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Abstract. Much of human knowledge is encoded in text, available in sci-
entific publications, books, and the web. Given the rapid growth of these
resources, we need automated methods to extract such knowledge into
machine-processable structures, such as knowledge graphs. An important
task in this process is entity normalization, which consists of mapping
noisy entity mentions in text to canonical entities in well-known refer-
ence sets. However, entity normalization is a challenging problem; there
often are many textual forms for a canonical entity that may not be
captured in the reference set, and entities mentioned in text may include
many syntactic variations, or errors. The problem is particularly acute
in scientific domains, such as biology. To address this problem, we have
developed a general, scalable solution based on a deep Siamese neural
network model to embed the semantic information about the entities,
as well as their syntactic variations. We use these embeddings for fast
mapping of new entities to large reference sets, and empirically show the
effectiveness of our framework in challenging bio-entity normalization
datasets.

Keywords: Semantic embedding · Deep learning · Siamese networks ·
Entity grounding · Entity normalization · Entity resolution · Entity
disambiguation · Entity matching · Data integration · Similarity
search · Similarity learning

1 Introduction

Digital publishing has accelerated the rate of textual content generation to
beyond human consumption capabilities. Taking the scientific literature as an
example, Google Scholar has indexed about four and a half million articles and
books in 2017 in a 50% increase from the previous year. Automatically organizing
this information into a proper knowledge representation is an important way to
make this information accessible. This process includes identification of entities
in the text, often referred to as Names Entity Recognition (NER) [25,38], and
mapping of the identified entities to existing reference sets, called Entity Nor-
malization, or Grounding. In this paper we propose a text embedding solution
for entity normalization to a reference set.
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Entity normalization to a reference set is a challenging problem. Even though
in some cases normalization can be as simple as a database look-up, often there
is no exact match between the recognized entity in the text and the reference
entity set. There are two main sources for this variation. The first is syntactic
variations, where the identified entity contains relatively small character dif-
ferences with the canonical form present in the reference set, such as different
capitalization, reordering of words, typos, or errors introduced in the NER pro-
cess (e.g., ‘FOXP2’ and ‘FOX-P2’). The second and more challenging problem,
which we call semantic variations, is when the identified entity does not exist in
the reference set, even when considering significant syntactic variations, but a
human reader can recognize the non-standard entity name. For example, entities
often have multiple canonical names in the reference set and the identified entity
name is a combination of parts of different canonical names (e.g., ‘P70 S6KA’
and ‘52 kDa ribosomal protein S6 kinase’).

A further challenge is how to perform normalization at scale. Exhaustive pair-
wise comparison of the identified entity to the reference entities grows quadrat-
ically and is unfeasible for large datasets. Blocking [31] techniques speed up the
process by selecting small subsets of entities for pairwise comparisons. Unfor-
tunately, blocking methods applied directly to the textual representation of the
entity names are often limited to simple techniques that can only address syntac-
tic variations of the entity names. So, traditional blocking may eliminate matches
that are semantically relevant but syntactically different.

To address these issues, we develop a text embedding solution for entity nor-
malization. Our contributions include: (1) A general, scalable deep neural-based
model to embed entity information in a numeric vector space that captures both
syntactic and semantic variations. (2) An approach to incorporate syntactic
variations of entity names into the embeddings based on domain knowledge by
extending the use of contrastive loss function with soft labels. (3) A method
for dynamic hard negative mining to refine the embedding for improved perfor-
mance. (4) Using an approximate k-nearest neighbors algorithm over the embed-
dings to provide a scalable solution without the need for traditional blocking.

2 Related Work

Data Normalization, linking entities to their canonical forms, is one of the most
fundamental tasks in information retrieval and automatic knowledge extrac-
tion [9]. Many related tasks share components with entity normalization, but
also have subtle differences. Record linkage [21], aims to find records from dif-
ferent tables corresponding to the same entity. Records often contain multiple
fields and one of the challenges in this task is reasoning on different fields, and
their combinations. Deduplication [13] is similar to record linkage, but focuses
on the records of the same table, so it does not have to consider the heterogene-
ity of fields across different tables. Entity resolution [14], is a more general term
that deals with findings entity mentions that refer to the same entity and often
inferring a canonical form from them.
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A critical feature in our setting is the presence of a canonical reference set,
so that we ask “which canonical entity a mention is mapped to?” in contrast to
“which records are the same?” for settings were the canonical entity is latent.
Reference sets are specially important in bio-medical domains [23]. Unlike record
linkage, we do not have multiple fields and only reason on a single string.

