribution P that better
resembles a hard allocation vector, pij is defined as:

pij =
qij

2/
∑

i qij∑
j′ (qij′ 2/

∑
i qij′ )

(2)

Loss Function. Then the algorithm’s loss function is to minimize the distance
between P and Q as follows. Note this is a form of self-training as we are trying
to teach the network to produce unimodal cluster allocation vectors.

�C = KL(P ||Q) =
∑

i

∑

j

pij log
pij
qij

(3)

The DEC method requires the initial centroids given (μ) to calculate Q are
“representative”. The initial centroids are set using k-means clustering. However,
there is no guarantee that the clustering results over an auto-encoders embedding
yield a good clustering. We believe that constraints can help overcome this issue
which we test later.

3.2 Different Types of Constraints

To enhance the clustering performance and allow for more types of interac-
tions between human and clustering models we propose four types of guidance
which are pairwise constraints, instance difficulty constraints, triplet constraints,
and cardinality and give examples of each. As traditional constrained clustering
methods put constraints on the final clustering assignments, our proposed app-
roach constrains the q vector which is the soft assignment. A core challenge when
adding constraints is to allow the resultant loss function to be differentiable so
we can derive back propagation updates.
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PairwiseConstraints. Pairwise constraints (must-link and cannot-link) arewell
studied [3] and we showed they are capable of defining any ground truth set par-
titions [7]. Here we show how these pairwise constraints can be added to a deep
learning algorithm. We encode the loss for must-link constraints set ML as:

�ML = −
∑

(a,b)∈ML

log
∑

j

qaj ∗ qbj (4)

Similarly loss for cannot-link constraints set CL is:

�CL = −
∑

(a,b)∈CL

log (1 −
∑

j

qaj ∗ qbj) (5)

Intuitively speaking, the must-link loss prefers instances with same soft assign-
ments and the cannot-link loss prefers the opposite cases.

Instance Difficulty Constraints. A challenge with self-learning in deep learn-
ing is that if the initial centroids are incorrect, the self-training can lead to poor
results. Here we use constraints to overcome this by allowing the user to spec-
ify which instances are easier to cluster (i.e., they belong strongly to only one
cluster) and by ignoring difficult instances (i.e., those that belong to multiple
clusters strongly).

We encode user supervision with an n × 1 constraint vector M . Let Mi ∈
[−1, 1] be an instance difficulty indicator, Mi > 0 means the instance i is easy to
cluster, Mi = 0 means no difficulty information is provided and Mi < 0 means
instance i is hard to cluster. The loss function is formulated as:

�I =
∑

t∈{Mt<0}
Mt

∑

j

qtj
2 −

∑

s∈{Ms>0}
Ms

∑

j

qsj
2 (6)

The instance difficulty loss function aims to encourage the easier instances to
have sparse clustering assignments but prevents the difficult instances having
sparse clustering assignments. The absolute value of Mi indicates the degree of
confidence in difficulty estimation. This loss will help the model training process
converge faster on easier instances and increase our model’s robustness towards
difficult instances.

Triplet Constraints. Although pairwise constraints are capable of defining any
ground truth set partitions from labeled data [7], in many domains no labeled
side information exists or strong pairwise guidance is not available. Thus we seek
triplet constraints, which are weaker constraints that indicate the relationship
within a triple of instances. Given an anchor instance a, positive instance p and
negative instance n we say that instance a is more similar to p than to n. The
loss function for all triplets (a, p, n) ∈ T can be represented as:

�T =
∑

(a,p,n)∈T

max(d(qa, qn) − d(qa, qp) + θ, 0) (7)
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where d(qa, qb) =
∑

j qaj ∗ qbj and θ > 0. The larger value of d(qa, qb) repre-
sents larger similarity between a and b. The variable θ controls the gap dis-
tance between positive and negative instances. �T works by pushing the posi-
tive instance’s assignment closer to anchor’s assignment and preventing negative
instance’s assignment being closer to anchor’s assignment.

Global SizeConstraints. Expertsmaymore naturally give guidance at a cluster
level. Here we explore clustering size constraints, which means each cluster should
be approximately the same size. Denote the total number of clusters as k, total
training instances number as n, the global size constraints loss function is:

�G =
∑

c∈{1,..k}
(

n∑

i=1

qic/n − 1
k

)2 (8)

Our global constraints loss function works by minimizing the distance between
the expected cluster size and the actual cluster size. The actual cluster size is
calculated by averaging the soft-assignments. To guarantee the effectiveness of
global size constraints, we need to assume that during our mini-batch training
the batch size should be large enough to calculate the cluster sizes. A similar
loss function can be used (see Sect. 3.4) to enforce other cardinality constraints
on the cluster composition such as upper and lower bounds on the number of
people with a certain property.

3.3 Preventing Trivial Solution

In our framework the proposed must-link constraints we mentioned before can
lead to trivial solution that all the instances are mapped to the same cluster.
Previous deep clustering method [30] have also met this problem. To mitigate
this problem, we combine the reconstruction loss with the must-link loss to learn
together. Denote the encoding network as f(x) and decoding network as g(x),
the reconstruction loss for instance xi is:

�R = �(g(f(xi)), xi) (9)

where � is the least-square loss: �(x, y) = ||x − y||2.

3.4 Extensions to High-Level Domain Knowledge-Based Constraints

Although most of our proposed constraints are generated based on instance
labels or comparisons. Our framework can be extended to high-level domain
knowledge-based constraints with minor modifications.

Cardinality Constraints. For example, cardinality constraints [6] allow
expressing requirements on the number of instances that satisfy some condi-
tions in each cluster. Assume we have n people and want to split them into k
dinner party groups. An example cardinality constraint is to enforce each party
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should have the same number of males and females. We split the n people into
two groups as M (males) and F (females) in which |M |+|F | = n and M ∩N = ∅.
Then the cardinality constraints can be formulated as:

�Cardinality =
∑

c∈{1,..k}
(
∑

i∈M

qic/n −
∑

j∈F

qjc/n)2 (10)

For upper-bound and lower-bound based cardinality constraints [6], we use
the same setting as previously described, now the constraint changes as for each
party group we need the number of males to range from L to U . Then we can
formulate it as:

�CardinalityBound =
∑

c∈{1,..k}
(min(0,

∑

i∈M

qic − L)
2

+ max(0,
∑

i∈M

qic − U)
2
) (11)

Logical Combinations of Constraints. Apart from cardinality constraints,
complex logic constraints can also be used to enhance the expressivity power
of representing knowledge. For example, if two instances x1 and x2 are in the
same cluster then instances x3 and x4 must be in different clusters. This can
be achieved in our framework as we can dynamically add cannot-link constraint
CL(x3, x4) once we check the soft assignment q of x1 and x2.

Consider a horn form constraint like r ∧ s ∧ t → u. Denote r = ML(x1, x2),
s = ML(x3, x4), t = ML(x5, x6) and u = CL(x7, x8). By forward passing the
instances within r, s, t to our deep constrained clustering model, we can get the
soft assignment values of these instances. By checking the satisfying results based
on r ∧ s ∧ t, we can decide whether to enforce cannot-link loss CL(x7, x8).

4 Putting It All Together - Efficient Training Strategy

Our training strategy consists of two training branches and effectively has two
ways of creating mini-batches for training. For instance-difficulty or global-size
constraints, we treat their loss functions as addictive losses so that no extra
branch needs to be created. For pairwise or triplet constraints we build another
output branch for them and train the whole network in an alternative way.

Loss Branch for Instance Constraints. In deep learning it is common to add
loss functions defined over the same output units. In the Improved DEC method
[11] the clustering loss �C and reconstruction loss �R were added together. To this
we add the instance difficulty loss �I . This effectively adds guidance to speed up
training convergence by identifying “easy” instances and increase the model’s
robustness by ignoring “difficult” instances. Similarly we treat the global size
constraints loss �G as an additional additive loss. All instances whether or not
they are part of triplet or pairwise constraints are trained through this branch
and the mini-batches are created randomly.

Loss Branch for Complex Constraints. Our framework uses more complex
loss functions as they define constraints on pairs and even triples of instances.
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Thus we create another loss branch that contains pairwise loss �P or triplet
loss �T to help the network tune the embedding which satisfy these stronger
constraints. For each constraint type we create a mini-batch consisting of only
those instances having that type of constraint. For each example of a constraint
type, we feed the constrained instances through the network, calculate the loss,
calculate the change in weights but do not adjust the weights. We sum the
weight adjustments for all constraint examples in the mini-batch and then adjust
the weights. Hence our method is an example of batch weight updating as is
standard in DL for stability reasons. The whole training procedure is summarized
in Algorithm 1.

Algorithm 1. Deep Constrained Clustering Framework
Input: X: data, m: maximum epochs , k: number of clusters, N : total number of
batches and NC : total number of constraints batches.
Output: latent embeddings Z, cluster assignment S.

Train the stacked denosing autoencoder to obtain Z
Initialize centroids μ via k-means on embedding Z.
for epoch = 1 to m do

for batch = 1 to N do
Calculate �C via Eqn (3), �R via Eqn (9).
Calculate �I via Eqn (6) or �G via Eqn (8).
Calculate total loss as �C + �R + {�I ||�G}.
Update network parameters based on total loss.

end for
for batch = 1 to NC do

Calculate �P via Eqn (4, 5) or �T via Eqn (7).
Update network parameters based on {�P ||�T } .

end for
end for

5 Experiments

All data and code used to perform these experiments are available online (http://
github.com/blueocean92/deep constrained clustering) to help with reproducibil-
ity. In our experiments we aim to address the following questions:

– How does our end-to-end deep clustering approach using traditional pairwise
constraints compare with traditional constrained clustering methods? The
latter is given the same auto-encoding representation Z used to initialize our
method.

– Are the new types of constraints we create for deep clustering method useful
in practice?

– Is our end-to-end deep constrained clustering method more robust to the well
known negative effects of constraints we published earlier [8]?

http://github.com/blueocean92/deep_constrained_clustering
http://github.com/blueocean92/deep_constrained_clustering
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5.1 Datasets

To study the performance and generality of different algorithms, we evaluate the
proposed method on two image datasets and one text dataset:

MNIST: Consists of 70000 handwritten digits of 28-by-28 pixel size. The digits
are centered and size-normalized in our experiments [15].

FASHION-MNIST: A Zalando’s article images-consisting of a training set of
60000 examples and a test set of 10000 examples. Each example is a 28-by-28
grayscale image, associated with a label from 10 classes.

REUTERS-10K: This dataset contains English news stories labeled with a
category tree [16]. To be comparable with the previous baselines, we used 4
root categories: corporate/industrial, government/social, markets and
economics as labels and excluded all documents with multiple labels. We ran-
domly sampled a subset of 10000 examples and computed TF-IDF features on
the 2000 most common words.

5.2 Implementation Details

Basic Deep Clustering Implementation. To be comparable with deep clus-
tering baselines, we set the encoder network as a fully connected multilayer
perceptron with dimensions d − 500 − 500 − 2000 − 10 for all datasets, where
d is the dimension of input data (features). The decoder network is a mirror
of the encoder. All the internal layers are activated by the ReLU [19] nonlin-
earity function. For a fair comparison with baseline methods, we used the same
greedy layer-wise pre-training strategy to calculate the auto-encoders embed-
ding. To initialize clustering centroids, we run k-means with 20 restarts and
select the best solution. We choose Adam optimizer with an initial learning
rate of 0.001 for all the experiments. We adopt standard metrics for evaluating
clustering performance which measure how close the clustering found is to the
ground truth result. Specifically, we employ the following two metrics: normal-
ized mutual information (NMI) [23,29] and clustering accuracy (Acc) [29]. In
our baseline comparisons we use IDEC [11], a non-constrained improved version
of DEC published recently.

Pairwise Constraints Experiments. We randomly select pairs of instances
and generate the corresponding pairwise constraints between them. To ensure
transitivity we calculate the transitive closure over all must-linked instances and
then generate entailed constraints from the cannot-link constraints [7]. Since our
loss function for must-link constraints is combined with reconstruction loss, we
use grid search and set the penalty weight for must-link as 0.1.

Instance Difficulty Constraints Experiments. To simulate human-guided
instance difficulty constraints, we use k-means as a base learner and mark all
the incorrectly clustered instances as difficult with confidence 0.1, we also mark
the correctly classified instances as easy instances with confidence 1. In Fig. 1
we give some example difficulty constraints found using this method.
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Fig. 1. Example of instance difficulty constraints. Top row shows the “easy” instances
and second row shows the “difficult” instances.

Triplet Constraints Experiments. Triplet constraints can state that instance
i is more similar to instance j than instance k. To simulate human guidance on
triplet constraints, we randomly select n instances as anchors (i), for each anchor
we randomly select two instances (j and k) based on the similarity between the
anchor. The similarity is calculated as the euclidian distance d between two
instances pre-trained embedding. The pre-trained embedding is extracted from
our deep clustering network trained with 100000 pairwise constraints. Figure 2
shows the generated triplets constraints. Through grid search we set the triplet
loss margin θ = 0.1.

Fig. 2. Examples of the generated triplet constraints for MNIST and Fashion. The
three rows for each plot shows the anchor instances, positive instances and negative
instances correspondingly.

Global Size Constraints Experiments. We apply global size constraints to
MNIST and Fashion datasets since they satisfy the balanced size assumptions.
The total number of clusters is set to 10.

5.3 Experimental Results

Experiments on Instance Difficulty. In Table 1, we report the average test
performance of deep clustering framework without any constraints in the left.
In comparison, we report the average test performance of deep clustering frame-
work with instance difficulty constraints in the right and we find the model
learned with instance difficulty constraints outperforms the baseline method in
all datasets. This is to be expected as we have given the algorithm more infor-
mation than the baseline method, but it demonstrates our method can make
good use of this extra information. What is unexpected is the effectiveness of
speeding up the learning process and will be the focus of future work.
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Table 1. Left table shows baseline results for Improved DEC [11] averaged over 20
trials. Right table lists experiments using instance difficulty constraints (mean ± std)
averaged over 20 trials.

MNIST Fashion Reuters MNIST Fashion Reuters

Acc (%) 88.29± 0.05 58.74± 0.08 75.20± 0.07 91.02± 0.34 62.17± 0.06 78.01± 0.13

NMI (%) 86.12± 0.09 63.27± 0.11 54.16± 1.73 88.08± 0.14 64.95± 0.04 56.02± 0.21

Epoch 87.60± 12.53 77.20± 11.28 12.90± 2.03 29.70± 4.25 47.60± 6.98 9.50± 1.80
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Fig. 3. Clustering accuracy and NMI on training test sets for different number of
pairwise constraints. AE means an autoencoder was used to seed our method. The
horizontal maroon colored baseline shows the IDEC’s [11] test set performance.

Experiments on Pairwise Constraints. We randomly generate 6000 pairs
of constraints which are a small fractions of possible pairwise constraints for
MNIST (0.0002%), Fashion (0.0002%) and Reuters (0.006%).

Recall the DEC method is initialized with auto-encoder features. To better
understand the contribution of pairwise constraints, we have tested our method
with both auto-encoders features and raw data. As can be seen from Fig. 3:
the clustering performance improves consistently as the number of constraints
increases in both settings. Moreover, with just 6000 pairwise constraints the
performance on Reuters and MNIST increased significantly especially for the
setup with raw data. We also notice that learning with raw data in Fashion
achieves a better result than using autoencoder’s features. This shows that the
autoencoder’s features may not always be suitable for DEC’s clustering objective.
Overall our results show pairwise constraints can help reshape the representation
and improve the clustering results.
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We also compare the results with recent work [12]: our approach(autoencoders
features) outperforms the best clustering accuracy reported for MNIST by a mar-
gin of 16.08%, 2.16%and 0.13% respectively for 6, 60 and 600 samples/class.Unfor-
tunately, we can’t make a comparison with Fogel’s algorithm [9] due to an issue in
their code repository.

Table 2. Pairwise constrained clustering performance (mean ± std) averaged over 100
constraints sets. Due to the scalability issues we apply flexible CSP with downsampled
data(3000 instances and 180 constraints). Negative ratio is the fraction of times using
constraints resulted in poorer results than not using constraints. See Fig. 4 and text
for an explanation why our method performs well.

Flexible CSP* COP-KMeans MPCKMeans Ours

MNIST Acc 0.628 ± 0.07 0.816 ± 0.06 0.846 ± 0.04 0.963± 0.01

MNIST NMI 0.587 ± 0.06 0.773 ± 0.02 0.808 ± 0.04 0.918± 0.01

Negative Ratio 19% 45% 11% 0%

Fashion Acc 0.417 ± 0.05 0.548 ± 0.04 0.589 ± 0.05 0.681± 0.03

Fashion NMI 0.462 ± 0.03 0.589 ± 0.02 0.613 ± 0.04 0.667± 0.02

Negative Ratio 23% 27% 37% 6%

Reuters Acc 0.554 ± 0.07 0.712 ± 0.0424 0.763 ± 0.05 0.950± 0.02

Reuters NMI 0.410 ± 0.05 0.478 ± 0.0346 0.544 ± 0.04 0.815± 0.02

Negative Ratio 28% 73% 80% 0%

Negative Effects of Constraints. Our earlier work [8] showed that for tradi-
tional constrained clustering algorithms, that the addition of constraints on aver-
age helps clustering but many individual constraint sets can hurt performance
in that performance is worse than using no constraints. Here we recreate these
results even when these classic methods use auto-encoded representations. In
Table 2, we report the average performance with 3600 randomly generated pair-
wise constraints. For each dataset, we randomly generated 100 sets of constraints
to test the negative effects of constraints [8]. In each run, we fixed the random
seed and the initial centroids for k-means based methods, for each method we
compare its performance between constrained version to unconstrained version.
We calculate the negative ratio which is the fraction of times that unconstrained
version produced better results than the constrained version. As can be seen
from the table, our proposed method achieves significant improvements than
traditional non-deep constrained clustering algorithms [4,25,26].

To understand why our method was robust to variations in constraint sets we
visualized the embeddings learnt. Figure 4 shows the embedded representation
of a random subset of instances and its corresponding pairwise constraints using
t-SNE and the learned embedding z. Based on Fig. 4, we can see the autoen-
coders embedding is noisy and lot’s of constraints are inconsistent based on our
earlier definition [8]. Further, we visualize the IDEC’s latent embedding and find
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(a) MNIST (AE) (b) MNIST (IDEC) (c) MNIST (Ours)

(d) Fashion (AE) (e) Fashion (IDEC) (f) Fashion (Ours)

(g) Reuters (AE) (h) Reuters (IDEC) (i) Reuters (Ours)

Fig. 4. We visualize (using t-SNE) the latent representation for a subset of instances
and pairwise constraints, we visualize the same instances and constraints for each row.
The red lines are cannot-links and blue lines are must-links. (Color figure online)

out the clusters are better separated. However, the inconsistent constraints still
exist (blue lines across different clusters and redlines within a cluster); these
constraints tend to have negative effects on traditional constrained clustering
methods. Finally, for our method’s results we can see the clusters are well sep-
arated, the must-links are well satisfied (blue lines are within the same cluster)
and cannot-links are well satisfied (red lines are across different clusters). Hence
we can conclude that end-to-end-learning can address these negative effects of
constraints by simultaneously learning a representation that is consistent with
the constraints and clustering the data. This result has profound practical sig-
nificance as practitioners typically only have one constraint set to work with.

Experiments on Triplet Constraints. We experimented on MNIST and
FASHION datasets. Figure 2 visualizes example triplet constraints (based on
embedding similarity), note the positive instances are closer to anchors than
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Fig. 5. Evaluation of the effectiveness of triplet constraints in terms of Acc/NMI.

negative instances. In Fig. 5, we show the clustering Acc/NMI improves consis-
tently as the number of constraints increasing. Comparing with Fig. 3 we can find
the pairwise constraints can bring slightly better improvements, that’s because
our triplets constraints are generated from a continuous domain and there is no
exact together/apart information encoded in the constraints. Triplet constraints
can be seen as a weaker but more general type of constraints.

Experiments on Global Size Constraints. To test the effectiveness of our
proposed global size constraints, we have experimented on MNIST and Fashion
training set since they both have balanced cluster sizes (see Fig. 6). Note that
the ideal size for each cluster is 6000 (each data set has 10 classes), we can see
that blue bars are more evenly distributed and closer to the ideal size.

We also evaluate the clustering performance with global constraints on
MNIST (Acc: 0.91, NMI: 0.86) and Fashion (Acc: 0.57, NMI: 0.59). Compar-
ing to the baselines in Table 1, interestingly, we find the performance improved
slightly on MNIST but dropped slightly on Fashion.
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Fig. 6. Evaluation of the global size constraints. This plot shows each cluster’s size
before/after adding global size constraints. (Color figure online)
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6 Conclusion and Future Work

The area of constrained partitional clustering has a long history and is widely
used. Constrained partitional clustering typically is mostly limited to simple
pairwise together and apart constraints. In this paper, we show that deep clus-
tering can be extended to a variety of fundamentally different constraint types
including instance-level (specifying hardness), cluster level (specifying cluster
sizes) and triplet-level.

Our deep learning formulation was shown to advance the general field of
constrained clustering in several ways. Firstly, it achieves better experimental
performance than well-known k-means, mixture-model and spectral constrained
clustering in both an academic setting and a practical setting (see Table 2).

Importantly, our approach does not suffer from the negative effects of con-
straints [8] as it learns a representation that simultaneously satisfies the con-
straints and finds a good clustering. This result is quite useful as a practitioner
typically has just one constraint set and our method is far more likely to perform
better than using no constraints.

Most importantly, we were able to show that our method achieves all of the
above but still retains the benefits of deep learning such as scalability, out-of-
sample predictions and end-to-end learning. We found that even though standard
non-deep learning methods were given the same representations of the data used
to initialize our methods the deep constrained clustering was able to adapt these
representations even further. Future work will explore new types of constraints,
using multiple constraints at once and extensions to the clustering setting.

Acknowledgements. We acknowledge support for this work from a Google Gift enti-
tled: “Combining Symbolic Reasoning and Deep Learning”.
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Abstract. Hierarchical clustering is a fundamental tool in data min-
ing, machine learning and statistics. Popular hierarchical clustering algo-
rithms include top-down divisive approaches such as bisecting k-means,
k-median, and k-center and bottom-up agglomerative approaches such as
single-linkage, average-linkage, and centroid-linkage. Unfortunately, only
a few scalable hierarchical clustering algorithms are known, mostly based
on the single-linkage algorithm. So, as datasets increase in size every day,
there is a pressing need to scale other popular methods.

We introduce efficient distributed algorithms for bisecting k-means,
k-median, and k-center as well as centroid-linkage. In particular, we first
formalize a notion of closeness for a hierarchical clustering algorithm,
and then we use this notion to design new scalable distributed meth-
ods with strong worst case bounds on the running time and the quality
of the solutions. Finally, we show experimentally that the introduced
algorithms are efficient and close to their sequential variants in practice.

Keywords: Hierarchical clustering · Parallel and distributed
algorithms · Clustering · Unsupervised learning

1 Introduction

Thanks to its ability in explaining nested structures in real world data, hierar-
chical clustering is a fundamental tool in any machine learning or data mining
library. In recent years the method has received a lot of attention [4,6,9,14,21,
22,32,33,35]. But despite these efforts, almost all proposed hierarchical cluster-
ing techniques are sequential methods that are difficult to apply on large data
sets.

The input to the hierarchical clustering problem is a set of points and a func-
tion specifying either their pairwise similarity or their dissimilarity. The output
of the problem is a rooted tree representing a hierarchical structure of the input
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data, also known as a dendrogram (Fig. 1). The input points are the leaves of this
tree and subtrees induced by non-leaf nodes represent clusters. These clusters
should also become more refined when the root of the corresponding subtree is
at a lower level in the tree. Hierarchical clustering is useful because the number
of clusters does not need to be specified in advance and because the hierarchi-
cal structure yields a taxonomy that allows for interesting interpretations of the
data set. For an overview of hierarchical clustering methods refer to [16,25,29].

Fig. 1. A Hierarchical Clustering Tree. The grey leaves are the input data points.
Internal nodes represent a cluster of the leaves in the subtree rooted at the internal
node.

Several algorithms have emerged as popular approaches for hierarchical clus-
tering. Different techniques are used depending on the context because each
method has its own advantages and disadvantages. There are various classes of
data sets where each method outperforms the others. For example, the centroid-
linkage algorithm has been used for biological data such as genes [11], whereas,
an alternative method, bisecting k-means, is popular for document comparison
[34]. The most commonly used methods can be categorized into two families:
agglomerative algorithms and divisive algorithms.

Divisive algorithms are top-down. They partition the data starting from a
single cluster and then refine the clusters iteratively layer by layer. The most
commonly used techniques to refine clusters are k-means, k-median, or k-center
clustering with k = 2. These divisive algorithms are known as bisecting k-
means (respectfully, median, center) algorithms [20]. Agglomerative algorithms
are based on a bottom up approach (see [15] for details). In an agglomerative
algorithm, all points begin as their own cluster. Clusters are then merged through
some merging strategy. The choice of merging strategy determines the algorithm.
Common strategies include single-linkage, average-linkage and centroid-linkage.

Most of these algorithms are inherently sequential; they possess a large num-
ber of serial dependencies and do not lend themselves to efficient paralleliza-
tion. For example, in centroid-linkage one cannot simultaneously perform many
merges because the selection of which clusters to merge may depend strongly on
prior merges (and their resultant centroids).
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Recently, there has been interest in making hierarchical clustering scal-
able [4,14,21,22,28,31,33,36]. Nevertheless most prior work has focused on scal-
ing the single-linkage algorithm; efficient MapReduce and Spark algorithms are
known for this problem [4,21,22,36]. This includes the result of [36] giving strong
theoretical guarantees and practical performance for scaling single-linkage clus-
tering. This is unsurprising because single-linkage can be reduced to comput-
ing a Minimum-Spanning-Tree [13], and there has been a line of work on effi-
ciently computing minimum spanning trees in parallel and distributed settings
[1,2,24,26,30]. Unfortunately this approach does not extend to other hierarchi-
cal clustering techniques. In contrast, to the best of our knowledge no efficient
distributed algorithm is known for centroid-linkage or divisive clustering meth-
ods. Thus, scaling methods such as centroid-linkage and bisecting k-means are
open problems and the main focus of this paper.

Our Contribution: In this paper we introduce fast scalable hierarchical clus-
tering algorithms. The main results of the paper are the following:

A Theoretical Framework: This paper develops a theoretical framework for
scaling hierarchical clustering methods. We introduce the notion of closeness
between two hierarchical clustering algorithms. Intuitively, two algorithms are
close if they make provably close or similar decisions. This enforces that our
scalable algorithms produce similar solutions to their sequential counterpart.
Using this framework, the paper formalizes the root question for scaling existing
methods.

Provably Scalable Algorithms: We introduce fast scalable algorithms for
centroid-linkage and the bisecting k-means, k-median and k-center algorithms.
These new algorithms are the main contribution of the paper. The algorithms
are proved to be close to their sequential counterparts and efficient in parallel
and distributed models. These are the first scalable algorithms for divisive k-
clustering as well as centroid-linkage.

Empirical Results: We empirically study the algorithms on three datasets
to show that they are efficient. The empirical results demonstrate that the dis-
tributed algorithms are closer to their sequential counterparts than the theory
suggests. This shows that the new methods produce clusterings remarkably sim-
ilar to those produced by the sequential methods.

The algorithms can be used for most data sets. The scalable bisecting k-
clustering algorithms apply to data belonging to any metric space. For centroid
linkage, we assume that the input data points belong to some Euclidean space so
that computing the centroid of a finite set of points is well defined. In this case,
our techniques generalize to any distance function between points in Euclidean
space for which a family of Locality Sensitive Hash (LSH) functions is known,
such as distances induced by an �p-norm for p ∈ (0, 2] [10].
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2 Preliminaries

In this section we formally define the hierarchical clustering problem, describe
popular sequential approaches, and provide other necessary background infor-
mation.

Problem Input: The input is a set S of n data points. The distance between
points specifies their dissimilarity. Let d(u, v) ≥ 0 denote the distance between
two points u, v ∈ S. It is assumed that d is a metric.

Problem Output: The output is a rooted tree where all of the input points are
at the leaves. Internal nodes represent clusters; the leaves of the subtree rooted
at a node correspond to the points in that specific cluster.

Computational Model: We analyze our algorithms in the massively parallel
model of computation [18,24]1. Let N be the input size. In this model we have
m = O(N1−δ) machines with local memory of size Õ(N δ), for constant δ > 0.
The Õ suppresses logarithmic factors. Notice that the total amount of memory
used is near linear. The computation occurs in rounds and during each round
each machine runs a sequential polynomial time algorithm on the data assigned
to it. No communication between machines is allowed during a round. Between
rounds, machines are allowed to communicate as long as each machine receives
no more communication than its memory and no computation occurs. Ideally,
in this model one would like to design algorithms using a number of rounds that
is no more than logarithmic in the input size.

k-Clustering Methods: We recall the definitions of k-{center,median,means}
clusterings. Let C = {c1, c2, . . . , ck} be k distinct points of S called centers.
For x ∈ S let d(x,C) = minc∈C d(x, c) We say that these centers solve the k-
{center,median,means} problem if they optimize the following objectives, respec-
tively: k-center: minC maxx∈S d(x,C), k-medians: minC

∑
x∈S d(x,C) and finally

k-means: minC

∑
x∈S d(x,C)2.

The choice of centers induces a clustering of S in the following natural way.
For i = 1, . . . , k let Si = {x ∈ S | d(x, ci) = d(x,C)}, that is we map each point
to its closest center and take the clustering that results. In general it is NP-
hard to find the optimal set of centers for each of these objectives, but efficient
O(1)-approximations are known [8,17,23].

Classic Divisive Methods: We can now describe the classical divisive k-
clustering algorithms. The pseudocode for this class of methods is given in
Algorithm 1. As stated before, these methods begin at the root of the cluster
tree corresponding to the entire set S and recursively partition the set until we
reach the leaves of the tree. Note that at each node of the tree, we use an optimal
2-clustering of the current set of points to determine the two child subtrees of
the current node.

1 This model is widely used to capture the class of algorithms that scale in frameworks
such as Spark and MapReduce.
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Classic Agglomerative Methods: Recall that agglomerative methods start
with each data point as a singleton cluster and iteratively merge clusters to build
the tree. The choice of clusters to merge is determined by considering some cost
on pairs of clusters and then choosing the pair that minimizes the cost. For
example, in average-linkage the cost is the average distance between the clusters,
and for centroid-linkage the cost is the distance between the clusters’ centroids.
In this paper we focus on the centroid-linkage method, and have provided pseu-
docode for this method in Algorithm2.

Notation: We present some additional notation and a few technical assumptions.
Let X be a finite set of points and x a point in X. We define the ball of radius
R around x, with notation B(x,R), as the set of points with distance at most
R from x in the point set X, i.e. B(x,R) = {y | d(x, y) ≤ R, y ∈ X}. Let
Δ(X) = maxx,y∈X d(x, y) be the maximum distance between points of X. When
X is a subset of Euclidean space, let μ(X) = 1

|X|
∑

x∈X x be the centroid of X.
Finally, WLOG we assume that all points and pairwise distances are distinct2

and that the ratio between the maximum and minimum distance between two
points is polynomial in n.

1 DivisiveClustering(S)
2 if |S| = 1 then
3 Return a leaf node corresponding to S
4 else
5 Let S1, S2 be an optimal 2-clustering of S /* One of the means, median,

or center objectives is used */

6 T1 ← DivisiveClustering(S1)

7 T2 ← DivisiveClustering(S2)

8 Return a tree with root node S and children T1, T2

9 end
Algorithm 1: Standard Divisive Clustering

1 CentroidClustering(S)
2 Let T be an empty tree
3 For each x ∈ S add a leaf node corresponding to the cluster {x} to T
4 Let C be the current set of clusters
5 while |C| > 1 do
6 S1, S2 ← arg minA,B∈C d(μ(A), μ(B)) /* μ(A) := centroid of A */

7 Add a node to T corresponding to S1 ∪ S2 with children S1 and S2

8 C ← C \ {S1, S2} ∪ {S1 ∪ S2}
9 end

10 Return the resulting tree T
Algorithm 2: Centroid Linkage Clustering

2 We can remove this assumption by adding a small perturbation to every point.
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3 A Framework for Parallelizing Hierarchical Clustering
Algorithms

We now introduce our theoretical framework that we use to design and ana-
lyze scalable hierarchical clustering algorithms. Notice that both divisive and
agglomerative methods use some cost function on pairs of clusters to guide the
decisions of the algorithm. More precisely, in divisive algorithms the current set
of points S is partitioned into S1, and S2 according to some cost c(S1, S2). Sim-
ilarly, agglomerative algorithms merge clusters S1 and S2 by considering some
cost c(S1, S2). So in both settings the main step consists of determining the
two sets S1 and S2 using different cost functions. As an example, observe that
c(S1, S2) is the 2-clustering cost of the sets S1 and S2 in the divisive method
above and that c(S1, S2) = d(μ(S1), μ(S2)) in centroid linkage.

The insistence on choosing S1, S2 to minimize the cost S1, S2 leads to the
large number of serial dependencies that make parallelization of these methods
difficult. Thus, the main idea behind this paper is to obtain more scalable algo-
rithms by relaxing this decision making process to make near optimal decisions.
This is formalized in the following definitions.

Definition 1 (α-close sets). Let c be the cost function on pairs of sets and let
S1, S2 be the two sets that minimize c(S1, S2). Then we say that two sets S′

1, S
′
2

are α-close to the optimum sets for cost c if c(S′
1, S

′
2) ≤ αc(S1, S2), for α ≥ 1.

Definition 2 (α-close algorithm). We say that a hierarchical clustering algo-
rithm is α-close to the optimal algorithm for cost function c if at any step of the
algorithm the sets selected by the algorithm are α-close for cost c, for α ≥ 1.3

A necessary condition for efficiently parallelizing an algorithm is that it must
not have long chains of dependencies. Now we formalize the concept of chains of
dependencies.

Definition 3 (Chain of dependency). We say that a hierarchical clustering
algorithm has a chain of dependencies of length �, if every decision made by the
algorithm depends on a chain of at most � previous decisions.

We now define the main problem tackled in this paper.

Problem 1. Is it possible to design hierarchical clustering algorithms that have
chain of dependencies of length at most poly(log n) and that are α-close, for
small α, for the k-means, the k-center, the k-median and centroid linkage cost
functions?

It is not immediately obvious that allowing our algorithms to be α-close will
admit algorithms with small chains of dependencies. In Sects. 4.1 and 4.2 we
answer this question affirmatively for divisive k-clustering methods and centroid

3 Note that the guarantees is on each single choice made by the algorithm but not on
all the choices together.
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linkage4. Then in Sect. 4.3 we show how to efficiently implement these algorithms
in the massively parallel model of computation. Finally, we give experimental
results in Sect. 5, demonstrating that our algorithms perform close to the sequen-
tial algorithms in practice.

4 Fast Parallel Algorithms for Clustering

4.1 Distributed Divisive k-Clustering

We now present an O(1)-close algorithm with dependency chains of length
O(log(n)) under the assumption that the ratio of the maximum to the mini-
mum distance between points is polynomial in n.

As discussed in Sects. 2 and 3, the main drawback of Algorithm1 is that
its longest chains of dependencies an be linear in the size of the input5. We
modify this algorithm to overcome this limitation while remaining O(1)-close
with respect to the clustering cost objective. In order to accomplish this we
maintain the following invariant. Each time we split S into S1 and S2, each set
either contains a constant factor fewer points than S or the maximum distance
between any two points has been decreased by a constant factor compared to
the maximum distance in S. This property will ensure that the algorithm has
a chain of dependency of logarithmic depth. We present the pseudocode for the
new algorithm in Algorithms 3 and 4.

1 CloseDivisiveClustering(S)
2 if |S| = 1 then
3 Return a leaf node corresponding to S
4 else
5 Let S1, S2 be an optimal 2-clustering of S /* One of the means, median,

or center objectives is used */

6 S1, S2 ← Reassign(S1, S2, Δ(S)) /* Key step, see Algorithm 4 */

7 T1 ← CloseDivisiveClustering(S1)

8 T2 ← CloseDivisiveClustering(S2)

9 Return a tree with root S and children T1, T2

10 end

Algorithm 3: O(1)-Close Divisive k-Clustering Algorithm

The goal of this subsection is to show the following theorem guaranteeing
that Algorithm 3 is provably close to standard divisive k-clustering algorithms,
while having a small chain of serial dependencies.

Theorem 1. Algorithm3 is O(1)-close for the k-center, k-median, and k-means
cost functions and has a chain of dependencies of length at most O(log n).
4 In prior work, Yaroslavtsev and Vadapalli [36] give an algorithm for single-linkage

clustering with constant-dimensional Euclidean input that fits within our framework.
5 Consider an example where the optimal 2-clustering separates only 1 point at a time.
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The main difference between Algorithm 1 and Algorithm 3 is the reassignment
step. This step’s purpose is to ensure that the invariant holds at any point during
the algorithm as shown in the following lemma. Intuitively, if both S1 and S2 are
contained within a small ball around their cluster centers, then the invariant is
maintained. However, if this is not the case, then there are many points “near the
border” of the two clusters, so we move these around to maintain the invariant.

Lemma 1. After the execution of Reassign(S1, S2) in Algorithm3 either |S1| ≤
7
8 |S| or Δ(S1) ≤ 1

2Δ(S). Similarly, either |S2| ≤ 7
8 |S| or Δ(S2) ≤ 1

2Δ(S).

Proof. Let S1, S2 be the resulting clusters and v1, v2 be their centers. Consider
the sets Bi = B(vi,Δ(S)/8) ∩ S, for i = 1, 2. If S1 ⊆ B1 and S2 ⊆ B2, then
both clusters are contained in a ball of radius Δ(S)/8. By the triangle inequality
the maximum distance between any two points in either S1 or S2 is at most
Δ(S)/2.6

1 Reassign(S1, S2, Δ)

2 Let v1, v2 be the centers of S1, S2, respectively
3 for i = 1, 2 do
4 Bi ← B(vi, Δ/8) ∩ (S1 ∪ S2)
5 end
6 if S1 ⊆ B1 and S2 ⊆ B2 then
7 Return S1, S2

8 else
9 U ← (S1 \ B1) ∪ (S2 \ B2)

10 if |U | ≤ n/c /* c is constant parameter, default is c = 4 */

11 then
12 Assign U to the smaller of B1 and B2

13 else
14 Split U evenly between B1 and B2

15 end
16 Return B1, B2

17 end
Algorithm 4: Reassign Subroutine for Divisive Clustering

Otherwise, consider U , the set of points not assigned to any Bi. We consider
c = 4 as in the default case. If |U | ≤ |S|/4, then the algorithm assigns U to
the smaller of B1 and B2 and the resulting cluster will have size at most 3|S|/4
since the smaller set has size at most |S|/2. Furthermore the other cluster is still
contained within a ball of radius Δ/8 and thus the maximum distance between
points is at most Δ(S)/2. If |U | ≥ |S|/4 then the points in U are distributed
evenly between S1 and S2. Both sets in the recursive calls are guaranteed to have
less than |S| − |U |/2 ≤ 7

8 |S| points since U was evenly split. Similar properties
can be shown for other values of c.
6 By the generalized triangle inequality this is true for p = 1, 2 and it is true for p = ∞.

So this is true for the cost of k-center, k-means and k-median.
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Next we can show that the algorithm is O(1)-close by showing that the
algorithm is an O(1)-approximation for the desired k-clustering objective in each
step.

Lemma 2. Let p be the norm of the clustering objective desired (i.e. p = 2 for
k-means, p = ∞ for k-center or p = 2 for k-median). The clustering produced in
each iteration is a constant approximation to any desired k-clustering objective
with any constant norm p ∈ (0, 2] or p = ∞.

The proof of Lemma 2 is deferred to the full version of this paper. Combining
Lemma 1 and Lemma 2 we obtain Theorem 1 as a corollary.

4.2 Distributed Centroid-Linkage

As discussed in Sects. 2 and 3, Algorithm 2 has a linear chain of dependencies. In
this subsection we show how to modify step 4 of Algorithm 2 to overcome this
difficulty.

The main intuition is to change Algorithm2 to merge any pair of clusters
A,B whose centroids are within distance αδ, where δ is the current smallest
distance between cluster centroids and α ≥ 1 is a small constant. Our algorithm
will find a collection of disjoint pairs of clusters which meet this condition. The
algorithm then merges all such pairs and updates the minimum distance before
repeating this procedure. This procedure is described in Algorithm5.

1 CloseCentroidClustering(S, α)
2 Let T be an empty tree
3 For each x ∈ S add a leaf node corresponding to {x} to T
4 Let C be the current set of clusters while |C| > 1 do
5 δ ← minA,B∈C d(μ(A), μ(B))
6 for X ∈ C do
7 if ∃Y ∈ C such that d(μ(X), μ(Y )) ≤ αδ then
8 Add a node corresponding to X ∪ Y with children X, Y to T
9 C ← C \ {X, Y } ∪ {X ∪ Y }

10 end

11 end

12 end
13 Return the resulting tree T

Algorithm 5: Idealized Close Centroid Clustering Algorithm

By definition, Algorithm 5 will be α-close to the centroid linkage algorithm.
There are two issues that arise when bounding the algorithm’s worst-case guar-
antees. First, it is not clear how to efficiently implement lines 5–10 in the dis-
tributed setting. We will address this issue in Sect. 4.3, where we describe the
distributed implementations. Intuitively, we apply the popular locality-sensitive-
hashing (LSH) technique, allowing us to perform these steps efficiently in the
distributed setting.
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The second issues is that it is difficult to bound the chain of dependencies for
this algorithm since we cannot guarantee that the minimum distance δ increases
by a constant factor after each iteration of the while loop.7 Nevertheless, we find
that this formulation of the algorithm works well empirically despite not having
a formal bound on the round complexity. See Sect. 5 for these results.

To understand why this algorithm might have small round complexity in
practice, we developed an algorithm with strong guarantees on its running time.
See the full version of this paper for a proper description of this algorithm. For
intuition, the algorithm maintains the following two invariants. First, if two
clusters X,Y are merged during the algorithm, then the distance between their
centroids is O(log2(n)δ), where δ is the current minimum distance between any
two clusters. Second, at the end of the merging step the minimum distance
between the centroids of the resulting clusters is at least (1 + ε)δ, for some
constant ε > 0.8 These two invariants taken together imply an O(log2(n))-close
algorithm for centroid linkage with O(poly(log n)) length dependency chains
when the ratio of the maximum to the minimum distance in S is bounded by a
polynomial in n.

To achieve these invariants our new algorithm carefully merges nodes in two
stages. A first where the algorithm recursively merges subsets of points that are
close at the beginning of the stage. Then a second where the algorithm merges
the leftover points from different merges of the first stage. With this two stage
approach, we can formally bound the dependency chains and the closeness of
the resulting algorithm. The precise description and analysis of this algorithm is
involved and is presented in the full version of this paper. The following theorem
characterizes the main theoretical result of this section.

Theorem 2. There exists an algorithm that is O(log2(n))-close to the sequential
centroid linkage algorithm and it has O(poly(log n)) length chains of dependen-
cies.

The main trade-off involved in this result is that in order to ensure a fast
running time our algorithm must be willing to make some merges that are an
O(log2(n))-factor worse than the best possible merge available at that time. This
is due to considering a worst-case analysis of our algorithm. In practice, we find
that the closeness of a variation of Algorithm 5 is much smaller than Theorem 2
would suggest while maintaining a fast running time. See Sect. 5.

4.3 From Bounded Length Dependency Chains to Parallel
Algorithms

We now discuss how to adapt our algorithms to run on distributed systems. In
particular we show that every iteration between consequent recursive calls of our
7 It is possible to construct worst-cases instances where the minimum distance δ can

decrease between iterations of the while loop.
8 In order to guarantee this second invariant, our algorithm must be allowed to make

merges at distance O(log2(n)δ).
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algorithms can be implemented using a small number of rounds in the massively
parallel model of computation and so we obtain that both algorithms can be
simulated in a polylogarithmic number of rounds.

Parallelizing Divisive k-Clustering: We start by observing that there are
previously known procedures [3,5,7,12] to compute approximate k-clusterings
in the massively parallel model of computation using only a constant number of
rounds. Here we use these procedures as a black-box.

Next, the reassignment operation can be performed within a constant number
of parallel rounds. Elements can be distributed across machines and the centers
v1 and v2 can be sent to every machine. In a single round, every element computes
the distance to v1 and v2 and in the next round the size of B1, B2 and U are
computed. Finally given the sizes of B1, B2 and U the reassignment can be
computed in a single parallel round.

So steps 4, 5 and 6 of Algorithm3 can be implemented in parallel using a con-
stant number of parallel rounds. Furthermore, we established that the algorithm
has at most logarithmic chain of dependencies. Thus we obtain the following
theorem:

Theorem 3. There exist O(log n)-round distributed hierarchical clustering algo-
rithms that are O(1)-close to bisecting k-means, bisecting k-center or bisecting
k-median.

Parallelizing Centroid-Linkage: Parallelizing our variant of centroid-linkage
is more complicated. As stated before, the main challenge is to find an efficient
way to implement lines 5–10 of Algorithm 5. The solution to this problem is the
use of Locality Sensitive Hashing (LSH). For simplicity of exposition we focus
on the Euclidian distances and we use the sketch from [10] for norm p ∈ (0, 2],
nevertheless we note that our techniques can be easily extended to any LSH-able
distance function. We refer the interested reader to the full version of this paper
for complete technical details. The following Theorem is restated from [10].

Theorem 4. Fix a domain S of points a parameter δ > 0 and constant param-
eter ε > 0. There exists a class of hash functions H = {h : S → U} and
constants p1, p2 > 0 with p1 > p2 such that for any two points u and v in
S if d(u, v) ≤ δ then PrH[h(v) = h(u)] ≥ p1 and if d(u, v) ≥ (1 + ε)δ then
PrH[h(v) = h(u)] ≤ p2.

Intuitively the LSH procedure allows us to group together points that are near
each other. Using the previous theorem and the classic amplification technique
for LSH presented in [19], it is possible to show the following theorem.

Theorem 5. Fix a domain S of points, a parameter δ > 0 and a small constant
ε > 0. Let S′ be the set of points where there exists another point within distance
δ and S′′ be the set of points where there exists another point within distance
(1 + ε)δ. With probability 1 − n−2 for each points v ∈ S′ there is a O(1) round
distributed procedure that can identify another point u such that d(u, v) ≤ (1+ε)δ.
Furthermore the same procedure identifies for some v ∈ S′′ another point u such
that d(u, v) ≤ (1 + ε)δ.
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Using these tools, we now describe a parallelizable variant of Algorithm5. See
Algorithm 6 for the pseudocode. Intuitively, we apply LSH to the centroids of
the current set of clusters in order to identify candidate merges that are α-close
for centroid-linkage.

We note that LSH can also be applied to the theoretically efficient algorithm
alluded to in Theorem2. This allows us to get a theoretically efficient distributed
algorithm that is close to centroid-linkage. The following theorem characterizes
this result, however its proof is technical and deferred to the full version of this
paper.

Theorem 6. There exists an algorithm running in O(log2(n) log log(n)) dis-
tributed rounds and is O(log2(n))-close to the sequential centroid-linkage
algorithm.

1 FastCentroid(S, α)
2 Let T be an empty tree
3 For each x ∈ S add a leaf node corresponding to {x} to T
4 Let C be the current set of clusters
5 while |C| > 1 do
6 δ ← minA,B∈C d(μ(A), μ(B))
7 Use LSH with distance parameter αδ on each point μ(X) for X ∈ C
8 For each hash value h, let Ch denote all the clusters hashed to this value
9 For each h place Ch on a single machine

10 Pair clusters that are within distance αδ in Ch until all remaining clusters
have no other cluster within distance αδ

11 Merge the paired clusters and add the corresponding nodes to the tree T
12 Update C appropriately to contain the new clusters but not the old clusters

used in each merge.
13 end
14 Return the resulting tree T

Algorithm 6: Fast α-Close Centroid Clustering Algorithm

5 Experimental Results

In this section we empirically evaluate the algorithms in this paper. The algo-
rithms will be referred to as Div-k-clust. (for the k-means algorithm) and Cen-
troidLink (for the centroid algorithm). The sequential baseline algorithms are
kBase and cBase. These are evaluated on three datasets from the UCI machine
learning repository commonly used for clustering experimentation: Shuttle,
Covertype, and Skin [27].

Parameters. Both of our algorithms are parameterized with an adjustable
parameter. This is c in the divisive algorithm and α in the centroid algorithm.
Both parameters were set to 4 in the experiments if not specified.

Evaluation Criteria. The algorithms are evaluated on their efficiency as well as
the quality of the solution compared to the sequential algorithms. The closeness
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is a measure of quality; the number of rounds measures the efficiency. We also
examine the effect of varying the parameter on the efficiency of the algorithm.

Quality Evaluation: Here we examine the closeness of the algorithm to their
sequential counterparts.

CentroidLink . For the CentroidLink algorithm the parameter α specifies the
closeness. Recall that the sequential algorithm merges the pair of clusters whose
centroids are closest to form a subtree; whereas, the distributed algorithm merges
all pairs with distance at most an α factor greater than the smallest distance.
The experimenter can freely choose how close the parallel algorithm will adhere
to the sequential one with a tradeoff in the number of rounds. We are interested
in the closeness of the algorithm’s decisions compared to that of the sequential
algorithm. We will show this by presenting the ratio of the distance between the
pair the algorithm merges compared to the actual distance of the closest pair of
nodes.

Div-k-clust. Recall that Div-k-clust. differs from kBase by having an extra
step in which some points are reassigned before the recursion. This step can
potentially cause Div-k-clust. to deviate from kBase by placing points in different
subtrees than kBase would. The closeness should be a measure of the cost of this
difference. We measure closeness as the ratio of the k-means cost before and after
the reassignment.

On average, the closeness ratio of the algorithms are small constants for each
data set. Tables 1(b) and (a) have a more detailed breakdown of the results.
There, we break down the data on closeness by noting the size of the subtree the
moment the algorithm makes the decision which might differ from the sequential
algorithm. As there are many different sizes for subtrees, we have grouped the
subtrees which are close to each other in size and averaged them, for example,

Table 1. Evaluation of the closeness

(a) Closeness of Div-k-clust. to
kBase

Size Shuttle Skin Covertype

≤1000 1.51 1.61 1.51
2000 1.69 1.74 1.58
3000 1.74 1.91 1.22
4000 1.57 2.10 1.74
5000 - 1.19 -
6000 - 2.30 -
8000 1.64 - 2.01

≥10000 1.74 1.84 1.07
Overall 1.52 1.61 1.51

(b) Closeness of CentroidLink to
cBase

Size Shuttle Skin Covertype

≤1000 2.74 2.66 2.38
2000 2.66 2.56 2.70
3000 2.76 2.25 2.72
4000 2.50 2.89 -
5000 - 3.16 1.81
6000 1.84 - -
7000 2.48 3.40 2.11
8000 2.72 1.16 -
9000 - - 1.92

≥10000 1 2.84 1
Overall 2.74 2.66 2.38
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subtrees of size 0–1000 are averaged together in the first row of the table. The
dashes, ‘-’, in the table indicate that there were no resultant subtrees of the
corresponding size range. Note that the ratios are small in general for both
algorithms.

Efficiency Evaluation: Figure 2 plots the number of rounds used by each algo-
rithm on each dataset. Data points are subsampled and averaged over five trials.
We compare our algorithms against the baseline sequential algorithms. However,
in theory, the centroid baseline is very sequential; the ith merge must depend
on all i − 1 previous merges. Therefore, it has a round complexity of Ω(n). For
a more reasonable comparison, we have instead plotted the function 2 ln(n) for
comparison as we expect our algorithms to scale logarithmically. The sequential
algorithm is much worse than this.

Both Div-k-clust. and kBase perform poorly on the Skin dataset. One expla-
nation is that this 2-class dataset mostly contains data points of one class, there-
fore, k-means clustering results in tall trees taking requiring rounds to compute.
This is an example of a dataset in which the centroid algorithm may be preferred
by a practitioner.

In general, the number of rounds are quite low, stable, and below the loga-
rithmic function, especially for the centroid algorithm.

(a) Shuttle (b) Covertype

(c) Skin

Fig. 2. Evaluation of the number of rounds
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Table 2. Effect of c/α on rounds for shuttle

c/α Div-k-clust. CentroidLink

1.5 21.8 13.6

2 19.1 7.6

4 18.5 7.4

8 17.3 5.8

Table 2 presents results from varying the parameter c or α on the number of
rounds. These results were computed with N = 10000 on the Shuttle dataset.
In the table, the closer the parameter is to 1, the better the algorithms simulates
the sequential variant and this tradesoff with number of rounds.

6 Conclusion and Future Work

In this work we develop scalable hierarchical clustering algorithms that are close
to the sequential bisecting k-clustering and centroid-linkage algorithms. The dis-
tributed algorithms run in a small number of rounds and give empirical results
that support our theory. An interesting open question is how to apply this paper’s
framework to other popular methods such as average-linkage or Ward’s method.
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Abstract. Unsupervised anomaly detection is commonly performed
using a distance or density based technique, such as K-Nearest neigh-
bours, Local Outlier Factor or One-class Support Vector Machines. One-
class Support Vector Machines reduce the computational cost of testing
new data by providing sparse solutions. However, all these techniques
have relatively high computational requirements for training. Moreover,
identifying anomalies based solely on density or distance is not sufficient
when both point (isolated) and cluster anomalies exist in an unlabelled
training set. Finally, these unsupervised anomaly detection techniques
are not readily adapted for active learning, where the training algorithm
should identify examples for which labelling would make a significant
impact on the accuracy of the learned model. In this paper, we pro-
pose a novel technique called Maximin-based Anomaly Detection that
addresses these challenges by selecting a representative subset of data in
combination with a kernel-based model construction. We show that the
proposed technique (a) provides a statistically significant improvement
in the accuracy as well as the computation time required for training and
testing compared to several benchmark unsupervised anomaly detection
techniques, and (b) effectively uses active learning with a limited budget.

Keywords: Anomaly detection · Unsupervised learning · Active
learning

1 Introduction

Anomaly detection is a key component of many monitoring applications, which
aim to detect harmful rare events that can be subsequently controlled [8]. It
has been used in a wide range of domains from cybersecurity [7,33] to health
and safety applications such as fall detection for elderly people [27,35]. A key
challenge for anomaly detection is the abundance of unlabelled data [23]. The
high cost of labelling hinders the application of supervised anomaly detection
techniques, which require labelled examples of anomalies and normal data [8].
Although one-class classification techniques mitigate this issue by building a
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normal profile given only normal data, they are not sufficiently robust to the
presence of unknown anomalies in the training set [3,16,32]. Even if the training
set only comprises normal data but is noisy, one-class classification can deliver
unsatisfactory results [15,16]. Since one-class classification techniques such as
One-Class Support Vector Machine (OCSVM) [30] and Support Vector Data
Description (SVDD) [32] provide sparse solutions and are very fast during the
testing phase, they have been enhanced to work in an unsupervised manner
[3,15,16]. However, depending on the implementation and the characteristics of
the dataset, training may require O(n2) to O(n3) operations, where n is the car-
dinality of the training data. Unsupervised anomaly detection techniques such
as K-Nearest Neighbours (KNN) and Local Outlier Factor (LOF), have high
computational requirements for processing new observations in a continuously
monitored system. For scroring/labelling a new data point, anomaly scores of all
or a subset of existing data points should be recomputed in a fairly large refer-
ence dataset. Therefore, these methods have limited scope for real-time anomaly
detection. In other words, they do not learn an explicit model a priori, which
can be later on used for timely evaluation of future observations [1]. iForest [25]
is another unsupervised method that attempts to address these challenges by
filtering anomalies through isolating trees that are trained on several subsets of
the data. This way, iForest is not based on a density or distance measure and
lowers the computational cost by sampling. However, the solution provided by
iForest is not sparse like OCSVM and SVDD, and to score a test instance it
must scan several trees.

In some applications, it might be possible to obtain expert feedback on whether
an instance is normal or anomalous.Having that feedback ona small number of crit-
ical examples can make a substantial difference to the accuracy of the final model
[23]. This process, known as Active Learning (AL), has been widely used in clas-
sification [34] and rare class discovery [17,20] using supervised or semi-supervised
learning. Using AL in unsupervised anomaly detection is an emerging trend [1,19].
Sharma et al. [31] used active learning to train a two-class classifier for identify-
ing operationally significant anomalies from insignificant ones in a flight trajectory
dataset. They used the OCSVM algorithm first to identify top-ranked anomalies
in an unsupervised manner. Given their scores, the top-ranked anomalies are then
presented to an expert to generate a labelled set of operationally significant and
insignificant anomalies. This labelled set is used to train a two-class SVM that
distinguishes between interesting and unimportant anomalies. Pelleg and Moore
[26] proposed a general framework for the same purpose that runs several loops
for data modelling (using Gaussian mixtures) and labelling. The algorithm starts
with an unlabelled dataset. After each modelling round, labels of 35 instances are
asked from an expert. Three strategies are used to choose these instances: choosing
instances with low likelihood under the current model, choosing instances that the
model is not certain about them, and a combination of the two strategies. Our work
is different aswe aim to enhance the ability of the underlyingunsupervised anomaly
detection, which is used by these techniques to find interesting anomalies or dis-
cover rare classes. The ability of an anomaly detection technique to efficiently and
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effectively use the AL budget is vital for adversarial tasks such as fraud detection,
where anomalies can be similar to the normal data due to fraudsters mimicking
normal behaviour [1].

In this paper, we present a novel approach called Maximin-based Anomaly
Detection (MMAD). The contributions of this work are as follows. First, we
use random sampling followed by the Maximin (MM) sampling technique [22]
to select a representative subset of the input data, which achieves low constant
computational cost for big datasets. Then, we use a cluster validity index (CVI)
called the Silhouette index [29] on the representative samples that should con-
tribute to defining a kernel-based model, which is subsequently used to score
anomalies and normal data in nearly real-time. Second, we incorporate AL into
MMAD. We show that with only a few labels, this enhancement of MMAD
improves the accuracy of unsupervised anomaly detection. Our numerical exper-
iments on benchmark anomaly detection datasets show that our proposed tech-
nique outperforms several state-of-the-art unsupervised anomaly detection tech-
niques in terms of the time-complexity of training a model and testing the future
data. Moreover, our technique provides statistically significant improvements in
accuracy even when the AL budget is zero.

2 Definitions and Problem Specification

Let the normal data D∗ be (an unknown) subset of a given unlabelled training
set D, i.e., D∗ ⊆ D = {x1, x2, ..., xn} ⊂ R

d, drawn from an unknown probability
distribution P on R

d. The probability distribution P can be approximated by
estimating the parameter values θ of P such that:

θ = arg min
θ∈Θ

∑

x

[(1 − P (x; θ)) × I(x ∈ D∗) + P (x; θ) × I(x /∈ D∗)], (1)

where Θ represents the set of parameter values for the probability distribution,
and I(.) is the indicator function. The cardinality and mean value of a set D
are respectively shown by |D| and D̄, and for the training set |D| = n. In
the unsupervised case, estimating θ is done without ground truth or a priori
knowledge about the data. The estimated probability distribution P can be
used to score data instances such that anomalies get low scores.

We assume that a limited budget B for AL is available, i.e., labels of B
instances can be queried from an oracle. However, the training data might not
be available after the query. Thus, the model should be updated after gaining a
label from the oracle without having to build the model from scratch.

3 Methodology

An accurate description of a parametric probability distribution P (x; θ) for real
datasets is usually unavailable. Therefore, instead of solving (1), MMAD esti-
mates a non-parametric probability density of the form:

P (x; {w1..n}) =
n∑

i=1

wik(x, xi), subject to wi ≥ 0,

n∑

i=1

wi = 1, (2)
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Fig. 1. Demonstration of the three stages of the MMAD Algorithm on the toy example
Xtoy. A candidate set of representative samples CRS is chosen in Stage 1. By removing
anomalies from CRS, the final set of representative samples RS is generated in Stage
2. A kernel-based model is learned in Stage 3.

where k represents an arbitrary kernel function and w is the weight vector of the
kernel. Our aim is to find a subset X ⊆ D of Rd that represents the normal data
D∗ and divides R

d into two subsets X and R
d − X . Substituting θ with {w1..n}

in (1), P (x; {w1..n}) is viewed as a scoring function that assigns high scores to
normal data and low scores to anomalies. The computational cost of testing an
instance using P (x; {w1..n}) scales with the number of non-zero wi (i = 1..n),
thus a sparse solution that minimises

∑n
i=1 wi is desirable.

To learn P (x; {w1..n}), MMAD assigns the values of each wi in three stages as
shown in Fig. 1 for a toy example Xtoy, and explained in Algorithm 1. Figure 1(a)
draws Xtoy. The first stage includes the following steps. A subset of Xtoy is
selected at random as set S in Fig. 1(b). MM sampling [22] is performed on S
to generate a uniformly selected subsample from S shown in Fig. 1(c). Choosing
a large value for |S| and running this extra MM sampling step is necessary,
because relying only on random sampling to secure a representative subset of
the input data is not sufficient for two reasons. First, it does not guarantee the
selection of representative samples from all clusters in the data, especially if
there are very small clusters in the data. Second, random sampling does not
provide a mechanism to eliminate anomalies from the model, especially when
a high fraction of anomalies exists in the training data. After MM sampling, a
set called Candidate Representative Samples (CRS) is built using representative
MM samples. By evaluating each MM sample as a CRS object, in Fig. 1(d) an
optimal cardinality |CRS|∗ for this set is defined. In this step the first two MM
samples are designated as cluster centers, and a crisp 2-partition U2 of S, i.e., a
partition into two mutually exclusive clusters, is built using the nearest neighbour
prototype rule (NPR). Then, the value of a CVI called the Silhouette index [29] is
computed on U2. After finding the third MM sample and designating it as a new
cluster center, U3 is built and the value of the Silhouette index is computed on it.
This procedure stops when a predefined number of MM samples are assigned as
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Algorithm 1. MMAD
Input: training set D = {x1, x2, ..., xn}, sample size |S|

budget B, metric δ
Output: model M: RSs, W , and γ
Stage 1.(a):

1: S = randSample(D,|S|) � random sampling from D
Stage 1.(b):

2: [ICRS , Δ] = Maximin(S, [0.4 ∗ |S|], δ) � call Algorithm 2
3: for i = 2..|CRS| do
4: compute Silhi using (3) given C = {sI1..i

CRS
}

5: end for
6: |CRS|∗ = argmax

i
Silhi � maximising Silhouette index

7: ICRS = I1..|CRS|∗
CRS

8: for i = 1..|CRS| do
� Substitute CRSs with closet point to their cluster mean

9: ci = {s}, where Ii
CRS

== arg min
j

δ(s, s
I

j
CRS

)

10: Ii
CRS

= arg min
j

δ(ci, sj ∈ ci)

11: end for
Stage 2:

12: identify type of the dataset
13: if type == WS then
14: IRS = screen(ICRS) � remove anomalous CRSs
15: set γ using (4)
16: else
17: IRS = ICRS

18: set γ using (5)
19: end if
20: if B > 0 then
21: IRS = BS(IRS , B, ΔRS) � call Algorithm 3
22: end if

Stage 3:
23: cnj = count(cj), j = 1..|RS| � count each cluster’s members
24: wj =

cnj∑
cnj

, j = 1..|RS|
25: M = (sIRS

, γ, W )

cluster centers and used to generate NPR partitions of S. Then, |CRS|∗ is chosen
as the number of MM samples that maximises the computed Silhouette index
values. The first |CRS|∗ MM samples form the set CRS (Fig. 1(e)). Removing
anomalous instances from CRS is performed in Fig. 1(f) and the new points are
called Representative Samples (RS). Optionally, if an AL budget is available for
securing labels from an oracle, it will be spent. In this figure we assumed that
no AL budget is available. Finally in Fig. 1(g), the model is built using RS data.
The contour plot of the scores assigned to the data instances in this figure, shows
that anomalies have scores close to zero. Next, we explain each of the steps in
detail.
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Algorithm 2. Maximin
Input: set S, number of objects |CRS|, metric δ
Output: Indexes ICRS , pairwise dissimilarities Δ

1: Δ = [δ(si, sj)] for all (i, j) ∈ 1..|S| � Cost O(|S|2)
2: I0

CRS = arg min
1≤i≤|S|

δ(S, si) � Closet point to the mean of S

3: Γ0 = ΔI0
CRS

4: for p = 1..|CRS| do
5: Ip

CRS = arg max
1≤p≤|S|

Γp−1

6: Γp = [min(ΔI
p
CRS

, Γp−1)]
7: end for

3.1 Stage 1: CRS Selection

To reduce the time-complexity for processing big data, MMAD first selects a
subset S of the training set by shuffling it and randomly selecting |S| instances.
The sample S is used as an input to the MM algorithm [22], which is shown in
Algorithm 2. Our implementation of MM sampling starts by finding the index
of the closest point to the mean of S (line 2 of Algorithm 2). At each iteration
of its main loop (lines 4 − 7 of Algorithm 2), MM adds the index of the point
that has maximum dissimilarity to the points already selected. We believe that
this sampling technique guarantees that the indexes ICRS of the representative
object set CRS have at least one member from each of the unknown clusters
in the data (see Proposition 1 in [18] for a theoretical guarantee in certain -
but not all - cases). Towards this end, we need to define the optimal cardinality
|CRS|∗. One way to achieve this is to evaluate the appropriateness of the cluster
centers C = {c1..|CRS|} that are defined on the CRS objects. CVIs can be used
for this purpose [4]. However, the presence of anomalies in a dataset can mislead
CVIs. We experimented with several popular indexes including Dunn [12], C-
Index [21], Calinski-Harabasz [6], Davies-Bouldin [11], and Silhouette [29], and
concluded that the Silhouette index provides the best estimate of |CRS|∗ such
that most of the point anomalies are isolated as singleton cluster centers in S.

Given cluster centers C = {c1..|C|}, each sample si ∈ S is assigned to the clos-
est cluster center cp with the NPR, i.e., ‖si − cp‖ < ‖si − cq‖ ∀q ∈ 1..|C|, q �= p.
The set of points accumulated this way for each cluster center are the |C| crisp
clusters in this partition of S. Let δ denote any metric on the input space. For
each cluster center cp, the Silhouette index uses the average within-cluster dis-
similarity (cohesion) Inδ

i = 1
|cp|

∑
si,sj∈cp

δ(si, sj) of si to the other members of
cp, which indicates how well si matches the other data in cp. The smallest average
between-cluster dissimilarity (separation) Outδi = min{ 1

|cq|
∑

si∈cp,
sj∈cq,q �=p

δ(si, sj)}
of si measures how suitable would be the assignment of si to its closest neighbour-
ing cluster cq. The Silhouette index combines the cohesion (Inδ

i ) and separation
(Outδi ) measures to derive a Silhouette value for each si as:
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Silhsi
=

Outδi − Inδ
i

max(Inδ
i , Outδi )

, (3)

which is in the range [−1, 1], where a high value indicates that si fits well within
its own cluster. When SilhC = 1

|S|
∑|S|

i=1 Silhsi
is close to 1, the corresponding

partition is preferred to those with lesser values.
Given that |CRS|∗ is not known a priori, we need to examine the value of the

Silhouette index by increasing the number of CRS objects selected by MM, and
choose |CRS|∗ such that the Silhouette index is maximised. Therefore, MMAD
first initialises |CRS| = [0.4 ∗ |S|], and chooses |CRS| objects in S by MM
sampling (Fig. 1(c)). This value for |CRS| is chosen because it is assumed that
majority of the data is normal. Therefore, in the worst case, at least 60% of
data is normal. MMAD starts with Silh1 = 0. Then, it picks the first two CRS
objects and computes Silh2 considering these objects as cluster centers. From
there, MMAD computes Silh3 after adding the third CRS as a new cluster
center, and keeps repeating this until the last selected object by MM is added
to the cluster centers. Let the Silhouette index be maximised at Silhm. Then,
|CRS|∗ = m, and the size of CRS is reduced such that it comprises the m first
CRSs selected by MM sampling (Fig. 1(d)). After this, a further adjustment is
performed on CRS as follows (lines 8–11 of Algorithm 1). A crisp m-partition
Um is built by considering each of the m samples in CRS as a cluster center.
Each of these m points is then replaced by the closest point to the cluster mean
in its partition (Fig. 1(e)). Since the representative samples are chosen using MM
sampling, the cluster centers, i.e., CRSs, are expected to be close to the border
of their partitions. Therefore, this further adjustment is required to locate them
close to the center of the partition.

We identified two types of datasets when using the Silhouette index to esti-
mate |CRS|∗: Not Well-Separated (NWS) and Well-Separated (WS). If the
value of the Silhouette index in [Silh1..|CRS|] has an increasing trend peaking at
Silh|CRS|, then anomalies and normal samples are not well-separated, otherwise
anomalies and normal samples are well-separated. Examples of these types of
datasets are shown later in Fig. 3. This property is used in subsequent stages.

3.2 Stage 2: CRS Screening

This stage has two steps. First, an unsupervised heuristic approach is used to
detect anomalies in the CRS set, which is generated in Stage 1. Removing poten-
tial anomalies from CRS results in creating the RS set, i.e., representative sam-
ples. Second, if a budget for AL is available, i.e., a small number of labels are
allowed to be asked from an oracle, an optional active learning step is used to
improve accuracy.

Given that in unsupervised learning anomalies are a minority, it is expected
that anomalous clusters in data have fewer members compared to normal clus-
ters. Based on this intuition, if a dataset is classified as type WS (i.e., normal
data and anomalies are well-separated according to the Silhouette index values),



Unsupervised and Active Learning Using Maximin-Based Anomaly Detection 97

Algorithm 3. Budget Spending (BS)
Input: Representative Samples RS, budget B, dissimilarities ΔRS

Output: IRS

1: {yRS
i = 1}, i = 1..|RS|

2: if B � |RS| then
3: yRS

i = li, 1 ≤ i ≤ |RS| � get true label per RSi

4: else
5: Π(IRS): same order as selected by MM sampling
6: relocate indexes of clusters with one member to end of Π(IRS)
7: for i = 1..|B| do
8: yRS

Π(i) = lΠ(i), 1 ≤ i ≤ |RS| � get true label of RSΠ(i)

9: if yRS
Π(i) == −1 then � find indexes of other poor RSs

10: NNs = find(e−γ×Δ(Π(i),j) > 0.5)
11: yRS

NNs = −1
12: end if
13: end for
14: end if
15: IRS = ∪i where yRS

i == 1

the set CRS is used to generate RS as follows. Samples in CRS are sorted in
the reverse order of the number of their cluster members. Let πCRS denote the
permuted indexes for the ordered set and ni

π denotes the corresponding number
of members in the ith largest cluster indexed by πCRS

i where i = 1...|CRS|. The
RS set is initially empty. Then, samples from CRS in the order given by πCRS

are added to RS until ni
π is less than a predefined threshold. In this paper, we

evaluate values of ni
π as follows: when ni−1

π

ni
π

≥ 2, we stop adding the remaining
samples from CRS to RS. In contrast, if the dataset is classified as type NWS
(i.e., differentiating anomalous and normal objects is difficult because they are
not well separated by their distance nor by density), we choose RS = CRS
because there is insufficient information available to filter anomalies.

Active Learning Sub-stage. In some application contexts, it may be possible
to apply AL to assign a label for one or more selected points as either normal or
anomalous by asking an oracle for the labels. Given that the budget for asking an
oracle for labels is usually restricted to a small number of points, a key challenge
is how to select the points that are likely to be most informative in terms of
improving the accuracy if a label is given. If a budget B is available via AL, we
can ask for a maximum of B labels from the oracle. If B ≥ |RS|, all the RSs
can be validated by the oracle to remove any anomalies that were left from the
screening stage. Otherwise, labels are asked for clusters that have more than one
member in the order that they were selected by MM sampling. Anomalous RSs
are removed accordingly. This stage of removing anomalous RSs are shown in
Algorithm 3 and can take place here or at any time after building the model.
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3.3 Stage 3: Model Construction

For the choice of the kernel function, in this paper we use the Radial Basis kernel
Function (RBF), k(x, y) = e−γ‖x−y‖2

to localise the influence of RSs in the final
model. The γ parameter is the kernel bandwidth and we set it based on the
dataset type identified in Stage 1.

If the dataset is classified as type WS, anomalies and normal data are declared
separable. The γ parameter in this case is estimated using the technique proposed
by Evangelista et al. [13]. The reason is that this technique chooses a value for
γ that maximises the dissimilarity of clusters in the data. We use a candidate
set Γ = {2−6, 2−5, ..., 26} for γ to extract the kernel matrix K = [e−γ×Δ], Δ =
[δ(si, sj)] ∀(i, j) ∈ 1..|S|, and select a γ∗ such that:

γ∗ = argmax
γ

σ2

KoffDiag + ε
, (4)

where σ2 and K
offDiag

are the variance and the mean of the off-diagonal kernel
matrix entries, and ε is a small value to avoid division by zero.

If the dataset is classified as type NWS, potential anomalies are close to
normal data. Therefore, γ∗ is chosen so that the similarities in the feature space
created by the RBF kernel are approximately the same as those in the input
space:

e−γΔ2
max

e−γΔ2
min

=
Δmin

Δmax
=⇒ γ∗ =

−ln( Δmin

Δmax
)

Δ2
max − Δ2

min

. (5)

where the values of Δ are an output of Algorithm 2. To build the final model,
values of {w1..|RS|} are assigned for RS = {s

I
1..|RS|
RS

} and the rest of the data

is deleted. For the jth RS, its weight is defined as wj = cnj∑
t=1..|RS| cnt

, where
cnj denotes the number of cluster members for the corresponding RS. The final
model is M = (RS, {w1..|RS|}, γ) and a test point is evaluated using the following
scoring function:

P (x; {w1..|RS|}) =
|RS|∑

i=1

wi × k(x,RSi). (6)

If AL is used after constructing the model and deleting the training data,
RSs labelled as anomalies by the oracle are deleted from the model, and the
weight vector for the rest of the RSs is normalised to add up to one again.

4 Experimental Evaluation

We compare our MMAD method1 to OCSVM [30] and its unsupervised exten-
sions Robust OCSVM (ROCSVM) and ηOCSVM [3], and also to iForest [25].
The default settings appearing in the referenced papers were used for each of
1 Implementation of MMAD is available at https://github.com/zghafoori/MMAD.

https://github.com/zghafoori/MMAD
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Table 1. Description of the datasets

Dataset DSA HAR MNIST Cancer Credit Shuttle NKH Pen Satimage2 Forest

#Instances 1,117,521 10,299 70,000 675 283,726 36,752 221,902 6,870 5,801 286,048

#Features 45 561 784 10 30 9 3 16 36 10

#Normal 60,000 1,777 7,877 439 283,253 34,108 221,830 6,714 5,732 214,839

#Anomaly 1,057,521 8,522 62,123 236 473 2,644 72 156 69 2,747

these existing techniques. For iForest the default sample size is 256 and it trains
100 trees. For MMAD, the sample size |S| = min(200, [|D|/2]). We repeated
our experiments by changing |S| in the range [100, 500], and observed that for
|S| > 200, the result does not change significantly. Euclidean distance was used
as the dissimilarity metric δ, but any other metric can be used when circum-
stances warrant a departure from this choice. To evaluate accuracy, we used
the Receiver Operating Characteristic (ROC) curve and the corresponding Area
Under the Curve (AUC). The reported AUC values were averaged over 100
runs. The experiments were conducted on a machine with an Intel Core i7CPU
at 3.40 GHz and 16 GB RAM. The MATLAB LIBSVM toolbox [9] was used to
implement OCSVM.

4.1 Datasets

We ran our experiments on four benchmark anomaly detection datasets from the
Outlier Detection DataSets (ODDS) collection [28], namely Forest Cover (For-
est), Pendigits (Pen), Satimage2, and Shuttle. From the UCI Machine Learning
Repository [24], we selected the Breast Cancer Wisconsin (Cancer), MNIST,
Human Activity Recognition (HAR), and Daily and Sports Activities (DSA)
datasets. Table 1 shows that DSA, HAR and MNIST contain many more anoma-
lies than normals. In the experiments we use a random subset of anomalies such
that majority of data is normal.

For the Cancer dataset, the aim was to detect malignant breast cytology as
anomalies. For the MNIST dataset, following Rayana [28], Bandaragoda et al.
[5] and Amarbayasgalan et al. [2], digit zero was considered as the normal con-
cept and instances of digit six were considered as anomalies. The HAR dataset
included sensor signals of six different activities by a group of 30 volunteers
within the age range [19, 48]. In this dataset, we used the sitting activity as the
normal concept and walking in different ways, standing and laying as anomalies.
The DSA dataset comprises sensor signals for 19 activities, each of which is per-
formed by four females and four males within the age range [20, 30]. Again, the
first activity (sitting) from all the 8 subjects in this dataset is considered as nor-
mal and the rest of activities from all subjects are considered as anomalies. This
creates clusters of different shapes and cardinalities (Fig. 2(a)) in order to evalu-
ate the effectiveness and robustness of anomaly detection methods. We removed
duplicates from normal and anomalous instances, which resulted in generating
a dataset with 60, 000 normal and 1, 057, 521 anomalous instances for DSA. We
also used the Credit Card Fraud Detection (Credit) [10] dataset that contains
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Fig. 2. Visualisation of the datasets

credit card transactions of European cardholders in September 2013. The goal
was to detect fraudulent transactions as anomalies. Finally, from the NSL-KDD2

dataset, we used HTTP data, which we refer to as NSL-KDD-HTTP (NKH).
Attacks on HTTP services were regarded as anomalies in NKH.

The datasets’ descriptions including the number of unique observations and
features are summarised in Table 1. Down-sampling on anomalies and normal
instances (if required) is used to generate training sets with anomaly frac-
tions chosen from the set {0.01, 0.05, 0.1, 0.15, 0.2, 0.25, 0.3}. For each fraction of
anomalies we randomly selected up to 10, 000 instances from each dataset, and
repeated the experiment 100 times. All datasets were re-scaled in the range [0, 1]
based on maximum and minimum values observed in the training set. Test and
training sets were randomly selected with a ratio of 1 to 4.

4.2 Results and Discussion

For each dataset, we took a subset of the data and used a variant of t-SNE called
LN-SNE [14] to visualise it in Fig. 2. The labels were used to draw the plots and
were not provided to any of the anomaly detection techniques. This figure shows
that there are different types of anomalies in the datasets. DSA and MNIST
mainly have point anomalies, while shuttle and NKH have clusters of anomalies.
Some of the anomalies in HAR and Credit occur inside the normal region. The
density and distance similarities for anomalies is similar to the normal samples
in Satimage2 and Forest. In the Pen dataset, anomalies have higher density
compared to the normal samples and appear very close to them.

To see how the Silhouette index (3) changes by increasing the number of
selected representative objects using MM sampling, in Fig. 3, we plotted graphs
of the Silhouette values for three datasets, namely DSA, HAR and Pen. The other
datasets exhibit a similar trend so we do not present their corresponding plots
to save space. The samples size was |S| = 200. The fraction of anomalies was
increased in the sub-figures from (a) to (g) to test the robustness of the proposed
technique to the anomaly ratio in different types of datasets. The fractions of

2 http://nsl.cs.unb.ca/NSL-KDD/.

http://nsl.cs.unb.ca/NSL-KDD/
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Fig. 3. Silhouette values obtained by increasing the number of objects selected by MM
sampling for three representative datasets. For the well-separated datasets DSA and
HAR, the the Silhouette value is maximised at an index less than 80, which indicates
that separable clusters are identified in the data. However, for the Pen dataset, this
index continues to increase to the maximum at 80, which means the data forms a single
cluster.

anomalies are (a) 0.01, (b) 0.05, (c) 0.1, (d) 0.15, (e) 0.2, (f) 0.25, (g) 0.3. The
index drops for DSA and HAR but reaches its maximum at |CRS| = 80 for Pen.
Therefore, the DSA and HAR datasets are categorised as type WS (i.e., well-
separated) based on the definitions in Sect. 3.1. The difference is that in DSA
the normal data comprises several clusters and anomalies are point anomalies;
each anomaly is treated as a separate cluster center to maximise the Silhouette
index. However, in HAR there are two clusters in the data and one of them is
anomalous. The Pen dataset is an example of a type NWS dataset (i.e., not
well-separated) because the value of the Silhouette vector is maximised at the
end. It can be confirmed via the visualisation given in Fig. 2 that anomalies and
normal data in Pen are not well separated via distance or density dissimilarities
when no ground truth is available.

Figure 4 depicts the average accuracy over 100 runs of each method for all
the datasets for each anomaly fraction. This box-plot shows how the accu-
racy of the methods changes under different conditions of anomaly type and
fraction. Each box-plot shows the variations of AUC for different fractions of
anomalies including {0.01, 0.05, 0.1, 0.15, 0.2, 0.25, 0.3}. Increasing the fraction
of anomalies can affect the accuracy of the corresponding technique in a nega-
tive manner. For MMAD, the results are reported for different AL budget limits
B = {0, 1, 5, 10, 15, 20}. MMAD-B0 means that no budget was available for AL,
while MMAD-B∗ where ∗ �= 0 means that labels for ∗ number of samples could
be asked from the AL oracle. MMAD-B0 and iForest have better results than the
different versions of OCSVMs. On average, MMAD-B0 works better than iForest
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Fig. 4. The average and standard deviation of AUC for MMAD and other techniques.

Table 2. Results of Wilcoxon test for the accuracy of MMAD-B0 vs other methods.

MMAD∗-B0

Vs

*-B1 *-B5 *-B10 *-B15 *-B20 OCSVM ROCSVM ηOCSVM iForest

R+ 141 85 84 84 83 2296 2396 2391 1970

R− 1344 1806 1807 1807 1808 189 89 94 515

p-value 2.23E-07 6.38E-10 6.09E-10 6.09E-10 5.82E-10 7.04E-10 1.47E-11 1.80E-11 2.07E-05

considering all scenarios of the anomaly fraction over all the datasets, especially
in HAR, Shuttle and Satimage2. Using an AL budget in the first 7 datasets
provides limited advantage because MMAD-B0 effectively screens anomalies in
the training phase for these datsets. However, for Pen and Forest, which had the
most difficult type of anomalies, access to a limited AL budget B = 5 or even
B = 1 in Forest, increases the accuracy to a great extent.

To assess the statistical significance of the differences in the accuracy shown
in Fig. 4 for each method, Table 2 lists the results of a Wilcoxon signed-rank test
with a level of significance of α = 0.05 on all the pairs of accuracy values per the
anomaly fraction. In each comparison, the aim was to investigate to what extent
the null hypothesis H0, which indicates that there is no difference between the
first and second methods in terms of their accuracy, can be rejected. For each
comparison, the test returns the sum of positive ranks (R+) and negative ranks
(R−) of the first method, and the p-value. The p-value represents the lowest level
of significance of a hypothesis that results in a rejection and if it is less than
α, the null hypothesis H0 can be rejected and the improvement is significant at
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Table 3. Training and testing CPU-times for MMAD compared to other methods.

Dataset Train time (seconds) of Test time (seconds per sample) of

MMAD OCSVM ROCSVM ηOCSVM iForest MMAD OCSVM ROCSVM ETAOCSVM iFOREST

DSA 0.093 26.450 29.323 32.439 0.19 3.15E-07 1.27E-04 1.32E-05 4.85E-06 1.38E-03

HAR 0.116 38.047 39.759 38.141 0.41 9.75E-06 2.70E-04 1.27E-04 1.08E-04 1.37E-03

MNIST 0.127 269.453 281.008 289.487 0.67 3.43E-05 1.76E-03 4.76E-04 2.70E-04 1.47E-03

Cancer 0.060 0.054 0.060 0.114 0.10 1.79E-06 2.15E-05 1.70E-05 1.26E-05 1.37E-03

Credit 0.097 46.705 48.847 46.752 0.15 3.29E-07 9.26E-05 1.30E-05 8.61E-06 1.47E-03

Shuttle 0.090 18.605 19.171 34.718 0.16 7.88E-07 7.04E-05 1.71E-05 1.15E-05 1.36E-03

NKH 0.098 9.272 7.377 16.662 0.11 <1E-12 7.44E-05 1.80E-05 9.42E-06 1.50E-03

Pendig 0.088 11.042 11.911 24.427 0.25 5.66E-06 6.40E-05 2.37E-05 1.58E-05 1.53E-03

Satimage2 0.091 9.588 10.379 10.867 0.20 1.21E-06 5.83E-05 1.74E-05 1.08E-05 1.52E-03

Forest 0.093 28.479 29.537 39.239 0.20 2.36E-06 5.31E-05 9.30E-06 7.48E-06 1.47E-03

Average 0.095 45.770 47.737 53.285 0.24 5.65E-06 2.59E-04 7.32E-05 4.59E-05 1.44E-03

the level α. Table 2 shows that spending even a limited budget B = 1 provides
a statistically significant improvement and by increasing the budget, a better
result can be achieved. This finding shows the importance of using a technique
that can incorporate AL into its training. The small p-values for MMAD-B0
against OCSVM, ROCSVM, ηOCSVM, and iForest, MMAD-B0 indicates that
MMAD-B0 provides a statistically significant improvement compared to all of
the comparison methods.

Table 3 reports the training and test CPU-times of the different techniques.
MMAD and iForest have constant time given that they work on a fixed-size
sample of the data. Given the size of the sample |S|, the training time-complexity
for MMAD is O(d × |S|2) and for iForest is O(t × |S| × log|S|), where t is the
number of trees. For testing, the time-complexity of MMAD is O(d × |RSs|)
per instance, whereas it is O(t × log|S|) for iForest. The table shows that on
average, the training time of MMAD is half of that for iForest, mainly because its
default sample size is 200, whereas it is 256 for iForest. However, the testing time
per sample for MMAD is more than 250 times less than iForest. For the HAR
and Credit datasets, testing times per sample for MMAD are more than 4, 000
times faster than iForest. Both MMAD and iForest are considerably faster than
the OCSVM-based methods. The improvements by MMAD in accuracy and its
capability of being used with AL, demonstrates that MMAD outperforms iForest
on the examined datasets in this paper. To compare the scalability of MMAD and
iForest to the different types of OCSVMs, we chose the DSA dataset with over
a million instances, and ran all the methods several times by changing the size
of the training set from 10, 000 to 50, 000 with a step size equal to 10, 000. The
results are shown in Fig. 5, confirming that MMAD and iForest have constant
time regardless of the size of the training set, while the training time of the
OCSVM variants depends on the size of the training set. This example shows
the superiority of algorithms with constant time in processing big data.
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Fig. 5. Scalability of the five methods on DSA.

5 Conclusion

We have proposed a constant time unsupervised anomaly detection technique
called MMAD that can be used effectively with active learning to enhance
the accuracy of unsupervised anomaly detection when anomalies mimic the
behaviour of normal data. MMAD combines a representative subset selection
with a cluster validity index and kernel-based model construction in a novel way
that results in statistically significant improvement of the accuracy and train-
ing time for unsupervised anomaly detection on the examined datasets. In our
future work, we will study the use of kernels other than RBF, distance measures
other than Euclidean, and CVIs other than the Silhouette index. The informa-
tion gained via active learning can be used in new ways to further identify the
dataset characteristics and improve the accuracy. Finally, this technique can be
extended to perform constant time clustering for big datasets that have point or
cluster anomalies.
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Abstract. This paper introduces the Elliptical Basis Function Data
Descriptor (EBFDD) network, a one-class classification approach to
anomaly detection based on Radial Basis Function (RBF) neural net-
works. The EBFDD network uses elliptical basis functions, which allows
it to learn sophisticated decision boundaries while retaining the advan-
tages of a shallow network. We have proposed a novel cost function,
whose minimisation results in a trained anomaly detector that only
requires examples of the normal class at training time. The paper
includes a large benchmark experiment that evaluates the performance
of EBFDD network and compares it to state of the art one-class classifi-
cation algorithms including the One-Class Support Vector Machine and
the Isolation Forest. The experiments show that, overall, the EBFDD
network outperforms the state of the art approaches.

Keywords: Anomaly detection · Elliptical basis function · Neural
networks

1 Introduction

Chandola and Kumar [4] define anomaly detection as “the problem of finding
patterns in data that do not conform to expected behavior”. Although anomaly
detection is essentially a binary classification problem (i.e. instances are clas-
sified as either normal or anomalous), in anomaly detection scenarios the
classes are highly imbalanced—there is very limited, or sometimes no access
to anomalous instances during training, although there is usually an abundance
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of normal instances. Anomaly detection approaches that do not use anomalous
instances during training can be classified as semi-supervised machine learn-
ing approaches, and are often referred to as one-class classifiers [12]. Anomaly
detection approaches have been used in a variety of applications including credit
scoring [11], intrusion detection [2], forensics [13], medical applications [14], and
computer network security [27].

The main contribution of this paper is to adapt the Radial Basis Function
(RBF) network [3] for one-class classification through a novel cost function. We
have named the resultant one-class neural network the Elliptical Basis Func-
tion Data Descriptor (EBFDD) network. Coupled with our novel cost function,
the EBFDD network is a semi-supervised one-class classification approach that
utilizes elliptical kernels to learn sophisticated decision boundaries, while retain-
ing the advantages of a shallow network, which include: easy retraining, inter-
pretability, reduced data requirements, and shorter training time.

The remainder of the paper is structured as follows: Sect. 2 reviews related
work, and briefly explains the motivation behind the EBFDD network approach.
In Sect. 3 the EBFDD network approach is explained in detail. Section 4 describes
the design of an evaluation experiment that compares the performance of the
EBFDD network to state of the art algorithms across a number of benchmark
datasets. Section 5 presents the results of the experiment, which then discusses
their implications. Finally, Sect. 6 concludes the paper and suggests directions
for future work.

2 Related Work

In this section we first describe some of the common approaches to anomaly
detection. Then we describe the standard RBF network before explaining how
it has been adapted for anomaly detection in the EBFDD network.

2.1 Common Approaches to Anomaly Detection

Semi-supervised machine learning approaches to anomaly detection are domi-
nated by a family of algorithms that are modifications of the Support Vector
Machine (SVM) algorithm [24], designed to work with only examples of a single
class: One-Class SVM (OCSVM) [23]. In fact Khan and Madden [12] go so far
as to say that one-class classification algorithms and methods should be divided
into OCSVMs and non-OCSVMs.

The idea underpinning OCSVM is quite similar to the standard SVM method,
and the kernel trick is still a key part of the OCSVM for the transformation
of the input space into a feature space of higher dimensionality. The OCSVM
approach finds a hyper-plane that separates all of the normal data points in a
training set from the origin, while maximizing the distance between the origin
and this hyper-plane. This results in a binary function, whose output is 1 for the
regions of the input space belonging to the normal data, and −1 anywhere else.
The main disadvantage of the OCSVM is the assumption that the anomalous
data instances are concentrated around the origin [12]. Variations of the OCSVM
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approach include the Support Vector Machine Data Description (SVDD) [26],
which uses hyper-spheres rather than hyper-planes to achieve separation. Inter-
estingly, the authors in [22] propose the idea of a deep SVDD, where the SVDD
is mixed with deep learning to accomplish anomaly detection.

On the non-OCSVM side, Auto-Encoder networks (AENs) [7], and all their
variations have been increasingly used for anomaly detection [29–31]. An AEN
does not learn a discriminative model, but rather a generative model of the input
data. After transforming the input data into a representation with reduced dimen-
sionality, it learns to reconstruct the original input data from the dimensionally-
reduced representation. The error between the input and the reconstruction of the
input, referred to as the reconstruction error, can be used as an anomaly detection
signal—normal instances should be accurately reproduced leading to low recon-
struction error, while anomalous instances should be poorly reproduced leading to
large reconstruction errors. The AEN is trained on normal data only and learns
features that could best reconstruct the normal data.

Isolation Forest (iForest) [28] is another interesting non-OCSVM approach
to anomaly detection. The iForest tries to isolate individual data points in the
training set by splitting the space randomly and repeatedly. The intuition behind
this approach is that less splits should be required to isolate anomalous instances.
An anomaly score can be calculated based on the number of splits required to
isolate a data point.

Gaussian Mixture Models (GMMs) [1] are also used for anomaly detection.
GMMs assume that normal data is generated by a collection of H Gaussians,
which are placed randomly in the input space in the beginning of training. Then
using the Expectation Maximization (EM) [1], the means and covariance matri-
ces of the Gaussians are learned such that the likelihood of observing the training
data is maximised. During testing, one can measure the likelihood of the test
data, and if it is below a certain threshold it could be labeled as anomalous, and
normal otherwise.

2.2 Radial Basis Function Networks

A Radial Basis Function (RBF) network [3] is a local-representation learning
technique, which divides the input space among local kernels. For every input
data point, depending on where in the input space it appears, a fraction of these
locally-tuned kernel units get activated. It is as if these local units have divided
the input space among themselves and each one takes responsibility for a sub-
space. The idea of locality, inherently implies the need for a distance function
that measures the similarity between a given input data instance X, with dimen-
sionality D, and the center, μh, of every kernel unit h. The common choice for
this measure is the Euclidean distance, ‖X −μh‖. The response function for
these local units, should have a maximum when X = μh, and decrease as X
and μh get less similar. The most commonly used response function for the RBF
units is the Gaussian function. Not only have the RBF networks been used for
traditional classification [18] and regression [25] problems, they have also been
applied to anomaly detection tasks, which we will explore below.
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RBF networks have been applied to anomaly detection in two main ways.
First, if examples of both normal and anomalous data are available during train-
ing, the standard binary/multi-class classification RBF networks can be used
with modifications. For example, in [19], a hybrid optimisation algorithm based
on RBF networks, which combines gradient descent with quantum-behaved par-
ticle swarm optimisation is used to train the RBF network for anomaly detection.
Similarly, in [21], an RBF network is trained for the task of intrusion detection.
The model keeps adding hidden units to the architecture until a certain perfor-
mance goal is met.

In the second approach to using RBF networks for anomaly detection, only
examples of the normal class are used at training time. This can be achieved
by modifying the dataset or modifying the algorithm. As an example of the
first type, in [20] an augmented training set is composed using the instances
belonging to the normal class as random proxy anomalous patterns and used
to train an anomaly detection model for time series data. As an example of the
second type, in [17], the RBF network algorithm is combined with the Support
Vector Data Descriptor (SVDD) [26] algorithm, resulting in a hybrid model.
The hidden layer of the RBF network is used as a feature extractor and the
outputs for the subsequent transformed feature space are then used as inputs to
the SVDD algorithm with a linear kernel.

The EBFDD network approach modifies the cost function used to train an
RBF network to ensure that it learns a compact set of Gaussian kernels that
concentrate around the normal region of the input space, covering all of it, while
excluding other regions. During testing, for a given input data, X, the output of
the model would be high, if X belongs to the normal region, and low, otherwise.

3 The Elliptical Basis Function Data Descriptor
(EBFDD) Network

The EBFDD network is a semi-supervised one-class classifier, which is based on
the Radial Basis Function (RBF) network [3]. Figure 1 illustrates the architecture
of the EBFDD network. This is a shallow network containing one hidden layer
and one output layer with a single node. There are H hidden nodes in the hidden
layer, each of which uses a Gaussian activation function. The activation, ph(X),
of the hth Gaussian node is defined as:

ph(X) = exp

[
−1

2
(X − μh)T

Σh
−1 (X − μh)

]
(1)

where X is the input vector of length D; xd is the value of the dth dimension of
X; and the parameters μh and Σh are the mean vector (which is D-dimensional)
and the covariance matrix (which is a D×D matrix) of the hth Gaussian kernel.

The outputs of the nodes in the hidden layer are connected to a single output
node via a weight vector W , where wh is the weight parameter connecting the
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Fig. 1. The Architecture of the EBFDD network.

hth hidden node to the output node. In the output node the modified hyperbolic
tangent, tanh, activation function proposed in [15] is used as it avoids saturation:

y = 1.7159 × tanh

(
2z(X)

3

)
(2)

where z(X) is the weighted sum of the outputs of the hidden layer, when X is
the input vector:

z(X) =
H∑

h=1

wh × ph (X) (3)

The intuition behind the EBFDD network is that, it can be trained to learn a
compact set of elliptical kernels that gather around the region in the input space
where the normal data resides. This means that a trained model will output a
high value for any normal query data point that falls within this region, and
a low value for any anomalous query data point that falls outside this region.
Thresholding this value will allow accurate anomaly detection.

EBFDD training begins with a pre-training phase that provides an initial
set of positions for the H Gaussian kernels at the hidden layer. This phase uses
the k-means [1] clustering algorithm, using Euclidean distance, applied to the
training dataset. The resulting cluster centres are used to initialise the Gaussian
kernel centres, μh, and covariance matrices, Σh, for each of the H hidden nodes.
Initially these kernels are radial and assume equal variance in all directions. The
number of hidden nodes in the network, H, (which is also the number of clusters
found by k-means) is a hyper-parameter set before training starts.

The parameter values in the network (μh, Σh, and wh) for each node in the
network are then optimised using mini-batch gradient descent [1] (mini-batch
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sizes are always set to 32) and the back-propagation of error algorithm [1]. The
cost function to be minimised in this process is:

E =
1
2

[
(1 − y)2 + βRΣ + λRW

]
(4)

where y is the output of the network; RΣ and RW are regularisation terms
defined below in Eq. (5) and Eq. (6); and β and λ are hyper-parameters that
control the influence of the regularisation terms.

This cost function is a weighted sum of three main terms that ensure the
network learns a compact set of Gaussians that cover just the normal training
data. The first term in this summation, (1−y)2 encourages the network training
process to learn a model that outputs a value as close as possible to 1 for instances
belonging to the normal class.

The second term in the cost function, R(Σ), regularises the variances of the
Gaussian kernels in the hidden layer of the network. This term introduces the
optimisation criterion of having the most compact set of Gaussians possible to
represent the normal data. As the size of a Gaussian ellipsoid is dictated by
the diagonal elements (i.e., the variances) of its covariance matrix, off-diagonal
elements are excluded from the regularisation. RΣ is defined as:

RΣ =
H∑

h=1

D∑
d=1

(Σh [d, d])2 (5)

which is the squared L-2 norm [7] of the variances (i.e., the diagonal elements in
each of the H Gaussian covariance matrices). Here, D denotes the dimension-
ality of the input space and Σh [d, d] refers to the dth diagonal element of the
convariance matrix for the hth hidden node.

The third term in the cost function, RW , is the squared L-2 norm of the
weight vector, W , connecting the hidden layer nodes to the output node. This
discourages the weights from becoming so large that they would actually ignore
the outputs from the hidden nodes. It also makes the EBFDD network robust
to outliers in the training set [7]. RW is defined as:

RW =
H∑

h=1

w2
h (6)

where wh is the weight connecting the hth hidden node to the output node.
We argue that a gradient descent training process based on the minimisa-

tion of the cost function in Eq. (4) will find a compact set of Gaussians, whose
collective output is still high for the normal region of the input space and low,
anywhere else (i.e., where we believe the anomalies would appear).

Based on the application of the back-propagation of error algorithm using
gradient descent, the following update rules for learning the parameters of the
EBFDD network have been derived in Eq. (7), Eq. (8) and Eq. (9) (the update
rules are described for a single training instance for ease of reading, but are
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easily expandable to a mini-batch scenario by summing across the instances
in the mini-batch). Below, we have derived the learning rules for all 3 learnable
parameters of the EBFDD network. The general structure of these learning rules
is a = a−η × ∂E

∂a , where a is the learnable parameter, and E is the cost function
defined in Eq. (4). Each of the weights, wh, connecting a hidden unit to the
output unit is updated using:

wh = wh − η × ∂E

∂wh

= wh − η

[
∂ 1

2 (1 − y)2

∂wh
+

∂ 1
2λRW

∂wh

]

= wh − η

[
∂ 1

2 (1 − y)2

∂y
× ∂y

∂zh(X)
× ∂zh(X)

∂wh
+

∂ 1
2λRW

∂wh

]

= wh − η[(y − 1) × [1.1439(1 − tanh(
2zh(X)

3
)2)] × ph(X) + λwh] (7)

where η is the learning rate, and zh(X) is defined as in Eq. 3 (although we omit
the summation because only the hth hidden unit is relevant). All other terms
are defined as before. Each of the kernel centres, μh, is updated using:

μh = μh − η × ∂E

∂μh

= μh − η

[
∂ 1

2 (1 − y)2

∂μh

]

= μh − η

[
∂ 1

2 (1 − y)2

∂y
× ∂y

∂zh(X)
× ∂zh(X)

∂ph(X)
× ∂ph(X)

∂μh

]

= μh − η[(y − 1) × [1.1439(1 − tanh(
2zh(X)

3
)2)] × wh (8)

× [ph(X)Σ−1
h (X − μh)]]

And for the covariance matrix of the hth Gaussian, Σh, the learning rule is:

Σh = Σh − η × ∂E

∂Σh

= Σh − η ×
[
∂ 1

2 (1 − y)2

∂Σh
+

∂ 1
2βRΣ

∂Σh

]

= Σh − η ×
[
∂ 1

2 (1 − y)2

∂y
× ∂y

∂zh(X)
× ∂zh(X)

∂ph(X)
× ∂ph(X)

∂Σh
+

∂ 1
2βRΣ

∂Σh

]

= Σh − η × [(y − 1) × [1.1439(1 − tanh(
2zh(X)

3
)2)] × wh (9)

× [ph(X)(−Σ−T
h (X − μh)(X − μh)T Σ−T

h )] + βDiag(Σh)]

where the function Diag() diagonalises the covariance matrix Σh by turning all
non-diagonal elements to 0.
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(a) Training Data (b) Converged K-means

(c) Converged EBFDD (d) Decision Boundary

Fig. 2. Considering images of digits 0 and 1 from the MNIST dataset as class normal
instances for training and using the first two principal components, starting from left to
right, we have the visualizations of the transformed training data after applying PCA
in red circles, the Gaussians after K-means pre-training, trained EBFDD network, and
the decision surface of the trained EBFDD network. (Color figure online)

When Eq. 9 is applied, the resulting covariance matrix my not be invertible.
This is a problem, as the inverse of the covariance matrices are used in both
forward and backward propagation in the network. In such cases, we replace the
covariance matrix generated with its closest positive semi-definite matrix found
using the method proposed by Higham [8].

As explained earlier, the output of the EBFDD network, y, needs to be
thresholded for the anomaly detection to take place. Any of the common thresh-
olding schemes used with other anomaly detection algorithms [4] can be used
with EBFDD networks. The thresholding method is not the focus of this paper
as we have used the Area Under the Curve (AUC) of the ROC curve as the
metric of evaluation. This gives us a good estimate of the performance of the
algorithms assuming that we have a method of choosing the best threshold on
the outputs for each one of the algorithms used in our experiments.
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To illustrate the behaviour of an EBFDD network we present a simple exam-
ple based on the MNIST dataset of handwritten digits [16], and we have used 10
Gaussians in this illustration. We have also used images of digits 0 and 1 as the
normal class. So that the behaviour of the network can be visualised, the dimen-
sionality of the input data is reduced to 2 using Principal Component Analysis
(PCA) [1]. Figure 2a shows the training dataset of normal instances (images of
digits 0 and 1). Figure 2b shows the output of the k-means algorithm after the
pre-training phase, which provides the EBFDD network with an initial set of well
positioned Gaussian kernels. Figure 2c shows the compact set of kernels covering
the normal region after the EBFDD network is trained. Finally, Fig. 2d shows
the decision surface that has been learned, where brighter colors correspond to
higher outputs by the EBFDD network.

4 Experimental Method

This section describes the design of an experiment conducted to measure the
performance of the EBFDD network and compare it with a number of state of
the art anomaly detection approaches. In these experiments, we have trained
EBFDD networks with 2 kernel options: (1) Elliptical Gaussian kernels and (2)
Radial Gaussian Kernels. In the case of the latter, we are hoping that a less
computationally expensive kernel, the radial kernel, would bring us an advan-
tage. The state of the art algorithms in our experiments are the One-Class SVM
(OCSVM) models [23], Auto-Encoders (AEN) [7], Gaussian Mixture Models
(GMM) [1], and the Isolation Forests (iForest) [28]). These algorithms have per-
formed anomaly detection tasks on a selection of datasets using only normal
examples during training. The remainder of this section describes the datasets
and performance metrics used in the experiments.

4.1 Benchmark Datasets and Anomaly Detection Scenarios

Following Emmott, et al. [5] we use fully labelled classification datasets to simu-
late anomaly detection scenarios so that performance metrics can be calculated.
For each dataset used, where possible, we have considered different anomaly
detection scenarios, where we consider different normal and anomalous classes
to add more variety into our experiments.

We have chosen a random subset of the datasets used in [5] for our experi-
ments1. All of these datasets come from the UCI repository2. From these datasets
a number of different anomaly detection scenarios can be generated. These sce-
narios can be divided into two main groups:

1 Since every dataset leads to multiple experiments (One vs All/ All vs One/ difficult
scenarios in [5]) we chose a subset of the datasets available to reduce the computation
required to run the complete set of experiments.

2 https://archive.ics.uci.edu/ml/datasets.html.

https://archive.ics.uci.edu/ml/datasets.html


116 M. Hossein Zadeh Bazargani and B. Mac Namee

– Binary Classification Datasets: In this case, the instances in each dataset
belong to either of 2 classes. The normal class is selected based on the rec-
ommendations in [5], and only examples from this class are used for training.

– Multi-Class Classification Datasets: In this case, we have followed 3
approaches. First, is the one-vs-all approach where we select instances in a
particular class as normal and treat all other classes as anomalous. Only nor-
mal instances are used during training. This is interesting, because it explores
scenarios where anomalous instances might come from a variety of different
distributions, but a compact distribution defines the normal class. So, if a
dataset has K classes, we define K one-vs-all experiments. The second app-
roach is the all-vs-one approach, where we choose instances of one class as
anomalous and the instances of the other classes as normal. Only normal
instances are used during training. This method explores scenarios where
we might have a variety of definitions of the normal data coming from dif-
ferent distributions but a well-defined compact distribution generating the
anomalous instances. Similarly, if a dataset has K classes, we define K all-vs-
one experiments. The last type are more difficult scenarios recommended by
Emmott, et al. [5] where an analysis is performed to find the most challeng-
ing partition of classes, in terms of separability, into normal and anomalous
groups for the datasets they use in their experiments. We use these partitions
to define the third set of scenarios in our experiments.

Table 1. The datasets used in our experiments

Dataset name Number of rows Number of

classes

Number of

features

Number of

generated

scenarios

Magic gamma
telesacope

19021 2 10 1

Spambase 4602 2 57 1

Skin segmentation 245058 2 3 1

Steel plates faults 1941 7 27 15

Image
segmentation

2311 7 18 15

Page blocks
classification

5473 5 10 11

Statlog (Landsat
satellite)

6436 6 36 13

Waveform
database generator
(Version 1)

5000 3 21 7
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Table 1 summarises the datasets that have been used in our experiments.
The number of rows, classes, and features in each one, as well as the number of
anomaly detection scenarios extracted are shown. For all datasets feature values
have been normalised to [0, 1] using range normalisation.

4.2 Experimental Method and Performance Metrics

For each algorithm, dataset and scenario combination we use an experimental
design that is similar to bootstrapping [10]. We extract an 80% sample (with no
replacement) from the whole normal portion of a dataset to use to train a model.
The remaining 20% is then mixed with all the anomalous data to constitute the
test set. This is repeated 10 times and average performance results are reported.
For every algorithm a grid search is performed to find the best set of hyper-
parameters and the results of the best performing set of hyper-parameters are
reported. All of our code and scripts used in our experiments are available on
GitHub3.

The tunable hyper-parameters used to generate these results, for each algo-
rithm across all the datasets and scenarios, are presented in Table 2. It is impor-
tant to mention that the values for H in the hyper-parameter grid search are
determined by the dimensionality of each dataset, and in our experiments they
do not exceed the dimensionality of the input. The range tested for H starts
with 1 and then increases in steps of 5 all the way up to the dimensionality of
the data, D. In the case of the Page Blocks Classification, and Magic Gamma
Telescope datasets we reduce the step size to 2, and for the Skin Segmentation
dataset the step size of 1, as the dimensionality of these datasets is rather low.
As a result, the EBFDD/RBFDD, and AEN always tend to compress the input
data in their hidden representation and similarly, the number of Gaussians in
the GMM is also bounded by the dimensionality of the input, D. However, in
the case of the Isolation Forest, we have chosen the same number of estimators
across all the datasets. In the case of OCSVM, ν is the upper bound on the
fraction of training errors and a lower bound of the fraction of support vectors,
and γ is the kernel coefficient.

The area under the ROC curve [9] has been chosen as the evaluation metric
in these experiments. This allows us to avoid defining a specific thresholding
function to use with each model, but still measures the ability of a model to dis-
tinguish between normal and anomalous classes. The ROC curves are generated
from the raw output of each model type.

3 https://github.com/MLDawn/EBFDD.

https://github.com/MLDawn/EBFDD
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Table 2. Hyper-parameter ranges for each algorithm

Algorithms Hyper-parameters Investigated hyper-parameters

EBFDD Number of kernels (H) [1, 5, 10, ..., D]

η [0.01, 0.001, 0.0001]

β [0.9, 0.5, 0.1, 0.05, 0.01, 0.001, 0.0001]

λ [0.9, 0.5, 0.1, 0.05, 0.01, 0.001, 0.0001]

RBFDD Number of kernels (H) [1, 5, 10, ..., D]

η [0.01, 0.001, 0.0001]

β [0.9, 0.5, 0.1, 0.05, 0.01, 0.001, 0.0001]

λ [0.9, 0.5, 0.1, 0.05, 0.01, 0.001, 0.0001]

OCSVM ν [0.9, 0.5, 0.1, 0.05, 0.01, 0.001, 0.0001]

γ [0.9, 0.5, 0.1, 0.05, 0.01, 0.001, 0.0001]

AEN Number of hidden units (H) [1, 5, 10, ..., D]

η [0.01, 0.001, 0.0001]

Hidden layer activation
functions

[sigmoid, relu]

Output layer activation
functions

[sigmoid, relu, linear]

Error functions [mean squared error, cross entropy]

GMM Number of kernels (H) [1, 5, 10, ..., D]

Isolation Forest Number of estimators [100, 200, 500, 800, 1000]

(a) All Scenarios (b) One vs All (c) All vs One

Fig. 3. The average rank of the algorithms across the experiments. On each box plot
the median ranks are shown via the horizontal orange lines and the mean ranks are
shown using green triangles. (Color figure online)
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2 3 4 5

EBFDD

RBFDD

GMM

AEN

iForest

OCSVM

(a) All Scenarios (b) One vs All (c) All vs One

Fig. 4. Friedman’s aligned test results where the statistical significance is α = 0.05

5 Results and Discussion

The performances of each algorithm on each anomaly detection scenario for each
dataset were compared and ranked. The distribution of the ranks for each algo-
rithm for all anomaly detection scenarios are shown in Fig. 3a, and the average
rank scores are summarised in Table 34. The average ranks in Table 3 show that
the EBFDD network has the lowest average rank over all experiments. It is also
clear from Fig. 3a that the ranks of EBFDD have low variance indicating its
consistent strong performance.

Table 3. Average rank across all experiments

EBFDD RBFDD AEN GMM iForest OCSVM

Average rank 2.59 2.85 3.20 3.20 4.26 4.80

Figure 3 also shows the distribution of ranks of the different approaches on
the one-vs-all and all-vs-one scenarios (distributions for the other scenarios are
not included as there are too few results to generate meaningful distributions).
While the overall pattern is largely the same for these subsets as for the overall
results, it is worth noting that there is a marked difference in the performance of
the AEN models on the one-vs-all scenarios—performance is relatively poor—
and on the all-vs-one scenarios—performance is quite good.

A Friedman test [6] with a significance level of α = 0.05 was performed on the
rank data. This showed a statistically significant difference in the performance of
the different algorithms and so, following the recommendations of [6], a post-hoc
Friedman aligned rank test, with α = 0.05, was performed to further investigate
the pairwise differences between the performance of the algorithms. Figure 4
summarises the results of these tests (tests were performed for all scenarios and
independently for the one-vs-all and all-vs-one scenarios)5.
4 The full tables of results are provided in the supplementary material.
5 The Win/Loss/Draw tables for the Friedman aligned rank test for α = 0.1, 0.05, and

0.01 are provided in the supplementary material.
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In all cases the performance of a group of the best performing algorithms can-
not be separated in a statistically significant way. This group includes EBFDD,
RBFDD, GMM, and (except for the one-vs-all scenario subset) AEN. The poorer
performances of the OCSVM and iForest approaches are statistically significantly
different to the performance of the other approaches. The poor performance of
OCSVM is somewhat surprising, however, it is in line with previous benchmarks,
for example [5].

Both the EBFDD and RBFDD algorithms accomplish their training through
minimizing our proposed cost function in Eq. (4). We believe that the EBFDD
out-performs RBFDD because of the more flexible nature of the decision bound-
aries that it is able to learn because of the use of elliptical kernels.

It is worth noting, however, that the cost of the good performance of the
EBFDD algorithm is the very large number of parameters that must be learned in
this model. For an EBFDD network, as the full covariance matrices are learnable,
the number of trainable parameters is quite high:

(H × D) +
(

H × D(D + 1)
2

)
+ H (10)

where H is the number of hidden nodes, and D is the dimensionality of the
input. Moreover, if we consider radial kernels for the EBFDD networks, i.e. an
RBFDD network, the number of trainable parameters is reduced to:

(H × D) + (H × D) + H (11)

This means that training EBFDD networks can take longer than training equiv-
alently sized RBFDD networks.

There is a minor difference in the number of trainable parameters in a GMM
compared to an EBFDD network. As the weights used to combine distributions
in a GMM sum to 1, for H Gaussians only (H −1) weights need to be learned as
the last weight can be computed by subtracting the sum of those weights from 1.
As a result, the number of trainable parameters in a GMM is equal to:

(H × D) +
(

H × D(D + 1)
2

)
+ (H − 1) (12)

In addition the number of trainable parameters for the AEN is:

(H × D) + H (13)

It is not possible to talk about the number of trainable parameters for the
iForest and OCSVM models in a meaningful way and so these are not compared.
Moreover, as the implementations of algorithms used in these experiments come
from different packages with differing levels of optimisation we do not believe
that detailed comparisons of training times are appropriate.

As observed in Table 3, the empirical results show that the added complexity
of the EBFDD network has made it a stronger anomaly detector compared to
its simpler version that is the RBFDD network. In addition, even though the
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EBFDD network and GMM have almost the same number of trainable parame-
ters, it seems that the optimisation of the proposed cost function in the EBFDD
network, which utilises gradient descent, allows it to find better solutions than
the expectation maximisation approach used in a GMM.

6 Conclusions and Future Work

This paper presents a novel cost function, whose minimisation can adapt the
Radial Basis Function (RBF) network into a one-class classifier. We have named
the resultant anomaly detector the Elliptical Basis Function Data Descriptor
(EBFDD) network. EBFDD utilises elliptical kernels that can elongate and
rotate to allow it to learn sophisticated decision surfaces. An evaluation experi-
ment conducted using a large set of datasets compared the EBFDD network with
state of the art anomaly detection algorithms. Although statistical significance
is not shown in all cases, the empirical results show that the EBFDD network
has a better overall performance across all the experiments.

In future work, we plan to add recurrent connections to the EBFDD net-
work architecture to allow contextual anomalies within streams to be identified,
as well as the point anomalies identified by the current architecture. Moreover,
we would like to investigate the idea of building a deep architecture where the
EBFDD network and a deep network would be trained in an end to end fashion,
the motivation being that the backpropagation signal for training the EBFDD
network might push the deep network into learning better features for the Gaus-
sian kernels of the EBFDD network to work with. An alternative would be to
train the deep architecture separately and use the extracted features to train
the EBFDD network, and this will also be explored. Finally, we will investigate
how EBFDD can be adapted to handle concept drift scenarios in which the
characteristics of what constitutes normal change over time.
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Abstract. T-distributed stochastic neighbour embedding (t-SNE) is a
widely used data visualisation technique. It differs from its predeces-
sor SNE by the low-dimensional similarity kernel: the Gaussian kernel
was replaced by the heavy-tailed Cauchy kernel, solving the ‘crowding
problem’ of SNE. Here, we develop an efficient implementation of t-SNE
for a t-distribution kernel with an arbitrary degree of freedom ν, with
ν → ∞ corresponding to SNE and ν = 1 corresponding to the stan-
dard t-SNE. Using theoretical analysis and toy examples, we show that
ν < 1 can further reduce the crowding problem and reveal finer cluster
structure that is invisible in standard t-SNE. We further demonstrate
the striking effect of heavier-tailed kernels on large real-life data sets
such as MNIST, single-cell RNA-sequencing data, and the HathiTrust
library. We use domain knowledge to confirm that the revealed clusters
are meaningful. Overall, we argue that modifying the tail heaviness of
the t-SNE kernel can yield additional insight into the cluster structure
of the data.

Keywords: Dimensionality reduction · Data visualisation · t-SNE

1 Introduction

T-distributed stochastic neighbour embedding (t-SNE) [12] and related methods
[13,15] are used for data visualisation in many scientific fields dealing with thou-
sands or even millions of high-dimensional samples. They range from single-cell
cytometry [1] and transcriptomics [16,19], where samples are cells and features
are proteins or genes, to population genetics [4], where samples are people and
features are single-nucleotide polymorphisms, to humanities [14], where samples
are books and features are words.
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T-SNE was developed from an earlier method called SNE [5]. The central idea
of SNE was to describe pairwise relationships between high-dimensional points
in terms of normalised affinities: close neighbours have high affinity whereas
distant samples have near-zero affinity. SNE then positions the points in two
dimensions such that the Kullback-Leibler divergence between the high- and
low-dimensional affinities is minimised. This worked to some degree but suffered
from what was later called the ‘crowding problem’: distinct high-dimensional
clusters tended to overlap in the embedding. The idea of t-SNE was to adjust
the kernel transforming pairwise low-dimensional distances into affinities: the
Gaussian kernel was replaced by the heavy-tailed Cauchy kernel (t-distribution
with one degree of freedom ν), ameliorating the crowding problem.

The choice of the specific heavy-tailed kernel was mostly motivated by math-
ematical and computational simplicity: a t-distribution with ν = 1 has a density
proportional to 1/(1+x2) which is mathematically compact and fast to compute.
However, a t-distribution with any finite ν has heavier tails than the Gaussian
distribution (which corresponds to ν → ∞). It is therefore reasonable to explore
the whole spectrum of the values of ν from ∞ to 0. Given that t-SNE (ν = 1)
outperforms SNE (ν = ∞), it might be that for some data sets ν < 1 would
offer additional insights into the structure of the data.

While this seems like a straightforward extension and has already been dis-
cussed in the literature [10,18], no efficient implementation of this idea has been
available until now. T-SNE is usually optimised via adaptive gradient descent.
While it is easy to write down the gradient for an arbitrary value of ν, the exact
t-SNE from the original paper requires O(n2) time and memory, and cannot be
run for sample sizes much larger than n ≈ 10 000. Efficient approximations have
been developed allowing to run approximate t-SNE for much larger sample sizes
[9,11], but until now have only been implemented for ν = 1. As a result, the
effect of ν �= 1 on large real-life datasets has remained unknown.

Here we show that the recent FIt-SNE approximation [9] can be modified
to use an arbitrary value of ν and demonstrate that ν < 1 can reveal ‘hidden’
structure, invisible with standard t-SNE.

2 Results

2.1 t-SNE with Arbitrary Degree of Freedom

SNE defines directional affinity of point xj to point xi as

pj|i =
exp(−‖xi − xj‖2/2σ2

i )
∑

k �=i exp(−‖xi − xk‖2/2σ2
i )

.

For each i, this forms a probability distribution over all points j �= i (all pi|i
are set to zero). The variance of the Gaussian kernel σ2

i is chosen such that the
perplexity of this probability distribution

exp
(

− ln(2) ·
∑

j �=i

pj|i log2 pj|i
)
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has some pre-specified value. In symmetric SNE (SSNE)1 and t-SNE the affinities
are symmetrised and normalised

pij =
pi|j + pj|i

2n

to form a probability distribution on the set of all pairs (i, j).
The points are then arranged in a low-dimensional space to minimise the

Kullback-Leibler (KL) divergence between pij and the affinities in the low-
dimensional space, qij :

L =
∑

i,j

pij log
pij

qij
,

qij =
wij

Z
, wij = k(‖yi − yj‖), Z =

∑

k �=l

wkl.

Here k(d) is a kernel that transforms Euclidean distance d between any two
points into affinities, and yi are low-dimensional coordinates (all qii are set to
0).

SNE uses the Gaussian kernel k(d) = exp(−d2). T-SNE uses the t-
distribution with one degree of freedom (also known as Cauchy distribution):
k(d) = 1/(1 + d2). Here we consider a general t-distribution kernel

k(d) =
1

(1 + d2/ν)(ν+1)/2
. (�)

As in [18], we use a simplified version defined as

k(d) =
1

(1 + d2/α)α
. (��)

This kernel corresponds to the scaled t-distribution with ν = 2α−1. This means
that using (��) instead of (�) in t-SNE produces an identical output apart from
the global scaling by

√
2ν/(ν + 1). At the same time, (��) allows to use any

α > 0, including α ∈ (0, 1/2] corresponding to negative ν, i.e. it allows kernels
with tails heavier than any possible t-distribution.2 Yang et al. [18] use the same
kernel but with α replaced by 1/α, and call it ‘heavy-tailed SNE’ (HSSNE).

The gradient of the loss function (see Appendix or [18]) is

∂L
∂yi

= 4
∑

j

(pij − qij)w
1/α
ij (yi − yj).

Any implementation of exact t-SNE can be easily modified to use this expression
instead of the α = 1 gradient.
1 In the following text we will not make a distinction between the symmetric SNE

(SSNE) and the original, asymmetric, SNE.
2 Equivalently, we could use an even simpler kernel k(d) = (1 + d2)−α that differs

from (��) only by scaling. We prefer (��) because of the explicit Gaussian limit at
α → ∞.
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Fig. 1. Toy example with ten Gaussian clusters. (A) SNE visualisation of 10 spherical
clusters that are all equally far away from each other (α = 100). (B) Standard t-SNE
visualisation of the same data set (α = 1). (C) t-SNE visualisation with α = 0.5. The
same random seed was used for initialisation in all panels. Scale bars are shown in the
bottom-right of each panel.

Modern t-SNE implementations make two approximations. First, they set
most pij to zero, apart from only a small number of close neighbours [9,11],
accelerating the attractive force computations (that can be very efficiently par-
allelised). This carries over to the α �= 1 case. The repulsive forces are approxi-
mated in FIt-SNE by interpolation on a grid, further accelerated with the Fourier
transform [9]. This interpolation can be carried out for the α �= 1 case in full
analogy to the α = 1 case (see Appendix).

Importantly, the runtime of FIt-SNE with α �= 1 is practically the same as
with α = 1. For example, embedding MNIST (n = 70 000) with perplexity 50 as
described below took 90 s with α = 1 and 97 s with α = 0.5 on a computer with
4 double-threaded cores, 3.4 GHz each.3

2.2 Toy Examples

We first applied exact t-SNE with various values of α to a simple toy data
set consisting of several well-separated clusters. Specifically, we generated a 10-
dimensional data set with 100 data points in each of the 10 classes (1000 points
overall). The points in class i were sampled from a Gaussian distribution with
covariance I10 and mean µi = 4ei where ei is the i-th basis vector. We used
perplexity 50, and default optimisation parameters (1000 iterations, learning rate
200, early exaggeration 12, length of early exaggeration 250, initial momentum
0.5, switching to 0.8 after 250 iterations).

Figure 1 shows the t-SNE results for α = 100, α = 1, and α = 0.1. A t-
distribution with ν = 2α − 1 = 199 degrees of freedom is very close to the
3 The numbers correspond to 1000 gradient descent iterations. The slight speed

decrease is due to a more efficient implementation of the interpolation code for
the special case of α = 1.
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Fig. 2. Toy example with ten ‘dumbbell’-shaped clusters. (A) SNE visualisation of 10
dumbbell-shaped clusters (α = 100). (B) Standard t-SNE visualisation (α = 1). (C)
t-SNE visualisation with α = 0.5.

Gaussian distribution, so here and below we will refer to the α = 100 result
as SNE. We see that class separation monotonically increases with decreasing
α: t-SNE (Fig. 1B) separates the classes much better than SNE (Fig. 1A), but
t-SNE with α = 0.5 separates them much better still (Fig. 1C).

In the above toy example, the choice between different values of α is mostly
aesthetic. This is not the case in the next toy example. Here we change the
dimensionality to 20 and shift 50 points in each class by 2e10+i and the remaining
50 points by −2e10+i (where i is the class number). The intuition is that now
each of the 10 classes has a ‘dumbbell’ shape. This shape is invisible in SNE
(Fig. 2A) and hardly visible in standard t-SNE (Fig. 2B), but becomes apparent
with α = 0.5 (Fig. 2C). In this case, decreasing α below 1 is necessary to bring
out the fine structure of the data.

2.3 Mathematical Analysis

We showed that decreasing α increases cluster separation (Figs. 1 and 2). Why
does this happen? An informal argument is that in order to match the between-
cluster affinities pij , the distance between clusters in the t-SNE embedding needs
to grow when the kernel becomes progressively more heavy-tailed [12].

To quantify this effect, we consider an example of two standard Gaussian
clusters in 10 dimensions (n = 100 in each) with the between-centroid distance
set to 5

√
2; these clusters can be unambiguously separated. We use exact t-

SNE (perplexity 50) with various values of α from 0.2 to 3.0 and measure the
cluster separation in the embedding. As a scale-invariant measure of separation
we used between-centroids distance divided by the root-mean-square within-
cluster distance. Indeed, we observed a monotonic decrease of this measure with
growing α (Fig. 3).

The informal argument mentioned above can be replaced by the following
formal one. Consider two high-dimensional clusters (n points in each) with all
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Fig. 3. Separation in the t-SNE visualisation between the two well-separated clusters
as a function of α. Separation was measured as the between-centroids distance divided
by the root-mean-square within-cluster distance.

pairwise within-cluster distances equal to Dw and all pairwise between-cluster
distances equal to Db 	 Dw (this can be achieved in the space of 2n dimensions).
In this case, the pij matrix has only two unique non-zero values: all within-cluster
affinities are given by pw and all between-cluster affinities by pb,

pw =
K(Dw)

n
[
(n − 1)K(Dw) + nK(Db)

]

pb =
K(Db)

n
[
(n − 1)K(Dw) + nK(Db)

] ,

where K(D) is the Gaussian kernel corresponding to the chosen perplexity value.
Consider an exact t-SNE mapping to the space of the same dimensionality. In
this idealised case, t-SNE can achieve zero loss by setting within- and between-
cluster distances dw and db in the embedding such that qw = pw and qb = pb.
This will happen if

k(db)
k(dw)

=
K(Db)
K(Dw)

.

Plugging in the expression for k(d) and denoting the constant right-hand side
by c < 1, we obtain √

α + d2b
α + d2w

= c−1/(2α).

The left-hand side can be seen as a measure of class separation close to the one
used in Fig. 3, and the right-hand side monotonically decreases with increasing
α.

In the simulation shown in Fig. 3, the pij matrix does not have only two
unique elements, the target dimensionality is two, and the t-SNE cannot possi-
bly achieve zero loss. Still, qualitatively we observe the same behaviour: approx-
imately power-law decrease of separation with increasing α.
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Fig. 4. MNIST data set (n = 70 000). (A) SNE visualisation (α = 100). (B) Standard
t-SNE visualisation (α = 1). (C) t-SNE visualisation with α = 0.5. The colours are
consistent across panels (A–C), labels are shown in (A). PCA initialisation was used in
all three cases. Transparency 0.5 for all dots in all three panels. Arrows mark clusters
shown in (D). (D) Average images for some individual sub-clusters from (C). The
sub-clusters were isolated via DBSCAN with default settings as it is implemented in
scikit-learn. Up to five subclusters with at least 100 points are shown, ordered from
top to bottom by abundance. (Color figure online)

2.4 Real-Life Data Sets

We now demonstrate that these theoretical insights are relevant to practical use
cases on large-scale data sets. Here we use approximate t-SNE (FIt-SNE).

MNIST. We applied t-SNE with various values of α to the MNIST data set
(Fig. 4), comprising n = 70 000 grayscale 28×28 images of handwritten digits. As
a pre-processing step, we used principal component analysis (PCA) to reduce the
dimensionality from 784 to 50. We used perplexity 50 and default optimisation
parameters apart from learning rate that we increased to η = 1000.4 For easier
reproducibility, we initialised the t-SNE embedding with the first two PCs (scaled
such that PC1 had standard deviation 0.0001).

To the best of our knowledge, Fig. 4A is the first existing SNE (α = 100)
visualisation of the whole MNIST: we are not aware of any SNE implementation
that can handle a dataset of this size. It produces a surprisingly good visu-
alisation but is nevertheless clearly outperformed by standard t-SNE (α = 1,
Fig. 4B): many digits coalesce together in SNE but get separated into clearly
distinct clusters in t-SNE. Remarkably, reducing α to 0.5 makes each digit fur-
ther split into multiple separate sub-clusters (Fig. 4C), revealing a fine structure
within each of the digits.

To demonstrate that these sub-clusters are meaningful, we computed the
average MNIST image for some of the sub-clusters (Fig. 4D). In each case, the

4 To get a good t-SNE visualisation of MNIST, it is helpful to increase either the
learning rate or the length of the early exaggeration phase. Default optimisation
parameters often lead to some of the digits being split into two clusters. In the
cytometric context, this phenomenon was described in detail by [2].



Heavy-Tailed Kernels Reveal a Finer Cluster Structure 131

shapes appear to be meaningfully distinct: e.g. for the digit “4”, the hand-writing
is more italic in one sub-cluster, more wide in another, and features a non-trivial
homotopy group (i.e. has a loop) in yet another one. Similarly, digit “2” is
separated into three sub-clusters, with the most abundant one showing a loop
in the bottom-left and the next abundant one having a sharp angle instead.
Digit “1” is split according to the stroke angle. Re-running t-SNE using random
initialisation with different seeds yielded consistent results. Points that appear
as outliers in Fig. 4C mostly correspond to confusingly written digits.

MNIST has been a standard example for t-SNE starting from the original
t-SNE paper [12], and it has been often observed that t-SNE preserves meaning-
ful within-digit structure. Indeed, the sub-clusters that we identified in Fig. 4C
are usually close together in Fig. 4B.5 However, standard t-SNE does not sepa-
rate them into visually isolated sub-clusters, and so does not make this internal
structure obvious.

Single-Cell RNA-Sequencing Data. For the second example, we took the
transcriptomic dataset from [16], comprising n = 23 822 cells from adult mouse
cortex (sequenced with Smart-seq2 protocol). Dimensions are genes, and the
data are the integer counts of RNA transcripts of each gene in each cell. Using
a custom expert-validated clustering procedure, the authors divided these cells
into 133 clusters. In Fig. 5, we used the cluster ids and cluster colours from the
original publication.

Figure 5A shows the standard t-SNE (α = 1) of this data set, following
common transcriptomic pre-processing steps as described in [7]. Briefly, we row-
normalised and log-transformed the data, selected 3000 most variable genes and
used PCA to further reduce dimensionality to 50. We used perplexity 50 and
PCA initialisation. The resulting t-SNE visualisation is in a reasonable agree-
ment with the clustering results, however it lumps many clusters together into
contiguous ‘islands’ or ‘continents’ and overall suggests many fewer than 133
distinct clusters.

Reducing the number of degrees of freedom to α = 0.6 splits many of the
contiguous islands into ‘archipelagos’ of smaller disjoint areas (Fig. 5B). In many
cases, this roughly agrees with the clustering results of [16]. Figure 5C shows a
zoom-in into the Vip clusters (west-southwest part of panel B) that provide
one such example: isolated islands correspond well to the individual clusters
(or sometimes pairs of clusters). Importantly, the cluster labels in this data set
are not ground truth; nevertheless the agreement between cluster labels and t-
SNE with α = 0.6 provides additional evidence that this data categorisation is
meaningful.

HathiTrust Library. For the final example, we used the HathiTrust library
data set [14]. The full data set comprises 13.6 million books and can be described

5 This can be clearly seen in an animation that slowly decreases α from 100 to 0.5,
see http://github.com/berenslab/finer-tsne.

http://github.com/berenslab/finer-tsne
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Fig. 5. Tasic et al. data set (n = 23 822). (A) Standard t-SNE visualisation (α = 1).
Cluster ids and cluster colours are taken from the original publication [16]: cold colours
for excitatory neurons, warm colours for inhibitory neurons, and grey/brown colours for
non-neural cells such as astrocytes or microglia. (B) t-SNE visualisation with α = 0.6.
(C) A zoom-in into the left side of panel (B) showing all Vip clusters from Tasic et al.
Black circles mark cluster centroids (medians). (Color figure online)

with several million features that represent word counts of each word in each
book. We used the pre-processed data from [14]: briefly, the word counts were
row-normalised, log-transformed, projected to 1280 dimensions using random
linear projection with coefficients ±1, and then reduced to 100 PCs.6 The avail-
able meta-data include author name, book title, publication year, language,
and Library of Congress classification (LCC) code. For simplicity, we took a
n = 408 291 subset consisting of all books in Russian language. We used per-
plexity 50 and learning rate η = 10 000.

Figure 6A shows the standard t-SNE visualisation (α = 1) coloured by the
publication year. The most salient feature is that pre-1917 books cluster together
(orange/red colours): this is due to the major reform of Russian orthography
implemented in 1917, leading to most words changing their spelling. However,
not much of a substructure can be seen among the books published after (or
before) 1917. In contrast, t-SNE visualisation with α = 0.5 fragments the corpus
into a large number of islands (Fig. 6B).

We can identify some of the islands by inspecting the available meta-data.
For example, mathematical literature (LCC code QA, n = 6490 books) is not
separated from the rest in standard t-SNE, but occupies the leftmost island in
t-SNE with α = 0.5 (contour lines in the bottom right in both panels). Several
neighbouring islands correspond to the physics literature (LCC code QC, n =
5104 books; not shown). In an attempt to capture something radically different
from mathematics, we selected all books authored by several famous Russian

6 The 13.6 · 106 × 100 data set was downloaded from https://zenodo.org/record/
1477018.

https://zenodo.org/record/1477018
https://zenodo.org/record/1477018
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Fig. 6. Russian language part of the HathiTrust library (n = 408 291). (A) Standard
t-SNE visualisation (α = 1). Colour denotes publication year. (B) t-SNE visualisa-
tion with α = 0.5. Black contours in both panels are kernel density estimate contour
lines for mathematical literature (lower right) and poetry (upper left), plotted with
seaborn.kdeplot() with Gaussian bandwidth set to 2.0. Contour levels were manu-
ally tuned to enclose the majority of the books). (Color figure online)

poets7 (n = 1369 in total). This is not a curated list: there are non-poetry
books authored by these authors, while many other poets were not included
(the list of poets was not cherry-picked; we made the list before looking at the
data). Nevertheless, when using α = 0.5, the poetry books printed after 1917
seemed to occupy two neighbouring islands, and the ones printed before 1917
were reasonably isolated as well (Fig. 6B, top and left). In the standard t-SNE
visualisation poetry was not at all separated from the surrounding population
of books.

3 Related Work

Yang et al. [18] introduced symmetric SNE with the kernel family

k(d) =
1

(1 + αd2)1/α
,

calling it ‘heavy-tailed symmetric SNE’ (HSSNE). This is exactly the same kernel
family as (��), but with α replaced by 1/α. However, Yang et al. did not show
any examples of heavier-tailed kernels revealing additional structure compared
to α = 1 and did not provide an implementation suitable for large sample sizes

7 Anna Akhmatova, Alexander Blok, Joseph Brodsky, Afanasy Fet, Osip Mandelstam,
Vladimir Mayakovsky, Alexander Pushkin, and Fyodor Tyutchev.
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(i.e. it is not possible to use their implementation for n � 10 000). Interestingly,
Yang et al. argued that gradient descent is not suitable for HSSNE and suggested
an alternative optimisation algorithm; here we demonstrated that the standard
t-SNE optimisation works reasonably well in a wide range of α values (but see
Discussion).

Van der Maaten [10] discussed the choice of the degree of freedom in the
t-distribution kernel in the context of parametric t-SNE. He argued that ν > 1
might be warranted when embedding the data in more than two dimensions. He
also implemented a version of parametric t-SNE that optimises over ν. However,
similar to [18], [10] did not contain any examples of ν < 1 being actually useful
in practice.

UMAP [13] is a promising recent algorithm closely related to an earlier
largeVis [15]; both are similar to t-SNE but modify the repulsive forces to make
them amenable for a sampling-based stochastic optimisation. UMAP uses the
following family of similarity kernels:

k(d) =
1

1 + ad2b
,

which reduces to Cauchy when a = b = 1 and is more heavy-tailed when 0 <
b < 1. UMAP default is a ≈ 1.6 and b ≈ 0.9 with both parameters adjusted
via the min dist input parameter (default value 0.1). Decreasing min dist all
the way to zero corresponds to decreasing b to 0.79. In our experiments, we
observed that modifying min dist (or b directly) led to an effect qualitatively
similar to modifying α in t-SNE. For some data sets this required manually
decreasing b below 0.79. In case of MNIST, b = 0.3, but not b = 0.79, revealed
sub-digit structure (Figure S1)—an effect that has not been described before
(cf. [13] where McInnes et al. state that min dist is “an essentially aesthetic
parameter”). In other words, the same conclusion seems to apply to UMAP:
heavy-tailed kernels reveal a finer cluster structure. A more in-depth study of
the relationships between the two algorithms is beyond the scope of this paper.

4 Discussion

We showed that using α < 1 in t-SNE can yield insightful visualisations that are
qualitatively different compared to the standard choice of α = 1. Crucially, the
choice of α = 1 was made in [12] for the reasons of mathematical convenience,
and we are not aware of any a priori argument in favour of α = 1. As α �= 1
still yields a t-distribution kernel (scaled t-distribution to be precise), we prefer
not to use a separate acronym (HSSNE [18]). If needed, one can refer to t-SNE
with α < 1 as ‘heavy-tailed’ t-SNE.

We found that lowering α below 1 makes progressively finer structure appar-
ent in the visualisation and brings out smaller clusters, which—at least in the
data sets studied here—are often meaningful. In a way, α < 1 can be thought of
as a ‘magnifying glass’ for the standard t-SNE representation. We do not think
that there is one ideal value of α suitable for all data sets and all situations;
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Fig. 7. Quality assessment of the MNIST embedding with α ∈ [0.5, 100] after 1000
gradient descent iterations with learning rate η = 1000 (scaled PCA initialisation).
The horizontal axis is on the log scale. The α values were sampled on a grid with step
0.01 for α < 1, 0.25 for 1 ≤ α ≤ 5 and 1 for α > 5. The black line shows KL divergence
(left axis) with minimum at α = 1.5. Running gradient descent with α = 0.5 for 10 000
iterations (Figure S3) lowered KL divergence down to 3.6, which was still above the
minimum value. Blue lines show neighbourhood preservation (the fraction of k nearest
neighbours of each point that remain within k nearest neighbours in the embedding,
averaged over all n = 70 000 points) for k = 10, k = 50, and k = 100. (Color figure
online)

instead we consider it a useful adjustable parameter of t-SNE, complementary
to the perplexity. We observed a non-trivial interaction between α and perplex-
ity: Small vs. large perplexity makes the affinity matrix pij represent the local vs.
global structure of the data [7]. Small vs. large α makes the embedding represent
the finer vs. coarser structure of the affinity matrix. In practice, it can make sense
to treat it as a two-dimensional parameter space to explore. However, for large
data sets (n � 106), it is computationally unfeasible to substantially increase the
perplexity from its standard range of 30–100 (as it would prohibitively increase
the runtime), and so α becomes the only available parameter to adjust.

One important caveat is to be kept in mind. It is well-known that t-SNE,
especially with low perplexity, can find ‘clusters’ in pure noise, picking up random
fluctuations in the density [17]. This can happen with α = 1 but gets exacerbated
with lower values of α. A related point concerns clustered real-life data where
separate clusters (local density peaks) can sometimes be connected by an area
of lower but non-zero density: for example, [16] argued that many pairs of their
133 clusters have intermediate cells. Our experiments demonstrate that lowering
α can make such clusters more and more isolated in the embedding, creating
a potentially misleading appearance of perfect separation (see e.g. Figure 1). In
other words, there is a trade-off between bringing out finer cluster structure and
preserving continuities between clusters.

Choosing a value of α that yields the most faithful representation of a given
data set is challenging because it is difficult to quantify ‘faithfulness’ of any
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given embedding [8]. For example, for MNIST, KL divergence is minimised at
α ≈ 1.5 (Fig. 7), but it may not be the ideal metric to quantify the embedding
quality [6]. Indeed, we found that k-nearest neighbour (KNN) preservation [8]
peaked elsewhere: the peak for k = 10 was at α ≈ 1.0, for k = 50 at α ≈ 0.9,
and for k = 100 at α ≈ 0.8 (Fig. 7). We stress that we do not think that KNN
preservation is the most appropriate metric here; our point is that different
metrics can easily disagree with each other. In general, there may not be a single
‘best’ embedding of high-dimensional data in a two-dimensional space. Rather,
by varying α, one can obtain different complementary ‘views’ of the data.

Very low values of α correspond to kernels with very wide and very flat tails,
leading to vanishing gradients and difficult convergence. We found that α = 0.5
was about the smallest value that could be safely used (Figure S2). In fact, it may
take more iterations to reach convergence for 0.5 < α < 1 compared to α = 1. As
an example, running t-SNE on MNIST with α = 0.5 for ten times longer than
we did for Fig. 4C, led to the embedding expanding much further (which leads to
a slow-down of FIt-SNE interpolation) and, as a result, resolving additional sub-
clusters (Figure S3). On a related note, when using only one single MNIST digit
as an input for t-SNE with α = 0.5, the embedding also fragments into many
more clusters (Figure S4), which we hypothesise is due to the points rapidly
expanding to occupy a much larger area compared to what happens in the full
MNIST embedding (Figure S4). This can be counterbalanced by increasing the
strength of the attractive forces (Figure S4). Overall, the effect of the embedding
scale on the cluster resolution remains an open research question.

In conclusion, we have shown that adjusting the heaviness of the kernel tails
in t-SNE can be a valuable tool for data exploration and visualisation. As a
practical recommendation, we suggest to embed any given data set using various
values of α, each inducing a different level of clustering, and hence providing
insight that cannot be obtained from the standard α = 1 choice alone.8

5 Appendix

The loss function, up to a constant term
∑

pij log pij , can be rewritten as follows:

L = −
∑

i,j

pij log qij = −
∑

i,j

pij log
wij

Z

= −
∑

i,j

pij log wij + log
∑

i,j

wij , (1)

where we took into account that
∑

pij = 1. The first term in Eq. (1) contributes
attractive forces to the gradient while the second term yields repulsive forces.

8 Our code is available at http://github.com/berenslab/finer-tsne. The main FIt-SNE
repository at http://github.com/klugerlab/FIt-SNE was updated to support any α
(version 1.1.0).

http://github.com/berenslab/finer-tsne
http://github.com/klugerlab/FIt-SNE
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The gradient is

∂L
∂yi

= −2
∑

j

pij
1

wij

∂wij

∂yi
+ 2

∑

j

1
Z

∂wij

∂yi
(2)

= −2
∑

j

(pij − qij)
1

wij

∂wij

∂yi
. (3)

The first expression is more convenient for numeric optimisation while the second
one can be more convenient for mathematical analysis.

For the kernel
k(d) =

1
(1 + d2/α)α

the gradient of wij = k(‖yi − yj‖) is

∂wij

∂yi
= −2w

α+1
α (yi − yj). (4)

Plugging Eq. 4 into Eq. 3, we obtain the expression for the gradient [18]9

∂L
∂yi

= 4
∑

j

(pij − qij)w
1/α
ij (yi − yj).

For numeric optimisation it is convenient to split this expression into the
attractive and the repulsive terms. Plugging Eq. 4 into Eq. 2, we obtain

∂L
∂yi

= Fatt + Frep

where

Fatt = 4
∑

j

pijw
1/α
ij (yi − yj)

Frep = −4
∑

j

w
α+1

α
ij /Z(yi − yj)

It is noteworthy that the expression for Fattr has wij raised to the 1/α power,
which cancels out the fractional power in k(d). This makes the runtime of Fattr

computation unaffected by the value of α. In FIt-SNE, the sum over j in Fattr

is approximated by the sum over 3Π approximate nearest neighbours of point
i obtained using Annoy [3], where Π is the provided perplexity value. The 3Π
heuristic comes from [11]. The remaining pij values are set to zero.

9 Note that the C++ Barnes-Hut t-SNE implementation [11] absorbed the factor 4
into the learning rate, and the FIt-SNE implementation [9] followed this convention.
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The Frep can be approximated using the interpolation scheme from [9]. It
allows fast approximate computation of the sums of the form

∑
jK(‖yi − yj‖)

and ∑
jK(‖yi − yj‖)yj ,

where K(·) is any smooth kernel, by using polynomial interpolation of K on a
fine grid.10 All kernels appearing in Frep are smooth.
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1 Université de Toulouse - IRIT, 2 rue Camichel, Toulouse, France
luce.le-gorrec@strath.ac.uk, {sandrine.mouysset,daniel.ruiz}@enseeiht.fr

2 R7l, STFC Rutherford Appleton Laboratory, Didcot, OX OX11 0QX, UK
iain.duff@stfc.ac.uk

3 CERFACS, Toulouse, France
4 University of Strathclyde, Richmond Street, Glasgow, UK

p.a.knight@strath.ac.uk

Abstract. We present a multistage procedure to cluster directed and
undirected weighted graphs by finding the block structure of their adja-
cency matrices. A central part of the process is to scale the adjacency
matrix into a doubly-stochastic form, which permits detection of the whole
matrix block structure with minimal spectral information (theoretically a
single pair of singular vectors suffices).

We present the different stages of our method, namely the impact of the
doubly-stochastic scaling on singular vectors, detection of the block struc-
ture by means of these vectors, and details such as cluster refinement and
a stopping criterion. Then we test the algorithm’s effectiveness by using it
on two unsupervised classification tasks: community detection in networks
and shape detection in clouds of points in two dimensions. By comparing
results of our approach with those of widely used algorithms designed for
specific purposes, we observe that our method is competitive (for commu-
nity detection) if not superior (for shape detection) in comparison with
existing methods.

Keywords: Clustering and unsupervised learning · Spectral
clustering · Doubly-stochastic scaling · Community detection · Shape
detection

1 Introduction

Grouping together similar elements among a set of data is a challenging example
of unsupervised learning for which many so-called clustering techniques have
been proposed. A classical way to cluster elements consists in finding blocks in
matrices used to represent data—such as adjacency matrices, affinity matrices,
contingency tables or a graph Laplacian.

The link between spectral and structural properties of matrices is a moti-
vating factor behind many existing clustering algorithms [12,16,28]. To extract
multiple clusters, classical spectral algorithms recursively split the nodes in two
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sets by means of the signs of a given singular vector or eigenvector. This can
be costly since each partition into two clusters requires a new vector to be com-
puted. Moreover, the returned partition at each iteration may be a poor fit to
the natural block structure in the matrix (an example is shown in the right-
most plot of Fig. 2, where the red separation line does not match the blocking).
Other existing methods [20,24,30] rely on spectral embedding with various graph
Laplacian matrices. Such methods require a priori knowledge of the number of
clusters.

In this paper, we present a novel approach to spectral clustering. Our aim is
to be able to find clusters in a strongly connected, directed weighted graph. We
work with a matrix A that represents the weighted adjacency graph.

The main novelty of our method is to use a doubly-stochastic scaling of the
matrix A before extracting spectral components. That is we find two positive
diagonal matrices D and F so that all the row sums and column sums of the
scaled matrix P = DAF are equal to one. We show in Sect. 2 that the scaling
improves the fidelity of the structural information contained in the leading sin-
gular vectors of P. In particular, we only need to compute a few singular vectors
to obtain significant information on the underlying structure without any prior
information on the number of blocks. Additionally, working with singular vectors
of P makes it feasible to analyse directed graphs, and can provide an accurate
clustering when the graph structure is distinctly asymmetric.

The paper is structured as follows. In Sect. 2 we outline the connection
between the singular vectors of a doubly-stochastic matrix scaling and its block
structure. In Sect. 3 we use tools from signal processing to detect clustering infor-
mation in the vectors. Section 4 is dedicated to the rearrangement of the blocks:
we have to collate information provided by left and right singular vectors and
further refinement may be necessary when we iterate our process by analysing
several singular vectors in turn. We also present a bespoke measure we have
designed to evaluate the quality of the clustering, and to derive a stopping cri-
terion. Empirical results using benchmark data sets are provided in Sect. 5 to
indicate the effectiveness of our algorithm and finally we present some concluding
remarks in Sect. 6.

2 Doubly-Stochastic Scaling

Scaling a matrix into doubly-stochastic form is always possible if the matrix
is bi-irreducible, that is there exist no row and column permutations that can
rearrange A into a block triangular form [29]. If A is the adjacency matrix of a
strongly connected directed graph then it is bi-irreducible so long as its diagonal
is zero free. If necessary, we can add nonzero terms to the diagonal without
affecting the underlying block structure.

The following theorem is a straightforward consequence of the Perron–
Frobenius theorem [17,26].

Theorem 1. Suppose that S ∈ R
n×n is symmetric, irreducible, and doubly-

stochastic. The largest eigenvalue of S is 1, with multiplicity 1, and the associated
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eigenvector is equal to a multiple of e, the vector of ones. If S has total support–
that is S can be permuted symmetrically into a block diagonal structure with
k irreducible blocks, then the eigenvalue 1 has multiplicity k. A basis for the
corresponding eigenvectors is

{v1,v2, . . . ,vk},

where vpq for p ∈ {1, . . . , k} is given by

vpq =
{

1, for all q in block p
0, otherwise.

If we compute an eigenvector of such a matrix S associated with the eigen-
value 1 then it will be of the form

x = a1v1 + a2v2 + · · · + akvk.

By forcing x to lie in the orthogonal complement of the constant vector e, it is
reasonable to assume that the ai are distinct. Since these vectors are formed by
a disjoint partition of {1, . . . , n} we can identify the precise contribution from
each block, and then characterise the partition exactly using the set

{a1, . . . , ak}.

Indeed, reordering x according to the block structure puts it in piecewise con-
stant form. Conversely, symmetrically permuting rows and columns of S accord-
ing to the ascending order of entries from x reveals the block structure of S.

As a corollary of Theorem 1, consider an non-symmetric but still doubly-
stochastic matrix P. Both PPT and PTP are also doubly-stochastic, and the
results of Theorem 1 apply. Suppose then that we compute the principal left
and right singular vectors of P. If either PPT or PTP exhibits some block
structure, then the dominant singular vectors of P have contributions from each
of the corresponding basis vectors. Thus we can directly identify the row and/or
column block structure of P using the same trick as for the matrix S.

Our algorithm is designed for matrices that are perturbations of matrices
with total support. If the matrix has a structure that is close to block diagonal,
the leading singular vectors can be assumed to have a structure similar to the
piecewise constant form. The impact of a small perturbation on the scaling of
a block diagonal matrix can be found in [11, §2.1]. If we then look for steps in
the computed vectors we should be able to reveal some underlying approximate
block structure, or at least some row blocks (respectively column blocks) that
are weakly correlated with each other. To find a doubly-stochastic scaling we
use the Newton method described in [18]. Typically, this is very cheap to do,
requiring only matrix–vector products.

To emphasize the power of the doubly-stochastic scaling compared to other
spectral clustering techniques, we use a small example in Fig. 1 to illustrate how
the spectral information may vary when extracting eigenvectors from either the
Laplacian or from the doubly-stochastic matrix. In this example, the graph has
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three distinct clusters that are loosely linked together. To ensure bi-irreducibility
the diagonal of the adjacency matrix of the graph is set to 10−8 times the identity
matrix, before scaling to doubly-stochastic form. In the lower half of Fig. 1 we
see the numerical structure of the eigenvectors used to identify the clusters. The
lower graph is a sorted version of the upper. For the Laplacian we have illustrated
the eigenvectors of the two smallest positive eigenvalues (the Fiedler vector in
blue) and for the stochastic scaling we have used the two subdominant vectors.
In the case of the Laplacian matrix, we can see that the eigenvectors cannot
easily resolve the clusters (the same is also true for the normalised Laplacian,
too). On the other hand, for the doubly-stochastic scaling we can use either of
the vectors to resolve the clusters perfectly and unambiguously.

As we said in Sect. 1, it is possible to iterate our process of finding and
analysing singular vectors to refine our clustering. Such an iterative process
needs to analyse different singular vectors at each step to obtain additional
information. In [11, §4], we describe our implementation.

3 Cluster Identification

A key stage in our algorithm is to identify clusters using the largest singular
vectors of the doubly-stochastic bi-irreducible matrix P. We note that we are
assuming no a priori knowledge regarding the number of clusters nor the row
and column permutations that may reveal the underlying block structure.

Fig. 1. Two matrix representations of a graph and their corresponding eigenvectors
(Color figure online)
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Partitioning algorithms that work on vectors analogous to the Fiedler vector
divide the matrix in two parts according to the signs of the vector entries. But
thanks to our previous doubly-stochastic scaling we are able to see more than two
blocks, as explained in Sect. 2. If PPT or PTP has an underlying nearly block
diagonal structure, its leading eigenvectors are expected to have nearly piecewise
constant pattern when reordered according to the size of their entries, as in the
right bottom plot of Fig. 1. Our problem is thus to detect steps in the reordered
vector, which we choose to view as a signal processing issue. In fact, this vector
can be considered as a 1D signal whose steps are to be detected. Hence, we
proceed in our cluster detection by applying tools from signal processing, in
particular using a convolution product between the current singular vector and
a specific filter. The peaks in the convolution product correspond to edges in the
signal. These tools have the added bonus of not needing prior knowledge of the
number of clusters.

We have chosen to use the Canny filter [4], which is widely used in both
signal and image processing for edge detection. To optimise edge detection it
combines three performance criteria, namely good detection, good localization,
and the constraint that an edge should correspond to a peak in an appropriate
convolution. In order to satisfy these criteria the Canny filter uses an operator
constructed from the convolution product of the output Signal-to-Noise Ratio
(SNR) and a localization function (the filter). The optimal localization function
is the first derivative of a Gaussian kernel [4].

Much effort has gone into refining our implementation of edge detection to
make it optimal for our particular application. When using the filter for the
convolution we can vary a parameter that we call the sliding window size. The
window size determines whether the filter has a narrow support and has a steep
profile (as happens with a small window) or a broad support and a smoother
profile (with a big window), as shown in Fig. 2(a). A small window can create
many peaks whereas a larger one will detect fewer edges.

Fig. 2. (a) The filter for different sliding window sizes; (b) Convolution products; (c)
Step detection (Color figure online)

To avoid the side effects of the window size on the convolution product the
step detection is performed with two window widths of size n/30 and n/150
respectively where n is the size of the vector. We then sum both convolution
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results in order to detect the principal peaks and to make sure that our steps
are both sharp and of a relatively significant height.

Figure 2(b) shows an example of how the sliding window can affect the step
detection using the 480×480 matrix rbsb480 from the SuiteSparse collection [8].
We can see from this figure that the peaks corresponding to steps in the vector
are better identified using this sum. In Fig. 2(c), the associated right singular
vector is plotted indicating the quality of the steps detected by the filters. In
contrast, the horizontal red line in Fig. 2(c) indicates the bipartitioning suggested
by the Fiedler vector. This presumes that there are precisely two clusters and
the separation is not aligned with any of the steps indicated by the singular
vector.

It is possible for the edge detector to identify spurious clusters. In [11, §6]
we give an illustrative example and also describe how to deal with this issue
in general by validating peaks and also by incorporating additional information
provided by other singular vectors to resolve the boundaries between blocks with
high precision.

4 Cluster Improvement

We now explain how to merge the different clusters found for each individually
analysed singular vector, as well as those found on rows and columns once the
iterative process is over. We then present a bespoke measure to evaluate the
quality of our clustering which allows us to amalgamate some small clusters.
Using the measure, we develop a stopping criterion to determine convergence of
the iterative process.

Throughout this section we illustrate our comments with the rbsb480
matrix [8] because of its interesting fine block structure on both rows and
columns. We observe that in Figs. 3 and 4, we are not presenting a clustering in
a formal sense, but simply an overlapping of the independent row and column
partitions.

4.1 Overlapping the Clusterings

Each time our algorithm analyses a right (respectively left) singular vector of
the matrix it may find a row (respectively column) partition of the matrix. Of
course, the resulting partition may be different for every analysed vector and we
need to merge them in an embedded manner. This process is illustrated in Fig. 3,
where the first detection step identifies only 4 row clusters and 5 column clusters,
while the second left and right singular vectors suggest a different picture with
3 row clusters and 4 column clusters. These new clusters are complementary
to the first set and the merged clustering gives 12 row clusters and 20 column
clusters with fairly well separated sub-blocks in the resulting reordered matrix,
as shown in the left-hand plot in Fig. 4.

As we can see from our tests on rbsb480, it may be sensible to analyse
several vectors in turn and merge these results. However, this can be overdone
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Fig. 3. Cluster identification using different singular vectors

and we may produce a very fine partitioning of the original matrix. This issue is
illustrated in the right-hand plot of Fig. 4, where 3 steps have been merged to give
a fine grain clustering (with 48 by 100 clusters) and motivates our development
of an effective method for amalgamating blocks.

Fig. 4. Recursive cluster identification obtained by analysing several vectors in turn

4.2 Quality Measure

We base our cluster analysis on the modularity measure from [23]. Modularity
can be interpreted as the sum over all clusters of the difference between the
fraction of links inside each cluster and the expected fraction, by considering a
random network with the same degree distribution.

We can evaluate our row clustering using the modularity of our doubly-
stochastic matrix PPT given by the formula

Qr =
1
n

rC∑
k=1

(
vT
k PPTvk − 1

n
|Jk|2

)
. (1)

Here, n is the number of rows in P, rC is the number of row clusters and |Jk|
is the cardinality of cluster k. The equation is easily derived from the definition
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of modularity from [1], noticing that 2m = n in the doubly-stochastic case.
In a similar way, we derive a quality measure Qc for the column clustering by
considering the matrix PTP and summing over the sets of column clusters.

In [11, §7.1] we prove that the quality measure falls between the bounds

0 ≤ Qr ≤ 1 − 1
rC

, (2)

with the upper bound being reached only when the rC clusters have the same
cardinality.

Despite issues with the so-called resolution limit [13], modularity is still one
of the most widely used measures in the field of community detection and we are
comfortable in employing it here. Furthermore, in the specific case of k-regular
graphs, many measures including the Newman and Girvan modularity behave
similarly [6]. Since doubly-stochastic matrices can be considered as adjacency
matrices of weighted 1-regular graphs most common quality measures can be
expected to give similar results.

To avoid tiny clusters as in the right plot of Fig. 4, we recursively amalgamate
the pair of clusters that gives the maximum increase in modularity measure.
The algorithm stops naturally when there is no further improvement to be made
by amalgamating pairs of clusters together. A proof that this method always
provides a local maximum can be found in [11, §7.2] where it is also shown that
it is computationally cheap.

The amalgamation process prevents an explosion in the number of clusters
and gives some control over the amount of work for testing the rC(rC −1)/2 pos-
sibilities and is applied after overlapping the clusterings obtained independently
for each singular vector.

As a stopping criterion, we compare the quality of the clustering updated by
the amalgamation process, Qupd

r with that obtained immediately beforehand,
Qref

r . There are four possibilities to consider.

– If Qupd
r < Qref

r we reject the update.
– If Qupd

r > Qref
r but the number of clusters increases we accept the update

only if there is a sizeable jump in modularity taking into account the upper
bound in (2). We compare the quality measure increase with its theoretical
potential increase using the ratio

ρ =
Qupd

r − Qref
r

1
nbClustref

− 1
nbClustupd

.

The threshold can be tuned to control the number of iterations we take and
the granularity of the clustering. In tests, a threshold value between 0.01 and
0.1 seems to be effective.

– If Qupd
r > Qref

r and the number of clusters does not increase, we accept the
update.

– If the clusterings are identical up to a permutation then we can terminate the
algorithm, which is equivalent to rejecting the update.
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5 Applications

We illustrate the performance of our algorithm in community detection in
Sect. 5.1 and we test it on shape detection using the Scikit-learn package
[25] in Sect. 5.2.

5.1 Community Detection

We first test our algorithm on simple networks. To ensure bi-irreducibility with
minimal effect on the clusters we set the diagonal to 10−8.

Before the detection phase, we remove dominant entries (>0.55) from the
scaled matrix since they give rise to near-canonical eigenvectors that tend to
lack well defined steps. From the first iteration, we consider each dominant entry
as an already identified block when looking at the projected eigenvector of the
matrix, as explained in [11, §3]. These large entries are associated with struc-
tures not strongly linked to communities, such as hub or pendant nodes, and we
incorporate them during the amalgamation process to optimise modularity once
our algorithm has converged.

We have compared our algorithm (US) against four established community
detection algorithms from the igraph package [7], namely Walktrap (WT) [27],
Louvain (ML) [2], Fast and Greedy (FG) [5], and Leading Eigenvector (LE)
[22]. WT and ML are specifically designed to work on graph structures directly
whereas LE focuses (like ours) on exploiting spectral information. FG is a natural
greedy algorithm to optimise the modularity. WT and ML have been shown to
be among the three best community detection algorithms in a recent study [31].

We have applied these algorithms to four datasets of 500 node networks gen-
erated with the Lancichinetti–Fortunato–Radicchi benchmark (LFR) [19] which
is widely used in community detection because its characteristics are close to
those of real-world networks. Each dataset corresponds to a different average
degree k. More details are given in Table 1.

Table 1. Parameters for benchmark generation

Parameter Value

Number of nodes 500

Average degree k {10,20,40,75}
Maximum degree 2× k

Degree distribution
exponent

−2 Exponent of the power law used to
generate degree distribution

Community size
distribution exponent

−1 Exponent of the power law used to
generate community size distribution

We test the behaviour of community detection algorithms using the network
mixing parameter, which quantifies the strength of a community structure. Ini-
tially, it measures the strength of a node’s community membership by computing
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the ratio between its links outside the community and its degree. The greater
the mixing parameter for each node, the weaker the community structure. The
network mixing parameter μ is the mean value of the nodal mixing parameters.

We measure the accuracy of the community structures returned by the algo-
rithms by using the Normalised Mutual Information (NMI). This is a measure
taken from information theory (see for instance [15]). It measures the deviation
between two candidate partitions with no requirement that they have the same
number of blocks and is widely used in the community detection field [31]. The
NMI takes its values in [0, 1], and is equal to 1 when the two partitions are
identical.

The results are shown in Fig. 5. Each plot corresponds to a different value
of k. In each plot, we have generated 50 networks for each μ value and display
the mean value of the NMI. We remark that we can pair existing algorithms
in terms of performance: ML and WT, where NMI is close to 1 even for large
values of μ, and FG and LE where NMI decreases rapidly. Our algorithm falls
between the two groups.

Fig. 5. Curves of NMI for FG, LE, ML, WT, US

We note that the two groups tend to behave similarly in terms of NMI when
increasing k. This can be explained by the constraints on the network that result
in larger communities for large k values, as shown in Fig. 6. Here, two adjacency
networks from our dataset have been plotted with μ = 0.3. The matrix in the
left plot has an average degree k = 10 and 40 communities, whereas for the
matrix in the right plot k = 75 and there are 5 communities. It is known that
large communities are more accurately detected by most community detection
algorithms. But it seems that it is not the only factor that makes our algorithm
work better for large k, as its NMI curves are more sensitive to k than FG and LE.

We have tested whether this behaviour may be due to the fact that, in very
sparse networks, leading eigenvectors may be associated with features other than
the community structure [14]. Thus, we have compared the accuracy of two
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Fig. 6. Adjacency matrices of two networks

versions of our algorithm. In the first we add 10−8 to the diagonal entries of A
(USd). In the second we add a perturbation to the whole matrix (USw): this
version works with A + εeeT where A is the adjacency matrix of the network.
We have set ε to 0.15 as is often suggested with Google’s Pagerank [3]. The
results of both algorithms can be viewed in Fig. 7 for two different values of k.
We observe that the two versions behave similarly when k = 75, whereas USw
(blue curve) is much more accurate than USd (pink curve) for k = 20.

Fig. 7. Curves of NMI for USd and USw (Color figure online)

To complete this study, we have investigated the behaviour of WT, ML, USd
and USw with increasing k. The results are shown in Fig. 8. We see that ML,
WT and USw first improve their accuracy, seem to reach a threshold and finally
worsen for the largest value of k. USd also improves its accuracy, but does not
worsen when k reaches its maximum test value.

Hence, although our algorithm does not beat all existing community detec-
tions algorithms on very sparse networks, it is able to correctly detect communi-
ties better than some widely-used purpose-built algorithms. Moreover it seems to
be a very encouraging alternative when the networks become denser as it retains
its accuracy in these circumstances. Indeed, we will see in Sect. 5.2 that it is
very good at detecting block structures in affinity matrices, and such matrices
are nothing but adjacency matrices of weighted complete graphs.

Finally, our algorithm is not constrained to work with only symmetric matri-
ces and so provides a versatile tool for community detection in directed graphs
even when these graphs have unbalanced flows, i.e. an imbalance between links
that enter and then leave a subgroup. Moreover, WT and ML, which both sym-
metrize the matrix by working on A+AT , produce spurious results in this case.
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Fig. 8. NMI curves of ML, WT, USd, USw for some k values

An example is shown in Fig. 9, where two communities are connected in an asym-
metric fashion, and the partitions suggested by the algorithms are shown. Thus
by working on the normal equations of the scaled matrix we are able to perfectly
detect the community structure of the graph, while both WT and ML fail.

Fig. 9. Detecting asymmetric clusters

5.2 Shape Detection

To show the potential of our algorithm for other clustering tasks, we have tested
it on datasets from the Scikit-learn package [25]. To enable a quick visual
validation, we have used it to detect, through their affinity matrices, coherent
clouds of points in two dimensions with 1500 points for each dataset. The affinity
matrix [24] of a set of points {xi ∈ R

p, i = 1...n} is the symmetric matrix with
zeros on the diagonal and

Ai,j = exp
(

−‖xi − xj‖2
2σ2

)
,

elsewhere. The accuracy of our method strongly depends on the choice of the
Gaussian parameter σ. We follow the prescription in [21] to take into account
both density and dimension of the dataset. Since the affinity matrix has a zero
diagonal we enforce bi-irreducibility as before by adding 10−8 to the diagonal.
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As for community detection, we preprocess by removing dominant entries in the
scaled matrix. In postprocessing we reassign these entries to the cluster that
contains their closest neighbour in Euclidean distance.

Fig. 10. Comparison between clustering algorithms

As a baseline, we have compared it with the clustering algorithms from the
Scikit-learn package. The results for five of these algorithms are provided
in Fig. 10. Here each row corresponds to a specific two-dimensional dataset, and
each column to an algorithm. The points are coloured with respect to the cluster
they have been assigned by the algorithm. The rightmost column gives the results
for our method when we stop after the analysis of a single eigenvector. It is clear
that this vector provides enough information to roughly separate the data into
coherent clusters for all the datasets whatever their shape. The NMI is given in
Table 2, following the same order as in Fig. 10 for the datasets. We see that our
algorithm always achieves the best score except for two datasets: the fourth for
which one element has been misplaced by the postprocessing and the third for
which our algorithm still has a NMI larger than 0.9. We also note that, except
for DBSCAN, all these algorithms need to know the number of clusters.
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Table 2. NMI for the clusterings shown in Fig. 10

MiniBatch
Kmeans

Spectral
Clust.

Agglo.
Clust.

DB
SCAN

Gaussian
mixture

Our
method

2.9 × 10−4 1 0.993 1 1.3 × 10−6 1

0.39 1 1 1 0.401 1

0.813 0.915 0.898 0.664 0.942 0.902

0.608 0.942 0.534 0.955 1 0.996

1 1 1 1 1 1

6 Conclusions

We have developed a spectral clustering algorithm that is able to partition a
matrix by means of only a few singular vectors (sometimes as few as one), mainly
thanks to the spectral properties of the doubly-stochastic scaling. Moreover, our
method does not need to know the number of clusters in advance and needs
no artificial symmetrization of the matrix. We have illustrated the use of our
algorithm on standard data analysis problems, where we are competitive with
methods specifically designed for these applications. However, it is more versatile
than those classical algorithms because it can be applied on matrices from very
diverse applications, simply needing adaptive post- and pre-processing to be used
on specific applications.

