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Preface

We are delighted to introduce the proceedings of the 2019 edition of the European
Conference on Machine Learning and Principles and Practice of Knowledge Discovery
in Databases (ECML PKDD 2019). ECML PKDD is an annual conference that
provides an international forum for the latest research in all areas related to machine
learning and knowledge discovery in databases, including innovative applications. It is
the premier European machine learning and data mining conference and builds upon a
very successful series of ECML PKDD conferences.

ECML PKDD 2019 was held in Würzburg, Germany, during September 16–20,
2019. The conference attracted over 830 participants from 48 countries. It also received
substantial attention from industry, both through sponsorship and participation at the
conference.

The main conference program consisted of presentations and posters of 130
accepted papers and 5 keynote talks by the following distinguished speakers: Sumit
Gulwani (Microsoft Research), Aude Billard (EPFL), Indrė Žliobaitė (University of
Helsinki), Maria Florina Balcan (Carnegie Mellon University), and Tinne Tuytelaars
(KU Leuven). In addition, there were 24 workshops, 8 tutorials, and 4 discovery
challenges.

Papers were organized in three different tracks:

• Research Track: research or methodology papers from all areas in machine learning,
knowledge discovery, and data mining

• Applied Data Science Track: papers on novel applications of machine learning, data
mining, and knowledge discovery to solve real-world use cases, thereby bridging
the gap between practice and current theory

• Journal Track: papers that were published in special issues of the journals Machine
Learning and Data Mining and Knowledge Discovery

We received a record number of 733 submissions for the Research and Applied Data
Science Tracks combined. We accepted 130 (18%) of these: 102 papers in the Research
Track and 28 papers in the Applied Data Science Track. In addition, there were 32
papers from the Journal Track. All in all, the high-quality submissions allowed us to
put together a very rich and exciting program.

For 60% of accepted Research Track and Applied Data Science Track papers,
accompanying software and/or data were made available. These papers are flagged as
Reproducible Research (RR) papers in the proceedings. RR flags, in use since 2016 in
the ECML PKDD conference series, underline the importance given to RR in our
community.

The Awards Committee selected research papers that were considered to be of
exceptional quality and worthy of special recognition:

• Data Mining Best Student Paper Award: “FastPoint: Scalable Deep Point
Processes” by Ali Caner Türkmen, Yuyang Wang, and Alexander J. Smola



• Machine Learning Best Student Paper Award: “Agnostic feature selection” by
Guillaume Doquet and Michèle Sebag

• Test of Time Award for highest impact paper from ECML PKDD 2009: “Classifier
Chains for Multi-label Classification” by Jesse Read, Bernhard Pfahringer, Geoff
Holmes, and Eibe Frank

Besides the strong scientific program, ECML PKDD 2019 offered many opportu-
nities to socialize and to get to know Würzburg. We mention the opening ceremony at
the Neubau Church, the opening reception at the Residence Palace, the boat trip from
Veitshöchheim to Würzburg, the gala dinner at the Congress Center, the poster session
at the New University, and the poster session at the Residence Palace Wine Cellar.
There were also social events for subgroups of participants, such as the PhD Forum, in
which PhD students interacted with their peers and received constructive feedback on
their research progress, and the Women in Science Lunch, in which junior and senior
women met and discussed challenges and opportunities for women in science and
technology.

We would like to thank all participants, authors, reviewers, area chairs, and
organizers of workshops and tutorials for their contributions that helped make
ECML PKDD 2019 a great success. Special thanks go to the University of Würzburg,
especially to Lena Hettinger and the student volunteers, who did an amazing job. We
would also like to thank the ECML PKDD Steering Committee and all sponsors.
Finally, we thank Springer and Microsoft for their continuous support with the
proceedings and the conference software.

February 2020 Ulf Brefeld
Elisa Fromont
Andreas Hotho
Arno Knobbe

Marloes Maathuis
Céline Robardet
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Exploiting the Earth’s Spherical
Geometry to Geolocate Images

Mike Izbicki1(B), Evangelos E. Papalexakis2, and Vassilis J. Tsotras2

1 Claremont McKenna College, Claremont, CA, USA
mike@izbicki.me

2 University of California Riverside, Riverside, CA, USA
{epapalex,tsotras}@cs.ucr.edu

Abstract. Existing methods for geolocating images use standard clas-
sification or image retrieval techniques. These methods have poor the-
oretical properties because they do not take advantage of the earth’s
spherical geometry. In some cases, they require training data sets that
grow exponentially with the number of feature dimensions. This paper
introduces the Mixture of von-Mises Fisher (MvMF) loss function, which
is the first loss function that exploits the earth’s spherical geometry to
improve geolocation accuracy. We prove that this loss requires only a
dataset of size linear in the number of feature dimensions, and empirical
results show that our method outperforms previous methods with orders
of magnitude less training data and computation.

Keywords: Geolocation · Flickr · Deep learning · von Mises-Fisher

1 Introduction

Consider the two images below:

Most people recognize that the left image is of the Eiffel Tower, located in Paris,
France. A trained expert can further recognize that the right image is a replica of
the Eiffel Tower. The expert uses clues in the image’s background (e.g. replicas of
other famous landmarks, tall cement skyscrapers) to determine that this image
was taken in Shenzhen, China. We call these images strongly localizable because
c© Springer Nature Switzerland AG 2020
U. Brefeld et al. (Eds.): ECML PKDD 2019, LNAI 11907, pp. 3–19, 2020.
https://doi.org/10.1007/978-3-030-46147-8_1
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the images contain all the information needed to exactly geolocate the images.
Existing geolocation algorithms work well on strongly localizable images. These
algorithms [e.g. 1,15,16,21,22] use deep neural networks to extract features, and
can therefore detect the subtle clues needed to differentiate these images.

W
ideR
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et50

[23]

M
vM

F

Fig. 1. To geolocate an image, we first generate features using the WideResNet50 [23],
then pass these features to our novel mixture of von Mises-Fisher (MvMF) output
layer. The MvMF outputs a probability distribution over the earth’s surface, and is
particularly well-suited for visualizing the output of hard-to-geolocate images.

Most images, however, are only weakly localizable because the image does not
contain enough information to exactly geolocate it. Consider the image in Fig. 1
of two men hiking. An expert can use clues like the geology of the mountains, the
breed of cattle, and the people’s appearance to determine that this image was
taken in the Alps. But the Alps are a large mountain range, and there is simply
not enough information in the image to pinpoint exactly where in the Alps the
image was taken. Existing geolocation algorithms are overconfident when pre-
dicting locations for these images. These algorithms use either image retrieval
[1,7,8,21] or classification methods [15,16,22] to perform geolocation, and these
procedures do not take advantage of the earth’s spherical geometry. They there-
fore cannot properly represent the ambiguity of these weakly localizable images.

In this paper, we introduce the MvMF output layer for predicting GPS coor-
dinates with deep neural networks. The MvMF has three advantages compared
to previous methods:

1. The MvMF takes advantage of the earth’s spherical geometry and so works
with both strongly and weakly localizable images.

2. The MvMF has theoretical guarantees, whereas no previous method has a
theoretical analysis.

3. The MvMF interpolates between the image retrieval and classification
approaches to geolocation, retaining the benefits of both with the drawbacks
of neither.

In our experiments, we use the WideResNet50 [23] convolutional neural network
to generate features from images, but we emphasize that any deep neural network
can be used with the MvMF layer. We provide TensorFlow code for the MvMF
layer at https://github.com/mikeizbicki/geolocation.

https://github.com/mikeizbicki/geolocation
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In Sect. 2, we review prior work on the image geolocation problem. We focus
our exposition on how previous methods ignore the earth’s spherical geometry,
and how this causes them to require more training data. Section 3 presents the
MvMF output layer to fix these problems, while Sect. 4 provides the experimen-
tal results. Section 5 concludes the paper with a discussion on other possible
application areas for the MvMF output layer.

2 Prior Work

Prior image geolocation methods use either image retrieval or classification tech-
niques. This section describes the limitations of these techniques. We use stan-
dard theoretical results to show that these techniques require excessively large
training datasets, and conduct novel experiments to verify that these theoretical
flaws affect real world performance.

2.1 Image Retrieval

Im2GPS [7,8] was the first image geolocation system. The most important com-
ponent of this system is a large database of images labelled with GPS coordinates
and manually constructed features. To determine the location of a new image,
Im2GPS performs a k-nearest neighbor query in the database, and outputs the
average GPS coordinates of the returned images. Im2GPS-deep [21] significantly
improved the results of the Im2GPS system by using deep neural networks to
generate features.

These image retrieval systems have two basic disadvantages due to the curse
of dimensionality. First, they have poor theoretical guarantees. Let d denote the
dimensionality of the image feature vector (d ≈ 1×105 for Im2GPS and d = 512
for Im2GPS-deep). Then standard results for k-nearest neighbor queries show
that in the worst case, a database with Ω(dd/2) images is needed for accurate
queries (see Theorem 19.4 of [17]); that is, the amount of training data should
grow exponentially with the number of feature dimensions. This is unrealistic
for the feature dimensions used in practice. Second, image retrieval systems are
slow. The nearest neighbor search is performed over millions of images, and
because the dimensionality of the space is large, data structures like kd-trees do
not speed up the search as much as we would like.

In Sect. 3.3 below, we show that the MvMF model this paper introduces
can be interpreted as an image retrieval system. The MvMF, however, takes
advantage of the earth’s spherical geometry to avoid the curse of dimensionality.

2.2 Classification

Classification-based geolocation methods were introduced to overcome the per-
formance limitations of image retrieval methods. The basic idea is as follows.
First, the surface of the earth is partitioned into a series of classes. Then the
standard cross entropy loss is used to classify images. The estimated position is
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input image
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c = 26 c = 27 c = 28

Fig. 2. The PlaNet [22] method’s performance is highly sensative to the number of classes
c. Consider the highlighted region. When c = 26, PlaNet assigns no probability to the
region. (Brighter red indicates classes with higher probability.) When c = 27, PlaNet
has split many other cells, causing the probability of the highlighted region to increase.
When c = 28, PlaNet splits the highlighted region, causing the probability to drop again.
This effect is exaggerated for weakly localizable images because many classes should be
assigned high probability. In comparison, when the number of classes increases for the
MvMF loss, the output smoothly takes on the shape of the underlying geography, which
is the desired output for a weakly localizable image of grass. (Color figure online)

the center of the predicted class. These methods have better theoretical guar-
antees than the image retrieval methods and are faster because they avoid the
expensive nearest neighbor queries. Unfortunately, these methods have two flaws:
tuning the number of classes is difficult, and the cross entropy loss is not well
correlated with geolocation performance.

We illustrate these flaws on the PlaNet algorithm [22], which is the earliest
and most influential example of classification-based geolocation methods. The
algorithm divides the world into a series of classes using an adaptive partition-
ing scheme based on Google’s S2 geometry library. The classes are constructed
according to the following recursive procedure: the world is initially divided into
6 classes; the class with the most images is then subdivided into smaller classes;
and this procedure is repeated until the desired number of classes c is reached.
Figure 2 shows an example class tiling generated using the PlaNet method for
three different values of c.

The number of classes c is a hyperparameter that must be manually tuned,1

and tuning this parameter is an instance of the classic bias-variance trade off.
Recall that the bias of a model (also called the approximation error) is the error
of the best possible model in a given class, and the variance (also called the
estimation error) is the statistical error induced by the finite size of the training
set. We make the following claim about PlaNet’s geolocation method.

Claim 1. Increasing the number of classes c reduces the model’s bias but
increases the model’s variance.
1 The original PlaNet paper chose a value of c ≈ 215.
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optimization loss
(cross entropy)

accuracy
(classification)

40 .5× 106 107

accuracy
(@750km)

training iteration

Fig. 3. Previous classification-based geolocation methods minimize the cross entropy
loss [15,16,22], but these plots show that minimizing the cross entropy does not nec-
essarily improve geolocation accuracy. (Top) Stochastic gradient descent directly min-
imizes the cross entropy loss, so the cross entropy decreases as training progresses.
(Middle) The cross entropy loss is a convex surrogate for the classification accuracy, so
classification accuracy increases as training progresses. (Bottom) The cross entropy is
not a convex surrogate for the accuracy @750 km (which is the fraction of data points
whose estimated location is within 750 km of their true location), so the geolocation
accuracy does not necessarily increase as training progresses. In this particular run,
the cross entropy loss at iteration 4.5× 106 improves dramatically, but the geolocation
accuracy worsens dramatically. This effect can be observed at all distance scales and
for all hyperparameter values.

To understand this claim, observe that when c is small, the geographic area
of each class is large, so fine-grained predictions are not possible, and the model
has large bias. Increasing the number of classes c reduces the size of each class,
allowing more fine-grained predictions, and reducing the model’s bias. To see
how c effects the model’s variance, we appeal to Theorem 4 of Hazan et al. [9]
that shows that the variance of a classifier using the cross entropy loss grows as
Ω(cd). Therefore, as c increases, the variance must increase as well. Finding the
optimal value of c is a difficult balancing act, as shown in Fig. 2.

In order to reduce the variance inherent in classification methods, the
CPlaNet method [16] and the ISN method [15] use multiple cross entropy out-
put layers to reduce the total number of classes needed. Both methods lack
theoretical guarantees, and the optimal number of classes c still requires careful
tuning.

A second problem with PlaNet, CPlaNet, and ISN is these methods all use
the cross entropy loss for training. The cross entropy is closely associated with
classification accuracy, but as we show in Fig. 3, is not necessarily correlated with
geolocation performance. The fundamental problem is that the cross entropy loss
does not incorporate knowledge about the earth’s spherical geometry.

In Sect. 3.2 below, we show that our MvMF method has an interpretation as
a classification-based geolocation method. In contrast to all previous methods,
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however, the MvMF uses a loss function that exploits the earth’s spherical geom-
etry and so is highly correlated with geolocation performance. We also show that
the variance of the MvMF grows as O(d), and so increasing the number of classes
c reduces the model’s bias without increasing the variance.

3 Geolocation via the MvMF

The MvMF is the first geolocation method that exploits the earth’s spherical
geometry, and it is specifically designed to overcome the disadvantages of the
image retrieval and classification methods for geolocation. In this section, we
first introduce the MvMF as a probabilistic model, then describe two alternative
interpretations of the MvMF as a classification model with a non-standard loss or
as an image retrieval model using non-standard features. A powerful property of
the MvMF model is that it can interpolate between the classification and image
retrieval approaches to geolocation, getting the best of both techniques while
avoiding the limitations of both. We prove that when the MvMF’s parameters
are properly initialized, only O(d) training data points are needed.

3.1 The Probabilistic Interpretation

This subsection formally introduces the MvMF output layer as a mixture of von
Mises-Fisher distributions. Then we describe the training and inference proce-
dures.

The von Mises-Fisher (vMF) distribution is one of the standard distributions
in the field of directional statistics, which is the study of distributions on spheres.
The vMF can be considered the spherical analogue of the Gaussian distribution
[e.g. 13] and enjoys many of the Gaussian’s nice properties. Thus, the mixture of
vMF (MvMF) distribution can be seen as the spherical analogue of the commonly
used Gaussian mixture model (GMM). While the MvMF model has previously
been combined with deep learning for clustering [5] and facial recognition [6], we
are the first to combine the MvMF and deep learning to predict GPS coordinates.

Formally, the vMF distribution is parameterized by the mean direction μ ∈
S
2, and the concentration parameter κ ∈ R

+. The density is defined for all points
y ∈ S

2 as
vMF(y;μ, κ) =

κ

sinhκ
exp(κiμ

�y). (1)

An important property of the vMF distribution is that it is symmetric about μ for
all μ ∈ S

2. As shown in Fig. 4, a gaussian distribution over GPS coordinates does
not account for the earth’s spherical geometry, and is therefore not symmetrical
when projected onto the sphere.