Feature-engineered string similarities [7] form the core of most traditional
entity resolution methods. In contrast, Our approach learns a similarity metric
for entity normalization based on syntactic and semantic information. We com-
pute these similarities via embedding the entity mentions into a vector space.
Text embeddings, such as word2vec [27], GloVe [32], or more recently ELMo [33],
and BERT [12] have been very successful in language processing and understand-
ing applications, in great measure because they have been computed over very
large corpora. However, these methods are not task specific and provide general
embeddings based on the text context. Our approach is based on computing
direct similarities rather than analyzing the surrounding text. Hence, for Entity
Normalization, we use a deep Siamese neural network that has been shown to
be effective in learning similarities in text [30] and images [37]. Both of these
approaches define a contrastive loss functions [15] to learn similarities. Recently,
Ebraheem et al. [17] and Mudgal et al. [28] proposed deep neural network meth-
ods for record linkage (with multiple fields) in a database. A major focus of
their work was on combining data in different fields. Our setting differs since we
operate on entity name strings, and match them to canonical references.

To avoid exhaustive pairwise computation of similarities between entities
often blocking [26] or indexing [10] techniques are used to reduce the search
space. These methods are often based on approximate string matching. The
most effective methods in this area is based on hashing the string with the
main purpose of blocking the entities as a pre-processing step, followed by the
matching part that is performed after blocking. In our method, we combine both
steps by mapping the entity mentions to a numerical space to capture similarities.
The blocking in our case conceptually follows the matching process via applying
approximate nearest neighbors approaches on our semantic embedding space.

In the biomedical domain, Kang et al. [19] propose a rule-based method and
Leaman et al. [22] propose a learning-to-rank-based approach for disease nor-
malization. Leaman and Lu [23] further perform joint name entity recognition
and normalization. We provide an embedding-based approach for entity normal-
ization. We perform our experimental validation on two biomedical datasets of
protein and chemical entities.

3 Approach

Problem Definition: Given a query entity mention (nq), and a reference set of
entities R ≡ {e1, . . . , em}, where each entity ei ≡ <λi, {n1

i , . . . , n
k
i }> is identified

via an ID (λi) and an associated set of names (nk
i ) that refer to the entity, our

goal is to return the ID (λq) of the corresponding entity in our reference set R.
The exact textual name of the query entity may not exist in the reference set.
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Fig. 1. Learning embedding function based on semantics in reference set and syntactic
variations defined by domain knowledge and hard negative mining.

We map this normalization task to an approximate nearest-neighbors search
in a n-dimensional space where each name nm

l in the reference set is encoded into
a numerical vector representation vm

l . Our objective in this embedding space is
that names of the same entity (even syntactically very different) be closer to
each other compared to names of other entities. That is, nm

l → vm
l such that

δ(vm
l , vp

l ) < δ(vm
l , v∗

o), where el and eo are entities (el �= eo), n∗
∗ their correspond-

ing names, v∗
∗ embedding vectors of these names, and δ is a distance function.

We use a Siamese neural network architecture to embed the semantic infor-
mation about the entities as well as their syntactic similarities. We further refine
the similarities via dynamic hard negative sampling and incorporating domain
knowledge about the entities using additional generated training data. We then
encode and store the embeddings in a numeric representation that enables fast
retrieval of the results without the need for traditional character-based blocking.
Our approach consist of three steps:

Similarity Learning. We first learn an embedding function (M : n → v)
that maps the entity names to a numeric vector space where names of the same
entities are close to each other.

Embedding and Hashing. Then, we embed all the names in the reference set
R to the numerical vector space and hash and store the reference set embeddings
for fast retrieval.

Retrieval. Finally, we embed the query name (i.e., nq → vq) using the learned
model M and find the closest samples to it in the embedding space to retrieve
the corresponding ID (λq) of the query name in the reference set.
The following sections describe each step in detail.