Fig. 11. Detection of co-clusters

In future work we aim to customise our method for co-clustering since it
naturally detects rectangular patterns in square matrices. In Fig. 11 we compare
our algorithm with the spectral co-clustering algorithm designed by Dhillon in
[9]. We observe that Dhillon’s algorithm misplaces elements of the 8 cluster
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matrix whilst our algorithm succeeds in recovering the ground truth structure.
While we have to keep in mind that these co-clusterings have to be understood
as the overlapping of independent clusterings on the matrix rows and columns,
and that it is shown in [10] that the intertwining between row and column
clusters is an important factor in co-clustering quality, our preliminary results
are most encouraging. A study of the algorithm complexity is ongoing, as well
as an efficient implementation. For now, a simple Matlab implementation can be
found in the Data Mining section of the webpage http://apo.enseeiht.fr/doku.
php?id=software.
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Abstract. Dense subtensor detection gains remarkable success in spot-
ting anomaly and fraudulent behaviors for the multi-aspect data (i.e.,
tensors), like in social media and event streams. Existing methods detect
the densest subtensors flatly and separately, with an underlying assump-
tion that these subtensors are exclusive. However, many real-world sce-
nario usually present hierarchical properties, e.g., the core-periphery
structure or dynamic communities in networks. In this paper, we propose
CatchCore, a novel framework to effectively find the hierarchical dense
subtensors. We first design a unified metric for dense subtensor detection,
which can be optimized with gradient-based methods. With the proposed
metric, CatchCore detects hierarchical dense subtensors through the
hierarchy-wise alternative optimization. Finally, we utilize the minimum
description length principle to measure the quality of detection result and
select the optimal hierarchical dense subtensors. Extensive experiments
on synthetic and real-world datasets demonstrate that CatchCore out-
performs the top competitors in accuracy for detecting dense subtensors
and anomaly patterns. Additionally, CatchCore identified a hierarchi-
cal researcher co-authorship group with intense interactions in DBLP
dataset. Also CatchCore scales linearly with all aspects of tensors.

Code of this paper is available at: http://github.com/wenchieh/
catchcore.

1 Introduction

Dense subgraph and subtensor detection have been successfully used in a vari-
ety of application domains, like detecting the anomaly or fraudulent patterns
(e.g., lockstep behavior, boost ratings) in social media or review sites [10,11],
identifying malicious attacks in network traffic logs or stream data [20,22], and
spotting changing gene-communities in biological networks, etc.

Several algorithms detect the densest subtensors or blocks in a flat man-
ner [11,20–22], i.e., remove-and-redetect one-by-one, with an underlying assump-
tion that these subtensors are exclusive and separate. However, many real-world
tensors usually present hierarchical properties, like the core-peripheral struc-
ture in networks and dynamic communities in social media. So it will be diffi-
cult to identify subtle structures (like multi-layer core) within the dense block
c© Springer Nature Switzerland AG 2020
U. Brefeld et al. (Eds.): ECML PKDD 2019, LNAI 11906, pp. 156–172, 2020.
https://doi.org/10.1007/978-3-030-46150-8_10
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Fig. 1. Examples and CatchCore Performance Overview. (a) Example and
workflow of hierarchical dense subtensors detection. (b) shows the detected dense co-
authorship researcher group (a multi-layer core) of 20 users in DBLP. The densest
block (red) last 3 years (2011–2013) containing 8 authors as the list shows, the outer
hierarchies (with different colors) include other researchers and exist in various time
ranges (text marked). (c) CatchCore outperforms competitors for detecting injected
blocks in synthetic data, it achieves lower detection bound than others. (d) CatchCore
detects dense subtensors with higher density compared with baselines for the top four
densest blocks in DBLP. These blocks correspond to a hierarchical group as (b) shows.
(e) CatchCore is linearly scalable w.r.t the number of tuples in tensor. (Color figure
online)

and the relations (e.g., overlapping or inclusion) among the different blocks.
Meanwhile, other methods for community detection [4,6,25] and dense subgraph
detection [10,19,26] only concentrate on the plain graph.

One challenging problem is how to efficiently detect the hierarchical dense
subtensors in the multi-aspect data, and Fig. 1(a) illustrates an example for the
TCP dumps scenario. The network intrusion attacks dynamically changed in
interacting-intensity at different stages along the time and among various hosts,
resulting in a multi-layer and high-density core. So, hierarchical dense subtensor
detection can help to understand the process and spot such anomaly patterns.

We propose CatchCore, a novel framework to detect hierarchical dense
cores in multi-aspect data (i.e. tensors). Our main contributions are as follows:

– Unified metric and algorithm: We design a unified metric can be optimized
with the gradient methods to detect dense blocks, and propose CatchCore
for hierarchical dense core detection with theoretical guarantee and MDL
based measurement.
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– Accuracy: CatchCore outperforms the state-of-the-art methods in accu-
rately detecting densest blocks and hierarchical dense subtensors in both syn-
thetic and real-world datasets (Fig. 1(c), (d)).

– Effectiveness: CatchCore successfully spots anomaly patterns, includ-
ing suspicious friend-connections, periodical network attacks, etc., and
found a hierarchical researcher co-authorship group with heavy interactions
(Fig. 1(b)).

– Scalability: CatchCore is scalable, with linear time (Fig. 1(e)) and space
complexity with all aspects of tensors (Theorems 7, 8).

Reproducibility: Our open-sourced code and the data we used is available at
http://github.com/wenchieh/catchcore (Supplement is also contained).

2 Notions and Concepts

Throughout the paper, vectors are denoted by boldface lowercases (e.g. x),
scalars are denoted by lowercase letters (e.g. c), and �x� ≡ {1, . . . , x} for brevity.

Let R(A1, . . . , AN , C) be a relation consisting of N dimension attributes
denoted by {A1, . . . , AN}, and the non-negative measure attribute C ∈ N

≥0, (see
the running example in supplement). We use Rn to denote the set of distinct
values of An, whose element is ak ∈ Rn. For each entry (tuple) t ∈ R and for each
n ∈ �N�, we use t[An] and t[C] to denote the values of An and C respectively in
t, i.e. t[An] = an and t[C] = c. Thus, the relation R is actually represented as an
N -way tensor of size |R1| × · · · × |RN |, and the value of each entry in the tensor
is t[C]. Let R(n, an) = {t ∈ R; t[An] = an} denote all the entries of R where its
attribute An is fixed to be an. We define the mass of R as MB =

∑
t∈R t[C], the

volume of R as VR =
∏N

n=1 |Rn|, and the cardinality of R as DR =
∑N

n=1 |Rn|.
For a subtensor B, which is composed of the subset of attributes in R, is

defined as B = {t ∈ R; t[An] ∈ Bn,∀n ∈ �N�}, i.e. the set of tuples where
each attribute An has a value in Bn. We use B � R to describe that B is the
subtensor of R. Mathematically, for any n ∈ �N�, we can use a indicator vector
x ∈ {0, 1}|Rn| to denote whether any an ∈ Rn belongs to Bn, and x[an] = 1
iff B(n, an) ⊆ R(n, an). Thus the inclusion relationship between B and R can
be represented with an indicator vectors collection XB = {xn ∈ {0, 1}|Rn|;∀n ∈
�N�}. Specially, X0 = {{0}|Rn|;∀n ∈ �N�} corresponds to NULL tensor (∅),
and X1 = {{1}|Rn|;∀n ∈ �N�} corresponds to R.

Given an indicator vector x ∈ {0, 1}|Rn| for tensor R, the subtensor whose
n-th dimension consists of {a;x[a] = 1, a ∈ Rn} can be denoted as R ×n x,
where “×n” is the n-mode product for a tensor and a vector1.

3 Framework and Formulation

In this section, we propose a unified metric, which can be optimized with the
gradient methods, to detect dense blocks, then we give the formal definition of
the hierarchical dense subtensors detection problem.
1 Entrywise, the n-mode product between the tensor R and vector x can be denoted

as: (R ×n x)i1...in−1in+1...iN =
∑|Rn|

in=1 t(i1, · · · , iN , c)xin .

http://github.com/wenchieh/catchcore
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3.1 Densest Subtensor Detection Framework

Let R is an N -way tensor, and B is the subtensor of R defined by the
indicator vectors collection XB. Then the mass MB can be represented as
MB = R ×̄ XB = R×1x1 · · ·×NxN , where the full-mode product ×̄ applies the
n-mode tensor-vector product ×n to indicator vectors along the corresponding
dimension2. We propose the following unified metric inspired by [24],
Definition 1 (Entry-Plenum). Assume X is an indicator vectors collection
for some subtensor in R, and φ > 0 is a constant. Given any two strictly increas-
ing functions g and h, the entry-plenum is defined as:

fφ(X) =

{
0 X = X0,

g(MX) − φ · h(SX) otherwise.
(1)

where MX is the mass and SX is the size of subtensor defined by X in R, and
SX can be VX, DX or other forms.

Most popular existing subtensor density measures [11,20,21] can be sub-
sumed into the above definition as
– Let g(x) = log x, h(x) = log x

N , φ = 1 and SX = DX, fφ(B) is equal to the
arithmetic average mass ρari(B) = MB/(DB/N).

– Let g(x) = h(x) = log x, SX = VX, if φ = 1, then fφ(B) corresponds to
volume density ρvol(B) = MB/VB; and if set φ = 1

N , the fφ(B) comes down
to the geometric average mass ρgeo(B) = MB/V

1/N
B .

In principle, for the entry-plenum definition, the first term g(MX) favors
subtensors with the large mass, whereas the second term −φ · h(SX) acts as
regularization to penalize large-size block. Thus, detecting the densest subtensor
can be rewritten as the following problem under the entry-plenum metric.

Problem 2 (Densest (g, h, φ)-entry-plenum Subtensor). Given an N -way tensor
R, a constant φ > 0, and a pair of increasing functions g and h, find an indicator
vectors collection X∗ such that fφ(X∗) ≥ fφ(X) for all feasible X = {xn ∈
{0, 1}|Rn| : ∀n ∈ �N�}. The subtensor derived from X∗ is referred to be as the
Densest ( g, h, φ)-entry-plenum Subtensor of the tensor R.

In general, finding the densest block in terms of some measure is NP-
hard [2,20], infeasible for the large dataset. Existing methods [10,20,21] resort to
greedy approximation algorithm, which iteratively selects the local optimal sub-
tensor from candidates based on some density measure defined in the ratio form,
for scalability. Instead, our framework formulates the densest subtensor detection
problem in an optimization perspective as follows, it utilizes the indicator vectors
collection X, which can be treated as a block-variable, to make the above prob-
lem can be solved through block-nonlinear Gauss-Seidel (GS) method [9] with
convergence guarantee by introducing relaxation. MX and SX are derivable to
each indicator vector under this condition, and we can use gradient-based opti-
mization strategy for updating as long as the g and h are differentiable. Moreover,
this process is linearly scalable as our proposed CatchCore does in Sect. 4.5.
2 We use ×̄(−n) to denote conducting full-mode product except the n-th mode.
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3.2 Hierarchical Dense Subtensor Detection

In practice, different dense blocks inRmay be overlapping or even inclusive rather
than being separate or flat as many dense-block detection methods [11,20,21]
assumed, whereas they can be described by the hierarchical dense subtensors. We
present the following example and definition to manifest the hierarchical structure
in multi-aspect data, and Fig. 1(a) gives a pictorial illustration.

Example 3 (Network Intrusion). The DARPA dataset contains 60% records
labeled as anomalous belonging to (attacks), which mostly occurred in infrequent
bursts, and dominant by 9 types of attacks, like neptune, smurf, and satan etc.
These different attacks had various intrusion intensity and burst activities among
hosts, leading to discriminative dense patterns at various time ranges.

Given an N -way tensor R, we want to find the dense subtensors, comprising
a set of different entries, in several hierarchies. We use ρ(B) to denote the density
of subtensor B, and Bk as the kth-hierarchy dense subtensor in R. In order to
find some meaningful patterns and to avoid getting identical subtensors across
distinct hierarchies, we have following definition.

Definition 4 (Hierarchical Dense Subtensors (HDS-tensors)). Given
the tensor B0 ← R and a constant K ∈ N

+. For any k ∈ �K�, the Bk−1 and
Bk are subtensors in two adjacent hierarchies, it is required that

(i) density: the densities should be significantly different from each other, that
is, for some η > 1, ρ(Bk) ≥ ηρ(Bk−1).

(ii) structure: subtensors in higher hierarchies are more “close-knit” (multi-layer
dense core) Bk � Bk−1, i.e., Bk

n ⊆ Bk−1
n ,∀n ∈ �N�.

Thus, all subtensors in K hierarchies consist of Hierarchical Dense Subtensors.

Noteworthy is the fact that it is not feasible to recursively apply off-the-
shelf dense subtensor detection methods to find HDS-tensors since they do not
consider the relationship among different blocks, even if possible, it might return
trivial results (e.g. identical dense subtensors across distinct hierarchies); and
how to design the overall objective function to be optimized by the recursive
heuristic is also not clear.

Formally, with the indicator vectors collection Xk denoting the dense sub-
tensor Bk, the HDS-tensors detection problem is defined as follows.

Problem 5 (HDS-tensors Detection). Given: (1) the input N -way tensor R, (2)
the expected density ratio between two adjacent hierarchies η3, (3) the maximum
number of hierarchies K. Find: the indicator vectors collections {X1, . . . ,Xr},
r ≤ K for hierarchical dense subtensors in the r significant hierarchies.

3 More generally, we can also set different density ratios between hierarchies rather
than the fixed one parameter for specific concern.
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We require that ρ(Xr) ≥ ηρ(Xr−1) ≥ · · · ≥ ηr−1ρ(X1), and Xr � · · · � X1.
In addition, we define a three-level coordinate (k, n, i) to index the indicator

vectors collections, i.e., X(k,n,i) denotes the i-th scalar element xi of the n-th
indicator vector xn in Xk. Also, X(k,·,·) and X(k,n,·) represent Xk and indicator
vector xn of Xk respectively.

4 Proposed Method

In this section, we propose an optimization based algorithm, CatchCore, to
detect HDS-tensors, and provide analysis for the properties of CatchCore.

4.1 Optimization Based Dense Subtensor Detection

Here, we provide an interpretable instantiation for the entry-plenum metric
based on the volume density. With the indicator vectors collection XB of sub-
tensor B, the density is represented as ρB = MB

VB
= MB∏

x∈XB
||x||1 , where VB is the

product of the size of indicator vector for each mode, i.e,
∏

x∈XB
||x||1, which

equals to the total number of possible entries (including zeros).
To find the dense subtensor, if we directly maximize the density measure ρB,

however, it leads to some trivial solutions (the entries with maximum measure
value, or any single entry in binary-valued tensor); while maximize the vector-
based subtensor mass MB by optimizing XB will also engender another trivial
result—the R itself, since no any size or volume limitation is taken into account.

Intuitively, we need to maximize the mass of entries while minimize the
mass of missing entries in the block. So we proposed the optimization goal as

max
X

F(X) = (1 + p)R ×̄X − p
∏

xn∈X

||xn||1 ; s.t.xn ∈ {0, 1}|Rn|,∀n ∈ �N�.

(2)
where p > 0 is the penalty parameter, and X = {x1, . . . ,xN}.

The rationale behind above definition is that each existing entry t in the
resultant subtensor contributes t[C] as itself to F(X), while each missing one t̃
is penalized by p (i.e. t̃[C] = −p). In this way, the objective function maximize
the total mass in the resultant subtensor while minimizing the total penalty of
the missing entries. Moreover, it is also an instantiation of densest (g, h, φ)-entry-
plenum subtensor by setting g(x) = h(x) = x, φ = p/(1 + p), and SX = VX .

The optimization of the objective function F(·) is an NP-hard problem due
to the combinatorial nature stemming from the binary constraints of xn. So, we
relax these constraints from a 0–1 integer programming to a polynomial-time
solvable linear programming problem, i.e., 0|Rn| ≤ xn ≤ 1|Rn|, which represents
the probability that the slice R(n, an) belonging to the resultant dense block.
Finally, only the attribute value with probability exactly 1 will be selected.
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4.2 Hierarchical Dense Subtensors Detection

Based on the optimization formulation for finding dense subtensor in one hier-
archy, intuitively, we maximize the objective function in Eq. (2) for each hier-
archy to detect K hierarchical dense subtensors, i.e. to maximize

∑K
k=1 F(Xk),

and also consider aforementioned prerequisites of HDS-tensors. The density con-
straint is represented as ρXk+1 ≥ ηρXk for the kth hierarchy with density increase
ratio η > 1; and for the structure requirement (Bk+1 � Bk � Bk−1), we
impose additional constraints on indicator vectors to prevent identical results, as
X(k+1,n,·) ≤ X(k,n,·) ≤ X(k−1,n,·),∀n ∈ �N�. We assume X0 = X1, XK+1 = X0.

Consequently, the overall optimization formulation is defined as follows,

max
X1,...,XK

K∑

k=1

F(Xk)

s.t. ρXh+1 ≥ ηρXh , X(h+1,n,·) ≤ X(h,n,·) ≤ X(h−1,n,·). ∀h ∈ �K�; n ∈ �N�.
Obviously, this bound-constrained multi-variable nonlinear programming

(BMV-NLP) optimization problem is non-convex and numerically intractable
to solve. So we take following relaxation for the constraint to make it to be
a regularization term in the objective function. Let dk−1 = ηρXk−1 which is
a constant w.r.t Xk, so the regularization term can be written as (also with
entry-plenum form) G(Xk) = R ×̄Xk −dk−1

∏N
n=1

∣
∣
∣
∣X(k,n,·)

∣
∣
∣
∣
1
. Thus, the resul-

tant objective function with relaxation constraints for HDS-tensors detection is
given by

max
X1,...,XK

K∑

k=1

F(Xk) + λ
K∑

j=2

G(Xj)

s.t. X(h+1,n,·) ≤ X(h,n,·) ≤ X(h−1,n,·). ∀h ∈ �K�; n ∈ �N�.
(3)

where the parameter λ controls the importance of the regularization term.

4.3 Optimization Algorithms

In this section, we first explain the optimization techniques, and then present
the algorithm CatchCore (as Algorithm 1 summarized) to solve the problem.

Using the programming methods to solve the BMV-NLP optimization prob-
lem, the objective in Eq. (3) is a non-convex and higher-order bounded function
with respect to each indicator vectors collection X(k,·,·), which allows us to apply
the alternative update method where we fix all variables of other hierarchies as
constants except the current collections in each iteration; the similar strategy is
also used to update each indicator vector X(k,n,·) alternatively.

Based on the structure constraints, for any dimension n ∈ �N�, the feasible
solution X(k,n,·) is bounded by the indicator vectors X(k−1,n,·) and X(k+1,n,·)
of two adjacent hierarchies in the high-dimensional space. We relax these con-
straints to 0|Rn| ≤ X(k,n,·) ≤ X(k−1,n,·) for optimizing, thus we can obtain
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Algorithm 1. CatchCore for HDS-tensors detection
Input: (1) the N -way tensor: R (2) the maximum number of hierarchies: K

(3) the penalty value for each missing entry: p
(4) the density ratio between two adjacent hierarchies: η
(5) the regularization parameter: λ (6) maximum number of iterations: tmax

Output: The dense subtensors indicator vector collections: {X1, · · · ,Xr}.
1: initialize X1, · · · ,XK as Xinit

(k,n,·), and t ← 1, r ← 1
2: while t ≤ tmax and Eq. (5) is not satisfied do � Gauss-Seidel method
3: for k ← 1 . . . K do � for the kth hierarchy
4: for n ← 1 . . . N do � for the nth dimension
5: xk

n ← OneWayOpt (xk
n)

6: update Xk

7: t ← t + 1
8: while r ≤ K do � select significant subtensors
9: S = {X(r,n,·); maxX(r,n,·) < 1, ∀n ∈ �N�}

10: if S �= ∅ then
11: break � no significant subtensors for hierarchies > r
12: else:
13: r ← r + 1
14: return the resultant r indicator vector collections {X1, · · · ,Xr}.

X1,X2, · · · ,XK in order. That is, we first get X1 with the constraints {0|Rn| ≤
X(1,n,·) ≤ 1|Rn|,∀n ∈ �N�} by ignoring the constraints of other variables in
other Xks, then we obtain X2 based on the result at the first step under the
constraints {0|Rn| ≤ X(2,n,·) ≤ X(1,n,·),∀n ∈ �N�} and also ignore other con-
straints. In this way, we can solve the K dense subtensors detection subproblems
hierarchy-by-hierarchy. Technically, we adopt trust-region approach [5] to solve
each nonlinear box-constrained programming subproblem. We rewrite the opti-
mization problem in Eq. (3) as,

min
X1,...,XK

f(X1, . . . ,XK) = −(1 + p)R ×̄X(1,·,·) + p
N∏

n=1

∣
∣
∣
∣X(1,n,·)

∣
∣
∣
∣
1

− (1 + p + λ)
K∑

k=2

R ×̄X(k,·,·) +
K∑

k=2

(p + λdk−1)
N∏

n=1

∣
∣
∣
∣X(k,n,·)

∣
∣
∣
∣
1

s.t. X(h+1,n,·) ≤ X(h,n,·) ≤ X(h−1,n,·). ∀h ∈ �K�; n ∈ �N�.

(4)

We use the alternative projected gradient descent [15,16] method that is
simple and efficient to solve the optimization problem. For any dimension n, we
denote the gradient of subtensor mass MB w.r.t xn as ∇xn

MB = R ×̄(−n) XB,
so the gradient of f(·) w.r.t x1

n (X(1,n,·)) and xk
n (X(k,n,·), k ≥ 2) are
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∇x1
n
f = −(1 + p)∇x1

n
MX1 + p

∏

xn∈X1/{x1
n}

||xn||1 1,

∇xk
n
f = −(1 + p + λ)∇xk

n
MXk + (p + λdk−1)

∏

xn∈Xk/{xk
n}

||xn||1 1

where 1 is a |Rn|-dimensional all-ones vector. Let xn be the current iterator
vector of any kth hierarchy in the projected gradient approach, the new iterator
is given by x̃n = P (xn − α∇xn

f) update rule. Here, the operator P (·) projects
the vector back to the bounded feasible region, −∇xn

f is the gradient-related
search direction and α is a step size computed e.g., by means of an Armijo step
size strategy. In the case of an Armijo’s rule line search, a good step size α is
chosen until f(·,Xk

xn→x̃n
, ·)−f(·,Xk, ·) ≤ σ(∇xn

f)T (x̃n−xn) is satisfied, where
Xk

xn→x̃n
means replacing the indicator vector xn with the updated version x̃n

in Xk, and a common choice of the parameter σ (0 < σ < 1) is 0.01. Thus we
can alternatively update each indicator vector xn for the current kth-hierarchy,
and the details are listed in the OneWayOpt algorithm in supplement.

We propose CatchCore to solve the optimization problem in Eq. (4), First,
we initialize the indicator vectors collection with rules that the probabilities of
selecting the slices R(n, an) (i.e. Xinit

(k,n,i)) are 0.5 in the 1st hierarchy and 0.01 in
other hierarchies. In this way, we can fairly avoid some trivial results. To make
the solution to be close to the stationary point regarding convergence, we apply
the following common condition as a stop criteria for the bounded-constrained
optimization method besides the limitation for total iterations tmax.

∣
∣
∣
∣
∣
∣
{

∇P
xk

n
f ;∀n, k

}∣
∣
∣
∣
∣
∣
2

≤ ε
∣
∣
∣
∣
∣
∣
{

∇P
Xinit

(k,n,·)
f ;∀n, k

}∣
∣
∣
∣
∣
∣
2
, (5)

where ∇P
xk

n
f is the elementwise projected gradient defined as (the i-th element)

(∇P
xk

n
f)i =

⎧
⎪⎨

⎪⎩

min(0, (∇P
xk

n
f)i) if X(k,n,i) = X(k+1,n,i),

(∇P
xk

n
f)i if X(k+1,n,i) < X(k,n,i) < X(k−1,n,i),

max(0, (∇P
xk

n
f)i) if X(k,n,i) = X(k−1,n,i).

Then CatchCore calls OneWayOpt to alternatively update all the indicator
vector for each dimension and hierarchy iteratively. In final, we only select these
significant subtensors (the top r of K hierarchies) to return (Line 8–13).

4.4 Parameters Evaluation Using MDL

The penalty value p for missing entries controls the resultant lowest density, and
the ratio parameter η affects density-diversity and the number of hierarchies in
final. Thus, it is a challenging problem to set them appropriately or evaluate
the quality of detection result under some parameter configuration, especially in
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the un-supervised application. We propose to measure the result w.r.t different
parameter settings based on the Minimum Description Length (MDL). In the
principle manner, we compute the number of bits needed to encode the tensor R
with detected hierarchical dense subtensors for selecting the best model (param-
eters), achieving the shortest code length. Intuitively, the less missing entries
and the more accurate of detecting hierarchies will lead to fewer bits needed to
encode R in a lossless compression employing the characterization.

For the indicator vector X(k,n,·) (k ∈ �K�, n ∈ �N�), we can adopt Huffman
or arithmetic coding to encode the binary string, which formally can be viewed
as a sequence of realizations of a binomial random variable X. Due to X(k,n,·) ≤
X(k−1,n,·), we only consider the overlapping part x̄k

n = {X(k,n,i);X(k−1,n,i) =
1,∀i ∈ �|R|n�} to avoid redundant encoding of 0s. We denote the entropy of
indicator vector x as: H(x) = −∑

q∈{0,1} P (X = q) logP (X = q), where P (X =
q) = nq/ ||x||1 and nq is the number of q in x. The description length of Xk is
defined as L(Xk) =

∑N
n=1

(
log∗ ∣

∣
∣
∣X(k,n,·)

∣
∣
∣
∣
1
+

∣
∣
∣
∣X(k−1,n,·)

∣
∣
∣
∣
1

· H(x̄k
n)

)
.4

Assume that XK+1 = X0, For the dense subtensor Bk defined by Xk, we
only need to encode the entries in B̄

k = Bk −Bk+1 due to Bk+1 � Bk, based on
some probability distribution. For the entry t ∈ B̄

k, specifically, if t[C] ∈ {0, 1},
t is sampled from binomial distribution; and if t[C] ∈ N

≥0, we instead model the
data by using the Poisson distribution [11] parameterized by the density of B̄k,
i.e. ρB̄k . Therefore the code length for encoding B̄

k is

L(B̄k) = −
∑

q∈{t[C];t∈B̄k}
nq · logP (X = q) + Cpara,

where P (X = q) is the probability of q in the probability distribution function
P, and Cpara is for encoding the parameters of P (like the mean in Poisson).

As for the residual part R̄ = R − B1, we use Huffman coding to encode
its entries considering the sparsity and discrete properties, the code length is
denoted as Lε.

Putting all together, we can write the total code length for representing the
tensor R with the resultant K hierarchies indicator vectors collections as:

L(R;X1, . . . ,XK) = log∗ K +
N∑

n=1

log∗ |Rn| +
K∑

k=1

L(Xk) + L(B̄k) + Lε. (6)

To get the optimal parameters, we can heuristically conduct a grid search over
possible values and pick the configuration that minimizes MDL. We demonstrate
that the parameters according to the MDL principle results in optimal quality
of detecting HDS-tensors, and the search space is limited.

4.5 Algorithm Analysis

In this section, we provide the analysis for the convergence, the time and space
complexity of CatchCore. The details of proofs refer to the supplement.
4 log∗ x is the universal code length for an integer x [18].
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Table 1. Summary of real-world datasets.

Name Size DR nnz(R) Category

Android 1.32M × 61.3K × 1.28K × 5 1.38M 2.23M Rating
BeerAdvocate 26.5K × 50.8K × 1,472 × 1 78.7K 1.07M
StackOverflow 545K × 96.7K × 1,154 × 1 643K 1.30M

DBLP 1.31M × 1.31M × 72 2.63M 18.9M Social network
Youtube 3.22M × 3.22M × 203 6.45M 18.5M

DARPA 9.48K × 23.4K × 46.6K 79.5K 522K TCP dumps
AirForce 3 × 70 × 11 × 7.20K × 21.5K × 512 × 512 39.7K 863K

Lemma 6 states the convergence properties of the gradient method for our
CatchCore.

Lemma 6. CatchCore algorithm converges to a critical point.

Theorem 7 states the time complexity of CatchCore algorithm, which is
linear with K, N , and nnz(R)—the number of non-zero entries in R. And the
space complexity is given in Theorem 8.

Theorem 7 (Worst-case Time Complexity). Let tals be the number of iter-
ations for Armoji’s line search used in the OneWayOpt Algorithm for updating
any indicator vector, the worst-case time complexity of the CatchCore Algo-
rithm 1 is O(K · N · tmax · tals · (nnz(R) + c · DR)).

Theorem 8 (Memory Requirements). The amount of memory space
required by CatchCore is O(nnz(R) + 2K · DR).

Parameter Analysis: For the maximum significant hierarchies Kmax =
logη(

max(R)
ρR

), where max(R) is the maximum value of measure attributes of R.
In practice, we have following observations to ensure the efficiency of Catch-
Core,

◦ nnz(R) � DR, K � Kmax, i.e., there is only few significant hierarchies;
◦ t < tmax, i.e., early stopping for iterations;
◦ a small tals, i.e., few iterations for searching the step size.

and the dimension-update (Line 4) could be solved separately, a situation suit-
able for parallel environment.

5 Experiments

We design experiments to answer the following questions:

– Q1. Accuracy: How accurately does CatchCore detect HDS-tensors? Does
the MDL evaluation select the optimal parameters?

– Q2. Pattern and anomaly detection: What patterns does CatchCore
detect in real-world data? What is behavior of the detected anomalies?

– Q3. Scalability: Does CatchCore scale linearly with all aspects of data?
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Table 2. Hierarchical subtensors detection results for BeerAdvocate dataset.

K Injected Density
H1 H2 H3

CC D/M CS CPD CC D M CS CPD CC D M CS CPD

2

0.05 + 0.01 1 1 1 0.99 1 0.12 0.04 0 0.08

–
0.2 + 0.1 1 0 0.24 0.24 1 1 1 1 0.99
0.7 + 0.1 1 0 0.33 0.33 1 1 1 1 0.52
1 + 0.05 1 0 0.78 0.78 1 1 1 1 0.99
1 + 0.2 1 0 0.79 0.79 1 1 1 1 0.99

3
0.2 + 0.1 + 0.05 1 0 0.26 0.26 1 0 0 0 0 1 1 1 1 0.98
1 + 0.2 + 0.01 1 0 0 0 1 0.99 1.0 1.0 0.22 1 0.44 0.43 0.75 0.85
1 + 0.7 + 0.2 1 0 0 0 1 0 0 0.98 0.98 1 1 1 1 0.99

* The abbreviations mean that CC: CatchCore, D: D-Cube, M: M-Zoom, CS: CrossSpot.
* The injected shape w.r.t density is: 0.01: 1K × 800 × 15, 0.05: 800 × 600 × 10, 0.1: 500 × 500 × 5,
0.2: 300 × 300 × 5, 0.7: 200 × 100 × 2, 1: 100 × 80 × 1.

5.1 Experimental Settings

Baselines: We selected several state-of-the-art methods for dense-block detec-
tion as the baselines, including D-Cube [21], M-Zoom [20], CrossSpot [11],
and CP Decomposition (CPD) [12]. In all experiments, a sparse tensor format
was used for efficient memory usage, and the ρari and ρgeo were used for D-
Cube and M-Zoom; we used a variant of CrossSpot which maximizes the
same density metrics and used the CPD result for seed selection as did in [20].

Data: Table 1 summarizes the real-world datasets in our experiments. In Rating
category, data are 4-way tensors (user, item, timestamp, rating), where entry
values are the number of reviews. In Social network, data are 3-way tensors
(user, user, timestamps), where entry values are the number of interactions (co-
authorship/favorite). DARPA is the TCP dumps represented with a 3-way tensor
(source IP, destination IP, timestamps), where entry values are the number of
connections between two IP addresses (hosts). AirForce is also a network intru-
sion dataset, which is represented as a 7-way tensor (protocol, service, src_bytes,
dst_bytes, flag, host_count, src_count, #connections). Timestamps are in min-
utes for DARPA, in dates for Ratings and Youtube, and in years for DBLP.

5.2 Q1. Accuracy of CatchCore

We compare how accurately each method detects injected dense subtensors in
the synthetic and real-world datasets.

We randomly and uniformly generated a 5K × 5K × 2K 3-way tensor R

with a density of 3 · 10−6. Into R, one 200 × 300 × 100 block is injected with
distinct density, for testing the detection bound of each method. Figure 1(c)
demonstrated that CatchCore effectively detects block as low as a tenth of
the density that the best baselines detect, which means that our method can
spot such fraudsters with more adversarial effort.
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Fig. 2. (a) CatchCore detects higher-density blocks containing suspicious behaviors.
(d) The optimal hierarchies achieve the lowest MDL cost w.r.t p and η. CatchCore can
obtain optimal hierarchical dense subtensors for a wide parameters range. (c) Detected
hierarchical network intrusion attack happened on June 18, 1998 in DARPA dataset.

We then injected K subtensors with different size and density into BeerAd-
vocate and synthetic tensor in a hierarchical manner. Table 2 lists the result for
former (the result for synthetic data is listed in the supplement), where H1 is
the densest or the first subtensor detected by methods, and the density (order)
decreases (increases) from H1 to H3, and the information of injected blocks is
listed at the bottom. CatchCore can accurately detect all injected subten-
sors in various hierarchies, size and density diversity, and consistently outper-
forms other baselines which fail to accurately detect or even miss at least one
block. D-Cube and M-Zoom have similar accuracy (except some special cases
as highlighted), they can not identify the structure of dense blocks, leading to
some of the sparsest or densest injected blocks are missed or overwhelmed by
large-volume result. CrossSpot and CPD also do not find hierarchical dense
subtensors accurately. Similar conclusions can be drawn for the synthetic dataset.

Dense Blocks in Real Data: We apply CatchCore for various real-world
datasets, and measure the density instead of the mass to avoid the trivial results
since that the blocks with higher density contain interesting patterns w.h.p.
Figures 1(d) and 2(a) only show the densities of top four densest blocks found by
the methods for DBLP and Youtube dataset. CatchCore spots denser blocks
for each data, where it consistently outperforms the competitors for all blocks.

MDL-based Evaluation. We evaluate the utility of our MDL criterion for
measuring the quality of hierarchies returned by CatchCore under different
parameters. The BeerAdvocate data with 3 hierarchical injected dense blocks
(as the K = 3 case in Table 2) is used, we computed the MDL cost for the
detection result by varying a pair of parameters p and η, the result is shown in
Fig. 2. The optimal hierarchies achieve the lowest MDL cost w.r.t p and η. In
addition, our model can obtain optimal results for a wide range of parameters.
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Table 3. CatchCore identifies network attacks from the real-world TCP Dumps
dataset with best or comparable performance in F-measure (Left); it spots different
hierarchical dense blocks with interesting patterns for DARPA (Right).

DARPA AirForce

CPD 0.167 0.785
CrossSpot 0.822 0.785
M-Zoom 0.826 0.906
D-Cube 0.856 0.940

CatchCore 0.877 0.902

H Subtensor Shape Anomaly Ratio

1 1 × 1 × 96 100%
2 1 × 1 × 100 100%
3 1 × 1 × 274 100%
4 16 × 5 × 24.7K 87.0%
5 171 × 15 × 29.2K 85.4%

5.3 Q2. Pattern and Anomaly Detection

Anomaly Detection. CatchCore detected network intrusion in TCP dumps
with high accuracy and identified attack patterns for DARPA and AirForce
dataset, where each intrusion connection are labeled. Table 3 compares the accu-
racy of each method. CatchCore outperformed competitors for DARPA data,
and also spotted the hierarchical behavior pattern of Neptune attack in H1 -
H3, which are composed of the connections in different time for a pair of IPs.
Figure 2(c) shows the attack pattern snippet occurred during 7am–8am on June
18, 1998. The densities (attack intensity) vary greatly over different hierarchies,
i.e. the density in H1 is about 5K, while it is only about 3K for remain parts
in H3. And the intense attacks represented cyclic patterns in 5min. Although,
the hierarchical structure of all subtensors include almost malicious connections
(with recall = 98%) with the cost of containing some false positive samples,
CatchCore achieves comparable performance for AirForce dataset.

CatchCore also discerned denser and more anomaly subtensors. For the
Youtube in Fig. 2(a), these dense blocks are missed by other competitors. Espe-
cially, the block with highest-density (H1) represents one user became friend
with 904 users in a day, the other user in H2 also created connections with 475
users at the same time. So, they are more likely fraudulent. The densest block in
StackOverflow shows one user marked 257 posts as the favorite in a day, which is
too much than the normality. Although some of the densest blocks found may be
rank-1 in all but one of the dimensions, CatchCore detects holistically optimal
multi-layers dense subtensors and the densest one is only part of it rather than
our direct target. The volume density tends to non-empty blocks and may result
in some locally 1D slices (may not the densest slices within the whole tensor) in
the highest-density layer. Other density metrics could eliminate this issue.

Evolving Community Pattern. As the Fig. 1(d), (b) show the evolving co-
authorship structure of dense subtensors in the top 4 densest hierarchies for
DBLP dataset, corresponding to the interaction between 20 researchers during
2007 to 2013, and Fig. 1(d) also presents their densities. The block in H1 with
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the size 8 × 8 × 3, consists of research cooperation between Leonard Barolli,
Makoto Takizawa, and Fatos Xhafa, etc. during 2011 to 2013 in ‘Algorithm
and Distributed System’ field and the average connection between them is more
than 10.7 in each year, forming a high-density clique. Also, the subtensors in
other hierarchies are extended with their other common co-authors and years,
and contain relatively less connections than H1, but the density of blocks in
H4 is also more than 2. Therefore, CatchCore can cater to detect evolving
community structures at different scales in a hierarchical fashion.

5.4 Q3. Scalability of CatchCore

Empirically, we show that CatchCore scales (sub-) linearly with every aspect
of input, i.e., the number of tuples, the number of dimension attributes, and the
cardinality of dimension attributes we aim to find. To measure the scalability
with each factor, we started with finding the injected subtensor with two hierar-
chies, which are 100× 100× 2 with density 0.2 and 50× 50× 1 with density 1.0,
in a randomly generated tensor R which contains 1 millions tuples with three
attributes whose total cardinality is 100K. Then, we measured the running time
as we changed one factor at a time. As seen in Fig. 1(e) and result in supple-
ment, CatchCore scales linearly with the number of tuples and the number of
attributes, it also scales sub-linearly with the cardinalities of attributes, which
illustrates the complexity of CatchCore in Theorem 7 is too pessimistic.

6 Related Work

Dense Subgraph/Subtensor Detection. The detection of dense-subgraph
has been extensively studied [2,7], and many algorithms for the NP-hard prob-
lem are applied to detect community structure [3,4,26] and anomaly [1,10],
or extend to multi-aspect data [20–22]. CrossSpot [11] finds suspicious dense
blocks by adjusting the seed in a greedy way until converges to a local optimum.
Tensor decomposition such as HOSVD and CP decomposition [12] are also used
to spot dense subtensors. M-Zoom [20] and D-Cube [21] adopt greedy approx-
imation algorithm with quality guarantees to detect dense-subtensors for large-
scale tensors. [22] spots dense subtensors for tensor stream with an incremental
algorithm. None of them consider the relationship and structures of different
blocks, and can not trace the evolving of dense subtensors or the hierarchical
patterns.

Hierarchical Patterns Mining. Communities exit ubiquitously in various
graphs [4,14], their evolving behavior and hierarchical structure also have been
explored in different scenes [13,17,25]. [8] proposed a framework for joint learn-
ing the overlapping structure and activity period of communities. [23] detected
video event with hierarchical temporal association mining mechanism for multi-
media applications. HiDDen [26] detects hierarchical dense patterns on graph
and also finds financial frauds. [19] uses k-core decomposition to compute the
hierarchy of dense subgraphs given by peeling algorithm. Our method can deal
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with multi-aspect data, provide an information-theoretical measurement for the
result, and advanced analyze for the performance.

Anomaly and Fraudulent Detection. The survey [1] provides a structured
overview and summary for the methods of detection anomaly in graphs. The
dense-subgraphs or dense-subtensors usually contain suspicious patterns, such
as fraudsters in social network [10,26], port-scanning activities in network anal-
ysis [11,21], and lockstep behaviors or vandalism [11,21,22].

7 Conclusions

In this work, we propose CatchCore algorithm to detect the hierarchical dense
subtensors with gradient optimization strategy, based on an novel and inter-
pretable uniform framework for dense block detection, in large tensor. Catch-
Core accurately detects dense blocks and hierarchical dense subtensors for the
synthetic and real data, and outperforms state-of-the-art baseline methods, it
can identify anomaly behaviors and interesting patterns, like periodic attack and
dynamic researcher group. In addition, CatchCore also scales up linearly in
term of all aspects of tensor.

Acknowledgments. This material is based upon work supported by the Strategic Pri-
ority Research Program of CAS (XDA19020400), NSF of China (61772498, 61425016,
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Abstract. In this paper, we initiate the study of the problem of ordering
objects from their pairwise comparison results when allowed to discard
up to a certain number of objects as outliers. More specifically, we seek
to find an ordering under the popular Kendall tau distance measure, i.e.,
minimizing the number of pairwise comparison results that are incon-
sistent with the ordering, with some outliers removed. The presence of
outliers challenges the assumption that a global consistent ordering exists
and obscures the measure. This problem does not admit a polynomial
time algorithm unless NP ⊆ BPP, and therefore, we develop approxima-
tion algorithms with provable guarantees for all inputs. Our algorithms
have running time and memory usage that are almost linear in the input
size. Further, they are readily adaptable to run on massively parallel
platforms such as MapReduce or Spark.

Keywords: Rank aggregation · Outliers · Approximation ·
Distributed algorithms

1 Introduction

Ranking is a fundamental problem arising in various contexts, including web
pages ranking, machine learning, data analytics, and social choice. It is of par-
ticular importance to order n given objects by aggregating pairwise comparison
information which could be inconsistent. For example, if we are given A ≺ B
(meaning that B is superior to A) and B ≺ C, it would be natural to deduce
a complete ordering, A ≺ B ≺ C. However, there exists no complete order-
ing creating no inconsistencies, if another pairwise comparison result C ≺ A
is considered together. As a complete ordering/ranking is sought from partial
orderings, this type of problems is called rank aggregation and has been stud-
ied extensively, largely in two settings: (i) to find a true ordering (as accurately
as possible) that is assumed to exist when some inconsistencies are generated
according to a certain distribution; and (ii) to find a ranking that is the closest
to an arbitrarily given set of the partial orderings for a certain objective, with
no stochastic assumptions.

This paper revisits a central rank aggregation problem in the second domain,
with a new angle.
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The Minimum Feedback Arc Set Tournament Problem (FAST). The input is a
tournament.1 The goal is to delete the minimum number of edges in order to
make the resulting graph acyclic. This is equivalent to finding a linear ordering
of the vertices to incur the fewest ‘backward’ edges.

The FAST problem is well-studied: it does not admit a polynomial time
algorithm unless NP ⊆ BPP [3] and there are several constant approximations
known for the problem [3,11,18]. We note that this is a special case of the more
general problem (Minimum Feedback Arc Set; FAS for short) where the input
graph is not necessarily complete.

1.1 Necessity of Another Measure for Inconsistencies

The FAST problem measures the quality of an ordering by the number of pairs
that are inconsistent with the ordering; this measure was proposed by Kemeny
[17] and is also known as the Kendall tau distance. Unfortunately, this mea-
sure fails to capture the ‘locality’ of inconsistencies, namely whether or not the
inconsistencies are concentrated around a small number of objects. To see this,
consider the two instances in Figs. 1.

Fig. 1. The left graph consists of n
3

disjoint triangles (the rest of the arcs (vi, vj) for
all i < j are omitted). In the right graph, v1, v2, · · · , vn−1 has an ordering with no
inconsistencies among them and vn is a successor of other odd-indexed vertices while
being a predecessor of even-indexed vertices.

It is easy to see no matter how we order the vertices in the left instance,
we end up with having at least n/3 pairs that are inconsistent with the order-
ing, one from each triangle. Likewise, the number of inconsistent pairs in the
right instance is at least (n − 1)/2 in any ordering, one from each triangle
{vn, v2i−1, v2i}. Since the ordering, v1, v2, · · · , vn, creates O(n) inconsistent pairs
in both examples, the optimal objective is Θ(n) for both. However, the two
instances have inconsistencies of very different natures. In the first graph, the
inconsistent pairs are scattered all over the graph. In contrast, in the second
graph, the inconsistent pairs are concentrated on the single vertex vn – the sec-
ond input graph becomes acyclic when vn is removed.

The above two examples raise a question if the Kendall tau distance alone
is an effective measure in the presence of outliers. We attempt to order or rank

1 A directed graph G = (V, E) is called a tournament if it is complete and directed.
In other words, for any pair u �= v ∈ V , either (u, v) ∈ E or (v, u) ∈ E.
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objects because we believe that they are comparable to one another, and there-
fore, there exists an ordering well summarizing the whole set of pairwise com-
parisons. However, this belief is no longer justified if there are some outliers that
do not belong to the ‘same’ category of comparable objects. In the second input
graph, perhaps, we should think of vn as an outlier, as the input graph has no
inconsistencies without it. Counting the number of inconsistent pairs could fail
to capture the quality of the output ordering without removing outliers. This is
the case particularly because we can only hope for approximate solutions and
noises incurred by outliers could render multiplicative approximation guarantees
not very interesting.

Motivated by this, we propose a new measure that factors in outlier vertices
as well as inconsistent pairs/edges:
The Minimum Feedback Arc Set Tournament with Outliers Problem (FASTO).
This is a generalization of FAST. As in FAST, we are given as input a tour-
nament G = (V,E), along with a pair of target numbers, (x∗, y∗). A pair
(V ′ ⊆ V,E′ ⊆ E) is a feasible solution if (V \ V ′, E \ E′) is a DAG – we refer
to V ′ as the outlier set and E′ as the backward edge set. Here, E′ is a subset of
edges between V \V ′. The solution quality is measured as ( |V ′|

x∗ , |E′|
y∗ ), which are

the number of outliers and backward edges incurred, respectively, relative to the
target numbers, x∗ and y∗. We can assume w.l.o.g. that x∗ > 0 since otherwise
FASTO becomes exactly FAST.

We will say that a solution is (α, β)-approximate if |V ′| ≤ αx∗ and |E′| ≤ βy∗.
An algorithm is said to be a (α, β)-approximation if it always produces a (α, β)-
approximate solution for all inputs. Here, it is implicitly assumed that there is a
feasible solution (V ′, E′) w.r.t. (x∗, y∗), i.e., |V ′| ≤ x∗ and |E′| ≤ y∗ – if not, the
algorithm is allowed to produce any outputs. Equivalently, the problem can be
viewed as follows: Given that we can remove up to αx∗ vertices as outliers, how
many edges do we need to flip their directions so as to make the input graph
acyclic. But we assume that we are given a target pair (x∗, y∗), as it makes our
presentation cleaner.

1.2 Our Results and Contributions

Throughout this paper, we use n to denote the number of vertices in the input
graph and N = Θ(n2), which is the asymptotic input size. We use Õ or Θ̃ to sup-
press logarithmic factors. Recall that x∗ is the target number of outliers. While
we propose several algorithms that are scalable and parallelizable, the following
is our main theoretical result with performance guarantees for all inputs; the
first case is more interesting but we also study the second case for completeness.

Theorem 1. There is an approximation algorithm for FASTO with Õ(N) run-
ning time and Õ(N) memory usage that outputs a solution, with probability at
least 1/2 − 1/n, that is

– (O(1), O(1))-approximate when x∗ ≤ √
n (Sect. 2); and

– (O(log n), O(1))-approximate when x∗ >
√

n (Omitted from this paper due to
space limit).
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Further, this algorithm can be adapted to massively parallel computing platforms
so that they run in O(log n) rounds.

We note that the running time of our algorithm, which is almost linear in
the input size, is essentially optimal. To see this, consider a simple instance that
admits an ordering with one backward edge, with (x∗, y∗) = (1, 0). Then, it is
unavoidable to actually find the backward edge, which essentially requires to read
all edges. While we do not know how to obtain a constant approximation for the
case when x∗ >

√
n in the massively parallel computing setting, we can still get

a relatively fast algorithm in the single machine setting. More precisely, we can
obtain an (O(1), O(1))-approximate solution for all instances, with probability
at least 1/2 − 1/n, using Õ(

√
Nx∗2) running time and Õ(

√
Nx∗2) memory. For

the formal model of massively parallel computing platforms, see [6].
Below, we outline our contributions.

Proposing a New Metric for Ranking: Ranking with Some Outliers
Removed. Outliers have been extensively studied in various fields, such as
statistics, machine learning, and databases. Outliers were considered before
together with ranking, but they were mostly focused on the evaluation of out-
liers themselves, e.g., ranking outliers [22]. Our work is distinguished, as we seek
to find a clean ordering which otherwise could be obscured by outliers. Vari-
ous combinatorial optimization problems have been studied in a spirit similar to
ours, particularly for clustering problems [9,10,15,21]. For example, the k-means
clustering problem can be extended to minimize the sum of squares of distances
to the k centers from all points, except a certain number of outliers [15,16]. We
feel that it is a contribution of conceptual importance to study ranking problems
in this direction for the first time. We believe this new direction is worth further
investigation; see Sect. 4 for future research directions.

Fast and Memory-efficient Algorithms with Provable Guarantees. Our
work is inspired by Aboud’s work [1] on a closely related clustering problem –
in the Correlational Clustering problem, there is an undirected complete graph
where each edge is labeled as either ‘−’ or ‘+’. The goal is to partition the
vertices so as to minimize the number of inconsistent pairs where an edge (u, v)
labeled ‘+’ (resp., ‘−’) incurs a unit cost if the two vertices u and v are placed
into different groups (resp., the same group). This problem is closely related to
FAST, and there exist simple and elegant 3-approximate randomized algorithms,
called KWIK-SORT, for both problems, which can be seen as a generalization of
quicksort: a randomly chosen pivot recursively divide an instance into two sub-
instances. In the case of FAST, one subproblem contains the predecessors of the
pivot and the other the successors of the pivot. Likewise, in the correlational
clustering case, the vertices are divided based on their respective affinities to the
pivot.

Aboud considered an outlier version of the Correlational Clustering prob-
lem and gave an (O(1), O(1))-approximation.2 Not surprisingly, one can adapt
2 More precisely, he considered a slightly more general version where each vertex may

have a different cost when removed as an outlier.
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his result to obtain a (O(1), O(1))-approximation for FASTO. Unfortunately,
Aboud’s algorithm uses memory and running time that are at least linear in the
number of ‘bad’ triangles, which can be as large as Ω(n3) = Ω(N1.5). In our
problem, FASTO, a bad triangle v1, v2, v3 is a triangle that does not admit a con-
sistent ranking, i.e., (v1, v2), (v2, v3), (v3, v1) ∈ E or (v2, v1), (v3, v2), (v1, v3) ∈ E.

To develop a fast and memory-efficient algorithm, we combine sampling
with Aboud’s algorithm. This combination is not trivial; for example, apply-
ing Aboud’s algorithm to a reduced-sized input via sampling does not work. At
a high-level, Aboud’s algorithm uses a primal-dual approach. The approach sets
up a linear programming (LP) and solves the LP by increasing the variables of
the LP and its dual, where the constructed integer solution to the LP is used
to identify outlier vertices. We have to adapt the LP, as we have to carefully
handle the sampled points and argue their effects on potential backward edges.
After all, we manage to reduce the memory usage and running time to Õ(N)
preserving the approximation factors up to constant factors3 under the assump-
tion that the number of outliers is small, which we believe to be reasonable in
practice.

Algorithms Adaptable to Massively Parallel Platforms. Finally, our algo-
rithm can be easily adapted to run on massively parallel platforms such as
MapReduce or Spark. On such platforms, each machine is assumed to have insuf-
ficient memory to store the whole input data, and therefore, multiple machines
must be used. Aboud’s algorithm is not suitable for such platforms, as it uses sig-
nificantly super-linear memory. In contrast, our algorithm uses sampling appro-
priately to reduce the input size while minimally sacrificing the approximation
guarantees. More precisely, our algorithm for FASTO can be adapted to run in
O(log n) rounds on the parallel platforms – the number of rounds is often one of
the most important measures due to the huge communication overhead incurred
in each round.

As a byproduct, for the first time we show how to convert KWIK-SORT for
FAST to the distributed setting in O(1) rounds (see Sects. 2.1 and 2.4), which is
interesting on its own. The algorithm recursively finds a pivot and divides a subset
of vertices into two groups, thus obtaining O(log n) rounds is straightforward. But
we observe that as long as the pivot is sampled uniformly at random from each
subgroup, the algorithm’s performance guarantee continues to hold. Therefore, the
algorithm still works even if we consider vertices in a random order as pivots – the
sub-instance including the pivot is divided into two. Thus, we construct a decision
tree from a prefix of the random vertex ordering, and using this decision tree, we
partition the vertex set into multiple groups in a distributed way. This simple yet
important observation also plays a key role in breaking bad triangles, thus reducing
the memory usage of our algorithm for FASTO.

3 We show that our algorithm is (180, 180)-approximate, which can be improved arbi-
trarily close to (60, 60) if one is willing to accept a lower success probability. In
contrast, Aboud’s algorithm can be adapted to be (18, 18)-approximate for FASTO;
however as mentioned above, it uses considerably more memory and run time than
ours.
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1.3 Other Related Work

The only problem that studies ranking with the possibility of removing cer-
tain outlier vertices, to our best knowledge, is the Feedback Vertex Set problem
(FVS). The FVS problem asks to remove a minimum subset of vertices to make
the remaining graph acyclic. It is an easy observation that FVS is a special
case of our problem with y∗ = 0 if the input graph were an arbitrary directed
graph, not just a tournament. The FVS problem is known to be NP-hard and
the current best approximation for the problem has an approximation factor
of O(log n log log n) [13]. Thus, if we allow the input graph to be an arbitrary
directed graph for our problem FASTO, then we cannot hope for a better than
(O(log n log log n), c)-approximation for any c > 0 unless we improve upon the
best approximation for FVS. We are not aware of any other literature that con-
siders rank aggregation with the possibility of removing outlier vertices, with
the exception of the aforementioned Aboud’s work on a closely related cluster-
ing problem [1]. Due to the vast literature on the topic, we can only provide an
inherently incomplete list of work on ranking without outliers being considered.
There exist several approximation algorithms for FAST. As mentioned, Ailon et
al. [3] give the randomized KWIK-SORT that is 3-approximate for the problem,
which can be derandomized [25]. Also, the algorithm that orders vertices accord-
ing to their in-degrees is known to be a 5-approximation [11]. Kenyon-Mathieu
and Schudy [18] give a PTAS; a PTAS is a (1+ ε)-approximate polynomial-time
algorithm for any fixed ε > 0. The complementary maximization version (maxi-
mizing the number of forward edges in the linear ordering) was also studied, and
PTASes are known for the objective [7,14]. For partial rankings, see [2] and point-
ers in the paper. Extension to online and distributed settings are studied in [26]
but the performance guarantee is not against the optimal solution, but against
a random ordering, which incurs Θ(n2) backward edges. For another extensive
literature on stochastic inputs, see [4,5,12,19,23,24] and pointers therein.

1.4 Notation and Organization

We interchangeably use (u, v) ∈ E and u ≺ v – we will say that u is v’s prede-
cessor, or equivalently, v is u’s successor. We use Õ or Θ̃ to suppress logarithmic
factors in the asymptotic quantities. We use n to denote the number of vertices
in the input graph and N = Θ(n2) to denote the asymptotic input size. The
subgraph of G induced on V ′ is denoted G[V ′]. Let [k] := {1, 2, 3, . . . , k}.

In Sect. 2, we present our algorithm for FASTO when the target number of
outliers is small, i.e., x∗ ≤ √

n. We omit the other case in this paper due to space
limit. In Sect. 3, we evaluate our algorithms and other heuristics we develop via
experiments. In Sect. 4, we close with several interesting future research direc-
tions. Due to the space constraints, we will defer most analysis to the full version
of this paper.
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2 When the Target Number of Outliers x∗ is Small

Our algorithm when x∗ ≤ √
n consists of three main steps:

Step 1: Partitioning via KWIK-SORT-SEQ on Sample. Each vertex in
V is sampled independently with probability 1

4x∗ and placed into S. Randomly
permute S and run KWIK-SORT-SEQ on the ordered set S to construct a
decision tree τ(S). Let k = |S|. Partition the other vertices, V \ S, into k + 1
groups, V1, V2, · · · , Vk+1, using τ(S).
Step 2: Identifying Outliers via Primal-Dual. Formulate Linear Program-
ming (LP) relaxation and derive its dual. Solve the primal and dual LPs using
a primal-dual method, which outputs the set of outliers to be chosen.
Step 3: Final Ordering. Run KWIK-SORT on the non-outlier vertices in each
group Vi, i ∈ {1, 2, . . . k + 1}.

In the following, we give a full description of all the steps of our algorithm; the
last step is self-explanatory, and thus, is briefly discussed at the end of Sect. 2.2.
Following the analysis of the algorithm, the extension to the distributed setting
is discussed in the final subsection.

2.1 Step 1: Partitioning via KWIK-SORT-SEQ

We first present a sequential version of the original KWIK-SORT algorithm [3]
which was described in a divide-and-conquer manner. As usual, there are multi-
ple ways to serialize a parallel execution. So, as long as we ensure that a pivot
is sampled from each subgraph uniformly at random for further partitioning, we
can simulate the parallel execution keeping the approximation guarantee. Here,
we introduce one specific simulation, KWIK-SORT-SEQ, which generates a ran-
dom ordering of V , takes a pivot one by one from the random ordering, and
gradually refines the partitioning. We show that this is indeed a valid way of
simulating KWIK-SORT.

Algorithm 1. KWIK-SORT-SEQ (G = (V,A))
1: π(V ) ← a random permutation of V
2: V = {V }
3: For i = 1 to n = |V |:
4: πi(V ) ← ith vertex in the ordering π(V )
5: Let V ′ ∈ V be such that πi(V ) ∈ V ′

6: V ′
L, V ′

R ← ∅
7: For all vertices j ∈ V ′ \ {πi(V )}:
8: If (j, i) ∈ A, then add j to V ′

L; else add j to V ′
R

9: Put V ′
L, {πi(V )}, V ′

R in place of V ′, in this order
10: Return V (Order vertices in the same order they appear in V).

Lemma 2. KWIK-SORT-SEQ is a legitimate way of simulating KWIK-SORT,
keeping the approximation guarantee. Therefore, KWIK-SORT-SEQ is a 3-
approximation for FAST.
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Fig. 2. Illustration of the construc-
tion of τ(S) and partitioning of
V \S via τ(S). In this example, the
decision tree τ(S) is induced by a(n
ordered) sample S = {s1, s2, s3},
where s1 ≺ s2, s3 ≺ s2, and s1 ≺
s3. If a vertex v ∈ V \S is such that
s1 ≺ v, v ≺ s2, s3 ≺ v, then v is
placed into G3.

Due to the space constraints, we defer
the proof to the full version of this paper.
Note that a fixed random permutation π(V )
completely determines the final ordering of
vertices. Likewise, a fixed length-i prefix
of π(V ) completely determines the inter-
mediate partitioning V after π1(V ), π2(V ),
. . ., πi(V ) being applied, and the partition-
ing only refines as more pivots are applied.
Thus, we can view this intermediate par-
titioning as the classification outcome of
V \ S via the decision tree τ(S) generated
by KWIK-SORT-SEQ on the ordered set
S = {π1(V ), π2(V ), . . . , πi(V )}. See Fig. 2 for
illustration.

The first step of our algorithm is essen-
tially identical to what KWIK-SORT-SEQ
does, except that our algorithm only needs
a prefix of the random permutation, not the entire π(V ). It is an easy obser-
vation that sampling each vertex independently with the same probability and
randomly permuting them is a valid way of getting a prefix of a random per-
mutation. We note that we sample each vertex with probability 1

4x∗ , to avoid
sampling any outlier (in the optimal solution) with a constant probability.

2.2 Step 2: Identifying Outliers

To set up our linear programming relaxation, we first need some definitions.
We consider the ordered sample S and the induced groups V1, V2, · · · , Vk+1 in
the order they appear in the linear ordering produced by KWIK-SORT-SEQ
performed in Step 1. For notational convenience, we reindex the sampled points
so that they appear in the order of s1, s2, · · · , sk. We classify edges into three
categories: Let Ein be the edges within the groups, Sback the backward edges
with both end points in S, and Eback the backward edges e = (u, v) such that
u ∈ Vi, v ∈ Vj for i > j; or u = si, v ∈ Vj for i ≥ j; or v = si, u ∈ Vj for i ≤ j.
See Fig. 3.

Finally, we let Tin be the set of bad triangles with all vertices in the same
group; recall that a bad triangle is a cycle of length 3. We are now ready to
define an integer programming (IP) for a penalty version of FASTO, where a
backward edge incurs a unit penalty and each outlier incurs c := y∗/x∗ units of
penalty:

LP primal
fasto (G) := min

∑

e∈Ein

ye +
∑

x∈V \S
px · c +

∑

e∈Eback

ze + |Sback| (PRIMAL)
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s.t.
∑

e⊂t

ye +
∑

x∈t

px ≥ 1 ∀t ∈ Tin (1)

pu + pv + ze ≥ 1 ∀e =(u, v) ∈ Eback : {u, v} ∩ S = ∅ (2)
pu + ze ≥ 1 ∀e =(u, v) ∈ Eback : v ∈ S ∧ u ∈ V \ S (3)
pv + ze ≥ 1 ∀e =(u, v) ∈ Eback : u ∈ S ∧ v ∈ V \ S, (4)

over variables ye ≥ 0 for all e ∈ Ein, px ≥ 0 for all x ∈ V \ S, and ze ≥ 0 for all
e ∈ Eback.

Fig. 3. Classification of edges. The rectangles shown represent groups V1, V2, V3, V4

from the left. Edges in Sback are shown as solid arcs and edges Eback as dotted arcs.
Edges in Ein are those within groups and are omitted.

This IP has the following interpretation: an edge e in Ein (Eback, resp.)
becomes backward if ye = 1 (ze = 1, resp.). Assuming that we will choose no
sampled points as outliers, all edges in Sback will become backward. And each
non-sampled point x incurs penalty c if it is chosen as an outlier when px = 1.
Constraint (1) follows from the fact that for each bad triangle t, at least one edge
e of t must become backward unless t is broken; a triangle gets broken when at
least one of its vertices is chosen as outlier. The other constraints force each
edge in Eback to become backward if its neither end point is chosen as outlier.
A Linear Programming (LP) relaxation, which will be referred to as LP primal

fasto ,
is obtained by allowing variables to have fractional values. Using the fact that
KWIK-SORT is a 3-approximation, assuming that there is a feasible solution
w.r.t. the target pair (x∗, y∗), conditioned on the sample being disjoint from the
feasible solution’s outlier, we can argue that the expected optimal objective of
LP primal

fasto is at most 4y∗.
To obtain an approximate integer solution to LP primal

fasto , we will use the
primal-dual method. Primal-dual is a common technique for designing approxi-
mation algorithms [27]. The dual LP is shown below.

LP dual = max
∑

t∈Tin

αt +
∑

e∈Eback

βe + |Sback| (DUAL)

s.t.
∑

e⊂t

αt ≤ 1 ∀e ∈ Ein (5)

∑

x∈t

αt +
∑

x∈e

βe ≤ c ∀x /∈ S (6)

βe ≤ 1 ∀e ∈ Eback (7)
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To develop an algorithm based on a primal-dual method, we replace Con-
straint (6) with two sufficient conditions (8).

∑

x∈t

αt ≤ 3
5
c ∀x ∈ V \ S; and

∑

x∈e

βe ≤ 2
5
c ∀x ∈ V \ S (8)

Below, we give our algorithm, Algorithm 3, that sets the variables of our
primal with the help of the above dual. Although the algorithm updates all
variables, the only information we need to run the final Step 3 is the outlier
set U , as Step 3 runs KWIK-SORT on each group with vertices U removed as
outliers. But the other outputs will be useful for the analysis of our algorithm.
Note that although the dual variables can have fractional values, the primal vari-
ables will only have integer values. Note that E′ and E2 represent the backward
edges within the groups and across the groups, respectively; since our algorithm
samples no outlier vertices in the optimal solution, all edges in Sback become
backward and they are counted separately.

Algorithm 2. Primal-Dual Algorithm
1: Initialization: p ← 0, y ← 0, z ← 0, α ← 0, β ← 0, U ← ∅, E′ ← ∅, E2 ← ∅.

Initially, all αt and βe variables are active.
2: while ∃ active dual variables αt or βe do
3: Uniformly increase active dual variables until Constraints (5),

(7), either of the two in (8) become tight.
4: for each e ∈ Ein s.t.

∑
e⊂t αt = 1, do add e to E′; and inactivate

αt for all t s.t. e ⊂ t.
5: for each x ∈ V \ S s.t.

∑
x∈t αt = 3

5
c, do add x to U ; and inactivate

αt for all t s.t. x ∈ t
6: for each x ∈ V \ S s.t.

∑
x∈e βe = 2

5
c, do add x to U ; and inactivate

βe for all e s.t. x ∈ e.
7: for each e ∈ Eback s.t. βe = 1, do add e to E2; and inactivate βe.

8: Remove from E′ and E2 all the edges e with e ∩ U �= ∅.
9: for e ∈ E′ do ye ← 1; for ∀e ∈ E2 do ze ← 1; and for ∀x ∈ U do px ← 1

10: return p, y, z, U, E′, E2

2.3 Sketch of the Analysis: Approximation Guarantees, Memory
Usage, and Running Time

In this subsection, we only give a sketch of the analysis due to space constraints.
In Step 1, we can show that the sample S is disjoint from the optimal solution’s
outlier set, with a constant probability (at least 3/4). Conditioned on that, as
mentioned earlier, the expected optimal objective of LP primal

fasto can be shown to
be at most 4y∗. The primal-dual method in Step 2 obtains an integer solution to
LP primal

fasto that is a constant approximate against the optimal LP objective, which
is established by LP duality. Therefore, the outlier set U ’s contribution to the
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LP primal
fasto ’s objective is c|U | = (y∗/x∗) · |U | and it is upper bounded by O(1)y∗.

This shows our algorithm chooses at most O(1)x∗ outliers. We now turn our
attention to upper bounding the number of backward edges. The primal solution
to LP primal

fasto gives the number of backward edges within groups ‘covering’ all the
unbroken triangles, which upper bounds the minimum number of backward edges
achievable within groups [3], and counts the number of other backward edges
explicitly by ze and |Sback|. Since the latter is determined by the partial ordering
produced by Step 1 and U and we run a 3-approximate KWIK-SORT on each
group, we can also establish that the final number of backward edges output is
O(1)y∗.

Now we discuss our algorithm’s memory usage and running time. We show
that each group size is Õ(n/k) if |S| = Ω(log n). This requires us to prove that a
randomly chosen pivot partitions a problem into two subproblems of similar sizes
with a constant probability, meaning that there is a large fraction of vertices that
have similar numbers of predecessors and successors. Then, the total number of
bad triangles within groups is (Õ(n/k))3·k = Õ(n2) = Õ(N) when k � n

x∗ ≥ √
n,

as desired. Since the number of variables in our algorithm, particularly in Step
2 is dominated by the number of bad triangles in consideration and edges, it
immediately follows that the memory usage is Õ(N). Further, one can increase
dual variables by a factor of (1 + ε) in each iteration for an arbitrary constant
precision parameter ε > 0, starting from 1/n2. Using this one can show the
number of iterations needed is O(log n). This immediately leads to the claim
that the running time is Õ(n2) = Õ(N) when x∗ ≤ √

n.

2.4 Extension to the Distributed Setting

Due to space constraints, in this subsection, we briefly discuss how we can adapt
the algorithm to run in a distributed way. For formal theoretical models of
the distributed setting we consider, see [6]. We assume that the input graph
is stored across machines arbitrarily. Clearly, Step 1 of taking a sample S can
be done in parallel. All edges between points in S are sent to a machine to
construct the decision tree τ(S). The decision tree is broadcast to all machines
to partition vertices in k + 1 groups in a distributed way. If FAST were the
problem considered, we would sample each vertex with probability 1/

√
n and

move the subgraph induced on each group Gi to a machine and continue to run
KWIK-SORT on the subgraph. Then, we can implement KWIK-SORT to run
in O(1) rounds assuming that each machine has Ω̃(n) memory. If FASTO is the
problem considered, we can implement Step 2 in O(log n) rounds, as discussed
in the previous subsection. Step 3, which is the execution of KWIK-SORT on
each group, can be run in one round. Again, the only constriant is that each
machine has Ω̃(n) memory for an arbitrary number of machines.

3 Experiments

In this section, we perform experiments to evaluate our algorithm against syn-
thetic data sets. All experiments were performed on Ubuntu 14.04 LTS with
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RAM size 15294 MB and CPU Intel(R) Xeon(R) CPU E5-2670 v2 @ 2.50GHz.
We implemented the following four algorithms including ours for comparison.
The last two (RSF and IOR) are new heuristics we developed in this paper, but
with no approximation guarantees. We assume that all algorithms are given a
‘budget’ B on the number of outliers, which limits the number of vertices that
can be chosen as outliers.

– Primal-Dual with Sampling (PDS): Our algorithm when x∗ is small. We
run the algorithm for all target pairs (x∗, y∗) of powers of two, where
x∗ ∈ [0, B], y∗ ∈ [0, B′], and choose the best solution with at most 1.5B
outliers. Here, B′ is the number of back edges output by KWIK-SORT. Note
that we allow PDS to choose slightly more outliers although it may end up
with choosing less since the only guarantee is that PDS chooses up to O(x∗)
outliers. The running time is summed up over all pairs.

– Aboud’s algorithm (ABD): The algorithm in [1] for Correlational Clustering
is adapted to FASTO. As above, the best solution with at most 1.5B outliers
is chosen over all the above target pairs. ABD is essentially PDS with S = ∅
in Step 1. The running time is again summed up over all pairs considered.

– Random Sample Filter (RSF): Take a random Sample S from V (for fair
comparison, the same sample size is used as in PDS). Order S using KWIK-
SORT and let π(S) be the resulting order. For each v ∈ V \S, let b(v) be the
minimum number of backward edges with v as one endpoint over all these
|S| + 1 possible new permutations created by adding v to π(S). Outputs B
vertices v ∈ V \ S with the highest b(v) values as the outliers and order the
remaining vertices by KWIK-SORT.

– Iterative Outlier Removal (IOR): We iteratively remove the vertex without
which KWIK-SORT outputs the least back edges. Initially, U = ∅. In each
iteration, for each vertex v ∈ V , run KWIK-SORT on V \ v, which yields |V |
permutations. Among all the achieved permutations, consider the one with
minimum number of backward edges. Let v ∈ V be the missing vertex in
this permutation. Add v to U ; and V ← V \ {v}. Stop when |U | = B. Then,
output U as outliers and run KWIK-SORT on V/U .

We mainly use two natural models to generate synthetic data sets. The first
model, which we call the uniform model, assumes inconsistencies uniformly scat-
tered over edges, in addition to randomly chosen outlier vertices. More precisely,
the uniform model is described by a quadruple 〈p, q, r, n〉: For a tournament
G = (V,E) over n vertices with no inconsistencies, flip each edge with probabil-
ity p and perturb each vertex v with probability q by flipping each edge incident
on v with probability r – all independently. The second model, which essentially
follows the Bradley-Terry-Luce model [8,20] and therefore we refer to as BTL,
assumes that each vertex i has a certain (hidden) score wi > 0. Then, each pair
of vertices i and j has edge (i, j) with probability wj

wi+wj
; or edge (j, i) with the

remaining probability. Intuitively, if edge (i, j) is present for every i, j such that
wi < wj , we will have a tournament that is a DAG. However, some edges are
flipped stochastically – in particular, edges between vertices with similar scores
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are more likely to be flipped. Assuming that the underlying vertex scores are a
geometric sequence, we can compactly describe a BTL instance by a quadruple
〈b, q, r, n〉, where the score of the n vertices forms a geometric sequence of ratio
b. Then, edges are first generated as described above, and vertices are perturbed
using the parameters q and r as are done for the uniform model.

We first confirm that ABD is not very scalable (Table 1).

Table 1. PDS withsample size 1/(2q) = 50 vs. ABD for the uniform model 〈p =
0.001, q = 0.01, r = 0.50, n〉 and B = nq. Bad �s denotes the number of bad triangles
in 1000 units.

pts (n) outliers back edges bad �s time (sec)

PDS ABD PDS ABD PDS ABD PDS ABD

250 0 2 269 33 0 18 0.2 3.8

500 6 7 377 152 365 228 4.8 100.0

1000 9 N/A 1597 N/A 441 1032 20.0 600+

Even when n = 1000, ABD does not terminate in 600 s while our algorithm
PDS does in 20 s. Our algorithm’s speed-up is explained by the significantly
smaller number of bad triangles. For n = 500, PDS outputs factor 2 or 3 more
back edges than ABD. But we were not able to compare the two algorithms for
larger inputs because of ABD’s large run time.

Next, we compare PDS to RSF and IOR for inputs generated under the
uniform and BTL models (Tables 2 and 3). Note that RSF and IOR choose
exactly the same number of outliers, B.

Table 2. PDS with sample size 1/(2q) = 50 vs RSF vs IOR for the uniform input
〈p = 0.001, q = 0.01, r = 0.50, n〉 and B = nq.

pts (n) outliers back edges (103) time (sec)

RSF PDS RSF IOR PDS RSF IOR PDS

500 5 6 1.1 0.98 0.4 0.1 0.1 4.7

1000 10 9 2.6 1.8 1.6 0.4 0.5 20.3

2000 20 16 7.5 6.1 2.5 1.1 3.8 145.4

4000 40 55 26.2 71.5 11.8 3.8 41.3 1132

Our algorithm PDS outperforms the other two in terms of the number of back
edges although it occasionally chooses slightly more outliers. However, PDS is
considerably slower than RSF and IOR.
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Table 3. PDS with sample size 1/(2q) = 50 vs RSF vs IOR for the BTL input
with q = 0.01, r = 0.50, (b, n) ∈ {(4.2, 500), (2.3, 1000), (1.57, 2000), (1.266, 4000)};
here B = nq.

pts (n) outliers back edges (103) time (sec)

RSF PDS RSF IOR PDS RSF IOR PDS

500 5 1 0.3 0.0 0.3 0.1 0.1 1

1000 10 9 0.8 0.3 0.8 0.3 0.5 8.3

2000 20 26 7.9 7.6 1.6 0.9 2.3 73

4000 40 33 8.1 8.0 7.9 3.4 15.9 381.3

Finally, to showcase the major advantage of our algorithm PDS that it has
performance guarantees for all inputs, in contrast to the two heuristics RSF
and IOR, we consider certain specific instances. First, we observe that RSF
significantly underperforms compared to PDS and IOR when the instance is
constructed by choosing

√
n points at random and flipping edges among them.

As before, note that RSF and IOR choose the same number of outliers, B, thus
we only display RSF for the outliers column.

Table 4. PDS with sample size
√

n/2 vs RSF with sample size
√

n/2 vs IOR. Each
vertex is perturbed with probability 1/

√
n – each edge between perturbed vertices is

flipped with probability 1/2. B =
√

n.

pts (n) outliers back edges time (sec)

RSF PDS RSF IOR PDS RSF IOR PDS

1000 31 31 226 0 0 0.2 1.2 6.4

2000 44 44 541 0 0 0.8 7.3 27.2

4000 63 63 1570 0 0 3.3 62.8 130.2

8000 89 89 2887 0 0 13.4 442.0 702.7

As shown in Table 4, when n = 4000, all algorithms choose exactly 63 outliers;
but RSF produces 1570 back edges while the other two produce no back edges.
For all cases when n = 1000, 2000, 4000 and 8000, PDS and IOR create no back
edges while RSF does a considerable number of back edges. Interestingly, IOR
appears not to be very scalable. For n = 8000, IOR is only twice faster than
PDS.

We continue to observe that IOR also quite underperforms compared to PDS
for a certain class of instances. The instance we create is parameterized by t. The
instance is constructed by combining 4t sub-tournaments, G1, G2, G3, · · · , G4t,
which are identical. Each Gi has t vertices and admits a perfect ordering with
one vertex removed therein – each edge in Gi incident on the vertex is flipped
with probability 1/2. We connect the sub-tournaments, so that for any i < j, all
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vertices in Gi are predecessors of all vertices in Gj . As shown in Table 5, when
n = 4096, PDS creates no back edges while IOR creates 313 back edges; both
chooses the same number of outliers, 128. Further, PDS is slower than IOR only
by a factor of at most 3.

Table 5. PDS with sample size t/2 vs IOR

pts (n) outliers back edges time (sec)

IOR PDS IOR PDS IOR PDS

1024 64 62 87 7 2.4 21.4

2116 92 89 142 79 16.7 203.2

4096 128 128 313 0 129.5 305.5

4 Conclusions

In this paper, we studied how to order objects in the presence of outliers. In par-
ticular, we developed approximation algorithms that are nearly optimal in terms
of running time and can be adapted to the distributed setting, along with poten-
tially useful heuristics. There are many interesting future research directions.
First, our algorithm may choose more than x∗ outliers. It would be interest-
ing if one can get an approximation algorithm that finds an ordering resulting
in O(1)y∗ backward edges with strictly no more than x∗ outliers. Second, we
currently do not know if it is possible to obtain a (O(1), O(1))-approximation
algorithm whose running time is almost linear in the input size when x∗ >

√
n.

Finally, it would be of significant interest to consider arbitrary directed graphs
as input.
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Abstract. We present an approach to explain the decisions of black
box models for image classification. While using the black box to label
images, our explanation method exploits the latent feature space learned
through an adversarial autoencoder. The proposed method first gener-
ates exemplar images in the latent feature space and learns a decision
tree classifier. Then, it selects and decodes exemplars respecting local
decision rules. Finally, it visualizes them in a manner that shows to the
user how the exemplars can be modified to either stay within their class,
or to become counter-factuals by “morphing” into another class. Since
we focus on black box decision systems for image classification, the expla-
nation obtained from the exemplars also provides a saliency map high-
lighting the areas of the image that contribute to its classification, and
areas of the image that push it into another class. We present the results
of an experimental evaluation on three datasets and two black box mod-
els. Besides providing the most useful and interpretable explanations, we
show that the proposed method outperforms existing explainers in terms
of fidelity, relevance, coherence, and stability.

Keywords: Explainable AI · Adversarial autoencoder · Image
exemplars

1 Introduction

Automated decision systems based on machine learning techniques are widely
used for classification, recognition and prediction tasks. These systems try to
capture the relationships between the input instances and the target to be pre-
dicted. Input attributes can be of any type, as long as it is possible to find a
convenient representation for them. For instance, we can represent images by
matrices of pixels, or by a set of features that correspond to specific areas or
patterns of the image. Many automated decision systems are based on very
accurate classifiers such as deep neural networks. They are recognized to be
c© Springer Nature Switzerland AG 2020
U. Brefeld et al. (Eds.): ECML PKDD 2019, LNAI 11906, pp. 189–205, 2020.
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“black box” models because of their opaque, hidden internal structure, whose
complexity makes their comprehension for humans very difficult [5]. Thus, there
is an increasing interest in the scientific community in deriving explanations
able to describe the behavior of a black box [5,6,13,22], or explainable by design
approaches [18,19]. Moreover, the General Data Protection Regulation1 has been
approved in May 2018 by the European Parliament. This law gives to individ-
uals the right to request “...meaningful information of the logic involved” when
automated decision-making takes place with “legal or similarly relevant effects”
on individuals. Without a technology able to explain, in a manner easily under-
standable to a human, how a black box takes its decision, this right will remain
only an utopia, or it will result in prohibiting the use of opaque, but highly
effective machine learning methods in socially sensitive domains.

In this paper, we investigate the problem of black box explanation for image
classification (Sect. 3). Explaining the reasons for a certain decision can be partic-
ularly important. For example, when dealing with medical images for diagnosing,
how we can validate that a very accurate image classifier built to recognize can-
cer actually focuses on the malign areas and not on the background for taking
the decisions?

In the literature (Sect. 2), the problem is addressed by producing explana-
tions through different approaches. On the one hand, gradient and perturbation-
based attribution methods [25,27] reveal saliency maps highlighting the parts of
the image that most contribute to its classification. However, these methods are
model specific and can be employed only to explain specific deep neural networks.
On the other hand, model agnostic approaches can explain, yet through a saliency
map, the outcome of any black box [12,24]. Agnostic methods may generate a
local neighborhood of the instance to explain and mime the behavior of the black
box using an interpretable classifier. However, these methods exhibit drawbacks
that may negatively impact the reliability of the explanations. First, they do not
take into account existing relationships between features (or pixels) during the
neighborhood generation. Second, the neighborhood generation does not pro-
duce “meaningful” images since, e.g., some areas of the image to explain in [24]
are obscured, while in [12] they are replaced with pixels of other images. Finally,
transparent-by-design approaches produce prototypes from which it should be
clear to the user why a certain decision is taken by the model [18,19]. Never-
theless, these approaches cannot be used to explain a trained black box, but
the transparent model has to be directly adopted as a classifier, possibly with
limitations on the accuracy achieved.

We propose abele, an Adversarial Black box Explainer generating Latent
Exemplars (Sect. 5). abele is a local, model-agnostic explanation method able
to overcome the existing limitations of the local approaches by exploiting the
latent feature space, learned through an adversarial autoencoder [20] (Sect. 4),
for the neighborhood generation process. Given an image classified by a given
black box model, abele provides an explanation for the reasons of the pro-
posed classification. The explanation consists of two parts: (i) a set of exemplars

1 https://ec.europa.eu/justice/smedataprotect/.

https://ec.europa.eu/justice/smedataprotect/


Black Box Explanation by Learning Image Exemplars 191

and counter-exemplars images illustrating, respectively, instances classified with
the same label and with a different label than the instance to explain, which
may be visually analyzed to understand the reasons for the classification, and
(ii) a saliency map highlighting the areas of the image to explain that contribute
to its classification, and areas of the image that push it towards another label.

We present a deep experimentation (Sect. 6) on three datasets of images
and two black box models. We empirically prove that abele overtakes state of
the art methods based on saliency maps or on prototype selection by providing
relevant, coherent, stable and faithful explanations. Finally, we summarize our
contribution, its limitations, and future research directions (Sect. 7).

2 Related Work

Research on black box explanation methods has recently received much atten-
tion [5,6,13,22]. These methods can be characterized as model-specific vs model-
agnostic, and local vs global. The proposed explanation method abele is the
next step in the line of research on local, model-agnostic methods originated
with [24] and extended in different directions by [9] and by [11,12,23].

In image classification, typical explanations are the saliency maps, i.e., images
that show each pixel’s positive (or negative) contribution to the black box outcome.
Saliency maps are efficiently built by gradient [1,25,27,30] and perturbation-
based [7,33] attribution methods by finding, through backpropagation and differ-
ences on the neuron activation, the pixels of the image that maximize an approx-
imation of a linear model of the black box classification outcome. Unfortunately,
these approaches are specifically designed for deep neural networks. They cannot
be employed for explaining other image classifiers, like tree ensembles or hybrid
image classification processes [13]. Model-agnostic explainers, such as lime [24]
and similar [12] can be employed to explain the classification of any image classi-
fier. They are based on the generation of a local neighborhood around the image
to explain, and on the training of an interpretable classifier on this neighborhood.
Unlike the global distillation methods [17], they do not consider (often non-linear)
relationships between features (e.g. pixel proximity), and thus, their neighbor-
hoods do not contain “meaningful” images.

Our proposed method abele overcomes the limitations of both saliency-
based and local model-agnostic explainers by using AAEs, local distillation, and
exemplars. As abele includes and extends lore [11], an innovation w.r.t. state
of the art explainers for image classifiers is the usage of counter-factuals. Counter-
factuals are generated from “positive” instances by a minimal perturbation that
pushes them to be classified with a different label [31]. In line with this approach,
abele generates counter-factual rules in the latent feature space and exploits
them to derive counter-exemplars in the original feature space.

As the explanations returned by abele are based on exemplars, we need to
clarify the relationship between exemplars and prototypes. Both are used as a
foundation of representation of a category, or a concept [8]. In the prototype view,
a concept is the representation of a specific instance of this concept. In the exem-
plar view, the concept is represented by means of a set of typical examples, or
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Fig. 1. Left : Adversarial Autoencoder architecture: the encoder turns the image x into
its latent representation z, the decoder re-builds an approximation x̃ of x from z, and
the discriminator identifies if a randomly generated latent instance h can be considered
valid or not. Right : Discriminator and Decoder (disde) module: input is a randomly
generated latent instance h and, if it is considered valid by the discriminator , it returns
it together with its decompressed version ˜h.

exemplars. abele uses exemplars to represent a concept. In recent works [4,19],
image prototypes are used as the foundation of the concept for interpretabil-
ity [2]. In [19], an explainable by design method, similarly to abele, generates
prototypes in the latent feature space learned with an autoencoder. However,
it is not aimed at explaining a trained black box model. In [4] a convolutional
neural network is adopted to provide features from which the prototypes are
selected. abele differs from these approaches because is model agnostic and the
adversarial component ensures the similarity of feature and class distributions.

3 Problem Formulation

In this paper we address the black box outcome explanation problem [13]. Given
a black box model b and an instance x classified by b, i.e., b(x) = y, our aim is
to provide an explanation e for the decision b(x) = y. More formally:

Definition 1. Let b be a black box, and x an instance whose decision b(x) has
to be explained. The black box outcome explanation problem consists in finding
an explanation e ∈ E belonging to a human-interpretable domain E.

We focus on the black box outcome explanation problem for image classifi-
cation, where the instance x is an image mapped by b to a class label y. In the
following, we use the notation b(X) = Y as a shorthand for {b(x) | x ∈ X} = Y .
We denote by b a black box image classifier, whose internals are either unknown
to the observer or they are known but uninterpretable by humans. Examples
are neural networks and ensemble classifiers. We assume that a black box b is a
function that can be queried at will.

We tackle the above problem by deriving an explanation from the understand-
ing of the behavior of the black box in the local neighborhood of the instance to
explain [13]. To overcome the state of the art limitations, we exploit adversarial
autoencoders [20] for generating, encoding and decoding the local neighborhood.
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4 Adversarial Autoencoders

An important issue arising in the use of synthetic instances generated when
developing black box explanations is the question of maintaining the identity of
the distribution of the examples that are generated with the prior distribution of
the original examples. We approach this issue by using an Adversarial Autoen-
coder (AAE) [20], which combines a Generative Adversarial Network (GAN) [10]
with the autoencoder representation learning algorithm. Another reason for the
use of AAE is that, as demonstrated in [29], the use of autoencoders enhances the
robustness of deep neural network classifiers more against malicious examples.

AAEs are probabilistic autoencoders that aim at generating new random
items that are highly similar to the training data. They are regularized by
matching the aggregated posterior distribution of the latent representation of
the input data to an arbitrary prior distribution. The AAE architecture (Fig. 1-
left) includes an encoder : Rn→R

k, a decoder : Rk→R
n and a discriminator :

R
k→[0, 1] where n is the number of pixels in an image and k is the number of

latent features. Let x be an instance of the training data, we name z the corre-
sponding latent data representation obtained by the encoder . We can describe
the AAE with the following distributions [20]: the prior distribution p(z) to
be imposed on z, the data distribution pd(x), the model distribution p(x), and
the encoding and decoding distributions q(z|x) and p(x|z), respectively. The
encoding function q(z|x) defines an aggregated posterior distribution of q(z)
on the latent feature space: q(z)=

∫
x

q(z|x)pd(x)dx. The AAE guarantees that
the aggregated posterior distribution q(z) matches the prior distribution p(z),
through the latent instances and by minimizing the reconstruction error. The
AAE generator corresponds to the encoder q(z|x) and ensures that the aggre-
gated posterior distribution can confuse the discriminator in deciding if the
latent instance z comes from the true distribution p(z).

The AAE learning involves two phases: the reconstruction aimed at training
the encoder and decoder to minimize the reconstruction loss; the regularization
aimed at training the discriminator using training data and encoded values.
After the learning, the decoder defines a generative model mapping p(z) to pd(x).

5 Adversarial Black Box Explainer

abele (Adversarial Black box Explainer generating Latent Exemplars) is a local
model agnostic explainer for image classifiers solving the outcome explanation
problem. Given an image x to explain and a black box b, the explanation provided
by abele is composed of (i) a set of exemplars and counter-exemplars, (ii) a
saliency map. Exemplars and counter-exemplars shows instances classified with
the same and with a different outcome than x. They can be visually analyzed to
understand the reasons for the decision. The saliency map highlights the areas
of x that contribute to its classification and areas that push it into another class.

The explanation process involves the following steps. First, abele generates
a neighborhood in the latent feature space exploiting the AAE (Sect. 4). Then,
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Fig. 2. Latent Local Rules Extractor. It takes as input the image x to explain and
the black box b. With the encoder trained by the AAE, it turns x into its latent
representation z. Then, the neighgen module uses z and b to generate the latent local
neighborhood H. The valid instances are decoded in ˜H by the disde module. Images in
˜H are labeled with the black box Y = b( ˜H). H and Y are used to learn a decision tree
classifier. At last, a decision rule r and the counter-factual rules Φ for z are returned.

it learns a decision tree on that latent neighborhood providing local decision
and counter-factual rules. Finally, abele selects and decodes exemplars and
counter-exemplars satisfying these rules and extracts from them a saliency map.

Encoding. The image x∈R
n to be explained is passed as input to the AAE

where the encoder returns the latent representation z ∈ R
k using k latent fea-

tures with k � n. The number k is kept low by construction avoiding high dimen-
sionality problems.

Neighborhood Generation. abele generates a set H of N instances in the
latent feature space, with characteristics close to those of z. Since the goal is to
learn a predictor on H able to simulate the local behavior of b, the neighborhood
includes instances with both decisions, i.e., H = H= ∪ H �= where instances
h ∈ H= are such that b(h̃) = b(x), and h ∈ H �= are such that b(h̃) �= b(x). We
name h̃ ∈ R

n the decoded version of an instance h ∈ R
k in the latent feature

space. The neighborhood generation of H (neighgen module in Fig. 2) may be
accomplished using different strategies ranging from pure random strategy using
a given distribution to a genetic approach maximizing a fitness function [11]. In
our experiments we adopt the last strategy. After the generation process, for
any instance h ∈ H, abele exploits the disde module (Fig. 1-right ) for both
checking the validity of h by querying the discriminator2 and decoding it into
h̃. Then, abele queries the black box b with h̃ to get the class y, i.e., b(h̃) = y.

Local Classifier Rule Extraction. Given the local neighborhood H, abele
builds a decision tree classifier c trained on the instances H labeled with the
black box decision b(H̃). Such a predictor is intended to locally mimic the
behavior of b in the neighborhood H. The decision tree extracts the decision
rule r and counter-factual rules Φ enabling the generation of exemplars and
counter-exemplars. abele considers decision tree classifiers because: (i) decision
rules can naturally be derived from a root-leaf path in a decision tree; and, (ii)
counter-factual rules can be extracted by symbolic reasoning over a decision tree.

2 In the experiments we use for the discriminator the default validity threshold 0.5 to
distinguish between real and fake exemplars. This value can be increased to admit
only more reliable exemplars, or decreased to speed-up the generation process.
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Fig. 3. Left : (Counter-)Exemplar Generator: it takes a decision rule r and a randomly
generated latent instance h, checks if h satisfies r and applies the disde module (Fig. 1-
right) to decode it. Right : abele architecture. It takes as input the image x for which
we require an explanation and the black box b. It extracts the decision rule r and
the counter-factual rules Φ with the llore module. Then, it generates a set of latent
instances H which are used as input with r and Φ for the eg module (Fig. 3-left) to

generate exemplars and counter-exemplars ˜H. Finally, x and ˜H are used by the se
module for calculating the saliency maps and returning the final explanation e.

The premise p of a decision rule r = p→y is the conjunction of the splitting con-
ditions in the nodes of the path from the root to the leaf that is satisfied by
the latent representation z of the instance to explain x, and setting y = c(z). For
the counter-factual rules Φ, abele selects the closest rules in terms of splitting
conditions leading to a label ŷ different from y, i.e., the rules {q→ŷ} such that
q is the conjunction of splitting conditions for a path from the root to the leaf
labeling an instance hc with c(hc)= ŷ and minimizing the number of splitting
conditions falsified w.r.t. the premise p of the rule r. Figure 2 shows the process
that, starting from the image to be explained, leads to the decision tree learning,
and to the extraction of the decision and counter-factual rules. We name this
module llore, as a variant of lore [11] operating in the latent feature space.

Explanation Extraction. Often, e.g. in medical or managerial decision mak-
ing, people explain their decisions by pointing to exemplars with the same (or
different) decision outcome [4,8]. We follow this approach and we model the
explanation of an image x returned by abele as a triple e = 〈H̃e, H̃c, s〉 com-
posed by exemplars H̃e, counter-exemplars H̃c and a saliency map s. Exemplars
and counter-exemplars are images representing instances similar to x, leading to
an outcome equal to or different from b(x). Exemplars and counter-exemplars
are generated by abele exploiting the eg module (Fig. 3-left ). It first generates
a set of latent instances H satisfying the decision rule r (or a set of counter-
factual rules Φ), as shown in Fig. 2. Then, it validates and decodes them into
exemplars H̃e (or counter-exemplars H̃c) using the disde module. The saliency
map s highlights areas of x that contribute to its outcome and areas that push
it into another class. The map is obtained by the saliency extractor se module
(Fig. 3-right) that first computes the pixel-to-pixel-difference between x and each
exemplar in the set H̃e, and then, it assigns to each pixel of the saliency map s
the median value of all differences calculated for that pixel. Thus, formally for
each pixel i of the saliency map s we have: s[i] = median∀˜he∈ ˜He

(x[i] − h̃e[i]).
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Table 1. Datasets resolution, type of color, train
and test dimensions, and black box model accuracy.

Dataset Resolution rgb Train Test RF DNN

mnist 28 × 28 ✗ 60k 10k .9692 .9922

fashion 28 × 28 ✗ 60k 10k .8654 .9207

cifar10 32 × 32 ✓ 50k 10k .4606 .9216

Table 2. AAEs recon-
struction error in terms of
RMSE.

Dataset Train Test

mnist 39.80 43.64

fashion 27.41 30.15

cifar10 20.26 45.12

In summary, abele (Fig. 3-right), takes as input the instance to explain x
and a black box b, and returns an explanation e according to the following steps.
First, it adopts llore [11] to extract the decision rule r and the counterfactual
rules Φ. These rules, together with a set of latent random instances H are the
input of the eg module returning exemplars and counter-exemplars. Lastly, the
se module extracts the saliency map starting from the image x and its exemplars.

6 Experiments

We experimented with the proposed approach on three open source datasets3

(details in Table 1): the mnist dataset of handwritten digit grayscale images, the
fashion mnist dataset is a collection of Zalando’s article grayscale images (e.g.
shirt, shoes, bag, etc.), and the cifar10 dataset of colored images of airplanes,
cars, birds, cats, etc. Each dataset has ten different labels.

We trained and explained away the following black box classifiers. Random
Forest [3] (RF) as implemented by the scikit-learn Python library, and Deep
Neural Networks (DNN) implemented with the keras library4. For mnist and
fashion we used a three-layer CNN, while for cifar10 we used the ResNet20
v1 network described in [16]. Classification performance are reported in Table 1.

For mnist and fashion we trained AAEs with sequential three-layer encoder,
decoder and discriminator. For cifar10 we adopted a four-layer CNN for the
encoder and the decoder, and a sequential discriminator. We used 80% of the
test sets for training the adversarial autoencoders5. In Table 2 we report the
reconstruction error of the AAE in terms of Root Mean Square Error (RMSE)
between the original and reconstructed images. We employed the remaining 20%
for evaluating the quality of the explanations.

We compare abele against lime and a set of saliency-based explainers col-
lected in the DeepExplain package6: Saliency (sal) [27], GradInput (grad) [25],

3 Dataset: http://yann.lecun.com/exdb/mnist/, https://www.cs.toronto.edu/∼kriz/
cifar.html, https://www.kaggle.com/zalando-research/.

4 Black box: https://scikit-learn.org/, https://keras.io/examples/.
5 The encoding distribution of AAE is defined as a Gaussian distribution whose mean

and variance is predicted by the encoder itself [20]. We adopted the following number
of latent features k for the various datasets: mnist k=4, fashion k=8, cifar10 k=16.

6 Github code links: https://github.com/riccotti/ABELE, https://github.com/
marcotcr/lime, https://github.com/marcoancona/DeepExplain.

http://yann.lecun.com/exdb/mnist/
https://www.cs.toronto.edu/~kriz/cifar.html
https://www.cs.toronto.edu/~kriz/cifar.html
https://www.kaggle.com/zalando-research/
https://scikit-learn.org/
https://keras.io/examples/
https://github.com/riccotti/ABELE
https://github.com/marcotcr/lime
https://github.com/marcotcr/lime
https://github.com/marcoancona/DeepExplain
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Fig. 4. Explain by saliency map mnist. Fig. 5. Exemplars & counter-exemplars.
(Color figure online)

Fig. 6. Explain by saliency map fashion.
(Color figure online)

Fig. 7. Exemplars & counter-exemplars.

IntGrad (intg) [30], ε-lrp (elrp) [1], and Occlusion (occ) [33]. We refer to the
set of tested DeepExplain methods as dex. We also compare the exemplars and
counter-exemplars generated by abele against the prototypes and criticisms7

selected by the mmd and k-medoids [18]. mmd exploits the maximum mean dis-
crepancy and a kernel function for selecting the best prototypes and criticisms.

Saliency Map, Exemplars and Counter-Exemplars. Before assessing
quantitatively the effectiveness of the compared methods, we visually analyze
their outcomes. We report explanations of the DNNs for the mnist and fashion
datasets in Fig. 4 and Fig. 6 respectively8. The first column contains the image to
explain x together with the label provided by the black box b, while the second
column contains the saliency maps provided by abele. Since they are derived
from the difference between the image x and its exemplars, we indicate with
yellow color the areas that are common between x and the exemplars H̃e, with
red color the areas contained only in the exemplars and blue color the areas
contained only in x. This means that yellow areas must remain unchanged to
obtain the same label b(x), while red and blue areas can change without impact-
ing the black box decision. In particular, with respect to x, an image obtaining
the same label can be darker in blue areas and lighter in red areas. In other
words, blue and red areas express the boundaries that can be varied, and for
7 Criticisms are images not well-explained by prototypes with a regularized kernel

function [18].
8 Best view in color. Black lines are not part of the explanation, they only highlight

borders. We do not report explanations for cifar10 and for RF for the sake of space.
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Fig. 8. Interpolation from the image to explain x to one of its counter-exemplars ˜hc.

which the class remains unchanged. For example, with this type of saliency map
we can understand that a nine may have a more compact circle, a zero may be
more inclined (Fig. 4), a coat may have no space between the sleeves and the
body, and that a boot may have a higher neck (Fig. 6). Moreover, we can notice
how, besides the background, there are some “essential” yellow areas within the
main figure that can not be different from x: e.g. the leg of the nine, the crossed
lines of the four, the space between the two trousers.

The rest of the columns in Figs. 4 and 6 contain the explanations of the com-
petitors: red areas contribute positively to the black box outcome, blue areas con-
tribute negatively. For lime’s explanations, nearly all the content of the image is
part of the saliency areas9. In addition, the areas have either completely positive
or completely negative contributions. These aspects can be not very convincing
for a lime user. On the other hand, the dex methods return scattered red and
blue points which can also be very close to each other and are not clustered
into areas. It is not clear how a user could understand the black box outcome
decision process from this kind of explanation.

Since the abele’s explanations also provide exemplars and counter-
exemplars, they can also be visually analyzed by a user for understanding which
are possible similar instances leading to the same outcome or to a different one.
For each instance explained in Figs. 4 and 6, we show three exemplars and two
counter-exemplars for the mnist and fashion datasets in Figs. 5 and 7, respec-
tively. Observing these images we can notice how the label nine is assigned to
images very close to a four (Fig. 5, 1st row, 2nd column) but until the upper
part of the circle remains connected, it is still classified as a nine. On the other
hand, looking at counter-exemplars, if the upper part of the circle has a hole or
the lower part is not thick enough, then the black box labels them as a four and
a seven, respectively. We highlight similar phenomena for other instances: e.g. a
boot with a neck not well defined is labeled as a sneaker (Fig. 7).

To gain further insights on the counter-exemplars, inspired by [28], we exploit
the latent representations to visually understand how the black box labeling
changes w.r.t. real images. In Fig. 8 we show, for some instances previously ana-

9 This effect is probably due to the figure segmentation performed by lime.
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Fig. 9. Box plots of fidelity. Numbers on top: mean values (the higher the better).

Fig. 10. 1-NN exemplar classifier accuracy varying the number of (counter-)exemplars.

lyzed, how they can be changed to move from the original label to the counter-
factual label. We realize this change in the class through the latent represen-
tations z and hc of the image to explain x and of the counter-exemplar h̃c,
respectively. Given z and hc, we generate through linear interpolation in the
latent feature space intermediate latent representations z <h

(i)
c <hc respecting

the latent decision or counter-factual rules. Finally, using the decoder , we obtain
the intermediate images h̃

(i)
c . This convincing and useful explanation analysis

is achieved thanks to abele’s ability to deal with both real and latent feature
spaces, and to the application of latent rules to real images which are human
understandable and also clear exemplar-based explanations.

Lastly, we observe that prototype selector methods, like mmd [18] and
k-medoids cannot be used for the same type of analysis because they lack
any link with either the black box or the latent space. In fact, they propose as
prototypes (or criticism) existing images of a given dataset. On the other hand,
abele generates and does not select (counter-)exemplars respecting rules.

Interpretable Classifier Fidelity. We compare abele and lime in terms of
fidelity [5,11], i.e., the ability of the local interpretable classifier c10 of mimick-
ing the behavior of a black box b in the local neighborhood H: fidelity(H, H̃) =
accuracy(b(H̃), c(H)). We report the fidelity as box plots in Fig. 9. The results
show that on all datasets abele outperforms lime with respect to the RF black
box classifier. For the DNN the interpretable classifier of lime is slightly more
faithful. However, for both RF and DNN, abele has a fidelity variance markedly
lower than lime, i.e., more compact box plots also without any outlier11. Since
these fidelity results are statistically significant, we observe that the local inter-
pretable classifier of abele is more faithful than the one of lime.

Nearest Exemplar Classifier. The goal of abele is to provide useful exem-
plars and counter-exemplars as explanations. However, since we could not val-
idate them with an experiment involving humans, inspired by [18], we tested
10 A decision tree for abele and a linear lasso model for lime.
11 These results confirm the experiments reported in [11].
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Fig. 11. Relevance analysis varying the percentile threshold τ (the higher the better).

Fig. 12. Images masked with black, gray and white having pixels with saliency for
DNN lower than τ = 70% for the explanations of four and trouser in Figs. 4 and 6.

their effectiveness by adopting memory-based machine learning techniques such
as the k-nearest neighbor classifier [2] (k-NN). This kind of experiment pro-
vides an objective and indirect evaluation of the quality of exemplars and
counter-exemplars. In the following experiment we generated n exemplars and
counter-exemplars with abele, and we selected n prototypes and criticisms using
mmd [18] and k-medoids [2]. Then, we employ a 1-NN model to classify unseen
instances using these exemplars and prototypes. The classification accuracy of
the 1-NN models trained with exemplars and counter-exemplars generated to
explain the DNN reported in Fig. 10 is comparable among the various methods12.
In particular, we observe that when the number of exemplars is low (1≤n≤4),
abele outperforms mmd and k-medoids. This effect reveals that, on the one
hand, just a few exemplars and counter-exemplars generated by abele are good
for recognizing the real label, but if the number increases the 1-NN is getting
confused. On the other hand, mmd is more effective when the number of pro-
totypes and criticisms is higher: it selects a good set of images for the 1-NN
classifier.

12 The abele method achieves similar results for RF not reported due to lack of space.
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Table 3. Coherence analysis for DNN classifier (the lower the better).

Dataset abele elrp grad intg lime occ sal

cifar10 .575± .10 .542± .08 .542± .08 .532± .11 1.919± .25 1.08± .23 .471± .05

fashion .451± .06 .492± .10 .492± .10 .561± .17 1.618± .16 .904± .23 .413± .03

mnist .380± .03 .740± .21 .740± .21 .789± .22 1.475± .14 .734± .21 .391± .03

Table 4. Stability analysis for DNN classifier (the lower the better).

Dataset abele elrp grad intg lime occ sal

cifar10 .575± .10 .518± .08 .518± .08 .561± .10 1.898± .29 .957± .14 .468± .05

fashion .455± .06 .490± .09 .490± .09 .554± .18 1.616± .17 .908± .23 .415± .03

mnist .380± .04 .729± .21 .729± .21 .776± .22 1.485± .14 .726± .21 .393± .03

Relevance Evaluation. We evaluate the effectiveness of abele by partly mask-
ing the image to explain x. According to [15], although a part of x is masked, b(x)
should remain unchanged as long as relevant parts of x remain unmasked. To
quantitatively measure this aspect, we define the relevance metric as the ratio of
images in X for which the masking of relevant parts does not impact on the black
box decision. Let E={e1, . . . , en} be the set of explanations for the instances
X={x1, . . . , xn}. We identify with x

{e,τ}
m the masked version of x with respect

to the explanation e and a threshold mask τ . Then, the explanation relevance
is defined as: relevanceτ (X,E) = |{x | b(x) = b(x{e,τ}

m ) ∀〈x, e〉 ∈ 〈X,E〉}| / |X|.
The masking x

{e,τ}
m is got by changing the pixels of x having a value in the

saliency map s ∈ e smaller than the τ percentile of the set of values in the
saliency map itself. These pixels are substituted with the color 0, 127 or 255,
i.e. black, gray or white. A low number of black box outcome changes means
that the explainer successfully identifies relevant parts of the images, i.e., parts
having a high relevance. Figure 11 shows the relevance for the DNN13 varying
the percentile of the threshold from 0 to 100. The abele method is the most
resistant to image masking in cifar10 regardless of the color used. For the other
datasets we observe a different behavior depending on the masking color used:
abele is among the best performer if the masking color is white or gray, while
when the mask color is black, abele’s relevance is in line with those of the com-
petitors for fashion and it is not good for mnist. This effect depends on the
masking color but also on the different definitions of saliency map. Indeed, as
previously discussed, depending on the explainer, a saliency map can provide
different knowledge. However, we can state that abele successfully identifies
relevant parts of the image contributing to the classification.

For each method and for each masking color, Fig. 12 shows the effect of the
masking on a sample from mnist and another from fashion. It is interesting
to notice how for the sal approach a large part of the image is quite relevant,

13 The abele method achieves similar results for RF not reported due to lack of space.
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Table 5. Coherence (left) and stability (right) for RF classifier (the lower the better).

Dataset abele lime Dataset abele lime

cifar10 .794 ± .34 1.692 ± .32 cifar10 .520 ± .14 1.460 ± .23

fashion .821 ± .37 2.534 ± .70 fashion .453 ± .06 1.464 ± .18

mnist .568 ± .29 2.593 ± 1.25 mnist .371 ± .04 1.451 ± .17

causing a different black box outcome (reported on the top of each image). As
already observed previously, a peculiarity of abele is that the saliency areas are
more connected and larger than those of the other methods. Therefore, given
a percentile threshold τ , the masking operation tends to mask more contiguous
and bigger areas of the image while maintaining the same black box labeling.

Robustness Assessment. For gaining the trust of the user, it is crucial to
analyze the stability of interpretable classifiers and explainers [14] since the
stability of explanations is an important requirement for interpretability [21]. Let
E = {e1, . . . , en} be the set of explanations for X = {x1, . . . , xn}, and {s1, . . . , sn}
the corresponding saliency maps. We asses the robustness through the local
Lipschitz estimation [21]: robustness(x) = argmaxxi∈N (x)(‖si − s‖2/‖xi − x‖2)
with N (x) = {xj ∈X | ‖xj − x‖2 ≤ ε}. Here x is the image to explain and s is
the saliency map of its explanation e. We name coherence the explainer’s ability
to return similar explanations to instances labeled with the same black box
outcome, i.e., similar instances. We name stability, often called also sensitivity,
the capacity of an explainer of not varying an explanation in the presence of
noise with respect to the explained instance. Therefore, for coherence the set X
in the robustness formula is formed by real instances, while for stability X is
formed by the instances to explain modified with random noise14.

Tables 3 and 4 report mean and standard deviation of the local Lipschitz
estimations of the explainers’ robustness in terms of coherence and stability,
respectively. As showed in [21], our results confirm that lime does not provide
robust explanations, grad and intg are the best performers, and abele per-
formance is comparable to them in terms of both coherence and stability. This
high resilience of abele is due to the usage of AAE, which is also adopted for
image denoising [32]. Table 5 shows the robustness in terms of coherence and
stability for the model agnostic explainers abele and lime with respect to the
RF. Again, abele presents a more robust behavior than lime. Figures 13 and 14
compare the saliency maps of a selected image from mnist and fashion labeled
with DNN. Numbers on the top represent the ratio in the robustness formula.
Although there is no change in the black box outcome, we can see how for some
of the other explainers like lime, elrp, and grad, the saliency maps vary con-
siderably. On the other hand, abele’s explanations remain coherent and stable.
We observe how in both nines and boots the yellow fundamental area does not
change especially within the image’s edges. Also the red and blue parts, that can

14 As in [21], in our experiments, we use ε=0.1 for N and we add salt and pepper noise.
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be varied without impacting on the classification, are almost identical, e.g. the
boots’ neck and the sole in Fig. 13, or the top left of the zero in Fig. 14.

Fig. 13. Saliency maps for mnist (left) and fashion (right) comparing two images with
the same DNN outcome; numbers on the top are the coherence (the lower the better)

Fig. 14. Saliency maps for mnist (left) and fashion (right) comparing the original
image in the first row and the modified version with salt and pepper noise but with
the same DNN outcome; numbers on the top are the stability (the lower the better).
(Color figure online)

7 Conclusion

We have presented abele, a local model-agnostic explainer using the latent
feature space learned through an adversarial autoencoder for the neighborhood
generation process. The explanation returned by abele consists of exemplar
and counter-exemplar images, labeled with the class identical to, and different
from, the class of the image to explain, and by a a saliency map, highlighting
the importance of the areas of the image contributing to its classification. An
extensive experimental comparison with state of the art methods shows that
abele addresses their deficiencies, and outperforms them by returning coherent,
stable and faithful explanations.

The method has some limitations: it is constrained to image data and does
not enable casual or logical reasoning. Several extensions and future work are
possible. First, we would like to investigate the effect on the explanations of
changing some aspect of the AAE: (i) the latent dimensions k, (ii) the rigidity
of the discriminator in admitting latent instances, (iii) the type of autoen-
coders (e.g. variational autoencoders [26]). Second, we would like to extend
abele to make it work on tabular data and on text. Third, we would employ
abele in a case study generating exemplars and counter-exemplars for explain-
ing medical imaging tasks, e.g. radiography and fMRI images. Lastly, we would
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conduct extrinsic interpretability evaluation of abele. Human decision-making
in a specific task (e.g. multiple-choice question answering) would be driven by
abele explanations, and these decisions could be objectively and quantitatively
evaluated.
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Abstract. Reliably detecting anomalies in a given set of images is a task
of high practical relevance for visual quality inspection, surveillance, or
medical image analysis. Autoencoder neural networks learn to recon-
struct normal images, and hence can classify those images as anomalies,
where the reconstruction error exceeds some threshold. Here we analyze
a fundamental problem of this approach when the training set is contami-
nated with a small fraction of outliers. We find that continued training of
autoencoders inevitably reduces the reconstruction error of outliers, and
hence degrades the anomaly detection performance. In order to counter-
act this effect, an adversarial autoencoder architecture is adapted, which
imposes a prior distribution on the latent representation, typically plac-
ing anomalies into low likelihood-regions. Utilizing the likelihood model,
potential anomalies can be identified and rejected already during train-
ing, which results in an anomaly detector that is significantly more robust
to the presence of outliers during training.

Keywords: Anomaly detection · Robust learning · Adversarial
autoencoder

1 Introduction

The goal of anomaly detection is to identify observations in a dataset that sig-
nificantly deviate from the remaining observations [9]. Since anomalies are rare
and of diverse nature, it is not feasible to obtain a labeled dataset representa-
tive of all possible anomalies. A successful approach for anomaly detection is to
learn a model of the normal class, under the assumption that the training data
consists entirely of normal observations. If an observation deviates from that
learned model, it is classified as an anomaly [5].

Autoencoder neural networks have shown superior performance for detect-
ing anomalies on high dimensional data such as images. Autoencoders consist
of an encoder network, which performs nonlinear dimensionality reduction from
the input into a lower-dimensional latent representation, followed by a decoder
c© Springer Nature Switzerland AG 2020
U. Brefeld et al. (Eds.): ECML PKDD 2019, LNAI 11906, pp. 206–222, 2020.
https://doi.org/10.1007/978-3-030-46150-8_13
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network, which reconstructs the original image from this latent representation.
Autoencoders do not require label information since the input image also repre-
sents the desired output. By learning to extract features and to reconstruct the
original images, the network yields a model that generalizes to the reconstruc-
tion of images similar to those in the training set. Conversely, images which show
significant deviations from those observed during training will lead to reconstruc-
tion errors. The reconstruction error of an image can thus be used as an anomaly
score.

Although the autoencoder approach performs well on benchmark datasets
[22], we identify in this article several major shortcomings for real-world scenar-
ios. First, autoencoder methods for anomaly detection are based on the assump-
tion that the training data consists only of instances that were previously con-
firmed to be normal. In practice, however, a clean dataset cannot always be
guaranteed, e.g., because of annotation errors, or because inspection of large
datasets by domain experts is too expensive or too time consuming. It is there-
fore desirable to learn a model for anomaly detection from completely unlabeled
data, thereby risking that the training set is contaminated with a small propor-
tion of anomalies. However, we find that autoencoder-based anomaly detection
methods are very sensitive to even slight violations of the clean-dataset assump-
tion. A small number of anomalies contaminating the training might result in
the autoencoder learning to reconstruct anomalous observations as well as nor-
mal ones. We analyze the underlying causes for this vulnerability of standard
autoencoders, and present several key ideas that make anomaly detection with
autoencoders more robust to training anomalies, thereby improving the overall
anomaly detection performance.

In summary, our contributions are: First, we use adversarial autoencoders
[16], which allow to control the distribution of latent representations, thereby
defining a prior distribution in the bottleneck layer. While (adversarial) autoen-
coders have been used for anomaly detection before [15,24], we here propose a
novel criterion for detecting anomalies consisting of both reconstruction error
and likelihood in latent space. Since anomalies are expected to have a low like-
lihood under the given prior of the normal data, the combination of likelihood
and reconstruction error yields an improved anomaly score and therefore better
detection performance. Second, we define an iteration refinement method for
training sample rejection. Potential anomalies in the training set are identified
in the lower dimensional latent space by a variation of 1-class SVM [18], and
by rejecting the least normal observations we can increase robustness to con-
taminated data. Third, we propose a retraining method to increase separation
in both latent and image space. We compare our method to [10,16], which only
partially use the techniques combined in our approach, and show that our pro-
posed method results in a significantly more robust anomaly detector against
anomalies present during training.
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2 Related Work

Autoencoders were originally intended for nonlinear dimensionality reduction
and feature extraction [10], but it has been realized early on that their capa-
bility to model the training data distribution makes them suitable for anomaly
detection [11]. More recent work has proposed probabilistic interpretations of
deep autoencoders, which can directly model aspects of the data generating
process. Denoising autoencoders [20] learn reconstruction of images from noise
corrupted inputs. This form of regularization makes the latent representation
focus on a data manifold which encodes the most relevant image features. In
[1,2] it was shown that regularized autoencoders implicitly estimate the data
generating process, and have established links between reconstruction error and
the data generating density. [24] applied these concepts to anomaly detection
with deep structured energy based models, showing that a criterion based on
an energy score leads to better results than the reconstruction error criterion.
Adversarial autoencoders (AAE) [16] learn a generative model of the input data
by combining the reconstruction error with an adversarial training criterion [8].
A discriminator network learns to distinguish between samples coming from
the encoder and from a desired arbitrary prior distribution, which gives AAEs
great flexibility to represent assumptions about the data distribution. AAEs for
anomaly detection were first proposed in [15], using a Gaussian mixture model
as prior. It was found that a purely unsupervised approach did not separate
anomalies and normal images into different clusters, and it was proposed to
either condition on class labels, or train an explicit rejection class with random
images.

Almost all approaches for anomaly detection with autoencoders require the
training data to consist of normal examples only, but this alone is no guaran-
tee for anomalies to have large reconstruction errors. Robust deep autoencoders
[25] address this issue by combining denoising autoencoders with robust PCA,
thereby isolating noise and outliers from training of the reconstruction. The
method achieves significantly better results in the presence of anomalies in the
training set on MNIST. [19] proposed using a combination of robust loss function
for autoencoder training together with semi-supervised training of a classifier in
latent space to overcome the problem of corrupted training data. The method
achieves good detection performance, however, their evaluation shows that this
increase is mainly due to semi-supervised training. A combination of deep learn-
ing and kernel based methods for anomaly detection in high dimensional data
was proposed by [6], who combine a Deep Belief Network for feature extrac-
tion, and a 1-class SVM for anomaly detection in the compressed latent space.
Their method can deal with anomalies in the training data, but does not use
this information to refine the training set. In contrast, [17] directly optimized
the objective function of a variation of 1-class SVM in the output space during
network training. By doing so, anomalies can be detected immediately in the out-
put space but this information is not used during training for sample rejection.
When considering detection of potential adversarial examples, [7] have proposed
density based measures in a ConvNet to identify data points that lie outside
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the data manifold. They increase the robustness of their method by adding a
Bayesian uncertainty estimate, which handles complementary situations.

3 Autoencoders and Their Limitations

An autoencoder (AE) is a neural network that maps an input image x ∈ X = R
n

to an output image x′ ∈ X . It consists of an encoder function f : X → Z
and a decoder function g : Z → X , each implemented as a multi-layer neu-
ral network. They jointly compute x′ = g(f(x)). The output of the encoder
z = f(x) ∈ Z = R

m (m � n) is a low-dimensional latent representation
of x. This bottleneck prevents the AE from learning a trivial identity func-
tion. The autoencoder is trained to minimize the reconstruction error L(x,x′),
which is typically the pixelwise mean squared error or the Euclidean distance
in the image space X . After training, anomaly detection can be performed by
comparing L(x,x′) to a decision threshold Trec, classifying all images y with
L(y, g(f(y))) > Trec as anomalies. Trec is selected based on the distribution of
all reconstruction errors Ltrain on the training set Xtrain. Typical choices are
the maximum reconstruction error Trec = maxx∈Xtrain L(x,x′), or a large (e.g.,
90%) percentile Trec = p0.9(L(x,x′)|x ∈ Xtrain), which is more robust. Using
autoencoder networks for detecting anomalies with this procedure is based on the
assumption that all training examples should be reconstructed well, or in other
words that the training set is clean and consists only of normal observations.

3.1 Training with Anomalies

A standard autoencoder learns to reconstruct images from an intrinsic lower
dimensional latent representation, and by simultaneously learning a mapping
from image into latent space also learns in its weights an implicit model of the
data it has seen. For the task of anomaly detection this leads to a trade-off
between generating reconstructions of previously unseen normal images with
minimal error, while maximizing the reconstruction error of anomalous images.
Since no labels are available during training, neither of the criteria can be directly
optimized. Instead, the AE is trained to minimize reconstruction errors on the
entire training set, which will only directly optimize the first criterion if all train-
ing images are normal. During training, the objective rewards exact reconstruc-
tions of all training images, including anomalies. Overfitting singular anomalies
can be avoided by reducing model capacity or early stopping, such that the AE
focuses on reconstructing the majority class. Early stopping, however, may pre-
vent the autoencoder from learning a model which can precisely reconstruct the
majority of (normal) training observations, and may thus lead to false detections.

We demonstrate this effect for a conventional autoencoder trained on two
classes of images of handwritten digits from MNIST [14]. A detailed description
of the architecture can be found in Sect. 5. The digit ‘0’ is arbitrarily defined as
the normal class, whereas digit ‘2’ is the anomaly class (different combinations
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Fig. 1. Limitations of conventional autoencoders for anomaly detection. (a) Mean
reconstruction error of a conventional AE trained on MNIST, where 95% of the images
are from the normal class (digit ‘0’, green, solid line), and 5% are anomalies (digit
‘2’, red, dashed line). The shaded area shows the standard deviation. As training pro-
gresses, the AE learns to reconstruct the anomalous as well as the normal images.
(b) Detection performance on test data from MNIST, measured by the True Positive
Rate (TPR), True Negative Rate (TNR), and Balanced Accuracy (BAcc), where the
reconstruction threshold is set to the 90th percentile. The gray lines indicate the mean
training reconstruction error as displayed in (a). As training progresses, the AE pro-
duces more and more false positives, since the distribution of reconstruction errors
between normal and anomalous images increasingly overlap (Color figure online).

of digits lead to similar results). In this experiment the training set includes
5% anomalies. Figure 1(a) shows the reconstruction error for a conventional AE
trained over 10000 epochs, which results in a network that reconstructs both
classes with very similar error. Using early stopping as proposed in [21,25], e.g.,
after only 100 or 1000 iterations results in a model that is better at reconstructing
normal compared to anomalous images, but it has not yet learned an accurate
reconstruction model for the normal class. Convergence is reached only after
more than 4000 epochs, but at that time the model reconstructs both normal
and anomalous images equally well. This results in poor performance as an
anomaly detector, as shown in Fig. 1(b).

We evaluate the True Positive Rate (TPR), True Negative Rate (TNR), and
Balanced Accuracy (BAcc) at different epochs (where an anomaly is a positive
event). BAcc is defined as TPR+TNR

2 ∈ [0, 1] and thus balances detection per-
formance [3]. We do not use the F1 score, which is commonly used in anomaly
detection, since it neglects the true negative prediction performance. Clearly, the
importance of each metric depends on the role that false negatives (i.e., missed
anomalies) and false alarms have for the task at hand. But obviously, approach-
ing a TPR of 1 at the cost of a TNR going towards 0 (as is the case for an
autoencoder trained until convergence) is not desirable. For the evaluation we
use the known labels of images, which are, however, never used during training.

An immediate observation from Fig. 1(b) is that continued training leads to
a drop in TNR and thus BAcc, which is due to increasing overlap between
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the distribution of reconstruction errors of normal and anomalous images.
A possible explanation for this behavior lies in the nature of stochastic gra-
dient descent, the method used to train autoencoders. In the initial phase, the
AE learns to reconstruct the normal class, which is heavily overrepresented in
the training set, and thus leads to more training updates. This effect is visible in
Fig. 1(a), where the reconstruction error of the normal class shrinks much faster
initially than that of anomalous examples. After a few hundred epochs, the error
for normal images continues to shrink slowly, but the error for anomalies falls
faster. This is due to the small gradient for normal examples, whereas anoma-
lies with still large errors result in large gradients, and therefore dominate the
direction of updates. As a result, the difference in reconstruction quality between
normal and anomalous images vanishes at later epochs. One strategy could be to
reduce model capacity, with the hope that in a smaller network only the major-
ity class can be accurately reconstructed. However, this strategy also results in
lower quality reconstructions for normal images, and therefore in a higher recon-
struction threshold, which is again prone to yielding many false negatives. A
similar argument explains why early stopping does not solve the issue.

3.2 Adversarial Autoencoders

Adversarial autoencoders (AAE) [16] extend the concept of autoencoders by
inducing a prior distribution p(z) in the latent space. A generative model of
the data distribution pdata(x) is thus obtained by applying the decoder to sam-
ples from the imposed prior in latent space. The main difference to Variational
autoencoders [13] is the use of an adversarial training criterion [8]. As a result,
AAEs can impose any prior distribution from which samples can be drawn, and
have smoothly varying outputs in data space for small changes in corresponding
latent space. An example of an AAE structure is displayed in Fig. 2.
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Fig. 2. Schematic structure of conventional autoencoder (blue dashed box) and the
extension to an adversarial autoencoder (Color figure online).

From the perspective of anomaly detection AAEs are interesting because
apart from the reconstruction error, the latent code provides an additional
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indication for anomalies [15]. Simply put, we expect anomalies x (characterized
by low pdata(x)) to map to latent representations with low density p(z|x), or
otherwise have high reconstruction error L(x,x′), because high likelihood latent
codes should be decoded into normal images (see Fig. 3).

Fig. 3. Reconstruction error and likelihood for an AAE trained on a clean subset of
Fashion-MNIST [23] containing only class ‘T-shirt’ (blue). Test data from the anomaly
class ‘Pullover’ (red) yield lower likelihood values and higher reconstruction errors
(Color figure online).

The previous analysis suggests a strategy to improve the robustness of
autoencoders for anomaly detection in the presence of anomalies in the training
set: If anomalies in the training set can be identified during training, there are
ways to prevent a further improvement of their reconstruction quality. The sim-
plest such strategy is to remove them from the training set, but other options are
possible. In the following we present a novel mechanism based on AAE, which
actively manipulates the training set during training by sample rejection, and
thereby focuses AE training on the normal class.

4 Robust Anomaly Detection

If the training set contains anomalies, then the AAE will model them as part
of its generative model for pdata, leading in principle to the same fundamental
problem encountered in conventional AE. However, depending on the imposed
prior, we can at least expect a separation in latent space between the normal
and anomalous instance encodings, since AAEs have smoothly varying outputs
for nearby points in latent space. This feature of AAEs can be explicitly utilized
by defining a prior distribution with a dedicated rejection class for anomalies
[15], but we have observed the same effect even in the case of unimodal priors
such as Gaussians.

Separation between anomalies and normal instances in latent space is par-
ticularly useful if a rough estimate of the training anomaly rate α is known. In
this case standard outlier detection methods such as 1-class SVM [18] can be
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employed on the latent representations, searching for a boundary that contains
a fraction of 1−α of the whole dataset. Once potential anomalies are identified,
they can be excluded for further training, or their contribution to the total loss
might be reweighted. Such procedure approximates the case of a clean train-
ing set, where the combination of reconstruction error and latent density yields
reliable results.

4.1 Likelihood-Based Anomaly Detection

Since AAEs impose a prior distribution p(z) on the latent representations z, the
likelihood p(ẑ) under the prior of a new code vector ẑ = f(x̂) can be used as
an anomaly score [15]. Anomalies are expected to have lower scores than normal
examples. However, it is also clear that p(ẑ) alone is an imperfect score, because
anomalies in local clusters with small support might indeed be assigned higher
scores than normal examples in boundary regions. Furthermore, the encoder
might not be able to learn a mapping that exactly reproduces the prior. Despite
these weaknesses, a likelihood-based criterion is able to identify most anomalies
with similar performance as a reconstruction-based approach, and in addition
allows a combination of both approaches. A decision threshold Tprior is defined by
measuring the likelihood p(f(x)) under the imposed prior for all training samples
x and then selecting a specified percentile in the distribution of p(f(x)) depend-
ing on the expected anomaly rate α. New examples y with p(f(y)) < Tprior are
then classified as anomalies. Ideally we could set Tprior to the α percentile, but in
practice the criterion is chosen slightly differently to compensate for approxima-
tion errors in the encoder and for biases induced by a finite training set. In our
scenarios, p0.1(f(x)) was chosen empirically as it showed most robust behavior
throughout all experiments. In the case of a clean dataset one can also fix the
threshold, e.g., to a specified number of standard deviations, without optimizing
on the training set. Likelihood-based anomaly detection can be easily combined
with reconstruction-based methods, and our results have shown that they com-
plement each other well. We choose a simple combination whereby a new exam-
ple y is classified as an anomaly if either L(y,y′) > Trec, or p(f(y)) < Tprior.
Alternative methods such as a 1-class SVM in the 2-dimensional space of recon-
struction errors and likelihoods did not improve our results. Although we focus
on these two measures, it is also straightforward to integrate more criteria, such
as denoising performance [20], or sensitivity-based measures [4].

To compare the individual performance to a combination of both measures,
we trained an AAE on a clean dataset consisting only of ‘T-shirt’s from Fashion-
MNIST [23] (cf. Fig. 3). For new test observations stemming from the normal
class and a previously unseen anomaly class (‘Pullover’), both the reconstruction
error and the likelihood estimate identify anomalies with similar performance
(BAcc: 0.72 and 0.73, respectively), and a combination of both criteria increases
performance (BAcc: 0.80). The architecture is described in detail in Sect. 5.
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4.2 Iterative Training Set Refinement (ITSR)

In order to improve the robustness against contaminated datasets, we propose
an iterative refinement of the training set. This method reduces the influence of
likely anomalies for further autoencoder training, thus learning a more accurate
model of the normal data distribution. If the adversarial autoencoder is trained
with an imposed unimodal prior, e.g., a multivariate Gaussian, we expect the
normal instances to cluster around the mode of the prior in latent space. This
assumption is reasonable whenever instances of the normal class can be expected
to be similar, e.g., in quality control. If anomalies are contained in the training
set, we observe that the AAE maps them to low-likelihood regions of the prior
(see Fig. 3). Anomalies either form their own clusters if they belong to reoc-
curring patterns (e.g., anomalies from a separate class), or will be represented
sparsely and distant from the peak. In order to identify likely anomalies, stan-
dard outlier detection methods such as 1-class SVM [18] are applied to the repre-
sentations of training images in the lower-dimensional latent space. The 1-class
SVM receives as a hyperparameter an upper bound on the expected fraction of
anomalies via the parameter ν. In our experiments, we use a 1-class SVM with
RBF kernel and fix ν = 0.02, since we assume to have no knowledge of the true
anomaly rate. If available, however, knowledge of the true anomaly rate can be
incorporated here.

The output of the 1-class SVM is a decision boundary, and a list of all normal
data points. All other data points can be considered potential anomalies, and can
be either completely removed from the training set, or weighted to contribute
less to the overall loss than normal points. After modifying the training set the
autoencoder is re-trained, yielding representations that better capture the true
data manifold of the normal class, and with less incentive to reconstruct outliers
accurately. In the following we describe our proposed training procedure in more
detail.

First, every training sample xi is associated with a weight wi, which is used
to compute a weighted reconstruction loss for the autoencoder:

Lw =
N∑

i=1

wiL(xi, g(f(xi))).

The autoencoder is trained to minimize the weighted reconstruction loss, where
weights can change over time. The same associated sample weight wi is used in
the adversarial training procedure.

To iteratively refine the training set to make the model robust to anomalies
present in training, the training procedure is split into three phases:

1. Pretraining: the AAE is initialized by training on the complete training set
for a fixed number of epochs where all weights are set to the identical value
wi = 1. This is the starting point for anomaly detection in latent space with
1-class SVM in the subsequent step.
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2. Detection and Refinement: a 1-class SVM is trained on the latent repre-
sentations with a constant expected anomaly rate ν, yielding a set of candi-
date anomalies denoted Â. All instances within Â are assigned a new weight
wi = 0, thereby removing it from further training. The model is then trained
on the reduced training set X \ Â for a short number of epochs. These two
steps are repeated d times where each repetition increases the total number
of detected training anomalies. By iteratively excluding candidate anomalies,
the model of the normal class is refined.

3. Re-training: after detecting anomalies in the training set and refining the
model of the normal class, the model is re-trained such that reconstruc-
tion errors on detected anomalies increase. This can be achieved by set-
ting wi < 0,xi ∈ Â, forcing a better separability of the two classes. The
method, however, created many false positive detections in the previous
refinement phase, which with this strict reweighting, would erroneously be
forced to be reconstructed worse. Since refining the model on normal obser-
vations still leads to good reconstructions of those false positive observa-
tions (they resemble the true normal observations), we define a threshold
Tretrain = pretrain(L(x, f(g(x)))|x ∈ Â) which is used as a new decision
threshold for reweighting the potential anomalies, i.e., wi = wanomaly < 0
if L(xi, f(g(xi))) > Tretrain, else wi = 0,xi ∈ Â. This forces the model to
learn a higher reconstruction error and lower likelihood for the detected can-
didate anomalies that exceed the threshold Tretrain.

Our proposed ITSR model yields an autoencoder which over time focuses
more and more on the reconstruction of normal images and matching their
latent-distribution to the expected prior, thereby increasing the robustness for
true normal observations in both training and test set. In Fig. 4, results for apply-
ing our ITSR model on MNIST with 5% anomalies in training are presented.
While during the refinement phase the model is trained to robustly represent
the normal class, the model increases separability between normal and anoma-
lous observations during re-training (Fig. 4(a)). Moreover, the expected effect
that anomalies represented in high-likelihood regions have a high reconstruction
error becomes more distinct (Fig. 4(b)). In Sect. 5, we also discuss how to set
the parameters ν for detecting candidate anomalies and the threshold Tretrain

for re-training in more detail.
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Fig. 4. Increasing the robustness of anomaly detection with iterative training set refine-
ment. (a) Reconstruction error over the three phases of ITSR. We show the mean
reconstruction error trained on MNIST, where 95% of the images are from the normal
class (digit ‘0’, green, solid line), and 5% are anomalies (digit ‘2’, red, dashed line).
The shaded area shows the standard deviation. (b) Reconstruction and likelihood of
all points in the training set after ITSR. Colors indicate the final classification result
produced by the 1-class SVM in ITSR: true normal (blue), false positive (green), true
positive (orange), false negative (red). Iteratively refining and re-training our model
increases separability between normal and anomalous observations. Additionally, the
expected behavior that anomalies that falsely lie in a high-density region are badly
reconstructed becomes even more evident (Color figure online).

5 Experimental Setup and Discussion of Results

Experimental Setup. Anomaly detection is evaluated on the classical MNIST
[14] dataset, and the more recent and more complex Fashion-MNIST [23]
database containing gray-level images of different pieces of clothing such as T-
shirts, boots, or pullovers, which in contrast has more ambiguity between classes.
Throughout our experiments, we use the original train-test splits, resulting in
60000 potential training (6000 per class) and 10000 test observations. From the
available classes in both datasets, we define one class to be normal and a second
class to be anomalous for training. In the case of MNIST, we arbitrarily select
digit ‘0’ as normal, and digit ‘2’ as anomaly. For Fashion-MNIST, we conduct
two experiments with increasing difficulty: in both cases, the class ‘T-shirt’ is
defined as normal. In the first experiment anomalies are from the class ‘Boot’,
which is easy to distinguish from T-shirts. In the second experiment, anoma-
lies stem from the class ‘Pullover’, which is visually more similar to T-shirts,
except for longer sleeves, and thus harder to detect. The final training data
consists of the two previously defined classes, but only α = {5%, 1%, 0.1%} of
the instances are from the anomalous class. The experiments with an anomaly
rate α = {1%, 0.1%} show that our approach performs also favorable if anomalies
occur even less frequently. Since our main focus is to improve AE-based anomaly
detection, we thus focus on a comparison to the methods that only partially use
the techniques that we combine in our approach. The complete code for our
evaluation is available on request from the authors.
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Test Set Split. Our proposed model increases robustness to anomalies that are
present during training. In order to evaluate whether this also increases robust-
ness to unobserved types of anomalies, we evaluate on an independent test set,
and split the anomalies into classes that were observed during training, and those
that were not part of training (e.g. new digit classes in MNIST). For the set con-
taining observed anomalies, the test set contains all normal test observations and
observations from the class of anomalies that was present during training. The
set containing unobserved anomalies consists again of the entire set of normal
test instances, and all instances from classes that were never observed during
training. For example for MNIST, the test set containing observed anomalies
consists of images of digit ‘0’ and digit ‘2’ (1000 observations each). The set
with unobserved anomalies contains again all images of digit ‘0’ and all images
of anomaly classes ‘1’, ‘3’-‘9’ (1000 observations each). This results in a ratio of
normal to anomalous observations in the test sets of 1:1 and 1:8, respectively,
but does not affect the anomaly rate during training.

Setting of Parameters ν and Re-training Threshold T retrain. For our
proposed Iterative Training Set Refinement, the parameters ν, which influences
how many candidate anomalies are detected during training, and the threshold
for re-training are crucial. In fact, setting the parameters depends on the prior
knowledge about the data. If the normal data are expected to be very homoge-
neous (e.g., in quality inspection), they will lie close in latent space and potential
anomalies will most likely lie outside this region, so a smaller ν will suffice. If, on
the other hand, the normal class is very heterogeneous (e.g., if different types of
anomalies are expected), more normal observations will spread over latent space
and more candidate anomalies (i.e., a larger ν) needs to be detected to ‘catch’
the true anomalies. In practice the true anomaly rate is not known precisely,
but our results show that it is not necessary to have a precise estimate for ν (we
know the true anomaly rate in the training data but fix ν = 0.02) and that our
proposed approach is robust.

For the threshold Tretrain for re-training, the relation between data homogene-
ity and parameter value is reversed: since this threshold defines the corresponding
percentile of the reconstruction error, a large value is possible for a homogeneous
normal class, whereas a lower value is required for heterogeneous normal data.
In more detail, the threshold Tretrain for re-training should depend on the upper
bound of falsely detected normal observations during refinement phase. In case
of perfect detection of all true anomalies the fraction of falsely detected normal
observations in Â is ν·d−α

ν·d . Since in general we do not know the true anomaly
rate α (but show robustness up to α = 0.05) and might also miss true anoma-
lies in the refinement process, we additionally expect 5% of false detections. For
our chosen parameter ν = 0.02 together with the number of refinement steps
d = 10 (see next subsection Architecture) this yields a re-training threshold of
Tretrain = p0.8(L(x, f(g(x)))|x ∈ Â).

Architecture. Encoder and decoder in the conventional autoencoder both con-
sist of 2 fully-connected layers with 1000 units each. The ReLU activation func-
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tion is used in all layers, with the exception of the final encoder layer (using
linear activation), and the last decoder layer (using sigmoid activation). The
latent space is restricted to 32 dimensions. This architecture is used in all exper-
iments, but for AAEs the latent space is reduced to 2 dimensions. On MNIST,
training is stopped after 4000 epochs, on Fashion-MNIST after 10000 epochs,
using Adam [12] to adapt learning rates. For the AAE, a discriminator net-
work is added, consisting of 2 fully connected layers with 1000 units each, and
sigmoid activation in the last layer. Following [16], batch normalization is per-
formed after each layer in the encoder. As latent prior we assume a 2-dimensional
Gaussian p(z) = [N(0, 1)]2. Training is stopped after 1000 epochs. Our pro-
posed method ITSR is applied to the same AAE architecture. First, pretrain-
ing is performed for 500 epochs, then d = 10 repetitions (each 100 epochs)
of the detection and refinement phase with ν = 0.02 are computed. Retrain-
ing is done for 1000 epochs on MNIST and 500 epochs on Fashion-MNIST
with wanomaly = −0.1. For the combined likelihood and reconstruction anomaly
score that is used as detection criterion for AAE and ITSR, the 90% percentile
Trec = p0.90(L(x,x∗)|x ∈ X) of reconstruction errors, and the 10% percentile of
likelihoods Tprior = p0.10(f(x)|x ∈ X) are used. Conventional AEs use the same
reconstruction-based threshold Trec.

Results and Discussion. Figure 5 shows that for all investigated scenarios
with α = 5% anomalies in the training set our ITSR model yields better bal-
anced accuracy than conventional autoencoders and adversarial autoencoders.
The AAE without refinement improves the anomaly detection performance on
MNIST, but has no beneficial effect for Fashion-MNIST. The results show the
desired increased robustness to the presence of anomalies in the training set, in
particular for the observed anomalies that stem from the same class that con-
taminates the training set, and which pose the greatest challenge for standard
AEs. ITSR improves the balanced accuracy compared to the conventional AE
by more than 30% for the experiment on MNIST (Fig. 5(a)), and by more than
20% over the AAE in general. The performance improvement over the AAE is
greatest (30%) for the most difficult case of detecting ‘Pullover’ anomalies in
the Fashion-MNIST dataset, with ‘T-shirt’s being normal (see Fig. 5(c)). Addi-
tional experiments in Table 1 show that even with a decreased anomaly rate
α = {1%, 0.1%} our method still performs favorable.

Comparing the performance on anomaly classes that were observed or unob-
served during training, we find that standard AEs and AAEs perform similarly
on both types. ITSR results in higher accuracy for anomalies observed during
training, which is the desired effect. This observations even holds if the training
set only contains 0.1% anomalies, or in other words, when the training data is
almost completely normal. Furthermore, our model performs at par or slightly
better than the other methods on unobserved anomalies. It is expected that the
effect for unobserved anomalies is smaller, since they cannot influence training,
and any improvement can only come from a more accurate model for the normal
class. We thus conclude that iterative refinement of the training set improves
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Fig. 5. Anomaly detection performance on an independent test set with an anomaly
rate of 5% in training. The images differ in their experimental setup as follows. (a),(d):
MNIST data with digit ‘0’ normal class and digit ‘2’ anomaly class. (b)–(c),(e)–(f):
Fashion-MNIST data with class ‘T-shirt’ defined as normal and ‘Boot’ ((b),(e)) or
‘Pullover’ ((c),(f)) as anomalous.
(a)–(c): We compare the BAcc of AE, AAE, and ITSR on a test set containing only
types of anomalies observed during training (left), and a set with unobserved anomalies
(right). The detection of anomalies during training in ITSR increases the robustness
against the type of anomalies contaminating the training set, while the performance on
novel anomalies is similar or slightly better. (d)—(f): Reconstruction error for ITSR for
normal (blue) and anomalous (orange) training observations. The reconstruction error
before and after ITSR is shown. Normal images are always accurately reconstructed,
but due to ITSR the error for anomalies increases, thus facilitating anomaly detection
(Color figure online).

anomaly detection with autoencoders in general, without negatively affecting
the detection of novel types of anomalies.

In order to understand the cause for the improved robustness, Fig. 5(d)–(f)
show the reconstruction errors on training set before and after ITSR, separately
for the normal and anomaly classes. We only visualize the case of α = 5%,
even though similar observations can be made for decreased anomaly rates. We
observe only minor changes for the normal class, but a strongly increased recon-
struction error for anomalies after ITSR. This implies that the ITSR model
has learned to robustly represent the normal class in the low-dimensional latent
space and reconstruct it to the original space, while becoming insensitive to the
anomalies present in training. There is still some overlap between the reconstruc-
tion errors of the two classes, but the increased separation results in a higher
balanced accuracy.
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Table 1. Balanced accuracy results for anomaly detection on an independent test set
with anomaly rate α = {1%, 0.1%} in training. We compare conventional autoencoder
(AE) and adversarial autoencoder (AAE) approaches to our proposed Iterative Train-
ing Set Refinement method (ITSR). The defined normal and anomaly class are similar
to Fig. 5(a)–(c), i.e., MNIST data with digit ‘0’ normal class and digit ‘2’ anomaly
class, and Fashion-MNIST data with class ‘T-shirt’ defined as normal and ‘Boot’ or
‘Pullover’ as anomalous. We split evaluation into a test set containing only types of
anomalies observed during training (left), and a set with unobserved anomalies (right).

Anomaly rate α = 1%

Observed anomaly type Unobserved anomaly type

Dataset AE AAE ITSR AE AAE ITSR

MNIST: ‘0’ vs. ‘2’ 0.69 0.91 0.94 0.69 0.91 0.93

Fashion-MNIST: T-shirt vs. Boot 0.74 0.89 0.92 0.73 0.78 0.79

Fashion-MNIST: T-shirt vs. Pull. 0.74 0.70 0.81 0.74 0.78 0.81

Anomaly rate α = 0.1%

Dataset AE AAE ITSR AE AAE ITSR

MNIST: ‘0’ vs. ‘2’ 0.68 0.90 0.91 0.68 0.89 0.90

Fashion-MNIST: T-shirt vs. Boot 0.74 0.89 0.90 0.73 0.77 0.80

Fashion-MNIST: T-shirt vs. Pull. 0.73 0.71 0.80 0.73 0.79 0.80

6 Conclusion

A novel method called Iterative Training Set Refinement (ITSR) for anomaly
detection in images is presented, which exploits the capabilities of adversarial
autoencoders in order to address the shortcomings of conventional autoencoders
in the presence of anomalies in the training set. Our method compares favorably
to state-of-the art methods, and its increased robustness reduces the need for
a clean training dataset, and thus the need for expert information. In practice
this makes the ITSR method very attractive for scenarios where it is known
that the anomaly rate is very low, e.g., in quality inspection. Instead of letting
experts inspect a potentially very large training set and picking only normal
instances, an unprocessed dataset can be used, leaving it to ITSR to exclude
potential anomalies from training. ITSR works directly in the latent space of
the adversarial autoencoder, and is a general method to focus the learning pro-
cess on the true manifold of the normal majority class. No label information
is necessary for this approach, but obviously our method can be extended to
a semi-supervised setting, or an active learning approach, where an interactive
query for labels for instances close to the border identified by the 1-class SVM is
performed. Although presented only on image data in this article, our approach
easily translates to other high-dimensional data types, e.g., spectrograms or time
series.



Robust Anomaly Detection Using Adversarial Autoencoders 221

Acknowledgments. This work has been partially supported by the German Fed-
eral Ministry of Education and Research (BMBF) under Grant No. 01IS18036A. The
authors of this work take full responsibilities for its content.

References

1. Alain, G., Bengio, Y.: What regularized auto-encoders learn from the data-
generating distribution. J. Mach. Learn. Res. 15(1), 3563–3593 (2014)

2. Bengio, Y., Yao, L., Alain, G., Vincent, P.: Generalized denoising auto-encoders
as generative models. Adv. Neural Inf. Process. Syst. 1, 899–907 (2013)

3. Brodersen, K.H., Ong, C.S., Stephan, K.E., Buhmann, J.M.: The balanced accu-
racy and its posterior distribution. In: International Conference on Pattern Recog-
nition, pp. 3121–3124. IEEE (2010)

4. Chan, P.P., Lin, Z., Hu, X., Tsang, E.C., Yeung, D.S.: Sensitivity based robust
learning for stacked autoencoder against evasion attack. Neurocomputing 267,
572–580 (2017)

5. Chandola, V., Banerjee, A., Kumar, V.: Anomaly detection: a survey. ACM Com-
put. Surv. (CSUR) 41(3), 15 (2009)

6. Erfani, S.M., Rajasegarar, S., Karunasekera, S., Leckie, C.: High-dimensional and
large-scale anomaly detection using a linear one-class svm with deep learning.
Pattern Recogn. 58, 121–134 (2016)

7. Feinman, R., Curtin, R.R., Shintre, S., Gardner, A.B.: Detecting adversarial sam-
ples from artifacts. arXiv preprint arXiv:1703.00410 (2017)

8. Goodfellow, I., et al.: Generative adversarial nets. Adv. Neural Inf. Process. Syst.
2, 2672–2680 (2014)

9. Hawkins, D.M.: Identification of Outliers, vol. 11. Springer, Dordrecht (1980)
10. Hinton, G.E., Salakhutdinov, R.R.: Reducing the dimensionality of data with neu-

ral networks. Science 313(5786), 504–507 (2006)
11. Japkowicz, N., Myers, C., Gluck, M., et al.: A novelty detection approach to clas-

sification. In: Proceedings of the International Joint Conference on Artificial Intel-
ligence, vol. 1, pp. 518–523 (1995)

12. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. In: Proceedings
of the International Conference on Learning Representations (2015). http://arxiv.
org/abs/1412.6980

13. Kingma, D.P., Welling, M.: Auto-encoding variational bayes. In: Proceedings of
the International Conference on Learning Representations (2014)

14. LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to
document recognition. Proc. IEEE 86(11), 2278–2324 (1998)

15. Leveau, V., Joly, A.: Adversarial autoencoders for novelty detection. Technical
report, Inria - Sophia Antipolis (2017). https://hal.inria.fr/hal-01636617

16. Makhzani, A., Shlens, J., Jaitly, N., Goodfellow, I., Frey, B.: Adversarial autoen-
coders. arXiv preprint arXiv:1511.05644 (2015)

17. Ruff, L., et al.: Deep one-class classification. In: Proceedings of the International
Conference on Machine Learning, pp. 4390–4399 (2018)

18. Schölkopf, B., Platt, J.C., Shawe-Taylor, J., Smola, A.J., Williamson, R.C.: Esti-
mating the support of a high-dimensional distribution. Neural Comput. 13(7),
1443–1471 (2001)

http://arxiv.org/abs/1703.00410
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980
https://hal.inria.fr/hal-01636617
http://arxiv.org/abs/1511.05644


222 L. Beggel et al.

19. Shah, M.P., Merchant, S., Awate, S.P.: Abnormality detection using deep neural
networks with robust quasi-norm autoencoding and semi-supervised learning. In:
Proceedings of the 15th International Symposium on Biomedical Imaging, pp. 568–
572. IEEE (2018)

20. Vincent, P., Larochelle, H., Bengio, Y., Manzagol, P.: Extracting and composing
robust features with denoising autoencoders. In: Proceedings of the International
Conference on Machine Learning, pp. 1096–1103. ACM (2008)

21. Vincent, P., Larochelle, H., Lajoie, I., Bengio, Y., Manzagol, P.: Stacked denois-
ing autoencoders: learning useful representations in a deep network with a local
denoising criterion. J. Mach. Learn. Res. 11, 3371–3408 (2010)

22. Williams, G., Baxter, R., He, H., Hawkins, S., Gu, L.: A comparative study of RNN
for outlier detection in data mining. In: Proceedings of the 2002 IEEE International
Conference on Data Mining, pp. 709–712. IEEE (2002)

23. Xiao, H., Rasul, K., Vollgraf, R.: Fashion-MNIST: a novel image dataset for bench-
marking machine learning algorithms. arXiv preprint arXiv:1708.07747 (2017)

24. Zhai, S., Cheng, Y., Lu, W., Zhang, Z.: Deep structured energy based models for
anomaly detection. In: Proceedings of the International Conference on Machine
Learning, pp. 1100–1109 (2016)

25. Zhou, C., Paffenroth, R.C.: Anomaly detection with robust deep autoencoders. In:
Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, pp. 665–674. ACM (2017)

http://arxiv.org/abs/1708.07747


Holistic Assessment of Structure
Discovery Capabilities of Clustering

Algorithms
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Abstract. Existing cluster validity indices often possess a similar bias as
the clustering algorithm they were introduced for, e.g. to determine the
optimal number of clusters. We suggest an efficient and holistic assess-
ment of the structure discovery capabilities of clustering algorithms based
on three criteria. We determine the robustness or stability of cluster
assignments and interpret it as the confidence of the clustering algo-
rithm in its result. This information is then used to label the data and
evaluate the consistency of the stability-assessment with the notion of
a cluster as an area of dense and separated data. The resulting crite-
ria of stability, structure and consistency provide interpretable means to
judge the capabilities of clustering algorithms without the typical biases
of prominent indices, including the judgment of a clustering tendency.

1 Introduction

Clustering algorithms are used in various settings of exploratory data analysis,
pattern recognition, etc. They are often used as a tool in a longer preprocessing
pipeline to support some other goal than just clustering the data for its own sake
(e.g. classification, discretization, compression). The best clustering algorithm is
then simply the one that supports the original goal best, so we may only be in
charge of providing an (external) evaluation of the surrounding task.

We exclude such objectives in this paper, but concentrate on those cases
where clustering itself is the core objective. We thus understand the clustering
task in a narrow sense as structure discovery: Does the dataset itself suggest a
partitioning into multiple, separated groups? This would be a valuable result in
an explorative analysis of new data, for instance, it would suggest to explore and
compare the partitions individually. In the context of, say, customer relationship
management we would not ask if it is possible to subdivide all customers into
groups, which seems always possible in one way or another, but whether the data
provides evidence that customers naturally decompose in distinctive groups. This
is also reflected by widely used definitions of clustering, where clusters are well-
separated groups that define a compact or dense area of data.
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From a structure discovery perspective, a clustering algorithm claims that it
has discovered structure in the dataset. So the research question in this paper
is how to assess the capabilities of the various existing clustering algorithms in
this regard. Although the large number of clustering algorithms is flanked by
an impressive number of validity indices, we argue that they are usually not
suited for a fair comparison across many different clustering algorithms with
respect to their structure discovery capabilities. The main contribution of this
paper is a holistic assessment of the structure discovery capabilities of clustering
algorithms. We determine the robustness or stability of cluster assignments and
interpret it as the confidence of the clustering algorithm in its result. This infor-
mation is then used to label the data and evaluate its consistency with the notion
of a cluster as an area of dense and separated data. This approach allows us to
apply methods that are otherwise restricted to supervised learning. The three
criteria of stability, discovered structure and consistency provide better means to
judge about the capabilities of clustering algorithms without the typical biases
of prominent indices, including the judgment of a clustering tendency.

2 Related Work

There is a great variety of clustering algorithms, covered in various textbooks,
e.g. [1,8,13]. We do not focus on any particular type of clustering algorithm, but
will use a spectrum of well-known algorithms (k-means, hierarchical clustering,
mean shift, dbscan) as representatives. We assume the reader is familiar with
these popular algorithms. They all share – more or less – the same goal, but
vary in the computational approach and bias. The review [12] advises to choose
an algorithm based on “the manner in which clusters are formed”, which clearly
demonstrates the dilemma we face if clustering is intended as an explorative
technique and not much is known about the data yet.

With so many algorithms at hand, it seems natural to try them all on new
data. This leads to the question, which result we should trust most. Some suggest
to use external information (class labels), which might be the right approach if
classification is the ultimate goal. With explorative structure discovery in mind
we agree “that it is an inherent flaw in design of clustering algorithms if the
researcher designing the algorithm evaluates it only w.r.t. the class labels of
classification datasets” [9], because the class labels do not necessarily respect
the typical properties of clusters, such as compactness and separation. But there
are also many cluster validity measures that consider internal information only
(rather than external class labels). Recent extensive studies [2,4] compare 30
such indices and among the best-performing indices were Silhouette [18], Davies-
Bouldin (DB) [5], Calinski-Harabasz (CH) [3], and SDBw [11]. The study [19]
uses 10 external and 3 internal measures (Silhouette [18], Dunn [7], DB [5]).

Many internal measures were introduced to overcome a parameter selection
problem. The k-means algorithm, for instance, requires the number of clusters
to be specified in advance, so the algorithm is run for multiple values and the
validity index identifies the best choice. This leads to measures particularly tai-
lored to single clustering algorithms (e.g. [17]). For such a purpose a measure
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works best, if it adopts the bias of the considered clustering algorithm. But if
we intend to compare the results of various clustering algorithms with different
biases, an evaluation based on such a measure would not be impartial (cf. [16]).

While the literature agrees on the objectives of clustering on an abstract level
(compactness and separation), the exact interpretation may vary considerably.
K-means was designed with spherical clusters in mind, so the mean distance to
the cluster center is an appropriate way of measuring compactness, but arbitrary
cluster shapes will not be evaluated adequately. Sixteen out of the 30 cluster
validity indices covered in [2], however, include the notion of a cluster centroid,
which represents a bias on the cluster shape. Other examples for biases on the
shape include the use of a cluster diameter or an average within-cluster-distance.

To identify a natural grouping, clusters need to be separated. But how impor-
tant is the actual distance between clusters? Some measures use a ratio of intra-
cluster and inter-cluster distance. While meaningful for small ratios, above some
threshold (e.g. >3) we consider clusters as being well-separated, regardless of the
actual ratio. Incorporating the ratio in the measure may overemphasize the sepa-
ration of clusters. Yet other measures incorporate concepts like the single nearest
neighbor (e.g. the Dunn index). They are used, for instance, to measure the gap
between two clusters (closest point of a different cluster). As many partitional
clustering algorithms exhaustively assign all data points to some cluster, includ-
ing noise and outliers, such measures are heavily affected by noisy datasets. The
measure assumes a noise-free void between the clusters, which also represents a
bias. These problems underline that the results of many cluster validity indices
for two different algorithms are difficult to interpret, to say the least. A worse
validity index cannot be unambiguously attributed to a worse clustering result,
it might as well be caused by a bias-mismatch.

Many studies have applied algorithms repeatedly to accumulate evidence of
multiple clusterings to find a better partition. In [10] the accumulated evidence
was used to compose new similarity data to which yet another clustering algo-
rithm may be applied. Using (only) the stability of the obtained results as a
validity measure was proposed in [15]. The stability of k-means clustering was
also examined in [14] to pick the correct number of k-means clusters, but there
it was observed that the stability correlated well with the accuracy of (ensem-
ble) clustering for some datasets – but poorly with other datasets. In this work
we are neither interested in improving partitions nor in parameter selection for
a particular clustering algorithm, but to directly compare the performance of
different clustering algorithms. This includes but is not limited to the stability
of the results, as we will demonstrate that stability alone is not sufficient.

3 Threefold Assessment of Structure Discovery

We assume a dataset D of size n = |D| is given. We denote P = {C1, . . . , Cc}
as a partition of D of size c if ∀1 ≤ i, j ≤ c: Ci ⊆ D, Ci ∩ Cj = ∅ and⋃

i Ci ⊆ D. We use the abbreviation
⋃

P for
⋃c

i=1 Ci. Note that we do not
require

⋃
i Ci = D: some algorithms (e.g. dbscan) mark data as outliers. We also

remove singleton clusters as they also represent outliers.
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A clustering algorithm delivers a partition of D of size c, where the c groups
are usually called clusters. We use the notation CP

x for any x ∈ D to refer to the
unique cluster Cj ∈ P with x ∈ Cj . For illustrative purposes we use R imple-
mentations of hierarchical clustering (single-, complete- and average-linkage),
k-means, dbscan and meanshift with varying parameters (e.g. 2–7 clusters). For
the hierarchical clustering we obtain the final clusters in a rather naive way by
cutting the tree to get the intended number of subtrees (clusters).

3.1 Point Stability

Lacking data from the full population, clustering algorithms are typically exe-
cuted on a (random) sample, so there is always some uncertainty in the selection
of the data involved. We can check an obtained partition to see whether x and
y belong to the same cluster, but we actually want to know if x and y would
belong to the same cluster in general, that is, if the full population was clustered
rather than this particular data sample only.

We have only access to a partition P obtained from our algorithm by applying
it to sample D. We would like to know, for any x ∈ D, how likely other objects
y, co-clustered with x in P, belong to the same cluster if we had a different
sample. Assuming the existence of a ground truth partition T for a moment, we
are interested, for a given x, in

P (y ∈ CT
x |y ∈ CP

x ) =
|(CT

x ∩ CP
x )\{x}|

|CP
x \{x}| =

|CT
x ∩ CP

x | − 1
|CP

x | − 1
(1)

This conditional probability characterizes the stability of a single data point as it
is perceived by the selected clustering algorithm. A probability of 1 would mean
that all co-grouped data of x in P would actually co-group identically in the true
partition. As there is no chance of knowing T and even P depends on our sample
D, we estimate this probability by executing the same algorithm multiple times
on different subsets of D: We may then estimate how likely a point y belongs to
the same cluster as x (in any other partition), given we observed that x and y
co-group in one given partition.

Definition 1 (Point Stability). Given a dataset D and a clustering algo-
rithm. Let k,m ∈ N. Just as in k-fold cross-validation, we use a random partition
R = {R1, . . . , Rk} of D with equal-sized groups and define (training) datasets
Di = D\Ri, 1 ≤ i ≤ k. This process is repeated m times with shuffled data, such
that we obtain a set M of k · m different partitions by applying the clustering
algorithm to the resp. Di. We define the (k,m)-point stability of x ∈ D as

PS(x) :=
1

|M2
x |

∑

(P,Q)∈M2
x

P (y ∈ CQ
x |y ∈ CP

x ) =
1

|M2
x |

∑

(P,Q)∈M2
x

|CQ
x ∩ CP

x | − 1
|CP

x | − 1

where M2
x is defined as M2

x := {(P,Q) | P ∈ M,Q ∈ M,P �= Q, x ∈ P, x ∈ Q}.
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Fig. 1. Simple dataset with two clusters (left) and point stability plot (right) for all
considered clustering algorithms (color-coded). Thick lines are discussed in the text.
(Color figure online)

Having removed singleton clusters (cf. page 3), we will not face a division by
zero. Throughout the paper we use k = m = 5, which yields 25 partitions and
25 ·24 = 600 partition comparisons. The point stability is already an informative
tool if all values are sorted and plotted as shown in Fig. 1. For the sample data
on the left, each line in the point stability plot on the right corresponds to one
algorithm/parameter setting. The color indicates the clustering algorithm, the
few thick lines are from top to bottom: single-linkage (c = 2), almost identical
to mean-shift (threshold 0.1), k-means (c = 2), complete-linkage (c = 2), and
average-linkage (c = 6). About 50 data objects receive a point stability close
to 1 from many algorithms, which means that they get clustered reliably. They
correspond to the small cluster on the right. The remaining objects receive quite
different stability values. As the true number of clusters is 2, the large cluster is
splitted arbitrarily depending on the chosen subsample for c > 2. Thus data pairs
get grouped differently from run to run and their stability decreases. But even
when the clustering algorithms were asked for 2 clusters, there is still considerable
variance in the stability curves. The stability of the highlighted meanshift and
single-linkage (top curves) is clearly superior over k-means and average-linkage,
which respond more sensitive to changes in the sample.

3.2 Stably Discovered Structure

In Fig. 1 two algorithms achieved consistently high stability values for almost
all data objects, but for a completely different reason. As already mentioned,
the hierarchical single-linkage algorithm was used in a naive way: the hierarchy
was cut off to obtain a certain number of clusters. In the particular case of
Fig. 1(left), which contains noisy data points, the first few clusters are typically
singleton clusters that correspond to outliers. The second cluster then consists
of all remaining data and it is not surprising to achieve high stability values
for all of them. In contrast, the results of the meanshift clustering consistently
discovered both clusters in Fig. 1. Stability alone is thus not sufficient, we have
to measure the amount of actually discovered structure.



228 F. Höppner and M. Jahnke

Definition 2 (Stable Partition). We define the largest set DS ⊆ D of data
objects that are robustly clustered by the clustering algorithm (i.e. have a point
stability of 1) as the stably clustered data. From all obtained partitions Pi ∈
M we can thus identify a single stable partition PS which (1) consists of
all stably clustered data (

⋃
PS = DS) and (2) is consistent with all partitions

(∀Pi : ∀C ∈ Pi : ∃Cs ∈ PS : C ∩ DS = CS).

To identify PS we have to keep in mind that, although stability is measured
object-wise, an unstable object degrades the stability of all data objects in the
same cluster. In other words, removing one instable object will increase the
stability of all remaining objects in a cluster. Therefore we identify DS by order-
ing all objects (increasingly) by their point stability and successively removing
objects until all remaining points reach a stability of 1. Each removal increases
the stability of all objects in Cx, so DS is usually much larger than the set of
objects that receive values close to 1 in the point stability plots of Fig. 1. We
will discuss how to compute DS efficiently in Sect. 3.5.

So we define the fraction of stable data |DS |/|D| as the stability index,
which serves as a first quality indicator. The higher the stability index, the more
data was clustered reliably. But we have seen that the number of data objects
alone is not sufficient since all stable objects may belong to a single cluster (cf.
single-linkage example): Without any (sub)structure being discovered, a high
stability is pointless. We may add the number of clusters as a second quality
indicator, but this would not take the cluster sizes into account. Instead we
use the partition entropy of the stable partition as a (discovered) structure
index: In an information-theoretic sense, entropy denotes the amount of infor-
mation in a transmitted message. The message consists of the (reliably) assigned
clusters to each data object. The higher the amount of information in the cluster
assignments, the more structure has been discovered. Then three clusters receive
a higher structure value than two clusters, two equal sized clusters receive a
higher value than a 95%:5% cluster constellation (less structured).

Definition 3 (Partition Entropy). Given a partition P = {C1, . . . , Cn}, by
partition entropy we refer to PE(P) = −

∑n
i=1 pi log pi where pi = |Ci|

|
⋃

P| .

Figure 2(left) shows which data was recognized as stable for a k-means clus-
tering (c = 2) and Fig. 2(middle) for average-linkage clustering (c = 3). The
stably clustered data is shown as black crosses, the instably clustered data as
red circles. For k-means we see that all red points lie half way between both
cluster centers, the right cluster contains more data than appropriate (due to
k-means’ bias towards equal-sized clusters). For the average-linkage example the
number of clusters was not ideal (c = 3 instead of 2): depending on the current
subsample, the surplus middle cluster varied in location and size, leading to a
large portion of instably clustered data. Compared to k-means, fewer data was
stably clustered and the structure index is similar as the stable partition also
consists of two clusters only – despite its initialization with c = 3.

All algorithms can be compared in the scatterplot of the stability index and
the structure index as shown in Fig. 2(right). A single point corresponds to the
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Fig. 2. Stably clustered data (black), instable portion in red for k-means (c = 2) and
average-linkage (c = 3). Right: Entropy and size of stable partition for all algorithms.
(Color figure online)

evaluation of a clustering algorithm (with fixed parameters). The horizontal line
indicates the entropy for 2 equal-sized clusters. All results at the bottom of the
Fig. correspond to algorithms, where the fraction of stable data consisted of
a single cluster only: the algorithms did not identify any substructure reliably.
Another group of results aligns somewhat below the line ‘entropy of 1’. From our
background information about the dataset (two unequal cluster sizes) we expect
the best result to be near this line but not to reach it, because the clusters are
not of the same size. Only the stable partition of the meanshift algorithm covers
almost 100% of the data and reliably detects both clusters. The second best
result comes from k-means, which has a higher structure index but less stably
clustered data (lower stability index). From the plot we can read immediately,
that the meanshift and k-means runs are superior to all other results wrt. to
stability and structure index. The inappropriate assignment of data from the
“left true cluster” to the “right k-means cluster” is, however, not yet reflected.

3.3 Compactness and Separation

So far we have evaluated the resulting partitions only, but did not use any
distance information. The example of Fig. 2(left) shows that information from
the partition alone is not sufficient. K-means claims two clusters of roughly the
same size, but cuts off some data from the large cluster and disregards the
cluster separation. This will be addressed by a third criterion. We will not make
assumptions about the shape of the clusters as this would bias our measure
towards clustering algorithms with the same assumption.

We have to clarify our notion of compactness and separation first. Clusters
correspond to dense groups of data objects, so cluster members should be iden-
tifiable by means of some level of data density. As a simple indicator of density
we use the following distance dk(x) to the kth neighbor:

Definition 4 (kth Nearest Neighbor). By dk(x) = maxy∈Nk(x) ‖x − y‖ we
denote the distance to the kth nearest neighbor of x in D, where Nk(x) ⊆
D is the k-neighborhood around x such that ∀y ∈ D\Nk(x) : ‖x − y‖ ≥
dk(x) and |Nk(x)| = k + 1.
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Table 1. Consistency of ‘notion of compactness’ (density-based, dk ≤ �) and ‘well-
clustered’ (partition-based, pure and stable)

Stably clustered
and pure

Instably clustered
or impure

Within
cluster: dk ≤ �

TP FP

Outside
cluster: dk > �

FN TN

precision = TP
TP+FP

recall = TP
TP+FN

We intend to use dk(x) as a score that indicates the predisposition of x
to belong to a cluster. If a data object has k neighbors within some (small)
threshold distance, we may speak of a compact, densely packed area, which
therefore qualifies for cluster membership. Being part of a cluster, we expect
objects in the neighborhood to belong to the same cluster. We do not expect
data from other clusters in the neighborhood (this would violate the separation).
Furthermore, we expect from a good clustering algorithm to stably identify a
cluster, that is, x as well as its neighbors (but not any instably clustered data).

For any x ∈ D we now have two sources of information: (i) Based on the
distance, we infer a clustering tendency from dk(x) ≤ � for some density thresh-
old �. (ii) From our stability analysis we know whether our clustering algorithm
perceives x as part of a stable cluster. For a good clustering, both information
about x should be consistent: dense data should be clustered stably. So the
third criterion measures how well both views match. Are the objects, that likely
belong to clusters, stably clustered and well separated? To measure the degree
of consistency we consider a contingency table shown in Table 1: If a data object
qualifies for cluster membership (dk ≤ �), and the algorithm clustered it stably
and with pure neighborhood, the compactness (small dk distance) and the sepa-
ration (stable, pure neighborhood) are consistent (true positive). If, however, the
object was not clustered stably or the neighborhood is not pure, we recognize a
false positive.