The mixture of vMF (MvMF) distribution is a convex combination of vMF
distributions. If the mixture contains c component vMF distributions, then it is
parameterized by a collection of mean directions M = (μ1, ..., μc), a collection
of concentration parameters K = (κ1, ..., κc), and a vector of mixing weights
Γ ∈ R

c satisfying
∑c

i=1 Γi = 1. Notice that we use capital Greek letters for
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high variance low variance

vMF Gaussian vMF Gaussian

Fig. 4. The vMF distribution takes into account the curvature of the earth’s surface,
and so contour lines are equidistant from the center at all scales and locations. The
Gaussian distribution over GPS coordinates, in contrast, becomes elongated far from
the equator, and has discontinuities at the poles and at longitude ±180◦.

the parameters of the mixture distribution and lowercase Greek letters for the
parameters of the corresponding component distributions. The density is given
by

MvMF(y;M,K,Γ ) =
c∑

i=1

Γi vMF(y,Mi,Ki). (2)

To construct the MvMF loss function from this density, we assume that the
mean direction and concentration parameters do not depend on the input fea-
tures. The mixing weights are parameterized using the standard softmax function
as

Γi(x;W ) =
exp(−x�wi)∑c
j=1 exp(−x�wj)

. (3)

where W = (w1, ...,wc) and each wi ∈ R
d. Taking the negative log of Eq. (2)

and substituting Γi gives us the final MvMF loss:

�MvMF(x,y;M,K,W ) = − log
c∑

i=1

(

Γi(x;W ) vMF(y,Mi,Ki)
)

. (4)

When training a model with the MvMF loss, our goal is to find the best values for
M , K, and W for a given dataset. Given a training dataset (x1,y1), ..., (xn,yn)
the training procedure solves the optimization

M̂, K̂, Ŵ = arg min
M,K,W

1
n

n∑

i=1

�MvMF(xi,yi;M,K,W ). (5)

Training mixture models is difficult due to their non-convex loss functions, and
good initial conditions are required to ensure convergence to a good local min-
imum. We use the following initialization in our experiments: initialize the W
randomly using the Glorot method [4]; initialize μi to the center of the ith class
used by the PlaNet method; and initialize all κi to the same initial value κ0. We
suggest using κ0 = exp(16) based on experiments in Sect. 4.
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Fig. 5. (Left) Classes near London created using the PlaNet method. (Middle) Classes
of the MvMF method with the μi initialized from the centers of the PlaNet classes.
(Right) After training with the MvMF loss, the μi have shifted slightly to better fit
the data, resulting in a new class partition.

The estimated GPS coordinate ŷ of a feature vector x is the coordinate with
minimum loss. That is,

ŷ = arg min
y∈S2

�MvMF(x,y;M,K,W ). (6)

Notice that this optimization is distinct from (5). This optimization does not get
evaluated during model training, but only during inference. This optimization
is non-convex, and may have up to c distinct local minima. Algorithms exist for
finding the minima of mixture models [3], but these algorithms require significant
computation. Calculating ŷ for a single image may be feasible, but calculating
ŷ for an entire test set is prohibitive. The classification interpretation of the
MvMF loss presents an easy to interpret, computationally more efficient method
for inference.

3.2 Interpretation as a Classifier

The MvMF model can be interpreted as a classification model where each com-
ponent represents a class. The mixture weights Γi(x,W ) then become the prob-
ability associated with each class. The estimated location ỹ is then the mean
direction of the class with largest weight. Formally,

ỹ = μĩ, where ĩ = arg max
i∈{1,...,c}

Γi(x,W ). (7)

Because this optimization is over a discrete space, it is extremely fast. When
the mean directions M are initialized using the centers of the PlaNet classes,
then there is a one-to-one correspondence between the MvMF classes and the
PlaNet classes, albeit with the class shapes differing slightly (see Fig. 5). In our
experiments in Sect. 4, we use ỹ as the estimated position.

Another advantage of the MvMF classes over the PlaNet classes is that the
MvMF classes are fully parameterized by M . This means by jointly optimizing
both W and M , we can learn not only which classes go with which images, but
where on the earth the classes should be located.
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3.3 Interpretation as an Image Retrieval Method

We now describe how the MvMF model interpolates between classification mod-
els and image retrieval models. Recall that

Γi(x,W ) =
exp(−x�wi)∑c
j=1 exp(−x�wj)

∝ exp(−x�wi). (8)

Solving for the ĩ in Eq. (7) that maximizes Γi is therefore equivalent to finding the
wi that minimizes the inner product with x. Minimum inner product search is
a well studied problem, and in particular, it can be reduced to nearest neighbor
search [2]. Therefore, when the number of classes equals the number of data
points (i.e. c = n), and for each i we have μi = yi and wi = xi, then solving Eq.
(7) to find the output class is equivalent to solving a nearest neighbor problem.

3.4 Analysis

Our analysis states that the MvMF’s estimation error converges to zero at a rate
of O(

√
d/n), where d is the number of feature dimensions and n the number of

data points. This is in contrast to nearest neighbor methods (which converge at
the exponential rate Ω(dn1/d) [Theorem 19.4 of 17]), and the cross entropy loss
(which converges at a rate of Ω(

√
cd/n) [Theorem 4 of 9]). Because c and d are

both large in the geolocation setting, the MvMF loss requires significantly less
training data to converge.

We use three assumptions to simplify our analysis. The first assumption
states that our analysis only applies to the convergence of the W parameter. We
argue that this is a mild assumption because W is the most important parameter
to learn. The second assumption states that our features have bounded size,
which is true of all image deep neural networks. The final assumption states
that our analysis requires a good initial parameter guess. This is unsurprising as
mixture models are known to be highly sensitive to their initial conditions. We
now state these assumptions formally and describe their implications in more
detail.

Assumption 1. We optimize only W using stochastic gradient descent (SGD).
In particular, we do not optimize M , K, or the deep network generating features.

SGD is an iterative algorithm, where each iteration t considers only a sin-
gle data point (xt,yt) sampled uniformly at random from the underlying data
distribution. On each iteration t, the model weights are denoted by Wt. These
weights are updated according to the rule

Wt+1 = Wt − ηt
d

dWt
�MvMF(xt,yt;M,K,Wt)

starting from some initial W0. The variable ηt is called the step size.
SGD is the most common algorithm for optimizing deep neural networks,

and in practice it is common to train all parameters of a network at the same
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time. Analyzing such training procedures, however, is a difficult open problem
due to the highly non-convex nature of neural networks. To better understand
these systems, it is common to analyze the convergence of a single parameter
while holding all others fixed, and that is our strategy.

The W parameter is the most important to analyze because it determines
which class an image will be assigned to. The M and K parameters determine
properties of the classes, and their convergence does not significantly effect geolo-
cation. The M parameter is initialized to the classes of the PlaNet method, so
improvements in M can only make it better than the PlaNet method. And the
K value does not affect the classification-based inference in Eq. (7).

Assumption 2. For all x, we have ‖x‖ ≤ √
d.

This is a standard assumption for the analysis of SGD algorithms, and it is
equivalent to assuming that the individual features are bounded. Let xi denote
the ith feature in x, and assume that each feature xi ∈ [−1, 1]. Then,

‖x‖2 =
d∑

i=1

x2
i ≤

d∑

i=1

1 = d.

It is common to scale images so that each pixel value is in the range [−1, 1], and
all deep neural networks are designed to keep their output features bounded.

Assumption 3. Let W ∗ be a (possibly local) minimizer of �MvMF. Let W be a
convex subset of Rd×c containing W ∗ such that �MvMF is convex in W. Finally,
for all time steps t, we assume that Wt ∈ W.

This is our most complicated assumption. Informally, it states that we limit
our analysis of �MvMF to a convex region around a possibly local minimum W ∗.
We must limit our analysis to this convex region because existing analyses of
SGD work only for convex losses and the �MvMF is non-convex.

We argue this is not a limiting assumption for two reasons. First, SGD will
eventually converge to a region satisfying the properties of W. To see this,
observe that SGD will converge to a local minimum with probability 1, and
(due to the smoothness of �MvMF) every local minimum of �MvMF is contained
in a convex set W over which �MvMF is convex. Second, if SGD does not con-
verge to a sufficiently good local minimum, the procedure can be repeated from
a different random initialization until a good local minimum is reached. In our
experiments, however, we found that it was never necessary to rerun SGD from
a different initialization.

Theorem 1. Under Assumptions 1–3, at each iteration t, the MvMF’s estima-
tion error is bounded by

E

(

�MvMF(x,y;M,K,Wt) − �MvMF(x,y;M,K,W ∗)
)

≤ 2

√
d

n
. (9)
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Table 1. Details of the training environment for previous work on image geolocation.

Method Training

Images Features Output method

Im2GPS [7,8] 6 × 106 Custom Retrieval

Im2GPS-deep [21] 28 × 106 VGG [18] Retrieval

PlaNet [22] 126 × 106 InceptionV1 [19] Classification

CPlaNet [16] 30 × 106 InceptionV3 [20] Classification (modified)

ISN [15] 16 × 106 ResNet [10] + custom Classification (modified)

We sketch the proof of Theorem 1 here and defer a full proof to the Appendix
for space reasons. Standard results show that the estimation error of SGD is
bounded by ρ/

√
n, where ρ is an upper bound on the gradient of the loss function.

We show that for the MvMF loss, the gradient is bounded by ρ ≤ √
d. The cross

entropy loss used by other classification-based geolocation methods has worse
performance guarantees because its gradient is bounded by ρ ≤ √

cd. The
√

cd/n
convergence rate for the cross entropy loss is known to be tight [9], and so the
MvMF loss has strictly better convergence.

4 Experiments

The empirical performance of an image geolocation system is determined by
three factors: the training data, the feature generation method, and the output
method. Prior work on image geolocation introduced improvements in all three
areas, making it difficult to determine exactly which improvement was respon-
sible for better performance (see Table 1 for a summary). In particular, no prior
work attempts to isolate the effects of the output method, and no prior work
compares different output methods side by side.

In our experiments, we follow a careful procedure to generate a standard
training dataset with standard features so that we can isolate the effects of the
output method. Because prior work does not follow this procedure, an exhaustive
empirical comparison would require reimplementing all previous methods from
scratch. This is infeasible from both a manpower and computational perspective,
so we focus our comparison on the PlaNet method, since it is representative
of classification methods using the cross entropy loss. We show that the cross
entropy-based methods require careful tuning of the hyperparameter c, but that
our MvMF’s performance always improves when increasing the number of classes
c (as our theory predicts). This leads to significantly better performance of the
MvMF method.
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4.1 Procedure

We now describe our standardized training procedure. We pay special attention
to how it improves upon previous training procedures for comparing output
methods.

Training Data. The previous methods’ training datasets are not only of dif-
ferent sizes, but also sampled from entirely different distributions. The Im2GPS
[7,8] and Im2GPS-deep [21] methods download data from Flickr, then filter
the images using user specified tags to remove weakly localizable images. For
example, it is assumed that images with the tag #birthday are likely to be
of indoor scenes with few geographic clues, and so images with this tag are
removed from the dataset. The CPlaNet [16] and ISN [15] datasets are also
acquired from Flickr, and they introduce other criteria for filtering the data to
ensure only high quality images are included. The PlaNet [22] dataset uses geo-
tagged images crawled from all over the web with no filtering. The dataset is
much larger, but is significantly harder to train from, because the data is noisier
with more weakly localizable images. Most of these datasets are proprietary and
not publicly available.

For our training data, we use a previously existing publicly available dataset
of geotagged images from Mousselly et al. [14]. This dataset contains about 6
million images crawled from Flickr,2 and the crawl was designed to be as rep-
resentative as possible of Flickr’s image database. The only filtering the dataset
performed was to remove low resolution images. This dataset therefore comes
from a distribution more similar to the PlaNet dataset than the other datasets.

Features. Even if all previous models had been trained on the same data, it
would still be impossible to directly compare the efficacy of output methods
because each model uses different features. We use the WideResnet50 model
[23] to generate a standard set of features in our experiments. WideResnet50
was originally trained on the ImageNet dataset for image classification, so we
“fine-tune” the model’s parameters to the geolocation problem. We chose the
WideResnet50 model because empirical results show that fine-tuning works par-
ticularly well on resnet models [12], and the WideResnet50 is the best performing
resnet model.

Fine-tuning a model is computationally cheaper than training from scratch,
but it is still expensive. We therefore fine-tune the model only once, and use the
resulting features in all experiments. To ensure that our fine-tuned features do
not favor the MvMF method, we create a simple classification problem to fine-
tune the features on. We associate each image with the country the image was
taken in or “no country” for images from Antarctica or international waters. In
total, this gives us a classification problem with 194 classes. We then fine-tune

2 The dataset originally contained about 14 million images, but many of them have
since been deleted from Flickr and so were unavailable to us.
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Fig. 6. Higher values of κ0 result in better performance at fine grained prediction, and
lower values of κ0 result in better performance for course-grained prediction.

the WideResnet50 model for 20 epochs using the cross entropy loss, WideRes-
net50’s standard feature augmentation, and the Adam [11] variant of SGD with
a learning rate of 1×10−5. This took about 2 months on a 4 CPU system with a
Tesla K80 GPU and 64 GB of memory. Because this fine-tuning procedure uses
a cross entropy loss, the resulting features should perform especially well with
cross entropy geolocation methods. Nonetheless, we shall see that the MvMF
loss still outperforms cross entropy methods.

4.2 Results

We perform 3 experiments using the standardized training data and features
described above.

Tuning the MvMF’s Hyperparameters. In this experiment, we set c = 215

and train MvMF models with κ0 = 0...20. The results are shown in Fig. 6. Accu-
racy @Xkm is a standard method for evaluating the performance of a geolocation
system, and is equal to the fraction of data points whose estimated location is
within Xkm of the true location. (Higher values are better.) For small X, Accu-
racy @Xkm measures the ability to geolocate strongly localizable images, and for
large X, Accuracy @Xkm measures the ability to geolocate weakly localizable
images.

We see that large values of κ0 cause better geolocation for strongly localizable
images, and small values of κ0 cause better geolocation for weakly localizable
images. This behavior has an intuitive explanation. When κ0 is small, the vari-
ance of each component vMF distribution is large. So on each SGD step, weights
from vMF components that are far away from the training data point will be
updated. If the image is weakly localizable, then there are many locations where
it might be placed, so many component weights should be updated. Conversely,
when κ0 is large, the component variances are small, and so only a small number
of components get updated with each SGD step. Strongly localizable images can
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Fig. 7. The performance of the MvMF output layer increases monotonically as we
increase the number of mixture components c, whereas the perfomance of PlaNet
depends unpredictably on c.

be exactly located to a small number of components, and so only a few compo-
nents should be updated. We suggest using a value of κ0 = 16 as a good balance,
and use this value in all other experiments.

Tuning the Number of Classes c. This experiment demonstrates that c must
be carefully tuned in the PlaNet method, but that increasing c always increases
performance of the MvMF method. We emphasize that the original PlaNet paper
[22] does not report results on the tuning of c, and so observing these limitations
of the PlaNet method is one of the contributions of our work.

We train a series of models using the MvMF loss and PlaNet loss, varying
c from 24 to 217. Theoretically, both methods support class sizes larger than
c = 217, but our GPU hardware only had enough memory for 217 classes. Figure 7
shows the results. For all X, we observe that PlaNet’s performance is highly
unpredictable as c varies, but the MvMF method always has improved accuracy
as c increases.

Note that Fig. 2 shows qualitatively why the PlaNet method is more sensi-
tive to c than the MvMF. In that figure, as c increases and classes get split, the
probability that was previously assigned to those classes gets completely real-
located. Similarly, Fig. 3 illustrates a single training run of the PlaNet method.
Because the cross entropy loss does not directly optimize the desired outcome
(geolocation), improvements to the cross entropy loss sometimes result in worse
geolocation performance.