3.1 Similarity Learning

We first learn a function (M) that maps the textual representation of entity
names (n) to a numerical vector representation (v) that preserves the proximity
of names that belong to the same entity, using a Siamese recurrent neural network
model. Figure 1(a) shows the overall approach and Algorithm 1 describes the
similarity learning process.
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Algorithm 1. NSEEN: Similarity Learning
1: procedure TrainSim(R, Pd)
2: Input: R reference set
3: Input: Pd pairs based on knowledge of syntactic variation in the domain
4: Generate pairs based on reference set R and add them to training data D
5: Add Pd pairs to the training data D
6: for k times do
7: Train the model M (Siamese network) on D
8: Embed all the names in R: n → v
9: for all vi

l do � Hard negative mining
10: find the k closest vj

k to vi
l

11: if k �= l then
12: add < nj

k, ni
l, 0 > to training data D

13: return M � The trained embedding function

Siamese Recurrent Neural Network. The Siamese neural network archi-
tecture of two towers with shared weights and a distance function at the last
layer has been effective in learning similarities in domains such as text [30] and
images [37]. Figure 1(b) depicts an overview of the network used in our frame-
work.

We feed pairs of names and a score indicating the similarity of the pairs
(i.e., <ni, nj , y>) to the Siamese network. As shown in Fig. 1(b), ni and nj

are entity names represented as a sequences of characters <xi
1, . . . , x

i
n> and

<xj
1, . . . , x

j
m>, and y ∈ [0, 1] represents the similarity between the names. To

read the character sequence of the names, we feed the character embedding to
four layers of Bidirectional-LSTM, followed by a single densely connected feed-
forward layer, which generate the embeddings v.

Contrastive Loss Function. While we can use several distance functions (δ)
to compare the learned vectors of the names, we use cosine distance between
the embeddings vi and vj , due to its better performance in higher dimensional
spaces. We then define a contrastive loss [15] based on the distance function δ
to train the model, as shown in Eq. 1. The intuition behind this loss function is
to pull the similar pairs closer to each other, and push the dissimilar pairs up to
a margin m apart (m = 1 in our experiments).

L =
1
2
yδ(vi, vj)2 +

1
2
(1 − y)max(0,m − δ(vi, vj))2 (1)

The contrastive loss has been originally proposed for binary labels where we
either fully pull two points towards each other or push them apart. In this paper,
we propose to extend this loss via using soft real-valued labels when we introduce
syntactic variations of the names described in Sect. 3.1 to indicate uncertainties
about the similarities of two vectors. For the margin of 1 (i.e., m = 1), the
distance that minimizes the loss function L for the real-valued label y is:1

1 For brevity of notation we denote δ(vi, vj) with δv.
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∂L
∂δv

= yδv − (1 − y)(1 − δv)

arg min
δv

L = {δv | y + δv − 1 = 0} = 1 − y
(2)

For example, in our setting the optimal distance between the embeddings of
two names with 0.7 similarity (i.e., y = 0.7) is 0.3. Figure 2 depicts the changes
in loss when altering the distance corresponding to different y values, and the
points that minimize the loss (i.e., arg minδv L) are marked on each line.

Fig. 2. Contrastive loss (L) based on dis-
tance values (δv) for different real-value
labels y. (Best viewed in color) (Color
figure online)

Pair Selection and Generation.
In order to train the model we need
labeled pairs of names (<ni, nj , y>).
We generate three sets of pairs using
different approaches: (1) the initial set
based on the names in the reference
set, (2) the syntactic variations set
based on domain knowledge, and (3)
the hard negative set. The initial and
the hard negative pairs capture the
semantic relationships between names
in the reference set, and the syntactic
variations capture the syntactic noise
that may be present in referring to
these names in reality.

Initial Semantic Set. We generate an initial training set of similar and dissim-
ilar pairs based the entities in the reference set R. We generate positive pairs by
the cross product of all the names that belong to the same entity, and initialize
the negative set of dissimilar pairs by randomly sampling names that belong to
different entities. Formally:

P+ = {< ni, nj , 1 > | (∀ni
l, n

j
l ∈ el) ∧ (∀el ∈ R)}

P− = {< ni, nj , 0 > | (ni
l, n

j
m ∈ el, em) ∧ (el, em ∈ R) ∧ (el �= em)}

Syntactic Variations and Entity Families. In order to train the model with
the syntactic variations that could be introduced in the real-world textual repre-
sentation of the names, we add pairs of names to the training set and label them
with their real-value string similarities. The argument behind using real-valued
labels is provided in Eq. 2, with the intuition that using a label of 0 will com-
pletely repel two vectors and using a label of 1 will bring two vectors as close
as possible, but using a label between 0 and 1 will aim to keep the two vectors
somewhere inside the margin.

