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Abstract. Deep learning is very effective at jointly learning feature rep-
resentations and classification models, especially when dealing with high
dimensional input patterns. Probabilistic logic reasoning, on the other
hand, is capable of take consistent and robust decisions in complex envi-
ronments. The integration of deep learning and logic reasoning is still
an open-research problem and it is considered to be the key for the
development of real intelligent agents. This paper presents Deep Logic
Models, which are deep graphical models integrating deep learning and
logic reasoning both for learning and inference. Deep Logic Models cre-
ate an end-to-end differentiable architecture, where deep learners are
embedded into a network implementing a continuous relaxation of the
logic knowledge. The learning process allows to jointly learn the weights
of the deep learners and the meta-parameters controlling the high-level
reasoning. The experimental results show that the proposed methodol-
ogy overcomes the limitations of the other approaches that have been
proposed to bridge deep learning and reasoning.

Keywords: ML and logic integration · Probabilistic reasoning · ML
and constrains

1 Introduction

Artificial Intelligence (AI) approaches can be generally divided into symbolic and
sub-symbolic approaches. Sub-symbolic approaches like artificial neural networks
have attracted most attention of the AI community in the last few years. Indeed,
sub-symbolic approaches have got a large competitive advantage from the avail-
ability of a large amount of labeled data in some applications. In these contexts,
sub-symbolic approaches and, in particular, deep learning ones are effective in
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processing low-level perception inputs [3,18]. For instance, deep learning archi-
tectures have achieved state-of-the-art results in a wide range of tasks, e.g. speech
recognition, computer vision, natural language processing, where deep learning
can effectively develop feature representations and classification models at the
same time.

On the other hand, symbolic reasoning [7,16,23], which is typically based
on logical and probabilistic inference, allows to perform high-level reasoning
(possibly under uncertainty) without having to deal with thousands of learn-
ing hyper-parameters. Even though recent work has tried to gain insight on
how a deep model works [21], sub-symbolic approaches are still mostly seen as
black-boxes, whereas symbolic approaches are generally easier to interpret, as
the symbol manipulation or chain of reasoning can be unfolded to provide an
understandable explanation to a human operator.

In spite of the incredible success of deep learning, many researchers have
recently started to question the ability of deep learning to bring us real AI,
because the amount and quality of training data would explode in order to
jointly learn the high-level reasoning that is needed to perform complex tasks [2].
For example, forcing some structure to the output of a deep learner has been
shown to bring benefits in image segmentation tasks, even when simple output
correlations were added to the enforced contextual information [6].

Blending symbolic and sub-symbolic approaches is one of the most challeng-
ing open problem in AI and, recently, a lot of works, often referred as neuro-
symbolic approaches [10], have been proposed by several authors [6,14,22,27].
In this paper, we present Deep Logic Models (DLMs), a unified framework to
integrate logical reasoning and deep learning. DLMs bridge an input layer pro-
cessing the sensory input patterns, like images, video, text, from a higher level
which enforces some structure to the model output. Unlike in Semantic-based
Regularization [8] or Logic Tensor Networks [9], the sensory and reasoning layers
can be jointly trained, so that the high-level weights imposing the output struc-
ture are jointly learned together with the neural network weights, processing the
low-level input. The bonding is very general as any (set of) deep learners can be
integrated and any output structure can be expressed. This paper will mainly
focus on expressing the high-level structure using logic formalism like first–order
logic (FOL). In particular, a consistent and fully differentiable relaxation of FOL
is used to map the knowledge into a set of potentials that can be used in training
and inference.

The outline of the paper is the following. Section 2 presents the model and the
integration of logic and learning. Section 3 compares and connects the presented
work with previous work in the literature and Sect. 4 shows the experimental
evaluation of the proposed ideas on various datasets. Finally, Sect. 5 draws some
conclusions and highlights some planned future work.