Fine-Tuned Performance. In this experiment, we select several cross entropy
and MvMF models and perform a second round of fine-tuning, this time with
their true loss functions. We fine-tune with the Adam optimizer running for
5 epochs with learning rate 1 × 10−5, which takes approximately 2 weeks per
model on a single GPU. We evaluate the resulting model against the standard
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Table 2. Results on the Im2GPS test set [7]. The MvMF loss significantly outperforms
the cross entropy loss at all distances when using standardized data and features.
The MvMF loss trained on the standardized features even outperforms the PlaNet
method, which was trained on a much larger dataset and required significantly more
computation.

Loss Data/features c Accuracy @

1 km 25 km 200 km 750 km 250 km

Cross entropy PlaNet [22] ≈215 8.4 24.5 37.6 53.6 71.3

Cross entropy Standardized 213 1.0 4.1 10.1 24.8 44.8

Cross entropy Standardized 215 0.6 2.0 7.3 26.1 49.9

Cross entropy Standardized 217 1.8 6.0 11.8 27.9 51.3

MvMF Standardized 213 4.6 28.0 35.4 50.5 73.4

MvMF Standardized 215 6.0 31.2 41.1 58.0 75.7

MvMF Standardized 217 8.4 32.6 39.4 57.2 80.2

Im2GPS test set introduced by [7]. The results are shown in Table 2. When
using the standardized training data and features, the MvMF loss significantly
outperforms the cross entropy loss.

In Table 2, we also include results reported in the original PlaNet paper [22].
These results use a training data set that is 2 orders of magnitude larger than
the standardized training set, and so have significantly better performance than
the cross entropy loss on the standard training set. This illustrates that the
training data has a huge impact on the final model’s performance. Surprisingly,
the MvMF loss trained on standardized training set with only 6 million data
points outperforms the PlaNet method trained on 126 million images. Other
models have been evaluated on the Im2GPS test set as well [e.g. 7,8,15,16,21,22],
but we do not report their performance here because we could not do a fair
comparison where all models were trained using the same training data and
features.

5 Conclusion

The MvMF is the first method for image geolocation that takes advantage of
the earth’s geometry. The MvMF has better theoretical guarantees than previ-
ous image retrieval and classification methods, and these guarantees translate
into better real world performance. We emphasize that the MvMF layer can be
applied to any geolocation problem, not just image geolocation.
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Abstract. Given a labeled dataset that contains a rare (or minority)
class of of-interest instances, as well as a large class of instances that are
not of interest, how can we learn to recognize future of-interest instances
over a continuous stream? We introduce RaRecognize, which (i) esti-
mates a general decision boundary between the rare and the majority
class, (ii) learns to recognize individual rare subclasses that exist within
the training data, as well as (iii) flags instances from previously unseen
rare subclasses as newly emerging. The learner in (i) is general in the
sense that by construction it is dissimilar to the specialized learners in
(ii), thus distinguishes minority from the majority without overly tuning
to what is seen in the training data. Thanks to this generality, RaRecog-
nize ignores all future instances that it labels as majority and recognizes
the recurrent as well as emerging rare subclasses only. This saves effort
at test time as well as ensures that the model size grows moderately over
time as it only maintains specialized minority learners. Through exten-
sive experiments, we show that RaRecognize outperforms state-of-the
art baselines on three real-world datasets that contain corporate-risk and
disaster documents as rare classes.

1 Introduction

Given a labeled dataset containing (1) a rare (or minority) class of of-interest
documents, and (2) a large set of not-of-interest documents, how can we learn a
model that can effectively identify future of-interest documents over a continuous
stream? Different from the traditional classification setup, the stream might
contain of-interest (as well as not-of-interest) documents from novel subclasses
that were not seen in the training data. Therefore, the model is required to
continually recognize both the recurring as well as the emerging instances from
the underlying rare class distribution.

Let us motivate this setting with a couple of real-world examples. Suppose
we are given a large collection of social media documents (e.g. Twitter posts).
A subset of the collection is labeled as risky, indicating posts that constitute
(financial, reputational, etc.) risk to a corporation. The rest (majority) of the
collection is not-risky. The goal is then to learn a model that can continually iden-
tify future posts that are risky over the social-media stream. Here, the rare class
c© Springer Nature Switzerland AG 2020
U. Brefeld et al. (Eds.): ECML PKDD 2019, LNAI 11907, pp. 20–36, 2020.
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contains risky documents of a few known types, such as bankruptcy, corruption,
and spying. However, it is unrealistic to assume that it contains examples from
all possible risk types—given the large spectrum, labeling effort, and potentially
evolving nature of risk.

Consider another case where the training set consists of news articles. A
subset of the articles belongs to the rare class of disasters, indicating news about
natural or man-made disasters. The rest are not-disaster articles. Similar to the
first case, the rare class might contain articles about floods, earthquakes, etc.
however it is hard to imagine it would contain instances from all possible types of
disasters. The goal is to learn to continually recognize future articles on disasters.

In both examples above, the model needs to learn from and generalize beyond
the labeled data so as to recognize future rare-class instances, both from recur-
ring (i.e., seen in the training data) as well as from novel subclasses; for instance
sexual assault, cyber attack, etc. in risk domain and explosions, landslides, etc.
in disasters domain. In machine learning terms, this is a very challenging setup
in which the learner needs to generalize not only to unseen instances but also
to unseen distributions. In other words, this setting involves test data that has
a related yet different distribution than the data the model was trained on.

The stream classification problem under emerging novel classes has been
studied by both machine learning and data mining communities. The area is
referred to under various names including open-world classification [13,14], life-
long learning [1], and continual learning [12]. In principle, these build a “never-
ending learner” that can (1) assign those recurring instances from known old
classes to their respective class, (2) recognize emerging classes, and (3) grow/ex-
tend the current learner to incorporate the new class(es). The existing methods
differ in terms of accuracy-efficiency trade-offs and various assumptions that
they make. (See Sect. 5 for detailed related work.) A common challenge that all
of them face is what is known as catastrophic forgetting, mainly due to model
growth. In a nutshell, the issue is the challenge of maintaining performance on
old classes as the model is constantly grown to accommodate the new ones.

incoming instances

f0
General Classifier

not-of-interest

rare/of-interest fKf2f1

R1 R2 RK

emerging

Specialized Classifiers in (+)
out (-)

rejected

Fig. 1. An illustration of the recognition flow in our proposed model.

Our work is different from all prior work in one key aspect: our goal is not
to recognize any and every newly emerging class—but only those (sub)classes
related to the rare class of-interest. That is, our primary goal is to recognize
rare-class instances. Not-of-interest instances, as long as they are filtered out
accurately, are ignored—no matter they are recurrent or novel, as depicted in
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Fig. 1. This way, we carefully avoid the aforementioned issue that current models
face. Our model grows slowly, only when novel rare subclasses are recognized.
Thanks to a moderate model size (by definition, rare subclasses are far fewer),
our model is not only less prone to catastrophic forgetting but also (a) is faster
at test time, and (b) requires much less memory.

We summarize the main contributions of this work as follows.

– Problem and Formulation: We address the problem of recognizing
instances from a rare, of-interest class over a stream continually. The set-
ting differs from traditional (binary) classification in that the data distribu-
tion (for both rare and majority class) might change over time, where novel
subclasses emerge. We formulate a new model called RaRecognize that
simultaneously learns (i) a separate specialized classifier (SC) that recognizes
an individual rare subclass, as well as (ii) a general classifier (GC) that sep-
arates rare instances from the majority. While being discriminative, GC is
constructed to be dissimilar to the individual SCs such that it can generalize
without overly tuning to seen rare subclasses in the training data.

– Efficient Algorithm: Our proposed solution exhibits two key properties:
runtime and memory efficiency; both essential for the stream setting. Given
a new instance that GC labels as belonging to the majority class, we simply
do nothing—no matter it is recurrent or emerging. By not processing the
majority of the incoming instances, we achieve fast response time. Moreover
RaRecognize remains compact, i.e. memory-efficient, as it requires space
linear in the number of rare subclasses which only grows slowly.

– Applications: Recognizing recurrent as well as novel instances that belong
to a certain class of-interest is a broad problem that finds numerous applica-
tions, e.g. in monitoring and surveillance. For example, such instances could
be production-line items with the goal to continually recognize faulty ones
where novel fault types might emerge over time. They could also be public
documents, such as social media posts, where the goal is to recognize public
posts of-interest such as bullying, shaming, disasters, threat, etc.

Reproducibility: We share the source code for RaRecognize and our public-
domain datasets at https://github.com/hungnt55/RaRecognize.

2 Problem Setup and Preliminary Data Analysis

Problem Setup and Overview. We start by introducing the problem state-
ment more formally with proper notation. As input, a labeled training dataset
D = R ∪ N ∈ R

n×d containing n d-dimensional instances is provided. The set
R = {(x1, y1), (x2, y2), . . . , (xn0 , yn0)} consists of |R| = n0 instances belong-
ing to the of-interest rare class where yi = +1 for i = 1, . . . , n0 and the set
N = {(xn0+1, yn0+1), . . . , (xn, yn)} consists of |N | = (n − n0) instances from
the not-of-interest class where yi = −1 for i = (n0 + 1), . . . , n. Without loss of
generality, we will refer to the data instances as documents and to the rare class
as the risk class in the rest of this section to present our ideas more concretely.

https://github.com/hungnt55/RaRecognize
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Given D, the goal is to recognize future risk documents, either recurring or
newly emerging, over a stream (or set) of new documents xn+1,xn+2, . . . (here,
each document has a vector representation denoted by x such as bag-of-words,
embedding, etc.). The new documents may associate with recurring risk, i.e.,
belong to known/seen risk subclasses 1, . . . ,K in R. They may also be emerging,
i.e., from previously unknown/unseen new risk subclasses (K + 1), (K + 2), . . .;
which differentiates our setup from the traditional classification problem.

Therefore, we start by decomposing R into known risk subclasses, R =⋃K
k=1 Rk, where Rk contains the documents that belong to the kth risk sub-

class. Given {{R1, . . . ,RK},N} our approach involves simultaneously training
the following two types of classifiers:

1. A general classifier (GC) f0 to separate R and N that can generalize to
unseen subclasses of R,

2. A specialized classifier (SC) fk, k = 1 . . . K, to separate Rk and R\Rk.

At test time, we first employ f0. Our goal is not to recognize every emerging
novel class, but only the novel risk subclasses (in addition to recurring ones),
thus our first step is to recognize risk. If f0 labels an incoming document x as
−1 (i.e., not-risk), we discard it. Otherwise, the incoming document is flagged
as risky. For only those labeled as +1, we employ fk’s to further identify the
type of risk. Among the fk’s that accept x as belonging to the kth risk subclass,
we assign it to the subclass that is arg maxk fk(x). If all fk’s reject, then x is
considered to be associated with a new type of emerging risk. (See Fig. 1.)

The Classifier Models. Our risk detector is f0 which we learn using the entire
labeled dataset D. As such, it is trained on a few known risk subclasses in R but
is desired to be general enough to recognize other types of future risk.

To achieve this generality, our main idea is to avoid building f0 on factors
that are too specific to any known risk subclass (such that f0 is not overly fit
to existing or known risk types) but rather, to identify broad factors about risk
that are common to all risk subclasses (such that f0 can employ this broader
view to spot risk at large).

In fact, factors specific to the known risk subclasses are to be captured by
the corresponding fk’s. Then, f0 is to identify discriminative signals of risk that
are sufficiently different from those used by all fk’s. Moreover, each fk should
differ from other fk′ ’s, k′ �= k, to ensure that they are as specialized as possi-
ble to their respective risk types. Such dependence among the models is exactly
why we train all these (K + 1) classifiers simultaneously, to enforce the afore-
mentioned constraints conjointly. We present our specific model formulation and
optimization in Sect. 3.

Preliminary Data Analysis. Before model formulation, we perform an
exploratory analysis on one of our real-world datasets containing documents
labeled as risky and not-risky. The goal of the analysis is to see if our hypothe-
sized ideas get realized in the data.
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In particular, we aim to find out if there exists (1) factors that are spe-
cific to each risk subclass, as well as (2) factors beyond those specific ones that
are still discriminative of risk. For simplicity and interpretability, we use the
bag-of-words representation of the data in this section, thus factors correspond
to individual words. However, our proposed model can handle other document
vector representations in general.

To this end, we formulate a constrained optimization problem to find word
sets that cover or characterize different document sets. Here, we define a word
to cover a document if the word appears in it at least once. Given the set of
unique words V, |V| = d, we look for a set of words Vk ⊂ V that covers all the
documents in Rk but as few as those in R\Rk for all k = 1 . . . K (i.e., specific
words for each risk subclass), and another set of words V0 ⊂ V that covers all
risk documents in R but as few as those in N . We restrict the word sets to be
non-overlapping, i.e., Vk ∩ Vk′ = ∅ ∀k, k′ ∈ {0, . . . , K}, such that each word can
only characterize either one of R1, . . . ,RK or R at large. Under these conditions,
if we could find a set V0 that shares no words with any Vk’s while still being
able to cover the risky documents but only a few (if at all) not-risky ones, then
we can conclude that broad risk terms exist and a general f0 can be trained.

Our setup is a constrained mixed-integer linear program (MILP) as follows:

min
Φ

|v0| +
K∑

k=1

|vk| + o + α + β

s.t. zk + Rk · vk ≥ 1 ∀k = 1 . . . K � risk subclass coverage with exoneration

z0 +
K∑

k=1

Rk · v0 ≥ 1 � risk coverage with exoneration

|z0| +

K∑

k=1

|zk| ≤ o � # unexplained documents less than o

v0 +
K∑

k=1

vk ≤ 1 � each word used for at most 1 set

∑

i∈N
Ni · v0 ≤ α � cap on cross-coverage of not-risk

K∑

k=1

∑

i∈Rk

∑

k′ �=k

Rk,i · vk′ ≤ β � cap on cross-coverage among risk subclasses

The program is parameterized by Φ = {{vk}K
k=0, {zk}K

k=0, o, α, β}. Rk ∈
R

nk×d denotes the data matrix encoding the word occurrences for nk documents
in risk subclass k = 1 . . . K, and N ∈ R

(n−n0)×d is the corresponding data matrix
for the not-risk documents. v0 ∈ R

d and vk ∈ R
d’s depict (binary) variables to be

estimated that capture the word assignments to the sets V0 and Vk’s respectively.
(e.g., jth entry of v0 is set to 1 if word j is assigned to V0 and to 0 otherwise.)

Ideally all of o, α, and β are zero; that is, all documents are covered with-
out any exoneration and no cross-coverage exists. However, that yields no fea-
sible solution. Instead, we define them as scalar upper-bound variables added
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Fig. 2. Within- and cross-coverage rates of Vk’s and V0 (resp.) for Rk’s and R.

Fig. 3. Wordclouds representing 3 example risk subclasses and the overall risk class.
Notice that the former are quite specific, and the latter are broader.

to our minimization objective toward setting them to as small values as pos-
sible. Finally, our objective aims to find the smallest-size possible word sets.
This ensures that the most important words are selected which also facilitates
interpretability.

We provide an exploratory analysis on a dataset containing corporate risk
documents as the of-interest class. It contains 15 risk subclasses as outlined
by Fig. 2. (See Sec. 4.1 for details.) First the quantitative measures: as shown
in the figure, the MILP finds word sets Vk’s with at least 82.5% up to 98.2%
coverage for 11/15 of the subclasses with an overall coverage of 96.7% (rest are
the exonerated ones). Moreover, cross-coverage is either zero or very low for all
the subclasses. These suggest that accurate SCs can be learned. Importantly,
there exist words V0 that are distinct from all Vk’s and yet able to cover 98.6%
of the overall risk documents, promising that a broad GC can be learned.

To equip the reader with intuition, we present the selected words for 3 exam-
ple risk subclasses along with the general risk class words in Fig. 3 (word size
is proportional to the within vs. cross-coverage ratio). It is easy to see that
very specific words are selected for subclasses; such as password, cyberattack,
malware for Cyber attack, and cosby, weinstein, fondle for Sexual assault. On
the other hand, in the general risk class, a set of broader corporate risk words
appear such as fraud, stock, breach and sentence.