The consistency depends on �: For a small threshold, only the dense center
of a cluster may meet the condition dk ≤ �. Those points are likely to get stably
clustered (TP, increases precision), but many other stably-clustered but less
dense areas will be missed (FN, low recall). Data towards the border of a cluster
may require a larger threshold � to accept them as ‘dense enough to be part of a
cluster’. With � getting larger, the risk of including data from other clusters in
the neighborhood increases. For non-separated clusters, an increasing recall may
therefore lead to a drop in precision. The overall consistency of the partition
with the data density is thus well-captured by means of a precision-recall graph,
cf. Fig. 3(left) for the data set from Fig. 1. We expect a curve of a reasonable run
to start in the top left corner. If there is a threshold � that separates all clusters
from another, we reach 100% recall with 100% precision (line close to the ideal
line (0, 1)–(1, 1)). The earlier the curve drops from the ideal line, the worse the
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Fig. 3. Precision-recall graph for data set twoclusters and its SSC-plot.

consistency of the clusters (not separated or not stably clustered). We may also
observe curves starting at (0, 0), which indicates that the clustering algorithm
did not even succeed to stably cluster the regions with the highest data density.
This may happen if c was chosen too high and multiple prototypes compete for
a single true cluster: The true cluster is split into multiple parts and its core
data gets assigned to alternate clusters, which renders them instable.

As the optimal curve in such a graph is a constant line of precision 1, the
area under the precision-recall graph serves as the third consistency index.
The final SSC-plot (stability, structure, consistency) shows the relative size
of the stable dataset on the x-axis, the consistency (area under precision-recall
curve) on the y-axis and the structure (entropy of the stable partition) by the dot
size and its color, cf. Fig. 3(right). Optimal results lie in the upper right corner
(all data stably clustered, highly consistent). Several runs lie in this corner in
Fig. 3(right), but only one meanshift result discovered a non-trivial structure.
The second best result is still k-means (for 2 clusters), but with lower stability
and consistency values, the latter reflects the missing separation in Fig. 2(left).

3.4 Ranking

The SSC-plot offers a holistic view on the algorithms performance. In a particular
context there might be a focus on one of the measures stability, structure, or
consistency. If considered as a multicriteria problem, there might be no single
best solution, so the Pareto front has to be explored. When a unique ranking
is needed to select the best algorithm automatically, we suggest to sum how
many other runs are dominated by a given run in the three criteria individually.
In our running example the two highest scores correspond to the best solutions
identified in the discussion: the meanshift run gets a score of 81 and the k-means
a score of 77 with an average score of 41.6. (With 34 runs in the experiment the
theoretical maximum is 33 for each index, 99 in total for all three indices.)
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3.5 Efficient Calculation of a p% Stable Partition

In this section we discuss the identification of a partition with an average sta-
bility of p%. Calculating a single point stability PS(x) for data object x is
straightforward: For r partitions we carry out r · (r − 1) comparisons; for each
comparison a contingency table of size c×c is constructed in O(n), where c is the
number of clusters. The contingency tables contain the cluster intersections of
definition 1. We arrive at a complexity of O(r2 × n). We calculate PS(x) once,
order the points increasingly by their point stability, and successively remove
objects from the dataset in this order. We stop if the average PS(x) for all
remaining x reaches p%. A recalculation of PS(x) after each removal would lead
us to O(r2 · n2).

A more efficient implementation makes use of the fact that upon removal
of the next data object the contingency tables need not be recalculated because
they change only in one cell by 1. The partitions associated with the table tell us
which cell is affected. Furthermore we want to remove data objects successively
until we reach the desired average stability for the remaining data, so we actually
do not need to calculate individual stability values PS(x) but only the average
stability PS(x) of all remaining x. For the average stability PS we have

PS =
1

|D|
∑

x∈D

PS(x) =
1

|D|
∑

x∈D

1
|M2

x |
∑

(P,Q)∈M2
x

|CQ
x ∩ CP

x | − 1
|CP

x | − 1
(2)

As the rightmost term in (2) is the same for all data objects in the same cell of
the contingency table (and |M2

x | = |M |(|M | − 1) regardless of x) we arrive at

PS =
1

|D||M |(|M | − 1)

∑

(P,Q)∈M2,P�=Q

∑

P∈P,Q∈Q
|Q ∩ P | · |Q ∩ P | − 1

|P | − 1

Thus the calculation of PS can be done in O(r2 · c2) and is independent of the
dataset size n. Recalculating PS until it reaches a value of 1 has therefore a
complexity of O(r2 · c2 · n).

4 Empirical Evaluation

We use standard R implementations for the clustering algorithms as well as the
validity indices [6]. We report results for a selection of indices, such as SDbw
(identified as best index in [16]) or Silhouette (identified as best index in [2]).

4.1 Artificial Datasets

We consider a set of 6 artificially generated, two-dimensional datasets first, shown
in Fig. 4. In this setting, a decision about the correct clustering can be done by
visual inspection. For a range of clustering algorithms and parameters the same
number of k · m = 25 runs were evaluated by the validity indices and then
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Table 2. Results of popular cluster validity indices for various datasets. Correct result
in bold face. If multiple runs achieved the same evaluation, only one is listed.

Dataset CH Dunn Silhouette DB SDbw

disc kmeans, 7 single, 2 kmeans, 3 kmeans, 7 kmeans, 7

triangle single, 3 single, 3 single, 3 single, 3 single, 3

ring kmeans, 7 single, 2 dbscan, 0.1 kmeans, 7 kmeans, 7

grid kmeans, 4 average, 7 dbscan 0.1 kmeans, 4 kmeans, 4

block kmeans, 7 single, 2 dbscan 0.1 kmeans, 7 kmeans, 7

ellipse kmeans, 6 dbscan, 0.075 kmeans, 4 dbscan, 0.075 dbscan, 0.075

averaged. Among the results, the Table 2 reports one run that achieved the best
average value. The correctness of the partition was evaluated by visual inspection
and is indicated by bold face in the Table.

No Structure: We start with a dataset that has no structure at all, the disc
dataset in Fig. 4(top left). In absence of any clusters or focal points, the clusters
in different runs do not have much in common. The SSC plot for this dataset is
shown in Fig. 5(top left). The runs that have high consistency and high stability
(top right corner) do not discover any structure (no coloured circles visible):
The single-linkage and dbscan runs group all data in one cluster (and exclude
only a few outliers). All other runs have a very poor stability value, almost all
of the data was marked as unstable. The SSC plot shows clearly that none of
the algorithms did discover anything of interest – which is perfectly right for the
disc dataset. In contrast, most validity measures favour kmeans (c = 7) – due to
a monotonic behavior in c and c = 7 was the highest value in our experiments.
Most validity indices are not prepared for this case as they compare at least two
clusters.

Compact Clusters: Next we consider a clear structure, the triangle dataset
of Fig. 4(top middle). This is a simple task for many clustering algorithms, but
may still cause problems. For instance, even with the correct number of clusters,
k-means splits one of the three clusters from time to time (R implementation ini-
tializes prototypes with random points). The top right corner of well-performing
runs in the SSC plot of Fig. 5(top middle) is populated with various runs (e.g.
single linkage, c = 3), many of them indicating the stable discovery of 3 equal-
sized clusters by means of a structure index of about 1.6. In Fig. 4(top middle)
only a single object has been marked as instable by the average-linkage clus-
tering. The validity indices also work well with this dataset, all of the indices
prefer the correct number of clusters c = 3. But for many indices, the average
evaluation of k-means is only slightly worse than that of single-linkage, but the
SSC plot tells a different story: Because of the occasional cluster splitting the
k-means runs receive lower consistency and stability values, it yields the correct
solution less reliable.
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Fig. 4. Datasets from top left to bottom right: disc, triangle, ring, grid, block, ellipse.
The red color refers to the stability obtained of some selected clustering algorithm.
(Color figure online)

Cluster Shape: The ring dataset in Fig. 4(top right) has been used many times
in the literature. It has been chosen because many validity indices have a bias
towards compact clusters and would not accept the inner cluster and the ring
as two clusters. Only the Dunn validity index selects a correct solution, while
the other measures prefer k-means again (c = 7). The runs with high values
of c, however, do not lead to stable partitions, they subdivide the outer ring
arbitrarily, these clusters are not reproducible. In contrast to the validity indices,
the SSC-plot in Fig. 5(top right) clearly favors the single-linkage (c = 2) solution
as an optimal solution. (The icon is somewhat difficult to see, because several
meanshift results with zero structure lie at approximately the same position).
There is a clear gap to other runs in terms of stability and consistency.

A second dataset ellipse with varying shapes is shown in Fig. 4(bottom
right): two small spherical and one large long-stretched cluster. The SSC plots
indicates that only the meanshift algorithm manages to discover these clusters
almost perfectly. Other runs in the top-right corner assign all data to a single
cluster and thus discover no structure. A k-means run claims to discover more
structure, but far less consistent: The visual inspection of the result shows that
the long-stretched cluster is broken up into several portions of roughly equal
size. Again, the results selected by the cluster validity indices in Table 2 do not
correspond to the correct solution. Either many clusters are used to split up the
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Fig. 5. SSC-plots (top left to bottom right): disc, triangle, ring, block, grid, ellipse.

long-stretched cluster, a single cluster with all data (meanshift, 0.3), or a few
tiny clusters with over 90% of the dataset marked as noise (dbscan, 0.075).

Clustering Tendency: The grid dataset of Fig. 4(bottom left) is another
example for a dataset that carries no internal structure. In contrast to disc,
most validity indices suggest c = 4 instead of c = 7 now. This is due to the
corners, which were absent in the disc dataset. They serve as focal points and
stabilize the cluster positions, while at the same time guaranteeing four equal-
sized clusters (cf. stable points in Fig. 4). The SSC-plot of Fig. 5(bottom left)
looks similar to the disc dataset: Most runs have low stability and low consis-
tency (lower left corner) and those runs with higher stability offer no structure.
The only exception is the discussed phenomenon with k-means (c = 4), where
the corner stabilize the cluster positions, which yields a high stability value.
However, as we can see from the instable points (marked red) in Fig. 4(bottom
left), the clusters and not separated and we achieve a quite low consistency value.

The grid dataset is also meant as a counterpart of the block dataset, where
two of the four corners actually form separated clusters, so we have 3 clusters
in total. The SSC plot clearly shows a few runs (dbscan, single-linkage) that
deliver optimal results at an entropy close to 0.8 (because we have one very large
cluster and two small clusters). On the contrary, the best k-means run suggests
two equal-sized clusters that split the large cluster into two (cf. instable portion
in Fig. 4(bottom middle)). This leads to a structure index close to 1 (two equal-
sized clusters), but the consistency is poor (below 0.75). The SSC-plot reflects
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the performance again very well, whereas most validity indices favour many
clusters (k-means, c = 7). None of the measures hints at the correct solution.

In summary, the cluster validity indices were misled by their biases, whereas
the SSC-plot (as well as the selection procedure mentioned in Sect. 3.4) managed
to identify the most reliable algorithm for every dataset.

4.2 Real Datasets

Next we examine the results on three real dataset from the UCI machine learning
repository: wine (all attributes except the class), ecoli (selected attributes: mcg,
gvh, aac, alm1 and alm2), and pendigits (attributes #6, #8, #10 and #12).
There is no ground truth available with these datasets.

The wine dataset has three classes and it is well-known that a k-means run
with 3 clusters matches the classes pretty well. In the SSC-plot in Fig. 6(left)
exactly this run stands out by the highest structure index (partition entropy of
≈1.6, corresponding to 3 equal-sized clusters). But we also see that only 65%
of the data was clustered stably and the consistency is also quite low. So it is
safe to conclude that we observe a similar phenomenon as with the grid dataset:
The data distribution provides focal points for three clusters, but we do not have
three separated clusters. The k-means run with c = 2 has much better stability
and consistency values.

A 5D-excerpt of the ecoli dataset is shown in Fig. 6(bottom middle). Upon
visual inspection some scatterplots offer no structure (aac vs gvh), others seem
to suggest two clusters (aac vs alm2), some may even hint at three clusters (gvh
vs alm1). The SSC-plot supports this impression we got by visual inspection
very well: we see a close-to-optimal meanshift result for two clusters, but also a
runner-up with three clusters (86% stability, 92% consistency). Other algorithms
reach a similar structure index, but are less stable and less consistent.

Finally we discuss results for a real dataset where the visual inspection is not
conclusive: the pendigits dataset (handwritten digit recognition). Although we
use only 4 attributes from the original dataset, the scatterplot matrix looks very
confusing and nothing hints at the existence of separated clusters. From the
SSC-plot in Fig. 6(right) we see a very good k-means result with stability and
consistency close to 1 – no cluster splitting or lacking separation with k-means
for this run. The precision-recall allows to diagnose the results: For instance, for
two k-means runs we observe a steep drop in precision followed by an almost
constant segment (curves (b)). For these runs, only a few dense points were sta-
bly discovered (TP), but most of the surrounding, less dense data was marked
instable as it was assigned to alternating clusters. The k-means curve that drops
earliest recovers later (curve (c)): This means that one particularly dense area
was not stably clustered (FP), possibly a cluster splitting phenomenon, but for
the less dense data the algorithm performed much better (more TPs). Several
average-linkage curves (d) achieve good results in medium dense areas, but per-
form extremely poor in the areas of highest and lowest density.
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Fig. 6. Real Datasets and SSC-plot from left to right: wine, ecoli, pendigits.

4.3 Sensitivity

The consistency index depends on the parameter k in dk(·). We have used k = 16
throughout all experiments. The size of k influences the degree of separation that
is required for clusters: For k = 0 all neighborhoods are pure and none for k = n.
A cluster that does not even consist of k points will not have any pure neigh-
borhoods. The role of k is that of assuring separation at the border of a cluster,
where data from the own cluster may lie on one side and data from another
cluster on the opposite side. If the gap is large enough such that the k nearest
objects all belong to the same cluster as x, we consider x well separated from
other clusters. We have calculated consistency values for k ∈ {8, 12, 16, 20, 24}
over 27 datasets and obtained a lowest pairwise Pearson correlation of 0.989
(k = 12 vs k = 24) and a correlation coefficient of 1 for k = 8 vs k = 12. So the
results are robust and not sensitive to the exact choice of k.

5 Summary and Conclusions

We have revisited the problem of evaluating clustering algorithms from a struc-
ture discovery perspective. Recent studies list and compare 30 different validity
indices to find out the best measure. But all these measures seem to have strong
biases, which makes them less suited to directly compare the performance of
an arbitrary selection of algorithms on an unknown dataset. This has also been
confirmed by our experiments. While it is common to apply a broad range of
classifiers to a new dataset to see which method may work best with the unknown
data, we seem to have nothing comparable for clustering methods.
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For the case of structure discovery capabilities, a collection of three indices
has been proposed in this paper that convey a complete picture of the algorithms
performance on this dataset: the fraction of stably clustered data, the amount
of discovered structure, and the consistency of the resulting partitions with the
notion of a cluster being “compact and separated”. The experiments demon-
strate that the method is less biased towards specific cluster shapes or notions
of compactness and separation than existing methods. Addressing the stability
of each object and its density separately, allows us to apply methods usually
restricted to classification task in the field of unsupervised clustering. The pro-
posal may therefore strike a new path for a systematic and direct comparison
of clustering algorithms from different paradigms and with different biases – at
least as far as structure discovery capabilities are concerned.

The results are reproducible. The source code, the datasets and all figures
are available at https://public.ostfalia.de/∼hoeppnef/validity.html.
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Abstract. The present-day accessibility of technology enables easy log-
ging of both sensor values and event logs over extended periods. In this
context, detecting abnormal segments in time series data has become an
important data mining task. Existing work on anomaly detection focuses
either on continuous time series or discrete event logs and not on the com-
bination. However, in many practical applications, the patterns extracted
from the event log can reveal contextual and operational conditions of
a device that must be taken into account when predicting anomalies in
the continuous time series. This paper proposes an anomaly detection
method that can handle mixed-type time series. The method leverages
frequent pattern mining techniques to construct an embedding of mixed-
type time series on which an isolation forest is trained. Experiments on
several real-world univariate and multivariate time series, as well as a
synthetic mixed-type time series, show that our anomaly detection algo-
rithm outperforms state-of-the-art anomaly detection techniques such as
MatrixProfile, Pav, Mifpod and Fpof.

Keywords: Anomaly detection · Time series · Distance measure ·
Pattern-based embedding · Frequent pattern mining

1 Introduction

Anomaly detection in time-series is an important real-world problem, especially
as an increasing amount of data of human behaviour and a myriad of devices
is collected, with an increasing impact on our everyday lives. We live in an
“Internet of Things” world, where a network of devices, vehicles, home appli-
ances and other items embedded with software and electronics are connected
and exchanging data [9]. Although many organisations are collecting time series
data, automatically analysing them and extracting meaningful knowledge, such
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as an understandable model that automatically flags relevant anomalies, remains
a difficult problem, even after decades of research.

Exploring different benchmark datasets for time series anomaly detection, we
found that these datasets often consist of univariate time series, where anomalies
are local or global extrema or point anomalies [2]. In contrast, we focus on collec-
tive and contextual anomalies: a collection of points in the time series is anoma-
lous depending on the surrounding context. For instance, most smartphones log
many continuous times series from various sensors, such as the accelerometer,
gyroscope, internal thermometer, and battery level. In addition, smartphones log
discrete events in different operating system logs, such as applications starting or
stopping, certain hardware components being turned on or off, or application-
specific events. Such events are crucial in determining whether the behaviour
observed in the continuous time series, e.g., a spike in power usage, is anomalous.
We argue that for many real-world applications one needs to extract information
from both types of sources to successfully detect anomalies.

In the active research area for anomaly detection in continuous time series,
much attention has been given to finding anomalies using continuous n-grams,
dynamic time warping distance, and similarity to the nearest neighbors [15,18],
but not to integrating event log data. On the other hand, pattern mining based
techniques for detecting anomalies have been developed for discrete event logs,
but not for continuous time series. In this paper, we propose how to circumvent
the apparent mismatch between discrete patterns and continuous time series
data. We introduce a pattern-based anomaly detection method that can detect
anomalies in mixed-type time series, i.e., time series consisting of both continuous
sensor values and discrete event logs.

Given a time series dataset, the method leverages the mature field of frequent
pattern mining research [19] to find frequent patterns in the data, serving as
a template for the frequently occurring normal behaviour. Then, the frequent
patterns are used to map the time series data to a feature-vector representation.
This newly found pattern-based embedding of the data combines the information
in both the continuous time series and the discrete event logs into a single feature
vector. Finally, a state-of-the-art anomaly detection algorithm is used to find the
anomalies in the embedded space.

The remainder of this paper is organised as follows. In Sect. 2, we introduce
the necessary preliminaries. In Sect. 3, we provide a detailed description of our
method for pattern mining, feature representation, and anomaly detection. In
Sect. 4, we present an experimental evaluation of our method and compare with
state-of-the-art methods. We present an overview of related work in Sect. 5 and
conclude our work in Sect. 6.

2 Preliminaries

2.1 Time Series Data

A continuous time series is defined as a sequence of real-valued measurements
pxx1, t1y, . . . , xxn, tnyq, where xk P R and each measurement has a distinct
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timestamp tk. Although this is not required, we will assume that the contin-
uous time series are sampled regularly, that is ti`1 ´ ti is constant, and do
not contain missing values. A discrete event log is a sequence of discrete events
pxe1, t1y, . . . , xen, tnyq where ek P Σ, with Σ a finite domain of discrete event
types. Unlike continuous time series, we assume that multiple events can co-
occur at the same timestamp, i.e. ti ď ti`1, and that events can occur sparsely.

In this paper, we consider a mixed-type time series S. This is a collection of
N continuous time series and M event logs. Thus, S has M ` N dimensions.
Typical time series representations are special cases of this: when N “ 1 and
M “ 0 it is a univariate time series; and when N ą 1 and M “ 0 it is a
multivariate time series. A single time series in S is denoted as Si and has only
one dimension.

A time series window Si
t,l is a contiguous subsequence of a time series Si

and contains all measurements for which {xxi, tiy or xei, tiy|t ď ti ă t ` l}.
Additionally, we can define a window over all dimensions of S simultaneously
and thus use the same values for timestamp t and length l for all series in S,
regardless of whether they are continuous time series or discrete events. In this
work, we use fixed-sized sliding windows. This means choosing a fixed l given S
(e.g., 1 h, 5 min, . . . ) and iteratively incrementing t with a fixed value.

2.2 Pattern Mining

We provide the following definitions for frequent pattern mining [19], adapted
to the context of mixed-type time series.

The first type of pattern we consider is an itemset. For an itemset, no temporal
order between items is required. An itemset X consists of one or more items xj P
Ω, where Ω is a finite domain of discrete values, that is, X “ {x1, . . . , xm} Ď 2|Ω|.
An itemset X occurs in, or is covered by, a window Si

t,l if all items in X occur
in that window in any order, that is,

X ă Si
t,l ô @xj P X : Dxxj , tjy P Si

t,l.

Given the set of all windows S of a time series, we define cover and support as

coverpX,Sq “ {Si
t,l|Si

t,l P S ^ X ă Si
t,l} and supportpX,Sq “ |coverpX,Sq|.

The second type of pattern we consider is a sequential pattern. A sequential
pattern Xs consists of an ordered list of one or more items, denoted as Xs “
px1, . . . , xmq, where xj P Ω. A sequential pattern can contain repeating items,
and, unlike n-grams, an occurrence of a sequential pattern allows gaps between
items. We define that a sequential pattern Xs occurs in a window Si

t,l using

Xs ă Si
t,l ô Dxx1, t1y, . . . , xxp, tmy P Si

t,l : @i, j P {1, . . . , p} : i ă j ñ ti ă tj .

The definitions of cover and support are equivalent to those of itemsets. Finally,
an itemset or a sequential pattern is frequent if its support is higher than a
user-defined threshold on minimal support (parameter min sup).
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Given a set of windows S and discretised continuous values, we can use
existing itemset or sequential pattern mining algorithms [8,19] to efficiently mine
all frequent patterns in both continuous and discrete time series. However, even
with the restriction that patterns must occur at least min sup times, it remains a
challenge to filter out redundant patterns. We will focus on algorithms that mine
only closed or maximal patterns. An itemset X is not closed, and thus redundant,
if and only if there exists an itemset Z, such that X Ă Z and supportpX,Sq “
supportpZ,Sq. Likewise, a sequential pattern Xs is not closed if there exists a
sequential pattern Zs, such that Xs Ă Zs and supportpXs,Sq “ supportpZs,Sq,
where Ă is used to denote the subsequence relation.

3 Pattern-Based Anomaly Detection

3.1 Problem Setting

The problem we are trying to solve can be defined as:

Given: A univariate, multivariate, or mixed-type time series S.
Do: Identify periods of abnormal behaviour in S.

In this section we outline our proposed pattern-based anomaly detection method
(Pbad) that computes for each time series window of S an anomaly score. The
method has four major steps. First, the time series is preprocessed. Second,
frequent itemsets and sequential patterns are mined from the individual time
series or event logs Si P S. Third, the distance-weighted similarity scores between
the frequent patterns and each time series window are computed to construct
a pattern-based embedding of time series S. Fourth, the embedding is used to
construct an anomaly detection classifier to detect the anomalous periods of S.
We use the IsolationForest classifier. These steps are illustrated in Fig. 1. In
the following paragraphs, we outline each step in more detail.

3.2 Preprocessing

Preprocessing is the first step in Pbad shown in Algorithm 1, line 1–7. First,
we normalise each continuous time series Si in S to values between 0 and 1,
because multivariate time series can have widely different amplitudes.

Then, we segment each time series in S using fixed-size sliding windows of
length l. Frequent patterns are often limited in length, i.e., a length of 5 is already
quite high. Therefore, it can be useful for certain datasets to also reduce the
length of each window such that a frequent sequential pattern or itemset covers
a large proportion of each window. For example, we can reduce a continuous
window of length 100, using a moving average, by storing the average value for
every 5 consecutive values. The resulting window now has a length of 20 and
subsequently any matching sequential pattern or itemset of size 5 will cover a
large part of the window.

Frequent pattern mining only works on discretised data. For a continuous
time series, each window Si

t,l “ px1, . . . , xlq must be discretised using a function h
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Fig. 1. Illustration of major steps in pattern-based anomaly detection method in
mixed-type time series. Note that the 1st and 3th window, and the 2nd and 4th win-
dows match the same set of patterns extracted from both the time series and the event
log. The 5th window is anomalous because of the co-occurrence of a peak with a green
event. The isolation forest step in Pbad marks it as such since its depth is only 2.
(Color figure online)

to yield a discrete representation hpSi
t,lq “ px1

′, . . . , xl
′q where xj

′ P Ω. Examples
of such functions include equal-width or equal-frequency binning, or aggregating
windows and computing a symbol using Symbolic Aggregate Approximation [13].

3.3 Extracting Frequent Patterns

After preprocessing, Pbad mines frequent itemsets and sequential patterns from
time series S. Given the assumption that anomalous behaviour occurs infre-
quently in the time series, the frequent patterns would characterise the frequently
observed, normal behaviour. To extract the frequent patterns, we leverage the
mature field of frequent pattern mining. This has two main advantages. First,
the existing techniques can be extended to mine patterns in different types of
time series data. Second, the mined patterns are easily interpretable and can
later be presented to the user to give intuitions as to why the classifier labeled
a segment as normal or anomalous.

Extracting Frequent Itemsets and Sequential Patterns. After prepro-
cessing, we have created a set of windows for each series. These can trivially be
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Algorithm 1: Pbad(S, l, min sup, is maximal, max sim) Anomaly
detection using late integration
Input: A time series S, window length l, support threshold min sup,

is maximal is either maximal or closed, threshold on max Jaccard
similarity max sim

Result: Anomaly scores for each window St,l

// 1. Preprocessing: create windows and discretise

1 S ← H
2 foreach Si P S do
3 if Si is continuous then
4 T i ← create windowspdiscretisepnormalisepSiqq, lq
5 else
6 T i ← create windowspSi, lq
7 S ← S Y T i

// 2. Mine maximal/closed frequent itemsets and sequential patterns

8 P ← H
9 foreach T i P S do

10 Pi ← mine frequent itemsetspT i,min sup, is maximalq
11 Pi ← Pi Ymine frequent sequential patternspT i,min sup, is maximalq

// Remove redundant patterns using Jaccard

12 Pi ← sort Pi on descending support

13 for 1 ď i ă |Pi| do
14 for i ` 1 ď j ď |Pi| do
15 if JpXi, Xjq ě max sim then
16 Pi ← PizXj

17 P ← P Y Pi

// 3. Compute pattern based embedding

18 F ← matrix of 0.0 values with |P| columns and |S| rows for each window St,l

19 for 1 ď i ≤ |S| do
20 for 1 ď j ď |Pi| do
21 idx ← global index of Xi

j in P
22 for 1 ď t ď |S| do

// Weighted similarity between pattern Xi
j and window Si

t,l

in dimension i for time series

23 Fk,idx ← 1.0 ´ ExactMinDistpXi
j ,S

i
t,lq

|Xi
j |

// 4. Compute anomalies using Isolation Forest

24 scores ← isolation forestpS,Fq
25 scores ← sort scores descending

transformed to a transaction (or sequence) database, required by existing fre-
quent pattern mining algorithms [19]. Said algorithms generate candidate pat-
terns with growing length. Since support decreases with the length of either the
itemset or sequential pattern, it is relatively straightforward for these algorithms
to only enumerate patterns that are frequent by pruning the candidate patterns
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on min sup. We always mine both itemsets and sequential patterns, but filter
either on closed or maximal patterns depending on the status of the parameter
is maximal (line 9–11). The implementation of both closed and maximal itemsets
and sequential pattern mining algorithms is available in the Spmf library [8].

Removing Overlapping Patterns. Frequent pattern mining algorithms can
generate too many redundant patterns. To further reduce the set of patterns, we
employ Jaccard similarity to remove itemsets and sequential patterns that co-
occur in a large percentage of windows. Formally, we use a parameter max sim,
and remove all patterns with a high enough Jaccard similarity:

JpX1,X2q “ |coverpX1q X coverpX2q|
supportpX1q ` supportpX2q ´ |coverpX1q X coverpX2q|

If JpX1,X2q ě max sim, we remove the pattern with the lowest support. We
created a straightforward routine that compares all pattern pairs (line 12–17).

Dealing with Multivariate and Mixed-Type Time Series. For multivari-
ate and mixed-type time series, we consider two strategies for pattern extrac-
tion: early and late integration. Under the early integration strategy, the items
of all preprocessed series in S are combined into a single event sequence. The
frequent patterns are then mined over this new event sequence, resulting in
patterns containing values from multiple dimensions. For example, the win-
dows S1

1,4 “ p1, 2, 3, 4q and S2
1,4 “ p10, 10, 11, 11q spanning the same period

in two time series S1 and S2, can be combined into a single event sequence
E1,4 “ p{11, 102}, {21, 102}, {31, 112}, {41, 112}q. Frequent patterns can now be
mined in this single event sequence, yielding candidate patterns such as the
sequential pattern Xs “ p11, 21, 112, 112q, meaning that value 1 followed by 2 in
series S1 is followed by 2 occurrences of 11 in series S2.

In contrast, the late integration strategy mines patterns in each time series
of S separately and takes the union of the resulting set of patterns. Now, each
pattern is associated with exactly one time series. While it would be tempting to
conclude that early integration is better since it can uncover patterns containing
events from different dimensions as well as any order between these events, we
prefer late integration in our experiments for two reasons. First, in practice,
early integration leads to an exponential increase in the search space of possible
patterns, i.e., pattern explosion, since the pattern mining algorithms consider
every possible combination of values in each of the time series. Second, the
anomaly detection classifier in Pbad is constructed on the union of pattern-
based embeddings of each time series in S. As such, it learns the structure
between patterns from the separate time series.

3.4 Constructing the Pattern-Based Embedding

Having obtained a set of patterns for the time series in S, Pbad maps S to
a pattern-based embedding in two steps. First, it computes a similarity score
between each window Si

t,l and each pattern Xi mined from the corresponding
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time series Si in S. If Si is continuous, Pbad computes a distance-weighted
similarity score. If Si is an event log, Pbad computes the exact match, i.e. 1 if
Xi ă Si

t,l and 0 otherwise. Second, it concatenates the similarity scores over all
dimensions, yielding the feature-vector representation of the window of S. Since
this process is repeated for each window in S, we end up with a pattern-based
embedding of the full time series (line 18–23). We argue that normal time series
windows are more frequent than the anomalous windows and as such normal
windows match the set of patterns better. As a result, they will be clustered
together in the embedded space whereas the less frequent anomalous windows
will have lower similarity scores and will be more scattered in the embedded
space.

Computing the Distance-Weighted Similarity Score. The intuition
behind a weighted similarity score can be illustrated with a simple example.
For instance, the sequential pattern X1 “ p0.1, 0.5q clearly matches time series
window S1

1,3 “ p0.1, 0.55, 1.0q better than window S1
4,3 “ p0.8, 0.9, 1.0q. Thus,

the similarity between a sequential pattern Xi of length m and a time series
window Si

t,l of length l depends on the minimal Euclidean distance between the
pattern and the window:

weighted distpXi, Si
t,lq “ min

EĂSi
t,l

√
√
√
√

m∑

j“1

pEj ´ Xi
jq2 (1)

where E is a subsequence of m elements from window Si
t,l. The optimisation

yields the minimal distance by only observing the best matching elements in the
pattern and the window. Given the weighted distance between the sequential
pattern and a window, the similarity score is computed as follows:

simpXi, Si
t,lq “ 1.0 ´ weighted distpXi, Si

t,lq{|Xi|
If the distance between the pattern and the time series window is small, the
similarity increases. Since the patterns can have different lengths, the distance is
normalised for the length of the pattern. Going back to the simple example, the
similarity with window S1

1,3 is 1.0´√p0.1 ´ 0.1q2 ` p0.55 ´ 0.5q2{2 “ 0.975 while
the similarity with window S1

4,3 is only 1.0 ´ √p0.8 ´ 0.1q2 ` p0.9 ´ 0.5q2{2 “
0.597.

Because a sequential pattern imposes a total order on its items, Eq. 1 cannot
be solved trivially. We design an exact algorithm for computing Eq. 1 with the
added ordering constraint. Our exact algorithm matches every element in the
pattern with exactly one unique element in the window such that the sum of
the distances between the matched elements is minimal. The approach is based
on the Smith-Waterman algorithm for local sequence alignment. However, in
contrast, our algorithm ensures that every element in the window and pattern
can only be matched once and enforces a match for every element in the pattern.
Furthermore, it imposes no gap penalty for skipping elements. Finally, it returns
an exact distance between the pattern and the window. Since it is a dynamic
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programming algorithm, it is guaranteed to find the optimal alignment of the
pattern and the segment that minimises the distance. For the sake of brevity,
we include the full ExactMinDist algorithm in Appendix A.1.1

Dealing with Itemsets. Pbad also computes the similarity between itemsets
and windows. In contrast to a sequential pattern, an itemset does not impose an
order on its elements. We can simply sort the elements of the both the itemset
and window before using the ExactMinDist algorithm to obtain the correct
weighted distance and compute the similarity score.

Constructing the Embedding Under the Early Integration Strategy.
In case of the early integration strategy, we must deal with patterns with mixed
items from different continuous time series and event logs when computing the
similarity score. For itemsets, we adapt Eq. 1 and compute the minimal distance
in each dimension separately and then sum all distances over all dimensions. The
distance is computed either weighted, i.e., between an item and a continuous time
series value, or binary, i.e., between an item and a discrete event log value. For
sequential patterns, we consider the subsequence in each dimension separately
and sum all distances. However, in this case we have to satisfy the total order
constraint within each time series and between different time series. A brute-force
way to compute this, is to generate all possible subsequences (with gaps) over
each dimension that satisfy the local and global order constraints, induced by
each sequential pattern, and take the subsequence that has the smallest distance.
In practice, this is feasible since the length of the time series and patterns is
limited to small numbers.

Time Complexity. The time complexity of constructing the pattern-based
embedding of S is Op|P| · |S| · oq where o “ Opl · mq is required by the Exact-
MinDist algorithm, |P| the number of frequent patterns found, and |S| the
number of windows in the time series. Under the late integration strategy, this
complexity increases linearly with the number of dimensions of S.

3.5 Constructing the Anomaly Classifier

The final step of Pbad is to construct the anomaly detection classifier (lines 24–
25 in Algorithm 1). Given the pattern-based embedding of S, any state-of-the-art
anomaly detector can be used to compute an anomaly score for each window of
S. Pbad uses the IsolationForest classifier [16] since it has been empiri-
cally shown to be the state-of-the-art in unsupervised anomaly detection [7].
An isolation forest is an ensemble of decision trees. Each tree finds anomalies
by recursively making random partitions of the instance space. Anomalies are
isolated quickly from the data, resulting in shorter path lengths in the tree, as
illustrated in Fig. 1. Usually, the anomaly score is used to rank the segments
from most to least anomalous such that the user can easily inspect the most
anomalous parts of the data. To generate discrete alarms, one can threshold the
score to a specific percentile of the distribution of all scores.
1 http://adrem.uantwerpen.be/bibrem/pubs/pbad.pdf.

http://adrem.uantwerpen.be/bibrem/pubs/pbad.pdf


Pattern-Based Anomaly Detection in Mixed-Type Time Series 249

4 Experiments

In this section, we address the following research questions:

Q1: How does Pbad perform compared to the state-of-the-art pattern based
anomaly detection algorithms?

Q2: Can Pbad handle different types of time series data?

We evaluate Pbad on three types of time series: real-world univariate time series,
real-world multivariate time series, and synthetic mixed-type time series. Before
discussing the results, we lay out the experimental setup.

4.1 Experimental Setup

We compare Pbad with following state-of-the-art pattern based anomaly detec-
tion methods:

– Matrix profile (MP) is an anomaly detection technique based on all-pairs-
similarity-search for time series data [18]. The anomalies are the time series
discords.

– Pattern anomaly value (Pav) is a multi-scale anomaly detection algo-
rithm based on infrequent patterns, specifically bi-grams, for univariate time
series [3].

– Minimal infrequent pattern based outlier factor (Mifpod) is an anomaly
detection method for event logs [11]. Their outlier factor is based on min-
imal infrequent, or rare, itemsets.

– Frequent pattern based outlier factor (Fpof) computes an outlier factor based
on the number of frequent itemsets that exactly match the current transaction
for transactional databases [10]. We adapt Fpof and compute the outlier
factor based on closed itemsets and reduce itemsets further using Jaccard
similarity as in Pbad.

Experimental Setup. The experimental setup corresponds to the standard setup
in time series anomaly detection [11]. Given a time series S with a number of
labelled timestamps: (i) divide the time series into fixed-sized, sliding windows;
(ii) each window that contains a labelled timestamp takes its label; (iii) construct
the anomaly detection model on the full time series data; (iv) use the model to
predict an anomaly score for each window in the time series; (v) evaluate the
predictions on the labelled windows by computing the area under the receiver
operating characteristic (AUROC) and average precision (AP).

Parametrisation of Methods. Each method has the same preprocessing steps
which includes setting an appropriate window size and increment to create the
fixed-sized, sliding windows. Continuous variables are discretised using equal-
width binning.2 Pav has no parameters. MatrixProfile has a single param-
eter, the window size. The parameters of Fpof and Mifpod are chosen by an
2 See Table 4 in Appendix A.2 for details on setting preprocessing parameters.
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oracle that knows the optimal settings for each dataset. For Pbad, as a rule
of thumb, we set minimal support relatively high, that is min sup “ 0.01. The
Jaccard threshold is set to 0.9. Intuitively, if two patterns cover almost the
same windows, e.g., 90 out of 100 windows, using both patterns is both unnec-
essary and less efficient. For mining closed itemsets we use Charm, and for
mining maximal itemsets we use Charm-MFI. For mining closed and maximal
sequential patterns we use CM-ClaSP and MaxSP respectively. Charm and
CM-ClaSP are based on a vertical representation. MaxSP is inspired by Pre-
fixSpan which only generates candidates that have at least one occurrence in
the database [8,19]. The sequential patterns should have a minimal length of
2, and by default we set pattern pruning to closed. We use the IsolationFor-
est classifier implemented in Scikit-Learn with 500 trees in the ensemble.
The implementation, datasets and experimental scripts for Pbad are publicly
available.3 We do not report detailed runtime results, however, on the selected
datasets Pbad requires less than 30 min on a standard PC.

4.2 Anomaly Detection in Univariate Time Series

For the univariate test case, we use 9 real-world datasets. Three datasets are
from the Numenta time series anomaly detection benchmark [1]. Temp tracks the
ambient temperature in an office during 302 days where the goal is to detect
periods of abnormal temperature. Latency monitors CPU usage for 13 days in
a data center with the goal of detecting abnormal CPU usage. Finally, Taxi logs
the number of NYC taxi passengers for 215 days in order to detect periods of
abnormal traffic. The 6 remaining datasets are not publicly available. Each tracks
on average 2.5 years of water consumption in a different store of a large retail
company. The company wants to detect periods of abnormal water consumption
possibly caused by leaks or rare operational conditions. Domain experts have
labelled between 547 and 2 391 h in each store.

Results and Discussion. Table 1 shows the AUROC and AP obtained by each
method on each of the 9 univariate time series datasets as well as the ranking of
each method. Pbad outperforms the existing baselines for detecting anomalies
in univariate time series data in 5 of the 9 datasets.

In the experiments, MP sometimes performs close to random. Because MP
detects anomalous windows as those with the highest distance to its nearest
neighbour window in the time series, its performance degrades if the data contain
two or more similar anomalies. This is, for instance, the case for the water
consumption data where each type of leak corresponds to a specific time series
pattern. A more detailed discussion of the univariate datasets, parameter settings
and results is included in Appendix A.2.

We compared the impact of computing the distance-weighted similarity
between a pattern and time series window, versus computing an exact match, on
the univariate datasets. In this case, using distance-weighted similarity, results

3 Implementation of Pbad: https://bitbucket.org/len feremans/pbad/.

https://bitbucket.org/len_feremans/pbad/
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Table 1. The table shows the AUROC and AP obtained by each method on 9
univariate time series. Pbad outperforms the baselines in 5 of the 9 datasets.

Dataset AUROC AP

MP Pav Mifpod Fpof Pbad MP Pav Mifpod Fpof Pbad

Temp 0.240 0.590 0.997 0.999 0.998 0.014 0.040 0.917 0.957 0.917

Taxi 0.861 0.281 0.846 0.877 0.879 0.214 0.057 0.300 0.403 0.453

Latency 0.599 0.608 0.467 0.493 0.553 0.515 0.361 0.255 0.296 0.382

Water 1 0.656 0.482 0.514 0.825 0.884 0.499 0.301 0.328 0.812 0.821

Water 2 0.600 0.520 0.513 0.857 0.945 0.353 0.127 0.094 0.688 0.862

Water 3 0.536 0.457 0.544 0.671 0.605 0.126 0.121 0.079 0.350 0.233

Water 4 0.675 0.579 0.548 0.613 0.721 0.774 0.687 0.700 0.817 0.808

Water 5 0.444 0.581 0.455 0.790 0.960 0.199 0.243 0.111 0.671 0.906

Water 6 0.682 0.609 0.500 0.874 0.752 0.578 0.431 0.228 0.692 0.551

Average 0.588 0.523 0.598 0.778 0.811 0.364 0.263 0.335 0.632 0.659

Ranking 3.333 3.889 4.167 2 1.611 3.111 4.111 4.278 1.778 1.722

in a higher AUROC and AP on 8 of the 9 datasets. Using the combination of
both frequent itemsets and frequent sequential patterns instead of only itemsets
or only sequential patterns results in higher AUROC on 6 of the 9 datasets.

4.3 Anomaly Detection in Multivariate Time Series

For the multivariate test case, we use an indoor exercise monitoring dataset [5].
The data contain recordings of 10 people each executing 60 repetitions of three
types of exercises: squats (Sq), lunges (Lu), and side-lunges (Si). The px, y, zq
positions of 25 sensors attached to each person were tracked during execution,
resulting in a multivariate time series S of dimension 75.

We construct 4 multivariate time series datasets containing anomalies by
randomly combining around 90 repetitions of one exercise type with 8–12
repetitions of a different type. Then, the goal is to accurately detect the minority
exercise. Before applying the algorithms, we use the methodology outlined in [5]
to preprocess the raw data and further reduce the number of dimensions of S
to 3. Note that the baseline algorithms are not naturally equipped to deal with
multivariate time series. The straightforward solution is to compute an anomaly
score for each time series separately and add the scores.

Results and Discussion. Table 2 shows the AUROC and AP obtained by each
method on the 4 multivariate time series datasets as well as the ranking of each
method. Pbad and Fpof outperform the other methods, with Pbad improving
the AUROC and AP over Fpof with 1.3 ± 2.7% and 23.8 ± 33.2% respectively.
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Table 2. The table shows the AUROC and AP obtained by each method on 4 mul-
tivariate time series. Each dataset contains tracking of movement during indoor exer-
cises where the normal exercise is listed first, and the anomalous exercise second. For
instance, Lu/Sq contains 90 repetitions of the lunge exercise and 8 repetitions of the
squat exercise.

Dataset AUROC AP

MP PAV MIFPOD FPOF PBAD MP PAV MIFPOD FPOF PBAD

Lu+Si/Sq 0.472 0.571 0.819 0.966 0.983 0.283 0.255 0.430 0.862 0.888

Lu/Sq 0.604 0.671 0.775 0.966 0.940 0.082 0.110 0.131 0.662 0.737

Si/Lu 0.471 0.425 0.804 0.864 0.907 0.128 0.115 0.444 0.572 0.573

Sq/Si 0.484 0.504 0.482 0.903 0.914 0.094 0.092 0.087 0.391 0.707

Average 0.508 0.542 0.720 0.925 0.936 0.147 0.143 0.273 0.622 0.726

Ranking 4.5 4 3.5 1.75 1.25 4 4.5 3.5 2 1
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Fig. 2. The figure shows 5 days of synthetic power grid data. The top plot shows
continuous power output of the grid. The middle plot shows the discrete events, B
and E indicate begin and end respectively, while W, S, D, G, M, and U refer to wind,
solar, diesel, gas, maintenance, and shutdown respectively. The bottom plot shows the
anomaly score of Pbad. The first anomaly corresponds to a discrete event (BU) that
did not generate the expected power response.

4.4 Anomaly Detection in Mixed-Type Time Series

Due to the lack of publicly-available, labelled mixed-type time series datasets,
we construct a realistic synthetic data generator. The generator simulates the
electricity production in a microgrid consisting of 4 energy resources: a small
wind turbine, a solar panel, a diesel generator, and a microturbine. Each resource
has a distinct behaviour. The operator controlling the grid can take 12 discrete
actions: turning on and off each of the energy resources, shutting down and
starting up the grid, and starting and stopping grid maintenance. Then, a full
year of data is generated in three steps. First, a control strategy determines every
5 min which actions to take and logs them. It is also possible to take no action.
Second, the actions determine the power output of the grid at each time step,
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forming the continuous time series. Finally, 90 control failures are introduced
in the system. These are actions not having the desired effect, e.g., starting
the wind turbine does not lead to an increase in electricity production, actions
without effect, and effects that are not logged. Using the generator, we generate
45 variations of mixed-type time series, each with different anomalies, and report
averaged results. The full details of the generator can be found in Appendix A.3.

Results and Discussion. We only ran Pbad on the mixed-type data to detect
the control failures. MP and PAV cannot handle event logs, while Mifpod
and Fpof do not naturally handle mixed-type time series. However, we run
Pbad three times: only on the continuous component of the synthetic data
(AUROC = 0.81± 0.13), only on the event logs (AUROC = 0.63± 0.07), and on
the full mixed-type series (AUROC = 0.85±0.08). This indicates that Pbad suc-
cessfully leverages the information in the combined series to detect the anomalous
data points. Figure 2 shows 7 days of the power generated by the microgrid and
the corresponding event log. The anomaly score generated by Pbad is plotted
underneath the data, illustrating that it can accurately detect the anomalies in
this case.

5 Related Work

In this section we place our work into the wider context of time series anomaly
detection. Existing pattern-based anomaly detection methods each differ in how
they define patterns, support, anomaly scores, and what type of input they are
applicable to. The original Fpof method [10] mines frequent itemsets for detect-
ing anomalous transactions in a transaction database, using the traditional def-
inition of support. Their outlier factor is defined as the number of itemsets that
match the current transaction versus the total number of frequent itemsets. The
more recent Mifpod method [11] mines minimal infrequent, or rare, itemsets
for detecting outliers in data streams. Rare itemsets are not frequent, i.e., they
do not satisfy the minimal support threshold, but have only subsets that are
frequent. They define support as usual, but based on the most recent period,
and not necessarily the entire event log. Finally, they compute the outlier fac-
tor as the number of rare itemsets that match the current transaction versus
the total number of rare itemsets, similar to Fpof, but weighted by the sum
of deviation in support of matching rare itemsets. Finally, the Pav method [3]
uses linear patterns, i.e., two consecutive continuous values in a univariate time
series. The final outlier factor is computed as the relative support of this single
pattern in sliding windows of size 2. In contrast to these methods, Pbad con-
siders extensions specific to multivariate and mixed-type time series: it uses a
distance-weighted similarity to bridge the gap between a discrete pattern and a
continuous signal, employs a late integration scheme to avoid pattern explosion,
removes redundant patterns using a threshold on Jaccard similarity, and derives
an anomaly score using the IsolationForest classifier and the pattern-based
embedding of the time series.
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The MatrixProfile technique [18] is the state-of-the-art anomaly detec-
tion technique for continuous time series. This technique computes for each time
series segment an anomaly score by computing the Euclidean distance to its
nearest neighbour segment. In contrast, Pbad can also handle the combination
of event logs and continuous time series. A host of time series representation
methods and similarity measures have been developed [6] for time series clas-
sification. Time series shapelets are subsequences from a continuous time series
and are used in combination with the dynamic time warping distance to classify
time series segments [17]. Sequential patterns used by Pbad are different from
shapelets, because we use non-continuous subsequences with missing elements,
or gaps. Itemsets are even more different, because the order of values is dis-
carded. Another key difference is that the enumeration process for shapelets is
usually reduced by only considering subsequences of a specific length [12], while
we make use of the anti-monotonic property of support to enumerate patterns
of varying length without constraints. Finally, itemsets and sequential patterns
can also be extracted from discrete event logs.

Another approach, related to classification, is to employ a minimal redun-
dancy, maximal relevance strategy to select discriminative patterns [4]. Cur-
rently, we employ an unsupervised technique, but for future work we could
adopt a strategy for selecting patterns that are the most discriminative towards
anomalies. Finally, deep learning techniques are becoming a popular choice for
time series anomaly detection [14]. For instance, autoencoders could be used to
learn an embedding of a mixed-type time series. A key difference with Pbad is
that, unlike deep learning techniques, frequent patterns are easily interpretable.

6 Conclusions and Future Work

Research on anomaly detection in time series so far has prioritised either con-
tinuous time series or event logs, but not the combination of both, so-called
mixed-type time series. In this paper, we present Pbad, a pattern-based anomaly
detection method for mixed-type time series. The method leverages frequent pat-
tern mining techniques to transform the time series into a pattern-based embed-
ding that serves as input for anomaly detection using an isolation forest. An
experimental study on univariate and multivariate time series found Pbad to
outperform state-of-the-art time series anomaly detection techniques, such as
MatrixProfile, Pav, Mifpod and Fpof. Furthermore, unlike existing tech-
niques, Pbad is able to handle mixed-type time series.

For future research, we see our method as a promising general framework for
time series anomaly detection, where certain variations might be more effective
in different applications. These include variations on mining a non-redundant
and relevant pattern set, on distance measures to match pattern occurrences,
and on anomaly detection classification techniques. A useful addition would be
an efficient algorithm for computing the similarity between a pattern and win-
dow under the early integration strategy. Because the patterns characterise the
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behaviour of the time series, they can serve as the basis for an anomaly detec-
tion classifier that makes explainable predictions. Another possible direction is
to adapt the algorithm to work efficiently within a streaming context.

Acknowledgements. The authors would like to thank the VLAIO SBO HYMOP
project for funding this research.
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Abstract. Most convex and nonconvex clustering algorithms come with
one crucial parameter: the k in k-means. To this day, there is not one
generally accepted way to accurately determine this parameter. Popular
methods are simple yet theoretically unfounded, such as searching for
an elbow in the curve of a given cost measure. In contrast, statistically
founded methods often make strict assumptions over the data distri-
bution or come with their own optimization scheme for the clustering
objective. This limits either the set of applicable datasets or clustering
algorithms. In this paper, we strive to determine the number of clusters
by answering a simple question: given two clusters, is it likely that they
jointly stem from a single distribution? To this end, we propose a bound
on the probability that two clusters originate from the distribution of
the unified cluster, specified only by the sample mean and variance. Our
method is applicable as a simple wrapper to the result of any clustering
method minimizing the objective of k-means, which includes Gaussian
mixtures and Spectral Clustering. We focus in our experimental evalu-
ation on an application for nonconvex clustering and demonstrate the
suitability of our theoretical results. Our SpecialK clustering algorithm
automatically determines the appropriate value for k, without requir-
ing any data transformation or projection, and without assumptions on
the data distribution. Additionally, it is capable to decide that the data
consists of only a single cluster, which many existing algorithms cannot.

Keywords: k-means · Concentration inequalities · Spectral
clustering · Model selection · One-cluster clustering · Nonparametric
statistics

1 Introduction

When creating a solution to the task of clustering—finding a natural partitioning
of the records of a dataset into k groups—the holy grail is to automatically
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determine k. The current state of the art in clustering research has not yet
achieved this holy grail to a satisfactory degree. Since many papers on parameter-
free clustering exist, this statement might sound unnecessarily polemic without
further elaboration. Hence, we must describe what constitutes “satisfactory”,
which we will do by describing unsatisfactory aspects of otherwise perfectly fine
(and often actually quite interesting) clustering solutions. Some solutions can
only handle convex cluster shapes [17], while most real-life phenomena are not
necessarily convex. Some solutions manage to avoid determining k, at the cost of
having to specify another parameter that effectively controls k [1]. Some solutions
define a cluster criterion and an algorithm to iteratively mine the data: the best
single cluster is found, after which the algorithm is run again on the data minus
that cluster, etcetera [11]; this runs the risk of finding a local optimum. We, by
contrast, introduce a clustering algorithm that can handle nonconvex shapes, is
devoid of parameters that demand the user to directly or indirectly set k, and
finds the global optimum for its optimization criterion.

We propose a probability bound on the operator norm of centered, sym-
metric decompositions based on the matrix Bernstein concentration inequality.
We apply this bound to assess whether two given clusters are likely to stem
from the distribution of the unified cluster. Our bound provides a statistically
founded decision criterion over the minimum similarity within one cluster and
the maximum similarity between two clusters: this entails judgment on whether
two clusters should be separate or unified. Our method is easy to implement and
statistically nonparametric. Applied on spectral clustering methods, to the best
of the authors’ knowledge, providing a statistically founded way to automatically
determine k is entirely new.

We incorporate our bound in an algorithm called SpecialK, since it provides
a method for SPEctral Clustering to Infer the Appropriate Level k. On synthetic
datasets, SpecialK outperforms some competitors, while performing roughly on
par with another competitor. However, when unleashed on a synthetic dataset
consisting of just random noise, all competitors detect all kinds of clusters, while
only SpecialK correctly determines the value of k to be one. If you need an
algorithm that can correctly identify a sea of noise, SpecialK is the only choice.
On four real-life datasets with class labels associated to the data points, we illus-
trate how all available algorithms, including SpecialK, often cannot correctly
determine the value of k corresponding to the number of classes available in the
dataset. We argue that this is an artefact of a methodological mismatch: the class
labels indicate one specific natural grouping of the points in the dataset, but the
task of clustering is to retrieve any natural grouping of the points in the dataset,
not necessarily the one encoded in the class label. Hence, such an evaluation is
fundamentally unfit to assess the performance of clustering methods.

2 Three Sides of a Coin: k-means, Gaussian Mixtures
and Spectral Clustering

To embed our work in already existing related work, and to describe the pre-
liminary building blocks required as foundation on which to build our work, we
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must first introduce some notation. We write 1 for a constant vector of ones,
whose dimension can be derived from context unless otherwise specified. We
denote with 1m×k the set of all binary matrices which indicate a partition of
m elements into k sets. Such a partition is computed by k-means clustering;
every element belongs to exactly one cluster. Let D ∈ Rm×n be a data matrix,
collecting m points Dj·, which we identify with their index j. The objective of
k-means is equivalent to solving the following matrix factorization problem:

min
Y,X

∥
∥D − Y X�∥

∥
2

s.t. Y ∈ 1m×k,X ∈ Rn×k. (1)

The matrix Y indicates the cluster assignments; point j is in cluster c if Yjc = 1.
The matrix X represents the cluster centers, which are given in matrix nota-
tion as X = D�Y

(

Y �Y
)−1. The well-known optimization scheme of k-means,

Lloyd’s algorithm [17], employs the convexity of the k-means problem if one of
the matrices X or Y is fixed. The algorithm performs an alternating minimiza-
tion, updating Y to assign each point to the cluster with the nearest center, and
updating X·c as the mean of all points assigned to cluster c.

2.1 Gaussian Mixtures

The updates of Lloyd’s algorithm correspond to the expectation and maximiza-
tion steps of the EM-algorithm [2,3]. In this probabilistic view, we assume that
every data point Dj· is independently sampled by first selecting cluster c with
probability πc, and then sampling point Dj· from the Gaussian distribution:

p(ξ|c) =
1√
2πε

exp
(

− 1
2ε

‖ξ − X·c‖2
)

∼ N (ξ|X·c, εI).

This assumes that the covariance matrix of the Gaussian distribution is equal
for all clusters: Σc = εI. From this sampling procedure, we compute the log-
likelihood for the data and cluster assignments:

log p(D,Y |X, εI, π) = log

⎛

⎝

m∏

j=1

k∏

c=1

(
πc√
2πε

exp
(

− 1
2ε

∥
∥Dj· − X�

·c
∥
∥
2
))Yjc

⎞

⎠

=
m∑

j=1

k∑

c=1

Yjc

(

ln
(

πc√
2πε

)

− 1
2ε

∥
∥Dj· − X�

·c
∥
∥
2
)

= − 1
2ε

∥
∥D − Y X�∥

∥
2 − m

2
ln(2πε) +

k∑

c=1

|Y·c| ln (πc) .

Hence, if ε > 0 is small enough, maximizing the log-likelihood of the Gaussian
mixture model is equivalent to solving the k-means problem.
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2.2 Maximum Similarity Versus Minimum Cut

There are multiple alternative formulations of the k-means problem. Altering
the Frobenius norm in Eq. (1) with the identity ‖A‖2 = tr(AA�) begets:

∥
∥D − Y X�∥

∥
2

= ‖D‖2 − 2 tr
(

D�Y X�)

+ tr
(

XY �Y X�)

= ‖D‖2 − tr
(

Y �DD�Y
(

Y �Y
)−1

)

,

where the last equality derives from inserting the optimal X, given Y . Thus, we
transform the k-means objective, defined in terms of distances to cluster centers,
to an objective defined solely on similarity of data points. The matrix DD�

represents similarity between points, measured via the inner product sim(j, l) =
Dj·D�

l· . The k-means objective in Eq. (1) is thus equivalent to the maximum
similarity problem for a similarity matrix W = DD�:

max
Y ∈1m×k

Sim(W,Y ) =
∑

c

R(W,Y·c), R(W, y) =
y�Wy

|y| . (2)

Here, we introduce the function R(W, y), which is known as the Rayleigh coeffi-
cient [10], returning the ratio similarity of points within cluster y.

An alternative to maximizing the similarity within a cluster, is to minimize
the similarity between clusters. This is known as the ratio cut problem, stated
for a symmetric similarity matrix W as:

min
Y ∈1m×k

Cut(W,Y ) =
∑

s

C(W,Y ), C(W, y) =
y�Wy

|y| .

The function C(W, y) sums the similarities between points indicated by cluster y
and the remaining points indicated by y = 1−y. Imagining the similarity matrix
W as a weighted adjacency matrix of a graph, the function C(W, y) sums the
weights of the edges which would be cut if we cut out the cluster y from the
graph. Defining the matrix L = diag(W1) − W , also known as the difference
graph Laplacian [5], we have C(W, y) = R(L, y). As a result, the maximum
similarity problem with respect to the similarity matrix −L is equivalent to the
minimum cut problem with similarity matrix W .

2.3 Spectral Clustering

If similarities are defined via the inner product, then the similarity in Eq. (2)
is maximized when every point in a cluster is similar to every other point in
that cluster. As a result, the obtained clusters by k-means have convex shapes.
If we expect nonconvex cluster shapes, then our similarities should only locally
be compared. This is possible, e.g., by defining the similarity matrix as the
adjacency matrix to the kNN graph or the ε-neighborhood graph. Cluster-
ing methods employing such similarities are known as spectral clustering [20].
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It is related to minimizing the cut for the graph Laplacian of a given simi-
larity matrix. Spectral clustering computes a truncated eigendecomposition of
W = −L ≈ V (k+1)Λ(k+1)V (k+1)�, where Λ(k+1) is a diagonal matrix having
the (k + 1) largest eigenvalues on its diagonal Λ11 ≥ . . . ≥ Λk+1k+1, and V (k+1)

represents the corresponding eigenvectors. Graph Laplacian theory says that the
eigenvectors to the largest eigenvalue indicate the connected components of the
graph, while in practical clustering application the entire graph is assumed to
be connected. To honor this assumption, the first eigenvector is omitted from
the matrix V (k+1), which is subsequently discretized by k-means clustering [18].
Considering the relation between the minimum cut objective and k-means clus-
tering, the objective to minimize the Cut(L, Y ) is actually equivalent to solving
k-means clustering for a data matrix D such that W = DD�. This relation was
recently examined [9], with the disillusioning result that k-means clustering on
the decomposition matrix D usually returns a local optimum, whose objective
value is close to the global minimum but whose clustering is unfavorable. Con-
sequently, the authors propose the algorithm SpectACl, approximating the
similarity matrix by a matrix product of projected eigenvectors, such that:

W ≈ DD�, Dji =
∣
∣
∣V

(n)
ji

∣
∣
∣

∣
∣
∣Λ

(n)
ii

∣
∣
∣

−(1/2)

(3)

for a large enough dimensionality n > k. Although this increases the rank of
the factorization from k in traditional spectral clustering to n > k, the search
space, which is spanned by the vectors D·i, is reduced in SpectACl. The projec-
tion of the orthogonal eigenvectors V·i to the positive orthant introduces linear
dependencies among the projections D·i.

2.4 Estimating k

Depending on the view on k-means clustering—as a matrix factorization, a Gaus-
sian mixture model, or a graph-cut algorithm—we might define various strategies
to derive the correct k. The elbow strategy is arguably the most general approach.
Plotting the value of the objective function for every model when increasing k,
a kink in the curve is supposed to indicate the correct number of clusters. With
regard to spectral clustering, the elbow method is usually deployed on the largest
eigenvalues of the Laplacian, called eigengap heuristic [18]. Depending on the
application, the elbow may not be easy to spot, and the selection of k boils down
to a subjective trade-off between data approximation and model complexity.

To manage this trade-off in a less subjective manner, one can define a cost
measure beforehand. Popular approaches employ Minimum Description Length
(MDL) [4,14] or the Bayesian Information Criterion (BIC) [21]. The nonconvex
clustering method Self-Tuning Spectral Clustering (STSC) [24] defines such a
cost measure on the basis of spectral properties of the graph Laplacian. The
k-means discretization step is replaced by the minimization of this cost mea-
sure, resulting in a rotated eigenvector matrix which approximates the form of
partitioning matrices, having only one nonzero entry in every row. The defini-
tion of the cost measure derives from the observation that a suitable rotation
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of the eigenvectors also defines a transformation of the graph Laplacian into a
block-diagonal form. In this form, the connected components in the graph repre-
sent the clustering structure. STSC then chooses the largest number k obtaining
minimal costs, from a set of considered numbers of clusters.

The definition of a cost measure may also rely on statistical properties of
the dataset. Tibshirani et al. deliver the statistical foundations for the elbow
method with the gap statistic [22]. Given a reference distribution, the gap statis-
tic chooses the value of k for which the gap between the approximation error and
its expected value is the largest. The expected value is estimated by sampling the
data of the reference distribution, and computing a clustering for every sampled
dataset and every setting of k.

The score-based methods cannot deliver a guarantee over the quality of the
gained model. This is where statistical methods come into play, whose deci-
sions over the number of clusters are based on statistical tests. GMeans [7]
performs statistical tests for the hypothesis that the points in one cluster are
Gaussian distributed. PGMeans [6] improves over GMeans, by applying the
Kolmogorov-Smirnov test for the goodness of fit between one-dimensional ran-
dom projections of the data and the Gaussian mixture model. They empirically
show that this approach is also suitable for non-Gaussian data. An alternative to
the Normality assumption is to assume that every cluster follows a unimodal dis-
tribution in a suitable space, which can be validated by the dip test. DipMeans
provides a wrapper for k-means-related algorithms, testing for individual data
points whether the distances to other points follow a unimodal distribution [12].
Maurus and Plant argue that this approach is sensitive to noise and propose the
algorithm SkinnyDip, focusing on scenarios with high background noise [19].
Here, the authors assume that a basis transformation exists such that the clusters
form a unimodal shape in all coordinate directions. All these approaches require
a data transformation or projection, in order to apply the one-dimensional tests.

3 A Nonparametric Bound

We propose a bound on the probability that a specific pair of clusters is generated
by a single cluster distribution. Our bound relies on concentration inequalities,
which have as input the mean and variance of the unified cluster distribution,
which are easy to estimate. No assumptions on the distribution shape (e.g.,
Gaussian) must be made, and no projection is required. The core concentration
inequality which we employ is the matrix Bernstein inequality.

Theorem 1 (Matrix Bernstein [23, Theorem 1.4]). Consider a sequence of
independent, random, symmetric matrices Ai ∈ Rm×m for 1 ≤ i ≤ n. Assume
that each random matrix satisfies:

E[Ai] = 0 and ‖Ai‖op ≤ ν almost surely,
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and set σ2 =
∥
∥
∑

i E[A2
i ]

∥
∥
op

. Then, for all t ≥ 0:

P

⎛

⎝

∥
∥
∥
∥
∥

∑

i

Ai

∥
∥
∥
∥
∥
op

≥ t

⎞

⎠ ≤ m exp
(

−1
2

t2

σ2 + νt/3

)

.

The matrix Bernstein bound employs the operator norm. For real-valued, sym-
metric matrices this equals the maximum eigenvalue in magnitude:

‖A‖op = sup
‖x‖=1

‖Ax‖ = max
1≤j≤m

|λj(A)| = max
x∈Rm

R(A, x). (4)

The relationship to the Rayleigh coefficient is important. This relationship is
easy to derive by substituting A with its eigendecomposition. We derive the
following central result for the product matrix of centered random matrices.

Theorem 2 (ZZ Top Bound). Let Z·i ∈ Rm be independent samples of a
random vector with mean zero, such that ‖Z·i‖ ≤ 1 for 1 ≤ i ≤ n. Further,
assume that E[ZjiZli] = 0 for j 	= l and E[Z2

ji] = σ2 for 0 < σ2 < 1 and
1 ≤ j ≤ m. Then, for t > 0:

P
(∥
∥ZZ� − nσ2I

∥
∥
op

≥ t
)

≤ m exp
(

−1
2

· t2

nσ2 + t/3

)

.

Proof. We apply the matrix Bernstein inequality (Theorem1) to the sum of
random matrices:

ZZ� − nσ2I =
∑

i

(

Z·iZ�
·i − σ2I

)

.

Assuming that the expected values satisfy E[ZjiZli] = 0 for j 	= l and E[ZjiZji] =
σ2, yields that the random matrix Ai = Z·iZ�

·i − σ2 has mean zero:

E [Ai] = E
[

Z·iZ�
·i − σ2I

]

= (E [ZjiZli])jl − σ2I = 0.

The operator norm of the random matrices Ai is bounded by one:

‖Ai‖op =
∥
∥Z·iZ�

·i − σ2I
∥
∥
op

= sup
‖x‖=1

x� (

Z·iZ�
·i − σ2I

)

x = sup
‖x‖=1

(

Z�
·i x

)2 − σ2

≤ 1 − σ2 ≤ 1.

The expected value of A2
i is:

E
[(

Z·iZ�
·i − σ2I

) (

Z·iZ�
·i − σ2I

)] ≤ E
[

Z·iZ�
·i − 2σ2Z·iZ�

·i + σ4I
]

= σ2I.

Thus, the norm of the total variance is:
∥
∥
∥
∥
∥

∑

i

E [AiAi]

∥
∥
∥
∥
∥
op

=
∥
∥nσ2I

∥
∥
op

= nσ2.

The matrix Bernstein inequality then yields the result. 
�
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Applying Eq. (4) to Theorem 2 yields the following corollary.

Corollary 1. Let Z·i ∈ Rm be independent samples of a random vector with
mean zero, such that ‖Z·i‖ ≤ 1 for 1 ≤ i ≤ n. Further assume that E[Z·iZ�

·i ] =
σ2I for 0 < σ2 < 1 and 1 ≤ i ≤ n. Let y ∈ {0, 1}m be an indicator vector of a
cluster candidate, and denote:

t = R
(

ZZ�, y
) − nσ2. (5)

Then, the probability that an indicator vector y∗ ∈ {0, 1}m exists with a Rayleigh
coefficient such that R(ZZ�, y) ≤ R(ZZ�, y∗), is bounded as follows:

P

(

max
y∗∈{0,1}m

R
(

ZZ�, y∗) − nσ2 ≥ t

)

≤ m exp
(

−1
2

· t2

nσ2 + t/3

)

.

In practice, we must estimate the mean and variance of a candidate cluster.
In this case, the relationship between the Rayleigh coefficient for the centered
random matrix Z and the original data matrix is specified as follows (assuming
the data matrix D is reduced to the observations belonging to a single cluster).

Remark 1. Assume we want to bound the probability that two clusters indicated
by y, y ∈ {0, 1}m are parts of one unified cluster represented by D ∈ Rm×n. We
denote with μ = 1

mD�1 the vector of sample means over the columns of D.
The Rayleigh coefficient of y with respect to the columnwise centered matrix
Z = D − 1μ� is equal to (see supplementary material [8] for full derivation):

R
(

ZZ�, y
)

=
|y|
m

( |y|
m

R
(

DD�, y
) − |y|

m
Cut

(

DD�, [y y]
)

+
|y|
m

R
(

DD�, y
)
)

The higher R
(

ZZ�, y
)

is, the higher t is in Eq. (5), and the lower the probability
is that y indicates a subset of the cluster represented by D. Remark 1 shows that
the probability of y indicating a subset of the larger cluster D, is determined
by three things: the similarity within each of the candidate clusters (R(DD�, y)
and R(DD�, y)), the rational cut between these clusters (Cut

(

DD�, [y y]
)

),
and the ratio of points belonging to the one versus the other cluster (|y| versus
|y|). As a result, the ZZ Top Bound provides a natural balance of the within- and
between-cluster similarity governing acceptance or rejection of a given clustering.

3.1 A Strategy to Find a Suitable Number of Clusters

Remark 1 and Corollary 1 provide a method to bound the probability that two
clusters are generated by the same distribution. Let us go through an example to
discuss how we can employ the proposed bounds in a practical setting. Imagine
two clusterings, the one employing a larger cluster covering the records denoted
by the index set J ⊂ {1, . . . ,m}, having center μ ∈ Rn; the other containing a
subset of J , indicated by y. Assume the following.

Assumption 1. If the indices J form a true cluster, then the columns DJ i are
independent samples of a random vector with mean μi1 ∈ R|J |, for μi ∈ R.
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Algorithm 1. SpecialK(W,n, α)

1: W ≈ V (n)Λ(n)V (n)�
� Compute truncated eigendecomposition

2: Dji =
∣
∣
∣V

(n)
ji

∣
∣
∣ |Λii|1/2 � For all 1 ≤ j ≤ m, 1 ≤ i ≤ n

3: for k = 1, . . . do
4: Y (k) ←k-means(D, k)
5: for c1, c2 ∈ {1, . . . , k}, c1 > c2 do

6: J ←
{

j
∣
∣
∣Y

(k)
jc1

+ Y
(k)
jc2

> 0
}

7: Z·i ← 1

‖DJ i‖
(

DJ i − |DJ i|
|J | 1

)

� For all j ∈ J
8: σ2 ← 1

n|J |
∑

j,i Z2
ji � Sample variance

9: t ← max
{

R(ZZ�, YJ c) − nσ2
∣
∣c ∈ {c1, c2}

}

10: if |J | exp

(

−1

2
· t2

nσ2 + t/3

)

> α then

11: return Y (k−1)

We then define the |J |-dimensional scaled and centered sample vectors:

Z·i =
1

‖DJ i‖ (DJ i − μi1) for all 1 ≤ i ≤ n.

Now, if one were to assume that y ∈ {0, 1}m satisfies:

R(ZZ�, y) ≥
√

2nσ2 ln
(m

α

)

+
1
9

ln
(m

α

)2

+ nσ2 +
1
3

ln
(m

α

)

, (6)

then Corollary 1 implies that the probability of J being a true cluster and Eq. (6)
holding is at most α. Hence, if α is small enough, then we conclude that J is not
a true cluster; this conclusion is wrong only with the small probability α (which
functions as a user-set significance level of a hypothesis test).

Assumption 1 may not hold for all datasets. In particular, the assumption
that the column vectors of the data matrix (comprising points from only one
cluster) are sampled with the same variance parameter and a mean vector which
is reducible to a scaled constant one vector, is not generally valid. Especially if the
features of the dataset come from varying domains, the cluster assumptions may
not hold. In this paper, we evaluate the ZZ Top Bound in the scope of spectral
clustering, where the feature domains are comparable; every feature corresponds
to one eigenvector. In particular, we consider a decomposition of the similarity
matrix as shown in Eq. (3). The rank of this decomposition is independent from
the expected number of k, unlike in traditional spectral clustering algorithms.
Hence, a factor matrix D as computed in Eq. (3) can be treated like ordinary
k-means input data.

We propose Algorithm 1, called SpecialK, since it provides a method for
SPEctral Clustering to Infer the Appropriate Level k. Its input is a similar-
ity matrix W , the feature dimensionality of the computed embedding, and the
significance level α > 0. In the first two steps, the symmetric decomposition
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Fig. 1. Visualization of the datasets (from left to right: random, three blobs, two moons,
and two circles) with noise parameters equal to 0.1 (top row) and 0.15 (bottom row).

W ≈ DD� is computed. For an increasing number of clusters, we compute a
k-means clustering. For every pair of clusters, we compute the probability that
both clusters are actually subsets of the unified cluster. If this probability is
larger than the significance level α, then we conclude that the current clustering
splits an actual cluster into two and we return the previous model.

4 Experiments

In comparative experiments, our state-of-the-art competitors are Self-Tuning
Spectral Clustering (STSC) [24] and PGMeans [6], whose implementations
have been kindly provided by the authors. Since we strive for applicability on
nonconvex cluster shapes, we apply PGMeans to the projected eigenvectors
(as computed in Line 2 in Algorithm1) of a given similarity matrix. We set
for PGMeans the significance level for every test of 12 random projections to
α = 0.01/12. We also included SkinnyDip [19] in our evaluation. However,
applying this algorithm on the decomposition matrix results in a vast number
of returned clusters (k̂ ≈ 50 while the actual value is k ≤ 3) where most of the
data points are attributed to noise. Since this result is clearly wrong, we eschew
further comparison with this algorithm.

We consider two variants of similarity matrices: WR and WC . The former
employs the ε-neighborhood adjacency matrix, where ε is set such that 99% of
the data points have at least ten neighbors; the latter employs the symmetri-
cally normalized adjacency matrix of the kNN graph. STSC computes its own
similarity matrix for a given set of points. To do so, it requires a number of con-
sidered neighbors, which we set to the default value of 15. Note that the result
of STSC comes with its own quality measurement for the computed models;
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higher is better. We provide a Python implementation of SpecialK1. In this
implementation, we do not assess for all possible pairs of clusters if they emerge
from one distribution, but only for the ten cluster pairs having the highest cut.

4.1 Synthetic Experiments

We generate benchmark datasets, using the scikit library for Python. Figure 1
provides examples of the generated datasets, which come in four types of seeded
cluster shape (random, blobs, moons, and circles), and a noise parameter (set
to 0.1 and 0.15, respectively, in the figure). For each shape and noise specifi-
cation, we generate m = 1500 data points. The noise is Gaussian, as provided
by the scikit noise parameter (cf. http://scikit-learn.org). This parameter takes
a numeric value, for which we investigate ten settings: we traverse the range
[0, 0.225] by increments of size 0.025. For every shape and noise setting, we
generate five datasets. Unless otherwise specified, we employ a dimensionality
of n = 200 as parameter for SpecialK. However, we use a different rank of
n = 50 for PGMeans, whose results benefit from this setting. We set Spe-
cialK’s significance level to α = 0.01. For all algorithms, we consider only
values of k ∈ {1, . . . , 5}; Fig. 1 illustrates that higher values are clearly nonsense.

In Fig. 2, we plot every method’s estimated number of clusters for the four
datasets (rows) and two similarity matrices (columns) WR and WC (since STSC
employs its own similarity matrix, the plot with respect to STSC does not vary
for these settings: STSC behaves exactly the same in left-column and right-
column subplots on the same dataset). In every subplot, the x-axis denotes the
setting for the noise parameter. On the y-axis we aggregate the number of clusters
detected by each of the three competitors; the correct number of clusters (3 for
blobs, 2 for moons and circles, and 1 for random) for each subplot is highlighted
by a pink band. Every column in every subplot corresponds to a single setting
of shape and noise; recall that we generated five version of the dataset for such
a setting. The column now gathers for each of the three competitors (marked in
various shapes; see the legend of the figure) which setting of k it determines to
be true how often out of the five times. This frequency is represented by mark
size: for instance, if PGMeans determines five distinct values of k for the five
datasets, we get five small squares in the column, but if it determines the same
value of k for all five datasets, we get one big square in the column. An algorithm
performs well if many of its big marks fall in the highlighted band.

Figure 2 illustrates that PGMeans is all over the place. For the moons and
circles datasets, it correctly identifies the number of clusters at low noise levels,
but from a certain noise level onwards, it substantially overestimates k. On the
moons dataset under WR this behavior is subtle; under WC and on the circles
dataset the jump from 2 to 5 clusters is jarring. On the blobs dataset, which
really isn’t that difficult a task, PGMeans systematically underestimates k.
STSC, on the other hand, does quite well. It doesn’t make a single mistake on
the blobs dataset. STSC generally has the right idea on the circles and moons

1 https://github.com/Sibylse/SpecialK.

http://scikit-learn.org
https://github.com/Sibylse/SpecialK
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Fig. 2. Variation of noise, comparison of the derived number of clusters for the two
moons, two circles, three blobs, and random datasets.

datasets: at low noise levels, it correctly determines k, and at higher noise lev-
els, it alternates between the correct number of clusters and an overestimation.
Conversely, SpecialK has a tendency to err on the other side, if at all. On the
circles dataset, it correctly identifies the number of clusters at low noise levels,
and packs all observations into a single cluster at high noise levels, which, visu-
ally, looks about right (cf. Fig. 1, lower right). On the blobs dataset, SpecialK
generally finds the right level of k, only making incidental mistakes. Performance
seems more erratic on the two moons dataset, especially with the WC similarity
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Table 1. Experimental results on real-world datasets. The left half contains metadata
on the employed datasets: names, numbers of rows (m) and columns (d), and the
real number of classes in the data (Actual k). The right half contains the results of
the experiments: the number of classes k determined by the algorithms STSC and
SpecialK, the latter parameterized with similarity matrices WR and WC .

Dataset m d Actual k Determined k

STSC SpecialK

WR WC

Pulsar 17898 9 2 2 2 2

Sloan 10000 16 3 4 4 2

MNIST 60000 784 10 2 2 3

HMNIST 5000 4096 8 3 4 4

matrix. Similarity matrices to this dataset exhibit unusual effects, which are due
to the symmetry of the two clusters [9]. To counter these effects, we discard all
eigenvectors which are extremely correlated, which we define as having an abso-
lute Spearman rank correlation |ρ| > 0.95. Subsequently, the rank is correctly
estimated until the noise makes the two clusters appear as one.

The bottom row of Fig. 2 is quite revealing. It illustrates how both STSC
and PGMeans are prone to overfitting. On data that is pure noise, both these
methods tend to find several clusters anyway, despite there being no natural
grouping in the dataset: it really rather is one monolithic whole. SpecialK is
the only algorithm capable of identifying this, and it does so without a single
mistake. Oddly, STSC seems to favor an even number of clusters in random data.
PGMeans tends to favor defining as many clusters as possible on random data.

Empirical results on the sensitivity to the input parameter n (the employed
number of eigenvectors) are given in the supplementary material [8].

4.2 Real-World Data Experiments

Experiments on synthetic datasets provide ample evidence that PGMeans can-
not compete with STSC and SpecialK. Hence, we conduct experiments with
only those latter two algorithms on selected real-world datasets, whose charac-
teristics are summarized in the left half of Table 1. The Pulsar dataset2 contains
samples of Pulsar candidates, where the positive class of real Pulsar examples
poses a minority against noise effects. The Sloan dataset3 comprises measure-
ments of the Sloan Digital Sky Survey, where every observation belongs either to
a star, a galaxy, or a quasar. The MNIST dataset [16] is a well-known collection
of handwritten numbers: the ten classes are the ten digits from zero to nine.
The HMNIST dataset [13] comprises histology tiles from patients with colorec-
tal cancer. The classes correspond to eight types of tissue. For these real-world
2 https://www.kaggle.com/pavanraj159/predicting-pulsar-star-in-the-universe.
3 https://www.kaggle.com/lucidlenn/sloan-digital-sky-survey.

https://www.kaggle.com/pavanraj159/predicting-pulsar-star-in-the-universe
https://www.kaggle.com/lucidlenn/sloan-digital-sky-survey


270 S. Hess and W. Duivesteijn

Table 2. NMI scores, probability bounds (p) and costs for the MNIST dataset. The
selected rank and the corresponding NMI score is highlighted for every method.

k SpecialK STSC [24]

WC WR NMI Quality

NMI p NMI p

2 0.317 10−6 0.195 10−23 0.306 0.987

3 0.518 10−4 0.207 1.000 0.290 0.978

4 0.668 0.019 0.244 1.000 0.282 0.969

5 0.687 0.011 0.281 1.000 0.274 0.970

6 0.759 0.004 0.294 1.000 0.271 0.970

7 0.760 1.000 0.311 1.000 0.287 0.948

8 0.759 1.000 0.333 1.000 0.279 0.954

9 0.757 1.000 0.347 1.000 0.277 0.956

10 0.756 1.000 0.350 1.000 0.297 0.942

11 0.747 1.000 0.348 1.000 0.362 0.957

datasets, we increase SpecialK’s parameter to n = 1000, since the real-world
datasets have at least three times as many examples as the synthetic datasets.

Results of the procedure when we let k simply increase up to eleven are given
in Table 2. By p we denote the maximum of the probability bounds SpecialK
computes, as outlined in line 10 of Algorithm1 and mirrored at the end of
Corollary 1. For STSC, we output the quality values on which the algorithm bases
its decisions (higher is better). Additionally, we give the Normalized Mutual
Information (NMI) scores between the constructed clustering and the actual class
labels, matched via the Hungarian algorithm [15]; typically, higher is better.

STSC returns the k for which the quality column contains the highest value.
By Algorithm 1, SpecialK returns the lowest k for which its p-value is below
α, while the p-value for k + 1 is above α. The selected values are highlighted in
Table 2, and the determined values for k are entered in the right half of Table 1.

Across all datasets, the right half of Table 1 gives the determined values for
k. All methods reconstruct the actual k well on the Pulsar dataset, but none of
the determined values for k are equal to the actual value for k on the other three
datasets. On Sloan, both methods are in the correct ballpark. On HMNIST,
SpecialK is closer to the right answer than STSC. On MNIST, the true value
of k is 10, but both methods determine a substantially lower number of clusters
as appropriate. One can get more information on the behavior of the algorithms
by taking a closer look at Table 2; similar tables for the other datasets can be
found in the supplementary material [8].

For STSC, the highest NMI value is actually obtained for k = 11, which
is a too high number of clusters, but quite close to the actual k. However, the
computed quality does not mirror this finding. Also, the NMI value for the actual
k = 10 is substantially lower than the NMI for k = 11, and the NMI for k = 10
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is lower than the NMI value for the selected k = 2. Hence, NMI cannot just
replace the quality in STSC. For SpecialK, p-value behavior is unambiguous
under WR. Notice that NMI peaks at the right spot.

Under WC , things get more interesting. While the p-value for k = 4 indeed
surpasses the threshold α, a slightly less restrictive setting (in many corners of
science, α = 5% is considered acceptable) would have changed the outcome to
k = 6. At that stage, the p-value suddenly unambiguously shoots to 1; more
than 6 clusters is definitely not acceptable. We see this behavior persist through
the other datasets as well: there is always a specific value of k, such that the
p-values for all k′ > k are drastically higher than the p-values for all k′′ ≤ k.
While Algorithm 1 makes an automated decision (and this is a desirable property
of an algorithm; no post-hoc subjective decision is necessary), if an end-user
wants to invest the time to look at the table and select the correct number of
clusters themselves, the p-values give a clear and unambiguous direction to that
decision.

The entire last paragraph glosses over the fact that the actual k for MNIST is
not 6, but 10. In fact, at first sight, the right half of Table 1 paints an unpleasant
picture when compared to the Actual k column in the left half. However, the
correct conclusion is that column label is misleading. We have some real-world
datasets with a given class label, providing a natural grouping of the data into k
clusters. The task of clustering is also to find a natural grouping in the dataset.
Clustering, however, is not necessarily built to reconstruct any given natural
grouping: this task is unsupervised! Hence, if an algorithm finds a natural group
on the MNIST dataset of relatively bulbous digits, this is a rousing success in
terms of the clustering task. However, this group encompasses the digits 6, 8, and
9 (and perhaps others), which reduces the cardinality of the resulting clustering
when compared to the clustering that partitions all digits. Therefore, no hard
conclusions can be drawn from the determined k not matching the actual k. This
is a cautionary tale (also pointed out in [9]), warning against a form of evaluation
that is pervasive in clustering, but does not measure the level of success it ought
to measure in a solution to the clustering task.

5 Conclusions

We propose a probability bound, that enables to make a hard, statistically
founded decision on the question whether two clusters should be fused together
or kept apart. Given a significance level α (with the usual connotation and
canonical value settings), this results in an algorithm for spectral clustering,
automatically determining the appropriate number of clusters k. Since it pro-
vides a method for SPEctral Clustering to Infer the Appropriate Level k, the
algorithm is dubbed SpecialK. Automatically determining k in a statistically
nonparametric manner for clusters with nonconvex shapes is, to the best of our
knowledge, a novel contribution to data mining research. Also, unlike existing
algorithms, SpecialK can decide that the data encompasses only one cluster.

SpecialK is built to automatically make a decision on which k to select,
which it does by comparing subsequent p-values provided by the probability
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bound, and checking whether they undercut the significance level α. As a con-
sequence, the user can elect to simply be satisfied with whatever k SpecialK
provides. In the experiments on the MNIST dataset, we have seen that the per-
fect setting of k is in the eye of the beholder: several people can have several
contrasting opinions of what constitutes a natural grouping of the data in a
real-world setting. In such a case, one can extract more meaningful information
out of the results SpecialK provides, by looking into the table of NMI scores
and p-values for a range of settings of k. Eliciting meaning from this table is
a subjective task. However, in all such tables for all datasets we have seen so
far, there is a clear watershed moment where k gets too big, and relatively low
p-values are followed by dramatically high p-values for any higher k. Turning
this soft observation into a hard procedure would be interesting future work.
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Abstract. Conditional Generative Models are now acknowledged an
essential tool in Machine Learning. This paper focuses on their con-
trol. While many approaches aim at disentangling the data through the
coordinate-wise control of their latent representations, another direc-
tion is explored in this paper. The proposed CompVAE handles data
with a natural multi-ensemblist structure (i.e. that can naturally be
decomposed into elements). Derived from Bayesian variational principles,
CompVAE learns a latent representation leveraging both observational
and symbolic information. A first contribution of the approach is that
this latent representation supports a compositional generative model,
amenable to multi-ensemblist operations (addition or subtraction of ele-
ments in the composition). This compositional ability is enabled by the
invariance and generality of the whole framework w.r.t. respectively, the
order and number of the elements. The second contribution of the paper
is a proof of concept on synthetic 1D and 2D problems, demonstrating
the efficiency of the proposed approach.

Keywords: Generative model · Semi-structured representation ·
Neural nets

1 Introduction

Representation learning is at the core of machine learning, and even more so
since the inception of deep learning [2]. As shown by e.g., [3,12], the latent
representations built to handle high-dimensional data can effectively support
desirable functionalities. One such functionality is the ability to directly control
the observed data through the so-called representation disentanglement, espe-
cially in the context of computer vision and image processing [20,26] (more in
Sect. 2).

This paper extends the notion of representation disentanglement from a
latent coordinate-wise perspective to a semi-structured setting. Specifically, we
tackle the ensemblist setting where a datapoint can naturally be interpreted as
the combination of multiple parts. The contribution of the paper is a genera-
tive model built on the Variational Auto-Encoder principles [17,28], controlling
c© Springer Nature Switzerland AG 2020
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the data generation from a description of its parts and supporting ensemblist
operations such as the addition or removal of any number of parts.

The applicative motivation for the presented approach, referred to as Compo-
sitional Variational AutoEncoder (CompVAE), is the following. In the domain
of Energy Management, a key issue is to simulate the consumption behavior
of an ensemble of consumers, where each household consumption is viewed as
an independent random variable following a distribution law defined from the
household characteristics, and the household consumptions are possibly corre-
lated through external factors such as the weather, or a football match on TV
(attracting members of some but not all households). Our long term goal is to
infer a simulator, taking as input the household profiles and their amounts: it
should be able to simulate their overall energy consumption and account for their
correlations. The data-driven inference of such a programmable simulator is a
quite desirable alternative to the current approaches, based on Monte-Carlo pro-
cesses and requiring either to explicitly model the correlations of the elementary
random variables, or to proceed by rejection.

Formally, given the description of datapoints and their parts, the goal of
CompVAE is to learn the distribution laws of the parts (here, the households)
and to sample the overall distribution defined from a varying number of parts
(the set of households), while accounting for the fact that the parts are not
independent, and the sought overall distribution depends on shared external
factors: the whole is not the sum of its parts.

The paper is organized as follows. Section 2 briefly reviews related work in
the domain of generative models and latent space construction, replacing our
contribution in context. Section 3 gives an overview of CompVAE, extending
the VAE framework to multi-ensemblist settings. Section 4 presents the experi-
mental setting retained to establish a proof of concept of the approach on two
synthetic problems, and Sect. 5 reports on the results. Finally Sect. 6 discusses
some perspectives for further work and applications to larger problems.

2 Related Work

Generative models, including VAEs [17,28] and GANs [9], rely on an embedding
from the so-called latent space Z onto the dataspace X. In the following, data
space and observed space are used interchangeably. It has long been observed
that continuous or discrete operations in the latent space could be used to pro-
duce interesting patterns in the data space. For instance, the linear interpolation
between two latent points z and z′ can be used to generate a morphing between
their images [27], or the flip of a boolean coordinate of z can be used to add
or remove an elementary pattern (the presence of glasses or moustache) in the
associated image [7].

The general question then is to control the flow of information from the
latent to the observed space and to make it actionable. Several approaches, either
based on information theory or on supervised learning have been proposed to
do so. Losses inspired from the Information Bottleneck [1,30,32] and enforcing
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the independence of the latent and the observed variables, conditionally to the
relevant content of information, have been proposed: enforcing the decorrelation
of the latent coordinates in β-VAE [12]; aligning the covariances of latent and
observed data in [19]; decomposing the latent information into pure content and
pure noise in InfoGAN [3]. Independently, explicit losses have been used to yield
conditional distributions in conditional GANs [23], or to enforce the scope of a
latent coordinate in [18,33], (e.g. modelling the light orientation or the camera
angle).

The structure of the observed space can be mimicked in the latent space,
to afford expressive yet trainable model spaces; in Ladder-VAE [31], a sequence
of dependent latent variables are encoded and reversely decoded to produce
complex observed objects. Auxiliary losses are added in [22] in the spirit of semi-
supervised learning. In [16], the overall generative model involves a classifier,
trained both in a supervised way with labelled examples and in an unsupervised
way in conjunction with a generative model.

An important case study is that of sequential structures: [5] considers fixed-
length sequences and loosely mimicks an HMM process, where latent variable
zi controls the observed variable xi and the next latent zi+1. In [13], a linear
relation among latent variables zi and zi+1 is enforced; in [6], a recurrent neural
net is used to produce the latent variable encoding the current situation. In a
more general context, [34] provides a generic method for designing an appro-
priate inference network that can be associated with a given Bayesian network
representing a generative model to train.

The injection of explicit information at the latent level can be used to support
“information surgery” via loss-driven information parsimony. For instance in the
domain of signal generation [4], the neutrality of the latent representation w.r.t.
the locutor identity is enforced by directly providing the identity at the latent
level: as z does not need to encode the locutor information, the information
parsimony pressure ensures z independence wrt the locutor. Likewise, fair gen-
erative processes can be enforced by directly providing the sensitive information
at the latent level [35]. In [21], an adversarial mechanism based on Maximum
Mean Discrepancy [10] is used to enforce the neutrality of the latent. In [24], the
minimization of the mutual information is used in lieu of an adversary.

Discussion. All above approaches (with the except of sequential settings [5,13],
see below) handle the generation of a datapoint as a whole naturally involv-
ing diverse facets; but not composed of inter-related parts. Our goal is instead
to tackle the proper parts-and-whole structure of a datapoint, where the whole
is not necessarily the simple sum of its parts and the parts of the whole are
interdependent. In sequential settings [5,13], the dependency of the elements in
the sequence are handled through parametric restrictions (respectively consid-
ering fixed sequence-size or linear temporal dependency) to enforce the proper
match of the observed and latent spaces. A key contribution of the proposed
CompVAE is to tackle the parts-to-whole structure with no such restrictions,
and specifically accommodating a varying number of parts − possibly different
between the training and the generation phases.
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3 Overview of CompVAE

This section describes the CompVAE model, building upon the VAE principles
[17] with the following difference: CompVAE aims at building a programmable
generative model pθ, taking as input the ensemble of the parts of a whole
observed datapoint. A key question concerns the latent structure most appropri-
ate to reflect the ensemblist nature of the observed data. The proposed structure
(Sect. 3.1) involves a latent variable associated to each part of the whole. The
aggregation of the part is achieved through an order-invariant operation, and
the interactions among the parts are modelled at an upper layer of the latent
representation.

In encoding mode, the structure is trained from the pairs formed by a whole,
and an abstract description of its parts; the latent variables are extracted along
an iterative non-recurrent process, oblivious of the order and number of the parts
(Sect. 3.2) and defining the encoder model qφ.

In generative mode, the generative model is supplied with a set of parts,
and accordingly generates a consistent whole, where variational effects operate
jointly at the part and at the whole levels.

Notations. A datapoint x is associated with an ensemble of parts noted {�i}.
Each �i belongs to a finite set of categories Λ. Elements and parts are used
interchangeably in the following. In our illustrating example, a consumption
curve x involves a number of households; the i-th household is associated with
its consumer profile �i, with �i ranging in a finite set of profiles. Each profile
in Λ thus occurs 0, 1 or several times. The generative model relies on a learned
distribution pθ(x|{�i}), that is decomposed into latent variables: a latent variable
named wi associated to each part �i, and a common latent variable z.

x

z

w̃

∑

w1�1

w2�2

wK�K

. . . . . .

Fig. 1. Bayesian network representation of the CompVAE generative model.

3.1 CompVAE: Bayesian Architecture

The architecture proposed for CompVAE is depicted as a graphical model on
Fig. 1. As said, the i-th part belongs to category �i and is associated with a latent
variable wi (different parts with same category are associated with different
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latent variables). The ensemble of the wis is aggregated into an intermediate
latent variable w̃. A key requirement is for w̃ to be invariant w.r.t. the order
of elements in x. In the following w̃ is set to the sum of the wi, w̃ =

∑

i wi.
Considering other order-invariant aggregations is left for further work.

The intermediate latent variable w̃ is used to condition the z latent variable;
both w̃ and z condition the observed datapoint x. This scheme corresponds to
the following factorization of the generative model pθ:

pθ(x, z, {wi}|{�i}) = pθ(x|z, w̃)pθ(z|w̃)
∏

i

pθ(wi|�i) (1)

In summary, the distribution of x is conditioned on the ensemble {�i} as follows:
The i-th part of x is associated with a latent variable wi modeling the generic
distribution of the underlying category �i together with its specifics. Variable w̃
is deterministically computed to model the aggregation of the wi, and finally z
models the specifics of the aggregation.

Notably, each wi is linked to a single �i element, while z is global, being
conditioned from the global auxiliary w̃. The rationale for introducing z is to
enable a more complex though still learnable distribution at the x level − com-
pared with the alternative of conditioning x only on w̃. It is conjectured that an
information-effective distribution would store in wi (respectively in z) the local
information related to the i-th part (resp. the global information describing the
interdependencies between all parts, e.g. the fact that the households face the
same weather, vacation schedules, and so on). Along this line, it is conjectured
that the extra information stored in z is limited compared to that stored in the
wis; we shall return to this point in Sect. 4.1.

The property of invariance of the distribution w.r.t. the order of the �i is
satisfied by design. A second desirable property regards the robustness of the
distribution w.r.t. the varying number of parts in x. More precisely, two require-
ments are defined. The former one, referred to as size-flexibility property, is that
the number K of parts of an x is neither constant, nor bounded a priori. The
latter one, referred to as size-generality property is the generative model pθ to
accommodate larger numbers of parts than those seen in the training set.

3.2 Posterior Inference and Loss

Letting pD(x|{�i}) denote the empirical data distribution, the learning criterion
to optimize is the data likelihood according to the sought generative model pθ:
EpD

log pθ(x|{�i}).
The (intractable) posterior inference of the model is approximated using the

Evidence Lower Bound (ELBO) [14], following the Variational AutoEncoder
approach [17,28]. Accordingly, we proceed by optimizing a lower bound of the
log-likelihood of the data given pθ, which is equivalent to minimizing an upper
bound of the Kullback-Leibler divergence between the two distributions:

DKL(pD‖pθ) ≤ H(pD) + E
x∼pD

LELBO(x) (2)
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The learning criterion is, with qφ(z, {wi}|x, {�i}) the inference distribution:

LELBO(x) = E
z,{wi}∼qφ

log
qφ(z, {wi}|x, {�i})

pθ(z|w̃)
∏

i pθ(wi|�i)

− E
z,{wi}∼qφ

log pθ(x|z, w̃)
(3)

The inference distribution is further factorized as qφ({wi}|z, x, {li})qφ(z|x),
yielding the final training loss:

LELBO(x) = E
z,{wi}∼qφ

log
qφ({wi}|x, z, {�i})

∏

i pθ(wi|�i)

+ E
z,{wi}∼qφ

log
qφ(z|x)
pθ(z|w̃)

− E
z,{wi}∼qφ

log pθ(x|z, w̃)

(4)

The training of the generative and encoder model distributions is described
in Algorithm 1.

θ, φ ← Random initialization;
while Not converged do

x, {�i} ← Sample minibatch;
z ← Sample from qφ(z|x);
{wi} ← Sample from qφ({wi}|x, z, {�i});
Lw ← DKL(qφ({wi}|x, z, {�i})‖Πipθ(wi|�i));

Lz ← log
qφ(z|x)
pθ(z|w̃)

;

Lx ← − log pθ(x|z, w̃);
LELBO ← Lw + Lz + Lx;
θ ← Update(θ, ∇θLELBO);
φ ← Update(φ, ∇φLELBO);

end
Algorithm 1. CompVAE Training Procedure.

3.3 Discussion

In CompVAE, the sought distributions are structured as a Bayesian graph (see
pθ in Fig. 1), where each node is associated with a neural network and a prob-
ability distribution family, like for VAEs. This neural network takes as input
the parent variables in the Bayesian graph, and outputs the parameters of a
distribution in the chosen family, e.g., the mean and variance of a Gaussian dis-
tribution. The reparametrization trick [17] is used to back-propagate gradients
through the sampling.



280 V. Berger and M. Sebag

A concern regards the training of latent variables when considering Gaussian
distributions. A potential source of instability in CompVAE comes from the fact
that the Kullback-Leibler divergence between qφ and pθ (Eq. (4)) becomes very
large when the variance of some variables in pθ becomes very small1. To limit
this risk, some care is exercized in parameterizing the variances of the normal
distributions in pθ to making them lower-bounded.

Modelling of qφ({wi}|x, z, {�i}). The latent distributions pθ(z|w̃), pθ(wi|�i)
and qφ(z|x) are modelled using diagonal normal distributions as usual. Regard-
ing the model qφ({wi}|z, x, {�i}), in order to be able to faithfully reflect the
generative model pθ, it is necessary to introduce the correlation between the wis
in qφ({wi}|z, x, {�i}) [34].

As the aggregation of the wi is handled by considering their sum, it is natural
to handle their correlations through a multivariate normal distribution over the
wi. The proposed parametrization of such a multivariate is as follows. Firstly,
correlations operate in a coordinate-wise fashion, that is, wi,j and wi′,j′ are only
correlated if j = j′. The parametrization of the wis ensures that: (i) the variance
of the sum of the wi,j can be controlled and made arbitrarily small in order
to ensure an accurate VAE reconstruction; (ii) the Kullback-Leibler divergence
between qφ({wi}|x, z, {�i}) and

∏

i pθ(wi|�i) can be defined in closed form.
The learning of qφ({wi}|x, z, {�i}) is done using a fully-connected graph neu-

ral network [29] leveraging graph interactions akin message-passing [8]. The
graph has one node for each element �i, and every node is connected to all
other nodes. The state of the i-th node is initialized to (preφ(x), z, eφ(�i) + εi),
where preφ(x) is some learned function of x noted, eφ(�i) is a learned embedding
of �i, and εi is a random noise used to ensure the differentiation of the wis. The
state of each node of the graph at the k-th layer is then defined by its k − 1-th
layer state and the aggregation of the state of all other nodes:

{

h
(0)
i = (preφ(x), z, eφ(�i) + εi)

h
(k)
i = f

(k)
φ

(

h
(k−1)
i ,

∑

j �=i g
(k)
φ (h(k−1)

j )
) (5)

where f
(k)
φ and g

(k)
φ are learned neural networks: g

(k)
φ is meant to embed the

current state of each node for an aggregate summation, and f
(k)
φ is meant to “fine-

tune” the i-th node conditionally to all other nodes, such that they altogether
account for w̃.

4 Experimental Setting

This section presents the goals of experiments and describes the experimental
setting used to empirically validate CompVAE.

1 Single-latent variable VAEs do not face such problems as the prior distribution pθ(z)
is fixed, it is not learned.
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4.1 Goals of Experiments

As said, CompVAE is meant to achieve a programmable generative model. From
a set of latent values wi, either derived from pθ(wi|�i) in a generative context,
or recovered from some data x, it should be able to generate values x̂ matching
any chosen subset of the wi. This property is what we name the “ensemblist dis-
entanglement” capacity, and the first goal of these experiments is to investigate
whether CompVAE does have this capacity.

A second goal of these experiments is to examine whether the desired proper-
ties (Sect. 3.1) hold. The order-invariant property is enforced by design. The size-
flexibility property will be assessed by inspecting the sensitivity of the extraction
and generative processes to the variability of the number of parts. The size-
generality property will be assessed by inspecting the quality of the generative
model when the number of parts increases significantly beyond the size range
used during training.

A last goal is to understand how CompVAE manages to store the information
of the model in respectively the wis and z. The conjecture done (Sect. 3.1) was
that the latent wis would take in charge the information of the parts, while the
latent z would model the interactions among the parts. The use of synthetic
problems where the quantity of information required to encode the parts can be
quantitatively assessed will permit to test this conjecture. A related question is
whether the generative model is able to capture the fact that the whole is not
the sum of its parts. This question is investigated using non-linear perturbations,
possibly operating at the whole and at the parts levels, and comparing the whole
perturbed x obtained from the �is, and the aggregation of the perturbed xis
generated from the �i parts. The existence of a difference, if any, will establish
the value of the CompVAE generative model compared to a simple Monte-Carlo
simulator, independently sampling parts and thereafter aggregating them.

4.2 1D and 2D Proofs of Concept

Two synthetic problems have been considered to empirically answer the above
questions.2

In the 1D synthetic problem, the set Λ of categories is a finite set of frequencies
λ1 . . . λ10. A given “part” (here, curve) is a sine wave defined by its frequency
�i in Λ and its intrinsic features, that is, its amplitude ai and phase κi. The
whole x associated to {�1, . . . �K} is a finite sequence of size T , deterministically
defined from the non-linear combination of the curves:

x(t) = K tanh

(

C

K

K
∑

i=0

ai cos
(

2π�i

T
t + κi

)

)

with K the number of sine waves in x, C a parameter controlling the non-linearity
of the aggregation of the curves in x, and T a global parameter controlling the
2 These problems are publicly available at https://github.com/vberger/compvae.

https://github.com/vberger/compvae
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sampling frequency. For each part (sine wave), ai is sampled from N (1; 0.3), and
κi is sampled from N (

0; π
2

)

.
The part-to-whole aggregation is illustrated on Fig. 2, plotting the non-linear

transformation of the sum of 4 sine waves, compared to the sum of non-linear
transformations of the same sine waves. C is set to 3 in the experiments.

tanh of sum sum of tanh

Fig. 2. Non-linear part-to-whole aggregation (purple) compared to the sum of non-
linear perturbations of the parts (green). Better seen in color. Both curves involve a
non-linear transform factor C = 3. (Color figure online)

This 1D synthetic problem features several aspects relevant to the empirical
assessment of CompVAE. Firstly, the impact of adding or removing one part
can be visually assessed as it changes the whole curve: the general magnitude of
the whole curve is roughly proportional to its number of parts. Secondly, each
part involves, besides its category �i, some intrinsic variations of its amplitude
and phase. Lastly, the whole x is not the sum of its parts (Fig. 2).

The generative model pθ(x|z,
∑

i wi) is defined as a Gaussian distribution
N (μ;Δ(σ)), the vector parameters μ and σ of which are produced by the neural
network.

In the 2D synthetic problem, each category in Λ is composed of one out of
five colors ({red, green, blue, white, black}) associated with a location (x, y) in
[0, 1]× [0, 1]. Each �i thus is a colored site, and its internal variability is its inten-
sity. The whole x associated to a set of �is is an image, where each pixel is col-
ored depending on its distance to the sites and their intensity (Fig. 3). Likewise,
the observation model pθ(x|z,

∑

i wi) is a Gaussian distribution N (μ;Δ(σ)), the
parameters μ and σ of which are produced by the neural network. The obser-
vation variance is shared for all three channel values (red, green, blue) of any
given pixel.

The 2D problem shares with the 1D problem the fact that each part is defined
from its category �i (resp. a frequency, or a color and location) on the one
hand, and its specifics on the other hand (resp, its amplitude and frequency, or
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Fig. 3. 2D visual synthetic examples, including 1 to 4 sites (top to bottom). Note that
when neighbor sites have same color, the image might appear to have been generated
with less sites than it actually has. (Color figure online)

its intensity); additionally, the whole is made of a set of parts in interaction.
However, the 2D problem is significantly more complex than the 1D, as will be
discussed in Sect. 5.2.

4.3 Experimental Setting

CompVAE is trained as a mainstream VAE, except for an additional factor of
difficulty: the varying number of latent variables (reflecting the varying number
of parts) results in a potentially large number of latent variables. This large size
and the model noise in the early training phase can adversely affect the training
procedure, and lead it to diverge. The training divergence is prevented using a
batch size set to 256. The neural training hyperparameters are dynamically tuned
using the Adam optimizer [15] with α = 10−4, β1 = 0.5 and β2 = 0.9, which
empirically provide a good compromise between training speed, network stability
and good convergence. On the top of Adam, the annealing of the learning rate α
is achieved, dividing its value by 2 every 20,000 iterations, until it reaches 10−6.

For both problems, the data is generated on the fly during the training,
preventing the risk of overfitting. The overall number of iterations (batches) is
up to3 500,000. The computational time on a GPU GTX1080 is 1 day for the
1D problem, and 2 days for the 2D problem.

Empirically, the training is facilitated by gradually increasing the number K
of parts in the datapoints. Specifically, the number of parts is uniformly sampled
in [[1,K]] at each iteration, with K = 2 at the initialization and K incremented
by 1 every 3,000 iterations, up to 16 parts in the 1D problem and 8 in the 2D
problem.

3 Experimentally, networks most often converge much earlier.
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5 CompVAE: Empirical Validation

This section reports on the proposed proofs of concept of the CompVAE
approach.

5.1 1D Proof of Concept

Figure 4 displays in log-scale the losses of the wis and z latent variables along
time, together with the reconstruction loss and the overall ELBO loss summing
the other three (Eq. (4)). The division of labor between the wis and the z is seen
as the quantity of information stored by the wis increases to reach a plateau at
circa 100 bits, while the quantity of information stored by z steadily decreases
to around 10 bits. As conjectured (Sect. 3.1), z carries little information.

1
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Iterations
ELBO
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wi losses

Fig. 4. CompVAE, 1D problem: Losses of the latent variables respectively associated
to the parts (wi, green), to the whole (z, blue), and the reconstruction loss of x (yellow),
in log scale. Better seen in color. (Color figure online)

Note that the x reconstruction loss remains high, with a high ELBO even
at convergence time, although the generated curves “look good”. This fact is
explained from the high entropy of the data: on the top of the specifics of each
part (its amplitude and phase), x is described as a T -length sequence: the tem-
poral discretization of the signal increases the variance of x and thus causes a
high entropy, which is itself a lower bound for the ELBO. Note that a large frac-
tion of this entropy is accurately captured by CompVAE through the variance
of the generative model pθ(x|z, w̃).

The ability of “ensemblist disentanglement” is visually demonstrated on
Fig. 5: considering a set of �i, the individual parts wi are generated (Fig. 5, left)
and gradually integrated to form a whole x (Fig. 5, right) in a coherent manner.

The size-generality property is satisfactorily assessed as the model could be
effectively used with a number of parts K ranging up to 30 (as opposed to 16
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Fig. 5. CompVAE, 1D problem: Ensemblist recomposition of the whole (right column)
from the parts (left column). On each row is given the part (left) and the whole (right)
made of this part and all above parts.

during the training) without requiring any re-training or other modification of
the model (results omitted for brevity).

5.2 2D Proof of Concept

As shown in Fig. 6, the 2D problem is more complex. On the one hand, a 2D
part only has a local impact on x (affecting a subset of pixels) while a 1D part
has a global impact on the whole x sequence. On the other hand, the number
of parts has a global impact on the range of x in the 1D problem, whereas each
pixel value ranges in the same interval in the 2D problem. Finally and most
importantly, x is of dimension 200 in the 1D problem, compared to dimension
3, 072 (3×32×32) in the 2D problem. For these reasons, the latent variables here
need to store more information, and the separation between the wi (converging
toward circa 200–300 bits of information) and z (circa 40–60 bits) is less clear.

Likewise, x reconstruction loss remains high, although the generated images
“look good”, due to the fact that the loss precisely captures the discrepancies in
the pixel values that the eye does not perceive.

Finally, the ability of “ensemblist disentanglement” is inspected by incre-
mentally generating the whole x from a set of colored sites (Fig. 7). The top
row displays the colors of �1 . . . �5 from left to right. On the second row, the
i-th square shows an image composed from �1 . . . �i by the ground truth genera-
tor, and rows 3 to 6 show images generated by the model from the same �1 . . . �i.
While the generated x generally reflects the associated set of parts, some advents
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Fig. 6. CompVAE, 2D problem: Losses of the latent variables respectively associated
to the parts (wi, green), to the whole (z, blue), and the reconstruction loss of x (yellow),
in log scale. Better seen in color. (Color figure online)

of black and white glitches are also observed (for instance on the third column,
rows 3 and 5). These glitches are blamed on the saturation of the network (as
black and white respectively are represented as (0, 0, 0) and (1, 1, 1) in RGB),
since non linear combinations of colors are used for a good visual rendering4.

6 Discussion and Perspectives

The main contribution of the paper is the generative framework CompVAE, to
our best knowledge the first generative framework able to support the genera-
tion of data based on a multi-ensemble {�i}. Built on the top of the celebrated
VAE, CompVAE learns to optimize the conditional distribution pθ(x|{�i}) in
a theoretically sound way, through introducing latent variables (one for each
part �i), enforcing their order-invariant aggregation and learning another latent
variable to model the interaction of the parts. Two proofs of concepts for the
approach, respectively concerning a 1D and a 2D problem, have been established
with respectively very satisfactory and satisfactory results.

This work opens several perspectives for further research. A first direction
in the domain of computer vision consists of combining CompVAE with more
advanced image generation models such as PixelCNN [25] in a way similar to
PixelVAE [11], in order to generate realistic images involving a predefined set of
elements along a consistent layout.

4 Color blending in the data generation is done taking into account gamma-correction.
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Fig. 7. CompVAE, 2D problem. First row: parts �1 . . . �5. Second row: the i-th square
depicts the x defined from �1 to �i as generated by the ground truth. Rows 3–6: different
realizations of the same combination by the trained CompVAE - see text. Best viewed
in colors. (Color figure online)

A second perspective is to make one step further toward the training of fully
programmable generative models. The idea is to incorporate explicit biases on
the top of the distribution learned from unbiased data, to be able to sample
the desired sub-spaces of the data space. In the motivating application domain
of electric consumption for instance, one would like to sample the global con-
sumption curves associated with high consumption peaks, that is, to bias the
generation process toward the top quantiles of the overall distribution.
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Abstract. The redundant sources problem in multi-source learning
always exists in various real-world applications such as multimedia anal-
ysis, information retrieval, and medical diagnosis, in which the het-
erogeneous representations from different sources always have three-
way redundancies. More seriously, the redundancies will cost a lot of
storage space, cause high computational time, and degrade the perfor-
mance of learner. This paper is an attempt to jointly reduce redundant
sources. Specifically, a novel Heterogeneous Manifold Smoothness Learn-
ing (HMSL) model is proposed to linearly map multi-source data to
a low-dimensional feature-isomorphic space, in which the information-
correlated representations are close along manifold while the semantic-
complementary instances are close in Euclidean distance. Furthermore,
to eliminate three-way redundancies, we present a new Correlation-
based Multi-source Redundancy Reduction (CMRR) method with 2,1-
norm equation and generalized elementary transformation constraints
to reduce redundant sources in the learned feature-isomorphic space.
Comprehensive empirical investigations are presented that confirm the
promise of our proposed framework.

Keywords: Multi-source · Redundant · Heterogeneous · Manifold
measure · Dimension reduction · Sample selection

1 Introduction

Generally, due to incorrect data storage manner and the like, not all instances
are a concise and effective reflection of objective reality, inevitably leading to
the redundant sources of multi-source data. Note that different from duplicated
data, multi-source heterogeneous redundant data are those which could seriously
affect the performance of the learner. Rather, as shown in Fig. 1, there is a dis-
tinct difference between the redundant sources problem in multi-source learning
and mono-source scenario, because multi-source heterogeneous redundant data
contain the following three-way redundancies:
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Fig. 1. Multi- and Mono-Source Redundant Data. The x7, x8, x9, and x10 denote
the redundant representations from Source Sx. Similarly, the y7, y8, y9, y10, y11, y12,
and y13 are the redundant representations from Source Sy. The a1, a2, a3, a4, and
a5 represents the features in the representations from Source Sx. The features in the
representations from Source Sy are composed of the b1, b2, b3, b4, b5, b6, and b7.
The three-way redundancies are DRE, SFS, and CRO, respectively. The double-level
heterogeneities consist of FDD and SSD.

– Data Representations Excessiveness (DRE). The existing of multiple
unduplicated representations of the same object in the same source leads to
taking up too much storage space.

– Sample Features Superabundance (SFS). Superabundance caused by
curse of dimensionality [4] refers to a high-dimensional space embedding some
related or randomized dimensions, resulting in high computational time.

– Complementary Relationships Overplus (CRO). One representation
from one source has corresponding relationships with multiple heterogeneous
descriptions from another source. This overplus will bring about a significant
decline in the performances of multi-source representations.

Consequently, due to the existing of three-way redundancies, the redundant
sources problem owns double-level heterogeneities, i.e., Feature Dimension Dis-
similarity (FDD) and Sample Size Difference (SSD) (see Fig. 1). First, different
sources use different dimensions and different attributes to represent the same
object [10,14,29]; besides, there are different number of instances in each source.
Even more serious is that these redundancies severely impact the performances
of multi-source data, resulting in false analysis, clustering, classification, and
retrieval [12,24,25]. Therefore, it is extremely necessary to develop an effective
reducing method for multi-source heterogeneous redundant data.

For the past few years, to deal with redundancies problem, various machine
learning methods have been investigated to reduce computational cost and
improve learning accuracy. Up to now, the existing methods involve dimension
reduction techniques [13,17,18,24] and sample selection approaches [5,21,22,25].

Dimension Reduction Techniques. In [18], Huan et al. investigated a fea-
ture extraction approach, called Knowledge Transfer with Low-Quality Data
(KTLQD), to leverage the available auxiliary data sources to aid in knowledge
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discovery. Nie et al. [17] proposed an Efficient and Robust Feature Selection
via Joint �2,1-Norms Minimization (ERFSJNM) method, which used �2,1-norm
regularization to extract meaningful features and eliminate noisy ones across all
data points with joint sparsity. Wang et al. [24] studied a feature selection frame-
work, called Feature Selection via Global Redundancy Minimization (FSGRM),
to globally minimize the feature redundancy with maximizing the given feature
ranking scores. An unsupervised feature selection scheme, namely, Nonnegative
Spectral Analysis with Constrained Redundancy (NSACR), was developed by Li
et al. [13] through jointly leveraging nonnegative spectral clustering and redun-
dancy analysis.

Sample Selection Approaches. Wang et al. [25] proposed a sample selec-
tion mechanism based on the principle of maximal classification ambiguity, i.e.,
Maximum Ambiguity-based Sample Selection in Fuzzy Decision Tree Induc-
tion (MASSFDTI), to select a number of representative samples from a large
database. In [5], a Sample Pair Selection with Rough Set (SPSRS) framework
was proposed in order to compress the discernibility function of a decision table
so that only minimal elements in the discernibility matrix were employed to
find reducts. Shahrian and Rajan [21] designed a content-based sample selection
method, called Weighted Color and Texture Sample Selection for Image Matting
(WCTSSIM), in which color information was leveraged by color sampling-based
matting methods to find the best known samples for foreground and background
color of unknown pixels. Su et al. [22] developed an Active Correction Prop-
agation (ACP) method using a sample selection criterion for active query of
informative samples by minimizing the expected prediction error.

Generally, these existing methods can eliminate only one kind of redundancy,
not three kinds of redundancy. Moreover, these methods were designed for single-
source data like many other conventional data mining methods. Accordingly,
it is impossible for them to eliminate the double-level heterogeneities among
different redundant sources. To address the limitations of existing methods, we
attempt to explore a multi-source reducing framework to jointly eliminate three-
way redundancies and double-level heterogeneities at the same time.

1.1 Organization

The remainder of this paper is organized as follows: A general framework for
jointly reducing the redundant sources of multi-source data is proposed in Sect. 2.
Furthermore, the efficient algorithms are provided to solve the proposed frame-
work in Sect. 3. Section 4 evaluates and analyzes the proposed framework on
three multi-source datasets. Finally, our conclusions are presented in Sect. 5.

1.2 Notations

In Table 1, we describe the notations needed to understand our proposed
algorithm.
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Table 1. Notations

Notation Description

Sx Source X

Sy Source Y

XN ∈ R
n1×dx Non-redundant samples in Sx

YN ∈ R
n1×dy Non-redundant samples in Sy

LN ∈ R
n1×m Label indicator matrix

xi ∈ R
dx The i-th sample from Sx

yi ∈ R
dy The i-th sample from Sy

n1 Number of non-redundant samples

dx Dimensionality of Sx

dy Dimensionality of Sy

m Number of labels

(xi, yi) The i-th multi-source datum

XR ∈ R
n2×dx Redundant representations in Sx

YR ∈ R
n3×dy Redundant representations in Sy

n2 Number of redundant samples in Sx

n3 Number of redundant samples in Sy

|| · ||F Frobenius norm

|| · ||∗ Trace norm

S
k×k
+ Positive semi-definite matrices

�f(·) Gradient of smooth function f(·)
| · | Absolute value

Ik ∈ R
k×k Identity matrix

2 Reducing Multi-source Heterogeneous Redundant Data

A general simplifying framework is proposed in this section to jointly reduce the
redundant sources of multi-source data. Figure 2 presents an overview of the pro-
posed framework. In this example, a set of multi-source data consists of Source
X and Source Y . There are a certain amount of multi-source non-redundant
data such as XN and YN . However, some multi-source data XR and YR have
three-way redundancies and double-level heterogeneities. For instance, the CRO
among different sources brings about that the sample x7 in Source X is corre-
lated with multiple instances y7, y8, and y9 in Source Y ; additionally, there are
multiple representations y11, y12, and y13 similar to y10 due to the DRE in Source
Y ; furthermore, the representations in the sources are too much superabundant
because of the SFS. As a result, the feature dimensions are heterogeneous and
there are different number of samples in these sources, i.e., FDD and SSD.

To jointly reduce the redundant sources of multi-source data, HMSL
model learns a low-dimensional feature homogeneous subspace, in which
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Fig. 2. Framework for joint multi-source reduction.

the information-correlated representations are close along manifold while the
semantic-complementary instances are close in Euclidean distance at the same
time. Then, CMRR model removes the three-way redundancies and double-level
heterogeneities existing in the multi-source heterogeneous redundant data XR

and YR from the feature-homogeneous space under the learned complementarity,
correlation, and distributivity restraints.

The following subsections present more details.

2.1 The Proposed HMSL Model

This subsection presents a new HMSL model, which has pseudo-metric con-
straints, manifold regularization, and leave-one-out validation to correlate dif-
ferent sources. In HMSL model, the existing non-redundant heterogeneous repre-
sentations XN and YN are utilized to learn two heterogeneous linear transforma-
tions A and B, a decision matrix W , and a manifold smoothness measure M to
mine the semantic complementarity, information correlation, and distributional
similarity among different sources. As a consequence, the heterogeneous repre-
sentations from different sources are linearly mapped into a low-dimensional
feature-homogeneous space, in which the information-correlated samples are
close along manifold while the semantic-complementary instances are close in
Euclidean distance.
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Specifically, the proposed method can be formulated as follows:

Ψ1:
min

A,B,W,M
fS(A,B,W ) + αgM (A,B,M) − βhD(A,B)

s.t. AT A = I, BT B = I, and M � 0,
(1)

where A ∈ R
dx×k, B ∈ R

dy×k, k ≤ min(dx, dy), and α and β are two trade-off
parameters. The orthogonal constraints AT A = I and BT B = I can effectively
eliminate the correlation among different features in the same source. The pos-
itive semidefinite restraint M ∈ S

k×k
+ � 0 can be used to obtain a well-defined

pseudo-metric.
The objective function in Eq. (1) consists of the semantic, correlation, and

distributional subfunctions. The semantic subfunction fS(A,B,W ):

fS(A,B,W ) =
∥
∥
∥
∥

[
XNA
YNB

]

W −
[

LN

LN

]∥
∥
∥
∥

2

F

, (2)

is based on multivariant linear regression to capture the semantic complemen-
tarity between different sources.

The first term in the objective function is multivariate linear regression based
on the semantic function, which is used to capture the semantic complementarity
between different sources.

Moreover, we define the new distance metrics as follow to obtain a Mahalanobis
distance:

DMX
(xi, xj) = (xi − xj)T MX(xi − xj), (3)

DMY
(yi, yj) = (yi − yj)T MY (yi − yj), (4)

where MX = AT A and MY = BT B. Therefore, each pair of co-occurring hetero-
geneous representations (xi, yi) can be embedded by the linear transformations
A and B into a feature-homogeneous space.

Accordingly, the motivation of introducing the correlation function gM (A,
B,M):

gM (A,B,M) =‖ XNAMBT Y T
N ‖2F , (5)

is to measure the smoothness between A and B to extract the information cor-
relation among heterogeneous representations.

Additionally, Ct
X and Ct

Y denote respectively the sample sets of t-th class from
the sources Vx and Vy. We assume that each sample xi selects another sample yj

from another source as its neighbor with the probability pij . Similarly, qij refers
to the probability that yi is the neighbor of xj .

We apply the softmax under the Euclidean distance in the feature-
homogeneous space to define pij and qij as follows:

pij =
exp(− ‖ Axi − Byj ‖2)

∑

k exp(− ‖ Axi − Byk ‖2) , (6)

qij =
exp(− ‖ Byi − Axj ‖2)

∑

k exp(− ‖ Byi − Axk ‖2) . (7)
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Accordingly, the probabilities pi and qi:

pi =
∑

xi∈Ct
X & yj∈Ct

Y

pij , (8)

qi =
∑

yi∈Ct
Y & xj∈Ct

X

qij , (9)

represents the odds which the sample i will be correctly classified. Consequently,
the distributional similarity subfunction hD(A,B) based on Mahalanobis dis-
tance:

hD(A,B) =
∑

pi +
∑

qi, (10)

is a leave-one-out validation, which is used to capture the distributional similarity
between different sources.

Section 3.1 presents an efficient algorithm to solve Ψ1.

2.2 The Proposed CMRR Model

Furthermore, to reduce the three-way redundancies and remove double-level
heterogeneities, we propose a new CMRR model with GET constraints and
GEC criterion to recover one-to-one complementary relationship between the
heterogeneous representations from redundant sources in the learned feature-
homogeneous space.

Specifically, assuming (A∗, B∗,W ∗,M∗) be the optimal solutions of Ψ1. Then
the proposed approach can be formulated:

Ω1:
min
P,Q

‖PT HW ∗−QT RW ∗‖2F +γ ‖PT HM∗RT Q‖2F +

τ ‖ (

PT H + QT R
)

/2 ‖∗
s.t. P ∈Σn2×n4 , Q∈Σn3×n4 , ‖P‖2,1=‖Q‖2,1=n4,

(11)

where γ and τ are two regularization parameters, P and Q are two GET matri-
ces, H = XRA∗ and R = YRB∗ are the redundant matrices in Sx and Sy,
Σn2×n4 ∈ R

n2×n4 and Σn3×n4 ∈ R
n3×n4 are two set of GET matrices, and

n4 = min(n2, n3).
The first term in the objective function uses A∗, B∗, and W ∗ to build one-

to-one complementary relationship between the heterogeneous representations
of the same object while removing CRO and eliminating SFS. The second term
in the objective function is used to clear DRE in the same source by M∗ in
order to extract the correlated information between heterogeneous representa-
tions. The low-rank regularization based on trace norm (the third term in the
objective function) is used to make the complex representations as linearly-
separable as possible. As shown in Fig. 3, to switch the rows in H and R, the
GET constraints are imposed on P and Q to establish one-to-one complementary
relationship while removing CRO. The motivation of introducing the 2,1-norm
equality restraint is to clear DRE in H and R through favoring a number of
zero rows in P and Q. Note that if there is but only 2,1-norm equality restraint,
the P and Q may become a matrix containing only one non-zero row [1]. Thus,
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Fig. 3. Correlation-based Multi-source Redundancy Reduction. To establish one-to-
one complementary relationship while removing CRO, CMRR model imposes the GET
constraints on P and Q to switch the rows in H and R.

it is essential for selecting complementary representations to add the GET con-
straints on P and Q in Ω1.

Based on the gradient energy measure [20], the GEC criterion [28] can be
used to build a GET matrix effectively. Specifically, every internal element
Gij is connected to its four neighbors Gi−1,j , Gi+1,j , Gi,j−1, and Gi,j+1 in a
gradient matrix G obtained by gradient descent method. We can obtain the
between-sample energy Ebs of Gij according to the �1-norm gradient magnitude
energy [20]:

Ebs =
∂

∂x
G =| G(i + 1, j) − G(i, j) | + | G(i, j) − G(i − 1, j) |, (12)

and the within-sample energy Ews as

Ews =
∂

∂y
G =| G(i, j + 1) − G(i, j) | + | G(i, j) − G(i, j − 1) |. (13)

We can calculate the global energy of Gij by Ebs and Ews:

Eglobe = δ ∗ Ebs + (1 − δ) ∗ Ews, (14)

where δ is a trade-off parameter.
The global energy of every element in G can be computed by Eq. (14), and

then we can obtain an energy matrix E. As a result, we can compare he global
energies of every element. It can be seen that the winner with maximum energy
will be set to 1, and the remaining elements in the same row and column will be
set to 0. We can repeat the cycle until a GET matrix Q is built.

Section 3.2 presents an efficient algorithm to solve Ω1.

3 Optimization Technique

In this section, we present an optimization technique to solve the proposed
framework.
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3.1 An Efficient Solver for Ψ1

The optimization problem Ψ1 (see Eq. (1)) can be simplified as follows:

min
Z∈C

F (Z), (15)

where F (·) = fS(·) + αgM (·) − βhD(·) is a smooth function, Z = [AZ BZ

WZ MZ ] symbolizes the optimization variables, and the set C is closed for each
variable:

C = {Z|AT
ZAZ = I,BT

ZBZ = I,MZ � 0}. (16)

Because F (·) is continuously differentiable for each variable with Lipschitz con-
tinuous gradient L [16], it is appropriate to solve Eq. (15) by Accelerated Pro-
jection Gradient (APG) [16] method.

The first-order gradient algorithm APG can accelerate each gradient step and
minimize the smooth function, so as to obtain the optimal solution. A solution
sequence {Zi} is updated from a search point sequence {Si} in the method.

Due to orthogonal constraints, it is exceedingly difficult for us to optimize
the non-convex optimization problem in Eq. (15). However, if Gradient Descent
Method with Curvilinear Search (GDMCS) [27] satisfies Armijo-Wolfe conditio,

Algorithm 1: Heterogeneous Manifold Smoothness Learning (HMSL)

Input: Z0=[AZ0BZ0WZ0MZ0 ], F (·), fS(·), gM (·), hD(·), XN , YN , γ1 > 0, t0=1,
τ1, 0 < ρ1 < ρ2 < 1, and maxIter.

Output: Z∗.
1: Define Fγ,S(Z)=F (S)+〈�F (S), Z−S〉+γ‖Z−S‖2F /2
2: Calculate [AZ0 ] = Schmidt(AZ0).
3: Calculate [BZ0 ] = Schmidt(BZ0).
4: Set AZ1=AZ0 , BZ1=BZ0 , WZ1=WZ0 , and MZ1=MZ0 .
5: for i =1,2,· · ·,maxIter do
6: Set ai = (ti−1 − 1)/ti−1.
7: Calculate ASi

= (1 + αi)AZi
− αiAZi−1 .

8: Calculate BSi
= (1 + αi)BZi

− αiBZi−1 .
9: Calculate WSi

= (1 + αi)WZi
− αiWZi−1 .

10: Calculate MSi
= (1 + αi)MZi

− αiMZi−1 .
11: Set Si = [ASi

BSi
WSi

MSi
].

12: Calculate �AS
F (ASi

), �BS
F (BSi

), �WS
F (WSi

), and �MS
F (MSi

).
13: Define FA(AZi

, B) and FB(A,BZi
).

14: while (true)
15: Calculate ÂS = ASi

− �AS
F (ASi

)/γi.
16: Calculate [ÂS ] = Schmidt(ÂS).
17: Calculate B̂S = BSi

− �BS
F (BSi

)/γi.
18: Calculate [B̂S ] = Schmidt(B̂S).
19: Set [AZi+1 , BZi+1 ] = GDMCS(F (·), ÂS , B̂S , τ1, ρ1, ρ2).
20: Calculate WZi+1 = WSi

− �WS
Q(WSi

)/γi.
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21: Calculate M̂S = MSi
− �MS

Q(MSi
)/γi.

22: Calculate [MZi+1 ] = PSP(M̂S).
23: Set Zi+1 = [AZi+1 BZi+1 WZi+1 MZi+1 ].
24: if F (Zi+1) ≤ Fγi,Si

(Zi+1), then break;
25: else Update γi = γi × 2.
26: endIf
27: endWhile
28: Update ti =

(

1+
√

1+4t2i−1

)

/2, γi+1=γi.
29: endFor
30: Set Z∗ = Zi+1.

it has been proved by Guo and Xiao in [9] that GDMCS can effectively solve the
non-convex problem. We can use the method in [9] to prove that the proposed
HMSL algorithm met the using conditions of GDMCS algorithm.

APG projects a given point s onto set C in the following way:

projC(s) = arg min
z∈C

‖z − s‖2F /2. (17)

Positive Semi-definite Projection (PSP) proposed by Weinberger et al. in [26] can
remain positive semi-definite constraints, when it minimize a smooth function.
It will project optimal variables into a cone of all positive semi-definite matrices
after each gradient step. The projection is computed from the diagonalization of
optimal variables, which effectively truncates any negative eigenvalues from the
gradient step, setting them to zero. PSP can be utilized to solve the problem in
Eq. (17).

Finally, when applying APG for solving Eq. (15), a given point S can be
projected into the set C as follows:

projC(S) = arg min
Z∈C

‖Z − S‖2F /2. (18)

The problem in Eq. (18) can be solved by the combination of APG, PSP, and
GDMCS. The details are given in Algorithm 1, in which the function Schmidt(·)
[15] denotes the GramSchmidt process.

3.2 An Efficient Solver for Ω1

To solve the model Ω1 (See Sect. 2.2), an efficient algorithm is given in this
subsection. Similarly, the problem in Eq. (11) can be simplified as:

min
Θ∈Q

H(Θ) = w(Θ) + τt(Θ), (19)

where w(·) = ‖ · ‖2F + γ‖ · ‖2F is a smooth subfunction, t(·) = ‖ · ‖∗ is an undiffer-
entiable subfunction, Θ =[PΘ QΘ] symbolizes the optimization variables, and
set Q is closed for each variable:

Q = {Θ|PΘ ∈Σn2×n4 , QΘ ∈Σn3×n4 , ‖PΘ‖2,1=‖QΘ‖2,1=n4}. (20)
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Because w(·) is continuously differentiable for each variable with Lipschitz
continuous gradient L [16], it is also appropriate to solve Eq. (19) by APG [16]
method.

Similarly, APG projects a given point s onto set Q in the following way:

projQ(s) = arg min
θ∈Q

‖θ − s‖2F /2, (21)

The GEC criterion (See Sect. 2.2) can be used to map the approximate
solution of Eq. (21) into the generalized elementary transformation constraint
Q. Zhang et al. [28] have successfully used the functions Energy(·) and
Competition(·) to implement the GEC criterion according to Eq. (12, 13, 14).

Algorithm2: Correlation-based Multi-source Redundancy Reduction (CMRR)
Input: H(·), w(·), t(·), PZ0 =In2×n4 , QZ0 =In3×n4 , Z0=[PZ0 QZ0 ], XR, YR, δ,

ε1 > 0, t0=1, and maxIter.
Output: Z∗.
1: Define Hε,S(Z) = w(S) + 〈�w(S), Z − S〉 + ε‖Z − S‖2F /2 + τt(Z).
2: Set PZ1 = PZ0 and QZ1 = QZ0 .
3: for i =1,2,· · ·,maxIter do
4: Set ai = (ti−1 − 1)/ti−1.
5: Calculate PSi

= (1 + αi)PZi
− αiPZi−1 .

6: Calculate QSi
= (1 + αi)QZi

− αiQZi−1 .
7: Set Si = [PSi

QSi
].

8: Derive �PS
w(PSi

) and�QS
w(QSi

).
9: while (true)
10: Calculate P̂S = −�PS

w(PSi
)/εi.

11: Calculate [P̂Zi+1 ] = Energy(P̂S , δ).
12: Calculate [PZi+1 ] = Competition(P̂Zi+1).
13: Calculate Q̂S = −�QS

w(QSi
)/εi.

14: Calculate [Q̂Zi+1 ] = Energy(Q̂S , δ).
15: Calculate [QZi+1 ] = Competition(Q̂Zi+1).
16: Set Zi+1 = [PZi+1 QZi+1 ].
17: if H(Zi+1) ≤ Hεi,Si

(Zi+1), then break;
18: else Update εi = εi × 2.
19: endIf
20: endWhile
21: Update ti =

(

1+
√

1+4t2i−1

)

/2, εi+1=εi.
22: endFor
23: Set Z∗ = Zi+1.

By combining APG, the function Energy(·), and the function Competition(·),
the problem in Eq. (19) can be solved. The Algorithm 2 provides the details.
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4 Experimental Results and Analyses

4.1 Datasets and Settings

The three benchmark multi-source datasets, i.e., Wikipedia [19], Corel 5K [8],
and MIR Flickr [11], are used to evaluate the proposed framework. The statistics
of the datasets are given in Table 2, and brief descriptions of the chosen feature
sets in the above-mentioned datasets are listed in Table 3.

These three datasets are divided into train and test subsets. We randomly
select 10% of multi-source data in the train and test sets, respectively. Then
the heterogeneous representations of these multi-source data are rearranged in
random order and we manually generated 10% of the redundant representations
from Source Sy in the data. We use the 5-fold cross-validation to tune some
important parameters in all the methods. Additionally, all the experiments take
the LIBSVM classifier as the benchmark for classification tasks.

Table 2. Statistics of the multi-source datasets

Dataset Total attributes Total classes Total samples

Wikipedia 258 10 2866

Corel 5K 200 260 4999

MIR Flickr 5857 38 25000

Table 3. Brief descriptions of the feature sets

Dataset Feature set Total attributes Total labels Total instances

Wikipedia Image (Sx) 128 10 2866

Text (Sy) 130 10 2866

Corel 5K DenseHue (Sx) 100 260 4999

HarrisHue (Sy) 100 260 4999

MIR Flickr Image (Sx) 3857 38 25000

Text (Sy) 2000 38 25000

4.2 Analysis of Manifold Learning Algorithms

To verify the manifold smoothness measure learned by the proposed HMSL
method, HMSL is compared in classification performance with other four state-
of-the-art manifold learning algorithms such as ESRM [6], EMR [7], MKPLS
[2], and DDGR [3]. The MIR FLICKR dataset is used in the experiment, and
the best performance is reported. The data in training set are randomly sam-
pled in the ratio {25%, 50%, 75%, 100%}, and the size of the test set is fixed.
Unlike our framework, before comparing ESRM, EMR, MKPLS and DDGR,
we first implement CCA [23] to construct feature-homogeneous space between
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different sources. We select min(dx, dy) as the dimensionality k of the feature-
homogeneous space. The setting of the parameters in ESRM, EMR, MKPLS,
and DDGR is the same as the original works [2,3,6,7].

In essence, the proposed HMSL model is also a manifold learning method
based on manifold regularization. However, there are significant differences
between HMSL and the above-mentioned other four methods. The main differ-
ence between HMSL and ESRM is that ESRM is a mono-source learning algo-
rithm without the ability of handling multi-source problem. Moreover, though
MKPLS also use manifold regularization to exploit the correlation among het-
erogeneous representations, the distributional similarity among different sources
is not utilized fully. Additionally, different from EMR and DDGR, HMSL takes
full account of the semantic complementarity between different sources.

Table 4. Classification performance of manifold learning methods in terms of AUC.

Method Sampling ratio

25% 50% 75% 100%

DDGR 0.5374 0.5963 0.6245 0.6756

MKPLS 0.5481 0.6040 0.6372 0.6824

EMR 0.5171 0.5744 0.6268 0.6654

ESRM 0.5445 0.5978 0.6554 0.6813

HMSL 0.5991 0.6596 0.7053 0.7494

From Table 4, we can clearly observe that HMSL greatly outperforms other
manifold learning methods in classification performance. The results present
that HMSL can capture information correlation between different sources more
effectively than the comparative methods. In addition, as the number of training
samples increases, the performance of HMSL will also be improved. Accordingly,
a certain number of existing nonredundant samples is essential for HMSL to learn
an excellent manifold smoothness measure.

4.3 Evaluation of Dimension Reduction Techniques

In order to evaluate the possibility of eliminating SFS in the proposed CMRR
model, we further compare the effect of dimension reduction among different
state-of-the-art methods, such as KTLQD [18], ERFSJNM [17], FSGRM [24],
and NSACR [13]. The generalized identity matrices are taken as the initial values
of P and Q in Algorithm 2. The regularization parameters γ and τ are tuned
among the set {10i|i = −2,−1, 0, 1, 2}. The parameter δ in Eq. (14) is set to 0.1.
For KTLQD, ERFSJNM, FSGRM, and NSACR, the experimental setups follow
the original ones [13,17,18,24], respectively.

In machine learning, the eliminating of sample features superabundance can
be divided into feature selection and dimension reduction. It is a key component
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in building robust machine learning models for analysis, classification, cluster-
ing, and retrieval to avoid high computational time. To achieve this goal, CMRR
reduces the superabundance of sample features by using the learned multiple het-
erogeneous linear transformations. Therefore, after eliminating SFS, the multi-
source heterogeneous redundant data is more likely to be separated linearly.

Fig. 4. Comparison of classification performance of dimension reduction algorithms.

We can observe from Fig. 4 that CMRR has better classification performance
than KTLQD, ERFSJNM, FSGRM, and NSACR. This observation further jus-
tifies that CMRR can effectively eliminate SFS.

4.4 Comparison of Sample Selection Approaches

To test the performance of the proposed CMRR in different redundancy rates,
we further compare the classification performances of CMRR with other sample
selection methods such as MASSFDTI [25], SPSRS [5], WCTSSIM [21], and
ACP [22] in the larger MIR Flickr dataset. We tune the redundancy rates on
the set {10%, 15%, 20%, 25%}.

From the view of the function, the proposed CMRR model is also essen-
tially a sample selection method such as MASSFDTI, SPSRS, WCTSSIM, and
ACP. However, there are some significant differences between CMRR and other
methods. CMRR is based on the correlation among sample representations from
different sources. So it will be more favorable to clear DRE and remove CRO for
reestablishing the one-to-one complementary relationship among heterogeneous
representations.

Just to pursue such a purpose, we first use HMSL to project the multi-source
data into a feature-homogeneous space and then apply MASSFDTI, SPSRS,
WCTSSIM, ACP, and CMRR to reduce redundant samples. The setting of the
parameters in MASSFDTI, SPSRS, WCTSSIM, and ACP is the same as the
original works [5,21,22,25].
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It can be seen in Fig. 5 that CMRR is superior to the other models in the
classification performance. This observation further confirms that CMRR has an
obvious advantage over other methods in removing FDD and SSD and rebuild-
ing the one-to-one complementary relationship among heterogeneous represen-
tations. Nevertheless, with the increasing of redundancy rate, the performance
of CMRR will degrade. Thus, CMRR also has some limitations that it needs a
certain number of existing nonredundant samples to reduce redundant source.

Fig. 5. Comparison of classification performance of sample selection approaches in
different redundancy rates.

5 Conclusion

This paper investigates the redundant sources problem in multi-source learn-
ing. We developed a general simplifying framework to reduce redundant sources
of multi-source data. Within this framework, a feature-homogeneous space is
learned by the proposed HMSL model to capture the semantic complementarity,
information correlation, and distributional similarity among different sources.
Meanwhile, we proposed a CMRR method with GET constraints based on GEC
criterion to remove the three-way redundancies and double-level heterogeneities
in the learned feature-homogeneous space. Finally, we evaluated and verified the
effectiveness of the proposed framework on five benchmark multi-source hetero-
geneous datasets.
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Abstract. Dimensionality reduction (DR) on the manifold includes
effective methods which project the data from an implicit relational
space onto a vectorial space. Regardless of the achievements in this area,
these algorithms suffer from the lack of interpretation of the projection
dimensions. Therefore, it is often difficult to explain the physical meaning
behind the embedding dimensions. In this research, we propose the inter-
pretable kernel DR algorithm (I-KDR) as a new algorithm which maps
the data from the feature space to a lower dimensional space where the
classes are more condensed with less overlapping. Besides, the algorithm
creates the dimensions upon local contributions of the data samples,
which makes it easier to interpret them by class labels. Additionally,
we efficiently fuse the DR with feature selection task to select the most
relevant features of the original space to the discriminative objective.
Based on the empirical evidence, I-KDR provides better interpretations
for embedding dimensions as well as higher discriminative performance
in the embedded space compared to the state-of-the-art and popular DR
algorithms.

Keywords: Dimensionality reduction · Interpretability · Supervised

1 Introduction

Dimensionality reduction (DR) is an essential preprocessing phase in the appli-
cation of many algorithms in machine learning and data analytics. The general
goal in any DR approach is to obtain an embedding to transfer the data from the
original high-dimensional (HD) space to a low-dimension (LD) space, such that
this projection preserves the vital information about the data distribution [23].
It is common to split the dimensionality reduction methods into two groups of
unsupervised and supervised algorithms. The first group includes methods such
as Principal Component Analysis (PCA) [13] which finds a new embedding space
in which the dimensions are sorted based on the maximum data variation they
can achieve, or locally linear embedding (LLE) [23] that focuses on preserving
the relational structure of data points in the local neighborhoods of the space
throughout an embedding.
c© Springer Nature Switzerland AG 2020
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The second group of algorithms, known as supervised (discriminative) DR
methods, assume that data classes can obtain the same or even better sepa-
rations in an intrinsic LD space. As a popular supervised algorithm, Linear
Discriminant Analysis (LDA) [19] tries to find a mapping which increases the
distance between the class centroids while preserving the intra-class variations.
Its subsequent algorithms such as LLDA [14] and CPM [29] tried to relax the
constraints on within-class variations to project the sub-clusters to the LD space
more efficiently.

It is possible to consider an implicit mapping of data to a high-dimensional
reproducing kernel Hilbert space (RKHS) primarily to obtain a relational repre-
sentation of the non-vectorial or structured data distributions. Consequently, a
branch of DR algorithms (kernel-DR) is focused on kernel-based data represen-
tations to transfer the data from the original RKHS to a vectorial space. This
projection can become significant especially when it makes the application of
many vectorial algorithms possible on LD embedding of such data. The most
famous kernel-DR algorithms are Kernelized PCA (K-PCA) and K-FDA [19]
which are the kernelized versions of PCA and LDA algorithms respectively. In
these methods and many other kernel-DR algorithms, it is common to construct
the embedding dimensions upon different weighted combinations of data points
in the original RKHS. Other notable examples of kernel-based methods include
algorithms such as KDR [8], KEDR [1], and LDR [24].

Additionally, by assuming a set of non-linear mappings to different sub-spaces
in the feature space, it is possible to obtain one specific kernel representation
for each dimension of the data [6,10]. Consequently, a specific group of methods
tried to apply DR frameworks also to feature selection tasks on manifolds [12,16].

One of the important practical concerns regarding dimensionality reduction
is the interpretation of new dimensions. It is common to observe in many DR
methods that the embedding dimensions are constructed upon arbitrary com-
binations of many uncorrelated physical dimensions [4,25]. Such occasions can
make the interpretation of these dimensions difficult or impossible. Such con-
dition becomes even more severe for kernel-DR methods where the embedding
dimensions are an implicit combination of data points in RKHS. For instance
methods similar to K-PCA, the embedding vectors almost use weighted com-
bination of all data points from all the classes. Hence, it would be difficult to
relate any of the dimensions to any class of data (Fig. 1(a)). Furthermore, a high
correlation between embedding directions can be found when considering the
class-contributions in them (Fig. 1(b)).

As an improvement, sparse K-PCA [27] applies an l1-norm sparsity objective
to form embedding vectors from sparse combinations of training samples. How-
ever, these samples still belong to different classes which makes the resulting
embeddings weak according to the class-based interpretation (Fig. 1).

1.1 Motivation

As discussed in the previous paragraphs, one crucial challenge for kernel-DR
algorithms is the interpretation of their projection dimensions. Based on the
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Fig. 1. When embedding vectors use all data points: (a) its projection on class-labels
is coupled and (b) the embedding vectors are highly correlated in the label space. A
class-based interpretable embedding: (c) provides a more distinct projection on class
labels and (d) its dimensions can be distinguished and explained based on class labels.

relation of these dimensions to the selection of data points, it is logical to focus
on having each selection linked to mostly one class of data. This strategy can
lead to the class-based interpretation as in Fig. 1(c), (d).

Besides, current kernel-DR methods cannot efficiently embed the multi-
cluster data classes to an LD space such that the clusters could still be separated
from each other. In particular, they suffer from considering the local distributions
inside the classes.

Based on the current state-of-the-art, the research in kernel-DR is always dis-
tinct from feature selection on the manifold. Although in some research, these
concerns are employed in a single framework [12,16], the DR aspect of the prob-
lem was not well investigated. Nevertheless, in particular for discriminative tasks,
these two aspects should act as each other’s complements in a single framework.

1.2 Contributions

In this work, we propose a novel discriminative dimensionality reduction method
which projects the data from an implicit RKHS space to a low-dimension vec-
torial space. Besides, it can join this embedding with feature selection in case of
having multiple representations for the data on the manifolds. We can summarize
our contributions as follows:

– We introduce the class-based interpretation concern for the kernel-DR frame-
works through which the embedding dimensions can be explained according
to the classes they most represent.

– We show that focusing on the within-class local similarities and between-
class dissimilarities can provide a more discriminative embedding.

– We fuse feature selection with our kernel-DR framework which leads to a
more discriminative feature selection compared to the state-of-the-art.

In the rest of this paper, we provide preliminaries in Sect. 2 and discuss
our discriminative kernel-DR framework in Sect. 3. The optimization steps and
the experimental results are discussed in Sect. 3.5 and Sect. 4 respectively. We
summarize our findings in the conclusion section.



Interpretable Dimensionality Reduction 313

2 Preliminaries

2.1 Notations

We denote the matrix of training data by X = [x1, ...,xN ] ∈ R
d×N , and the

corresponding class label matrix is given as H = [h1, . . . ,hN ] ∈ {0, 1}c×N . Each
hi is a zero vector except in its q-th entry where hqi = 1 if xi belongs to class q
in a c-class setting. In general, for a given matrix A, ai denotes its i-th column,
A(j, :) denotes its j-th row, and aji refers to the j-th entry in ai.

2.2 Kernel-Based Dimensionality Reduction

Assume there exists an implicit non-linear mapping Φ(X) corresponding to the
mapping of X into an RKHS, which corresponds to a kernel matrix K(X,X) =
Φ�(X)Φ(X). Generally, a kernel-DR algorithm tries to obtain an embedding
γ = U�Φ(x) as a mapping from the features space to an LD space. Since the
dimensions of Φ(x) are not directly accessible in the feature space, it is common
to assume embedding dimensions are constructed as

U = Φ(X)A, (1)

where A ∈ R
N×k. Hence, the matrix A projects the data from the HD feature

space to a k-dimensional space, where each embedding vector ai is a combination
of the training samples in RKHS.

Regarding the above, the K-PCA method preserves the variance of the recon-
struction and to obtain embedding dimensions which are orthogonal and sorted
based on their maximum variations. To that aim, K-PCA uses the following
optimization:

min
A

‖Φ(X) − Φ(X)AA�Φ(X)�Φ(X)‖2F
s.t. A�Φ(X)�Φ(X)A = I,

(2)

Although K-PCA is a powerful preprocessing algorithm to eliminate the low-
variate dimensions, it does not have any direct focus on the discrimination of
the embedded data classes. Also, each embedding vectors νi consists of both
positive and negative contributions from all training samples which makes their
interpretation difficult.

On the other hand, the K-FDA algorithm tries to obtain an embedding W
which increases the between-class covariance matrix Sφ

B while preserving the
total within-class covariance matrix Sφ

W in RKHS [19]. It uses the following
optimization framework:

max
W

Tr(W�SBW) s.t.W�SWW = I, (3)

where W has a structure analogous to Eq. (1). Regardless of its supervised per-
formance, the constraint on intra-class variances can become a critical weakness
when there are sub-clusters in each data class. In such cases, the constraint in
Eq. (3) cause considerable overlapping between different classes.

Our proposed framework improves the state-of-the-art in both discriminative
kernel-DR and class-based interpretation of embedding dimensions.
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3 Interpretable Discriminative Dimensionality Reduction

We want to obtain the embedding

γ = A�Φ(X)�Φ(x) Γ ∈ R
k (4)

as a projection from the original implicit RKHS to a k-dimensional explicit space
which also preserves the essential characteristics of X in the original space.

Definition 1. The embedding vector Φ(X)ai is class-based interpretable if we
have H(q|hqi=1,:)ai

‖Hai‖1
≈ 1, and it acts as the projection of data points on class q.

In other words, Φ(X)ai can be interpreted as a projection to class q if it is
constructed only from that class of data. Although Definition 1 considers an
ideal situation regarding the interpretability of an embedding dimension, we
consider the value of

H(q|hqi = 1, :)ai/‖Hai‖1 (5)

as a measure of class-based interpretation as well. To be more specific regarding
our framework, we aim for the following objectives:

O1: Increasing the class-based interpretation of embedding dimensions.
O2: The embedding should make the classes more separated in the LD
space.
O3: The classes should be locally more condensed in the embedded space.
O4: The DR framework should also support the feature selection objective
if a multiple kernel representation is provided.

Therefore, we formulate the following optimization scheme w.r.t. all the above
objectives:

min
A,β

JSim + λJDis + μJIp

s.t.
∑

m=1

d
βm = 1,

∑

j=1

N
aji = 1,∀i

aij , βi ∈ R
+, ∀ij.

(6)

In Eq. (6), the cost functions JDis, JIp, and JSim and the constraints on the
optimization variables are designed to fulfill our research objectives O1–O4. In
the following sub-sections, we explain each specific term in our framework in
detail and provide the rationales behind their definitions.

3.1 Interpretability of the Dimensions

In Eq. (4), each dimension ai of the embedding is composed of a weighted selec-
tion of data points in RKHS. In K-PCA, typically all aji,∀j = 1, . . . , N have
non-zero values. More specifically, for each ai, a wide range of training data from
different classes are selected with large weights which weaken the interpretation
of ai regarding the class to which it could be related.
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To make each ai more interpretable in our framework, we propose the cost
function JIp that its minimization enforces ai to be constructed using similar
samples in the RKHS:

JIp(X,A) = 1
2

k∑

i=1

N∑

s,t=1

asiati‖Φ(xs) − Φ(xt)‖22, (7)

where we restrict aij ≥ 0,∀ij. We call JIp as the interpretability term (Ip-term)
which is an unsupervised function and independent from the value of H. The
Ip-term enforces each embedding dimension ai to use samples in Φ(X) that are
located in a local neighborhood of each other in RKHS (Fig. 2) by introducing a
penalty term asiati‖Φ(xs)−Φ(xt)‖22 on its entries. Resulting from this term along
with the non-negativity constraint on A, non-zero entries of ai correspond to the
neighboring points such as (s, t) where their pairwise distance ‖Φ(xs) − Φ(xt)‖22
is small. Furthermore, although Ip-term does not employ the label information,
by assuming a smooth labeling for the data, this regularization term constructs
each ai by contributions from more likely one particular class. Therefore, as a
solution to our first research objective (O1), using Ip-term improves the class-
based interpretation of ai to relate it a sub-group of data points mostly belonging
to one specific class of data (Eq. (5)).

Fig. 2. Effect of using JIp on the formation of an embedding vector ai as the weighted
combination of selected data points (inside the hatched area) in the RKHS. (a): With-
out using JIp, the learned ai cannot be assigned to either of {circle, square} classes.
(b): After employing JIp, the formed ai can almost be interpreted by the circle class.

3.2 Inter-class Dissimilarity

Regarding our second objective (O2), we focus on increasing the inter-class
dissimilarities in the LD space which makes the embedded classes more distinct.
To that aim, we define the loss term JDis as

JDis(X,H,A)
= Tr(H

�
HΦ(X)�Φ(X)AA�Φ(X)�Φ(X)),

(8)

where H is the logical complement of H. Throughout simple algebraic operations,
we can show that Eq. (8) is the reformulation of

∑

i

∑

j|hj �=hi

〈A�Φ(X)�Φ(xi),A�Φ(X)�Φ(xj)〉. (9)
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Hence, minimizing JDis motivates the global separation of the classes in the
embedded space by reducing the similarity between their projected vectors
A�Φ(X)�Φ(x).

3.3 Intra-class Similarities

Even though the introduced cost term JDis helps the embedded classes to obtain
more distance from each other, it still does not consider the intra-class similarities
which concerns our third objective (O3). It is important to note that we want
to make the projected vectors γi of each class more similar to each other, while
still preserving the local structure of the class respecting the possible sub-classes.
This characteristic works against the drawback of K-FDA when facing distinct
sub-classes as pointed out by [17].

To address the above concern, we proposed the following cost function

JSim =
N∑

i=1

(H(q|hqi = 1, :)AA�Φ(X)�Φ(xi) − 1)2, (10)

in which q is the class to which xi belongs. Furthermore, based on Eq. (6), we
apply an affine constraint on columns of A as ‖as‖1 = 1,∀s = 1, . . . , N . By
combining Eq. (10) with γi from Eq. (4) we have

JSim =
N∑

i=1

(H(q|hqi = 1, :)Aγi − 1)2, (11)

which applies constraints on columns of A corresponding to large entries of γi.
Specifically, those constraints aim the entries which are related to the data points
which have the same label as xi. For instance, if γsi has a relatively large value,
minimizing JSim optimizes the entries ajs where hj = hi. Besides, the applied
l1-norm sparsity constraint ‖as‖1 = 1 enforces some entries in as to shrink
near to zero. Therefore, it is simple to conclude that these entries would mostly
include ajs where hj 	= hi.

On the other hand, γsi =
∑N

t=1 atsΦ(xt)�Φ(xi). Hence, Having the l1-norm
of as restricted along with its non-negativity constraint naturally motivates the
optimization process to assign large values to entries ats corresponding to data
points xt with large Φ(xt)�Φ(xi). In other words, as selects the nearby data
points of xi as its most similar neighbors. Combining this finding with our
first conclusion about the effect of Eq. (10), along with the localization role
of JIp, minimizing JSim helps each data point xi to be encoded in particular
by its nearby embedding vectors as, which are also constructed mostly by the
same-class of samples in the vicinity of xi (O1). Consequently, the data points
from each local sub-class are embedded by similar sets of columns in A and
are mapped into a local neighborhood in the LD space. In other words, This
embedding increases the intra-class similarities for the projected columns in Γ =
[γ1, . . . ,γN ].
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3.4 Feature Selection on the Manifold

It is a feasible assumption for any structured and non-structure X to have d differ-
ent kernel representations available [2], such that each Km(X,X),∀m = 1, . . . , d,
maps the m-th dimension of the original data into an RKHS or is derived from the
m-th descriptor (e.g., for images). Given the above, we can assume

Φ(x) = [φ�
1 (x), . . . , φ�

d (x)]�, (12)

where each φm : R → R
fm ,∀m = 1, . . . , d represents an implicit mapping

from the original space to a subspace of the RKHS, such that Km(xt,xs) =
φ�

m(xt)φm(xs). Therefore, we can consider a diagonal matrix B ∈ R
d×d which

provides scaling of the RKHS by

Φ̂(x) = BΦ(X) = [
√

β1φ
�
1 (x), · · · ,

√
βdφ

�
d (x)]�, (13)

where β is the vector of combination weights derived from diagonal entries of
B. We can compute the weighted kernel matrix K̂ corresponding to Φ̂(X) as

K̂(xt,xs) =
∑d

m=1 βmKm(xt,xs). (14)

Additionally, we apply a non-negativity constraint on entries of β as βi ≥ 0 to
make the resulted kernel weights interpreted as the relative importance of each
kernel in the weighted representation Φ̂(X) [10]. Consequently, we can obtain a
feature selection profile by sorting entries of β based on their magnitude. For
the ease of reading, in the rest of the paper, we denote K̂(X,X) and Ki(X,X)
by K̂ and Ki respectively.

Substituting Φ(X) by Φ̂(X) in the definitions of JDis, JIp, and JSim refor-
mulates them also as a function of B. Therefore, minimizing those terms also
optimizes the value of B regarding their specific purposes. Furthermore, we apply
an l1-norm restriction on the value of B as the affine constraint

∑d
m=1 βm = 1.

This constraint prevents β from becoming a vector of zeros as the trivial solution
and additionally results in a sparse feature selection to reduce the redundancies
between different kernel representations [22]. We can claim that by using Φ̂(X)
in each of the defined terms, the resulted feature selection also complies with
those specific characteristics. In the next section, we discuss the optimization
scheme of Eq. (6).

3.5 Optimization Scheme

The cost function JSim is non-convex which makes the objective function of
Eq. (6) non-convex as well. Hence, we define a variable matrix S and relax Eq. (6)
to the following optimization problem

min
A,β ,S,Γ

∑N
i=1(H(q|hqi = 1, :)si − 1)2

+λTr(A�K̂H
�
HK̂A) + μTr(A�K̃A)

+ τ‖S − AΓ‖2F + ζ‖Γ − A�K‖2F
s.t.

∑

m=1

d
βm = 1,

∑

j=1

N
aji = 1,∀i

aij , βi ∈ R
+, ∀ij,

(15)
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in which K̃ = diag(K̂1) − K̂, and the operator diag(.) creates a diagonal matrix
from its vector argument. The constants λ, μ are the control parameters for the
role of introduced loss terms in the optimization scheme, and the constants τ, ζ
should be large enough to make sure the slack variables S,Γ have appropriate
values. The second and third parts of the objective in Eq. (15) are reformulations
of JDis and JIp, which can be obtained by using the kernel trick and the Lapla-
cian matrix [26]. We initialize the embedding matrix A using random entries
and adjust its columns to have unit l1-norm. Then, we optimize Γ,S,A, and β
alternatively based on the following steps.

(1) Fix S,A, and β and update Γ as:

Γ∗ = A�K̂. (16)

(2) Fix Γ,A, and β and update S:

si
∗ = arg min

si

si
�(ui

�ui + I)si − 2(ui + γ�
i A�)si , (17)

where ui = H(q|hqi = 1, :). This unconstrained quadratic programming has the
closed-form solution

si
∗ = (ui

�ui + I)−1(ui + γ�
i A�)�. (18)

(3) Fix Γ,S, and β and update A as:

A∗ = arg min
A

λTr(A�K̂H
�
HK̂A) + μTr(A�K̃A)

+ τ‖S − AΓ‖2F + ζ‖Γ − A�K‖2F
s.t. A�1 = 1, aij ∈ R

+,∀ij.

(19)

Calling the objective of Eq. (19) JA, it is possible to show that JA consists of
convex parts and its gradient w.r.t. A can be computed as:

∇AJA = ΩA + Ψ, (20)

where (Ω,Ψ) can be obtained by simple algebraic operations. Therefore, we use
the direction method of multipliers (ADMM) [3] by defining the Lagrangian
formulation for Eq. (19):

Lρ(A,A+,Δ, δ)
= JA + ρ

2‖A − A+‖22 + ρ
2‖A�1 − 1‖22

+ tr(Δ�(A − A+)) + δ�(A�1 − 1),
(21)

and following these steps:
⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

A(t+1) = arg min
A

Lρ(A,A+,Δ, δ),

A(t+1)
+ = max(A(t+1) + 1

ρΔ(t), 0),

Δ(t+1) = Δ(t) + ρ(A(t+1)1 − 1),

δ(t+1) = δ(t) + ρ(A(t+1) − A(t+1)
+ ),

(22)
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In Eq. (22), A+ is an axillary matrix related to the non-negativity constraint,
Δ ∈ R

N×N and δ ∈ R
N are the Lagrangian multipliers, and ρ ∈ R

+ is the
penalty parameter. We update the matrix A(t+1) based on its closed-form solu-
tion derived from having ∇ALρ = 0.

(4) Fix Γ,S and A and update β: By combining Eq. (14) and Eq. (15) and
removing the constant terms, β can be updated by the following quadratic
programming (QP)

β∗ = arg min
β

1
2β�Qβ + v�β,

s.t. β�1 = 1, βi ∈ R
+,∀i.

(23)

In this formulation, ∀ij = 1, . . . , d:

Qij = λTr(A�K̂iH
�
HK̂jA) + ζTr(K̂iA�AK̂j), (24)

and
vi = μTr(A�K̃iA) − 2Tr(Γ�A�K̂i). (25)

The optimization problem of Eq. (23) is an instance of constraint quadratic pro-
gramming and can be efficiently solved by QP solvers such as CGAL [9] or
MOSEK [20].

As a result, in each iteration of the main optimization loop, we compute the
closed-form solution of Γ,S and update A,β rapidly using the ADMM and QP
solvers respectively. The precise implementation of our kernel-DR framework is
available on the online repository1.

3.6 Time Complexity of the Algorithm

In the training phase, we update A,S,Γ, and β alternatively. For each iteration
of the algorithm, the variables {A,S,Γ,β} are updated with the time complex-
ities of O(M(k3 + k2N + kN2)), O(N(N3 + N)), O(kN), and O(d2(kc + kN +
k2)+d(k2 +kN)+d2L) respectively, where M is the number of iterations which
takes for the ADMM algorithm to update A, and O(d2L) is the time complexity
of the QP for updating β. In practice, values of k, c, and d are much smaller
than N . Hence, the computationally expensive part of the algorithm is due to
computing the inverse of (ui

�ui + I)−1 to update each column of S. However,
this particular computation is independent of update rules in the iterations,
and we conduct it only once in the initialization phase of the algorithm, which
considerably accelerates the convergence speed.

4 Experiments

In this section, we implement our proposed I-KDR algorithm on real-world
datasets to analyze its DR and feature selection performance. For all the datasets
1 https://github.com/bab-git/.

https://github.com/bab-git/
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Table 1. Selected datasets. {Dim: #dimensions, Cls: #classes, Num: #data
samples}.

Dataset Num Dim Cls Dataset Num Dim Cls

Yale 165 1024 15 Gli85 85 22283 2

Sonar 208 60 2 CNS 60 7129 2

Colon 62 2000 2 Dbwork 64 4702 2

20NG 4852 28299 4 XM2VTS50 1180 1024 20

we compute the kernels based on the Gaussian kernel function

K(xi,xj) = exp(−‖xi − xj‖22/δ), (26)

in which δ denotes the average of ‖xi − xj‖2 for all training samples.

4.1 Datasets

We implement our DR algorithm on real-world benchmark datasets including
Yale face recognition2, {Sonar, Dbworld} from the UCI repository3, XM2VTS50
image dataset [18], the text datasets 20newsgroups74, and {Colon, Gli85,
Central-Nervous-System (CNS)} from the feature selection repository5. For the
20newsgroups7 dataset, we choose the large topic comp, and for Colon and Gli35
datasets we use the first two classes. The characteristics of the datasets are
reported in Table 1.

We evaluate the performance of the algorithms based on the average classi-
fication accuracy with 10-fold cross-validation (CV), and we use the 1-nearest
neighbor method (1-NN) to predict the label of test data based on Γ of the train-
ing set. Moreover, the parameters λ and μ are tuned based on conducting CV on
the training sets. The same policy is applied to the selected baseline algorithms.

4.2 Dimensionality Reduction

In this section, we only evaluate the dimensionality reduction performance of our
I-KDR in a single-kernel scenario, meaning that we use K in Eq. (15) instead of
K̂, and β is not involved in the framework. As baseline kernel-DR methods,
we choose the supervised algorithm K-FDA, LDR [24], SDR [21], KDR [7], and
unsupervised DR algorithms JSE [15], SKPCA [5], and KEDR [1]. The classifi-
cation results are reported in Table 2.

We can observe that I-KDR obtains better performance than baselines on
almost all selected datasets. For the Colon dataset, I-KDR obtained 8.26% higher
2 http://cvc.yale.edu/projects/yalefaces/yalefaces.html.
3 http://archive.ics.uci.edu/ml/datasets.html.
4 http://qwone.com/∼jason/20Newsgroups/.
5 http://featureselection.asu.edu/datasets.php.

http://cvc.yale.edu/projects/yalefaces/yalefaces.html
http://archive.ics.uci.edu/ml/datasets.html
http://qwone.com/~jason/20Newsgroups/
http://featureselection.asu.edu/datasets.php
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accuracy than the best approach. We can conclude that our designed elements of
Eq. (6) results in better discriminative projections than other baselines. Regard-
ing other algorithm, the supervised methods (e.g., LDR and SDR) generally
outperform the unsupervised ones which is due to their advantage of using the
supervised information in the trainings. For Sonar and Dbwork datasets, LDR
almost achieved a performance comparative to I-KDR.

Table 2. Classification accuracies (%) on the selected datasets.

Dataset I-KDR LDR SDR KDR K-FDA JSE KEDR SKPCA

Yale 79.43 72.80 71.13 69.50 67.88 66.23 64.61 60.75

Sonar 87.01 86.79 84.59 85.92 83.45 81.11 82.44 71.26

Colon 83.37 75.09 74.03 73.19 72.05 70.81 70.00 68.12

20NG 85.74 80.76 79.62 80.18 78.99 77.82 76.82 72.73

Gli85 76.45 72.15 70.66 69.26 67.50 65.79 66.68 61.38

CNS 72.96 68.77 67.09 65.84 64.61 63.21 63.96 58.93

Dbwork 88.24 87.67 86.28 84.90 83.27 81.74 80.40 77.32

XM2VTS50 95.51 92.67 91.62 92.17 90.88 89.52 88.55 84.86

The best result (bold) is according to a two-valued t-test at a 5% significance
level.

In Fig. 3, we compare the classification accuracy of the baselines for different
numbers of selected dimensions. Based on the accuracy curves, I-KDR shows a
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Fig. 3. Classification accuracy (%) of the baselines respect to the number of selected
dimensions for the datasets Yale, Sonar, Colon, 20NG, Dbwork, and Gli85.
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distinct performance compared to other methods for the datasets Yale, Colon,
and Gli85. Especially for the high-dimensional datasets Colon and Gli85, our DR
algorithm achieves the peak of its performance for a smaller number of selected
dimensions in comparison. For Sonar and Dbwork, I-KDR algorithm shows a
competitive performance to the best baseline (LDR algorithm). Considering the
classification accuracies for Yale dataset in Fig. 3, I-KDR’s curve reaches the
peak accuracy of each baseline while selecting fewer dimensions for the embed-
dings. Regarding the baseline DR algorithms, the supervised methods generally
outperform the unsupervised algorithms in both the accuracy and number of
selected dimension. This finding also complies with the reported information in
Table 2. Therefore, applying constraints regarding the interpretability of the DR
model in I-KDR does not sacrifice its discriminative performance.

4.3 Interpretation of the Embedding Dimension

To evaluate the effect of JIp in Eq. (6), we use the Ip measure defined as Ip =
1
k

∑k
i=1 (maxq H(q, :)ai)/‖Hai‖1. The Ip value considers the interpretability of

each ai based on the data points from which it is constructed. Assuming there
exists considerable similarities between the class members in RKHS, a highly
interpretable embedding dimension would be formed by contributions taken from
mostly one class of data. In such a case, the value of Ip should grow towards
1. Table 3 reports the value of this measure for those experiments in Table 2
where computing Ip is possible. Based on the results, I-KDR obtained the most
interpretable embeddings among other baselines, K-FDA has the weakest Ip
performance while SKPCA and KDR are jointly the runner up methods in this
Table. Regardless of the interpretation-effective sparsity term of SKPCA, its
unsupervised model allows cross-class contributions to happen in the formation
of the columns of A. From another point of view, for Yale and CNS datasets,
I-KDR has smaller Ip values compared to XM2VTS and 20NG datasets for
instance. This difference happened due to substantial overlapping of the classes
in the first group of datasets.