2 Model

We indicate as θ the model parameters, and X the collection of input sensory
data. Deep Logic Models (DLMs) assume that the prediction of the system is
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Fig. 1. The DLM graphical model assumes that the output variables y depend on the
output of first stage f , processing the input X. This corresponds to the breakdown into
a lower sensory layer and a high level semantic one.

constrained by the available prior knowledge. Therefore, unlike standard Neu-
ral networks which compute the output via a single forward pass, the output
computation in a DLM can be decomposed into two stages: a low-level stage
processing the input patterns, and a subsequent semantic stage, expressing con-
straints over the output and performing higher level reasoning. We indicate by
y = {y1, . . . , yn} and by f = {f1, . . . , fn} the two multivariate random vari-
ables corresponding to the output of the model and to the output of the first
stage respectively, where n > 0 denotes the dimension of the model outcomes.
Assuming that the input data is processed using neural networks, the model
parameters can be split into two independent components θ = {w,λ}, where w
is the vector of weights of the networks fnn and λ is the vector of weights of
the second stage, controlling the semantic layer and the constraint enforcement.
Figure 1 shows the graphical dependencies among the stochastic variables that
are involved in our model. The first layer processes the inputs returning the val-
ues f using a model with parameters w. The higher layer takes as input f and
applies reasoning using a set of constraints, whose parameters are indicated as
λ, then it returns the set of output variables y.

The Bayes rule allows to link the probability of the parameters to the poste-
rior and prior distributions:

p(θ|y,X) ∝ p(y|θ,X)p(θ).

Assuming the breakdown into a sensory and a semantic level, the prior may
be decomposed as p(θ) = p(λ)p(w), while the posterior can be computed by
marginalizing over the assignments for f :

p(y|θ,X) =
∫

f

p(y|f ,λ) · p(f |w,X)df . (1)
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A typical choice is to link p(f |w,X) to the outputs of the neural architectures:

p(f |w,X) =
1

Zf
exp

(
− (f − fnn)2

2σ2

)
,

where the actual (deterministic) output of the networks fnn over the inputs
is indicated as fnn and Zf indicates the partition function with respect to f .
Please note that there is a one-to-one correspondence among each element of
y,f and fnn, such that |y| = |f | = |fnn|.

However, the integral in Eq. (1) is too expensive to compute and, as com-
monly done in the deep learning community, only the actual output of the net-
work is considered, namely:

p(f |w,X) ≈ δ(f − fnn),

resulting in the following approximation of the posterior:

p(y|θ,X) ≈ p(y|fnn,λ).

A Deep Logic Model assumes that p(y|fnn,λ) is modeled via an undirected
probabilistic graphical model in the exponential family, such that:

p(y|fnn,λ) � 1
Zy

exp

(
Φr(y,fnn) +

∑
c

λcΦc(y)

)
, (2)

where the Φc are potential functions expressing some constraints on the output
variables, λ = {λ1, λ2, . . . , λC} are parameters controlling the confidence for the
single constraints where a higher value corresponds to a stronger enforcement
of the corresponding constraint, Φr is a potential that favors solutions where
the output closely follows the predictions provided by the neural networks (for
instance Φr(y,fnn) = − 1

2 ||y −fnn||2) and Zy is a normalization factor (i.e. the
partition function with respect to the random variable y):

Zy =
∫

y

exp

(
Φr(y,fnn) +

∑
c

λcΦc(y)

)
dy.

2.1 MAP Inference

MAP inference assumes that the model parameters are known and it aims at
finding the assignment maximizing p(y|fnn,λ). MAP inference does not require
to compute the partition function Z which acts as a constant when the weights
are fixed. Therefore:

yM = argmax
y

log p(y|fnn,λ) = argmax
y

[
Φr(y,fnn) +

∑
c

λcΦc(y)

]
.

The above maximization problem can be optimized via gradient descent by com-
puting:

∇y log p(y|fnn,λ) = ∇yΦr(y,fnn) +
∑

c

λc∇yΦc(y).
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2.2 Learning

Training can be carried out by maximizing the likelihood of the training data:

argmax
θ

log p(θ|yt,X) = log p(λ) + log p(w) + log p(yt|θ,X).