These preliminary results show promise for the feasibility of our hypothe-
sized models and demonstrate the rationale behind our proposed RaRecognize,
which we formally introduce next.
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3 Continual Rare-Class Recognition

In this section, we introduce the individual components of our model, present
the underlying reasoning for our formulation, show convexity and present the
optimization steps, and conclude with space and time-complexity analysis.

3.1 Model Formulation

As discussed in the previous section, our goal is to learn (1) specialized classifiers
fk’s and (2) a general classifier f0.

The specialized classifier fk, k = 1 . . . K, is to learn a decision boundary
that separates the kth rare subclass instances Rk from the remainder of rare
instances R\Rk. Let us write down the regularized loss function for each fk as

L(fk;wk, bk) =
n0∑

i=1

max
(
0,

[
1 − yi(wT

k xi + bk)
])

︸ ︷︷ ︸
�(xi,yi;wk,bk)

+
λk

2
‖wk‖2 (1)

where yi = +1 for xi ∈ Rk and yi = −1 otherwise. We adopt the hinge loss
and the ridge regularization as in Eq. (1), however, one could instead use other
loss functions, such as the logistic, exponential or cross-entropy losses, as well as
other norms for regularization.

The general classifier f0 is to separate rare class instances R from the
majority instances N , without relying on factors specific to known rare sub-
classes. One way to achieve this de-correlation is to enforce f0 to learn coef-
ficients w0 that are different from all wk’s. The loss function can be written
as

L(f0;w0, b0) =
n∑

i=1

�(xi, yi;w0, b0) +
λ0

2
‖w0‖2 +

μ

2

K∑

k=1

wT
0 wk, (2)

where yi = +1 for xi ∈ R = {R1∪. . .∪RK} and yi = −1 otherwise. As required,
the third term in Eq. (2) penalizes w0 being correlated with any wk, enforcing
it to be as orthogonal to wk’s as possible. However, it does not prevent w0 from
capturing different yet correlated features to those captured by wk’s. This issue
can arise when features exhibit multi-collinearity.

For example, in a document dataset the words earthquake, shockwave, and
aftershock could be collinear. In this case it is possible that fk estimates large
coefficients on a strict subset of these words (e.g., shockwave and aftershock)
as they are redundant. This leaves room for f0 to capitalize on the remaining
words (e.g., earthquake), which is undesirable since we aim f0 to learn about
the rare class boundaries beyond the specifics of the known subclasses.

Therefore, we reformulate the model correlation penalty as follows.

μ

2

K∑

k=1

∑

p,q

(
w0,pwk,q xT

[p]x[q]

)2 =
μ

2

∥
∥(XT X) 
 (w0wT

k )
∥
∥2

F
, (3)
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where w0,p and wk,q denote the pth and qth entries of w0 and wk respectively,
X ∈ R

n×d denotes the input data matrix, x[p],x[q] respectively denote the pth
and qth columns of X, and 
 depicts the element-wise multiplication.

We call Eq. (3) the cross-correlation penalty. Similarly, we introduce self-
correlation penalty to each model k = 0, . . . , K by adding to the respective loss
the term

∑
p,q

(
wk,pwk,q xT

[p]x[q]

)2. Self-correlation prevents each model from
estimating large coefficients on higly correlated (near-redundant) features, which
improves sparsity and interpretability, and as we show also ensures convexity.

Then, the overall loss function incorporating the cross- and self-correlation
penalty terms for all models f0, f1, . . . , fK is given as follows.

L =
n∑

i=1

�(xi, yi;w0, b0) +
λ0

2
‖w0‖2 +

K∑

k=1

[
n0∑

i=1

�(xi, yi;wk, bk) +
λk

2
‖wk‖2

]

+
μ

2

∑

p,q

{
1

2
(w2

0,pw
2
0,q) +

1

2

K∑

k=1

(w2
k,pw

2
k,q)

︸ ︷︷ ︸
self-correlation

+ w2
0,p(

K∑

k=1

w2
k,q)

︸ ︷︷ ︸
cross-correlation

}(
xT
[p]x[q]

)2 (4)

3.2 Convexity and Optimization

We train all the models f0, f1, . . . , fK simultaneously by minimizing the total
overall loss L. A conjoint optimization is performed because the cross-correlation
penalty terms between w0 and wk’s induce dependence between the models.

For optimization we employ the accelerated subgradient descent algorithm
which is guaranteed to find the global optimum solution because, as we show
next, our loss function L is convex.

Theorem 1. The joint loss function L involving the cross- and self-correlation
penalty terms among w0,w1, . . . ,wK remains convex.

Proof. The non-negative sum of convex functions is also convex. The first line of
L as given above is known to be convex since �(·) (hinge loss) and L-p norms for
p ≥ 1 are both convex. The proof is then by showing that the overall correlation
penalty term in the second line of L is also convex by showing that its Hessian
matrix is positive semi-definite (PSD). See extended version [10] for details. �

Since our total loss is a convex function, we can use gradient-based optimiza-
tion to solve it to optimality. To this end, we provide the gradient updates for
both w0 and wk’s in closed form as follows.

Partial Derivative of L w.r.t. w0:

∂L
∂w0,p

=
n∑

i=1

∂
[
1 − yi(w

T
0 xi + b0)

]
+

∂w0,p
+ λ0w0,p + μw0,p

d∑

q=1

( K∑

k=1

w2
k,q + w2

0,q

)(
xT
[p]x[q]

)2
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where

∂
[
1 − yi(wT

0 xi + b0)
]
+

∂w0,p
=

{
0 if yi(wT

0 xi + b0) ≥ 1
−yixi,p otherwise.

(5)

The vector-update ∂L
∂w0

can be given in matrix-vector form using the above
gradients as

∂L
∂w0

=
[
XT (−y� I(1−y�(Xw0 +b0) > 0)) + w0 �(

λ01+μ(XTX)2(
∑

k

w2
k +w2

0)
)]

(6)
where I(·) is the indicator function, 1 is a length-n all-ones vector, and (A)2 =
A 
 A, i.e., element-wise product, for both matrix A as well as for vector a.

Partial Derivative of L w.r.t. wk: The steps for each wk is similar, we directly
provide the vector-update below.

∂L
∂wk

=
[
RT (−y0 � I(1−y0 � (Rwk + bk) > 0)) + wk � (

λk1+μ(XTX)2(w2
k +w2

0)
)]

(7)
where R ∈ R

n0×d and y0 ∈ R
n0 consist of only the rare-class instances.

3.3 Time and Space-Complexity Analysis

Time Complexity. The (first) gradient term in Eq. (6) that is related to the
hinge-loss is O(nd). The (second) term related to the correlation-based regular-
ization requires XT X which can be computed in O(nd2) apriori and reused over
the gradient iterations. The term (

∑
k w2

k + w2
0) takes O(Kd), and its following

multiplication with (XT X)2 takes an additional O(d2). The remaning opera-
tions (summation with λ01 and element-wise product with w0) are only O(d).
As such, the overall computational complexity for subgradient descent for w0 is
O(nd2 + t[nd + Kd + d2]), where t is the number of gradient iterations.

The time complexity for updating the wk’s can be derived similarly as Eq.
(7) consists of similar terms, which can be written as O(t[n0d + d2]). Note that
we omit the O(nd2) this time as XT X needs to be computed only once and can
be shared across all update rules. Moreover, the number of iterations t is the
same as before since the parameter estimation is conjoint.

Space Complexity. We require O(d2) storage for keeping (XT X)2, O(Kd) for
all the parameter vectors w0, . . . ,wK , and O(nd) for storing X, for an overall
O(d2 + Kd + nd) space complexity.

Remarks on Massive and/or High-Dimensional Datasets: Note that both
time and space complexity of our RaRecognize is quadratic in d and linear in
n. We conclude with parting remarks on cases with large d and huge n.

First, high-dimensional data with large d: In this case, we propose two pos-
sible directions to make the problem tractable. Of course, the first one is dimen-
sionality reduction or representation learning. When the data lies on a relatively
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low-d manifold, one could instead use compound features. We apply our RaRec-
ognize to document datasets, where compound features are not only fewer but
also sufficiently expressive of the data. The second direction is to get rid of
feature correlations, for instance via factor analysis. This would drop the term
(
xT
[p]x[q]

)2 from L (See (4)) and lead to updates that are only linear in d.
Next, massive data with huge n: We presented our optimization using batch

subgradient descent. When n is very, very large then storing the original data
in memory may not be feasible. We remark that one could directly employ
mini-batch or even stochastic gradient descent in such cases, dropping the space
requirement to O(d2 + Kd).

4 Evaluation

We design experiments to evaluate our proposed method with respect to the
following questions:

– (RQ1) Top-level classification (via GC f0): How does RaRecognize
perform in differentiating rare-class instances from the majority compared
with the state-of-the-art?

– (RQ2) Sub-level classification (via SCs fk’s): How does RaRecognize
perform in recognizing recurrent and emerging rare subclasses among the
compared methods?

– (RQ3) Interpretability: Can we interpret RaRecognize as a model as to
what it has learned and what insights can we draw?

– (RQ4) Efficiency: What is the scalability of RaRecognize? How does it
compare to the baselines w.r.t. the running time-vs-performance trade-off?

4.1 Experiment Setup
Table 1. Summary of datasets.

Name |R| |N | K Avg. |Rk|
Risk-Doc 2948 2777 15 196.5

Risk-Sen 1551 7755 8 193.9

NYT-Dstr 2127 10560 13 163.6

Dataset Description. In this study,
we use 3 different datasets with
characteristics summarized in Table 1.
The first two datasets are obtained
from our industry collaborator (pro-
prietary) and a third public one which
we put together.

Risk-Doc: This dataset contains online documents, e.g. news articles, social
network posts, which are labeled risky or non-risky to the corporate entities
mentioned. If a document is risky, it is further assigned to one of the 15 risk sub-
classes: {Climate change, Cyber attack, Data leak, Drug abuse, Engine failure,
Fraud, Gun violation, Low stock, Military attack, Misleading statement, Money
laundering, Negative growth, Sexual assault, Spying, Trade war}.

Risk-Sen: This contains labeled sentences attracted from news articles and
categorized into 8 different subclasses: {Bankruptcy, Bribery corruption, Coun-
terfeiting, Cyber privacy, Environment, Fraud false claims, Labor, Money laun-
dering}. The majority class consists of non-risky sentences. Note that this dataset
comes from a set of articles different from Risk-Doc.
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NYT-Dstr: Extracted from the New York Times, this dataset is comprised
of articles on the topics of disasters, i.e. both natural and human-instigated.
These topics cover 13 disasters from {Drought, Earthquakes, Explosions, Floods,
Forest and bush fire, Hazardous and toxic substance, Landslides, Lighting, Snow-
storms, Tornado, Tropical storm, Volcanoes, Water pollution}. It also includes
a class of random non-disaster news articles from New York Times.

Document Representations. In this study we apply our work to document
datasets, for which we need to define a feature representation. There are numer-
ous options. We report results with tfidf with top 1 K words based on frequency,
as well as PCA- and ICA-projected data. Linear embedding techniques reduce
dimensionality while preserving interpretability. We omit results using non-linear
feature representations (e.g., doc2vec [6]) as they did not provide any significant
performance gain despite computational overhead.

Train/Test Splits. For each dataset, we randomly partition 2/3 of rare sub-
classes as seen and 1/3 of them as unseen. For training, we use 80% of the
seen subclass instances at random and the rest 20% forms a seen subclass
test set, denoted by Rs. The set of unseen subclass instances, denoted by Ru,
goes into the test as well. Thus, the rare subclass test consists of 2 parts, i.e.
Rtest = Rs ∪ Ru. In addition, we also reserve a random 80% of the majority
class for training and the rest 20% for testing, denoted by Ntest. Further, to
obtain stable results, we repeat our experiment on 5 different random train/test
constructions and report averaged outcomes.

Performance Metrics. (1) For measuring top-level classification performance,
we use 3 common metrics [8,16]: Precision, Recall, F1 formally defined in our
context as:

Precision =
|Rtest ∩ R̂test|

|R̂test|
,Recall =

|Rtest ∩ R̂test|
|Rtest|

,F1 =
2 ∗ Precision ∗ Recall

Precision + Recall
,

where R̂test is the set of examples predicted as rare subclass. To identify which
part of the test (seen or unseen subclasses) the model makes mistakes, we also
measure Precision (seen), Recall (seen) and Recall (unseen) defined as follows:

Precision(seen) =
|Rs ∩ R̂test|

|R̂test|
,Recall(seen) =

|Rs ∩ R̂test|
|Rs|

,Recall(unseen) =
|Ru ∩ R̂test|

|Ru| .

(2) For sub-level classification test, to quantify the fraction of seen subclass test
instances correctly classified and unseen subclass test instances as emerging, we
use the following metric:

acc(rare) =

acc(emerging)
︷ ︸︸ ︷
|Ru ∩ R̂u| +

∑K
k=1

acc(recurrent)
︷ ︸︸ ︷
|Rks ∩ R̂ks|

|Rtest| ,

where Rks is the set of test examples in subclass k and R̂ks is the set of exam-
ples assigned to that subclass. Here acc(rare) = 1 if both seen subclass test
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instances are perfectly classified to their respective subclasses and unseen sub-
class instances as emerging. For all of the above metrics, the higher is better.

Compared Methods. We compare RaRecognize with 2 state-of-the-art
methods and 2 simple baselines:

– RaRecognize-1K, RaRecognize-PCA, RaRecognize-ICA: 3 versions of
RaRecognize when tfidf with 1 K word dictionary, PCA and ICA repre-
sentations are used. In RaRecognize-PCA, we drop the feature correlation
terms

(
xT
[p]x[q]

)2 since features are orthogonal. For the sub-level classification,
RaRecognize learns a rejection threshold for each specialized classifier based
on extreme value theory [15].

– L2AC [16]: the most recent method (2019) in open-world classification setting
that is based on deep neural networks. We use the recommended parameters
k = 5, n = 9 (in their notation) from the paper.

– SENCForest [8]: another state-of-the-art ensemble method (2017) using
random decision trees for classification under emerging classes. We run
SENCForest with 100 trees and subsample size 100 as suggested in their
paper.

– Baseline: a baseline of RaRecognize when both cross- and self-correlation
terms in Eq. 4 are removed, via setting μ = 0. Basically, Baseline is inde-
pendently trained f0, . . . , fK .

– Baseline-r: a variant of Baseline when classification threshold (0.5 by
default) is chosen so that the Recall matches that of RaRecognize.

Note that SENCForest and L2AC aim to detect any emerging class without
categorizing into rare or majority. For fair comparison, we only inlcude new rare
subclasses in our test data and consider their rejected instances as belonging to
those. In reality, however, emerging classes need to be categorized as rare or not,
which these existing methods did not address.

Table 2. Performance of methods on the three datasets.