Additionally, to visualize the interpretation of the embeddings, we project the
embedding dimensions on the label-space by computing D = HA ∈ R

c×k. Each
column of D is a c-dimensional vector that its q-th entry explains how strong is
the relation of this dimension to the class q. Figure 4 visualizes the columns of D
for I-KDR, K-FDA, SKPCA, and KDR according to their implementations on
the Sonar dataset. Each embedding was done for 10 target dimensions. Based
on the results, I-KDR’s embedding dimensions are almost separated into two
distinct groups each of which mostly related to one class in the data. Although
for SKPCA and KDR the vectors almost belong to two separate groups, they
cannot be assigned to any of the classes confidently. For K-FDA, almost none of
the above can be observed.
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Table 3. Comparison of the Ip measure between the baselines.

Dataset I-KDR SKPCA KDR SDR K-FDA

Yale 0.80 0.64 0.61 0.58 0.55

Sonar 0.88 0.64 0.66 0.63 0.57

Colon 0.91 0.72 0.69 0.66 0.63

20NG 0.94 0.75 0.77 0.73 0.64

Gli85 0.84 0.69 0.64 0.59 0.57

CNS 0.83 0.66 0.67 0.66 0.63

Dbwork 0.86 0.73 0.77 0.70 0.61

XM2VTS50 0.96 0.82 0.86 0.79 0.60

The best result (bold) is according to a two-valued
t-test at a 5% significance level.
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Fig. 4. Projecting the embedding dimensions on the label-space for the Sonar dataset.

4.4 Feature Selection

In order to evaluate the feature selection performance of our I-KDR algorithm,
we compute Eq. (26) for each dimension of the data individually which results in
a set of kernels {Ki}d

i=1 for each dataset. We feed these kernels to the optimiza-
tion framework of Eq. (15) to optimize their corresponding weights in β. Besides
the classification accuracy, we also measure ‖β‖0 to evaluate the feature selection
performance of the algorithms. Accordingly, we choose the following relevant set
of baselines: MKL-TR [12], MKL-DR [16], KNMF-MKL [11], and DMKL [28].
Based on Table 4, by optimizing the value of β in Eq. (6), I-KDR achieves better
discriminations in the embedded space. Consequently, as a general trend among
the datasets, I-KDR’s accuracies are improved after we optimized it in the mul-
tiple kernel framework (Compared to Table 2). Regarding the number of selected
features, I-KDR, MKL-TR, and DMKL obtained similar results. Even more, for
some of the datasets, the baselines obtained sparser feature selections than I-
KDR. Nevertheless, I-KDR demonstrates that its number of selected features
are more efficient than others due to its supremacy in classification accuracies.
Therefore, we can claim that I-KDA performed more efficient than others in
discriminative feature selection scenarios. For CNS and Sonar dataset, I-KDR
obtains competitive accuracy and feature selection performance compared to
MKL-TR and DMKL, while for the Colon dataset, it outperforms the next best
method (MKL-TR) with 7.73% accuracy margin. As an explanation regarding



324 B. Hosseini and B. Hammer

the relatively high values of ‖β‖0 for KNMF-MKL, this algorithm uses a DR
model, but it does not have a discriminative objective in its optimization.

Table 4. Comparison of classification accuracies (%) and ‖β‖0 (in parenthesis).

Dataset I-KDR DMKL MKL-TR MKL-DR KNMF-MKL

Yale 83.22 (20) 78.25 (39) 79.88 (34) 70.34 (93) 68.43 (543)

Sonar 87.91 (37) 87.53(34) 87.94 (41) 70.34 (93) 68.43 (543)

Colon 89.29 (25) 80.32(21) 81.56 (34) 80.67 (67) 78.43 (1321)

20NG 88.41 (73) 85.01 (57) 84.42(55) 86.24 (384) 83.11 (14483)

Gli85 79.65 (33) 73.13 (54) 74.46 (50) 72.83 (79) 71.78 (10764)

CNS 76.53 (47) 76.37(32) 75.84 (25) 74.23 (109) 72.43 (4872)

Dbwork 91.98 (29) 87.23 (41) 86.53 (46) 85.14 (85) 85.34 (1049)

XM2VTS50 97.74 (17) 92.76 (31) 93.84 (29) 92.88 (55) 90.89 (389)

The best result (bold) is according to a two-valued t-test at a 5% significance level.

5 Conclusion

In this paper, we proposed a novel algorithm to perform discriminative dimen-
sionality reduction on the manifold. Our I-KDR method constructs its embed-
ding dimensions by selecting data points from local neighborhoods in the RKHS.
This strategy results in embeddings with better class-based interpretations for
their bases. Besides, by focusing on within-class local similarities and between-
class dissimilarities, our method improves the separation of the classes in the
projected space. The I-KDR algorithm has a bi-convex optimization problem,
and we use the alternating optimization framework to solve it efficiently. Further-
more, our approach can fuse the feature selection and dimensionality reduction
for RKHS. Our empirical results show that I-KDR outperforms other relevant
baselines in both DR and feature selection scenarios.
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Abstract. Feature selection is central to modern data science. The ‘sta-
bility’ of a feature selection algorithm refers to the sensitivity of its
choices to small changes in training data. This is, in effect, the robustness
of the chosen features. This paper considers the estimation of stability
when we expect strong pairwise correlations, otherwise known as feature
redundancy. We demonstrate that existing measures are inappropriate
here, as they systematically underestimate the true stability, giving an
overly pessimistic view of a feature set. We propose a new statistical
measure which overcomes this issue, and generalises previous work.

Keywords: Feature selection · Stability · Bioinformatics

1 Introduction

Feature Selection (FS) is central to modern data science—from exploratory data
analysis, to predictive model building. The overall question we address with this
paper is “how can we quantify the reliability of a feature selection algorithm?”.
The answer to this has two components—first, how useful are the selected fea-
tures when used in a predictive model; and second, how sensitive are the selected
features, to small changes in the training data. The latter is known as stability
[9]. If the selected set varies wildly, with only small data changes, perhaps the
algorithm is not picking up on generalisable patterns, and is responding to noise.
From this perspective, we can see an alternative (and equivalent) phrasing, in
that we ask “how reliable is the set of chosen features?”—i.e. how likely are we
Electronic supplementary material The online version of this chapter (https://
doi.org/10.1007/978-3-030-46150-8 20) contains supplementary material, which is
available to authorized users.
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to get a different recommended feature set, with a tiny change to training data.
This is particularity important in domains like bioinformatics, where the chosen
features are effectively hypotheses on the underlying biological mechanisms.

There are many measures of stability proposed in the literature, with a recent
study [14] providing a good summary of the advantages and disadvantages of
each. The particular contribution of this paper is on how to estimate stability
in the presence of correlated features, also known as feature redundancy. We
will demonstrate that any stability measure not taking such redundancy into
account necessarily gives a systematic under-estimate of the stability, thus giv-
ing an overly pessimistic view of a given FS algorithm. This systematic under-
estimation of stability can have a variety of consequences, depending on the
application domain. In biomedical scenarios, it is common to use data-driven
methods to generate candidate biomarker sets, that predict disease progression
[16]. If we are comparing two biomarker sets, we might estimate their stability,
judge one to be unstable, and discard it. However, if there are background fea-
ture correlations, and thus we are overly conservative on the stability, we might
miss an opportunity.

We provide a solution to this problem, with a novel stability measure that
takes feature redundancy into account. The measure generalises a recent work
[14] with a correction factor that counteracts the systematic under-estimation of
stability. Since the selection of a FS algorithm can be seen as a multi-objective
optimisation problem we show how the choice of a stability measure changes the
Pareto-optimal solution. Additionally, we demonstrate the utility of the measure
in the context of biomarker selection in medical trials, where strong correlations
and necessary robustness of the choices are an unavoidable part of the domain1.

2 Background

We assume a dataset D = {xn, yn}Nn=1, with a d-dimensional input x. The task
of feature selection is to choose a subset of the dimensions, of size k � d, subject
to some constraints; typically we would like to select the smallest subset that
contains all the relevant information to predict y.

2.1 Estimating the Stability of Feature Selection

Let us assume we take D and run some feature selection algorithm, such as L1
regularization where we take non-zero coefficients to be the ‘selected’ features,
or ranking features by their mutual information with the target [3]. When using
all N datapoints, we get a subset of features: sD. We would like to know the
reliability of the chosen feature set under small perturbations of the data. If the
algorithm changes preferences drastically, with only small changes in the training
data, we might prefer not to trust the set sD, and judge it as an ‘unstable’ set.

To quantify this, we repeat the same selection procedure M times, but each
time leaving out a small random fraction δ of the original data. From this we
1 The software related to this paper is available at: https://github.com/sechidis.

https://github.com/sechidis
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obtain a sequence S = {s1, s2, . . . , sM}, where each subset came from applying
a FS algorithm to a different random perturbation of the training data. At this
point it turns out to be more notationally and mathematically convenient to
abandon the set-theoretic notation, and use instead a matrix notation. We can
treat the sequence S as an M × d binary matrix, where the d columns represent
whether or not (1/0) each feature was chosen on each of the M repeats. For
example, selecting from a pool of d = 6 features, and M = 4 runs:

Z =

Z1 Z2 Z3 Z4 Z5 Z6⎛
⎜⎝

⎞
⎟⎠

1 0 1 0 0 0 ...z1, selections on 1st run
0 1 1 0 0 0 ...z2, selections on 2nd run
1 0 0 1 0 0 ...
0 1 0 1 0 0

(1)

We then choose some measure φ(a, b) of similarity between the resulting feature
sets from two runs, and evaluate the stability from Z, as an average over all
possible pairs:

Φ̂(Z) =
1

M(M − 1)

∑
i

∑
j �=i

φ(zi, zj) (2)

Let us take for example φ(zi, zj) to be a dot-product of the two binary strings.
For a single pair, this would correspond to the number of selected features that
are common between the two – or the size of the subset intersection. Over the M
runs, this would correspond to the average subset intersection—so on average,
if the feature subsets have large pairwise intersection, the algorithm is returning
similar subsets despite the data variations. This of course has the disadvantage
that the computation expands quadratically with M , and large M is necessary to
get more reliable estimates. Computation constraints aside, if the result indicated
sufficiently high stability (high average subset intersection) we might decide we
can trust sD and take it forward to the next stage of the analysis.

A significant body of research, e.g. [5,9,10,17], suggested different similarity
measures φ that could be used, and studied properties. Kuncheva [11] conducted
an umbrella study, demonstrating several undesirable behaviours of existing mea-
sures, and proposing an axiomatic framework to understand them. Nogueira et al.
[14] extended this, finding further issues and avoiding the pairwise, set-theoretic,
definition of φ entirely—presenting a measure in closed form, allowing computa-
tion in O(Md) instead of O(M2d). From the matrix Z, we can estimate various
stochastic quantities, such as the average number of features selected across M
runs, denoted as k̄ and the probability that the feature Xf was selected, denoted
as pf = E [Zf = 1]. Using these, their recommended stability measure is,

Φ̂(Z) = 1 −
∑

f
M

M−1 p̂f (1 − p̂f )

k̄(1 − k̄
d )

(3)

The measure also generalises several previous works (e.g. [11]), and was shown
to have numerous desirable statistical properties. For details we refer the reader
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to [14], but the intuition is that the numerator measures the average sample
variance, treating the columns of Z as Bernoulli variables; the denominator is a
normalizing term that ensures Φ̂(Z) ∈ [0, 1], as M → ∞.

In the following section we illustrate how stability becomes much more com-
plex to understand and measure, when there are either observed feature correla-
tions, or background domain knowledge on the dependencies between features.

2.2 The Problem: Estimating Stability Under Feature Correlations

The example in Eq. (1) can serve to illustrate an important point. On each run
(each row of Z) the algorithm seems to change its mind about which are the
important features—first 1&3, then 2&3, then 1&4, and finally 2&4. Various
measures in the literature, e.g. [14] will identify this to be unstable as it changes
its feature preferences substantially on every run. However, suppose we examine
the original data, and discover that features X1 and X2 are very strongly corre-
lated, as are X3 and X4. For the purposes of building a predictive model these
are interchangeable, redundant features. What should we now conclude about
stability? Since the algorithm always selects one feature from each strongly cor-
related pair, it always ends up with effectively the same information with which
to make predictions—thus we should say that it is in fact perfectly stable. This
sort of scenario is common to (but not limited to) the biomedical domain, where
genes and other biomarkers can exhibit extremely strong pairwise correlations.
A further complication also arises in this area, in relation to the semantics of
the features. Certain features may or may not have strong observable statisti-
cal correlations, but for the purpose of interpretability they hold very similar
semantics – e.g. if the algorithm alternates between two genes, which are not
strongly correlated, but are both part of the renal metabolic pathway, then we
can determine that the kidney is playing a stable role in the hypotheses that the
algorithm is switching between.

To the best of our knowledge there are only two published stability measures
which take correlations/redundancy between features into account, however both
have significant limitations. The measure of Yu et al. [19] requires the estima-
tion of a mutual information quantity between features, and the solution of a
constrained optimisation problem (bipartite matching), making it quite highly
parameterised, expensive, and stochastic in behaviour. The other is nPOGR [20]
which can be shown to have several pathological properties [14]. In particular,
the measure is not lower-bounded which makes interpretation of the estimated
value very challenging – we cannot judge how “stable” a FS algorithm is without
a reference point. The nPOGR measure is also very computationally demand-
ing, requiring generation of random pairs of input vectors, and computable in
O(M2d). To estimate stability in large scale data, computational efficiency is a
critical factor.

In the next section, we describe our approach for estimating stability under
strong feature correlations, which also allows incorporation of background knowl-
edge, often found in biomedical domains.
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3 Measuring Stability in the Presence of Correlations

As discussed in the previous section, a simple stability measure can be derived
if we define Φ(·, ·) as the size of the intersection between two subsets of feature,
and apply Eq. (2). The more co-occurring features between repeated runs, the
more stable we regard the algorithm to be. It turns out that, to understand
stability in the presence of correlated features, we need to revise our concept of
subset intersection, to one of effective subset intersection.

3.1 Subset Intersection and Effective Subset Intersection

We take again the example from Eq. (1). We have z1 = [1, 0, 1, 0, 0, 0], and z2 =
[0, 1, 1, 0, 0, 0]. The subset intersection, given by the inner product is z1 zT2 =
1, due to the selection of the third feature. But, as mentioned, perhaps we
learn that in the original data, X1 and X2 are strongly correlated, effectively
interchangeable for the purposes of building a predictive model. When comparing
the two subsets, X1 and X2 should be treated similarly, thus increasing the size
of the intersection to 2. Hence, we do not have a simple subset intersection, but
instead an effective subset intersection, based not on the indices of the features
(i.e. X1 vs X2) but instead on the utility or semantics of the features.

We observed that the intersection between two subsets si and sj , i.e. the
two rows zi and zj of the binary matrix Z, can be written as an inner product:
ri,j = |si∩sj | = zi Id zTj where Id is the d×d identity matrix. We can extend this
with a generalised inner product, where the inner product matrix will capture
the feature relationships.

Definition 1 (Effective subset intersection). The “effective” subset inter-
section with correlated features is given by the generalised inner product:

rCi,j = |si ∩ sj |C = zi C zTj

The inner product matrix C has diagonal elements set to 1, while the off-
diagonals capture the relationships between pairs of features, i.e.

C =

⎡
⎢⎢⎢⎣

1 c1,2 . . . c1,d
c2,1 1 . . . c2,d
...

...
...

...
cd,1 cd,2 . . . 1

⎤
⎥⎥⎥⎦ (4)

with cf,f ′ = cf ′,f > 0 ∀ f �= f ′.

The entries of the matrix C could be absolute correlation coefficients cf,f ′ =
|ρXf ,Xf′ | thus capturing redundancy as explained by the data. But in gen-
eral we emphasise that entries of C are not necessarily statistical correlations
between features. For example, C could be a binary matrix, where cf,f ′ =
δ(|ρXf ,Xf′ | > θ), or constructed based on domain knowledge, thus capturing
redundancy as explained by domain experts (e.g. two biomarkers appearing in
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the same metabolic pathway). The following theorem shows why we are guar-
anteed to underestimate the stability, if feature redundancy is not taken into
account.

Theorem 2. The effective intersection is greater than or equal to intersection,

|si ∩ sj |C ≥ |si ∩ sj |

The proof of this can be seen by relating the “traditional” intersection |si ∩ sj |
and the “effective” intersection as follows:

Lemma 3. The effective intersection can be written,

|si ∩ sj |C = |si ∩ sj | +
d∑

f=1

d∑
f ′=1
f ′ �=f

cf,f ′zi,fzj,f ′

If all entries in C are non-negative, we have rCi,j ≥ ri,j—without this correction,
we will systematically under-estimate the true stability.

The set-theoretic interpretation of stability is to be contrasted with the
binary matrix representation Z ∈ {0, 1}M×d. Nogueira et al. [14] proved the fol-
lowing result, bridging these two conceptual approaches to stability. The average
subset intersection among M feature sets can be written,

1
M(M − 1)

M∑
i=1

M∑
j=1
j �=i

|si ∩ sj | = k −
d∑

f=1

v̂ar(Zf )

where k is the average number of features selected over M rows, and v̂ar(Zf ) =
M

M−1 p̂f (1 − p̂f ), i.e. the unbiased estimator of the variance of the Bernoulli ran-
dom feature Zf . Then a stability measure defined as an increasing function of
the intersection can be equivalently phrased as a decreasing function of the vari-
ance of the columns of the selection matrix, thus bridging the set-theoretic view
with a probabilistic view. This property is also known as monotonicity [11,14]
and is a defining element of a stability measure. In the presence of redundancy
we instead would like our measure to be an increasing function of the effective
intersection. The following theorem bridges our set-theoretic view with the sta-
tistical properties of the selection matrix in the presence of feature redundancy
captured in the matrix C.

Theorem 4. The effective average pairwise intersection among the M subsets
can be written:

1
M(M − 1)

M∑
i=1

M∑
j=1
j �=i

|si ∩ sj |C = kC − tr(CS)
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where kC =
∑d

f=1

∑d
f ′=1 cf,f ′zf,f ′ the effective average number of features

selected over M runs. The unbiased estimator of the covariance between Zf and
Zf ′ is ĉov(Zf , Zf ′) = M

M−1 (p̂f,f ′ − p̂f p̂f ′), ∀ f, f ′ ∈ {1...d}, while S is an
unbiased estimator of the variance-covariance matrix of Z.

Proof: Provided in Supplementary material Section A.
We are now in position to introduce our new measure, which based on the

above theorem should be a decreasing function of tr(CS). There is a final element
that needs to be taken into account—we need to normalise our estimation to
bound it so that it can be interpretable and comparable between different FS
approaches, developed in the next section.

3.2 A Stability Measure for Correlated Features

Based on the previous sections, we can propose the following stability measure.

Definition 5 (Effective Stability). Given a matrix of feature relationships C,
the effective stability is

Φ̂C (Z) = 1 − tr(CS)
tr(CΣ0)

,

where S is an unbiased estimator of the variance-covariance matrix of Z, i.e.
Sf,f ′ = Ĉov(Zf , Zf ′) = M

M−1 (p̂f,f ′ − p̂f p̂f ′), ∀ f, f ′ ∈ {1...d}, while Σ0 is the
matrix which normalises the measure.

To derive a normaliser, we need to estimate the variance/covariance under the
Null Model of feature selection [14, Definition 3]. The Null Model expresses the
situation where there is no preference toward any particular subset, and all subsets
of size k have the same probability of occurrence, thus accounting for the event of
a completely random selection procedure. For a detailed treatment of this subject
we refer the reader to the definition of this, by Nogueira et al. [14].

Theorem 6. Under the Null Model, the covariance matrix of Z is given by:

Σ0 =

⎡
⎢⎣

var
(
Z1

∣∣H0

)
. . . cov

(
Z1, Zd

∣∣H0

)
...

. . .
...

cov
(
Zd, Z1

∣∣H0

)
. . . var

(
Zd

∣∣H0

)

⎤
⎥⎦ ,

where the main diagonal elements are given by: var
(
Zf

∣∣H0

)
= k

d

(
1 − k

d

)
and

the off-diagonal elements, f �= f ′ are: cov
(
Zf , Zf ′

∣∣H0

)
= k2−k

d2−d − k
2

d2

Proof: Provided in Supplementary material Section B.
It can immediately be seen that the proposed measure is a generalisation of

Nogueira et al. [14], as it reduces to Eq. (3) when C is the identity, in which case
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Algorithm 1: Recommended protocol for estimating FS stability.
Input : A dataset D = {xi, yi}N

i=1, where x is d-dimensional.
A procedure f(D) returning a subset of features sD, of size k < d.
A matrix C, specifying known feature redundancies.

Output: Stability estimate Φ̂, for feature set sD.

Define Z, an empty matrix of size M × d.
for j := 1 to M do

Generate Dj , a random sample from D (e.g. leave out 5% rows, or
bootstrap)

Set sj ← f(Dj)
Set the jth row of Z as the binary string corresponding to selections sj .

Return stability estimate Φ̂(Z) using Definition 2.

tr(CS) =
∑

i var(zi). At this point we can observe that when C = Id we implicitly
assume the columns of the selection matrix to be independent variables hence
considering only their variance. In contrast, our measure accounts additionally
for all pairwise covariances weighted by the coefficients of the matrix C. As
we already discussed these coefficients can be seen as our confidence on the
correlation between the columns of the selection matrix as explained by the data
(using for example Spearman’s correlation coefficient) or by domain experts.

Finally, we can summarise the protocol for estimating the stability of a FS
procedure in a simple algorithm shown in Algorithm1. We also compare the
computational time of our measure against nPOGR, as the dimensionality of
the feature set increases—shown in Fig. 1—we observe that our measure is as
expected, orders of magnitude faster to compute.

50 100 150 200
Dimensionality d

0

500

1000

1500

Ti
m

e 
(s
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)

Fig. 1. Computational cost of nPOGR versus our measure as the number of features
grow. We generated randomly selection matrices Z of dimension M × d, with M =
50 and various values of d. The proposed measure remains largely unaffected by the
dimensionality (taking milliseconds).
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In the next section, we demonstrate several cases where incorporating prior
knowledge and using our proposed stability measure, we may arrive to completely
different conclusions on the reliability of one FS algorthm versus another, hence
potentially altering strategic decisions in a data science pipeline.

4 Experiments

Our experimental study is split in two sections. Firstly we will show how our
measure can be used for choosing between different feature selection criteria
in real-world datasets. We will apply the protocol described in the previous
section to estimate the stability which along with the predictive performance of
the resulting feature set can give the full picture on the performance of a FS
procedure. Secondly, we will show how we can use stability in clinical trials data
to identify robust groups of biomarkers.

4.1 Pareto-Optimality Using Effective Stability

In many applications, given a dataset we might wish to apply several feature
selection algorithms, which we evaluate and compare. The problem of deciding
which FS algorithm we should trust can be seen as a multi-objective optimisation
combining two criteria: (1) the features result in high accuracy, and (2) we want
algorithms that generate stable subsets, i.e. stable hypotheses on the underlying
mechanisms. In this context, we define the Pareto-optimal set as the set of points
for which no other point has both higher accuracy and higher stability, thus the
members of the Pareto-optimal set are said to be non-dominated [7]. In this
section we will explore whether using the proposed stability measure, Φ̂C(Z),
can result in different optimal solutions in comparison with the original measure,
Φ̂(Z), that ignores feature redundancy.

We used ten UCI datasets and created M = 50 versions of each one of them
by removing 5% of the examples at random. We applied several feature selection
algorithms and evaluated the predictive power of the selected feature sets using
a simple nearest neighbour classifier (3-nn). By using this classifier we make few
assumptions about the data and avoid additional variance from hyperparameter
tuning. For each dataset, we estimated the accuracy on the hold-out data (5%).
To ensure a fair comparison of the feature selection methods, all algorithms are
tuned to return the top-k features for a given dataset. We chose k to be the 25%
of the number of features d of each dataset. Here we provide a short description
of the feature selection methods we used and implementation details.

– Penalized linear model (LASSO): with the regularisation parameter λ
tuned such that we get k non-zero coefficients—these are the selected features.

– Tree-based methods (RF/GBM): We used Random Forest (RF) [2] and
Gradient Boosted Machines (GBM) with decision stumps [8] to choose the
top-k features with highest importance scores. For both algorithms we used
100 trees.
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– Information theoretic methods (MIM/mRMR/JMI/CMIM): We
used various information theoretic feature selection methods, each one of them
making different assumptions (for a complete description of the assumptions
made by each method we refer the reader to [3]). For example MIM quantifies
only the relevancy, mRMR the relevancy and redundancy [15], while the JMI
[18] and CMIM [6] the relevancy, the redundancy and the complementarity.
To estimate mutual and conditional mutual information terms, continuous
features were discretized into 5 bins using an equal-width strategy.

The UCI datasets do not contain information about correlated features. In order
to take into account possible redundancies we used Spearman’s ρ correlation co-
efficient to assess non-linear relationships between each pair of features. For
estimating the effective stability, we incorporate these redundancies in the C

matrix using the rule: cf,f ′ = δ(|ρXf ,Xf′ | > θ). Following Cohen [4], two features
Xf and Xf ′ are assumed to be strongly correlated, when the co-efficient is greater
than θ = 0.5.

Figure 2 shows the Pareto-optimal set for two selected datasets. The criteria
on the top-right dominate the ones on the bottom left and they are the ones that
should be selected. We observe that by incorporating prior knowledge (r.h.s. in
Fig. 2a and Fig. 2b) we change our view about the best-performing algorithms
in terms of the accuracy/stability trade-off. Notice that mRMR, a criterion that
penalizes the selection of redundant features, becomes much more stable using
our proposed measure, Φ̂C(Z). A summary of the Pareto-optimal solutions for
all datasets is given in Table 1, where we can observe that similar changes occur
in most cases.

Table 1. Pareto-optimal solutions for 10 UCI datasets. We observe that in most cases
incorporating prior knowledge about possible feature redundancies changes the optimal
solutions.

Dataset Pareto-optimal set
(accuracy vs stability)

Pareto-optimal set (accuracy
vs effective stability)

Change ?

breast LASSO, MIM MIM ✓

ionosphere LASSO, GBM, MIM LASSO, GBM, MIM mRMR ✓

landsat mRMR JMI ✓

musk2 LASSO, MIM LASSO ✓

parkinsons LASSO, MIM MIM, mRMR, JMI ✓

semeion GBM, MIM, mRMR, JMI GBM, mRMR, JMI, CMIM ✓

sonar MIM, JMI MIM, mRMR, JMI ✓

spect MIM MIM

waveform GBM, mRMR GBM, mRMR

wine MIM, CMIM MIM, CMIM
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Fig. 2. Accuracy/stability trade-off between different feature selection algorithms for
two UCI datasets. The methods on top right corner are the Pareto-optimal solutions.

Furthermore, Table 2 shows the non-dominated rank of the different criteria
across all datasets. This is computed per data set as the number of other criteria
which dominate a given criterion, in the Pareto-optimal sense, and then averaged
over the 10 datasets. Similarly to our earlier observations (Fig. 2), the average
rank of mRMR increases dramatically. Similarly JMI increases its average posi-
tion, as opposed to MIM that captures only the relevancy.

In the next section, we describe how incorporating prior knowledge about the
semantics of biomarkers may incur changes on the stability of feature selection
in clinical trials.

4.2 Stability of Biomarker Selection in Clinical Trials

The use of highly specific biomarkers is central to personalised medicine, in both
clinical and research scenarios. Discovering new biomarkers that carry prognos-
tic information is crucial for general patient care and for clinical trial planning,
i.e. prognostic markers can be considered as covariates for stratification. A prog-
nostic biomarker is a biological characteristic or a clinical measurement that
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Table 2. Column 1: Non-dominated rank of different criteria for the trade-off of accu-
racy/stability estimated by Φ(Z). Criteria with a higher rank (closer to 1.0) provide
a better tradeoff than those with a lowerrank. Column 2: As column 1 but using our
measure ΦC(Z) for estimating effective stability.

Accuracy/stability Accuracy/effective stability

MIM (1.6) mRMR (1.7)

GBM (1.8) MIM (2)

JMI (2.6) JMI (2.4)

LASSO (2.7) GBM (2.4)

mRMR (2.9) CMIM (2.9)

CMIM (2.9) LASSO (3.1)

RF (3.1) RF (3.1)

provides information on the likely outcome of the patient irrespective of the
applied treatment [16]. For this task, any supervised feature selection algorithm
can be used to identify and rank the biomarkers with respect to the outcome Y .
Having stable biomarker discovery algorithms, i.e. identifying biomarkers that
can be reproduced across studies, is of great importance in clinical trials. In
this section we will present a case study on how to evaluate the stability of dif-
ferent algorithms, and how we can incorporate prior knowledge over groups of
biomarkers with semantic similarities.

We focus on the IPASS study [13], which evaluated the efficacy of the drug
gefitinib (Iressa, AstraZeneca) versus first-line chemotherapy with carboplatin
(Paraplatin, Bristol-Myers Squibb) plus paclitaxel (Taxol, Bristol-Myers Squibb)
in an Asian population of 1217 light- or non-smokers with advanced non-small
cell lung cancer. A detailed description of the trial and the biomarkers used in
the IPASS study are given in the AppendixA.

In this section we will focus on two commonly used algorithms: Gradient
Boosted Machines [8] and conditional mutual information maximisation (CMIM)
[6]. GBM sequentially builds a weighted voting ensemble of decision stumps
based on single features, while CMIM is an information theoretic measure based
on maximising conditional mutual information. These two methods are quite dif-
ferent in nature: for example GBM builds decision trees, while CMIM estimates
two-way feature interactions. As a result, they often return different biomarker
subsets and choosing which one to take forward in a phased clinical study is an
important problem.

Table 3 presents the top-4 prognostic biomarkers derived by each method.
We observe that the two methods return significantly different biomarker sets;
Which one should we trust? To answer this question we estimate their stability
with respect to data variations using M = 50 and 5% leave-out. This could
simulate the scenario where for some patients we do not know the outcome e.g.
they dropped out from the trial. In Table 4 we see that when using Φ̂(Z), in
agreement with data science folklore, GBM is judged a stable method, more so
than CMIM.
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Table 3. Top-4 prognostic biomarkers in IPASS for each competing method. The
results can be interpreted by domain experts (e.g. clinicians) on their biological plau-
sibility. However, to answer in what extend these sets are reproducible and how they
can be affected by small changes in the data (such as patient dropouts) we need to
evaluate their stability.

Rank GBM CMIM

1 EGFR expression (X4) EGFR mutation (X2)

2 Disease stage (X10) Serum ALP(X13)

3 WHO perform. status (X1) Blood leukocytes (X21)

4 Serum ALT(X12) Serum ALT (X12)

But, with a closer study of the biomarkers considered in IPASS, there are
in fact groups of them which are biologically related: (Group A) those that
describe the receptor protein EGFR, X2,X3,X4, (Group B) those which are
measures of liver function, X12,X13,X14, and (Group C) those which are
counts of blood cells, X20,X21,X22,X23. There are also sub-groupings at play
here. For instance, given that neutrophils are in fact a type of leukocyte (white
blood cell), one may expect X21 and X22 to exhibit a stronger pairwise correla-
tion than any other pair of cell count biomarkers.

We can take these groupings and redundancies into account by setting to 1,
all of the elements in C matrix that represent pairs of features that belong the
same group. Table 4 compares the effective stability of the two algorithms using
our novel measure Φ̂C(Z), which takes into account the groups A, B and C. This
time, CMIM is substantially more stable than GBM—leading to the conjecture
that the instability in GBM is generated by variations between groups, while
CMIM is caused by within-group variations.

Table 4. Stability and effective stability of GBM and CMIM in IPASS. The instability
of CMIM is caused by variations within groups of semantically related biomarkers.
When this is taken into account using ̂ΦC(Z) the method is deemed more stable than
GBM.

GBM CMIM

Stability ̂Φ(Z) 0.87 > 0.68

- within Group A 0.96 0.45

- within Group B 0.82 0.80

- within Group C 0.14 0.43

Effective stability ̂ΦC(Z) 0.87 < 0.91
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To validate this conjecture, we calculate the stability within each group using
Φ̂(Z). In Table 4 we observe that CMIM has small stability, especially within the
groups A and C. The algorithm alternates between selecting biomarkers that are
biologically related, hence when we incorporate domain knowledge the effective
stability of CMIM increases significantly. Thus, based on our prior knowledge
on feature relationships, CMIM is the more desirable prospect to take forward.

5 Conclusions

We presented a study on the estimation of stability of feature selection in the
presence of feature redundancy. This is an important topic, as it gives an indi-
cation of how reliable a selected subset may be, given correlations in the data or
domain knowledge. We showed that existing measures are unsuitable and poten-
tially misleading, also proving that many will systematically under-estimate the
stability. As a solution to this, we presented a novel measure which allows us to
incorporate information about correlated and/or semantically related features.
An empirical study across 10 datasets and 7 distinct feature selection methods
confirmed the utility, while a case study on real clinical trial data highlighted
how critical decisions might be altered as a result of the new measure.
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A IPASS description

The IPASS study [13] was a Phase III, multi-center, randomised, open-label,
parallel-group study comparing gefitinib (Iressa, AstraZeneca) with carboplatin
(Paraplatin, Bristol-Myers Squibb) plus paclitaxel (Taxol, Bristol-Myers Squibb)
as first-line treatment in clinically selected patients in East Asia who had
NSCLC. 1217 patients were balanced randomised (1:1) between the treatment
arms, and the primary end point was progression-free survival (PFS); for full
details of the trial see [13]. For the purpose of our work we model PFS as a
Bernoulli endpoint, neglecting its time-to-event nature. We analysed the data at
78% maturity, when 950 subjects have had progression events.

The covariates used in the IPASS study are shown in Table 5. The following
covariates have missing observations (as shown in parentheses): X5 (0.4%), X12

(0.2%), X13 (0.7%), X14 (0.7%), X16 (2%), X17 (0.3%), X18 (1%), X19 (1%),
X20 (0.3%), X21 (0.3%), X22 (0.3%), X23 (0.3%). Following Lipkovich et al. [12],
for the patients with missing values in biomarker X, we create an additional
category, a procedure known as the missing indicator method [1].
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Table 5. Covariates used in the IPASS clinical trial.

Biomarker Description Values

X1 WHO perform. status 0 or 1, 2

X2 EGFR mutation status Negative, Positive, Unknown

X3 EGFR FISH status Negative, Positive, Unknown

X4 EGFR expression status Negative, Positive, Unknown

X5 Weight (0, 50], (50, 60], (60, 70], (70, 80], (80, +∞)

X6 Race Oriental, Other

X7 Ethnicity Chinese, Japanese, Other Asian, Other not Asian

X8 Sex Female, Male

X9 Smoking status Ex-Smoker, Smoker

X10 Disease stage Locally Advanced, Metastatic

X11 Age (0, 44], [45, 64], [65, 74], [75, +∞)

X12 Serum ALT Low, Medium, High

X13 Serum ALP Low, Medium, High

X14 Serum AST Low, Medium, High

X15 Bilirubin Low, Medium, High

X16 Calcium Low, Medium, High

X17 Creatinine Low, Medium, High

X18 Potassium Low, Medium, High

X19 Sodium Low, Medium, High

X20 Blood hemoglobin Low, Medium, High

X21 Blood leukocytes Low, Medium, High

X22 Blood neutrophils Low, Medium, High

X23 Blood platelets Low, Medium, High
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Abstract. Unsupervised feature selection is mostly assessed along a
supervised learning setting, depending on whether the selected features
efficiently permit to predict the (unknown) target variable. Another set-
ting is proposed in this paper: the selected features aim to efficiently
recover the whole dataset. The proposed algorithm, called AgnoS, com-
bines an AutoEncoder with structural regularizations to sidestep the
combinatorial optimization problem at the core of feature selection. The
extensive experimental validation of AgnoS on the scikit-feature bench-
mark suite demonstrates its ability compared to the state of the art, both
in terms of supervised learning and data compression.

Keywords: Clustering and unsupervised learning · Feature selection ·
Interpretable models

1 Introduction

With the advent of big data, high-dimensional datasets are increasingly common,
with potentially negative consequences on the deployment of machine learning
algorithms in terms of (i) computational cost; (ii) accuracy (due to overfitting or
lack of robustness related to e.g. adversarial examples (Goodfellow et al. 2015));
and (iii) poor interpretability of the learned models.

The first two issues can be handled through dimensionality reduction, based
on feature selection (Nie et al. 2016; Chen et al. 2017; Li et al. 2018) or fea-
ture construction (Tenenbaum et al. 2000; Saul and Roweis 2003; Wiatowski
and Bölcskei 2018). The interpretability of the learned models, an increasingly
required property for ensuring Fair, Accountable and Transparent AI (Doshi-
Velez and Kim 2017), however is hardly compatible with feature construction,
and feature selection (FS) thus becomes a key ingredient of the machine learning
pipeline.

This paper focuses on unsupervised feature selection. Most FS approaches
tackle supervised FS (Chen et al. 2017), aimed to select features supporting
a (nearly optimal) classifier. Quite the contrary, unsupervised feature selection
is not endowed with a natural learning criterion. Basically, unsupervised FS
approaches tend to define pseudo-labels, e.g. based on clusters, and falling back
on supervised FS strategies, aim to select features conducive to identify the
pseudo labels (more in Sect. 3). Eventually, unsupervised FS approaches are
assessed within a supervised learning setting.
c© Springer Nature Switzerland AG 2020
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Following LeCun’s claim (LeCun 2016) that unsupervised learning consti-
tutes the bulk of machine learning, and that any feature can in principle define
a learning goal, this paper tackles Agnostic Feature Selection with the goal of
leaving no feature behind. Specifically, an unsupervised FS criterion aimed to
select a subset of features supporting the prediction of every initial feature, is
proposed. The proposed AgnoS approach combines AutoEncoders with struc-
tural regularizations, and delegates the combinatorial optimization problem at
the core of feature selection to a regularized data compression scheme (Sect. 2).

The contribution of the paper is threefold. Firstly, three regularization
schemes are proposed and compared to handle the redundancy of the initial
data representation. Informally, if the feature set includes duplicated features,
the probability of selecting one copy of this feature should increase; but the
probability of selecting several copies of any feature should be very low at all
times. Several types of regularizations are proposed and compared to efficiently
handle feature redundancy: regularization based on slack variables (AgnoS-S);
L2-L1 regularization based on the AutoEncoder weights (AgnoS-W); and L2-L1

regularization based on the AutoEncoder gradients (AgnoS-G).
A second contribution is to show on the scikit-feature benchmark (Li et al.

2018) that AgnoS favorably compares with the state of the art (He et al. 2005;
Zhao and Liu 2007; Cai et al. 2010; Li et al. 2012) considering the standard
assessment procedure. A third contribution is to experimentally show the brit-
tleness of this standard assessment procedure, demonstrating that it does not
allow one to reliably compare unsupervised FS approaches (Sect. 5). The paper
concludes with a discussion and some perspectives for further research.

Notations. In the following, the dataset is denoted X ∈ R
n×D, with n the

number of samples and D the number of features. xi (respectively fj) denotes
the i-th sample (resp. the j-th feature). The feature set is noted F = (f1, ..., fD).
fi(xk) denotes the value taken by the i-th feature on the k-th sample.

2 AgnoS

The proposed approach relies on feature construction, specifically on AutoEn-
coders, to find a compressed description of the data. As said, feature construction
does not comply with the requirement of interpretability. Therefore, AgnoS will
use an enhanced learning criterion to retrieve the initial features most essential
to approximate all features, in line with the goal of leaving no feature behind.

This section is organized as follows. For the sake of self-containedness, the
basics of AutoEncoders are summarized in Sect. 2.1. A key AutoEncoder hyper-
parameter is the dimension of the latent representation (number of neurons
in the hidden layer), which should be set according to the intrinsic dimension
(ID) of the data for the sake of information preserving. Section 2.2 thus briefly
introduces the state of the art in ID estimation.

In order to delegate the feature selection task to the AutoEncoder, the learn-
ing criterion is regularized to be robust w.r.t. redundant feature sets. A first option
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considers weight-based regularization along the lines of LASSO (Tibshirani 1996)
and Group-LASSO (Yuan and Lin 2007) (Sect. 2.4). A second option uses a reg-
ularization defined on the gradients of the encoder φ (Sect. 2.4). A third option
uses slack variables, inspired from (Leray and Gallinari 1999; Goudet et al. 2018)
(Sect. 2.5).

2.1 AutoEncoders

AutoEncoders (AE) are a class of neural networks designed to perform data
compression via feature construction. The encoder φ and the decoder ψ are
trained to approximate identity, i.e. such that for each training point x

ψ ◦ φ(x) ≈ x

in the sense of the Euclidean distance, where the dimension d of the hidden layer
is chosen to avoid the trivial solution of φ = ψ = Id. Formally,

φ, ψ = argmin
n∑

i=1

‖xi − ψ ◦ φ(xi)‖22

Letting fi denote the i-th initial feature and f̂i its reconstructed version, the
mean square error (MSE) loss above can be rewritten as:

L(F ) =
D∑

i=1

||f̂i − fi||22 (1)

The use of AE to support feature selection raises two difficulties. The first one
concerns the setting of the dimension d of the hidden layer (more below). The sec-
ond one is the fact that the MSE loss (Eq. 1) is vulnerable to the redundancy of
the initial description of the domain: typically when considering duplicated fea-
tures, the effort devoted by the AE to the reconstruction of this feature increases
with its number of duplicates. In other words, the dimensionality reduction cri-
terion is biased to favor redundant features.

2.2 Intrinsic Dimension

The intrinsic dimension (ID) of a dataset is informally defined as theminimal num-
ber of features necessary to represent the data without losing information. There-
fore, a necessary (though not sufficient) condition for the auto-encoder to preserve
the information in the data is that the hidden layer is at least as large as the ID of
the dataset. Many different mathematical formalizations of the concept of ID were
proposed over the years, e.g. Hausdorff dimension (Gneiting et al. 2012) or box
counting dimension (Falconer 2004). Both the ML and statistical physics commu-
nities thoroughly studied the problem of estimating the ID of a dataset empirically
(Levina and Bickel 2005; Camastra and Staiano 2016; Facco et al. 2017), notably
in relation with data visualization (Maaten and Hinton 2008; McInnes et al. 2018).
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The best known linear ID estimation relies on Principal Component Analysis,
considering the eigenvalues λi (with λi > λi+1) of the data covariance matrix
and computing d such that the top-d eigenvalues retain a sufficient fraction
τ of the data inertia (

∑d
i=1 λ2

i = τ
∑D

i=1 λ2
i ). Another approach is based on

the minimization of the stress (Cox and Cox 2000), that is, the bias between
the distance of any two points in the initial representation, and their distance
along a linear projection in dimension d. Non-linear approaches such as Isomap
(Tenenbaum et al. 2000) or Locally Linear Embedding (Saul and Roweis 2003),
respectively aim at finding a mapping on R

d such that it preserves the geodesic
distance among points or the local barycentric description of the data.

The approach used in the following relies instead on the Poisson model of
the number of points in the hyper-sphere in dimension d B(0, r), increasing
like rd (Levina and Bickel 2005; Facco et al. 2017). Considering for each point
x its nearest neighbor x′ and its 2nd nearest neighbor x”, defining the ratio
μ(x) = ‖x − x′‖/‖x − x”‖ and averaging μ over all points in the dataset, it
comes (Facco et al. 2017):

d =
log(1 − H(μ))

log(μ)
(2)

with log(1−H(μ)) the linear function associating to log(μi) its normalized rank
among the μ1, . . . μn in ascending order.1

2.3 AgnoS

AgnoS proceeds like a standard AutoEncoder, with every feature being prelim-
inarily normalized and centered. As the dimension of the latent representation
is no less than the intrinsic dimension of the data by construction, and further
assuming that the neural architecture of the AutoEncoder is complex enough,
the AE defines a latent representation capturing the information of the data to
the best possible extent (Eq. 1).

The key issue in AgnoS is twofold. The first question is to extract the initial
features best explaining the latent features; if the latent features capture all the
data information, the initial features best explaining the latent features will be
sufficient to recover all features. The second question is to address the feature
redundancy and prevent the AE to be biased in favor of the most redundant
features.

Two approaches have been considered to address both goals. The former one
is inspired from the well-known LASSO (Tibshirani 1996) and Group-LASSO

1 That is, assuming with no loss of generality that

µi < µi+1

one approximates the curve (log(1 − i/n), log(µi)) with a linear function, the slope
of which is taken as approximation of d.
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(Yuan and Lin 2007). These approaches are extended to the case of neural nets
(below). The latter approach is based on a particular neural architecture, involv-
ing slack variables (Sect. 2.5). In all three cases, the encoder weight vector W
is normalized to 1 after each training epoch (‖W‖2 = 1), to ensure that the
LASSO and slack penalizations are effective.

2.4 AgnoS with LASSO Regularization

This section first provides a summary of the basics of LASSO and group-LASSO.
Their extension within the AutoEncoder framework to support feature selection
is thereafter described.

LASSO and Group-LASSO. Considering a standard linear regression setting
on the dataset {(xi, yi), xi ∈ R

D, yi ∈ R, i = 1 . . . n}, the goal of finding the best
weight vector β ∈ R

D minimizing
∑

i ‖yi − 〈xi, β〉‖2 is prone to overfitting in
the large D, small n regime. To combat the overfitting issue, Tibshirani (1996)
introduced the LASSO technique, which adds a L1 penalization term to the opti-
mization problem, parameter λ > 0 governing the severity of the penalization:

β∗ = argmin
β

||y − Xβ||22 + λ||β||1 (3)

Compared to the mainstream L2 penalization (which also combats overfitting),
the L1 penalization acts as a sparsity constraint: every i-th feature with cor-
responding weight βi = 0 can be omitted, and the L1 penalization effectively
draws the weight of many features to 0. Note that in counterpart the solution is
no longer rotationally invariant (Ng 2004).

The group LASSO (Yuan and Lin 2007) and its many variants (Meier
et al. 2008; Simon et al. 2013; Ivanoff et al. 2016) have been proposed to retain
the sparsity property while preserving the desired invariances among the fea-
tures. Let us consider a partition of the features in groups G1, . . . , Gk, the L2-L1

penalized regression setting reads:

β∗ = argmin
β

||y − Xβ||22 + λ

k∑

i=1

1
|Gi|

√ ∑

j∈Gi

β2
j (4)

where the L1 part enforces the sparsity at the group level (as many groups
are inactive as possible) while preserving the rotational invariance within each
group.

AgnoS-W: with L2-L1 Weight Regularization. Under the assumption that
all latent variables are needed to reconstruct the initial features (Sect. 2.2),
denoting φ(F ) = (φ1 . . . , φd) the encoder function, with φk = σ(

∑D
�=1 W�,kf� +

W0,k) and Wi,j the encoder weights, the impact of the i-th feature on the latent
variables is visible through the weight vector Wi,·. It thus naturally comes to
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define the L2-L1 penalization within the encoder as:

L(W ) =
D∑

i=1

√√√√
d∑

k=1

W 2
i,k =

D∑

i=1

‖Wi,·‖2

and the learning criterion of AgnoS-W (Algorithm1) is accordingly defined as:

L(F ) =
D∑

i=1

||f̂i − fi||22 + λL(W ) (5)

with λ the penalization weight. The sparsity pressure exerted through penalty
L(W ) will result in setting Wi,· to 0 whenever the contribution of the i-th initial
variable is not necessary to reconstruct the initial variables, that is, when the
i-th initial variable can be reconstructed from the other variables.

This learning criterion thus expectedly supports the selection of the most
important initial variables. Formally, the score of the i-th feature is the maximum
absolute value of Wi,j for j varying in 1, . . . D:

ScoreW (fi) = ‖Wi,·‖∞ (6)

The rationale for considering the infinity norm of Wi,· (as opposed to its L1 or
L2 norm) is based on the local informativeness of the feature (see also MCFS
(Cai et al. 2010), Sect. 3): the i-th feature matters as long as it has a strong
impact on at least one of the latent variables.

The above argument relies on the assumption that all latent variables are
needed, which holds by construction.2

Input : Feature set F = {f1, ..., fD}
Parameter: λ
Output : Ranking of features in F
Normalize each feature to zero mean and unit variance.
Estimate intrinsic dimension ÎD of F .
Initialize neural network with d = ÎD neurons in the hidden layer.
Repeat

Backpropagate L(F ) =
D∑

i=1

‖f̂i − fi‖22 + λ
D∑

i=1

‖Wi,·‖2
until convergence
Rank features by decreasing scores with ScoreW (fi) = ‖Wi,·‖∞.

Algorithm 1: AgnoS-W

AgnoS-G: with L2-L1 Gradient Regularization. In order to take into
account the overall flow of information from the initial variables fi through
the auto-encoder, another option is to consider the gradient of the encoder
2 A question however is whether all latent variables are equally important. It might be

that some latent variables are more important than others, and if an initial variable
fi matters a lot for an unimportant latent variable, the fi relevance might be low.
Addressing this concern is left for further work.
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φ = (φ1 . . . φd). Varga et al. (2017), Alemu et al. (2018), Sadeghyan (2018)
have recently highlighted the benefits of hidden layer gradient regularization for
improving the robustness of the latent representation.

Along this line, another L2-L1 regularization term is considered:

L(φ) =
D∑

i=1

√√√√
n∑

k=1

d∑

j=1

(
∂φj

∂fi
(xk)

)2

and the learning criterion is likewise defined as:

L(F ) =
D∑

i=1

||f̂i − fi||22 + λL(φ) (7)

The sparsity constraint now pushes toward cancelling all gradients of the φj

w.r.t. an initial variable fi. The sensitivity score derived from the trained auto-
encoder, defined as:

ScoreG(fi) = max
1≤j≤d

n∑

k=1

(
∂φj

∂fi
(xk)

)2

(8)

is used to rank the features by decreasing score. The rationale for using the max
instead of the average is same as for ScoreW . Note that in the case of an encoder
with a single hidden layer with tanh activation, one has:

ScoreG(fi) = max
1≤j≤d

n∑

k=1

(
Wi,j(1 − φj(xk)2)

)2 (9)

Input : Feature set F = {f1, ..., fD}
Parameter: λ
Output : Ranking of features in F
Normalize each feature to zero mean and unit variance.
Estimate intrinsic dimension ÎD of F .
Initialize neural network with d = ÎD neurons in the hidden layer.
Repeat

Backpropagate L(F ) =
D∑

i=1

||f̂i − fi||22 + λ
D∑

i=1

√
n∑

k=1

d∑
j=1

(
∂φj

∂fi
(xk)

)2

until convergence
Rank features by decreasing scores with

ScoreG(fi) = max
j∈[1,...,d]

n∑
k=1

(
∂φj

∂fi
(xk)

)2

.

Algorithm 2: AgnoS-G

2.5 AgnoS-S: With Slack Variables

A third version of AgnoS is considered, called AgnoS-S and inspired from Leray
and Gallinari (1999); Goudet et al. (2018). The idea is to augment the neural
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Fig. 1. Structure of the neural network used in AgnoS-S

architecture of the auto-encoder with a first layer made of slack variables. For-
mally, to each feature fi is associated a (learned) coefficient ai in [0,1], and the
encoder is fed with the vector (aifi) (Fig. 1). The learning criterion here is the
reconstruction loss augmented with an L1 penalization on the slack variables:

L(F ) =
D∑

i=1

||f̂i − fi||22 + λ
D∑

i=1

|ai| (10)

Like in LASSO, the L1 penalization pushes the slack variables toward a sparse
vector. Eventually, the score of the i-th feature is set to |ai|. This single valued
coefficient reflects the contribution of fi to the latent representation, and its
importance to reconstruct the whole feature set.

Input : Feature set F = {f1, ..., fD}
Parameter: λ
Output : Ranking of features in F
Normalize each feature to zero mean and unit variance.
Estimate intrinsic dimension ÎD of F .
Initialize neural network with (a1, ..., aD) = 1D and d = ÎD neurons in
the hidden layer.
Repeat

Backpropagate L(F ) =
D∑

i=1

||f̂i − fi||22 + λ
D∑

i=1

|ai|
until convergence
Rank features by decreasing scores with ScoreS(fi) = |ai|.

Algorithm 3: AgnoS-S

3 Related Work

This section briefly presents related work in unsupervised feature selection. We
then discuss the position of the proposed AgnoS.
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Most unsupervised FS algorithms rely on spectral clustering theory (Luxburg
2007). Let sim and M respectively denote a similarity metric on the instance
space, e.g. sim(xi, xj) = exp{−‖xi −xj‖22} and M the n×n matrix with Mi,j =
sim(xi, xj). Let Δ be the diagonal degree matrix associated with M , i.e. Δii =

n∑
k=1

Mik, and L = Δ− 1
2 (Δ−M)Δ− 1

2 the normalized Laplacian matrix associated

with M .
Spectral clustering relies on the diagonalization of L, with λi (resp. ξi) the

eigenvalues (resp. eigenvectors) of L, with λi ≤ λi+1. Informally, the ξi are used
to define soft cluster indicators (i.e. the degree to which xk belongs to the i-
the cluster being proportional to 〈xk, ξj〉), with λk measuring the inter-cluster
similarity (the smaller the better).

The general unsupervised clustering scheme proceeds by clustering the sam-
ples and falling back on supervised feature selection by considering the clusters
as if they were classes; more precisely, the features are assessed depending on
how well they separate clusters. Early unsupervised clustering approaches, such
as the Laplacian score (He et al. 2005) and SPEC (Zhao and Liu 2007), score
each feature depending on its average alignment with the dominant eigenvectors
(〈fi, ξk〉).

A finer-grained approach is MCFS (Cai et al. 2010), that pays attention to
the local informativeness of features and evaluates features on a per-cluster basis.
Each feature is scored by its maximum alignment over the set of eigenvectors
(maxk〈fi, ξk〉).

Letting A denote the feature importance matrix, with Ai,k the relevance
score of fi for the k-th cluster, NDFS (Li et al. 2012) aims to actually reduce the
number of features. The cluster indicator matrix Ξ (initialized from eigenvectors
ξ1, . . . , ξn) is optimized jointly with the feature importance matrix A, with a
sparsity constraint on the rows of A (few features should be relevant).

SOGFS (Nie et al. 2016) goes one step further and also learns the similar-
ity matrix. After each learning iteration on Ξ and A, M is recomputed where
the distance/similarity among the samples is biased to consider only the most
important features according to A.

Discussion. A first difference between the previous approaches and the proposed
AgnoS, is that the spectral clustering approaches (with the except of Nie et
al. (2016)) rely on the Euclidean distance between points in R

D. Due to the
curse of dimensionality however, the Euclidean distance in high dimensional
spaces is notoriously poorly informative, with all samples being far from each
other (Duda et al. 2012). Quite the contrary, AgnoS builds upon a non-linear
dimensionality reduction approach, mapping the data onto a low-dimensional
space.

Another difference regards the robustness of the approaches w.r.t. the redun-
dancy of the initial representation of the data. Redundant features can indeed
distort the distance among points, and thus bias spectral clustering methods,
with the except of Li et al. (2012); Nie et al. (2016). In practice, highly corre-
lated features tend to get similar scores according to Laplacian score, SPEC and
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MCFS. Furthermore, the higher the redundancy, the higher their score, and the
more likely they will all be selected. This weakness is addressed by NDFS and
SOGFS via the sparsity constraint on the rows of A, making it more likely that
only one out of a cluster of redundant features be selected.

Finally, a main difference between the cited approaches and ours is the ulti-
mate goal of feature selection, and the assessment of the methods. As said,
unsupervised feature selection methods are assessed along a supervised setting:
considering a target feature f∗ (not in the feature set), the FS performance is
measured from the accuracy of a classifier trained from the selected features.
This assessment procedure thus critically depends on the relation between f∗

and the features in the feature set. Quite the contrary, the proposed approach
aims to data compression; it does not ambition to predict some target feature,
but rather to approximate every feature in the feature set.

4 Experimental Setting

4.1 Goal of Experiments

Our experimental objective is threefold: we aim to compare the three versions
of AgnoS to unsupervised FS baselines w.r.t. (i) supervised evaluation; and (ii)
data compression. Thirdly, these experiments will serve to confirm or infirm our
claim that the typical supervised evaluation scheme is unreliable.

4.2 Experimental Setup

Experiments are carried on eight datasets taken from the scikit-feature database
(Li et al. 2018), an increasingly popular benchmark for feature selection (Chen
et al. 2017). These datasets include face image, sound processing and medical
data. In all datasets but one (Isolet), the number of samples is small w.r.t. the
number of features D. Dataset size, dimensionality, number of classes, estimated
intrinsic dimension3 and data type are summarized in Table 1. The fact that the
estimated ID is small compared to the original dimensionality for every dataset
highlights the potential of feature selection for data compression.

AgnoS-W, AgnoS-G and AgnoS-S are compared to four unsupervised FS
baselines: the Laplacian score (He et al. 2005), SPEC (Zhao and Liu 2007),
MCFS (Cai et al. 2010) and NDFS (Li et al. 2012). All implementations have
also been taken from the scikit-feature database, and all their hyperparameters
have been set to their default values. In all experiments, the three variants of
AgnoS are ran using a single hidden layer, tanh activation for both encoder
and decoder, Adam (Kingma and Ba 2015) adjustment of the learning rate,
initialized to 10−2. Dimension d of the hidden layer is set for each dataset to
its estimated intrinsic dimension ÎD. Conditionally to d = ÎD, preliminary
3 The estimator from Facco et al. (2017) was used as this estimator is empirically

less computationally expensive, requires less datapoints to be accurate, and is more
resilient to high-dimensional noise than other ID estimators (Sect. 2.2).
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Table 1. Summary of benchmark datasets

# samples # features # classes Estimated ID Data type

arcene 200 10000 2 40 Medical
Isolet 1560 617 26 9 Sound processing
ORL 400 1024 40 6 Face image
pixraw10P 100 10000 10 4 Face image
ProstateGE 102 5966 2 23 Medical
TOX171 171 5748 4 15 Medical
warpPie10P 130 2400 10 3 Face image
Yale 165 1024 15 10 Face image

experiments have shown a low sensitivity of results w.r.t. penalization weight λ
in the range [10−1, ..., 101], and degraded performance for values of λ far outside
this range in either direction. Therefore, the value of λ is set to 1. The AE weights
are initialized after Glorot and Bengio (2010). Each performance indicator is
averaged on 10 runs with same setting; the std deviation is negligible (Doquet
2019).

For a given benchmark dataset, unsupervised FS is first performed with the
four baseline methods and the three AgnoS variants, each algorithm producing
a ranking S of the original features. Two performance indicators, one supervised
and one unsupervised, are then computed to assess and compare the different
rankings.

Following the typical supervised evaluation scheme, the first indicator is the
K-means clustering accuracy (ACC) (He et al. 2005; Cai et al. 2010) for pre-
dicting the ground truth target f∗. In the following, clustering is performed
considering the top k = 100 ranked features w.r.t. S, with K = c clusters, with
c the number of classes in f∗.

The second indicator corresponds to the unsupervised FS goal of recovering
every initial feature f . For each f ∈ F , a 5-NearestNeighbor regressor is trained
to fit f , where the neighbors of each point x are computed considering the
Euclidean distance based on the top k = 100 ranked features w.r.t. S. The
goodness-of-fit is measured via the R2 score (a.k.a. coefficient of determination)
R2(f, S) ∈] − ∞, 1]. The unsupervised performance of S is the individual R2

score averaged over the whole feature set F (the higher the better):

Score(S) =
1
D

D∑

j=1

R2(fj , S)

5 Experimental Results and Discussion

Supervised FS Assessment. Table 2 reports the ACC score for each selection
method and dataset. On all datasets but TOX171, the highest ACC is achieved
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by one of the three AgnoS variants, showing the robustness of AgnoS com-
pared with the baselines. On average, AgnoS-S outperforms AgnoS-W and
AgnoS-G.

Table 2. Clustering ACC score on the ground truth labels, using the top 100 ranked
features. Statistically significantly (according to a t-test with a p-value of 0.05) better
results in boldface

Arcene Isolet ORL pixraw10P ProstateGE TOX171 warpPIE10P Yale
AgnoS-S 0.665 0.536 0.570 0.812 0.608 0.404 0.271 0.509
AgnoS-W 0.615 0.583 0.548 0.640 0.588 0.292 0.358 0.382
AgnoS-G 0.630 0.410 0.528 0.776 0.569 0.357 0.419 0.533
Laplacian 0.660 0.482 0.550 0.801 0.578 0.450 0.295 0.442
MCFS 0.550 0.410 0.562 0.754 0.588 0.480 0.362 0.400
NDFS 0.510 0.562 0.538 0.783 0.569 0.456 0.286 0.442
SPEC 0.655 0.565 0.468 0.482 0.588 0.474 0.333 0.400

Fig. 2. Cumulative distribution functions of the R2 scores of a 5-NearestNeighbors
regressor using the top 100 ranked features on Arcene. If a point has coordinates (x, y),
then the goodness-of-fit of the regressor is ≤x or y initial features

Data Compression FS Assessment. Figure 2 depicts the respective cumulative
distribution of the R2 scores for all selection methods on the Arcene dataset. A
first observation is that every FS algorithm leads to accurate fitting (R2 score
>0.8) for some features and poor fitting (R2 score <0.2) on some other fea-
tures. This empirical evidence suggests that the prediction based on the selected
features is very sensitive w.r.t. the variable to predict, supporting our claim
that supervised assessment of unsupervised FS (dealing with a single target) is
unreliable.

Another observation is that FS algorithms differ in the number of poorly
fitted features. R2 scores <0.2 are achieved for less than 20% of features using
any declination of AgnoS and more than 35% of features using MCFS, showing
that AgnoS retains information about more features than MCFS on the Arcene
dataset.
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Table 3. Average of R2 score of 5-NearestNeighbors regressor fitting any feature, using
the top 100 ranked features. Statistically significantly (according to a t-test with a p-
value of 0.05) better results in boldface

Arcene Isolet ORL pixraw10P ProstateGE TOX171 warpPIE10P Yale
AgnoS-S 0.610 0.763 0.800 0.855 0.662 0.581 0.910 0.703
AgnoS-W 0.460 0.762 0.795 0.782 0.620 0.580 0.897 0.696
AgnoS-G 0.560 0.701 0.780 0.832 0.606 0.528 0.901 0.671
Laplacian 0.576 0.680 0.789 0.840 0.655 0.563 0.903 0.601
MCFS 0.275 0.720 0.763 0.785 0.634 0.549 0.870 0.652
NDFS 0.490 0.747 0.796 0.835 0.614 0.520 0.904 0.677
SPEC 0.548 0.733 0.769 0.761 0.646 0.559 0.895 0.659

Table 3 reports the average R2 score of a 5-NearestNeighbors regressor on
the whole feature set, for each FS algorithm and dataset. AgnoS-S is shown
to achieve a higher mean R2 score than AgnoS-W, AgnoS-G and all baselines
on all datasets. These results empirically demonstrate that the selection subsets
induced by AgnoS-S retain more information about the features on average
than the baselines.

Notably, AgnoS-S generally outperforms AgnoS-W and AgnoS-G in a
very significant manner, while AgnoS-W and AgnoS-G happen to be outper-
formed by the baselines. A tentative interpretation for this difference of perfor-
mance among the three AgnoS variants is based on the key difference between
the LASSO regularization and the slack variables. On one hand, the encoder
weights in AgnoS-W (resp. the encoder gradients in AgnoS-G) are simultane-
ously responsible for producing the compressed data representation and enforcing
sparsity among the original features. On the other hand, the slack variables in
AgnoS-S are only subject to the sparsity pressure exerted by the L1 penalty
and have no other functional role. It is thus conjectured that the optimization
of the slack variables can enforce sparse feature selection more efficiently than
in AgnoS-W and AgnoS-G.

Fig. 3. Average R2 score on Yale w.r.t. the number k of top ranked features considered
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Sensitivity w.r.t. the Number of Selected Features. Figure 3 reports the R2 score
(averaged on the whole feature set) achieved by a 5-NearestNeighbors regressor
on the Yale dataset for a number k of selected features in [5, 10, . . . , 200]. AgnoS-
S is shown to reliably outperform the baselines for every value of k (with the
exception of k ∈ {5, 10} where it is tied with NDFS).

Additionally, the unsupervised ranking of the considered FS algorithms
appears to be stable w.r.t. k. This stability property does not hold using the ACC
score, for which additional experiments have shown that the supervised ranking
of FS algorithms is sensitive w.r.t. k (Doquet 2019), confirming again the brit-
tleness of the mainstream supervised assessment of feature selection methods.

Table 4. Empirical runtimes on a single Nvidia Geforce GTX 1060 GPU, in seconds

arcene Isolet ORL pixraw10P ProstateGE TOX171 warpPie10P Yale
AgnoS 265 25 29 242 145 143 31 14
Laplacian <1 <1 <1 <1 <1 <1 <1 <1
SPEC 3 9 <1 2 1 2 1 <1
MCFS <1 2 <1 <1 <1 <1 <1 <1
NDFS 130 16 17 193 80 76 18 7

A main limitation of the proposed approach is its computational time. Table 4
reports the empirical runtimes of the baselines and AgnoS. AgnoS is shown to
be between 25% and 100% slower than NDFS, and several orders of magnitude
slower than Laplacian score, SPEC and NDFS.

6 Conclusion and Perspectives

In this paper, we have introduced a novel unsupervised FS algorithm based on
data compression. A main merit of the proposed AgnoS-S is to better recover
the whole feature set (and the target feature) compared to the baselines, in coun-
terpart for its higher computational cost. A second contribution of the paper is
to empirically show that the supervised assessment of unsupervised FS methods
is hardly reliable.

This work opens two perspectives for further studies. The first one is con-
cerned with early stopping of the AE, aimed to reduce the computational cost
of AgnoS. Another direction is to consider Variational AutoEncoders (VAE)
(Kingma and Welling 2013) instead of plain AEs, likewise augmenting the VAE
loss with an L1 penalization to achieve feature selection; the expected advantage
of VAEs would be to be more robust when considering small datasets.

Acknowledgments. We wish to thank Diviyan Kalainathan for many enjoyable dis-
cussions. We also thank the anonymous reviewers, whose comments helped to improve
the experimental setting and the assessment of the method.
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Abstract. Heterogeneous information networks (HINs) with rich
semantics are ubiquitous in real-world applications. For a given HIN,
many reasonable clustering results with distinct semantic meaning can
simultaneously exist. User-guided clustering is hence of great practical
value for HINs where users provide labels to a small portion of nodes.
To cater to a broad spectrum of user guidance evidenced by different
expected clustering results, carefully exploiting the signals residing in
the data is potentially useful. Meanwhile, as one type of complex net-
works, HINs often encapsulate higher-order interactions that reflect the
interlocked nature among nodes and edges. Network motifs, sometimes
referred to as meta-graphs, have been used as tools to capture such
higher-order interactions and reveal the many different semantics. We
therefore approach the problem of user-guided clustering in HINs with
network motifs. In this process, we identify the utility and importance
of directly modeling higher-order interactions without collapsing them
to pairwise interactions. To achieve this, we comprehensively transcribe
the higher-order interaction signals to a series of tensors via motifs and
propose the MoCHIN model based on joint non-negative tensor fac-
torization. This approach applies to arbitrarily many, arbitrary forms
of HIN motifs. An inference algorithm with speed-up methods is also
proposed to tackle the challenge that tensor size grows exponentially
as the number of nodes in a motif increases. We validate the effective-
ness of the proposed method on two real-world datasets and three tasks,
and MoCHIN outperforms all baselines in three evaluation tasks under
three different metrics. Additional experiments demonstrated the utility
of motifs and the benefit of directly modeling higher-order information
especially when user guidance is limited. (The code and the data are
available at https://github.com/NoSegfault/MoCHIN.)
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1 Introduction

Heterogeneous information network (HIN) has been shown to be a powerful app-
roach to model linked objects with informative type information [21,23,24,28].
Meanwhile, the formation of complex networks is often partially attributed to the
higher-order interactions among objects in real-world scenarios [2,18,35], where
the “players” in the interactions are nodes in the network. To reveal such higher-
order interactions, researchers have since been using network motifs. Leveraging
motifs is shown to be useful in tasks such as clustering [2,36], ranking [37] and
representation learning [20].1

Clustering is a traditional and fundamental task in network mining [7]. In
the context of an HIN with rich semantics, reasonable clustering results with
distinct semantic meaning can simultaneously exist. In this case, personalized
clustering with user guidance can be of great practical value [6,10,17,21,29].
Carefully exploiting the fine-grained semantics in HINs via modeling higher-
order interaction is a promising direction for such user-guided clustering since
it could potentially generate a richer pool of subtle signals to better fit different
users’ guidance, especially when users cannot provide too much guidance and
the supervision is hence weak.

However, it is non-trivial to develop a principled HIN clustering method that
exploits signals revealed by motifs as comprehensively as possible. This is because
most network clustering algorithms are based on signals derived from the relat-
edness between each pair of nodes [7]. While a body of research has shown that
it is beneficial for clustering methods to derive features for each node pair using
motifs [5,8,10,16,38], this approach essentially collapses a higher-order interac-
tion into pairwise interactions, which is an irreversible process. Such irreversible
process is not always desirable as it could cause information loss. For example,
consider a motif instance involving three nodes – A, B, and C. After collapsing
the higher-order interaction among A, B, and C into pairwise interactions, we
are still able to sense the tie between A and C, but such a tie would no longer
depend on B – a potentially critical semantic facet of the relationship between A
and C. Such subtle information could be critical to distinguishing different user
guidance. We will further discuss this point by real-world example in Sect. 4
and experiments in Sect. 7. Furthermore, although it is relatively easy to find
semantically meaningful HIN motifs [5,8], motifs in HINs can have more com-
plex topology compared to motifs in homogeneous networks do [2,36]. In order

1 Higher-order interaction is sometimes used interchangeably with high-order interac-
tion in the literature, and clustering using signals from higher-order interactions is
referred to as higher-order clustering [2,36]. Motifs in the context of HINs are some-
times called the meta-graphs, and we opt for motifs primarily because meta-graphs
have been used under a different definition in the study of clustering [27].
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concensus User provides 
supervision on 

seed nodes

Transcribing higher-order interaction 
into a series of tensors via motifs

Joint non-negative tensor factorization to infer 
cluster membership

Fig. 1. Overview of the proposed method MoCHIN that directly models all nodes in
higher-order interactions where each type of nodes in the HIN corresponds to a color
and a shape in the figure.

to fully unleash the power of HIN motifs and exploit the signals extracted by
them, we are motivated to propose a method that applies to arbitrary forms of
HIN motifs.

To avoid such information loss with a method applicable to arbitrary forms
of motifs, we propose to directly model the higher-order interactions by com-
prehensively transcribing them into a series of tensors. As such, the complete
information of higher-order interactions is preserved. Based on this intuition, we
propose the MoCHIN model, short for Motif-based Clustering in HINs, with
an overview in Fig. 1. MoCHIN first transcribes information revealed by motifs
into a series of tensors and then performs clustering by joint non-negative tensor
decomposition with an additional mechanism to reflect user guidance.

In this direction, an additional challenge arises from inducing tensor via cor-
responding motif – the size of the tensor grows exponentially as the number
of nodes involved in the motif increases. Fortunately, motif instances are often
sparse in real-world networks just as the number of edges is usually significantly
smaller than the number of node pairs in a large real-world network. This fact
is to be corroborated in Sect. 3 of the supplementary file. We hence develop
an inference algorithm taking advantage of the sparsity of the tensors and the
structure of the proposed MoCHIN model.

Lastly, we summarize our contributions as follows: (i) we identify the utility
of modeling higher-order interaction without collapsing it into pairwise interac-
tions to avoid losing the rich and subtle information captured by motifs; (ii) we
propose the MoCHIN model that captures higher-order interaction via motif-
based comprehensive transcription; (iii) we develop an inference algorithm and
speed-up methods for MoCHIN; (iv) experiments on two real-world HINs and
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three tasks demonstrated the effectiveness of the proposed method as well as the
utility of the tensor-based modeling approach in user-guided HIN clustering.

2 Related Work

Network Motifs and Motifs in HINs. Network motifs, or graphlets, are usu-
ally used to identify higher-order interactions [2,18,35,36]. One popular research
direction on network motifs has centered on efficiently counting motif instances
such as triangles and more complex motifs [1,26]. Applications of motifs have
also been found in tasks such as network partition and clustering [2,12,36,39]
as well as ranking [37].

In the context of HINs, network motifs are sometimes referred to as meta-
graphs or meta-structures and have been studied recently [5,8,10,15,16,20,33,
38]. Many of these works study pairwise relationship such as relevance or similar-
ity [5,8,15,16,38], and some other address the problem of representation learning
[20,33] and graph classification [34]. Some of these prior works define meta-
graphs or meta-structures to be directed acyclic graphs [8,38], whereas we do
not enforce this restriction on the definition of HIN motifs.

Clustering in Heterogeneous Information Networks. As a fundamental
data mining problem, clustering has been studied for HINs [13,21,22,28–30].
One line of HIN clustering study leverages the synergetic effect of simultaneously
tackling ranking and clustering [22,30]. Clustering on specific types of HINs such
as those with additional attributes has also been studied [13]. Wu et al. [32] resort
to tensor for HIN clustering. Their solution employs one tensor for one HIN and
does not model different semantics implied by different structural patterns.

User guidance brings significantly more potentials to HIN clustering by pro-
viding a small portion of seeds [21,29], which enables users to inject intention of
clustering. To reveal the different semantics in an HIN, pioneering works exploit
the meta-path, a special case of the motif, and reflect user-guidance by using the
corresponding meta-paths [17,29].

To the best of our knowledge, a recent preprint [3] is the only paper that
tackles HIN clustering and applies to arbitrary forms of HIN motifs, which is
not specifically designed for the scenario with user guidance. Given an HIN and
a motif (i.e., typed-graphlet), this method filter the original adjacent matrix to
derive the typed-graphlet adjacency matrix and then perform spectral clustering
on the latter matrix. While being able to filter out information irrelevant to the
given motif, this method essentially exploits the edge-level pairwise information
in the adjacent matrix rather than directly modeling each occurrence of higher-
order interaction. Other related works include a meta-graph–guided random walk
algorithm [10], which is shown to outperform using only meta-paths. Note that
this method cannot distinguish motif AP4TPA from meta-path APTPA, which
are to be introduced in Sect. 4. Sankar et al. [20] propose a convolutional neural
network method based on motifs which can potentially be used for user-guided
HIN clustering. This approach restricts the motifs of interest to those with a
target node, a context node, and auxiliary nodes. Gujral et al. [6] propose a
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Fig. 2. Examples of schema and motif in the DBLP network.

method based on tensor constructed from stacking a set of adjacency matrices,
which can successfully reflect user guidance and different semantic aspects. This
method essentially leverages features derived for node pairs.

We additionally review the related work on matrix and tensor factorization
for clustering in the supplementary file for this paper. These studies are relevant
but cannot be directly applied to the scenario of higher-order HIN clustering.

3 Preliminaries

In this section, we define related concepts and notations.

Definition 1 (Heterogeneous information network and schema [28]).
An information network is a directed graph G = (V, E) with a node type mapping
ϕ : V → T and an edge type mapping ψ : E → R. When |T | > 1 or |R| > 1,
the network is referred to as a heterogeneous information network (HIN).
The schema of an HIN is an abstraction of the meta-information of the node
types and edge types of the given HIN.

As an example, Fig. 2a illustrates the schema of the DBLP network to be
used in Sect. 7. We denote all nodes with the same type t ∈ T by Vt.

Definition 2 (HIN motif and HIN motif instance). In an HIN G = (V, E),
an HIN motif is a structural pattern defined by a graph on the type level with
its node being a node type of the original HIN and an edge being an edge type of
the given HIN. Additional constraints can be optionally added such as two nodes
in the motif cannot be simultaneously matched to the same node instance in the
given HIN. Further given an HIN motif, an HIN motif instance under this
motif is a subnetwork of the HIN that matches this pattern.

Figure 2c gives an example of a motif in the DBLP network with four distinct
terms referred to as AP4TPA. If a motif is a path graph, it is also called a meta-
path [29]. The motif, APTPA, in Fig. 2b is one such example.
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Fig. 3. A subnetwork of DBLP. According to the ground truth data, Eric Xing and
David Blei were graduated from the same research group.

Definition 3 (Tensor, k-mode product, mode-k matricization [19]). A
tensor is a multidimensional array. For an N -th–order tensor X ∈ R

d1×...×dN ,
we denote its (j1, . . . , jN ) entry by Xj1,...,jN

. The k-mode product of X
and a matrix A ∈ R

dk×d is denoted by Y = X ×k A, where Y ∈
R

d1×...×dk−1×d×dk+1×...×dN , and Y...,jk−1,j,jk+1,... =
∑dk

s=1 X...,jk−1,s,jk+1,...As,j.
We denote matrix X(k) ∈ R

(d1·...·dk−1·dk+1·...·dN )×dk the mode-k matricization,
i.e., mode-k unfolding, of the tensor X , where the i-th column of X(k) is obtained
by vectorizing the (n − 1)-th order tensor X...,:,j,:,... with j on the k-th index.

For simplicity, we denote X ×N
i=1Ai := X ×1A1 ×2 . . .×N AN . Additionally,

we define [⊗N\k
i=1 Ai] := A1 ⊗ . . . ⊗ Ak−1 ⊗ Ak+1 ⊗ . . . ⊗ AN , where ⊗ is the

Kronecker product [19].
Lastly, we introduce a useful lemma that converts the norm of the difference

between two tensors to that between two matrices.

Lemma 4 ([4]). For all k ∈ {1, 2, . . . , N},
∥
∥
∥X − Y ×N

i=1 Ai

∥
∥
∥

F
=

∥
∥
∥X(k) − AkY(k)[⊗N\k

i=1 Ai]
�

∥
∥
∥

F
,

where ‖·‖F is the Frobenius norm.

4 Higher-Order Interaction in Real-World Dataset

In this section, we use a real-world example to motivate the design of our method
that aims to comprehensively model higher-order interactions revealed by motifs.

DBLP is a bibliographical network in the computer science domain [31] that
contains nodes with type author, paper, term, etc. In Fig. 3, we plot out a subnet-
work involving five authors: Eric Xing, David Blei, Hualiang Zhuang, Chengkai
Li, and Pascual Martinez. According to the ground truth labels, Xing and Blei
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graduated from the same research group, while the other three authors gradu-
ated from other groups. Under meta-path APTPA, one would be able to find
many path instances from Xing to authors from different groups. However, if
we use motif AP4TPA, motif instances can only be found over Xing and Blei,
but not between Xing and authors from other groups. This implies motifs can
provide more subtle information than meta-paths do, and if a user wishes to
cluster authors by research groups, motif AP4TPA can be informative.

More importantly, if we look into the AP4TPA motif instances that are
matched to Xing and Blei, the involved terms such as dirichlet are very specific to
their group’s research interest. In other words, dirichlet represents an important
semantic facet of the relationship between Xing and Blei. Modeling the higher-
order interaction among dirichlet and other nodes can therefore kick in more
information. If one only used motifs to generate pairwise or edge-level signals,
such information would be lost. In Sect. 7, we will further quantitatively validate
the utility of comprehensively modeling higher-order interactions.

5 The MoCHIN Model

In this section, we describe the proposed model with an emphasis on its intention
to comprehensively model higher-order interaction while availing user guidance.

Revisit on Clustering by Non-negative Matrix Factorization. Non-
negative matrix factorization (NMF) has been a popular method cluster-
ing [11,14]. Usually with additional constraints or regularization, the basic NMF-
based algorithm solves the following optimization problem for given adjacency
matrix M

min
V1,V2≥0

∥
∥M − V�

1 V2

∥
∥2

F
, (1)

where ‖·‖F is the Frobenius norm, A ≥ 0 denotes matrix A is non-negative, and
V1, V2 are two C × |V| matrices with C being the number of clusters. In this
model, the j-th column of V1 or that of V2 gives the inferred cluster membership
of the j-th node in the network.

Single-Motif–Based Clustering in HINs. Recall that an edge essentially
characterizes the pairwise interaction between two nodes. To model higher-order
interaction without collapsing it into pairwise interactions, a natural solution
to clustering is using the inferred cluster membership of all involved nodes to
reconstruct the existence of each motif instance. This solution can be formulated
by non-negative tensor factorization (NTF), and studies on NTF per se and
clustering via factorizing a single tensor can be found in the literature [19].

Specifically, given a single motif m with N nodes having node type t1, . . . , tN
of the HIN, we transcribe the higher-order interaction revealed by this motif to
a N -th–order tensor X with dimension |Vt1 |× . . .×|VtN

|. We set the (j1, . . . , jN )
entry of X to 1 if a motif instance exists over the following n nodes: j1-th of
Vt1 , . . . , jN -th of VtN

; and set it to 0 otherwise. By extending Eq. (1), whose
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Table 1. Summary of symbols

Symbol Definition Symbol Definition

V, E The set of nodes and the
set of edges

X (m) The tensor constructed
from motif m

ϕ, ψ The node and the edge
type mapping

M(t) The seed mask matrix for
node type t

T , R, M The set of node types,
edge types, and candidate
motifs

V
(m)
i The cluster membership

matrix for the i-th node in
motif m

Vt The set of all nodes with
type t

V∗
t The consensus matrix for

node type t

o(m) The number of nodes in
motif m ∈ M

µ The vector (μ1, . . . , μ|M|)
of motif weights

C The number of clusters ×k The mode-k product of a
tensor and a matrix

λ, θ, ρ The hyperparameters ⊗ The Kronecker product of
two matrices

objective is equivalent to
∥
∥M − V�

1 IV2

∥
∥2

F
with I being the identity matrix, we

can approach the clustering problem by solving

min
V1,V2≥0

∥
∥X − I ×N

i=1 Vi

∥
∥2

F
+ λ

N∑

i=1

‖Vi‖1 , (2)

where I is the N -th order identity tensor with dimension C × . . .×C, ‖·‖1 is the
entry-wise l-1 norm introduced as regularization to avoid trivial solution, and λ
is the regularization coefficient. We also note that this formulation is essentially
the CP decomposition [19] with additional l-1 regularization and non-negative
constraints. We write this formula in a way different from its most common
form for notation convenience in the inference section (Sect. 6) considering the
presence of regularization and constraints.

Proposed Model for Motif-Based Clustering in HINs. Real-world HINs
often contain rich and diverse semantic facets due to its heterogeneity [25,28,29].
To reflect the different semantic facets of an HIN, a set M of more than one
candidate motifs are usually necessary for the task of user-guided clustering.
With additional clustering seeds provided by users, the MoCHIN model selects
the motifs that are both meaningful and pertinent to the seeds.

To this end, we assign motif-specific weights µ = (μ1, . . . , μ|M|), such that
∑

m∈M μm = 1 and μm ≥ 0 for all m ∈ M. Denote X (m) the tensor for motif
m, V(m)

i the cluster membership matrix for the i-th node in motif m, o(m)
the number of nodes in motif m, and ϕ(m, i) the node type of the i-th node in
motif m. For each node type t ∈ T , we put together cluster membership matri-
ces concerning this type and motif weights to construct the consensus matrix
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V∗
t :=

∑
ϕ(m,i)=t

μmV
(m)
i∑o(m)

i′=1
1[ϕ(m,i′)=ϕ(m,i)]

, where 1[P ] equals to 1 if P is true and 0

otherwise. With this notation,
∑o(m)

i′=1 1[ϕ(m,i′)=ϕ(m,i)] is simply the number of
nodes in motif m that are of type t.

Furthermore, we intend to let (i) each cluster membership V(m)
i be close to

its corresponding consensus matrix V∗
ϕ(m,i) and (ii) the consensus matrices not

assign seed nodes to the wrong cluster. We hence propose the following objective
with the third and the fourth term modeling the aforementioned two intentions

O =
∑

m∈M

∥
∥
∥X (m) − I(m) ×o(m)

i=1 V(m)
i

∥
∥
∥
2

F
+ λ

∑

m∈M

o(m)∑

i=1

∥
∥
∥V(m)

i

∥
∥
∥
1

+ θ
∑

m∈M

o(m)∑

i=1

∥
∥
∥V(m)

i − V∗
ϕ(m,i)

∥
∥
∥
2

F
+ ρ

∑

t∈T

∥
∥
∥M(t) ◦ V∗

t

∥
∥
∥
2

F
, (3)

where ◦ is the Hadamard product and M(t) is the seed mask matrix for node
type t. Its (i, c) entry M(t)

i,c = 1 if the i-th node of type t is a seed node and it
should not be assigned to cluster c, and M(t)

i,c = 0 otherwise.
Finally, solving the problem of HIN clustering by modeling higher-order inter-

action and automatically selecting motifs is converted to solving the following
optimization problem with Δ being the standard simplex

min
{V(m)

i ≥0},µ∈Δ

O. (4)

6 The Inference Algorithm

In this section, we first describe the algorithm for solving the optimization prob-
lem as in Eq. (4). Then, a series of speed-up tricks are introduced to circumvent
the curse of dimensionality, so that the complexity is governed no longer by the
dimension of the tensors but by the number of motif instances in the network.

UpdateV(l)
k and μ. Each clustering membership matrix V(l)

k with non-negative
constraints is involved in all terms of the objective function (Eq. (3)), where
l ∈ M and k ∈ {1, . . . , o(l)}. We hence develop multiplicative update rules for
V(l)

k that guarantees monotonic decrease at each step, accompanied by projected
gradient descent (PGD) to find global optimal of µ = [μ1, . . . , μ|M|]�. Overall,
we solve the optimization problem by alternating between {V(l)

k } and µ.
To update V(l)

k when {V(m)
i }(m,i) �=(l,k) and µ are fixed under non-negative

constraints, we derive the following theorem. For notation convenience, we fur-
ther denote V∗

t =
∑

ϕ(m,i)=t ηm
i V(m)

i , where ηm
i := μm

∑o(m)
i′=1

1[ϕ(m,i′)=ϕ(m,i)]
.
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Algorithm 1: The MoCHIN inference algorithm
Input : {X (m)}, supervision M(t), the number of clusters C, hyperparameters

θ, ρ, and λ
Output: the cluster membership matrices {V∗

t }
1 begin
2 while not converged do
3 for m ∈ M do
4 while not converged do
5 for i ∈ {1, . . . , o(m)} do
6 Find local optimum of V(m)

i by Eq. (5).

7 Find global optimum of µ by PGD.

Theorem 5. The following update rule for V(l)
k monotonically decreases the

objective function.

V
(l)
k ← V

(l)
k ◦

[

X (l)

(k)[⊗
o(l)\k
i=1 V

(l)
i ]I(l)�

(k) + θ(1 − ηl
k)(V

∗
ϕ(l,k) − ηl

kV
(l)
k )

V
(l)
k I(l)

(k)[⊗
o(l)\k
i=1 V

(l)
i ]�[⊗o(l)\k

i=1 V
(l)
i ]I(l)�

(k) + ρηl
kM

ϕ(l,k) ◦ V∗
ϕ(l,k)

+θηl
k

∑(m,i) �=(l,k)

ϕ(m,i)=ϕ(l,k)[V
(m)
i − V∗

ϕ(l,k) + ηl
kV

(l)
k ]+

+θηl
k

∑(m,i) �=(l,k)

ϕ(m,i)=ϕ(l,k)([V
(m)
i − V∗

ϕ(l,k) + ηl
kV

(l)
k ]− + ηl

kV
(l)
k ) + θ(1 − ηl

k)
2V

(l)
k + λ

] 1
2

,

(5)

where for any matrix A, [A]+ := |A|+A
2 , [A]− := |A|−A

2 .

We refer the proof of this theorem to Sect. 1 of the supplementary file. For
fixed {V(m)

i }, the objective function Eq. (3) is convex with respect to µ. We
therefore use PGD to update µ, where the gradient can be analytically derived
with straightforward calculation.

Computational Speed-Up. Unlike the scenario where researchers solve the
NTF problem with tensors of order independent of the applied dataset, our
problem is specifically challenging because the tensor size grows exponentially
with the tensor order. For instance, the AP4TPA motif discussed in Sect. 4 is
one real-world example involving 8 nodes, which leads to an 8-th order tensor.

In the proposed inference algorithm, the direct computation of three terms
entails complexity subject to the size of the tensor: (i) the first term in the
numerator of Eq. (5), X (l)

(k)[⊗
o(l)\k
i=1 V(l)

i ]I(l)�
(k) , (ii) the first term in the denomina-

tor of Eq. (5), V(l)
k I(l)

(k)[⊗
o(l)\k
i=1 V(l)

i ]� [⊗o(l)\k
i=1 V(l)

i ]I(l)�
(k) , and (iii) the first term

of the objective function Eq. (3),
∥
∥
∥X (m) − I(m) ×o(m)

i=1 V(m)
i

∥
∥
∥
2

F
. Fortunately, all

these terms can be significantly simplified by exploiting the composition of dense
matrix [⊗o(l)\k

i=1 V(l)
i ]I(l)�

(k) and the sparsity of tensor X (l) (X (m)).
Consider the example that motif l ∈ M involves 5 nodes, each node type has

10, 000 node instances, and the nodes are to be clustered into 10 clusters. Then
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the induced dense matrix [⊗o(l)\k
i=1 V(l)

i ]I(l)�
(k) would have

∏o(l)
i=1
i�=k

|Vϕ(l,i)| ·Co(l)−1 =

1020 entries. As a result, computing term (i), X (l)
(k)[⊗

o(l)\k
i=1 V(l)

i ]I(l)�
(k) , would

involve matrix multiplication of a dense 1020 entry matrix. However, given the
sparsity of X (l), one may denote the set of indices of the non-zero entries in
tensor X by nz(X ) := {J = (j1, . . . , jN ) | Xj1,...,jN

�= 0} and derive the following
equivalency

X (l)
(k)[⊗

o(l)\k
i=1 V(l)

i ]I(l)�
(k) =

∑

J∈ nz(X (l))

X (l)
j1,...,jo(l)

h(jk)
o(l)∏

i=1
i�=k

(V(l)
i )ji,:,

where
∏

is Hadamard product of a sequence and h(jk) is one-hot column vector
of size |Vϕ(l,k)| that has entry 1 at index jk. Computing the right-hand side
of this equivalency involves the summation over Hadamard product of a small
sequence of small vectors, which has a complexity of O(nnz(X (l)) · (o(l)− 1) · C)
with nnz(·) being the number of non-zero entries. In other words, if the previous
example comes with 1, 000, 000 motif instances, the complexity would decrease
from manipulating a 1020-entry dense matrix to a magnitude of 4 × 107.

Similarly, by leveraging the sparsity of tensors and composition of dense
matrices, one can simplify the computation of term (ii) from multiplication of
matrix with 1020 entries to that with 105 entries; and reduce the calculation of
term (iii) from a magnitude of 1020 to a magnitude of 108. We provide detailed
derivation and formulas in the supplementary file.

Finally, we remark that the above computation can be highly parallelized,
which has further promoted the efficiency in our implementation. An empirical
efficiency study is available in Sect. 3 of the supplementary file. We summarize
the algorithm in Algorithm1.

7 Experiments

We present the quantitative evaluation results on two real-world datasets
through multiple tasks and conduct case studies under various circumstances.

7.1 Datasets and Evaluation Tasks

In this section, we briefly describe (i) the datasets, (ii) the evaluation tasks, and
(iii) the metrics used in the experiments. All of their detailed descriptions are
provided in Sect. 4 of the supplementary file.

Datasets. We use two real-world HINs for experiments. DBLP is a heteroge-
neous information network that serves as a bibliography of research in computer
science area [31]. The network consists of 5 types of node: author (A), paper (P ),
key term (T ), venue (V ) and year (Y ). In DBLP, we select two candidate motifs
for all applicable methods, including AP4TPA and APPA. YAGO is a knowl-
edge graph constructed by merging Wikipedia, GeoNames and WordNet. YAGO
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dataset consists of 7 types of nodes: person (P), organization (O), location (L),
prize (R), work (W ), position (S ) and event (E ). In YAGO, the candidate motifs
used by all compared methods include P 6O23L, P 7O23L, P 8O23L, 2P2W , 3PW .

Evaluation Tasks. In order to evaluate models’ capability in reflecting different
user guidance, we use two sets of labels on authors to conduct two tasks in
DBLP similar to previous study [29]. Additionally, we design another task on
YAGO with labels on persons. DBLP-group – Clustering authors to 5 research
groups where they graduated. 5% of the 250 authors with labels are randomly
selected as seeds from user guidance. DBLP-area – Clustering authors to 14
research areas. 1% of the 7, 165 authors with labels are randomly selected as
seeds from user guidance. YAGO – Clustering people to 10 popular countries
in the YAGO dataset. 1% of the 11, 368 people are randomly selected as seeds
from user guidance.

Evaluation Metrics. We use three metrics to evaluate the quality of the clus-
tering results generated by each model: Accuracy (Micro-F1), Macro-F1, and
NMI. Note that in multi-class classification tasks, accuracy is always identical
to Micro-F1. For all these metrics, higher values indicate better performance.

7.2 Baselines and Experiment Setups

Baselines. We use five different baselines to obtain insight on different aspects
of the performance of MoCHIN. KNN is a classification algorithm that assigns
the label of each object in the test set is according to its nearest neighbors. In our
scenario, the distance between two nodes is defined as the length of the shortest
path between them. KNN+Motifs uses signals generated by motifs, but does
not directly model all players in higher-order interactions. To extract informa-
tion from motifs, we construct a motif-based network for each candidate motif,
where an edge is constructed if two nodes are matched to a motif instance in the
original HIN. KNN is then applied to each motif-based network. Finally, a linear
combination is applied to the outcome probability matrices generated by KNN
from the motif-based networks and the original HIN with weights tuned to the
best. GNetMine [9] is a graph-based regularization framework to address the
transductive classification problem in HINs. This method only leverages edge-
level information without considering structural patterns such as meta-paths or
motifs. PathSelClus [29] is a probabilistic graphical model that performs clus-
tering tasks on HINs by integrating meta-path selection with user-guided cluster-
ing. For this baseline, we additionally add APV PA, APTPA, APT , APA, and,
APAPA into the set of candidate meta-paths for both DBLP tasks as suggested
by the original paper [29] and add P 14O14P , P 15O15P , and P 16O16P for YAGO
task. TGS [3] leverages motifs but does not directly model each occurrence of
higher-order interaction. It is hence another direct comparison to MoCHIN,
besides KNN+Motifs, which is used to analyze the utility of comprehensively
transcribing motif instances into tensors. As the authors did not discuss how
to inject user guidance into their basic bipartitioning clustering algorithm, we
apply multi-class logistic regression on the accompanied typed-graphlet spectral
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Table 2. Quantitative evaluation on clustering results in three tasks.

Task DBLP-group DBLP-area YAGO

Metric Acc./
Micro-
F1

Macro-F1 NMI Acc./
Micro-
F1

Macro-F1 NMI Acc./
Micro-
F1

Macro-F1 NMI

KNN 0.4249 0.2566 0.1254 0.4107 0.4167 0.2537 0.3268 0.0921 0.0810

KNN+Motifs 0.4549 0.2769 0.1527 0.4811 0.4905 0.3296 0.3951 0.1885 0.1660

GNetMine [9] 0.5880 0.6122 0.3325 0.4847 0.4881 0.3469 0.3832 0.2879 0.1772

PathSelClus [29] 0.5622 0.5535 0.3246 0.4361 0.4520 0.3967 0.3856 0.3405 0.2864

TGS [3] 0.6609 0.6513 0.3958 0.4391 0.4365 0.2790 0.6058 0.3564 0.4406

MoCHIN 0.7382 0.7387 0.5797 0.5318 0.5464 0.4396 0.6134 0.5563 0.4607

embedding algorithm proposed in the same paper. The typed-graphlet adja-
cency matrices of multiple motifs are summed together to derive the input for
the algorithm as the author suggested in the paper.

Experiment Setups. For MoCHIN, we set hyperparameters θ = 1, ρ = 100
and λ = 0.0001 across all tasks in our experiments. For each model involving
motifs, edge-level motifs corresponding to the edge types are included into the
set of candidate motifs. For each baseline in each task, we always tune its hyper-
parameters to achieve the best performance.

7.3 Quantitative Evaluation Result

We report the main quantitative results in Table 2. Overall, MoCHIN uniformly
outperformed all baselines in all three tasks under all metrics. Note that these
three metrics measure different aspects of the model performance. For instance,
in the DBLP-area task, PathSelClus outperforms GNetMine under Macro-
F1 and NMI, while GNetMine outperforms PathSelClus under Acc./Micro-F1.
Achieving superior performance uniformly under all metrics is hence strong evi-
dence that MoCHIN with higher-order interaction directly modeled is armed
with greater modeling capability in the task of user-guided HIN clustering.

MoCHIN Prevails in User-Guided Clustering by Exploiting Signals
from Motifs more Comprehensively. Recall that KNN+Motifs, TGS, and
MoCHIN all exploit signals from motifs. However, the two baselines do not
directly model each occurrence of motif instances and only preserve pairwise or
edge-level information. In our experiments, even though TGS can generally out-
perform other baselines, it alongside KNN+Motifs still cannot generate results
as good as MoCHIN, which demonstrates the utility of more comprehensively
exploiting signals from motifs as MoCHIN does. We interpret this result as when
user guidance is limited, a fine-grained understanding of the rich semantics of
an HIN is instrumental in dissecting users’ intention and generating desirable
results.

Impact of Candidate Motif Choice. In this section, we study how the choice
of candidate motifs impacts MoCHIN and additionally use the concrete example
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Table 3. Ablation study of the MoCHIN model on the DBLP-group task with the
non–edge-level motifs, APPA and AP4TPA, optionally removing from the full model.

Macro-F1. NMI.

Fig. 4. Quantitative evaluation on the YAGO task under varied seed ratio.

in Fig. 3 to understand the model outputs. Particularly, we conducted an ablation
study by taking out either or both of the two non–edge-level motifs, APPA and
AP4TPA, in the DBLP-group task and reported the result in Table 3. The full
MoCHIN model outperformed all partial models, demonstrating the utility of
these motifs in clustering.

Moreover, we scrutinized the concrete example in Fig. 3 and checked how each
model assigned cluster membership for Eric Xing. The result is also included in
Table 3, which shows only the model variants with AP4TPA made the correct
assignment on Eric Xing. In Sect. 2 of the supplementary file, a visualization of
this ablation study is provided to further corroborate our observation.

7.4 Varied Seed Ratio

In addition to using 1% people as seeds for the YAGO task reported in Table 2,
we experiment under varied seed ratio 2%, 5%, and 10%. The results are reported
in Fig. 4. We omit Accuracy (Micro-F1), which has a similar trend with NMI.

For all methods, the performance increased as the seed ratio increased.
Notably, MoCHIN outperformed most baselines, especially when seed ratio is
small. This suggests MoCHIN is particularly useful when users provide less
guidance for being able to better exploit subtle information from limited data.
Note that higher seed ratio is uncommon in practice since it is demanding for
users to provide more than a few seeds.

Lastly, an efficiency study that empirically evaluates the proposed algorithm
is provided in Sect. 3 of the supplementary file.
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8 Discussion, Conclusion and Future Work

One limitation of MoCHIN is that it may not be easily applied to very large
datasets even with speed-up methods due to the complexity of the model itself.
However, MoCHIN would stand out in the scenario where fine-grained under-
standing of the network semantics is needed. In the experiment, we have shown
that MoCHIN can scale to HINs with tens of thousands of nodes. We note that
for user-guided clustering, it is possible the users are mostly interested in the
data instances most relevant to their intention, which could be a subset of a
larger dataset. For instance, if a data mining researcher wanted to cluster DBLP
authors by research group, it is possible they would not care about the nodes not
relevant to data mining research. As such the majority of the millions of nodes
in DBLP can be filtered out in preprocessing, and this user-guided clustering
problem would become not only manageable to MoCHIN but also favorable
due to MoCHIN’s capability in handling fine-grained semantics. Moreover, in
the case where the network is inevitably large, one may trade the performance
of MoCHIN for efficiency by using only relatively simple motifs. It is also worth
noting that incremental learning is possible for MoCHIN – when new nodes are
available, one do not have to retrain the model from scratch.

In conclusion, we studied the problem of user-guided clustering in HINs with
the intention to model higher-order interactions. We identified the importance of
modeling higher-order interactions without collapsing them into pairwise inter-
actions and proposed the MoCHIN algorithm. Experiments validated the effec-
tiveness of the proposed model and the utility of comprehensively modeling
higher-order interactions. Future works include exploring further methodologies
to join signals from multiple motifs, which is currently realized by a simple linear
combination in the MoCHIN model. Furthermore, as the current model takes
user guidance by injecting labels of the seeds, it is also of interest to extend
MoCHIN to the scenario where guidance is made available by must-link and
cannot-link constraints on node pairs.
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Abstract. In the densest subgraph problem, given an undirected graph
G(V, E, w) with non-negative edge weights we are asked to find a set of
nodes S ⊆ V that maximizes the degree density w(S)/|S|, where w(S)
is the sum of the weights of the edges in the graph induced by S. This
problem is solvable in polynomial time, and in general is well studied.
But what happens when the edge weights are negative? Is the problem
still solvable in polynomial time? Also, why should we care about the
densest subgraph problem in the presence of negative weights?

In this work we answer the aforementioned questions. Specifically, we
provide two novel graph mining primitives that are applicable to a wide
variety of applications. Our primitives can be used to answer questions
such as “how can we find a dense subgraph in Twitter with lots of replies
and mentions but no follows?”, “how do we extract a dense subgraph with
high expected reward and low risk from an uncertain graph”? We for-
mulate both problems mathematically as special instances of dense sub-
graph discovery in graphs with negative weights. We study the hardness
of the problem, and we prove that the problem in general is NP-hard,
but we also provide sufficient conditions under which it is poly-time solv-
able. We design an efficient approximation algorithm that works best in
the presence of small negative weights, and an effective heuristic for the
more general case. Finally, we perform experiments on various real-world
datasets that verify the value of the proposed primitives, and the effec-
tiveness of our proposed algorithms.

The code and the data are available at https://github.com/nega-
tivedsd.

1 Introduction

Dense subgraph discovery (abbreviated as DSD henceforth) is a major and active
topic of research in the fields of graph algorithms and graph mining. A wide
range of real-world, data mining applications rely on DSD including correlation
mining, fraud detection, electronic commerce, bioinformatics, mining Twitter
c© Springer Nature Switzerland AG 2020
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data, efficient algorithm design for fast distance queries in massive networks,
and graph compression [15].

In this work we introduce two novel primitives for DSD. These two primitives
are strongly motivated by real-world applications that we discuss in greater detail
in Sect. 3.1. The first question that our work addresses is related to uncertain
graphs. Uncertain graphs appear in a wide variety of applications that we survey
in Sect. 2. We define the uncertain graph model we use formally in Sect. 3.1, but
intuitively, uncertain graphs model probabilistically real-world scenarios where
each edge may exist or not in a graph (e.g., failure of a link). Problem 1 aims to
find a risk-averse dense subgraph. A similar formulation was suggested recently
by Tsourakakis et al. for graph matchings [31].

Problem 1 (Risk-averse DSD). Given an uncertain graph G, how do we
find a set of nodes S that induces a dense subgraph in expectation, and
the probability of not being dense in a realization/sample of G is low?

Our second problem focuses on multigraphs whose edges are associated with
different types. Such graphs appear naturally in numerous applications, and are
also known as multilayer multigraphs, e.g., [11]. For example, similarity between
two videos can be defined based on different criteria, e.g., audio, visual, and how
frequently these videos are being co-watched on Youtube. Similarity between
time series can be defined using a variety of measures including Euclidean dis-
tance, Fourier coefficients, dynamic time wraping, edit distance among others
[28]. Emails between people can be classified based on the nature of the interac-
tion (e.g., business, family). Twitter users may interact in various ways, including
follow, reply, mention, retweet, like, and quote. We formulate Problem 2, whose
goal is to detect efficiently dense subgraphs that exclude certain types of edges.
Later, we will define two variations, soft- and hard-exclusion queries.

Problem 2 (DSD-Exclusion-Queries). Given a multigraph G(V,E, �),
where � : E → {1, . . . , L} = [L] is the labeling function, and L is the
number of types of interactions, and an input set I ⊆ [L] of interactions,
how do we find a set of nodes S that induces a dense subgraph but does
not induce any edge e such that �(e) ∈ I?

Contributions. Our contributions are summarized as follows.

• We introduce two novel problems, (i) risk averse DSD, and (ii) DSD in large-
scale multilayer networks with exclusion queries. We show in Sect. 3.1 that
these two problems are special cases of DSD in undirected graphs with neg-
ative weights. To the best of our knowledge, this is the first work that intro-
duces these algorithmic primitives.

• We prove that DSD in the presence of negative weights is NP-hard in gen-
eral by reducing Max-Cut to our problem (Sect. 3.2), but we also provide
sufficient conditions under which it is exactly solvable in polynomial time.
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• We design a space-, and time-efficient approximation algorithm that performs
best in the presence of small negative weights. In the case of existence of large
negative weights, we design a well-performing heuristic.

• We deploy our developed primitives on the two real-world applications we
introduce. We extract subgraphs from uncertain graphs with high expected
induced weight and low risk. Finally, we mine Twitter data by finding dense
subgraphs that exclude certain types of interactions. A non-trivial experi-
mental contribution is the creation of an uncertain graph from the TMDB
database and Twitter graphs from the Greek Twitter-verse, that we will make
available to the community. Our tools provide insights, and we are confident
that will find numerous applications in graph mining, and anomaly detection.

In the following sections we use the notation summarized in Table 1.

Table 1. Notation

Notation Description

deg+(u) (deg−(u)) Positive (negative) degree of node u.
deg+(u) > 0, deg−(u) > 0

d(u) Total degree of u.
d(u) = deg+(u) − deg−(u)

w+(e)(w−(e)) Positive (negative) weight of edge e.
w+(e) > 0, w−(e) > 0

deg+S (u) (deg−
S (u)) Positive (negative) degree of node u within node set S ⊆ V .

deg+S (u) =
∑

v∈S w+(u, v), deg−
S (u) =

∑
v∈S w−(u, v)

w+(S) (w−(S)) Total positive (negative) induced weight by S.
w+(S) =

∑
e∈E(S) w

+(e), w−(S) =
∑

e∈E(S) w
−(e)

dS(u) Total degree of node u within S.
dS(u) = deg+S (u) − deg−

S (u)

2 Related Work

Uncertain graphs model naturally a wide variety of datasets and applications
including protein-protein interactions [21], kidney exchanges [27], and influence
maximization [19] While a lot of research work has focused on designing graph
mining algorithms for uncertain graphs, e.g., [6,22,24], there is less work on
designing efficient risk-averse optimization algorithms, and even lesser with solid
theoretical guarantees.

Risk-aversion has been implicitly discussed by Lin et al. in their work on
reliable clustering [22], where the authors show that interpreting probabilities
as weights does not result in good clusterings. Repetitive sampling from a large-
scale uncertain graph in order to reduce the risk is inefficient. Motivated by this
observation, Parchas et al. have proposed a heuristic to extract a good possible
world in order to combine risk-aversion with efficiency [24]. However, their work
comes with no guarantees. Jin et al. provide a risk-averse algorithm for distance
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queries on uncertain graphs [18]. He and Kempe propose robust algorithms for
the influence maximization problem [17]. Closest to our work lies the recent work
by Tsourakakis et al. who studied the problem of finding efficiently risk averse
graph and hypergraph matching algorithms [31].

Dense subgraph discovery (DSD) is a major graph mining topic, with
numerous diverse applications, ranging from fraud detection to bioinformatics,
see [15,30] for a detailed account of such applications. The densest subgraph
problem (DSP) a popular DSD objective, that is solvable in polynomial time
[13,16]. The DSP for undirected, weighted graphs G(V,E,w), w : E → R

+

maximizes the degree density ρ(S) = w(S)
|S| over all possible subgraphs S ⊆ V ,

where w(S) =
∑

e∈e[S] w(e) is the total induced weight by subgraph. In addition
to the exact algorithm that is based on maximum flow computation, Charikar
[8] proved that a greedy peeling algorithm produces a 1

2 -approximation of the
densest subgraph in linear time, see also [20]. Galimberti et al. studied core
decompositions – a concept intimately connected to DSD – on multilayer graphs
[12]. Finally, Cadena et al. first studied DSD with negative weights [7], but their
work focuses on anomaly detection, and the streaming nature of their input.

DSD on uncertain graphs is a less well studied topic. Zou was the first who
discussed the DSP on uncertain graphs. His work shows –as expected– that the
DSP in expectation can be solved in polynomial time [32]. The closest work
related to our formulation is the recent work by Miyauchi and Takeda [23].
While their original motivation is also DSD on uncertain graphs, the modeling
assumptions, and the mathematical objective differ significantly from ours. To
the best of our knowledge, there is no work on risk-averse DSD under general
probabilistic assumptions as ours.

3 Proposed Method

3.1 Why Negative Weights?

Risk-Averse Dense Subgraph Discovery. Uncertain graphs model the inher-
ent uncertainty associated with graphs in a variety of applications. Here, we
adopt the general model for uncertain graphs introduced by Tsourakakis et al.
[31]. For completeness we present it in the following.

Model: Let G([n], E, {ge(θe)}e∈E) be an uncertain complete graph on n nodes,
with the complete edge set E =

(
[n]
2

)
. The weight w(e) (reward) of each edge

e ∈ E is drawn according to some probability distribution ge with parameters
θe , i.e., w(e) ∼ ge(x;θe). We assume that the weight of each edge is drawn
independently from the rest; each probability distribution is assumed to have
finite mean, and finite variance. Given this model, we define the probability of
a given graph G with weights w(e) on the edges as:

Pr [G; {w(e)}e∈E ] =
∏

e∈E

ge(w(e);θe). (1)
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This model includes the standard Bernoulli model that is used extensively
in the existing literature as a special case. Specifically, in the standard binomial
uncertain graph model an uncertain graph is modeled by the triple G = (V,E, p)
where p : E → (0, 1] is the function that assigns a probability of success to
each edge independently from the other edges. According to the possible-world
semantics [5,10] that interprets G as a set {G : (V,EG)}EG⊆E of 2|E| possible
deterministic graphs (worlds), each defined by a subset of E. The probability of
observing any possible world G(V,EG) ∈ 2E is

Pr [G] =
∏

e∈EG

p(e)
∏

e∈E\EG

(1 − p(e)).

A key property of these models to keep in mind, is that each edge e in the
uncertain graph is independently distributed from the rest, and is associated with
an expected reward μe (expectation) and a risk σ2

e (variance). Finally, observe
that without any loss of generality in our general model described by Eq. (1) we
have assumed that the edge set is

(
[n]
2

)
; non-edges can be modeled as edges with

probability of existence zero.

Problem Formulation. Intuitively, our goal is to find a subgraph G[S] induced by

S ⊆ V such that its average reward

∑

e∈E(S)
we

|S| is large and the average associated

risk is low

∑

e∈E(S)
σ2
e

|S| . To achieve this purpose we model the problem as a densest
subgraph discovery problem in a graph with positive (reward) and negative (risk)
edge weights. Specifically, for every edge e = (u, v) ∈ E(G) we create two edges,
a positive edge with weight equal to the expected reward, i.e., w+(e) = μe and
a negative edge with weight equal to the opposite of the risk of the edge, i.e.,
w−(e) = σ2

e . We wish to find a subgraph S ⊆ V that has large positive average
degree w+(S)

|S| , and small negative average degree w−(S)
|S| . We combine the two

objectives into one objective f : 2V → R that we wish to maximize:

f(S) =
w+(S) + λ1|S|
w−(S) + λ2|S| .

The parameters λ1, λ2 ≥ 0 are positive reals. First, observe that this dense
subgraph discovery formulation is applicable to any graph with positive and
negative weights. Parameters λ1, λ2 allow us to control the size of the output
as follows. Let us reparameterize the two parameters as λ1 = ρλ, λ2 = λ. Then
f(S) = w+(S)+ρλ|S|

w−(S)+λ|S| , so if the ratio ρ ≥ 1, then the objective favors larger node
sets, whereas when ρ < 1 we favor smaller node sets.

We show how to solve the problem maxS⊆V f(S) by reducing it to standard
dense subgraph discovery [16]. We perform binary search on f(S) by answering
queries of the following form:

Does there exist a subset of nodes S ⊆ V such that f(S) ≥ q, where q is
a query value?
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Assuming an efficient algorithm for answering this query, and that the weights
are polynomial functions of n, then using O(log n) queries we can find the optimal
value for our objective f : V → R. By analyzing what each query corresponds
to, we find:

w+(S) + λ1|S|
w−(S) + λ2|S| ≥ q → w+(S) + λ1|S| ≥ q(w−(S) + λ2|S|) → (2)

∑

e∈E(S)

(

w+(e) − qw−(e)
)

︸ ︷︷ ︸
w̃(e)

≥ |S| (qλ2 − λ1)
︸ ︷︷ ︸

q′

→
∑

e∈E(S)

w̃(e)
|S| ≥ q′.

The latter inequality suggests that our original problem corresponds to query-
ing in G̃, a modified version of G where the edge weight of any edge e becomes
w+(e)−qw−(e), whether there exists a subgraph S with density greater than q′,
where q′ = qλ2−λ1. However, this does not imply that our problem is poly-time
solvable. The densest subgraph problem is poly-time solvable using a maximum
flow formulation when the weights are positive rationals [16]. As we will prove in
the next section, the densest subgraph problem when there exist negative weights
is NP-hard in general. However, our analysis above leads to a straight-forward
corollary that is worth stating. Intuitively, when for each edge e the ratio w+(e)

w−(e)

is large enough, then our problem is solvable in polynomial time.

Corollary 1. Assume that w+(e) ≥ qmaxw−(e) for all e ∈ E+ ∪ E−, where
qmax is the maximum possible query value. Then, the densest subgraph problem
is solvable in polynomial time.

Proof. If w+(e) ≥ qmaxw−(e) for each e ∈ E, we obtain w̃(e) ≥ 0 for each e ∈ E
in inequality (2) is equivalent to solving the densest subgraph problem in an
undirected graph with non-negative weights, see [16,29].

Observe that a trivial upper bound of qmax can be obtained by setting
w+(S) =

∑
e∈E(G) w+(e), w−(S) = 0, and since λ1|S| ≤ λ1n, λ2|S| ≥ λ2 for

all S 	= ∅, we see that qmax ≤
∑

e∈E(G) w+(e)+λ1n

λ2
. For polynomially bounded

weights, this is a polynomial function of n, hence the number of binary search
iterations is logarithmic.

Controlling the Risk in Practice. There exist real-world scenarios where the
practitioner wants to control the trade-off between reward and risk, see [31]. An
effective way to change the risk tolerance is as follows by multiplying the nega-
tive induced weight w−(S) by B ∈ (0,+∞). Namely, our objective f : 2V → R

is f(S) = w+(S)+λ1|S|
Bw−(S)+λ2|S| . An interesting open problem is to develop a formal

(bi-criteria) approximation for risk averse DSD along the lines of [26,31].

Soft and Hard Exclusion Dense Subgraph Queries. Given the Twitter
network, where user accounts may interact in more than one ways (e.g., follow,
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retweet, mention, quote, reply), can we find a dense subgraph that does not
contain any follow but contains many reply interactions? We ask this question
in a more general form.

Problem 3. Given a large-scale multilayer network, how do we find a
dense subgraph that excludes certain types of edges?

We consider two types of such queries, the soft and hard queries. In the former
case we want to find subgraphs with perhaps few edges of certain types, in the
latter case we want to exclude fully such edges. An algorithmic primitive that
can answer efficiently these queries can be used to understand the structure of
large-scale multilayer networks, and find anomalies and interesting patterns. In
principle, we set the edge weight of an excluded type to −W where W > 0 is
an input parameter. If we set W = +∞, subgraphs that do not induce any edge
of any excluded type will have positive weight, whereas subgraphs that induce
even one edge of a forbidden type will have −∞ weight. If we set W to a small
value, then there may be some undesired edges in the output subgraph. The
pseudo-code in Algorithm 1 describes this approach.

Algorithm 1: Exclusion-Queries
Input: G(V, E), {labels}, W > 0
for e ∈ E(G) do

for c ∈ labels do
if If type(e) = c then

w(e) ← −W (else w(e) remains 1)
end

end

end
return S ⊆ V that achieves maximum average degree in G(V, E, w).

3.2 Hardness

We prove that solving the densest subgraph problem on graphs with negative
weights is NP-hard. We formally define our problem Neg-DSD.

Problem 4 (Neg-DSD). Given a graph G with loops and possibly nega-
tive weights, find the subset A of V that maximizes w(A)

|A| .

We prove that Neg-DSD is NP-hard. Our reduction is based on the proposed
strategy by Peter Shor for showing that the max-cut problem on graphs with possi-
bly negative edges isNP-hard [1]. This is stated as theTheorem1.For convenience,
we also define the decision version of the maximum cut problem [1].
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Theorem 1. Neg-DSD is NP-hard.

Problem 5 (Max-Cut). Given a graph G(V,E) and a constant c, find a partition
(V1, V2) of V such that cut(V1, V2) =

∑
u∈V1,v∈V2

w(u, v) > c.

Our proof strategy is inspired by Peter Shor’s proof that max-cut with neg-
ative weight edges is NP-hard [1]. We provide a detailed proof sketch.

Proof. First, we define the Positive-Cut problem, and show that it is NP-hard
by reducing the Max-Cut problem to it.

Problem 6 (Positive-Cut). Given a graph G with possibly negative weights, find
a partition (V1, V2) of V such that cut(V1, V2) > 0.

We choose two nodes u, v that lie on opposite sides of an optimal max cut
(V ∗

1 , V ∗
2 ). Despite the fact we do not know the max cut, we can perform this step

in polynomial time by repeating the following procedure for all possible pairs of
nodes; if we cannot find a positive cut for any of the pairs, then the answer to the
Max-Cut is negative. With a vary large value d (e.g. d = 1 + maxe∈E(w+(e))),
we construct a graph G′ by adding negative weight equal to −d from u and v
to all other vertices, and an edge of weight (n − 2)d − c between u, v. All cuts
that place u, v on the same side will be negative in G′ provided d is sufficiently
large. All other cuts will be positive if and only if the corresponding cut in G is
greater than c. Therefore, Positive-Cut is NP-hard.

Finally we prove that Neg-DSD is NP-hard using a reduction from
Positive-Cut. We construct a graph G′ by negating every weight in G putting
a loop on every vertex so that its weighted degree is zero. Therefore, the sum
of the degrees of any set A in G′ is equal to

∑
v∈A 0 = 2w(A) + cut(A, V \A).

Finally, observe that a cut (V1, V2) has positive weight in G if and only if V1 has
positive average degree.

3.3 Algorithms and Heuristics

A popular algorithm for the densest subgraph problem is Charikar’s algorithm
[8]. We study the performance of this algorithm in the presence of negative
weights. The pseudocode is given as Algorithm 2. The algorithm iteratively
removes from the graph the node of the smallest degree d(v) = deg+(v) −
deg−(v), and among the sequence of n produced graphs, outputs the one that
achieves the highest degree density. Our main theoretical result for the perfor-
mance of Algorithm 2 is stated as Theorem 2.

Theorem 2. Let G(V,E,w), w : E → R be an undirected weighted graph with
possibly negative weights. Let S∗ be the optimal densest subgraph in G with
average density w(S∗)

|S∗| = ρ∗. If the negative degree deg−(u) of any node u is
upper bounded by Δ, then Algorithm 2 outputs a set whose density is at least
ρ∗

2 − Δ
2 .
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Algorithm 2: Peeling
Input: G
n ← |V |, Hn ← G;
for i ← n to 2 do

Let v be the vertex of Gi of minimum degree, i.e.,
d(v) = deg+(v) − deg−(v) (break ties arbitrarily);
Hi−1 ← Hi\v;

end
return Hj that achieves maximum average degree among His, i = 1, . . . , n.

Proof. By the optimality of S∗ we obtain that dS∗(v) ≥ ρ∗, and then trivially
deg+(v) ≥ ρ∗. Consider the execution of Algorithm 2, and let u ∈ S∗ be the
first vertex from S∗ removed during the peeling. Let S be the set of nodes at
that iteration, including u. By the peeling process, we have dS(v) ≥ dS(u) for
all v ∈ S. Furthermore,

dS(u) = deg+S (u) − deg−
S (u) ≥ deg+S (u) − Δ,

since by our assumption deg−
S (u) ≤ deg−(u) ≤ Δ. This implies that

2w(S) =
∑

v∈S

dS(v) ≥
∑

v∈S

deg+S (v) − |S|Δ ≥ |S|(ρ∗ − Δ) → w(S)
|S| ≥ ρ∗

2
− Δ

2
.

This yields that the output of Algorithm 2 outputs a set of nodes S̄ with
density at least ρ∗

2 − Δ
2 .

When the additive error term in the approximation is small compared to
the term ρ∗

2 , then the peeling algorithm performs effectively with strong guar-
antee. In practice, Algorithm 2 performs well on large-scale graphs where the
negative weights are small. In the presence of very large negative weights, the
approximation guarantees become meaningless.

Claim. In the presence of large negative weights, Algorithm 2 may perform arbi-
trarily bad.

This is illustrated in Fig. 1(a) that provides an instance of a graph with large
negative weights. Intuitively, in bad instances when there exist large negative
degrees, nodes that should not be removed early on by the peeling process, are
actually removed. Specifically, consider when W = n−4

3 , then 3W −n < −3. The
degrees of nodes are

3W − n
︸ ︷︷ ︸
one node

< −3
︸︷︷︸

n−2 nodes

< −2
︸︷︷︸

two nodes

< 0 < 2ε + W
︸ ︷︷ ︸

three nodes

.

Therefore, the center node is removed first, and the peeling algorithm will output
as the densest subgraph the triangle of density ε. The optimal densest subgraph
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Fig. 1. Bad peeling instances. For details, see Sect. 3.

has 3W+3ε
4 . By allowing ε to be arbitrarily small, we observe that the approxi-

mation ratio becomes arbitrarily bad. To tackle such scenarios, i.e., where nodes
from the densest subgraph are peeled earlier than when they should, we pro-
pose an effective heuristic which is outlined in Algorithm 3. The algorithm again
peels the nodes but scores every node u according to Cdeg+(u)−deg−(u), where
C > 0 is a parameter that is part of the input.

Remark About C in Algorithm 3. While Fig. 1(a) suggests the use of C ≥ 1,
it could be the case that C has to be set to a value less than 1 to obtain good
results. We provide an example where using C < 1 can help in providing a better
peeling permutation of the nodes. Consider a graph whose weights are either +1
or −1, that consists of two connected components. The first component is a
positive clique on r nodes. The second component is the union of two random
binomial graphs G(n, p) where p = 1

2 . This is illustrated in Fig. 1(b). The degree
of any node u in the first component is deg(u) = deg+(u)−deg−(u) = (r−1)−0.
The expected degree of any node in the second component is 0. Furthermore, the
average degree of any subset of nodes in the 2nd component is 0 in expectation.
However, using concentration bounds (details omitted) one can show that it is
likely that there will exist a node u in the second component with positive degree
κ
√

n and negative degree κ′√n with κ > κ′, and therefore positive total degree.
Only the use of a C < 1 will improve the peeling ordering; e.g., in the extreme
case where C = 0 the nodes of the second component will be removed first.

Rule-of-Thumb. In practice, given that each run of the algorithm takes linear
time, we can afford to run the algorithm for a bunch of C values and return the
densest subgraph among the outputs produced by each run, instead of using one
value for C. This strategy is applied in Sect. 4.

Algorithm 3: Heuristic-Peeling
Input: G, C ∈ (0, +∞)
n ← |V |, Hn ← G for i ← n to 2 do

Let v be the vertex of Gi of minimum degree, i.e.,
d(v) = Cdeg+(v) − deg−(v) (break ties arbitrarily) Hi−1 ← Hi\v

end
return Hj that achieves maximum average degree among His, i = 1, . . . , n.
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Shifting the Negative Weights. Finally, for the sake of completeness, we
mention that the perhaps natural idea of shifting all the weights by the most
negative weight in the graph, in order to obtain non-negative weights, and apply
the exact polynomial time algorithm on the weight-shifted graph may perform
arbitrarily bad. To see why, consider a graph that consists of three components,
a triangle with positive weights equal to 1, an edge with a large negative weight
−Δ < 0, and a large clique with small negative weight −ε < 0. In this graph,
the densest subgraph is the positive triangle, but by shifting the weights by
+Δ, there exists values for ε,Δ such that the densest subgraph in the weight-
shifted graph is the negative clique. Also experimentally, this heuristic performs
extremely poorly.

4 Experimental Results

4.1 Experimental Setup

Datasets. All the datasets we have used in our experiments are publicly avail-
able, and are described in Table 2. We use four protein-protein interaction uncer-
tain graphs, Biogrid, Collins, Gavin, Krogan that have been used in prior biolog-
ical studies (e.g., [9,14,21]) and are available at [2]. The set of nodes represents
proteins and the probability of the edge is equal to the existence probability of
the interaction. Another uncertain graph, available at [4], is created from the
TMDB movie database as follows. The set of nodes corresponds to actors, and
the probability of the edge is equal to the probability that these two actors co-
star in a movie. Specifically, for actors u, v, the probability p(u, v) is equal to the
Jaccard coefficient J(Mu,Mv) = |Mu∩Mv|

|Mu∪Mv| , where Mu,Mv are the sets of movies
that u, v have co-starred. We choose weights to represent a function of the pop-
ularity of the movies, i.e., a score assigned to each movie by TMDB (1 is the
lowest score in our collected dataset). Intuitively, these scores reflect the reward
of a potential collaboration between two actors. While there are many ways to
set the weight of an edge for two actors (e.g. average popularity), we focus on
the most popular movies they have co-starred in. The main rationale behind this
choice is that the majority of actors play in movies whose majority popularity is
1, i.e., the lowest possible. For a pair of actors {u, v}, let s0 ≥ . . . ≥ sk−1 where
k = min(|Mu ∩ Mv|, 5) be the popularity scores of movies they have co-starred
in. We set w(u, v) =

∑k−1
j=0

sj

2j , i.e., a discounted sum of popularities, focusing
more on the most popular movies the two actors have co-starred in.

Finally, we used an open-source twitter API crawler to monitor twitter traf-
fic between February 1st and February 14th, 2018 [25]. We provided detailed
information about each daily graph. Here, the number of edges is a five dimen-
sional vector, whose coordinates correspond to the number of follows, mentions,
retweets, quotes, and replies respectively. We will make the Twitter datasets
available upon proper anonymization. The datasets we use are overall small, and
medium sized, therefore our proposed algorithm for a fixed C value, requires few
seconds or few minutes for the largest graphs.
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Table 2. Datasets used in our experiments. The number of vertices n and edges m is
recorded for each graph. The datasets annotated by � have been created by us, and
are publicly available. For details, see Sect. 4.1.

Name n m

� Biogrid 5 640 59 748

� Collins 1 622 9 074

� Gavin 1 855 7 669

� Krogan core 2 708 7 123

� Krogan extended 3 672 14 317

� TMDB 160 784 883 842

� Twitter (Feb. 1) 621 617 (902 834, 387 597, 222 253, 30 018, 63 062)

� Twitter (Feb. 2) 706 104 (1 002 265, 388 669, 218 901, 29 621, 64 282)

� Twitter (Feb. 3) 651 109 (1 010 002, 373 889, 218 717, 27 805, 59 503)

� Twitter (Feb. 4) 528 594 (865 019, 435 536, 269 750, 32 584, 71 802)

� Twitter (Feb. 5) 631 697 (999 961, 396 223, 233 464, 30 937, 66 968)

� Twitter (Feb. 6) 732 852 (941 353, 407 834, 239 486, 31 853, 67 374)

� Twitter (Feb. 7) 742 566 (1 129 011, 406 852, 236 121, 30 815, 68 093)

Unfortunately, due to space constraints we present a representative sample
of our findings. The interested reader can find an extended version of this paper
online [3].

Machine Specs and Code. The experiments were performed on a single
machine, with an Intel Xeon CPU at 2.83 GHz, 6144KB cache size, and 50 GB of
main memory. The code is written in Python, and available at https://github.
com/negativedsd.

4.2 Risk-Averse DSD

We perform two risk averse DSD experiments. First, for various fixed pairs of
(λ1, λ2) values, we range the parameter B (reminder: B is the multiplicative
factor of w−(S), see Controlling the risk in practice, Sect. 3.1) to control the
trade-off between expected average reward and average risk. A typical outcome of
our algorithm on the set of uncertain graphs we have tested it on for λ1 = λ2 = 1,
and C = 1 is summarized in Table 3. As B increases, we tolerate less risk, but
the expected average reward drops as well.

In our second experiment we test the effect of rest of the parameters. We fix
B = 1, and then we perform the following procedure. For each dataset, we fix a
pair of (λ1, λ2) values and run our proposed algorithm using 7 values of C. The
C value 0.5 always resulted in trivial results that would skew a lot the plots so
it is omitted. Specifically, for C = 0.5 for all three pairs of λ values we use, we
obtain (almost) the whole graph as output of the peeling process. The three pairs
of λ values we use are (λ1, λ2) ∈ {(0.5, 1), (1, 1), (2, 1)}. Our results are shown

https://github.com/negativedsd
https://github.com/negativedsd
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Table 3. Exploring the effect of risk tolerance parameter B on the gavin dataset. For
details, see Sect. 4.2.

B Average exp. reward Average risk |S∗|
0.25 0.18 0.09 6

1 0.17 0.08 10

2 0.13 0.06 31

)c()b()a(

)f()e()d(

Fig. 2. Risk averse DSD results for Biogrid (a) average expected weight, (b) average
risk, (c) output size, and for TMDB (d) average expected weight, (e) average risk, (f)
output size. For details, see Sect. 4.2.

in Fig. 2. For the TMDB graph, the last pair of λ values results in obtaining the
whole graph as the optimal solution, so we omit it from Figs. 2(d), (e), and (f).
We include these two datasets as they show that the change in the C value in
principle does not affect risk aversion (Fig. 2(b)), but it could happen due to the
different peeling orderings it produces that the output will be associated with
different risk (Fig. 2(d)). We also observe that as we increase λ1 the size of the
output increases. This agrees with the insights we provide in Sect. 3; namely, we
reward larger sets of nodes.

4.3 Mining Twitter Using DSD-Exclusion Queries

We test our DSD exclusion query primitive on the Twitter daily data. We present
results that we obtain for different pairs of graphs induced by different types of
interactions, for C = 1. For each such pair, we perform all possible non-trivial
exclusion queries:
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)c()b()a(

)f()e()d(

Fig. 3. Degree density (1st row), and output size (2nd row) for three exclusion queries
per each pair of interaction types over the period of the first week of February 2018.
(a), (d) Follow and mention. (b), (e) Follow and retweet. (c), (f) Mention and retweet.

• Every type of interaction is allowed (query denoted as [1, 1]).
• One of the two interaction types is excluded (queries denoted as [1, 0], and

[0, 1] for excluding the first and second type of interactions respectively).

Figure 3 shows for each pair of interactions the degree density (1st row), and
the output size (2nd row). Interestingly, observe that in Fig. 3(c) the exclusion
query [0, 1] that excludes mentions and allows retweets results in density close
to 0. This is because the Twitter API considers every retweet as a mention. By
excluding mentions, we exclude all retweets. The density is not exactly zero,
due to some small noise in the crawled mentions, i.e., there exist a few retweets
that have not been included in the mentions. We have performed more exclusion
queries that involve more types of interactions. For instance, by looking into
reply, quote, retweet interactions, we find the following results for two queries on
February 1st, 2018.

• When we allow all types we find a subset of 351 nodes, whose retweet density
is 72.6, reply density 3.86, and quote density 1.08. We observe this difference
since the retweet layer of interactions is much denser than the other two.

• When we exclude the retweets, but allow quotes and replies, we find a set of
30 nodes whose reply degree density is 15.46, and quote degree density 0.066.

Effect of C, and W . As we discussed earlier, ranging W , from small values
to +∞ quantifies how much we care about excluding the undesired edge types.
Table 4 shows what we observe typically on all experiments we have performed.
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Specifically, we perform an exclusion query [1, 0] on the retweet, reply inter-
actions. We denote by S∗ the output of Algorithm 3. By inspecting the last
column ρreply(S∗) of the table, we observe that even when we set the weight of
each reply interaction to −1 (soft query), our algorithm outputs a set S∗ with
very few replies, for all C ∈ { 1

10 , 1, 10} values we use. When W is set to the
very large value 200 000 (hard query), ρreply(S∗) becomes 0 but we also observe
a drop in the degree density of the retweets. For instance for C = 1, ρretweet(S∗)
drops from 72.70 to 30.38.

Table 4. Exploring the effect of the negative weight −W on the excluded edge types
for various C values. For details, see Sect. 4.3.

C W |S∗| ρretweet(S
∗) ρreply(S

∗)

0.1 1 296 63.44 −0.75

5 99 45.67 −0.01

200 000 200 30.37 0

1 1 346 72.70 −2.75

5 319 68.70 −1.29

200 000 200 30.38 0

10 1 351 73.10 −3.31

5 351 73.10 −3.31

200 000 200 30.37 0

5 Open Problems

In this work we have initiated a formal study of DSD with negative weights.
Understanding better the complexity of the problem remains open. For example,
we provided sufficient conditions under which the problem is poly-time solvable.
Developing an approximation or bi-criteria approximation algorithms for risk
averse DSD that aims to maximize the expected reward subject to bounds on
the risk is also an interesting open problem. Finally, and more broadly, designing
risk-averse, efficient graph mining algorithms is an interesting direction.
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Abstract. We propose a novel approach for learning node represen-
tations in directed graphs, which maintains separate views or embed-
ding spaces for the two distinct node roles induced by the directional-
ity of the edges. We argue that the previous approaches either fail to
encode the edge directionality or their encodings cannot be generalized
across tasks. With our simple alternating random walk strategy, we gen-
erate role specific vertex neighborhoods and train node embeddings in
their corresponding source/target roles while fully exploiting the seman-
tics of directed graphs. We also unearth the limitations of evaluations
on directed graphs in previous works and propose a clear strategy for
evaluating link prediction and graph reconstruction in directed graphs.
We conduct extensive experiments to showcase our effectiveness on sev-
eral real-world datasets on link prediction, node classification and graph
reconstruction tasks. We show that the embeddings from our approach
are indeed robust, generalizable and well performing across multiple
kinds of tasks and graphs. We show that we consistently outperform all
baselines for node classification task. In addition to providing a theoret-
ical interpretation of our method we also show that we are considerably
more robust than the other directed graph approaches.

Keywords: Directed graphs · Node representations · Link prediction ·
Graph reconstruction · Node classification

1 Introduction

Unsupervised representation learning of nodes in a graph refers to dimensional-
ity reduction techniques where nodes are embedded in a continuous space and
have dense representations. Such node embeddings have proven valuable as rep-
resentations and features for a wide variety of prediction and social network
analysis tasks such as link prediction [14], recommendations [25], vertex label
assignment, graph generation [7] etc.

However most of the recent node embedding methods have been focused on
undirected graphs with limited attention to the directed setting. Often valuable
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doi.org/10.1007/978-3-030-46150-8 24) contains supplementary material, which is
available to authorized users.
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knowledge is encoded in directed graph representations of real-world phenomena
where an edge not only suggests relationships between entities, but the direc-
tionality is often representative of important asymmetric semantic information.
Prime examples are follower networks, interaction networks, web graphs, and
citation networks among others.

Most of the approaches in this regime [8,19,22] focus on the goal of preserv-
ing neighborhood structure of nodes when embedding one space into another, but
suffer from some key limitations when representing directed graphs. First, most
of these node embedding techniques operate on a single embedding space and dis-
tances in this space are considered to be symmetric. Consequently, even though
some of the approaches claim to be applicable for directed graphs, they do not
respect the asymmetric roles of the vertices in the directed graph. For example,
in predicting links in an incomplete web graph or an evolving social network graph,
it is more likely that a directed link exists from a less popular node, say Max Smith,
to a more popular node, say an authoritative node Elon Musk, than the other way
around. Algorithms employing single representations for nodes might be able to
predict a link between Elon Musk and Max Smith but cannot predict the direction.

Secondly, approaches like APP [26] overcome the first limitation by using
two embedding spaces but are unable to differentiate between directed neigh-
borhoods where these neighborhoods can be distinguished based on reachability.
For example, for a given node v there exists a neighborhood which is reachable
from v and there exists another type of neighborhood to which v is reachable.
More acutely, many nodes with zero outdegree and low indegree might not be
sampled because of the training instance generation strategy from its random
walk following only outgoing edges. This renders such approaches not to be
robust, a desirable and important property for unsupervised representations,
for several real-world graphs.

Finally, works like HOPE [17] rely on stricter definitions of neighborhoods
dictated by proximity measures like Katz [9], Rooted PageRank etc. and cannot
be generalized to a variety of tasks. In addition, they do not scale to very large
graphs due to their reliance on matrix decomposition techniques. Moreover, the
accuracy guarantees of HOPE rely on low rank assumption of the input data.
Though not completely untrue for real world data, singular value decomposition
(SVD) operations used in matrix factorization methods are known to be sensitive
even for the case of a single outlier [2]. We later empirically demonstrate in our
experiments that HOPE can not be easily adapted for the node classification
task as it is linked to a particular proximity matrix.

We argue that the utility and strength of unsupervised node representations
is in their (1) robustness across graphs and (2) flexibility and generalization to
multiple tasks and propose a simple yet robust model for learning node repre-
sentations in directed graphs.

Our Contribution. We propose a robust and generalizable approach for learn-
ing Node Embeddings Respecting Directionality (NERD) for directed and (un)–
weighted graphs. NERD aims at learning representations that maximize the like-
lihood of preserving node neighborhoods. But unlike the previous methods, it
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identifies the existence of two different types of node neighborhoods; one in its
source role and the other in its target role. We propose an alternating random walk
strategy to sample such node neighborhoods while preserving their respective role
information. Our alternating walk strategy is inspired from SALSA [13] which is
a stochastic variation of the HITS [11] algorithm and also identifies two types of
important nodes in adirectednetwork:hubs and authorities. Roughly speaking, the
paths generatedwith our alternating randomwalks alternate between hubs (source
nodes) andauthorities (targetnodes), thereby samplingbothneighboringhubs and
authorities with respect to an input node. From a theoretical perspective we derive
an equivalence for NERD’s optimization in a matrix factorization framework. In
addition, we also unearth the limitations of earlier works in the evaluation of mod-
els on directed graphs and propose new evaluation strategies for Link Prediction
and Graph Reconstruction tasks in directed graphs. Finally we perform exhaustive
experimental evaluation that validates the robustness and generalizability of our
method.

2 Related Work

Traditionally, undirected graphs have been the main use case for graph embedding
methods. Manifold learning techniques [3], for instance, embed nodes of the graph
while preserving the local affinity reflected by the edges. Chen et al. [6] explore the
directed links of the graph using random walks, and propose an embedding while
preserving the local affinity defined by directed edges. Perrault-Joncas et al. [20]
and Mousazadeh et al. [16] learn the embedding vectors based on Laplacian type
operators and preserve the asymmetry property of edges in a vector field.

Advances in language modeling and unsupervised feature learning in text
inspired their adaptations [4,8,19,22,23] to learn node embeddings where the
main idea is to relate nodes which can reach other similar nodes via random
walks. DeepWalk [19], for instance, samples truncated random walks from the
graph, thus treating walks as equivalent of sentences, and then samples node-
context pairs from a sliding window to train a Skip-Gram model [15]. Node2vec
[8], on the other hand, uses a biased random walk procedure to explore diverse
neighborhoods. LINE [22] which preserves first and second order proximities
among the node representations can also be interpreted as embedding nodes
closer appearing in random walk of length 1. VERSE [23] learns a single embed-
ding matrix while encoding similarities between vertices sampled as first and
last vertex in a PageRank style random walk.

Other works [5,10,18,24] investigate deep learning approaches for learning
node representations. Like most of the other methods, they also use a single
representation for a node, hence ignoring the asymmetric node roles. Other
downsides of these deep learning approaches are the computationally expensive
optimization and elaborate parameter tuning resulting in very complex models.

Asymmetry Preserving Approaches. To the best of our knowledge, there
are only two works [17,26] which learn and use two embedding spaces for nodes,
one representing its embedding in the source role and the other in the target
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role. Note that [1] does not preserve asymmetry for the nodes, which is the
main theme of this work (more comparisons and discussions on this method can
be found in the Appendix). HOPE [17] preserves the asymmetric role informa-
tion of the nodes by approximating high-order proximity measures like Katz
measure, Rooted PageRank etc. Basically they propose to decompose the sim-
ilarity matrices given by these measures and use the two decompositions as
representations of the nodes. HOPE cannot be easily generalized as it is tied
to a particular measure. APP [26] proposes a random walk based method to
encode rooted PageRank proximity. Specifically, it uses directed random walks
with restarts to generate training pairs. Unlike other DeepWalk style random
walk based methods, APP does not discard the learnt context matrix, on the
other hand it uses it as a second (target) representation of the node. However,
the random walk employed sometimes is unable to capture the global structure
of the graph. Consider a directed graph with a prominent hub and authority
structure where many authority nodes have no outgoing links. In such a case
any directed random walk from a source node will halt after a few number of
steps, irrespective of the stopping criteria. In contrast our alternating random
walks also effectively sample low out-degree vertices in their target roles, thereby
exploiting the complete topological information of a directed graph.

3 The NERD Model

Given adirected graphG = (V,E)we aim to learnd-dimensional (d << |V |) repre-
sentations, Φs and Φt, such that the similarities between vertices in their respective
source and target roles are preserved. We argue that two vertices can be similar to
each other in three ways: (i) both nodes in source roles (both pointing to similar
authorities) (ii) both the nodes in target roles (for example both are neighbors of
similar hubs) (iii) nodes in source-target roles (hub pointing to a authority). We
extract such similar nodes via our alternating random walk strategy which alter-
nates between vertices in opposite roles. For every vertex two embedding vectors
are learnt via a single layer neural model encoding its similarities to other vertices
in source and target roles. Alternatively, NERD can be interpreted as optimizing
first order proximities in three types of computational graphs it extracts from the
original graph via alternating random walks. We elaborate on this alternate view
while explaining our learning framework in Sect. 3.2.

Notations. We first introduce the notations that would also be followed in the
rest of the paper unless stated otherwise. Let G = (V,E) be a directed weighted
graph with N nodes and M edges. Let w(e) denote the weight of edge e and
vol(G) =

∑
e w(e). For any vertex v ∈ V let dout(v) denote the total outdegree of

v, i.e. the sum of weights of the outgoing edges from v. Similarly din(v) denotes
the total indegree of v. For unweighted graphs, we assume the weight of each
edge to be 1. Let Φs(v) and Φt(v) represent the respective embedding vectors for
any node v ∈ V in its role as source and target respectively. Let P in and P out

denote the input and output degree distributions of G respectively. Specifically
P in(v) = din(v)/vol(G) and P out(v) = dout(v)/vol(G). We remark that the
terms vertex and node are used interchangeably in this work.
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3.1 Alternating Walks

We propose two alternating walks which alternate between source and target
vertices and are referred to as source and target walks respectively. To under-
stand the intuition behind these walks, consider a directed graph G = (V,E)
with N nodes. Now construct a copy of each of these N nodes and call this
set Vc. Construct an undirected bipartite graph G′ = (V ∪ Vc, E

′) such that for
vertices u, v ∈ V and vc ∈ Vc, where vc is a copy of vertex v, there is an edge
(u, vc) ∈ E′ if and only if (u, v) ∈ E. In the directed graph G the adjacency
matrix A is generally asymmetric, however, with our construction we obtain a
symmetric adjacency matrix A for bipartite graph G′.

A =
(

0 A
AT 0

)

. (1)

A walk on this undirected bipartite G′ starting from a vertex in V will now
encounter source nodes in the odd time step and target nodes in the even time
step. We call such a walk an alternating walk. Formally source and target alter-
nating walks are defined as follows.

Definition 1. The Source Walk. Given a directed graph, we define source-
walk of length k as a list of nodes v1, v2, ..., vk+1 such that there exists edge
(vi, vi+1) if i is odd and edge (vi+1, vi) if i is even: v1 → v2 ← v3 → · · ·
Definition 2. The Target Walk. A target walk of length k, starting with an
in-edge, from node v1 to node vk+1 in a directed network is a list of nodes
v1, v2, ..., vk+1 such that there exists edge (vi+1, vi) if i is odd and edge (vi, vi+1)
if i is even: v1 ← v2 → v3 ← · · ·
We now define the alternating random walk which we use to sample the respec-
tive neighborhoods of vertices in 3 types of NERD’s computational graphs.

Alternating Random Walks. To generate an alternating random walk we first
sample the input node for the source/target walks from the indegree/outdegree
distribution of G. We then simulate source/target random walks of length �. Let
ci denote the i-th node in the alternating random walk starting with node u.
Then

Pr(ci = v′|ci−1 = v) =

⎧
⎪⎨

⎪⎩

1
dout(v) · w(v, v′), if (v, v′) ∈ E

1
din(v) · w(v′, v), if (v′, v) ∈ E

0, otherwise

.

All nodes in a source/target walk in their respective roles constitute a neigh-
borhood set for the input (the walk starts at the input node) node.
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Fig. 1. NERD performing a source walk with input vertex C on an example graph.
Node C is the input node. Nodes C, B and F are in source roles and nodes A, D
and E are in target roles. Nodes A, D, E and B, F constitute the target and source
neighborhood of source node C. In Figure (b), we show two embedding representations
for nodes in their source and target roles. Nodes C and A will be embedded closer
in their source-target roles whereas will be far away in source-source or target-target
roles.

3.2 Learning Framework Using Computation Graphs

As already mentioned NERD can be intuitively understood as optimizing first
order proximity (embedding vertices sharing an edge closer) in 3 types of compu-
tation graphs that it extracts from G via alternating walks. In particular NERD
operates on (i) directed source-target graphs (Gst) in which a directed edge
exists between nodes of opposite roles (ii) source-source graphs (Gs) in which
an undirected edge between nodes represents the similarity between two nodes
in their source roles (iii) target-target graphs (Gt) in which an undirected edge
between nodes represents the similarity between two nodes in their target roles.
For example corresponding to a source walk say v1 → v2 ← v3 → · · · , (v1, v2)
form an edge in Gst, (v1, v3) form an edge in Gs. For a node/neighbor pair u, v in
roles r1 and r2 respectively in any of the computation graphs, we are interested
in finding representations Φr1(u) and Φr2(v) in their respective roles such that
the following objective is maximized.

O(u, v) = log σ(Φr1(u) · Φr2(v)) + κEv′∼Pn
r2

(v′)(log σ(−Φr1(u) · Φr2(v
′)), (2)

where σ(x) = 1
1+exp(−x) and Pn

r2(v
′) is the indegree or outdegree noise distribu-

tion and κ is the number of negative examples. We set Pn
r2(v

′) = d3/4(v)∑
v∈V d3/4(v)

,
where d is the indegree (if r2 is the target role) or outdegree (if r2 is the source
role) of vertex v. We optimize Eq. (2) using Asynchronous Stochastic Gradient
Descent [21].

Figure 1 shows a toy example depicting the working of NERD. The pseudo-
code for NERD is stated in Algorithm 1. NERD performs a total of γ walks each
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walk being source walk or target walk with probability 0.5. The procedure for
training a source or target walk is stated in Algorithm2. The first vertex of the
walk is the input vertex whose proximity is optimized (using negative samples)
with respect to its neighbors in the opposite role (in line 14) and in the same
role (in line 16). The joint training with respect to neighbors of same role can
be controlled by a binary parameter Joint.

Algorithm 1. NERD
Require: graph G(V,Ew), number of nodes to be sampled of each type n, embedding

size d, number of walks γ, number of negative samples κ, joint ∈ {0, 1}
Ensure: matrix of source representations Φs ∈ R

|V |×d and target representations
Φt ∈ R

|V |×d

1: function NERD(G, n, d, γ, κ)
2: Initialize Φs and Φt

3: for i = 0 . . . γ do
4: if (rand() > 0.5) then
5: s1 ∼ P out

6: Ws = SourceWalk(s1)
7: Train(Ws, s, κ,joint) � source role s
8: else
9: t1 ∼ P in

10: Wt = TargetWalk(t1)
11: Train(Wt, t, κ, joint) � target role t

We further derive closed form expression for NERD’s optimization in the
matrix framework as stated in the following theorem (for proof see Supplemen-
tary Material). Note that NERD (non-joint) refers to when the optimization is
done only on the source/target graph.

Theorem 1. For any two vertices i and j, NERD (non-joint) finds source
(Φs(i)) and target (Φt(j)) embedding vectors such that Φs(i) ·Φt(j) is the (i, j)th
entry of the following matrix

log(vol(G)
∑

r∈{1,3,...,2n−1}
(D−1A)rD−1) − log κ,

where n and κ are as in Algorithm1 and A is the adjacency matrix of the bipartite
network G′ obtained by mapping the given directed network G to G′ as defined
in (1).

Complexity Analysis. Sampling a vertex based on indegree or outdegree dis-
tribution requires constant amortized time by building an alias sampling table
upfront. At any time only 2n neighbors are stored which is typically a small
number as we observed in our experiments. In our experiments we set the total
number of walks equal to 800 times the number of vertices. In each optimization
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Algorithm 2. Train a source or target walk
1: function Train(W, r, κ, joint)
2: u ← W [0]
3: error = 0
4: for i = 1, 3, . . . 2n − 1 do
5: for j = 0 . . . κ do
6: if (j = 0) then
7: v1 = W [i] � neigbor in opposite role r′

8: v2 = W [i + 1] � neigbor of same role r
9: label = 1

10: else � negative samples
11: label = 1
12: v1 ∼ Pn

r′
13: v2 ∼ Pn

r

14: error+ =Update(Φr(u), Φr′(v1), label)
15: if (joint) then
16: error+ =Update(Φr(u), Φr(v2), label)

17: Φr(u) + = error

18:
19: function Update(Φ(u), Φ(v), label) � //gradient update
20: g = (label − σ(Φ(u) · Φ(v)) · λ
21: Φ(v)+ = g ∗ Φ(u)
22: return g ∗ Φ(v)

step we use κ = {3, 5} negative samples, therefore, complexity of each optimiza-
tion step is O(dκ). As it requires O(|E|) time to read the graph initially, the run
time complexity for NERD can be given as O(ndκN + |E|). The space complex-
ity of NERD is O(|E|). As our method is linear (with respect to space and time
complexity) in the input size, it is scalable for large graphs.

4 Experiments

In this section we present how we evaluate NERD1 against several state-of-the-
art node embedding algorithms. We use the original implementations of the
authors for all the baselines (if available). We also employ parameter tuning
whenever possible (parameter settings are detailed in Supplementary Material),
otherwise we use the best parameters reported by the authors in their respective
papers. We perform comparisons corresponding to three tasks – Link Prediction,
Graph Reconstruction and Node classification. In the next section we explain
the datasets used in our evaluations.

A brief summary of the characteristics of the datasets (details are links pro-
vided in the implementation page) is presented in Table 1. We recall that reci-
procity in a directed graph equals the proportion of edges for which an edge in
1 We make available our implementation with corresponding data at https://git.l3s.

uni-hannover.de/khosla/nerd.

https://git.l3s.uni-hannover.de/khosla/nerd
https://git.l3s.uni-hannover.de/khosla/nerd
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Table 1. Dataset characteristics: number of nodes |V |, number of edges |E|; number
of node labels |L|.

Dataset Size Statistics Details

|V | |E| |L| Diameter Reciprocity Labels Vertex Edges

Cora 23,166 91,500 79 20 0.051 � Papers Citation

Twitter 465,017 834,797 - 8 0.003 - People Follower

Epinion 75,879 508,837 - 15 0.405 - People Trust

PubMed 19,718 44,327 3 18 0.0007 � Papers Citation

CoCit 44,034 195,361 15 25 0 � Papers Citation

the opposite direction exists, i.e., that are reciprocated. All the above datasets
except PubMed and Cocitation datasets have been collected from [12].

Baselines. We compare the NERD model with several existing node embed-
ding models for link prediction, graph reconstruction and node classification
tasks. As baselines we consider methods like APP [26] and HOPE [17] which
uses two embedding spaces to embed vertices in their two roles. We also com-
pare against other popular single embedding based methods: DeepWalk [19],
LINE [22], Node2vec [8] and VERSE [23]. All these methods are detailed in related
work. As NERD is an unsupervised shallow neural method, for fair comparisons,
semi-supervised or unsupervised deep models are not considered as baselines.

4.1 Link Prediction

The aim of the link prediction task is to predict missing edges given a network
with a fraction of removed edges. A fraction of edges is removed randomly to
serve as the test split while the residual network can be utilized for training.
The test split is balanced with negative edges sampled from random vertex pairs
that have no edges between them. We refer to this setting as the undirected
setting. While removing edges randomly, we make sure that no node is isolated,
otherwise the representations corresponding to these nodes can not be learned.

Directed Link Prediction. Since we are interested in not only the existence
of the edges between nodes but also the directions of these edges, we consider a
slight modification in the test split setting. Note that this is a slight departure
from the experimental settings used in previous works where only the presence
of an edge was evaluated. We posit that in a directed network the algorithm
should also be able to decide the direction of the predicted edge. To achieve this,
we allow for negative edges that are complements of the true (positive) edges
which exist already in the test split.
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We experiment by varying the number of such complement edges created by
inverting a fraction of the true edges in the test split. A value of 0 corresponds
to the classical undirected graph setting while a value in (0, 1] determines what
fraction of positive edges from the test split are inverted at most to create neg-
ative examples. It can also happen that an inverted edge is actually an edge in
the network, in which case we discard it and pick up some random pair which
corresponds to a negative edge. Such a construction of test data is essential to
check if the algorithm is also predicting the correct direction of the edge along
with the existence of the edge. Please note that we always make sure that in
the test set the number of negative examples is equal to the number of positive
examples. Embedding dimensions are set to 128 for all models for both settings.

Table 2 presents the ROC-AUC (Area Under the Receiver Operating Char-
acteristic Curve) scores for link prediction for three datasets (missing datasets
show similar trends, results not presented because of space constraints). More
specifically, given an embedding, the inner product of two node representations
normalized by the sigmoid function is employed as the similarity/link-probability
measurement for all the algorithms. Fraction 0% correspond to the undirected
setting in which the negative edges in the test set are randomly picked. The
50% and 100% corresponds to directed setting in which at most 50% and 100%
positive edges of test set are inverted to form negative edges. Please note that
if an inverted edge is actually an edge in the network, we discard it and pick up
some random pair.

Performance on Cora. VERSE outperforms others for the undirected setting
in the Cora dataset. But its performance decreases rapidly in the directed setting
where the algorithm is forced to assign a direction to the edge. The performance
of the three directed methods (APP, HOPE and NERD) is stable supporting the
fact that these methods can correctly predict the edge direction in addition to
predicting a link. NERD is the next best (AUC of 0.788) and outperforms HOPE
for directed setting with 50% and 100% (AUC of 0.813) test set edge reversal.
This means that whenever NERD predicts the presence of an edge it in fact also
predicts the edge directionality accurately.

Performance on Twitter. For the Twitter dataset, HOPE outperforms all
other methods and is closely followed by NERD for 60–40 split of training-test
data. Figure 2 shows the performance of three directed graph methods: APP,
HOPE and NERD on 70–30 and 90–10 training-test splits for Twitter respec-
tively. Here we plot the AUC scores by varying the fraction of inverted edges
in the test split to construct negative test edges. We omit other methods as
all of them have a very low performance. We make several interesting observa-
tions here. First, HOPE which performs best for 60–40 split shows a decrease in
performance with the increase in training data. We believe that the parameters
for HOPE namely the attenuation factor which was tuned for best performance
on a smaller amount of training data no longer might not be applicable for
larger training data. This renders such a method to be very sensitive to struc-
tural changes in the graph. Second, APP’s performance improves with increasing
training data but is not as stable as NERD and HOPE in the directed setting
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when the fraction of inverted edges is increased, i.e., it does not always correctly
predict the direction of an edge. Third, NERD’s performance stays stable and
improves on increasing the training data, which confirms our justification that
it is more robust to structural changes caused by random addition/removal of
edges. Moreover, at 90% training data it is the best performing method and
second best but consistent (in predicting edge direction) for other splits. Finally
we observe that Twitter has a prominent hub-authority structure with more
than 99% vertices with zero out-degree. Using non-alternating directed walks on
Twitter hinders APP and other similar random walk methods to fully explore
the network structure as much as they could do for Cora.

Performance on Epinions. VERSE shows a high performance on Epinions
in undirected setting which is not surprising as Epinions has a high reciprocity
with more than 40% of the edges existing in both directions. NERD on the other
hand beats the two other directed methods APP and HOPE for both the settings.
As the fraction of edge reversals increases, NERD also starts performing better
than VERSE. We note that even though NERD does not outperforms all methods
on link prediction, it shows more robustness across datasets being the second
best performing (when not the best) and is consistent in predicting the right
edge direction i.e., its performance does not vary a lot (except in Epinions with
high reciprocity) with increasing fraction of positive test edge inversions in the
directed setting.

Table 2. Link Prediction Results for directed graphs with (1) random negative edges
in test set (2) 50% of the test negative edges created by reversing positive edges (3)
when all positive edges are reversed to create negative edges in the test set. The top
scores are shown in bold whereas the second best scores are underlined.

Method Cora Twitter Epinion

0% 50% 100% 0% 50% 100% 0% 50% 100

DeepWalk 0.836 0.669 0.532 0.536 0.522 0.501 0.538 0.560 0.563

Node2vec 0.840 0.649 0.526 0.500 0.500 0.500 0.930 0.750 0.726

VERSE 0.875 0.688 0.500 0.52 0.510 0.501 0.955 0.753 0.739

APP 0.865 0.841 0.833 0.723 0.638 0.555 0.639 0.477 0.455

HOPE 0.784 0.734 0.718 0.981 0.980 0.979 0.807 0.718 0.716

LINE-1+2 0.735 0.619 0.518 0.009 0.255 0.500 0.658 0.622 0.617

LINE-1 0.781 0.644 0.526 0.007 0.007 0.254 0.744 0.677 0.668

LINE-2 0.693 0.598 0.514 0.511 0.507 0.503 0.555 0.544 0.543

NERD 0.795 0.788 0.813 0.969 0.968 0.967 0.906 0.774 0.771

4.2 Graph Reconstruction

In the graph reconstruction task we evaluate how well the embeddings preserve
neighborhood information. There are two separate evaluation regimes for graph
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Fig. 2. Link prediction in Twitter. The y-axis shows the AUC scores and the x-axis
is the maximum fraction of edges that are inverted in the test split. The models are
trained on 70% and 90% of the Twitter edges respectively. The fraction on the x-axis
indicates the maximum fraction of inverted positive test edges to create negative test
edges. Note that the train-test split is the same over all fractions.

reconstruction in previous works. One line of work [17], that we refer to as edge-
centric evaluation, relies on sampling random pairs of nodes from the original
graphs into their test set. These candidate edges are then ordered according to
their similarity in the embedding space. Precision is then computed at different
rank depths where the relevant edges are the ones present in the original graph. On
the other hand, [23] perform a node-centric evaluation where precision is computed
on a per-node basis. For a given node v with an outdegree k, embeddings are used
to perform a k-nearest neighbor search for v and precision is computed based on
how many actual neighbors the k-NN procedure is able to extract.

Directed Graph Reconstruction. We believe that the edge-centric evaluation
suffers from sparsity issues typical in real-world networks and even if a large
number of node pairs are sampled, the fraction of relevant edges retrieved tends
to remain low. More acutely, such an approach does not model the neighborhood
reconstruction aspect of graph construction and is rather close to predicting
links. We adopt the node-centric evaluation approach where we intend to also
compute precision on directed networks with a slight modification. In particular,
we propose to compute precision for both outgoing and incoming edges for a
given node. This is different from previous evaluation approaches which only
considers the reconstruction of adjacency list of a node, i.e., only its outgoing
neighbors. Moreover in our proposed evaluation strategy we do not assume the
prior knowledge of the indegree or outdegree.

As in Link Prediction, the similarity or the probability of an edge (i, j) is
computed as the sigmoid over the dot product of their respective embedding
vectors. For HOPE, NERD and APP we use the corresponding source and target
vectors respectively. We do not assume the prior knowledge of the indegree or
outdegree, rather we compute the precision for k ∈ {1, 2, 5, 10, 100, 200}. For a
given k we obtain the k-nearest neighbors ranked by sigmoid similarity for each
embedding approach. If a node has an outdegree or indegree of zero, we set the
precision to be 1 if the sigmoid corresponding to the nearest neighbor is less
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than 0.51 (recall that σ(x · y) = 0.5 for x · y = 0), otherwise we set it to 0. In
other cases, for a given node v and a specific k we compute P k

out(v) and P k
in(v)

corresponding to the outgoing and incoming edges as

P k
out(v) =

N k
out ∩ Nout(v)

k
, P k

in(v) =
N k

in ∩ N in(v)
k

,

where N k
out(v) and N k

in(v) are the k nearest outgoing (to whom v has outgoing
edges) and incoming (neighbors point to v) neighbors retrieved from the embed-
dings and Nout(v) and N in(v) are the actual outgoing and incoming neighbors
of v. We then compute the Micro-F1 score as the harmonic mean of P k

in(v) and
P k
out(v). To avoid any zeros in the denominator, we add a very small ε = 10−5

to each precision value before computing the harmonic mean. We finally report
the final precision as the average of these harmonic means over the nodes in the
test set.

Results. We perform the graph reconstruction task on the Cora, Cocitation and
Twitter datasets. In order to create the test set we randomly sample 10% of the
nodes for Cora and Cocitation datasets and 1% of Twitter. We plot the final
averaged precision corresponding to different values of k in Fig. 3.

For the Cora dataset, NERD clearly outperforms all the other models includ-
ing HOPE. In particular for k = 1, NERD shows an improvement of 63% over
HOPE which in some sense is fine tuned for this task.

The trend between NERD and HOPE is reversed for Twitter dataset, where
HOPE behaves like an almost exact algorithm. This can be attributed to the low
rank of the associated Katz similarity matrix. Note that only 2502 out of more
than 400K nodes have non-zero outdegree which causes a tremendous drop in
the rank of the associated Katz matrix. We recall that HOPE’s approximation
guarantee relies on the low rank assumption of the associated similarity matrix
which seems to be fulfilled quite well in this dataset. The performance of other
models in our directed setting clearly shows their inadequacy to reconstruct
neighborhoods in directed graphs. For Twitter, we only show plots corresponding
to HOPE and NERD as precision corresponding to other methods is close to 10−5.

Again for Cocitation NERD performs the best with an improvement of around
12.5% for k = 1 over the second best performing method, HOPE. Once again,
NERD exhibited robustness in this task as for Twitter, it is closest to the best
performing method. Note that some of the methods like VERSE and APP which
were sometimes better performing than NERD in link prediction show a poor
performance across all datasets in graph reconstruction task. Note that this
task is harder than link prediction as the model not only needs to predict the
incoming and outgoing neighbors but also has no prior knowledge of the number
of neighbors. Moreover the test set for this task is not balanced in the sense
that for each test node the model needs to distinguish between small number of
positive edges with a huge number of negative edges, for example for small k.
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Fig. 3. Graph reconstruction for Cora, Twitter and CoCitation Networks with precision
computed on both outgoing and incoming edges. NERD shows an improvement of 63.1%
(for k = 1) as compared to HOPE in the Cora dataset. The trend is reversed in the
Twitter dataset because of the exact nature of HOPE on low-rank Twitter data. For
Twitter, all methods except NERD and HOPE have precision close to 10−5, therefore
we do not show them in the plots. NERD shows an improvement of 12.5% (for k = 1)
as compared to HOPE in the CoCit dataset.

4.3 Node Classification

We run experiments for predicting labels in the Cora, CoCitation and PubMed
datasets (labels were not available for other two datasets). We report the Micro-
F1 and Macro-F1 scores after a 5-fold multi-label classification using one-vs-rest
logistic regression. The main aim of this experiment is to show that NERD is
generalizable across tasks and also performs well for a task like node classification
which is not fine tuned for directed graphs. Unlike APP and HOPE, NERD also
performs the best in this task over all the 3 datasets. Other single embedding
based methods like DeepWalk and Node2vec also exhibit a good performance
for node classification indicating that edge directionality might not be a very
important factor for node labels at least for the studied datasets. HOPE which
performs very well for link prediction and graph reconstruction tasks shows a
poorer performance (Table 3).

As we already pointed out that HOPE is tied to particular proximity matrix
and adjusting it for a task becomes much harder and non-intuitive than random
walk based methods where hyper parameters can be easily fine-tuned. We also
note that for HOPE the similarity between nodes i and j is determined by the
effective distance between them which is computed using the Katz measure,
penalizing longer distances by an attenuation factor β. The advantage of such a
degrading distance measure is that it conserves the adjacency similarity of the
graph, which reflects in our experiments on Graph Reconstruction. NERD on
the other hand also takes into account how likely i can influence j by taking
into account the likelihood of the traversal of various alternating paths between
i and j. In other words, NERD constructs the local neighborhood based on how
likely this neighborhood can influence the node, which helps the classifier to
learn better labels on NERD trained embeddings.
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Table 3. Node Classification results in terms of Micro-F1 and Macro-F1. All results
are mean of 5-fold cross validations. Each node in Cora has multiple labels, for PubMed
and CoCit, there is a single label per node.

Method PubMed Cora CoCit

mic. mac. mic. mac. mic. mac.

DeepWalk 73.96 71.34 64.98 51.53 41.92 30.07

Node2vec 72.36 68.54 65.74 49.12 41.64 28.18

VERSE 71.24 68.68 60.87 45.52 40.17 27.56

APP 69.00 65.20 64.58 47.03 40.34 28.06

HOPE 63.00 54.6 26.23 1.22 16.66 1.91

LINE-1+2 62.29 59.79 54.04 41.83 37.71 26.75

LINE-1 55.65 53.83 62.36 47.19 36.10 25.70

LINE-2 56.81 51.71 51.05 35.37 31.4 20.59

NERD 76.70 74.67 67.75 51.30 44.84 33.49

5 Conclusion

We presented a novel approach, NERD, for embedding directed graphs while
preserving the role semantics of the nodes. We propose an alternating random
walk strategy to sample node neighborhoods from a directed graph. The runtime
and space complexities of NERD are both linear in the input size, which makes
it suitable for large scale directed graphs. In addition to providing advantages
of using two embedding representations of nodes in a directed graph, we revisit
the previously used evaluation strategies for directed graphs. We chart out a
clear evaluation strategy for link prediction and graph reconstruction tasks. We
observe in our experiments where we find that a method performing best in
one of the tasks might perform the worst in the other task. This beats the
whole idea of unsupervised learning which is supposed not to be fine tuned
towards a particular task but should be performing well across different tasks.
We show that the embeddings from NERD are indeed robust, generalizable and
well performing across multiple types of tasks and networks. We have showcased
the effectiveness of NERD by employing a shallow neural model to optimize the
topology of the extracted computational graphs. In future we will employ deeper
models to capture non-linearities while preserving the respective topologies.

Acknowledgements. This work is partially funded by SoBigData (EU’s Horizon 2020
grant agreement No. 654024).
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Abstract. Link prediction requires predicting which new links are likely
to appear in a graph. In this paper, we present an approach for link pre-
diction that relies on higher-order analysis of the graph topology, well
beyond the typical approach which relies on common neighbors. We treat
the link prediction problem as a supervised classification problem, and
we propose a set of features that depend on the patterns or motifs that a
pair of nodes occurs in. By using motifs of sizes 3, 4, and 5, our approach
captures a high level of detail about the graph topology. In addition, we
propose two optimizations to construct the classification dataset from the
graph. First, we propose adding negative examples to the graph as an
alternative to the common approach of removing positive ones. Second,
we show that it is important to control for the shortest-path distance
when sampling pairs of nodes to form negative examples, since the diffi-
culty of prediction varies with the distance. We experimentally demon-
strate that using our proposed motif features in off-the-shelf classifiers
results in up to 10% points increase in accuracy over prior topology-based
and feature-learning methods.