In particular, assuming that p(yt|θ,X) follows the model defined in Eq. (2) and
the parameter priors follow Gaussian distributions, yields:

log p(θ|yt,X) = −α

2
||w||2 − β

2
||λ||2 − Φr(yt,fnn) +

∑
c

λcΦc(yt) − log Zy ,

where α, β are meta-parameters determined by the variance of the selected
Gaussian distributions. Also in this case the likelihood may be maximized
by gradient descent using the following derivatives with respect to the model
parameters:

∂ log p(θ|y t,X)
∂λc

= −βλc + Φc(yt) − Ep [Φc]

∂ log p(θ|y t,X)
∂wi

= −αwi + ∂Φr(y t,f nn)
∂wi

− Ep

[
∂Φr

∂wi

]

Unfortunately, the direct computation of the expected values in the above deriva-
tives is not feasible. A possible approximation [12,13] relies on replacing the
expected values with the corresponding value at the MAP solution, assuming
that most of the probability mass of the distribution is centered around it. This
can be done directly on the above expressions for the derivatives or in the log
likelihood:

log p(yt|fnn,X) ≈ Φr(yt,fnn) − Φr(yM ,fnn) +
∑

c

λc (Φc(yt) − Φc(yM )) .

From the above approximation, it emerges that the likelihood tends to be
maximized when the MAP solution is close to the training data, namely if
Φr(yt,fnn) � Φr(yM ,fnn) and Φc(yt) � Φc(yM ) ∀c. Furthermore, the proba-
bility distribution is more centered around the MAP solution when Φr(yM ,fnn)
is close to its maximum value. We assume that Φr is negative and have zero as
upper bound: Φr(y,fnn) ≤ 0 ∀y,fnn, like it holds for example for the already
mentioned negative quadratic potential Φr(y,fnn) = − 1

2 ||y−fnn||2. Therefore,
the constraint Φr(yt,fnn) � Φr(yM ,fnn) is transformed into the two separate
constraints Φr(yt,fnn) � 0 and Φr(yM ,fnn) � 0.

Therefore, given the current MAP solution, it is possible to increase the
log likelihood by locally maximizing (one gradient computation and weight
update) of the following cost functional: log p(w) + log p(λ) + Φr(yt,fnn) +
Φr(yM ,fnn) +

∑
c

λc [Φc(yt) − Φc(yM )]. In this paper, a quadratic form for the

priors and the potentials is selected, but other choices are possible. For example,
Φr(·) could instead be implemented as a negative cross entropy loss. Therefore,
replacing the selected forms for the potentials and changing the sign to transform
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Data: Input data X, output targets yt, function models with weights w
Result: Trained model parameters θ = {λ, w}
Initialize i = 0, λ = 0, random w;
while not converged ∧ i < max iterations do

Compute function outputs fnn on X using current function weights w;
Compute MAP solution yM = argmaxy log p(y|fnn, λ);
Compute gradient ∇θ Cθ (yt, yM , X);
Update θ via gradient descent: θi+1 = θi − λlr · ∇θ Cθ (yt, yM , X);
Set i = i + 1;

end
Algorithm 1. Iterative algorithm to train the function weights w and the
constraint weights λ.

a maximization into a minimization problem, yields the following cost function,
given the current MAP solution:

Cθ (yt,yM ,X) =
α

2
||w||2 +

β

2
||λ||2 +

1
2
||yt − fnn||2

+
1
2
||yM − fnn||2 +

∑
c

λc [Φc(yt) − Φc(yM )] .

Minimizing Cθ (yt,yM ,X) is a local approximation of the full likelihood max-
imization for the current MAP solution. Therefore, the training process alter-
nates the computation of the MAP solution, the computation of the gradient for
Cθ (yt,yM ,X) and one weight update step as summarized by Algorithm 1. For
any constraint c, the parameter λc admits also a negative value. This is in case
the c-th constraint turns out to be also satisfied by the actual MAP solution
with respect to the satisfaction degree on the training data.

2.3 Mapping Constraints into a Continuous Logic

The DLM model is absolutely general in terms of the constraints that can be
expressed on the outputs. However, this paper mainly focuses on constraints
expressed in the output space y by means of first–order logic formulas. There-
fore, this section focuses on defining a methodology to integrate prior knowledge
expressed via FOL into a continuous optimization process.