Methods Precision Recall F1

Risk-Doc Risk-Sen NYT-Dstr Risk-Doc Risk-Sen NYT-Dstr Risk-Doc Risk-Sen NYT-Dstr

SENCForest 0.46±0.12 0.14±0.03 0.36±0.09 0.59±0.09 0.41±0.08 0.39±0.10 0.52±0.11 0.21±0.04 0.37±0.06

L2AC 0.79±0.08 0.47±0.06 0.31±0.07 0.57±0.29 0.85±0.05 0.76±0.07 0.63±0.24 0.60±0.04 0.44±0.07

Baseline 0.89±0.04 0.79±0.05 0.86±0.03 0.52±0.06 0.55±0.04 0.63±0.03 0.65±0.05 0.65±0.03 0.73±0.03

Baseline-r 0.76±0.10 0.56±0.07 0.71±0.07 0.58±0.13 0.57±0.14 0.79±0.04 0.65±0.10 0.55±0.06 0.75±0.04

RaRecognize-1K 0.89±0.02 0.83±0.09 0.84±0.03 0.58±0.13 0.57±0.14 0.79±0.04 0.70±0.09 0.66±0.08 0.81±0.02

RaRecognize-PCA 0.85±0.06 0.79±0.10 0.84±0.10 0.58±0.17 0.71±0.17 0.80±0.07 0.68±0.14 0.73±0.09 0.81±0.01

RaRecognize-ICA 0.74±0.07 0.72±0.11 0.84±0.12 0.73±0.24 0.85±0.18 0.82±0.08 0.71±0.09 0.78±0.07 0.81±0.04

4.2 Experiment Results

In the following, we sequentially answer the questions by analyzing our experi-
mental results and comparing between methods.
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Fig. 4. Precision (seen), Recall (seen) and Recall (unseen) of methods on Risk-Doc
(RaRecognize-ICA achieves the best balance between Precision and Recall on both
seen and unseen test instances).

(RQ1) Top-level Classification into Rare vs. Majority Class. We report
the Precision, Recall and F1 of all methods on three datasets in Table 2. For
SENCForest, L2AC, Baseline and Baseline-r, we report results for the
representation (tfidf top-1K, PCA, ICA) that yielded the highest F1 value.

From Table 2, we see that RaRecognize-1K, RaRecognize-PCA and
RaRecognize-ICA outperform other methods in terms of F1 score in all cases
and Precision, Recall in most cases. Compared to Baseline and Baseline-r, F1
score of RaRecognize-ICA is 6–13% higher than the best result among the two.
This demonstrates that cross- and self-correlations are crucial in RaRecognize.
Surprisingly, the gap to SENCForest and L2AC is even larger in terms of F1,
between 8–37% higher. This shows that previous methods on detecting any new
emerging classes do not work well when we only target rare subclasses.

Among the three versions of RaRecognize, RaRecognize-ICA gives the
highest F1. RaRecognize-ICA achieves the best balance between precision
and recall while RaRecognize-1K and RaRecognize-PCA seem to have very
high Precision but much lower Recall. That means that RaRecognize-1K and
RaRecognize-PCA are better than RaRecognize-ICA at discarding majority
samples and worse at recognizing rare subclasses.

In Fig. 4, we have the Precision (seen), Recall (seen) and Recall (unseen)
measures of all the methods on Risk-Doc (Figures for other datasets are sim-
ilar, see [10]). This figure shows that RaRecognize-ICA also achieves a good
balance between seen and unseen subclass classification, i.e., it recognizes both
these subclasses equally well. On the other hand, most of other methods achieve
high Precision (seen) and Recall (seen) but much lower Recall (unseen), except
SENCForest which only has high Recall (unseen). This is because SENCFor-
est rejects most instances as unseen which however hurts Precision drastically.

(RQ2) Sub-level Classification into Recurrent and Emerging Rare
Subclasses. We report the acc(rare) of all the methods in Table 3 (Breakdown
of errors in confusion tables are given in the extended version of this article [10]).
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Table 3. acc(rare) of methods on the three datasets.

Methods Risk-Doc Risk-Sen NYT-Dstr

SENCForest 0.37 ± 0.09 0.41 ± 0.08 0.34 ± 0.04

L2AC 0.22 ± 0.17 0.20 ± 0.20 0.08 ± 0.12

Baseline 0.41 ± 0.07 0.37 ± 0.04 0.41 ± 0.04

Baseline-r 0.43 ± 0.16 0.38 ± 0.03 0.42 ± 0.04

RaRecognize-1K 0.45 ± 0.08 0.38 ± 0.12 0.46 ± 0.12

RaRecognize-PCA 0.50 ± 0.14 0.59 ± 0.14 0.65 ± 0.15

RaRecognize-ICA 0.63±0.14 0.62±0.09 0.64±0.15

Tables 2 and 3 reflect that all three versions of RaRecognize are always
better or comparable to the others in terms of acc(rare) and RaRecognize-
ICA achieves the highest value. RaRecognize-ICA achieves significantly higher
acc(rare) than all the baselines. SENCForest seems to perform the next best
due to the fact that it classifies most of the instances as emerging which results
in high classification performance on unseen subclasses.

Fig. 5. Word clouds for the weights of general and 3 specialized classifiers in
RaRecognize-1K on NYT-Dstr (See [10] for other subclasses).

(RQ3) Model Interpretation. In Fig. 5, we plot the wordclouds representing
the general and 3 specialized classifiers for 3 disaster subclasses (sizes of the
words proportional to their weights learned by RaRecognize-1K). Existing
methods, SENCForest and L2AC, are not interpretable due to respective
ensemble and deep neural network-based models they employ.

From Fig. 5, specialized disaster classifiers are clearly characterized by spe-
cific words closely related to the respective disasters, whereas the general classi-
fier is heavily weighted by common words to every disaster. Specifically, Explo-
sions classifier picks up attack, gas, terrorist, scene as most weighted
keywords, and Snowstorms classifier puts heavy weights on words ice, fell,
snow, weather. The general classifier is highlighted by the words caused,
killed, disaster which describe consequences of most disasters. Wordclouds
on other disaster subclasses, along with those for other datasets can be found in
[10].
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Thanks to the interpretability that RaRecognize offers, we can look deeper
into the significance of individual words in classifying documents. Besides its
promising quantitative performance, these qualitative results confirm that our
method has learned what agrees with human intuition.
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(RQ4) Scalability and Time-Performance Trade-off. Besides our for-
mal complexity analysis, we demonstrate the scalability of RaRecognize
empirically. Figure 6 shows the running time of RaRecognize-PCA and
RaRecognize-ICA when varying the amount of training data. The running
time increases linearly with the data size. RaRecognize with PCA is faster
than that with ICA thanks to no feature correlations (i.e.

(
xT
[p]x[q]

)2 dropped).
In Fig. 7, we show the time-performance trade-off among all compared meth-

ods. We conclude that RaRecognize with three representations run relatively
fast, only slower than SENCForest, and returns the highest performance in
terms of F1. L2AC consumes a huge amount of time for training a neural net-
work, with subpar performance.

5 Related Work

Our work is closely related with two fields, namely open-world classification and
continual learning. Both belong to the category of lifelong machine learning [1].

Open-World Classification. Traditional close-world classification assumes
that all test classes are known and seen in training data [4,17]. However,
such assumption could be violated in reality. Open-world classification, in con-
trast, assumes unseen and novel classes could emerge during test time, and
addresses the classification problem by recognizing unseen classes. Previous
works [8,9,13,14,16] propose different approaches under this setting.

Specifically, DOC [13] leverages convolutional neural nets (CNNs) with mul-
tiple sigmoid functions to classify examples as seen or emerging. [14] follows the
same DOC module and performs hierarchical clustering to all rejected samples.



Continual Rare-Class Recognition with Emerging Novel Subclasses 35

Later, L2AC [16] proposes to use a meta-classifier and a ranker to add or delete
a class without re-training. However, it requires a large amount of computation
in both training and testing due to the top-k search over all training data.

SENCForest [8] is a randomized ensemble method. It grows multiple random
forests and rejects examples when all random forests yield “new class”. Under
the same setting, SENC-MaS [9] maintains matrix sketchings to decide whether
an example belongs to a seen class or emerging.

In the emerging rare subclass setting, the previous approaches aim at recog-
nizing any and every classes and are not able to ignore the not-of-interest classes
while recognizing emerging ones, thus consume much more memory and time.

Continual Learning. There are recent works investigating continual learning
or incremental learning [11,12]. They aim at solving the issue of catastrophic
forgetting [2] in connectionist networks. In this field, models are proposed to
continually learn new classes without losing performance on old seen classes.

Previous works [3,5,7,11] show promising results. However, the number of
documents in rare subclasses of-interest in our setting is usually not large enough
for neural networks to be sufficiently trained. Consequently, the neural network
approach does not perform well in rare-class classification and recognition.

6 Conclusion

We proposed RaRecognize for rare-class recognition over a continuous stream,
in which new subclasses may emerge. RaRecognize employs a general classifier
to filter out not-rare class instances (top-level) and a set of specialized classifiers
that recognize known rare subclasses or otherwise reject as emerging (sub-level).
Since majority of incoming instances are filtered out and new rare subclasses
are a few, RaRecognize processes incoming data fast and grows in size slowly.
Extensive experiments show that it outperforms two most recent state of the art
as well as two simple baselines significantly in both top- and sub-level tasks, while
achieving the best efficiency-performance balance and offering interpretability.
Future work will extend RaRecognize to an end-to-end system that clusters
emerging instances and trains all the relevant models incrementally.
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Abstract. Post-hoc interpretability approaches, although powerful
tools to generate explanations for predictions made by a trained black-
box model, have been shown to be vulnerable to issues caused by lack
of robustness of the classifier. In particular, this paper focuses on the
notion of explanation justification, defined as connectedness to ground-
truth data, in the context of counterfactuals. In this work, we explore
the extent of the risk of generating unjustified explanations. We propose
an empirical study to assess the vulnerability of classifiers and show
that the chosen learning algorithm heavily impacts the vulnerability of
the model. Additionally, we show that state-of-the-art post-hoc counter-
factual approaches can minimize the impact of this risk by generating
less local explanations (Source code available at: https://github.com/
thibaultlaugel/truce).

Keywords: Machine learning interpretability · Counterfactual
explanations

1 Introduction

The soaring number of machine learning applications has been fueling the
need for reliant interpretability tools to explain the predictions of models with-
out sacrificing their predictive accuracy. Among these, post-hoc interpretability
approaches [12] are popular as they can be used for any classifier regardless of its
training data (i.e. blackbox assumption). However, this has also been a common
criticism for such approaches, as it also implies that there is no guarantee that
the built explanations are faithful to ground-truth data.

A specific type of interpretability approach generate counterfactual explana-
tions (e.g. [11,25,28,30]), inspired from counterfactual reasoning (e.g. [5]) which
aims at answering the question: What will be the consequence of performing this
action? Adapted to the context of machine learning classification, counterfactual
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explanations try to identify how altering an input observation can influence its
prediction, and in particular change its predicted class. These approaches have
been recently under the spotlight as they provide a user with directly actionable
explanations that can be easily understood [30].

However, used in a post-hoc context, counterfactual explanation approaches
are vulnerable to aforementioned issues, leading to explanations that may not
be linked to any ground-truth data and therefore not satisfying in the con-
text of interpretability. In particular, [21] argues that an important criterion for
interpretability is that counterfactual explanations should be justified, meaning
continuously connected to ground-truth instances from the same class. However,
they show that this connectedness criterion is not guaranteed in the post-hoc
context, leading to unconnected classification regions and hence potential issues
interpretability-wise. This paper is an extension of this previous work, proposing
to further study the apparition of these unconnected regions and analyze how
existing counterfactual approaches can avoid generating unjustified explanations.

This paper proposes the following contributions:

– We pursue the analysis of [21] about the unconnectedness of classification
regions and analyze the vulnerability of various classifiers. We show that
classifiers are not equally vulnerable.

– We study the link between unconnectedness and overfitting and show that
controlling overfitting helps reducing unconnectedness.

– We show that state-of-the-art post-hoc counterfactual approaches may gen-
erate justified explanations but at the expense of counterfactual proximity.

Section 2 is devoted to presenting the state-of-the-art of post-hoc inter-
pretability and counterfactual explanations, as well as highlighting studies that
are similar to this work. Section 3 recalls the motivations and definition and
for ground-truth backed counterfactual explanations, while Sect. 4 describes the
algorithms used for this analysis. The study itself, as well as the obtained results,
are presented in Sect. 5.

2 Background

2.1 Post-hoc Interpretability

In order to build explanations for predictions made by a trained black-box model,
post-hoc interpretability approaches generally rely on sampling instances and
labelling them with the model to gather information about its behavior, either
locally around a prediction [26] or globally [6]. These instances are then used
to approximate the decision function of the black-box and build understandable
explanations, using for instance a surrogate model (e.g. a linear model in [26] or
a decision tree in [13]), or by computing meaningful coefficients (e.g. Shapeley
values [24] or decision rules [29]). Other methods rely on specific instances to
build explanations using comparison to relevant neighbors, such as case-based
reasoning approaches [17] and counterfactual explanation approaches.
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Instead of simply identifying important features, the latter aim at finding
the minimal perturbation required to alter a given prediction. A counterfac-
tual explanation is thus a specific data instance, close to the observation whose
prediction is being explained, but predicted to belong to a different class. This
form of explanation provides a user with tangible explanations that are directly
understandable and actionable; this can be opposed to other types of explana-
tions using feature importance vectors, which are arguably harder to use and
to understand for a non-expert user [30]. Several formalizations of the counter-
factual problem can be found in the literature, depending on the formulation of
the minimization problem and on the used distance metric. For instance, [20]
looks uniformly for the L2-closest instance of an other class, while [11] uses a
local decision tree trained on instances sampled with a genetic algorithm to find
the local L0-closest instance. Another formulation of the counterfactual problem
can be found in [19], which uses search algorithms to find the instance that has
the highest probability of belonging to another class within a certain maximum
distance. Finally, the problem in [30], formulated as a tradeoff between the L1

closest instance and a specific classification score target, is another way to tackle
the counterfactual problem.

2.2 Studies of Post-hoc Interpretability Approaches

The post-hoc paradigm, and in particular the need for post-hoc approaches to
use instances that were not used to train the model to build their explanations,
raises questions about their relevance and usefulness. Troublesome issues have
been identified: for instance, it has been noticed [2] that modeling the decision
function of a black-box classifier with a surrogate model trained on generated
instances can result in explanation vectors that point in the wrong directions
in some areas of the feature space in trivial problems. The stability of post-
hoc explainer systems has been criticized as well, showing that because of this
sampling, some approaches are locally not stable enough [1] or on the contrary
too stable and thus not locally accurate enough [22].

Recently, a few works [23,27] have started questioning the post-hoc paradigm
itself and criticizing the risk of generating explanations that are disconnected
from the ground truth, which is the main topic of this work. Identifying relevant
ground-truth instances for a specific prediction has also been studied before (e.g.
[16]), but generally require retraining the classifier, which is not possible in the
context of a black-box. In a similar fashion, [15] try to identify which predictions
can be trusted in regard to ground-truth instances based on their distance to
training data in the context of new predictions.

2.3 Adversarial Examples

Although not sharing the same purpose, both counterfactual explanations and
adversarial examples [3] are similar in the way they are generated, i.e. by trying
to perturb an instance to alter its prediction. Studies in the context of image
classification using deep neural networks [9] have shown that the connectedness
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(a) Illustration of the idea behind con-
nectedness

(b) Decision boundary of a RF
classifier

Fig. 1. Left picture: illustration of the connectedness notion. The decision boundary
learned by a classifier (illustrated by the yellow and green regions) has created two
green regions. CF1 and CF2 are two candidate counterfactual explanations for x.
CF1 can be connected to the training instance a by a continuous path that do not
cross the decision boundary of f , while CF1 can not. Right picture: a random forest
classifier with 200 trees has been trained on 80% of the dataset (a 2D version of the
iris dataset) with 0.79 ± 0.01 accuracy over the test set. Because of its low robustness,
unconnected classification regions can be observed (e.g. small red square in the light
blue region). (Color figure online)

notion studied in this paper was not enough for adversarial examples detection.
However, since adversarial examples have been generally studied in the context
of high-dimensional unstructured data, (i.e. images, text and sound for instance),
as shown exhaustively in existing surveys (e.g. [4]), they remain out of the scope
of this study.

The goal of this work is to study a desideratum for counterfactual explana-
tions in the context of interpretability in structured data; it is not to detect a
classification error nor an adversarial example.

3 Justification Using Ground-Truth Data

This section recalls the definitions and intuitions behind the notion of justifica-
tion, which is the main topic of this work.