We use Trigram-Jaccard, Levenshtein Edit Distance, and Jaro–Winkler to
compute string similarity scores [11] between the pairs of names and include
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sets of pairs with labels based on each similarity score in the training set. The
intuition is that the model will learn a combination of all these string similarity
measures. To select the name pairs to include in this process, we consider two
sets of variations based on the same name, and different names.

Same name variations are the noise that can be introduced to an extracted
name in real-world settings. To capture the most common forms of noise occur-
ring on the same name, we make the following three modifications based on our
observation of the most frequent variations in the query names:

– Removing the spaces, e.g., <FOX P2, FOXP2, y>
– Removing all but alphanumerical characters, e.g., <FOX-P2, FOXP2, y>
– Converting to upper and lower cases, e.g., <Ras, RAS, y>, <Ras, ras, y>

Different name variations introduce a higher level of similarity concept to
the model. We make the second set of pairs by selecting the names of entities
that are somehow related and computing their string similarities. For example,
in our experiments with proteins we select two entities that belong to the same
protein family and generate pairs of names consisting of one name from each.
The labels are assigned to these pairs based on their string similarities. This set
of pairs not only introduces more diverse variations of textual string similarities,
it also captures a higher-level relationship by bringing the embeddings of the
names that belong to a group closer to each other. Encoding such hierarchical
relations in the entity representations has been effective in various domains [8].

Hard Negative Mining. Given the large space of possible negative name pairs
(i.e., the cross product of the names of different entities) we can only sample a
subset to train our model. As stated earlier we start with an initial random neg-
ative sample set for our training. However, these random samples may often be
trivial choices for the model and after a few epochs may not contain enough use-
ful signal. The use of contrastive loss makes this issue more problematic as the
probability of the distance between randomly selected negative samples being
less than the margin (m) is low. Sampling techniques, often called hard-negative
mining, have been introduces in domains such as knowledge graph construc-
tion [20] and computer vision [36] to deal with similar issues.

The idea behind hard negative mining is finding negative examples that are
most informative for the model. These examples are the ones closest to the deci-
sion boundary and the model will most likely assign a wrong label to them. As
shown in Fig. 1a and Algorithm 1, we find the hard negatives by first embed-
ding all the names in the reference set R using the latest learned model M.
We then find the closest names to each name in the embedding space using an
approximate k-nearest neighbors algorithm for fast iterations. We then add the
name pairs found using this process that do not belong to the same entity with
a 0 label to our training set and retrain the model M. We repeat this process
multiple times to refine the model with several sets of hard negative samples.
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3.2 Reference Set Embedding and Storage

The model M that we trained in the previous step is basically a function that
maps a name string to a numerical vector. Since both towers of the Siamese
network share all their weights, the final embedding is independent of the tower
the original string is provided to as input. Considering the goal of our framework,
which is to perform entity normalization of query names (nq) to the entities in
the reference set R, we embed all the names in the reference set using the final
trained model M, and store the embeddings for comparison with future queries.

Our task becomes assigning an entity in our reference set to the query name
nq by finding the closest entity to it in the embedding space. This assignment
is basically a nearest neighbor search in the embedding space. The most naive
solution to this search would entail a practically infeasible task of exhaustive
pairwise comparisons of query embedding with all embeddings in a potentially
large reference set. Moreover, since we iteratively repeat the nearest neighbor
look-up in our training process for hard-negative mining, we need a faster way
to retrieve the results.

This challenge is prevalent in many research and industry applications of
machine learning such as recommender systems, computer vision, and in gen-
eral any similarity-based search, and has resulted in development of several
fast approximate nearest neighbors approaches [34,35]. We speed-up our nearest
neighbors retrieval process by transforming and storing our reference set embed-
dings in an approximate nearest neighbors data structure. Algorithm2 describes
the overall process of this stage.

Algorithm 2. Embedding R
1: procedure Embed(R, M)

2: for all ni ∈ R do

3: ni
M−−→ vi

4: for all vi do

5: Hash vi and store in Hvi

6: return Hv � Hashed embeddings

Algorithm 3. Retrieval
1: procedure Retrieve(Hv , M, nq)

2: Embed the query name: nq
M−−→ vq

3: Find the closest v
j
k

to vq using

approximate nearest neighbor search

(Annoy) on Hv

4: return λk as the ID (i.e., λq)

We leverage a highly optimized solution that is extensively used in applied
settings, such as Spotify, to deal with large scale approximate nearest neighbor
search, called Annoy (Approximate Nearest Neighbors Oh Yeah!) [2]. Annoy, uses
a combination of random projections and a tree structure where intermediate
nodes in the tree contain random hyper-planes dividing the search space. It sup-
ports several distance functions including Hamming and cosine distances based
on the work of Bachrach et al. [5].