Keywords: Link prediction · Motifs

1 Introduction

Given a graph G(V,E) at time t1, the link prediction problem requires finding
which edges {e �∈ E} will appear in the graph at time t2 > t1 [24]. Predicting
which new connections are likely to be formed is a fundamental primitive in
graph mining, with applications in several domains. In social media, friend and
content recommendations are often modeled as link prediction problems [4]. Link
prediction has also been used to detect credit card fraud in the cybersecurity
domain [24], to predict protein-protein interactions in bioinformatics [5,17], for
shopping and movie recommendation in e-commerce [10], and even to identify
criminals and hidden groups of terrorists based on their activities [6].
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Traditionally, link prediction models rely on topological features of the graph,
and on domain-specific attributes of the nodes (usually to induce a similarity
function) [7]. Most topological features are based on common neighbors, i.e.,
they rely on the idea of ‘closing triangles’ [30]. More advanced approaches such
as non-negative matrix factorization (NMF) and graph embeddings have also
been tried recently [27,42]. However, traditional topological features that rely
on common neighbors, such as the Jaccard index and Adamic/Adar measure [2],
have proven to be very strong baselines which are hard to beat [42].

These traditional features are not only effective, but also efficient to compute,
as they originate from triadic graph substructures. Fortunately, recent develop-
ments in algorithms and systems have improved our ability to efficiently count
motifs with more than three nodes [3,41]. Given the outstanding results of tra-
ditional topological features, it is natural to look towards more complex features
based on motifs for better predictive power [17,32,34]. In this paper, we show
that using features based on higher-order motifs with a carefully designed clas-
sification dataset significantly improves the accuracy of link prediction models.

The present work focuses only on topological features, as node attribute
features are domain- and application-specific, and are orthogonal in scope. As is
common practice, we cast the link prediction problem as a binary classification
task. We train a machine learning model on a sample of node pairs from the
graph, where pairs with an edge between them represent a positive example,
and pairs without an edge represent a negative one [12].

When extracting features, two technical issues deserve particular attention:
how to generate motif features in a way that is consistent between training and
testing, and how to select the negative examples for the dataset. For the first
issue, the common practice is to remove a set of existing edges from the graph
(the positive test set), and then train the classifier on the remaining edges. Here
we propose an alternative based on adding a set of negative examples (non-
existing edges) to the graph when extracting the features. In our experiments,
this variant consistently outperforms the former in terms of accuracy. For the
second issue, we show that distance between nodes in negative examples is an
important factor that should be controlled for when creating a dataset (an under-
appreciated fact in the link prediction literature [44]).

The main contributions of this study are as follows:

• We show that complex topological features based on higher-order motifs are
powerful indicators for the link prediction problem in a variety of domains;

• These features improve the accuracy of standard classifiers by up to 10%
points over the state-of-the-art;

• We re-examine the common practice of removing existing edges from the
graph to create the classification dataset, and propose an alternative based
on adding negative examples, which provides better accuracy;

• We detail the effect of the distance of the pair of nodes for negative examples
on the classification accuracy.
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2 Problem Definition and Preliminaries

Consider graph G(V,Et1) at a given time t1, where V is the set of nodes in the
graph and Et1 is the set of edges that connect the nodes of the graph at that
time. Link prediction aims to find which new edges are likely to appear at time
t2 > t1, i.e., to predict the set {e : e �∈ Et1 ∧e ∈ Et2}. We assume G is undirected
and unweighted, and the set of nodes V does not change in time.

While the real application of link prediction involves time, very often testing
prediction algorithms in these conditions is not straightforward, mostly due to
the unavailability of the history of the evolution of the graph structure. There-
fore, in most cases, link prediction is cast as a standard binary supervised classi-
fication task [6]. In this scenario, each data point corresponds to a pair of nodes
(u, v) in a static graph, and the label L(u, v) = 1 if (u, v) ∈ E, else L(u, v) = −1.
The edges in the graph can be used as positive examples, while for negative exam-
ples we can sample pairs of nodes in the graph which are not connected by an
edge. We call these pairs of nodes negative edges.

2.1 Motifs

Motifs are small, connected, non-isomorphic subgraphs which appear in a larger
graph [29,38]. Each k-motif represents a topological pattern of interconnection
between k nodes in a graph. We denote each motif as ‘mk.n’ where k is the
number of nodes in the motif and n is an ordinal number which identifies the
specific edge pattern in the motif (a list of motifs of sizes 3–5 is available in the
extended version of this paper [1]).

Motifs have been shown to be a powerful graph analysis tool in previous work.
The motif profile, the frequency distribution of the motifs in a graph, is used as
a ‘fingerprint’ of a graph [28]. Therefore, the usefulness of motifs to capture the
macro structure of a graph is well established [43]. However, for our purpose, we
are more interested in their ability to capture the micro structure of the graph
(i.e., the neighborhood).

Counting k-motifs is an expensive operation, as their number grows exponen-
tially in k. However, thanks to recent advances in both algorithms and systems,
we are now able to count k-motifs on graphs with millions of edges for values of
k of 5 or more [9,41]. We leverage this capability to capture complex topological
features for the link prediction task, and go beyond the simple triangle-based
features that have been traditionally used.

3 Motif Features

The features in our model correspond to the number of occurrences of an edge
(positive or negative) within different k-motifs. That is, for each example edge
in the classification dataset, we enumerate the k-motifs that the edge is part of,
and then count the occurrences of each different motif. In this paper, we use
3-, 4-, and 5-motifs. Motifs of even higher order are prohibitively expensive to
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Features

Graph Edge Class m4.1 m4.2 m4.3 m4.4 m4.5 m4.6

0

1

2

3

1-2 Positive 1 0 0 0 0 0

2-3 Negative 1 0 0 0 0 0

Fig. 1. Motif features when positive examples are removed from the graph (RMV). (Color
figure online)

Features

Graph Edge Class m4.1 m4.2 m4.3 m4.4 m4.5 m4.6

0

1

2

3

1-2 Positive 2 2 4 0 1 0

2-3 Negative 4 1 3 1 1 0

Fig. 2. Motif features when negative examples are inserted into the graph (INS).

compute for large graphs, and we experimentally demonstrate high prediction
accuracy with k ∈ {3, 4, 5}. There are 2, 6, and 21 motifs for k = 3, 4, and 5,
respectively, and this is the number of features we generate for each k.

3.1 Equal Treatment of Positive and Negative Examples

It is of paramount importance to treat both positive and negative example edges
in the same way with respect to feature extraction, especially when dealing with
the test set. To exemplify why this is important, imagine using k = 3 and not
addressing this issue. The two possible features are then the wedge (or open
triangle) and the closed triangle. Positive edges will have a mix of both features,
but negative edges will never appear in a closed triangle, by construction. Thus,
this way of extracting features leaks information about the class into the features
themselves. This leakage is clearly an issue for the test set, but in order for the
features to be meaningful, we need to apply the same extraction process to both
the training set and the test set.

To solve this issue we have two possible options: (i) remove positive edges
from the motif, which we denote RMV, or (ii) insert negative edges into the motif,
which we denote INS. The former option corresponds to the traditional way of
handling link prediction as a classification task, where a set of (positive) edges
are withheld from the model. The latter is a novel way of handling the feature
extraction that has not been considered previously. It corresponds to asking the
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following question: “If this edge was added to the graph, would its neighborhood
look like other ones already in the graph?”

In the first method, RMV, we remove the example positive edges from the
graph and extract the features by looking at motifs that contain both endpoints
of a removed edge. The features for negative edges are computed in a similar
manner, by looking at the motifs containing both endpoints of the negative pair.
In this case, no modification to the graph is needed for negative edges.

By following this methodology, a number of motifs will never appear as fea-
tures (e.g., fully connected cliques). In addition, an example edge never con-
tributes to producing the motifs that it is part of. An example for k = 4 is
shown in Fig. 1. Let green edges be positive examples, red edges be negative
examples, and black edges be part of the graph but not in the classification
dataset (i.e., not sampled). Additionally, dashed edges are removed from the
graph. In this case, positive edge (1, 2) is removed from the graph and negative
edge (2, 3) is sampled but not inserted. Removing edge (1, 2) changes the motifs
in this neighborhood. For example, motifs m4.2 and m4.3 do not appear even
though edge (1, 2) was part of instances of these motifs in the original unmod-
ified graph. After removing edge (1, 2), the only 4-motif that appears is m4.1,
which appears once. Since it contains the nodes in edges (1, 2) and (2, 3), both
edges have a value 1 for feature m4.1.

In the second method, INS, we insert negative example edges into the graph
before extracting and counting motifs. No modification to the graph is needed for
positive example edges. After inserting the negative example edges, we count the
motifs for positive and negative edges in the same way. All motifs can appear
as features, and an example edge contributes to all the motifs it is part of.
Figure 2 shows the same example as Fig. 1, but now the negative edge (2, 3) is
added to the graph. Each feature of an example edge (positive or negative) corre-
sponds to a motif which includes the edge itself. As an illustration of extracting
motif features, consider m4.2 and m4.3 in Fig. 2. Motif m4.2 occurs twice in the
graph, (0, 1)-(1, 2)-(1, 3) and (0, 2)-(1, 2)-(2, 3). Both occurrences contain edge
(1, 2) while only one contains edge (2, 3), so edge (1, 2) has a value 2 for feature
m4.2 while edge (2, 3) has a value 1. There are four occurrences of motif m4.3 in
the graph, obtained by removing one of the edges (0, 1), (1, 3), (0, 2), or (2, 3).
All of these occurrences include edge (1, 2) but only three include edge (2, 3), so
edge (1, 2) has a value 4 for feature m4.3 while edge (2, 3) has a value 3.

When using the INS method, we insert all of the negative edges in the graph
before doing any feature extraction. Sampling a negative edge in the neighbor-
hood of a positive one changes the extracted features, as shown in Fig. 2. That
is, the extracted motifs are not fully independent of the sampling. While this
is not desirable, we verify that the occurrence of these cases in practice is very
rare, so they do not affect the learning process in any significant way.

3.2 Sampling Negative Edges

Another important question, independent of choosing RMV or INS, is how to sam-
ple the edges for the classification dataset. For positive example edges, uniform
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random sampling is an adequate solution, given the assumption that no edge is
easier to predict than another. For negative example edges, however, it is easy
to imagine that an edge connecting two nodes in completely different regions
of the graph is less likely to occur than one connecting two nodes in the same
region. Therefore, the distance between the pair of sampled nodes can play an
important role. For this reason, we choose to control for this parameter.

We sample negative edges based on the shortest-path distance between the
endpoint nodes. We choose to use a mix of nodes with short distances (d ∈
{2, 3}), as these represents the hardest cases. In most of the experiments, we use
a 50/50 split between negative example edges at distance 2 and 3. However, we
also analyze the effect of the distance on classification accuracy by changing the
ratio between these two sub-classes.

When building the classification dataset, we sample an equal number of neg-
ative and positive edges. This decision allows us to use simple classification
measures, such as accuracy, without the issues that arise due to class imbalance.
In a typical graph, most pairs of nodes do not have an edge connecting them, so
the negative class would be much larger than the positive class. However, as we
are only interested in the relative performance of the features, and because we
use off-the-shelf classifiers, we prefer to create a balanced classification dataset.

4 Experimental Evaluation

4.1 Experimental Setup

Datasets. We use three real-world graphs coming from different domains: Ama-
zon, CondMat, and AstroPh. The three graphs are from the Koblenz Network
Collection.1 Table 1a shows basic statistics about these graph datasets.

The first graph represents the co-purchase network of products on Amazon.
It is the graph upon which the “customers who bought this also bought that”
feature is built. Nodes are products, and an edge between any two nodes shows
that the two products have been frequently bought together. The second dataset,
CondMat, represents a subset of authorship relations between authors and pub-
lications in the arXiv condensed matter physics section. Nodes are authors (first
set) or papers (second set). An edge represents that an author has written a
given paper. The third and final dataset, AstroPh, is a collaboration graph. In
particular, it contains data about scientific collaboration between authors in the
arXiv astrophysics section. Each node in the graph represents an author of a
paper, and an edge between two authors represents a common publication.

Experimental Settings. For each graph, we extract a classification dataset
for which we compute features. We extract a uniform sample of edges from each
graph as positive examples. For negative examples, we extract pairs of nodes
from the graph which are at distance 2 or 3 hops. Table 1b shows the number of
examples chosen from each graph. We extract motif features for example edges

1 http://konect.uni-koblenz.de.

http://konect.uni-koblenz.de
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Table 1. Statistics for the graphs and the classification datasets.

Graph |V| |E| Avg. Deg. Diameter

Amazon 334 863 925 872 5.530 47
CondMat 22 015 58 595 3.025 36
AstroPh 18 771 198 050 21.102 14

(a) Basic statistics about the graph datasets.

Graph # Pos. Edges # Neg. Edges

Amazon 20 000 20 000
CondMat 2000 2000
AstroPh 5000 5000

(b) No. of positive and negative edges sam-
pled for the classification datasets.

by using the Arabesque parallel graph mining framework [41]. We then group by
motif, count the occurrences, and finally normalize the counts to create a feature
vector which represents the motif distribution of the neighborhood of the edge.2

To train the classification models we use the scikit-learn Python library.3 We
train näıve Bayes (NB), logistic regression (LR), decision tree (DT), k-nearest
neighbor (KNN), gradient boosted decision tree (GB), and random forest (RF)
models. All performance results are computed via 10-fold cross-validation.

Baselines. We use two types of baselines. The first type includes traditional
topological features such as triangle closure and paths. We compare our fea-
tures against common neighbors, Jaccard coefficient, Adamic/Adar measure,
Preferential Attachment, rooted PageRank, and Katz index. Of these methods,
PageRank and Katz benefit from inserting negative edges in the graph, so we
use INS with these two methods.

The second type of baseline includes more complex techniques such as matrix
decomposition and deep learning. For matrix decomposition, we use the scores
obtained from a non-negative matrix factorization (NMF) trained on the graph
with positive edges removed (RMV), as commonly done in the literature [27]. We
use the NMF algorithm available in scikit-learn, and use 100 factors for the
decomposition. For deep learning, we compare against a recent state-of-the-art
graph neural network framework for link prediction called SEAL [45]. SEAL uses
subgraph extraction around the example edge to extract latent features, learned
via a neural network. This framework has experimentally outperformed other
existing deep learning methods such as node2vec and LINE [16,40].

Evaluation Metrics. We evaluate the algorithms via the following metrics:

• Accuracy (ACC): the fraction of examples correctly classified (true positives
and true negatives) over the total number of examples (N), ACC = TP+TN

N .
Given that the classification datasets are balanced, accuracy is a reasonable
measure of performance. Better classifiers obtain higher accuracy.

• Area Under the Curve (AUC): the area under the Receiver Operating Charac-
teristic (ROC) curve from the scores produced by the classifiers. It represents
the probability that a classifier will rank a random positive example higher
than a random negative one. Better classifiers obtain higher AUC.

2 Code available at https://github.com/GhadeerAbuoda/LinkPrediction.
3 http://scikit-learn.org.

https://github.com/GhadeerAbuoda/LinkPrediction
http://scikit-learn.org
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Table 2. Classification performance on Amazon for RMV vs. INS.

Metric Classifier
Features

k = 3 k = 4 k = 5 Combined

ACC (%)

NB 57.6 52.4 52.7 52.0
LR 56.5 59.4 68.0 64.4
DT 57.6 69.4 70.8 70.6
KNN 51.5 69.9 71.4 71.0
GB 58.0 73.3 76.6 76.9
RF 57.6 71.6 76.3 77.0

AUC
GB 0.58 0.72 0.76 0.76
RF 0.58 0.72 0.76 0.77

FPR
GB 0.11 0.30 0.26 0.27
RF 0.11 0.32 0.27 0.27

RMV

Metric Classifier
Features

k = 3 k = 4 k = 5 Combined

ACC (%)

NB 57.7 57.2 52.7 53.6
LR 62.5 67.7 70.0 67.5
DT 67.9 66.9 69.6 71.0
KNN 63.6 66.0 64.0 65.0
GB 68.2 75.0 76.6 79.4
RF 68.0 74.8 77.0 79.6

AUC
GB 0.69 0.74 0.76 0.80
RF 0.68 0.75 0.78 0.80

FPR
GB 0.25 0.25 0.25 0.18
RF 0.23 0.23 0.21 0.18

INS

• False Positive Rate (FPR): the ratio between the number of negative edges
wrongly classified (false positives) and the total number of negative edges,
FPR = FP

FP+TN . This measure is useful to understand the effect of graph
distance of the negative examples. Better classifiers obtain lower FPR.

4.2 Removing Positive Edges vs. Inserting Negative Edges

Table 2 shows the classification results of the two feature extraction methods
(RMV and INS, respectively) on the Amazon dataset (the largest one). We report
the results for all classifiers when using features based only on motifs of size
k = 3, size k = 4, and size k = 5. The last column shows the results when using
all three sets of features together in one feature vector (total of 29 features).

By looking at the difference between the two tables, it is clear that INS
consistently has higher accuracy than RMV. The difference grows smaller as we
add more complex features by increasing k. However, for the two best classifiers
(GB and RF), INS still results in approximately 3% points higher accuracy than
RMV, even when using the combined features. The simpler classifiers do not seem
able to exploit the full predictive power of the motif features.

Table 2 also reports AUC and FPR for the two best classifiers. The AUC
and FPR are very similar, and the two classifiers are almost indistinguishable.
As expected, the more complex motif features (i.e., larger k) work better, and
the combination of all three sets of features is usually the best. For ease of
presentation, henceforth we report results only using the RF classifier.

Figure 3 reports the accuracy of RF for both feature extraction methods on
all datasets. The results are consistent with what we already observed: INS is
consistently better than RMV. Interestingly, INS with just 3-motif features per-
forms better than RMV with combined motif features on CondMat and AstroPh.

We perform a statistical test to compare the classification accuracy of the two
methods, INS and RMV. We obtain 100 different samples of the accuracy for each
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Fig. 3. Classification accuracy of a Random Forest (RF) classifier when using different
motif features and different feature extraction methods (RMV vs. INS).

Table 3. Classification performance of a Random Forest (RF) classifier with combined
motif features and different feature extraction methods (RMV vs. INS).

Graph RMV INS

ACC (%) AUC FPR ACC (%) AUC FPR

Amazon 77.0 0.77 0.27 79.6 0.80 0.18

CondMat 79.0 0.79 0.04 96.0 0.96 0.04

AstroPh 84.0 0.84 0.30 96.5 0.97 0.02

method by training the RF classifier using different seeds for the pseudo-random
number generator. We use Student’s t-test to compare the results, and we are
able to reject the null hypothesis that the two methods have the same average
performance at the p = 0.05 significance level. We conclude that the accuracy
of the RF classifier with INS feature extraction is better than the one with RMV,
and the difference is statistically significant. We return to the reason why the
INS feature extraction method is superior in Sect. 4.4.

More complex motif features perform better, with the combination of all
motif sizes outperforming each individual size. The latter result might seem sur-
prising, as one would expect the 5-motif features to supersede the smaller ones.
Nevertheless, consider that 5-motif features do not encode positional informa-
tion, i.e., we do not know in which part of the 5-motif the edge appears. Smaller
features can supplement this information to the 5-motif features.

Finally, Table 3 reports ACC, AUC, and FPR for RF on all datasets for
the two different feature extraction methods when using the combined motif
features. The mix of RF, combined motif features, and INS feature extraction is
the one that performs consistently on top. Therefore, we use it when comparing
our proposal with baseline methods in the following section.
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Table 4. Accuracy of the RF classifier (%) with combined motif features (INS) vs.
baseline classifiers.

Features Amazon CondMat AstroPh

Common Neighbors 64.6 78.6 81.2

Jaccard Coefficient 61.7 81.1 85.2

Adamic/Adar 61.5 74.7 75.0

Preferential Attachment 55.0 61.2 64.2

Rooted PageRank 53.2 62.0 65.0

Katz Index 60.0 55.0 59.0

Topological Combined 73.0 86.9 87.0

NMF 52.0 54.0 53.5

NMF + Topological Combined 73.0 85.9 89.0

SEAL 69.0 81.3 80.3

SEAL + node2vec Embeddings 62.8 77.2 82.0

Motif Combined (INS) 79.6 96.0 96.5

4.3 Comparison with Baselines

To compare against the baseline topological features proposed in prior work,
we train a RF on each of these features, and one on the combination of all of
the features. The upper part of Table 4 reports the accuracy of these classifiers.
For comparison, the accuracy of the RF classifier trained on the combined motif
features extracted via INS is reported in the last row of the table. The first four
rows of the table show simple neighborhood-based topological features. The next
two rows show path-dependent topological features. For rooted PageRank, we
use the standard value for the damping parameter α = 0.85. For the Katz index,
we optimize the value of the β parameter and we report the highest accuracy
obtained (for β = 0.1). The accuracy of the topological features is in the range
55–85%. Combining all topological features into one feature vector results in the
best accuracy in all cases. This is expected since each of these features captures
different information about the graph and a powerful classifier such as RF is
able to exploit all of this information. Thus, the Topological Combined row in
Table 4 can be viewed as the best possible accuracy with current state-of-the-art
topological features. However, the motif features achieve much higher accuracy.
Specifically, they are 7 to 10% points better in accuracy, which is significant
given that advanced features extracted via graph embeddings and deep learning
reportedly struggle to beat the traditional topological features [42].

Next, we turn our attention to feature learning methods that allow the model
to determine by itself which features are important for link prediction. As men-
tioned earlier, we focus on two popular approaches: non-negative matrix factor-
ization (NMF) and deep learning. Interestingly, the NMF approach [27] is not
very competitive, as shown in Table 4. We hypothesize that the method requires
more parameter optimization (e.g., tuning the number of factors used and the
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regularization parameters). In any case, the gap between NMF and straightfor-
ward topological features is quite large, which is quite disappointing. Moreover,
adding the NMF features to the topological ones does not improve accuracy by
much (only the AstroPh dataset sees some improvement).

Finally, we compare our model with SEAL [45], a recent link prediction
framework which uses deep learning (graph neural networks). We test the frame-
work with its default hyperparameters. Interestingly, SEAL only achieves around
70% accuracy on Amazon and 80% accuracy on the other two datasets. SEAL
learns on one- or two-hop subgraphs extracted around the tested edge, which is
somewhat equivalent to looking into common neighbors. However, the accuracy
achieved by SEAL is lower than with the combined topological features.

We also test combining the subgraph features with node representations
learned via node2vec [16], as suggested by the authors of SEAL. The accuracy
with the node2vec embeddings does not improve on average, and actually drops
for two of the datasets. One interpretation of these results is that the node2vec
embeddings might actually introduce noise in the node representations, by look-
ing too far into the neighborhoods of the example edges (e.g., the length of the
random walks may not be appropriately tuned).

Thus, the overall takeaway from Table 4 is that RF with motif features is
more accurate than all the baselines, both traditional topological-based ones
and more recent NMF and deep learning ones.

Feature Importance. We analyze the motif features that are most predictive
for the classification task. Figure 4 shows the relative importance of the fea-
tures as inferred by the RF classifier. In most cases the distribution of feature
importance is quite skewed, with a few features constituting the backbone of the
predictive model. The most predictive feature is always a 5-motif one, which is
another indication of the predictive power of deeper structural features. However,
it changes from dataset to dataset, and might be domain specific.

Overall, these results prove the predictive power of higher-order motif-based
features for link formation. The rest of the experimental section is devoted to two
more questions related to motif feature extraction and negative edge sampling.
First, we shed some insight about why INS performs better than RMV. Second,
we show the importance of choosing the right negative examples, an important
factor which has been mostly overlooked in the literature thus far.

4.4 Motif Distribution: RMV vs. INS

Let us now look at the reason why INS outperforms RMV for feature extraction.
Consider that both feature extraction methods change the original motifs of the
graph, as they alter the graph structure during feature extraction. One hypothe-
sis is that the method which alters the structure the least is better, as the motif
patterns it learns are also the closest to the ones found in the original graph.
To test this hypothesis, we compute the motif distribution in the original graph
and in the modified graphs resulting from the modifications done by RMV and
INS (i.e., with a fraction of edges removed or added). We compute the distance
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Amazon CondMat

AstroPh

Fig. 4. Feature importance across the three datasets, as inferred from the Random
Forest model. In all three datasets the most important feature is a 5-motif, however
the specific motif varies by dataset.

between the motif distribution for k = 3 and k = 4 in the original graph, and
the ones obtained by RMV and INS. We use two different distance functions to
perform the comparison: Earth Mover’s Distance (EMD), and Kullback-Leibler
Divergence (KLD). Table 5 reports the results. If our hypothesis is correct, then
INS should have a smaller distance than RMV. This is indeed the case for two
out of three graphs, for both distance functions, which gives us confidence that
our hypothesis is a step in the right direction. However, AstroPh behaves differ-
ently, with RMV having a smaller distance than INS. Therefore, we cannot draw
a definitive conclusion, and further study is necessary to fully understand the
difference between these two feature extraction methods.

4.5 Effect of Distance on Negative Edges

In this experiment we explore the effect of the distance between the node pairs
that constitute the negative examples on the accuracy of the classifier. For each
graph, we create different classification datasets by varying the composition of
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Table 5. Earth Mover’s Distance (EMD) and KL Divergence (KLD) between the dis-
tribution of motifs in the original graph and the one obtained by each feature extraction
method, RMV and INS. A smaller distance indicates that the feature extraction method
is more faithful to the original graph.

Graph EMD KLD

RMV INS RMV INS

Amazon 0.119 0.011 0.007 0.001

CondMat 1.106 0.161 0.533 0.012

AstroPh 0.050 0.529 0.001 0.066

Fig. 5. Classification accuracy and false positive rate as a function of the fraction of
negative examples at distance 2 (vs. distance 3).

the negative class: from containing only negative edges at distance 3 to containing
only negative edges at distance 2. We use the fraction of negative edges of the
sub-class at distance 2 as the independent variable in the plots (the rest of the
edges are at distance 3). We keep the total number of examples fixed to maintain
the balance between positive and negative classes.

Figure 5a shows the classification accuracy for each setting. For both Amazon
and ContMat, the edges at distance 2 are harder to classify correctly, which
produces a significant decline in the accuracy as we increase the fraction of edges
at distance 2. Conversely, the accuracy on AstroPh does not seem affected. The
same pattern can be seen in Fig. 5b, which reports the false positive rate. The
figure explains the cause of the decrease in accuracy: as we decrease the average
distance of the negative examples, the classifier produces more false positives.
The higher the fraction of negative examples at distance 2, the higher the rate
of misclassification for the negative class.

5 Related Work

There are two main branches of research that are relevant to the current work:
graph motifs and link prediction.
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Graph Motifs. Motifs are patterns of connectivity that occur significantly more
frequently in the given graph than expected by chance alone [43]. Graph motifs
have numerous applications, for example, they have been used to classify graphs
into “superfamilies” [37], and they have been used in combination with machine
learning to determine the most appropriate model for a given real-world net-
work [39]. Palla et al. [31] also show that 4-cliques reveal community structure
in word associations and protein-protein interaction graphs. In several social
media analysis studies [18,19], graph motif detection and enumeration are used
to characterize graph properties statistically.

The significance of motifs is typically assessed statistically by comparing
the distribution of subgraphs in an observed graph with the one found in a
randomized graph. One of the important reasons why graphs in the real world
have more motif structure than the randomized version is that real-world graphs
are constrained by particular types of growth rules, which in turn depend on the
specific nature of the graph. In this paper, we aim at leveraging this property to
learn which specific motifs are predictive of link presence.

Link Prediction. Prior work on link prediction can generally be classified into
three broad categories: unsupervised methods, supervised methods, and feature
learning methods. Link prediction methods can also be orthogonally classified
by the type of information they rely on: node properties or structural properties
(including motifs).

In most unsupervised methods, a heuristic is used to rank node pairs in the
graph, with a higher rank indicating a higher likelihood of a link existing between
the node pair [13,26]. The heuristic is typically a similarity measure, and can be
based on application-specific node attributes or on the graph topology.

While node attributes can achieve a high degree of accuracy, they are domain-
and application-specific, and cannot be easily generalized. In contrast, features
based on graph topology are more general and directly applicable to any graph.

Topological features that are used in unsupervised link prediction are typi-
cally related to local (neighborhood) or global (path) properties of the graph.
Neighborhood-based features capture the intuition that a link is likely to exist
between a pair of nodes if they have many common neighbors. The simplest
neighborhood-based feature is to count common neighbors [30]. More advanced
features include some form of regularization of the count, such as the Jaccard
coefficient of the two sets of neighbors, the Adamic/Adar index [2], which dis-
counts the contribution of high-degree nodes, and preferential attachment [8],
which gives a higher likelihood to links between high degree vertices.

Conversely, path-based features look at the global graph structure. A repre-
sentative path-based feature is the Katz index [20], which counts the number of
paths between two nodes, giving a higher weight to shorter paths. Other methods
such as hitting time, commute time, and rooted PageRank use random walks on
the graph to derive the similarity of two nodes. Global similarity indices typically
provide better predictions than local indices, but are more expensive to compute,
especially in large graphs. For a detailed survey of unsupervised link prediction
methods, see references [15] and [25]. Several studies indicate that unsupervised
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methods are fundamentally unable to cope with dynamics, imbalance, and other
complexities of real-world graphs [6,25]. However, similarity indices can easily
be used by supervised methods as features for a machine learning model.

In supervised methods, link prediction is usually cast as a binary classification
problem. The label indicates the presence or absence of a link between a node
pair. The predictor features are metrics computed from the graph structure or
node attributes which describe the given pair [6,23,24,35].

A key challenge for supervised link prediction is designing an effective set
of features for the task. Some works use simple topological features such as the
number of common neighbors and the Adamic/Adar index [12], while others use
more complex features [11]. For detailed surveys on supervised link prediction
methods, please refer to [6,14,24].

Some prior work has used motif-like features for link prediction problems.
For example, Hulovatyy et al. [17] use features extracted from graphlets for
link prediction. Theirs is an unsupervised method that uses a different type of
feature extraction compared to our approach. Graphlet-based features are also
used in [32] for link prediction. However, the focus of that paper is link prediction
in temporally evolving graphs, while we focus on static graphs.

A more sophisticated approach to link prediction is to allow the model to
learn by itself which latent features are important for the link prediction task.
Feature learning methods such as matrix factorization, graph embedding, or
deep learning examine the graph topology to learn a representation that can be
used in machine learning tasks.

Matrix factorization models the graph as an N × N matrix, and then pre-
dicts a link by using matrix decomposition. For example, Menon and Elkan [27]
consider link prediction as a matrix completion problem and solve it using a
non-negative matrix factorization (NMF) method. The basic idea is to let the
model learn latent features from the topological structure of a partially observed
graph, and then use the model to approximate the unobserved part of the graph.
Higher-order network embeddings [33,34] use a motif-based matrix formulation
to learn a representation of the graph that can be used for link prediction.

Deep learning is another very popular form of feature learning. In particular,
graph convolutional networks (GCNs) have recently emerged as a powerful tool
for representation learning on graphs [21]. Lee et al. [22] propose a GCN tech-
nique that uses motif information to improve accuracy in classification tasks.
GCNs have also been successfully used for link prediction [36,45]. For example,
SEAL [45] is a framework which fits a graph neural network to small subgraphs
around the example edges in the dataset. By doing so, it learns latent features in
the neighborhood structure of the graph which indicate the presence or absence
of a link. Therefore, it is very similar in spirit to the current work. In this paper,
we compare with NMF and SEAL as examples from the class of representa-
tion learning techniques, and we show that our method outperforms these more
complex methods.
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6 Conclusion

We presented a new approach for link prediction in undirected graphs that relies
on using the distribution of k-motifs that a pair of nodes appears in to pre-
dict whether a link exists between these two nodes. We pointed out two issues
related to the task that were not adequately addressed by prior work. First, it is
important to treat positive and negative example edges in the same way. Prior
approaches achieve this by removing positive example edges from the graph,
and we showed that an alternative (and better) way is to insert negative exam-
ple edges in the graph. Second, when sampling pairs of nodes to find negative
example edges, the shortest-path distance between the sampled nodes affects pre-
diction accuracy, with shorter distances increasing the difficulty of the problem.
Thus, it is important to control for this parameter when building the classifica-
tion dataset. Finally, we showed that, by using off-the-shelf classifiers, our motif
features achieve substantial improvement in prediction accuracy compared to
prior methods based on topological features or feature learning.
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Abstract. Social recommendation systems typically combine extra
information like a social network with the user-item interaction network
in order to alleviate data sparsity issues. This also helps in making more
accurate and personalized recommendations. However, most of the exist-
ing systems work under the assumption that all socially connected users
have equal influence on each other in a social network, which is not true in
practice. Further, estimating the quantum of influence that exists among
entities in a user-item interaction network is essential when only implicit
ratings are available. This has been ignored even in many recent state-
of-the-art models such as SAMN (Social Attentional Memory Network)
and DeepSoR (Deep neural network model on Social Relations). Many a
time, capturing a complex relationship between the entities (users/items)
is essential to boost the performance of a recommendation system. We
address these limitations by proposing a novel neural network model,
SoRecGAT, which employs multi-head and multi-layer graph attention
mechanism. The attention mechanism helps the model learn the influ-
ence of entities on each other more accurately. The proposed model also
takes care of heterogeneity among the entities seamlessly. SoRecGAT is
a general approach and we also validate its suitability when information
in the form of a network of co-purchased items is available. Empirical
results on eight real-world datasets demonstrate that the proposed model
outperforms state-of-the-art models.

Keywords: Social recommendation · Graph attention mechanism

1 Introduction

In the last few years, collaborative filtering (CF) has been successful in build-
ing powerful recommendation systems. Given a partially filled implicit rating
matrix (for example, a matrix representing likes or clicks), the idea of a top-N
recommendation system is to come up with the highly probable list of items that
a user may like in future. A common and popular approach is to use a latent
factor model to learn low dimensional latent representations for entities (users
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and items) and use the similarity between the entities to predict the unknown
ratings. Matrix factorization (MF) [11,17,22] remains one of the successful base-
lines in such tasks. In practice, however, a user typically interacts with a very
small set of available items. This results in data sparsity issues which is a big
challenging factor in designing better recommendation systems.

The recent explosive growth in online services and mobile technologies have
provided tons of useful information. For example, Yelp1 has friendship connec-
tions amongst users, Amazon2 has co-purchased network associated with prod-
ucts or Epinion3 has trust relationships associated with users. Crucially, social
networks4 associated with users and items play a pivotal role in recommending
products and services to the end users. That is, users are typically influenced by
social neighbours in a social network. Therefore, one expects social neighbours to
have similar opinions regarding products. By the same argument, co-purchased
items are expected to have a strong influence on each other. Thus, social connec-
tions associated with users and/or items can be effectively leveraged to alleviate
data sparsity issues that exist in traditional recommendation systems to boost
their performance.

There have been some works that leverage matrix factorization techniques for
social recommendation [8,10,15,31]. While [8] models both implicit and explicit
influence of trust, [15] introduces the concept of a social regularizer to repre-
sent the social constraints on recommendation systems. These approaches either
treat all social relations equally [8,10,31] or make use of a predefined similar-
ity function [15]. Either case may result in the performance degradation of the
recommendation system as users with strong ties are more likely to have sim-
ilar preferences than those with weak ties [25]. Some recently proposed neural
network based models which utilize external social networks [5,21] also have the
same drawback. Further, in the applications where only implicit ratings are avail-
able, it is important to learn the quantum of influence that the different entities
have on each other. This would help in getting better latent representations of
the entities and better performance of the recommendation system.

A few attempts have been made [3,32] to learn the influence of entities in a
network by employing an attention mechanism for recommendations. In particu-
lar, Chen et al. [3] presented a social attentional memory network which utilizes
an attention-based memory module to learn the relation vectors for user-friend
pairs. This is combined with the friend level attention mechanism to measure the
influence strength among users’ friends. Further, [32] proposed ATRank which
models heterogeneous user behaviour using an attention model and captures the
interaction between users using self-attention. However, the key challenges here
are to design a unified model that exploits the influence of entities from both

1 www.yelp.com.
2 www.amazon.com.
3 www.epinion.com.
4 Throughout this paper, we refer to a user-user network (or connection) or a co-

purchased item network (or connection) as a social network (or connection).

www.yelp.com
www.amazon.com
www.epinion.com
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Fig. 1. The illustration of SoRecGAT recommendation setting. The transformations
from a user-item rating matrix and a social network (a) to a graph with learned node
representations (d) are illustrated via steps (b) and (c). The graph in (d) serves as an
input to SoRecGAT (e) which employs a multi-layer and multi-head attention mecha-
nism, and gives final user(u) and item(j) representations p′

u and q′
j and user-item pair

representation φuj for (u, j). This φuj is used for predicting rating ŷuj . (Best viewed
in colour.)

user-item interaction network and social network together, and to capture the
complex relationships that exist among entities across networks.

Contributions. Motivated by the success of Graph Attention Networks
(GAT) [26], we propose SoRecGAT – a Graph ATtention based framework for
top-N Social Recommendation problem. The proposed framework is illustrated
in Fig. 1. We represent the user-item interaction network as a graph with nodes
representing users and items, and edges representing interactions among them.
We assume that no attribute information is available for the nodes, and initial
representations (or embeddings) are learned using random walk and skip-gram
techniques. We propose a simple approach by which a social network associated
with the users or items can seamlessly be incorporated into this graph. The
novelty of our approach lies in handling heterogeneous networks (for example,
a social network with a user-item interaction network) for a personalised rec-
ommendation. Specifically, we propose to obtain the heterogeneous graph node
representations in a unified space, which is essential in assigning weights to
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neighbouring nodes. These node representations are learned using multi-head
and multi-layer attention mechanism. The attention mechanism helps in captur-
ing complex relationships among entities in both user-item interaction network
and social networks, collectively. Further, the final node representations are used
for predicting the ratings. We conduct extensive experiments on eight real-world
datasets – four from Amazon and four from Yelp. Experimental results demon-
strate the effectiveness of SoRecGAT over state-of-the-art models.

2 The Proposed Model

Problem Formulation. We represent a user-item interaction network and a
social network combinedly as a graph G(V, E) where V represents the set of users,
items and social entities5, and E represents the set of edges present in the graph.
We consider the implicit rating setting where the rating between user u and item
j is given as

yuj =
{

1, if (u, j) ∈ Ω
0, otherwise

where Ω = {(u, j) : user u interacts with item j}. Given G(V, E), our goal in this
work is to design a model which gives a top-N ranked list of items for each user.

2.1 SoRecGAT

In this section, we explain the proposed model – SoRecGAT, illustrated in Fig. 1.
As shown in the figure, a user-item rating matrix can be converted to a graph
whose node features (representations) (Fig. 1(c)) can be found (Sect. 2.3). A
social network (e.g. a friendship network) is first converted to a bi-partite graph
(Fig. 1(b)) by connecting users to “social entities”, where each social entity cor-
responds to a user. Thus, if user u1 is connected to user u2, then, this would
correspond to two edges (u1, e2) and (u2, e1) in Fig. 1(b), where e1 and e2 are
the social entities associated with users u1 and u2, respectively. The introduc-
tion of social entities helps fuse the user-item interaction network and social
network to get a combined graph (Fig. 1(d)) with node representations. This
proposed idea also helps in combining multiple networks which share entities. In
addition, network-specific features (side information) for the nodes can be seam-
lessly incorporated. A multi-head attention mechanism is then applied layerwise
on this graph to predict the rating of a user-item pair. This is explained below.

Let pu ∈ R
dp , qj ∈ R

dq and sk ∈ R
ds denote the features of user u, item

j and social entity k respectively. Note that the feature dimensions of different
entities in a given heterogeneous network can be different. Let Np, Nq and Ns

denote the number of users, items and social entities respectively. We denote the
user, item and social entity features compactly as p,q and s respectively, where
p = (p1, p2, ..., pNp

), q = (q1, q2, ..., qNq
), and s = (s1, s2, ..., sNs

). The sets of

5 Users/items present in a social network.
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neighbours of user u in the user-item interaction network and the social network
are denoted by N I

u and NS
u respectively.

SoRecGAT contains multiple layers, and at every layer, a new set of hid-
den representations for the nodes p′ = (p′

1, p
′
2, ..., p

′
Np

), pu ∈ R
d′

, q′ =
(q′

1, q
′
2, ..., q

′
Nq

), qj ∈ R
d′

, and s′ = (s′
1, s

′
2, ..., s

′
Ns

), sk ∈ R
d′

are obtained from
the output of previous layers. It is essential to learn multiple levels of represen-
tations due to the complex nature of the relationship that exists among entities.
Further, the influence of different neighbours on a given node need not be equal.
Accounting for these, we explain how hidden representations are obtained in one
layer. The same procedure is repeated in the other layers.

If f(·, ·) denotes an attention function, then the importance of item j’s fea-
tures to user u can be calculated as

ᾱuj = f(Wppu,Wqqj), (1)

and that of social entity k’s (in a social network) features to the same user u is
given by

ᾱuk = f(Wppu,Wssk), (2)

where Wp ∈ R
d′×dp ,Wq ∈ R

d′×dq and Ws ∈ R
d′×ds are the weight matrices

respectively for users, items and social entities. Due to different types of entities
present in a network, it is important to have different weight matrices. These
matrices also act as projection matrices for entities with different types and they
project the representations of users, items and social entities into a unified space.
The function f(·, ·) can be a feedforward neural network. In this work, we use a
single layer feedforward neural network, parametrized by trainable parameter c.
That is,

f(Wppu,Wqqj) = a(cT [Wppu‖Wqqj ]),

f(Wppu,Wqsk) = a(cT [Wppu‖Wssk]),
(3)

where a(·) denotes an activation function and ‖ denotes concatenation operation.
Normalized positive attention weights of item j on user u can be calculated as

αuj = softmax (ᾱuj)

=
exp(ᾱuj)∑

j′∈N I
u

exp(ᾱuj′) +
∑

k′∈NS
u

exp(ᾱuk′) + exp(ᾱuu)

and ᾱuj = f(Wppu,Wqqj), ᾱuk = f(Wppu,Wssk), ᾱuu = f(Wppu,Wppu), (4)

where ᾱuj and αuj represent unnormalized and normalized attention weights
of item j on user u. The normalized attention coefficients are then used to
compute a linear combination of the features of neighbouring nodes to get a new
representation of a given node. For example, a representation of user u at the
current layer is calculated as

p′
u = a(

∑
j∈N I

u

αh
ujW

h
q qj +

∑
k∈NS

u

αh
ukW

h
s sk + αh

uuWh
p pu). (5)
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To exploit complex relationships that exist among entities, we employ multi-
head attention mechanism. In particular, using H independent attention heads,
the representation for user u can be obtained as

p′
u = ‖Hh=1a(

∑
j∈N I

u

αh
ujW

h
q qj +

∑
k∈NS

u

αh
ukW

h
s sk + αh

uuWh
p pu). (6)

Similarly, one can obtain features representations of items, q′. The final rating
of user u on item j can be obtained as

ŷuj = σ(w · φuj), where φuj = g(p′
u, q′

j), (7)

where σ(·) is the sigmoid function defined as σ(z) = 1
1+e−z and w denotes weight

vector. Here, g(·, ·) is a function which constructs the representation for user-
item interaction φuj for (u, j) from p′

u and q′
j . One can use a feedforward neural

network for g(·, ·). In our experiments, we use g(p′
u, q′

j) = p′
u � q′

j , where �
denotes element-wise multiplication.

Note that, as mentioned earlier, it is easy to incorporate the side information
of the nodes (for example, gender, age and country for users; and keywords and
category for items) in the proposed model. Let user u (with the associated social
entity e) be involved in a user-item interaction network and a social network. Let
xp
u and xs

e denote the side information associated with these nodes. This infor-
mation may be directly available in the dataset. Then the new representations
of the user and social entity nodes can be pu‖xp

u and se‖xs
e respectively. Thus,

side information, if available, can be easily used in the proposed approach.

2.2 Loss Function

Some commonly used loss functions for the implicit rating setting are cross-
entropy (lce) [9] and pairwise loss (lpair) [22] functions, which can be defined for
a user-item pair (u, j) as

lce(yuj , ŷuj) = −yuj ln(ŷuj) − (1 − yuj) ln(1 − ŷuj),
lpair(ŷujj′) = − ln(σ(ŷuj − ŷuj′)), where (u, j) ∈ Ω and (u, j′) �∈ Ω.

(8)

In this work, we use cross-entropy loss with negative sampling strategy [16] for
training the model. For all the training interactions, the loss function is defined
as follows:

min
W

L(W) = −
∑

(u,j)∈D
yuj ln ŷuj + (1 − yuj) ln(1 − ŷuj) + λ R(W), (9)

where R(·) is a regularizer, λ is a non-negative hyperparameter, and W denotes
all the model parameters. Here, D = D+ ∪D−

samp where D+ := {(u, j) ∈ Ω} and
D−

samp ⊂ {(u, j′) �∈ Ω}, obtained using negative sampling.
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Algorithm 1: SoRecGAT

Input: graph G(V, E), epochs T , number of layers L, minibatch size m
1 Initialize W
2 obtain p,q, s from user-item interaction network and social network based on

equations (10)-(12) while t < Tand not converged do
3 O ← Shuffle(p,q, s)
4 for each minibatch of (p̄, q̄, s̄) = (pi, qi, si)

m
i=1 ⊆ O do

5 W ← GATEmbedding(p̄, q̄, s̄, W, L)

6 return

Algorithm 2: GATEmbedding learns weights for attention layers
Input: p,q, s, network weights W, number of layers L
Output: Wnew

1 for l = 1 → L − 1 do
2 compute p′,q′, s′ from p,q, s and W based on equations (3)-(6)
3 (p,q, s) ← (p′,q′, s′)

4 compute ŷ based on equation (7)

5 Wnew ← Wold − η ∂L(W)
∂W //η is a learning rate

6 return Wnew

2.3 Node Features

Initial embeddings of graph nodes, before using multi-head attention layers, are
obtained using skip-gram technique [16]. Node sequences for a given graph G are
first generated by random walks [4,18]. Treating these sequences as sentences,
the skip-gram technique is used to construct graph node embeddings. For a given
graph G(V, E) with entities belonging to the same type, the objective of the skip-
gram technique is to maximize the probability of predicting the context node c
of a given node v as

max
x

∏
v∈V

∏
c∈C(v)

Pr(c|v), where Pr(c|v) =
exc·xv∑

c′∈V exc′ ·xv
. (10)

Here, C(v) denotes the context of node v, x = (x1, x2, . . . , x|V|), and xv represents
the embedding of node v. These embeddings are learnt by solving the above opti-
mization problem. In our setting, we have two networks: a user-item interaction
network and a user-social entity social network. The node embeddings for these
networks are constructed separately. Note that, this procedure reflects meta-path
based node embedding construction for user-item and user-social entity meta-
paths. Considering heterogeneity among entities has been shown to improve per-
formance over ignoring the types and taking them as homogeneous entities [4].
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To reduce the computational cost involved in computing Pr(c|v) (Eq. (10)),
we adopt the negative sampling strategy [16] as follows:

ln Pr(c|v) = lnσ(xc · xv) +
M∑

m=1

Ec′∼Pn(c′)[lnσ(xv · xc′)]. (11)

where M denotes number of negative samples. Hence, the loss function corre-
sponding to skip-gram model is defined as follows:

min
x

Lrw(x) = −
∑
v∈V

∑
c∈C(v)

ln σ(xc · xv) −
M∑

m=1

Ec′∼Pn(c′)[ln σ(xv · xc′)]. (12)

The complete training procedure for learning the parameters W for SoRec-
GAT is given in Algorithms 1 and 2. During training, we maintain the whole
graph structure in a sparse adjacency matrix. In our model, attention weight
parameters are shared across all the edges in the graph. Unlike other graph
neural network approaches, due to the shared attention weight parameters, we
do not operate on embeddings of all the nodes at every mini-batch iteration.
Instead, we operate only on the embeddings of the corresponding mini-batch
nodes and their neighbours. We randomly select a mini-batch of user-item inter-
actions, that is, the corresponding users and items based on their interactions in
the training set. During mini-batch training the gradient propagation happens
only to the respective nodes and their neighbours.

In the next section, we will discuss our experimental results.

3 Experiments

To demonstrate the effectiveness of the proposed model, in view of the following
research questions, we conduct several experiments:

RQ1 Does our proposed model – SoRecGAT perform better than state-of-the-art
social recommendation models? Does influence learning provide an advantage
when only the user-item rating matrix is available?

RQ2 What is the effect of various sparsity levels of the training set on the
performance of the proposed model?

RQ3 Employing the multi-head attention mechanism helpful for improving the
performance of SoRecGAT?

We address these questions after discussing experimental settings.

3.1 Experimental Settings

Datasets. We conduct experiments on eight datasets: four from Amazon6 –
an e-commerce recommendation system for products ranging from books, movie
6 http://jmcauley.ucsd.edu/data/amazon.

http://jmcauley.ucsd.edu/data/amazon


438 M. Vijaikumar et al.

DVDs to cloth items, and Yelp7 – a user review platform on local businesses
ranging from restaurants, hotels to real estates. Amazon dataset contains co-
purchased information for the items which we use as the item-social network.
Similarly, Yelp dataset contains friendship connections which we use as the user-
social network. Datasets contain ratings on the scale, [1–5]. We do the following
preprocessing as done in [9,19]: (1) Ratings having value more than 3 are retained
and treated as positive interactions (rating value 1 is assigned to them); (2) Those
users and items who have at least five ratings associated with them are retained;
and (3) Social connections between entities e1 → e2 for which either e1 or e2 is
a part of user-item interaction network are retained. The details of the datasets
are given in Table 1.

Table 1. Dataset statistics.

Dataset # users # items # ratings # social
entities

# social
connections

Amazon Music 2412 1923 33237 6769 129848

Movie 9498 4786 156633 5835 85495

CD 7878 7247 137610 18687 485526

Book 10041 6477 143805 16711 264283

Yelp Art 3071 1122 31438 7203 458322

Food 12615 4222 151394 13053 819044

Hotel 11040 3925 128130 14432 893278

Restaurant 13877 2233 158384 16702 1076506

Evaluation Procedure. For evaluating the performance of the models, we
closely follow [9] and adopt the well-known leave-one-out procedure. That is,
one item for each user from the dataset is held-out for validation and test pur-
pose respectively and the remaining items are used for training the model. Since
it is too time-consuming to rank all the items for each user during the evaluation
time, following [9], we randomly sample 50 non-interacted items for each user
along with the held-out item to construct validation and test set. Likewise, we
randomly extract five such sets. Mean and standard deviation of the models on
the test set with respect to best validation set performance is reported as the
final result.

Metric. We use two widely adopted ranking metrics – HitRatio@N (HR@N)
and normalized discounted cumulative gain (NDCG@N) for comparing the per-
formance of different models [9,19]. While HR@N measures the existence of the
items a user has interacted with, NDCG@N emphasizes the position of the same
item from the predicted top-N ranked list.

7 https://www.yelp.com/dataset/challenge.

https://www.yelp.com/dataset/challenge
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Comparison with Different Models. To evaluate the performance in rating-
only and social recommendation setting, we compare SoRecGAT with the fol-
lowing four groups of models. They are: rating-only models based on (i) matrix
factorization and (ii) neural networks; and social recommendation models based
on (iii) matrix factorization and (iv) neural networks. We select representatives
for each group and detail them below:

• SAMN [3] is a state-of-the-art model for top-N social recommendation set-
ting. It contains two components. The first component – attention-based
memory module learns aspect-level differences among friends, whereas the
second component – friend-level attention module learns influence strength
of his friends.

• DeepSoR [5] follows the two-stage procedure. In the first stage, it obtains
user representations from social networks by leveraging random walks. It
extends PMF (Probabilistic Matrix Factorization) [17] for social recommen-
dation in the second stage. The representations obtained from the first stage
are used as regularizers for users.

• SBPR [31] is a state-of-the-model for the top-N recommendation setting. It
extends BPR for the social recommendation.

• TrustSVD [8] extends the MF based model [11] to social recommendation.
It jointly factorizes both social network and user-item rating matrices to learn
richer representations.

• NeuMF [9] is a recently proposed state-of-the-art model for rating-only set-
ting. It fuses multi-layer perceptron with matrix factorization model in order
to exploit both deep and wide representations.

• GMF is a generalization of matrix factorization and proposed as a part of
NeuMF [9].

• BPR [22] is a standard baseline for top-N ranking setting. It optimizes the
pairwise loss function during training.

• MF [11] is a standard and widely adopted baseline for collaborative filtering.
• RecGAT is a special case of our model which uses only user-item interaction

network.

Note that, SAMN and DeepSoR are neural network models, and SBPR and
TrustSVD are matrix factorization models for social recommendation. In addi-
tion, NeuMF is based on a neural network model, and MF, GMF and BPR are
matrix factorization models for the rating-only setting.

Parameter Setting and Reproducibility. We use Python, Tensorflow 1.12
for our implementation. Our implementation is available at https://github.com/
mvijaikumar/SoRecGAT.

We use the dropout regularizer and adopt RMSProp [7] with mini-batch
for optimization. The number of layers, number of heads per layer and num-
ber of activation functions per head are sensitive hyperparameters for RecGAT
and SoRecGAT. Hyperparameters are tuned using the validation set. From the
validation set performance, the number of layers are set to two for RecGAT,
SoRecGAT, DeepSoR and NeuMF. Further, for SoRecGAT, the batch size is set

https://github.com/mvijaikumar/SoRecGAT
https://github.com/mvijaikumar/SoRecGAT
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Table 2. Performance of different models on four real-world datasets – Music, CD,
Movie, Book from Amazon. Social recommendation models are separated from rating-
only models. The best overall scores are indicated in boldface, while the best scores
among rating-only models are highlighted by asterisk (*). We conduct paired t-test and
the improvements using SoRecGAT are statistically significant with p < 0.01.

Model Music CD

HR@5 NDCG@5 HR@5 NDCG@5

MF 0.6482 ± 0.0158 0.4844 ± 0.0107 0.6779 ± 0.0039 0.5198 ± 0.0032

BPR 0.6555 ± 0.0102 0.4855 ± 0.0082 0.6901 ± 0.0052 0.5340 ± 0.0054

GMF 0.6835 ± 0.0106 0.5163 ± 0.0109 0.7163 ± 0.0061 0.5609 ± 0.0056

NeuMF 0.6854 ± 0.0084 0.5182 ± 0.0095 0.7251 ± 0.0030 0.5776 ± 0.0036

RecGAT (ours) 0.7104 ± 0.0116* 0.5416 ± 0.0098* 0.7504 ± 0.0065* 0.6019 ± 0.0047*

SBPR 0.6646 ± 0.0122 0.4914 ± 0.0092 0.6985 ± 0.0047 0.5485 ± 0.0062

TrustSVD 0.6712 ± 0.0113 0.5015 ± 0.0087 0.7043 ± 0.0072 0.5713 ± 0.0049

DeepSoR 0.6759 ± 0.0082 0.5130 ± 0.0084 0.7373 ± 0.0026 0.5841 ± 0.0036

SAMN 0.6795 ± 0.0080 0.5008 ± 0.0046 0.7245 ± 0.0061 0.5695 ± 0.0042

SoRecGAT (ours) 0.7333 ± 0.0029 0.5582 ± 0.0129 0.7796 ± 0.0023 0.6225 ± 0.0033

Movie Book

MF 0.5370 ± 0.0021 0.3799 ± 0.0027 0.7193 ± 0.0008 0.5614 ± 0.0014

BPR 0.5401 ± 0.0047 0.3843 ± 0.0042 0.7144 ± 0.0042 0.5626 ± 0.0021

GMF 0.5590 ± 0.0023 0.4006 ± 0.0012 0.7397 ± 0.0038 0.5931 ± 0.0027

NeuMF 0.5607 ± 0.0053 0.4022 ± 0.0037 0.7457 ± 0.0035 0.5965 ± 0.0033

RecGAT (ours) 0.5815 ± 0.0018* 0.4243 ± 0.0015* 0.7734 ± 0.0012* 0.6241 ± 0.0017*

SBPR 0.5493 ± 0.0034 0.3918 ± 0.0021 0.7217 ± 0.0029 0.5998 ± 0.0018

TrustSVD 0.5531 ± 0.0065 0.3973 ± 0.0032 0.7265 ±0.0032 0.5910 ± 0.0024

DeepSoR 0.5610 ± 0.0042 0.4079 ± 0.0035 0.7478 ± 0.0009 0.5964 ± 0.0024

SAMN 0.5621 ± 0.0065 0.4107 ± 0.0033 0.7405 ± 0.0041 0.5937 ± 0.0021

SoRecGAT (ours) 0.5888 ± 0.0043 0.4306 ± 0.0019 0.7805 ± 0.0014 0.6297 ± 0.0011

to 1024, the number of heads for layers are set to [8,6] for Food dataset and [12,6]
for other datasets the number of activation functions per head is set to 32 in the
first layer and 96 for Movie, Book and CD, 48 for Hotel and 64 for other datasets
in the second layer, the dropout ratio is set to 0.2 for Art and Book datasets and
0.5 for other datasets, learning rate is set to 0.0004 for Music, 0.0001 for Art
and 0.00008 for other datasets. We use LeakyRELU as the activation function
in Eq. (3) and exponential linear unit (ELU) as the activation function in other
places. Further, we tune l2-regularization values for SBPR, TrustSVD, DeepSoR,
SAMN from {0.005, 0.01, 0.05, 0.1, 0.5, 1, 1.5} and the number of factors for
MF, GMF, BPR, SBPR, TrustSVD, DeepSoR and SAMN from {16, 32, 64, 80,
128}, respectively. We use early stopping criterion with the maximum number
of epochs for training set to 60.

3.2 Results and Discussion

Overall Performance (RQ1). Tables 2 and 3 detail the performance of our
models and the other comparison models on eight datasets from Amazon and
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Table 3. Performance of different models on four real-world datasets – Art, Hotel,
Food and Restaurant from Yelp. Social recommendation models are separated from
rating-only models. The best overall scores are indicated in boldface, while the best
scores among rating-only models are highlighted by asterisk (*). We conduct paired
t-test and the improvements using SoRecGAT are statistically significant with p < 0.01.

Model Art Hotel

HR@5 NDCG@5 HR@5 NDCG@5

MF 0.7111 ± 0.0063 0.5124 ± 0.0091 0.8147 ± 0.0006 0.6127 ± 0.0015

BPR 0.7051 ± 0.0057 0.5123 ± 0.0027 0.7994 ± 0.0028 0.6009 ± 0.0025

GMF 0.7235 ± 0.0065 0.5319 ± 0.0068 0.8350 ± 0.0024 0.6359 ± 0.0018

NeuMF 0.7204 ± 0.0083 0.5314 ± 0.0059 0.8313 ± 0.0022 0.6364 ± 0.0017

RecGAT (ours) 0.7371 ± 0.0048* 0.5370 ± 0.0036* 0.8462 ± 0.0044* 0.6454 ± 0.0032*

SBPR 0.7284 ± 0.0062 0.5334 ± 0.0046 0.8332 ± 0.0037 0.6318 ± 0.0026

TrustSVD 0.7310 ± 0.0056 0.5391 ± 0.0032 0.8382 ± 0.0027 0.6353 ± 0.0019

DeepSoR 0.7322 ± 0.0065 0.5363 ± 0.0047 0.8357 ± 0.0040 0.6364 ± 0.0023

SAMN 0.7345 ± 0.0104 0.5374 ± 0.0067 0.8292 ± 0.0025 0.6215 ± 0.0033

SoRecGAT (ours) 0.7460 ± 0.0051 0.5407 ± 0.0038 0.8506 ± 0.0039 0.6546 ± 0.0035

Food Restaurant

MF 0.8087 ± 0.0022 0.6086 ± 0.0025 0.7744 ± 0.0017 0.5649 ± 0.0025

BPR 0.7862 ± 0.0027 0.5895 ± 0.0025 0.7536 ± 0.0034 0.5499 ± 0.0023

GMF 0.8285 ± 0.0024 0.6314 ± 0.0015 0.7925 ± 0.0037 0.5881 ± 0.0022

NeuMF 0.8387 ± 0.0038 0.6403 ± 0.0032 0.7945 ± 0.0044 0.5896 ± 0.0034*

RecGAT (ours) 0.8420 ± 0.0016* 0.6442 ± 0.0012* 0.7961 ± 0.0031* 0.5860 ± 0.0029

SBPR 0.8295 ± 0.0028 0.6277 ± 0.0019 0.7904 ± 0.0041 0.5811 ± 0.0028

TrustSVD 0.8380 ± 0.0034 0.6390 ± 0.0024 0.7946 ± 0.0038 0.5874 ± 0.0027

DeepSoR 0.8294 ± 0.0022 0.6333 ± 0.0023 0.7963 ± 0.0025 0.5937 ± 0.0031

SAMN 0.8218 ± 0.0032 0.6119 ± 0.0016 0.7777 ± 0.0034 0.5658 ± 0.0029

SoRecGAT (ours) 0.8471 ± 0.0074 0.6515 ± 0.0017 0.8038 ± 0.0042 0.5972 ± 0.0033

Yelp. Learning influence strength among entities in both user-item interac-
tion network and social network is crucial. To understand this phenomenon,
we study two cases here – without social network (RecGAT) and with social
network (SoRecGAT). RecGAT achieves better performance consistently across
the datasets as compared to the rating-only alternatives – MF, BPR, GMF and
NeuMF. From this, we observe that when only implicit ratings are available,
understanding the influence of users and items on each other is essential. Rec-
GAT achieves this by utilizing the multi-head attention mechanism layerwise.

SoRecGAT performs better than both rating-only and other social recom-
mendation models. Note that DeepSoR and SAMN are neural network mod-
els. Further, SAMN leverages attention-based memory network and friend-level
attention mechanism to learn the influence strength of users from the social net-
work. However, the above procedure is insufficient when we are given access to
only implicit ratings. This is because the users may not have an equal opinion
on all the items they interact within a system. In contrast, SoRecGAT accounts
for this by integrating both user-item interaction network and social network
together, and captures the influence strength in an end-to-end fashion using
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Fig. 2. Performance (HR@5) comparison of different models with respect to different
sparsity levels on the datasets: Music, CD, Movie, Book, Art, Hotel, Food and Restau-
rant. Here, we report the mean value obtained from five different experiments for each
sparsity level.

graph attention mechanism. Also note that, in SoRecGAT, the representations
of any entity in the graph is obtained from all its neighbours irrespective of its
entity type. This provides a more unified framework than DeepSoR and SAMN.

Performance of Models with Respect to Different Sparsity Levels
(RQ2). To investigate the effectiveness of our models under various sparsity
levels, we do the following. We start from the full training set and randomly
remove 20% ratings at each step. We continue this until only 20% of the ratings
are left in the training set. We repeat this for five different experiments for each
sparsity level, and report the mean value. Figures 2 and 3 show the detailed
comparison using the metrics HR@5 and NDCG@5, respectively.

As can be seen from Figs. 2 and 3, RecGAT and SoRecGAT consistently
perform better than the other models across different datasets, and their per-
formance does not deteriorate drastically as the sparsity level increases. This is
particularly evident for Amazon datasets ((a), (b), (c) and (d) in Figs. 2 and
3). This shows that RecGAT and SoRecGAT are more robust to the situations
where data are extremely sparse. From this, we can conclude that learning influ-
ence strength among entities in the user-item interaction network and social
network by our approach helps in alleviating data sparsity issues.

Effect of Multi-head Attention for Obtaining Influence (RQ3). Here, we
study the advantage of employing multiple attention heads in layers. We keep two
layers, and vary the number of attention heads from [2,1] to [20,10] in the respec-
tive layers. The performance of SoRecGAT, in terms of HR@5 and NDCG@5, is
depicted in Fig. 4 for Music and Art datasets. From this figure, it is clear that the
performance improves, as we increase the number of attention heads. However,
in our experiments, we notice that the performance starts deteriorating once the
number of attention heads exceeds [12,6] as this results in overfitting. We thus
observe that each attention head provides different complementary knowledge
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Fig. 3. Performance (NDCG@5) comparison of different models with respect to dif-
ferent sparsity levels on the datasets: Music, CD, Movie, Book, Art, Hotel, Food and
Restaurant. Here, we report the mean value obtained from five different experiments
for each sparsity level.

Fig. 4. Performance of SoRecGAT
with respect to different number of
attention heads in the layers on Music
and Art datasets.

Fig. 5. Performance of the proposed
architecture without and with atten-
tion mechanism on Music and Art
datasets.

about the relationship that exists among entities, which boosts the overall per-
formance of SoRecGAT.

Effect of Attention Mechanism. Here, we study the effect of attention mech-
anism in our graph networks. We use the same architecture (two layers with the
number of heads set to [12,6], the number of activation functions set to 32 and
64 respectively in the first and second layers, and the dropout set to 0.5 for
Music and 0.2 for Art) without and with attention mechanism on Music and
Art datasets. The performance is shown in Fig. 5 for the two datasets. From
this figure, we can observe that attention mechanism in the proposed approach
improve the performance.

4 Related Work

In the literature of recommendation systems, early successful models are mostly
based on matrix factorization techniques [11,17,22]. In particular, [2,22] are
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proposed for top-N recommendation framework where only implicit ratings are
available. Despite being simple, MF models act as strong baselines among col-
laborative filtering techniques. Owing to its rich representation capability [7,12],
a surge of neural networks and deep learning models have been proposed for
recommendation systems recently [9,13,28–30]. In contrast to MF, these models
replace the simple dot product between latent representation of users and items
with neural networks. Further, He et al. [9] proposed NeuMF that marries multi-
layer perceptron with generalized matrix factorization model to get the best of
both MF and neural network world. Nevertheless, these aforementioned models
suffer from data sparsity issues.

Exploiting social connections along with the user-item ratings have been
shown to greatly improve the performance of recommendation systems over tra-
ditional models that use only ratings [1,8,10,14,15,25]. Most existing works on
social recommendation extend matrix factorization techniques to incorporate
social network information into the recommendation system framework. For
instance, SocialMF [10] considers social influence by trust propagation mech-
anism; SoReg [15] incorporates social connections as regularizers to user repre-
sentations learned from user-item ratings; and TrustSVD [8] extends SVD++
model [11] to trust and social recommendation. Further, [19,20,31] have been
proposed specifically for top-N social recommendation tasks. Neural network
models [5,21] also have been proposed for social recommendation framework.
However, the above models assume that there exists equal influence across users
in the social network, which is not true in practice.

Our work is related to [6,23,27,29] in terms of using graph framework, and
[3,24,32] in terms of using attention mechanism for the top-N recommendation
setting. However, inspired by GAT [26], we employ multiple levels of attention
mechanism to account for complex relationships that exist among entities. Fur-
ther, in contrast to GAT which is proposed for node classifications in graphs, our
model is proposed for top-N recommendation setting and the objective function
is designed to predict future links between the users and items. Thus, here, the
social network helps in fine-tuning the user and item representations.

Furthermore, the models [23,24,27] are proposed for session-based social rec-
ommendations which require temporal information and [32] requires context
information in addition to user-item interaction network and social network. In
particular, Wu et al. [27] proposed SR-GNN that models session sequences as
graph structured data. Further, they employ graph neural networks to capture
complex transitions of items. Fan et al. [6] proposed GraphRec for social rec-
ommendation to jointly model interactions and opinions in the user-item graph.
In [29], a graph neural network algorithm called PinSage was proposed. PinSage
employs low latency random walks and localized graph convolution operations
to learn rich representations for nodes. The model [23] uses graph attention
mechanism for learning the influence of users in a social network. In contrast,
our model is more general and unified than [23], and the former learns influence
from both the social network and user-item interaction network, collectively.
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5 Conclusion

In this paper, we presented a novel graph attention-based model, SoRecGAT,
for top-N social recommendation. More importantly, our model integrates social
network with user-item interaction network and learns the complex relationships
among entities by multi-head and multi-layer attention mechanism. We con-
ducted extensive experiments on eight real-world datasets, and demonstrated the
effectiveness of the proposed model over state-of-the-art models under various
settings. Further, the proposed model has an advantage of using network-specific
side information, if available of nodes. Our model is more general and it can be
used for recommendations with any number of external networks. In future, we
plan to extend these ideas to a multimedia recommendation system where data
come from different modalities such as audios, images and videos.
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Abstract. Graph signal processing is a useful tool for representing, ana-
lyzing, and processing the signal lying on a graph, and has attracted
attention in several fields including data mining and machine learning.
A key to construct the graph signal processing is the graph Fourier trans-
form, which is defined by using eigenvectors of the graph Laplacian of
an undirected graph. The orthonormality of eigenvectors gives the graph
Fourier transform algebraically desirable properties, and thus the graph
signal processing for undirected graphs has been well developed. How-
ever, since eigenvectors of the graph Laplacian of a directed graph are
generally not orthonormal, it is difficult to simply extend the graph signal
processing to directed graphs. In this paper, we present a general frame-
work for extending the graph signal processing to directed graphs. To this
end, we introduce the Hermitian Laplacian which is a complex matrix
obtained from an extension of the graph Laplacian. The Hermitian Lapla-
cian is defined so as to preserve the edge directionality and Hermitian
property and enables the graph signal processing to be straightforwardly
extended to directed graphs. Furthermore, the Hermitian Laplacian guar-
antees some desirable properties, such as non-negative real eigenvalues
and the unitarity of the Fourier transform. Finally, experimental results
for representation learning and signal denoising of/on directed graphs
show the effectiveness of our framework.

Keywords: Graph signal processing · Graph Laplacian · Directed
graph

1 Introduction

Graph signal processing has attracted attention in several fields since it is useful
for representing, analyzing, and processing the graph signal, which is the signal
defined on the nodes of a graph. Graph signal processing aims to extend the clas-
sical signal processing for signals on a Euclidean structure, e.g., time series and
image signals, to signals on any graphs (i.e., both undirected and directed graphs).
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The basic concepts of graph signal processing have already been introduced,
such as graph filtering [18,19,23], graph sampling [4,32] and graph-based trans-
forms [13,24,29]. Along with theoretical development, graph signal processing has
facilitated advances in data mining, such as community mining [33], shape clas-
sification [16], feature learning [35], and representation learning [8]. Furthermore,
it is a fundamental theory for generalizing machine learning algorithms for data
with an underlying Euclidean or grid-like structure to graph structures, e.g., semi-
supervised learning [1,11] and deep neural networks [3,6].

Fourier transform of graph signal, called graph Fourier transform, plays a key
role in constructing the graph signal processing. The basic approach to define the
graph Fourier transform is based on eigenvectors of the graph Laplacian [13,29].
This approach applies to undirected graphs and constructs the Fourier basis
as the eigenvector of the graph Laplacian. Because of its orthonormality, the
resulting Fourier transform is unitary, and thus the inner product is preserved.
Furthermore, since this transform is considered as the natural extension of clas-
sical Fourier transform, the Fourier basis is easy to interpret. Specifically, the
Fourier basis corresponding to low frequency varies slowly, whereas that corre-
sponding to high frequency varies intensively. However, since eigenvectors of the
graph Laplacian of a directed graph are generally not orthonormal, we cannot
straightforwardly extend the graph Fourier transform to directed graphs.

The alternative approach to define the graph Fourier transform is based
on the Jordan decomposition of the adjacency matrix [23,24]. This approach
constructs the Fourier basis by using generalized eigenvectors of the adjacency
matrix. This is motivated by the fact that the adjacency matrix of a directed ring
graph can be regarded as the shift operator for discrete signals [21]; shift oper-
ator is the basis of all shift-invariant linear filtering. Since any square matrices
can be decomposed as Jordan form, this approach is applicable to both undi-
rected and directed graphs. However, it has some unsolved critical issues. First,
since the Fourier basis based on the Jordan decomposition is not orthonormal,
the resulting transform is not unitary. Second, the Fourier basis corresponding
to low frequency does not necessarily vary slowly and vice-versa [31]. Third,
eigenvalues of the adjacency matrix of a directed graph will take complex val-
ues. The complex eigenvalues lead to a large error in the approximated filter
responses [22]. Finally, the numerical computation of the Jordan decomposition
often incurs numerical instabilities even for medium-sized matrices [12].

A few unique approaches have recently been proposed to extend the graph
Fourier transform to directed graphs. Sevi et al. [26,27] proposed a framework
for constructing the harmonic analysis (i.e., Fourier and wavelet transform) on
directed graphs based on the Dirichlet energy of eigenfunctions of a random walk
operator. This approach constructs the Fourier basis by using the eigenfunction
of the random walk Laplacian [5] of a directed graph. However, this approach is
applicable only to strongly connected directed graphs and does not guarantee the
orthonormality of the Fourier basis. Another approach is to construct the Fourier
basis by solving the non-convex optimization problems under some constraints.
Sardellitti et al. [25] proposed a method for constructing the Fourier basis as the
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solution of the minimization problem of Lovász extension of the graph cut under
the orthonormality constraints. Lovász extension is a lossless convex relaxation
of the graph cut and is read as a smoothness measure of a graph signal. Then,
Shafipour et al. [28] designed the Fourier basis as the solution of the non-convex
orthonormality constrained optimization problems such that frequencies have a
desirable property, i.e., frequencies associated with the Fourier bases are evenly
spread over the entire frequency domain. Although these methods can construct
Fourier bases that have desirable properties, the solutions (Fourier bases) may
fall into a local minimum and can vary each time depending on the solving
method and/or initial conditions. Moreover, the Fourier bases do not completely
preserve the information about an underlying graph structure. Namely, it is
difficult to reconstruct the graph structure from Fourier bases and frequencies.

In this paper, we present a general framework for extending the graph signal
processing to directed graphs based on the Hermitian Laplacian. The Hermi-
tian Laplacian is defined so as to preserve both the Hermitian property and
edge directionality by encoding the edge direction into the argument (phase)
in the complex plane. Thanks to the Hermitian property, we can always choose
eigenvectors of a Hermitian Laplacian as orthonormal bases. This orthonormality
enables the basic concepts of the graph signal processing for undirected graphs to
be straightforwardly generalized to that for directed graphs. Furthermore, the
Hermitian property guarantees some desirable properties for constructing the
graph signal processing, such as non-negative real eigenvalues and the unitarity
of the Fourier transform. Finally, we provide experimental results for representa-
tion learning and signal denoising of/on directed graphs as application examples
of our framework.

2 Preliminaries

2.1 Graph Laplacian and Graph Signals

Let G = (V,E) be an undirected graph without self-loops and multiple edges,
where V is the set of N nodes and E ⊂ V × V is the set of edges in G. The
adjacency matrix A = [Aij ] ∈ R

N×N is defined as Aij = wij if (i, j) ∈ E
and Aij = 0 otherwise. Here wij is the real positive weight of edge (i, j), and
wij = wji in an undirected graph. The degree of each node is di :=

∑N
j=1 wij

and the degree matrix is defined as D := diag(d1, . . . , dN ). The graph Laplacian
is defined as L := D − A.

For connected graphs, L is a non-negative definite matrix and its mini-
mum eigenvalue is 0. Therefore we sort its eigenvalues in ascending order as
0 = λ0 < λ1 ≤ · · · ≤ λN−1, and we choose the orthonormal eigenvector vμ

associated with eigenvalue λμ such that 〈vμ,vν〉 = δμν , where δμν is Kronecker’s
delta. Then, since L of an undirected graph G is real symmetric, L can be decom-
posed as L = V ΛV ∗, where V := (v0, . . . ,vN−1) is the orthonormal matrix,
Λ = diag(λ0, . . . , λN−1) is the diagonal matrix, and ∗ is the adjoint (conjugate
transpose). Note that, for undirected graphs, V ∗ = V T since V is real.
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The graph signal f : V → R
N can be represented as a N dimensional vector

whose i-th entry f(i) is the signal value at node i ∈ V .

2.2 Graph Signal Processing

In this subsection, we briefly introduce the Laplacian-based graph signal pro-
cessing [13,29] through comparison with classical signal processing.

Graph Fourier Transform. The classical Fourier transform is defined by the
inner product of signal f(t) with the Fourier basis eiωt as

f̂(ω) := 〈f, eiωt〉 =
∫

R

f(t) e−iωt dt.

This means Fourier transform is the expansion of a function f by the
Fourier basis that is the eigenfunction of the one-dimensional Laplace opera-
tor; −�eiωt = − ∂2

∂t2 eiωt = ω2eiωt.
Analogously, for undirected graphs, the graph Fourier transform of graph

signal f ∈ R
N is defined by the eigenvectors of graph Laplacian L as

f̂(λμ) := 〈f ,vμ〉 =
N∑

i=1

f(i) v∗
μ(i), (1)

f̂ := V ∗f , (2)

and inverse graph Fourier transform is defined as f := V f̂ .
In classical Fourier analysis, the eigenvalue ω2 can be interpreted as fre-

quency: the eigenfunction eiωt varies slowly for small ω but intensively for large
ω. In the graph setting, the eigenvalues and eigenvectors of graph Laplacian also
act identically. For connected graphs, the eigenvector v0 associated with zero
eigenvalue λ0 is constant; v0(i) = 1/

√
N for all i. Then, the eigenvector associ-

ated with small eigenvalue varies slowly across the graph. In other words, if two
nodes are connected, the corresponding entries of the eigenvector have similar
values. This fact is confirmed by the following equation:

λμ = vT
μ Lvμ =

∑

(i,j)∈E

wij (vμ(i) − vμ(j))2 , (3)

which is instantly derived from Λ = V ∗LV . Hereinafter, the property that
small and large eigenvalues correspond to low and high frequencies, respectively,
is referred to as frequency ordering.

Spectral Graph Filtering. In classical signal processing, filtering is the pro-
cess that removes some unwanted components from an input signal fin. Let h
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be the filter in the time domain. The filtering is defined by the convolution of
fin and h as

fout(t) :=
∫ ∞

−∞
fin(τ)h(t − τ) dτ. (4)

Taking the Fourier transform of (4), we derive

f̂out(ω) = f̂in(ω) ĥ(ω), (5)

so-called convolution theorem.
We can generalize (5) to define spectral graph filtering as

f̂out(λμ) = f̂in(λμ) ĥ(λμ), (6)

or, equivalently, we have

fout(i) =
N−1∑

μ=0

f̂in(λμ) ĥ(λμ) vμ(i). (7)

We can also write (7) by matrix form as

fout := V ĤV ∗fin, (8)

where Ĥ := diag(ĥ(λ0), . . . , ĥ(λN−1)) and ĥ(λ) is the filter kernel function
defined on [0, λN−1].

Spectral Graph Wavelet Transform. Spectral graph wavelet transform
is defined by using the Fourier basis previously defined. The construction of
wavelets is based on band-pass or low-pass filters in the frequency domain, gener-
ated by modulating a unique filter kernel ĝ(s ·) defined on [0, λN−1]. The wavelet
at scale s(> 0) and node i is defined as

ψs,i := V ĜsV
∗δi, (9)

where Ĝs := diag(ĝ(sλ0), . . . , ĝ(sλN−1)) and δi is the vector whose i-th entry
is 1 and others are 0. Then, given any signal f ∈ R

N , the wavelet coefficient is
defined as

Wf (s, i) := 〈f ,ψs,i〉 = ψ∗
s,i f .

3 Graph Signal Processing for Directed Graphs Based on
the Hermitian Laplacian

Obviously, if the graph Laplacian of a directed graph has orthonormal eigen-
vectors, we can naturally extend the graph signal processing to directed graphs.
However, since the graph Laplacian of a directed graph is asymmetric, its eigen-
vectors are generally not orthonormal. To overcome this non-orthonormality
issue, we introduce the Hermitian Laplacian which is a complex matrix obtained
from an extension of the graph Laplacian. The Hermitian Laplacian is defined
so as to preserve the edge directionality and Hermitian property and enables the
graph signal processing to be straightforwardly extended to directed graphs.
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3.1 Hermitian Laplacian on Directed Graphs

Hermitian Laplacian. Here we consider a directed graph G = (V, E) where V
is the set of N nodes and E is the set of directed edges such that for each i, j ∈ V
ordered tuple (i, j) ∈ E assigns a directed edge from node i to j. The weighted
adjacency matrix A = [Aij ] ∈ R

N×N is defined as Aij = wij if (i, j) ∈ E
and Aij = 0 otherwise. Note that, for a given directed graph, we can uniquely
determine the corresponding undirected graph G(s) = (V, E(s)) by ignoring the
directionality of edges. The (symmetrized) adjacency matrix A(s) = [w(s)

ij ] of

G(s) is defined as w
(s)
ij := 1

2 (wij + wji).
As is well known, a Hermitian matrix H ∈ C

N×N is a complex square matrix
that is equal to its own adjoint matrix; H = H∗. The significant properties of
Hermitian matrices are as follows:

• The sum of any two Hermitian matrices is Hermitian.
• All eigenvalues of a Hermitian matrix are real.
• A Hermitian matrix has linearly independent eigenvectors. Moreover, N

eigenvectors can always be chosen as orthonormal bases of CN .
• Any Hermitian matrix H can be decomposed as H = UΛU∗ where U is

a unitary matrix whose columns are its eigenvectors, and Λ is a diagonal
matrix of its eigenvalues.

The above properties of a Hermitian matrix, especially the orthonormality of
its eigenvectors, motivate us to define the graph Laplacian of a directed graph
as a Hermitian matrix. For this purpose, we consider the edge directionality and
node connectivity separately, and encode the edge direction into the argument
(phase) in the complex plane.

Let us define the function γ : V × V → U(1) such that

γ(i, j) = γ(j, i), (10)

where U(1) is the unitary group of degree 1. One of the simplest expressions of
γ is

γq(i, j) := γ(i, j; q) = ei2πq(wij−wji), (11)

where q ∈ [0, 1) is a rotation parameter. As shown in Fig. 1, γq(i, j) encodes the
direction of (i, j) into the phase in the complex plane.

By using (11), the Hermitian Laplacian is defined as

Lq := D − Γq 
 A(s), (12)

where D is the degree matrix of G(s), Γq is a Hermitian matrix whose (i, j)
component is γq(i, j), and 
 is Hadamar product. Since Γq 
 A(s) is Hermitian,
Lq is Hermitian. In addition, the degree normalized version of Lq, which is given
by N q := D−1/2LqD

−1/2, is also Hermitian.
In the context of quantum physics, the Hermitian Laplacian can be inter-

preted as the operator that describes the phenomenology of a free charged par-
ticle on a graph, which is subject to the action of a magnetic field. Therefore,
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Fig. 1. γ encodes the edge direction into the phase in the complex plane

it is called magnetic Laplacian [2,7,14,34]. Due to this physical context, the
parameter q is named electric charge. Some applications of the magnetic Lapla-
cian for directed graphs have been proposed, e.g., visualization [9], community
detection [10], and characterization [17].

Spectral Properties. Let us look at the spectral properties of the Hermitian
Laplacian via relationship with the ordinary graph Laplacian. We denote the
eigenvalues of the Hermitian Laplacian Lq in ascending order as λ′

0 ≤ · · · ≤
λ′

N−1, and choose the eigenvector uμ associated with λ′
μ as the orthonormal

eigenbasis. As it is clear from (11), if G is undirected or q = 0, the Hermitian
Laplacian Lq is equivalent to an ordinary graph Laplacian L since γq(i, j) = 1
for all (i, j) ∈ V ×V. Thus, for small q, the spectrum of the Hermitian Laplacian
is expected to be analogous to the spectrum of the graph Laplacian, such as the
presence of a zero eigenvalue and frequency ordering.

We first consider Kato’s inequality [15] for the Hermitian Laplacian to look
at the relationship between the smallest eigenvalue of Lq and L.

Proposition 1. For any signal f ∈ C
N , the following inequality holds:

〈|f |,L|f |〉 ≤ Re [〈f ,Lqf〉] , (13)

where |f | is the real vector whose i-th entry is |f(i)|.
Proof. By explicit calculation, we obtain

〈|f |,L|f |〉 − Re [〈f ,Lqf〉]

=
N∑

i,j=1

w
(s)
ij

(|f(i)|2 − |f(i)||f(j)|) − Re

⎡

⎣
N∑

i,j=1

w
(s)
ij

(
|f(i)|2 − γq(i, j) f(i) f(j)

)
⎤

⎦

=
N∑

i,j=1

w
(s)
ij

(
Re

[
γq(i, j) f(i) f(j)

]
− |f(i)||f(j)|

)
≤ 0,
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since Re
[
f(i) f(j)

]
≤ |f(i)||f(j)| and |γq(i, j)| = 1 for any q. ��

Recall that the smallest eigenvalue of the Hermitian Laplacian Lq is com-
puted as

λ′
0 = inf

{ 〈f ,Lqf〉
〈f ,f〉 | 〈f ,f〉 = 0

}

,

we have the immediate corollary of Proposition 1.

Corollary 1. For any q, the smallest eigenvalue of L and Lq have the following
relationship:

0 = λ0 ≤ λ′
0. (14)

This suggests that the Hermitian Laplacian has non-negative real eigenvalues.
Next, to measure the smoothness of eigenvectors of Lq, we introduce the

total variation. We define the total variation of signal f ∈ C
N on a graph G as

TV(f) :=
∑

(i,j)∈E
|f(i) − f(j)|2 . (15)

As it is clear from (15), TV(f) is small (large) if any two adjacent signals on G
take similar (dissimilar) values, respectively. Therefore, we find that (15) mea-
sures the smoothness of signals over a graph. Figure 2 shows an example of
eigenvalues and total variations of eigenvectors of the Hermitian Laplacian Lq

on a random directed graph with 50 nodes. From this figure, one can find that
Lq satisfies the frequency ordering and has a nearly zero eigenvalue for small q
but not for large q because of a larger contribution from the imaginary part.

3.2 Graph Signal Processing for Directed Graphs

In this subsection, we explain the graph signal processing for directed graphs
based on the Hermitian Laplacian. As described in Sect. 2.2, the graph Laplacian
of an undirected graph has a zero eigenvalue and satisfies the frequency ordering.
These properties are useful for understanding the physical meaning of the Fourier
basis. Therefore, for extending graph signal processing to directed graphs, the
Hermitian Laplacian should also satisfy these properties. For this purpose, we
first describe the condition of the rotation parameter q so that Lq satisfies these
properties. Then, we define the graph Fourier transform and some other concepts
of graph signal processing on directed graphs.

Selection of q . The choice of the rotation parameter q influences the graph
Fourier transform. However, there is not an established method to select it. We
here propose an expedient method to select q for graph signal processing. Let ε be
the tolerance of the smallest eigenvalue λ′

0 of the Hermitian Laplacian Lq (q > 0)
of an unweighted directed graph G, that is 0 ≤ λ′

0 ≤ ε. Then, let us denote the
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Fig. 2. Spectral properties of the Hermitian Laplacian of a random directed graph with
50 nodes; average degree 〈d〉 = 5.

eigenvalue and associated eigenvector of the symmetrized Laplacian L(s) (=
L0) of G(s) as λ

(s)
μ and u

(s)
μ , respectively. According to eigenvalue perturbation

theory [20], for small q, the eigenvalue λ′
μ of Lq is approximated as

λ′
μ � λ(s)

μ + 〈u(s)
μ ,Δqu

(s)
μ 〉, (16)

where Δq := Lq − L(s). Thus, the smallest eigenvalue of Lq is

λ′
0 � λ

(s)
0 + 〈u(s)

0 ,Δqu
(s)
0 〉 =

1
N

∑

(i,j)∈E(s)

(Δq)ij ,

≤ 1
2N

|E|(2 − ei2πq − e−i2πq) =
〈d〉
2

(1 − cos(2πq)),

where 〈d〉 = 2|E|
N is the average in- or out-degree of G. Therefore, by solving the

inequality λ′
0 ≤ 〈d〉

2 (1 − cos(2πq)) ≤ ε, we obtain

0 ≤ q ≤ cos−1(1 − 2ε/〈d〉)
2π

. (17)

Thus, one can choose q depending only on the average degree 〈d〉 and the toler-
ance ε of the smallest eigenvalue λ′

0.

Graph Fourier Transform on Directed Graphs. Next, we define the graph
Fourier transform on directed graphs. Since Lq is Hermitian, the Hermitian
Laplacian can be represented as Lq = UΛ′U∗, where U = (u0, . . . ,uN−1)
and Λ′ = diag(λ′

0, . . . , λ
′
N−1). The graph Fourier transform of the graph signal

f ∈ R
N on a directed graph can be straightforwardly defined by replacing V of

(2) with U as follows:

f̂ := U∗f , (18)



456 S. Furutani et al.

where f̂ ∈ C
N is generally a complex valued vector. Note that, since U is

orthonormal, this definition (18) of graph Fourier transform holds Parseval’s
identity. In other words, for any graph signal f ∈ R

N , its Fourier transform f̂
preserves the inner product; 〈f ,f〉 = 〈f̂ , f̂〉. This means the Fourier transform
is unitary.

In the same way, we can easily extend the concepts of the Laplacian-based
graph signal processing on undirected graphs to directed graphs. For example,
the spectral graph filtering and spectral graph wavelet on a directed graph are
respectively defined as

fout := UĤU∗fin, (19)

and

ψs,i := UĜsU
∗δi. (20)

4 Experiments and Results

In this section, we provide experimental results of representation learning and
signal denoising of/on a directed graph as application examples of graph signal
processing based on the Hermitian Laplacian. In each experiment, we set the
parameter q of Hermitian Laplacian Lq to q = 0.02; our results are not sensitive
to small changes in q.

4.1 Representation Learning for Synthetic Graph

We first consider the representation learning of a synthetic directed graph.
GraphWave [8] is the representation learning method using the graph signal
processing. The embedding function of GraphWave is designed such that struc-
turally similar nodes are embedded close together by leveraging diffusion pat-
terns of each node. We provide an overview of GraphWave below.

For a given graph Laplacian L = V ΛV T of an undirected graph, we here
denote the spectral graph wavelet at scale s and node i as ψi(s) and its j-th
entry as ψij(s). If the filter kernel ĝ(sλ) is heat kernel ĝ(sλ) = e−sλ, one can
find that the wavelet ψi(s) is equal to the solution of the diffusion equation
d
dsψ(s) = −Lψ(s) with the initial value ψ(0) = δi, since

ψi(s) = V ĜsV
T δi = V e−sΛV T δi,= e−sV ΛV T

δi = e−sLδi. (21)

Given the embedding parameters, t ∈ {t1, . . . , td} and s ∈ {s1, . . . , sm}, the
embedding function χi : V → R

2dm is defined as follows:

χi = [Re(φi(s, t)), Im(φi(s, t))]t∈{t1,...,td}, s∈{s1,...,sm} , (22)

where φi(s, t) := 1
N

∑N
j=1 eit ψij(s) is the characteristic function that completely

characterizes behavior and properties of the probability distribution. If two nodes
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are structurally similar within their local graph topology, these diffusion patterns
are similar. Therefore, these characteristic functions are also similar, and thus
structurally similar nodes are embedded close together. Note that, since eigen-
vectors of the digraph Laplacian L := D −A are not orthonormal, GraphWave
is generally not applicable to directed graphs. However, if the filter kernel is a
heat kernel, GraphWave can be made applicable to directed graphs by replacing
L of (21) with L, that is ψi(s) = e−sLδi.

We evaluate the effectiveness of our framework based on the embedding
results by GraphWave for the synthetic directed graph shown in Fig. 3. We set
the filter kernel to ĝ(sλ) = e−sλ. For comparison, we calculate the embeddings
in three ways:

(a) GraphWave based on the symmetrized Laplacian L(s), i.e., ignoring the
edge directionality. In this setting, we can directly apply GraphWave to
learn embedding.

(b) GraphWave based on the digraph Laplacian L. Since we now assume the
heat kernel, we can apply GraphWave to the directed graph as previously
mentioned.

(c) GraphWave based on the Hermitian Laplacian Lq, i.e., calculating the
wavelet by (20).

To make our evaluation fair, we use the same parameters for each experiment;
s ∈ {2.0, 2.1, . . . , 20.0} and t ∈ {1, 2, . . . , 10}.

Figure 4 shows the results of two-dimensional principal component analy-
sis (PCA) projection of the R

2dm dimensional vector calculated by GraphWave.
First, Fig. 4(a) shows that red and blue nodes with the same depth are embedded
into the same point without distinction because edge directionality is ignored.
Then, Fig. 4(b) reveals that although the edge directionality is considered, sink
nodes (nodes with zero out-degree) are embedded into the same point. Specifi-
cally, node 13 and nodes 14–17, which are not structurally similar, are embedded
into the same point. This is because the characteristic function φk(s, t) is equal
for each sink node k, since ∀sψk(s) = ψk(0) = δk. Finally, Fig. 4(c) shows the
GraphWave based on the Hermitian Laplacian succeeds at learning embedding
while considering edge directionality and distinction of sink nodes. Specifically,
our framework can distinguish not only red and blue nodes with same depth but
also sink nodes (i.e., node 13 and nodes 14–17).

4.2 Signal Denoising for Graph of Contiguous United States

Next we consider the signal denoising on a directed graph. In this experiment,
we use the directed graph that represents the contiguous United States, exclud-
ing Alaska and Hawaii which are not connected by land with the other states. A
directed edge between states is assigned based on latitudes; from lower to higher.
Then, we consider the average annual temperature of each state as the graph
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Fig. 3. Synthetic graph.

Fig. 4. Two-dimensional PCA projection of embedding as learned by GraphWave based
on the symmetrized Laplacian (a), digraph Laplacian (b) and Hermitian Laplacian (c).

signal1. In general, the states closer to the equator, i.e., with lower latitude, have
higher average temperatures. Thus, assigning directed edges based on state lati-
tudes may be justified to capture the temperature flow. The same settings were
used in [28]. Figure 5 shows the temperature signals over the directed contiguous
US graph.

To verify the effectiveness of the graph signal processing based on the Hermi-
tian Laplacian, we conduct an experiment to recover original temperature signals
from noisy measurements on both the undirected and directed contiguous US
graph. Noisy measurements are generated as g := f + η, where f is the original
signals and η is the noise vector whose each entry η(i) independently follows
the Gaussian distribution with the mean μ = 0 and standard deviation σ = 10.

1 Latitude and temperature data are respectively obtained from following
web sites: https://inkplant.com/code/state-latitudes-longitudes and https://www.
currentresults.com/Weather/US/average-annual-state-temperatures.php.

https://inkplant.com/code/state-latitudes-longitudes
https://www.currentresults.com/Weather/US/average-annual-state-temperatures.php
https://www.currentresults.com/Weather/US/average-annual-state-temperatures.php
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Fig. 5. Graph signal of the average temperature in Fahrenheit for the directed con-
tiguous US.

Then, we use a low-pass filter kernel

ĥ(λ) =
1

1 + cλ
, (23)

where c (> 0) is the parameter of this kernel [29]. The recovered (denoised) signal
f̃ can be calculated as

f̃ = UĤU∗g, (24)

where Ĥ := diag(ĥ(λ0), . . . , ĥ(λN−1)). In this experiment, we set the kernel
parameter to c = 2. Note that although we here use (23) as low-pass filter
kernel, one can choose the other filter kernel, such as [30].

Figure 6 shows an example of the original, noisy and denoised temperature
signals on the undirected and directed contiguous US graph. Here, Fig. 6(f) illus-
trates the real part of each signal, Re[f̃(i)], since the denoised signals calculated
by (24) are generally complex values. From Fig. 6, one can find that the denoised
signals on the undirected graph are comparatively smooth in the entire graph,
whereas those on the directed graph are comparatively uneven.

To quantitatively evaluate the denoising performance, we consider the denois-
ing error of each state i, which is calculated as e(i) := |Re[f̃(i)] − f(i)|. Figure 7
shows the average denoising error 〈e(i)〉 of each state i over the 100 simulations
of independent noise. This figure suggests that the denoising performance in
the directed case is equal to or slightly superior to that in the undirected case;
especially the signal of peripheral nodes, i.e., the nodes with low or high lati-
tudes, such as FL, TX, LA, MN, MT and ND. In the undirected graph, each
denoised signal is simply averaged over its adjacent node signals without con-
sidering the edge directionality. This leads denoised signals to be smooth in the
entire graph. Therefore, the denoising error will be low in the region where the
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Fig. 6. Original, noisy and denoised temperature signals on undirected (upper panel)
and directed (lower panel) contiguous US graph. To equalize colorbar scales for each
panel, we set lower limit to mini(f(i)) = 40.4 and upper limit to maxi(f(i)) = 70.7 in
(b) and (e).

Fig. 7. Semi-transparent bar charts of average denoising error of each state over 100
simulations (in ascending order of state latitudes). The averages of 〈e(i)〉 in the directed
and undirected cases are 3.7719 and 3.8723, respectively.

original signals are smooth but high in the region where they are not. On the
other hand, in the directed graph, each denoised signal is averaged over its adja-
cent node signals while considering the edge directionality. Therefore, it seems
that denoised signals capture the temperature flow of original signals without
excessive smoothing.
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5 Conclusions and Future Work

We have presented a general framework for extending graph signal processing to
directed graphs based on the Hermitian Laplacian. The Hermitian Laplacian on
a directed graph is defined so as to preserve both the Hermitian property and
edge directionality by encoding the edge direction into the phase in the complex
plane. The Hermitian property enables the graph signal processing to be straight-
forwardly generalized to directed graphs and guarantees some desirable proper-
ties, such as the non-negative real eigenvalues and the unitarity of the Fourier
transform. Based on the Hermitian Laplacian, we have extended the basic con-
cepts of the Laplacian-based graph signal processing on undirected graphs (e.g.,
graph Fourier transform, spectral graph filtering, and spectral graph wavelet)
to directed graphs. Finally, we have shown the effectiveness of our framework
through two experiments; representation learning and signal denoising of/on a
directed graph. Future work includes theoretically analyzing spectral properties
of Hermitian Laplacians (e.g., relation between the rotation parameter q and
its eigenvectors), evaluating our framework by larger and complex graphs, and
developing other applications of our framework.
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Abstract. In this paper, we develop a novel Aligned-Spatial Graph
Convolutional Network (ASGCN) model to learn effective features for
graph classification. Our idea is to transform arbitrary-sized graphs into
fixed-sized aligned grid structures, and define a new spatial graph con-
volution operation associated with the grid structures. We show that
the proposed ASGCN model not only reduces the problems of infor-
mation loss and imprecise information representation arising in exist-
ing spatially-based Graph Convolutional Network (GCN) models, but
also bridges the theoretical gap between traditional Convolutional Neu-
ral Network (CNN) models and spatially-based GCN models. Moreover,
the proposed ASGCN model can adaptively discriminate the importance
between specified vertices during the process of spatial graph convolu-
tion, explaining the effectiveness of the proposed model. Experiments on
standard graph datasets demonstrate the effectiveness of the proposed
model.

Keywords: Graph Convolutional Networks · Graph classification

1 Introduction

Graph-based representations are powerful tools to analyze structured data that
are described in terms of pairwise relationships between components [5,27]. One
common challenge arising in the analysis of graph-based data is how to learn
effective graph representations. Due to the recent successes of deep learning
networks in machine learning, there is increasing interest to generalize deep
Convolutional Neural Networks (CNN) [16] into the graph domain. These deep
learning networks on graphs are the so-called Graph Convolutional Networks
(GCN) [15], and have proven to be an effective way to extract highly meaningful
statistical features for graph classification [9].

Generally speaking, most existing state-of-the-art GCN approaches can be
divided into two main categories with GCN models based on (a) spectral and
(b) spatial strategies. Specifically, approaches based on the spectral strategy
define the convolution operation based on spectral graph theory [8,12,19]. By
c© Springer Nature Switzerland AG 2020
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transforming the graph into the spectral domain through the eigenvectors of
the Laplacian matrix, these methods perform the filter operation by multiplying
the graph by a series of filter coefficients. Unfortunately, most spectral-based
approaches cannot be performed on graphs with different size numbers of ver-
tices and Fourier bases. Thus, these approaches demand the same-sized graph
structures and are usually employed for vertex classification tasks. On the other
hand, approaches based on the spatial strategy are not restricted to the same-
sized graph structures. These approaches generalize the graph convolution oper-
ation to the spatial structure of a graph by directly defining an operation on
neighboring vertices [1,10,24]. For example, Duvenaud et al. [10] have proposed
a spatially-based GCN model by defining a spatial graph convolution operation
on the 1-layer neighboring vertices to simulate the traditional circular finger-
print. Atwood and Towsley [1] have proposed a spatially-based GCN model by
performing spatial graph convolution operations on different layers of neighbor-
ing vertices rooted at a vertex. Although these spatially-based GCN models can
be directly applied to real-world graph classification problems, they still need
to further transform the multi-scale features learned from graph convolution
layers into the fixed-sized representations, so that the standard classifiers can
directly read the representations for classifications. One way to achieve this is to
directly sum up the learned local-level vertex features from the graph convolu-
tion operation as global-level graph features through a SumPooling layer. Since
it is difficult to learn rich local vertex topological information from the global
features, these spatially-based GCN methods associated with SumPooling have
relatively poor performance on graph classification.

To overcome the shortcoming of existing spatially-based GCN models, Zhang
et al. [28] have developed a novel spatially-based Deep Graph Convolutional Neu-
ral Network (DGCNN) model to preserve more vertex information. Specifically,
they propose a new SortPooling layer to transform the extracted vertex features
of unordered vertices from the spatial graph convolution layers into a fixed-sized
local-level vertex grid structure. This is done by sequentially preserving a spec-
ified number of vertices with prior orders. With the fixed-sized grid structures
of graphs to hand, a traditional CNN model followed by a Softmax layer can be
directly employed for graph classification. Although this spatially-based DGCNN
model focuses more on local-level vertex features and outperforms state-of-the-
art GCN models on graph classification tasks, this method tends to sort the
vertex order based on each individual graph. Thus, it cannot accurately reflect
the topological correspondence information between graph structures. Moreover,
this model also leads to significant information loss, since some vertices associ-
ated with lower ranking may be discarded. In summary, developing effective
methods to learn graph representations still remains a significant challenge.

In this paper, we propose a novel Aligned-Spatial Graph Convolutional Net-
work (ASGCN) model for graph classification problems. One key innovation of
the proposed ASGCN model is that of transitively aligning vertices between
graphs. That is, given three vertices v, w and x from three different sample
graphs, if v and x are aligned, and w and x are aligned, the proposed model can
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guarantee that v and w are also aligned. More specifically, the proposed model
employs the transitive alignment procedure to transform arbitrary-sized graphs
into fixed-sized aligned grid structures with consistent vertex orders, guarantee-
ing that the vertices on the same spatial position are also transitively aligned to
each other in terms of the topological structures. The conceptual framework of
the proposed ASGCN model is shown in Fig. 1. Specifically, the main contribu-
tions are threefold.

First, we develop a new transitive matching method to map different
arbitrary-sized graphs into fixed-sized aligned vertex grid structures. We show
that the grid structures not only establish reliable vertex correspondence infor-
mation between graphs, but also minimize the loss of structural information from
the original graphs.

Second, we develop a novel spatially-based graph convolution network
model, i.e., the ASGCN model, for graph classification. More specifically, we
propose a new spatial graph convolution operation associated with the aligned
vertex grid structures as well as their associated adjacency matrices, to extract
multi-scale local-level vertex features. We show that the proposed convolution
operation not only reduces the problems of information loss and imprecise infor-
mation representation arising in existing spatially-based GCN models associated
with SortPooling or SumPooling, but also theoretically relates to the classical
convolution operation on standard grid structures. Thus, the proposed ASGCN
model bridges the theoretical gap between traditional CNN models and spatially-
based GCN models, and can adaptively discriminate the importance between
specified vertices during the process of the spatial graph convolution operation.
Furthermore, since our spatial graph convolution operation does not change the
original spatial sequence of vertices, the proposed ASGCN model utilizes the
traditional CNN to further learn graph features. In this way, we provide an
end-to-end deep learning architecture that integrates the graph representation
learning into both the spatial graph convolutional layer and the traditional con-
volution layer for graph classification.

Third, we empirically evaluate the performance of the proposed ASGCN
model on graph classification tasks. Experiments on benchmarks demonstrate
the effectiveness of the proposed method, when compared to state-of-the-art
methods.

2 Related Works of Spatially-Based GCN Models

In this section, we briefly review state-of-the art spatially-based GCN models
in the literature. More specifically, we introduce the associated spatial graph
convolution operation of the existing spatially-based Deep Graph Convolutional
Neural Network (DGCNN) model [28]. To commence, consider a sample graph G
with n vertices, X = (x1, x2, ..., xn) ∈ R

n×c is the collection of n vertex feature
vectors of G in c dimensions, and A ∈ R

n×n is the vertex adjacency matrix (A
can be a weighted adjacency matrix). The spatial graph convolution operation
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Fig. 1. The architecture of the proposed ASGCN model. An input graph Gp(Vp, Ep) ∈
G of arbitrary size is first aligned to the prototype graph GR(VR, ER). Then, Gp

is mapped into a fixed-sized aligned vertex grid structure, where the vertex orders
follow that of GR. The grid structure of Gp is passed through multiple spatial graph
convolution layers to extract multi-scale vertex features, where the vertex information
is propagated between specified vertices associated with the adjacency matrix. Since the
graph convolution layers preserve the original vertex orders of the input grid structure,
the concatenated vertex features through the graph convolution layers form a new
vertex grid structure for Gp. This vertex grid structure is then passed to a traditional
CNN layer for classifications. Note that, vertex features are visualized as different colors
(Color figure online).

of the DGCNN model takes the following form

Z = f(D̃−1ÃXW ), (1)

where Ã = A + I is the adjacency matrix of graph G with added self-loops,
D̃ is the degree matrix of Ã with Ãi,i =

∑
j Ãi,j , W ∈ R

c×c
′

is the matrix of
trainable graph convolution parameters, f is a nonlinear activation function, and
Z ∈ R

n×c
′

is the output of the convolution operation.
For the spatial graph convolution operation defined by Eq. (1), the process

XW first maps the c-dimensional features of each vertex into a set of new c
′
-

dimensional features. Here, the filter weights W are shared by all vertices. More-
over, ÃY (Y := XW ) propagates the feature information of each vertex to its
neighboring vertices as well as the vertex itself. The i-th row (ÃY )i,: represents
the extracted features of the i-th vertex, and corresponds to the summation or
aggregation of Yi,: itself and Yj,: from the neighboring vertices of the i-th ver-
tex. Multiplying by the inverse of D̃ (i.e., D̃−1) can be seen as the process of
normalizing and assigning equal weights between the i-th vertex and each of its
neighbours.



468 L. Bai et al.

Remark: Equation (1) indicates that the spatial graph convolution operation
of the DGCNN model cannot discriminate the importance between specified
vertices in the convolution operation process. This is because the required fil-
ter weights of W are shared by each vertex, i.e., the feature transformations of
the vertices are all based on the same trainable function. Thus, the DGCNN
model cannot directly influence the aggregation process of the vertex features.
In fact, this problem also arises in other spatially-based GCN models, e.g., the
Neural Graph Fingerprint Network (NGFN) model [10], the Diffusion Convolu-
tion Neural Network (DCNN) model [1], etc. Since the associated spatial graph
convolution operations of these models also take the similar form with that of
the DGCNN model, i.e., the trainable parameters of their spatial graph convo-
lution operations are also shared by each vertex. This drawback influences the
effectiveness of the existing spatially-based GCN models for graph classification.
In this paper, we aim to propose a new spatially-based GCN model to overcome
the above problems. �

3 Constructing Aligned Grid Structures for Arbitrary
Graphs

Although, spatially-based GCN models are not restricted to the same graph
structure, and can thus be applied for graph classification tasks. These methods
still require to further transform the extracted multi-scale features from graph
convolution layers into the fixed-sized characteristics, so that the standard clas-
sifiers (e.g., the traditional convolutional neural network followed by a Softmax
layer) can be directly employed for classifications. In this section, we develop a
new transitive matching method to map different graphs of arbitrary sizes into
fixed-sized aligned grid structures. Moreover, we show that the proposed grid
structure not only integrates precise structural correspondence information but
also minimizes the loss of structural information.

3.1 Identifying Transitive Alignment Information Between Graphs

We introduce a new graph matching method to transitively align graph ver-
tices. We first designate a family of prototype representations that encapsulate
the principle characteristics over all vectorial vertex representations in a set of
graphs G. Assume there are n vertices from all graphs in G, and their associ-
ated K-dimensional vectorial representations are RK = {RK

1 ,RK
2 , . . . ,RK

n }. We
utilize k-means [25] to locate M centroids over RK , by minimizing the objective
function

arg min
Ω

M∑

j=1

∑

RK
i ∈cj

‖RK
i − μK

j ‖2, (2)

Ω = (c1, c2, . . . , cM ) represents M clusters, and μK
j is the mean of the vertex

representations belonging to the j-th cluster cj .



Learning Aligned-Spatial Graph Convolutional Networks 469

Let G = {G1, · · · , Gp, · · · , GN} be the graph sample set. For each sample
graph Gp(Vp, Ep) ∈ G and each vertex vi ∈ Vp associated with its K-dimensional
vectorial representation RK

p;i, we commence by identifying a set of K-dimensional
prototype representations as PRK = {μK

1 , . . . , μK
j , . . . , μK

M} for the graph set G.
We align the vectorial vertex representations of each graph Gp to the family of
prototype representations in PRK . The alignment procedure is similar to that
introduced in [6] for point matching in a pattern space, and we compute a K-
level affinity matrix in terms of the Euclidean distances between the two sets of
points, i.e.,

AK
p (i, j) = ‖RK

p;i − μK
j ‖2. (3)

where AK
p is a |Vp| × M matrix, and each element AK

p (i, j) represents the dis-
tance between the vectrial representation RK

p;i of v ∈ Vp and the j-th prototype
representation μK

j ∈ PRK . If AK
p (i, j) is the smallest element in row i, we say

that the vertex vi is aligned to the j-th prototype representation. Note that
for each graph there may be two or more vertices aligned to the same prototype
representation. We record the correspondence information using the K-level cor-
respondence matrix CK

p ∈ {0, 1}|Vp|×M

CK
p (i, j) =

{
1 if AK

p (i, j) is the smallest in row i
0 otherwise. (4)

For each pair of graphs Gp ∈ G and Gq ∈ G, if their vertices vp and vq

are aligned to the same prototype representation μK
j , we say that vp and vq

are also aligned. Thus, we identify the transitive correspondence information
between all graphs in G, by aligning their vertices to a common set of prototype
representations.

Remark: The alignment process is equivalent to assigning the vectorial repre-
sentation RK

p;i of each vertex vi ∈ Vp to the mean μK
j of the cluster cj . Thus,

the proposed alignment procedure can be seen as an optimization process that
gradually minimizes the inner-vertex-cluster sum of squares over the vertices of
all graphs through k-means, and can establish reliable vertex correspondence
information over all graphs. �

3.2 Aligned Grid Structures of Graphs

We employ the transitive correspondence information to map arbitrary-sized
graphs into fixed-sized aligned grid structures. Assume Gp(Vp, Ep, Ãp) is a sam-
ple graph from the graph set G, with Vp representing the vertex set, Ep rep-
resenting the edge set, and Āp representing the vertex adjacency matrix with
added self-loops (i.e., Ã = A + I, where A is the original adjacency matrix with
no self-loops and I is the identity matrix). Let Xp ∈ R

n×c be the collection of
n (n = |Vp|) vertex feature vectors of Gp in c dimensions. Note that, the row
of Xp follows the same vertex order of Ãp. If Gp are vertex attributed graphs,
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Fig. 2. The procedure of computing the correspondence matrix. Given a set of graphs,
for each graph Gp: (1) we compute the K-dimensional depth-based (DB) representation
DBK

p;v rooted at each vertex (e.g., vertex 2) as the K-dimensional vectorial vertex
representation, where each element Hs(G

K
p;2) represents the Shannon entropy of the

K-layer expansion subgraph rooted at vertex v2 of Gp [2]; (2) we identify a family
of K-dimensional prototype representations PRK = {µK

1 , . . . , µK
j , . . . , µK

M} using k-
means on the K-dimensional DB representations of all graphs; (3) we align the K-
dimensional DB representations to the K-dimensional prototype representations and
compute a K-level correspondence matrix CK

p .

Xp can be the one-hot encoding matrix of the vertex labels. For un-attributed
graphs, we use the vertex degree as the vertex label.

For each graph Gp, we utilize the proposed transitive vertex matching method
to compute the K-level vertex correspondence matrix CK

p that records the
correspondence information between the K-dimensional vectorial vertex repre-
sentations of Gp and the K-dimensional prototype representations in PRK =
{μK

1 , . . . , μK
j , . . . , μK

M}. With CK
p to hand, we compute the K-level aligned vertex

feature matrix for Gp as
X̄K

p = (CK
p )T Xp, (5)

where X̄K
p ∈ R

M×c and each row of X̄K
p represents the feature of a corresponding

aligned vertex. Moreover, we also compute the associated K-level aligned vertex
adjacency matrix for Gp as

ĀK
p = (CK

p )T (Ãp)(CK
p ), (6)

where ĀK
p ∈ R

M×M . Both X̄K
p and ĀK

p are indexed by the corresponding proto-
types in PRK . Since X̄K

p and ĀK
p are computed from the original vertex feature

matrix Xp and the original adjacency matrix Ãp, respectively, by mapping the
original feature and adjacency information of each vertex vp ∈ Vp to that of the
new aligned vertices, X̄K

p and ĀK
p encapsulate the original feature and structural

information of Gp. Note that, according to Eq. 4 each prototype may be aligned
by more than one vertex from Vp, thus ĀK

p may be a weighted adjacency matrix.
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In order to construct the fixed-sized aligned grid structure for each graph
Gp ∈ G, we need to sort the vertices to determine their spatial orders. Since the
vertices of each graph are all aligned to the same prototype representations, we
sort the vertices of each graph by reordering the prototype representations. To
this end, we construct a prototype graph GR(VR, ER) that captures the pairwise
similarity between the K-dimensional prototype representations in PRK , with
each vertex vj ∈ VR representing the prototype representation μK

j ∈ PRK and
each edge (vj , vk) ∈ ER representing the similarity between μK

j ∈ PRK and
μK

k ∈ PRK . The similarity between two vertices of GR is computed as

s(μK
j , μK

k ) = exp(−‖μK
j − μK

k ‖2
K

). (7)

The degree of each prototype representation μK
j is DR(μK

j ) =
∑M

k=1 s(μK
j , μK

k ).
We propose to sort the K-dimensional prototype representations in PRK accord-
ing to their degree DR(μK

j ). Then, we rearrange X̄K
p and ĀK

p accordingly.
To construct reliable grid structures for graphs, in this work we employ the

depth-based (DB) representations as the vectorial vertex representations to com-
pute the required K-level vertex correspondence matrix CK

p . The DB represen-
tation of each vertex is defined by measuring the entropies on a family of k-layer
expansion subgraphs rooted at the vertex [3], where the parameter k varies from
1 to K. It is shown that such a K-dimensional DB representation encapsulates
rich entropy content flow from each local vertex to the global graph structure,
as a function of depth. The process of computing the correspondence matrix CK

p

associated with depth-based representations is shown in Fig. 2. When we vary
the number of layers K from 1 to L (i.e., K ≤ L), we compute the final aligned
vertex grid structure for each graph Gp ∈ G as

X̄p =
L∑

K=1

X̄K
p

L
, (8)

and the associated aligned grid vertex adjacency matrix as

Āp =
L∑

K=1

ĀK
p

L
, (9)

where X̄p ∈ R
M×c, Āp ∈ R

M×M , the i-th row of X̄p corresponds to the feature
vector of the i-th aligned grid vertex, and the i-row and j-column element of Āp

corresponds to the adjacency information between the i-th and j-th aligned grid
vertices.

Remark: Equation (8) and Eq. (9) indicate that they can transform the original
graph Gp ∈ G with arbitrary number of vertices |Vp| into a new aligned grid
graph structure with the same number of vertices, where X̄p is the corresponding
aligned grid vertex feature matrix and Āp is the corresponding aligned grid vertex
adjacency matrix. Since both X̂p and Āp are mapped from the original graph
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Gp, they not only reflect reliable structure correspondence information between
Gp and the remaining graphs in graph set G but also encapsulate more original
feature and structural information of Gp. �

4 The Aligned-Spatial Graph Convolutional Network
Model

In this section, we propose a new spatially-based GCN model, namely the
Aligned-Spatial Graph Convolutional Network (ASGCN) model. The core stage
of a spatially-based GCN model is the associated graph convolution operation
that extracts multi-scale features for each vertex based on the original features
of its neighboring vertices as well as itself. As we have stated, most existing
spatially-based GCN models perform the convolution operation by first apply-
ing a trainable parameter matrix to map the original feature of each vertex in c
dimensions to that in c′ dimensions, and then averaging the vertex features of
specified vertices [1,10,24,28]. Since the trainable parameter matrix is shared by
all vertices, these models cannot discriminate the importance of different vertices
and have inferior ability to aggregate vertex features. To overcome the shortcom-
ing, in this section we first propose a new spatial graph convolution operation
associated with aligned grid structures of graphs. Unlike existing methods, the
trainable parameters of the proposed convolution operation can directly influence
the aggregation of the aligned grid vertex features, thus the proposed convolu-
tion operation can discriminate the importance between specified aligned grid
vertices. Finally, we introduce the architecture of the ASGCN model associated
with the proposed convolution operation.

4.1 The Proposed Spatial Graph Convolution Operation

In this subsection, we propose a new spatial graph convolution operation to
further extract multi-scale features of graphs, by propagating features between
aligned grid vertices. Specifically, given a sample graph G(V,E) with its aligned
vertex grid structure X̄ ∈ R

M×c and the associated aligned grid vertex adjacency
matrix Ā ∈ R

M×M , the proposed spatial graph convolution operation takes the
following form

Zh = Relu(D̄−1Ā
c∑

j=1

(X̄ � Wh):,j), (10)

where Relu is the rectified linear units function (i.e., a nonlinear activation func-
tion), Wh ∈ R

M×c is the trainable graph convolution parameter matrix of the
h-th convolution filter with the filter size M × 1 and the channel number c, �
represents the element-wise Hadamard product, D̄ is the degree matrix of Ā, and
Zh ∈ R

M×1 is the output activation matrix. Note that, since the aligned grid
vertex adjacency matrix Ā is computed based on the original vertex adjacency
matrix with added self-loop information, the degree matrix also encapsulates the
self-loop information from Ā.
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Fig. 3. An instance of the proposed spatial graph convolution operation.

An instance of the proposed spatial graph convolution operation defined by
Eq. (10) is shown in Fig. 3. Specifically, the proposed convolution operation con-
sists of four steps. In the first step, the procedure

∑c
j=1 (X̄ � Wh):,j com-

mences by computing the element-wise Hadamard product between X̄ and Wh,
and then summing the channels of X̄ � Wh (i.e., summing the columns of
X̄ �Wh). Figure 3 exhibits this process. Assume X̄ is the collection of 5 aligned
grid vertex feature vectors in the 3 dimensions (i.e., 3 feature channels), Wh is
the h-th convolution filter with the filter size 5 × 1 and the channel number 3.
The resulting

∑3
j=1 (X̄ � Wh):,j first assigns the feature vector xi,: of each i-th

aligned grid vertex a different weighted vector wi,:, and then sums the channels
of each weighted feature vector. Thus, for the first step,

∑c
j=1 (X̄ � Wh):,j can

be seen as a new weighted aligned vertex grid structure with 1 vertex feature
channel. The second step ĀY , where Y :=

∑c
j=1 (X̄ � Wh):,j , propagates

the weighted feature information between each aligned grid vertex as well as
its neighboring aligned grid vertices. Specifically, each i-th row (ĀY )i,: of ĀY
equals to

∑
j Āi,jY:,j , and can be seen as the aggregated feature vector of the

i-th aligned grid vertex by summing its original weighted feature vector as well
as all the original weighted feature vectors of the j-th aligned grid vertex that
is adjacent to it. Note that, since the first step has assigned each i-th aligned
grid vertex a different weighted vector wi,:, this aggregation procedure is similar
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to performing a standard fixed-sized convolution filter on a standard grid struc-
ture, where the filter first assigns different weighted vectors to the features of
each grid element as well as its neighboring grid elements and then aggregates
(i.e., sum) the weighted features as the new feature for each grid element. This
indicates that the trainable parameter matrix Wh of the proposed convolution
operation can directly influence the aggregation process of the vertex features,
i.e., it can adaptively discriminate the importance between specified vertices.
Figure 3 exhibits this propagation process. For the 2-nd aligned grid vertex v2
(marked by the red broken-line frame), the 1-st and 3-rd aligned grid vertices
v1 and v3 are adjacent to it. The process of computing

∑
j Ā2,jY:,j (marked by

the red real-line frame) aggregates the weighted feature vectors of aligned grid
vertex v2 as well as its neighboring aligned grid vertices v1 and v3 as the new
feature vector of v2. The vertices participating in this aggregation process are
indicated by the 2-nd row of Ā (marked by the purple broken-line frame on Ā)
that encapsulates the aligned grid vertex adjacent information. The third step
normalizes each i-th row of ĀY by multiplying D̄−1

i,i , where D̄i,i is the i-th diag-
onal element of the degree matrix D̄. This process can guarantee a fixed feature
scale after the proposed convolution operation. Specifically, Fig. 3 exhibits this
normalization process. The aggregated feature of the 2-nd aligned grid vertex
(marked by the red real-line frame) is multiplied by 3−1, where 3 is the 3-rd
diagonal element of D̄ (marked by the purple broken-line frame on D̄). The
last step employs the Relu activation function and outputs the result.

Note that, since the proposed spatial graph convolution operation only
extracts new features for the aligned grid vertex and does not change the vertex
orders, the output Zh is still an aligned vertex grid structure with the same
vertex order of X̄.

4.2 The Architecture of the Proposed ASGCN Model

In this subsection, we introduce the architecture of the proposed ASGCN Model.
Figure 1 has shown the overview of the ASGCN model. Specifically, the archi-
tecture is composed of three sequential stages, i.e., (1) the grid structure con-
struction and input layer, (2) the spatial graph convolution layer, and (3) the
traditional CNN and Softmax layers.

The Grid Structure Construction and Input Layer: For the proposed
ASGCN model, we commence by employing the transitive matching method
defined earlier to map each graph G ∈ G of arbitrary sizes into the fixed-sized
aligned grid structure, including the aligned vertex grid structure X̄ and the asso-
ciated aligned grid vertex adjacency matrix Ā. We then input the grid structures
to the proposed ASGCN model.

The Spatial Graph Convolutional Layer: For each graph G, to extract
multi-scale features of the aligned grid vertices, we stack multiple graph convo-
lution layers associated with the proposed spatial graph convolution operation
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defined by Eq. (10) as

Zh
t = Relu(D̄−1Ā

Ht−1∑

j=1

(Zt−1 � Wh
t ):,j), (11)

where Z0 is the input aligned vertex grid structure X̄, Ht−1 is the number of
convolution filters in graph convolution layer t − 1, Zt−1 ∈ R

M×Ht−1 is the
concatenated output of all Ht−1 convolution filters in layer t − 1, Zh

t is the
output of the h-th convolution filter in layer t, and Wh

t ∈ R
M×Ht−1 is the

trainable parameter matrix of the h-th convolution filter in layer t with the filter
size M × 1 and the channel number Ht−1.

The Traditional CNN Layer: After each t-th spatial graph convolution layer,
we horizontally concatenate the output Zt associated with the outputs of the
previous 1 to t−1 spatial graph convolutional layers as well as the original input
Z0 as Z0:t, i.e., Z0:t = [Z0, Z1, . . . , Zt] and Z0:t ∈ R

M×(c+
∑t

z=1 Ht). As a result, for
the concatenated output Z0:t, each of its row can be seen as the new multi-scale
features for the corresponding aligned grid vertex. Since Z0:t is still an aligned
vertex grid structure, one can directly utilize the traditional CNN on the grid
structure. Specifically, Fig. 1 exhibits the architecture of the traditional CNN
layers associated with each Z0:t. Here, each concatenated vertex grid structure
Z0:t is seen as a M × 1 (in Fig. 1 M = 5) vertex grid structure and each vertex
is represented by a (c +

∑t
z=1 Ht)-dimensional feature, i.e., the channel of each

grid vertex is c +
∑t

z=1 Ht. Then, we add a one-dimension convolution layer.
The convolution operation can be performed by sliding a fixed-sized filter of size
k × 1 (in Fig. 1 k = 3) over the spatially neighboring vertices. After this, several
AvgPooling layers and remaining one-dimensional convolutional layers can be
added to learn the local patterns on the aligned grid vertex sequence. Finally,
when we vary t from 0 to T (in Fig. 1 T = 2), we will obtain T + 1 extracted
pattern representations. We concatenate the extracted patterns of each Z0:t and
add a fully-connected layer followed by a Softmax layer.

4.3 Discussions of the Proposed ASGCN

Comparing to existing state-of-the-art spatially-based GCN models, the pro-
posed ASGCN model has a number of advantages.

First, in order to transform the extracted multi-scale features from the graph
convolution layers into fixed-sized representations, both the Neural Graph Fin-
gerprint Network (NGFN) model [10] and the Diffusion Convolution Neural
Network (DCNN) model [1] sum up the extracted local-level vertex features
as global-level graph features through a SumPooling layer. Although the fixed-
sized features can be directly read by a classifier for classifications, it is difficult
to capture local topological information residing on the local vertices through
the global-level graph features. By contrast, the proposed ASGCN model focuses
more on extracting local-level aligned grid vertex features through the proposed
spatial graph convolution operation on the aligned grid structures of graphs.
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Thus, the proposed ASGCN model can encapsulate richer local structural infor-
mation than the NGFN and DCNN models associated with SumPooling.

Second, similar to the proposed ASGCN model, both the PATCHY-SAN
based Graph Convolution Neural Network (PSGCNN) model [17] and the Deep
Graph Convolution Neural Network (DGCNN) model [28] also need to form
fixed-sized vertex grid structures for arbitrary-sized graphs. To achieve this,
these models rearrange the vertex order of each graph structure, and preserve
a specified number of vertices with higher ranks. Although, unify the number
of vertices for different graphs, the discarded vertices may lead to significant
information loss. By contrast, the associated aligned grid structures of the pro-
posed ASGCN model can encapsulate all the original vertex features from the
original graphs, thus the proposed ASGCN model constrains the shortcoming
of information loss arising in the PSGCNN and DGCNN models. On the other
hand, both the PSGCNN and DGCNN models tend to sort the vertices of each
graph based on the local structural descriptor, ignoring consistent vertex cor-
respondence information between different graphs. By contrast, the associated
aligned grid structure of the proposed ASGCN model is constructed through a
transitive vertex alignment procedure. As a result, only the proposed ASGCN
model can encapsulate the structural correspondence information between any
pair of graph structures, i.e., the vertices on the same spatial position are also
transitively aligned to each other.

Finally, as we have stated in Sect. 4.1, the spatial graph convolution opera-
tion of the proposed ASGCN model is similar to performing standard fixed-sized
convolution filters on standard grid structures. To further reveal this property,
we explain the convolution process one step further associated with Fig. 3. For
the sample graph G shown in Fig. 3, assume it has 5 vertices following the fixed
spatial vertex orders (positions) v1, v2, v3, v4 and v5, X̄ is the collection of its
vertex feature vectors with 3 feature channels, and Wh is the h-th convolution fil-
ter with the filter size 5×1 and the channel number 3. Specifically, the procedure
marked by the blue broken-line frame of Fig. 3 indicates that performing the pro-
posed spatial graph convolution operation on the aligned vertex grid structure
X̄ can be seen as respectively performing the same 5 × 1-sized convolution filter
Wh on five 5×1-sized local-level neighborhood vertex grid structures included in
the green broken-line frame. Here, each neighborhood vertex grid structure only
encapsulates the original feature vectors of a root vertex as well as its adjacent
vertices from G, and all the vertices follow their original vertex spatial positions
in G. For the non-adjacent vertices, we assign dummy vertices (marked by the
grey block) on the corresponding spatial positions of the neighborhood vertex
grid structures, i.e., the elements of their feature vectors are all 0. Since the five
neighborhood vertex grid structures are arranged by the spatial orders of their
root vertices from G, the vertically concatenation of these neighborhood vertex
grid structures can be seen as a 25 × 1-sized global-level grid structure X̄G of
G. We observe that the process of the proposed spatial convolution operation
on X̄ is equivalent to sliding the 5 × 1 fixed-sized convolution filter Wh over
X̄G with 5-stride, i.e., this process is equivalent to sliding a standard classical
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convolution filter on standard grid structures. As a result, the spatial graph con-
volution operation of the proposed ASGCN model is theoretically related to the
classical convolution operation on standard grid structures, bridging the theo-
retical gap between the traditional CNN models and the spatially-based GCN
models. Furthermore, since the convolution filter Wh of the proposed ASGCN
model is related to the classical convolution operation, it assigns each vertex a
different weighted parameter. Thus, the proposed ASGCN model can adaptively
discriminate the importance between specified vertices during the convolution
operation. By contrast, as stated in Sect. 2, the existing spatial graph convolu-
tion operation of the DGCNN model only maps each vertex feature vector in c
dimensions to that in c′ dimensions, and all the vertices share the same trainable
parameters. As a result, the DGCNN model has less ability to discriminate the
importance of different vertices during the convolution operation.

5 Experiments

In this section, we compare the performance of the proposed ASGCN model to
both state-of-the-art graph kernels and deep learning methods on graph classi-
fication problems based on seven standard graph datasets. These datasets are
abstracted from bioinformatics and social networks. Detailed statistics of these
datasets are shown in Table 1.

Table 1. Information of the graph datasets

Datasets MUTAG PROTEINS D&D ENZYMES IMDB-B IMDB-M RED-B

Max #

vertices

28 620 5748 126 136 89 3783

Mean #

vertices

17.93 39.06 284.30 32.63 19.77 13.00 429.61

# graphs 188 1113 1178 600 1000 1500 2000

# vertex

labels

7 61 82 3 − − −

# classes 2 2 2 6 2 3 2

Description Bioinformatics Bioinformatics Bioinformatics Bioinformatics Social Social Social

Experimental Setup: We compare the performance of the proposed ASGCN
model on graph classification problems with (a) six alternative state-of-the-art
graph kernels and (b) seven alternative state-of-the-art deep learning meth-
ods for graphs. Specifically, the graph kernels include (1) the Jensen-Tsallis
q-difference kernel (JTQK) with q = 2 [4], (2) the Weisfeiler-Lehman subtree
kernel (WLSK) [21], (3) the shortest path graph kernel (SPGK) [7], (4) the
shortest path kernel based on core variants (CORE SP) [18], (5) the random
walk graph kernel (RWGK) [14], and (6) the graphlet count kernel (GK) [20].
The deep learning methods include (1) the deep graph convolutional neural
network (DGCNN) [28], (2) the PATCHY-SAN based convolutional neural net-
work for graphs (PSGCNN) [17], (3) the diffusion convolutional neural network
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(DCNN) [1], (4) the deep graphlet kernel (DGK) [26], (5) the graph capsule con-
volutional neural network (GCCNN) [23], (6) the anonymous walk embeddings
based on feature driven (AWE) [13], and (7) the edge-conditioned convolutional
network (ECC) [22].

Table 2. Classification accuracy (In % ± Standard Error) for comparisons.

Datasets MUTAG PROTEINS D&D ENZYMES IMDB-B IMDB-M RED-B

ASGCN 89.70 ± 0.8576.50 ± 0.5980.40 ± 0.9550.61 ± 1.01 73.86 ± 0.9250.86 ± .85 90.60 ± 0.24

JTQK 85.50 ± 0.55 72.86 ± 0.41 79.89 ± 0.32 56.41 ± 0.4272.45 ± 0.81 50.33 ± 0.49 77.60 ± 0.35

WLSK 82.88 ± 0.57 73.52 ± 0.43 79.78 ± 0.36 52.75 ± 0.44 71.88 ± 0.77 49.50 ± 0.49 76.56 ± 0.30

SPGK 83.38 ± 0.81 75.10 ± 0.50 78.45 ± 0.26 29.00 ± 0.48 71.26 ± 1.04 51.33 ± 0.5784.20 ± 0.70

CORE SP88.29 ± 1.55 − 77.30 ± 0.80 41.20 ± 1.21 72.62 ± 0.59 49.43 ± 0.42 90.84 ± 0.14

GK 81.66 ± 2.11 71.67 ± 0.55 78.45 ± 0.26 24.87 ± 0.22 65.87 ± 0.98 45.42 ± 0.87 77.34 ± 0.18

RWGK 80.77 ± 0.72 74.20 ± 0.40 71.70 ± 0.47 22.37 ± 0.35 67.94 ± 0.77 46.72 ± 0.30 72.73 ± 0.39

Datasets MUTAG PROTEINS D&D ENZYMES IMDB-B IMDB-M RED-B

ASGCN 89.70 ± 0.8576.50 ± 0.5980.40 ± 0.9550.61 ± 1.01 73.86 ± 0.9250.86 ± .85 90.60 ± 0.24

DGCNN 85.83 ± 1.66 75.54 ± 0.94 79.37 ± 0.94 51.00 ± 7.29 70.03 ± 0.86 47.83 ± 0.85 76.02 ± 1.73

PSGCNN 88.95 ± 4.37 75.00 ± 2.51 76.27 ± 2.64 − 71.00 ± 2.29 45.23 ± 2.84 86.30 ± 1.58

DCNN 66.98 61.29 ± 1.60 58.09 ± 0.53 42.44 ± 1.76 49.06 ± 1.37 33.49 ± 1.42 −
GCCNN − 76.40 ± 4.71 77.62 ± 4.99 61.83 ± 5.3971.69 ± 3.40 48.50 ± 4.10 87.61 ± 2.51

DGK 82.66 ± 1.45 71.68 ± 0.50 78.50 ± 0.22 53.40 ± .90 66.96 ± 0.56 44.55 ± 0.52 78.30 ± 0.30

AWE 87.87 ± 9.76 − 71.51 ± 4.02 35.77 ± 5.93 73.13 ± 3.28 51.58 ± 4.6682.97 ± 2.86

ECC 76.11 − 72.54 45.67 − − −

For the evaluation, we employ the same network structure for the proposed
ASGCN model on all graph datasets. Specifically, we set the number of the pro-
totype representations as M = 64, the number of the proposed spatial graph
convolution layers as 5, and the number of the spatial graph convolutions in
each layer as 32. Based on Fig. 1 and Sect. 4.2, we will get 6 concatenated out-
puts after the graph convolution layers, we utilize a traditional CNN layer with
the architecture as C32-P2-C32-P2-C32-F128 to further learn the extracted pat-
terns, where Ck denotes a traditional convolutional layer with k channels, Pk
denotes a classical AvgPooling layer of size and stride k, and FCk denotes a
fully-connected layer consisting of k hidden units. The filter size and stride of
each Ck are all 5 and 1. With the six sets of extracted patterns after the CNN
layers to hand, we concatenate and input them into a new fully-connected layer
followed by a Softmax layer with a dropout rate of 0.5. We use the rectified lin-
ear units (ReLU) in either the graph convolution or the traditional convolution
layer. The learning rate of the proposed model is 0.00005 for all datasets. The
only hyperparameter we optimized is the number of epochs and the batch size
for the mini-batch gradient decent algorithm. To optimize the proposed ASGCN
model, we use the Stochastic Gradient Descent with the Adam updating rules.
Finally, note that, our model needs to construct the prototype representations
to identify the transitive vertex alignment information over all graphs. In this
evaluation we propose to compute the prototype representations from both the
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training and testing graphs. Thus, our model is an instance of transductive learn-
ing [11], where all graphs are used to compute the prototype representations but
the class labels of the testing graphs are not used during the training process.
For our model, we perform 10-fold cross-validation to compute the classifica-
tion accuracies, with nine folds for training and one fold for testing. For each
dataset, we repeat the experiment 10 times and report the average classification
accuracies and standard errors in Table 2.

For the alternative graph kernels, we follow the parameter setting from their
original papers. We perform 10-fold cross-validation using the LIBSVM imple-
mentation of C-Support Vector Machines (C-SVM) and we compute the classifi-
cation accuracies. We perform cross-validation on the training data to select the
optimal parameters for each kernel and fold. We repeat the experiment 10 times
for each kernel and dataset and we report the average classification accuracies
and standard errors in Table 2. Note that for some kernels we directly report
the best results from the original corresponding papers, since the evaluation of
these kernels followed the same setting of ours. For the alternative deep learn-
ing methods, we report the best results for the PSGCNN, DCNN, DGK models
from their original papers, since these methods followed the same setting of the
proposed model. For the AWE model, we report the classification accuracies of
the feature-driven AWE, since the author have stated that this kind of AWE
model can achieve competitive performance on label dataset. Finally, note that
the PSGCNN and ECC models can leverage additional edge features, most of
the graph datasets and the alternative methods do not leverage edge features.
Thus, we do not report the results associated with edge features in the evalu-
ation. The classification accuracies and standard errors for each deep learning
method are also shown in Table 2.

Experimental Results and Discussions: Table 2 indicates that the proposed
ASGCN model can significantly outperform either the remaining graph kernel
methods or the remaining deep learning methods for graph classification. Specif-
ically, compared with the alternative graph kernel methods, only the accuracies
on the ENZYMES, IMDB-M and RED-B datasets are not the best for the pro-
posed model. However, the proposed model is still competitive on the IMDB-M
and RED-B datasets. On the other hand, compared with the alternative deep
learning methods, only the accuracies on the ENZYMES and IMDB-M datasets
are not the best for the proposed model. But the proposed model is still com-
petitive on the IMDB-M dataset.

Overall, the reasons for the effectiveness are fourfold. First, the C-SVM classi-
fier associated with graph kernels are instances of shallow learning methods [29].
By contrast, the proposed model can provide an end-to-end deep learning archi-
tecture, and thus better learn graph characteristics. Second, as we have discussed
earlier, most deep learning based graph convolution methods cannot integrate
the correspondence information between graphs into the learning architecture.
Especially, the PSGCNN and DGCNN models need to reorder the vertices and
some vertices may be discarded, leading to information loss. By contrast, the
associated aligned vertex grid structures can preserve more information of each
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original graph, reducing the problem of information loss. Third, unlike the pro-
posed model, the DCNN model needs to sum up the extracted local-level vertex
features as global-level graph features. By contrast, the proposed model can learn
richer multi-scale local-level vertex features. The experiments demonstrate the
effectiveness of the proposed model. Finally, as instances of spatially-based GCN
models, the trainable parameters of the DGCNN and CNN models are shared for
each vertex. Thus, these models cannot directly influence the aggregation process
of the vertex features. By contrast, the required graph convolution operation of
the proposed model is theoretically related to the classical convolution opera-
tion on standard grid structures and can adaptively discriminate the importance
between specified vertices.

6 Conclusions

In this paper, we have developed a new spatially-based GCN model, namely
the Aligned-Spatial Graph Convolutional Network (ASGCN) model, to learn
effective features for graph classification. This model is based on transforming the
arbitrary-sized graphs into fixed-sized aligned grid structures, and performing
a new developed spatial graph convolution operation on the grid structures.
Unlike most existing spatially-based GCN models, the proposed ASGCN model
can adaptively discriminate the importance between specified vertices during the
process of the spatial graph convolution operation, explaining the effectiveness
of the proposed model. Experiments on standard graph datasets demonstrate
the effectiveness of the proposed model.
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Abstract. Identity stitching, the task of identifying and matching vari-
ous online references (e.g., sessions over different devices and timespans)
to the same user in real-world web services, is crucial for personalization
and recommendations. However, traditional user stitching approaches,
such as grouping or blocking, require pairwise comparisons between a
massive number of user activities, thus posing both computational and
storage challenges. Recent works, which are often application-specific,
heuristically seek to reduce the amount of comparisons, but they suffer
from low precision and recall. To solve the problem in an application-
independent way, we take a heterogeneous network-based approach in
which users (nodes) interact with content (e.g., sessions, websites), and
may have attributes (e.g., location). We propose node2bits, an effi-
cient framework that represents multi-dimensional features of node con-
texts with binary hashcodes. node2bits leverages feature-based temporal
walks to encapsulate short- and long-term interactions between nodes in
heterogeneous web networks, and adopts SimHash to obtain compact,
binary representations and avoid the quadratic complexity for similar-
ity search. Extensive experiments on large-scale real networks show that
node2bits outperforms traditional techniques and existing works that
generate real-valued embeddings by up to 5.16% in F1 score on user
stitching, while taking only up to 1.56% as much storage.

1 Introduction

Personalization and recommendations increase user satisfaction by providing
relevant experiences and handling the online information overload in news, web
search, entertainment, and more. Accurately modeling user behavior and prefer-
ences over time are at the core of personalization. However, tracking user activity
online is challenging as users interact with tens of internet-enabled devices from
different locations daily, leading to fragmented user profiles. Without unified
profiles, the observed user data are sparse, non-representative of the population,
and insufficient for accurate predictions that drive business success.

In this work, we tackle the problem of identity or user stitching, which aims
to identify and group together logged-in and anonymous sessions that correspond
to the same user despite taking place across different channels, platforms, devices
and browsers [30]. This problem is a form of entity or identity resolution [2,13],
c© Springer Nature Switzerland AG 2020
U. Brefeld et al. (Eds.): ECML PKDD 2019, LNAI 11906, pp. 483–506, 2020.
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also known as entity linking, record linkage, and duplicate detection [2,6,21].
Unlike entity resolution where textual information per user (e.g., name, address)
is available, identity stitching relies solely on user interactions with online content
and web metadata. Although cookies can help stitch several different sessions of
the same user, many users have multiple cookies (e.g., a cookie for each device or
web browser) [8], and most cookies expire after a short time, and therefore cannot
help to stitch users over time. Similarly, IP addresses change across locations
resulting in fragmentation or even erroneous stitching between users who have
the same IP address at different times (e.g., airports). Meanwhile, fingerprinting
approaches [12] capture user similarity based on device or browser configurations,
not on behavioral patterns that remain consistent across devices or browsers.
On the other hand, exhaustive solutions for entity resolution require quadratic
number of comparisons between all pairs of entities, which is computationally
intractable for large-scale web services. This can be partially handled via the
heuristic of blocking [24], which groups similar entity descriptions into blocks,
and only compares entities within the same block.

To overcome these challenges and better tailor to the user stitching setup,
our solution is based on the idea that the same user accesses similar content
across platforms and has similar behavior over time. We model the user interac-
tions with different content and platforms over time in a dynamic heterogeneous
network, where user stitching maps to the identification of nodes that corre-
spond to the same real-world entity. Motivated by the success of node represen-
tation learning, we aim to find embeddings of time-evolving ‘user profiles’ over
this rich network of interactions. For large-scale graphs, however, the customary
dense node representations for each node can often impose a formidable memory
requirement, on par with that of the original (sparse) adjacency matrices [19].
Thus, to efficiently find sparse binary representations and link entities based on
similar activity while avoiding the pairwise comparison of all user profiles, we
solve the following problem:

Problem 1 (Temporal, Hash-based Node Embeddings). Given a graph G(V,E),
the goal of hash-based network embedding is to learn a function χ : V → {0, 1}d

such that the derived binary d-dimensional embeddings (1) preserve similarities
in interactions in G, (2) are space-efficient, and (3) accurately capture temporal
information and the heterogeneity of the underlying network.

Fig. 1. node2bits overview. node2bits encodes the tem-
poral, heterogeneous information of each node into binary
hashcodes for efficient user stitching.

We introduce a gen-
eral framework called
node2bits that captures
temporally-valid interac-
tions between nodes in a
network, and constructs
the contexts based on
topological features and
(optional) side informa-
tion of entities involved
in the interaction. These
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feature-based contexts are then turned into histograms that incorporate node
type information at different temporal distances, and are mapped to binary hash-
codes through SimHash [5]. Thanks to locality sensitive hashing [17], the hash-
codes, which are time-, attribute- and structure-aware, preserve the similarities
in temporal interaction patterns in the network, and achieve both space and
computational efficiency for similarity search. Given these sparse, hash-based
embeddings of all entities, we then cast user stitching as a supervised binary clas-
sification task or a hashing-based unsupervised task. As an example, in Fig. 1,
devices B and C are associated with identical IPs and similar online sales web-
sites visited afterwards, thus they are encoded similarly and could correspond
to the same user.

Our contributions are:

– Embedding-based Formulation: Going beyond traditional blocking tech-
niques, we formulate the problem of user stitching as the problem of finding
temporal, hash-based embeddings in heterogeneous networks such that they
maintain similarities between user interactions over time.

– Space-efficient Embeddings: We propose node2bits, a practical, intu-
itive, and fast framework that generates compact, binary embeddings suitable
for user stitching. Our method combines random walk-based sampling of con-
texts, their feature-based histogram representations, and locality sensitive
hashing to preserve the heterogeneous equivalency of contexts over time.

– Extensive Empirical Analysis: Our experiments on real-world networks
show that node2bits outputs a space-efficient binary representation which
uses between 63× and 339× less space than the baselines while achieving com-
parable or better performance in user stitching tasks. Moreover, node2bits
is scalable for large real-world temporal and heterogeneous networks.

For reproducibility, the code is at https://github.com/GemsLab/node2bits.

2 Preliminaries and Definitions

Before we introduce node2bits, we discuss two key concepts that our method
is based on: our dynamic heterogeneous network model, and temporal random
walks. We give the main symbols and their definitions in Table 1.

2.1 Dynamic Heterogeneous Network Model

As we mentioned above, we model the user interactions with content, websites,
devices etc. as a heterogeneous network, which is formally defined as:

Definition 1 (Heterogeneous Network). A heterogeneous network G =
(V,E, ψ, ξ) is comprised of (i) a nodeset V and edgeset E, (ii) a mapping ψ :
V → TV of nodes to their types, and (iii) a mapping ξ : E → TE to edge types.

https://github.com/GemsLab/node2bits
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Table 1. Summary of major symbols and their definitions.

Symbol Definition

G(V, E, ξ, ψ) (un)directed and (un)weighted heterogeneous network with nodeset V , edgeset
E, a mapping ξ from nodes to node types, and an edge mapping ψ, resp.

|V | = N, |E| = M number of nodes and edges in G

TV , |TV |; TE , |TE | set of node/edge types in the heterogeneous graph and its size, resp.
F N × |F| feature matrix including node attributes and derived features

fij , f(j) (i, j)th element of F and index of its jth feature, resp.
W set of random walks

(wL)L∈N,wL[u] sequence of nodes in a random walk of length L, and the index of node u, resp.
L the maximum length of a random walk

Δt ‘temporal distance’ in W based on temporally ordered edge transitions
CΔt

u , CΔt
u |f context of node u at distance Δt, and feature-based context, resp.

gi : C → {0, 1} ith LSH function that hashes a node context into a binary value
KΔt, K embedding dimension at distance Δt, and output dimension K =

∑MAX
Δt=1 KΔt

h(S),h(S|·) unconditional and conditional b-bin histogram of values in enclosed set S, resp.
Z N × K output binary embeddings or hashcodes

Many graph types are special cases of heterogeneous networks: (1) homoge-
neous graphs have |TV | = |TE | = 1 type; (2) k-partite graphs consist of |TV | = k
and |TE | = k − 1 types; (3) signed networks have |TV | = 1 and |TE | = 2 types;
and (4) labeled graphs have a single label per node/edge.

Most real networks capture evolving processes (e.g., communication, browsing
activity) and thus change over time. Instead of approximating a dynamic network
as a sequence of lossy discrete static snapshots G1, . . . , GT , we model the temporal
interactions in a lossless fashion as a continuous-time dynamic network [23].

Definition 2 (Continuous-Time Dynamic Network). A continuous-time
dynamic, heterogeneous network G = (V,Eτ , ψ, ξ, τ) is a heterogeneous network
with Eτ temporal edges between vertices V , where τ : E → R

+ is a function that
maps each edge to a corresponding timestamp.

2.2 Temporal Random Walks

A walk on a graph is a sequence of nodes where each pair of successive nodes
are connected by an edge. Popular network embedding methods generate walks
using randomized procedures [14,25] to construct a corpus of node IDs or node
context. In continuous-time dynamic networks, a temporally valid walk is defined
as a sequence of nodes connected by edges with non-decreasing timestamps (e.g.,
representing the order that user-content interactions occurred) and they were
first used for embeddings in [23].

Definition 3 (Temporal Walk). A temporal walk of length L from v1 to vL

in graph G = (V,E, ψ, ξ) is a sequence of vertices 〈v1, v2, · · · , vL〉 such that
〈vi, vi+1〉 ∈ Eτ for 1 ≤ i < L, and the timestamps are in valid temporal order:
τ(vi, vi+1) ≤ τ(vi+1, vi+2) for 1 ≤ i < (L − 1).
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3 node2bits: Hash-Based Embedding Framework

Motivated by the task of user stitching, we aim to develop node2bits to com-
pactly describe each node/entity in the context of realistic interactions (Prob-
lem 1). Accordingly, node2bits is required to: (R1) support heterogeneous net-
works where the nodes and edges can be of any arbitrary type (e.g., a user, web
page, IP, tag, spatial location); (R2) preserve the temporal validity of the events
and interactions in the data; (R3) scale in runtime to large networks with mil-
lions of nodes/edges; and (R4) scale in memory requirements with space-efficient
yet powerful binary embeddings that capture ID-independent similarities. Next
we detail the three main steps of node2bits: (Sect. 3.1) Sampling temporal
random walks and defining temporal contexts; (Sect. 3.2) Constructing tempo-
ral contexts based on multi-dimensional features; (Sect. 3.3) Aggregating and
hashing contexts into sparse embeddings. We give the overview of node2bits

in Fig. 2 and Algorithm 1.

3.1 Temporal Random Walk Sampling

The first step of node2bits is to capture interactions in a node’s context, which
is important for the user stitching task: instead of simple interactions correspond-
ing to pairwise edges, it samples more complex interaction sequences via random
walks. But unlike many existing representation learning approaches [14,25], our
method samples realistic interactions in the order that they happen via L-step
temporal random walks (Definition 3 [23]), thus satisfying requirement R2.

Fig. 2. node2bits workflow. Given a graph and its attribute matrix (optional),
node2bits (1) samples temporal random walks to obtain sequences that respect time,
derives contexts at different temporal distances (temporal contexts of a and b are
derived from the walk {b, a, b, c}, as well as the feature matrix F; (2) creates tempo-
ral contexts based on multi-dimensional features in F; and (3) aggregates them into
feature-based histograms to obtain sparse, binary, similarity-preserving embeddings via
SimHash. (Color figure online)
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node2bits defines the temporal context CΔt
u of node u at temporal distance

Δt as the collection of entities that are at Δt-hops away from node u in the
sampled random walks. Formally:

CΔt
u = {v : |wL[v] − wL[u]| = Δt, ∀wL ∈ W}, (1)

where wL[·] is the index of the corresponding node in the random walk (wL)L∈N.
For example, in Fig. 2 (Step 1) the context of node a at temporal distance 2 is
CΔt=2

a = {c} (highlighted in red). Depending on the temporal context that we
want to capture, Δt can vary up to a MAX distance. Intuitively, small values
of temporal distance capture more direct interactions and similarities between
entities. In static graphs, Δt simply corresponds to the distance between nodes
in the sampled sequences, without capturing any temporal information.

Temporal Locality. The context that is defined above does not explicitly incor-
porate the time elapsed between consecutively sampled interactions. However,
when modeling temporal user interactions, it is important to distinguish between
short-term and long-term transitions. Inspired by [23], node2bits accounts for
the closeness or locality between consecutive contexts (i.e., CΔt

u and CΔt+1
u )

through different biased temporal walk policies. For example, in the short-term
policy, the transition probability from node u to v is given as the softmax func-
tion:

P [v|u] = exp (−τ(u, v)/d)
∑

i∈Γτ (u) exp (−τ(u, i)/d)
(2)

where τ() maps an edge to its timestamp, d = maxe∈Eτ
τ(e) − mine∈Eτ

τ(e) is
the total duration of all timestamps, and Γτ (u) is the set of temporal neighbors
reached from node u through temporally valid edges. Similarly, in the long-term
policy, the transition probability from node u to v is given as in Eq. (2) but with
positive signs in the numerator and denominator.

3.2 Temporal Context Based on Multi-dimensional Features

The context in Eq. (1) depends on the node identities (IDs). However, in a multi-
platform environment, a single entity may have multiple node IDs, thus con-
tributing to seemingly different contexts. To generate ID-independent contexts
that are appropriate for user stitching, we make the temporal contexts attribute-
or feature-aware (R1), by building on the assumption that corresponding or
similar entities have similar features. Formally, we assume that a network may
have a set of input node attributes (e.g., IP address, device type), as well as
a set of derived topological features (e.g., degree, PageRank), all of which are
stored in a N × |F| feature matrix F (Fig. 2, Step 1). We then generalize our
random walks to not only respect time (R2) [23], but also capture this feature
information using the notion of attributed/feature-based walks proposed in [1]:

Definition 4 (Feature-based Temporal Walk). A feature-based tempo-
ral walk of length L from node v1 to vL in graph G is defined as a sequence of
feature values corresponding to the sequence of vertices in a valid temporal walk
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(Definition 3). For the jth feature f(j), the corresponding feature-based temporal
walk is

〈wL,f(j)〉L∈N = 〈fv1,j , fv2,j , . . . , fvL,j〉, (3)

where fvi,j is the value of the jth feature for node vi, stored in matrix F.

Our definition is general as it allows walks to obey time while each node may
have a d-dimensional vector of input attribute values and/or derived structural
features, which can be discrete or real-valued [1].

Temporally-Valid, Multi-dimensional Feature Contexts. node2bits

extends the previously generated temporal contexts to incorporate node features
and remove the dependency on node IDs. Following the definition of feature-
based temporal walks, given |F| features, our method generates |F|-dimensional
contexts per node u and temporal distance Δt by replacing the node IDs in
Eq. (1) with their corresponding feature values (Fig. 2, Step 2). Formally, the
temporally-valid, multi-dimensional feature contexts are defined as:

CΔt
u |f(j) = {fv,j : ∀v ∈ CΔt

u } ∀ feature f(j) ∈ F , (4)

where fv,j is the value of the jth feature for node v.

3.3 Feature-Based Context Aggregation and Hashing

The key insight in user stitching is that each user interacts with similarly ‘typed’
entities through similar relations over time: for example, in online-sales logs, a
user likely browses similar types of goods in logged-in and anonymous sessions;
and in online social networks, accounts sharing near-identical interaction pat-
terns, such as replies or shares, are potentially from the same person. Based
on this insight, node2bits augments the previously generated temporal, multi-
dimensional feature contexts with node types (and implicitly the corresponding
relations or edge types), which is a key property of heterogeneous networks (R1).
It subsequently aggregates them and derives similarity-preserving and space-
efficient, binary entity representations (R4) via locality sensitive hashing.

Context Aggregation. Unlike existing works that aggregate contextual fea-
tures into a single value such as mean or maximum [15,29], node2bits aggre-
gates them into less lossy representations: histograms tailored to heterogeneous
networks by distinguishing between node types (R1). Specifically, it models the
transitional dependency across node and relation types by further conditioning
the derived contexts in Eq. (4) on the node types pi ∈ TV (i.e., each temporal
context consists of the features of only one node type). We denote the tempo-
ral contexts conditioned on both features and node types as CΔt

u |f, p. The final
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histogram representation of node u at temporal distance Δt consists of the con-
catenation of the histograms over the conditional contexts at Δt (Fig. 2, Step 3):

h(CΔt
u ) = [h(CΔt

u | f(1), p1),h(CΔt
u | f(2), p1), . . . ,h(CΔt

u | f(|F|), p|TV |)]. (5)

In this representation, the features are binned logarithmically to account for the
often skewed distributions of structural features (e.g. degree). We note that the
histograms can be further extended to edge types as shown in [19], for example
by distinguishing pairs of nodes that are connected by multiple types of edges.

Similarity-Preserving Representations via Hashing. Locality sensitive
hashing (LSH) has been widely used for searching nearest neighbors in large-
scale data mining [26]. In this work, we adopt SimHash [5] to obtain similarity-
preserving and space-efficient representations (R4) for all the entities in the
heterogeneous network based on their aggregated time-, attribute-, and node
type-aware contexts given by Eq. (5).

Given a node-specific histogram h(CΔt
u ) ∈ R

d (with dimensionality d =
|F||TV | ·b, and b being the number of logarithmic bins for the features), SimHash
generates a KΔt-dimensional1 binary hashcode or sketch zΔt

u by projecting the
histogram to KΔt random hyperplanes ri ∈ R

d as follows:

gi( h(CΔt
u ) ) = sign

(
h(CΔt

u ) · ri

)
(6)

In practice, the hyperplanes do not need to be chosen uniformly at random from
a multivariate normal distribution, but it suffices to choose them uniformly from
{−1, 1}d. The important property of locality sensitive hashing that guarantees
that the similarities in the histogram space (which captures the temporal inter-
actions between entities in G) are maintained is the following: for the SimHash
family, the probability that a hash function agrees for two different vectors is
equal to their cosine similarity. More formally, for two nodes u and v:

P ( gi(h(CΔt
u )) = gi(h(CΔt

v )) ) = 1 −
cos−1 h(CΔt

u )·h(CΔt
v )

|h(CΔt
u )||h(CΔt

v )|

180
. (7)

In other words, the cosine similarity between nodes u and v in the context-
space is projected to the sketch-space and can be measured by the cardinality
of matching between zΔt

u and zΔt
v , where zΔt

• = [g1( h(CΔt
• ) ), g2( h(CΔt

• ), . . . ,
gKΔt( h(CΔt

• )].
For each node u in G, the final binary representation is obtained by concate-

nating the hashcodes for contexts at different temporal distances Δt, resulting
in a K-dimensional vector (since K =

∑MAX
Δt=1 KΔt):

zu = [zΔt=1
u zΔt=2

u . . . zΔt=MAX
u ] (8)

where we replace the −1 bits with 0s to achieve a more space-efficient representa-
tion (R4). An example is shown in the second half of Step 3 in Fig. 2, where the
1 We assume that the length of each sketch at distance Δt is given as KΔt = K

MAX .
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Algorithm 1. node2bits Framework
Require: (un)directed heterogeneous graph G(V, E, ψ, ξ), # random walks R per edge, max

walk length L, max temporal distance MAX, embedding dimensionality KΔt at dist. Δt

1 For each edge e, perform R temporal walks based on the short- or long-term policy (§ 3.1)
2 Obtain temporal contexts CΔt

u for each node u at temporal distances Δt ≤ MAX via Eq. (1)
3 Construct feature matrix F with node attributes (if avail.) and topological features (§ 3.2)
4 Derive feature-based temporal contexts CΔt

u |f(j) by replacing v ∈ CΔt
u with the feature

value fv,j , as shown in Eq. (4)
5 for each temporal distance Δt = 1,. . . ,MAX and node u ∈ V do
6 Obtain u’s final histogram h(CΔt

u ) over its contexts using Eq. (5)
7 Obtain a KΔt-dim, sparse, binary hashcode zΔt

u based on (modified) SimHash (§ 3.3)
8 Obtain the binary n2b embeddings zu of all nodes across temporal distances Δt via Eq. (8)
9 Perform (un)supervised user stitching via binary classification or hashing (§ 4.1, 4.3)

blue shades denote histograms and sketches for contexts in temporal distance
Δt = 1, and red shades correspond to Δt = 2. Thus, the K-dimensional repre-
sentation for each node, zu ∈ {0, 1}K , captures the similarities between time-,
feature- and node type-aware histograms across multiple temporal distances Δt.
The similarity between two nodes’ histograms can be quickly estimated as the
proportion of common bits in their binary representations z•.

Given these representations, we can perform user stitching by casting the
problem as supervised binary classification or an unsupervised task based on
the output of hashing (Eq. (8)), which we discuss in Sect. 4.1. Putting everything
together, we give the pseudocode of node2bits in Algorithm 1 and its detailed
version (for reproducibility) in Appendix A. The runtime computational com-
plexity of node2bits is O(MRL+NK), which is linear to the number of edges
when M � N as K is relatively small (R3). The output space complexity is
O(NK)-bit. node2bits requires even less storage if the binary vectors are rep-
resented in the sparse format (see Sect. 4.4 for empirical results). We provide
detailed runtime complexity and space analysis in Appendix B.

4 Experiments

We perform extensive experiments on real-world heterogeneous networks to
answer the following questions: (Q1) Is node2bits effective in the user stitching
task, and how does it compare to traditional stitching and embedding methods?
(Sects. 4.2 and 4.3) (Q2) Does node2bits have low space requirements, and is it
more space-efficient than the baselines? (Sect. 4.4) (Q3) Is node2bits scalable?
(Sect. 4.5).
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4.1 Experimental Setup

We ran our analysis on Mac OS platform with 2.5GHz Intel Core i7, 16GB
RAM.

Table 2. Network statistics and properties
for our six real-world datasets. ‘D’: directed;
‘W’: weighted; ‘H’: heterogeneous; ‘T’: tem-
poral network.

Data Nodes Edges |TV | D W H T

citeseer 4460 2892 2 � �
yahoo 100,058 1,057,050 2 � � �
bitcoin 3,783 24,186 1 � � �
digg 283,183 6,473,708 2 � �
wiki 1,140,149 7,833,140 1 � �
comp-X 5,500,802 5,291,270 2 � � � �

Data. We use five real-world hetero-
geneous networks from the Network
Repository [28], as well as a real,
proprietary user stitching dataset,
‘Company X’ web logs. The lat-
ter data form a temporal heteroge-
neous network consisting of web ses-
sions of user devices and their IP
addresses. High degree nodes rep-
resenting anomalous behavior (e.g.,
bots or public WiFi hotspots) are
filtered out. Our framework is also
capable of modeling domain-specific
features, such as user-agent strings and geolocation [20], if this is available. Even
without them, however, it achieves strong performance. We give the statistics of
all the networks in Table 2, and additional details in Appendix C.

Task Setup. With the exception of Sect. 4.3, we cast the user stitching task as
a binary classification problem, where for each pair of nodes we aim to predict
whether they correspond to the same entity (i.e., we should stitch them). We use
logistic regression with regularization strength 1.0 and stopping criterion 10−4.

For the real user stitching data, we use the held-out, ground-truth informa-
tion to evaluate our method. For the five real-world networks without known
user pairs, we introduce user replicas following a similar procedure to [2]: we
sample 5% of the nodes with degrees larger than average, introduce a replica
u′ for each sampled node u, and distribute the original edges between u and u′.
Specifically, each edge remains connected to u with probability p1, otherwise it
connects to the replica node u′. Additionally, each edge that is incident to u has
probability p2 to also connect to u′. Unless otherwise specified, we use p1 = 0.6
and p2 = 0.3.

Given the positive replica pairs, we sample an equal number of negative pairs
uniformly at random and include these in the training and testing sets. Comp-X,
the dataset with ground-truth replicas, also has pre-defined approximately 50/50
training-testing splits that we use. Afterwards, embeddings are derived for each
node pair by concatenation: [z(u), z(u′)]. Using these node pair embeddings, we
learn a logistic regression (LR) model and use it to predict the node pairs that
should be stitched in the held-out test set. These are the nodes that correspond
to the same entity. We measure the predictive performance of all the methods
in terms of AUC, accuracy and F1 score.
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Baselines. We compare to various methods that target different network types:

– Homogeneous networks: Static – (1) Spectral embeddings or SE [33],
(2) LINE [32], (3) DeepWalk or DW [25], (4) node2vec or n2vec [14],
(5) struc2vec or s2vec [27], and (6) DNGR [4]. Temporal– (7) CTDNE [23].

– Heterogeneous networks: (8) Common neighbors (CN) [2], (9) metap-
ath2vec or m2vec [10], and (10) AspEm [31].

The baselines are configured to achieve the best performance, for K = 128-
dimensional embeddings, according to the respective papers. For reproducibility,
we describe the settings in Appendix D.

node2bits Setup & Variants. Similar to the baselines, node2bits performs
R = 10 walks per edge, with length up to L = 20, and we set the max temporal
distance MAX = 3. We justify these decisions in Appendix E.2. On the largest
dataset, Comp-X, we use a maximum walk length L = 5 and temporal distance
MAX = 2. While various node attributes can be given as input to node2bits,
for consistency we derive and use the total, in-/out-degree of each node in F.

We experiment with different variants of node2bits (or n2b for short):
(1) node2bits-0 applies to static networks; (2) node2bits-sh uses the short-
term tactic in the random walks (Sect. 3.1); (3) node2bits-ln uses the long-
term tactic; and (4) node2bits-u targets unsupervised user stitching, which
most baselines cannot handle (except for CN). To explore our method’s perfor-
mance in unsupervised settings (Sect. 4.3), we directly ‘cluster’ the LSH-based,
binary node representations zu generated by node2bits-0. The idea is that
nodes that hash to the same ‘bucket’ likely map to the same entity and should
be stitched. To map entities to buckets we use the banding technique [26]: per
band—one per representation zΔt at temporal distance Δt—we apply AND-
construction on the output of bit sampling, and then OR-construction across
the bands.

4.2 Accuracy in Supervised User Stitching

We start by evaluating the predictive performance of node2bits for supervised
user stitching on both static and temporal networks.

Static Networks. Here we evaluate the effectiveness of multi-dimensional fea-
ture contexts. Since static networks lack temporal information, node2bits per-
forms random walks similarly to existing works to collect nodes in structural
contexts. The main difference lies in representing diverse feature histograms. We
run node2bits against both homogeneous and heterogeneous baselines as shown
in Table 3, and observe that it performs the best in most evaluation metrics
on both graphs. node2bits outperforms existing random-walk based methods
as expected: node IDs in the contexts is distorted by the replicas generated,
thus feature-based methods should prevail. This is also validated by the results
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Table 3. Entity resolution results for static networks. Our method outperforms all the
baselines. — OOT = Out Of Time (6 h); OOM = Out Of Memory (16 GB). The asterisk
∗ denotes statistically significant improvement over the best baseline at p < 0.05 in a
two-sided t-test.

Metric CN SE LINE DW n2vec s2vec DNGR m2vec AspEm n2b-0

c
it
e
se
e
r

AUC
ACC

F1

0.9141
0.9141
0.9137

0.4846
0.5045
0.5028

0.5481
0.5372
0.5371

0.5614
0.5579
0.5547

0.6188
0.6211
0.6159

0.9344
0.8936
0.8926

0.5015
0.4688
0.4682

0.5546
0.5357
0.5348

0.5049
0.5223
0.5222

0.9480∗

0.9196∗

0.9192∗

y
a
h
o
o AUC

ACC
F1

0.6851
0.6851
0.6505

0.5378
0.4760
0.4375

0.8050
0.7771
0.7764

0.7640
0.7117
0.7117

0.7636
0.7233
0.7231

OOT OOM
0.8233
0.7827
0.7823

0.4938
0.5018
0.5018

0.8088
0.8010
0.7987

for struc2vec, which captures the equivalency of structural feature sequences in
embeddings. metapath2vec and LINE achieve promising result on yahoo but not
on citeseer, as the latter is an undirected bipartite graph, node distributions of
the 2-order contexts explored by LINE are highly correlated and indistinguish-
able for stitching. On the contrary, CN (common-neighbors) yields promising
result on citeseer but not yahoo. This is likely due to the graph structure, which
we explain in more detail in Sect. 4.3. We encountered out-of-memory errors for
DNGR due to the algorithmic complexity and out-of-time-limit for struc2vec.

Conclusion 1. On static graphs, node2bits achieves comparable perfor-
mance in AUC, and slightly better F1 score with 0.60%–2.10% improvement
over baselines in the stitching task.

Temporal Networks. Table 4 depicts the stitching performance of node2bits
using both the short- and long-term tactics against the same set of baselines
used in static graphs as well as CTDNE, an embedding framework designed for
temporal graphs. We exclude metapath2vec, as metapaths are not meaningful
in homogeneous networks, and the method ran out of time for the heteroge-
neous networks. We observe that node2bits-sh outperforms node2bits-ln in
most cases, which is reasonable because node2bits-ln derives shorter contexts
constrained by temporal-order. We also justify the effectiveness of temporal ran-
dom walk by comparing it with both node2bits-0 and static baselines where we
only make use of the graph structures without specifying edge timestamps. We
observe that node2bits-0 is the best-performing method for the digg dataset
and Comp-X over the temporal variants of node2bits. The reason behind this is
that there is a tradeoff in constraining temporal walks to respect time: we more
accurately model realistic sequences of events at the cost of restricting the possi-
ble context. On these particular temporal graphs, walks may already be limited
in length by the bipartite structure, so the latter cost becomes more apprecia-
ble. Nevertheless, both static and dynamic versions of node2bits almost always
outperform other baselines. In particular, across all datasets, node2bits-sh still
outperforms the temporal baseline, CTDNE in all cases, which further demon-
strates the effectiveness of multi-feature aggregation.
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Table 4. Entity resolution results for temporal networks: strong performance for
node2bits variants. — OOT = Out Of Time (6 h); OOM = Out Of Memory (16GB);
∗ denotes statistically significant improvement over the best baseline at p < 0.05 in a
two-sided t-test.