3.1 Intuition and Definitions

The notion of ground-truth justification proposed in [21] aims at making a dis-
tinction between an explanation that has been generated because of some pre-
vious knowledge (such as training data) and one that would be a consequence
of an artifact of the classifier. While generalization is a desirable property for a
classifier for prediction, it is different in the context of interpretability, since an
explanation that a user can not understand is useless.
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For this purpose, an intuitive desideratum for counterfactual explanations
can be formulated based on the distance between the explanation and ground-
truth observations, defining a plausibility notion that is similar to the trust score
proposed in [15]): to guarantee useful (plausible) explanations, a counterfactual
example could be thus required to be close to existing instances from the same
class. Detecting whether an explanation satisfies this criterion thus becomes
similar to an outlier detection problem, where the goal is to have counterfactual
explanations that do not lie out of the distribution of ground-truth instances.

However, discriminating counterfactual explanations based on their distance
to ground-truth data does not seem to be good enough, as issues created by
classification artifacts can arise in dense training regions as well. Such artifacts
can be caused by a lack of robustness of the classifier (e.g. overfitting), or simply
because it is forced to make a prediction in an area he does not have much
information about. These issues may lead to classification regions that are close
to but not supported by any ground-truth data, which is problematic in the
context of interpretability.

In this context, a requirement for counterfactual explanations is proposed,
where the relation expected between an explanation and ground-truth data is
defined using the topological notion of path connectedness. In order to be more
easily understood and employed by a user, it is argued that the counterfactual
instance should be continuously connected to an observation from the training
dataset. The idea of this justification is not to identify the instances from the
training data that are responsible for the prediction of the counterfactual (such
as in the aforementioned work of [16]), but the ones that are correctly being
predicted to belong to the same class for similar reasons.

The following definition is thus introduced:

Definition 1 (Justification [21]). Given a classifier f : X → Y trained on a
dataset X, a counterfactual example e ∈ X is justified by an instance a ∈ X
correctly predicted if f(e) = f(a) and if there exists a continuous path h between
e and a such that no decision boundary of f is met.

Formally, e is justified by a ∈ X if: ∃ h : [0, 1] → X such that: (i) h is
continuous, (ii) h(0) = a, (iii) h(1) = e and (iv) ∀t ∈ [0, 1], f(h(t)) = f(e).

This notion can be adapted to datasets by approximating the function h with
a high-density path, defining ε-chainability, with ε ∈ R

+: an ε-chain between e
and a is a finite sequence e0, e1, ... eN ∈ X such that e0 = e, eN = a and
∀i < N, d(ei, ei+1) < ε, with d a distance metric.

Definition 2 (ε-justification [21]). Given a classifier f : X → Y trained on a
dataset X, a counterfactual example e ∈ X is ε-justified by an instance a ∈ X
accurately predicted if f(e) = f(a) and if there exists an ε-chain {ei}i≤N ∈ XN

between e and a such that ∀i ≤ N, f(ei) = f(e).

Consequently, a justified (resp. unjustified) counterfactual explanation (writ-
ten JCF, resp. UCF) is a counterfactual example that does (resp. does not) sat-
isfy Definition 2. Setting the value of ε, ideally as small as possible to guarantee
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a good approximation by the ε-chain of function h of Definition 1, depends on
the considered problem (dataset and classifier) and can heavily influence the
obtained results. A discussion about this problem is proposed in Sect. 5.

Since connectedness in unordered categorical data can not be properly
defined, the notion of justification can not be directly applied to these domains.
Hence, we restrict the analysis of this paper to numerical data.

Figure 1 illustrates both the idea behind the notion of connectedness and the
issue it tries to tackle. The left picture illustrates an instance x whose prediction
by a binary classifier is to be interpreted, as well as two potential counterfactual
explanations, CF1 and CF2. CF2 can be connected to a ground-truth instance
a without crossing the decision boundary of f and is therefore justified. On the
contrary, CF1 is not since it lies in a classification region that does not contain
any ground-truth instance from the same class (green “pocket”). In the right
picture, a classifier with low robustness creates classification regions that can
not be connected to any instance from the training data.

3.2 Implementation

For an efficiency purpose, it is possible to draw a link between connectedness and
density-based clustering. In particular, the well-known DBSCAN [8] approach
uses the distance between observations to evaluate and detect variations in the
density of the data. Two parameters ε and minPts control the resulting clusters
(resp. outliers), built from the core points, which are instances that have at least
(resp. less than) minPts neighbors in an ε-ball. Thus, having an instance being
ε-justified by another is equivalent to having them both belong to the same
DBSCAN cluster when setting the parameters minPts = 2 and same ε.

4 Procedures for Assessing the Risk of Unconnectedness

In this section, the two algorithms proposed by [21] and used in the experiments
and discussion are described: LRA (Local Risk Assessment) is a diagnostic tool
assessing the presence of unjustified regions in the neighborhood of an instance
whose prediction is to be interpreted; VE (Vulnerability Evaluation) assesses
whether or not a given counterfactual explanation is connected to ground-truth
data.

4.1 LRA Procedure

This section recalls the LRA procedure, used to detect unjustified classification
regions. Given a black-box classifier f : X → Y trained on the dataset X of
instances of X and an instance x ∈ X whose prediction f(x) is to be explained,
the aim is to assess the risk of generating unjustified counterfactual examples in a
local neighborhood of x. To do this, a generative approach is proposed that aims
at finding which regions of this neighborhood are ε-connected to instances of X
(i.e. verify Definition 2). The three main steps of the LRA procedure, described
below, are written down in Algorithm1.
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Definition Step. A local neighborhood of the instance x being examined is
defined as the ball of center x and radius the distance between x and the closest
ground-truth instance a0 correctly predicted to belong to another class.

Initial Assessment Step. A high number n of instances are generated in the
defined area and labelled using f . The instances predicted to belong to the class
f(a0), as well as a0, are clustered using DBSCAN (with parameters minPts = 2
and ε). The instances belonging to the same cluster as a0 are identified as JCF .

Iteration Step. If some instances do not belong to the same cluster as a0, new
instances are generated in the spherical layer between a0 and a1, the second
closest ground-truth instance correctly predicted to belong to the same class.
Along with the previously generated instances, a0 and a1, the subset of the
new instances that are predicted to belong to the same class as a0 and a1 are
clustered. Again, new JCF can be identified. If a cluster detected at a previous
step remains the same (i.e. does not increase in size), it means that the procedure
has detected an enclosed unconnected region (pocket) and the cluster is therefore
labelled as UCF. This step is repeated when all instances of the initial assessment
step are identified either as JCF or UCF.

In the end, the LRA procedure returns nJ (resp. nU ) the number of JCF
(resp. UCF) originally generated in the local neighborhood defined in the Defi-
nition Step. If nU > 0, there exists a risk of generating unjustified counterfactual
examples in the studied area.

In particular, the following criteria are calculated:

Sx = 1nU>0 and Rx =
nU

nU + nJ
.

Sx labels the studied instance x as being vulnerable to the risk of having UCF
in the area (i.e. having a non-null risk). The risk itself, measured by Rx, describes
the likelihood of having an unjustified counterfactual example in the studied area
when looking for counterfactual examples. As these scores are calculated for a
specific instance x with a random generation component, their average values S̄
and R̄ for 10 runs of the procedure for each x and over multiple instances are
calulated.

4.2 VE Procedure

A variation of the LRA procedure, Vulnerability Evaluation (VE), is proposed to
analyze how troublesome unjustified regions are for counterfactual approaches.

The goal of the VE procedure is to assess the risk for state-of-the-art methods
to generate UCF in regions where there is a risk. Given an instance x ∈ X, the
LRA procedure is first used to calculate the risk Rx and focus on the instances
where this risk is “significant” (i.e. for instance where Rx > 0.25). Using a state-
of-the-art method, a counterfactual explanation E(x) ∈ X is then generated.
To check whether E(x) is justified or not, a similar procedure as LRA is used:
instances are generated uniformly in the local hyperball with center E(x) and
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Algorithm 1: LRA [21]
Require: x, f , X

1: Generate n instances in the ball B(x, d(x, a0))

2: Label these instances using f , keep the subset D of instances classified similarly

as a0
3: Perform DBSCAN over D ∪ {a0}
4: Identify the instances of D that belong to the same cluster as a0 as JCF. Calculate

current nJ

5: while Some instances are neither JCF nor UCF do

6: Generate new instances in the spherical layer defined by the next closest

ground-truth instance

7: Label these instances using f

8: Apply DBSCAN to the subset of these instances classified as f(a0), along with

previously generated instances and relevant ground-truth instances

9: Update nJ and nU

10: end while

11: return nJ , nU ;

Fig. 2. Illustration of the VE procedure for two counterfactual explanation candidates.
Left: CF1, which is not justified. Right: CF2, justified (Color figure online)

radius the distance between E(x) and the closest ground-truth instance b0 cor-
rectly predicted to belong to the same class as E(x). The DBSCAN algorithm is
then used with parameters minPts = 2 and same ε on the generated instances
that are predicted to belong to f(E(x)). E(x) is identified as a JCF if it belongs
to the same DBCSCAN cluster as b0 (cf. Definition 2).

If not, like with LRA, iteration steps are performed as many times as nec-
essary by expanding the exploration area to b1, the second closest ground-truth
instance predicted to belong to f(E(x)).

An illustration of the procedure in a 2-dimensional binary classification setting
is shown in Fig. 2 for two counterfactual explanations CF1 and CF2 (blue dots),
generated for the observation x (red dot). In the left picture, two clusters (hatched
areas) are identified by DBSCAN in the explored area (blue dashed circle): CF1
and a, the closest training instance, do not belong to the same cluster, defining
CF1 as unjustified. In the right picture, CF2 belongs to the same cluster as a and
is therefore defined as justified.
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In the end, the VE procedure returns a binary value indicating whether
or not the analyzed counterfactual explanation E(x) is justified, written JE(x)

(JE(x) = 1 if E(x) is justified). Again, we also measure the average value J̄ of
JE(x) for multiple runs of the procedure for the instance x and over multiple
instances.

5 Experimental Study: Assessing the Risk of Unjustified
Regions

The two presented procedures LRA and VE can be used to analyze the uncon-
nectedness of classification regions. As explained earlier, setting the values of
n and ε is crucial for the experiments, as these parameters are central to the
definition and procedures used. Therefore, a first experiment and discussion (cf.
Sect. 5.2) are conducted on this problem. Once adequate values are found, a
second experiment (see Sect. 5.3) is performed, where we discuss how exposed
different classifiers are to the threat unjustified classification regions. The link
between this notion and overfitting is also studied. Finally, in a third experi-
ment (cf. Sect. 5.4), the vulnerability of state-of-the-art post-hoc counterfactual
approaches is analyzed, and we look into how they can minimize the problem of
unjustified counterfactual explanations.

5.1 Experimental Protocol

In this section, we present the experimental protocol considered for our study.

Datasets. The datasets considered for these experiments include 2 low-
dimensional datasets (half-moons and wine) as well as 4 real datasets (Boston
Housing [14], German Credit [7], Online News Popularity [10]. Propublica Recidi-
vism [18]). These structured datasets present the advantage of naturally under-
standable features and are commonly used in the interpretability (and fairness)
literature. All include less than 70 numerical attributes. As mentioned earlier,
categorical features are excluded from the scope of the study.

Classifiers. For each considered dataset, the data is rescaled and a train-test split
of the data is performed with 70%–30% proportion. Several binary classifiers are
trained on each dataset: a random forest classifier, a support vector classifier
with Gaussian kernel, an XGboost classifier, a Naive Bayes classifier and a k-
nearest-neighbors classifier. Unless specified, the associated hyperparameters are
chosen using a 5-fold cross validation to optimize accuracy. The AUC score
values obtained on the test set with these classifiers are shown in Table 1. Several
variations of the same classifier are also considered for one of the experiments
(Sect. 5.3), with changes in the values of one of the associated hyperparameters:
the maximum depth allowed for each tree of the random forest algorithm, and
the γ coefficient of the Gaussian kernel of the support vector classifier.
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Protocol. The test set is also used to run the experiments, as described earlier.
In Sect. 5.3, the LRA procedure is applied to each instance of the considered test
sets, and the scores S̄ and R̄ are calculated and analyzed for each dataset and
classifier. In Sect. 5.4, three post-hoc counterfactual approaches from the state-
of-the-art (HCLS [19], GS [20] and LORE [11]) are used to generate explanations
E(x) for each instance of the considered test sets, and the VE procedure is
applied to the obtained counterfactuals to calculate the scores J̄ , as well as the
distance d(x,E(x)).

Table 1. AUC scores obtained on the test sets for a random forest (RF), support vector
classifier (SVM), XGBoost (XGB), naive Bayes classifier (NB) k-nearest neighbors
(KNN) and nearest neighbor (1-NN)

Dataset RF SVM XGB NB KNN 1-NN

Half-moons 0.98 ± 0.01 0.99 ± 0.00 0.99 ± 0.00 0.95 ± 0.01 0.99 ± 0.00 0.95 ± 0.01

Wine 0.98 ± 0.01 0.99 ± 0.00 0.99 ± 0.00 0.95 ± 0.01 0.99 ± 0.00 0.95 ± 0.01

Boston 0.96 ± 0.02 0.97 ± 0.04 0.97 ± 0.03 0.87 ± 0.08 0.93 ± 0.06 0.85 ± 0.04

Credit 0.75 ± 0.05 0.64 ± 0.04 0.70 ± 0.08 0.66 ± 0.04 0.66 ± 0.02 0.55 ± 0.05

News 0.68 ± 0.02 0.68 ± 0.01 0.70 ± 0.02 0.65 ± 0.02 0.65 ± 0.02 0.55 ± 0.01

Recidivism 0.81 ± 0.01 0.82 ± 0.01 0.84 ± 0.01 0.78 ± 0.02 0.81 ± 0.02 0.68 ± 0.02

5.2 Defining the Problem Granularity: Choosing n and ε

As presented in [21] and mentioned above, the values of n and ε are crucial
since they define the notion of ε-justification and impact the average distance
between the generated instances. Choosing inadequate values for n and ε may
lead to having some unconnected regions not being detected as such and vice
versa.

These two values are obviously linked, as n defines, for a given x ∈ X, the
density of the sampling in the initial assessment step of the LRA procedure, hence
the average pairwise distance between the generated observations, and therefore
the value ε should be taking. Identifying an adequate value for ε depends on the
local topology of the decision boundary of the classifier, as well as the radius of
the hyperball defined in LRA (cf. Sect. 4.1). In practice, because the instances Bx

are generated in the initial assessment step before running DBSCAN, it is easier
to set the value of ε to the maximum value of the distances of B to their closest
neighbors: ε = max

xi∈Bx

min
xj∈Bx\{xi}

d(xi, xj). Using this value, the training instance

a0 is guaranteed to be in an actual cluster (i.e. not detected as an outlier), which
is a desirable property of the approach: it is expected that since is a0 correctly
predicted, it should be possible to generate a close neighbor classified similarly
(in the same “pocket”). The problem thus becomes of setting the value of n
alone.
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Fig. 3. Average Rx score for several instances of the half-moons dataset depending on
the value of n. The first two instances are selected to verify Sx = 1, while the last two
verify Sx = 0. After n reaches a certain value, Rx hardly changes anymore

In order to have the best performance, n should have the highest value as
possible. However, this also increases dramatically the running time of the algo-
rithm. Besides the complexity of the classifier’s decision boundary, the value of
n required to saturate the local space increases exponentially with the dimen-
sion of the problem. Furthermore, as the radius of generation increases during
the iteration steps, the number of instances should also increase to guarantee
constant space saturation across various steps. Instead, we choose to set a high
initial value of n at the first step, leading to an even higher complexity.