In this framework we only deal with closed FOL formulas, namely formu-
las where any variable occurring in predicates is quantified. In the following,
given an m-ary predicate p and a tuple (a1, . . . , am) ∈ Dom(p), we say that
p(a1, . . . , am) ∈ [0, 1] is a grounding of p. Given a grounding of the variables
occurring in a FOL formula (namely a grounding for all the predicates involved
in the formula), the truth degree of the formula for that grounding is computed
using the t-norm fuzzy logic theory as proposed in [24]. The overall degree of
satisfaction of a FOL formula is obtained by grounding all the variables in such
formula and aggregating the values with different operators depending on the
occurring quantifiers. The details of this process are explained in the following
section.
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Table 1. The operations performed by the single units of an expression tree depending
on the inputs a, b and the used t-norm.

Operation t-norm

Gödel Product �Lukasiewicz

a ∧ b min(a, b) a · b max(0, a + b − 1)

a ∨ b max(a, b) a + b − a · b min(1, a + b)

¬a 1 − a 1 − a 1 − a

a ⇒ b a ≤ b?1 : b min(1, b
a
) min(1, 1 − a + b)

Grounded Expressions. Any fully grounded FOL rule corresponds to an expres-
sion in propositional logic and we start showing how a propositional logic expres-
sion may be converted into a differentiable form. In particular, one expression
tree is built for each considered grounded FOL rule, where any occurrence of
the basic logic connectives (¬,∧,∨,⇒) is replaced by a unit computing its cor-
responding fuzzy logic operation according to a certain logic semantics. In this
regard, some recent work shows how to get convex (or even linear) functional
constraints exploiting the convex �Lukasiewicz fragment [11]. The expression tree
can take as input the output values of the grounded predicates and then recur-
sively compute the output values of all the nodes in the expression tree. The
value obtained on the root node is the result of the evaluation of the expression
given the input grounded predicates.

Table 1 shows the algebraic operations corresponding to the logic operators
for different selections of the t-norms. Please note that the logic operators are
always monotonic with respect of any single variable, but they are not always
differentiable (nor even continuous). However, the sub-space where the operators
are non-differentiable has null-Lebesgue measure, therefore they do not pose any
practical issue, when used as part of a gradient descent optimization schema as
detailed in the following.

We assume that the input data X can be divided into a set of sub-domains
X = {X1,X2, . . .}, such that each variable vi of a FOL formula ranges over the
data of one input domain, namely vi ∈ Xdi

, where di is the index of the domain
for the variable vi.

For example, let us consider the rule ∀v1∀v2 ¬A(v1, v2) ∧ B(v1). For any
assignment to v1 and v2, the expression tree returns the output value [1 −
A(v1, v2)] · B(v1), assuming to exploit the product t-norm to convert the con-
nectives.

Quantifiers. The truth degree of a formula containing an expression with a
universally quantified variable vi is computed as the average of the t-norm truth
degree of the expression, when grounding vi over its domain. The truth degree
of the existential quantifier is the maximum of the t-norm expression grounded
over the domain of the quantified variable. When multiple quantified variables
are present, the conversion is performed from the outer to the inner variable.
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y1 ≈ A(Mary,Munich)

f1 = fA(xMary, xMunich) w

y2 ≈ A(Mary, London)

f2 = fA(xMary, xLondon) w

y3 ≈ A(John,Munich)

f3 = fA(xJohn, xMunich) w

y4 ≈ A(John, London)

f4 = fA(xJohn, xLondon) w

y5 ≈ B(Mary)

f5 = fB(xMary)w

y6 ≈ B(John)

f6 = fB(xJohn)w

Fig. 2. The undirected graphical model built by a DLM for the rule ∀v1∀v2 ¬A(v1, v2)∧
B(v1) where v1 can assume values over the constants {Mary, John} and v2 over
{Munich, London}. Each stochastic node yi approximates one grounded predicate,
while the fi nodes are the actual output of a network getting the pattern representa-
tions of a grounding. Connections of all latent nodes yi to the parameters λ have been
omitted to keep the picture readable.