Metric CN SE LINE DW n2vec s2vec DNGR AspEm CTDNE n2b-0 n2b-sh n2b-ln

b
it
co

in AUC
ACC

F1

0.7474
0.7174
0.7001

0.5828
0.5842
0.5728

0.6071
0.5842
0.5828

0.6306
0.6158
0.6158

0.6462
0.6158
0.6157

0.8025
0.7263
0.7263

0.5909
0.5526
0.5525

0.5344
0.5316
0.5315

0.6987
0.6000
0.5964

0.7584
0.7211
0.7209

0.7609
0.7268
0.7271

0.7380
0.6737
0.6735

d
ig
g

AUC
ACC

F1

0.6217
0.6217
0.5585

0.5171
0.5152
0.3770

0.7878
0.7694
0.7683

0.7398
0.6971
0.6960

0.7445
0.7013
0.7003

OOT OOM
0.5105
0.5088
0.5088

0.6967
0.5915
0.5884

0.8185∗

0.7982∗

0.7958∗

0.7611
0.7418
0.7411

0.7587
0.7444
0.7433

w
ik
i AUC

ACC
F1

0.6997
0.6997
0.6699

OOT
0.7854
0.7132
0.7129

OOM OOM OOT OOM
0.5374
0.5141
0.5141

0.7707
0.6488
0.6398

0.8230
0.7145
0.7088

0.8259∗

0.7510∗

0.7476∗

0.8214
0.7103
0.7067

co
m
p
-X AUC

ACC
F1

0.5970
0.5970
0.5189

OOM
0.5000
0.6757
0.4032

OOM OOM OOT OOM
0.5213
0.5103
0.5103

OOM
0.8095∗

0.8414∗

0.8154∗

0.7496
0.7959
0.7581

0.7525
0.7975
0.7606

node2bits variants outperform the static methods in nearly all cases except
the bitcoin dataset where node2bits-sh achieves lower AUC than struc2vec but
higher ACC and F1-score. This is because node2bits loses some information
when representing the node contexts as binary vectors comparing with real-value
representation. However, we consider this loss mild as node2bits still outper-
forms all the other static baselines. In addition, struc2vec ran out of time on
the larger datasets while node2bits achieves promising performance efficiently
with 3.90%–5.16% improvement in AUC and 3.58%–4.87% improvement in F1
score than the best baseline method. At the same time, our approach uses much
less information than the static methods, since the length of the temporal walks
are typically shorter than random walks that do not have to respect time.

Conclusion 2. Dynamic and static variants of node2bits outperform the
other baselines by up to 5.2% in AUC and 4.9% in F1 score. Between the two
dynamic variants, the short-term tactic performs better than the long-term one.

Restricting the Output Space Requirements. To evaluate the performance
of stitching with explicit storage requirement, we hash the real-value embeddings
given by baselines into binary and achieve output storage to be consistent with
node2bits. We observe that node2bits still achieves the best performance
(refer to Table 6 in Appendix E.1 for more details).

4.3 Accuracy in Unsupervised User Stitching

As mentioned in Sect. 4.1, node2bits can naturally perform unsupervised user
stitching by leveraging the generated node representations as hashcodes. Only
nodes mapped to the same ‘buckets’ are candidates for stitching together. This
process allows us to stitch entities without involving quadratic comparisons
between all pairs of nodes in the graph. Similarly, CN outputs a set of nodes



496 D. Jin et al.

Table 5. Unsupervised stitching performance between CN and node2bits

Metric
citeseer yahoo bitcoin digg wiki

CN n2b-u CN n2b-u CN n2b-u CN n2b-u CN n2b-u

ACC 0.9141 0.8661 0.6851 0.7553 0.7474 0.7684 0.6217 0.7157 0.6997 0.7350
F1 0.9137 0.8660 0.6505 0.7518 0.7301 0.7663 0.5585 0.7074 0.6699 0.7349

sharing a certain amount of neighbors as the candidates to be stitched together.
We evaluate the quality of hashing given by node2bits-u against CN, and make
use of the candidates to predict the testing set of node pairs given by following
the same setup in Sect. 4.2 in an unsupervised scheme.

Based on the results in Table 5, we observe that node2bits-u outperforms
CN on every dataset other than citeseer. The reason is that in this “author con-
tributes to paper” dataset, author references appearing in the same set of papers
have high probability to correspond to the same researcher in reality. There-
fore the assumption made by CN suits well this scenario, whereas node2bits

hashes nodes with similar features in the context instead of those with similar
neighbor identities (IDs). For datasets with less strict cross-type relationship,
node2bits achieves 2.81%–15.12% improvement in accuracy ACC and 4.96%–
26.66% improvement in F1 score (including digg, another bipartite graph with
inner connected components of the same node types).

Conclusion 3. The unsupervised variant of node2bits, node2bits-u, out-
performs CN on most graphs.

4.4 Output Storage Efficiency

Next we evaluate space efficiency of our proposed method over baselines that
output node embeddings. Instead of real-value matrices, the binary hashcodes
generated by node2bits can be stored in the sparse format so presumably it
should take trivial storage. We visualize the storage requirements in Fig. 3 and
provide detailed storage usage in Table 7 in Appendix E.3.

Conclusion 4. Compared to the other methods, node2bits uses between
63× and 339× less space (while always achieving comparable or better stitching
performance as shown in Sect. 4.2).

4.5 Scalability

To evaluate the scalability, we report the runtime of applying node2bits to
obtain node representations for the datasets shown in Table 2 versus their num-
bers of edges. We note that node2bits-sh runs only on temporal networks, i.e.,
a subset of the datasets. We also visualize the runtime of node2vec as refer-
ence, as it is designed for large graphs and is implemented in the same language
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Fig. 3. First 5 plots: output storage in MB for all the methods that completed success-
fully in five datasets. node2bits is also shown to be scalable for large graphs.

(Python). Based on the last subplot in Fig. 3, we observe that node2bits scales
similarly as node2vec with less runtime space as node2vec ran out of memory
on the largest dataset (wiki). As shown in Appendix B, the worst-case time
complexity is linear in the edges. We give the exact runtimes in Table 8 in the
Appendix E.3.

5 Related Work

Entity Resolution (the general problem under which user stitching falls) has
been widely studied and applied in different domains such as databases and
information retrieval [9,13]. Traditional methods that are based on distances
can be broadly categorized into (1) pairwise-ER [7], which independently decide
which pairs are same entity based on a distance threshold, and (2) clustering [8],
which links nodes in the same cluster. However, these methods are computation-
ally expensive and do not scale to large datasets. Other techniques range from
supervised classification [30] to probabilistic soft logic [20] or fingerprinting [12]
using side information (e.g., user-agent strings, other web browser features, geo-
location). These methods tend to be problem- or even data-specific. On the
contrary, our method is general by modeling the data with a heterogeneous,
dynamic network that uses both node features (optional) and graph structure.

Node embeddings aim to preserve a notion of node similarity into low-
dimensional vector space. Most general methods [14,25,32] and the state-of-
the-art for heterogeneous or dynamic networks [10,23], define node similarity
based on co-occurrence or proximity in the original network (Appendix F). How-
ever, in the user stitching problem, it is possible that corresponding entities
may not connect to the same entities, resulting in lower proximity-based similar-
ity. Embeddings preserving structural identity [1,11,16,18,19,22,27] overcome



498 D. Jin et al.

this drawback. node2bits additionally handles various graph settings (hetero-
geneous, dynamic) at greater space efficiency thanks to hashing.

Locality sensitivity hashing (LSH) was first introduced as a randomized
hashing framework for efficient approximate nearest neighbor search in high
dimensional space [17]. It specifies a family of hash functions, H, that maps
similar items to the same bucket identified through hash codes with higher prob-
ability than dissimilar items [26]. LSH families for different distances have been
widely studied, such as SimHash for cosine distance [5], min-hash for Jaccard
similarity [3], and more (Appendix F). In our work, we leverage LSH to construct
similarity-preserving and space-efficient node representations for user stitching.

6 Conclusion

We have proposed a hash-based network representation learning framework for
identity stitching called node2bits. It is both time- and attribute-aware, while
also deriving space-efficient sparse binary embeddings of nodes in large temporal
heterogeneous networks. node2bits uses the notion of feature-based temporal
walks to capture the temporal and feature-based information in the data. Feature-
based temporal walks are a generalization of walks that obey time while also
incorporating features (as opposed to node IDs). Using these walks, node2bits
generates contexts/sequences of temporally valid feature values. Experiments on
real-world networks demonstrate the utility of node2bits as it outputs space-
efficient embeddings that use orders of magnitude less space compared to the
baseline methods while achieving better performance in user stitching. An impor-
tant practical consideration in the application of our work to user stitching is
the balance of greater personalization with user privacy.
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Appendix

A Detailed Algorithm

In Sect. 3 we gave the overview of our proposed method, node2bits. For repro-
ducibility, here we also provide its more detailed pseudocode.
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Algorithm 2. node2bits framework in detail
Require:

(un)directed heterogeneous graph G(V, E, ψ, ξ),
number of random walks R per edge, max walk length L,
max temporal distance MAX,
embedding dimensionality KΔt at temporal dist. Δt (output dim. K =

∑MAX
Δt=1 KΔt)

1: Construct N × |F| feature matrix F � Matrix with node attributes and derived features
2: CΔt

u ← ∅, ∀u ∈ V, Δt ∈ [1, . . . , MAX] � Context of u: nodes at temporal distance Δt

3: for edge e and walk = 1,. . . ,R do � Perform R feature-based temporal rand. walks per edge
4: 〈wL〉L∈N ← up to L-step temporal walk starting from edge e based on tactic � Dfn. 3
5: CΔt

u ← update the context of nodes u ∈ 〈wL〉L∈N and all temporal distances Δt

6: for j = 1, . . . , |F| do � Iterate over all the features in matrix F

7: � Generate the feature-based context by replacing v ∈ CΔt
u with the fv,j .

8: � Equivalent to context generation after a feature-based temporal walk (Dfn. 4).
9: CΔt

u |f(j) ← update the feature-based context of u ∈ 〈wL〉L∈N

10:
11: for Δt = 1,. . . ,MAX do
12: Generate KΔt random hyperplanes
13: for each node u ∈ V do � For each node, summarize its context with
14: for each node v ∈ CΔt

u do � a histogram per feature and node type.
15: h(CΔt

u ) = concatenate[h(CΔt
u | f(1), p1), . . . ,h(CΔt

u | f(|F|), p|TV |)] � (Eq. (4))
16: � Obtain a sparse, binary hashcode per node based on (modified) SimHash.
17: zΔt

u ← SimHash of node histogram h(CΔt
u ) at distance Δt

18: ZΔt ← N × KΔt matrix with each node’s SimHash code per row
19: return Sparse node representation Z = concatenate[Z1, . . . ,ZMAX ]

B Complexity Analysis

Time Complexity. The runtime complexity of node2bits includes deriving
(1) the set of R temporal random walks of length up to L, which is O(MRL) in
the worst case; (2) the feature values of nodes in the walks from step (1); and
(3) hashing the feature values of nodes in the context through random projection,
which is O(NK). Thus, the total runtime complexity is O(MRL+NK), which
is linear to the number of edges when M � N as K is relatively small (R3).

Runtime Space Complexity. The space required in the runtime consists three
parts: (1) the set of temporal random walks (represented as vectors) per edge
with complexity O(MRL), (2) the histograms of feature contexts N |F||TV |, and
(3) the set of randomly-generated hyperplanes NK. Therefore, the total runtime
space complexity is O(MRL + N(|F||TV | + K)).

Output Space Complexity. The output space complexity of node2bits is
O(NK)-bit. The space required to store binary vectors is guaranteed to be 32×
less than vectors represented with real-value floats (4 bytes) with the same dimen-
sion. In practice, node2bits requires even less storage if the binary vectors are
represented in the sparse format (see Sect. 4.4 for empirical results).
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C Data Description

Below we provide a more detailed description of the network datasets that we
use in our experiments (Table 2).

– citeseer: CiteSeerX is an undirected, heterogeneous network that contains
the bipartite relations between authors and papers they contributed.

– yahoo: Yahoo! Messenger Logs is a heterogeneous network capturing message
exchanges between users at different locations (node attribute).

– bitcoin: soc-bitcoinA is a who-trusts-whom network on the Bitcoin Alpha
platform. The directed edges indicate user ratings.

– digg: This heterogeneous network consists of users voting stories that they
like and forming friendships with other users.

– wiki: wiki-talk is a temporal homogeneous network capturing Wikipedia users
editing each other’s Talk page over time.

– comp-X: A temporal heterogeneous network is derived from a company’s
web logs and consists of web sessions of users and their IPs. In the stitching
task, we predict the web session IDs that correspond to the same user.

D Configuration of Baselines

As we mentioned in Sect. 4.1, we configured all the baselines to achieve the best
performance according to the respective papers. For all the baselines that are
based on random walks (i.e., node2vec, struc2vec, DeepWalk, metapath2vec,
CTDNE), we set the number of walks to 20 and the maximum walk length to
L = 20. For node2vec, we perform grid search over p, q ∈ {0.25, 0.50, 1, 2, 4}
as mentioned in [14] and report the best performance. For metapath2vec, we
adopt the recommended meta-path “Type 1-Type 2-Type 1” (e.g., type 1 =
author; type 2 = publication). In DNGR, we set the random surfing probability
α = 0.98 and use a 3-layer neural network model where the hidden layer has
1024 nodes. We use 2nd-LINE to incorporate 2nd-order proximity in the graph.
For all the embedding methods, we set the embedding dimension to K = 128.
Unlike those, CN outputs clusters, each of which corresponds to one entity.

E Additional Empirical Analysis

E.1 Justification of Hashing

In this experiment we hash the outputs given by baseline embedding methods
using SimHash [5] and then perform stitching on two temporal graphs to study
their performance under the constraint of storage comparable to node2bits.
Based on Table 6, we observe fluctuation in the stitching performance of baseline
methods, for example, almost all baselines got degenerated scores in all metrics
on the bitcoin dataset, especially for struc2vec. On the other hand, however,
node2vec, LINE and CTDNE got slight increased scores on yahoo dataset, which
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Table 6. Justification of hashing

Metric SC∗ LINE∗ DW∗ n2vec∗ CTDNE s2vec∗ AspEm n2b-0 n2b-sh n2b-ln

b
it
co

in AUC
ACC

F1

0.5160
0.5158
0.3757

0.5807
0.5421
0.5415

0.5904
0.5632
0.5611

0.6265
0.5895
0.5893

0.6652
0.6632
0.6608

0.7703
0.7105
0.7087

0.5212
0.5211
0.3334

0.7584
0.7211
0.7209

0.7754
0.7368
0.7361

0.7380
0.6737
0.6735

d
ig
g

AUC
ACC

F1

0.5001
0.5001
0.3338

0.7909
0.7751
0.7746

0.7607
0.7039
0.7039

0.7599
0.7030
0.7030

0.7203
0.6357
0.6228

OOT
0.5000
0.5000
0.3332

0.8185
0.7982
0.7958

0.7611
0.7418
0.7411

0.7587
0.7444
0.7433

is likely due to the fact that the small real-values are amplified when hashed into
binary for logistic regression binary classification. It is also possibly due to the
graph structure. We leave further discussion in the future work, but nevertheless,
node2bits outperforms these baselines in all cases. This empirical experiment
demonstrates that node2bits effectively preserves context information in the
binary hashcodes.

E.2 Sensitivity Analysis

We also perform sensitivity analysis of the hyperparameters used in this work
on the bitcoin dataset. Particularly, we perform grid analysis by varying (1)
max temporal distances, (2) the number of temporal walks per edge and (3)
the length of walks. The results are given in Fig. 4. Figure 4a indicates that
when MAX = 3, node2bits achieves the best performance. This implies that
although it is potentially beneficial to incorporate nodes in temporally distant
contexts, it will also incorporate information that is less relevant. Therefore, we
set MAX = 3 by default for the experiments in this work. Figure 4b and c imply
that the performance of node2bits is not significantly affected by the number
of walks performed or the length of these temporal walks. This is reasonable
because node2bits leverages these temporal walks to collect node features into
the context and normalizes their occurrences in the histograms. Thus, adding

(a) varying MAX temporal
distance Δt

(b) varying # walks (c) varying walk length

Fig. 4. Sensitivity Analysis on bitcoin dataset. node2bits achieves highest scores in
AUC, ACC and F -1 score when MAX = 3. Increasing the numbers of walks or increas-
ing their lengths do not significantly affect the performance of node2bits.
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more nodes in the ordered temporal contexts does not provide extra useful infor-
mation. We empirically set the number of walks per edge to be 10 and the lengths
to be 20 in the experiments of this work.

E.3 Output Storage and Runtime in Detail

We report detailed output storage in Table 7 and the time elapsed when running
all methods in Table 8. It can be seen that the node-wise sparse binary vectors
generated by node2bits take trivial amount of storage compared to the other
methods, while its runtime is comparable to node2vec. node2bits finished run-
ning on all datasets while most baselines fail to finish within the time limit on
the large datasets, digg and wiki.

Table 7. Space required to store the output in MB. node2bits requires 63×–339× less
space than other embedding methods. ‘–’ indicates that the method does not apply to
that dataset, or encounters errors such as out-of-memory or out-of-time.

datasets SC LINE DW n2v CTDNE s2vec DNGR m2vec AspEm n2b

citeseer 6.3 6.4 6.7 6.6 - 6.9 7.4 3.2 6.4 0.033
yahoo 134.4 134.3 167.8 167.6 - - - 127.7 134.3 2.1

bitcoin 4.8 5.3 6.0 6.0 6.4 5.8 5.3 - 4.9 0.041
digg 369.1 370.0 469.8 469.8 486.6 - - - 369.3 2.9
wiki - 1430 - - 1980 - - - 1430 4.2

Table 8. Comparison between node2bits and baselines in terms of runtime (in sec-
onds). Note the runtime of dynamic node2bits (short-term) for the temporal networks
is shown in parentheses.

citeseer yahoo bitcoin digg wiki

SC 23.72 766.42 4.80 8091.09 1
LINE∗ 144.94 223.87 134.48 227.28 415.00
DW∗ 8.90 209.72 16.99 2115.86 –
n2v∗ 7.99 222.14 15.91 2751.91 –
CTDNE – – 13.25 2227.66 4217.19
s2vec∗ 325.38 – 897.2 – –
DNGR 128.63 – 97.09 – –
m2vec 125.98 – – – –
AspEm 0.62 4.70 0.71 15.318 386.24
CN 0.58 19.59 0.70 63.95 109.11

n2b 13.15 221.84 20.52 (39.97) 1507.95 (3062.13) 1537.24 (3997.85)
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F Additional Related Work

In this section we provide additional related work, complementing our discussion
in Sect. 5.

Node Embeddings. Here we give some more details about proximity-based
methods, which we employ in our experiments. DeepWalk [25] and node2vec [14]
leverage vanilla and 2-order random walk, respectively, to explore the identities
of the neighborhood; LINE [32] can be seen as a special case of DeepWalk by set-
ting the context to be 1 [45]; metapath2vec [10] relies on predefined meta-schema
to perform random walk in heterogeneous networks. In the field of temporal net-
work embedding, most approaches [37,51] approximate the dynamic network
as discrete static snapshots overtime, which does not apply to user stitching
tasks as sessions corresponding to the same user could occur in multiple times-
pans. CTDNE [23] first explores temporal proximity by learning temporally valid
embeddings based on a corpus of temporal random walks. Another related field
is hashing-based embedding, for example, node2hash [34] proposes to hash the
pairwise node proximity derived from random walk into low-dimensional hash-
code as the embeddings. Due to the quadratic complexity in computing the
pairwise proximity between nodes, node2hash does not apply to large-scale net-
works. One limitation of these methods is that training a skip-gram architecture
on the entire corpus sampled by random walks can be memory-intensive. A fur-
ther limitation of these approaches, as well as existing deep architectures [15,49]
is that for nodes to have similar embeddings, they must be in close proximity
(e.g. neighbors or nodes with several common neighbors) in the network. This
is not necessarily the case for user stitching, where corresponding entities may
exhibit similar behavior (resulting in similar local topologies) but not connect
to the same entities.

Compared with proximity-based methods, embedding works exploring struc-
tural equivalency or similarity [1,11,16,18,19,22,27,46] are more suitable to han-
dle user stitching. Representative examples include the following: struc2vec [27],
xNetMf [16], and EMBER [18] define similarity in terms of degree sequences
in node-centric subgraphs; DeepGL [29] learns deep relational functions applied
to degree, triangle counts and other graph invariants in an inductive scheme.
Role2vec [1] proposes a framework that inductively learns structural similarity
by introducing attributed random walk atop relational operators, while Mul-
tiLENS [19] summarizes node embeddings obtained by recursive application of
relational operators. CCTN [22] embeds and clusters nodes in a network that are
not only well-connected but also share similar behavioral patterns (e.g., similar
patterns in the degree or other structural properties over time).

Locality Sensitivity Hashing (LSH). More recently, LSH functions that are
robust to distortion [35]; require less storage of the hash codes [41,50]; gener-
ate codewords with balanced amounts of items [39] or compute hash functions
efficiently [38,40,42,48] have attracted much attention. LSH has been used in a
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variety of data mining applications, including network alignment [36], network
inference [47], anomaly detection [44], and more. In addition, there are also
works devoted to learning to hash [35] where the main idea is to learn hash
codes through an optimization objective function, or intelligently probe multi-
ple adjacent code words that are likely to contain query results in a hash table
for similarity search [43]. But these methods do not apply to large-scale graphs
directly.
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Abstract. We propose an overlapping community model based on the
Affiliation Graph Model (AGM), that exhibits the pluralistic homophily
property that the probability of a link between nodes increases with
increasing number of shared communities. We take inspiration from the
Mixed Membership Stochastic Blockmodel (MMSB), in proposing an
edgewise community affiliation. This allows decoupling of community
affiliations between nodes, opening the way to scalable inference. We
show that our model corresponds to an AGM with soft community affil-
iations and develop a scalable algorithm based on a Stochastic Gradient
Riemannian Langevin Dynamics (SGRLD) sampler. Empirical results
show that the model can scale to network sizes that are beyond the capa-
bilities of MCMC samplers of the standard AGM. We achieve compara-
ble performance in terms of accuracy and run-time efficiency to scalable
MMSB samplers.

1 Introduction

Designing a scalable Markov Chain Monte Carlo (MCMC) inference for a
Bayesian model is challenging due to the sequential nature of the mechanism,
especially when the model parameters are huge in number and the dataset is
large. Probabilistic graphical models define how the observed data is generated
and often involve a large number of random variables. A case in point is the
modelling of network data, where the datasets of interest nowadays scale to mil-
lions of nodes and a typical problem of interest is the extraction of community
structure from the network. Many heuristic methods and probabilistic models
have been proposed for this problem. In this paper, we focus on the extraction
of overlapping community structure. Considering that any subset of the nodes
could constitute such an overlapping community, we have a-priori, 2N candidate
communities, where N is the number of nodes in the network.

The Affiliation graph model (AGM) [22] is a probabilistic graphical model
of overlapping community structures in networks. It proposes a likelihood that
exhibits the pluralistic homophily property, meaning that the probability of a
Electronic supplementary material The online version of this chapter (https://
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link between nodes increases with increasing number of shared communities.
This property has been observed in the ground truth communities of real world
data [22]. The heuristic algorithm proposed in [23] maximises the likelihood
through a Non-negative Matrix Factorization (NMF) step and is a good bench-
mark for community-finding at scale. However, we are interested in developing
MCMC algorithms that can sample from the true posterior distribution of the
communities. A number of works have examined MCMC inference on models
based on the AGM likelihood. For instance, using a Gamma process prior, [25]
develop a non-parametric model which is sampled through Gibbs sampling and
apply it to networks with the number of nodes and the number of edges below
104. The Infinite Multiple Membership Relational model (IMRM) [15] finds gen-
eral overlapping block structure and reduces to the AGM likelihood when con-
strained to only within-block interactions. IMRM scales to networks of around
105 edges, on which it takes around 70 h for 2, 500 iterations.

Another network model of block structure in networks is the Mixed Member-
ship Stochastic Blockmodel (MMSB) [2] and its variant, the assortative-Mixed
Membership Stochastic Blockmodel (a-MMSB), that models overlapping com-
munities in the sense that nodes have mixed affiliations to multiple communities.
However, the a-MMSB does not exhibit pluralistic homophily because the prob-
ability of an edge between two nodes does not increase with the total number of
communities that they share. In contrast to the AGM, scalable inference tech-
niques for the MMSB have been proposed in the state-of-the-art, for example,
through the use of Stochastic Variational Inference (SVI) [9] and Stochastic
Gradient-MCMC (SG-MCMC) [13], that achieve scalability by considering only
a mini-batch of the dataset in each update step. Our contribution in this paper,
is to propose a new variant of the AGM, which we call the Soft AGM (S-AGM),
that is inspired by the a-MMSB but maintains the pluralistic homophily prop-
erty of the AGM. Our model is amenable to the same inference strategies that
have proven capable of scaling the MMSB to big network problems. In partic-
ular, in this paper, we will discuss how we have developed a SG-MCMC for
the Soft AGM. Along with the advantage of using a mini-batch in each itera-
tion, the SG-MCMC algorithm is highly parallelizable. We have developed it on
Tensorflow and achieved tractable inference, beyond the capabilities of other
MCMC samplers of the AGM, with networks of 105 edges converging within 2 h
on a 2.2 GHz Intel Core i7 processor.

The paper is structured as follows. In Sect. 2, we present the generative model
of the S-AGM and show how, by collapsing the edge-wise community affiliation
parameters, it may be interpreted as an AGM model with soft community affil-
iations. In Sect. 4, we discuss how to apply a Stochastic Gradient Riemannian
Langevin Dynamics sampler to the model parameters, and derive the required
gradients. In Sect. 5, we present some experimental results. Finally, we discuss
the comparison of the resultant communities with ground truth communities
and the merits of our model in comparison to the AGM.
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2 Model

Consider an unweighted graph of N > 0 nodes, with adjacency matrix A =
{aij}. Let the training set node pairs, E, be partitioned into the non-link pairs,
ENL = {(i, j)|aij = 0} and the link pairs EL = {(i, j)|aij = 1}, such that E =
ENL ∪ EL. We seek overlapping community structure with K > 0 communities.
The Affiliation Graph Model (AGM) provides a generative model for networks
with latent overlapping community structure, where the likelihood of the network
is given by

p(A|Θ) =
N∏

i=1

N∏

j>i

p
aij

ij (1 − pij)1−aij (1)

with Θ = {Z = {zik}, π} and pij = 1 − (1 − πε)
∏K

k=1(1 − πk)zikzjk , such that
zik = 1 whenever node i is a member of community k, p(zik|wk) ∼ Bernoulli(wk).
The community edge density parameters are πk ∼ Beta(ηk0, ηk1) and πε is a
fixed background edge density. That the model exhibits pluralistic homophily,
can most easily be observed by noting that, if all the community densities π were
equal, then the probability that an edge (i, j) does not exist is proportional to
(1−π)

∑
k zikzjk i.e. (1−π)s(i,j), where s(i, j) =

∑
k zikzjk is the number of shared

communities. One challenge for Bayesian inference from this model is that the
conditional probabilities of the communities assignments Z = {zik} given the
network are all inter-dependent and thus require sequential Gibbs sampler.

Motivated to develop a more scalable model that maintains pluralistic
homophily, we take inspiration from the assortative Mixed Membership Stochas-
tic Blockmodel (a-MMSB) and propose the Soft AGM (S-AGM) as follows: con-
sider that, associated with each node i of the network and each community k,
there is a soft community affiliation value, wik ∈ [0, 1]. Now, for all possible inter-
actions between nodes, i and j, each node draws a set of community membership
assignments, zijk ∼ Bernoulli(wik) and zjik ∼ Bernoulli(wjk), and the interac-
tion occurs with probability depending on the number of shared communities
that are drawn:

pij = 1 − (1 − πε)
K∏

k=1

(1 − πk)zijkzjik . (2)

Note that in the S-AGM, each community affiliation is drawn indepen-
dently from a Bernoulli distribution, so that multiple simultaneous affiliations
are allowed and the existence of an edge depends on the overlap of the multiple
affiliations between node pairs. In contrast, in the a-MMSB, for each interaction,
a single community affiliation zijk is drawn from Cat(wi), where

∑
k wik = 1 and

hence
∑

k zijk = 1. The existence of an edge is dependent on whether the single
community drawn by node i coincides with that drawn by node j i.e. whether
or not zijkzjik = 1 is true. There is therefore no notion of multiple affiliations
contributing to an interaction and hence the a-MMSB fails to model pluralistic
affiliation.
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From a scalability point-of-view, drawing the set of community affiliations
independently for each interaction, has the effect of de-coupling the Z = {zijk},
so that their conditional probabilities given the network (given in Sect. 3), can
be updated in parallel.

The generative process model of S-AGM is given in Algorithm 1. Note that
a separate parameter αk is drawn for each community, modelling that each
community may have a different node density.

Algorithm 1. Generative process model
1: for k = 1 : K do
2: πk ∼ Beta(ηk0, ηk1)

3: for k = 1 : K do
4: αk ∼ Gamma(β0, β1)
5: for i = 1 : N do
6: wik ∼ Beta(αk, 1)

7: for i = 1 : (N − 1) do
8: for j = (i + 1) : N do
9: for k = 1 : K do

10: zijk ∼ Bernoulli(wik)
11: zjik ∼ Bernoulli(wjk)

12: pij = 1 − (1 − πε)

K∏

k=1

(1 − πk)zijkzjik

13: aij ∼ Bernoulli(pij)

In fact it is possible to marginalise p(A,Z,W, α, π|η, β), with respect to Z.
In Supplementary Material, we show the following lemma,

Lemma 1. Collapsing Z: P (A|W, π) =
∑

Z P (A,Z|W, π) is given by Eq. (1)
with Θ = {W = {wik}, π} and pij = ρij(W, π) � 1−(1−πε)

∏K
k=1(1−πkwikwjk) .

In this form, we explicitly observe that the S-AGM corresponds to the AGM
when wik are restricted to {0, 1}. The model may also be compared with the
Gamma Process Edge Partition Model (GP-EPM), proposed in [25], in which wik

are drawn from a Gamma distribution and pij = 1−(1−πε)
∏K

k=1(1−πk)wikwjk .
Note that aside from the difference in the form of the edge-connection probability,
in the S-AGM, the wik are restricted to the probability simplex [0, 1], while any
positive affiliation weight is allowed in the GP-EPM.

3 MCMC on the Non-collapsed Model

We firstly consider a simple inference strategy on the non-collapsed model and
compare the results obtained from S-AGM with those obtained from AGM and
a-MMSB. It may be verified that the posterior distribution of α is a Gamma
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distribution. A Gibbs sampling of the components of α can be carried out inde-
pendently in parallel. In particular,

αk|w·k ∼ Gamma

(
N + β0, β1 −

∑

i

log(wik)

)
. (3)

Similarly, we use Gibbs sampling of W with

wik|αk, Z ∼ Beta(αk +
∑

j �=i

zijk, 1 +
∑

j �=i

(1 − zijk)) .

The community assignment for each training pair (i, j), i.e. zij. and zji. can be
sampled in parallel. In particular for each community k, Gibbs sampling is used
with

zijk, zjik|Z \ {zijk, zjik},A,W, π

∝ w
zijk

ik w
zjik

jk (1 − wik)1−zijk(1 − wjk)1−zjikp
aij

ij (1 − pij)1−aij ,

where pij , is given by Eq. (2). As the posterior distribution of π is not in the form
of a standard distribution, we use Hamiltonian Monte Carlo (HMC) MCMC to
sample from π.

4 Scalable MCMC for the Model

The soft community assignments, W, are the output of most interest from the
model. We consider ways to obtain scalable inference with Z collapsed i.e. we
seek the posterior distribution, p(W, π, α|A, η, β). The MCMC algorithm iterates
updating local parameters (W) and global parameters (π and α). In the case of
W and π, we consider sampling strategies that can efficiently explore the sample
space.

The Metropolis Adjusted Langevin Algorithm (MALA) [19] is a Metropolis
Hastings algorithm with a proposal distribution q(θ∗|θ) of the form

θ∗ = θ +
ε

2

(
∇θ log p(θ) +

N∑

i=1

∇θp(xi|θ)
)

+ ξ

where ε is a fixed step size and ξ ∼ N(0, εI). In [8], it is suggested that MALA can
be improved for ill-conditioned problems by introducing an appropriate Riemann
manifold pre-conditioner G(θ), so that the proposal distribution becomes

θ∗ = θ +
ε

2
μ(θ) + G−1/2ξ ,

where, for an M -dimensional θ, the jth component of μ(θ) is given by,

μ(θ)j =
(
G−1∇θ log p(θ|X)

)
j
−2

M∑

k=1

(
G−1 dG

dθk
G−1

)

jk

+
M∑

k=1

G−1
jk Tr

(
G−1 dG

dθk

)
.
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In [21], the expensive Metropolis correction step is not adopted. Instead, a mini-
batch of the dataset Dt is sampled from X for each iteration and an unbiased but
noisy estimate of the gradient is used:

∑N
i=1 ∇θp(xi|θ) ≈ N

|Dt|
∑

xi∈Dt
∇θp(xi|θ)

with a variable step-size εt. Convergence to the true posterior is guaranteed
as long as decaying step sizes satisfy

∑∞
t=1 εt = ∞ and

∑∞
t=1 ε2t < ∞. When

applied with a Riemann manifold pre-conditioner, this method is referred to as
Stochastic Gradient Riemannian Langevin Dynamics (SGRLD).

We follow [18] to develop an SGRLD algorithm for sampling π and W for
the S-AGM. In particular, as these parameters are restricted to [0, 1], it is nec-
essary to re-parameterize so that the update step yields valid proposals in the
parameter range. We adopt the expanded mean re-parameterization with mir-
roring strategy for Dirichlet parameters which is recommended in [18]. In this
case, the preconditioner is chosen as G−1 = diag(θ), and the last two terms of
μ(θ)j evaluate to 2 and −1 respectively.

4.1 Sampling π and W

We re-parameterize πk = π′
k0

π′
k0+π′

k1
, where for m ∈ {0, 1}, π′

km ∼ Gamma(ηkm, 1).
The SGRLD update equations for π′, taking absolute value to maintain the
proposal in the range π

′∗
km > 0, becomes

π
′∗
km =

∣∣∣π′
km +

εt

2
μ(π′

km) + (π′
km)1/2ξkm

∣∣∣ , (4)

with ξkm ∼ N(0, εt). Then, for a mini-batch of node pairs Et, we obtain

μ(π′
km) = ηkm − π′

km + s(Et)
∑

(i,j)∈Et

ga
ij(π

′
km) , (5)

where ga
ij(π

′
km) � ∂

∂π′
km

log p(aij |π′, wi., wj.) and s(.), discussed below, appropri-
ately scales the mini-batch gradient estimate.

For each node i, we re-parameterize wik = w′
ik0

w′
ik0+w′

ik1
where for m ∈ {0, 1},

w′
ikm ∼ Gamma(γkm, 1), γk0 = αk and γk1 = 1. We perform an SGRLD update

for w′
ik as follows:

w
′∗
ikm =

∣∣∣w′
ikm +

ε

2
μ(w′

ikm) + (w′
ikm)1/2ξikm

∣∣∣ , (6)

where ξikm ∼ N(0, εt) and for a mini-batch of nodes Vt
i ,

μ(w′
ikm) = γkm − w′

ikm +
N

|Vt
i |

∑

j∈Vt
i

ga
ij(w

′
ikm) , (7)

where ga
ij(w

′
ikm) � ∂

∂w′
ikm

log p(aij |π,w′
i., w

′
j.). Full expressions for ga

ij(π
′
km) and

ga
ij(w

′
ikm) are given in the Supplementary Material.
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4.2 Mini-batch Selection

We follow the stratified random node sampling strategy which is shown to give
the best gains in convergence speed for variational inference on an MMSB model
in [9]. All the node pairs incident with each node i are partitioned into u sets,
Nil ⊂ ENL, l = 1, . . . , u of non-link pairs and one set, Li ⊆ EL, of the link
pairs. Note that each node pair occurs within these sets exactly c = 2 times. To
select the mini-batch Et, firstly a node i is selected at random, and then with
probability 1/2, either the link set is chosen or, otherwise, one of the non-link
sets is chosen with probability 1/u. Let s(Et) = Nu if Et = Nil for some l and
s(Et) = N if Et = Li. In the Supplementary Material, we show that this choice
of scaling results in an unbiased estimate of the true gradient. To update w′

ikm,
for each node i in mini-batch Et we sample a fixed number of nodes at random
to form the mini-batch Vt

i .
The pseudo-code for the full MCMC algorithm is given in Algorithm2. All

the for loops in Algorithm2 are parallelizable.

Algorithm 2. MCMC for the S-AGM using SGRLD
1: Sample a mini-batch Et of node pairs.
2: for Each node i in Et do
3: Sample a mini-batch of nodes Vt

i .
4: for k = 1 : K do � utilizing the sampled Vt

i

5: Update wik according to Equations (6) and (7).

6: for k = 1 : K do � utilizing the sampled Et

7: Update πk according to Equations (4) and (5).

8: for k = 1 : K do
9: Update αk according to Equation (3).

5 Experimental Results

We initially developed a proof-of-concept Matlab code1 both for the uncollapsed
S-AGM model and for the SG-MCMC algorithm. To take advantage of the par-
allelizability of the collapsed model, we then implemented the SG-MCMC algo-
rithm using Tensorflow [1] and ran it on a GPU.

Throughout the experiments we have chosen ηk0 = 5, ηk1 = 1 as the hyperpa-
rameters for the community edge probability incorporating the prior information
that a community consists of strongly connected nodes. For the hyperparame-
ters of αk, we have chosen β0 = β1 = 1. We have initialized the probability of
a node belonging to a community for S-AGM and a-MMSB to be 1/K which
also satisfies the condition that

∑
k 1/K = 1 for the membership vector of the

a-MMSB. The edge probabilities for each community are initialized by drawing
from the prior, Beta(ηk0, ηk1) for all models.

1 https://github.com/nishma-laitonjam/S-AGM.

https://github.com/nishma-laitonjam/S-AGM
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To compare different community assignments we use the overlapping Nor-
malised Mutual Information (NMI) [11]. To compare the convergence of the
MCMC chain, we use area under the Receiver Operating Characteristics curve
(AUC-ROC) to predict missing links of hold-out test set, T. We also use perplex-
ity defined as the exponential of the negative average predictive log likelihood on

the hold-out test set [9], i.e. perp(T|π,W) = exp
(

−
∑

(i,j)∈T log p(aij |π,wi.,wj.)

|T|

)
.

For small datasets, the change in log likelihood of the training dataset is also
used to check for convergence.

5.1 Networks Generated by AGM

To observe whether S-AGM can recover the network structure of the AGM,
we compare the two models applied to networks generated from the AGM. For
this experiment, we run the SGRLD batch algorithm for S-AGM in Matlab and
compare it to a Matlab implementation for AGM that uses Gibbs sampling along
with HMC. We use these implementations to examine the run-time advantages
of the batch SGRLD algorithm over Gibbs and HMC.

Specifically, networks with two communities are generated using the gen-
erative process of AGM, i.e set K = 2 and edges between nodes i and j are
generated with probability pij = 1 − (1 − πε)

∏
k(1 − πk)zikzjk . A community

assignment Z is chosen such that in each network, 20% of the nodes belong to
the overlapping region of the two communities and 40% of the nodes belong to
each community only. The network size is n = 100. For Fig. 1, we fix πk = 0.8 ∀k
and vary the background edge probability πε. For Fig. 2, we fix πε = 0.00005 and
vary πk. When fitting the models, we fix πε = 0.00005 in all cases, so that the
first experiment tests the ability of the algorithm to recover the network with
different levels of background noise.

The similarity of the resultant communities with the ground truth com-
munities is reported as NMI. The step size of SGRLD is decreased using,
εt = a

(
1 + t

b

)−c where a is the initial value, t is the iteration number, and
c ∈ (0.5, 1] is the learning rate. Following [18], we have chosen b = 1, 000 and
c = 0.55. For these networks, we find a = 0.01 performs well for sampling both
π and wi·. Since S-AGM reports the community assignment of a node as a soft
assignment, we use a threshold to convert to a hard assignment before com-
puting NMI. After burn-in of 500 iterations, 500 samples are collected, and the
average result of 5 random runs is reported. From Fig. 1, we can see that S-AGM
with 0.5 as threshold is more tolerant to background noise than AGM. When
there is no noise i.e. when πε = 0.00005, both S-AGM and AGM are able to
recover the ground truth network. As noise increases, S-AGM performs better
to recover the ground truth communities as the noise is reflected in the inferred
model only as a small positive probability of belonging to the other community.
Thus S-AGM has higher NMI compared to AGM. From Fig. 2, when we change
the within-community edge probability with fixed πε = 0.00005, both S-AGM
with 0.3 as threshold and AGM, gives similar NMI recovering the ground truth
community well when the within-community edge probability is greater than or
equal to 0.4.
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To compare the runtime between AGM and S-AGM, we generate networks
with k = 2, πk = 0.8 ∀k and πε = 0.00005 but of different sizes n ranging from
100 to 1,000 in a step-size of 100. After burn in of 500 iterations, 500 samples
are collected, and the average AUC-ROC score of 5 random runs on Intel core
i5, 4 cores is reported in Fig. 4.
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From Fig. 3, we can see that the batch SGRLD for S-AGM performs better
than MCMC for AGM, while both give a similar AUC-ROC score. The scalability
of the SGLRD for large n, using mini-batch and GPU, is explored in Sect. 5.3.

5.2 Comparing S-AGM with AGM and a-MMSB

In this section, first we show that both AGM and S-AGM exhibit pluralistic
homophily. We then compare the performance of S-AGM with AGM and a-
MMSB in terms of convergence of the log likelihood on the training dataset and
predicting missing links on the hold-out dataset which is comprised of 20% of
the node pairs in the dataset, chosen at random. For these experiments we use
3 small networks i.e. Football [17], NIPS234 [14] and Protein230 [3]. We use
uncollapsed MCMC for all models with the Matlab code. We set the number
of communities as K = 5, 10, 15, 20, and plot number of shared communities
per node pair, i.e.

∑
k zijkzjik for S-AGM and

∑
k zikzjk for AGM, against edge

probability. (As noted in Sect. 2, in the case of a-MMSB, as
∑

k zijkzjik ∈ {0, 1}
always, there is no direct notion of pluralstic homophily in that model).
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Figure 5 shows a clear increase in edge probability with increasing number
of shared communities in both the AGM and S-AGM models. These plots are
obtained from a single run, for various K.
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Fig. 5. Pluralistic homophily by AGM and S-AGM

Table 1 shows the average AUC under ROC curve for predicting missing links,
taken over 5 random runs where, in each run, 2, 500 samples are collected after
burn-in of 2, 500 iterations. We can see that the AUC-ROC score is very similar
for the 3 models with AGM performing best for NIPS234. It may be observed
from Fig. 6, that the log likelihood for AGM is highest compared to the other two
models. The perplexity is computed after every 100 iterations and the trace plots
from a single run are shown in Fig. 7. Again, there is little difference between the
three models, even though from Fig. 6 the convergence is slower for non-collapsed
S-AGM due to the larger number of parameters to learn.

Comparison with Ground Truth Communities. With the availability of
ground truth communities for the Football network, we are able to compare
the communities generated by S-AGM with these communities. The Football
network contains the network of American football games between Division IA
colleges during regular season, Fall 2000. There are 115 teams that are grouped
into 11 conferences along with 8 independent teams that are not required to
schedule each other for competition, like colleges within conferences must do [6].
We have used the Fruchterman-Reingold algorithm [7,20] to plot the community
structure found by S-AGM alongside the ground truth communities in Fig. 8. The
8 independent teams are the black nodes in the ground truth. For the S-AGM
plot, the pie-chart at each node indicates its relative membership of each found
community.
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Fig. 6. Trace plot of log likelihood of training data

Fig. 7. Trace plot of perplexity of test data

Conferences teams play more intra-conference games than inter-conference
games, thus forming a clear community structure, while the 8 independent teams
play with other teams as frequently as among themselves. The S-AGM recov-
ers the 11 conferences well when K = 15. Three out of 15 found communities
are empty. Games between teams from different conferences are not uniform.
Rather, geographically close teams tend to play each other more often [10]. This
pattern is captured in the overlapping structure identified by S-AGM, where each
conference team belongs to a single dominant community, but has some small
probability of belonging to another conference, proportional to its distance to
teams within that conference.

In Fig. 8, we focus on Western Michigan and Buffalo, two Mid American con-
ference teams, as well as Louisiana Tech, an independent team. Clearly, Louisiana
Tech has no clear community assignment, rather, it can be considered as a part of
multiple conferences. It plays more games with teams in the West Atlantic con-
ference (dark yellow) and the Southeastern conference (maroon). While Western
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Western Michigan Buffalo Louisiana Tech

Fig. 8. Communities for Football network. (Color figure online)

Michigan and Buffalo have very strong affiliation to their own conference, due
to the geographical proximity, Western Michigan plays more with teams in the
Big Ten conference (Iowa and Wisconsin) while Buffallo plays more games with
teams in the Big East conference (Syracuse and Rutgers).

Such overlapping structure where a node belongs to multiple communities
with a different degree of overlap cannot be captured by the AGM model.
In AGM a node either belongs fully to the community or not. For the Foot-
ball network, with K = 15, AGM generates one community that contains all
nodes to capture the inter-community edges and other communities as the
sub-communities to capture the intra-community edges corresponding to the
ground truth communities. Thus the community structure generated by the
AGM doesn’t provide the information that even though a team belongs to a
conference, the team also plays with other teams of different conferences with
different frequencies.
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Fig. 9. Trace plot of perplexity of test data for various K

5.3 Larger Problems

For experiments on larger problems, we use the FreeAssoc network [16] (10,468
nodes and 61,677 edges), the Reuters network [4] (13,314 nodes and 148,038
edges) and the ca-HepPh network [12] (12,008 nodes and 118,489 edges) and
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run the mini-batch SGRLD algorithm for these networks. Taking advantage of
the parallelizability of the algorithm, it is implemented on Tensorflow and run
on a 2.2 GHz Intel Core i7 processor. To overcome the memory problem for larger
networks, especially to run with GPUs, we store the network outside the limited
GPU memory. Mini-batch samples are stored in the tf.records Tensorflow
binary storage format. This speeds up the process of passing the mini-batch for
each iteration to the GPUs. Thus, first the mini-batch of every 100 iterations is
sampled and stored in a tf.records structure and one tf.records is read in
every 100 iterations using an initializable iterator. For gradient computation, we
implemented the analytical form directly, rather than using Tensorflow’s gradient
function. We take K = 50, L = N/u = 1, 000 and |Vt| = 1, 000.

The step size of SGRLD is decreased similar to Sect. 5.1 and for these networks,
we find a = 0.001 performs well for sampling both π and wi· for these networks.
To check the performance for these experiments, a test set consisting of 50% edges
and 50% non-edges is chosen at random. The size of the test set is taken as 10% of
the edges in the graph. The convergence of the perplexity for the test set is given in
Fig. 9. Table 2 shows the runtime in hours for 5, 000 iterations and average AUC-
ROC scores for 2, 500 samples collected after a burn-in of 2, 500 iterations. Along
with Fig. 9, we can see that the performance of S-AGM does not decrease as K
grows, which is also observed in SG-MCMC of a-MMSB [13].

Table 2. AUC-ROC scores of test data and runtime (hrs) for various K

K AUC-ROC Runtime (hrs)

50 100 150 200 50 100 150 200

FreeAssoc 0.8989 0.9064 0.9041 0.9086 0.6434 1.0844 1.4563 1.8031

Reuters 0.9441 0.9455 0.9472 0.9472 0.6646 1.0725 1.5141 1.8709

ca-HepPh 0.9346 0.9480 0.9503 0.9470 0.6582 1.0815 1.4886 1.8637

Effect of Mini-batch Size. For this experiment, we vary the mini-batch size
for the ca-HepPh network with L = |Vt| ∈ {1000, 500, 100, 5} respectively and
study the effect of change in mini-batch size with K = 50. In SGRLD, the
mini-batch size is a hyperparameter. The convergence speed greatly depends
on the mini-batch size though the process with any mini-batch size will finally
converge when the MCMC chain is run infinitely. With larger mini batch size,
per iteration time is comparatively longer and hence the convergence runtime
is also slow. Whereas with very small mini-batch size, only very few w will be
updated per iteration and the process will achieve poor predictive performance
for missing links due to the larger variance of the stochastic gradient. Shown
in Fig. 10, the mini-batch size L = |Vt| = 500 for ca-HepPh obtains the best
predictive performance of missing links within 30 min. Although SGRLD with
large mini-batch size is faster with no metropolis acceptance step, a better choice
of mini-batch size with low variance in stochastic gradient also helps in speeding
up the convergence.
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Fig. 10. Trace plot of AUC-ROC score and perplexity of test data for ca-HepPh
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Fig. 11. Trace plot of AUC-ROC score and perplexity of test data for com-dblp

Tensorflow on GPU. To demonstrate the scalability of the inference algo-
rithm, we run the Tensorflow code using the com-dblp network [24] which
has more than 1 million edges. The experiment is carried out on a machine
equipping with an AMD Ryzen 7 Eight-Core Processor at 2.2 GHz, Nvidia GTX
TitanX with 12 GB memory, and 64 GB RAM. For this experiment, we consider
K = 2048, L = 4096 and |Vt| = 32. With the same initialization as the above
experiments, except for a which is taken as a = 0.0001 here, the algorithm is run
for 50, 000 iterations and takes 11.5 h. The convergence of perplexity and AUC-
ROC score on the test set is given in Fig. 11. From the experiment we can see
that S-AGM achieves similar runtime scalability as a-MMSB when implemented
with GPU [5].

6 Conclusion and Future Work

In this paper we have developed a new overlapping community model (Soft-
AGM) that exhibits pluralistic homophily. Overlapping communities are mod-
elled as soft node to community assignments, which, if constrained to be hard,
would result in the Soft AGM likelihood reducing to the standard AGM likeli-
hood. A highly parallelizable and scalable MCMC algorithm for inference based
on a stochastic gradient sampler is developed for the model, allowing the infer-
ence to be carried out on networks that are well beyond the size of networks
tackled by previous MCMC samplers applied to the AGM. In particular, a
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Tensorflow implementation has been used to run the model on a network
with 106 edges. As future work, we would like to implement the algorithm on a
HPC infrastructure to find community structure on very large networks, such as
“Friendster”, “LiveJournal” and so on. We will also consider to make the model
non-parametric, allowing the number of non-empty communities to be learned.

Acknowledgments. This project has been funded by Science Foundation Ireland
under Grant No. SFI/12/RC/2289.
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Abstract. Signed networks contain both positive and negative kinds of
interactions like friendship and enmity. The task of node classification in
non-signed graphs has proven to be beneficial in many real world appli-
cations, yet extensions to signed networks remain largely unexplored. In
this paper we introduce the first analysis of node classification in signed
social networks via diffuse interface methods based on the Ginzburg-
Landau functional together with different extensions of the graph Lapla-
cian to signed networks. We show that blending the information from
both positive and negative interactions leads to performance improve-
ment in real signed social networks, consistently outperforming the cur-
rent state of the art.

1 Introduction

Signed graphs are graphs with both positive and negative edges, where positive
edges encode relationships like friendship and trust, and negative edges encode
conflictive and enmity interactions. Recently, signed graphs have received an
increasing amount of attention due to its capability to encode interactions that
are not covered by unsigned graphs or multilayer graphs [40,47,51,53,58], which
mainly encode interactions based on similarity and trust.

While the analysis of unsigned graphs follows a long-standing and well estab-
lished tradition [5,39,44], the analysis of signed graphs can be traced back
to [10,29], in the context of social balance theory, further generalized in [16]
by introducing the concept of a k-balance signed graph: a signed graph is k-
balanced if the set of nodes can be partitioned into k disjoint sets such that
inside the sets there are only positive relationships, and between different sets
only negative relationships. A related concept is constrained clustering [2], where
must-links and cannot-links are constraints indicating if certain pairs of nodes
should be assigned to the same or different clusters.

Recent developments of signed graphs have been guided by the concept of
k-balance, leading to a diverse paradigm of applications, including: clustering
c© Springer Nature Switzerland AG 2020
U. Brefeld et al. (Eds.): ECML PKDD 2019, LNAI 11906, pp. 524–540, 2020.
https://doi.org/10.1007/978-3-030-46150-8_31
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[12,14,15,19,31,34,41,42,46], edge prediction [22,33,35], node embeddings [17,
30,54,56], node ranking [13,48], node classification [49], and many more. See [23,
50] for a recent survey on the topic. One task that remains largely unexplored
is the task of node classification in signed networks.

The problem of node classification in graphs is a semi-supervised learning
problem where the goal is to improve classification performance by taking into
account both labeled and unlabeled observations [11,60], being a particular case
graph-based semi-supervised learning.

The task of graph-based classification methods on unsigned graphs is a fun-
damental problem with many application areas [3,57,59]. A technique that has
recently been proposed with very promising results utilizes techniques known
from partial differential equations in materials science and combines these with
graph based quantities (cf. [5]). In particular, the authors in [5] use diffuse inter-
face methods that are derived from the Ginzburg–Landau energy [1,6,26,52].
These methods have been used in image inpainting where a damaged region of
an image has to be restored given information about the undamaged image
parts. In the context of node classification in graphs, the undamaged part of
an image corresponds to labeled nodes, whereas the damaged part corresponds
to unlabeled nodes to be classified based on the information of the underlying
graph structure of the image and available labeled nodes. With this analogy, one
can readily use results from [4] for the classification problem on graphs. While
the materials science problems are typically posed in an infinite-dimensional
setup, the corresponding problem in the graph-based classification problem uses
the graph Laplacian. This technique has shown great potential and has recently
been extended to different setups [7,24,43].

Our contributions are as follows: we study the problem of node classification
in signed graphs by developing a natural extension of diffuse interface schemes
of Bertozzi and Flenner [5], based on different signed graph Laplacians. To the
best of our knowledge this is the first study of node classification in signed
networks using diffuse interface schemes. A main challenge when considering the
application of diffuse interface methods to signed networks is the availability of
several competing signed graph Laplacians and how the method’s performance
depends on the chosen signed graph Laplacian, hence we present a thorough
comparison of our extension based on existing signed graph Laplacians. Further,
we show the effectivity of our approach against state of the art approaches by
performing extensive experiments on real world signed social networks.

The paper is structured as follows. We first introduce the tools needed from
graphs and how they are extended to signed networks. We study the proper-
ties of several different signed Laplacians. We then introduce a diffuse interface
technique in their classical setup and illustrate how signed Laplacians can be
used within the diffuse interface approach. This is then followed by numerical
experiments in real world signed networks.

Reproducibility: Our code is available at https://github.com/melopeo/GL.

https://github.com/melopeo/GL
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2 Graph Information and Signed Networks

We now introduce the Laplacian for unsigned graphs followed by particular ver-
sions used for signed graphs.

2.1 Laplacians for Unsigned Graphs

In this section we introduce several graph Laplacians, which are the main tools
for our work. Let G = (V,W ) be an undirected graph with node set V =
{v1, . . . , vn} of size n = |V | and adjacency matrix W ∈ R

n×n with non-negative
weights, i.e., wij ≥ 0.

In the case where a graph presents an assortative configuration, i.e. edge
weights of the adjacency matrix W represent similarities (the larger the value of
wij the larger the similarity of nodes the vi and vj), then the Laplacian matrix
is a suitable option for graph analysis, as the eigenvectors corresponding to the
k-smallest eigenvalues convey an embedding into R

k such that similar nodes are
close to each other [39]. The Laplacian matrix and its normalized version are
defined as:

L = D − W, Lsym = D−1/2LD−1/2

where D ∈ R
n×n is a diagonal matrix with Dii =

∑n
i=1 wij . Observe that Lsym

can be further simplified to Lsym = I − D−1/2WD−1/2. Both Laplacians L and
Lsym are symmetric positive semi-definite, and the multiplicity of the eigenvalue
zero is equal to the number of connected components in the graph G.

For the case where a graph presents a dissasortative configuration, i.e. edges
represent dissimilarity (the larger the value of wij the more dissimilar are the
nodes vi and vj), then the signless Laplacian is a suitable option, as the eigen-
vectors corresponding to the k-smallest eigenvalues provide an embedding into
R

k such that dissimilar nodes are close to each other [18,37,41]. The signless
Laplacian matrix and its normalized version are defined as:

Q = D + W, Qsym = D−1/2QD−1/2

Observe that Qsym can be further simplified to Qsym = I + D−1/2WD−1/2.
Both Laplacians Q and Qsym are symmetric positive semi-definite, with smallest
eigenvalue equal to zero if and only if there is a bipartite component in G.

We are now ready to introduce the corresponding Laplacians for the case
where both positive and negative edges are present, to later study its application
to node classification in signed graphs.

2.2 Laplacians for Signed Graphs

We are now ready to present different signed graph Laplacians. We give a special
emphasis on the particular notion of a cluster that each signed Laplacian aims to
identify. This is of utmost importance, since this will influence the classification
performance of our proposed method.
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Signed graphs are useful for the representation of positive and negative inter-
actions between a fixed set of entities. We define a signed graph to be a pair
G± = (G+, G−) where G+ = (V,W+) and G− = (V,W−) contain positive and
negative interactions respectively, between the same set of nodes V , with sym-
metric adjacency matrices W+ and W−. For the case where a single adjacency
matrix W contains both positive and negative edges, one can obtain the signed
adjacency matrices by the relation W+

ij = max(0,Wij) and W−
ij = −min(0,Wij).

Notation: We denote the positive, negative and absolute degree diagonal matri-
ces as D+

ii =
∑n

j=1 W+
ij , D−

ii =
∑n

j=1 W−
ij and D̄ = D+ + D−; the Lapla-

cian and normalized Laplacian of positive edges as L+ = D+ − W+, and
L+
sym = (D+)−1/2L+(D+)−1/2; and for negative edges L− = D− − W−, and

L−
sym = (D−)−1/2L−(D−)−1/2, together with the signless Laplacian for negative

edges Q− = D− + W−, and Q−
sym = (D−)−1/2Q−(D−)−1/2.

A fundamental task in the context of signed graphs is to find a partition of
the set of nodes V such that inside the clusters there are mainly positive edges,
and between different clusters there are mainly negative edges. This intuition
corresponds to the concept of k-balance of a signed graph, which can be traced
back to [16]: A signed graph is k-balanced if the set of vertices can be partitioned
into k sets such that within the subsets there are only positive edges, and between
them only negative.

Based on the concept of k-balance of a signed graph, several extensions of the
graph Laplacian to signed graphs have been proposed, each of them aiming to
bring a k-dimensional embedding of the set of nodes V through the eigenvectors
corresponding to the k-smallest eigenvalues, such that positive edges keep nodes
close to each other, and negative edges push nodes apart.

Examples of extensions of the graph Laplacian to signed graphs are the signed
ratio Laplacian and its normalized version [34], defined as

LSR = D̄ − W, LSN = I − D̄−1/2WD̄−1/2

Both Laplacians are positive semidefinite. Moreover, they have a direct relation-
ship to the concept of 2-balance of a graph, as their smallest eigenvalue is equal
to zero if and only if the corresponding signed graph is 2-balanced. Hence, the
magnitude of the smallest eigenvalue tells us how far a signed graph is to be
2-balanced. In [34] it is further observed that the quadratic form xT LSRx is
related to the discrete signed ratio cut optimization problem:

min
C⊂V

(
2cut+(C,C) + assoc−(C) + assoc−(C)

)
(

1
|C| +

1
∣
∣C

∣
∣

)

where C = V \C, cut+(C,C) =
∑

i∈C,j∈C W+
ij counts the number of positive

edges between clusters, and assoc−(C) =
∑

i∈C,j∈C W−
ij counts the number of

negative edges inside cluster C (similarly for assoc−(C)). Therefore we can see
that the first term counts the number of edges that keeps the graph away from
being 2-balanced, while the second term enforces a partition where both sets are
of the same size.
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Inspired by the signed ratio cut, the balance ratio Laplacian and its normal-
ized version are defined as follows [12]:

LBR = D+ − W+ + W−, LBN = D̄−1/2LBRD̄−1/2,

Observe that these Laplacians need not be positive semi-definite, i.e. they poten-
tially have negative eigenvalues. Further, the eigenvectors corresponding to the
smallest eigenvalues of LBR are inspired by the following discrete optimization
problem:

min
C⊂V

(
cut+(C,C) + assoc−(C)

|C| +
cut+(C,C) + assoc−(C)

∣
∣C

∣
∣

)

A further proposed approach, based on the optimization of some sort of ratio of
positive over negative edges (and hence denoted SPONGE) is expressed through
the following generalized eigenvalue problem and its normalized version [14]:

(L+ + D−)v = λ(L− + D+)v , (L+
sym + I)v = λ(L−

sym + I)v

which in turn are inspired by the following discrete optimization problem

min
C⊂V

(
cut+(C,C) + vol−(C)
cut−(C,C) + vol+(C)

)

where vol+(C) =
∑

i∈C d+i and vol−(C) =
∑

i∈C d−
i . Observe that the normal-

ized version corresponds to the eigenpairs of LSP := (L−
sym + I)−1(L+

sym + I).
Finally, based on the observation that the signed ratio Laplacian can be
expressed as the sum of the Laplacian and signless Laplacian of positive and
negative edges, i.e. LSR = L+ + Q−, in [41] the arithmetic and geometric mean
of Laplacians are introduced:

LAM = L+
sym + Q−

sym, LGM = L+
sym#Q−

sym.

Observe that different clusters are obtained from different signed Laplacians.
This becomes clear as different clusters are obtained as solutions from the related
discrete optimization problems above described. In the following sections we will
see that different signed Laplacians induce different classification performances
in the context of graph-based semi-supervised learning on signed graphs.

3 Diffuse Interface Methods

Diffuse interface methods haven proven to be useful in the field of materials
science [1,6,9,20,25] with applications to phase separation, biomembrane sim-
ulation [55], image inpainting [4,8] and beyond. In [5] it is shown that diffuse
interface methods provide a novel perspective to the task of graph-based semi-
supervised learning. These methods are commonly based on the minimization
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of the Ginzburg-Landau (GL) functional, which itself relies on a suitable graph
Laplacian. Let S ∈ R

n×n be a positive semi-definite matrix. We define the GL
functional for graph-based semi-supervised learning as follows:

ES(u) :=
ε

2
uT Su +

1
4ε

n∑

i=1

(u2
i − 1)2 +

n∑

i=1

ωi

2
(fi − ui)2, (1)

where fi contains the class labels of previously annotated nodes.
Observe that this definition of the GL functional for graphs depends on a

given positive semi-definite matrix S. For the case of non-signed graphs a natural
choice is the graph Laplacian (e.g. S = Lsym), which yields the setting presented
in [5,24,43]. In the setting of signed graphs considered in this paper one can
utilize only the information encoded by positive edges (e.g. S = L+

sym), only
negative edges (e.g. S = Q−

sym), or both for which a positive semi-definite signed
Laplacian that blends the information encoded by both positive and negative
edges is a suitable choice (e.g. S = LSR, LSN, LSP, or LAM).

Moreover, each element of the GL functional plays a particular role:

1. ε
2uT Su induces smoothness and brings clustering information of the signed
graph. Different choices of S convey information about different clustering
assumptions, as observed in Sect. 2.2,

2. 1
4ε

∑n
i=1(u

2
i − 1)2 has minimizers with entries in +1 and −1, hence for the

case of two classes it induces a minimizer u whose entries indicate the class
assignment of unlabeled nodes,

3.
∑n

i=1
ωi

2 (fi − ui)2 is a fitting term to labeled nodes given a priori, where
ωi = 0 for unlabeled nodes and ωi = w0 for labeled nodes, with w0 large
enough (see Sect. 4 for an analysis on w0.)

4. The interface parameter ε > 0 allows to control the trade-off between the first
and second terms: large values of ε make the clustering information provided
by the matrix S more relevant, whereas small values of ε give more weight
to vectors whose entries correspond to class assignments of unlabeled nodes
(see Sect. 4 for an analysis on ε.)

Before briefly discussing the minimization of the GL functional ES(u), note that
the matrix S needs to be positive semi-definite, as otherwise the ES(u) becomes
unbounded below. This discards signed Laplacians like the balance ratio/normal-
ized Laplacian introduced in Sect. 2.2. The minimization of the GL functional
ES(u) in the L2 function space sense can be done through a gradient descent
leading to a modified Allen-Cahn equation. We employ a convexity splitting
scheme (see [4,7,8,21,27,38,45]), where the trick is to split ES(u) into a differ-
ence of convex functions:

ES(u) = E1(u) − E2(u)
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with

E1(u) =
ε

2
uT Su +

c

2
uT u,

E2(u) =
c

2
uT u − 1

4ε

n∑

i=1

(u2
i − 1)2 −

n∑

i=1

ωi

2
(fi − ui)2

where E1 and E2 are convex if c ≥ ω0 + 1
ε ; (see e.g. [7]). Proceeding with an

implicit Euler scheme for E1 and explicit treatment for E2, leads to the following
scheme:

u(t+1) − u(t)

τ
= −∇E1(u(t+1)) + ∇E2(u(t))

where (∇E1(u))i = ∂E1
∂ui

(u) and (∇E2(u))i = ∂E2
∂ui

(u) with i = 1, . . . , n, and
u(t+1) (resp. u(t)) is the evaluation of u at the current (resp. previous) time-
point. This further leads to the following

u(t+1) − u(t)

τ
+ εSu(t+1) + cu(t+1) = cu(t) − 1

ε
∇ψ(u(t)) + ∇ϕ(u(t)).

where ψ(u) =
∑n

i=1(u
2
i − 1)2 and ϕ(u) =

∑n
i=1

ωi

2 (fi − ui)2.
Let (λl, φl), l = 1, . . . , n, be the eigenpairs of S. By projecting terms of the
previous equation onto the space generated by eigenvectors φ1, . . . , φn, we obtain

al − āl

τ
+ ελlal + cal = −1

ε
b̄l + cāl + d̄l for l = 1, . . . , n (2)

where scalars {(al, āl, b̄l, d̄l)}n
l=1 are such that u(t+1) =

∑n
l=1 alφl, u(t) =

∑n
l=1

ālφl,
(

[φ1, . . . , φn]T ∇ψ

(
∑n

l=1 ālφl

))

l

= b̄l,
(

[φ1, . . . , φn]T ∇ϕ

(

f − ∑n
l=1

ālφl

))

l

= d̄l. Equivalently, we can write this as

(1 + ετλl + cτ) al = −τ

ε
b̄l + (1 + cτ)āl + τ d̄l for l = 1, . . . , n (3)

where the update is calculated as u(t+1) =
∑n

l=1 alφl. Once either convergence
or the maximum of iterations is achieved, the estimated label of node vi is equal
to sign(ui). The extension to more than two classes is briefly introduced in the
appendix of this paper. Finally, note that the eigenvectors corresponding to the
smallest eigenvalues of a given Laplacian are the most informative, hence the
projection above mentioned can be done with just a small amount of eigenvec-
tors. This will be further studied in the next section.

4 Experiments

In our experiments we denote by GL(S) our approached based on the Ginzburg-
Landau functional defined in Eq. 1. For the case of signed graphs we consider
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GL(LSN),GL(LSP), and GL(LAM). To better understand the information rel-
evance of different kind of interactions we further evaluate our method based
only on positive or negative edges, i.e. GL(L+

sym) and GL(Q−
sym), respectively.

We compare with different kinds of approaches to the task of node classifi-
cation: First, we consider transductive methods designed for unsigned graphs
and apply them only to positive edges, namely: local-global propagation of
labels (LGC) [57], Tikhonov-based regularization (TK) [3], and Label Prop-
agation with harmonic functions (HF) [59].

We further consider two methods explicitly designed for the current task:
DBG [28] based on a convex optimization problem adapted for negative edges,
and NCSSN [49] a matrix factorization approach tailored for social signed
networks.

Parameter Setting. The parameters of our method are set as follows, unless
otherwise stated: the fidelity parameter ω0 = 103, the interface parameter ε =
10−1, the convexity parameter c = 3

ε + ω0, time step-size dt = 10−1, maximum
number of iterations 2000, stopping tolerance 10−6. Parameters of state of the
art approaches are set as follows: for LGC we set α = 0.99 following [57], for TK
we set γ = 0.001 following [3], for DBG we set λ1 = λ2 = 1, and for NCSSN we
set (λ = 10−2, α = 1, β = 0.5, γ = 0.5) following [49]. We do not perform cross
validation in our experimental setting due to the large execution time in some
of the benchmark methods here considered. Hence, in all experiments we report
the average classification accuracy out of 10 runs, where for each run we take a
different sample of labeled nodes of same size.

Table 1. Dataset statistics of largest connected components of G+, G− and G±.

Wikipedia RfA Wikipedia Elections Wikipedia Editor

G+ G− G± G+ G− G± G+ G− G±

# nodes 3024 3124 3470 1997 2040 2325 17647 14685 20198

+ nodes 55.2% 42.8% 48.1% 61.3% 47.1% 52.6% 38.5% 33.5% 36.8%

# edges 204035 189343 215013 107650 101598 111466 620174 304498 694436

+ edges 100% 0% 78.2% 100% 0% 77.6% 100% 0% 77.3%

4.1 Datasets

We consider three different real world networks: wikipedia-RfA [36], wikipedia-
Elec [36], and Wikipedia-Editor [56]. Wikipedia-RfA and Wikipedia-Elec are
datasets of editors of Wikipedia that request to become administrators, where
any Wikipedia member may give a supporting, neutral or opposing vote. From
these votes we build a signed network for each dataset, where a positive (resp.
negative) edge indicates a supporting (resp. negative) vote by a user and the
corresponding candidate. The label of each node in these networks is given by
the output of the corresponding request: positive (resp. negative) if the editor is
chosen (resp. rejected) to become an administrator.
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Wikipedia-Editor is extracted from the UMD Wikipedia dataset [32]. The
dataset is composed of vandals and benign editors of Wikipedia. There is a
positive (resp. negative) edge between users if their co-edits belong to the same
(resp. different) categories. Each node is labeled as either benign (positive) or
vandal (negative).

In the following experiments we take the largest connected component of
either G+, G− or G±, depending on the method in turn: for LGC, TK, HF, and
GL(L+

sym) we take the largest connected component of G+, for GL(Q−
sym) we

take the largest connected component of G−, and for the remaining methods we
take the largest connected component of G±.

In Table 1 we show statistics of the corresponding largest connected compo-
nents of each dataset: all datasets present a larger proportion of positive edges
than of negative edges in the corresponding signed network G±, i.e. at least
77.3% of edges are positive in all datasets. Further, the distribution of positive
and negative node labels is balanced, except for Wikipedia-Editor where the
class of positive labels is between 33.5% and 38.5% of nodes.

Table 2. Average classification accuracy with different amounts of labeled nodes. Our
method GL(LSN) and GL(LAM) performs best among transductive methods for signed
graphs, and outperforms all methods in two out of three datasets.

Labeled nodes Wikipedia RfA Wikipedia Elections Wikipedia Editor

1% 5% 10% 15% 1% 5% 10% 15% 1% 5% 10% 15%

LGC(L+) 0.554 0.553 0.553 0.553 0.614 0.614 0.613 0.613 0.786 0.839 0.851 0.857

TK(L+) 0.676 0.697 0.681 0.660 0.734 0.763 0.742 0.723 0.732 0.761 0.779 0.791

HF(L+) 0.557 0.587 0.606 0.619 0.616 0.623 0.637 0.644 0.639 0.848 0.854 0.858

GL(L+
sym) 0.577 0.564 0.570 0.584 0.608 0.622 0.626 0.614 0.819 0.759 0.696 0.667

DGB 0.614 0.681 0.688 0.650 0.648 0.602 0.644 0.609 0.692 0.714 0.721 0.727

NCSSN 0.763 0.756 0.745 0.734 0.697 0.726 0.735 0.776 0.491 0.533 0.559 0.570

GL(Q−
sym) 0.788 0.800 0.804 0.804 0.713 0.765 0.764 0.766 0.739 0.760 0.765 0.770

GL(LSP) 0.753 0.761 0.763 0.765 0.789 0.793 0.797 0.798 0.748 0.774 0.779 0.779

GL(LSN) 0.681 0.752 0.759 0.764 0.806 0.842 0.851 0.852 0.831 0.841 0.846 0.847

GL(LAM) 0.845 0.847 0.848 0.849 0.879 0.885 0.887 0.887 0.787 0.807 0.814 0.817

4.2 Comparison of Classification Performance

In Table 2 we first compare our method GL(S) with competing approaches when
the amount of labeled nodes is fixed to 1%, 5%, 10% and 15%. We can see that
among methods for signed graphs, our approach with GL(LSN) and GL(LAM)
performs best. Moreover, in two out of three datasets our methods based on
signed graphs present the best performance, whereas for the dataset Wikipedia-
Editor the unsigned graph method HF performs best. Yet, we can observe that
the performance gap with our method GL(LSN) is of at most one percent. Over-
all we can see that the classification accuracy is higher when the signed graph is
taken, in comparison to the case where only either positive or negative edges are
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considered. This suggests that merging the information encoded by both positive
and negative edges leads to further improvements.

In the next section we evaluate the effect on classification performance of
different amounts of labeled nodes.

4.3 Effect of the Number of Labeled Nodes

We now study how the classification accuracy of our method is affected by
the amount of labeled nodes. For our method we fix the number of eigenvec-
tors to Ne ∈ {20, 40, 60, 80, 100} for Wikipedia-RfA and Wikipedia-Elec, and
Ne ∈{200, 400, 600, 800, 1000} for Wikipedia-Editor. Given Ne, we evaluate our
method with different proportions of labeled nodes, going from 1% to 25% of
the number of nodes |V |.

The corresponding average classification accuracy is shown in Fig. 1. As
expected, we can observe that the classification accuracy increases with larger
amounts of labeled nodes. Further, we can observe that this effect is more pro-
nounced when larger amounts of eigenvectors Ne are taken, i.e. the smallest clas-
sification accuracy increment is observed when the number of eigenvectors Ne is
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Fig. 1. Average classification accuracy with different amounts of labeled nodes given
a fixed number of eigenvectors. Each row presents classification accuracy of dataset
Wikipedia-RfA, Wikipedia-Elec, and Wikipedia-Editor. Each column presents classifi-
cation accuracy of GL(L+

sym), GL(Q−
sym), GL(LSN ), and GL(LAM ).
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Fig. 2. Average classification accuracy with 5% labeled nodes and different amounts
of eigenvectors. Average accuracy is computed out of 10 runs. Our method based on
Laplacians LSN and LAM consistently presents the best classification performance.

20 for Wikipedia-RfA and Wikipedia-Elec and 100 eigenvectors for Wikipedia-
Editor. Further, we can observe that overall our method based on GL(LSN ) and
GL(LAM ) performs best, suggesting that blending the information coming from
both positive and negative edges is beneficial for the task of node classification.

While our method based on signed Laplacians GL(LSN ) and GL(LAM ) over-
all presents the best performance, we can observe that they present a slightly
difference when it comes to its sensibility to the amount of labeled nodes. In par-
ticular, we can observe how the increment on classification accuracy GL(LSN )
is rather clear, whereas with GL(LAM ) the increment is smaller. Yet, GL(LAM )
systematically presents a better classification accuracy when the amount of
labeled nodes is limited.

4.4 Effect of the Number of Eigenvectors

We now study how the performance of our method is affected by the number
of eigenvectors given through different Laplacians. We fix the amount of labeled
nodes to 5% and consider different amounts of given eigenvectors. For datasets
Wikipedia-RfA and Wikipedia-Elec we set the number of given eigenvectors
Ne in the range Ne = 1, . . . , 100 and for Wikipedia-Editor in the range Ne =
1, 10, . . . , 1000.

The average classification accuracy is shown in Fig. 2. For Wikipedia-RfA
and Wikipedia-Elec we can see that the classification accuracy of our method
based on GL(Q−

sym) outperforms our method based on the Laplacian GL(L+
sym)

by a meaningful margin, suggesting that for the task of node classification neg-
ative edges are more informative than positive edges. Further, we can see that
GL(LAM) consistently shows the highest classification accuracy indicating that
taking into account the information coming from both positive and negative
edges is beneficial for classification performance.

For the case of Wikipedia-Editor the previous distinctions are not clear any-
more. For instance, we can see that the performance of our method based on
the Laplacian GL(L+

sym) outperforms the case with GL(Q−
sym). Moreover, the
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information coming from positive edges presents a more prominent performance,
being competitive to our method based on the Laplacian GL(LSN) when the
number of eigenvectors is relatively small, whereas the case with the arithmetic
mean Laplacian GL(LAM) presents a larger classification accuracy for larger
amounts of eigenvectors. Finally, we can see that in general our method first
presents an improvement in classification accuracy, reaches a maximum and then
decreases with the amount of given eigenvectors.

4.5 Joint Effect of the Number of Eigenvectors and Labeled Nodes

We now study the joint effect of the number of eigenvectors and the amount of
labeled nodes in the classification performance of our method based on GL(LSN).
We let the number of eigenvectors Ne ∈ {10, 20, . . . , 100} for datasets Wikipedia-
RfA and Wikipedia-Elec and Ne ∈ {100, 200, . . . , 1000} for dataset Wikipedia-
Editor. Further, we let the amount of labeled nodes to go from 1% to 25%. The
corresponding results are shown in Fig. 3, where we confirm that the classification
accuracy consistently increases with larger amounts of labeled nodes. Finally,
we can notice that the classification accuracy first increases with the amount
of eigenvectors, it reaches a maximum, and then slightly decreases. To better
appreciate the performance of our method under various settings, we present
the difference between the lowest and largest average classification accuracy in
the bottom table of Fig. 3. We can see that the increments go from 25.13% to
36.54%.
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Dataset Lowest Accuracy Largest Accuracy Increment

wikipedia-Elec 0.6317 0.8625 36.54%

wikipedia-RfA 0.6264 0.8280 32.17%

wikipedia-Editor 0.6785 0.8491 25.13%

Fig. 3. Top: Average classification accuracy of our method with GL(LSN ) under dif-
ferent number of eigenvectors and different amounts of labeled nodes. Bottom: Lowest
and largest average classification accuracy of GL(LSN) per dataset.
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4.6 Joint Effect of Fidelity (ω0) and Interface (ε) Parameters

We now study the effect of fidelity (ω0) and interface (ε) parameters on the classi-
fication accuracy of our method based on GL(LSN ). We fix the number of eigen-
vectors to Ne = 20, and let the amount of labeled nodes to go from 1% to 15%.
Further, we set the fidelity parameter ω0 to take values in {100, 101, . . . , 105}
and the interface parameter ε to take values in {10−5, 10−4, . . . , 104, 105}. The
results are shown in Fig. 4. We present the following observations:

First: we can see that the larger the amount of labeled nodes, the smaller
is the effect of parameters (ω0, ε). In particular, we can observe that when the
amount of labeled nodes is at least 10% of the number of nodes, then the param-
eter effect of (ω0, ε) is small, in the sense that the classification accuracy remains
high.
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Fig. 4. Average classification accuracy of our method based on GL(LSN ) with differ-
ent values of fidelity (ω0) and interface (ε). Columns (from left to right): amount of
labeled nodes: 1%, 5%, 10%, 15%. Rows (from top to bottom): classification accuracy
on datasets Wikipedia-RfA, Wikipedia-Elec, and Wikipedia-Editor.
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Second: we can see that there is a relationship between the fidelity param-
eter ω0 and the interface parameter ε describing a safe region, in the sense
that the classification accuracy is not strongly affected by the lack of large
amounts of labeled nodes. In particular, we can observe that this region cor-
responds to the cases where the interface parameter ε is larger than the fidelity
parameter ω0, i.e. ε(k1) > ω0(k2) where ε(k1) = 10k1 and ω0(k2) = 10k2 , with
k1 ∈ {100, 101, . . . , 105} and k2 ∈ {10−5, 10−4, . . . , 104, 105}. This can be well
observed through a slightly triangular region particularly present for the case
where the amount of labeled nodes is 1% on all datasets, which is depicted in
Fig. 4a, e, and i.

5 Conclusion

We have illustrated that the semi-supervised task of node classification in signed
networks can be performed via a natural extension of diffuse interface methods
by taking into account suitable signed graph Laplacians. We have shown that
different signed Laplacians provide different classification performances under
real world signed networks. In particular, we have observed that negative edges
provide a relevant amount of information, leading to an improvement in classi-
fication performance when compared to the unsigned case. As future work the
task of non-smooth potentials can be considered, together with more diverse
functions of matrices that would yield different kinds of information merging of
both positive and negative edges.
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Abstract. A triangle is an important building block of social networks,
so the study of triangle formation in a network is critical for better under-
standing of the dynamics of such networks. Existing works in this area
mainly focus on triangle counting, or generating synthetic networks by
matching the prevalence of triangles in real-life networks. While these
efforts increase our understanding of triangle’s role in a network, they
have limited practical utility. In this work we undertake an interest-
ing problem relating to triangle formation in a network, which is, to
predict the time by which the third link of a triangle appears in a net-
work. Since the third link completes a triangle, we name this task as
Triangle Completion Time Prediction (TCTP). Solution to TCTP prob-
lem is valuable for real-life link recommendation in social/e-commerce
networks, also it provides vital information for dynamic network analy-
sis and community generation study.

An efficient and robust framework (GraNiTE) is proposed for solving
the TCTP problem. GraNiTE uses neural networks based approach for
learning a representation vector of a triangle completing edge, which is
a concatenation of two representation vectors: first one is learnt from
graphlet based local topology around that edge and the second one is
learnt from time-preserving embedding of the constituting vertices of
that edge. A comparison of the proposed solution with several baseline
methods shows that the mean absolute error (MAE) of the proposed
method is at least one-forth of that of the best baseline method.

Keywords: Time prediction · Embedding method · Edge centric
graphlets

1 Introduction

It is a known fact that the prevalence of triangles in social networks is much
higher than their prevalence in a random network. It is caused predominantly
by the social phenomenon that friends of friends are typically friends themselves.
A large number of triangles in social networks is also due to the “small-world
network” property [23], which suggests that in an evolving social network, new
links are formed between nodes that have short distance between themselves.
Leskovec et al. [17] have found that depending on the kinds of networks, 30 to
c© Springer Nature Switzerland AG 2020
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60 percent of new links in a network are created between vertices which are only
two-hops apart, i.e., each of these links is the third edge of a new triangle in the
network. High prevalence of triangles is also observed in directed networks, such
as, trust networks, and follow-follower networks—social balance theory [1] can
be attributed for such as observation.

Fig. 1. Simple illustration of the utility of TCTP problem for
providing improved friend recommendation. In this figure,
user A is associated with 4 triangles, whose predicted com-
pletion times are noted as label on the triangles’ final edges
(red dotted lines). The link recommendation order for A at
a time T , based on the earliest triangle completion time, is
shown in the table on the right. (Color figure online)

There exist a num-
ber of works which
study triangle statis-
tics and their distri-
bution in social net-
works. The majority
among these works
are focused on tri-
angle counting; for a
list of such works, see
the survey [14] and
the references therein.
A few other works
investigate how dif-
ferent network mod-
els perform in gen-
erating synthetic net-
works whose cluster-
ing coefficients match
with those of real-life social networks [20]. Huang et al. [16] have analyzed the
triad closure patterns and provided a graphical model to predict triad closing
operation. Durak et al. [11] have studied the variance of degree values among the
nodes forming a triangle in networks arising from different domains. These works
are useful for discovering the local network context in which triangles appear,
but they do not tell us whether local context can be used to predict when a tri-
angle will appear. In this work, we fill this void by building a prediction model
which uses local context of a network to predict when a triangle will appear?
One of the similar time prediction problem in directed networks i.e. reciprocal
link time prediction (RLTP), is studied and solved by Dave et al. [5,6], where
they used existing survival analysis models with socially motivated topological
features. However, never designed features that incorporate time information.
Also the proposed model utilizes the ordering and difference between the edge
creation times in an innovative way, which significantly boost the accuracy of
triangle completion time prediction.

The knowledge of triangle completion time is practically useful. For instance,
given that the majority of new links in a network complete a triangle, the
knowledge—whether a link will complete a triangle in a short time—can be
used to improve the performance of a link prediction model [15]. Specifically,
by utilizing this knowledge, a link prediction model can assign a different prior
probability of link formation when such links would complete a triangle in near
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future. Besides, link creation time is more informative than a value denoting the
chance of link formation. Say, an online social network platform wants to recom-
mend a friend; it is much better for the platform if it recommends a member who
is likely to accept the friend request in a day or two than recommending another
who may accept the friend request after a week or few weeks (as illustrated in
the Fig. 1). In the e-commerce domain, a common product recommendation cri-
terion is recommending an associated item (say, item2) of an item (say, item1)
that a user u has already purchased. Considering a user-item network, in which
item1−item2 is a triangle’s first edge, item1−u is the triangle’s second edge, the
TCTP task can be used to determine the best time interval for recommending
the user u the item2, whose purchase will complete the u− item1 − item2 trian-
gle. Given the high prevalence of triangle in real-life networks, the knowledge of
triangle completion time can also improve the solution of various other network
tasks that use triangles, such as, community structure generation [2], designing
network generation models [17], and generating link recommendation [9].

In this work, we propose a novel framework called GraNiTE1 for solving the
T riangle Completion T ime Prediction (TCTP) task. GraNiTE is a network
embedding based model, which first obtains latent representation vectors for the
triangle completing edges; the vectors are then fed into a traditional regression
model for predicting the time for the completion of a triangle. The main novelty
of GraNiTE is the design of an edge representation vector learning model, which
embeds edges with similar triangle completion time in close proximity in the
latent space. Obtaining such embedding is a difficult task because the creation
time of an edge depends on both local neighborhood around the edge and the
time of the past activities of incident nodes. So, existing network embedding
models [7,8,12] which utilize the neighborhood context of a node for learning
its representation vector cannot solve the TCTP problem accurately. Likewise,
existing network embedding models for dynamic networks [3,18,25,26] are also
ineffective for predicting the triangle completion time, because such embedding
models dynamically encode network growth patterns, not the edge creation time.

To achieve the desired embedding, GraNiTE develops a novel supervised app-
roach which uses local graphlet frequencies and the edge creation time. The local
graphlet frequencies around an edge is used to obtain a part of the embedding
vector, which yields a time-ordering embedding. Also, the edge creation time of
a pair of edges is used for learning the remaining part of the embedding vec-
tor, which yields a time-preserving embedding. Combination of these two brings
edges with similar triangle completion time in close proximity of each other in
the embedding space. Both the vectors are learned by using a supervised deep
learning setup. Through experiments2 on five real-world datasets, we show that
GraNiTE reduces the mean absolute error (MAE) to one-forth of the MAE value
of the best competing method while solving the TCTP problem.

1 GraNiTE is an anagram of the bold letters in Graphlet and Node based Time-
conserving Embedding.

2 Code and data for the experiments are available at https://github.com/Vachik-
Dave/GraNiTE solving triangle completion time prediction.

https://github.com/Vachik-Dave/GraNiTE_solving_triangle_completion_time_prediction
https://github.com/Vachik-Dave/GraNiTE_solving_triangle_completion_time_prediction
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The rest of the paper is organized as follows. In Sect. 2, we define the TCTP
problem formally. In Sect. 3, we show some interesting observation relating to
triangle completion time on five real-world datasets. The GraNiTE framework
is discussed in Sect. 4. In Sect. 5, we present experimental results which validate
the effectiveness of our model over a collection of baseline models. Section 6
concludes the work.

2 Problem Statement

2.1 Notations

Throughout this paper, scalars are denoted by lowercase letters (e.g., n). Vectors
are represented by boldface lowercase letters (e.g., x). Bold uppercase letters
(e.g., X) denote matrices, the ith row of a matrix X is denoted as xi and jth

element of the vector xi is represented as xj
i . ‖X‖F is the Frobenius norm of

matrix X. Calligraphic uppercase letter (e.g., X ) is used to denote a set and |X |
is used to denote the cardinality of the set X .

2.2 Problem Formulation

Given, a time-stamped network G = (V, E , T ), where V is a set of vertices, E
is a set of edges and T is a set of time-stamps. There also exists a mapping
function τ : E → T , which maps each edge e = (u, v) ∈ E to a time-stamp value,
τ(e) = tuv ∈ T denoting the creation time of the edge e. A triangle formed
by the vertices a, b, c ∈ V and the edges (a, b), (a, c), (b, c) ∈ E is represented as
Δabc. If exactly one of the three edges of a triangle is missing, we call it an open
triple. Say, among the three edges above, (a, b) is missing, then the open triple
is denoted as Λc

ab. We use Δ for the set of all triangles in a graph.
Given an open triple Λw

uv, the objective of TCTP is to predict the time-
stamp (tuv) of the missing edge (u, v), whose presence would have formed the
triangle Δuvw. But, predicting the future edge creation time from training data
is difficult as the time values of training data are from the past. So we make
the prediction variable an invariant of the absolute time value by considering
the interval time from a reference time value for each triangle, where reference
time for a triangle is the time-stamp of the second edge in creation time order.
For example, for the open triple Λw

uv the reference time is the latter of the
time-stamps twu, and twv. Thus the interval time (target variable) that we want
to predict is the time difference between tuv and the reference time, which is
max(twu, twv). The interval time is denoted by Iuvw; mathematically, Iuvw =
tuv − max(twu, twv). Then the predicted time for the missing edge creation is
tuv = Iuvw + max(twu, twv).

Predicting the interval time from a triangle specific reference time incurs a
problem, when a single edge completes multiple (say k) open triples, we call such
an edge a k-triangle edge. For such a k-triangle edge, ambiguity arises regarding
the choice of triples (out of k triples), whose second edge should be used for
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the reference time—for each of the reference time, a different prediction can be
obtained. We solve this problem by using a weighted aggregation approach, a
detailed discussion of this is available in Sect. 4.4 “Interval time prediction”.

3 Dataset Study

The problem of predicting triangle completion time has not been addressed
in any earlier works, so before embarking on the discussion of our prediction
method, we like to present some observations on the triangle completion time in
five real-world datasets.

Table 1. Statistics of datasets (* T in years for
DBLP)

Datasets |V| |E| |T | (days) |Δ|
BitcoinOTC 5, 881 35, 592 1, 903 33, 493

Facebook 61, 096 614, 797 869 1, 756, 259

Epinion 131, 580 711, 210 944 4, 910, 076

DBLP 1, 240, 921 5, 068, 544 23∗ 11, 552, 002

Digg-friend 279, 374 1, 546, 540 1, 432 14, 224, 759

Among these datasets, Bit-
coinOTC3 is a trust network
of Bitcoin users, Facebook4

and Digg-friend (See footnote
4) are online friendship net-
works, Epinion (See footnote
4) is an online trust network
and DBLP (See footnote 4)
is a co-authorship network.
Overall information, such as the number of vertices (|V|), edges (|E|), time-
stamps (|T |) and triangles (|Δ|) for these datasets are provided in Table 1. Note
that, we pre-process these graphs to remove duplicate edges and edges without
valid time-stamps, which leads to removal of disconnected nodes.

3.1 Study of Triangle Generation Rate

As network grows over time, so do the number of edges and the number of
triangles. In this study our objective is to determine whether there is a temporal
correlation between the growth of edges and the growth of triangles in a network.
To observe this behavior, we plot the number of new edges (green line) and the
number of new triangles (blue line) (y-axis) over different time values (x-axis);
Fig. 2 depicts five plots, one for each dataset. The ratio of newly created triangle
count to newly created link count is also shown (red line).

Trend in the plots is similar; as time passes, the number of triangles and the
number of links created at each time stamp steadily increase (except Epinion
dataset), which represents the fact that the network is growing. Interestingly, tri-
angle to link ratio also increases with time. This happens because as a network
gets more dense, the probability that a new edge will complete one or more
triangles increases. This trend is more pronounced in Digg-friend and DBLP
networks. Especially, in Digg-friend network, each link contributes around 20
triangles during the last few time-stamps. On the other hand, for BitcoinOTC,
Facebook and Epinion datasets, the triangle to link ratio increases slowly.

3 http://snap.stanford.edu/data/.
4 http://konect.uni-koblenz.de/.

http://snap.stanford.edu/data/
http://konect.uni-koblenz.de/
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Fig. 2. Frequency of new edges (green line) and new triangles (blue line) created over
time. Ratio of newly created triangle to the newly created link frequency is shown in
red line. Y-axis labels on the left show frequency of triangles and link, and the y-axis
labels on right show the triangle to link ratio value. (Color figure online)

Fig. 3. Plots of cumulative distribution function (CDF) for interval times (Color figure
online)

For Facebook dataset, after slow and steady increase, we observe a sudden hike
in all three values around day 570. After investigation, we discovered that, it is
a consequence of a newly introduced recommendation feature by “Facebook” in
2008. This feature, exploits common friends information which leads to create
many links completing multiple open triples.

3.2 Interval Time Analysis

For solving TCTP, we predict interval time between the triangle completing edge
and the second edge in time order. In this study, we investigate the distribution
of the interval time by plotting the cumulative distribution function (CDF) of the
interval time for all the datasets (blue lines in the plots in Fig. 3). For comparison,
these plots also show the interval time between triangle completing edge and the
first edge (red lines).
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From Fig. 3, we observe that for all real-world datasets the interval time
between the third link and the second link creation follows a distribution from
exponential family; which means most of the third links are created very soon
after the generation of the second link. This observation agrees with the social
balance theory [1]. As per this theory, triangles and individual links are bal-
anced structures while an open triple is an imbalanced structure. All real-world
networks (such as social networks) try to create a balanced structure by closing
an open triple as soon as possible; which is validated in Fig. 3 as the red curve
quickly reaches to 1.0 compared to the ascent of the blue curve.

Fig. 4. Proposed GraNiTE and local graphlets

4 GraNiTE Framework

GraNiTE framework first obtains a latent representation vector for an edge
such that edges with similar interval time have latent vectors which are in close
proximity. Such a vector for an edge is learned in a supervised fashion via two
kinds of edge embeddings: first, a graphlet-based edge embedding, which embeds
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the local graphlets into embedding space such that their embedding vectors
capture the information of edge ordering based on the interval time. So, we call
the edge representation obtained from the graphlet-based embedding method
time-ordering embedding. Second, a node-based edge embedding that learns node
embedding such that proximity of a pair of nodes preserves the interval time of
the triangle completing edge. We call the node-based edge embedding time-
preserving embedding. Concatenation of these two vectors gives the final edge
representation vector, which is used to predict a unique creation time for a given
edge.

The overall architecture of GraNiTE is shown in Fig. 4a. Here nodes u, v
and local graphlet frequency vector of edge (u, v) are inputs to the GraNiTE.
E and E′ are graphlet embedding and node embedding matrices, respectively.
For an edge (u, v), corresponding time-ordering embedding euv ∈ IRd1 and time-
preserving embedding e′

uv ∈ IRd2 are concatenated to generate final feature
vector fuv = euv||e′

uv ∈ IRd(=d1+d2). This feature vector fuv is fed to a regression
model that predicts interval time for (u, v). Lastly, we process the regression
model output to return a unique interval time for (u, v), in case this edge com-
pletes multiple triangles. In the following subsections, we describe graphlet-based
time-ordering embedding and node-based time-preserving embedding.

4.1 Graphlet-Based Time-Ordering Embedding

In a real world network, local neighborhood of a vertex is highly influential for
a new link created at that vertex. In existing works, local neighborhood of a
vertex is captured through a collection of random walks originating from that
vertex [19], or by first-level and second level neighbors of that node [21]. For
finding local neighborhood around an edge we can aggregate the local neighbor-
hood of its incident vertices. A better way to capture edge neighborhood is to use
local graphlets (up to a given size), which provide comprehensive information of
local neighborhood of an edge [4]. For an edge (u, v), a graphical structure that
includes nodes u, v and a subset of direct neighbors of u and/or v is called a
local graphlet for the edge (u, v). Then, a vector containing the frequencies of
(u, v)’s local graphlets is a quantitative measure of the local neighborhood of this
edge. In Fig. 4b, we show all local graphlets of an edge (u, v) up to size-5, which
we use in our time-ordering embedding task. To calculate frequencies of these
local graphlets, we use E-CLoG algorithm [4], which is very fast and paralleliz-
able algorithm because graphlet counting process is independent for each edge.
After counting frequencies of all 44 graphlets5, we generate normalized graphlet
frequency (NGF), which is an input to our supervised embedding model.

5 Note that, by strict definition of local graphlet, g3 and g7 are not local, but we
compute their frequencies anyway because these are popular 4-size graphlets.
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Fig. 5. Learning of the graphlet embed-
ding matrix using three data instances.

Graphlet frequencies mimic edge
features which are highly informative
to capture the local neighborhood of
an edge. For instance, the frequency
of g1 is the common neighbor count
between u and v, frequency of g5 is
the number of 2-length paths, and fre-
quency of g43 is the number of five-
size cliques involving both u and v.
These features can be used for predict-
ing link probability between the ver-
tex pair u and v. However, these fea-
tures are not much useful when pre-
dicting the interval time of an edge.
So, we learn embedding vector for each
of the local graphlets, such that edge
representation built from these vectors
captures the ordering among the edges
based on their interval times, so that they are effective for solving the TCTP
problem. In the following subsection graphlet embedding model is discussed.

Learning Model. The embedding model has three layers: graphlet frequency
layer, graphlet embedding layer and output layer. As shown in the Fig. 5, graphlet
frequency layer takes input, graphlet embedding layer calculates edge embedding
for the given set of edges using graphlet embedding matrix and graphlet frequen-
cies, and the output layer calculates our loss function for the embedding, which
we optimize by using adaptive gradient descent. The loss function implements
the time-ordering objective. Given, three triangle completing edges i, j and k
and their interval times, yi, yj , and yk, such that yi ≤ yj ≤ yk, our loss function
enforces that the distance between the edge representation vectors of i and j is
smaller than the distance between the edge representation vectors of i and k.
Thus, the edges which have similar interval time are being brought in a close
proximity in the embedding space.

Training data for this learning model is the normalized graphlet frequencies
(NGF) of all training instances (triangle completing edges with known interval
values), which are represented as G ∈ IRm×gn , where m is the number of training
instances and gn is equal to 44 representing different types of local graphlets.
Each row of matrix G is an NGF for a single training instance i.e. if ith element
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corresponds to the edge (u, v), gi (= guv) is its normalized graphlet frequency.
The target values (interval time) of m training instances are represented as vec-
tor y ∈ IRm. Now, the layers of the embedding model (Fig. 5) are explained
below:

Graphlet Frequency Layer: In input layer we feed triples of three sampled data
instances i, j and k, such that yi ≤ yj ≤ yk with their NGF i.e. gi gj , and gk.

Graphlet Embedding Layer: This model learns embedding vectors for each local
graphlets, represented with the embedding matrix E ∈ IRgn×d1 , where d1 is the
(user-defined) embedding dimension. For any data instance i in training data G,
corresponding time-ordering edge representation ei ∈ IRd1 is obtained by vector
to matrix multiplication i.e. ei = gT

i ·E. In the embedding layer, for input data
instances i, j and k, we calculate three time-ordering embedding vectors ei, ej

and ek using this vector-matrix multiplication.

Output Layer: This layer implements our loss function. For this, first we calculate
the score of each edge representation using vector addition i.e. for ei the score is
si = Σd1

p=1 ep
i . After that, we pass the score difference between instances i and j

(diffij) and the score difference between i and k (diffik) to an activation function.
The activation function in this layer is ReLU, whose output we minimize. The
objective function after regularizing the graphlet embedding matrix is as below:

Og = min
E

∑

∀(i,j,k)∈Tijk

ReLU(diffij − diffik) + λg · ‖E‖2
F (1)

where, diffij = |si − sj |, λg is a regularization constant and Tijk is a training
batch of three qualified edge instances from training data.

4.2 Time-Preserving Node Embedding

This embedding method learns a set of node representation vectors such that
the interval time of an edge is proportional to the l1 norm of incident node vec-
tors. If an edge has higher interval time, the incident node vectors are pushed
farther, if the edge have short interval time, the incident node vectors are close
to each other in latent space. Thus, by taking the l1 norm of node-pairs, we can
obtain an embedding vector of an edge which is interval time-preserving and is
useful for solving the TCTP problem. As depicted in the Fig. 6, this embedding
method is composed of three layers: input layer, node & edge embedding layer,
and time preserving output layer. Functionality of each layer is discussed below:
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Fig. 6. Learning of the node embedding
matrix using two edges (node-pairs).

Input Layer : For this embedding
method, input includes two edges,
say (u, v) and (x, y) with their
interval times, yuv and yxy. The
selection of these two edges is
based on the criterion that yuv >
yxy.

Node & Edge Embedding Layer:
In this layer, we learn embedding
matrix E′ ∈ IR|V|×d2 , where d2

is (user-defined) embedding dimen-
sion. From the embedding matrix
E′, we find node embedding for a
set of 4 nodes incident to the edges
(u, v) and (x, y). For any node u,
node embedding vector is e′

u ∈ IRd2

i.e. uth element of matrix E′. From
the node embedding vectors e′

u and e′
v, we calculate corresponding time-

preserving edge embedding vector for (u, v). The time-preserving edge embed-
ding is defined as l1-distance between the node embedding vectors, i.e. e′

uv =
|e′

u − e′
v| ∈ IRd2 .

Time-Preserving Output Layer: The objective of this embedding is to preserve
the interval time information into embedding matrix, such that time-preserving
edge vectors are proportional to their interval time. For that, we calculate an edge
score using l2-norm of an edge embedding, i.e. (u, v) edge score s′

uv = ‖e′
uv‖2.

We design the loss function such that edge score difference s′
diff = s′

uv − s′
xy

between edges (u, v) and (x, y) is proportional to their interval time difference
yuv − yxy. The objective function of the embedding is

On = min
E′

∑

∀(u,v),(x,y)∈Tuv,xy

ReLU(ydiff − s′
diff) + λn · ‖E′‖2

F (2)

where, ydiff = m×(yuv −yxy), λn is a regularization constant, Tuv,xy is a training
batch of edge pairs, and m is a scale factor.

4.3 Model Inference and Optimization

We use mini-batch adaptive gradient decent (AdaGrad) to optimize the objective
functions (Eqs. 1 and 2) of both embedding methods. Mini-batch AdaGrad is
a modified mini-batch gradient decent approach, where learning rate of each
dimension is different based on gradient values of all previous iterations [10]. This
independent adaption of learning rate for each dimension is especially well suited
for graphlet embedding method as graphlet frequency vector is mostly a sparse
vector which generates sparse edge embedding vectors. For time-preserving node
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embedding, independent learning rate helps to learn the embedding vectors more
efficiently such that two node can maintain its proximity in embedding space
proportional to interval time.

For mini-batch AdaGrad, first we generate training batch, say T , from train-
ing instances. For each mini-batch, we uniformly choose training instances that
satisfy the desired constrains: for graphlet embedding, a training instance con-
sists of three edges i, j and k, for which yi ≤ yj ≤ yk and for time-preserving node
embedding, a training instance is an edge pair, i = (u, v) and j = (x, y), such
that, yi ≤ yj . During an iteration, AdaGrad updates each embedding vector, say
e, corresponding to all samples from training batch using following equation:

et+1
i = et

i − αt
i × ∂O

∂et
i

(3)

where, et
i is an ith element of vector e at iteration t. Here we can see that at each

iteration t, AdaGrad updates embedding vectors using different learning rates
αt

i for each dimension.
For time complexity analysis, given a training batch T , the total cost of cal-

culating gradients of objective functions (Og and On) depends on the dimension
of embedding vector i.e. Θ(di), di ∈ {d1, d2}. Similarly, calculating learning rate
and updating embedding vector also costs Θ(di). In graphlet embedding, we
need to perform vector to matrix multiplication, which costs Θ(44× d1). Hence,
total cost of the both embedding methods is Θ(44 × d1 + d2) = Θ(d1 + d2). As
time complexity is linear to embedding dimensions, both embedding methods
are very fast in learning embedding vectors even for large networks.

4.4 Interval Time Prediction

We learn both time-ordering graphlet embedding matrix and time-preserving
node embedding matrix from training instances. We generate edge representa-
tion for test instances from these embedding matrices, as shown in Fig. 4a. This
edge representation is fed to a traditional regression model (we have used Sup-
port Vector Regression) which predicts an interval time. However, predicting
the interval time of a k-triangle link poses a challenge, as any regression model
predicts multiple (k) creation times for such an edge. The simplest approach to
overcome this issue is to assign the mean of k predictions as the final predicted
value for the k-triangle link. But, as we know mean is highly sensitive to out-
liers especially for the small number of samples (mostly k ∈ [2, 20]), so using a
mean value does not yield the best result. From the discussion in Sect. 3.2, we
know that triangle interval time follows exponential distribution. Hence we use
exponential decay W (Iuvw) = w0 · exp(−λ · Iuvw) as a weight of each prediction,
where λ is a decay constant and w0 is an initial value. We calculate weighted
mean which serves as a final prediction value for a k-triangle link.
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Fig. 7. (u, v) as
4-triangle link

In Fig. 7, we show a toy graph with creation time
of each link and (u, v) is a 4-triangle link. Let’s assume
our model predicts 4 interval times (40, 3, 1, 1) corre-
sponding to four open triples (Λa

uv, Λb
uv, Λc

uv, Λd
uv) respec-

tively. Hence, we have 4 predicted creation times i.e. (5 +
40 = 45, 51, 50, 51) for link (u, v). So, the final predic-
tion for the edge (u, v) is calculated by using the equation
below:

t̂uv = W (40)×45+W (3)×51+W (1)×50+W (1)×51
W (40)+W (3)+W (1)+W (1)

5 Experiments and Results

We conduct experiments to show the superior performance of the proposed
GraNiTE in solving the TCTP problem. No existing works solve the TCTP
problem, so we build baseline methods from two approaches described as below:

The first approach uses features generated directly from the network topology.

1. Topo. Feat. (Topological features) This method uses traditional topolog-
ical features such as common neighbor count, Jaccard coefficient, prefer-
ential attachment, adamic-adar, Katz measure with five different β values
{0.1, 0.05, 0.01, 0.005, 0.001}. These features are well-known for solving the
link prediction task [15]. We generate topological features for an edge (last
edge of triangle) from the snapshot of the network when the second link of the
triangle appears; triangle interval time is also computed from that temporal
snapshot.

2. Graphlet Feat. In this method we use local graphlet frequencies of an edge
(last edge of triangle) as a feature set for the time prediction task. These
graphlet frequencies are also calculated from the temporal snapshot of the
network as mentioned previously in Topo. Feat.

The second approach uses well known network embedding approaches.

3. LINE [21]: LINE embeds the network into a latent space by leveraging both
first-order and second-order proximity of each node.

4. Node2vec [12]: Node2vec utilizes Skip-Gram based language model to ana-
lyze the truncated biased random walks on the graph.

5. GraphSAGE [13]: It presents an inductive representation learning frame-
work that learns a function and generates embeddings by sampling and aggre-
gating features from a node’s local neighborhood.

6. AROPE [24]: AROPE is a matrix decomposition based embedding approach,
which preserves different higher-order proximity for different input graphs and
it provides global optimal solution for a given order.

7. VERSE [22]: It is a versatile node embedding method that preserves specific
node similarity measure(s) and also captures global structural information.
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5.1 Experiment Settings

For this experiment, we divide the time-stamps of each dataset into three chrono-
logically ordered partitions with the assumption that initial partition is network
growing period, which spans from the beginning up to 50% of total time-stamps.
The second partition, which spans from 50% to 70% of the total time-stamps, is
the train period, and finally, from 70% till the end is the test period. We select
the edges completing triangles during the train period as training instances and
the edges completing triangles during the test period as test instances. We also
retain 5% of test instances for parameter tuning. Note that, this experiment
setting is not suitable for dynamic network embedding methods, so we cannot
compare with them.

There are a few user defined parameters in the proposed GraNiTE. For both
embedding approaches, we fix the embedding dimensions as 50, i.e. d1 = d2 = 50.
Hence, final embedding dimension is d = 100 as discussed in Sect. 4 “GraNiTE
Framework”. Similarly, regularization rates for both embedding methods are set
as λg = λn = 1e − 5. Initial learning rate for AdaGrad optimization is set as
0.1. The training batch size is 100 and the number of epochs is set to 50. For
time preserving node embedding, the scale factor is set to 0.01 i.e. m = 0.01.
Additionally, for predicting time of k-triangle links, decay constant (λ) and initial
weight (w0) are set to 1.0 for calculating exponential decay weights. Lastly, we
use support vector regression (SVR) with linear kernel and penalty C = 1.0
as a regression method for GraNiTE and for all competing methods. For fair
comparison, SVR is identically configured for all methods.

For all competing embedding methods the embedding dimensions are set as
100, same size of our feature vector (d = 100). We grid search the different tuning
parameters to find the best performance of these embedding methods. We select
learning rate from set {0.0001, 0.001, 0.01, 0.1} for all methods. For Node2vec, we
select walk bias factors p and q from {0.1, 0.5, 1.0} and number of walks per node
is selected from {5, 10, 15, 20}. For AROPE, the order of proximity is selected
from set {1, 2, 3, 4, 5}. For VERSE, we select personalized pagerank parameter
α from set {0.1, 0.5, 0.9}.

5.2 Comparison Results

We evaluate the models using mean absolute error (MAE) over two groups of
interval times: 1-month (≤ 30 days) and 2-months (31 to 60 days) for all datasets,
except DBLP, for which the two intervals are 0–2 years and 3–7 years. Instances
that have higher than 60 days of interval time are outlier instances, hence they
are excluded. Besides, for real-life social network applications, predicting an
interval value beyond two months is probably not very interesting. Within 60
days, we show results in two groups: 1-month, and 2-month, because some of the
competing methods work well for one group, but not the other.

Comparison results for all five datasets are shown in Table 2, where each
column represents a prediction method. Rows are grouped into five, one for each
dataset; each dataset group has three rows: small interval (≤ 30d), large interval
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Table 2. Comparison experiment results using MAE for interval times in 1st (≤ 30
days) and 2nd-month (31–60 days). [for DBLP dataset: 0–2 years and 3–7 years]. For
GraNiTE, % improvement over the best competing method (underlined) is shown in
brackets.

Dataset Topo. Feat. Graphlet Feat. LINE Node2vec GraphSAGEAROPEVERSEGraNiTE

Bitcoin-

OTC

≤ 30d 17.22 17.7 8.86 26.68 11.99 28.62 25.81 9.08 (−2.48%)

31–60d 21.92 18.29 34.03 16.55 28.84 21.59 20.56 19.95 (−20.54%)

Avg. 19.57 17.995 21.445 21.615 20.415 25.105 23.185 14.515 (19.34%)

Facebook ≤ 30d 7.78 7.93 8.36 7.95 8.37 7.93 7.98 5.64 (27.51%)

31–60d 32.04 30.9 31.98 32.87 31.96 32.55 32.73 13.65 (55.83%)

Avg. 19.91 19.415 20.17 20.41 20.165 20.24 20.355 9.645 (50.32%)

Epinion ≤ 30d 15.88 14.31 12.52 17.09 13.79 14.3 19.85 3.28 (73.8%)

31–60d 22.02 24.82 25.18 20.17 23.45 23.22 17.9 5.36 (70.06%)

Avg. 18.95 19.565 18.85 18.63 18.62 18.76 18.875 4.32 (76.8%)

DBLP ≤ 30d 0.526 0.525 0.527 0.527 0.526 0.526 0.5267 0.449 (14.48%)

31–60d 3.623 3.618 3.624 3.623 3.623 3.624 3.623 0.969 (73.22%)

Avg. 2.0745 2.0715 2.0755 2.075 2.0745 2.075 2.0748 0.709 (65.77%)

Digg- ≤ 30d 6.75 6.25 6.03 7.73 5.95 7.37 6.95 2.13 (64.2%)

friends 31–60d 41.06 37.34 38.77 32.66 38.85 34.34 34.75 9.76 (70.12%)

Avg. 23.905 21.795 22.4 20.195 22.4 20.855 20.85 5.945 (70.56%)

(30–60d) and Average (Avg.) over these two intervals. Results of our proposed
method (GraNiTE) is shown in the last column; besides MAE, in this column
we also show the percentage of improvement of GraNiTE over the best of the
competing methods(underlined). The best results in each row is shown in bold
font.

We can observe from the table that the proposed GraNiTE performs the
best for all the datasets considering the average. The improvements over the
competing methods, at a minimum, 19.34% for the BitcoinOTC dataset, and,
to the maximum, 76.8% for the Epinion dataset. If we consider short and long
intervals (≤ 30d and 30–60d) independently, GraNiTE performs the best in
all datasets, except BitcoinOTC dataset. However, notice that for BitcoinOTC
dataset, although Node2vec performs the best for large interval times, for small
interval times its performance is extremely poor (almost thrice MAE compared
to GraNiTE). Similarly, LINE performs the best for small interval times and
incurs huge error for large interval times. Only GraNiTE shows consistently
good results for both small and large interval ranges over all the datasets.

Another observation is that, for all datasets, results of large interval times
(31–60 days) is worse than the results of small interval time (≤ 30 days). For
competing methods, these values are sometimes very poor that it is meaningless
for practical use. For instance, for Epinion, each of the competing methods have
an MAE around 20 or more for large interval, whereas GraNiTE has an MAE
value of 5.36 only. Likewise, for Digg-friends, each of the competing methods have
an MAE more than 32, but GraNiTE’s average MAE is merely 5.95. Overall,
for both intervals over all the datasets, GraNiTEshows significantly (t-test with
p-value � 0.01) lower MAE than the second best method. The main reason
for poor performance of competing methods is that, those methods can capture
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the local and/or global structural information of nodes/edges but fail to capture
temporal information. While for GraNiTE, the graphlet embedding method is
able to translate the patterns of local neighborhood into time-ordering edge
vector; at the same time, time preserving node embedding method is able to
capture the interval time information into node embedding vector. Both of the
features help to enhance the performance of GraNiTE.

6 Conclusion

In this paper, we propose a novel problem of triangle completion time prediction
(TCTP) and provide an effective and robust framework GraNiTE to solve this
problem by using graphlet based time-ordering embedding and time-preserving
node embedding methods. Through experiments on five real-world datasets, we
show the superiority of our proposed method compared to baseline methods
which use known graph topological features, graphlet frequency features or pop-
ular and state-of-art network embedding approaches. To the best of our knowl-
edge, we are the first to formulate the TCTP problem and to propose a novel
framework for solving this problem.
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Abstract. Confounding bias, missing data, and selection bias are three
common obstacles to valid causal inference in the data sciences. Covariate
adjustment is the most pervasive technique for recovering casual effects
from confounding bias. In this paper we introduce a covariate adjust-
ment formulation for controlling confounding bias in the presence of
missing-not-at-random data and develop a necessary and sufficient con-
dition for recovering causal effects using the adjustment. We also intro-
duce an adjustment formulation for controlling both confounding and
selection biases in the presence of missing data and develop a necessary
and sufficient condition for valid adjustment. Furthermore, we present
an algorithm that lists all valid adjustment sets and an algorithm that
finds a valid adjustment set containing the minimum number of vari-
ables, which are useful for researchers interested in selecting adjustment
sets with desired properties.

Keywords: Missing data · Missing not at random · Causal effect ·
Adjustment · Selection bias

1 Introduction

Discovering causal relationships from observational data has been an important
task in empirical sciences, for example, assessing the effect of a drug on curing
diabetes, a fertilizer on growing agricultural products, and an advertisement on
the success of a political party. One major challenge to estimating the effect
of a treatment on an outcome from observational data is the existence of con-
founding bias - i.e., the lack of control on the effect of spurious variables on the
outcome. This issue is formally addressed as the identifiability problem in [13],
which concerns with computing the effect of a set of treatment variables (X) on
a set of outcome variables (Y), denoted by P (y | do(x)), given observed proba-
bility distribution P (V) and a causal graph G, where P (V) corresponds to the
observational data and G is a directed acyclic graph (DAG) representing qualita-
tive causal relationship assumptions between variables in the domain. The effect
P (y | do(x)) may not be equal to its probabilistic counterpart P (y | x) due
to the existence of variables, called covariates, that affect both the treatments
c© Springer Nature Switzerland AG 2020
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and outcomes, and the difference is known as confounding bias. For example,
Fig. 1(a) shows a causal graph where variable Z is a covariate for estimating the
effect of X on Y .

Confounding bias problem has been studied extensively in the field. In prin-
ciple the identifiability problem can be solved using a set of causal inference rules
called do-calculus [12], and complete identification algorithms have been devel-
oped [5,19,23]. In practice, however, the most widely used method for control-
ling the confounding bias is the “adjustment formula” P (y | do(x)) =

∑
z P (y |

x,Z = z)P (Z = z), which dictates that the causal effect P (y | do(x)) can be
computed by controlling for a set of covariates Z. Pearl provided a back-door
criterion under which a set Z makes the adjustment formula hold [12].

X Y

Z

(a) Confounding bias

X

Y

RX

(b) A m-graph encoding
MNAR data

X Y

Z

RX

(c) Confounding bias and
MNAR

Fig. 1. Examples for confounding bias and MNAR

Another major challenge to valid causal inference is the missing data problem,
which occurs when some variable values are missing from observed data. Missing
data is a common problem in empirical sciences. Indeed there is a large literature
on dealing with missing data in diverse disciplines including statistics, economics,
social sciences, and machine learning. To analyze data with missing values, it is
imperative to understand the mechanisms that lead to missing data. The seminal
work by Rubin [15] classifies missing data mechanisms into three categories:
missing completely at random (MCAR), missing at random (MAR), and missing
not at random (MNAR). Roughly speaking, the mechanism is MCAR if whether
variable values are missing is completely independent of the values of variables
in the data set; the mechanism is MAR when missingness is independent of the
missing values given the observed values; and the mechanism is MNAR if it is
neither MCAR nor MAR. For example, assume that in a study of the effect of
family income (FI) and parent’s education level (PE) on the quality of child’s
education (CE), some respondents chose not to reveal their child’s education
quality for various reasons. Figure 2 shows causal graphs representing the three
missing data mechanisms where RCE is an indicator variable such that RCE = 0
if the CE value is missing and RCE = 1 otherwise. In these graphs solid circles
represent always-observed variables and hollow circles represent variables that
could have missing values. The model in Fig. 2(a) is MCAR, e.g., respondents
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decide to reveal the child’s education quality based on coin-flips. The model in
Fig. 2(b) is MAR, where respondents with higher family income have a higher
chance of revealing the child’s education quality; however whether the CE values
are missing is independent of the actual values of CE given the FI value. The
model in Fig. 2(c) is MNAR, where respondents with higher child’s education
quality have a higher chance of revealing it, i.e., whether the CE values are
missing depends on the actual values of CE.

FI

CE

PE

RCE

(a) MCAR

FI

CE

PE

RCE

(b) MAR

FI

CE

PE

RCE

(c) MNAR

Fig. 2. Three types of missing data mechanisms

It is known that when the data is MAR, the underlying distribution is
estimable from observed data with missing values. Then a causal effect is
estimable if it is identifiable from the observed distribution [10]. However, if
the data is MNAR, whether a probabilistic distribution or a causal effect is
estimable from missing data depends closely on both the query and the exact
missing data mechanisms. For example, in the MNAR model in Fig. 1(b), P (X)
cannot be estimated consistently even if infinite amount of data are collected,
while P (y|do(x)) = P (y|x) = P (y|x,RX = 1) is estimable from missing data. On
the other hand, in the MNAR model in Fig. 1(c), P (y|do(x)) is not estimable.
In the MNAR model in Fig. 2(c), neither P (CE) nor P (CE | do(FI)) can be
estimated from observed data with missing values.

Various techniques have been developed to deal with missing data in statis-
tical inference, e.g., listwise deletion [7], which requires data to be MCAR to
obtain unbiased estimates, and multiple imputation [16], which requires MAR.
Most of the work in machine learning makes MAR assumption and use maximum
likelihood based methods (e.g. EM algorithms) [6], with a few work explicitly
incorporates missing data mechanism into the model [6,8,9].

The use of graphical models called m-graphs for inference with missing data
was more recent [11]. M-graphs provide a general framework for inference with
arbitrary types of missing data mechanisms including MNAR. Sufficient condi-
tions for determining whether probabilistic queries (e.g., P (y | x) or P (x,y))
are estimable from missing data are provided in [10,11]. General algorithms for
identifying the joint distribution have been developed in [18,22].

The problem of identifying causal effects P (y | do(x)) from missing data in
the causal graphical model settings has not been well studied. To the best of our
knowledge the only results are the sufficient conditions given in [10]. The goal of
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this paper is to provide general conditions under which the causal effects can be
identified from missing data using the covariate adjustment formula – the most
pervasive method in practice for causal effect estimation under confounding bias.

We will also extend our results to cope with another common obstacles to
valid causal inference - selection bias. Selection bias may happen due to prefer-
ential exclusion of part of the population from sampling. To illustrate, consider
a study of the effect of diet on blood sugar. If individuals that are healthy and
consume less sugar than average population are less likely to participate in the
study, then the data gathered is not a faithful representation of the population
and biased results will be produced. This bias cannot be removed by sampling
more examples or controlling for confounding bias. Note that, in some sense,
selection bias could be considered as a very special case of missing data mecha-
nisms, where values of all of the variables are either all observed or all missing
simultaneously. Missing data problem allows much richer missingness patterns
such that in any particular observation, some of the variables could be observed
and others could be missing. Missing data is modeled by introducing individual
missingness indicators for each variable (such that RX = 0 if X value is miss-
ing), while selection bias is typically modeled by introducing a single selection
indicator variable (S) representing whether a unit is included in the sample or
not (that is, if S = 0 then values of all variables are missing).

Identifying causal effects from selection bias has been studied in the litera-
ture [1,2]. Adjustment formulas for recovering causal effects under selection bias
have been introduced and complete graphical criteria have been developed [3,4].
However these results are not applicable to the missing data problems which
have much richer missingness patterns than could be modeled by selection bias.
To the best of our knowledge, using adjustment for causal effect identification
when the observed data suffers from missing values or both selection bias and
missing values has not been studied in the causal graphical model settings. In
this paper we will provide a characterization for these tasks.

Specifically, the contributions of this paper are:

1. We introduce a covariate adjustment formulation for recovering causal effects
from missing data, and provide a necessary and sufficient graphical condition
for when a set of covariates are valid for adjustment.

2. We introduce a covariate adjustment formulation for causal effects identifi-
cation when the observed data suffer from both selection bias and missing
values, and provide a necessary and sufficient graphical condition for the
validity of a set of covariates for adjustment.

3. We develop an algorithm that lists all valid adjustment sets in polynomial
delay time, and an algorithm that finds a valid adjustment set containing
the minimum number of variables. The algorithms are useful for scientists to
select adjustment sets with desired properties (e.g. low measurement cost).

The proofs are presented in the Appendix in [17] due to the space constraints.
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2 Definitions and Related Work

Each variable will be represented with a capital letter (X) and its realized value
with the small letter (x). We will use bold letters (X) to denote sets of variables.

Structural Causal Models. The systematic analysis of confounding bias,
missing data mechanisms, and selection bias requires a formal language where the
characterization of the underlying data-generating model can be encoded explic-
itly. We use the language of Structural Causal Models (SCM) [13]. In SCMs,
performing an action/intervention of setting X=x is represented through the
do-operator, do(X=x), which induces an experimental distribution P (y|do(x)),
known as the causal effect of X on Y. We will use do-calculus to derive causal
expressions from other causal quantities. For a detailed discussion of SCMs and
do-calculus, we refer readers to [13].

Each SCM M has a causal graph G associated to it, with directed arrows
encoding direct causal relationships and dashed-bidirected arrows encoding the
existence of an unobserved common causes. We use typical graph-theoretic ter-
minology Pa(C), Ch(C),De(C), An(C) representing the union of C and respec-
tively the parents, children, descendants, and ancestors of C. We use GC1C2

to
denote the graph resulting from deleting all incoming edges to C1 and all out-
going edges from C2 in G. The expression (X ⊥⊥ Y | Z)G denotes that X is
d-separated from Y given Z in the corresponding causal graph G [13] (subscript
may be omitted).

Missing Data and M-Graphs. To deal with missing data, we use m-graphs
introduced in [11] to represent both the data generation model and the missing
data mechanisms. M-graphs enhance the causal graph G by introducing a set
R of binary missingness indicator variables. We will also partition the set of
observable variables V into Vo and Vm such that Vo is the set of variables
that will be observed in all data cases and Vm is the set of variables that are
missing in some data cases and observed in other cases. Every variable Vi ∈
Vm is associated with a variable RVi

∈ R such that, in any observed data
case, RVi

= 0 if the value of corresponding Vi is missing and RVi
= 1 if Vi is

observed. We assume that R variables may not be parents of variables in V,
since R variables are missingness indicator variables and we assume that the
data generation process over V variables does not depend on the missingness
mechanisms. For any set C ⊆ Vm, let RC represent the set of R variables
corresponding to variables in C. See Fig. 2 for examples of m-graphs, in which
we use solid circles to represent always observed variables in Vo and R, and
hollow circles to represent partially observed variables in Vm.

Causal Effect Identification by Adjustment. Covariate adjustment is the
most widely used technique for identifying causal effects from observational data.
Formally,
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Definition 1 (Adjustment Formula [13]). Given a causal graph G over a
set of variables V, a set Z is called covariate adjustment (or adjustment for
short) for estimating the causal effect of X on Y, if, for any distribution P (V)
compatible with G, it holds that

P (y | do(x)) =
∑

z

P (y | x, z)P (z). (1)

Pearl developed the celebrated “Backdoor Criterion” to determine whether a set
is admissible for adjustment [12] given in the following:

Definition 2 (Backdoor Criterion). A set of variables Z satisfies the back-
door criterion relative to a pair of variables (X,Y) in a causal graph G if:

(a) No node in Z is a descendant of X.
(b) Z blocks every path between X and Y that contains an arrow into X.

Complete graphical conditions have been derived for determining whether a set
is admissible for adjustment [14,20,24] as follows.

Definition 3 (Proper Causal Path). A proper causal path from a node X ∈
X to a node Y ∈ Y is a causal path (i.e., a directed path) which does not intersect
X except at the beginning of the path.

Definition 4 (Adjustment Criterion [20]). A set of variables Z satisfies the
adjustment criterion relative to a pair of variables (X,Y) in a causal graph G
if:

(a) No element of Z is a descendant in GX of any W /∈ X which lies on a
proper causal path from X to Y.

(b) All non-causal paths between X and Y in G are blocked by Z.

A set Z is an admissible adjustment for estimating the causal effect of X on Y
by the adjustment formula if and only if it satisfies the adjustment criterion.

3 Adjustment for Recovering Causal Effects
from Missing Data

In this section we address the task of recovering a causal effect P (y | do(x))
from missing data given a m-graph G over observed variables V = Vo ∪ Vm

and missingness indicators R. The main difference with the well studied identi-
fiability problem [13], where we attempt to identify P (y | do(x)) from the joint
distribution P (V), lies in that, given data corrupted by missing values, P (V)
itself may not be recoverable. Instead, a distribution like P (Vo,Vm,R = 1)
is assumed to be estimable from observed data cases in which all variables in
V are observed (i.e., complete data cases). In general, in the context of miss-
ing data, the probability distributions in the form of P (Vo,W,RW = 1) for
any W ⊆ Vm, called manifest distributions, are assumed to be estimable from
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observed data cases in which all variables in W are observed (values of variables
in Vm\W are possibly missing). The problem of recovering probabilistic queries
from the manifest distributions has been studied in [10,11,18,22].

We will extend the adjustment formula for identifying causal effects to the
context of missing data based on the following observation which is stated in
Theorem 1 in [11]:

Lemma 1. For any Wo,Zo ∈ Vo and Wm,Zm ∈ Vm, P (Wo,Wm |
Zo,Zm,RWm∪Zm

= 1) is recoverable.

Formally, we introduce the adjustment formula for recovering causal effects
from missing data by extending Eq. (1) as follows.

Definition 5 (M-Adjustment Formula). Given a m-graph G over observed
variables V = Vo ∪ Vm and missingness indicators R, a set Z ⊆ V is called
a m-adjustment (adjustment under missing data) set for estimating the causal
effect of X on Y, if, for every model compatible with G, it holds that

P (y | do(x)) =
∑

z

P (y | x, z,RW = 1)P (z | RW = 1), (2)

where W = Vm ∩ (X ∪ Y ∪ Z).

In the above formulation, we allow that the treatments X, outcomes Y, and
covariates Z all could contain Vm variables that have missing values. Both terms
on the right-hand-side of Eq. (2) are recoverable based on Lemma 1. Therefore
the causal effect P (y | do(x)) is recoverable if it can be expressed in the form of
m-adjustment.

We look for conditions under which a set Z is admissible as m-adjustment.
Intuitively, we can start with the adjustment formula (1), consider an adjustment
set as a candidate m-adjustment set, and then check for needed conditional
independence relations. Based on this intuition, we obtain a straightforward
sufficient condition for a set Z to be a m-adjustment set as follows.

Proposition 1. A set Z is a m-adjustment set for estimating the causal effect
of X on Y if, letting W = Vm ∩ (X ∪ Y ∪ Z),

(a) Z satisfies the adjustment criterion (Definition 4),
(b) RW is d-separated from Y given X, Z, i.e., (Y ⊥⊥ RW | X, Z), and
(c) Z is d-separated from RW, i.e., (Z ⊥⊥ RW).

Proof. Condition (a) makes sure that the causal effect can be identified in terms
of the adjustment formula Eq. (1). Then given Conditions (b) and (c), Eq. (1)
is equal to Eq. (2).

However this straightforward criterion in Proposition 1 is not necessary. To wit-
ness, consider the set {Vm1, Vm2} in Fig. 3 which satisfies the back-door criterion
but not the conditions in Proposition 1 because Vm2 is not d-separated from R2.
Still, it can be shown that {Vm1, Vm2} is a m-adjustment set (e.g. by do-calculus
derivation).
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R1

Vm2

R2 X

Vm1

Y

Fig. 3. In this m-graph Vm2 is not d-separated from R2. However, {Vm2, Vm1} is an
admissible m-adjustment set.

Next we introduce a complete criterion to determine whether a covariate
set is admissible as m-adjustment to recover causal effects from missing data,
extending the existing work on adjustment [3,4,14,20,24].

Definition 6 (M-Adjustment Criterion). Given a m-graph G over observed
variables V = Vo ∪ Vm and missingness indicators R, and disjoint sets of
variables X, Y, Z ⊆ V, letting W = Vm ∩ (X ∪ Y ∪ Z), Z satisfies the m-
adjustment criterion relative to the pair (X,Y) if

(a) No element of Z is a descendant in GX of any W /∈ X which lies on a
proper causal path from X to Y.

(b) All non-causal paths between X and Y in G are blocked by Z and RW.
(c) RW is d-separated from Y given X under the intervention of do(x), i.e.,

(Y ⊥⊥ RW | X)GX
.

(d) Every X ∈ X is either a non-ancestor of RW or it is d-separated from Y in
GX , i.e., ∀X ∈ X ∩ An(RW), (X ⊥⊥ Y)GX

.

Theorem 1 (M-Adjustment). A set Z is a m-adjustment set for recovering
causal effect of X on Y by the m-adjustment formula in Definition 5 if and only
if it satisfies the m-adjustment criterion in Definition 6.

Conditions (a) and (b) in Definition 6 echo the adjustment criterion in Defini-
tion 4, and it can be shown that if Z satisfies the m-adjustment criterion then it
satisfies the adjustment criterion (using the fact that no variables in R can be
parents of variables in V). In other words, we only need to look for m-adjustment
sets from admissible adjustment sets.

As an example consider Fig. 3. Both {Vm1} and {Vm1, Vm2} satisfy the m-
adjustment criterion (and the adjustment criterion too). According to Theo-
rem 1, P (y | do(x)) can be recovered from missing data by m-adjustment as

P (y | do(x)) =
∑

vm1

p(y | x, vm1, R1 = 1)P (vm1 | R1 = 1), (3)

=
∑

vm1,vm2

P (y | x, vm1, vm2, R1 = 1, R2 = 1)P (vm1, vm2 | R1 = 1, R2 = 1). (4)
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4 Listing M-Adjustment Sets

In the previous section we provided a criterion under which a set of variables
Z is an admissible m-adjustment set for recovering a causal effect. It is natural
to ask how to find an admissible set. In reality, it is common that more than
one set of variables are admissible. In such situations it is possible that some
m-adjustment sets might be preferable over others based on various aspects such
as feasibility, difficulty, and cost of collecting variables. Next we first present an
algorithm that systematically lists all m-adjustment sets and then present an
algorithm that finds a minimum m-adjustment set. These algorithms provide
flexibility for researchers to choose their preferred adjustment set based on their
needs and assumptions.

4.1 Listing All Admissible Sets

It turns out in general there may exist exponential number of m-adjustment sets.
To illustrate, we look for possible m-adjustment sets in the m-graph in Fig. 4 for
recovering the causal effect P (y | do(x)) (this graph is adapted from a graph
in [4]). A valid m-adjustment set Z needs to close all the k non-causal paths
from X to Y . Z must contain at least one variable in {Vi1, Vi2, Vi3} for each
i = 1, . . . , k. Therefore, to close each path, there are 7 possible Z sets, and for k
paths, we have total 7k Z sets as potential m-adjustment sets. For each of them,
Conditions (c) and (d) in Definition 6 are satisfied because (R ⊥⊥ Y | X)GX

and
X is not an ancestor of any R variables. We obtain that there are at least 7k

number of m-adjustment sets.

R11

....
Rk1

V1

X

V11 V12 V13

V21 V22 V23

Y

V2

V3

R13

....
Rk3

.......

..
Vk1 Vk2 Vk3

Fig. 4. An example of exponential number of m-adjustment sets

The above example demonstrates that any algorithm that lists all m-
adjustment sets will be exponential time complexity. To deal with this issue,
we will provide an algorithm with polynomial delay complexity [21]. Polynomial
delay algorithms require polynomial time to generate the first output (or indi-
cate failure) and the time between any two consecutive outputs is polynomial as
well.
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To facilitate the construction of a listing algorithm, we introduce a graph
transformation called Proper Backdoor Graph originally introduced in [24].

Definition 7 (Proper Backdoor Graph [24]). Let G be a causal graph, and
X,Y be disjoint subsets of variables. The proper backdoor graph, denoted as
Gpbd

X,Y, is obtained from G by removing the first edge of every proper causal path
from X to Y.

Next we present an alternative equivalent formulation of the m-adjustment cri-
terion in Definition 6 that will be useful in constructing a listing algorithm.

Definition 8 (M-Adjustment Criterion, Math. Version). Given a m-
graph G over observed variables V = Vo ∪ Vm and missingness indicators R,
and disjoint sets of variables X, Y, Z ⊆ V, letting W = Vm ∩ (X ∪ Y ∪ Z), Z
satisfies the m-adjustment criterion relative to the pair (X,Y) if

(a) Z ∩ Dpcp(X,Y) = φ
(b) (Y ⊥⊥ X | Z,RW)Gpbd

X,Y

(c) (Y ⊥⊥ RW | X)GX

(d) ((X ∩ An(RW)) ⊥⊥ Y)GX

where Dpcp(X,Y) = De((De(X)GX
\ X) ∩ An(Y)GX

).

In Definition 8, Dpcp(X,Y), originally introduced in [24], represents the set of
descendants of those variables in a proper causal path from X to Y.

Proposition 2. Definition 8 and Definition 6 are equivalent.

Finally to help understanding the logic of the listing algorithm we introduce
a definition originally introduced in [4]:

Definition 9 (Family of Separators [4]). For disjoint sets of variables X, Y,
E, and I ⊆ E, a family of separators is defined as follows:

ZG(X,Y)〈I,E〉 := {Z | (X ⊥⊥ Y | Z)G and I ⊆ Z ⊆ E}, (5)

which represents the set of all sets that d-separate X and Y and encompass all
variables in set I but do not have any variables outside E.

Algorithm 1 presents the function ListMAdj that lists all the m-adjustment
sets in a given m-graph G for recovering the causal effect of X on Y. We note that
the algorithm uses an external function FindSep described in [24] (not presented
in this paper). FindSep(G, X, Y, I, E) will return a set in ZG(X,Y)〈I,E〉 if such
a set exists; otherwise it returns ⊥ representing failure.
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Algorithm 1: Listing all the m-adjustment sets
1 Function ListMAdj (G,X,Y,Vo,Vm,R)

2 Gpbd
X,Y ← compute proper back-door graph G

3 E ← (Vo ∪ Vm ∪ R) \ {X ∪ Y ∪ Dpcp(X,Y)}.
4 ListSepConditions(Gpbd

X,Y,X,Y,R,Vo,Vm, I = {RX∩Vm ∪ RY∩Vm},E)
5 Function ListSepConditions (G,X,Y,R,Vo,Vm, I,E)
6 if (Y ⊥⊥ RI | X)G

X
and ((X ∩ An(RI)) ⊥⊥ Y)GX

and

FindSep(G,X,Y, I,E) �= ⊥ then
7 if I = E then
8 Output(I \ R)
9 else

10 W ← arbitrary variable from E \ (I ∪ R)
11 if W ∈ Vo then
12 ListSepConditions(G,X,Y,R,Vo,Vm, I ∪ {W},E)
13 ListSepConditions(G,X,Y,R,Vo,Vm, I ,E \ {W})
14 if W ∈ Vm and RW ∈ E then
15 ListSepConditions(G,X,Y,R,Vo,Vm, I ∪ {W,RW },E)
16 ListSepConditions(G,X,Y,R,Vo,Vm, I, E \ {W,RW })

Function ListMAdj works by first excluding all variables lying in the proper
causal paths from consideration (Line 3) and then calling the function List-
SepConditions (Line 4) to return all the m-adjustment sets. The function of
ListSepConditions is summarized in the following proposition:

Proposition 3 (Correctness of ListSepCondition). Given a m-graph G
and sets of disjoint variables X, Y, E, and I ⊆ E, ListSepConditions lists all
sets Z such that:

Z ∈ {Z | (X ⊥⊥ Y | Z,RZ,RX∩Vm
,RY∩Vm

)Gpbd
X,Y

& (Y ⊥⊥ RZ | X)GX
&

((X ∩ An(RZ)) ⊥⊥ Y)GX
& I ⊆ Z ⊆ E} where RZ is a shorthand for RZ∩Vm

.

ListSepConditions, by considering both including and not including each vari-
able, recursively generates all subsets of V and for each generated set examines
whether the conditions (b), (c), and (d) in Definition 8 hold or not. If those
conditions were satisfied, the algorithm will return that candidate set as a m-
adjustment set. ListSepConditions generates each potential set by taking advan-
tage of back-tracking algorithm and at each recursion for a variable W ∈ V
examines two cases of having W in candidate set or not. If W ∈ Vo, then the
algorithm examines having and not having this variable in the m-adjustment
set and continues to decide about the rest of the variables in next recursion. If
W ∈ Vm, then the algorithm includes both W and RW in the candidate m-
adjustment set. Therefore, the algorithm considers both cases of having W,RW

and not having them in the candidate set. ListSepConditions, at the beginning
of each recursion (Line 7), examines whether the candidate m-adjustment set so
far satisfies the conditions (b), (c), (d) in Definition 8 or not. If any of them is
not satisfied, the recursion stops for that candidate set. The function FindSep
examines the existence of a set containing all variables in I and not having any
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of V\E that d-separates X from Y. If this set does not exist FindSep returns ⊥.
ListSepConditions utilizes FindSep in order to check the satisfaction of condition
(b) in Definition 8 for the candidate set. Since the graph G given to FindSep is a
proper back-door graph, all paths between X and Y in this graph is non-causal.
Therefore, if a set separates X and Y in Gpbd, this set blocks all non-causal
paths from X to Y in G.

The following theorem states that ListMAdj lists all the m-adjustment sets
in a given m-graph G for recovering the causal effect of X on Y.

Theorem 2 (Correctness of ListMAdj). Given a m-graph G and disjoint
sets of variables X and Y, ListMAdj returns all the sets that satisfy the m-
adjustment criterion relative to (X, Y).

The following results state that Algorithm 1 is polynomial delay.

Proposition 4 (Time Complexity of ListSepConditions). ListSepCon-
ditions has a time complexity of O(n(n + m)) polynomial delay where n and m
are the number of variables and edges in the given graph G respectively.

Theorem 3 (Time Complexity of ListMAdj). ListMAdj returns all the
m-adjustment sets with O(n(n + m)) polynomial delay where n and m are the
number of variables and edges in the given graph G respectively.

4.2 Finding a Minimum M-Adjustment Set

The problem of finding a m-adjustment set with minimum number of variables
is important in practice. Using a small adjustment set can reduce the compu-
tational time. The cost of measuring more variables might be another reason
researchers may be interested in finding a minimum adjustment set. Next we
present an algorithm that for a given graph G and disjoint sets X and Y returns
a m-adjustment set with the minimum number of variables.

Algorithm 2: Find minimum size m-adjustment set
1 Function FindMinAdjSet(G,X,Y,Vo,Vm,R)

2 G′← compute proper back-door graph Gpbd
X,Y

3 E ← (Vo ∪ Vm) \ {X ∪ Y ∪ Dpcp(X,Y)}.
4 E′ ← {E ∈ E | E ∈ Vo or E ∈ Vm and (RE ⊥⊥ Y | X)

G
′
X

}
5 E′′ ← {E ∈ E′ | E ∈ Vo or E ∈ Vm and (X ∩ An(RE) ⊥⊥ Y)

G
′
X

}
6 W ← 1 for all variables
7 I ← empty set
8 N ← FindMinCostSep(G′, X, Y, I, E′′, W)
9 return N ∪ RN
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Function FindMinAdjSet takes a m-graph G as input and returns a m-
adjustment set with minimum number of variables. The function works by
first removing all variables that violate Conditions (a), (c), and (d) in the m-
adjustment criterion Definition 8 in lines 2 to 5, and then calling an external
function FinMinCostSep given in [24] which returns a minimum weight separa-
tor. FindMinAdjSet sets all the weights for each variable to be 1 to get a set
with minimum size.

Theorem 4 (Correctness of FindMinAdjSet). Given a m-graph G and
disjoint sets of variables X, and Y, FindMinAdjSet returns a m-adjustment set
relative to (X, Y) with the minimum number of variables.

X

Y

S

(a) Selection bias

X

Y

RX

S

(b) MNAR model with se-
lection bias

ID X RX Y S
1 1 1 0 1
2 0 1 1 1
3 NA NA NA 0
4 NA 0 1 1
5 NA NA NA 0

(c) An example data set
compatible with the model
in Fig. 5(b)

Fig. 5. Examples of selection bias and MNAR

Theorem 5 (Time Complexity of FindMinAdjSet). FindMinAdjSet has
a time complexity of O(n3).

5 Adjustment from Both Selection Bias and Missing
Data

In Sects. 3 and 4 we have addressed the task of recovering causal effects by adjust-
ment from missing data. In practice another common issue that data scientists
face in estimating causal effects is selection bias. Selection bias can be modeled
by introducing a binary indicator variable S such that S = 1 if a unit is included
in the sample, and S = 0 otherwise [2]. Graphically selection bias is modeled by
a special hollow node S (drawn round with double border) that is pointed to by
every variable in V that affects the process by which an unit is included in the
data. In Fig. 5(a), for example, selection is affected by the treatment variable X.

In the context of selection bias, the observed distribution is P (V | S = 1),
collected under selection bias, instead of P (V). The goal of inference is to recover
the causal effect P (y | do(x)) from P (V | S = 1). The use of adjustment for
recovering causal effects in this setting has been studied and complete adjustment
conditions have been developed in [3,4].
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What if the observed data suffers from both selection bias and missing values?
In the model in Fig. 5(b), for example, whether a unit is included in the sample
depends on the value of the outcome Y . If a unit is included in the sample,
the values of treatment X could be missing depending on the actual X values.
Figure 5(c) shows an example data set compatible with the model in Fig. 5(b)
illustrating the difference between selection bias and missing data. To the best of
our knowledge, causal inference under this setting has not been formally studied.

In this section, we will characterize the use of adjustment for causal effect
identification when the observed data suffers from both selection bias and miss-
ing values. First we introduce an adjustment formula called MS-adjustment for
recovering causal effect under both missing data and selection bias. Then we
provide a complete condition under which a set Z is valid as MS-adjustment set.

Definition 10 (MS-Adjustment Formula). Given a m-graph G over
observed variables V = Vo ∪Vm and missingness indicators R augmented with
a selection bias indicator S, a set Z ⊆ V is called a ms-adjustment (adjustment
under missing data and selection bias) set for estimating the causal effect of X
on Y, if for every model compatible with G it holds that

P (y | do(x)) =
∑

z

P (y | x, z,RW = 1, S = 1)P (z | RW = 1, S = 1), (6)

where W = Vm ∩ (X ∪ Y ∪ Z).

Both terms on the right-hand-side of Eq. (6) are recoverable from selection biased
data in which all variables in X∪Y∪Z are observed. Therefore the causal effect
P (y | do(x)) is recoverable if it can be expressed in the form of ms-adjustment.

Next we provide a complete criterion to determine whether a set Z is an
admissible ms-adjustment.

Definition 11 (MS-Adjustment Criterion). Given a m-graph G over
observed variables V = Vo ∪ Vm and missingness indicators R augmented
with a selection bias indicator S, and disjoint sets of variables X, Y, Z, let-
ting W = Vm ∩ (X∪Y∪Z), Z satisfies the ms-adjustment criterion relative to
the pair (X,Y) if

(a) No element of Z is a descendant in GX of any W /∈ X which lies on a
proper causal path from X to Y.

(b) All non-causal paths between X and Y in G are blocked by Z, RW, and S.
(c) RW and S are d-separated from Y given X under the intervention of do(x).

i.e., (Y ⊥⊥ (RW ∪ S) | X)GX

(d) Every X ∈ X is either a non-ancestor of {RW, S} or it is d-separated from
Y in GX . i.e., ∀X ∈ X ∩ An(RW ∪ S), (X ⊥⊥ Y)GX

.

Theorem 6 (MS-Adjustment). A set Z is a ms-adjustment set for recov-
ering causal effect of X on Y by the ms-adjustment formula in Definition 10 if
and only if it satisfies the ms-adjustment criterion in Definition 11.
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X1

V1 V2

V3

V4

R1

V5

R5

Y

X2

S RY

Fig. 6. An example for recovering causal effect under both selection bias and MNAR
data

To demonstrate the application of Theorem 6, consider the causal graph in
Fig. 6 where V1, V5, Y may have missing values and the selection S depends
on the values of X2. To recover the causal effect of {X1,X2} on variable Y , V1

satisfies the ms-adjustment criterion. We obtain P (y | do(x1, x2)) =
∑

V1
P (y |

x1, x2, V1, S = 1, Ry = 1, R1 = 1)P (V1 | S = 1, Ry = 1, R1 = 1).
We note that the two algorithms given in Sect. 4, for listing all m-adjustment

sets and finding a minimum size m-adjustment set, can be extended to list
all ms-adjustment sets and find a minimum ms-adjustment set with minor
modifications.

6 Conclusion

In this paper we introduce a m-adjustment formula for recovering causal effect
in the presence of MNAR data and provide a necessary and sufficient graphical
condition - m-adjustment criterion for when a set of covariates are valid m-
adjustment. We introduce a ms-adjustment formulation for causal effects iden-
tification in the presence of both selection bias and MNAR data and provide a
necessary and sufficient graphical condition - ms-adjustment criterion for when
a set of covariates are valid ms-adjustment. We develop an algorithm that lists
all valid m-adjustment or ms-adjustment sets in polynomial delay time, and
an algorithm that finds a valid m-adjustment or ms-adjustment set containing
the minimum number of variables. The algorithms are useful for data scientists
to select adjustment sets with desired properties (e.g. low measurement cost).
Adjustment is the most used tool for estimating causal effect in the data sci-
ences. The results in this paper should help to alleviate the problem of missing
data and selection bias in a broad range of data-intensive applications.

Acknowledgements. This research was partially supported by NSF grant IIS-
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Abstract. Given a decision forest, we study a problem of reducing the
number of its distinct branching conditions without changing each tree’s
structure while keeping classification performance. A decision forest with
a smaller number of distinct branching conditions can not only have a
smaller description length but also be implemented by hardware more
efficiently. To force the modified decision forest to keep classification
performance, we consider a condition that the decision paths at each
branching node do not change for 100σ% of the given feature vectors
passing through the node for a given 0 ≤ σ < 1. Under this condition,
we propose an algorithm that minimizes the number of distinct branch-
ing conditions by sharing the same condition among multiple branching
nodes. According to our experimental results using 13 datasets in UCI
machine learning repository, our algorithm succeeded more than 90%
reduction on the number of distinct branching conditions for random
forests learned from 3 datasets without degrading classification perfor-
mance. 90% condition reduction was also observed for 7 other datasets
within 0.17 degradation of prediction accuracy from the original predic-
tion accuracy at least 0.673.

Keywords: Decision forest · Algorithm · Simplification

1 Introduction

A decision tree is a popular classifier not only for its classification performance
but also for its high interpretability. As base classifiers of an ensemble classifier,
decision trees are also preferred due to its usability such as being able to calculate
feature importance. Therefore, several decision-tree-based ensemble classifiers
such as random forests [3], extremely randomized trees [8] and gradient boosted
regression trees [7] have been developed so far.

Various researches have been done to obtain more useful decision trees and
forests, and one of them is their simplification such as pruning [9,10]. Simplifica-
tion of decision trees and forests is important not only as a countermeasure for
overfitting but also as enhancement measures of interpretability and prediction
time-and-space complexities.
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Simplification methods developed so far for a decision forest, reduce the num-
ber of branching nodes or trees. Here, however, we proposed an algorithm that
reduces the number of distinct branching conditions without changing the struc-
ture of each tree in a given forest. So, the number of branching nodes does not
change but multiple nodes become to share the same branching condition by
applying our algorithm.

This research is motivated by the recent development of hardware implemen-
tation of a random forest for fast inference. Implementation using FPGA has
been successful in accelerating the inference process of a random forest [1,12].
In the system proposed in [1], all the branching conditions are processed by fast
comparators in parallel, then their binary outputs are used to parallelly eval-
uate which leaf is reached through a boolean net. The decrease of the number
of distinct branching conditions reduces the number of comparators needed for
this implementation.

In this paper, we first formalize our simplification problem as the problem
of minimizing the number of distinct branching conditions in a decision forest
by sharing conditions under the restriction that, given a set of feature vectors
DL and 0 ≤ σ < 1, at each branching node in each component tree, paths of at
most 100σ% of the vectors x ∈ DL passing through the node, can be changed.
Assume that all the features are numerical and all the branching conditions are
expressed as xi ≤ θi for ith component xi of a feature vector x and a fixed
threshold θi. Under the above restriction, the range in which θi can take a value
becomes some interval [�i, ui), and the above problem can be reduced to the
problem of obtaining a minimum set that intersects all the given intervals, which
are defined for each feature. We propose Algorithm Min IntSet for this reduced
problem and prove its correctness. We also develop Algorithm Min DBN for our
original problem using Min IntSet to solve the reduced problem for each feature.

Effectiveness of our algorithm Min DBN is demonstrated for the random
forests that are learned from 13 datasets in UCI machine learning repository [6].
Without prediction performance degradation, Min DBN with σ = 0 succeeds to
reduce the number of distinct branching conditions at least 48.9% for all the
datasets but RNA-Seq PANCAN dataset, which has more than 30 times larger
number of features than the number of its train instances. For hapmass and
magic datasets, which have the two largest number of instances, more than 90%
condition reduction is achieved by running Min DBN with σ = 0. All the datasets
except RNA-Seq PANCAN, iris and blood datasets, whose vectors of the last two
datasets are composed of only four features, achieves more than 90% condition
reduction by allowing larger rate of path change (σ = 0.1, 0.2, 0.3) within about
0.17 prediction accuracy decrease from the original prediction accuracy, which
is at least 0.673.

2 Problem Setting

Consider a d-dimensional real feature space X = R
d and a finite class-label space

C = {1, . . . , �}. A classifier f : X → C is a function that assigns some label
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c ∈ C to an arbitrary input feature vector x = (x1, ..., xd) ∈ R
d. A decision tree

T is a kind of classifier that decides the class label assignment c of an input x by
starting from the root node, repeatedly choosing a child node at each internal
node depending on the branching condition attached to the node, and assigning
label c that is labeled at the reached leaf node. Here, we assume that each internal
node has just two child nodes and the attached branching condition is in the
form of xi ≤ θi. For a given feature vector x, the left child node is chosen at a
node if its branching condition xi ≤ θi is satisfied in the class label assignment
process using a decision tree. Otherwise, the right child node is chosen. The x’s
path in a decision tree T is the path from the root node to the reached leaf node
in the class label assignment process. We let a pair (i, θi) of a feature id i and
a threshold θi denote the branching condition xi ≤ θi. A set of decision trees is
called a decision forest.

We consider the following problem.

Problem 1 (Problem of minimizing the number of distinct branching conditions
in a decision forest). For a given decision forest {T1, ...Tm}, a given set of feature
vectors {x1, ...,xn} and a given path-changeable rate 0 ≤ σ < 1, minimize the
number of distinct branching conditions (i, θi) by changing the values of some
θi without changing more than 100σ% of feature vectors’ paths passing through
each node of each decision tree Ti (i = 1, . . . , m).

x   ≤ 41

x   ≤ 52
1

10

T1 T2

x   ≤ 51

x   ≤ 42
1

10

T’1

x   ≤ 42

x   ≤ 51
1

10

T2

x   ≤ 42

x   ≤ 51
1

10

Fig. 1. The number of distinct branching conditions (1, 4), (1, 5), (2, 4), (2, 5) in decision
forest {T1, T2} can be reduced to (1, 5), (2, 4) by changing conditions (1, 4) and (2, 5)
in T1 to (1, 5) and (2, 4), respectively, without changing the path of any feature vector
in {(1, 1), (2, 7), (7, 2), (8, 8)}.

Example 1. Consider Problem 1 for a decision forest {T1, T2} in Fig. 1, a feature
vector set {(1, 1), (2, 7), (7, 2), (8, 8)}, and a path-changeable rate σ = 0. The
distinct branching conditions (i, θi) in decision forest {T1, T2} are the following
four:

(i, θi) = (1, 4), (1, 5), (2, 4), (2, 5).

The branching conditions (1, 4) and (2, 5) in T1 can be changed to (1, 5) and
(2, 4), respectively, without changing the path of any feature vector in the given
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set {(1, 1), (2, 7), (7, 2), (8, 8)}. Decision tree T ′
1 in Fig. 1 is the one that is made

from T1 by this branching-condition change. Decision forest {T ′
1, T2} has two

distinct conditions (1, 5), (2, 4), which is a solution of Problem 1.

Remark 1. Decision forest {T1, T2} in Fig. 1 can be outputted by a decision for-
est learner with training samples ((x1, x2), y) = ((1, 1), 1), ((2, 7), 0), ((7, 2), 0),
((8, 8), 1). Assume that two sets of bootstrap samples are D1 = {((1, 1), 1),
((7, 2), 0), ((8, 8), 1)} and D2 = {((1, 1), 1), ((2, 7), 0), ((8, 8), 1)}, and all the fea-
tures are sampled for both the sets. In the implementation that the middle points
of adjacent feature values are used as threshold candidates for branching condi-
tions, CART algorithm can output T1 for D1 and T2 for D2. Decision tree T ′

1 in
Fig. 1 has the same Gini Impurity as T1 at each corresponding branching node
for the set of samples D1.

3 Problem of Minimum Set Intersecting All the Given
Intervals

For a given path-changeable rate 0 ≤ σ < 1, at each branching node with
condition (i, θi), the range in which θi can take a value without changing more
than 100σ% of given feature vectors’ paths passing through the node, becomes
interval [�i, ui). So, the problem of minimizing the number of distinct branching
conditions in a decision forest can be solved by finding clusters of conditions
(i, θi) whose changeable intervals have a common value for each feature i. Thus,
solving Problem 1 can be reduced to solving the following problem for each
feature i.

Problem 2 (Problem of Minimum Set Intersecting All the Given Intervals). For
a given set of intervals {[�1, u1), . . . , [�n, un)}, find a minimum set that intersects
all the intervals [�j , uj) (j = 1, . . . , n).

We propose Min IntSet (Algorithm 1) as an algorithm for Problem 2.
The algorithm is very simple. First, it sorts the given set of intervals
{[�1, u1), . . . , [�n, un)} by lower bound �i in ascending order (Line 1). For
the obtained sorted list ([�i1 , ui1), . . . , [�in , uin)), starting from k = 1 and
b1 = 1, the algorithm finds the kth point sk by calculating the maximal prefix
([�ibk

, uibk
), . . . , [�ij−1 , uij−1)) of the list ([�ibk

, uibk
), . . . , [�in , uin)) that contain

non-empty intersection

j−1⋂

h=bk

[�ih , uih) = [�ij−1 , min
h=bk,...,j−1

uih),

and tk is updated such that tk = minh=bk,...,j−1 uih holds (Line 9). The algorithm
can know the maximality of the prefix ([�ibk

, uibk
), . . . , [�ij−1 , uij−1)) by check-

ing the condition �ij ≥ tk which means that the intersection [�ij , tk) is empty
(Line 4). After finding the maximal prefix with non-empty intersection [�ij−1 , tk),
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Algorithm 1. Min IntSet
Input: {[�i, ui)|i ∈ I} : Non-empty set of intervals
Output: {s1, ..., sk} : Minimum set satisfying {s1, . . . , sk} ∩ [�i, ui) �= ∅ (i = 1, . . . , n)

{I1, ..Ik} : Ij = {i ∈ I|sj ∈ [�i, ui)} (j = 1, ..., k)

1: [�i1 , ui1), ..., [�in , uin) ← list sorted by the values of �i in ascending order.
2: k ← 1, t1 ← ui1 , b1 ← 1
3: for j = 2 to n do
4: if �ij ≥ tk then

5: sk ← �ij−1+tk

2

6: Ik ← {ibk , ..., ij−1}
7: k ← k + 1, tk ← uij , bk ← j
8: else if uij < tk then
9: tk ← uij

10: end if
11: end for
12: sk ← �in+tk

2
, Ik ← {ibk , ..., in}

13: return {s1, ..., sk}, {I1, .., Ik}

the middle point of the interval is set to sk (Line 5) and repeat the same proce-
dure for the updated k and bk (Line 8).

The following theorem holds for Algorithm Min IntSet.

Theorem 1. For a given set of intervals {[�1, u1), ..., [�n, un)}, the set {s1, ..., sk}
outputted byAlgorithmMin IntSet is aminimum set that intersects all the intervals
[�j , uj) (j = 1, . . . , n).

Proof. We prove the theorem by mathematical induction in the number of inter-
vals n. For n = 1, for-sentence between Line 3 and 11 is not executed. At Line
12, s1 is set as

s1 =
�i1 + ui1

2
because t1 = ui1 , and at Line 13 Min IntSet outputs {s1}, which is trivially a
minimum set that intersects all the interval in the given set {[�1, u1)}.

Consider the case with n = k + 1. When if-sentence at Line 4 never holds,
�ij ≤ �in < t1 holds for all j = 1, . . . , n and Line 8–9 ensures t1 ≤ uij for all
j = 1, . . . , n. Thus, [�in , t1) is contained by all the intervals and the set that is
composed of its middle point s1 only is trivially a minimum set that intersects
all the intervals in the given set {[�1, u1), . . . , [�n, un)}.

When if-sentence at Line 4 holds at least once, s1 is set as

s1 =
�ij−1 + t1

2
,

and the rest for-loop is executed for j from j + 1 to n given k = 2, t2 = uij ,
and b2 = j. It is easy to check that s2, . . . , sk calculated in the rest part are the
same as those outputted by

Min IntSet({[�ij , uij ), ..., [�in , uin)}).
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The condition of if-sentence at Line 4 ensures that the intersection [�ij−1 , t1)
of [�i1 , ui1), . . . , [�ij−1 , uij−1) does not intersect the rest intervals [�ij , uij ), . . . ,
[�in , uin). So, any minimum set that intersects all the intervals, must contain at
least one value that is at most t1. Any value s1 in [�ij−1 , t1) can minimize the
set of the rest intervals that does not contain s1. In fact, s1 is set to the mid-
dle point of [�ij−1 , t1), so the rest set of intervals is minimized. The set of the
rest points s2, . . . , sk calculated by Min IntSet is the same as the set outputted
by Min IntSet({[�ij , uij ), ..., [�in , uin)}), so the minimum set intersecting all the
intervals in {[�ij , uij ), ..., [�in , uin)} can be obtained using inductive assumption.
Thus, Min IntSet outputs a minimum set that intersects all the given intervals in
the case with n = k + 1. ��

The time complexity of Algorithm Min IntSet is O(n log n) for the number
of intervals n due to the bottleneck of sorting. Its space complexity is trivially
O(n).

4 Algorithm for Minimizing the Number of Distinct
Branching Conditions

Min DBN (Algorithm 2) is an algorithm for the problem of minimizing the
number of distinct branching conditions in a decision forest. The algorithm uses
Algorithm Min IntSet for each feature i = 1, . . . , d to find a minimum set of
branching thresholds that can share the same value without changing 100σ% of
paths of given feature vectors passing through each node of each tree in a given
decision forest.

Algorithm 2. Min DBN
Input: {x1, ...,xn} : Set of feature vectors

{T1, ..., Tm} : decision forest
σ : path-changeable rate (0 ≤ σ < 1)

1: Li ← ∅ for i = 1, . . . , d
2: for j = 1 to m do
3: for each branching node Nj,h in Tj do
4: (i, θi) ← branching condition attached to Nj,h

5: [�j,h, uj,h) ← the range of values that θi can take without changing
more than 100σ% of paths of x1, ..,xn passing through Nj,h in Tj

6: Li ← Li ∪ {[�j,h, uj,h)}
7: end for
8: end for
9: for i = 1 to d do

10: {s1, .., sk}, {I1, ..., Ik} ← Min IntSet(Li)
11: for g = 1 to k do
12: for each (j, h) ∈ Ig do
13: Replace the branching condition (i, θi) attached to node Nj,h with (i, sg).
14: end for
15: end for
16: end for
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For the branching condition (i, θi) attached to each branching node Nj,h

of decision tree Tj in a given decision forest {T1, . . . , Tm}, Algorithm Min DBN
calculates the range of values [�j,h, uj,h) that θi can take without changing 100σ%
of paths of a given feature vectors x1, . . . ,xn passing through Nj,h in Tj (Line
2–8), and adds the range (interval) to Li, which is initially set to ∅ (Line 1).
Then, by running Min IntSet for each Li (i = 1, . . . , d), Min DBN obtains its
output {s1, ..., sk} (Line 10), and the branching condition (i, θi) of node Nj,h

with sg ∈ [�j,h, uj,h) is replaced with (i, sg) (Line 11–15).
Note that, for node Nj,h with branching condition (i, θi) in decision tree Tj ,

the interval [�j,h, uj,h) in which threshold θi can take a value without changing
more than 100σ% of paths of feature vectors x1, . . . ,xn passing through Nj,h in
Tj , is expressed as

�j,h = inf
�

{� | |{xf ∈ Xj,h | � < xf,i ≤ θi}| ≤ σ|Xj,h|} and

uj,h = sup
u

{u | |{xf ∈ Xj,h | θi < xf,i ≤ u}| ≤ σ|Xj,h|},

where

Xj,h = {xf |The path of xf in Tj passes through node Nj,h},

and |S| for set S denotes the number of elements in S.
Let us analyze time and space complexities of Min DBN. Let N denote

the number of nodes in a given decision forest. For each branching node Nj,h,
Min DBN needs O(|Xj,h| log(σ|Xj,h| + 1)) ≤ O(n log(σn + 1)) time for calculat-
ing �j,h and uj,h using size-(σ|Xj,h|+1) heap. Min IntSet(Li) for all i = 1, . . . , d
totally consumes at most O(N log N) time. Considering that O(d) time is needed
additionally, time complexity of Min DBN is O(N(n log(σn + 1) + log N) + d).
Space complexity of Min DBN is O(dn + N) because space linear in the sizes of
given feature vectors and decision forest are enough to run Min DBN.

5 Experiments

We show the results of the experiments that demonstrate the effectiveness of
Algorithm Min DBN.

5.1 Settings

We used 13 numerical-feature datasets registered in UCI machine learning repos-
itory [6], whose numbers of instances, features and distinct class labels are
shown in Table 1. In the table, datasets are sorted in the order of the number of
instances. The largest one is hepmass dataset that has 7 million instances. The
dataset with the largest number of features is RNA-Seq PANCAN whose number
of features is more than 20 thousands. Note that the number of features is larger
than the number of instances only for this dataset. The number of distinct class
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Table 1. Dataset used in our experiments

Dataset #instance #feature #class Reference

Iris 150 4 3 Iris [6]

Parkinsons 195 22 2 Parkinsons [11]

Breast cancer 569 30 2 Breast Cancer Wisconsin (Diagnostic) [6]

Blood 748 4 2 Blood Transfusion Service Center [13]

RNA-Seq PANCAN 801 20531 5 gene expression cancer RNA-Seq [4]

Winequality red 1599 11 11 Wine Quality [5]

Winequality white 4898 11 11 Wine Quality [5]

Waveform 5000 40 3 Waveform Database Generator (Version 2) [6]

Robot 5456 24 4 Wall-Following Robot Navigation [6]

Musk 6598 166 2 Musk (Version 2) [6]

Epileptic seizure 11500 178 5 Epileptic Seizure Recognition [2]

Magic 19020 10 2 MAGIC Gamma Telescope [6]

Hepmass 7000000 28 2 HEPMASS (train) [6]

labels are not so large for all the dataset we used, and winequality datasets have
the largest number of distinct labels (11 distinct labels).

Decision forests used in the experiments are random forest classifiers [3] which
are outputted by the fit method of the sklearn.ensemble.RandomForestClassifier
class1 for the input of each dataset. The parameters of the classifier were set
to defaults except the number of trees (n estimators), the number of jobs to
run in parallel (n jobs) and and the seed used by the random number genera-
tor (random state): n estimators = 100, n jobs = −1 (which means the same
as the number of processors) and random state = 1. Note that parameter ran-
dom state was fixed in order to ensure that the same decision forest is gen-
erated for the same training dataset. Also note that the number of randomly
selected features used for branching conditions of each decision tree was set to√

d as default value. Each dataset was split into training and test datasets using
function sklearn.model selection.train test split, and the training dataset only
is fed to the fit method of the classifier. The non-default option parameters for
train test split are the proportions of the dataset to include in the test (test size)
and the train (train size) splits, and the seed used the random number genera-
tor (random state): test size = 0.2, train size = 0.8 and random state = 0, . . . , 9.
Note that 10 different pairs of train and test datasets were generated for each
dataset by setting different values to random state parameter. For each pair
of train and test datasets (DL,DP), a random forest RF was learned using
DL, and Min DBN with parameter σ was run for the RF to obtain RFσ in
which the number of distinct branching conditions was minimized. Accuracies
of RF and RFσ for DP were checked for the labels predicted by the predict
method of the classifier. We conducted this procedure for 10 train-test splits
of each dataset and obtained the number of distinct branching conditions and

1 https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForest
Classifier.html.

https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier.html
https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier.html


586 A. Nakamura and K. Sakurada

the accuracy averaged over 10 runs for each dataset and each random forest in
{RF} ∪ {RFσ | σ = 0.0, 0.1, 0.2, 0.3}.

5.2 Results

The number of distinct branching conditions and prediction accuracy for each
original decision forest and those with reduced distinct branching conditions are
shown in Table 2. In the table, reduction rate of the number of distinct branching
conditions, which is defined as

1 − #(distinct branching conditions in RFσ)
#(distinct branching conditions in RF)

,

and prediction accuracy decrease, which is defined as

(accuracy of RF) − (accuracy of RFσ) for the test dataset

are also shown for original decision forest RF and decision forests RFσ that are
outputted by Algorithm Min DBN for the input decision forest RF and path-
changeable-rate σ.

Under the condition that the path of any given feature vector in each decision
tree must be the same as that in the original tree (σ = 0), the reduction rate on
the number of distinct branching conditions is at least 48.9% for all the datasets
but RNA-Seq PANCAN dataset. The number of features is more than 30 times
lager than the number of training instances in RNA-Seq PANCAN dataset,
and number of distinct features in the original decision tree is less than 1/10
of the number of features, so the number of appearing branching conditions
for each feature might be small, which makes condition-sharing difficult. The
reduction rate exceeds 90% for magic and hepmass datasets, and especially it
reaches 99% for hepmass dataset. Note that the prediction accuracy decrease is
between −0.004 and 0.007 for all the datasets, so no degradation of prediction
performance was observed.