In this context, we are interested in identifying a value for n that properly
captures the complexity of the local decision boundary of the classifier without
generating an unrequired amount of instances. We thus look at the value of Rx

for several instances and several values of n to detect the threshold above which
generating more instances does not change the output of the LRA procedure.
Figure 3 illustrates this result for several instances of the half-moond dataset
(two with Sx = 1 and two with Sx = 0: the Rx score reaches a plateau after
a certain value of n. Using this assumption, the LRA procedure can be tested
with various values of n to ensure a reasonable value is chosen for the results of
the other experiments presented in the next section.

5.3 Detecting Unjustified Regions

While the existence and dangers of unjustified regions has been shown in [21],
the extent to which classifiers are vulnerable to this issue remains unclear.

Comparing the Vulnerability of Classifiers. In Table 2 are shown the pro-
portion S̄ of the studied instance that have unjustified classification regions in
their neighborhood (LRA returning Sx = 1). Every classifier seems to be gener-
ating unjustified regions in the neighborhoods of test instances: in some cases,
as much as 93% of the tested instances are concerned (XGB classifier trained on
the German Credit dataset).

However, the extent to which each classifier is vulnerable greatly varies. For
instance, among the considered classifiers, the random forest and XGBoost algo-
rithms seem to be more exposed than other classifiers (average S̄ value across
dataset resp. 0.63 and 0.54, vs. 0.39 for the SVM for instance). The learning
algorithm, and thus the associated complexity of the learned decision boundary,
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Fig. 4. Illustration of the LRA procedure applied to an instance of the half-moons
dataset. Left: RF with no maximum depth precised. Right: maximum depth allowed is
10 (Color figure online)

heavily influences the creation of classification regions. A link with predictive
accuracy can thus be expected. This can be also observed in the results of the
Naive Bayes classifier: while this classifier seems to be the more robust to the
studied problem (average value of S̄ across all datasets equals 0.29), it should be
noted that it is also the classifier that performs the worst in terms of prediction
(besides 1-NN, cf. Table 1).

These results are further confirmed by the values of R̄ shown in Table 4,
which also give an indication of the relative size of these unjustified classification
regions: for instance, despite having similar values for S̄ on the German Credit
dataset, RF and XGboost have a higher R̄ values than KNN, indicating that the
formed unconnected regions are wider in average.

Differences in results can also be observed between datasets, since more com-
plex datasets (e.g. less separable classes, higher dimension...) may also lead
to classifiers learning more complex decision boundaries (when possible), and
maybe favoring overfitting. This phenomenon is further studied in the next
experiment.

Link Between Justification and Overfitting. To further study the relation
between the creation of unjustified regions and the learning algorithm of the
classifier, we analyze the influence of overfitting over the considered metrics.
For this purpose, we attempt to control overfitting by changing the values of
the hyperparameters of two classifiers: the maximum depth allowed for a tree
for RF, and the γ parameter of the Gaussian kernel for SVM. For illustration
purposes, we apply the LRA procedure in a two-dimensional setting (half-moons)
to a classifier deliberately chosen for its low robustness (a random forest with
only 3 trees). Figure 4 shows a zoomed in area of the decision boundary of the
classifier (colored areas, the green and purple dots represent training instances),
as well as the result of LRA for a specific instance x (yellow instance). In the
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Fig. 5. R̄ scores for RF (left) and SVM (right) classifiers on the Boston dataset for
various values of hyperparameters (resp. maximum number of trees and γ parameter
of the Gaussian kernel). “None” (left) means no maximum tree depth restriction is set

left figure, the considered classifier has no limitation on the depth of the trees
it can use, wereas in the right one this parameter is set to 10. As explained
earlier, LRA explores the local neighborhood of x (blue circle), delimited by its
closest neighbor from the training set correctly classified a0 (orange instance).
In the left figure, within this neighborhood, a green square region is detected as
an unjustified region (top left from x): there is no green instance in this region,
hence Sx = 1. However, in the right picture, this region is connected to green
instances: Sx = 0.

Quantitative results of this phenomenon are shown in Fig. 5, which illustrates
the evolution of S̄ and R̄ scores for the two mentioned classifiers (left: RF; right:
SVM). As expected, the more overfitting is allowed (i.e. when the maximum tree
depth of RF and when the γ parameter of the RBF kernel of SVM increase),
and the more prone to generate unjustified regions these two classifiers seem.

However, it should be noted that models such as logistic regression or 1-
nearest neighbor (not appearing in Tables 2 and 3) have, by construction, no UCF
(S̄ = 0.0): a logistic regression creates only two connected classification regions,
and the predictions of a 1-NN classifier are by construction connected to their
closest neighbor from the training data, despite this classifier being frequently
referred to as an example of overfitting. Therefore, the notion of overfitting is
not sufficient to describe the phenomenon of unconnectedness.

The tradeoff there seems to be between justification and accuracy (cf. Tables 1
and 2) seems to indicate that a lower complexity of the decision border favors
better justification scores for at the cost of predictive performance (cf. Table 1
for the comparatively lower predictive performance of the 1-NN classifier).
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Table 2. Proportion of instances being at risk of generating a UCF (S̄ score) over the
test sets for 6 datasets

Dataset RF SVM XGB NB KNN

Half-moons 0.37 0.00 0.05 0.00 0.02

Wine 0.21 0.08 0.15 0.08 0.15

Boston 0.63 0.29 0.62 0.44 0.25

Credit 0.93 0.76 0.93 0.27 0.92

News 0.85 0.72 0.86 0.57 0.68

Recidivism 0.81 0.50 0.61 0.36 0.73

Table 3. Average risk of generating an UCF (R̄) and standard deviations for 6 datasets

Dataset RF SVM XGB NB KNN

Half-moons 0.07(0.17) 0.00(0.00) 0.01(0.02) 0.0(0.0) 0.00(0.00)

Wine 0.01(0.02) 0.02(0.07) 0.00(0.01) 0.01(0.02) 0.01(0.01)

Boston 0.16(0.25) 0.06(0.13) 0.14(0.24) 0.07(0.14) 0.03(0.05)

Credit 0.44(0.37) 0.10(0.14) 0.45(0.37) 0.06(0.17) 0.31(0.27)

News 0.35 (0.28) 0.18(0.28) 0.33(0.30) 0.12(0.24) 0.37(0.38)

Recidivism 0.26(0.30) 0.14(0.21) 0.21(0.28) 0.08(0.20) 0.20(0.30)

5.4 Vulnerability of Post-hoc Counterfactual Approaches

In the post-hoc context, because no assumption is made about the classifier nor
any training data, counterfactual approaches have been shown to be subject to
generating unjustified explanations [21]. The state-of-the-art approaches men-
tioned in Sect. 5.1 are applied to the considered datasets in order to assess the
extent of this risk.

The VE procedure is applied to the counterfactual explanations generated
using state-of-the-art approaches for instances facing a significant justification
risk (constraint arbitrarily set to Rx ≥ 0.25) of the previously considered
datasets, on which a random forest classifier was trained. The results (J̄ score)
are shown in Table 4. In addition to Jx, the distance between each tested instance
and its generated counterfactual explanations are calculated, and represented in
the table by their average value d̄.

As expected, every considered counterfactual approach seems to be generat-
ing to some extent unjustified explanations: the Justification scores of the tested
approaches can even fall as low as 30% (GS on the Online News Popularity
dataset). However, some differences can be observed between the approaches:
for instance, HCLS and LORE seem to achieve better performance than GS in
terms of justification across all datsets (average J̄ across datasets equals resp.
0.74 and 0.91 for HCLS and LORE, against only 0.62 for GS). However, we
observe that the average distance d̄ is also higher (resp. 1.38 and 1.46 for HCLS
and LORE, against 0.90 for GS). This can be explained by the fact that GS
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directly minimizes a L2 distance (the considered d distance), while LORE mini-
mizes a L0 distance in a local neighborhood. By looking for counterfactuals in the
direct proximity of x, GS thus tend to find unjustified regions more easily than
the other approaches, whereas looking further away from the decision boundary
probably enables LORE to favor explanations located closer to ground-truth
instances, therefore more frequently justified.

Another observation is that despite achieving better performance than GS by
trying to maximize the classification probability of the generated counterfactual,
HCLS still comes short in terms of justification. This tend to illustrate that
classification confidence, when available, is not a good way to detect unconnected
classification regions and guarantee justified explanations, some unconnected
regions probably having high classification confidence.

These results highlight that while classification confidence, when available,
does not seem to help in generating justified explanations, there seems to be
a tradeoff with the counterfactual distance, as LORE achieves in some cases
perfect justification scores (e.g. Boston and Credit datasets).

Table 4. Proportion of generated counterfactuals that are justified (J̄) for vulnerable
instances (Rx ≥ 0.25)

Dataset HCLS GS LORE

J̄ d̄ J̄ d̄ J̄ d̄

Half-moons 0.83 0.45 (0.27) 0.67 0.48 (0.26) 0.83 1.19 (0.18)

Boston 0.86 1.99 (0.88) 0.84 0.84 (1.03) 1.0 1.58 (0.98)

Credit 0.65 1.78 (0.94) 0.59 0.82 (0.71) 1.0 1.57 (1.11)

News 0.46 1.81 (0.75) 0.30 1.68 (0.99) 0.77 1.74 (0.83)

Recidivism 0.91 0.89 (1.08) 0.70 0.70 (1.09) 0.98 1.23 (0.90)

6 Conclusion

The justification constraint that is studied in this work comes from an intuitive
requirement explanations for machine learning predictions should satisfy, as well
as from the assumption that post-hoc counterfactual explanations are not able
to distinguish UCF from JCF. Results highlight that this vulnerability greatly
depends on the nature of the classifier, and that all learning algorithms are not
equally likely to form unconnected classification regions. In particular, control-
ling overfitting seems to be very important for some of the studied classifiers. In
light of this study, generating justified counterfactual explanations in the post-
hoc context seems complicated and using the training instances, when available,
is necessary. To reduce the impact of these issues, state-of-the-art approaches
may look for explanations located further away from the decision boundary.
However, this raises the question of explanation locality, as explanations located
far away from the decision boundary may be less tailored for each instance, and
thus less useful in the case of counterfactuals.
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Despite the importance of justification, the question of whether this require-
ment is sufficient to guarantee useful explanations remains. In particular, ques-
tions arise when a counterfactual explanation lies in a justified region where the
associated ground-truth instances are far away (e.g. out of distribution). In this
context, adding a distance constraint (as discussed in Sect. 3) to ensure plausible
justified explanations may constitute an interesting lead for future works.

Extending these notions to high-dimensional data (e.g. images) however
needs further research, as neither connectedness nor distance helps in guarantee-
ing useful explanations. A good example of this is adversarial examples, which
are defined as being close to original observations and have been proven to be
connected to ground-truth instances in the case of deep neural networks but do
not constitute satisfying counterfactual explanations.

Finally, results about the link between justification and overfitting raise the
question of the accuracy of the classifier in these unconnected regions. In this
regard, future works include analyzing the connectedness of classification errors.
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Abstract. Minimizing expected loss measured by a proper scoring rule,
such as Brier score or log-loss (cross-entropy), is a common objective
while training a probabilistic classifier. If the data have experienced
dataset shift where the class distributions change post-training, then
often the model’s performance will decrease, over-estimating the prob-
abilities of some classes while under-estimating the others on average.
We propose unbounded and bounded general adjustment (UGA and
BGA) methods that transform all predictions to (re-)equalize the aver-
age prediction and the class distribution. These methods act differently
depending on which proper scoring rule is to be minimized, and we have
a theoretical guarantee of reducing loss on test data, if the exact class
distribution is known. We also demonstrate experimentally that, when
in practice the class distribution is known only approximately, there is
often still a reduction in loss depending on the amount of shift and the
precision to which the class distribution is known.

Keywords: Multi-class classification · Proper scoring rule · Dataset
shift · Classifier calibration · Classifier adjustment

1 Introduction

Classical supervised machine learning is built on the assumption that the joint
probability distribution that features and labels are sourced from does not change
during the life cycle of the predictive model: from training to testing and deploy-
ment. However, in reality this assumption is broken more often than not: medical
diagnostic classifiers are often trained with an oversampling of disease-positive
instances, surveyors are often biased to collecting labelled samples from certain
segments of a population, user demographics and preferences change over time
on social media and e-commerce sites, etc.

While these are all examples of dataset shift, the nature of these shifts can be
quite different. There have been several efforts to create taxonomies of dataset
shift [11,14]. The field of transfer learning offers many methods of learning mod-
els for scenarios with awareness of the shift during training. However, often the
shift is not yet known during training and it is either too expensive or even
impossible to retrain once the shift happens. There are several reasons for it:
original training data or training infrastructure might not be available; shift
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happens so frequently that there is no time to retrain; the kind of shift is such
that without having labels in the shifted context there is no hope of learning a
better model than the original.

In this work we address multi-class classification scenarios where training
a classifier for the shifted deployment context is not possible (due to any of
the above reasons), and the only possibility is to post-process the outputs from
an existing classifier that was trained before the shift happened. To succeed,
such post-processing must be guided by some information about the shifted
deployment context. In the following, we will assume that we know the overall
expected class distribution in the shifted context, at least approximately. For
example, consider a medical diagnostic classifier of disease sub-types, which has
been trained on the cases of country A, and gets deployed to a different country
B. It is common that the distribution of sub-types can vary between countries,
but in many cases such information is available. So here many labels are available
but not the feature values (country B has data about sub-types in past cases,
but no diagnostic markers were measured back then), making training of a new
model impossible. Still, the model adjustment methods proposed in this paper
can be used to adjust the existing model to match the class distribution in
the deployment context. As another example, consider a bank’s fraud detection
classifier trained on one type of credit cards and deployed to a new type of credit
cards. For new cards there might not yet be enough cases of fraud to train a new
classifier, but there might be enough data to estimate the class distribution, that
is the prevalence of fraud. The old classifier might predict too few or too many
positives on the new data, so it must be adjusted to the new class distribution.

In many application domains, including the above examples of medical diag-
nostics and fraud detection, it is required that the classifiers would output confi-
dence information in addition to the predicted class. This is supported by most
classifiers, as they can be requested to provide for each instance the class prob-
abilities instead of a single label. For example, the feed-forward neural networks
for classification typically produce class probabilities using the final soft-max
layer. Such confidence information can then be interpreted by a human expert
to choose the action based on the prediction, or feeded into an automatic cost-
sensitive decision-making system, which would use the class probability esti-
mates and the mis-classification cost information to make cost-optimal decisions.
Probabilistic classifiers are typically evaluated using Brier score or log-loss (also
known as squared error and cross-entropy, respectively). Both measures belong
to the family of proper scoring rules: measures which are minimized by the true
posterior class probabilities produced by the Bayes-optimal model. Proper losses
also encourage the model to produce calibrated probabilities, as every proper loss
decomposes into calibration loss and refinement loss [9].

Our goal is to improve the predictions of a given model in a shifted deploy-
ment context, using the information about the expected class distribution in this
context, without making any additional assumptions about the type of dataset
shift. The idea proposed by Kull et al. [9] is to take advantage of a property
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that many dataset shift cases share: a difference in the classifier’s average pre-
diction and the expected class distribution of the data. They proposed two dif-
ferent adjustment procedures which transform the predictions to re-equalise the
average prediction with the expected class distribution, resulting in a theoret-
ically guaranteed reduction of Brier score or log-loss. Interestingly, it turned
out that different loss measures require different adjustment procedures. They
proved that their proposed additive adjustment (additively shifting all predic-
tions, see Sect. 2 for the definitions) is guaranteed to reduce Brier score, while
it can increase log-loss in some circumstances. They also proposed multiplicative
adjustment (multiplicatively shifting and renormalising all predictions) which is
guaranteed to reduce log-loss, while it can sometimes increase Brier score. It
was proved that if the adjustment procedure is coherent with the proper loss
(see Sect. 2), then the reduction of loss is guaranteed, assuming that the class
distribution is known exactly. They introduced the term adjustment loss to refer
to the part of calibration loss which can be eliminated by adjustment. Hence,
adjustment can be viewed as a weak form of calibration. In the end, it remained
open: (1) whether for every proper scoring rule there exists an adjustment pro-
cedure that is guaranteed to reduce loss; (2) is there a general way of finding an
adjustment procedure to reduce a given proper loss; (3) whether this reduction
of loss from adjustment materializes in practice where the new class distribution
is only known approximately; (4) how to solve algorithm convergence issues of
the multiplicative adjustment method; (5) how to solve the problem of additive
adjustment sometimes producing predictions with negative ’probabilities’.