When only universal quantifiers are present the aggregation is equivalent to the
overall average over each grounding.

In the previous example, this yields the expression:

Φ(X,A,B)=
1

|Xd1 ||Xd2 |
∑

v1∈Xd1

∑
v2∈Xd2

[1 − A(v1, v2)] · B(v1). (3)

2.4 Potentials Expressing the Logic Knowledge

It is now possible to explain how to build the potentials from the prior knowl-
edge. In any learning task, each unknown grounded predicate corresponds to
one variable in the vector y. In the above example, the number of groundings
is |Xd1 | × |Xd2 | (i.e. the size of the Cartesian product of the domains of A) and
|Xd1 | (i.e. the size of the domain of B). Assuming that both predicates A,B are
unknown, |y| = |f | = |Xd1 |× |Xd2 |+ |Xd1 |. The vector fnn is built by replacing
each predicate with its NN implementation and then by considering the function
outputs for each grounding in the vector. For the example:

fnn = {fA(v11, v21), . . . , fA(v1|Xd1 |, v2|Xd2 |), fB(v11), . . . , fB(v1|d2|)},

where vij is the j-th grounding for the i-th variable and fA, fB are the learned
neural approximations of A and B, respectively. Finally, the differentiable poten-
tial for the example formula is obtained by replacing in Eq. (3) each grounded
predicate with the corresponding stochastic variable in y.
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Figure 2 shows the undirected graphical model corresponding to the DLM
for the running example rule used in this section, assuming that v1 can assume
values over the constants {Mary, John} and v2 over {Munich, London}. Each
stochastic node yi approximates one grounded predicate, while the fi nodes are
the actual output of a neural network getting as input the pattern representa-
tions of the corresponding grounding. The vertical connections between two yi

and fi nodes correspond to the cliques over the groundings for which the Φr

potential can be decomposed. The links between the yi nodes corresponds to the
cliques over the groundings of the rule for which the corresponding Φc poten-
tial can be decomposed. The structure of these latter cliques follows a template
determined by the rule, that is repeated for the single groundings. The graphical
model is similar to the ones built by Probabilistic Soft Logic [1] or Markov Logic
Networks [26], but enriched with the nodes corresponding to the output of the
neural networks.

3 Related Works

DLMs have their roots in Probabilistic Soft Logic (PSL) [1], a probabilistic logic
using an undirected graphical model to represent a grounded FOL knowledge
base, and employing a similar differentiable approximation of FOL and allows to
learn the weight of each formula in the KB by maximizing the log likelihood of
the training data like done in DLMs. PSL restricts the logic that can be processed
to a fragment of FOL corresponding to convex constraints. Furthermore, the rule
weights are restricted to only positive values denoting how far the rule is from
being satisfied. On the other hand, rule weights denote the needed constraint
reactions to match the degree satisfaction of the training data in DLMs, therefore
they can assume negative weights. In addition, unlike DLMs, PSL focuses on logic
reasoning without any integration with deep learners, beside a simple stacking
with no joint training.

The integration of learning from data and symbolic reasoning [10] has recently
attracted a lot of attention. Many works in this area have emerged like Hu
et al. [15], Semantic-based regularization (SBR) [8] applying these idea to kernel
machines and Logic Tensor Networks (LTN) [9] which work on neural networks.
All these works share the same basic idea of integrating logic reasoning and
learning using a similar continuous relaxation of logic to the one presented in
this paper. However, this class of approaches considers the reasoning layer as
frozen, without allowing to jointly train its parameters. This is a big limitation,
as these methods work better only with hard constraints, while they are less
suitable in presence of reasoning under uncertainty.