Since we have already transformed the textual representation of an entity
name to a numerical vector space, and the entity look-up to a nearest neighbor
search problem, we can always use competing approximate nearest neighbors
search methods [29], and the new state-of-the-art approaches that will be dis-
covered in the future. Furthermore, using such scalable data structures for our
embeddings at this stage preserves semantic similarities learned by our model,
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in contrast to traditional blocking approaches applied as a pre-processing step
that could break the semantic relationship in favor of textual similarities.

3.3 Retrieval

During the retrieval step, depicted in Algorithm 3 we first compute an embedding
for the query name based on the same model M that we used to embed the
reference set. We then perform an approximate nearest neighbor search in the
embedding space for the query name, and return the ID of retrieved neighbor as
the most probable entity ID for the query name. Note that in our setup we do
not need to perform a separate direct look up for the query names that exactly
match one of canonical names in the reference set. If the query name is one of
the canonical names in the reference set, it will have exactly the same embedding
and zero distance with one of the reference set names.

4 Experimental Validation

We conduct two set of experiments mapping query names to their canonical
names to empirically validate the effectiveness of our framework. The two ref-
erences sets are UniProt for proteins and ChEBI for chemical entities, and the
query set is from PubMed extracts provided by the BioCreative initiative [4], as
detailed in the following sections.

4.1 Reference Sets

The reference sets we use in our experiments are publicly available on the inter-
net, and are the authority of canonical entity representations in their domains.

UniProt. The Universal Protein Resource (UniProt) is a large database of pro-
tein sequences and associated annotations [3]. For our experiments, we use the
different names associated with each human protein in the UniProt dataset
and their corresponding IDs. Hence, the task here is mapping a human protein
name to a canonical UniProt ID.

ChEBI. We used the chemical entity names indexed in the Chemical Entities of
Biological Interest (ChEBI) ontology. ChEBI is a dataset of molecular entities
focused on small chemical compounds, including any constitutionally or iso-
topically distinct atom, molecule, ion, ion pair, radical, radical ion, complex,
conformer, identifiable as a separately distinguishable entity [16]. The task
here is mapping a small molecule name to a canoncal ChEBI ID.

Table 1 depicts the total number of entities (ei) and their corresponding ID–
name pairs (<λi, n

j
i>) in the reference sets, showing UniProt having less number

of entities, but more names per entity comparing to ChEBI. Moreover, Fig. 3
depicts the histogram that shows the distribution of the number of names per
each entity in the reference sets. Note that there are no entities in the UniProt
reference set with only one name, but there are many proteins with several
names. In contrast, the ChEBI dataset contains many entities with only one
name.
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Table 1. Statistics of the entities in the reference sets

Datasets Entities <entity, name> pairs

UniProt (Human) 20,375 123,590

ChEBI 72,241 277,210

4.2 Query Set

We use the datasets provided by the BioCreative VI Interactive Bio-ID Assign-
ment Track [4] as our query data. These datasets provide several types of bio-
medical entity annotations generated by SourceData curators that map pub-
lished article texts to their corresponding database IDs. The main interesting
point about the BioCreative corpus for entity normalization is that the extracted
entity names come from published scientific articles, and contain the entity-name
variations and deviations forms that are present in the real world.

The Bio-ID datasets include a separate train and test sets. We use both of
these datasets as query sets with gold standard labels to evaluate our method.
The training set (we name it BioC1) consists of 13,573 annotated figure panel
captions corresponding to 3,658 figures from 570 full length articles from 22
journals, for a total of 102,717 annotations. The test data set (we name it BioC2)
consisted of 4,310 annotated figure panel captions from 1,154 figures taken from
196 full length journal articles, with 30,286 annotations in total [4].

Table 2 shows the number of UniProt and ChEBI entities in the annotated
corpus. In our experiments we keep the original training (BioC1) and test
(BioC2) splits of the data for reproducibility and ease of future comparisons, but
we should note that for our purposes both BioC1 and BioC2 are just a source
of correct normalizations with gold standards, and test sets in our experiments.
Our algorithm is not trained on any of these datasets.