There is a tradeoff between reduction rate and prediction accuracy decrease,
that is, larger reduction rate causes larger prediction accuracy decrease, and
it can be to some extent controllable by path-changeable rate σ. By using
larger σ, reduction rate can be increased but prediction accuracy decrease is
also increased. 90% reduction rate is achieved by waveform dataset with 0.3%
prediction accuracy decrease (PAD), by parkinsons and breast cancer datasets
with 5–7% PAD, by musk and epileptic seizure datasets with about 11% PAD, by
winequality and robot datasets with 14–17% PAD. Note that the minimum pre-
diction accuracy of the original random forests among the 13 datasets is 67.3%.
The reduction rate cannot reach 90% for iris, blood and RNA-Seq PANCAN
datasets even using σ = 0.3. Iris and blood datasets have only four features,
which causes a small number of distinct branching conditions even for original
decision forest: 168.3 and 154.2 distinct branching conditions for iris and blood
datasets, respectively, in 100 decision trees. Considering comparison to the num-
ber of trees, such relatively small number of distinct branching conditions seems
to be difficult to reduce.
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Table 2. Number of distinct branching conditions and prediction accuracy of original
random forest classifier and those outputted by Min DBN

Original
Outputted by Min DBN

σ = 0.0 σ = 0.1 σ = 0.2 σ = 0.3

Dataset

#(distinct conditions)(95% confidence interval)

reduction rate of #(distinct conditions)

prediction accuracy(95% confidence interval)

prediction accuracy decrease

Iris 168.3(±6.5) 53.1(±2.1) 46.0(±2.3) 37.8(±2.4) 31.1(±2.1)

0 0.684 0.727 0.775 0.815

0.943(±0.044) 0.937(±0.043) 0.917(±0.038) 0.857(±0.058) 0.833(±0.059)

0 0.007 0.027 0.087 0.11

Parkinsons 1005.5(±33.9) 398.0(±13.4) 176.9(±6.5) 105.9(±1.8) 77.7(±2.5)

0 0.604 0.824 0.895 0.923

0.89(±0.031) 0.885(±0.029) 0.854(±0.036) 0.846(±0.032) 0.841(±0.031)

0 0.005 0.036 0.044 0.049

Breast 1389.8(±54.7) 572.0(±15.2) 210.7(±7.3) 130.8(±4.7) 98.5(±2.9)

cancer 0 0.588 0.848 0.906 0.929

0.961(±0.015) 0.958(±0.015) 0.911(±0.028) 0.891(±0.03) 0.86(±0.026)

0 0.003 0.05 0.069 0.101

Blood 154.2(±5.8) 78.5(±2.7) 71.0(±3.4) 62.7(±3.0) 58.5(±2.6)

0 0.491 0.54 0.593 0.621

0.761(±0.018) 0.765(±0.015) 0.755(±0.014) 0.75(±0.012) 0.743(±0.014)

0 −0.004 0.006 0.011 0.018

RNA-Seq 1938.5(±24.1) 1851.5(±21.7) 1664.2(±23.9) 1641.0(±23.7) 1633.8(±22.9)

PANCAN 0 0.045 0.142 0.153 0.157

0.998(±0.003) 0.998(±0.003) 0.996(±0.004) 0.994(±0.004) 0.99(±0.003)

0 0.0 0.001 0.003 0.007

Winequality 4066.2(±25.4) 873.8(±8.7) 583.7(±7.3) 424.8(±5.2) 340.0(±5.2)

red 0 0.785 0.856 0.896 0.916

0.68(±0.01) 0.684(±0.008) 0.626(±0.015) 0.566(±0.009) 0.524(±0.016)

0 −0.003 0.054 0.114 0.156

Winequality 7194.9(±48.3) 1358.2(±12.3) 871.7(±5.8) 661.8(±6.6) 559.9(±10.3)

white 0 0.811 0.879 0.908 0.922

0.673(±0.012) 0.673(±0.011) 0.583(±0.017) 0.5(±0.012) 0.443(±0.011)

0 0.0 0.09 0.173 0.23

Waveform 32232.4(±140.8) 5774.0(±26.3) 1233.6(±12.0) 646.2(±7.8) 471.8(±6.6)

0 0.821 0.962 0.98 0.985

0.849(±0.004) 0.847(±0.006) 0.846(±0.009) 0.838(±0.009) 0.824(±0.01)

0 0.002 0.003 0.011 0.025

Robot 9337.7(±171.0) 2966.1(±51.7) 986.9(±18.3) 579.1(±11.4) 396.1(±10.3)

0 0.682 0.894 0.938 0.958

0.994(±0.002) 0.994(±0.002) 0.91(±0.009) 0.853(±0.009) 0.854(±0.014)

0 0.0 0.084 0.141 0.14

Musk 12306.9(±141.4) 6288.6(±66.1) 2700.7(±26.6) 1617.5(±25.3) 1125.2(±20.3)

0 0.489 0.781 0.869 0.909

0.977(±0.004) 0.977(±0.004) 0.935(±0.008) 0.885(±0.01) 0.867(±0.008)

0 0.0 0.042 0.092 0.11
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Table 2. (continued)

Original
Outputted by Min DBN

σ = 0.0 σ = 0.1 σ = 0.2 σ = 0.3

Dataset

#(distinct conditions)(95% confidence interval)

reduction rate of #(distinct conditions)

prediction accuracy(95% confidence interval)

prediction accuracy decrease

Epileptic 75492.5(±131.4) 23540.7(±61.0) 6857.6(±29.0) 3746.4(±21.1) 2738.8(±13.7)

seizure 0 0.688 0.909 0.95 0.964

0.696(±0.009) 0.695(±0.008) 0.587(±0.006) 0.441(±0.008) 0.304(±0.008)

0 0.001 0.109 0.256 0.392

Magic 110441.9(±526.1) 9535.3(±34.1) 2440.7(±24.7) 1352.1(±10.2) 985.6(±8.2)

0 0.914 0.978 0.988 0.991

0.877(±0.003) 0.877(±0.003) 0.8(±0.005) 0.595(±0.008) 0.426(±0.007)

0 0.0 0.077 0.282 0.451

Hepmass 45125069.6(±8951.8) 431851.6(±263.1) 57199.1(±60.1) 29626.6(±83.4) 21704.1(±63.8)

0 0.99 0.999 0.999 1.0

0.821(±0.0) 0.821(±0.0) 0.809(±0.0) 0.773(±0.001) 0.684(±0.003)

0 0.0 0.011 0.048 0.137

6 Conclusions and Future Work

We formalized a novel simplification problem of a decision forest, proposed an
algorithm for the problem and demonstrated its effectiveness on reduction rate
of the number of distinct branching conditions for the random forests that were
trained using 13 datasets in UCI machine learning repository. Hardware imple-
mentation for checking effectiveness of the proposed algorithm on inference effi-
ciency is planned for our next step.

Practically better problem formalization may exist. It might be better to
restrict the rate of path changes not at each branching node but at each whole
tree. Furthermore, important thing is not the rate of path changes but the rate
of reached leaf label changes, so its control might be more preferred. There are
a tradeoff between the number of distinct branching conditions and prediction
accuracy. So, formalization with restriction directly on one of them might be
more useful. As our future work, we would like to pursue better formalizations
of the problem, develop their algorithms and analyze their complexity.
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Abstract. A gradient boosting decision tree model is a powerful
machine learning method that iteratively constructs decision trees to
form an additive ensemble model. The method uses the gradient of the
loss function to improve the model at each iteration step. Inspired by
the database literature, we exploit bitset and bitslice data structures in
order to improve the run time efficiency of learning the trees. We can
use these structures in two ways. First, they can represent the input
data itself. Second, they can store the discretized gradient values used
by the learning algorithm to construct the trees in the boosting model.
Using these bit-level data structures reduces the problem of finding the
best split, which involves counting of instances and summing gradient
values, to counting one-bits in bit strings. Modern CPUs can efficiently
count one-bits using AVX2 SIMD instructions. Empirically, our proposed
improvements can result in speed-ups of 2 to up to 10 times on datasets
with a large number of categorical features without sacrificing predictive
performance.

Keywords: Gradient boosting · Decision tree · Bitset · Bitslice

1 Introduction

Gradient boosting decision trees (GBDTs) are a powerful and theoretically elegant
machine learning method that constructs an additive ensemble of trees. GBDT
methods employ an iterative procedure, where the gradient of the loss function
guides learning a new tree such that adding the new tree to the model improves
its predictive performance. GBDTs are widely used in practice due the availability
of high quality and performant systems such as XGBoost [3], LightGBM [7] and
CatBoost [10]. These have been successfully applied to many real-world datasets,
and cope particularly well with heterogeneous and noisy data.

This paper explores how to more efficiently learn gradient boosting decision
tree models without sacrificing accuracy. When learning a GBDT model, the
vast majority of time is spent evaluating candidate splits when learning a single
tree. This involves counting instances and summing gradients. State-of-the-art
GBDT implementations use full 32- or 64-bit integers or floats to represent the
data and the gradients. We propose the BitBoost algorithm which represents
c© Springer Nature Switzerland AG 2020
U. Brefeld et al. (Eds.): ECML PKDD 2019, LNAI 11906, pp. 590–606, 2020.
https://doi.org/10.1007/978-3-030-46150-8_35
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the data and gradients using bitsets and bitslices, two data structures origi-
nating from database literature. This allows BitBoost to exploit the bit-level
parallelism enabled by modern CPUs. However, these data structures impose
strict limitations on how and which numbers can be expressed. This necessitates
adapting three operations in the standard GBDT learning algorithm: summing
gradients, performing (in)equality checks, and counting. Empirically, BitBoost
achieves competitive predictive performance while reducing the runtime by a
large margin. Moreover, BitBoost is a publicly available package.1

2 Background and Related Work

2.1 Gradient Boosting

Schapire [12] proposed the theoretical idea of boosting, which was implemented
in practice by AdaBoost [5,13]. This idea was generalized by the generic gradient
boosting algorithm, which works with any differentiable loss function [6,9]. Given
N input instances {(xi, yi)}N

i=1 and a differentiable loss function L, gradient boost-
ing models iteratively improve the predictions of y from x with respect to L by
adding new weak learners that improve upon the previous ones, forming an addi-
tive ensemble model. The additive nature of the model can be expressed by:

F0(x) = c, Fm(x) = Fm−1(x) + hθ,m(x), (1)

where m is the iteration count, c is an initial guess that minimizes L, and hθ,m(x)
is some weak learner parametrized by θ such as a linear model or a decision tree.

In this paper, we focus on gradient boosting decision trees or GBDTs, which
are summarized in Algorithm 1. Gradient boosting systems minimize L by grad-
ually taking steps in the direction of the negative gradient, just as numerical
gradient-descent methods do. In GBDTs, such a step is a single tree constructed
to fit the negative gradients. One can use a least-squares approach to find a tree
hθ∗,m that tries to achieve this goal:

θ∗ = arg min
θ

N∑

i=1

[−gm(xi, yi) − hθ,m(xi)]
2
, (2)

where gm(x, y) = ∂ŷL(y, ŷ)|ŷ=Fm−1(x) is the gradient of the loss function L.

F0(x) = arg minc

∑N
i=1 L(yi, c)

for m ← 1 to M do
gm,i = ∂ŷL(yi, ŷ) |ŷ=Fm−1(xi)

hθ,m = a tree that optimizes Equation 2
Fm(x) = Fm−1(x) + ρm hθ,m(x)

end
Algorithm 1: The gradient boosting algorithm.

1 BitBoost is hosted on GitHub: https://github.com/laudv/bitboost.

https://github.com/laudv/bitboost
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In practice, each individual tree is typically built in a greedy top-down man-
ner: the tree learning algorithm loops over all internal nodes in a depth-first
order starting at the root, and splits each node according to the best split con-
dition. The best split condition is found by identifying the feature with the best
split candidate. For example, the best split candidate for a numerical feature is
a value s that partitions the instance set – the data instances that sort to the
current node – into a left and right subset according to the condition x < s with
maximal gain, with x the feature value. Gain is defined as the difference in the
model’s loss before and after the split.

Competitive gradient boosting systems use a histogram-based approach to
generate a limited number of split candidates (e.g., 256). This means that for
each feature, the learner iterates over all remaining instances in the instance set
of the node to be split, and fills a histogram by collecting statistics about the
instances that go left given a split condition. The statistics include, depending
on the system, the sums of the first and optionally the second gradient, and
usually also an instance count. The aggregated statistics contain all the necessary
information to calculate the best split out of the (limited number of) candidate
splits. The complexity of this approach is O(F · (n+S)), with n the instance set
size, S the histogram size, and F the feature count.

We will compare our finding with three such competitive systems.
XGBoost [3] was introduced in 2016 and improved the scalability of learning
by introducing sparsity-aware split finding, a novel parallel architecture, and
the ability to take on out-of-core learning. LightGBM [7] was presented one
year later and proposed a new gradient weighted sampling technique (GOSS),
and a technique to reduce the number features by combining features that have
no non-zero values for the same instance (EFB). Lastly, CatBoost [10] improved
the accuracy of learning from high-cardinality categorical data by identifying the
problem of prediction shift and resolving it with a new method called ordered
boosting. All these systems are efficient, complete, and open-source libraries.

2.2 Bitsets and Bitslices

Bitsets and bitslices are two data structures that originated in the database
literature [2,11]. We wish to utilize these structures in the gradient boosting
algorithm with the goal of improving learning times.

A bitset is a simple yet effective bit-level data structure used to represent a
set of items. A bitset is a string of bits of length N . The ith bit is 1 if the ith

item is present in the set and 0 if it is not.
A bitslice is a data structure used to represent a sequence of unsigned inte-

gers. In a typical array of integers, all bits of an individual number are stored
consecutively: x1, x2, . . . , xN , where each xi is made up of B bits xB

i · · · x2
i x

1
i ,

with xB
i the most significant bit (MSB) and x1

i is the least significant bit (LSB).
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A bitslice transposes this structure; instead of consecutively storing all bits of a
single number, it groups bits with the same significance:

xB
1 xB

2 · · · xB
N︸ ︷︷ ︸

MSBs

, . . . , x2
1x

2
2 · · · x2

N , x1
1x

1
2 · · · x1

N︸ ︷︷ ︸
LSBs

,

There are two main advantages of using bitslices for small integers. First, bitslices
can efficiently store integers smaller than the minimally addressable unit – a
single byte or 8 bits on modern systems – because of its transposed storage
format. For example, naively storing 1000 3-bit integers requires 1000 bytes of
storage. A bitslice only needs 3× 125 = 375 bytes. Second, elements in a bitslice
can be efficiently summed. To sum up values in a bitslice, one adds up the
contributions of each bit group, optionally masking values with a bitset:

B∑

b=1

2b−1 × CountOnebits(xb
1x

b
2 · · · xb

N ∧ s1s2 · · · sN︸ ︷︷ ︸
bitset mask

) (3)

The CountOneBits operation, also known as the population count or popcount
operation, counts the number of one-bits in a bit string. This can be done very
efficiently using the vectorized Harley Seal algorithm [8], taking advantage of
AVX2 SIMD instructions operating on 32-byte wide registers.

3 BitBoost Algorithm

When learning a decision tree, the central subroutine is selecting which feature
to split on in a node. This entails evaluating the gain of all potential variable-
value splits and selecting the one with the highest gain. As in Eq. 2, a single tree
fits the negative gradients gi of L using least-squares. A split’s gain is defined
as the difference in the tree’s squared loss before and after the split. Splitting a
parent node p into a left and a right child l and r results in the following gain:

gain(p, l, r) =
∑

i∈Ip

(−gi + Σp/|Ip|)2 −
∑

i∈Il

(−gi + Σl/|Il|)2 −
∑

i∈Ir

(−gi + Σr/|Ir|)2

= −Σ2
p/|Ip| + Σ2

l /|Il| + Σ2
r/|Ir|, (4)

where I∗ gives the set of instances that are sorted by the tree to node ∗ and
Σ∗ =

∑
i∈I∗ gi is the sum of the gradients for node ∗. In other words, computing

the gain of a split requires three operations:

1. summing the gradients in both leaves;
2. performing (in)equality checks to partition the node’s instance sets based on

the split condition being evaluated; and
3. counting the number of examples in each node’s instance set.

Current implementations use 32- or 64-bit integers or floats to represent the
gradients, data, and example IDs in instance sets. Hence, the relevant quantities
in Eq. 4 are all computed using standard mathematical or logical operations.
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Our hypothesis is that employing native data types uses more precision than
is necessary to represent each of these quantities. That is, by possibly making
some approximations, we can much more compactly represent the gradients,
data, and instance sets using bitslice and bitset data structures. The primary
advantage of the bit-level representations is speed: we can train a tree much
faster by exploiting systems-level optimizations. First, we exploit instruction-
level parallelism to very efficiently compute the relevant statistics used in Eq. 4.
Second, by representing the data and instance sets using bitsets, important oper-
ations such as partitioning the data at a node can be translated to vectorized
bitwise logical operations, which are much faster to perform than comparison
operators on floats or integers.

3.1 Representing the Gradients Using Bitslices

When learning a GBDT model, each instance is associated with a real-valued
gradient value, which is updated after each iteration in the boosting process.
Existing gradient boosting systems typically use 32-bit, or even 64-bit floats
to represent these gradients. However, the individual trees tend to be shallow
to combat over-fitting. Consequently, rather than precisely partitioning data
instances into fine-grained subsets, a tree loosely groups instances with similar
gradient values. Intuitively, a gradient value represents an instance’s optimization
need, which is a measure of how much an instance requires a prediction update,
and the trees categorize instances according to this need.

Based on this observation, our insight is that storing the precise gradient
values may be superfluous, and it may be possible to represent these values using
fewer bits without affecting the categorization of the data instances. Therefore,
we explore discretizing the gradient values and storing the values in a bitslice. A
bitslice of width k can represent values 0, . . . , 2k −1. To map the gradient values
to the values that can be represented by the bitslice, the outer bounds bmin and
bmax, corresponding to the bitslice values 0 and 2k − 1 respectively, need to be
chosen first. Then, gradient values g can be mapped to bitslice values using a
simple linear transformation:

g ← round
(

min(bmax,max(bmin, g)) − bmin

bmax − bmin

)
. (5)
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Fig. 1. Gradient value densities and the relative frequency of the 4-bit discretized values
of the first and the last iterations. The values were produced by an unbalanced (1/5
positive) binary classification problem using binary log-loss. The gray vertical dotted
lines indicate which 16 values can be represented with the 4-bit discretization.
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The gradient values are thus mapped to a set of 2k linearly spaced points. An
example of this can be seen in Fig. 1.

Hence, the key question is how to select the boundaries for the discretization.
This is loss-function dependent, and we consider five of the most commonly used
loss functions:

– Least absolute deviation (LAD): This loss function is widely used in practice
due its better handling of outliers compared to least-squares. The LAD is:

L1(F (x), y) = |y − F (x)|, (6)

and its gradients are either −1, indicating that an estimation for a particular
instance should increase, or 1, indicating that an estimation should decrease.
This information can be expressed with a single bit in a bitslice of width 1,
yet existing systems use a full float to represent this.

– Least-squared loss: The gradient values do not have naturally defined bound-
aries, and the magnitude of the extreme values depends on the targets of the
regression problem. Interestingly, choosing boundary values on the gradients
of the least-squared loss makes it equivalent to Huber loss. For that reason,
we look at Huber loss for inspiration when choosing boundaries.

– Huber loss: Huber loss is often used instead of squared-loss to combine the
faster convergence of least-squared loss with the resilience to outliers of LAD.
It has a single parameter δ:

LH,δ(F (x), y) =

{
1
2 (y − F (x))2 if |y − F (x)| ≤ δ,

δ(|y − F (x)| − 1
2δ) otherwise.

(7)

The boundaries of the gradient values are naturally defined by the parameter
δ: bmin = −δ, the most negative gradient values, and bmax = δ, the most
positive gradient value. The value of δ is often taken to be the α quantile of
the residuals at iteration m, i.e., δm = quantileα{|yi − Fm−1(xi)|} [6].

– Binary log-loss: Given labels yi in {−1, 1}, binary log-loss is used for binary
classification problems and is defined as:

Llog(F (x), y) = log(1 + exp(−2yF (x))). (8)

This function’s gradient values are naturally confined to [−2, 2], so we choose
the boundary values accordingly. However, we have found that choosing more
aggressive boundaries (e.g., −1.25, 1.25) can speed up convergence.

– Hinge loss: Like binary log-loss, hinge loss is used for binary classification
problems. It is defined as:

Lhinge(F (x), y) = max(0, 1 − y F (x)). (9)

The possible (sub-)gradient values are −1, 0, and 1.
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3.2 Representing the Data Using Bitsets

The standard way to represent the data in GBDT implementations is to use
arrays of integers or floats. In contrast, we propose encoding the data using bit-
sets. How this is done depends on the feature. We distinguish among three feature
types: low-cardinality categorical, high-cardinality categorical, and numerical
features. To differentiate between low-cardinality and high-cardinality categori-
cal features, we define an upper limit K on a feature’s cardinality. A good value
of K is dataset specific, but we typically choose K between 8 and 32.

Low-Cardinality Categorical Features. We use a one-hot encoding scheme:
given a feature f with r possible values v0, . . . , vr, we create r length-N bitsets.
The ith position of the kth bitset is set to one if the ith value of f equals vk.
The resulting bitsets can be used to evaluate all possible equality splits: for any
equality split f = vj , we compute the instance set of the left subtree by applying
the logical AND to the current instance set and bitset j (see Fig. 2, right).

High-Cardinality Features. This requires more work as considering all pos-
sible equality splits has two main downsides. First, creating a bitset for each
value would negate both the space and computational efficiency of using this
representation. Second, because we consider binary trees, splitting based on an
equality against a single attribute-value would tend to result in an unbalanced
partition of the instance set, which may reduce the quality of the trees. There-
fore, we pre-process these features and group together feature values with similar
mean gradient statistics and construct one bitset per group. The mean gradient
statistic sj of a categorical value vj is defined as the summed gradient values gi

for all instances i that have value vj . Then, we compute K quantiles qk of sj

and use these to partition the categorical feature values. A bitset is generated
for each quantile qk. The kth bitset has a one for each instance i that has value
vj and sj < qk. Because the gradient values change at every iteration, we repeat
this grouping procedure every t iterations of the boosting procedure, where t is a
user-defined parameter. We refer to this parameter t as the pre-processing rate.
We found that a value of 20 is a reasonable default.

Numerical Features. We treat these in an analogous manner as the high-
cardinality categorical features. We estimate K weighted quantiles qk using the
absolute gradient values as weights. We use the quantiles as ordered split can-
didates, and generate K bitsets such that bitset k has a one in the ith position
if instance i’s value is less than qk. Like in the high-cardinality case, we perform
this transformation and reconstruct the bitsets every t iterations of the boosting
procedure, where t is the pre-processing rate.

3.3 Representing an Instance Set Using a Bitset

The instance set Ip of a node p in a tree contains the training data instances
that satisfy the split conditions on the path to node p from the root. In existing
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f1 < 5[3, 4, 8, 9]

[3, 4] [8, 9] AND ANDNOT

Fig. 2. An illustration of instance lists versus instance bitsets. The dataset comprises
10 instances indexed by 0, 1, . . . , 9. Values of feature f1 are 2, 8, 5, 4, 3, 6, 1, 2, 6, 8. The
bitset representations of the instance sets are indicated below the node boxes, dark
squares are 1s, others are 0s. The instance list [3, 4, 8, 9] using 64-bit integers requires
256 bits, whereas the bitset representation uses only 10 bits.

systems, these instance sets are stored as an array of indexes into the input
data, i.e., they are instance lists. We introduce the use of instance bitsets for
this purpose. An instance bitset represents the instance set by having a 1 for
instances that are in the instance set, and a zero for others. Figure 2 illustrates
the difference on the left.

We have to contend with one subtlety when using a bitset to represent the
instance set: the length of the bitset is always N , which is the number of training
examples. This is problematic when partitioning the data at each node. Assum-
ing a perfectly balanced tree, the size of an instance set halves at each level of
the tree. The length of the bitset remains fixed, but the number of zeros, which
represent examples not filtered to the node in question, in the bitset increases.
Constructing all nodes of a tree at depth d requires passing over 2d length-N
bitsets, for a total cost of O(2dN). In contrast, when using a list-based represen-
tation of the instance set, the length of the list halves at each level of the tree.
Hence, constructing all nodes at depth d has a total cost of O(N). Computa-
tionally, it is much faster to process a bitset than the list-based representation,
even if the list is much shorter than the bitset. The trade-off is that we have to
process more bitsets. As the tree gets deeper, the number of bitsets and the fact
that each one’s length is equal to the number of training examples will eventually
make this representation slower than using a list-based representation.

Fortunately, we can exploit the fact that as the depth of the tree increases,
the bitsets become progressively sparser by applying a compression scheme to
the bitsets. Many compression schemes exist for bitsets, such as Concise [4] and
Roaring Bitmaps [1], but most of these schemes are optimized for the general
use-case. We have a specific use case and wish to optimize for speed more than for
storage efficiency. Therefore, we apply the following simple compression scheme.

We view each bitset as a series of 32-bit blocks. An uncompressed bitset
consists of a single array of 32-bit blocks which explicitly stores all blocks in
the bitset. A compressed bitset comprises two arrays: Identifiers, which stores
sorted 32-bit identifiers of the non-zero blocks, and Blocks, which stores the
bit-values of the non-zero 32-bit blocks. For any block i in the bitset, either
there exists a j such that Identifiers(j) = i and the bits of the ith block are
Blocks(j), or the ith block consists of zero-bits. There are two main reasons
why we choose 32-bit blocks: (1) 64-bit blocks are too unlikely to be all-zero,
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and (2) it is hard to efficiently integrate smaller 8- or 16-bit blocks into the
CountOneBits routine, which heavily relies on SIMD vectorization.

When constructing a tree, after having split a node, we compare the ratio
of the number of zero blocks and total number of blocks with a configurable
threshold. If the threshold is exceeded, the instance set of the child node is
compressed. The threshold determines how aggressively compression is applied.

3.4 Finding the Best Split

Algorithm 2 shows our split finding algorithm based on bitsets and bitslices.
As is also the case in XGBoost, LightGBM, and CatBoost, it only considers
binary splits. Analogous to the classical histogram-based version, it loops over
all features f and initializes a new histogram Hf with bins for each candidate
split. The main difference is the inner for-loop. The classical algorithm loops
over all instances in the instance set individually, and accumulates the gradient
values and instance counts in the histogram bins. In contrast, our algorithm
loops over the split candidates which are the bitset representations we generated
(see Subsect. 3.2). In the body of the loop, the statistics required to evaluate
the gain are computed: the sum of the discretized gradients Σl of the instances
going left is computed using Eq. 3, and the number of instances |Il| going left is
computed using the fast CountOneBits procedure.

Input: Instance set Ip and gradient sum Σp of node p, and gradient bitslice G.
for all features f do

Hf = InitializeNewHist(f )
for all candidate splits s of f with accompanying bitset Bs do

Σl = BitsliceSum(G, Bs ∧ Ip) /* Equation 3 */

|Il| = CountOneBits(Bs ∧ Ip)

Hf [s] = (Σl, |Il|) /* Store relevant statistics of s in Hf */

end

end

Find split s∗ with maximum gain in all Hf by evaluating
Σ2

l
|Il| +

(Σp−Σl)
2

|Ip|−|Il| − Σ2
p

|Ip| .
return (s∗, Bs∗ , Σl∗ , Σp − Σl∗)

Algorithm 2: Bit-level split finding.

The nested loops fill the histogram Hf for each feature f . Once all histograms
are constructed, the best split s∗ is determined by comparing the gain of each
split. Because we only consider binary splits, we use the property that Ir = Ip−Il,
and thus |Ir| = |Ip| − |Il|, and Σr = Σp − Σl.

For each feature and each feature split candidate, we perform the
BitsliceSum and CountOneBits operations which are linear in the number of
instances. The complexity of the classical algorithm does not include the num-
ber of split candidates. This discrepancy is mitigated in two ways. First, the
CountOneBits operation, which also forms the basis for BitsliceSum, is much
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faster than iterating over the instances individually. Second, we only consider
a small number of candidate splits by pre-processing the numerical and high-
cardinality categorical features. Note that the classical algorithm does not ben-
efit from a small number of candidate splits, as it can fill the histograms from
Algorithm 2 in a single pass over the data.

3.5 Overview of the BitBoost Algorithm

Algorithm 1 gave an overview of the generic boosting algorithm. It minimizes
the loss function L by iteratively constructing trees that update the predictions
in the direction of the negative gradient. Bitboost adds three additional steps to
this algorithm. First, the bitsets for the low-cardinality categorical features are
generated once at the start of the learning process and reused thereafter. Second,
at the beginning of each iteration the gradients are discretized using a certain
number of discretization bits and stored in a bitslice. Third, every t iterations,
the data bitsets of the high-cardinality categorical and numerical features are
regenerated. The parameter t expresses the pre-processing rate.

Input: Gradient bitslice G
stack = {(I1,

∑N
i=1 gi)} /* Root node; I1 is all-ones instance bitset */

while popping (Ip, Σp) from stack succeeds do
if p is at maximum depth then

ChooseLeafValue(p)
else

(s∗, Bs∗ , Σl, Σr) = FindBestSplit(Ip, Σp, G) /* Algorithm 2 */

Il = Ip ∧ Bs∗ and Ir = Ip ∧ ¬Bs∗ /* Instance sets of children */

Apply compression to Il and/or Ir if threshold exceeded.
Push(stack, (Ir, Σr)) and Push(stack, (Il, Σl))

endif

end
Algorithm 3: BitBoost tree construction algorithm.

The individual trees are built in a standard, greedy, top-down manner, as
shown in Algorithm 3. The algorithm maintains a stack of nodes to split, which
initially only contains the root node. These nodes are split by the best split
condition, which is found using Algorithm 2, and the instance sets of the children
are generated using simple logical operations. Compression is applied before child
nodes are pushed onto the stack when the ratio of zero blocks over the total
number of blocks exceeds the configurable threshold.

Leaf nodes hold the final prediction values. To pick the best leaf values, as
ChooseLeafValue does in Algorithm 3, we use the same strategy as Friedman [6].
For LAD, we use the median gradient value of the instances in the instance set.
For least-squares, the values Σp/|Ip| would be optimal if the gradient values gi

were exact. This is not the case, so we recompute the mean using the exact
gradients. We refer to Friedman’s work for the Huber loss and binary log-loss.
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4 Experiments

First, we empirically benchmark BitBoost against state-of-the-art systems. Sec-
ond, we analyze the effect of the four BitBoost-specific parameters on perfor-
mance.

4.1 Comparison with State-of-the-Art Systems

In this first experiment we compare our system, BitBoost, to three state-of-the-
art systems: XGBoost, CatBoost and LightGBM.

Datasets and Tasks. We show results for four benchmark datasets that have
different characteristics: (1) Allstate,2 an insurance dataset containing 188k
instances, each with 116 categorical and 14 continuous features. (2) Bin-
MNIST,3, a binary derivative of the famous MNIST dataset of 70k handwritten
digits. We converted its 784 features into black and white pixels and predict if a
number is less than 5. This dataset represents BitBoost’s best case scenario, as
all features are binary. (3) Covertype,4 a forestry dataset with 581k instances,
each with 44 categorical and 10 continuous features. We consider two classifica-
tion tasks: for CovType1, we predict lodgepole-pine versus all (balanced, 48.8%
positive); for CovType2, we predict broadleaf trees versus rest (unbalanced, 2.1%
positive). (4) YouTube,5 a dataset with YouTube videos that are trending over a
period of time. Numerical features are log-transformed, date and time features
are converted into numerical features, and textual features are converted into
373 bag-of-word features (e.g. title and description). This results in a dataset
with 121k instances, each with 399 features. We predict the 10-log-transformed
view count, i.e., we predict whether a video gets thousands, millions, or billions
of views. We use 5-fold cross validation, and average times and accuracies over
all folds.

Settings. Most of the parameters are shared across the four systems and only
a few of them are system-specific: (1) Loss function, we use binary log-loss and
hinge loss for classification, and least-squares, Huber loss and LAD for regres-
sion. Not all systems support all loss functions: XGBoost does not support Huber
loss or LAD. CatBoost does not support Huber loss or hinge loss. LightGBM
does not support hinge loss. (2) Learning rate is a constant factor that scales
the predictions of individual trees to distribute learning over multiple trees. We
choose a single learning rate per problem and use the same value for all systems.
(3) Maximum tree depth limits the depth of the individual trees. We use depth
5 for Allstate, 6 for Covertype and Bin-MNIST, and 9 for YouTube. (4) Bagging
fraction defines the fraction of instances we use for individual trees. By applying

2 https://www.kaggle.com/c/allstate-claims-severity.
3 http://yann.lecun.com/exdb/mnist.
4 https://archive.ics.uci.edu/ml/datasets/covertype.
5 https://www.kaggle.com/datasnaek/youtube-new.

https://www.kaggle.com/c/allstate-claims-severity
http://yann.lecun.com/exdb/mnist
https://archive.ics.uci.edu/ml/datasets/covertype
https://www.kaggle.com/datasnaek/youtube-new
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bagging, better generalizing models are build faster. (5) Feature fraction defines
the fraction of features we use per tree. CatBoost only supports feature selection
per tree level. (6) Minimum split gain reduces over-fitting by avoiding splits that
are not promising. We use a value of 10−5 for all systems. (7) Maximum car-
dinality K sets the maximum cardinality of low-cardinality categorical features
(BitBoost only). (8) Pre-processing rate t sets the rate at which we execute the
pre-processing procedure. This is used to avoid pre-processing numerical and
high-cardinality features at each iteration (BitBoost only).

For XGBoost, we use the histogram tree method since it is faster; for Light-
GBM, we use the GBDT boosting type; and for CatBoost we use the plain boost-
ing type. We disable XGBoost’s and LightGBM’s support for sparse features to
avoid unrelated differences between the systems. To measure the efficiency of
the tree learning algorithms rather than the multi-threading capabilities of the
systems, we disable multi-threading and run all experiments on a single core.

Parameter sets were chosen per dataset based on the performance on a vali-
dation set and the reported accuracies were evaluated on a separate test set. We
provide results for two different parameter sets for BitBoost. BitBoostS aims to
achieve the best possible accuracies, whereas BitBoostS prioritizes speed. The
number of discretization bits, i.e., the precision with which we discretize the
gradients, is chosen depending on the problem. Binary log-loss tends to require
at least 4 or 8 bits. Hinge loss requires only 2 bits, but is less accurate. We use 4
or 8 bits for least-squares, 2 or 4 for Huber loss. Both least-squares and Huber
behave like LAD when using a single bit, the only difference being the lack of
resilience to outliers for least-squares. More extensive results and the specific
parameter values can be found in the BitBoost repository.

Table 1. Comparison of BitBoost with three state-of-the-art systems. Time is in sec-
onds. Loss is expressed in binary error for classification and mean absolute error (MAE)
for regression. The BitBoostA row shows the results when choosing accuracy over speed.
The BitBoostS row shows the results when choosing speed over accuracy, staying within
reasonable accuracy boundaries.

Allstate Covtype1 Covtype2 Bin-MNIST YouTube

Time Loss Time Loss Time Loss Time Loss Time Loss

BitBoostA 4.8 1159 17.1 12.0 10.7 0.79 4.5 2.78 14.3 0.07

BitBoostS 1.0 1194 5.4 14.9 7.2 1.02 1.9 3.52 2.5 0.12

LightGBM 12.3 1156 24.1 11.9 21.0 0.71 24.8 2.86 35.0 0.07

XGBoost 11.5 1157 37.0 10.8 35.3 0.63 24.7 2.66 24.9 0.07

CatBoost 82.6 1167 58.1 13.1 52.9 0.91 16.5 3.23 33.6 0.11

Results. Table 1 shows a comparison of the training times and accuracies. On
the Allstate dataset, we perform two to over ten times faster than LightGBM
and XGBoost, while still achieving accuracies that are comparable to the state of
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the art. The results for the Covertype dataset show that BitBoost can also han-
dle numerical and high-cardinality features effectively. The Bin-MNIST dataset
illustrates that BitBoost is able to construct competitively accurate models using
only 20% of the time, and, when giving up some accuracy, can achieve speed-ups
of a factor 10. The YouTube dataset requires deeper trees because of its sparse
bag-of-word features only splitting off small chunks of instances. The results
show that BitBoost also performs well in this case.

In general, BitBoost is able to effectively explore the trade-off between accu-
racy and speed. Besides the usual parameters like bagging fraction and feature
sampling fraction, BitBoost provides one main additional parameter unavailable
in other systems: the number of discretization bits. This parameter controls the
precision at which BitBoost operates, and together with a suitable loss function
like LAD or hinge loss, enables trading accuracy for speed in a novel way.

4.2 Effect of the Number of Bits Used to Discretize the Gradient

1 2 4 8

Num. of discretization bits

1

1.5

2.0
2.5

1 2 4 8

Num. of discretization bits

1

1.5

2
2.5 Allstate

Covertype
B-MNIST
YouTube

Time relative to 1 bit Test metric rel. to 8 bits

Fig. 3. The effect of the width of bitslice used to discretize the gradient on the model
construction time (left) and the performance metric (right). The run times are rela-
tive to the fastest option (i.e., one-bit discretization), meaning higher is slower. The
performance metric values are relative to the best performing option (i.e., eight-bit
discretization), meaning higher is less accurate.

The number of discretization bits used in the bitslice that stores the gradient
values will affect BitBoost’s performance. Figure 3 shows the effect of using 1,
2, 4 and 8 bits on run time and predictive performance. The trade-off is clear:
using fewer bits decreases the training time, but using more bits improves the
predictive performance. Bin-MNIST has the largest effect in terms of run time
because it only contains binary features. Hence, there is no work associated
with repeatedly converting high-cardinality or real-valued features into bitsets,
meaning that the extra computational demand arising from the bigger bitslice
has a larger percentage effect on the run time. Note that Allstate’s accuracy
is unaffected. This is due to the use of LAD loss whose gradient values can be
stored with a single bit. We used Huber loss for YouTube, which was able to
guide the optimization process effectively using only 2 bits.
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4.3 Effect of the Low-Cardinality Boundary K

The parameter K determines which categorical features are considered to be low-
cardinality. It will affect run time as higher values of K require considering more
split candidates. However, smaller values of K also introduce overhead in terms
of the pre-processing needed to cope with high-cardinality attributes, that is,
grouping together similar values for an attribute and generating the associated
bitsets. K may also affect predictive performance in two ways: (1) some high-
categorical features may have more natural groupings of values than others, and
(2) it controls the number of split candidates considered for numerical features.

8 16 32 64 128

Maximum cardinality K
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1.5

8 16 32 64 128

Maximum cardinality K
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YouTube

Time relative to K = 32 Test metric rel. to K = 32

Fig. 4. The effect of K on the run time times relative to K = 32 (left); and the
accuracies, also relative to K = 32 (right).

Figure 4 shows the effect of varying K on the run time and predictive per-
formance. As K increases, so does the run time, indicating that the extra effort
associated with considering more split candidates is more costly than the addi-
tional pre-processing necessary to group together similar feature values. Inter-
estingly, the value of K seems to have little effect on the predictive performance
for the Allstate dataset, meaning that considering more fine-grained splits does
not produce better results. The Covertype and YouTube datasets seem to ben-
efit from a higher K value, but the increase in accuracy diminishes for values
larger than 32. As the Bin-MNIST dataset only has binary features and does
not require any pre-processing, the run time and predictive performance is unaf-
fected by K. In terms of accuracy, a good value of K is likely to be problem
specific.

4.4 Effect of Compressing the Instance Bitset on Run Time

Compressing the instance bitset affects run time and involves a trade-off. Always
compressing will introduce unnecessary overhead at shallow levels of the tree
where there is little sparsity in the instance bitsets. Conversely, never compress-
ing will adversely affect run time when the tree is deeper. To quantify its effect,
we measure model construction time as a function of the compression threshold.
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Fig. 5. The model construction time as a function of the compression threshold, which
varies from 0.0 (always apply compression) to 1.0 (never apply compression). The time
is relative to a threshold of 0.5, which was used in all experiments.

Figure 5 plots the run times for compression thresholds ranging from 0.0 (always
apply compression) to 1.0 (never apply compression). The trade-off is clearly vis-
ible for Covertype and Bin-MNIST (left). Allstate only considers trees of depth
5, which causes instance sets to be more dense on average, making compression
less effective. This is confirmed by the results for YouTube that are plotted for
different tree depths (right). Shallower trees do not benefit from compression,
whereas deeper trees with sparser instance sets do.

4.5 Effect of Pre-processing Rate

BitBoost reconverts high-cardinality and continuous features into bitmaps every
t iterations. Figure 6 shows how the model construction time and predictive
performance vary as a function of t on the Covertype, Allstate and YouTube

1 5 10 20 30 40 50

Pre-processing rate

0.4

0.6

0.8

1.0

1 5 10 20 30 40 50

Pre-processing rate

1.0

1.1
Allstate
Covertype
YouTube

Time relative to 1 Test metric rel. to 1

Fig. 6. The effect of the pre-processing rate t on model construction time (left) and
predictive performance (right). The results are shown relative to t = 1.
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datasets. Bin-MNIST is not included as it has neither high-cardinality nor
continuous features and thus requires no pre-processing. As expected, run time
drops as t increases. Interestingly, it plateaus for values of t ≥ 10. For Allstate
and YouTube, predictive performance is unaffected by this parameter. However,
performance slightly degrades for the Covertype dataset for higher values of t.

5 Conclusion

We have introduced BitBoost, a novel way of integrating the bitset and bitslice
data structures into the gradient boosting decision tree algorithm. These data
structure can benefit from bit-level optimizations in modern CPUs to speed
up the computation. However, bitslices cannot be used as is in existing gradient
boosting decision trees. BitBoost discretizes the gradients such that it has only a
limited effect on the predictive performance. The combination of using a bitslice
to store the gradient values and representing the data and the instance sets as
bitsets reduces the core problem of learning a single tree to summing masked
gradients, which can be solved very efficiently. We have empirically shown that
this approach can speed up model construction 2 to 10 times compared to state-
of-the-art systems without harming predictive performance.
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Abstract. Uplift modeling is an approach to machine learning which
allows for predicting the net effect of an action (with respect to not
taking the action). To achieve this, the training population is divided
into two parts: the treatment group, which is subjected to the action,
and the control group, on which the action is not taken. Our task is to
construct a model which will predict the difference between outcomes in
the treatment and control groups conditional on individual objects’ fea-
tures. When the group assignment is random, the model admits a causal
interpretation. When we assume linear responses in both groups, the
simplest way of estimating the net effect of the action on an individual is
to build two separate linear ordinary least squares (OLS) regressions on
the treatment and control groups and compute the difference between
their predictions. In classical linear models improvements in accuracy
can be achieved through the use of so called shrinkage estimators such
as the well known James-Stein estimator, which has a provably lower
mean squared error than the OLS estimator. In this paper we investigate
the use of shrinkage estimators in the uplift modeling problem. Unfortu-
nately direct generalization of the James-Stein estimator does not lead to
improved predictions, nor does shrinking treatment and control models
separately. Therefore, we propose a new uplift shrinkage method where
estimators in the treatment and control groups are shrunk jointly so
as to minimize the error in the predicted net effect of the action. We
prove that the proposed estimator does indeed improve on the double
regression estimator.

1 Introduction

Selecting observations which should become targets for an action, such as a
marketing campaign or a medical treatment, is a problem of growing importance
in machine learning. Typically, the first step is to predict the effect of the action
(response) using a model built on a sample of individuals subjected to the action.
A new observation is classified as suitable for the action if the predicted response
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is above a certain threshold. Unfortunately this approach is not correct because
the response that would have been observed had the action not been taken is
ignored.

To clarify the problem, let us give a simple example. Suppose that we are
owners of a shop which sells chocolate bars. In order to increase the sales of this
product we give discounts to customers. Consider two cases. The first customer
would have spent $100 on chocolate after receiving the discount and $95 in a
situation when it was not given to him. The second one will spend $50 and
$10, respectively. When we base our predictions only on a sample of customers
subjected to the action (i.e. given the discount), we will prefer the first customer,
but when we compare the amounts of money spent in cases of receiving and not
receiving the discount, we will be disposed to send it to the second customer.

Clearly, the proper way to select targets for an action is to consider the
difference between yT , the response in case the individual is subjected to the
action (treated) and yC , the response when the individual is not subjected to
the action (control). Unfortunately these two pieces of information are never
available to us simultaneously. Once we send the discount we cannot ‘unsend’
it. This is known as the Fundamental Problem of Causal Inference [28].

Uplift modeling offers a solution to this problem based on dividing the pop-
ulation into two parts: treatment: subjected to the action and control on which
the action is not taken. This second group is used as background thanks to which
it is possible to partition the treatment response into a sum of two terms. The
first is the response, which would have been observed if the treated objects were,
instead, in the control group. The second is the additional effect observed only
in the treatment group: the effect of the action. Based on this partition it is pos-
sible to construct a model predicting the desired difference between responses in
the treatment and control groups [22].

Let us now introduce the notation used throughout the paper. We begin by
describing the classical ordinary least squares regression. Only facts needed in
the remaining part of the paper are given, full exposition can be found e.g. in [2].
We will assume that the predictor variables are arranged in an n × p matrix X
and the responses are given in an n-dimensional vector y. We assume that y is
related to X through a linear equation

y = Xβ + ε,

where β is an unknown coefficient vector and ε is a random noise vector with
the usual assumptions that E εi = 0, Var εi = σ2 and the components of ε are
independent of each other. Moreover, we will make the assumption that the
matrix X is fixed, which is frequently made in regression literature [2]. Our goal
is to find an estimator of β which, on new test data Xtest, ytest, achieves the
lowest possible mean squared error

MSE(β̂) = E ‖ytest − Xtestβ̂‖2, (1)

where β̂ is some estimator of β, and the expectation is taken over εtest and
β̂. The most popular estimator is the Ordinary Least Squares (OLS) estimator
obtained by minimizing the training set MSE ‖y − Xβ̂‖2, given by



Shrinkage Estimators for Uplift Regression 609

β̂ = (X ′X)−1X ′y, (2)

where ′ denotes matrix transpose. In the rest of the paper β̂ without additional
subscripts will always denote the OLS estimator. It is well known that β̂ is
unbiased, E β̂ = β, and its covariance matrix is σ2(X ′X)−1 [2].

Let us now move to the case of regression in uplift modeling which is based
on two training sets: treatment and control. We will adopt the convention that
quantities related to the treatment group are denoted with superscript T , quan-
tities related to the control group with a superscript C, and quantities related to
the uplift itself with superscript U . Thus, in our context we will have two training
sets XT , yT and XC , yC . Additionally denote X = [XT ′|XC ′]′, y = [yT ′|yC ′]′,
i.e. the dataset obtained by concatenating treatment and control data records.

In this paper we will make an assumption (frequently made in statistical
literature when linear models are considered), that responses in both groups are
linear:

yC = XCβC + εC ,

yT = XT βT + εT = XT βC + XT βU + εT .

The additional effect observed in the treatment group, XT βU , is the quantity of
interest and our goal, therefore, is to find an estimator of βU . The easiest way to
obtain such an estimator is to construct separate Ordinary Least Squares (OLS)
estimators of βT and βC on treatment and control groups respectively, and to
calculate the difference between them:

β̂U
d = β̂T − β̂C . (3)

This estimator is called the double regression estimator [9]. It is easy to show
that the estimator is an unbiased estimator of βU [9].

In classical regression analysis there are several ways of lowering the predic-
tive error of the ordinary least squares model by reducing its variance at the
expense of introducing bias [2]. One class of such estimators are shrinkage esti-
mators which scale the ordinary least squares estimate β̂ by a factor α < 1. The
best known of such estimators is the James-Stein estimator [27]. Another choice
is a class of shrinkage estimators based on minimizing predictive MSE [19].

The goal of this paper is to find shrinkage estimators for uplift regression,
whose accuracy is better than that of the double regression estimator. We may
shrink the treatment and control coefficients separately obtaining the following
general form of uplift shrinkage estimator

β̂U
αT ,αC = αT β̂T − αC β̂C .

with an appropriate choice of αT and αC .
We introduce two types of such estimators, the first following the James-Stein

approach, the second the MSE minimization approach. For each type we again
introduce to sub-types: one in which treatment and control shrinkage factors
αT and αC are found independently of each other (these are essentially double
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shrinkage models) and another which in shrinkage factors are estimated jointly
in order to produce the best possible estimates of βU . We demonstrate experi-
mentally that MSE minimization based shrinkage with joint optimization of αT

and αC gives the best uplift shrinkage estimator. We also formally prove that
under certain assumptions it dominates the double regression estimator β̂U

d .

1.1 Literature Overview

We will now review the literature on uplift modeling. Literature related to shrink-
age estimators will be discussed in Sect. 2.

Uplift modeling is a part of broader field of causal discovery and we will
begin by positioning it within this field. The goal of causal discovery is not
predicting future outcomes, but, instead, modeling the effects of interventions
which directly change the values of some variables [20]. One can distinguish
two general approaches to causal discovery: one based on purely observational
data [20,26] and another one, in which the action being analyzed has actively
been applied to a subgroup of the individuals.

Only the second approach is relevant to this paper. Large amount of related
research has been conducted in the social sciences. However, their main research
focus is on the cases where treatment assignment is nonrandom or biased [5,7].
Examples of methods used are propensity score matching or weighting by
inverse probability of treatment [5,7]. Unfortunately, the success of those method
depends on untestable assumptions such as ‘no unmeasured confounders’. Only
random treatment assignment guarantees that the causal effect is correctly iden-
tified. Most of those methods use double regression and do not try to improve the
estimator itself. Uplift modeling differs from those methods since it is focused on
obtaining the best possible estimate of an action’s effect based on a randomized
trial.

Most uplift modeling publications concern the problem of classification. The
first published methods were based on decision trees [22,24]. They used modified
splitting criteria to maximize difference in responses between the two groups.
Similar methods have been devised under the name of estimating heteroge-
nous treatment effects [1,8]. Later works extend these methods to ensembles
of trees [4,25]. Work on linear uplift models includes approaches based on class
variable transformation [10,11,15] used with logistic regression and approaches
based on Support Vector Machines [13,14,29]. These methods can be used only
with classification problems. Uplift regression methods were proposed in [9]. The
paper also contained a theoretical analysis comparing several regression models.

The paper is organized as follows. In Sect. 2 we discuss shrinkage estimators
used in classical linear regression. In Sect. 3 we derive four uplift shrinkage esti-
mators and prove that, under certain assumptions, one of them dominates the
double regression model. In Sect. 4 we evaluate the proposed estimators on two
real-life datasets and conclude in Sect. 5.
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2 Shrinkage Estimators for Linear Regression

We now present a short review of shrinkage estimators for classical ordinary least
squares models which is sufficient for understanding the results in Sect. 3.

2.1 James-Stein Estimator

The famous James-Stein estimator has been presented in early 60s [27]. The
authors proved that it allows for obtaining estimates with lower mean squared
error than maximum likelihood based methods, which came as a shock to the
statistical community. More specifically, let Z ∼ N(μ, I) be a p-dimensional
random vector whose mean μ is to be estimated based on a single sample z.
The best unbiased estimator is μ̂ = z. However, it can be proven [27] that the
estimator

μ̂JS1 =
(

1 − (p − 2)
||μ̂||2

)
μ̂ (4)

has a lower mean squared error E ‖μ̂JS1 −μ‖2 ≤ E ‖μ̂−μ‖2. The biggest gain is
achieved for μ = 0 and decreases when the norm of μ becomes large. To mitigate
this effect, a modified shrinkage estimator was proposed by Efron [18]:

μ̂JS2 =
(

1 − (p − 3)
||μ̂ − μ̂||2

)
(μ̂ − μ̂) + μ̂, (5)

where μ̂ = ( 1
n

∑p
i=1 μ̂i)(1, . . . , 1)′ is a column vector with each coordinate equal

to the mean of μ̂’s coordinates.
The James-Stein estimator can be directly applied to the OLS estimator

of regression coefficients β̂, after taking into account their covariance matrix
σ2(X ′X)−1 [3, Chapter 7]:

β̂JS1 =

(
1 − (p − 2)

β̂′(σ2(X ′X)−1)−1β̂

)
β̂. (6)

If σ2 is unknown, we can substitute the usual estimate σ̂2 = r′r
n−p , where r is the

vector of residuals. It can be shown that β̂JS1 has smaller predictive error than
the standard OLS estimator [3, Chapter 7]. Adapting the trick given in Eq. 5 we
get yet another estimator

β̂JS2 =

(
1 − (p − 3)

(β̂ − β̂)′(σ2(X ′X)−1)−1(β̂ − β̂)

)
(β̂ − β̂) + β̂, (7)

where β̂ is defined analogously to μ̂ above. This form will be used to obtain a
shrinked uplift regression estimator.
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2.2 Shrinkage Estimators Based on Optimizing Predictive MSE

In [19] Ohtani gives an overview of another family of shrinkage estimators which
improve on the OLS estimator. Their form is similar to the James-Stein estima-
tor, but the shrinkage parameter is now obtained by minimizing the predictive
mean squared error. Such estimators were first described in [6]. In our paper we
use the following shrinkage factor proposed in [23]

α =
β′(X ′X)β

β′(X ′X)β + σ2
. (8)

Notice that it depends on the unknown true coefficient vector β and error vari-
ance σ2. Using the standard practice [19] of substituting OLS estimates β̂ and
σ̂2 = r′r

n−p (where r is the residual vector) we obtain an operational estimator

β̂SMSE =
β̂′(X ′X)β̂

β̂′(X ′X)β̂ + r′r
n−p

β̂, (9)

where SMSE stands for Shrinkage based on minimizing MSE. In [12] the MSE
of this estimator was computed and sufficient conditions for it to dominate the
OLS estimator were provided.

3 Shrinkage Estimators for Uplift Regression

In this section we present the main contribution of this paper: shrinkage esti-
mators for uplift regression. We begin by deriving James-Stein style estimators
and later derive versions based on minimizing predictive MSE.

3.1 James-Stein Uplift Estimators

The most obvious approach to obtaining a shrinked uplift estimator is to use two
separate James-Stein estimators in Eq. 3, in place of OLS estimators β̂T and β̂C .
We obtain the following uplift shrinkage estimator

β̂U
JSd = β̂T

JS2 − β̂C
JS2. (10)

The d in the subscript indicates a ‘double’ model. This approach is fairly trivial
and one is bound to ask whether it is possible to obtain a better estimator
by directly shrinking the estimator β̂U

d given by Eq. 3. To this end we need to
estimate the variance of β̂U

d and apply it to Eq. 7.
We note that β̂U

d is the difference of two independent random vectors, so the
variance of β̂U

d is the sum of variances of β̂T and β̂C

Var β̂U
d = σT 2

(XT ′
XT )−1 + σC2

(XC ′
XC)−1.
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Substituting the usual estimators of σT 2 and σC2 in the expression above and
using it in Eq. 7 we obtain following estimator:

β̂U
JS =

(p − 3)

(β̂U
d − β̂U

d )′V −1(β̂U
d − β̂U

d )
(β̂U

d − β̂U
d ) + β̂U

d , (11)

where V = rT ′
rT

nT −p
(XT ′

XT )−1 + rC ′
rC

nC−p
(XC ′

XC)−1, rT , rC are OLS residuals in,

respectively, treatment and control groups, and β̂U
d = ( 1

n

∑p
i=1(β̂

U
d )i)(1, . . . , 1)′.

3.2 MSE Minimizing Uplift Estimators

We may also adapt the MSE-minimizing variant of shrinkage estimators [19] to
the uplift modeling problem. The first approach is to use the shrinkage estimator
given in Eq. 9 separately for βT and βC and construct a double uplift estimator:

β̂U
SMSEd = β̂T

SMSE − β̂C
SMSE . (12)

The d in the subscript indicates a ‘double’ model.
Another possibility is to estimate αT , αC jointly such that the mean squared

prediction error is minimized. This is an entirely new method and the main
contribution of this paper. Recall from Sect. 1 that the general shrinked double
uplift estimator is

β̂U
αT ,αC = αT (XT ′

XT )−1XT ′
yT − αC(XC ′

XC)−1XC ′
yC ,

where αT and αC are the shrinkage factors. Since there is no explicit value of
‘uplift response’ which can be observed we will define the analogue of the MSE
as E ‖Xtestβ

U − Xtestβ̂
U
αT ,αC‖2 where βU is the true parameter vector, Xtest is

some test data, and the expectation is taken over β̂U
αT ,αC . We have

E ‖Xtestβ
U − Xtestβ̂

U
αT ,αC‖2

= E Tr
{

(βU − β̂U
αT ,αC )′X ′

testXtest(βU − β̂U
αT ,αC )

}

= E Tr
{

(X ′
testXtest)(βU − β̂U

αT ,αC )(βU − β̂U
αT ,αC )′

}

= Tr
{

(X ′
testXtest)

(
Var β̂U

αT ,αC + (βU − E β̂U
αT ,αC )(βU − E β̂U

αT ,αC )′
)}

= (E β̂U
αT ,αC − βU )′(X ′

testXtest)(E β̂U
αT ,αC − βU )

+ Tr
{

(X ′
testXtest)

(
(αT )2 Var β̂T + (αC)2 Var β̂C

)}
, (13)

where E β̂U
αT ,αC = αT βT − αCβC , the second equality is obtained by changing

the multiplication order within the trace, and the third follows from the bias-
variance decomposition. Variance of β̂U

αT ,αC can be decomposed since it is the
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sum of two independent components. Differentiating with respect to αT and
equating to zero we get

0 = 2αT βT ′
(X ′

testXtest)βT − 2αCβT ′
(X ′

testXtest)βC

− 2βT ′
(X ′

testXtest)βU + 2αT Tr((X ′
testXtest)Var(β̂T )).

Analogously for αC we obtain

0 = 2αCβC ′
(X ′

testXtest)βC − 2αT βT ′
(X ′

testXtest)βC

+ 2βC ′
(X ′

testXtest)βU + 2αC Tr((X ′
testXtest)Var(β̂C)).

Denote W = X ′
testXtest. We can write the above system of equations for αT and

αC in matrix form[
βT ′

WβT + Tr(W Var(β̂T )) −βT ′
WβC

−βC ′
WβT βC ′

WβC + Tr(W Var(β̂C))

] [
αT

αC

]
=

[
βT ′

WβU

−βC ′
WβU

]
.

Unfortunately we don’t know true values of βT and βC so we have to
replace them with their OLS estimators. Moreover, we cannot also use the
test dataset while constructing the estimator. Therefore, in accordance with
the fixed X assumption (see Sect. 1) we take Xtest = X. Finally, we denote
V T = (σ̂T )2(X ′X)(XT ′

XT )−1 and V C = (σ̂C)2(X ′X)(XC ′
XC)−1 to obtain an

operational system of equations[
β̂T

′
X ′Xβ̂T + Tr V T −β̂T

′
X ′Xβ̂C

−β̂C
′
X ′Xβ̂T β̂C

′
X ′Xβ̂C + Tr V C

] [
α̂T

α̂C

]
=

[
β̂T

′
X ′Xβ̂U

d

−β̂C
′
X ′Xβ̂U

d

]
. (14)

Finally we are ready to define our shrinkage uplift regression estimator:

Definition 1. Assume that β̂T and β̂C are OLS regression estimators built
respectively on the treatment and control groups. Denote by α̂T and α̂C the solu-
tions to the system of Eq. 14. Then the estimator

β̂U
SMSE = α̂T β̂T − α̂C β̂C

is called the uplift MSE-minimizing estimator.

Because the unknown values of βT , βC , σT , σC have been replaced with their
estimators, we have no guarantee that β̂U

SMSE minimizes the predictive mean
squared error. However, under additional assumptions we are able to prove the
following theorem.

Theorem 1. Assume that the matrices XT and XC are orthogonal,
i.e. XT ′

XT = XC ′
XC = I. Assume further, that the error vectors εT , εC are

independent and normally distributed as N(0, I), i.e. assume that σT = σC = 1.
Then for p � 6

E ‖XβU − Xβ̂U
SMSE‖2 � E ‖XβU − Xβ̂U

d ‖2.
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The proof of the theorem can be found in the Appendix. Additionally the sup-
plementary material contains a symbolic computation script verifying the more
technical sections of the proof.

The theorem says that under orthogonal design the uplift MSE-minimizing
estimator given in Definition 1 has a lower expected prediction error than the
double estimator given in Eq. 3. The requirement for an orthogonal design is
restrictive but we were not able to prove the theorem in a more general setting.
Even with this assumption, the proof is long and fairly technical. For more
general settings we resort to experimental verification in Sect. 4.

4 Experiments

In this section we present an experimental evaluation of the proposed shrinkage
estimators. Before presenting the results we will describe two real life datasets
used in the study, as well as the testing methodology we adopted.

4.1 Descriptions of Datasets

The first dataset we consider is the well known Lalonde dataset [21] describing
the effects of a job training program which addressed a population of low skilled
adults. A randomly selected sample of the population was invited to take part
in a job training program. Their income in the third year after randomization is
the target variable. Our goal is to build a model predicting whether the program
will be effective for a given individual. There are a total of 185 treatment records
and 260 controls.

The second dataset we use is the IHDP dataset [16]. The dataset describes
the results of a program whose target groups were low birth weight infants. A
randomly selected subset of them received additional support such as home visits
and access to a child development center. We want to identify infants for whose
IQ (the target variable used in the study) increased because of the intervention
program. There are 377 treatment and 608 control cases.

4.2 Methodology

The biggest problem in evaluating uplift models is that we never observe yT
i

and yC
i simultaneously and, thus, do not know the true value of the quantity

we want to predict yT
i − yC

i . Therefore we are forced to make the comparison
on larger groups. Here we will estimate the so called Average Treatment Effect
on the Treated (ATT) [5,7] using two methods: one based on predictions of a
model with coefficients β̂U , the other based on true outcomes using a so called
difference-in-means estimator [5]. Both quantities are given, respectively, by the
following equations

ATTmodel(β̂U ) =
1

nT

nT∑
i=1

Xiβ̂
U , ATTmeans =

1
nT

nT∑
i=1

yT
i − 1

nC

nC∑
i=1

yC
i .
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The difference-in-means estimator will play the role of ground truth. We define
the absolute error in ATT estimation of a model with coefficients β̂U as

ErrATT (β̂U ) = |ATTmodel(β̂U ) − ATTmeans|.

Model comparison will be based on their ErrATTs.
Each dataset was split into a training and testing part. Splitting was done

separately in the treatment and control groups, 70% of cases assigned to the
training set and the remaining cases to the test set. We repeat this procedure
1000 times and aggregate the results. To compare estimators β̂U

1 and β̂U
2 we

will compute the difference ErrATT (β̂U
1 ) − ErrATT (β̂U

2 ) for each simulation
and display the differences using box plots in order to better visualize how often
an by what margin each model is better. We found this approach to give more
meaningful results than simply comparing mean prediction errors.

Fig. 1. Differences between errors in ATT estimation for pairs of models for the Lalonde
dataset. Each boxplot summarizes the distribution of differences for a pair of mod-
els over 1000 train/test splits. For example, the first chart compares the proposed
uplift MSE-minimizing shrinkage estimator β̂U

SMSE against all other estimators. The
mean/median lines on the negative side indicate the model in figure title performs
better

4.3 Results

Our experiments involve five different estimators: the double regression estima-
tor β̂U

d given in Eq. 3, two double shrinkage estimators: the double James-Stein
estimator β̂U

JSd and the double MSE minimizing shrinkage estimator β̂U
SMSE

given, respectively, in Eqs. 10 and 12, and finally the two direct uplift shrinkage
estimators: β̂U

JS given in Eq. 11 and β̂U
SMSEd given in Definition 1. In the figures

the estimators are denoted with just their subscripts, e.g. SMSEd instead of
β̂U

SMSEd, except for β̂U
d denoted by double for easier readability.

Results on the Lalonde dataset are shown in Fig. 1. The first chart on the
figure compares the proposed uplift MSE-minimizing estimator will all remaining
estimators. It can be seen that the estimator outperforms all others: the original
double regression and all three other shrinkage estimators. The improvement can
be seen both in the mean and in the median of differences between ErrATT ’s
which are negative. The difference is not huge, but it is consistent, so there is



Shrinkage Estimators for Uplift Regression 617

little argument for not using the shrinkage estimator. Moreover, the results are
statistically significant (notches in the box plot denote a confidence interval for
the median).

The second chart shows the performance of another proposed estimator, the
James-Stein version of uplift estimator β̂U

JS . Here, a different story can be seen.
The performance is practically identical to that of the classical double regression
and double James-Stein estimator; the boxplots have in fact collapsed at zero.
There is an improvement in the median of error difference over β̂U

SMSEd but it
disappears when one looks at the mean: one cannot expect practical gains from
using this estimator.

Fig. 2. Differences between errors in ATT estimation for pairs of models for the IHDP
dataset. Each boxplot summarizes the distribution of differences for a pair of mod-
els over 1000 train/test splits. For example, the first chart compares the proposed
uplift MSE-minimizing shrinkage estimator β̂U

SMSE against all other estimators. The
mean/median lines on the negative side indicate the model in figure title performs
better

The two remaining double shrinked estimators performed similarly and charts
comparing them to all other models are not shown. For completeness we compare
the unshrinked double regression with all shrinkage estimator in the third chart
of Fig. 1. It can be seen that only the estimator given in Definition 1 dominates
it.

The results for the IHDP dataset are shown in Fig. 2. All conclusions drawn
from the Lalonde dataset are essentially replicated also on IHDP, giving the
results more credibility.

5 Conclusions and Future Work

We have proposed four different shrinkage estimators for uplift regression prob-
lem. One of them successfully and consistently reduced prediction error on two
real life datasets. The estimator was different from others in that it jointly opti-
mized the treatment and control shrinkage factors such that good uplift predic-
tions are obtained.

The three other estimators did not bring improvement over the classical dou-
ble regression model. One concludes, that simply applying shrinkage to treatment
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and control models separately is not enough to obtain a good uplift shrinkage
estimator. Neither is applying the James-Stein approach directly the estimated
uplift coefficients as is done in the β̂U

JS estimator.
Future work will address the problem of adapting shrinkage methods to other

uplift regression estimators such as those proposed in [9]. The task is challenging
since the finite sample variance of those estimators is not known.

A Proof of Theorem 1

Since large parts of the proof require lengthy derivations, the supplementary
material contains a Python script which verifies certain equations symbolically
using the Sympy [17] package.

From assumptions we have XT ′
XT = XC ′

XC = I, implying X ′X = 2I.
Taking this into account we can simplify the system of Eq. (14) to

[
β̂T

′
β̂T + p −β̂T

′
β̂C

−β̂C
′
β̂T β̂C

′
β̂C + p

] [
α̂T

α̂C

]
=

[
β̂T

′
β̂U

−β̂C
′
β̂U

]
. (15)

Denote bTT = β̂T
′
β̂T , bCC = β̂C

′
β̂C and bTC = β̂T

′
β̂C . Denoting further A =[

bTT + p −bTC

−bTC bCC + p

]
and B =

[
bTT − bTC

bCC − bTC

]
the system of equations simplifies

further to:

A

[
α̂T

α̂C

]
= B. (16)

As a result, denoting K = 1
(bTT+p)(bCC+p)−(bTC)2

, we obtain:

[
α̂T

α̂C

]
= A−1B = K

[
bCC + p bTC

bTC bTT + p

] [
bTT − bTC

bCC − bTC

]
.

Equivalently we can write the parameters (verified in the supplementary mate-
rial) as

α̂T = K
(
bCCbTT − (bTC)2 + pbTT − pbTC

)
= 1 − pK

(
bCC + bTC + p

)
α̂C = K

(
bCCbTT − (bTC)2 + pbCC − pbTC

)
= 1 − pK

(
bTT + bTC + p

)
(17)

The predictive MSE of the double model is

E(β̂U
d − βU )′(β̂U

d − βU ) = 2p. (18)

To see this, note that the estimator is unbiased and, under the assumptions of
the theorem, Var β̂T = Var β̂C = I. Apply the trace in (13) to get the result.
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Now we will calculate the predictive MSE of new shrinked and prove that it is
less than 2p. It is easy to see that

E(β̂U
SMSE − βU )′(β̂U

SMSE − βU ) = E(β̂U
SMSE − β̂U

d )′(β̂U
SMSE − β̂U

d )

− E(β̂U
d − βU )′(β̂U

d − βU ) + 2E(β̂U
SMSE − βU )′(β̂U

d − βU ). (19)

Denote:
β̂T

s = p
(
bCC + bTC + p

)
β̂T ,

β̂C
s = p

(
bTT + bTC + p

)
β̂C .

Then the first term of (19) is (verified in the supplementary material)

E(β̂U
SMSE − β̂U

d )′(β̂U
SMSE − β̂U

d )

= E((α̂T − 1)β̂T − (α̂C − 1)β̂C)′((α̂T − 1)β̂T − (α̂C − 1)β̂C)

= K2 E
(
β̂T

s − β̂C
s

)′ (
β̂T

s − β̂C
s

)
(20)

= K2 E
(
p4(bTT − 2bTC + bCC)

+ p2
(
bTT bCC − bTC2

) (
(bTT + 2bTC + bCC) + 4p

))
. (21)

Now we will concentrate on third term of (19):

2E(β̂U
SMSE − βU )′(β̂U

d − βU ) = 2E(α̂T β̂T − βT )′(β̂T − βT ) (22)

+ 2E(α̂C β̂C − βC)′(β̂C − βC) (23)

− 2E(α̂T β̂T − βT )′(β̂C − βC) − 2E(α̂C β̂C − βC)′(β̂T − βT ). (24)

We will first look at 2E(α̂T β̂T − βT )′(β̂T − βT ) following the classical proof for
James-Stein estimator

2E(β̂T − βT )′(α̂T β̂T − βT ) = 2
p∑

i=1

E(β̂T
i − βT

i )(α̂T β̂T
i − βT

i )

= 2
p∑

i=1

∫
..

∫
(β̂T

i − βT
i )(α̂T β̂T

i − βT
i )f(β̂T )dβ̂T

i , dβ̂T
1 ...dβ̂T

p

where f(β̂T ) is density function of distribution of β̂T , which, by assumptions is
multivariate normal N(βT , I). Using integration by parts (derivatives calculated
w.r.t. β̂i) with

u = α̂T β̂T
i − βT

i dv = (β̂T
i − βT

i )

exp

(
− 1

2

∑p
j=1

(
β̂T
j − βT

j

)2
)

2π
p
2

dβ̂T
i

du =
d

dβ̂T
i

(α̂T β̂T
i − βT

i )dβ̂T
i v = −

exp

(
− 1

2

∑p
j=1

(
β̂T
j − βT

j

)2
)

2π
p
2
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we obtain:∫
...

∫
(β̂T

i − βT
i )(α̂T β̂T

i − βT
i )f(β̂T )dβ̂T

i dβ̂T
1 ...dβ̂T

p

=

∫
...

∫
(β̂T

i − βT
i )(α̂T β̂T

i − βT
i )

1

2π
p
2

exp

(
−1

2

p∑
j=1

(
β̂T
j − βT

j

)2
)

dβ̂T
i dβ̂T

1 ...dβ̂T
p

=

⎡
⎢⎢⎣

∫
...

∫
−

(
α̂T β̂T

i − βT
i

) exp

(
− 1

2

∑p
j=1

(
β̂T
j − βT

j

)2
)

2π
p
2

⎤
⎥⎥⎦

∞

−∞

dβ̂T
1 ...dβ̂T

p

+

∫
...

∫
d

dβ̂T
i

(α̂T β̂T
i − βT

i )

exp

(
− 1

2

∑p
j=1

(
β̂T
j − βT

j

)2
)

2π
p
2

dβ̂T
i dβ̂T

1 ...dβ̂T
p .

First term in last expression is 0, due to exponential decrease of normal density.
Finally we obtain:

=
∫

...

∫
f(β̂T )

d

dβ̂T
i

(α̂T β̂T
i − βT

i )dβ̂T
i dβ̂T

1 ...dβ̂T
p .

Repeating the above process for i = 1, . . . , p we get

2E(α̂T β̂T − βT )′(β̂T − βT ) = 2E
p∑

i=1

d

dβ̂T
i

(α̂T β̂T
i − βT

i ) = 2pα̂T + 2β̂T
′ dα̂T

dβ̂T
.

For the third term of (24) we obtain:

2E(α̂T β̂T − βT )′(β̂C − βC) = 2E
p∑

i=1

d

dβ̂C
i

(α̂T β̂T
i − βT

i ) = 2β̂T
′ dα̂T

dβ̂C
,

where the last factor is the vector derivative of a scalar. The remaining two terms
are analogous. Combining the expressions and using the chain rule we obtain:

E(α̂T β̂T − βT )′(β̂T − βT ) − E(α̂C β̂C − βC)′(β̂T − βT )

=
[
p | 0

] [
α̂T

α̂C

]
+

[
β̂T

′ | −β̂C
′] [

dα̂T

dβ̂T

dα̂C

dβ̂T

]

=
[
p | 0

] [
α̂T

α̂C

]
+

[
β̂T

′ | −β̂C
′]

⎡
⎣ dα̂T

d bTT
d bTT

dβ̂T
+ dα̂T

d bTC
d bTC

dβ̂T
+ dα̂T

d bCC
d bCC

dβ̂T

dα̂C

d bTT
d bTT

dβ̂T
+ dα̂C

bTC
d bTC

dβ̂T
+ dα̂C

d bCC
d bCC

dβ̂T

⎤
⎦

=
[
p | 0

] [
α̂T

α̂C

]
+ 2

[
bTT | −bTC

] [
dα̂T

d bTT

dα̂C

d bTT

]
+

[
bTC | −bCC

] [
dα̂T

d bTC

dα̂C

d bTC

]

=
[
p | 0

]
A−1B + 2

[
bTT | −bTC

] dA−1B

d bTT
+

[
bTC | −bCC

] dA−1B

d bTC
. (25)
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Analogously we obtain:

E(α̂C β̂C − βC)′(β̂C − βC) − E(α̂T β̂T − βT )′(β̂C − βC)

=
[
0 | p

]
A−1B + 2

[−bTC | bCC
] dA−1B

d bCC
+

[−bTT | bTC
] dA−1B

d bTC
. (26)

Combining (25) and (26) we obtain (verified in the supplementary material):

2 E(β̂U
SMSE − βU )′(β̂U

d − βU ) = 2
[
p | p

]
A−1B

− 2K

[
3bTT bCC − 3

(
bTC

)2 + 2bTT p + bCCp − bTCp

3bTT bCC − 3
(
bTC

)2 + 2bCCp + bTT p − bTCp

] (
A−1B − 1

)
(27)

= 2p(α̂T + α̂C) − 2(2α̂T + 1)α̂T − 2(2α̂C + 1)α̂C − 4Kp2

= 4p + 2(p − 3)(α̂T − 1 + α̂C − 1) − 4Kp2 − 4(α̂T − 1)2 − 4(α̂C − 1)2, (28)

where 1 = (1, 1)′. Now we have calculated each term of (19). Now we will
combine (28) and (18).

2E(β̂U
SMSE − βU )′(β̂U

d − βU ) − E(β̂U
d − βU )′(β̂U

d − βU )

= 2p − EK2

(
1
K

(
2p(p − 3)

(
bTT + 2bTC + bCC

) − 4p2(p − 2)
)

− 4
((

pbTT + pbTC + p2
)2

+
(
pbCC + pbTC + p2

)2))
. (29)

Combining further (29) with (21) we obtain the following expression for (19)
(verified in the supplementary material):

E(β̂U
SMSE − βU )′(β̂U

SMSE − βU ) = 2p − (30)

E K2

(
p(p − 6)(bTT + 2bTC + bCC)

(
bTT bCC − bTC2

)
(31)

+2p2(p − 3)(bTT + 2bTC + bCC)
(
bTT + bCC

)
(32)

+2p3(p − 3)(bTT + 2bTC + bCC) (33)

−8p2
(
bTT bCC − bTC2

)
(34)

+4p3(p − 2)
(
bTT + bCC + p

)
(35)

+4p2
(
bTT + bTC + p

)2
+ 4p2

(
bCC + bTC + p

)2
(36)

− p4(bTT − 2bTC + bCC)
)

. (37)

We see that (31) is greater than or equal to 0 when p � 6 and (33) when p � 3.
Now combining (35) and (37) for p � 4 we get:

4p3(p − 2)
(
bTT + bCC + p

) − p4(bTT − 2bTC + bCC)

= 2p3(p − 4)
(
bTT + bCC + p

)
+ 2p4

(
bTT + bCC + p

) − p4(bTT − 2bTC + bCC)
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� 2p3(p − 4)
(
bTT + bCC + p

)
+ 2p4

(
bTT + bCC + p

) − 2p4(bTT + bCC)

= 2p3(p − 4)
(
bTT + bCC + p

)
+ 2p5 > 0,

where the first inequality follows from bTT − 2bTC + bCC � 2(bTT + bCC).
Now, combining (32), (34) and (36), we obtain (verified in the supplementary

material):

− K2
(
2p2(p − 3)(bTT + 2bTC + bCC)

(
bTT + bCC

) − 8p2(bTT bCC − bTC2
)

+ 4p2
(
bTT + bTC + p

)2
+ 4p2

(
bCC + bTC + p

)2)

= K2

(
−2p2(p − 5)(bTT + 2bTC + bCC)

(
bTT + bCC

)
(38)

− (
8p2(bTT + bTC)2 + 8p2(bCC + bTC)2

)
(39)

− (
8p3(bTT + 2bTC + bCC) + p

))
(40)

We can observe that (39) and (40) are always non positive and (38) is negative
when p > 5. So the whole expression above is also negative when p > 5. So, the
only positive term in (30)–(37) is 2p proving that predictive error of the shrinked
estimator is lower than that of double regression (equal to 2p) for p � 6.
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Abstract. String data are often disseminated to support applications
such as location-based service provision or DNA sequence analysis. This
dissemination, however, may expose sensitive patterns that model confi-
dential knowledge (e.g., trips to mental health clinics from a string repre-
senting a user’s location history). In this paper, we consider the problem
of sanitizing a string by concealing the occurrences of sensitive patterns,
while maintaining data utility. First, we propose a time-optimal algo-
rithm, TFS-ALGO, to construct the shortest string preserving the order
of appearance and the frequency of all non-sensitive patterns. Such a
string allows accurately performing tasks based on the sequential nature
and pattern frequencies of the string. Second, we propose a time-optimal
algorithm, PFS-ALGO, which preserves a partial order of appearance
of non-sensitive patterns but produces a much shorter string that can
be analyzed more efficiently. The strings produced by either of these
algorithms may reveal the location of sensitive patterns. In response,
we propose a heuristic, MCSR-ALGO, which replaces letters in these
strings with carefully selected letters, so that sensitive patterns are not
reinstated and occurrences of spurious patterns are prevented. We imple-
mented our sanitization approach that applies TFS-ALGO, PFS-ALGO
and then MCSR-ALGO and experimentally show that it is effective and
efficient.

1 Introduction

A large number of applications, in domains ranging from transportation to web
analytics and bioinformatics feature data modeled as strings, i.e., sequences of
letters over some finite alphabet. For instance, a string may represent the history
c© Springer Nature Switzerland AG 2020
U. Brefeld et al. (Eds.): ECML PKDD 2019, LNAI 11906, pp. 627–644, 2020.
https://doi.org/10.1007/978-3-030-46150-8_37

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-46150-8_37&domain=pdf
https://doi.org/10.1007/978-3-030-46150-8_37


628 G. Bernardini et al.

of visited locations of one or more individuals, with each letter corresponding to
a location. Similarly, it may represent the history of search query terms of one
or more web users, with letters corresponding to query terms, or a medically
important part of the DNA sequence of a patient, with letters corresponding
to DNA bases. Analyzing such strings is key in applications including location-
based service provision, product recommendation, and DNA sequence analysis.
Therefore, such strings are often disseminated beyond the party that has col-
lected them. For example, location-based service providers often outsource their
data to data analytics companies who perform tasks such as similarity evalua-
tion between strings [14], and retailers outsource their data to marketing agencies
who perform tasks such as mining frequent patterns from the strings [15].

However, disseminating a string intact may result in the exposure of confiden-
tial knowledge, such as trips to mental health clinics in transportation data [20],
query terms revealing political beliefs or sexual orientation of individuals in web
data [17], or diseases associated with certain parts of DNA data [16]. Thus, it
may be necessary to sanitize a string prior to its dissemination, so that confi-
dential knowledge is not exposed. At the same time, it is important to preserve
the utility of the sanitized string, so that data protection does not outweigh the
benefits of disseminating the string to the party that disseminates or analyzes
the string, or to the society at large. For example, a retailer should still be able to
obtain actionable knowledge in the form of frequent patterns from the marketing
agency who analyzed their outsourced data; and researchers should still be able
to perform analyses such as identifying significant patterns in DNA sequences.

Our Model and Setting. Motivated by the discussion above, we introduce
the following model which we call Combinatorial String Dissemination (CSD).
In CSD, a party has a string W that it seeks to disseminate, while satisfying a
set of constraints and a set of desirable properties. For instance, the constraints
aim to capture privacy requirements and the properties aim to capture data
utility considerations (e.g., posed by some other party based on applications).
To satisfy both, W must be transformed to a string X by applying a sequence
of edit operations. The computational task is to determine this sequence of edit
operations so that X satisfies the desirable properties subject to the constraints.

Under the CSD model, we consider a specific setting in which the sanitized
string X must satisfy the following constraint C1: for an integer k > 0, no
given length-k substring (also called pattern) modeling confidential knowledge
should occur in X. We call each such length-k substring a sensitive pattern. We
aim at finding the shortest possible string X satisfying the following desired
properties: (P1) the order of appearance of all other length-k substrings (non-
sensitive patterns) is the same in W and in X; and (P2) the frequency of these
length-k substrings is the same in W and in X. The problem of constructing
X in this setting is referred to as TFS (Total order, Frequency, Sanitization).
Clearly, substrings of arbitrary lengths can be hidden from X by setting k equal
to the length of the shortest substring we wish to hide, and then setting, for
each of these substrings, any length-k substring as sensitive.
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Our setting is motivated by real-world applications involving string dissemi-
nation. In these applications, a data custodian disseminates the sanitized version
X of a string W to a data recipient, for the purpose of analysis (e.g., mining).
W contains confidential information that the data custodian needs to hide, so
that it does not occur in X. Such information is specified by the data custo-
dian based on domain expertise, as in [1,4,11,15]. At the same time, the data
recipient specifies P1 and P2 that X must satisfy in order to be useful. These
properties map directly to common data utility considerations in string analysis.
By satisfying P1, X allows tasks based on the sequential nature of the string,
such as blockwise q-gram distance computation [12], to be performed accurately.
By satisfying P2, X allows computing the frequency of length-k substrings [19]
and hence mining frequent length-k substrings with no utility loss. We require
that X has minimal length so that it does not contain redundant information.
For instance, the string which is constructed by concatenating all non-sensitive
length-k substrings in W and separating them with a special letter that does not
occur in W , satisfies P1 and P2 but is not the shortest possible. Such a string
X will have a negative impact on the efficiency of any subsequent analysis tasks
to be performed on it.

Note, existing works for sequential data sanitization (e.g., [4,11,13,15,22])
or anonymization (e.g., [2,5,7]) cannot be applied to our setting (see Sect. 7).

Our Contributions. We define the TFS problem for string sanitization and a
variant of it, referred to as PFS (Partial order, Frequency, Sanitization), which
aims at producing an even shorter string Y by relaxing P1 of TFS. Our algo-
rithms for TFS and PFS construct strings X and Y using a separator letter #,
which is not contained in the alphabet of W . This prevents occurrences of sen-
sitive patterns in X or Y . The algorithms repeat proper substrings of sensitive
patterns so that the frequency of non-sensitive patterns overlapping with sen-
sitive ones does not change. For X, we give a deterministic construction which
may be easily reversible (i.e., it may enable a data recipient to construct W
from X), because the occurrences of # reveal the exact location of sensitive pat-
terns. For Y , we give a construction which breaks several ties arbitrarily, thus
being less easily reversible. We further address the reversibility issue by defining
the MCSR (Minimum-Cost Separators Replacement) problem and designing an
algorithm for dealing with it. In MCSR, we seek to replace all separators, so that
the location of sensitive patterns is not revealed, while preserving data utility.
We make the following specific contributions:

1. We design an algorithm for solving the TFS problem in O(kn) time, where
n is the length of W . In fact we prove that O(kn) time is worst-case optimal
by showing that the length of X is in Θ(kn) in the worst case. The output
of the algorithm is a string X consisting of a sequence of substrings over the
alphabet of W separated by # (see Example 1 below). An important feature
of our algorithm, which is useful in the efficient construction of Y discussed
next, is that it can be implemented to produce an O(n)-sized representation
of X with respect to W in O(n) time. See Sect. 3.
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Example 1. Let W = aabaaaababbbaab, k = 4, and the set of sensitive pat-
terns be {aaaa, baaa, bbaa}. The string X = aabaa#aaababbba#baab consists
of three substrings over the alphabet {a, b} separated by #. Note that no sen-
sitive pattern occurs in X, while all non-sensitive substrings of length 4 have
the same frequency in W and in X (e.g., aaba appears twice) and appear in
the same order in W and in X (e.g., babb precedes abbb). Also, note that
any shorter string than X would either create sensitive patterns or change
the frequencies (e.g., removing the last letter of X creates a string in which
baab no longer appears). ��

2. We define the PFS problem relaxing P1 of TFS to produce shorter strings
that are more efficient to analyze. Instead of a total order (P1), we require a
partial order (Π1) that preserves the order of appearance only for sequences
of successive non-sensitive length-k substrings that overlap by k − 1 letters.
This makes sense because the order of two successive non-sensitive length-k
substrings with no length-(k − 1) overlap has anyway been “interrupted” (by
a sensitive pattern). We exploit this observation to shorten the string further.
Specifically, we design an algorithm that solves PFS in the optimal O(n+|Y |)
time, where |Y | is the length of Y , using the O(n)-sized representation of X.
See Sect. 4.

Example 2 (Cont’d from Example 1).Recall that W = aabaaaababbbaab. A
string Y is aaababbba#aabaab. The order of babb and abbb is preserved in
Y since they are successive, non-sensitive, and with an overlap of k − 1 = 3
letters. The order of abaa and aaab, which are successive and non-sensitive,
is not preserved since they do not have an overlap of k − 1 = 3 letters. ��

3. We define the MCSR problem, which seeks to produce a string Z, by deleting
or replacing all separators in Y with letters from the alphabet of W so that: no
sensitive patterns are reinstated in Z; occurrences of spurious patterns that
may not be mined from W but can be mined from Z, for a given support
threshold, are prevented; the distortion incurred by the replacements in Z
is bounded. The first requirement is to preserve privacy and the next two to
preserve data utility. We show that MCSR is NP-hard and propose a heuristic
to attack it. See Sect. 5.

4. We implemented our combinatorial approach for sanitizing a string W (i.e.,
all aforementioned algorithms implementing the pipeline W → X → Y → Z)
and show its effectiveness and efficiency on real and synthetic data. See Sect. 6.

2 Preliminaries, Problem Statements, and Main Results

Preliminaries. Let T = T [0]T [1] . . . T [n−1] be a string of length |T | = n over a
finite ordered alphabet Σ of size |Σ| = σ. By Σ∗ we denote the set of all strings
over Σ. By Σk we denote the set of all length-k strings over Σ. For two positions
i and j on T , we denote by T [i . . j] = T [i] . . . T [j] the substring of T that starts
at position i and ends at position j of T . By ε we denote the empty string of
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length 0. A prefix of T is a substring of the form T [0 . . j], and a suffix of T is
a substring of the form T [i . . n − 1]. A proper prefix (suffix) of a string is not
equal to the string itself. By FreqV (U) we denote the number of occurrences of
string U in string V . Given two strings U and V we say that U has a suffix-prefix
overlap of length � > 0 with V if and only if the length-� suffix of U is equal to
the length-� prefix of V , i.e., U [|U | − � . . |U | − 1] = V [0 . . � − 1].

We fix a string W of length n over an alphabet Σ = {1, . . . , nO(1)} and an
integer 0 < k < n. We refer to a length-k string or a pattern interchangeably. An
occurrence of a pattern is uniquely represented by its starting position. Let S
be a set of positions over {0, . . . , n − k} with the following closure property: for
every i ∈ S, if there exists j such that W [j . . j + k − 1] = W [i . . i + k − 1], then
j ∈ S. That is, if an occurrence of a pattern is in S all its occurrences are in S. A
substring W [i . . i+k−1] of W is called sensitive if and only if i ∈ S. S is thus the
set of occurrences of sensitive patterns. The difference set I = {0, . . . , n− k} \S
is the set of occurrences of non-sensitive patterns.

For any string U , we denote by IU the set of occurrences of non-sensitive
length-k strings over Σ. (We have that IW = I.) We call an occurrence i the t-
predecessor of another occurrence j in IU if and only if i is the largest element in
IU that is less than j. This relation induces a strict total order on the occurrences
in IU . We call i the p-predecessor of j in IU if and only if i is the t-predecessor
of j in IU and U [i . . i + k − 1] has a suffix-prefix overlap of length k − 1 with
U [j . . j + k − 1]. This relation induces a strict partial order on the occurrences
in IU . We call a subset J of IU a t-chain (resp., p-chain) if for all elements
in J except the minimum one, their t-predecessor (resp., p-predecessor) is also
in J . For two strings U and V , chains JU and JV are equivalent, denoted by
JU ≡ JV , if and only if |JU | = |JV | and U [u . . u + k − 1] = V [v . . v + k − 1],
where u is the jth smallest element of JU and v is the jth smallest of JV , for
all j ≤ |JU |.
Problem Statements and Main Results

Problem 1 (TFS). Given W , k, S, and I construct the shortest string X:

C1 X does not contain any sensitive pattern.
P1 IW ≡ IX , i.e., the t-chains IW and IX are equivalent.
P2 FreqX(U) = FreqW (U), for all U ∈ Σk \ {W [i . . i + k − 1] : i ∈ S}.

TFS requires constructing the shortest string X in which all sensitive pat-
terns from W are concealed (C1), while preserving the order (P1) and the
frequency (P2) of all non-sensitive patterns. Our first result is the following.

Theorem 1. Let W be a string of length n over Σ = {1, . . . , nO(1)}. Given
k < n and S, TFS-ALGO solves Problem 1 in O(kn) time, which is worst-case
optimal. An O(n)-sized representation of X can be built in O(n) time.

P1 implies P2, but P1 is a strong assumption that may result in long output
strings that are inefficient to analyze. We thus relax P1 to require that the order
of appearance remains the same only for sequences of successive non-sensitive
length-k substrings that also overlap by k − 1 letters (p-chains).
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Problem 2 (PFS). Given W , k, S, and I construct a shortest string Y :

C1 Y does not contain any sensitive pattern.
Π1 There exists an injective function f from the p-chains of IW to the p-chains

of IY such that f(JW ) ≡ JW for any p-chain JW of IW .
P2 FreqY (U) = FreqW (U), for all U ∈ Σk \ {W [i . . i + k − 1] : i ∈ S}.

Our second result, which builds on Theorem1, is the following.

Theorem 2. Let W be a string of length n over Σ = {1, . . . , nO(1)}. Given
k < n and S, PFS-ALGO solves Problem 2 in the optimal O(n + |Y |) time.

To arrive at Theorems 1 and 2, we use a special letter (separator) # /∈ Σ when
required. However, the occurrences of # may reveal the locations of sensitive
patterns. We thus seek to delete or replace the occurrences of # in Y with
letters from Σ. The new string Z should not reinstate any sensitive pattern.
Given an integer threshold τ > 0, we call pattern U ∈ Σk a τ -ghost in Z if and
only if FreqW (U) < τ but FreqZ(U) ≥ τ . Moreover, we seek to prevent τ -ghost
occurrences in Z by also bounding the total weight of the letter choices we make
to replace the occurrences of #. This is the MCSR problem. We show that
already a restricted version of the MCSR problem, namely, the version when
k = 1, is NP-hard via the Multiple Choice Knapsack (MCK) problem [18].

Theorem 3. The MCSR problem is NP-hard.

Based on this connection, we propose a non-trivial heuristic algorithm to
attack the MCSR problem for the general case of an arbitrary k.

3 TFS-ALGO

We convert string W into a string X over alphabet Σ ∪{#}, # /∈ Σ, by reading
the letters of W , from left to right, and appending them to X while enforcing
the following two rules:

R1: When the last letter of a sensitive substring U is read from W , we append
# to X (essentially replacing this last letter of U with #). Then, we append the
succeeding non-sensitive substring (in the t-predecessor order) after #.
R2: When the k − 1 letters before # are the same as the k − 1 letters after #,
we remove # and the k − 1 succeeding letters (inspect Fig. 1).

R1 prevents U from occurring in X, and R2 reduces the length of X (i.e.,
allows to protect sensitive patterns with fewer extra letters). Both rules leave
unchanged the order and frequencies of non-sensitive patterns. It is crucial to
observe that applying the idea behind R2 on more than k − 1 letters would
decrease the frequency of some pattern, while applying it on fewer than k − 1
letters would create new patterns. Thus, we need to consider just R2 as-is.

Let C be an array of size n that stores the occurrences of sensitive and non-
sensitive patterns: C[i] = 1 if i ∈ S and C[i] = 0 if i ∈ I. For technical reasons
we set the last k − 1 values in C equal to C[n − k]; i.e., C[n − k + 1] := . . . :=
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W = aabaaaababbbaab

X̃ = aabaaa#aaaba#babb#bbbaab

X = aabaaaba#babb#bbbaab

Fig. 1. Sensitive patterns are overlined in red; non-sensitive are under- or over-lined
in blue; X̃ is obtained by applying R1; and X by applying R1 and R2. In green we
highlight an overlap of k − 1 = 3 letters. Note that substring aaaababbb, whose length
is greater than k, is also not occurring in X. (Color figure online)

C[n − 1] := C[n − k]. Note that C is constructible from S in O(n) time. Given
C and k < n, TFS-ALGO efficiently constructs X by implementing R1 and
R2 concurrently as opposed to implementing R1 and then R2 (see the proof of
Lemma 1 for details of the workings of TFS-ALGO and Fig. 1 for an example).
We next show that string X enjoys several properties.

Lemma 1. Let W be a string of length n over Σ. Given k < n and array C,
TFS-ALGO constructs the shortest string X such that the following hold:

1. There exists no W [i . . i + k − 1] with C[i] = 1 occurring in X (C1).
2. IW ≡ IX , i.e., the order of substrings W [i . . i + k − 1], for all i such that

C[i] = 0, is the same in W and in X; conversely, the order of all substrings
U ∈ Σk of X is the same in X and in W (P1).

3. FreqX(U) = FreqW (U), for all U ∈ Σk \ {W [i . . i + k − 1] : C[i] = 1} (P2).
4. The occurrences of letter # in X are at most 
n−k+1

2 � and they are at least
k positions apart (P3).

5. 0 ≤ |X| ≤ �n−k+1
2  · k + 
n−k+1

2 � and these bounds are tight (P4).

Proof. Proofs of C1 and P1–P4 can be found in [3]. We prove here that X
has minimal length. Let Xj be the prefix of string X obtained by processing
W [0 . . j]. Let jmin = min{i | C[i] = 0} + k − 1. We will proceed by induction
on j, claiming that Xj is the shortest string such that C1 and P1–P4 hold for
W [0 . . j], ∀ jmin ≤ j ≤ |W | − 1. We call such a string optimal.

Base case: j = jmin. By Lines 3–4 of TFS-ALGO, Xj is equal to the first
non-sensitive length-k substring of W , and it is clearly the shortest string such
that C1 and P1–P4 hold for W [0 . . j].

Inductive hypothesis and step: Xj−1 is optimal for j > jmin. If C[j − k] =
C[j −k +1] = 0, Xj = Xj−1W [j] and this is clearly optimal. If C[j −k +1] = 1,
Xj = Xj−1 thus still optimal. Finally, if C[j−k] = 1 and C[j−k+1] = 0 we have
two subcases: if W [f . . f +k−2] = W [j−k+1 . . j−1] then Xj = Xj−1W [j], and
once again Xj is evidently optimal. Otherwise, Xj = Xj−1#W [j − k + 1 . . j].
Suppose by contradiction that there exists a shorter X ′

j such that C1 and P1–
P4 still hold: either drop # or append less than k letters after #. If we appended
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TFS-ALGO(W ∈ Σn, C, k,# /∈ Σ)
1 X ← ε; j ← |W |; � ← 0;
2 j ← min{i|C[i] = 0}; /* j is the leftmost pos of a non-sens. pattern */

3 if j + k − 1 < |W | then /* Append the first non-sens. pattern to X */

4 X[0 . . k − 1] ← W [j . . j + k − 1]; j ← j + k; � ← � + k;

5 while j < |W | do /* Examine two consecutive patterns */

6 p ← j − k; c ← p + 1;
7 if C[p] = C[c] = 0 then /* If both are non-sens., append the last

letter of the rightmost one to X */

8 X[�] ← W [j]; � ← � + 1; j ← j + 1;

9 if C[p] = 0 ∧ C[c] = 1 then /* If the rightmost is sens., mark it

and advance j */

10 f ← c; j ← j + 1;

11 if C[p] = C[c] = 1 then j ← j + 1; /* If both are sens., advance j */

12 if C[p] = 1 ∧ C[c] = 0 then /* If the leftmost is sens. and the

rightmost is not */

13 if W [c . . c + k − 2] = W [f . . f + k − 2] then /* If the last marked

sens. pattern and the current non-sens. overlap by k − 1,
append the last letter of the latter to X */

14 X[�] ← W [j]; � ← � + 1; j ← j + 1;

15 else /* Else append # and the current non-sensitive pattern

to X */

16 X[�] ← #; � ← � + 1;
17 X[� . . � + k − 1] ← W [j − k + 1 . . j]; � ← � + k; j ← j + 1;

18 report X

less than k letters after #, since TFS-ALGO will not read W [j] ever again, P2–
P3 would be violated, as an occurrence of W [j − k + 1 . . j] would be missed.
Without #, the last k letters of Xj−1W [j − k + 1] would violate either C1 or
P1 and P2 (since we suppose W [f . . f + k − 2] �= W [j − k + 1 . . j − 1]). Then
Xj is optimal. ��

Theorem 1. Let W be a string of length n over Σ = {1, . . . , nO(1)}. Given
k < n and S, TFS-ALGO solves Problem 1 in O(kn) time, which is worst-case
optimal. An O(n)-sized representation of X can be built in O(n) time.

Proof. For the first part inspect TFS-ALGO. Lines 2–4 can be realized in O(n)
time. The while loop in Line 5 is executed no more than n times, and every
operation inside the loop takes O(1) time except for Line 13 and Line 17 which
take O(k) time. Correctness and optimality follow directly from Lemma 1 (P4).

For the second part, we assume that X is represented by W and a sequence
of pointers [i, j] to W interleaved (if necessary) by occurrences of #. In Line 17,
we can use an interval [i, j] to represent the length-k substring of W added to
X. In all other lines (Lines 4, 8 and 14) we can use [i, i] as one letter is added to
X per one letter of W . By Lemma 1 we can have at most 
n−k+1

2 � occurrences
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of letter #. The check at Line 13 can be implemented in constant time after
linear-time pre-processing of W for longest common extension queries [9]. All
other operations take in total linear time in n. Thus there exists an O(n)-sized
representation of X and it is constructible in O(n) time. ��

4 PFS-ALGO

Lemma 1 tells us that X is the shortest string satisfying constraint C1 and
properties P1–P4. If we were to drop P1 and employ the partial order Π1 (see
Problem 2), the length of X = X1# . . . #XN would not always be minimal: if a
permutation of the strings X1, . . . , XN contains pairs Xi, Xj with a suffix-prefix
overlap of length � = k −1, we may further apply R2, obtaining a shorter string
while still satisfying Π1.

We propose PFS-ALGO to find such a permutation efficiently constructing
a shorter string Y from W . The crux of our algorithm is an efficient method to
solve a variant of the classic NP-complete Shortest Common Superstring (SCS)
problem [10]. Specifically our algorithm: (I) Computes string X using Theorem 1.
(II) Constructs a collection B′ of strings, each of two symbols (two identifiers) and
in a one-to-one correspondence with the elements of B = {X1, . . . , XN}: the first
(resp., second) symbol of the ith element of B′ is a unique identifier of the string
corresponding to the length-� prefix (resp., suffix) of the ith element of B. (III)
Computes a shortest string containing every element in B′ as a distinct substring.
(IV) Constructs Y by mapping back each element to its distinct substring in B.
If there are multiple possible shortest strings, one is selected arbitrarily.

Example 3 (Illustration of the workings of PFS-ALGO). Let � = k−1 = 3 and

X = aabbc#bccaab#bbca#aaabac#aabcbbc.

The collection B is aabbc, bccaab, bbca, aaabac, aabcbbc, and the collection
B′ is 24, 62, 45, 13, 24 (id of prefix · id of suffix). A shortest string containing all
elements of B′ as distinct substrings is: 13 · 24 · 6245 (obtained by permuting
the original string as 13, 24, 62, 24, 45 then applying R2 twice). This shortest
string is mapped back to the solution Y = aaabac#aabbc#bccaabcbbca. For
example, 13 is mapped back to aaabac. Note, Y contains two occurrences of #
and has length 24, while X contains 4 occurrences of # and has length 32. ��

We now present the details of PFS-ALGO. We first introduce the Fixed-
Overlap Shortest String with Multiplicities (FO-SSM) problem: Given a collection
B of strings B1, . . . , B|B| and an integer �, with |Bi| > �, for all 1 ≤ i ≤ |B|,
FO-SSM seeks to find a shortest string containing each element of B as a distinct
substring using the following operations on any pair of strings Bi, Bj :

1. concat(Bi, Bj) = Bi · Bj ;
2. �-merge(Bi, Bj) = Bi[0 . . |Bi|−1−�]Bj [0 . . |Bj |−1] = Bi[0 . . |Bi|−1−�] ·Bj .
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Any solution to FO-SSM with � := k − 1 and B := X1, . . . , XN implies a
solution to the PFS problem, because |Xi| > k − 1 for all i’s (see Lemma 1, P3)

The FO-SSM problem is a variant of the SCS problem. In the SCS problem,
we are given a set of strings and we are asked to compute the shortest common
superstring of the elements of this set. The SCS problem is known to be NP-
Complete, even for binary strings [10]. However, if all strings are of length two,
the SCS problem admits a linear-time solution [10]. We exploit this crucial detail
positively to show a linear-time solution to the FO-SSM problem in Lemma3. In
order to arrive to this result, we first adapt the SCS linear-time solution of [10]
to our needs (see Lemma 2) and plug this solution to Lemma3.

Lemma 2. Let Q be a collection of q strings, each of length two, over an alpha-
bet Σ = {1, . . . , (2q)O(1)}. We can compute a shortest string containing every
element of Q as a distinct substring in O(q) time.

Proof. We sort the elements of Q lexicographically in O(q) time using radixsort.
We also replace every letter in these strings with their lexicographic rank from
{1, . . . , 2q} in O(q) time using radixsort. In O(q) time we construct the de Bruijn
multigraph G of these strings [6]. Within the same time complexity, we find all
nodes v in G with in-degree, denoted by IN(v), smaller than out-degree, denoted
by OUT(v). We perform the following two steps:

Step 1: While there exists a node v in G with IN(v) < OUT(v), we start an
arbitrary path (with possibly repeated nodes) from v, traverse consecutive edges
and delete them. Each time we delete an edge, we update the in- and out-degree
of the affected nodes. We stop traversing edges when a node v′ with OUT(v′) = 0
is reached: whenever IN(v′) = OUT(v′) = 0, we also delete v′ from G. Then, we
add the traversed path p = v . . . v′ to a set P of paths. The path can contain
the same node v more than once. If G is empty we halt. Proceeding this way,
there are no two elements p1 and p2 in P such that p1 starts with v and p2 ends
with v; thus this path decomposition is minimal. If G is not empty at the end,
by construction, it consists of only cycles.

Step 2: While G is not empty, we perform the following. If there exists a cycle c
that intersects with any path p in P we splice c with p, update p with the result
of splicing, and delete c from G. This operation can be efficiently implemented
by maintaining an array A of size 2q of linked lists over the paths in P: A[α]
stores a list of pointers to all occurrences of letter α in the elements of P. Thus
in constant time per node of c we check if any such path p exists in P and
splice the two in this case. If no such path exists in P, we add to P any of the
path-linearizations of the cycle, and delete the cycle from G. After each change
to P, we update A and delete every node u with IN(u) = OUT(u) = 0 from G.

The correctness of this algorithm follows from the fact that P is a minimal
path decomposition of G. Thus any concatenation of paths in P represents a
shortest string containing all elements in Q as distinct substrings. ��

Omitted proofs of Lemmas 3 and 4 can be found in [3].
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Lemma 3. Let B be a collection of strings over an alphabet Σ =
{1, . . . , ||B||O(1)}. Given an integer �, the FO-SSM problem for B can be solved
in O(||B||) time.

Thus, PFS-ALGO applies Lemma 3 on B := X1, . . . , XN with � := k − 1
(recall that X1# . . . #XN = X). Note that each time the concat operation is
performed, it also places the letter # in between the two strings.

Lemma 4. Let W be a string of length n over an alphabet Σ. Given k < n and
array C, PFS-ALGO constructs a shortest string Y with C1, Π1, and P2-P4.

Theorem 2. Let W be a string of length n over Σ = {1, . . . , nO(1)}. Given
k < n and S, PFS-ALGO solves Problem 2 in the optimal O(n + |Y |) time.

Proof. We compute the O(n)-sized representation of string X with respect to W
described in the proof of Theorem1. This can be done in O(n) time. If X ∈ Σ∗,
then we construct and return Y := X in time O(|Y |) from the representation.
If X ∈ (Σ ∪ {#})∗, implying |Y | ≤ |X|, we compute the LCP data structure of
string W in O(n) time [9]; and implement Lemma 3 in O(n) time by avoiding
to read string X explicitly: we rather rename X1, . . . , XN to a collection of two-
letter strings by employing the LCP information of W directly. We then construct
and report Y in time O(|Y |). Correctness follows directly from Lemma 4. ��

5 The MCSR Problem and MCSR-ALGO

The strings X and Y , constructed by TFS-ALGO and PFS-ALGO, respec-
tively, may contain the separator #, which reveals information about the loca-
tion of the sensitive patterns in W . Specifically, a malicious data recipient can
go to the position of a # in X and “undo” Rule R1 that has been applied by
TFS-ALGO, removing # and the k − 1 letters after # from X. The result will
be an occurrence of the sensitive pattern. For example, applying this process to
the first # in X shown in Fig. 1, results in recovering the sensitive pattern abab.
A similar attack is possible on the string Y produced by PFS-ALGO, although
it is hampered by the fact that substrings within two consecutive #s in X often
swap places in Y .

To address this issue, we seek to construct a new string Z, in which #s are
either deleted or replaced by letters from Σ. To preserve privacy, we require sep-
arator replacements not to reinstate sensitive patterns. To preserve data utility,
we favor separator replacements that have a small cost in terms of occurrences
of τ -ghosts (patterns with frequency less than τ in W and at least τ in Z) and
incur a bounded level of distortion in Z, as defined below. This is the MCSR
problem, a restricted version of which is presented in Problem3. The restricted
version is referred to as MCSRk=1 and differs from MCSR in that it uses k = 1
for the pattern length instead of an arbitrary value k > 0. MCSRk=1 is presented
next for simplicity and because it is used in the proof of Lemma5 (see [3] for
the proof). Lemma 5 implies Theorem 3.
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Problem 3 (MCSRk=1). Given a string Y over an alphabet Σ ∪ {#} with
δ > 0 occurrences of letter #, and parameters τ and θ, construct a new string
Z by substituting the δ occurrences of # in Y with letters from Σ, such that:

(I)
∑

i:Y [i]=#, FreqY (Z[i])<τ
FreqZ(Z[i])≥τ

Ghost(i, Z[i]) is minimum, and (II)
∑

i:Y [i]=#

Sub(i, Z[i]) ≤ θ.

The cost of τ -ghosts is captured by a function Ghost. This function assigns a
cost to an occurrence of a τ -ghost, which is caused by a separator replacement at
position i, and is specified based on domain knowledge. For example, with a cost
equal to 1 for each gained occurrence of each τ -ghost, we penalize more heavily
a τ -ghost with frequency much below τ in Y and the penalty increases with
the number of gained occurrences. Moreover, we may want to penalize positions
towards the end of a temporally ordered string, to avoid spurious patterns that
would be deemed important in applications based on time-decaying models [8].

The replacement distortion is captured by a function Sub which assigns a
weight to a letter that could replace a # and is specified based on domain knowl-
edge. The maximum allowable replacement distortion is θ. Small weights favor
the replacement of separators with desirable letters (e.g., letters that reinstate
non-sensitive frequent patterns) and letters that reinstate sensitive patterns are
assigned a weight larger than θ that prohibits them from replacing a #. Simi-
larly, weights larger than θ are assigned to letters which would lead to implausible
patterns [13] if they replaced #s.

Lemma 5. The MCSRk=1 problem is NP-hard.

Theorem 3. The MCSR problem is NP-hard.

MCSR-ALGO. Our MCSR-ALGO is a non-trivial heuristic that exploits the
connection of the MCSR and MCK [18] problems and works by:

(I) Constructing the set of all candidate τ -ghost patterns (i.e., length-k strings
over Σ with frequency below τ in Y that can have frequency at least τ in
Z).

(II) Creating an instance of MCK from an instance of MCSR. For this, we map
the ith occurrence of # to a class Ci in MCK and each possible replacement
of the occurrence with a letter j to a different item in Ci. Specifically, we
consider all possible replacements with letters in Σ and also a replacement
with the empty string, which models deleting (instead of replacing) the ith
occurrence of #. In addition, we set the costs and weights that are input
to MCK as follows. The cost for replacing the ith occurrence of # with the
letter j is set to the sum of the Ghost function for all candidate τ -ghost
patterns when the ith occurrence of # is replaced by j. That is, we make the
worst-case assumption that the replacement forces all candidate τ -ghosts
to become τ -ghosts in Z. The weight for replacing the ith occurrence of #
with letter j is set to Sub(i, j).
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(III) Solving the instance of MCK and translating the solution back to a (pos-
sibly suboptimal) solution of the MCSR problem. For this, we replace the
ith occurrence of # with the letter corresponding to the element chosen
by the MCK algorithm from class Ci, and similarly for each other occur-
rence of #. If the instance has no solution (i.e., no possible replacement
can hide the sensitive patterns), MCSR-ALGO reports that Z cannot be
constructed and terminates.

Lemma 6 below states the running time of MCSR-ALGO (see [3] for the
proof on an efficient implementation of this algorithm).

Lemma 6. MCSR-ALGO runs in O(|Y | + kδσ + T (δ, σ)) time, where T (δ, σ)
is the running time of the MCK algorithm for δ classes with σ+1 elements each.

6 Experimental Evaluation

We evaluate our approach, referred to as TPM, in terms of data utility and
efficiency. Given a string W over Σ, TPM sanitizes W by applying TFS-ALGO,
PFS-ALGO, and then MCSR-ALGO, which uses the O(δσθ)-time algorithm
of [18] for solving the MCK instances. The final output is a string Z over Σ.

Experimental Setup and Data. We do not compare TPM against existing
methods, because they are not alternatives to our approach (see Sect. 7). Instead,
we compared against a greedy baseline referred to as BA.

BA initializes its output string ZBA to W and then considers each sensitive
pattern R in ZBA, from left to right. For each R, it replaces the letter r of R
that has the largest frequency in ZBA with another letter r′ that is not contained
in R and has the smallest frequency in ZBA, breaking all ties arbitrarily. If no
such r′ exists, r is replaced by # to ensure that a solution is produced (even if
it may reveal the location of a sensitive pattern). Each replacement removes the
occurrence of R and aims to prevent τ -ghost occurrences by selecting an r′ that
will not substantially increase the frequency of patterns overlapping with R.

Table 1. Characteristics of datasets and values used (default values are in bold).

Dataset Data domain Length n Alphabet

size |Σ|
# sensitive

patterns

# sensitive

positions |S|
Pattern

length k

OLD Movement 85,563 100 [30, 240] (60) [600, 6103] [3, 7] (4)

TRU Transportation 5,763 100 [30, 120] (10) [324, 2410] [2, 5] (4)

MSN Web 4,698,764 17 [30, 120] (60) [6030, 320480] [3, 8] (4)

DNA Genomic 4,641,652 4 [25, 500] (100) [163, 3488] [5, 15] (13)

SYN Synthetic 20,000,000 10 [10, 1000] (1000) [10724, 20171] [3, 6] (6)

We considered the following publicly available datasets used in [1,11,13,15]:
Oldenburg (OLD), Trucks (TRU), MSNBC (MSN), the complete genome of
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Escherichia coli (DNA), and synthetic data (uniformly random strings, the
largest of which is referred to as SYN). See Table 1 for the characteristics of
these datasets and the parameter values used in experiments, unless stated
otherwise.

The sensitive patterns were selected randomly among the frequent length-k
substrings at minimum support τ following [11,13,15]. We used the fairly low
values τ = 10, τ = 20, τ = 200, and τ = 20 for TRU, OLD, MSN, and
DNA, respectively, to have a wider selection of sensitive patterns. We also used
a uniform cost of 1 for every occurrence of each τ -ghost, a weight of 1 (resp., ∞)
for each letter replacement that does not (resp., does) create a sensitive pattern,
and we further set θ = δ. This setup treats all candidate τ -ghost patterns and
all candidate letters for replacement uniformly, to facilitate a fair comparison
with BA which cannot distinguish between τ -ghost candidates or favor specific
letters.

To capture the utility of sanitized data, we used the (frequency) distortion
measure

∑
U (FreqW (U)−FreqZ(U))2, where U ∈ Σk is a non-sensitive pattern.

The distortion measure quantifies changes in the frequency of non-sensitive pat-
terns with low values suggesting that Z remains useful for tasks based on pat-
tern frequency (e.g., identifying motifs corresponding to functional or conserved
DNA [19]). We also measured the number of τ -ghost and τ -lost patterns in Z
following [11,13,15], where a pattern U is τ -lost in Z if and only if FreqW (U) ≥ τ
but FreqZ(U) < τ . That is, τ -lost patterns model knowledge that can no longer
be mined from Z but could be mined from W , whereas τ -ghost patterns model
knowledge that can be mined from Z but not from W . A small number of
τ -lost/ghost patterns suggests that frequent pattern mining can be accurately
performed on Z [11,13,15]. Unlike BA, by design TPM does not incur any τ -lost
pattern, as TFS-ALGO and PFS-ALGO preserve frequencies of nonsensitive
patterns, and MCSR-ALGO can only increase pattern frequencies.

All experiments ran on an Intel Xeon E5-2640 at 2.66 GHz with 16 GB
RAM. Our source code, written in C++, is available at https://bitbucket.org/
stringsanitization. The results have been averaged over 10 runs.
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Fig. 2. Distortion vs. number of sensitive patterns and their total number |S| of occur-
rences in W (first two lines on the X axis).

https://bitbucket.org/stringsanitization
https://bitbucket.org/stringsanitization
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Fig. 3. Distortion vs. length of sensitive patterns k (and |S|).

Data Utility. We first demonstrate that TPM incurs very low distortion, which
implies high utility for tasks based on the frequency of patterns (e.g., [19]).
Figure 2 shows that, for varying number of sensitive patterns, TPM incurred on
average 18.4 (and up to 95) times lower distortion than BA over all experiments.
Also, Fig. 2 shows that TPM remains effective even in challenging settings, with
many sensitive patterns (e.g., the last point in Fig. 2b where about 42% of the
positions in W are sensitive). Figure 3 shows that, for varying k, TPM caused on
average 7.6 (and up to 14) times lower distortion than BA over all experiments.

Next, we demonstrate that TPM permits accurate frequent pattern mining :
Fig. 4 shows that TPM led to no τ -lost or τ -ghost patterns for the TRU and
MSN datasets. This implies no utility loss for mining frequent length-k sub-
strings with threshold τ . In all other cases, the number of τ -ghosts was on aver-
age 6 (and up to 12) times smaller than the total number of τ -lost and τ -ghost
patterns for BA. BA performed poorly (e.g., up to 44% of frequent patterns
became τ -lost for TRU and 27% for DNA). Figure 5 shows that, for varying
k, TPM led to on average 5.8 (and up to 19) times fewer τ -lost/ghost patterns
than BA. BA performed poorly (e.g., up to 98% of frequent patterns became
τ -lost for DNA).
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Fig. 4. Total number of τ -lost and τ -ghost patterns vs. number of sensitive patterns
(and |S|). x

y on the top of each bar for BA denotes x τ -lost and y τ -ghost patterns.
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Fig. 5. Total number of τ -lost and τ -ghost patterns vs. length of sensitive patterns k
(and |S|). x

y on the top of each bar for BA denotes x τ -lost and y τ -ghost patterns.

We also demonstrate that PFS-ALGO reduces the length of the output
string X of TFS-ALGO substantially, creating a string Y that contains less
redundant information and allows for more efficient analysis. Figure 6a shows
the length of X and of Y and their difference for k = 5. Y was much shorter
than X and its length decreased with the number of sensitive patterns, since
more substrings had a suffix-prefix overlap of length k−1 = 4 and were removed
(see Sect. 4). Interestingly, the length of Y was close to that of W (the string
before sanitization). A larger k led to less substantial length reduction as shown
in Fig. 6b (but still few thousand letters were removed), since it is less likely for
long substrings of sensitive patterns to have an overlap and be removed.
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Fig. 6. Length of X and Y (output of TFS-ALGO and PFS-ALGO, resp.) for varying:
(a) number of sensitive patterns (and |S|), (b) length of sensitive patterns k (and |S|).
On the top of each pair of bars we plot |X|−|Y |. Runtime on synthetic data for varying:
(c) length n of string and (d) length k of sensitive patterns. Note that |Y | = |Z|.

Efficiency. We finally measured the runtime of TPM using prefixes of the syn-
thetic string SYN whose length n is 20 million letters. Figure 6c (resp., Fig. 6d)
shows that TPM scaled linearly with n (resp., k), as predicted by our analysis in
Sect. 5 (TPM takes O(n+ |Y |+kδσ + δσθ) = O(kn+kδσ + δσθ) time, since the
algorithm of [18] was used for MCK instances). In addition, TPM is efficient,
with a runtime similar to that of BA and less than 40 s for SYN.
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7 Related Work

Data sanitization (a.k.a. knowledge hiding) aims at concealing patterns mod-
eling confidential knowledge by limiting their frequency, so that they are not
easily mined from the data. Existing methods are applied to: (I) a collection of
set-valued data (transactions) [21] or spatiotemporal data (trajectories) [1]; (II)
a collection of sequences [11,13]; or (III) a single sequence [4,15,22]. Yet, none
of these methods follows our CSD setting: Methods in category I are not appli-
cable to string data, and those in categories II and III do not have guarantees
on privacy-related constraints [22] or on utility-related properties [4,11,13,15].
Specifically, unlike our approach, [22] cannot guarantee that all sensitive pat-
terns are concealed (constraint C1), while [4,11,13,15] do not guarantee the
satisfaction of utility properties (e.g., Π1 and P2).

Anonymization aims to prevent the disclosure of individuals’ identity and/or
information that individuals are not willing to be associated with [2]. Anonymiza-
tion works (e.g., [2,5,7]) are thus not alternatives to our work (see [3] for details).

8 Conclusion

In this paper, we introduced the Combinatorial String Dissemination model. The
focus of this model is on guaranteeing privacy-utility trade-offs (e.g., C1 vs. Π1
and P2). We defined a problem (TFS) which seeks to produce the shortest string
that preserves the order of appearance and the frequency of all non-sensitive
patterns; and a variant (PFS) that preserves a partial order and the frequency
of the non-sensitive patterns but produces a shorter string. We developed two
time-optimal algorithms, TFS-ALGO and PFS-ALGO, for the problem and
its variant, respectively. We also developed MCSR-ALGO, a heuristic that pre-
vents the disclosure of the location of sensitive patterns from the outputs of
TFS-ALGO and PFS-ALGO. Our experiments show that sanitizing a string
by TFS-ALGO, PFS-ALGO and then MCSR-ALGO is effective and efficient.
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Abstract. Maintaining an accurate trained model on an infinite data
stream is challenging due to concept drifts that render a learned model
inaccurate. Updating the model periodically can be expensive, and so
traditional approaches for computationally limited devices involve a vari-
ation of online or incremental learning, which tend to be less robust.

The advent of heterogeneous architectures and Internet-connected
devices gives rise to a new opportunity. A weak processor can call upon a
stronger processor or a cloud server to perform a complete batch training
pass once a concept drift is detected – trading power or network band-
width for increased accuracy.

We capitalize on this opportunity in two steps. We first develop a
computationally efficient bound for changes in any linear model with
convex, differentiable loss. We then propose a sliding window-based algo-
rithm that uses a small number of batch model computations to maintain
an accurate model of the data stream. It uses the bound to continuously
evaluate the difference between the parameters of the existing model and
a hypothetical optimal model, triggering computation only as needed.

Empirical evaluation on real and synthetic datasets shows that our
proposed algorithm adapts well to concept drifts and provides a better
tradeoff between the number of model computations and model accuracy
than classic concept drift detectors. When predicting changes in electric-
ity prices, for example, we achieve 6% better accuracy than the popular
EDDM, using only 20 model computations.

1 Introduction

Consider a computationally limited device like a wireless sensor or a router
that receives an infinite stream of (occasionally) labeled samples, and applies
machine learning to perform tasks such as gesture recognition or network attack
detection, or employs it as part of a mobile healthcare application [12,20]. Classic
offline learning algorithms assume a fixed distribution of the data to make some
guarantees about the accuracy of learned model. However, this is not always the
case in data streams, where the underlying distribution may change over time.
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This is known as a concept drift. To maintain an accurate model, the device has
to update the model whenever the concept changes, a computationally expensive
task.

Concept drift has been widely studied. Algorithms designed for learning from
data streams with concept drifts rely on two main strategies. Incremental learn-
ing algorithms [7,24,27,31,32] adapt to the new concept implicitly by updating
the model periodically. They incrementally update the model using only the
previous model and a single new sample from the stream rather than an entire
batch of samples. However, for stochastic gradient descent, which is a popular
learning method for incremental algorithms, the convergence rate is approxi-
mately linearly dependent on the condition number of the problem [6, p. 467].
Concept drifts such as changes in variable scaling or covariance structure can
increase this condition number, causing slower adaptation to the new concept
(since incremental algorithms process one sample at a time). Conversely, algo-
rithms based on either sliding windows or adaptive windows use a batch of recent
samples to compute the current model [3,30]. Such algorithms are more immune
to outliers since multiple samples are used simultaneously. They also explicitly
forget irrelevant samples, as the computed model is based only on samples that
appear in a recent window. Despite these advantages, sliding window algorithms
are less computationally efficient than incremental algorithms. As such, they are
difficult to use in settings with low-powered devices such as those used in edge
computing and IoT (Internet of Things) [20,29].

Connected devices in edge computing and IoT settings present a new oppor-
tunity to tradeoff communication or battery power for better accuracy. These
often have limited computational power, but are connected to stronger machines.
Smart cities, for example, are composed of many weak sensors which use a cloud
server to perform learning tasks [2]. Thus, weak edge devices can occasionally
call on stronger machines for heavy computational tasks such as batch learning.

However, many weak devices could flood the network and overwhelm the
cloud. This gives rise to a tradeoff between accuracy and the network overhead
(or required computations). A similar tradeoff exists in heterogeneous archi-
tectures, which incorporate power-efficient weak processors and power-hungry
strong processors on the same device. These are common in edge computing
settings where client or edge devices are often battery-powered [19]. The weak
processor can wake the strong processor to perform computationally intensive
tasks such as recomputing the model, but with higher power consumption. Algo-
rithms must therefore be carefully designed to minimize model recomputations
by efficiently detecting when they are necessary.

Our Contributions. We present DRUiD (for Drift detectoR from boUnded
Distance): a novel sliding window algorithm designed for learning from data
streams in edge computing and IoT settings. DRUiD is suitable for any linear
model with convex differentiable loss, while supporting both classification and
regression tasks.

We develop a bound that estimates the difference between the last batch-
computed model and the hypothetical model that could be computed from the
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current position of the sliding window. While most other algorithms monitor the
error rate of the model to detect concept drifts, DRUiD monitors changes to the
model coefficients. By only recomputing models as needed, DRUiD reduces the
number of model recomputations while maintaining high accuracy. We also show
that our new bound is tighter than bounds in previous work [23] by recasting the
mathematical proof of the bounds from prior work in simpler, geometric terms.
Our reanalysis also points to a limitation on using previous bounds to infer the
class predictions of the hypothetical model.

Evaluated on synthetic and real-world data sets, DRUiD provides more accu-
rate predictions than other online learning methods. It also provides more accu-
rate predictions than an equivalent method using previous bounds. For example,
when predicting change in electricity price, DRUiD achieves 6% higher accuracy
over existing work while recomputing only 20 times (roughly 0.04% of the stream
length), or 2.5% higher accuracy with only 10 recomputations.

2 Related Work

We divide existing work on concept drift into algorithms which focus on accu-
rately detecting concept changes, and incremental algorithms that implicitly
adapt the learned model to the new concept.

Concept Drift Detection. DDM by Gama et al. [13] monitors the classifier error
rate by assuming that it decreases as the number of examples increases. If the
error rate increases significantly the data is considered to have undergone con-
cept drift. Similarly, EDDM by Baena-Garćıa et al. [1] detects concept drifts by
monitoring the number of correct predictions between two consecutive classifi-
cation errors.

Some adaptive algorithms also rely on sliding windows. FLORA2 by Wid-
mer and Kubat [30] adjusts the window size to maintain model accuracy above
a user-defined accuracy threshold. Harel et al. [15] use an adaptive sliding win-
dow to detect concept drifts: each window is split several times to different train
and test sets, and the models built from each partition are expected to have
similar accuracy. Otherwise, a concept drift is likely to have occurred. Multi-
ple model computations make this approach unsuitable for systems with lim-
ited computational resources. Klinkenberg [18] suggests monitoring the values of
three performance indicators – accuracy, recall and precision. If a concept drift
is detected, the window is decreased to its minimal size, which is equal to one
batch size. Klinkenberg and Joachims [17] presented an approach that selects an
SVM window size such that the estimated generalization error on new examples
is minimized. Such approaches require batch computation whenever the window
is adjusted, or even to set its size in the first place, making them impractical
when computational power is limited. ADWIN by Bifet and Gavaldà [3] adapts
the window size by monitoring the difference in the mean value of the samples
for every potential split of the window, and shrinking the window if this differ-
ence is too large. It is designed for one-dimensional samples and requires that
the feature values be within a known range.
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Our algorithm resembles concept drift detectors in that it considers both
the features and the labels when detecting concept drifts. However, unlike most
concept drift detectors, which only monitor the predictions of the model, we can
monitor changes to the model coefficients. As we show in our evaluation, this
results in superior tradeoff of model computation and accuracy.

DILSQ by Gabel et al. [10] is a distributed sliding window algorithm that
triggers model recomputation when the Euclidean distance between models is
too large. Though similar to DRUiD in that respect, DILSQ focuses on reducing
the network overhead using geometric monitoring techniques [11,28], rather than
trading accuracy, and is limited to least squares regression models.

Incremental Learning. These algorithms can implicitly adapt to concept drifts.
One such example is SGD, which applies first-order updates to the model [31].
Other incremental algorithms use second-order optimization, such as AROW
by Crammer et al. [7] and NAROW by Orabona and Crammer [24]. Although
not explicitly designed for concept drift detection, they may be adapted for this
task. Our proposed algorithm can use any incremental learner internally when a
concept drift is suspected, then use batch learning from the sliding window once
enough samples from the new concept have been obtained.

3 Problem Definition and Notations

Consider a stream of data, where only some of the samples are labeled. The
labeled data arrives as tuples {xi, yi}, while yi ∈ {−1, 1} for classification prob-
lems or yi ∈ R for regression problems. Unlabeled samples have yi = null.

We focus on sliding windows with a fixed or time-based window size. When a
new labeled sample arrives, the window is updated – older samples in the window
are removed and the new sample is added. We define W to be the sliding window
at time t, and let D be the set of indices of labeled samples inside W .

Let f(x, β) = xT β be a linear function and let the loss function �(·, ·) be
a differentiable and convex function with respect to the second argument. The
model β∗

t is the optimal solution for the following optimization problem:

β∗
t = arg min

β∈Rd
C

∑

i∈D
�(yi, f(xi, β)) +

1
2
‖β‖2, C > 0. (1)

Given an objective function of the form a
∑

i∈D �(yi, f(xi, β)) + b‖β‖2, choosing
C = a

2b will bring it to the standard form (1).
The optimization problem could be classification or regression, where for

classification the linear classifier is ŷ = sgn (f(x, β∗
t )) while for regression the

linear model is ŷ = f(x, β∗
t ).

For simplicity, we define a compact notation for the loss function for a specific
sample. Let �i := �(yi, f(xi, β)) be the loss with respect to sample {xi, yi}. Then
∇�i(β∗) is the gradient of �i with respect to β at the point β∗.

This work focuses on the problem of maintaining high model accuracy over
a stream of data with concept drift. The näıve approach would be to compute
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a new optimal solution β∗
t for every window update, which is infeasible if the

computational power is limited. Instead, we aim to understand when concept
drift occurs and to compute a new model only then.

4 Bounding Model Differences

Consider two sliding windows, W1 and W2, where W1 is the sliding window at
some previous time t1 and W2 is the window at current time tcurrent. If the
concept we are trying to model has not changed, we expect the two models
computed from two windows to be similar. For example, the Euclidean distance
between the models is expected to be small. When the concept has changed, the
opposite is expected.

We first develop a bound that estimates the difference between the last com-
puted model and the model based on the current sliding window, without actu-
ally computing it. In Sect. 4.3 we propose algorithm that uses this bound to
monitor that difference: it computes a new model only when the estimated dif-
ference is large.

4.1 Bound the Distance Between Models

Let β1 and β2 be the models trained on the labeled samples in the windows
W1 and W2. We define the difference between two models as the Euclidean
distance between the two model vectors: ‖β∗

1 − β∗
2‖. We propose a bound for this

distance that can be computed without knowing β∗
2 . Monitoring this bound over

the stream helps the algorithms detect changes in the concept, thus preventing
unnecessary computations while maintaining accurate models.

Theorem 1. Let P be an optimization problem over a window W with sample
indices D, of the standard form (1):

P : β∗
p = arg min

β∈Rd
Cp

∑

i∈D
�i +

1
2
‖β‖2,

with its associated constant CP . Let β∗
1 be the optimal solution of P1 over previous

window W1 containing the labeled samples with indices D1, let β∗
2 be the solution

of P2 over current window W2 containing labeled samples D2, let C1 be the
associated constant of P1 and let C2 be the associated constant of P2. Let DA be
the set of indices of labeled samples added in W2: DA = D2\D1. Similarly, let
DR be the set of indices of samples removed in W2: DR = D1\D2. Finally, let
Δg be

Δg :=
∑

i∈DA

∇�i(β∗
1) −

∑

i∈DR

∇�i(β∗
1).

Then the distance between β∗
1 and β∗

2 is bounded by: ‖β∗
1 − β∗

2‖ ≤ 2‖r‖, where

r =
1
2

(
β∗
1 − C2

C1
β∗
1 + C2Δg

)
. (2)
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Table 1. Objective functions, losses, and associated bound parameter r.

Model Objective function Loss r

L2-reg LR min
β

C
∑

i

log
(
1 + exp(−yix

T
i β)

)
+ 1

2‖β‖2 log
(
1 + exp(−yix

T
i β)

)
C
2 Δg

L2-reg SVM min
β

C
∑

i

(
max{0, 1 − yix

T
i β}

)2
+ 1

2‖β‖2
(
max{0, 1 − yix

T
i β}

)2
C
2 Δg

Ridge Reg. min
β

∑

i

(
yi − xT

i β
)2

+ α‖β‖2
(

yi − xT
i β

)2 1
4α Δg

Theorem 1 bounds the difference between computed models for any convex
differentiable loss given the difference of their training sets. For example, we can
apply Theorem 1 to L2-regularized logistic regression, as defined in Liblinear [9],
C1 = C2 = C. Assigning this in (2) gives r = C

2 Δg. For L2-regularized MSE
loss, the constants C1 and C2 depend on the number of samples in the windows,
and thus may differ if the size of the windows W1 and W2 is different. Table 1
lists r for several important optimization problems.

Proof. The proof of Theorem 1 proceeds in three steps: (i) use the convexity of
the objective function to get a sphere that contains β∗

2 ; (ii) use the convexity of
the objective function again to express the sphere’s radius as a function of Δg;
and (iii) bound the distance between β∗

1 and β∗
2 using geometric arguments.

(i) Sphere Shape Around β∗
2 : This step adapts the proof in [23] to the canonical

form and simplifies it. Recall that β∗
2 is the optimal solution of (1), so according

to the first-order optimality condition [6], C2

∑
i∈D2

∇�i(β∗
2)+β∗

2 = 0. This could
be written as

β∗
2 = −C2

∑

i∈D2

∇�i(β∗
2). (3)

�i is convex and differentiable, and therefore its gradient is monotonic non-
decreasing (see Lemma 1 in [8] for the proof of this feature of convex function):

(∇�i(β∗
2) − ∇�i(β∗

1))T (β∗
2 − β∗

1) ≥ 0. (4)

By summing (4) over all i ∈ D2, opening brackets and rearranging the inequality,
we obtain:

∑

i∈D2

∇�i(β∗
2)T (β∗

2 − β∗
1) ≥

∑

i∈D2

∇�i(β∗
1)T (β∗

2 − β∗
1). (5)

Multiplying both sides of (5) with C2 (C2 > 0), and using (3), gives

β∗T
2 (β∗

2 − β∗
1) + C2

∑

i∈D2

∇�i(β∗
1)T (β∗

2 − β∗
1) ≤ 0. (6)
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Denote r := 1
2

(
β∗
1 + C2

∑
i∈D2

∇�i(β∗
1)

)
, and observe that we can write:

β∗
1 − r = 1

2

(
β∗
1 − C2

∑
i∈D2

∇�i(β∗
1)

)
. Completing the square of (6), we have:

‖β∗
2 − (β∗

1 − r)‖2 = β∗T
2 (β∗

2 − β∗
1) + C2

∑

i∈D2

∇�i(β∗
1)T (β∗

2 − β∗
1)

︸ ︷︷ ︸
≤0, due to (6)

+‖r‖2.

Then from (6) we have ‖β∗
2 − (β∗

1 − r)‖2 ≤ ‖r‖2. Denoting m := β∗
1 − r, we can

rewrite it as: β∗
2 ∈ Ω, where Ω :=

{
β

∣∣∣ ‖β − m‖2 ≤ ‖r‖2
}

. Thus the new optimal
solution β∗

2 is within a sphere Ω with center m and radius vector r.

(ii) Express the Radius Vector as a Function of Δg: β∗
1 is the optimal solution

of (1). Then by the first-order optimality condition: C1

∑
i∈D1

∇�i(β∗
1)+β∗

1 = 0.

This implies
∑

i∈D1
∇�i(β∗

1) = − β∗
1

C1
. From the fact that D2 = D1 + DA − DR,

and the definition of Δg:

∑

i∈D2

∇�i(β∗
1) =

∑

i∈D1

∇�i(β∗
1) +

∑

i∈DA

∇�i(β∗
1) −

∑

i∈DR

∇�i(β∗
1)

︸ ︷︷ ︸
�Δg

= −β∗
1

C1
+ Δg.

Substituting this into the definition of r above, we obtain (2).

(iii) Upper Bounds to ‖β∗
1 − β∗

2‖: We observe that both β∗
1 and β∗

2 are inside
or on the surface of the sphere Ω. For β∗

1 this follows since Ω is centered at
m = β∗

1 − r with radius vector r. For β∗
2 this property is obtained from the

definition of Ω.
This implies that the maximum distance between β∗

1 and β∗
2 is obtained

when β∗
1 , β∗

2 are on the surface of the sphere at two opposite sides of the sphere’s
diameter, which has length 2‖r‖, yielding the upper bound in Theorem 1. ��

Improved Tightness. The bound in Theorem 1 is tighter than the previous
bound [23, Corollary 2] by a factor of

√
d, and in fact does not depend on the

number of attributes d. The proof is technical and omitted for space reasons. The
intuition is that [23] relies on summing d bounds on the coefficients of β∗

1 − β∗
2 .

Tikhonov Regularization. We can extend our approach to Tikhonov Reg-
ularization with an invertible Tikhonov matrix A [6]. The objective function
remains convex with respect to the weights, and the canonical form (1) changes
to: β∗ = arg minβ∈Rd C

∑
i∈D �i + 1

2‖Aβ‖2. By the first-order optimality con-
dition, C2

∑
i∈D ∇�i(β∗) + AT Aβ∗ = 0. Repeating the steps for the proof of

Theorem 1 starting from (3), we obtain: r = 1
2

(
β∗
1 − C2

C1
β∗
1 + C2(AT A)−1Δg

)
.

The only change to r is the addition of (AT A)−1 before Δg.
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4.2 Bounding the Predictions of the New Model

To compare to previous work [23], we describe an alternative measure for the
difference between two models: the difference in the prediction of the two models
for a given sample. We describe upper and lower bounds for the prediction of β∗

2

for a new sample. As before, we can compute these bounds without computing
β∗
2 , using the predictions from β∗

1 .
Using the observation from Sect. 4.1 that β∗

2 is within a sphere Ω with center
m and radius vector r, we can obtain lower and upper bounds on applying β∗

2

to a new sample x:

Lemma 1. Let β∗
1 , β∗

2 and r be as in Theorem 1, and let x be a sample. Then
the upper and lower bounds on the prediction of β∗

2 for x are:

L(xT β∗
2) := min

β∈Ω
xT β = xT β∗

1 − xT r − ‖x‖ ‖r‖ (7a)

U(xT β∗
2) := max

β∈Ω
xT β = xT β∗

1 − xT r + ‖x‖ ‖r‖ . (7b)

The proof follows by applying Theorem 1, then expressing β as m+u, where
m is the center of the sphere Ω, u is parallel to x, and ‖u‖ = ‖r‖. See Okumura
et al. [23] for an alternative derivation of these bounds in a different form.

Lemma 1 could be used for concept drift detection in classification problems:
if the upper and lower bounds (7) agree on the sign, then the classification of β∗

2

is known [23]. The frequency of the disagreement between the bounds could be
another indication for the quality of β∗

1 ; as the deviation of the current model
from the older model increases due to concept drift, we expect more frequent
sign disagreement as well.

However, it turns out that the bounds only agree on the class of a new sample
when β∗

1 and β∗
2 also agree. Since both β∗

1 and β∗
2 are inside or on the surface of

the sphere Ω, then from the definition of L(xT β∗
2) and U(xT β∗

2) we have that
L(xT β∗

2) ≤ xT β∗
1 , xT β∗

2 ≤ U(xT β∗
2). Hence, if sgn

(
xT β∗

1

) 
= sgn
(
xT β∗

2

)
, then

necessarily sgn
(
L(xT β∗

2)
) 
= sgn

(
U(xT β∗

2)
)
.

The above implies that if the class of a sample is different under β∗
1 and β∗

2 ,
it cannot be determined from the bounds (7), and instead the bounds disagree
on the sign (this limitation also applies to the bounds from [23]). Moreover, it
is still possible that the bounds disagree even if the classifiers do agree on the
classification. Therefore, this method for evaluating the quality of β∗

1 is more
sensitive to the data distribution than the bound in Sect. 4.1.

4.3 The DRUiD Algorithm

DRUiD is a sliding window algorithm suitable for both classification and regres-
sion problems. For every new sample that arrives, DRUiD: (a) computes β∗

1 ’s
prediction of the new sample and updates the sliding window; (b) bounds the
difference ‖β∗

1 − β∗
2‖ using Theorem 1; and (c) if the difference is too large,

recomputes β∗
1 from the current window. Algorithm 1 shows how DRUiD han-

dles new samples. We describe DRUiD in detail below.



Online Linear Models for Edge Computing 653

Algorithm 1. DRUiD
initialization: βcur ← β∗

1 , nA ← 0 , nR ← 0 , Δg ← 0 , numWarnings ← 0

procedure HandleNewLabeledSample({xi, yi})
Let {xr, yr} be the oldest sample in the sliding window W
Update sliding window W and count of added (removed) samples nA (nR)
Δg ← Δg + ∇�i(β

∗
1 ) − ∇�r(β

∗
1 )

βcur ← incrementalUpdate(βcur, {xi, yi})
if nA < N then

Collect ‖Δg‖ for fitting
else

if nA = N then
Fit χd to collected ‖Δg‖ and choose Tα such that Pr [‖Δg‖ ≤ Tα] > α

if ‖Δg‖ > Tα then numWarnings ← numWarnings + 1
else numWarnings ← 0

if numWarnings > TN then
Train on window W : β∗

1 ← batchTrain(W )
Reset window: βcur ← β∗

1 , nA ← 0 , Δg ← 0

procedure Predict(x)
if numWarnings = 0 then return β∗

1
T x

else return βT
curx

As long as the bound indicates that β∗
1 and β∗

2 are similar, DRUiD uses the
last computed model β∗

1 for prediction; however, it also maintains an incremen-
tally updated model βcur. If the bound indicates that the concept is changing,
DRUiD switches to the incrementally updated model βcur. Finally, once enough
labeled samples from the new concept are available, DRUiD recomputes β∗

1 using
a full batch learning pass.

DRUiD detects concept drifts by monitoring changes in ‖r‖ from Theorem 1.
When new labeled samples arrive, DRUiD updates Δg and the sliding window
(since r is a linear function of Δg, monitoring changes in Δg is equivalent to
monitoring changes in r); it also fits a χd distribution to ‖Δg‖, where degrees
of freedom d is the number of attributes of the data. Once enough new samples
have arrived to accurately estimate the distribution parameters of ‖Δg‖, DRUiD
tests for potential concept drifts (we denote this constant N and set it to the
window size in our evaluation). We use a simple one-tailed test1: a potential
concept drift occurs whenever ‖Δg‖ is above a user-determined α percentile of
the fitted χd distribution, denoted as Tα: Pr [‖Δg‖ ≤ Tα] > α.

Even when a potential concept drift is detected, DRUiD does not immediately
recompute the model. Instead, it waits until ‖Δg‖ is above the threshold Tα for
TN times in a row (we set TN to the window size). This not only guarantees
the batch learner a sufficiently large sample from the new concept, but also

1 We caution against ascribing such tests too much meaning. If values of Δg are i.i.d.
Gaussians, then ‖Δg‖ ∼ χd. However, as with similar tests in the literature, in
practice the elements are seldom i.i.d. Gaussians and even successive Δg are often
not independent. Our evaluation in Sect. 5 explores a range of thresholds.
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helps reduce false positives caused by outliers. To maintain high accuracy while
collecting enough samples for batch learning, DRUiD switches to using βcur

for predictions instead of β∗
1 . The model βcur is initialized to β∗

1 after batch
recomputation and is incrementally updated for each new labeled sample, for
example using an SGD update step [31]. However, it is only used after the first
potential concept drift is detected, and only until enough samples are collected.

5 Evaluation

We evaluate DRUiD on real-world and synthetic datasets.
We consider batch model computation as a heavy operation which requires

waking up the stronger processor (in heterogeneous architectures) or communi-
cation with a remote server (in connected devices). An effective edge-computing
algorithm is able to tradeoff a small number of model computations for addi-
tional accuracy. To provide a point of comparison to other concept drift detection
algorithms, we also consider drift detection events as model computation.

We use tradeoff curves to evaluate performance and compare algorithms. For
every configuration of algorithm parameters, we plot a point with the resulting
accuracy as the Y coordinate and the number of computations as the X coordi-
nate. This builds a curve that shows how the algorithm behaves as we change
its parameters. Practitioners can then choose a suitable operating point based
on how many batch model computations they are willing to accept.

5.1 Experimental Setup

We compare DRUiD to several baseline algorithms. Since we are interested in
linear models, the baselines were chosen accordingly.

– Sliding Window is a non-adaptive, periodic sliding window algorithm, as
in the original FLORA [30]. A period parameter determines how often batch
model recomputation is performed: every labeled example, every two labeled
examples, and so on. The implementation of the algorithm uses Liblinear [9]
logistic regression with L2 regularization.

– Incremental SGD uses an SGD-based [31] first-order method update to the
model. We use the SGDClassifier implementation in sklearn [25], with logistic
regression loss. A full batch model is computed only once to obtain the initial
model.

– DDM by Gama et al. [13] and EDDM by Baena-Garćıa et al. [1] are two
popular concept drift detectors that can use batch mode or incremental base
learners. They monitor the base learner accuracy and decide when to update
models. We implemented batch and incremental modes for both algorithms
using the Tornado framework [26].

– PredSign: to compare to existing bounds on model predictions [23], we
describe an algorithm that uses the signs of the classification bounds from
Sect. 4.2 to decide when a model should be recomputed. As with DRUiD, we
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update Δg and the sliding window when labeled samples arrive. Unlabeled
sample are first evaluated using the bounds U and L. When the bounds U
and L have different sign, this could indicate a concept drift. Once the num-
ber of samples for which the U and L bounds disagree on the sign exceeds a
user-defined threshold TD, PredSign recomputes the model β∗

1 .
– ADWIN [3] is a concept drift detector for batch or incremental base learn-

ers. We used the implementation in scikit-multiflow [21]: every time a concept
drift is detected, we compute a new model from the samples in the adaptive
window. ADWIN’s performance across all experiments was equivalent or infe-
rior to DDM’s and EDDM’s, and is therefore not included in the figures.

We mainly focus on L2 regularized logistic regression (Table 1). The fraction
of labeled examples is set to 10%: every 10th sample of the stream is considered
labeled while the other samples are treated as unlabeled (their labels are only
used for evaluation, not training). For the labeled examples, we use prequential
evaluation: we first use the samples to test the model and only then to train
it [14]. We set a window size of 2000 samples (i.e., 200 labels per window), and
use the first 2000 samples from the stream to tune the learning rates and reg-
ularization parameters. Results using different window sizes were fairly similar,
but this size resulted in best performance for the EDDM and DDM baselines.

The tradeoff curve for each algorithm is created by running it on the data with
different parameters. For DDM, we set drift levels α ∈ [0.01, 30]. The warning
level β was set according to the drift level – if α > 1, then β = α − 1; otherwise
β = α. For EDDM, we set warning levels α ∈ [0.1, 0.99999]. The drift level β was
set according to the warning level – if the α > 0.05, then β = α−0.05; otherwise
β = α. We ran PredSign with threshold TD ∈ [60, 50000]. For DRUiD, we set
α values ∈ [0.01, 0.9999999]. For ADWIN, we set δ values ∈ [0.0001, 0.9999999].
Finally, the period parameter for Sliding Window was set between 60 to 30000.

5.2 Electricity Pricing Dataset

The ELEC2 dataset described by Harris et al. [16] contains 45,312 instances
from Australian New South Wales Electricity, using 8 input attributes recorded
every half an hour for two years. The classification task is to predict a rise (yi =
+1) or a fall (yi = −1) in the price of electricity. We used the commonly available
MOA [4] version of the dataset without the date, day, and time attributes.

Figure 1a compares the performance of the different algorithms on the ELEC2
dataset. Every point in the graph represents one run of an algorithm on the entire
stream with a specific value of the algorithm’s meta-parameter – the closer to the
top-left corner, the better. Connecting the points creates a curve that describes
the tradeoff between computation and accuracy.

Overall, the accuracy of sliding window algorithms that use batch learning
(Sliding Window, PredSign and DRUiD) is superior to that of the incremental
learning algorithms (Incremental SGD, DDM and EDDM).

DRUiD gives the best tradeoff of model computations to accuracy: at every
point, it offers the highest accuracy with the fewest model computations. For
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(a) ELEC2. (b) Cover type. (c) Sine1.

Fig. 1. The tradeoff between accuracy and number of model computations in ELEC2,
Forest Covertype, and Sine1 datasets, for different parameter configurations of each
algorithm (EDDM Batch performance is similar to DDM Batch). Vertical lines in Sine1
show standard deviation over 5 experiments. The optimal number of model computa-
tions is 10, since this dataset has 10 concepts. In all cases DRUiD achieves a better
tradeoff, showing equal or superior accuracy at lower computational cost than all other
algorithms across a large range of configurations.

example, DRUiD achieves 70% accuracy using 10 batch model computations
throughout the entire stream (0.02% of stream size), while Sliding Window and
PredSign need two orders of magnitude more computation to reach similar accu-
racy. DDM, EDDM and Incremental SGD are unable to achieve such accuracy
on this dataset, despite careful tuning efforts.

Though PredSign is able to match the performance of the sliding window
algorithm, DRUiD offers a superior computation-accuracy tradeoff. Bounding
the model difference (Sect. 4.1) results in fewer false concept drift detections
than the approach in [23], which bounds the model prediction (Sect. 4.2).

Surprisingly, the accuracy of DDM and EDDM drops even when we use more
model computations. Digging deeper, we saw that DDM and EDDM switch too
soon to a new model without sufficient training. A thorough parameter sweep
using a fine grid, including the parameter values recommended by the authors,
shows that for most configurations DDM and EDDM do not detect any concept
drifts in this data and simply use the initial model from the first window – it is
the optimal point for these algorithms on this dataset. The few configurations
that cause DDM and EDDM to detect drifts end up performing poorly as they
switch to a new model too soon, without sufficient training samples.

DDM and EDDM perform poorly in batch mode on all tested datasets, since
across all test configurations they yield few samples between the warning and
drift threshold, resulting in low accuracy models built from few samples.2

2 As far as we can tell, this is consistent with practice: the implementations of DDM
and EDDM that we found use incremental base learners [4,22,26].
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Fig. 2. Tradeoff curves for the Sine1+ dataset with different scale values (σ). The
accuracy on the incremental based algorithms drops where the scale is larger.

5.3 Forest Covertype

The Forest Covertype dataset contains the forest cover type for 30 × 30 m
cells obtained from US Forest Service data [5]. It includes 581,012 samples with
54 attributes each that are divided into 7 classes. To convert the problem to a
binary classification problem, we set the label yi to +1 for class number 2, the
Lodgepole Pine cover type, and −1 for the rest of the classes (this results in near
equal number of positive and negative examples).

Figure 1b shows the computation-accuracy tradeoff for this dataset. Sliding
window algorithms give more accurate results than the incremental algorithms,
except for the extreme case where the number of model computations is close to
zero. DRUiD shows the best accuracy with the least model computations.

5.4 Sine1+

The Sine1+ artificial dataset is based on the Sine1 artificial dataset presented in
[1,13], but extended to more than 2 attributes and to allow non-uniform scales.
It contains 9 abrupt concept drifts, each with 10,000 samples (hence the optimal
number of model computations is 10). The dataset has d ≥ 2 attributes: x1

is uniformly distributed in [0, σ], where σ ≥ 1 sets its scale compared to other
attributes x2, ..., xd which are uniformly distributed in [0, 1]. In the first concept,

points that lie below the curve xd = sin
(

(x1/σ)+
∑d−1

i=2 xi

d−1

)
are classified as +1

and the rest are classified as −1. After the concept drift, the classification is
reversed. Note that for d = 2, σ = 1 we get the original Sine1 dataset, with the
separating line x2 = sin(x1).

Figure 1c shows the computation-accuracy tradeoff for the original Sine1
dataset (d = 2 and σ = 1). Every point in the graph is the average of 5 runs
with different random seeds (for every seed, all algorithms see the same data),
and the vertical lines are the standard deviation error bars.

DRUiD detects all concept drifts even when set to very low sensitivity levels
(high α), so the number of model computations does not go below 10. It main-
tains high accuracy and a small number of model computations for all α values.
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For almost every number of model computations, PredSign accuracy is higher
than Sliding Window. This is because PredSign can change the timing of its
model computations, which is not possible in Sliding Window.

Figure 2 shows the computation-accuracy tradeoff for d = 2 and different σ
values. As we explain below, DRUiD’s batch mode computation maintains high
accuracy even as the problem becomes increasingly ill-conditioned.

Conversely, incremental algorithms are sensitive to non-uniform attribute
scales. Figure 3 shows the effect of scale on convergence in the Sine1+ dataset.
The top figures show the accuracy over time of Incremental SGD, DDM, and
DRUiD between two consecutive concept drifts (EDDM behaves similarly to
DDM). As σ increases, the convergence time of the incremental based algo-
rithms also grows, as expected [6, p. 467]. The bottom figures show the contour
lines of the L2-regularized logistic regression objective functions for different σ
values (the loss surface). As σ increases, the shape of the loss surface becomes
more elliptic, with a higher condition number and slower convergence for gradi-
ent descent methods. For higher condition number, the batch based algorithms
require more iterations of gradient descent to converge on recomputation of a
new model. However, this recomputation is performed on the strong processor or
cloud server, with no effect on the accuracy. The effect of σ does not depend on
the number of attributes. Using d = 50 attributes yields similar results to only
2: larger σ values reduce the accuracy of incremental algorithms, even though σ
only affects x1 (figures omitted due to lack of space).

Feature normalization or other preconditioning is not always possible in
streams that have concept drifts, since the distribution of the attributes is not

Fig. 3. Effect of different σ values on Sine1+. Top: accuracy over time between two
concept drifts. Bottom: the contour lines of the L2-regularized logistic regression objec-
tive functions. The optimization problem becomes increasingly ill-conditioned when the
scale σ increases, so Incremental SGD recover more slowly after a concept drift.
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known and can change unexpectedly. Algorithms that use batch learning are bet-
ter suited for ill-conditioned streams than relying solely on incremental learning.

5.5 Ridge Regression

We evaluate DRUiD performance on an artificial regression task, and compare
it to Incremental SGD and Sliding Window (PredSign, DDM, and EDDM only
support classification). We generate 10 concepts, each with a different true model
βtrue with 2 coefficients drawn from a standard normal distribution. For each
epoch concept we generate 10,000 samples, where each sample x has 2 attributes
drawn from a standard normal distribution. As with Sine1+, one of the attributes
is then expanded by a factor of σ ≥ 1. Each label is y = xT βtrue + ε, where ε is
random Gaussian noise: ε ∼ N(0, 1).

As in the Sine1+ dataset, non-uniform scaling increases the condition number
of the problem. The computation and accuracy tradeoff follow similar trends as
in classification (figures omitted due to lack of space). For a well-conditioned
problem, the incremental algorithm and DRUiD achieve the same RMSE as the
best periodic algorithm (albeit with far fewer model computations). However,
when the condition number increases, DRUiD achieves a better tradeoff than
the incremental algorithm, since the batch learning convergence rate does not
affect the accuracy along the stream.

6 Conclusions

DRUiD is an online algorithm for data streams with concept drifts, designed
for edge computing systems. It improves accuracy with minimal cost by running
batch computations of new data only when the model changes. DRUiD relies
on an improved bound for the difference between two linear models with con-
vex differentiable loss. Evaluation on real and synthetic data shows that DRUiD
provides a better tradeoff between model computation and accuracy than tra-
ditional concept drift detectors, and that its batch-based computation is better
suited for ill-conditioned problems than methods based on incremental learning.
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Abstract. Change point detection plays a fundamental role in many real-
world applications, where the goal is to analyze and monitor the behaviour
of a data stream. In this paper, we study change detection in binary
streams. To this end, we use a likelihood ratio between two models as a
measure for indicating change. The first model is a single bernoulli vari-
able while the second model divides the stored data in two segments, and
models each segment with its own bernoulli variable. Finding the optimal
split can be done in O(n) time, where n is the number of entries since the
last change point. This is too expensive for large n. To combat this we
propose an approximation scheme that yields (1 − ε) approximation in
O(

ε−1 log2 n
)
time. The speed-up consists of several steps: First we reduce

the number of possible candidates by adopting a known result from seg-
mentation problems. We then show that for fixed bernoulli parameters we
canfind the optimal change point in logarithmic time. Finally,we showhow
to construct a candidate list of size O(

ε−1 log n
)
for model parameters. We

demonstrate empirically the approximation quality and the running time
of our algorithm, showing that we can gain a significant speed-up with a
minimal average loss in optimality.

1 Introduction

Many real-world applications involve in monitoring and analyzing a constant
stream of data. A fundamental task in such applications is to monitor whether a
change has occurred. For example, the goal may be monitoring the performance
of a classifier over time, and triggering retraining if the quality degrades too
much. We can also use change point detection techniques to detect anomalous
behavior in the data stream. As the data flow may be significant, it is important
to develop efficient algorithms.

In this paper we study detecting change in a stream of binary numbers, that
is, we are interested in detecting whether the underlying distribution has recently
changed significantly. To test the change we will use a standard likelihood ratio
statistic. Namely, assume that we have already observed n samples from the
last time we have observed change. In our first model, we fit a single bernoulli
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variable to these samples. In our second model, we split these samples in two
halves, say at point i, and fit two bernoulli variables to these halves. Once this is
done we compare the likelihood ratio of the models. If the ratio is large enough,
then we deem that change has occurred.

In our setting, index i is not fixed. Instead we are looking for the index
that yields the largest likelihood. This can be done naively in O(n) time by
testing each candidate. This may be too slow, especially if n is large enough and
we do not have the resources before a new sample arrives. Our main technical
contribution is to show how we can achieve (1 − ε) approximate of the optimal
i in O(

ε−1 log2 n
)

time.
To achieve this we will first reduce the number of candidates for the optimal

index i. We say that index j is a border if each interval ending at j−1 has a smaller
proportion of 1s that any interval that starts at j. A known result states that the
optimal change point will be among border indices. Using border indices already
reduces the search time greatly in practice, with theoretical running time being
O(

n2/3
)
.

To obtain even smaller bounds we show that we can find the optimal index
among the border indices for fixed model parameters, that is, the parameters
for the two bernoulli variables, in O(log n) time. We then construct a list of
O(

ε−1 log n
)

candidates for these parameters. Moreover, this list will contain
model parameters that are close enough to the optimal parameters, so testing
them yields (1 − ε) approximation guarantee in O(

ε−1 log2 n
)

time.
The remaining paper is organized as follows. In Sect. 2 we introduce prelimi-

nary notation and define the problem. In Sect. 3 we introduce border points. We
present our main technical contribution in Sects. 4 and 5: first we show how to
find optimal index for fixed model parameters, and then show how to select can-
didates for these parameters. We present related work in Sect. 6 and empirical
evaluation in Sect. 7. Finally, we conclude with discussion in Sect. 8.

2 Preliminaries and Problem Definition

Assume a sequence of n binary numbers S = s1, . . . , sn. Here s1 is either the
beginning of the stream or the last time we detected a change. Our goal is to
determine whether a change has happened in S. More specifically, we consider
two statistical models: The first model M1 assumes that S is generated with a
single bernoulli variable. The second model M2 assumes that there is an index
i, a change point, such that s1, . . . , si−1 is generated by one bernoulli variable
and si, . . . , sn is generated by another bernoulli variable.

Given a sequence S we will fit M1 and M2 and compare the log-likelihoods.
Note that the model M2 depends on the change point i, so we need to select i
that maximizes the likelihood of M2. If the ratio is large enough, then we can
determine that change has occurred.
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To make the above discussion more formal, let us introduce some notation.
Given two integers a and b, and real number between 0 and 1, we denote the
log-likelihood of a bernoulli variable by

�(a, b; p) = a log p + b log(1 − p).

For a fixed a and b, the log-likelihood is at its maximum if p = a/(a+ b). In such
a case, we will often drop p from the notation and simply write �(a, b).

We have the following optimization problem.

Problem 1 (Change). Given a sequence S = s1, . . . , sn, find an index i s.t.

�(a1, b1) + �(a2, b2) − �(a, b)

is maximized, where

a1 =
i−1∑

j=1

si, b1 = i − 1 − a1, a2 =
k∑

j=i

si, b2 = k − i − a2,

a = a1 + a2, and b = b1 + b2.

Note that Change can be solved in O(n) time by simply iterating over all
possible values for i. Such running time may be too slow, especially in a streaming
setting when new points arrive constantly, and our goal is to determine whether
change has occurred in real time. The main contribution of this paper is to
show how to compute (1 − ε) estimate of Change in O(

ε−1 log2 n
)

time. This
algorithm requires additional data structures that we will review in the next
section. As our main application is to search change points in a stream, these
structures need to be maintained over a stream. Luckily, there is an amortized
constant-time algorithm for maintaining the needed structure, as demonstrated
in the next section.

Once we have solved Change, we compare the obtained score against the
threshold σ. Note that M2 will always have a larger likelihood than M1. In this
paper, we will use BIC to adjust for the additional model complexity of M2.
The model M2 has three parameters while the model M1 has 1 parameter. This
leads to a BIC penalty of (3−1)/2 log n = log n. In practice, we need to be more
conservative when selecting M2 due to the multiple hypothesis testing problem.
Hence, we will use σ = τ +log n as the threshold. Here, τ is a user parameter; we
will provide some guidelines in selecting τ during the experimental evaluation in
Sect. 7.

When change occurs at point i we have two options: we can either discard the
current window and start from scratch, or we can drop only the first i elements.
In this paper we will use the former approach since the latter approach requires
additional maintenance which may impact overall computational complexity.

3 Reducing Number of Candidates

Our first step for a faster change point discovery is to reduce the number of
possible change points. To this end, we define a variant of Change, where we
require that the second parameter in M2 is larger than the first.
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Problem 2 (ChangeInc). Given a sequence S = s1, . . . , sn, find an index i s.t.

�(a1, b1) + �(a2, b2) − �(a, b)

is maximized, where

a1 =
i−1∑

j=1

si, b1 = i − 1 − a1, a2 =
k∑

j=i

si, b2 = k − i − a2,

a = a1 + a2, and b = b1 + b2

with a1/(a1 + b1) ≤ a2/(a2 + b2).

From now on, we will focus on solving ChangeInc. This problem is mean-
ingful by itself, for example, if the goal is to detect a deterioration in a classi-
fier, that is, sudden increase in entries being equal to 1. However, we can also
use ChangeInc to solve Change. This is done by defining a flipped sequence
S′ = s′

1, . . . , s
′
n, where s′

i = 1 − si. Then the solution for Change is either the
solution of ChangeInc(S) or the solution of ChangeInc(S′).

Next we show that we can limit ourselves to border indices when solving
ChangeInc.

Definition 1. Assume a sequence of binary numbers S = (si)n
i=1. We say that

index j is a border index if there are no indices x, y with x < j < y such that

1
j − x

j−1∑

i=x

si ≥ 1
y − j

y−1∑

i=j

si.

In other words, j is a border index if and only if the average of any interval
ending at j − 1 is smaller than the average of any interval starting at j.

Proposition 1. There is a border index i that solves ChangeInc.

The proposition follows from a variant of Theorem 1 in [19]. For the sake of
completeness we provide a direct proof in Appendix in supplementary material.

We address the issue of maintaining border indices at the end of this section.
The proposition permits us to ignore all indices that are not borders. That

is, we can group the sequence entries in blocks, each block starting with a border
index. We can then search for i using these blocks instead of using the original
sequence.

It is easy to see that these blocks have the following property: the proportion
of 1s in the next block is always larger. This key feature will play a crucial role in
the next two sections as it allows us to use binary search techniques and reduce
the computational complexity. Let us restate the original problem so that we
can use this feature. First, let us define what is a block sequence.

Definition 2. Let B = 〈(ui, vi)〉k
i=1 be a sequence of k pairs of non-negative

integers with ui + vi > 0. We say that B is block sequence if ui+1
ui+1+vi+1

> ui

ui+vi
.
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We obtain a block sequence B from a binary sequence S by grouping the
entries between border points: the counter ui indicates the number of 1s while
the counter vi indicates the number of 0s.

Our goal is to use block sequences to solve ChangeInc. First, we need some
additional notation.

Definition 3. Given a block sequence B, we define B[i; j] = (a, b), where a =∑j
k=i uk and b =

∑j
k=i vk. If i > j, then a = b = 0. Moreover, we will write

av(i, j;B) =
a

a + b
.

If B is known from the context, we will write av(i, j).

Definition 4. Given a block sequence B, we define the score of a change point
i to be

q(i;B) = �(a1, b1) + �(a2, b2) − �(a, b) , (1)

where (a1, b1) = B[1; i − 1], (a2, b2) = B[i; k], and a = a1 + a2 and b = b1 + b2.

Note that �(a, b) is a constant but it is useful to keep since q(i;B) is a log-
likelihood ratio between two models, and this formulation allows us to estimate
the objective in Sect. 5.

Problem 3 (ChangeBlock). Given a block sequence B find a change point i
that maximizes q(i;B).

We can solve ChangeInc by maintaining a block sequence induced by the
border points, and solving ChangeBlock. Naively, we can simply compute
q(i;B) for each index in O(|B|) time. If the distribution is static, then |B| will
be small in practice. However, if there is a concept drift, that is, there are more 1s
in the sequence towards the end of sequence, then |B| may increase significantly.
Calders et al. [8] argued that when dealing with binary sequences of length n,
the number of blocks |B| ∈ O(

n2/3
)
. In the following two sections we will show

how to solve ChangeBlock faster.
However, we also need to maintain the block sequence as new entries arrive.

Luckily, there is an efficient update algorithm, see [8] for example. Assume that
we have already observed n entries, and we have a block sequence of k blocks
B induced by the border points. Assume a new entry sn+1. We add (k + 1)th
block (uk+1, vk+1) to B, where uk+1 = [sn+1 = 1] and vk+1 = [sn+1 = 0]. We
then check whether av(k + 1, k + 1) ≤ av(k, k), that is, whether the average of
the last block is smaller than or equal to the average of the second last block.
If it is, then we merge the blocks and repeat the test. This algorithm maintains
the border points correctly and runs in amortized O(1) time.

It is worth mentioning that the border indices are also connected to isotonic
regression (see [16], for example). Namely, if one would fit isotonic regression
to the sequence S, then the border points are the points where the fitted curve
changes its value. In fact, the update algorithm corresponds to the pool adjacent
violators (PAVA) algorithm, a method used to solve isotonic regression [16].
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4 Finding Optimal Change Point for Fixed Parameters

In this section we show that if the model parameters are known and fixed, then
we can find the optimal change point in logarithmic time.

First, let us extend the definition of q(·) to handle fixed parameters.

Definition 5. Given a block sequence B, an index i, and two parameters p1 and
p2, we define

q(i; p1, p2, B) = �(a1, b1; p1) + �(a2, b2; p2) − �(a, b) ,

where (a1, b1) = B[1; i − 1], (a2, b2) = B[i; k], and a = a1 + a2 and b = b1 + b2.

We can now define the optimization problem for fixed parameters.

Problem 4. Given a block sequence B, two parameters 0 ≤ p1 < p2 ≤ 1, find i
maximizing q(i; p1, p2, B).

Let i∗ be the solution for Problem 4. It turns out that we can construct a
sequence of numbers, referred as dj below, such that dj > 0 if and only if j < i∗.
This allows us to use binary search to find i∗.

Proposition 2. Assume a block sequence B = 〈(uj , vj)〉 and two parameters
0 ≤ p1 < p2 ≤ 1. Define

dj = �(uj , vj , p1) − �(uj , vj , p2) .

Then there is an index i such that dj > 0 if and only if j < i. Moreover, index
i solves Problem 4.

Proof. Let us first show the existence of i. Let tj = uj + vj , and write X =
log p1 − log p2 and Y = log(1 − p1) − log(1 − p2). Then

dj

tj
=

uj

tj
X +

vj

tj
Y =

uj

tj
X + Y − uj

tj
Y =

uj

tj
(X − Y ) + Y.

Since B is a block sequence, the fraction uj/tj is increasing. Since X < 0 and
Y > 0, we have X − Y < 0, so dj/tj is decreasing. Since dj and dj/tj have the
same sign, there is an index i satisfying the condition of the statement.

To prove the optimality of i, first note that

dj = q(j + 1; p1, p2, B) − q(j; p1, p2, B) .

Let i∗ be a solution for Problem 4. If i < i∗. Then

q(i∗; p1, p2, B) − q(i; p1, p2, B) =
i∗−1∑

j=i

dj ≤ 0,

proving the optimality of i. The case for i > i∗ is similar. ��
Proposition 2 implies that we can use binary search to solve Prob-

lem 4 in O(log |B|) ∈ O(log n) time. We refer to this algorithm as
FindSegment(p1, p2, B).
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5 Selecting Model Parameters

We have shown that if we know the optimal p1 and p2, then we can use binary
search as described in the previous section to find the change point. Our main
idea is to test several candidates for p1 and p2 such that one of the candidates
will be close to the optimal parameters yielding an approximation guarantee.

Assume that we are given a block sequence B and select a change point i.
Let (a1, b1) = B[1; i−1], (a2, b2) = B[i; k], a = a1+a2, b = b1+b2 be the counts.
We can rewrite objective given in Eq. 1 as

q(i;B) = �(a1, b1) + �(a2, b2) − �(a, b)
= (�(a1, b1, p1) − �(a1, b1, q)) + (�(a2, b2, p2) − �(a2, b2, q)) ,

(2)

where the model parameters are p1 = a1/(a1 + b1), p2 = a2/(a2 + b2), and
q = a/(a + b).