DeepProbLog [22] extends the popular ProbLog [7] probabilistic program-
ming framework with the integration of deep learners. DeepProbLog requires
the output from the neural networks to be probabilities and an independence
assumption among atoms in the logic is required to make inference tractable.
This is a strong restriction, since the sub-symbolic layer often consists of several
neural layers sharing weights.
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A Neural Theorem Prover (NTP) [27,28] is an end-to-end differentiable
prover based on the Prolog’s backward chaining algorithm. An NTP constructs
an end-to-end differentiable architecture capable of proving queries to a KB
using sub-symbolic vector representations. NTPs have been proven to be effec-
tive in tasks like entity linking and knowledge base completion. However, an
NTP encodes relations as vectors using a frozen pre-selected function (like cosine
similarity). This can be ineffective in modeling relations with a complex and mul-
tifaceted nature (for example a relation friend(A, B) can be triggered by differ-
ent relationships of the representations in the embedding space). On the other
hand, DLMs allow a relation to be encoded by any selected function (e.g. any
deep neural networks), which is co-trained during learning. Therefore, DLMs are
capable of a more powerful and flexible exploitation of the representation space.
However, DLMs require to fully ground a KB (like SBR, LTN, PSL and most of
other methods discussed here), while NTPs expands only the groundings on the
explored frontier, which can be more efficient in some cases.

The integration of deep learning with Conditional Random Fields (CRFs) [20]
is also an alternative approach to enforce some structure on the network output.
This approach has been proved to be quite successful on sequence labeling for
natural language processing tasks. This methodology can be seen as a special
case of the more general methodology presented in this paper, when the potential
functions are used to represent the correlations among consecutive outputs of a
recurrent deep network.

Deep Structured Models [6,19] use a similar graphical model to bridge the
sensory and semantic levels. However, they have mainly focused on imposing cor-
relations on the output layer, without any focus on logic reasoning. Furthermore,
DLMs transform the training process into an iterative constrained optimization
problem, which is very different from the approximation of the partition function
used in Deep Structured Models.

DLMs also open up the possibility to iteratively integrate rule induction
mechanisms like the ones proposed by the Inductive Logic Programming com-
munity [17,25].

4 Experimental Results

4.1 The PAIRS Artificial Dataset

Consider the following artificial task. We are provided with 1000 pairs of hand-
written digits images sampled from the MNIST dataset. The pairs are not con-
structed randomly but they are compiled according to the following structure:

1. pairs with mixed even-odd digits are not allowed;
2. the first image of a pair represents a digit randomly selected from a uniform

distribution;
3. if the first image is an even (resp. odd) digit, the second image of a pair

represents one of the five even (resp. odd) digits with probabilities p1 ≥
p2 ≥ p3 ≥ p4 ≥ p5, with p1 the probability of being an image of the same
digit, p2 the probability of being an image of the next even/odd digit, and
so on.
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For example, if the first image of a pair is selected to be a two, the second image
will be a two with probability p1, it will be a four with probability p2, a six with
probability p3 and so on, in a circular fashion. An example is shown in Fig. 3.
A correct classification happens when both digit in a pair are correctly predicted.

Fig. 3. A sample of the data used in the PAIRS experiment, where each column is a
pair of digits.

To model a task using DLMs there are some common design choices regard-
ing these two features that one needs to take. We use the current example to
show them. The first choice is to individuate the constants of the problem and
their sensory representation in the perceptual space. Depending on the problem,
the constants can live in a single or multiple separate domains. In the pairs
example, the images are constants and each one is represented as a vector of
pixel brightnesses like commonly done in deep learning.

The second choice is the selection of the predicates that should predict some
characteristic over the constants and their implementation. In the pairs experi-
ment, the predicates are the membership functions for single digits (e.g. one(x),
two(x), etc.). A single neural network with 1 hidden layer, 10 hidden neurons
and 10 outputs, each one mapped to a predicate, was used in this toy experi-
ment. The choice of a small neural network is due to the fact that the goal is not
to get the best possible results, but to show how the prior knowledge can help
a classifier to improve its decision. In more complex experiments, different net-
works can be used for different sets of predicates, or each use a separate network
for each predicate.

Finally, the prior knowledge is selected. In the pairs dataset, where the con-
stants are grouped in pairs, it is natural to express the correlations among two
images in a pair via the prior knowledge. Therefore, the knowledge consists of
100 rules in the form ∀(x, y) D1(x) → D2(y), where (x, y) is a generic pair of
images and (D1,D2) range over all the possible pairs of digit classes.