(a) UniProt (b) ChEBI

Fig. 3. Distribution of names per entity in the reference datasets.
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Table 2. Statistics of the annotations in the BioCreative VI Bio-ID corpus

Dataset UniProt ChEBI

Mentions Entities Mentions Entities

BioC1 30,211 2,833 9,869 786

BioC2 1,592 1,321 829 543

4.3 Baselines

USC–ISI. As a representative of traditional record linkage techniques, we use
the current production system for Named Entity Grounding at USC Informa-
tion Science Institute, developed for the DARPA Big Mechanism program, as
one of the baselines. The system is an optimized solution that employs a tuned
combination of several string similarities including Jaccard, Levenshtein, and
JaroWinkler distances with a prefix-based blocking system. It also includes a
post re-ranking of the results based on the domain knowledge, such as the cura-
tion level of the entity (e.g., if the protein entry in UniProt has been reviewed
by a human or not), the matching between the ID components and the query
name, and popularity of the entities in each domain. This system provides entity
grounding for several bio-medical entities including Proteins and Chemicals, and
is publicly available at [1]. The system can produce results based on the FRIL [18]
record linkage program and Apache Lucene [6], and we use the overall best results
of both settings as the baseline for our experiments. We chose this baseline as
a representative of the traditional entity normalization methods that provides
competitive results based on an ensemble of such models.

BioBERT. To compare our method with a representative of text embed-
ding approaches, we used the embedding generated by the recently released
BioBERT [24] (Bidirectional Encoder Representations from Transformers for
Biomedical Text Mining) model which extends the BERT [12] approach.
BioBERT is a domain specific language representation model pre-trained on
large-scale biomedical corpora that can effectively capture knowledge from a
large amount of biomedical texts with minimal task-specific architecture modi-
fications. BioBERT outperforms traditional models in biomedical named entity
recognition, biomedical relation extraction, and biomedical question answering.
We used the BioBERT framework with pre-trained weights released by the orig-
inal authors of the paper, in a similar process to our approach; we first embed
all the entity names of the reference set and then find the closest embedding to
the query name in that embedding space.

DeepMatcher. Mudgal et al. [28] recently studied the application of deep learn-
ing architectures on entity matching in a general setting where the task is match-
ing tuples (potentially having multiple fields) in different tables. DeepMatcher
outperforms traditional entity matching frameworks in textual and noisy set-
tings. We use DeepMatcher as a representative baseline for deep learning meth-
ods specific to entity normalization.
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Table 3. Hits@k on BioCreative train dataset (BioC1) and test dataset (BioC2)
datasets mapped to Uniprot and ChEBI reference sets.

Reference(R) Dataset Method H@1 H@3 H@5 H@10

UniProt BioC1 DeepMatcher 0.697 0.728 0.739 0.744

BioBERT 0.729 0.761 0.779 0.808

USC–ISI 0.814 0.864 0.875 0.885

NSEEN 0.833 0.869 0.886 0.894

BioC2 DeepMatcher 0.767 0.792 0.803 0.814

BioBERT 0.801 0.827 0.827 0.840

USC–ISI 0.841 0.888 0.904 0.919

NSEEN 0.861 0.888 0.904 0.930

ChEBI BioC1 DeepMatcher 0.288 0.363 0.397 0.419

BioBERT 0.360 0.473 0.499 0.524

USC–ISI 0.418 0.451 0.460 0.468

NSEEN 0.505 0.537 0.554 0.574

BioC2 DeepMatcher 0.373 0.463 0.491 0.517

BioBERT 0.422 0.558 0.577 0.596

USC–ISI 0.444 0.472 0.480 0.491

NSEEN 0.578 0.608 0.624 0.641

We used the implementation published by the authors to perform our exper-
iments. We used DeepMatcher with tuples containing only one field; the entity
mention. We train DeepMatcher with the same initial pairs we use to train our
model, and follow a common-word-based blocking technique recommended in
their implementation to pre-process our data. DeepMatcher does not perform
hard negative mining during its training, and the blocking is performed prior to
the matching process in contrast to our framework.