The score as written in Eq. 2 is split in two parts, the first part depends on p1
and the second part depends on p2. We will first focus solely on estimating the
second part. First, let us show how much we can vary p2 while still maintaining
a good log-likelihood ratio.

Proposition 3. Assume a, b > 0, and let p = a/(a + b). Assume 0 < q ≤ p.
Assume also ε > 0. Define h(x) = �(a, b;x) − �(a, b; q). Assume r such that

log q + (1 − ε)(log p − log q) ≤ log r ≤ log p. (3)

Then h(r) ≥ (1 − ε)h(p).

Proof. Define f(u) = h(exp u). We claim that f is concave. To prove the claim,
note that the derivative of f is equal to

f ′(u) = a − b
exp u

1 − exp u
.

Hence, f ′ is decreasing for u < 0, which proves the concavity of f .
Define c = log r−log q

log p−log q . Equation 3 implies that 1 − ε ≤ c. The concavity of
f(u) and the fact that h(q) = 0 imply that

h(r) = f(log r) ≥ f(log q) + c [f(log p) − f(log q)] = ch(p) ≥ (1 − ε)h(p),

which proves the proposition. ��
We can use the proposition in the following manner. Assume a block sequence

B with k entries. Let i∗ be the optimal change point and p∗
1 and p∗

2 be the
corresponding optimal parameters. First, let

P = {av(i, k) | i = 1, . . . , k}
be the set of candidate model parameters. We know that the optimal model
parameter p∗

2 ∈ P . Instead of testing every p ∈ P , we will construct an index
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set C, and define R = {av(i, k) | i ∈ C}, such that for each p ∈ P there is r ∈ R
such that Eq. 3 holds. Proposition 3 states that testing the parameters in R
yields a (1− ε) approximation of the second part of the right-hand side in Eq. 2.

We wish to keep the set C small, so to generate C, we will start with i = 1
and set C = {i}. We then look how many values of P we can estimate with
av(i, k), that is, we look for the smallest index for which Eq. 3 does not hold.
We set this index to i, add it to C, and repeat the process. We will refer to
this procedure as FindCands(B, ε). The detailed pseudo-code for FindCands
is given in Algorithm 1.

Algorithm 1: FindCands(B, ε), given a block sequence B of k entries
and an estimation requirement ε > 0, constructs a candidate index set C
that is used to estimate the model parameter p2.
1 C ← {1}; i ← 1; q ← av(1, k);
2 while i < k do
3 ρ ← (log av(i, k) − log q)/(1 − ε);
4 i ← smallest index j s.t. log av(j, k) − log q > ρ, or k if j does not exist;
5 add i to C;

6 return C;

Proposition 4. Assume a block sequence B with k entries, and let ε > 0.
Set P = {av(i, k) | i = 1, . . . , k}. Let C = FindCands(B, ε), and let R =
{av(i, k) | i ∈ C}. Then for each p ∈ P there is r ∈ R such that Eq. 3 holds.

Proof. Let p ∈ P \ R. This is only possible if there is a smaller value r ∈ R such
that (1 − ε)(log p − log q) < log r − log q holds. ��

Finding the next index i in FindCands can be done with a binary search
in O(log |B|) time. Thus, FindCands runs in O(|C| log n) time. Next result
shows that |C| ∈ O(

ε−1 log n
)
, which brings the computational complexity of

FindCands to O(
ε−1 log2 n

)
.

Proposition 5. Assume a block sequence B with k entries generated from a
binary sequence S with n entries, and let ε > 0. Let P = {av(i, k) | i = 1, . . . , k}.
Assume an increasing sequence R = (ri) ⊆ P . Let q = av(1, k). If

log q + (1 − ε)(log ri − log q) > log ri−1, (4)

then |R| ∈ O
(

log n
ε

)
.

Proof. We can rewrite Eq. 4 as (1 − ε)(log ri − log q) > log ri−1 − log q which
automatically implies that

(1 − ε)i(log ri+2 − log q) > log r2 − log q.



670 N. Tatti

To lower-bound the right-hand side, let us write r2 = x/y and q = u/v, where
x, y, u, and v are integers with y, v ≤ n. Note that r2 > q, otherwise we violate
Eq. 4 when i = 2. Hence, we have xv ≥ uy + 1. Then

log r2 − log q = log xv − log uy ≥ log(uy + 1) − log uy = log(1 +
1
uy

)

≥ log(1 +
1
n2

) ≥ n−2

1 + n−2
=

1
1 + n2

.

We can also upper-bound the left-hand side with

log ri+2 − log q ≤ log 1 − log u/v = log v/u ≤ log n.

Combining the three previous inequalities leads to

log n ≥ log ri+2 − log q >
log r2 − log q

(1 − ε)i
≥ 1

(1 − ε)i

1
1 + n2

.

Solving for i,

i ≤ log(1 + n2) + log log n

log 1
1−ε

≤ log(1 + n2) + log log n

ε
∈ O

(
log n

ε

)
,

completes the proof. ��
We can now approximate p∗

2. Our next step is to show how to find similar
value for p∗

1. Note that we cannot use the previous results immediately because
we assumed that p ≥ q in Proposition 3. However, we can fix this by simply
switching the labels in S.

Proposition 6. Assume a, b > 0, and let p = a/(a+ b). Assume q with 0 < p ≤
q. Assume also ε > 0. Define h(x) = �(a, b;x) − �(a, b; q). Assume r such that

log(1 − q) + (1 − ε)(log(1 − p) − log(1 − q)) ≤ log(1 − r) ≤ log(1 − p). (5)

Then h(r) ≥ (1 − ε)h(p).

Proof. Set a′ = b, b′ = a, q′ = 1 − q, and r′ = 1 − r. The proposition follows
immediately from Proposition 3 when applied to these variables. ��

Proposition 6 leads to an algorithm, similar to FindCands, for generating
candidates for p∗

1. We refer to this algorithm as FindCands′, see Algorithm 2.
Assume that we have computed two sets of candidate indices C1 and C2;

the first set is meant to be used to estimate p∗
1, while the second set is meant

to be used to estimate p∗
2. The final step is to determine what combinations of

parameters should we check. A naive approach would be to test every possible
combination. This leads to O(|C1||C2|) tests.

However, since p∗
1 and p∗

2 are induced by the same change point i∗, we
can design a more efficient approach that leads to only O(|C1| + |C2|) tests.
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Algorithm 2: FindCands′(B, ε), given a block sequence B of k entries
and an estimation requirement ε > 0, constructs a candidate index set C
that is used to estimate the model parameter p1.
1 C ← {k}; i ← k; q ← av(1, k);
2 while i > 1 do
3 ρ ← (log(1 − av(1, i − 1)) − log(1 − q))/(1 − ε);
4 i ← largest index j s.t. log(1 − av(1, j − 1)) − log(1 − q) > ρ, or 1 if j does

not exist;
5 add i to C;

6 return C;

In order to do so, first we combine both candidate sets, C = C1 ∪ C2. For
each index ci ∈ C, we compute the score q(ci;B). Also, if there are blocks
between ci−1 and ci that are not included in C, that is, ci−1 + 1 < ci, we
set p1 = av(1, ci − 1) and p2 = av(ci−1, k), compute the optimal change point
j = FindSegment(p1, p2, B), and test q(j, B). When all tests are done, we
return the index that yielded the best score. We refer to this algorithm as
FindChange(B, ε), and present the pseudo-code in Algorithm 3.

Proposition 7. FindChange(B, ε) yields (1 − ε) approximation guarantee.

Proof. Let i∗ be the optimal value with the corresponding parameters p∗
1 and

p∗
2. Let C1, C2 and C be the sets as defined in Algorithm 3. If i∗ ∈ C, then we

are done. Assume that i∗ /∈ C. Then there are cj−1 < i∗ < cj , since 1, k ∈ C.
Let r2 = av(cj−1, k). Then r2 and p∗

2 satisfy Eq. 3 by definition of C2. Let
r1 = av(1, cj − 1). Then r1 and p∗

1 satisfy Eq. 5 by definition of C1. Let i be the
optimal change point for r1 and r2, that is, i = FindSegment(r1, r2, B).

Propositions 3 and 6 together with Eq. 2 imply that

q(i;B) ≥ q(i; r1, r2, B) ≥ q(i∗; r1, r2, B) ≥ (1 − ε)q(i∗;B) .

This completes the proof. ��
We complete this section with computational complexity analysis. The two

calls of FindCands require O(
ε−1 log2 n

)
time. The list C has O(

ε−1 log n
)

entries, and a single call of FindSegment for each c ∈ C requires O(log n)
time. Consequently, the running time for FindChange is O(

ε−1 log2 n
)
.

6 Related Work

Many techniques have been proposed for change detection in a stream setting.
We will highlight some of these techniques. For a fuller picture, we refer the
reader to a survey by Aminikhanghahi and Cook [2], and a book by Basseville
and Nikiforov [5].
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Algorithm 3: FindChange(B, ε), yields (1− ε) approximation guarantee
for ChangeBlock.
1 C2 ← FindCands(B, ε);
2 C1 ← FindCands′(B, ε);
3 C ← C1 ∪ C2;
4 foreach cj ∈ C do
5 test q(cj ; B);
6 if cj−1 + 1 < cj then
7 r1 ← av(1, cj − 1);
8 r2 ← av(cj−1, k);
9 i ← FindSegment(r1, r2, B);

10 test q(i; B);

11 return index i∗ having the best score q(i; B) among the tested indices;

A standard approach for change point detection is to split the stored data
in two segments, and compare the two segments; if the segments are different,
then a change has happened. Bifet and Gavalda [7] proposed an adaptive sliding
window approach: if the current window contains a split such that the averages
of the two portions are different enough, then the older portion is dropped from
the window. Nishida and Yamauchi [17] compared the accuracy of recent samples
against the overall accuracy using a statistical test. Kifer et al. [15] proposed a
family of distances between distributions and analyzed them in the context of
change point detection. Instead of modeling segments explicitly, Kawahara and
Sugiyama [14] proposed estimating density ratio directly. Dries and Rückert [9]
studied transformations a multivariate stream into a univariate stream to aid
change point detection. Harel et al. [13] detected change by comparing the loss
in a test segment against a similar loss in a permuted sequence.

Instead of explicitly modeling the change point, Ross et al. [18] used expo-
nential decay to compare the performance of recent samples against the overall
performance. Baena-Garcia et al. [10], Gama et al. [4] proposed a detecting
change by comparing current average and standard deviation against the small-
est observed average and standard deviation. Also avoiding an explicit split, a
Bayesian approach for modeling the time since last change point was proposed
by Adams and MacKay [1].

An offline version of change point detection is called segmentation. Here we
are given a sequence of entries and a budget k. The goal is divide a sequence into
k minimizing some cost function. If the global objective is a sum of individual
segment costs, then the problem can be solved with a classic dynamic program
approach [6] in O(

n2k
)

time. As this may be too slow speed-up techniques yield-
ing approximation guarantees have been proposed [11,20,21]. If the cost function
is based on one-parameter log-linear models, it is possible to speed-up the seg-
mentation problem significantly in practice [19], even though the worst-case run-
ning time remains O(

n2k
)
. Guha and Shim [12] showed that if the objective is the

maximum of the individual segment costs, then we can compute the exact solution
using only O(

k2 log2 n
)

evaluations of the individual segment costs.
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7 Experimental Evaluation

For our experiments, we focus on analyzing the effect of the approximation
guarantee ε, as well as the parameter τ .1,2 Here we will use synthetic sequences.
In addition, we present a small case study using network traffic data.
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Fig. 1. Change point detection statistics as a function of threshold parameter τ and
approximation guarantee ε Step data: (a) average delay for discovering a true change
point (ε = 0), (b) number of discovered change points (ε = 0), and (c) average delay
for discovering a true change point (τ = 6). Note that in Step there are 19 true change
points. For τ = 0.5, the algorithm had average delay of 1.42 to a true change point but
reported 46 366 change points (these values are omitted due to scaling issues).

Synthetic Sequences: We generated 3 synthetic sequences, each of length
200 000. For simplicity we will write Bern(p) to mean a bernoulli random variable
with probability of 1 being p. The first sequence, named Ind, consists of 200 000
samples from Bern(1/2), that is, fair coin flips. The second sequence, named
Step, consists of 10 000 samples from Bern(1/4) followed by 10 000 samples from
Bern(3/4), repeated 10 times. The third sequence, named Slope, includes 10 seg-
ments, each segment consists of 10 000 samples from Bern(p), where p increases
linearly from 1/4 to 3/4, followed by 10 000 samples from Bern(p), where p
decreases linearly from 3/4 to 1/4. In addition, we generated 10 sequences, col-
lectively named Hill. The length of the sequences varies from 100 000 to 1 000 000
with increments of 100 000. Each sequence consists of samples from Bern(p),
where p increases linearly from 1/4 to 3/4.

Results: We start by studying the effect of the threshold parameter τ . Here, we
used Step sequence; this sequence has 19 true change points. In Fig. 1a, we show
the average delay of discovering the true change point, that is, how many entries
are needed, on average, before a change is discovered after each true change. In
Fig. 1b, we also show how many change points we discovered: ideally we should
find only 19 points. In both experiments we set ε = 0. We see from the results

1 Recall that we say that change occurs if it is larger than σ = τ + log n.
2 The implementation is available at https://version.helsinki.fi/dacs/.

https://version.helsinki.fi/dacs/
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that the delay grows linearly with τ , whereas the number of false change points
is significant for small values of τ but drop quickly as τ grows. For τ = 6 we
detected the ideal 19 change points. We will use this value for the rest of the
experiments.
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Fig. 2. Performance metrics as a function of approximation guarantee ε on synthetic
data. Y-axes are as follows: (a) minimum of ratio FindChange(B, ε)/OPT , (b) aver-
age of ratio FindChange(B, ε)/OPT , (c) number of candidates tested/window size
(note that y-axis is scaled), (d) number of candidates tested/number of blocks, and (e)
running time in seconds.

Our next step is to study the quality of the results as a function of ε on
synthetic data. Here we measure the ratio of the scores g = FindChange(B, ε)
and OPT = FindChange(B, 1), that is, the score of the solution to Change.
Note we include all tests, not just the ones that resulted in declaring a change.
Figure 2a shows the smallest ratio that we encountered as a function of ε, and
Fig. 2b shows the average ratio as a function of ε. We see in Fig. 2a that the worst
case behaves linearly as a function of ε. As guaranteed by Proposition 7, the
worst case ratio stays above (1−ε). While the worst-case is relatively close to its
theoretical boundary, the average case, shown in Fig. 2b, performs significantly
better with average ratio being above 0.97 even for ε = 0.9. The effect of ε on
the actual change point detection is demonstrated in Fig. 1c. Since, we may miss
the optimal value, the detector becomes more conservative, which increases the
delay for discovering true change. However, the increase is moderate (only about
10%) even for ε = 0.9.
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Our next step is to study speed-up in running time. Figure 2c shows the
number of tests performed compared to n, the number of entries from the last
change point as a function of ε. We see from the results that there is significant
speed-up when compared to the naive O(n) approach; the number of needed
tests is reduced by 2–3 orders of magnitude. The main reason for this reduction
is due to the border points. Reduction due to using FindCands is shown in
Fig. 2d. Here we see that the number of candidates reduces linearly as a function
of ε, reducing the number of candidates roughly by 1/2 for the larger values of
ε. The running times (in seconds) are given in Fig. 2e. As expected, the running
times are decreasing as a function of ε.
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Fig. 3. Computational metrics as a function of sequence length for Hill sequences: (a)
running time in minutes, (b) running time/running time for ε = 0, and (c) number
of candidates tested/number of blocks. Note that ε = 0 is equivalent of testing every
border index.

While the main reason for speed-up comes from using border indices, there
are scenarios where using FindCands becomes significant. This happens when
the number of border indices increases. We illustrate this effect with Hill
sequences, shown in Fig. 3. Here, for the sake of illustration, we increased the
threshold τ for change point detection so that at no point we detect change.
Having many entries with slowly increasing probability of 1 yields many border
points, which is seen as a fast increase in running time for ε = 0. Moreover, the
ratio of candidates tested by FindCands against the number of blocks, as well
as the running time, decreases as the sequence increases in size.

Use Case with Traffic Data: We applied our change detection algorithm on
traffic data, network2, collected by Amit et al. [3]. This data contains observed
connections between many hosts over several weeks, grouped in 10 min periods.
We only used data collected during 24.12–29.12 as the surrounding time peri-
ods contain a strong hourly artifact. We then transformed the collected data
into a binary sequence by setting 1 if the connection was related to SSL, and
0 otherwise. The sequence contains 282 754 entries grouped in 743 periods of
10 min. Our algorithm (ε = 0, τ = 6) found 12 change points, shown in Fig. 4.
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These patterns show short bursts of non-SSL connections. One exception is the
change after the index 300, where the previously high SSL activity is resolved
to a normal behavior.
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Fig. 4. Proportion of non-SSL connections in Network2 traffic data over time, in 10 min
periods. The bars indicate the change points: the end of the bar indicates when change
was discovered and the beginning of the bar indicate the optimal split.

8 Conclusions

In this paper we presented a change point detection approach for binary streams
based on finding a split in a current window optimizing a likelihood ratio. Finding
the optimal split needs O(n) time, so in order for this approach to be practi-
cal, we introduced an approximation scheme that yields (1 − ε) approximation
in O(

ε−1 log2 n
)
. The scheme is implemented by using border points, an idea

adopted from segmentation of log-linear models, and then further reducing the
candidates by ignoring indices that border similar blocks.

Most of the time the number of borders will be small, and the additional
pruning is only required when the number of borders start to increase. This
suggests that a hybrid approach is sensible: we will iterate over borders if there
are only few of them, and switch to approximation technique only when the
number of borders increase.

We should point that even though the running time is poly-logarithmic, the
space requirement is at worst O(

n2/3
)
. This can be rectified by simply removing

older border points but such removal may lead to a suboptimal answer. An inter-
esting direction for a future work is to study how to reduce the space complexity
without sacrificing the approximation guarantee.

In this paper, we focused only on binary streams. Same concept has the
potential to work also on other type of data types, such as integers or real-
values. The bottleneck here is Proposition 5 as it relies on the fact that the
underlying stream is binary. We will leave adopting these results to other data
types as a future work.
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Abstract. Both complex and evolving nature of time series structure
make forecasting among one of the most important and challenging tasks
in time series analysis. Typical methods for forecasting are designed to
model time-evolving dependencies between data observations. However,
it is generally accepted that none of them is universally valid for every
application. Therefore, methods for learning heterogeneous ensembles by
combining a diverse set of forecasts together appear as a promising solu-
tion to tackle this task. Hitherto, in classical ML literature, ensemble
techniques such as stacking, cascading and voting are mostly restricted
to operate in a static manner. To deal with changes in the relative perfor-
mance of models as well as changes in the data distribution, we propose
a drift-aware meta-learning approach for adaptively selecting and com-
bining forecasting models. Our assumption is that different forecasting
models have different areas of expertise and a varying relative perfor-
mance. Our method ensures dynamic selection of initial ensemble base
models candidates through a performance drift detection mechanism.
Since diversity is a fundamental component in ensemble methods, we
propose a second stage selection with clustering that is computed after
each drift detection. Predictions of final selected models are combined
into a single prediction. An exhaustive empirical testing of the method
was performed, evaluating both generalization error and scalability of
the approach using time series from several real world domains. Empir-
ical results show the competitiveness of the method in comparison to
state-of-the-art approaches for combining forecasters.

Keywords: Model clustering · Dynamic ensemble · Meta-learning ·
Drift-detection

1 Introduction

Time series forecasting is one of the most challenging tasks in time series analysis
due to the dynamic behavior of this data type, which may involve non-stationary
and complex processes [6,18,28]. Forecasting has considerably attracted the
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attention of both academic and industrial communities and has always been
one of the principal steps in real-time decision-making and planning across vari-
ous applications such as traffic prediction, weather forecasts, stock market prices
prediction [18].

Several machine learning methods have been successfully applied to time
series forecasting either by dealing with the data as an ordered sequence of
observation in an offline or a streaming fashion, or by using an embedding of the
time series to reformulate the forecasting task as a regression task [6]. However,
it is generally accepted that none of the ML methods is universally valid for every
task, in particular for forecasting. Therefore, one reasonable solution is to com-
bine the opinion of a diverse set of models using an ensemble method. Ensembles
consist of a collection of several models (i.e., experts) that are combined together
to address the same defined task [22]. Ensemble construction can be divided into
three main stages: (i) base model generation, where n multiple possible hypothe-
ses are formulated to model a given phenomenon; (ii) model pruning, where only
a subset of m < n hypotheses is kept and (iii) model integration, where these
hypotheses are combined together in one single model.

Most of the existing methods for ensemble learning on time series are focusing
on optimizing the last stage [6,22,28]. Combination strategies can be grouped
into three main families [30]. The first family relies on voting approaches using
majority or (weighted) average votes to decide for the final output (e.g. bagging
[3]). The second main family englobes methods relying on cascading strategy,
where base models outputs are iteratively included once at a time, as new features
in the training set. The third group is based on the stacking paradigm [33].
Using stacking, most often a meta-learning approach is employed to combine
the available forecasts. This method implicitly learns an adequate combination
by modelling inter-dependencies between models.

Another key point in learning ensemble for time series data is to be able to
cope the time-evolving nature of data. This can be achieved by building dynamic
ensemble selection frameworks through adaptive ensemble constructions on dif-
ferent levels (i.e. base models selection, base models/ensemble parameters adap-
tion, blind/informed retraining).

In this paper, we propose a dynamic ensemble selection framework that oper-
ates on two main ensemble construction stages: pruning and integration. Given
a pool of candidate base models, the first stage of the framework is motivated by
the fact that due to the time-evolving nature of the data structure, base models
performance changes over time. This performance is also subject to concept-
drifts, when considering the relation between the output predictions of base
models and the target time series. A drift detection mechanism is employed
to exclude models whose performance becomes significantly poor compared to
the remaining models and to identify the top base models in terms of perfor-
mance. Performance is assessed in this context using a custom measure based
on the Pearson’s correlation (i.e. commonly used to deal with time series data
[27]) between base models forecasts and the target time series on a sliding win-
dow validation set. After each drift detection, the top base models are identified.
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Since diversity is a fundamental component in ensemble methods [4], we propose
a second stage selection through clustering model outputs. Clusters and top base
models are updated after each drift detection. At each cluster computation, the
models that belong to the cluster representatives are selected. Finally, the out-
puts of the selected models are combined together using a voting strategy based
on a sliding-window weighted average. Our framework is denoted in the rest of
the paper, DEMSC: Drift-based Ensemble Member Selection using Clustering.
DEMSC is illustrated in Fig. 1.

Fig. 1. Components of our method DEMSC

We validate our framework using 16-real world time series data sets. Different
variations of our method have been carried out to assess the impact of each stage
(i.e. component) by changing the clustering method or the combination rules
(i.e. for example, using stacking nstead of voting). Empirical results suggest that
our method outperforms traditional state-of-art methods for ensemble learning
and other metalearning approaches such as stacking [33] and bagging [3] and
is competitive with adaptive approaches for dynamic ensemble selection [6]. We
note that all experiments are fully reproducible. Both code and datasets are
publicly available in this repository.1

The main contributions of this paper are as follows:

– A drift-based dynamic selection ensemble framework is introduced. Oppos-
ingly to existing dynamic ensemble selection methods which rely on continu-
ous updates (i.e. blindly at each time instant or periodically), our selection is
automatically and adaptively performed in an informed manner based on
models performance drift detection mechanism.

– An online clustering approach in combination with a pre-selection is applied
for model selection. The model selection is triggered by the drift detection
mechanism.

– The framework is devised to work in an automated fashion, in the sense that
a sliding-window validation set is used for the drift inspection. The data from

1 https://github.com/AmalSd/DEMSC.

https://github.com/AmalSd/DEMSC
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the validation set is used as input for the clustering. The clustering method
also optimizes the number of clusters.

– A comparative empirical study with S.o.A ensemble methods and different
variations of our framework, including a discussion about their implications
in terms of predictive performance and computational resources, is conducted.

In the remainder of this paper, we describe the proposed approach, after dis-
cussing related work. Then, we present an exhaustive experimental evaluation
of its efficiency and scalability. Finally, the last section concludes the paper.

2 Related Works

Ensembles for time series forecasting have always attracted the attention of the
machine learning community [18,26]. More precisely, methods for dynamically
combining models outputs, using both windowing strategies [26,28] and met-
alearning approaches [6,7] have particularly intrigued the interest of the commu-
nity over the last few years. In this section, we briefly describe the state-of-the-art
methods within these approaches. We list their characteristics and limitations
and we highlight our contributions.

Combination in an ensemble can be made using the average of the available
base models’ outputs. This was commonly applied not only in forecasting [8],
but also in regression [22]. Simple averages can be enhanced by the use of model
selection before aggregation, this approach is known as trimmed means [21]. To
deal with time-evolving data, one of the most successful approaches is to compute
weighted averages over a time-sliding window, by setting up the weights to be
proportional to some performance measures [26,28]. A forgetting mechanism can
be employed to the time window to increase the impact of recent observations
(i.e most recent performance of the predictive models).

Our method uses the weighted sliding-window average for the combination
of the base models’ predictions to produce the final forecast value. However,
we have tested different variations of our method by replacing this combination
strategy with metalearning. More details are provided in Sect. 3.

Metalearning as a way for modeling the learning process of a learning algo-
rithm, can be exploited in both pruning and combination stages. Most of existing
works followed this approach to learn models combination (i.e. integration) rules
given the set of model forecasts [15,30,33].

Furthermore, combination can be performed dynamically so that its rules are
changing over time. A popular approach for dynamically combining experts is
to apply multiple regression on the output of the experts. For example, Gaillard
and Goude [15] use Ridge regression to adaptively estimate the weights that are
assigned to the base-learners. Another recent approach which has successfully
exploited metalearning based on arbitrating [6], which was originally introduced
for the combination of classifiers. Arbitrated Dynamic Ensemble (ADE) [7] uses
meta-learning for estimating each candidates errors and selects members based
on the estimated errors. ADE uses Random Forest as meta-learner. For each
candidate, a separate meta-model is trained. The selected members are combined
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with a convex combination. Each candidate weight is based on the estimated
errors combined with a softmax. The weights are additionally adapted to take
diversity between ensemble members into account.

Our framework exploits metalearning in the pruning stage where a dynamic
clustering of base models is performed. Only the cluster representatives are
selected to take part in the integration phase. The idea of model clustering
was introduced in [28] to cluster a pool of base models into main families to
enhance diversity. However, in [28] the clustering was performed offline and kept
static in the online phase. Only cluster representatives changed over time in [28].
Oppositely, in our framework, model clusters are recomputed each time depen-
dencies between base models and the target series change significantly in the
current sliding-window validation set. This informed ability is a key point in
our method and to the best of our knowledge this is the first approach to perform
dynamic ensemble selection adaptively following a drift in models performance
detection mechanism. Oppositely, most of existing methods for dynamic selection
keep the learned meta-model static (i.e. no meta-learner retraining is performed)
in the testing phase and only few works state the advantage of performing peri-
odic retraining in a blind manner [7] (i.e. just setting up a fixed period for the
meta-learner retraining).

3 Methodology

This Section introduces DEMSC and its three basic components: (i) First, we
describe the drift-based pre-selection step to get the top base models in terms
of performance; (ii) The second stage consists of first clustering the top base
models and select one representative model for each cluster; (iii) Finally, each
selected model’s output is combined in a weighted average where the weights are
inversely proportional to the model recent loss.

3.1 Problem Formulation

A time series X is a temporal sequence of values X = {x1, x2, · · · , xt}, where xi

is the value of X at time i. Typical solution for time series forecasting include tra-
ditional univariate time series analysis models, such as the popular Box-Jenkins
ARIMA family of methods [2] or exponential smoothing methods [20]. Typical
regression models can be applied in the context of forecasting by using a time
delay embedding which maps a set of target observations to a K-dimensional
feature space corresponding to the K past lagged values of each observation [6].

Denote with PM = {M1,M2, · · · ,MN} the pool of trained base forecasting
models. Let x̂ = (x̂M1 , x̂M2 , · · · , x̂MN

) be the vector of forecast values of X at
time instant t + 1 (i.e. xt+1) by each of the base model in PM . The goal of the
dynamic selection is identifying which x̂Mi

values should be integrated in the
weighted average.

To do so, a two-staged selection procedure is devised. The first stage is a pre-
selection stage which aims to keep only accurate model forecasts using a model
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performance drift detection. This stage discards models with poor performance
whose forecasts inclusion in the ensemble would deteriorate the forecasting accu-
racy. This deterioration is more perceptible using simple average for integration
and can be covered to some extent using a weighting strategy. The second stage
aims to enhance diversity aspect with the use of clustering.

3.2 A Drift-Based Model Pre-selection

The drift-based time series selection was first applied in [28] in the context of
spatio-temporal features selection to be the input of a multivariate autoregres-
sive model. Similarly, we can treat the set of base models forecasts as a set of
explanatory variables or causes to our target time series. To do so, dependencies
between the set of base model forecasts and target time series can be continuously
computed and monitored over a sliding-window validation set. Suppose we want
to compute the prediction for time instant t + 1, the validation sliding-window
of size W over X is defined by the sequence XW,t = {xt−W+1, xt−W+2, · · · , xt}.
Let X̂Mi

W,t = {x̂Mi

t−W+1, x̂
Mi

t−W+2, · · · , x̂Mi
t } be the predicted sequence of values by

the model Mi on XW,t, where Mi ∈ PM .
A subset K of highly correlated models with the target, denoted “top-base”

models, are selected using a sliding-window similarity measure computed on
XW,t. K is a user-defined hyperparameter. Hereby, we propose to use a custom
measure based on the Pearson’s correlation - commonly used to deal with time
series data [27]-denoted as SRC - Scaled Root Correlation and defined as:

corr(X̂
Mi
W,t, XW,t) =

τ −
∑W

j=1 x̂
Mi
t−W+j

∑W
j=1 xt−W+j

W√
∑W

j=1(x̂
Mi
t−W+j)

2 − (
∑W

j=1 x̂
Mi
t−W+j

)2

W

√
∑W

j=1(xt−W+j)2 − (
∑W

j=1 xt−W+j)
2

W

(1)

SRC(X̂Mi

W,t,XW,t) =

√
1 − corr(X̂Mi

W ,XW )
2

∈ [0, 1] (2)

where τ =
∑W

j=1 x̂Mi

t−W+jxt−W+j . Naturally, with time-evolving data, dependen-
cies change over time and follow non-stationary concepts. Stationarity in this
context can be formulated as follow:

Definition 1 (Weak stationary Dependencies). Let Ct ∈ R
N×N be a

resulting symmetric similarity matrix between the base models and the target time
series over W (i.e. derived from the above similarity metric), where N = |PM |
and ct be a vector containing all the elements in Ct where cj,t ≥ cj−1,t,∀j ∈
{1 . . . N2}. Let μ denote the minimum SRC coefficient of PM at the initial instant
of its generation ti. The dependence structure is said to be weakly stationary if
the true mean of Δct is 0:

Δct =
∣∣c1,t − μ

∣∣ (3)
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Following this definition, we can assume that the distance between the two most
dissimilar random processes within the same pool of models sets its boundary
under a form of a logical diameter. If this boundary diverges in a significant way
over time, a drift is assumed to take place. We propose to detect the validity of
such assumption using the well-known Hoeffding Bound [19], which states that
after W independent observations of a real-value random variable with range R,
its true mean has not diverged if the sample mean is contained within ±εF :

εF =

√
R2 ln(1/δ)

2W
(4)

with a probability of 1 − δ (a user-defined hyperparameter). Once the condition
of the weak stationary dependencies presented in Definition 1 is violated, an
alarm is triggered, the top base models using Ct are updated. Afterwards, the
dependency monitoring process is continued by sliding the time window for the
next prediction and the reference diameter μ is reset by setting ti = t.

3.3 Model Clustering

One of the most important aspects for successful ensembles is diversity [4,7,
28]. Typically, this diversity is initially reflected in the distinctive patterns of
each base learner’s inductive bias derived from the different hypothesis on which
each base learner is built to model the input data and its dependence structure.
Surprisingly, the enforcement and evaluation of diversity on ensembles for time
series data is still a quite unexplored topic-especially for forecasting problems [23,
28]. However, the expected error decomposition for ensemble schemata [4,31] in
general helps to get an intuition about the importance of diversity. More precisely,
the expected error can be decomposed into bias, variance and covariance.

In DEMSC, we propose a second-stage selection that tries to ensure such
diversity through clustering. Predictions of K top-base models on the time
sequence XW,t, are considered as W -dimensional vector features to cluster the
models. To compute clusters for time series, several techniques are proposed in
literature such as K-means and hierarchical clustering [1]. However, one of the
main issues presented by time series clustering is the choice of similarity/distance
measure as most of typical distance measures such as the Euclidean distance do
not take dependence structures of time series data into account [1]. To overcome
this issue, we used an improper maximum likelihood estimator based clustering
method (IMLEC) [9], which is based on a multivariate Gaussian model where
parameters are estimated using Expectation Maximization algorithm [25].

This method has the advantage over Euclidean Distance (ED)-based clus-
tering methods by contributing to the reduction of the covariance term of the
ensemble error and thus to the reduction of the overall error. For instance, ED-
based clustering methods like K-Means, do not take into account the covariance
of the data. If we consider two candidate time series that have dependence over
a high number of components of their W -dimensional feature space (i.e. high
covariance is assumed to take place), the probability of attributing them to the
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same cluster by fitting the adequate parameters of the Gaussian mixture to the
data is higher than simply using an ED-based method, which would probably
assign them to different clusters based on their closeness to the current cluster
centres. As a results, models belonging to different clusters have more likely low
covariance. Therefore, the final step in the selection consists of selecting one rep-
resentative model for each cluster. We simply select the closest model to each
cluster center.

3.4 Model Combination

The final selected base-models are integrated using a sliding-window weighted
average [26,28]. Let PMf be the pool of final selected base models to take part
in the ensemble for the prediction of time instant t + 1 and x̂j,t+1 the output of
model Mj in time instant t + 1. The final prediction is obtained by:

x̂t+1 =
∑|P

Mf |
j=1

[(
1 − χj,t

)
x̂j,t+1

]
∑|P

Mf |
j=1

(
1 − χj,t

) : χj,t ∈ [0, 1],∀j, t (5)

where χj,t is a normalized version of the recent loss of the model Mj on [t−W +1,
t] on the random process which computation is given by an evaluation metric of
interest (i.e Normalized Root Mean Square Error (NRMSE) in our case).

This methodology was exhaustively tested over data collected from 16 real-
world datasets. Further details are provided in the following Section.

4 Experiments

In this section, we present the experiments carried out to validate DEMSC and
to answer the following research questions:

Q1: How is the performance of DEMSC compared to the state-of-the-art meth-
ods for time series forecasting tasks and to existing dynamic ensemble selec-
tion approaches?

Q2: What is the advantage of the performance drift detection mechanism, which
triggers the ensemble members pre-selection, in terms of accuracy?

Q3: What is the impact of clustering and how does the IMLEC-clustering per-
form compared to commonly used clustering strategies for time series data?

Q4: What is the impact of different combination strategies on the performance?
Q5: Is there an advantage in terms of computational resources if the ensemble

members selection is done in an informed fashion (i.e. only triggered by the
drift detection alarm)?

4.1 Experimental Setup

The methods used in the experiments were evaluated using RMSE. In each
experiment, the time series data was split to 75% for training, and 25% for testing.
The results are compared using the non-parametric Wilcoxon Signed Rank test.
We used 16 real-world time series shown in Table 1 for our experiments. An
embedding dimension of 5 was used for all the time series.
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Table 1. List of datasets used for the experiments.

ID Time series Data source Data characteristics

1 Water consumption Oporto city [7] Daily obs. Jan, 2012–Oct, 2016

2 Temperature Bike sharing [7]

3 Feeling temperature Hourly values from Jan. 1, 2011
to Mar. 01, 20114 Humidity

5 Windspeed

6 Registered users

7 Total bike rentals

8 Global horizontal radiation Solar radiation
monitoring [7]

Hourly values Feb. 16,
2016–May 5, 20169 Direct normal radiation

10 Diffuse horizontal radiation

11 Vatnsdalsa River flow [7] Daily observations from Jan. 1,
1972 to Dec. 31, 197412 Jokulsa Eystri

13 Chill temperature Weather data [29] Hourly observations from Apr.
25, 2016 to Aug. 25, 201614 Total cloud cover

15 Wind speed

16 Precipitation

4.2 Ensemble Setup and Baselines

There is no forecasting method that performs best on every time series. For our
candidate pool, we inconstantly used and tested different families of models:

GBM Gradient Boosting Machine [12]; GP Gaussian Process [32]

SVR Support Vector Regression [11]; RFR Random Forest [3]

PPR Projection Pursuit Regr. [13]; MARS MARS [14];

PCMR [24] Principal Component Regr. DT Decision Tree Regr.;

PLS [24] Partial Least Squares Regr. MLP [17] Multilayer Perceptron

Different parameter settings for the models, generate a pool of 30 candidate
models, that we will use for the ensemble methods. We can see in Fig. 2, that the
forecasting methods have a high variance as their performance changes across
the different time series.

There is no clear best performing model. This motivates the dynamic combi-
nation of different forecasting models to an ensemble.

DEMSC has a number of hyperparameters that are summarized in Table 2.
For IMLEC-clustering, we used the R-package of the authors of [9]. The maxi-
mum number of cluster is a user-defined parameter. However, it can be automat-
ically reduced by removing outliers and noisy data that cannot be fitted to any
cluster.
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Fig. 2. Distribution of rank of the base models across the 16 time series (similar models
names in the x-axis have different parameters)

Table 2. Hyperparameter of DEMSC and their chosen values for the experiments.

Parameter Value

Number of top base models Half of candidate pool

Maximum number of clusters Half of top base models

Hoeffding-bound δ 0.95

Size of sliding window W A user-defined hyperparameter

We compare the performance of DEMSC against the following approaches:

RF [3]: Random Forest uses bagging to create an ensemble of regression trees.
GBM [12]: Gradient boosting machine that uses boosting to create an ensemble

of regression trees.
SE [8]: A static ensemble that averages the performance of all base learners

using arithmetic mean.
SWE [26]: A linear combination of the base learners predictions. The weights

are based upon recent performance over a time sliding-window.
ARIMA [2]: ARIMA model for time series forecasting.
EWA [16]: Forecasting combination with exponential weighted averages.
FS [16]: The fixed share approach from Herbster and Warmuth, which is designed

for tracking the best expert across a time series.
OGD [16]: An approach based on online gradient descent that provides theoret-

ical loss bound guarantees.
MLPOL [16]: A polynomially weighted average forecast combination.
Stacking [33]: An approach for ensembles using Random Forest as metalearner.
DETS [5]: An advanced version of SWE, selecting a subset of members based

on recent errors and uses a smoothing function on the average of recent errors
for weighting.

ADE [6]: Uses a Random Forest for estimating each candidates errors and
selects member based on the estimated errors. Weighting is also based on the
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estimated errors combined with a softmax. Weights are additionally adapted
to take diversity between ensemble members into account.

We also compare DEMSC with some variants of itself. All of these variants except
one, use the sliding window ensemble for combining the ensemble members
predictions.

DEMSC-NoSel: Same as our method but without the Top-Base Models selec-
tion. Clusters are updated periodically.

Top-Base Models: Only the pre-selection of the Top-Base models based on
correlation (no clustering is applied afterwards)

DEMSC-kMeans: The clustering method is replaced with K-Mean with ED
distance (K is tuned using the average silhouette method).

DEMSC-DTW: The clustering method is replaced with dynamic time warping
clustering.

DEMSC-stacking: The stacking variant differs from our method only in the
combination step. Instead of a sliding window ensemble, a stacking approach
is used in this variant (PLS is used as metalearner).

4.3 Results

Table 3 presents the average ranks and their deviation for all methods. For
the paired comparison, we compare our method DEMSC against each of the
other methods. We counted wins and losses for each dataset using the RMSE
scores. We use the non-parametric Wilcoxon Signed Rank test to compute sig-
nificant wins and losses, which are presented in parenthesis (i.e. the significance
level = 0:05). Figure 3 presents the distribution of ranks across the different time
series for all methods.
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Fig. 3. Distribution of the ranks of ensemble methods across the different time series,
D is used as abbreviation for DEMSC
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Table 3. Paired comparison between DEMSC and different baseline methods for 16
time series. The rank column presents the average rank achieved by each model and
the standard deviation of the rank across the different time series. A rank of 1 means
the model was the best performing on all time series.

Method Our method

Losses Wins Avg. rank

RF 1(0) 15(13) 12.2 ± 3.7

GBM 0(0) 16(16) 17.0 ± 2.0

SE 1(0) 15(13) 10.4 ± 3.6

SWE 0(0) 16(14) 13.8 ± 3.5

ARIMA 1(1) 15(11) 11.5 ± 5.1

EWA 1(0) 15(12) 6.3 ± 2.6

FS 1(0) 15(13) 9.5 ± 3.6

OGD 1(0) 15(12) 6.3 ± 2.5

MLPOL 2(1) 14(10) 7.2 ± 3.5

Stacking 1(1) 15(14) 13.9 ± 3.8

ADE 7(7) 7(3) 3.1 ± 2.0

DETS 4(4) 7(4) 5.4 ± 2.8

DEMSC-NoSel 0(0) 16(14) 13.9 ± 4.7

Top-Base Models 1(0) 15(14) 9.2 ± 2.9

DEMSC-kMeans 0(0) 16(16) 11.7 ± 3.1

DEMSC-DTW 1(0) 15(14) 9.6 ± 3.5

DEMSC-stacking 5(2) 9(6) 5.7 ± 4.3

DEMSC – – 2.3 ± 1.7

DEMSC has advantages over the compared methods except for ADE. The
approaches for combining individual forecasters, which are SE, SWE, OGD,
FS, EWA and MLPOL, show a big difference in the average rank compared to
DEMSC. ARIMA, a state-of-the-art method for forecasting, has a big difference
in the average rank as well. Common ensemble methods like RF, GBM, OGD
and Stacking, compare poorly to all methods specialized for combining forecast-
ers. The two competitive approaches to our method are ADE and DETS, with
DETS having a higher average rank but performing well in the pairwise compar-
ison. ADE is competitive to DEMSC and have a higher average rank, but it is
comparable to DEMSC in terms of wins and losses. Looking at the distribution
of ranks in Fig. 3, we see that ADE has some clear outliers, while being robust
in the other cases. DEMSC is within the range of the first 4 ranks and has a
median of 1 with no clear outliers.

To further investigate the differences in the average ranks, we use the post-
hoc Bonferroni-Dunn test [10] to compute critical differences. We present the
critical differences between the methods relative to each other in Fig. 4. Adding
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to the results of Table 3, we note critical differences between DEMSC and most
of the other methods, with the exceptions of ADE, DETS, EWA, ODG and
MLPOL. We already discussed the comparable performance of DEMSC and
ADE. Both methods share the critical differences to other methods. Regard-
ing research question Q1, our results show that DEMSC is competitive with
ADE and outperforms other combination approaches for time series forecasting.
The average rank of DEMSC is better than ADE, but we do not see the main
advantage of our method in the performance but more in the complexity and
computational requirements, which we will discuss later.

2 3 4 5 6 7 8 9 10 11 12 13

CD

DEMSC
ADE

DETS
EWA
OGD
MLPol

FS
SE
ARIMA
RF
SWE
Stacking
GBM

Fig. 4. Critical difference diagram for the post-hoc Bonferroni-Dunn test, comparing
DEMSC with the other baseline ensemble methods.
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DEMSC−Stacking
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Fig. 5. Critical difference diagram for the post-hoc Bonferroni-Dunn test, comparing
DEMSC against variants of our method.

Comparing DEMSC to different variants of our method, we see a clear advan-
tage in using all the presented components. The results are the worst, if we
only use clustering for selection (DEMSC-NoSel). The pre-selection is needed
to ensure that the clustering uses the set of the most accurate models. Using
only the top-Base Models, gives a useful performance, but we show that it can
be further improved using clustering. Comparing the three different clustering
methods (DEMSC-kMeans, DEMSC-DTW, DEMSC(IMLEC)) we can see the
clear advantage of the IMLEC-clustering. Using a time warping clustering gives
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a slight improvement over K-means, but both of them do not improve the pre-
selection. Using IMLEC-clustering improves the performance drastically. This
can be explained partially by enhancing the diversity aspect discussed in Sect. 3.
We see that the combination part of our method has a small impact. Both vari-
ants using IMLEC-clustering, with either sliding window ensemble or stacking for
the combination, have a clear advantage over the other clustering variants (see
question Q3). We present in Fig. 5 the critical differences of the methods regard-
ing the average rank. The only variant, where the difference in average rank to
DEMSC is not critically different is the stacking variant (DEMSC-stacking). The
stacking variant’s average rank is higher. This answers the research question Q4
regarding the impact of each component of the method.

We can also answer research question Q2, asking about the impact of using
a drift detection to trigger the member selection. Performance wise, we see that
our method performs on the same level or even slightly better than the best
state-of-the-art approach. The motivation for using a drift detection is to update
the ensemble only when necessary. This should result in faster predictions and
less computational requirements (see question Q5). We see in Table 4 that the
average runtime of ADE is more than twice as long as the runtime of our method.
The high deviation of the runtime of our method is due to the different datasets,
that have more or less drifts detected.

Table 4. Empirical runtime comparison between DMESC and the most competitive
state-of-the-art method (ADE).

Method Avg. runtime in sec.

DEMSC 66.39 ± 26.4

ADE 156.97 ± 18.3

4.4 Discussion

We presented results that empirically show that DEMSC has performance advan-
tages compared to other ensemble methods for forecasting and is competitive
with the most recent state-of-the-art approaches for dynamically combining fore-
casting methods.

We show that our method, using a combination of clustering and a perfor-
mance based pre-selection, is able to perform on a high level. The pre-selection
assures that only accurate models are used in the ensemble. The clustering groups
similar models based on their predictions. We then select clusters representatives.
This leads to an ensemble with accurate and diverse members, which has been
theoretically shown to be required for an ensemble to outperform it’s members.
Neither of the parts can reach state-of-the-art performance on its own, but the
combination makes them very powerful.

The usage of drift detection enables our method to construct a new ensemble
given changes in the nature of the dependencies between base-models and the
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target time series. If there is no change, then there is also no need to construct
a new ensemble. Therefore, the drift detection reduces the computations.

DEMSC method and the complex meta-learning approach ADE perform on
the same level. To reach same performance, we only need pre-selection and clus-
tering, triggered by a drift detection. Compared to ADE, which needs to train
a meta-model for each candidate, our method is computationally cheaper. For
the experiments a prediction with ADE needed on average twice as long as our
method.

5 Final Remarks

This paper introduces DEMSC: a novel, practically useful dynamic ensemble
members selection framework for time series forecasting. DEMSC uses a two-
staged selection procedure which on the one hand enhances accuracy by per-
forming informed selection of base learners at test time based on a base models
performance drift detection mechanism and diversity on the other hand through
an online clustering approach. An exhaustive empirical evaluation, including 16
real-world datasets and multiple comparison algorithms shows the advantages
of DEMSC. As a future work, we aim to add a drift-informed procedure for
retraining the base-learners.
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Abstract. Kernel two-sample testing is a useful statistical tool in deter-
mining whether data samples arise from different distributions without
imposing any parametric assumptions on those distributions. However,
raw data samples can expose sensitive information about individuals who
participate in scientific studies, which makes the current tests vulnerable
to privacy breaches. Hence, we design a new framework for kernel two-
sample testing conforming to differential privacy constraints, in order to
guarantee the privacy of subjects in the data. Unlike existing differen-
tially private parametric tests that simply add noise to data, kernel-based
testing imposes a challenge due to a complex dependence of test statis-
tics on the raw data, as these statistics correspond to estimators of dis-
tances between representations of probability measures in Hilbert spaces.
Our approach considers finite dimensional approximations to those rep-
resentations. As a result, a simple chi-squared test is obtained, where
a test statistic depends on a mean and covariance of empirical differ-
ences between the samples, which we perturb for a privacy guarantee.
We investigate the utility of our framework in two realistic settings and
conclude that our method requires only a relatively modest increase in
sample size to achieve a similar level of power to the non-private tests in
both settings.

Keywords: Differential privacy · Kernel two-sample test

1 Introduction

Several recent works suggest that it is possible to identify subjects that have
participated in scientific studies based on publicly available aggregate statistics
(cf. [20,23] among many others). The differential privacy formalism [8] provides a
way to quantify the amount of information on whether or not a single individual’s
data is included (or modified) in the data and also provides rigorous privacy
guarantees in the presence of arbitrary side information.
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An important tool in statistical inference is two-sample testing, in which
samples from two probability distributions are compared in order to test the
null hypothesis that the two underlying distributions are identical against the
general alternative that they are different. In this paper, we focus on the non-
parametric, kernel-based two-sample testing approach and investigate the utility
of this framework in a differentially private setting. The kernel-based two-sample
testing was introduced by Gretton et al. [15,16] who considers an estimator of
maximum mean discrepancy (MMD) [3], the distance between embeddings of
probability measures in a reproducing kernel Hilbert space (RKHS) (See [26] for
a recent review), as a test statistic for the nonparametric two-sample problem.

Many existing differentially private testing methods are based on categorical
data, i.e. counts [12,13,28], in which case a natural way to achieve privacy is sim-
ply adding noise to these counts. However, when we consider a more general input
space X for testing, the amount of noise needed to privatise the data essentially
becomes the order of diameter of the input space (explained in Appendix D).
For spaces such as R

d, the level of noise that needs to be added can destroy the
utility of the data as well as that of the test.

Here we take an alternative approach and privatise only the quantities that
are required for the test. In particular, for the two-sample testing, we only require
the empirical kernel embedding 1

N

∑
i k(xi, ·) corresponding to a dataset, where

xi ∈ X and k is some positive definite kernel. Now, as the kernel embedding
lives in Hk, a space of functions, a natural way to protect them is to add Gaus-
sian process noise as suggested in [19] (discussed in Appendix C.1). Although
sufficient for situations where the functions themselves are of interest, embed-
dings impaired by a Gaussian process does not lie in the same RKHS [30], and
hence one cannot estimate the RKHS distances between such noisy embeddings.
Alternatively, one could consider adding noise to an estimator of MMD [16].
However, asymptotic null distributions of these estimators are data dependent
and the test thresholds are typically computed by permutation testing or by
eigendecomposing centred kernel matrices of the data [17]. In this case neither
of these approaches is available in a differentially private setting as they both
require further access to data.

Contribution. In this paper, we build a differentially private two-sample test-
ing framework, by considering analytic representations of probability measures
[6,22], aimed at large scale testing scenarios. Through this formulation, we are
able to obtain a test statistic that is based on means and covariances of feature
vectors of the data. This suggests that privatisation of summary statistics of the
data is sufficient to make the testing differential private, implying a reduction of
level of noise needed versus adding to the data directly (as summary statistics
are less sensitive to individual changes). Further, we show that while the asymp-
totic distribution under the null hypothesis of the test statistic does not depend
on the data, unlike the non-private case, using the asymptotic null distribution
to compute p-values can lead to grossly miscalibrated Type I control. Hence, we
propose a remedy for this problem, and give approximations of the finite-sample
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null distributions, yielding good Type I error control and power-privacy tradeoffs
experimentally in Sect. 6.

Related Work. To the best of our knowledge, this paper is the first to propose
a two sample test in a differential private setting. Although, there are various dif-
ferentially private hypothesis test in the literature, most of these revolve around
categorical data [12,13,28] on chi-squared tests. This is very different to our
work, which considers the problem of identifying whether two distributions are
equal to each other. Further, while there are several works that connect kernel
methods with differential privacy, including [2,19,21], none of these attempts to
make the kernel-based two sample testing procedure private. It is also important
to emphasise that in a hypothesis testing, it is not sufficient to make the test
statistic differentially private, as one has to carefully construct the distribution
under the null hypothesis in a differential private manner, taking into account
the level of noise added.

Motivation and Setting. We now present the two privacy scenarios that we
consider and motivate their usage. In the first scenario, we assume there is a
trusted curator and also an untrusted tester, in which we want to protect data
from. In this setting, the trusted curator has access to the two datasets and
computes the mean and covariance of the empirical differences between the fea-
ture vectors. The curator can protect the data in two different ways: (1) perturb
mean and covariance separately and release them; or (2) compute the statistic
without perturbations and add noise to it directly. The tester can now take these
perturbed quantities and performs the test at a desired significance level. Here,
we separate the entities of tester and curator, as sometimes a decision whether
to reject or not is of interest, for example one can imagine that the tester may
require the test-statistic/p-values for multiple hypothesis testing corrections. In
the second scenario, we assume that there are two data-owners, each having one
dataset each, and a tester. In this case, as no party trust each other, each data-
owner has to perturb their own mean and covariance of the feature vectors and
release them to the tester. Under these two settings, we will exploit various dif-
ferentially private mechanisms and empirically study the utility of the proposed
framework. We start by providing a brief background on kernels, differential pri-
vacy and the two privacy settings we consider in this paper in Sect. 2. We derive
essential tools for the proposed test in Sect. 3 and in Sect. 4, and describe approx-
imations to finite-sample null distributions in Sect. 5. Finally, we illustrate the
effectiveness of our algorithm in Sect. 6.

2 Background

2.1 Mean Embedding and Smooth Characteristic Function Tests

First introduced by [6] and then extended and further analyzed by [22], these two
tests are the state-of-the-art kernel based testing approaches applicable to large
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datasets. Here, we will focus on the approach by [22], and in particular on the
mean embedding (ME) and on a characterisation approach based on the smooth
characteristic function (SCF). Assume that we observe samples {xi}n

i=1 ∼ P
and {yi}n

i=1 ∼ Q, where P and Q are some probability measures on R
D. Now

our goal is to test the null hypothesis H0 : P = Q against all alternatives.
Both ME and SCF tests consider finite-dimensional feature representations of
the empirical measures Pn and Qn corresponding to the samples {xi}n

i=1 ∼ P
and {yi}n

i=1 ∼ Q respectively. The ME test considers feature representation
given by φPn

= 1
n

∑n
i=1 [k(xi, T1), · · · , k(xi, TJ )] ∈ R

J , for a given set of test
locations {Tj}J

j=1, i.e. it evaluates the kernel mean embedding 1
n

∑n
i=1 k(xi, ·)

of Pn at those locations. We write wn = φPn
− φQn

to be the difference of the
feature vectors of the empirical measures Pn and Qn. If we write

zi =
[
k(xi, T1) − k(yi, T1), · · · , k(xi, TJ ) − k(yi, TJ )

]
,

then wn = 1
n

∑n
i=1 zi. We also define the empirical covariance matrix Σn =

1
n−1

∑n
i=1(zi − wn)(zi − wn)�. The final statistic is given by

sn = n w�
n (Σn + γnI)−1wn, (1)

where, as [22] suggest, a regularization term γnI is added onto the empirical
covariance matrix for numerical stability. This regularization parameter will also
play an important role in analyzing sensitivity of this statistic in a differentially
private setting. Following [22, Theorem 2], one should take γn → 0 as n → ∞,
and in particular, γn should decrease at a rate of O(n−1/4). The SCF setting
uses the statistic of the same form, but considers features based on empirical
characteristic functions [27]. Thus, it suffices to set zi ∈ R

J to

zi =
[
g(xi) cos(x�

i Tj) − g(yi) cos(y�
i Tj),

g(xi) sin(x�
i Tj) − g(yi) sin(y�

i Tj)
]J

j=1
,

where {Tj}J/2
j=1 is a given set of frequencies, and g is a given function which has an

effect of smoothing the characteristic function estimates (cf. [6] for derivation).
The test then proceeds in the same way as the ME version. For both cases,
the distribution of the test statistic (1) under the null hypothesis H0 : P = Q
converges to a chi-squared distribution with J degrees of freedom. This follows
from a central limit theorem argument whereby

√
nwn converges in law to a

zero-mean multivariate normal distribution N (0,Σ) where Σ = E[zz�], while
Σn + γnI → Σ in probability.

While [6] uses random distribution features (i.e. test locations/frequencies
{Tj}j are sampled randomly from a predefined distribution), [22] selects test
locations/frequencies {Tj}j which maximize the test power, yielding inter-
pretable differences between the distributions under consideration. Throughout
the paper, we assume that we use bounded kernels in the ME test (e.g. Gaussian
and Laplace Kernel), in particular k(x,y) ≤ κ/2, ∀x,y, and that the weighting
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function in the SCF test is also bounded: h(x) ≤ κ/2 Hence, ||zi||2 ≤ κ
√

J in
both cases, for any i ∈ [1, n].

2.2 Differential Privacy

Given an algorithm M and neighbouring datasets D, D′ differing by a single
entry, the privacy loss of an outcome o is

L(o) = log
Pr(M(D) = o)
Pr(M(D′) = o)

. (2)

The mechanism M is called ε-DP if and only if |L(o)| ≤ ε,∀o,D,D′. A weaker
version of the above is (ε, δ)-DP, if and only if |L(o)| ≤ ε, with probability at least
1 − δ. The definition states that a single individual’s participation in the data
do not change the output probabilities by much, hence this limits the amount
of information that the algorithm reveals about any one individual.

A differentially private algorithm is designed by adding noise to the algo-
rithms’ outputs. Suppose a deterministic function h : D 	→ R

p computed on
sensitive data D outputs a p-dimensional vector quantity. In order to make h
private, we can add noise in function h, where the level of noise is calibrated
to the global sensitivity GSh [7], defined by the maximum difference in terms
of L2-norm ||h(D) − h(D′)||2, for neighboring D and D′ (i.e. differ by one data
sample). In the case of Gaussian mechanism (Theorem 3.22 in [9]), the output
is perturbed by

h̃(D) = h(D) + N (0, GS2
hσ2Ip)

The perturbed function h̃(D) is then (ε, δ)-DP, where σ ≥ √
2 log(1.25/δ)/ε, for

ε ∈ (0, 1) (See the proof of Theorem 3.22 in [9] why σ has such a form). When con-
structing our tests, we will use two important properties of differential privacy.
The composability theorem [7] tells us that the strength of privacy guarantee
degrades with repeated use of DP-algorithms. In particular, when two differen-
tially private subroutines are combined, where each one guarantees (ε1, δ1)-DP
and (ε2, δ2)-DP respectively by adding independent noise, the parameters are
simply composed by (ε1 + ε2, δ1 + δ2). Furthermore, post-processing invariance
[7] tells us that the composition of any arbitrary data-independent mapping
with an (ε, δ)-DP algorithm is also (ε, δ)-DP. Here below in the next section, we
discuss the two privacy settings which we are considering for our study in this
paper.

2.3 Privacy Settings

We consider the two different privacy settings as shown in Fig. 1:

(A) Trusted-Curator (TC) Setting. There is a trusted entity called curator
that handles datasets and outputs the private test statistic, either in terms of
perturbed w̃n and Σ̃n, or in terms of perturbed test statistic s̃n. An untrusted
tester performs a chi-square test given these quantities.
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Fig. 1. Two privacy settings. (A) A trusted curator releases a private test statistic or
private mean and covariance of empirical differences between the features. (B) Data
owners release private feature means and covariances calculated from their samples. In
both cases, an untrusted tester performs a test using the private quantities.

(B) No-Trusted-Entity (NTE) Setting. Each data owner outputs private
mean and covariance of the feature vectors computed on their own dataset,
meaning that the owner of dataset Dx outputs w̃x

n and Σ̃x
n and the owner of

dataset Dy outputs w̃y
n and Σ̃y

n. An untrusted tester performs a chi-squared test
given these quantities.

It is worth noting that the NTE setting is different from the typical two-party
model considered in the differential privacy literature. In the two-party model,
it is typically assumed that Alice owns a dataset Dx and Bob owns a dataset Dy,
and they wish to compute some functionality f(Dx,Dy) in a differentially private
manner. In this case, the interest is to obtain a two-sided ε-differentially private
protocol for f , i.e., each party’s view of the protocol should be a differentially
private function of the other party’s input. For instance, the probability of Alice’s
views conditioned on Dy and Dy′ should be eε multiplicatively close to each other,
where Dy and Dy′ are adjacent datasets [14,25]. On the other hand, in our NTE
setting, we are not considering a joint function that takes two datasets. Rather,
we consider a function (statistics) which each data-owner computes given their
own dataset independent of the dataset that the other party has. We would like
to analyze how the performance of the test run by an untrusted third party using
those separately released DP statistics from each party degrades with the level
of DP guarantees.

3 Trusted-Curator Setting

In this setting, a trusted curator releases either a private test statistic or private
mean and covariance which a tester can use to perform a chi-square test. Given
a total privacy budget (ε, δ), when we perturb mean and covariance separately,
we spend (ε1, δ1) for mean perturbation and (ε2, δ2) for covariance perturbation,
such that ε = ε1 + ε2 and δ = δ1 + δ2.
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3.1 Perturbing Mean and Covariance

Mean Perturbation. We obtain a private mean by adding Gaussian noise
based on the analytic Gaussian mechanism recently proposed in [1]. The main
reason for using this Gaussian mechanism over the original [9] is that it provides
a DP guarantee with smaller noise.

For wn : D → R
J that has the global L2-sensitivity GS2(wn), the analytic

Gaussian mechanism produces w̃n(D) = wn(D)+n, where n∼N (0J , σ2
nIJ×J).

Then w̃n(D) is (ε1, δ1)-differentially private mean vector if σn follows the regime
in Theorem 9 of [9], here implicitly σn depends on GS2(wn), ε1 and δ1. Assuming
an entry difference between two parts of datasets D = (Dx,Dy) and D′ = (D′

x,D′
y)

the global sensitivity is simply

GS2(wn) = max
D,D′

‖wn(D) − wn(D′)‖2

= max
zi,z′

i

1
n‖zi − z′

i‖2 ≤ κ
√

J
n . (3)

where zi is as the corresponding feature maps defined in Sect. 2.

Covariance Perturbation. To obtain a private covariance, we consider [10]
which utilises Gaussian noise. Here since the covariance matrix is given by
Σn = Λ − n

n−1wnw�
n , where Λ = 1

n−1

∑n
i=1 ziz�

i , we can simply privatize the
covariance by simply perturbing the 2nd-moment matrix Λ and using the pri-
vate mean w̃n, i.e., Σ̃n = Λ̃− n

n−1w̃nw̃�
n . To construct the 2nd-moment matrix

Λ̃ that is (ε2, δ2)-differentially private, we use Λ̃ = Λ + Ψ, where Ψ is obtained
as follows:

1. Sample from η ∼ N (0, β2IJ(J+1)/2), where β is a function of global sensitivity
GS(Λ), ε2, δ2, outlined in Theorem4 in the appendix.

2. Construct an upper triangular matrix (including diagonal) with entries
from η.

3. Copy the upper part to the lower part so that resulting matrix Ψ becomes
symmetric.

Now using the composability theorem [7] gives us that Σ̃n is (ε, δ)-differentially
private.

3.2 Perturbing Test Statistic

The trusted-curator can also release a differentially private statistic, to do this
we use the analytic Gaussian mechanism as before, perturbing the statistic by
adding Gaussian noise. To use the mechanism, we need to calculate the global
sensitivity needed of the test statistic sn = w�

n (Σn+γnI)−1wn, which we provide
in this Theorem (proof in AppendixB):
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Theorem 1. Given the definitions of wn and Λn, and the L2-norm bound on
zi’s, the global sensitivity GS2(sn) of the test statistic sn is 4κ2J

√
J

nγn

(
1 + κ2J

n−1

)
,

where γn is a regularization parameter, which we set to be smaller than the
smallest eigenvalue of Λ.

4 No-Trusted-Entity Setting

In this setting, the two samples {xi}nx
i=1 ∼ P and {yj}ny

j=1 ∼ Q reside with dif-
ferent data owners each of which wish to protect their samples in a differentially
private manner. Note that in this context we allow the size of each sample to be
different. The data owners first need to agree on the given kernel k as well as

on the test locations {Tj}J
j=1. We denote now zx

i =
[
k(xi, T1), · · · , k(xi, TJ )

]�

in the case of the ME test or zx
i =

[
h(xi) cos(x�

i Tj), h(xi) sin(x�
i Tj)

]J

j=1
in the

case of the SCF test. Also, we denote

wx
nx

=
1
nx

n∑

i=1

zx
i Σx

nx
=

1
nx − 1

nx∑

i=1

(zx
i − wx

nx
)(zx

i − wx
nx

)�

and similarly for the sample {yj}ny

j=1 ∼ Q. The respective means and covariances
wx

nx
, Σx

nx
and wy

ny
, Σy

ny
are computed by their data owners, which then impair

them independently with noise according to the sensitivity analysis described in
Sect. 3.1. As a result we obtain differentially private means and covariances w̃x

nx
,

Σ̃x
nx

and w̃y
ny

, Σ̃y
ny

at their respective users. All these quantities are then released
to the tester whose role is to compute the test statistic and the corresponding
p-value. In particular, the tester uses the statistic given by

s̃nx,ny =
nxny

nx + ny
(w̃x

nx
− w̃y

ny
)�(Σ̃nx,ny + γnI)−1(w̃x

nx
− w̃y

ny
),

where Σ̃nx,ny =
(nx−1)Σ̃x

nx
+(ny−1)Σ̃y

ny

nx+ny−2 is the pooled covariance estimate.

5 Analysis of Null Distributions

In the previous sections, we discussed necessary tools to make the kernel two
sample tests private in two different settings by considering sensitivity analysis
of quantities of interest.1 In this section, we consider the distributions of the test
statistics under the null hypothesis P = Q for each of the two settings.

1 See Appendix C.3 and C.2 for other possible approaches.
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5.1 Trusted-Curator Setting: Perturbed Mean and Covariance

In this scheme, noise is added both to the mean vector wn and to the covariance
matrix Σn (by dividing the privacy budget between these two quantities). Let
us denote the perturbed mean by w̃n and perturbed covariance with Σ̃n. The
noisy version of the test statistic s̃n is then given by

s̃n = nw̃�
n (Σ̃n + γnI)−1w̃n (4)

where γn is a regularization parameter just like in the non-private statistic (1).
We show below that the asymptotic null distribution (as sample size n → ∞) of
this private test statistic is in fact identical to that of the non-private test statis-
tic. Intuitively, this is to be expected: as the number of samples increases, the
contribution to the aggregate statistics of any individual observation diminishes,
and the variance of the added noise goes to zero.

Theorem 2. Assuming the Gaussian noise for w̃n with the sensitivity bound in
(3) and the perturbation mechanism introduced in Sect. 3.1 for Σ̃n, s̃n and sn

converge to the same limit in distribution, as n → ∞. Also, under the alternate,
s̃n = sn(1 + ε) and ε goes down as O(n−1+γ).

Proof is provided in AppendixF. We here assume that under the alternate the
relation w�

n Σ−1wn ≥ O(n−γ) for γ < 1 holds. Based on the Theorem, it is
tempting to ignore the additive noise and rely on the asymptotic null distribu-
tion. However, as demonstrated in Sect. 6, such tests have a grossly mis-calibrated
Type I error, hence we propose a non-asymptotic regime in order to improve
approximations of the null distribution when computing the test threshold.

In particular, let’s start by recalling that we previously relied on
√

nwn

converging to a zero-mean multivariate normal distribution N (0,Σ), with
Σ = E[zz�] [6]. In the private setting, we will also approximate the distribu-
tion of

√
nw̃n with a multivariate normal, but consider explicit non-asymptotic

covariances which appear in the test statistic. Namely, the covariance of
√

nw̃n

is Σ + nσ2
nI and its mean is 0, so we will approximate its distribution by

N (0,Σ + nσ2
nI). The test statistic can be understood as a squared norm of

the vector
√

n
(
Σ̃n + γnI

)−1/2

w̃n. Under the normal approximation to
√

nw̃n

and by treating Σ̃n as fixed (note that this is a quantity released to the tester),
√

n
(
Σ̃n + γnI

)−1/2

w̃n is another multivariate normal, i.e. N (0,C), where

C = (Σ̃n + γnI)−1/2(Σ + nσ2
nI)(Σ̃n + γnI)−1/2.

The overall statistic thus follows a distribution given by a weighted sum∑J
j=1 λjχ

2
j of independent chi-squared distributed random variables, with the

weights λj given by the eigenvalues of C. Note that this approximation to the
null distribution depends on a non-private true covariance Σ. While that is
clearly not available to the tester, we propose to simply replace this quantity
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with the privatized empirical covariance, i.e. Σ̃n, so that the tester approximates
the null distribution with

∑J
j=1 λ̃jχ

2
j , where λ̃j are the eigenvalues of

C̃ = (Σ̃n + γnI)−1(Σ̃n + nσ2
nI),

i.e. λ̃j = τj+nσ2
n

τj+γn
, where {τj} are the eigenvalues of Σ̃n (note that λ̃j → 1 as n →

∞ recovering back the asymptotic null). This approach, while a heuristic, gives
a correct Type I control, good power performance and is differentially private.
This is unlike the approach which relies on the asymptotic null distribution and
ignores the presence of privatizing noise. We demonstrate this empirically in
Sect. 6.

5.2 Trusted-Curator Setting: Perturbed Test Statistic

In this section, we will consider how directly perturbing the test statistic impacts
the null distribution. To achieve private test statistics, we showed that we
can simply add Gaussian noise2 using the Gaussian mechanism, described in
Sect. 3.2. Similarly to Theorem2, we have a similar theorem below, which says
that the perturbed statistic then has the same asymptotic null distribution as
the original statistic.

Theorem 3. Using the noise variance σ2
η(ε, δ, n) defined by the upper bound in

Theorem 1, s̃n and sn converge to the same limit in distribution, as n → ∞.
More specifically, the error between sn and s̃n goes down approximately at the
rate of O(n−1/2).

The proof follows immediately from ση(ε, δ, n) → 0, as n → ∞. The specific order
of convergence directly comes after applying the Chebysev inequality since the
variance σ2 is of the order of O(n−1). As in the case of perturbed mean and
covariance, we consider approximating the null distribution with the sum of the
chi-squared with J degrees of freedom and a normal N (0, σ2

η(ε, δ, n)), i.e., the
distribution of the true statistic is approximated with its asymptotic version,
whereas we use exact non-asymptotic distribution of the added noise. The test
threshold can then easily be computed by a Monte Carlo test which repeatedly
simulates the sum of these two random variables. It is important to note that
since σ2

η(ε, δ, n) is independent of the data (AppendixB), an untrusted tester can
simulate the approximate null distribution without compromising privacy.

5.3 No-Trusted-Entity Setting

Similarly as in Sect. 5.1, as nx, ny → ∞ such that nx/ny → ρ ∈ (0, 1), asymp-
totic null distribution of this test statistic remains unchanged as in the non-
private setting, i.e. it is the chi-squared distribution with J degrees of free-
dom. However, by again considering the non-asymptotic case and applying a
2 While this may produce negative privatized test statistics, the test threshold is appro-

priately adjusted for this. See Appendix C.2 and C.3 for alternative approaches for
privatizing the test statistic.
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chi-squared approximation, we get improved power and type I control. In par-
ticular, the test statistic is close to a weighted sum

∑J
j=1 λjχ

2
j of independent

chi-square distributed random variables, with the weights λj given by the eigen-
values of

C =
nxny

nx + ny
(Σ̃nx,ny + γnI)−1/2(Σx/nx + Σy/ny + (σ2

nx
+ σ2

ny
)I)(Σ̃nx,ny + γnI)−1/2

where Σx and Σy are the true covariances within each of the samples, σ2
nx

and
σ2

ny
are the variances of the noise added to the mean vectors wnx and wny ,

respectively. While Σx and Σy are clearly not available to the tester, the tester
can replace them with their privatized empirical versions Σ̃x

nx
and Σ̃y

ny
and

compute eigenvalues λ̃j of

C̃ =
nxny

nx + ny
(Σ̃nx,ny + γnI)−1/2(Σ̃x

nx
/nx + Σ̃y

ny
/ny + (σ2

nx
+ σ2

ny
)I)(Σ̃nx,ny + γnI)−1/2

Note that this is a differentially private quantity. Similarly as in the trusted-
curator setting, we demonstrate that this corrected approximation to the null
distribution leads to significant improvements in power and Type I control.

6 Experiments

Here we demonstrate the effectiveness of our private kernel two-sample test3 on
both synthetic and real problems, for testing H0 : P = Q. The total sample size
is denoted by N and the number of test set samples by n. We set the significance
level to α = 0.01. Unless specified otherwise use the isotropic Gaussian kernel
with a bandwidth θ and fix the number of test locations to J = 5. Under the
trusted-curator (TC) setting, we use 20% of the samples N as an independent
training set to optimize the test locations and θ using gradient descent as in [22].
Under the no-trusted-entity (NTE) setting, we randomly sample J locations and
calculate the median heuristic bandwidth [18].

For all our experiments, we average them over 500 runs, where each run
repeats the simulation or randomly samples without replacement from the data
set. We then report the empirical estimate of P(s̃n > Tα), computed by propor-
tion of times the statistic s̃n is greater than the Tα, where Tα is the test threshold
provided by the corresponding approximation to the null distribution. Regular-
ization parameter γ = γn is fixed to 0.001 for TC under perturbed test statistics
(TCS), with the choice of this investigated in Fig. 7. In the trusted-curator mean
covariance perturbation (TCMC) and NTE, given the privacy budget of (ε, δ),
we use (0.5ε, 0.5δ) to perturb the mean and covariance seperately. We compare
these to its non-private counterpart ME and SCF, as there are no available
appropriate baseline to compare against. We will also demonstrate the impor-
tance of using an approximated finite-null distribution versus the asymptotic
null distribution. More details and experiments can be found in AppendixE.
3 Code is available at https://github.com/hcllaw/private tst.

https://github.com/hcllaw/private_tst
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6.1 Synthetic Data

We demonstrate our tests on 4 separate synthetic problems, namely, Same
Gaussian (SG), Gaussian mean difference (GMD), Gaussian variance difference
(GVD) and Blobs, with the specifications of P and Q summarized in Table 1.
The same experimental setup was used in [22]. For the Blobs dataset, we use the
SCF approach as the baseline, and also the basis for our algorithms, since [6,22]
showed that SCF outperforms the ME test here (Fig. 2).

Table 1. Synthetic problems (Null hypothesis H0 holds only for SG). Gaussian Mix-
tures in R

2, also studied in [6,18,22].

Data P Q

SG N (0, I50) N (0, I50)

GMD N (0, I100) N ((1, 0, . . . , 0)�, I100)

GVD N (0, I50) N (0, diag(2, 1, . . . , 1))

Fig. 2. Blobs data sampled from P on the left and from Q in the right.

Varying Privacy Level ε. We now fix the test sample size n to be 10 000,
and vary ε between 0 and 5 with a fixed δ = 1e − 5. The results are shown in
the top row of Fig. 4. For SG dataset, where H0 : P = Q is true, we can see
that if one simply applies the asymptotic null distribution of a χ2 on top, we
will obtain a massively inflated type I error. This is however not the case for
TCMC, TCS and NTE, where the type I error is approximately controlled at
the right level, this is shown more clearly in Fig. 5 in the Appendix. In GMD,
GVD and Blobs dataset, the null hypothesis does not hold, and we see that our
algorithms indeed discover this difference. As expected we observe a trade-off
between privacy level and power, for increasing privacy (decreasing ε), we have
less power. These experiments also reveals the order of performance of these
algorithms, i.e. TCS > TCMC > NTE. This is not surprising, as for TCMC
and NTE, we are pertubing the mean and covariance separately, rather than
the statistic directly which is the direct quantity we want to protect. The power
analysis for the SVD and Blobs dataset also reveal the interesting nature of
sampling versus optimisation in our two settings. In the SVD dataset, we observe
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Fig. 3. Type I error for the under25 only test, Power for the under25 vs 25to35 test
over 500 runs, with n = 2500, δ = 1e−5. *-asym represents using the asymptotic χ2

null distribution.

that NTE performs better than TCS and TCMC, however if we use the same test
locations and bandwidth of NTE for TCS and TCMC, the order of performance
is as we expect, better for sampling over optimization. However, in the Blobs
dataset, we observe that NTE has little or no power, because this dataset is
sensitive to the choice of test frequency locations, highlighting the importance
of optimisation in this case.

Varying Test Sample Size n. We now fix ε = 2.5, δ = 1.0−5 and vary n from
1000 to 15 000. The results are shown in the bottom row of Fig. 4. The results
for the SG dataset further reinforce the importance of not simply using the
asymptotic null distribution, as even at very large sample size, the type I error
is still inflated when naively computing the test threshold form a chi-squared
distribution. This is not the case for TCMC, TCS and NTE, where the type
I error is approximately controlled at the correct level for all sample sizes, as
shown in Fig. 5 in the Appendix.

6.2 Real Data: Celebrity Age Data

We now demonstrate our tests on a real life celebrity age dataset [29], containing
397 949 images of 19 545 celebrities and their corresponding age labels. Here, we
will follow the preprocessing of [24], where images from the same celebrity are
placed into the same bag, and the bag label is calculated as the mean age of that
celebrity’s images and use this to construct two datasets, under25 and 25to35.
Here the under25 dataset is the images where the corresponding celebrity’s
bag label is < 25, and the 25to35 dataset is the images corresponding to the
celebrity’s bag label that is between 25 and 35. The dataset under25 contains
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58095 images, and the dataset 25to35 contains 126415 images. For this experi-
ment, we will focus on using the ME version of the test and consider the kernel

k(x,y) = exp
(

−||ϕ(x) − ϕ(y)||2
2θ2

)

where ϕ(x) : R
256×256 → R

4096 is the feature map learnt by the CNN in [29],
mapping the image in the original pixel space to the last layer. For our experi-
ment, we take N = 3125, and use 20% of the data for sampling test locations,
and calculation of the median heuristic bandwidth. Note here we do not perform
optimization, due to the large dimension of the feature map ϕ. We now perform
two tests, for one test we compare samples from under25 only (i.e. H0 : P = Q
holds), and the other we compares samples from under25 to samples from 25to35
(i.e. H0 : P = Q does not hold). The results are shown in Fig. 3 for ε from 0.1
to 0.7. We observe that in the under25 only test, the TCMC, TCS and NTE all
achieve the correct Type I error rate, this is unlike their counterpart that uses
the χ2 asymptotic null distribution. In the under25 vs 25to35 two sample test,
we see that our algorithms can achieve a high power (with little samples) at a
high level of privacy, protecting the original images from malicious intent.

7 Conclusion

While kernel-based hypothesis testing provides flexible statistical tools for data
analysis, its utility in differentially private settings is not well understood. We
investigated differentially private kernel-based two-sample testing procedures, by
making use of the sensitivity bounds on the quantities used in the test statis-
tics. While asymptotic null distributions for the modified procedures remain
unchanged, ignoring additive noise can lead to an inflated number of false pos-
itives. Thus, we propose new approximations of the null distributions under
the private regime which give improved Type I control and good power-privacy
tradeoffs, as demonstrated in extensive numerical evaluations.

Appendix

A Covariance Perturbation

Theorem 4 (Modified Analyze Gauss). Draw Gaussian random variables

η ∼ N (0, β2IJ(J+1)/2) where β = κ2J
√

2 log(1.25/δ2)

(n−1)ε2
. Using η, we construct a

upper triangular matrix (including diagonal), then copy the upper part to the
lower part so that the resulting matrix D becomes symmetric. The perturbed
matrix Λ̃ = Λ + D is (ε2, δ2)-differentially private4.

4 To ensure Λ̃ to be positive semi-definite, we project any negative sigular values to
a small positive value (e.g., 0.01).
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The proof is the same as the proof for Algorithm 1 in [10] with the exception
that the global sensitivity of Λ is

GS(Λ) = max
D,D′

‖Λ(D) − Λ(D′)‖F = max
v,v′

‖vv� − v′v′�‖F ≤ κ2J
n−1 , (5)

where v is the single entry differing in D and D′, and ‖v‖2 ≤ κ
√

J√
n−1

.

B Sensitivity of w�
n (Σn + γnI)−1 wn

We first introduce a few notations, which we will use for the sensitivity analysis.

– We split wn = m + 1√
n
v, where m = 1

n

∑n−1
i=1 zi and v = 1√

n
zn.

– Similarly, we split Λ = M�M + n
n−1vv� + γnI, where M�M =

1
n−1

∑n−1
i=1 zizi

�, we denote Mγn
= M�M + γnI, where γn > 0

– We put a dash for the quantities run on the neighbouring dataset D′,
i.e., the mean vector is wn

′, the 2nd-moment matrix is Λ′ (including a
regularization term of γnI). Here, wn = m + 1√

n
v′, v′ = 1√

n
z′

n, and
Λ′ = M�M + n

n−1v
′v′� + γnI = Mγn

+ n
n−1v

′v′�. Similarly, the covari-
ance given the dataset D is Σ = Λ − n

n−1wnwn
� and the covariance given

the dataset D′ is Σ′ = Λ′ − n
n−1wnwn

�.
– Note that Λ and Mγn

is positive definite, and hence invertible and have
positive eigenvalues, we let eigen-vectors of Mγn

are denoted by u1, · · · ,uJ

and the corresponding eigenvalues by μ1, · · · , μJ . We also define the eigen-
vectors such that Q is orthogonal. Here Q has columns given by the eigen-
vectors.

The L2-sensitivity of test statistic is derived using a few inequalities that are
listed below:

GS2(sn) = max
D,D′

∣
∣sn(D) − sn(D′)

∣
∣ , (6)

= n max
v,v′

∣
∣
∣wn

�Σ−1wn − wn
�Σ′−1

wn

∣
∣
∣ (7)

= n max
v,v′

∣
∣
∣
∣
wn

�(Λ − n

n − 1
wnwn

�)−1wn − wn
�(Λ′ − n

n − 1
wnwn

�)−1wn

∣
∣
∣
∣
,

(8)

≤ 2n max
v,v′

∣
∣
∣wn

�Λ−1wn − wn
�Λ′−1

wn

∣
∣
∣ , due to inequality I (9)

≤ 2n max
v,v′

(∣
∣
∣w′

n
�(Λ−1 − Λ′−1

)w′
n

∣
∣
∣ +

∣
∣w�

n Λ−1wn − w′
n

�
Λ−1w′

n

∣
∣

)

, (10)

≤ 2n max
v,v′ ‖wn‖22‖Λ−1 − Λ′−1‖F +

4κ2J

n

√
J

μmin(Λ)
,Cauchy Schwarz and IV,

(11)

≤ 2κ2J

n
max
v,v′ ‖Λ−1 − Λ′−1‖F +

4κ2J

n

√
J

μmin(Λ)
, since ‖wn‖22 ≤ 1

n2 κ2J, (12)
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≤ 4κ2J
√

JB2

(n − 1)‖μmin(Mγn )‖
+

4κ2J

n

√
J

μmin(Λ)
, due to inequality III. (13)

≤ 4κ2J
√

JB2

(n − 1)γn
+

4κ2J

n

√
J

γn
(14)

=
4κ2J

√
J

nγn

(

1 +
κ2J

n − 1

)

(15)

Here, the regularization parameter λn is the lower bound on the minimum sin-
gular values of the matrices Λ and Mλ.

Hence the final sensiitvity of the data can be upper bound by
4κ2J

√
J

nγn

(
1 + κ2J

n−1

)
.

The inequalities we used are given by

– I: Due to the Sherman–Morrison formula, we can re-write

wn
�(Λ − n

n − 1
wnwn

�)−1wn = wn
�Λ−1wn +

n
n−1 (wn

�Λ−1wn)2

1 + n
n−1wn

�Λ−1wn
. (16)

Now, we can bound
∣
∣
∣
∣
wn

�(Λ − n

n − 1
wnwn

�)−1wn − wn
�(Λ′ − n

n − 1
wnwn

�)−1wn

∣
∣
∣
∣

≤ |wn
�Λ−1wn − wn

�Λ′−1wn| +
∣
∣
∣
∣
∣

n
n−1

(wn
�Λ−1wn)2

1 + n
n−1

wn
�Λ−1wn

−
n

n−1
(wn

�Λ′−1wn)2

1 + n
n−1

w′
n

�Λ′−1w′
n

∣
∣
∣
∣
∣
,

≤ 2|wn
�Λ−1wn − wn

�Λ′−1wn|, (17)

where the last line is due to wn
�Λ−1wn ≥ (wn

�Λ−1wn)2

1+wn
�Λ−1wn

≥ 0, and

wn
�Λ′−1wn ≥ (w′

n
�Λ′−1w′

n)2

1+w′
n

�Λ′−1w′
n

≥ 0. Let a = wn
�Λ−1wn and b =

w′
n

�Λ′−1w′
n, then:

A =
∣
∣
∣
∣

a2

1 + a
− b2

1 + b

∣
∣
∣
∣ =

∣
∣
∣
∣
a2 − b2 + a2b − b2a

(1 + a)(1 + b)

∣
∣
∣
∣ =

∣
∣
∣
∣
(a − b)(a + b) + (a − b)ab

(1 + a)(1 + b)

∣
∣
∣
∣

=
∣
∣
∣
∣
(a − b)[(a + b) + ab]

(1 + a)(1 + b)

∣
∣
∣
∣

and then we have that:

A =
∣
∣
∣
∣
(a − b)[(1 + a)(1 + b) − 1]

(1 + a)(1 + b)

∣
∣
∣
∣ ≤ |a − b|

Hence,
∣
∣
∣
∣

n
n−1 (wn

�Λ−1wn)2

1+ n
n−1wn

�Λ−1wn
−

n
n−1 (wn

�Λ′−1wn)2

1+ n
n−1w′

n
�Λ′−1w′

n

∣
∣
∣
∣ ≤

(
n

n−1

) (
n−1

n

) |wn
�Λ−1wn−

wn
�Λ′−1wn|

– II: For a positive semi-definite Σ, 0 ≤ m�Σm ≤ ‖m‖22‖Σ‖F , where ‖Σ‖F is
the Frobenius norm.
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– III: We here will denote ṽ =
√

n
n−1v and ṽ′ =

√
n

n−1v
′. Due to the Sherman–

Morrison formula,

Λ−1 = (Mγn
)−1 − (Mγn

)−1 ṽṽ�

1 + ṽ�(Mγn
)−1ṽ

(Mγn
)−1. (18)

For any eigenvectors uj ,uk of M�M, we have

uj
�(Λ−1 − Λ′−1)uk = μ−1

j μ−1
k

(
(uj

�ṽ)(ṽ�uk)
1 + ṽ�(Mγn

)−1ṽ
− (uj

�ṽ′)(ṽ′�uk)
1 + ṽ′�(Mγn

)−1ṽ′

)

,

(19)

where μj , μk are corresponding eigenvalues. Now, we rewrite the Frobenius
norm as (since it is invariant under any orthogonal matrix, so we take the
one formed by the eigenvectors from M�M with this property):

‖(Λ−1 − Λ′−1)‖2
F = ‖Q(Λ−1 − Λ′−1)Q�‖2

F ,

=
J∑

j,k

(

uj
�(Λ−1 − Λ′−1)uk

)2
,

≤ 2

(1 + ṽ�(Mγn )
−1ṽ)2

J∑

j,k

(uj
�ṽ)2(ṽ�uk)2

μ2
jμ2

k

+
2

(1 + ṽ′�(Mγn )
−1ṽ′)2

J∑

j,k

(uj
�ṽ′)2(ṽ′�uk)2

μ2
jμ2

k

, (20)

[due to ‖a − b‖2
2 ≤ 2‖a‖2

2 + 2‖b‖2
2],

≤ 2

(ṽ�(Mγn )
−1ṽ)2

J∑

j,k

(uj
�ṽ)2(ṽ�uk)2

μ2
jμ2

k

+
2

(ṽ′�(Mγn )
−1ṽ′)2

J∑

j,k

(uj
�ṽ′)2(ṽ′�uk)2

μ2
jμ2

k

, (21)

≤ μmin(Mγn )
2

B4J

J∑

j,k

2((uj
�ṽ)2(ṽ�uk)2 + (uj

�ṽ′)2(ṽ′�uk)2)

μ2
jμ2

k

(22)

≤ (n − 1)2μmin(Mγn )
2

n2B4J

J∑

j,k

2((uj
�ṽ)2(ṽ�uk)2 + (uj

�ṽ′)2(ṽ′�uk)2)

μmin(Mγn )
4

(23)

≤ (n − 1)22J

n2μmin(Mγn )
2B4

(‖ṽ‖8
2 + ‖ṽ′‖8

2), (24)

≤
(

n

n − 1

)2 4J

μmin(Mγn )
2
B4, (25)

Note that we can get Eq. 25 by noticing that:

ṽ�(Mγn )
−1ṽ ≤ ‖ṽ‖22‖(Mγn )

−1‖F ≤
(

n

n − 1

)

B2

√

1

μ2
1(Mγn )

+ · · · + 1

μ2
min(Mγn )

≤
(

n

n − 1

)
B2

√
J

μmin(Mγn )
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– IV:

max
v,v′

∣
∣w�

n Λ−1wn − w′
n

�Λ′−1w′
n

∣
∣ ≤ max

v,v′

[∣
∣w′

n
�Λ−1w′

n − w′
n

�Λ′−1w′
n

∣
∣

+
∣
∣w�

n Λ−1wn − w′
n

�Λ−1w′
n

∣
∣
]

We write w�
n Λ−1wn =

(
Λ−1/2wn

)� (
Λ−1/2wn

)
and similarly w′

n
�Λ−1w′

n =
(
Λ−1/2w′

n

)� (
Λ−1/2w′

n

)
.

∣
∣
∣w�

n Λ−1wn − w′
n

�
Λ−1w′

n

∣
∣
∣ =

∣
∣
∣
∣

(

Λ−1/2wn

)� (

Λ−1/2wn

)

−
(

Λ−1/2w′
n

)� (

Λ−1/2w′
n

)
∣
∣
∣
∣

=

∣
∣
∣
∣

(

Λ−1/2wn + Λ−1/2w′
n

)� (

Λ−1/2wn − Λ−1/2w′
n

)
∣
∣
∣
∣

=

∣
∣
∣
∣

(

Λ−1/2
(
wn + w′

n

))� (

Λ−1/2
(
wn − w′

n

))
∣
∣
∣
∣

≤
∥
∥
∥Λ−1/2

(
wn + w′

n

)
∥
∥
∥
2

∥
∥
∥Λ−1/2

(
wn − w′

n

)
∥
∥
∥
2

≤
∥
∥
∥Λ−1/2

(
wn + w′

n

)
∥
∥
∥
2

κ
√

J

n

∥
∥Λ−1

∥
∥
1/2

F
using equality (II)

≤ 2κ2J

n2

∥
∥Λ−1

∥
∥

F
,

=
2κ2J

n2

√

1

μ2
1(Λ)

+ · · · + 1

μ2
min(Λ)

,

≤ 2κ2J

n2

√
J

μmin(Λ)
.

where the last equality comes from that Λ is real and symmetric.

C Other Possible Ways to Make the Test Private

C.1 Perturbing the Kernel Mean in RKHS

In [4], the authors proposed a new way to make the solution of the regularized
risk minimization differentially private by injecting the noise in objective itself.
That is :

fpriv = arg min
(
J(f,x) +

1
n

b�f
)

However, it is not an easy task to add perturbation in functional spaces. The
authors in [19] proposes to add a sample path from Gaussian processes into the
function to make it private.

Lemma 1 (Proposition 7 [19]). Let G be a sample path of a Gaussian process
having mean zero and covariance function k. Let K denote the Gram matrix
i.e. K = [k(xi,xj)]ni,j=1. Let {fD : D ∈ D} be a family of functions indexed by
databases. Then the release of :

f̃D = fD +
Δc(β)

α
G
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is (α, β)-differentially private (with respect to the cylinder σ-field F ) where Δ is
the upper bound on

sup
D∼D′

sup
n∈N

sup
x1,...,xn

√

(fD − fD′)�
K−1 (fD − fD′) (26)

and c(β) ≥
√

2 log 2
β .

Now, we consider the optimization problem given for MMD and inject noise
in the objective itself. The optimization problem then becomes:

dpriv(p, q) = sup
f∈H, ‖f‖H≤1

[
Ex∼p[f(x)] − Ex∼q[f(x)] +

〈
f, g(Δ,β, α)G

〉]

= sup
f∈H, ‖f‖H≤1

[〈
f, μp − μq

〉
+

〈
f, g(Δ,β, α)G

〉]

= sup
f∈H, ‖f‖H≤1

[〈
f, μp − μq + g(Δ,β, α)G

〉]

= ‖μp − μq + g(Δ,β, α)G‖H

In the similar way, one get the empirical version of the perturbed MMD distance
just by replacing the true expectation with the empirical one. The problem with a
construction above where embedding is injected with a Gaussian process sample
path with the same kernel k is that the result will not be in the corresponding
RKHS Hk for infinite-dimensional spaces (these are well known results known
as Kallianpur’s 0/1 laws), and thus MMD cannot be computed, i.e. while fD is
in the RKHS, f̃D need not be. This has for example been considered in Bayesian
models for kernel embeddings [11], where an alternative kernel construction using
convolution is given by:

r(x, x′) =
∫

k(x, y)k(y, x′)ν(dy), (27)

where ν is a finite measure. Such smoother kernel r ensures that the sample path
from a GP (0, r) will be in the RKHS Hk.

The key property in [19] is Prop. 8, which shows that for any h ∈ Hk and
for any finite collection of points x = (x1, . . . , xn):

h�K−1h ≤ ‖h‖2Hk
.

which implies that we only require supD∼D′ ‖fD − fD′‖Hk
≤ Δ to hold to upper

bound (26). However, in nonparametric contexts like MMD, one usually consid-
ers permutation testing approaches. But this is not possible in the case of private
testing as one would need to release the samples from the null distribution.

C.2 Adding χ2-noise to the Test Statistics

Since the unperturbed test statistics follows the χ2 distribution under the null,
hence it is again natural to think to add noise sampled from the chi-square
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distribution to the test statistics sn. The probability density function for chi-
square distribution with k−degree of freedom is given as:

f(x, k) =

⎧
⎨

⎩

x
k
2 −1 exp(− x

2 )

2
k
2 Γ ( k

2 )
, if x ≥ 0.

0, otherwise.

For k = 2, we simply have f(x) = exp(− x
2 )

2 , if x ≥ 0. As we have been given
sn = nwnΣ−1

n wn which essentially depends on zi ∀i ∈ [n]. Now, we define s′
n

which differs from sn at only one sample i.e. s′
n depends on z1, · · · zi′ , · · · zn. We

denote Δ = sn − s′
n. The privacy guarantee is to bound the following term:

p
(
sn + x = sn + x0

)

p
(
sn + x = sn + x0

) =
p
(
x = x0

)

p
(
x = s′

n − sn + x0

) (28)

=
exp

(
− x0

2

)

exp
(

− s′
n−sn+x0

2

) = exp
(

− sn − s′
n

2

)
≤ exp

(GS2

2

)
(29)

Hence, we get the final privacy guarantee by Eq. (29). But the problem to this
approach that since the support for chi-square distributions are limited to posi-
tive real numbers. Hence the distribution in the numerator and denominator in
the Eq. (29) might have different support which essentially makes the privacy
analysis almost impossible in the vicinity of zero and beyond. Hence, to hold
Eq. (29), x0 must be greater than sn −s′

n for all two neighbouring dataset which
essentially implies x0 > GS2(sn). Hence, we get no privacy guarantee at all when
the test statistics lies very close to zero.

However, proposing alternate null distribution is simple in this case. As sum
of two chi-square random variable is still a chi-square with increased degree of
freedom. Let X1 and X2 denote 2 independent random variables that follow
these chi-square distributions :

X1 ∼ χ2(r1) and X2 ∼ χ2(r2)

then Y = (X1 + X2) ∼ χ2(r1 + r2). Hence, the perturbed statistics will follow
chi-square random variable with J + 2 degree of freedom.

C.3 Adding Noise to Σ−1/2
n wn

One might also achieve the goal to make test statistics private by adding Gaus-
sian noise in the quantity

√
nΣ−1/2

n wn and finally taking the 2−norm of the
perturbed quantity. As we have done the sentitivity analysis of w�

n Σ−1wn in
the Theorem 1, the sensitivity analysis of

√
nΣ−1/2wn can be done in very

similar way. Again from the application of slutsky’s theorem, we can see that
asymptotically the perturbed test statistics will converge to the true one. How-
ever, similar to Sect. 5, we approximate it with the other null distribution which
shows more power experimentally under the noise as well. Suppose we have to
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add the noise η ∼ N (0, σ2(ε, δn)) in the Σ−1/2
n wn to make the statistics sn

private. The noisy statistics is then can be written as

s̃n =
√

n
(
Σ−1/2

n wn + η
)� √

n
(
Σ−1/2

n wn + η
)

Eventually, s̃n can be written as the following: s̃n =
(

˜Σ−1/2
n wn

)�
A

(
˜Σ−1/2
n wn

)

where

˜Σ−1/2
n wn =

(√
nΣ−1/2

n wn√
n η

σ(ε,δn)

)

(30)

˜Σ−1/2
n wn is a 2J dimensional vector. The corresponding covariance matrix Σ̂n is

an identity matrix I2J of dimension 2J × 2J . Hence, under the null ˜Σ−1/2
n wn ∼

N (0, I2J ). We define one more matrix which we call as A which is

A =
[
IJ V
V V2

]

where V = Diag(σ(ε, δn)) (31)

By definition matrix A is a symmetric matrix which essentially means that there
exist a matrix H such that H�AH = diag(λ1, λ2 · · · λr) where H�H = HH� =
IJ . Now if we consider a random variable N2 ∼ N (0, I2J) and N1 = HN2 then
following holds asymptotically:

(
˜

Σ
−1/2
n wn

)�
A

(
˜

Σ
−1/2
n wn

)
∼ (N2)

�A (N2) ∼ (HN2)
�A (HN2) ∼

r∑
i=1

λiχ
2,i
1

As a short remark, we would like to mention that the in this approach the weights
for the weighted sum of χ2-random variable are not directly dependent on the
data which is essentially a good thing from the privacy point of view. Sensitivity
of Σ−1/2

n wn can be computed in a similar way as in Theorem 1.

D Perturbed Samples Interpretation of Private Mean
and Co-variance

In order to define differential privacy, we need to define two neighbouring dataset
D and D′. Let us consider some class of databases DN where each datset differ
with another at just one data point. Let us also assume that each database
carries n data points of dimension d each. Now if we privately want to release
data then we consider a function f : DN → R

nd which simply takes all n data
points of the database and vertically stack them in one large vector of dimension
nd. It is not hard to see now that:

GS2(f) = sup
D,D′

‖f(D) − f(D′)‖2 ≈ O(diam(X )) (32)
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where diam(X ) denotes the input space. Since the sensitive is way too high (of
the order of diameter of input space), the utility of the data is reduced by a huge
amount after adding noise in it.

Here below now we discuss the perturbed sample interpretation of private
mean and co-variance. That is to anylyze what level of noise added directly
on samples itself would follow the same distribution as private mean. From
Lemma 2, we see that the variance of the noise come out to be much more
tractable in private mean case than adding noise directly to samples.

Lemma 2. Let us assume that
√

nw̃n =
√

nwn + η where η ∼ N (0, c
n ) for

any positive constant c,
√

nwn = 1√
n

∑n
i=1 zi and zis are i.i.d samples. Then√

nwn → 1√
n

∑n
i=1 z̃i where z̃i = zi + ζ and ζ ∼ N (0, σ2

p) if σ2
p = c

n

Proof. It is easier to see that E [
√

nw̃n] =
√

nwn = E

[
1√
n

∑n
i=1 z̃i

]
.

Now, we try to analyze the variance of both the term.

c

n
= n

σ2
p

n

Hence, σ2
p = c

n

Now similar to Lemma 2, we want to translate the noise added in the
covariance matrix to the sample case. The empirical covaraince matrix Σn =
1

n−1

∑n
i=1(zi − wn)(zi − wn)�. For now, if we say (zi − wn) = ẑi, then

Σn =
∑n

i=1
ẑi√
n−1

ẑi√
n−1

�
. Now, adding a Gaussian noise in each ẑi results in

the following:

Σ̂n =
n∑

i=1

(
ẑi√
n − 1

+ ηi

)(
ẑi√
n − 1

+ ηi

)�
where ηi ∼ N (0, σ2(ε, δn))

=
n∑

i=1

(
ẑi√
n − 1

ẑi√
n − 1

�
+

ẑi√
n − 1

η�
i + ηi

ẑi√
n − 1

�
+ ηiη

�
i

)

As can be seen by the above equations, we have similar terms like adding wishart
noise in the covariance matrix with 2 extra cross terms. Hence instead of using
the matrix Σ̃n, one can use Σ̂n for Σn to compute the weights for the null
distribution i.e. weighted sum of chi-square in Sect. 5.1.

E Additional Experimental Details

We see that indeed the Type I error is approximately controlled at the required
level for TCMC, TCS and NTE algorithm, for both versions of the test, as shown
in Fig. 5, note that here we allow some leeway due to multiple testing. Again,
we emphasis that using the asymptotic χ2 distribution naively would provide
inflated Type I error as shown in Fig. 6.
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In Fig. 7, we show the effect of the regularisation parameter γn on the TCS
algorithm performance in terms of Type I error and power on the SG, GMD and
GVD datasets. For simplicity, we take γn = γ here, rather then let it depend on
the sample size n. From the results, we can see that if the γ to be too small, we
will inject too much noise, and hence we will lose power. Note that any γ > 0
will provide us differential privacy, however if we choose it to be too large, our
null distribution will now be mis-calibrated, hurting performance. Hence, there
is a trade off between calibration of the null distribution and also the level of
noise you need to add.

Fig. 5. Type I Error for the SG Dataset, with baselines ME and SCF, δ = 1e−5. Left:
Vary ε, fix n = 10000 Left: Vary n, fix ε = 2.5

F Proof of Theorem 5.1

Proof. The variance σ2
n of the zero-mean noise term n added to the mean vector

wn is of the order O( 1
n2 ). Hence the variance of

√
nn is of the order O( 1

n ).
According to Slutsky’s theorem,

√
nw̃n and

√
nwn thus converge to the same

limit in distribution, which under the null hypothesis is N (0,Σ), with Σ =
E
[
zz�]

. Similarly, the eigenvalues of the covariance matrix corresponding to
the Wishart noise to be added in Σn are also of the order O( 1

n ) which implies
that Σ̃n + γnI and Σn + γnI converge to the same limit, i.e. Σ. Therefore, s̃n

converges in distribution to the same limit as the non-private test statistic, i.e.
a chi-squared random variable with J degrees of freedom. We also assume that
Σ̃−1 and Σ is bounded above by a constant c. If under the alternate we have
w�Σ−1w ≥ O(n−γ) for γ < 1 which is also related to smallest local departure
detectable [16]. Then, we consider the following:

s̃n = s̃n − sn + sn

= sn

(

1 +
s̃n − sn

sn

)

= sn

(

1 +
w̃�

n Σ̃−1
n w̃n − w�

n Σ−1
n wn

w�
n Σ−1wn

)
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We consider the following term:

w̃
�
n Σ̃

−1
n w̃n − w

�
n Σ

−1
n wn = (w̃n − wn)

�
Σ̃

−1
n (w̃n + wn) + w

�
n

(

Σ̃
−1
n − Σ

−1
n

)

wn

= (w̃n − wn)
�
Σ̃

−1
n (w̃n + wn) + w

�
n Σ̃

−1
n

(
Σn − Σ̃n

)
Σ

−1
n wn

≤ ‖w̃n − wn‖‖Σ̃−1
n ‖ ‖w̃n + wn‖

︸ ︷︷ ︸
:=term 1

+n‖Σ−1
n wn‖‖Σ̃−1

n wn‖‖Σn − Σ̃n‖
︸ ︷︷ ︸

:=term 2

Let us consdier the term 1 first.

‖w̃n − wn‖‖Σ̃−1
n ‖ ‖w̃n + wn‖ ≤ cκ2 ‖w̃n − wn‖2

Again since variance σ2 for w̃n is of the order of O(n−2), hence by chebyshev
inequality [5] term 1 goes down at the rate O(n−1). Similarly, we consider the
term 2.

‖Σ−1
n w‖ ‖Σ̃−1

n w‖ ‖Σn − Σ̃n‖ ≤ c2κ2‖Σn − Σ̃n‖
Now,

‖Σn − Σ̃n‖ = n‖Λn − Λ̃n +
n

n − 1
w̃nw̃�

n − n

n − 1
wnw�

n ‖

≤ ‖Λn − Λ̃n‖
︸ ︷︷ ︸
:=term 21

+
n

n − 1
‖w̃nw̃�

n − wnw�
n ‖

︸ ︷︷ ︸
:=term 22

Using the same arguement as before, for a fixed J , term 21 will go down as
O(n−2) and term 22 will go down as O(n−1). Hence, under the alternate and
assumption mentioned in the proof s̃n = sn(1 + ε) where ε goes down with rate
O(n−1+γ) (Fig. 8).

Fig. 6. Type I error for the SCF versions of the test, using the asymptotic χ2 distri-
bution as the null distribution.
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Fig. 7. Type I error for the SG dataset, Power for the GMD, GVD dataset over 500
runs, with δ = 1e−5 for the TCS algorithm with different regularisations. Top: Varying
ε with n = 10000. Bottom: Varying n with ε = 2.5. Here Asym * represents using the
asymptotic χ2 null distribution.

Fig. 8. Type I error for the SG dataset, Power for the GMD, GVD dataset over 500
runs, with δ = 1e − 5 for the TCMC and NTE algorithm with different covariance
pertubation methods. Here, we vary privacy level ε with test samples n = 10000. Here
we *-Asym represents using the asymptotic χ2 null distribution.
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Abstract. Many real-world security scenarios can be modeled via a
game-theoretic framework known as a security game in which there is a
defender trying to protect potential targets from an attacker. Recent
work in security games has shown that deceptive signaling by the
defender can convince an attacker to withdraw his attack. For instance,
a warning message to commuters indicating speed enforcement is in
progress ahead might lead to them driving more slowly, even if it turns
out no enforcement is in progress. However, the results of this work are
limited by the unrealistic assumption that the attackers will behave with
perfect rationality, meaning they always choose an action that gives them
the best expected reward. We address the problem of training bound-
edly rational (human) attackers to comply with signals via repeated
interaction with signaling without incurring a loss to the defender, and
offer the four following contributions: (i) We learn new decision tree
and neural network-based models of attacker compliance with signal-
ing. (ii) Based on these machine learning models of a boundedly ratio-
nal attacker’s response to signaling, we develop a theory of signaling in
the Goldilocks zone, a balance of signaling and deception that increases
attacker compliance and improves defender utility. (iii) We present game-
theoretic algorithms to solve for signaling schemes based on the learned
models of attacker compliance with signaling. (iv) We conduct extensive
human subject experiments using an online game. The game simulates
the scenario of an inside attacker trying to steal sensitive information
from company computers, and results show that our algorithms based
on learned models of attacker behavior lead to better attacker compliance
and improved defender utility compared to the state-of-the-art algorithm
for rational attackers with signaling.
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1 Introduction

Imagine a highway on which many commuters with a tendency to speed travel
each day. Suppose the police have a limited amount of time to patrol this high-
way, but still want to stop people from speeding. One solution is to use decep-
tive signals, or warnings. For example, a sign noting that speed enforcement
is in progress ahead could be used, even if this is not actually the case. It is
easy to imagine that if this sign were displayed very often with no real police
patrols, the commuters would quickly realize and continue speeding. However,
if the commuters knew there was a good chance of actually being stopped and
issued a ticket, they would probably slow down. The question is how often can
the police display the sign deceptively (without enforcing speed) and still cause
the commuters to slow down?

This is the question answered by Xu et al. with their framework for decep-
tive signaling in Stackelberg Security Games (SSGs) [30]. SSGs model the inter-
action between an attacker and a defender (in our example, the commuters
and the police), and have successfully helped security agencies worldwide opti-
mize the use of limited security resources to mitigate attacks across domains
from protecting ports and flights, to mitigating the poaching of endangered ani-
mals [2,13,21,26,28]. (We use the term attack broadly to refer to any unwanted
behavior or illegal activity, such as speeding.) With the addition of signaling, Xu
et al.’s framework allows the defender to strategically reveal information about
her defensive strategy to the attacker [30]. On seeing a signal (e.g., a warning that
speed enforcement is in effect), a compliant attacker will withdraw his attack to
the defender’s benefit. The main advantage of signaling is the ability to deter
attacks using deception, instead of deploying scarce or costly defensive resources.

This signaling framework was shown in simulation to improve the defender
utility against a perfectly rational attacker (who always takes the action with the
best utility for him) compared to the traditional SSG model. Unfortunately, real-
world attackers are almost always boundedly rational (not always selecting the
action with the best utility). Therefore, we focus on finding methods to improve
the compliance rates of boundedly rational attackers, who may not comply even
if it is rational to do so, but instead learn to react via repeated interactions with
signals. This framework could be used to deter boundedly rational attackers
in a variety of real-world settings where attackers might repeatedly interact
with signals. For instance, speeding commuters, fare evaders on public transit
[17], opportunistic criminals looking for chances to strike [34], or cyber-attackers
repeatedly probing a system [18].

In order to increase the compliance of boundedly rational attackers, we focus
on the frequency of signaling, or deciding how often to signal, and use machine
learning models and optimization to learn the overall number of warnings to
show, as showing too many warnings can cause attackers to simply ignore them.
A key result of this paper is the discovery of a Goldilocks zone for signaling—a
careful balance of signaling and deception that considers underlying characteris-
tics of individual targets—via the use of machine learning models of attacker
behavior, which leads to an increase in human attacker compliance and an
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improvement of defender utility. Our main contributions are as follows: (i) We
learn new models of attacker compliance with regard to signaling based on deci-
sion trees and neural networks. (ii) Utilizing insights from these learned models
we propose a theory of signaling in the Goldilocks zone, a balance of signaling and
deception that increases the compliance of boundedly rational adversaries while
mitigating losses to the defender. (iii) We present game-theoretic algorithms to
solve for signaling schemes based on the learned models. (iv) Using an online
game based on the scenario of an inside attacker, we conduct extensive human
subject experiments, which show that against boundedly rational subjects, our
new modeling-based signaling algorithms outperform the state-of-the-art algo-
rithm designed for perfectly rational attackers.

2 Related Work

Two key game-theoretic frameworks, which have been studied and applied exten-
sively, are SSGs, which model interactions between a defender and an attacker
[1,14,29], and signaling games, which model an interaction between two parties
in which one party (the sender) reveals some hidden information to the other
(the receiver), with the goal of influencing his behavior [22,25]. With the growing
interest in the use of deception for security, particularly in the cyber realm [7],
game theory researchers have also begun incorporating deception into the secu-
rity and signaling game frameworks [10,19,36]. Recent work has combined the
security and signaling game frameworks with deception, such that the defender
strategically reveals (possibly deceptive) information about her defensive strat-
egy to the attacker in hopes of causing him to withdraw his attack [12,31].

However, previous work in game-theoretic frameworks with deception has not
investigated human behavior in response to deception, but has instead assumed
all respondents are perfectly rational. This is a major limitation to translating
these frameworks for use in the real world. In contrast, we focus on this combined
signaling-security game framework with boundedly rational attackers who need
to be trained to comply with signaling, which has not previously been considered.

There is extensive work modeling the behavior of boundedly rational attack-
ers in classic SSGs without signaling. Early models relied on specific assumptions
about attacker behavior [24], using functional forms based on these assumptions
such as quantal response [20,32] or prospect theory [33]. More recent work has
turned to machine learning models, which use real-world data and do not rely
on specific assumptions about attacker behavior [15,35]. Two methods that have
been used to predict the behavior of humans in game-theoretic settings are deci-
sion trees, which have been used to predict the actions of poachers in Green
Security Games [13], and neural networks, which have recently been used to pre-
dict the distribution of actions for a player in normal-form, simultaneous move
games [11]. We use both of these models, but in contrast to previous work, we
are the first to address human behavior with regard to signaling in a SSG.
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3 Background

Covered

Uncovered

Signal

No Signal

p

1-z-q

Fig. 1. The signaling scheme for
a target t.

In a SSG, there is a set of targets T =
{t1, t2, . . . , tn} which the defender protects by
allocating K < n resources over them. A
pure defense strategy is an allocation of the
resources, with a mixed strategy being a ran-
domization over these pure strategies. Without
scheduling constraints, a mixed strategy can be
equivalently represented as marginal coverage
probabilities over the targets, denoted z = {zt},
with zt ∈ [0, 1], and

∑
t zt = K, where zt is the

probability of protecting target t [14]. The attacker is aware of z (but not the
pure strategy) and chooses a target t to attack accordingly. If the defender is pro-
tecting t, the attacker incurs a penalty of U c

a(t) < 0 and the defender is rewarded
with U c

d(t) ≥ 0. If t is unprotected, the attacker gets a reward of Uu
a (t) > 0 and

the defender gets a penalty of Uu
d (t) < 0. Xu et al. [30] introduced a two-stage

SSG with a signaling scheme, allowing the defender to influence the attacker’s
decision making to her benefit by exploiting the fact that the attacker is unaware
of the pure strategy at any given time. A round of the two-stage game plays out
as follows:

1. The defender allocates her resources, covering a random subset of the targets
based on her mixed strategy z.

2. Aware of the defender’s mixed strategy, the attacker chooses a target, t, to
attack accordingly.

3. The defender sends a (possibly deceptive) signal to the attacker regarding the
current protection status of t.

4. Based on the information given in the signal, the attacker chooses to either
(1) continue attacking or (2) withdraw his attack yielding payoffs of zero for
both players.

The first stage (steps 1 & 2) is identical to the classic SSG. The second stage
(steps 3 & 4) introduces signaling. We can formalize a signaling scheme as follows:

Definition 1 (Signaling Scheme [30]). Given (t, zt) and a signal σ, a sig-
naling scheme regarding t consists of probabilities (pt, qt) with 0 ≤ pt ≤ zt and
0 ≤ qt ≤ 1 − zt, such that pt and qt are the probabilities of showing σ given that
t is currently covered and uncovered, respectively.

Figure 1 visualizes a signaling scheme for a target t, where zt is the coverage
probability, pt [qt] is the probability of signaling given t is covered [uncovered].
A signaling scheme tells the defender how often to warn the attacker broken
down into the cases (1) when the warning is true (pt) and (2) when it is false
(qt). For instance, with probability (1 − zt), t is not protected by a defensive
resource. In this case, we will send a deceptive signal telling the attacker t is
protected with probability qt

1−zt
. Intuitively, it is the optimal combination of

bluffing and truth telling to ensure the attacker always believes the bluff. The
goal is to bluff as much as possible while maintaining this belief.
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4 Signaling Schemes for Boundedly Rational Attackers

While previous work focused on a perfectly rational attacker [30], we devise a
signaling scheme that increases the compliance of (human) boundedly rational
attackers. We let xt [yt] be the probability the adversary attacks the chosen
target t given a signal is shown [no signal is shown]. For a perfectly rational
attacker [30], xt = 0 and yt = 1. As we show in Sect. 7, humans do not behave
in such a deterministic manner, so our goal is to find a signaling scheme (pt and
qt) that provides the most benefit to the defender, despite human behavior. We
measure benefit by the expected utility of the defender, defined as follows, where
gt is the probability that the attacker selects t, term (i) is the expected defender
utility given no signal is shown, and term (ii) is the expected defender utility
otherwise. In each term, we sum up the total expected utility for target t, which
has defender reward U c

d(t) and penalty Uu
d (t):

Ud =
∑

t
gt[yt(zt − pt)U c

d(t) + yt(1 − zt − qt)Uu
d (t)

︸ ︷︷ ︸
(i)

+xtptU
c
d(t) + xtqtU

u
d (t)

︸ ︷︷ ︸
(ii)

]

In the signaling scheme proposed by Xu et al. [30] (hereafter referred to as
the peSSE algorithm), term (ii) is always equal to zero (i.e. xt = 0), which is the
optimal solution for a perfectly rational attacker. It is the maximum amount of
signaling that can be shown and still cause the attacker to withdraw anytime
he sees a signal. Further, under the peSSE scheme, the defender only employs
deception when a signal is shown. When no signal is shown, it is always true that
the given target is uncovered (i.e. zt −pt = 0), and the attacker will succeed. We
refer to this type of scheme, as a 1-way deceptive signaling scheme.

As we show in Sect. 7, in the presence of a boundedly rational attacker,
using a signaling scheme, even one designed for perfectly rational attackers,
improves defender utility when compared to the traditional SSG framework.
We also show that boundedly rational attackers display a training effect via
experience with signals. As they experience signals and the consequences of
attacking, they become more compliant—attacking less frequently as time goes
on. However, under the peSSE scheme, this decrease in attack probability is both
gradual and small in magnitude. Therefore, we seek a way to both increase the
overall rate of compliance and to speed up the training process without incurring
additional loss to the defender. The natural starting point based on insights from
literature on using warnings to deter risky cyber behavior [16], is to adjust the
false positive (deception) rate. We used a regression tree to learn the probability
of attack given a signal (xt), based on features of each target, including the rate
of deception. However, in order to handle instances in which there is no signal—a
sure loss to the defender—the optimization process suggested more signaling. We
will show this led to the defender being worse off than under the peSSE scheme.

Given these results, we hypothesized that the overall frequency of signaling,
not just the deception rate, also has an impact on attacker behavior. In particu-
lar, that a high frequency of signaling was causing the attacker to become desen-
sitized and less compliant. Therefore, we propose a new scheme which we call a
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2-way deceptive signaling scheme, which lowers the overall frequency of showing
a signal without changing the deception rate, and introduces uncertainty for the
attacker when no signal is shown. As shown in Sect. 7, 2-way signaling schemes
result in faster training of the attacker, an overall increase in compliance, and
better expected utility for the defender against boundedly rational attackers. In
a 2-way signaling scheme, we decrease pt and qt proportionally to reduce the
frequency of signaling, while adding uncertainty about the protection status of
t when no signal is shown. We formally define the new scheme as follows:

Definition 2 (2-Way Signaling Scheme). Let f be a vector such that f ∈
R

|T | and ft ∈ [0, 1] for all t ∈ T . Then,

(i) pt = ftzt (ii) qt = −ptU
c
a(t)/Uu

a (t)

In equation (ii), we ensure that the expected value when a signal is shown is
equal to zero for all targets. This keeps the deception rate consistent with the
peSSE scheme, allowing us to focus on the effect of signaling frequency without
confounding the effect of changes in deception rate. Intuitively, ft is the propor-
tion of signals shown compared to the peSSE strategy. For example, if ft = 0.5,
we show half as many signals as the peSSE strategy.

A 2-way signaling op mal point

1 =The peSSE op mal point

Fig. 2. The (p, q)-feasible regions for
the peSSE and 2-way signaling schemes.

We can visualize 2-way signaling in
relation to the peSSE scheme by look-
ing at the feasible region of (p, q) in the
optimization used to solve for the peSSE
scheme (Fig. 2). Figure 2 gives the intu-
ition for part two of the following theorem
(its proof is in the appendix)1:

Theorem 1. Given a 2-way deception
scheme with ft ∈ (0, 1) ∀ t, if the attacker
is perfectly rational, then:

(i) The attacker’s expected utility per target will be equal to his expected utility
under the peSSE signaling scheme.

(ii) The defender’s expected utility per target will be worse than hers under the
peSSE signaling scheme.

Two-way signaling makes the signaling scheme sub-optimal for the defender
against a perfectly rational attacker, but as we show in Sect. 7, it improves her
utility against boundedly rational attackers. The question is how to choose the
correct value of ft?

As a baseline, we uniformly reduce the signaling frequency on all targets
(ft = 0.75,∀t), and show that this leads to faster training of subjects, an
improvement in the end compliance rate, and an improvement in expected utility
for the defender. However, we hypothesize that we can do better by exploiting
1 Link: https://www.dropbox.com/s/uum5tpnb4h1gmym/ECML Supplement.pdf?dl

=0.

https://www.dropbox.com/s/uum5tpnb4h1gmym/ECML_Supplement.pdf?dl=0
https://www.dropbox.com/s/uum5tpnb4h1gmym/ECML_Supplement.pdf?dl=0
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the boundedly rational attackers’ differing preferences over the targets [20,23].
We consider learned models of attacker behavior with regard to signaling to
determine optimal frequencies of signaling across targets, leading us to find the
Goldilocks zone for signaling for each target (Sect. 6.3), which outperforms the
baseline’s uniform reduction of signaling.

5 Learning Models of Attacker Compliance

Table 1. Accuracy of attacker models

Round Model Accuracy Precision Recall

Round 1: DT 0.711 0.714 0.986
NN 0.783 0.783 1.0

Round 2: DT 0.725 0.727 0.995
NN 0.720 0.731 0.973

Round 3: DT 0.690 0.705 0.944
NN 0.683 0.744 0.822

Round 4: DT 0.654 0.660 0.935
NN 0.623 0.680 0.786

Recent work has shown machine
learning models of human behavior
to outperform classic statistically-
based behavioral models such as
SUQR [9]. Therefore, to model the
attacker’s response to signaling, we
chose two machine learning meth-
ods: (i) a decision tree (DT), which
has shown recent success in appli-
cations to patrol planning to stop
poachers [8]; and (ii) a neural network (NN), which is generally considered the
state-of-the-art in predictive modeling.

We compiled a data set of 17,786 instances on which subjects saw a signal,
from three different experiments—peSSE, deception-based, and 2-way signaling
baseline (see Sect. 7.1). The features of each data point were the attacker reward
and penalty (Uu

a (t) & U c
a(t)), the coverage probability (zt), and the signaling

frequency (pt + qt), for the attacker’s target selection t. We predicted the sub-
ject’s action (1 = Attack, 0 = Withdraw). In order to account for the fact that
the level of experience with signals so far has an impact on subject behavior, we
separated the data by round, resulting in four data sets with 4448, 4475, 4229,
and 4634 instances, respectively. We trained DT and NN models on each round
separately. The DT model was trained in R using the rpart library, which utilizes
the CART algorithm to create classification trees [27]. The complexity param-
eter (CP) was set to 0.003 to avoid over-fitting. The NN was built in Python
using the Keras2 library. The network was composed of two hidden layers with
50 and 100 nodes, respectively. For training, a weighted categorical crossentropy
loss function was used, where the “attack” class (1) was weighted by 0.4 and
the “withdraw” class (0) was weighted by 0.6 due to class imbalance. The Nes-
terov Adam optimizer was used with Glorot normal initialization. The number
of nodes, optimizer, and initialization were determined using randomized search
hyperparameter optimization from scikit-learn3. This was repeated for multiple
weights, and the best combination on the validation set was used. Table 1 shows
the precision, recall, and mean accuracy on 100 random 80/20 splits of the data.

2 https://keras.io.
3 https://scikit-learn.org/stable/.

https://keras.io
https://scikit-learn.org/stable/


732 S. Cooney et al.

Despite similar accuracy, the models have different strengths. The DT model
can give more insight into the features that are most important for increasing
compliance. In fact, rpart gives an importance value to each variable, and con-
sistent with our hypothesis, frequency is the most important feature. However,
the DT model has a more coarse-grained set of predicted attack probabilities. The
NN model is a black-box when it comes to explaining the importance of different
features, but gives more fine-grained predictions of attack probability. In the
following, we propose new game-theoretic algorithms to find the corresponding
optimal signaling scheme for the defender based on both models. As we show in
Sect. 7, both methods outperform the peSSE algorithm, with the NN method only
slightly outperforming the DT scheme. Thus, practitioners can choose a method
based on the trade-off between performance and explainability best suited to
their application.

6 Using Learned Models of Behavior to Compute
a Signaling Scheme

Using the DT and NN models of attacker compliance, our goal is to compute a
signaling scheme that maximizes defender expected utility as expressed in Sect. 4.
Evidence from initial experiments show that when there is no signal participants
always attack, so we simplify the computation, letting yt = 1.0, and encode the
probability of attack given a signal (xt) as a function of the models’ predictions.
We focus only on finding the signaling probabilities (pt, qt), setting the coverage
(zt) using the algorithm given in [30] and using experimental data to set the
selection probabilities (gt).

6.1 Decision Tree Based Signaling Scheme

1
0.72

1
0.64

1
0.61

1
0.65

1
0.57

0
0.48

1
0.59

1
0.71

1
0.83

Freq < 0.77

Freq < 0.62

Coverage ≥ 0.39

Penalty ≥ 6

≥ 0.77

< 6

 < 0.39

≥ 0.62

Fig. 3. The DT modeling the
probability of attack given a
signal for Round 2 of the
Insider Attack Game.

Our goal is to determine what signaling fre-
quency to set in order to maximize the defender’s
expected utility, where the attacker’s response to
signaling is given by a DT. For example, Fig. 3,
where each node lists the predicted action (0 = No
Attack, 1 = Attack) and the percentage of attacks
(1′s) at the node (xt). We will use a mixed-integer
linear program (MILP) to find the optimal fre-
quencies. Here we introduce general techniques
for building a MILP from the DT model. (The full
MILP based on Fig. 3 is in the appendix.)

We begin by linearizing the expression of
defender utility introduced in Sect. 4, which
requires introducing two additional variables,
mt = xtqt and nt = xtpt:

Ud =
∑

t
gt[(zt − pt)U c

d(t) + (1 − zt − qt)Uu
d (t) + ntU

c
d(t) + mtU

u
d (t)]
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Each branch splits the data on one of four features—attacker reward (Uu
a ),

attacker penalty (U c
a), and coverage probability (zt), and signaling frequency

(pt + qt). We define binary variables to represent the frequency branches. For
each branch on frequency of α, we define a binary variable bt such that bt = 1 if
pt + qt ≥ α and bt = 0 otherwise. This is enforced by the following constraints,
where M, ε > 0 are a large and small constants, respectively:

α − (1 − bt)M ≤ pt + qt ≤ α + btM − ε

For each leaf, we define constraints that enforce that the correct predicted value
is substituted for (xt), constraining the values of mt and nt. For example, the
constraints on mt associated with the fourth leaf in Fig. 3 are as follows:

0.71qt−btM−(1−ct)M ≤mt ≤0.71qt+btM+(1−ct)M

where bt and ct are the binary variables associated with branching on frequency
= 0.77 and = 0.62, respectively. These constraints enforce that xt = 0.71, mean-
ing mt = 0.71qt, when bt = 0 and ct = 1, which is equivalent to frequency
∈ [0.62, 0.77).

6.2 Neural Network Based Signaling Scheme

To optimize over the black-box NN model, we optimize over a piece-wise linear
(PWL) approximation of the predictions using the technique described in [8].
We let ft define frequency (pt + qt) according to Definition 2, and introduce the
constraint, pt = ftzt ∀ t ∈ T .

Then, we let χt(ft) be the black-box function predicting attack probability
given a signal (xt), according to the static features zt, U c

a(t), and Uu
a (t), taking ft

as an argument. We build a data set (Dχ) of sample predictions at m levels of ft

for each of the T targets, defined by zt, Uu
a , and U c

a. Using Dχ, we construct the
PWL approximation, representing any value ft ∈ [0, 1] and it’s prediction χ(ft),
as a convex combination of its nearest neighbors in the data set for t. Let B ∈ Dχ

be the break points of the PWL function. We define sets of weights λt,i such that
they belong to a Specially Ordered Set of Type 2—a set of variables in which
at most two can be non-zero, and the non-zero variables must be consecutive.
We can then approximate χt(ft) as a convex combination of (Xt, λt) as χ̄t(ft) =∑

i λt,iχt(Bt,i). We replace xt with this expression to formulate defender utility:

Ud =
∑

t
gt[yt(zt−pt)U c

d(t)+yt(1−zt−qt)Uu
d (t) (1)

+ (
∑

i
λt,iχ̄t(Bt,i))ptU

c
d(t)+(

∑

i
λt,iχ̄t(Bt,i))qtU

u
d (t)]

6.3 Signaling in the Goldilocks Zone

We now show empirically that using a learned model of attacker behavior should
improve on a scheme that uniformly reduces signaling frequency on all targets.
First, we show there is an expression which can be used to compute the optimal
value of ft for each target individually.
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Theorem 2. Finding an optimal NN-based signaling scheme is equivalent to
minimizing ft(yt − χ̄(ft))(U c

d(t)Uu
a (t) − Uu

d (t)U c
a(t)) for each t ∈ T individually,

where χ̄(ft) is the piecewise-linear version of χ(ft). Specifically, if U c
d(t)Uu

a (t) −
Uu

d (t)U c
a(t) < 0[> 0], it is equivalent to maximizing [minimizing] ft(yt − χ̄(ft))

for all t ∈ T .

In our experimental setting, the utilities satisfy U c
d(t)Uu

a (t)−Uu
d (t)U c

a(t) < 0,
and since the attacker empirically always attacks when no signal is presented
(yt = 1), we have the following simplified corollary following from Theorem 2:

Corollary 1. The optimal NN-based solution coincides with peSSE when ft(1 −
χ(ft)) is monotonically increasing for all t.

We refer to the value of ft given by this computation as the Goldilocks zone
for each target. To give a better intuition about finding the Goldilocks zone,
we visualize the trend of the function described in Theorem 2, ft(1 − χ(ft)),
using the DT’s and NN’s predictions of χ(ft) (dropping the bar over χ(ft) for
simplicity and setting yt = 1, per our setup). The graphs in Fig. 4 show a plot
of ft(1 − χ(ft)) on the y-axis at 20 levels of ft (x-axis) for two of the targets
from round 2 of our experiment. Observe that the relationship between ft and
ft(yt − χ(ft)) is different for the two targets. Notice that for Target 1 (left),
the baseline value of f = 0.75 (yellow dot) is sub-optimal in that it signals too
little compared to the optimal NN scheme. However, for Target 4 (right), the
baseline signals too often compared to the optimal NN solution. Notice that this
is also true for the DT scheme. By optimizing over our learned models, we can
find the Goldilocks zone for signaling for each target. As we show in Sect. 7, the
learning-based signaling schemes actually outperform the baseline in practice.

Fig. 4. The relationship between ft & (1−xt)ft given by the
NN and DT for targets 1 (left) and 4 (right) in round 2 of the
insider attack game. For some targets, the baseline signaling
frequency is too low [high]. (Color figure online)

In general, we find
that for more conser-
vative, and thus typ-
ically less desirable
targets, like Target 1
(reward 5/penalty 3),
the optimal signaling
rate is higher, with
ft tending toward 1.
With more risky, but
more appealing, tar-
gets such as Target 4
(reward 8/penalty 9),
the Goldilocks zone is lower, with ft tending toward 0.5. A table of the values
of ft for all of the targets under the evaluated signaling schemes can be found
in the appendix.

7 Experiments and Results

To evaluate the signaling schemes, we recruited human subjects from Amazon
Mechanical Turk to play an online game based on the inside attacker scenario
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described in [4]. Before starting the game, subjects were given instructions about
how it worked, took a short quiz on the instructions, and played a practice round
of 5 trials, allowing them to get a sense for the game. Subjects played four rounds
of 25 trials each. To study how the subjects’ behavior changed with repeated
exposure to signaling, the four rounds were played in a fixed order. Each round
had six targets (computers) with a different coverage and payoff structure (see
Table 1 in [4], as well as the online appendix). After selecting a target t, with
probability (pt + qt), the subject is shown a warning message. Given a warning
and the probability it is false, the subjects then decided whether or not to attack.
For consistency, the subjects were also given the choice to attack or withdraw
even when no signal was shown. Screenshots of the game interface and details
about the participant pool and payment structure can be found in the appendix.

7.1 Evaluated Algorithms

We compare the solution quality of the signaling schemes given by the follow-
ing algorithms: (i) no-signaling algorithm—the defender plays according to the
SSE (equivalently, ft = 0 ∀ t); (ii) peSSE—the optimal signaling scheme for a
perfectly rational attacker [30] (equivalently, ft = 1 ∀ t); (iii) 2-way signaling
baseline—we set ft = 0.75 ∀ t; (iv) DT based algorithm; (v) NN based algorithm;
and (vi) deception-based algorithm.

Evaluation Criteria. We evaluate the algorithms with regard to the average
defender expected utility, which is defined for each trial as follows:

1
N

m∑

i=1

Ai[(−1)(1 − zt)]

where Ai is the action take by the attacker at round i (Ai = 1 being attack and
Ai = 0 being withdraw), N is the number of participants, and m is the number of
trials. We report p−values for a 2-tailed t-test comparing mean expected defender
utility per trial. The net score was computed across rounds (e.g., earning 20
points in round 1 and −10 points in round 2 would result in a net score of 10),
so we report statistics at both the round and aggregate levels.

7.2 Human Subject Results

Signaling Works. Figure 5 (top) shows the average defender expected utility (y-
axis) for each round of the insider attack game. It shows that there is significant
benefit (p < 0.01) to the defender when using signaling against boundedly ratio-
nal attackers compared to using no signaling, even when using the peSSE algo-
rithm, designed for perfectly rational attackers. This is also true at the aggregate
level (p < 0.01) (Fig. 5 (bottom)).
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Fig. 5. Comparison of average expected
defender utility at the round (top) and
aggregate (bottom) levels

Signaling Frequency Matters. At the
aggregate level, all three 2-way signal-
ing schemes outperformed the peSSE
algorithm at p < 0.01 (Fig. 5 (bot-
tom)). As we hypothesized, reducing
the frequency of signaling improves
performance against boundedly ratio-
nal attackers.

Learning-Based Schemes Perform Best.
As can be seen in Fig. 5, the signaling
algorithms based on learned models of
attacker behavior performed the best,
outperforming both the peSSE and
2-way baseline schemes. The DT scheme
outperformed the peSSE in rounds 1
(p < 0.01), 2 (p < 0.01), and 4 (p <

0.08) with no significant difference in round 3. It outperformed the baseline in
rounds 2 (p < 0.03) and 4 (p < 0.01), with no significant difference in utility
in rounds 1 and 3. The NN-based algorithm outperformed peSSE in all rounds
(p < 0.01). It also outperformed the baseline in rounds 2 (p < 0.08), 3 and 4
(both p < 0.01), with no significant difference in round 1.

The Goldilocks Zone for Signaling. A key finding of our experiments is that
using learned models of subject behavior to find the proper signaling frequency
(the Goldilocks zone) increases its impact, which aligns with our theoretical
results (Sect. 6.3). Figure 6 (left), shows the average percent of trials in each
round on which subjects saw a signal across the four signaling algorithms. The
baseline algorithm signals the least and also achieves almost the best compliance
(Fig. 6 (right), the average rate of attack given a signal). The DT and NN based
algorithms have middling signaling frequencies on average, and also middling
levels of compliance, raising the question: How do they outperform the baseline
scheme?

Although the baseline achieves high rates of compliance in the signaling case,
we did not achieve compliance in the no-signaling case with any of the algorithms.
(The average attack rate on instances of no-signal was upwards of 96% across
all conditions.) As Fig. 6 (middle) shows, the baseline has a much higher rate of
no-signal instances, which are almost always attacked, resulting in high losses
for the defender. The DT and NN schemes give up some compliance in the case
of a signal by signaling in a more middling range, but make up for this loss by
having less no signal instances. In general, lowering the signaling frequency can
increase compliance with regard to signals, but must be carefully balanced so
that instances in which no signal is shown do not offset the gain to the defender.
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Fig. 6. The balance between lowering signaling probability, to increase compliance, and
allowing many instances with no signal. (left) Probability of Showing a Signal. (middle)
Probability of Showing No Signal. (right) Probability of Attack Given a Signal.

The learning based approaches do not just find a uniform frequency of sig-
naling somewhere between ft = 0.75 and ft = 1. As mentioned in Sect. 6.3,
the NN-based algorithm tends to increase the rate of signaling on less desirable
targets, while decreasing it on more popular targets. This varied signaling fre-
quency tuned to the features of each target is what causes the middling range
of frequency on average, and also what allows the model-based algorithms to
outperform the baseline, by performing better at the target level. Additional
discussion of the performance of individual targets can be found in the appendix.
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Fig. 7. The average percent of signals attacked (y-axis) up to the current trial (x-axis).

Exploiting the Training Effect. Boundedly rational subjects adjust their response
to signaling given repeated exposure to signals and the consequences of attacking.
The y-axis of Fig. 7 shows the average percent of signals attacked up to the
current trial, which is given on the x-axis. It shows that initially subjects behave
in a very exploratory manner, attacking frequently. However, as time passes
they become more compliant. In rounds 1–3, the average rate of signaling of
the NN signaling scheme falls between the peSSE and baseline algorithms, but
in round 4 the NN signaling scheme is equal to the peSSE scheme (see Fig. 6
(right)). Yet, the defender’s expected utility is significantly better than in the
peSSE experiment. As expected, using 2-way signaling in rounds 1–3 leads to
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an increased rate of compliance by the final round, as well as a sharp and early
drop in attack probability over the course of the first two rounds, compared to
the peSSE scheme. Boosting the level of signaling in the fourth round exploits
this improved compliance rate, taking advantage of the benefit of signaling to
increase the defender’s expected utility. We see a similar effect with the DT
algorithm. However, this effect is not exploited by the baseline algorithm, which
uniformly reduces signaling in all four rounds, and actually performs significantly
worse than the peSSE scheme in round 4 (see Fig. 5), even though the level of
compliance with signaling is much lower.
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Fig. 8. Average expected defender
utility (top) and attack prob-
ability (bottom) between the
deception-based, peSSE, and no-
signaling schemes.

Only Learning the Deception Rate Does Not
Work. As discussed in Sect. 4, we compared
peSSE with a regression tree-based algorithm
that learned the optimal deception rate, but
ignored signaling frequency. This method led
to significantly lower defender expected util-
ity (p < 0.01) (Fig. 8) and significantly higher
attack probability (p < 0.06) (Fig. 8), as by not
accounting for the frequency of signaling, it
signals too much, causing subjects to become
desensitized and non-compliant.

8 Conclusions and Future Work

We have shown that using machine learning to
model an attacker’s response to deceptive sig-
naling leads to an optimal signaling scheme to
deter boundedly rational attackers. We present

decision tree- and neural network-based signaling schemes to find the Goldilocks
zone for signaling. We show via human subject experiments that learning-based
signaling schemes improve defender performance, and that these schemes lead
humans to become more compliant over repeated interaction. Whereas our
results are based on the Mechanical Turk population and game setting, fur-
ther testing should use realistic simulation with expert participants [6] or even
occur “in the wild” [5]. Personalized signaling schemes [3] and defending against
adversary manipulation of the system should also be studied.
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Abstract. Incorporating second order curvature information in gradient
based methods have shown to improve convergence drastically despite its
computational intensity. In this paper, we propose a stochastic (online)
quasi-Newton method with Nesterov’s accelerated gradient in both its
full and limited memory forms for solving large scale non-convex opti-
mization problems in neural networks. The performance of the proposed
algorithm is evaluated in Tensorflow on benchmark classification and
regression problems. The results show improved performance compared
to the classical second order oBFGS and oLBFGS methods and popular
first order stochastic methods such as SGD and Adam. The performance
with different momentum rates and batch sizes have also been illustrated.

Keywords: Neural networks · Stochastic method · Online training ·
Nesterov’s accelerated gradient · Quasi-Newton method · Limited
memory · Tensorflow

1 Introduction

Neural networks have shown to be effective in innumerous real-world applica-
tions. Most of these applications require large neural network models with mas-
sive amounts of training data to achieve good accuracies and low errors. Neural
network optimization poses several challenges such as ill-conditioning, vanishing
and exploding gradients, choice of hyperparameters, etc. Thus choice of the opti-
mization algorithm employed on the neural network model plays an important
role. It is expected that the neural network training imposes relatively lower
computational and memory demands, in which case a full-batch approach is not
suitable. Thus, in large scale optimization problems, a stochastic approach is
more desirable. Stochastic optimization algorithms use a small subset of data
(mini-batch) in its evaluations of the objective function. These methods are par-
ticularly of relevance in examples of a continuous stream of data, where the
partial data is to be modelled as it arrives. Since the stochastic or online meth-
ods operate on small subsamples of the data and its gradients, they significantly
reduce the computational and memory requirements.
c© Springer Nature Switzerland AG 2020
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1.1 Related Works

Gradient based algorithms are popularly used in training neural network models.
These algorithms can be broadly classified into first order and second order
methods [1]. Several works have been devoted to stochastic first-order methods
such as stochastic gradient descent (SGD) [2,3] and its variance-reduced forms
[4–6], AdaGrad [7], RMSprop [8] and Adam [9]. First order methods are popular
due to its simplicity and optimal complexity. However, incorporating the second
order curvature information have shown to improve convergence. But one of the
major drawbacks in second order methods is its need for high computational
and memory resources. Thus several approximations have been proposed under
Newton [10,11] and quasi-Newton [12] methods in order to make use of the
second order information while keeping the computational load minimal.

Unlike the first order methods, getting quasi-Newton methods to work in a
stochastic setting is challenging and has been an active area of research. The
oBFGS method [13] is one of the early stable stochastic quasi-Newton methods,
in which the gradients are computed twice using the same sub-sample, to ensure
stability and scalability. Recently there has been a surge of interest in design-
ing efficient stochastic second order variants which are better suited for large
scale problems. [14] proposed a regularized stochastic BFGS method (RES) that
modifies the proximity condition of BFGS. [15] further analyzed the global con-
vergence properties of stochastic BFGS and proposed an online L-BFGS method.
[16] proposed a stochastic limited memory BFGS (SQN) through sub-sampled
Hessian vector products. [17] proposed a general framework for stochastic quasi-
Newton methods that assume noisy gradient information through first order ora-
cle (SFO) and extended it to a stochastic damped L-BFGS method (SdLBFGS).
This was further modified in [18] by reinitializing the Hessian matrix at each iter-
ation to improve convergence and normalizing the search direction to improve
stability. There are also several other studies on stochastic quasi-Newton meth-
ods with variance reduction [19–21], sub-sampling [11,22] and block updates
[23]. Most of these methods have been proposed for solving convex optimization
problems, but training of neural networks for non-convex problems have not been
mentioned in their scopes. The focus of this paper is on training neural networks
for non-convex problems with methods similar to that of the oBFGS in [13]
and RES [14,15], as they are stochastic extensions of the classical quasi-Newton
method. Thus, the other sophisticated algorithms [11,16–23] are excluded from
comparison in this paper and will be studied in future works.

In this paper, we introduce a novel stochastic quasi-Newton method that is
accelerated using Nesterov’s accelerated gradient. Acceleration of quasi-Newton
method with Nesterov’s accelerated gradient have shown to improve convergence
[24,25]. The proposed algorithm is a stochastic extension of the accelerated meth-
ods in [24,25] with changes similar to the oBFGS method. The proposed method
is also discussed both in its full and limited memory forms. The performance
of the proposed methods are evaluated on benchmark classification and regres-
sion problems and compared with the conventional SGD, Adam and o(L)BFGS
methods.
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2 Background

min
w∈Rd

E(w) =
1
b

∑

p∈X

Ep(w), (1)

Training in neural networks is an iterative process in which the parameters
are updated in order to minimize an objective function. Given a mini-batch
X ⊆ Tr with samples (xp, dp)p∈X drawn at random from the training set Tr and
error function Ep(w;xp, dp) parameterized by a vector w ∈ R

d, the objective
function is defined as in (1) where b = |X|, is the batch size. In full batch,
X = Tr and b = n where n = |Tr|. In gradient based methods, the objective
function E(w) under consideration is minimized by the iterative formula (2)
where k is the iteration count and vk+1 is the update vector, which is defined
for each gradient algorithm.

wk+1 = wk + vk+1. (2)

In the following sections, we briefly discuss the full-batch BFGS quasi-Newton
method and full-batch Nesterov’s Accelerated quasi-Newton method in its full
and limited memory forms. We further extend to briefly discuss a stochastic
BFGS method.

Algorithm 1. BFGS Method
Require: ε and kmax

Initialize: wk ∈ R
d and Hk = I.

1: k ← 1
2: Calculate ∇E(wk)
3: while ||E(wk)|| > ε and k <

kmax do
4: gk ← −Hk∇E(wk)
5: Determine αk by line search
6: vk+1 ← αkgk

7: wk+1 ← wk + vk+1

8: Calculate ∇E(wk+1)
9: Update Hk+1 using (4)

10: k ← k + 1
11: end while

Algorithm 2. NAQ Method
Require: 0 < μ < 1, ε and kmax

Initialize: wk ∈ R
d, Hk = I and vk =

0.
1: k ← 1
2: while ||E(wk)|| > ε and k < kmax

do
3: Calculate ∇E(wk + μvk)

4: ĝk ← −Ĥk∇E(wk + μvk)
5: Determine αk by line search
6: vk+1 ← μvk + αkĝk

7: wk+1 ← wk + vk+1

8: Calculate ∇E(wk+1)

9: Update Ĥk using (9)
10: k ← k + 1
11: end while

2.1 BFGS Quasi-Newton Method

Quasi-Newton methods utilize the gradient of the objective function to achieve
superlinear or quadratic convergence. The Broyden-Fletcher-Goldfarb-Shanon
(BFGS) algorithm is one of the most popular quasi-Newton methods for uncon-
strained optimization. The update vector of the quasi-Newton method is given
as

vk+1 = αkgk, (3)
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where gk = −Hk∇E(wk) is the search direction. The hessian matrix Hk is sym-
metric positive definite and is iteratively approximated by the following BFGS
formula [26].

Hk+1 = (I − skyT
k /yT

k sk)Hk(I − yksTk /yT
k sk) + sksTk /yT

k sk, (4)

where I denotes identity matrix,

sk = wk+1 − wk and yk = ∇E(wk+1) − ∇E(wk). (5)

The BFGS quasi-Newton algorithm is shown in Algorithm 1.

Limited Memory BFGS (LBFGS): LBFGS is a variant of the BFGS quasi-
Newton method, designed for solving large-scale optimization problems. As the
scale of the neural network model increases, the O(d2) cost of storing and updat-
ing the Hessian matrix Hk is expensive [13]. In the limited memory version, the
Hessian matrix is defined by applying m BFGS updates using only the last m cur-
vature pairs {sk,yk}. As a result, the computational cost is significantly reduced
and the storage cost is down to O(md) where d is the number of parameters and
m is the memory size.

2.2 Nesterov’s Accelerated Quasi-Newton Method

Several modifications have been proposed to the quasi-Newton method to obtain
stronger convergence. The Nesterov’s Accelerated Quasi-Newton (NAQ) [24]
method achieves faster convergence compared to the standard quasi-Newton
methods by quadratic approximation of the objective function at wk + μvk

and by incorporating the Nesterov’s accelerated gradient ∇E(wk + μvk) in its
Hessian update. The derivation of NAQ is briefly discussed as follows.

Let Δw be the vector Δw = w− (wk + μvk). The quadratic approximation
of the objective function at wk + μvk is defined as,

E(w) � E(wk +μvk)+∇E(wk +μvk)TΔw+
1
2
ΔwT∇2E(wk +μvk)Δw. (6)

The minimizer of this quadratic function is explicitly given by

Δw = −∇2E (wk + μvk)
−1 ∇E (wk + μvk) . (7)

Therefore the new iterate is defined as

wk+1 = (wk + μvk) − ∇2E (wk + μvk)
−1 ∇E (wk + μvk) . (8)

This iteration is considered as Newton method with the momentum term μvk.
The inverse of Hessian ∇2E(wk + μvk) is approximated by the matrix Ĥk+1

using the update Eq. (9)

Ĥk+1 = (I − pkqT
k /qT

k pk)Ĥk(I − qkpT
k /qT

k pk) + pkpT
k /qT

k pk, (9)
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Algorithm 3. Direction Update
Require: current gradient ∇E(θk), memory size m, curvature pair (σk−i, γk−i)

∀i = 1, 2, ..., min(k − 1, m) where σk is the difference of current and previous weight
vector and γk is the difference of current and previous gradient vector

1: ηk = −∇E(θk)
2: for i := 1, 2, ..., min(m, k − 1) do
3: βi = (σT

k−iηk)/(σT
k−iγk−i)

4: ηk = ηk − βiγk−i

5: end for
6: if k > 1 then
7: ηk = ηk(σ

T
k γk/γT

k γk)
8: end if
9: for i : k − min(m, (k − 1)), . . . , k − 1, k do

10: τ = (γT
i ηk)/(γT

i σi)
11: ηk = ηk − (βi − τ)σi

12: end for
13: return ηk

where

pk = wk+1 − (wk + μvk) and qk = ∇E(wk+1) − ∇E(wk + μvk). (10)

(9) is derived from the secant condition qk = (Ĥk+1)−1pk and the rank-2 updat-
ing formula [24]. It is proved that the Hessian matrix Ĥk+1 updated by (9) is a
positive definite symmetric matrix given Ĥk is initialized to identity matrix [24].
Therefore, the update vector of NAQ can be written as:

vk+1 = μvk + αkĝk, (11)

where ĝk = −Ĥk∇E(wk + μvk) is the search direction. The NAQ algorithm is
given in Algorithm 2. Note that the gradient is computed twice in one iteration.
This increases the computational cost compared to the BFGS quasi-Newton
method. However, due to acceleration by the momentum and Nesterov’s gradient
term, NAQ is faster in convergence compared to BFGS.

Limited Memory NAQ (LNAQ). Similar to LBFGS method, LNAQ [25]
is the limited memory variant of NAQ that uses the last m curvature pairs
{pk,qk}. In the limited-memory form note that the curvature pairs that are
used incorporate the momemtum and Nesterov’s accelerated gradient term, thus
accelerating LBFGS. Implementation of LNAQ algorithm can be realized by
omitting steps 4 and 9 of Algorithm 2 and determining the search direction ĝk

using the two-loop recursion [26] shown in Algorithm 3. The last m vectors of
pk and qk are stored and used in the direction update.

2.3 Stochastic BFGS Quasi-Newton Method (oBFGS)

The online BFGS method proposed by Schraudolph et al. in [13] is a fast and scal-
able stochastic quasi-Newton method suitable for convex functions. The changes
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proposed to the BFGS method in [13] to work well in a stochastic setting are
discussed as follows. The line search is replaced with a gain schedule such as

αk = τ/(τ + k) · α0, (12)

where α0, τ > 0 provided the Hessian matrix is positive definite, thus restricting
to convex optimization problems. Since line search is eliminated, the first param-
eter update is scaled by a small value. Further, to improve the performance of
oBFGS, the step size is divided by an analytically determined constant c. An
important modification is the computation of yk, the difference of the last two
gradients is computed on the same sub-sample Xk [13,14] as given below,

yk = ∇E(wk+1,Xk) − ∇E(wk,Xk). (13)

This however doubles the cost of gradient computation per iteration but is shown
to outperform natural gradient descent for all batch sizes [13]. The oBFGS algo-
rithm is shown in Algorithm 4. In this paper, we introduce direction normaliza-
tion as shown in step 5, details of which are discussed in the next section.

Stochastic Limited Memory BFGS (oLBFGS). [13] further extends the
oBFGS method to limited memory form by determining the search direction
gk using the two-loop recursion (Algorithm 3). The Hessian update is omitted
and instead the last m curvature pairs sk and yk are stored. This brings down
the computation complexity to 2bd + 6md where b is the batch size, d is the
number of parameters, and m is the memory size. To improve the performance
by averaging sampling noise step 7 of Algorithm 3 is replaced by (14) where σk

is sk and γk is yk.

ηk =

⎧
⎪⎪⎨

⎪⎪⎩

εηk if k = 1,

ηk
min(k,m)

min(k,m)∑

i=1

σT
k−iγk−i

γT
k−iγk−i

otherwise.
(14)

3 Proposed Algorithm - oNAQ and oLNAQ

The oBFGS method proposed in [13] computes the gradient of a sub-sample mini-
batch Xk twice in one iteration. This is comparable with the inherent nature of
NAQ which also computes the gradient twice in one iteration. Thus by applying
suitable modifications to the original NAQ algorithm, we achieve a stochastic
version of the Nesterov’s Accelerated Quasi-Newton method. The proposed mod-
ifications for a stochastic NAQ method is discussed below in its full and limited
memory forms.
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3.1 Stochastic NAQ (oNAQ)

The NAQ algorithm computes two gradients, ∇E(wk + μvk) and ∇E(wk+1) to
calculate qk as shown in (10). On the other hand, the oBFGS method proposed
in [13] computes the gradient ∇E(wk,Xk) and ∇E(wk+1,Xk) to calculate yk

as shown in (13). Therefore, oNAQ can be realised by changing steps 3 and 8 of
Algorithm 2 to calculate ∇E(wk+μvk,Xk) and ∇E(wk+1,Xk). Thus in oNAQ,
the qk vector is given by (15) where λpk is used to guarantee numerical stability
[27–29].

qk = ∇E(wk+1,Xk) − ∇E(wk + μvk,Xk) + λpk, (15)

Further, unlike in full batch methods, the updates in stochastic methods
have high variance resulting in the objective function to fluctuate heavily. This
is due to the updates being performed based on small sub-samples of data. This
can be seen more prominently in case of the limited memory version where the
updates are based only on m recent curvature pairs. Thus in order to improve
the stability of the algorithm, we introduce direction normalization as

ĝk = ĝk/||ĝk||2, (16)

where ||ĝk||2 is the l2 norm of the search direction ĝk. Normalizing the search
direction at each iteration ensures that the algorithm does not move too far away
from the current objective [18]. Figure 1 illustrates the effect of direction nor-
malization on oBFGS and the proposed oNAQ method. The solid lines indicate
the moving average. As seen from the figure, direction normalization improves
the performance of both oBFGS and oNAQ. Therefore, in this paper we include
direction normalization for oBFGS also.

The next proposed modification is with respect to the step size. In full batch
methods, the step size or the learning rate is usually determined by line search
methods satisfying either Armijo or Wolfe conditions. However, in stochastic
methods, line searches are not quite effective since search conditions apply global
validity. This cannot be assumed when using small local sub-samples [13]. Several
studies show that line search methods does not necessarily ensure global conver-
gence and have proposed methods that eliminate line search [27–29]. Moreover,
determining step size using line search methods involves additional function com-
putations until the search conditions such as the Armijo or Wolfe condition is
satisfied. Hence we determine the step size using a simple learning rate schedule.
Common learning rate schedules are polynomial decays and exponential decay
functions. In this paper, we determine the step size using a polynomial decay
schedule [30]

αk = α0/
√

k, (17)

where α0 is usually set to 1. If the step size is too large, which is the case in
the initial iterations, the learning can become unstable. This is stabilized by
direction normalization. A comparison of common learning rate schedules are
illustrated in Fig. 2.
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The proposed stochastic NAQ algorithm is shown in Algorithm 5. Note that
the gradient is computed twice in one iteration, thus making the computational
cost same as that of the stochastic BFGS (oBFGS) proposed in [13].

Algorithm 4. oBFGS Method
Require: minibatch Xk, kmax and

λ ≥ 0,
Initialize: wk ∈ R

d, Hk = εI and
vk = 0

1: k ← 1
2: while k < kmax do
3: ∇E1 ← ∇E(wk, Xk)
4: gk ← −Hk∇E(wk, Xk)
5: gk = gk/||gk||2
6: Determine αk using (12)
7: vk+1 ← αkgk

8: wk+1 ← wk + vk+1

9: ∇E2 ← ∇E(wk+1, Xk)
10: sk ← wk+1 − wk

11: yk ← ∇E2 − ∇E1 + λsk
12: Update Hk using (4)
13: k ← k + 1
14: end while

Algorithm 5. Proposed oNAQ
Method
Require: minibatch Xk, 0 < μ < 1

and kmax

Initialize: wk ∈ R
d, Ĥk = εI and

vk = 0
1: k ← 1
2: while k < kmax do
3: ∇E1 ← ∇E(wk + μvk, Xk)
4: ĝk ← −Ĥk∇E(wk + μvk, Xk)
5: ĝk = ĝk/||ĝk||2
6: Determine αk using (17)
7: vk+1 ← μvk + αkĝk

8: wk+1 ← wk + vk+1

9: ∇E2 ← ∇E(wk+1, Xk)
10: pk ← wk+1 − (wk + μvk)
11: qk ← ∇E2 − ∇E1 + λpk

12: Update Ĥk using (9)
13: k ← k + 1
14: end while

Fig. 1. Effect of direction normaliza-
tion on 8 × 8 MNIST with b = 64 and
μ = 0.8.

Fig. 2. Comparison of αk schedules on
8 × 8 MNIST with b = 64 and μ = 0.8.

3.2 Stochastic Limited-Memory NAQ (oLNAQ)

Stochastic LNAQ can be realized by making modifications to Algorithm 5 sim-
ilar to LNAQ. The search direction ĝk in step 4 is determined by Algorithm 3.
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oLNAQ like LNAQ uses the last m curvature pairs {pk,qk} to estimate the Hes-
sian matrix instead of storing and computing on a d × d matrix. Therefore, the
implementation of oLNAQ does not require initializing or updating the Hessian
matrix. Hence step 12 of Algorithm 5 is replaced by storing the last m curvature
pairs {pk,qk}. Finally, in order to average out the sampling noise in the last m
steps, we replace step 7 of Algorithm 3 by Eq. (14) where σk is pk and γk is qk.
Note that an additional 2md evaluations are required to compute (14). However
the overall computation cost of oLNAQ is much lesser than that of oNAQ and
the same as oLBFGS.

4 Simulation Results

We illustrate the performance of the proposed stochastic methods oNAQ and
oLNAQ on four benchmark datasets - two classification and two regression prob-
lems. For the classification problem we use the 8 × 8 MNIST and 28× 28 MNIST
datasets and for the regression problem we use the Wine Quality [31] and CASP
[32] datasets. We evaluate the performance of the classification tasks on a multi-
layer neural network (MLNN) and a simple convolution neural network (CNN).
The algorithms oNAQ, oBFGS, oLNAQ and oLBFGS are implemented in Ten-
sorflow using the ScipyOptimizerInterface class. Details of the simulation are
given in Table 1.

4.1 Multi-layer Neural Networks - Classification Problem

We evaluate the performance of the proposed algorithms for classification of
handwritten digits using the 8× 8 MNIST [33] and 28 × 28 MNIST dataset [34].
We consider a simple MLNN with two hidden layers. ReLU activation function
and softmax cross-entropy loss function is used. Each layer except the output
layer is batch normalized.

Table 1. Details of the simulation - MLNN.

8 × 8 MNIST 28 × 28 MNIST Wine quality CASP

Task Classification Classification Regression Regression

Input 8 × 8 28 × 28 11 9

MLNN structure 64-20-10-10 784-100-50-10 11-10-4-1 9-10-6-1

Parameters (d) 1,620 84,060 169 173

Train set 1,198 55,000 3,918 36,584

Test set 599 10,000 980 9,146

Classes/output 10 10 1 1

Momentum (μ) 0.8 0.85 0.95 0.95

Batch size (b) 64 64/128 32/64 64/128

Memory (m) 4 4 4 4
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Fig. 3. Comparison of train loss and test accuracy versus number of epochs required
for convergence of 8 × 8 MNIST data with a maximum of 80 epochs.

Results on 8×8 MNIST Dataset: We evaluate the performance of oNAQ
and oLNAQ on a reduced version of the MNIST dataset in which each sample is
an 8 × 8 image representing a handwritten digit [33]. Figure 3 shows the number
of epochs required to converge to a train loss of <10−3 and its corresponding
test accuracy for a batch size b = 64. The maximum number of epochs is set
to 80. As seen from the figure, it is clear that oNAQ and oLNAQ require fewer
epochs compared to oBFGS, oLBFGS, Adam and SGD. In terms of computation
time, o(L)BFGS and o(L)NAQ require longer time compared to the first order
methods. This is due to the Hessian computation and twice gradient calculation.
Further, the oBFGS and oNAQ per iteration time difference compared to first
order methods is much larger than that of the limited memory algorithms with
memory m = 4. This can be seen from Fig. 4 which shows the comparison of
train loss and test accuracy versus time for 80 epochs. It can be observed that for
the same time, the second order methods perform significantly better compared
to the first order methods, thus confirming that the extra time taken by the
second order methods does not adversely affect its performance. Thus, in the
subsequent sections we compare the train loss and test accuracy versus time to
evaluate the performance of the proposed method.

Results on 28×28 MNIST Dataset: Next, we evaluate the performance
of the proposed algorithm on the standard 28× 28 pixel MNIST dataset [34].
Due to system constraints and large number of parameters, we illustrate the
performance of only the limited memory methods. Figure 5 shows the results of
oLNAQ on the 28 × 28 MNIST dataset for batch size b = 64 and b = 128. The
results indicate that oLNAQ clearly outperforms oLBFGS and SGD for even
small batch sizes. On comparing with Adam, oLNAQ is in close competition
with Adam for small batch sizes such as b = 64 and performs better for larger
batch sizes such as b = 128.



A Stochastic Quasi-Newton Method with Nesterov’s Accelerated Gradient 753

Fig. 4. Comparison of train loss and test accuracy over time on 8 × 8 MNIST (80
epochs).

Fig. 5. Results on 28 × 28 MNIST for b = 64 (top) and b = 128 (bottom).

4.2 Convolution Neural Network - Classification Task

We study the performance of the proposed algorithm on a simple convolution
neural network (CNN) with two convolution layers followed by a fully connected
layer. We use sigmoid activation functions and softmax cross-entropy error func-
tion. We evaluate the performance of oNAQ using the 8× 8 MNIST dataset
with a batch size of 64 and μ = 0.8 and number of parameters d = 778. The
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CNN architecture comprises of two convolution layers of 3 and 5 5× 5 filters
respectively, each followed by 2× 2 max pooling layer with stride 2. The con-
volution layers are followed by a fully connected layer with 10 hidden neurons.
Figure 6 shows the CNN results of 8 × 8 MNIST. Calculation of the gradient
twice per iteration increases the time per iteration when compared to the first
order methods. However this is compensated well since the overall performance
of the algorithm is much better compared to Adam and SGD. Also the number of
epochs required to converge to low error and high accuracies is much lesser than
the other algorithms. In other words, the same accuracy or error can be achieved
with lesser amount of training data. Further, we evaluate the performance of
oLNAQ using the 28× 28 MNIST dataset with batch size b = 128,m = 4 and
d = 260, 068. The CNN architecture is similar to that as described above except
that the fully connected layer has 100 hidden neurons. Figure 7 shows the results
of oLNAQ on the simple CNN. The CNN results show similar performance as
that of the results on multi-layer neural network where oLNAQ outperforms
SGD and oBFGS. Comparing with Adam, oLNAQ is much faster in the first
few epochs and becomes closely competitive to Adam as the number of epochs
increases.

4.3 Multi-layer Neural Network - Regression Problem

We further extend to study the performance of the proposed stochastic meth-
ods on regression problems. For this task, we choose two benchmark datasets -
prediction of white wine quality [31] and CASP [32] dataset. We evaluate the
performance of oNAQ and oLNAQ on multi-layer neural network as shown in
Table 1. Sigmoid activation function and mean squared error (MSE) function is
used. Each layer except the output layer is batch normalized. Both datasets were
z-normalized to have zero mean and unit variance.

Results on Wine Quality Dataset. We evaluate the performance of oNAQ
and oLNAQ on the Wine Quality [31] dataset to predict the quality of the white
wine on a scale of 3 to 9 based on 11 physiochemical test values. We split the
dataset in 80–20% for train and test set. For the regression problems, oNAQ with
smaller values of momemtum μ = 0.8 and μ = 0.85 show similar performance
as that of oBFGS. Larger values of momentum resulted in better performance.
Hence we choose a value of μ = 0.95 which shows faster convergence compared
to the other methods. Further comparing the performance for different batch
sizes, we observe that for smaller batch sizes such as b = 32, oNAQ is close
in performance with Adam and oLNAQ is initially fast and gradually becomes
close to Adam. For bigger batch sizes such as b = 64, oNAQ and oLNAQ are
faster in convergence initially. Over time, oLNAQ continues to result in lower
error while oNAQ gradually becomes close to Adam. Figure 8 shows the root
mean squared error (RMSE) versus time for batch sizes b = 32 and b = 64.
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Fig. 6. Convolution Neural Network results on 8 × 8 MNIST with b = 64.

Fig. 7. CNN results on 28 × 28 MNIST with b = 128.

Fig. 8. Results of Wine Quality Dataset for b = 32 (left) and b = 64 (right).
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Fig. 9. Results of CASP Dataset for batch size b = 64 (left) and b = 128 (right).

Fig. 10. No. of epochs required to con-
verge for different values of μ with
m = 4 for oLNAQ classification prob-
lems.

Fig. 11. No. of epochs required to con-
verge for different values of μ with
m = 4 for oLNAQ regression problems.

Results on CASP Dataset. The next regression problem under consideration
is the CASP (Critical Assessment of protein Structure Prediction) dataset from
[32]. It gives the physicochemical properties of protein tertiary structure. We split
the dataset in 80–20% for train and test set. Similar to the wine quality problem,
a momentum of μ = 0.95 was fixed. Figure 9 shows the root mean squared error
(RMSE) versus time for batch sizes b = 64 and b = 128. For both batch sizes,
oNAQ in initially fast and becomes close to Adam and shows better performance
compared to oBFGS and oLBFGS. On the other hand, we observe that oLNAQ
consistently shows decrease in error and outperforms the other algorithms for
both batch sizes.

4.4 Discussions on Choice of Parameters

The momentum term μ is a hyperparameter with a value in the range 0 < μ < 1
and is usually chosen closer to 1 [24,35]. The performance for different values of
the momentum term have been studied for all the four problem sets in this paper.
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Table 2. Summary of computational cost and storage.

Algorithm Computational cost Storage

Full batch BFGS nd + d2 + ζnd d2

NAQ 2nd + d2 + ζnd d2

LBFGS nd + 4md + 2d + ζnd 2md

LNAQ 2nd + 4md + 2d + ζnd 2md

Online oBFGS 2bd + d2 d2

oNAQ 2bd + d2 d2

oLBFGS 2bd + 6md 2md

oLNAQ 2bd + 6md 2md

Figure 10 and Fig. 11 show the number of epochs required for convergence for
different values of μ for the classification and regression datasets respectively. For
the limited memory schemes, a memory size of m = 4 showed optimum results for
all the four problem datasets with different batch sizes. Larger memory sizes also
show good performance. However considering computational efficiency, memory
size is usually maintained smaller than the batch size. Since the computation
cost is 2bd + 6md, if b ≈ m the computation cost would increase to 8bd. Hence a
smaller memory is desired. Memory sizes less than m = 4 does not perform well
for small batch sizes and hence m = 4 was chosen.

4.5 Computation and Storage Cost

The summary of the computational cost and storage for full batch and stochastic
(online) methods are illustrated in Table 2. The cost of function and gradient
evaluations can be considered to be nd, where n is the number of training samples
involved and d is the number of parameters. The Nesterov’s Accelerated quasi-
Newton (NAQ) method computes the gradient twice per iteration compared to
the BFGS quasi-Newton method which computes the gradient only once per
iteration. Thus NAQ has an additional nd computation cost. In both BFGS and
NAQ algorithms, the step length is determined by line search methods which
involves ζ function evaluations until the search condition is satisfied. In the
limited memory forms the Hessian update is approximated using the two-loop
recursion scheme, which requires 4md + 2d multiplications. In the stochastic set-
ting, both oBFGS and oNAQ compute the gradient twice per iteration, making
the computational cost the same in both. Both methods do not use line search
and due to smaller number of training samples (minibatch) in each iteration,
the computational cost is smaller compared to full batch. Further, in stochastic
limited memory methods, an additional 2md evaluations are required to com-
pute the search direction as given (14). In stochastic methods the computational
complexity is reduced significantly due to smaller batch sizes (b < n).
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5 Conclusion

In this paper we have introduced a stochastic quasi-Newton method with Nes-
terov’s accelerated gradient. The proposed algorithm is shown to be efficient
compared to the state of the art algorithms such Adam and classical quasi-
Newton methods. From the results presented above, we can conclude that the
proposed o(L)NAQ methods clearly outperforms the conventional o(L)BFGS
methods with both having the same computation and storage costs. However
the computation time taken by oBFGS and oNAQ are much higher compared
to the first order methods due to Hessian computation. On the other hand, we
observe that the per iteration computation of Adam, oLBFGS and oLNAQ are
comparable. By tuning the momentum parameter μ, oLNAQ is seen to perform
better and faster compared to Adam. Hence we can conclude that with an appro-
priate value of μ, oLNAQ can achieve better results. Further, the limited memory
form of the proposed algorithm can efficiently reduce the memory requirements
and computational cost while incorporating second order curvature information.
Another observation is that the proposed oNAQ and oLNAQ methods signifi-
cantly accelerates the training especially in the first few epochs when compared
to both, first order Adam and second order o(L)BFGS method. Several stud-
ies propose pretrained models. oNAQ and oLNAQ can possibly be suitable for
pretraining. Also, the computational speeds of oNAQ could be improved further
by approximations which we leave for future work. Further studying the per-
formance of the proposed algorithm on bigger problem sets, including that of
convex problems and on popular NN architectures such as AlexNet, LeNet and
ResNet could test the limits of the algorithm. Furthermore, theoretical analysis
of the convergence properties of the proposed algorithms will also be studied in
future works.
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