We performed the experiments with p1 = 0.9, p2 = 0.07, p3 = p4 = p5 = 0.01.
All the images are rotated with a random degree between 0 and 90 anti-clockwise
to increase the complexity of the task. There is a strong regularity in having two
images representing the same digit in a pair, even some rare deviations from
this rule are possible. Moreover, there are some inadmissible pairs, i.e. those
containing mixed even-odd digits. The train and test sets are built by sampling
90% and 10% image pairs.

The results provided using a DLM have been compared against the following
baselines:

– the same neural network (NN) used by DLM but with no knowledge of the
structure of the problem;
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Table 2. Comparison of the accuracy metric on the PAIRS dataset using different
models.

Model NN SBR DLM-NN DLM

Accuracy 0.62 0.64 0.65 0.76

– Semantic Based Regularization/Logic Tensor Networks (SBR/LTN), which
are equivalent on this specific task. These frameworks employ the logical
rules to improve the learner but the rule weights are fixed parameters, which
are not jointly trained during learning. Since searching in the space of these
parameters via cross-validation is not feasible, a strong prior was provided to
make SBR/LTN prefers pairs with the same image using 10 rules of the form
∀(x, y) D(x) → D(y), for each digit class D. These rules hold true in most
cases and improve the baseline performance of the network.

Table 2 shows how the neural network output of a DLM (DLM-NN) already
beats both the same neural model trained without prior knowledge and SBR.
This happens because the neural network in DLM is indirectly adjusted to
respect the prior knowledge in the overall optimization problem. When read-
ing the DLM output from the MAP solution (DLM), the results are significantly
improved.

4.2 Link Prediction in Knowledge Graphs

Neural-symbolic approaches have been proved to be very powerful to perform
approximated logical reasoning [29]. A common approach is to assign to each
logical constant and relation a learned vectorial representation [4]. Approximate
reasoning is then carried out in this embedded space. Link Prediction in Knowl-
edge Graphs is a generic reasoning task where it is requested to establish the
links of the graph between semantic entities acting as constants. Rocktaschel
et al. [28] shows state-of-the-art performances on some link prediction bench-
marks by combining Prolog backward chain with a soft unification scheme.

This section shows how to model a link prediction task on the Countries
dataset using a Deep Logic Models, and compare this proposed solution to the
other state-of-the-art approaches.

Dataset. The Countries dataset [5] consists of 244 countries (e.g. germany),
5 regions (e.g. europe), 23 sub-regions (e.g. western europe, northern america,
etc.), which act as the constants of the KB. Two types of binary relations among
the constant are present in the dataset: locatedIn(c1, c2), expressing that c1 is
part of c2 and neighborOf(c1, c2), expressing that c1 neighbors with c2. The
knowledge base consists of 1158 facts about the countries, regions and sub-
regions, expressed in the form of Prolog facts (e.g. locatedIn(italy,europe)).
The training, validation and test sets are composed by 204, 20 and 20 countries,
respectively, such that each country in the validation and test sets has at least
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one neighbor in the training set. Three different tasks have been proposed for this
dataset with an increasing level of difficulty. For all tasks, the goal is to predict
the relation locatedIn(c, r) for every test country c and all five regions r, but
the access to training atoms in the KB varies, as explained in the following:

– Task S1: all ground atoms locatedIn(c, r), where c is a test country and r is
a region, are removed from the KB. Since information about the sub-region
of test countries is still contained in the KB, this task can be solved exactly
by learning the transitivity of the locatedIn relation.

– Task S2: like S1 but all grounded atoms locatedIn(c, s), where c is a test
country and s is a sub-region, are removed. The location of test countries
needs to be inferred from the location of its neighbors. This task is more
difficult than S1, as neighboring countries might not be in the same region.

– Task S3: like S2, but all ground atoms locatedIn(c, r), where r is a region and
c is a training country with either a test or validation country as a neighbor,
are removed. This task requires multiple reasoning steps to determine an
unknown link, and it strongly exploits the sub-symbolic reasoning capability
of the model to be effectively solved.