4.4 Results

Table 3 shows the comparative results of our method (i.e., NSEEN) with other
methods. We submit every query name in the BioCreative datasets to all systems,
and retrieve the top k most probable IDs from each of them. We then find out
if the correct ID (provided in the BioCreative dataset as labels) is present in
the top k retrieved results (i.e., Hits@k) for several values of k. Our method
outperforms the baselines in almost all settings. Chemical names are generally
harder to normalize due to more sensitivity to parenthesis, commas, and dashes,
but our method produces significantly better results.

Furthermore, Table 4 and the corresponding Fig. 4 show example protein
name queries mapped to the UniProt reference set and the retrieved canonical
names. Note that none of the query names exist in the UniProt reference set in
the form provided as the query. Table 4 shows not only the syntactic variations
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Table 4. UniProt sample queries and top-10 responses. The correct entities are indi-
cated with a bold font and an asterisk. None of the queries have an exact string match
in UniProt, and the lists include syntactically far correct responses.

S6K PLCγ2 IKKε H3

- p70-S6K 1* - PLC-gamma-2* - IKK-epsilon* - Histone H3/a*

- p90-RSK 6 - PLC-gamma-1 - IKKE* - Histone H3/o*

- S6K1* - PLCG2* - I-kappa-B kinase
epsilon*

- Histone H3/m*

- p70 S6KA* - Phospholipase
C-gamma-2*

- IkBKE* - Histone H3/b*

- S6K-beta - Phospholipase
C-gamma-1

- IKBKE* - Histone H3/f*

- p70 S6KB - PLC - IKBE - HIST1H3C*

- 90 kDa ribosomal
protein S6 kinase 6

- PLCG1 - IK1 - Histone H3/k*

- 90 kDa ribosomal
protein S6 kinase 5

- Phosphoinositide
phospholipase
C-gamma-2*

- IK1 - Histone H3/i*

- 52 kDa ribosomal
protein S6 kinase*

- PLC-IV* - IKKG - HIST1H3G*

- RPS6KA6 - PLCB - INKA1 - Histone H3/d*

being captured by our method in the Top 10 responses, but the semantically
equivalent names are included as well. These responses can have a significantly
large string distance with the query name. e.g., (S6K−→52 kDa ribosomal pro-
tein S6 kinase), (PLCγ2−→Phospholipase C-gamma-2 ), (IKK ε−→I-kappa-B
kinase epsilon), and (H3−→Histone H3/a).

Figure 4 sheds more light to the embedding space and highlights the same
four query names and the names corresponding to the correct entities in the
UniProt reference set. As shown in this figure most of the correct responses (in
blue) are clustered around the query name (in red).

The retrieval time of the baseline methods are in the order of a few minutes.
NSEEN relies on the approximate nearest neighbors architecture and provides
highly competitive retrieval performance in the order of seconds. The study
reported on [2] for approximate nearest neighbors architectures applies to our
method as well.

5 Discussion

In this paper, we proposed a general deep neural network based framework for
entity normalization. We showed how to encode semantic information hidden
in a reference set, and how to incorporate potential syntactic variations in the
numeric embedding space via training-pair generation. In this process we showed
how contrastive loss can be used with non-binary labels to capture uncertainty.
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(a) S6K (b) PLCγ2 (c) IKKε (d) H3

Fig. 4. tSNE representation of the example UniPort query entities shown in Table 4.
Queries are red triangle and correct responses are blue. A sample of a thousand names
from the reference set is shown with light grey dots to represent the embedding space.
The bottom right insets show a zoomed version of the correct names clustered around
the query name. (Best viewed in color) (Color figure online)

We further introduced a dynamic hard negative sampling method to refine the
embeddings. Finally, by transforming the traditional task of entity normalization
to a standard k-nearest neighbors problem in a numerical space, we showed
how to employ a scalable representation for fast retrievals that is applicable in
real-world scenarios without the need of traditional entity blocking methods.
By eliminating the need for blocking as a pre-processing step, we can consider
matches that are syntactically different but semantically relevant, which is not
easily achievable via traditional entity normalization methods.

In our preliminary analysis, we experimented with different selection methods
in the k-nearest neighbors retrieval process such as a top-k majority vote schema,
but did not find them significantly effective in our setting. We also experimented
with different soft labeling methods to dynamically re-rank the results such as
soft re-labeling the k-nearest neighbors, but did not see much improvements to the
overall performance. While currently highly effective, our method could benefit
from improving some of its components in future research. We are also consid-
ering combining our approach with other embedding and collective reasoning
methods to gain further potential performance improvements.
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