Model. Each country, region and sub-region corresponds to a constant. Since
the constants are just symbols, each one is assigned to an embedding, which is
learned together with the other parameters of the model. The predicates are the
binary relations locatedIn and neighborOf, which connect constants in the KB.
Each relation is learned via a separate neural network with a 50 neuron hidden
layer taking as input the concatenation of the embeddings of the constants.
In particular, similarly to [4], the constants are encoded into a one-hot vector,
which is processed by the first layer of the network, outputting an embedding
composed by 50 real number values. As commonly done in link prediction tasks,
the learning process is performed in a transductive mode. In particular, the
input X consists of all possible constants for the task, while the train examples
yt will cover only a subset of all the possible grounded predicates, leaving to
the joint train and inference process the generalization of the prediction to the
other unknown grounded relations. Indeed, the output of the train process in
this case is both the set of model parameters and the MAP solution predicting
the unknown grounded relations that hold true.

Multi-step dependencies among the constants are very important to predict
the existence of a link in this task. For example in task S1, the prediction of a
link among a country and a region can be established via the path passing by a
sub-region, once the model learns a rule stating the transitivity of the locatedIn
relation (i.e. locatedIn(x, y)∧ locatedIn(y, z) → locatedIn(x, z)). Exploiting
instead the rule neighborOf(x, y) ∧ locatedIn(y, z) → locatedIn(x, z), the
model should be capable of approximately solving task S2.
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Table 3. Comparison of the accuracy provided by different methods on link prediction
on the Countries dataset. Bold numbers are the best performers for each task.

Task ComplEx NTP NTPλ DLM

S1 99.37 90.83 100.00 100.00

S2 87.95 87.40 93.04 97.79

S3 48.44 56.68 77.26 91.93

All 8 rules ∀x ∀y ∀z A(x, y) ∧ B(y,z) → C(y, z), where A, B and C are either
neighborOf or locatedIn are added to the knowledge base for this experiment.
These rules represent all the 2-steps paths reasoning that can be encoded, and
the strength of each rule needs to be estimated as part of the learning process
for each task. The training process will iteratively minimize Eq. 3 by jointly
determining the embeddings and the network weights such that network outputs
and the MAP solution will correctly predict the training data, while respecting
the constraints on the MAP solution at the same level as on the train data.

Results. Table 3 compares DLM against the state-of-the-art methods used by
Rocktaschel et al. [28], namely ComplEx, NTP and NTPλ. Task S1 is the only
one that can be solved exactly when the transitive property of the locatedIn
relation has been learned to always hold true. Indeed, most methods are able
to perfectly solve this task, except for the plain NTP model. DLM is capable
perfectly solving this task by joining the logical reasoning capabilities with the
discriminative power of neural networks. DLMs perform better than the com-
petitors on tasks S2 and S3, thanks to additional flexibility obtained by jointly
training the relation functions using neural networks, unlike the simple vectorial
operations like the cosine similarity employed by the competitors.

5 Conclusions and Future Work

This paper presents Deep Logic Models that integrate (deep) learning and logic
reasoning into a single fully differentiable architecture. The logic can be expressed
with unrestricted FOL formalism, where each FOL rule is converted into a dif-
ferentiable potential function, which can be integrated into the learning process.
The main advantage of the presented framework is the ability to fully integrate
learning from low-level representations and semantic high-level reasoning over
the network outputs. Allowing to jointly learn the weights of the deep learn-
ers and the parameters controlling the reasoning enables a positive feedback
loop, which is shown to improve the accuracy of both layers. Future work will
try to bridge the gap between fully grounded methodologies like current Deep
Logic Models and Theorem Provers which expand only the groundings needed
to expand the frontier of the search space.
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27. Rocktäschel, T., Riedel, S.: Learning knowledge base inference with neural theo-
rem provers. In: Proceedings of the 5th Workshop on Automated Knowledge Base
Construction, pp. 45–50 (2016)
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