The contributions of our work are the following: (1) we construct a family
called BGA (Bounded General Adjustment) of adjustment procedures, with one
procedure for each proper loss, and prove that each BGA procedure is guaran-
teed to reduce the respective proper loss, if the class distribution of the dataset
is known; (2) we show that each BGA procedure can be represented as a con-
vex optimization task, leading to a practical and tractable algorithm; (3) we
demonstrate experimentally that even if the new class distribution is only known
approximately, the proposed BGA methods still usually improve over the unad-
justed model; (4) we prove that the BGA procedure of log-loss is the same
as multiplicative adjustment, thus solving the convergence problems of multi-
plicative adjustment; (5) we construct another family called UGA (Unbounded
General Adjustment) with adjustment procedures that are dominated by the
respective BGA methods according to the loss, but are theoretically interesting
by being coherent to the respective proper loss in the sense of Kull et al. [9], and
by containing the additive adjustment procedure as the UGA for Brier score.

Section 2 of this paper provides the background for this work, covering the
specific types of dataset shift and reviewing some popular methods of adapt-
ing to them. We also review the family of proper losses, i.e. the loss functions
that adjustment is designed for. Section 3 introduces the UGA and BGA fami-
lies of adjustment procedures and provides the theoretical results of the paper.
Section 4 provides experimental evidence for the effectiveness of BGA adjustment
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in practical settings. Section 5 concludes the paper, reviewing its contributions
and proposing open questions.

2 Background and Related Work

2.1 Dataset Shift and Prior Probability Adjustment

In supervised learning, dataset shift can be defined as any change in the joint
probability distribution of the feature vector X and label Y between two data
generating processes, that is Pold(X,Y ) �= Pnew(X,Y ), where Pold and Pnew

are the probability distributions before and after the shift, respectively. While
the proposed adjustment methods are in principle applicable for any kind of
dataset shift, there are differences in performance across different types of shift.
According to Moreno-Torres et al. [11] there are 4 main kinds of shift: covariate
shift, prior probability shift, concept shift and other types of shift. Covariate
shift is when the distribution P(X) of the covariates/features changes, but the
posterior class probabilities P (Y |X) do not. At first, this may not seem to be of
much interest since the classifiers output estimates of posterior class probabilities
and these remain unshifted. However, unless the classifier is Bayes-optimal, then
covariate shift can still result in a classifier under-performing [14]. Many cases
of covariate shift can be modelled as sample selection bias [8], often addressed
by retraining the model on a reweighted training set [7,13,15].

Prior probability shift is when the prior class probabilities P(Y ) change, but
the likelihoods P(X|Y ) do not. An example of this is down- or up-sampling of the
instances based on their class in the training or testing phase. Given the new class
distribution, the posterior class probability predictions can be modified according
to Bayes’ theorem to take into account the new prior class probabilities, as shown
in [12]. We will refer to this procedure as the Prior Probability Adjuster (PPA)
and the formal definition is as follows:

PPA: Pnew(Y = y|X) =
Pold(Y = y|X)Pnew(Y = y)/Pold(Y = y)

∑
y′ Pold(Y = y′|X)Pnew(Y = y′)/Pold(Y = y′)

In other types of shift both conditional probability distributions P(X|Y ) and
P(Y |X) change. The special case where P(Y ) or P(X) remains unchanged is
called concept shift. Concept shift and other types of shift are in general hard to
adapt to, as the relationship between X and Y has changed in an unknown way.

2.2 Proper Scoring Rules and Bregman Divergences

The best possible probabilistic classifier is the Bayes-optimal classifier which
for any instance X outputs its true posterior class probabilities P(Y |X). When
choosing a loss function for evaluating probabilistic classifiers, it is then natural
to require that the loss would be minimized when the predictions match the
correct posterior probabilities. Loss functions with this property are called proper
scoring rules [5,9,10]. Note that throughout the paper we consider multi-class
classification with k classes and represent class labels as one-hot vectors, i.e. the
label of class i is a vector of k − 1 zeros and a single 1 at position i.



Shift Happens: Adjusting Classifiers 59

Definition 1 (Proper Scoring Rule (or Proper Loss)). In a k-class clas-
sification task a loss function f : [0, 1]k × {0, 1}k → R is called a proper scoring
rule (or proper loss), if for any probability vectors p, q ∈ [0, 1]k with

∑
i=1 pi = 1

and
∑

i=1 qi = 1 the following inequality holds:

EY ∼q[f(q, Y )] ≤ EY ∼q[f(p, Y )]

where Y is a one-hot encoded label randomly drawn from the categorical distri-
bution over k classes with class probabilities represented by vector q. The loss
function f is called strictly proper if the inequality is strict for all p �= q.

This is a useful definition, but it does not give a very clear idea of what the
geometry of these functions looks like. Bregman divergences [4] were developed
independently of proper scoring rules and have a constructive definition (note
that many authors have the arguments p and q the other way around, but we
use this order to match proper losses).

Definition 2 (Bregman Divergence). Let φ : Ω → R be a strictly convex
function defined on a convex set Ω ⊆ R

k such that φ is differentiable on the
relative interior of Ω, ri(Ω). Denoting the dot product by 〈·, ·〉, the Bregman
divergence dφ : ri(Ω) × Ω → [0,∞) is defined as

dφ(p, q) = φ(q) − φ(p) − 〈q − p,∇φ(p)〉

Previous works [1] have shown that the two concepts are closely related.
Every Bregman divergence is a strictly proper scoring rule and every strictly
proper scoring rule (within an additive constant) is a Bregman divergence.
Best known functions in these families are squared Euclidean distance defined
as dSED(p,q) =

∑d
j=1(pj − qj)2 and Kullback-Leibler-divergence dKL(p,q) =

∑d
j=1 qj log qj

pj
. When used as a scoring rule to measure loss of a prediction

against labels, they are typically referred to as Brier Score dBS , and log-loss
dLL, respectively.

2.3 Adjusted Predictions and Adjustment Procedures

Let us now come to the main scenario of this work, where dataset shift of
unknown type occurs after a probabilistic k-class classifier has been trained.
Suppose that we have a test dataset with n instances from the post-shift dis-
tribution. We denote the predictions of the existing probabilistic classifier on
these data by p ∈ [0, 1]n×k, where pij is the predicted class j probability on
the i-th instance, and hence

∑k
j=1 pij = 1. We further denote the hidden actual

labels in the one-hot encoded form by y ∈ {0, 1}n×k, where yij = 1 if the i-th
instance belongs to class j, and otherwise yij = 0. While the actual labels are
hidden, we assume that the overall class distribution π ∈ [0, 1]k is known, where
πj = 1

n

∑n
i=1 yij . The following theoretical results require π to be known exactly,

but in the experiments we demonstrate benefits from the proposed adjustment
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methods also in the case where π is known approximately. As discussed in the
introduction, examples of such scenarios include medical diagnostics and fraud
detection. Before introducing the adjustment procedures we define what we mean
by adjusted predictions.

Definition 3 (Adjusted Predictions). Let p ∈ [0, 1]n×k be the predictions of
a probabilistic k-class classifier on n instances and let π ∈ [0, 1]k be the actual
class distribution on these instances. We say that predictions p are adjusted on
this dataset, if the average prediction is equal to the class proportion for every
class j, that is 1

n

∑n
i=1 pij = πj.

Essentially, the model provides adjusted predictions on a dataset, if for each
class its predicted probabilities on the given data are on average neither under-
nor over-estimated. Note that this definition was presented in [9] using random
variables and expected values, and our definition can be viewed as a finite case
where a random instance is drawn from the given dataset.

Consider now the case where the predictions are not adjusted on the given
test dataset, and so the estimated class probabilities are on average too large for
some class(es) and too small for some other class(es). This raises a question of
whether the overall loss (as measured with some proper loss) could be reduced by
shifting all predictions by a bit, for example with additive shifting by adding the
same constant vector ε to each prediction vector pi·. The answer is not obvious
as in this process some predictions would also be moved further away from their
true class. This is in some sense analogous to the case where a regression model is
on average over- or under-estimating its target, as there also for some instances
the predictions would become worse after shifting. However, additive shifting
still pays off, if the regression results are evaluated by mean squared error. This
is well known from the theory of linear models where mean squared error fitting
leads to an intercept value such that the average predicted target value on the
training set is equal to the actual mean target value (unless regularisation is
applied). Since Brier score is essentially the same as mean squared error, it is
natural to expect reduction of Brier score after additive shifting of predictions
towards the actual class distribution. This is indeed so, and [9] proved that
additive adjustment guarantees a reduction of Brier score. Additive adjustment
is a method which adds the same constant vector to all prediction vectors to
achieve equality between average prediction vector and actual class distribution.

Definition 4 (Additive Adjustment). Additive adjustment is the function
α+ : [0, 1]n×k × [0, 1]k → [0, 1]n×k which takes in the predictions of a prob-
abilistic k-class classifier on n instances and the actual class distribution π
on these instances, and outputs adjusted predictions a = α+(p, π) defined as
ai· = pi· + (ε1, . . . , εk) where ai· = (ai1, . . . , aik), pi· = (pi1, . . . , pik), and
εj = πj − 1

n

∑n
i=1 pij for each class j ∈ {1, . . . , k}.

It is easy to see that additive adjustment procedure indeed results in adjusted
predictions, as 1

n

∑n
i=1 aij = 1

n

∑n
i=1 pij + εj = πj . Note that even if the original
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predictions p are probabilities between 0 and 1, the additively adjusted predic-
tions a can sometimes go out from that range and be negative or larger than
1. For example, if an instance i is predicted to have probability pij = 0 to be
in class j and at the same time on average the overall proportion of class j is
over-estimated, then εj < 0 and the adjusted prediction aij = εj is negative.
While such predictions are no longer probabilities in the standard sense, these
can still be evaluated with Brier score. So it is always true that the overall
Brier score on adjusted predictions is lower than on the original predictions,
1
ndBS(ai·, yi·) ≤ 1

ndBS(pi·, yi·), with equality only when the original predictions
are already adjusted, a = p. Note that whenever we mention the guaranteed
reduction of loss, it always means that there is no reduction in the special case
where the predictions are already adjusted, since then adjustment has no effect.

Additive adjustment is just one possible transformation of unadjusted predic-
tions into adjusted predictions, and there are infinitely many other such trans-
formations. We will refer to these as adjustment procedures. If we have explicitly
required the output values to be in the range [0, 1] then we use the term bounded
adjustment procedure, otherwise we use the term unbounded adjustment proce-
dure, even if actually the values do not go out from that range.

Definition 5 (Adjustment Procedure). Adjustment procedure is any func-
tion α : [0, 1]n×k × [0, 1]k → [0, 1]n×k which takes as arguments the predictions
p of a probabilistic k-class classifier on n instances and the actual class distri-
bution π on these instances, such that for any p and π the output predictions
a = α(p, π) are adjusted, that is 1

n

∑n
i=1 aij = πj for each class j ∈ {1, . . . , k}.

In this definition and also in the rest of the paper we assume silently, that p
contains valid predictions of a probabilistic classifier, and so for each instance i
the predicted class probabilities add up to 1, that is

∑k
j=1 pij = 1. Similarly, we

assume that π contains a valid class distribution, with
∑k

j=1 πj = 1.

Definition 6 (Bounded Adjustment Procedure). An adjustment procedure
α : [0, 1]n×k × [0, 1]k → [0, 1]n×k is bounded, if for any p and π the output
predictions a = α(p, π) are in the range [0, 1], that is aij ∈ [0, 1] for all i, j.

An example of a bounded adjustment procedure is the multiplicative adjust-
ment method proposed in [9], which multiplies the prediction vector component-
wise with a constant weight vector and renormalizes the result to add up to 1.

Definition 7 (Multiplicative Adjustment). Multiplicative adjustment is
the function α∗ : [0, 1]n×k × [0, 1]k → [0, 1]n×k which takes in the predictions
of a probabilistic k-class classifier on n instances and the actual class distribu-
tion π on these instances, and outputs adjusted predictions a = α∗(p, π) defined
as aij = wjpij

zi
, where w1, . . . , wk ≥ 0 are real-valued weights chosen based on

p and π such that the predictions α∗(p, π) would be adjusted, and zi are the
renormalisation factors defined as zi =

∑k
j=1 wjpij.

As proved in [9], the suitable class weights w1, . . . , wk are guaranteed to
exist, but finding these weights is a non-trivial task and the algorithm based on
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coordinate descent proposed in [9] can sometimes fail to converge. In the next
Sect. 3 we will propose a more reliable algorithm for multiplicative adjustment.

It turns out that the adjustment procedure should be selected depending on
which proper scoring rule is aimed to be minimised. It was proved in [9] that
Brier score is guaranteed to be reduced with additive adjustment and log-loss
with multiplicative adjustment. It was shown that when the ‘wrong’ adjustment
method is used, then the loss can actually increase. In particular, additive adjust-
ment can increase log-loss and multiplicative adjustment can increase Brier score.
A sufficient condition for a guaranteed reduction of loss is coherence between the
adjustment procedure and the proper loss corresponding to a Bregman diver-
gence. Intuitively, coherence means that the effect of adjustment is the same
across instances, where the effect is measured as the difference of divergences of
this instance from any fixed class labels j and j′. The definition is the following:

Definition 8 (Coherence of Adjustment Procedure and Bregman
Divergence [9]). Let α : [0, 1]n×k × [0, 1]k → [0, 1]n×k be an adjustment proce-
dure and dφ be a Bregman divergence. Then α is called to be coherent with dφ if
and only if for any predictions p and class distribution π the following holds for
all i = 1, . . . , n and j, j′ = 1, . . . , k:

(dφ(ai·, cj) − dφ(pi·, cj)) − (dφ(ai·, cj′) − dφ(pi·, cj′)) = constj,j′

where constj,j′ is a quantity not depending on i, and where a = α(p, π) and cj is
a one-hot vector corresponding to class j (with 1 at position j and 0 elsewhere).

The following result can be seen as a direct corollary of Theorem 4 in [9].

Theorem 9 (Decomposition of Bregman Divergences [9]). Let dφ be a
Bregman divergence and let α : [0, 1]n×k × [0, 1]k → [0, 1]n×k be an adjustment
procedure coherent with dφ. Then for any predictions p, one-hot encoded true
labels y ∈ {0, 1}n×k and class distribution π (with πj = 1

n

∑n
i=1 yij) the following

decomposition holds:

1
n

n∑

i=1

dφ(pi·, yi·) =
1
n

n∑

i=1

dφ(pi·, ai·) +
1
n

n∑

i=1

dφ(ai·, yi·) (1)

Proof. The proofs and source code are in the Online Supplementary1.

Due to non-negativity of dφ this theorem gives a guaranteed reduction of loss,
that is the loss on the adjusted probabilities a (average divergence between a and
y) is less than the loss on the original unadjusted probabilities (average diver-
gence between p and y), unless the probabilities are already adjusted (p = a).
As additive adjustment can be shown to be coherent with the squared Euclidean
distance and multiplicative adjustment with KL-divergence [9], the respective
guarantees of loss reduction follow from Theorem 9.

1 Proofs, code: https://github.com/teddyheiser/Shift Happens ECML PKDD 2019.

https://github.com/teddyheiser/Shift_Happens_ECML_PKDD_2019
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3 General Adjustment

Our main contribution is a family of adjustment procedures called BGA
(Bounded General Adjustment). We use the term ‘general’ to emphasise that
it is not a single method, but a family with exactly one adjustment procedure
for each proper loss. We will prove that every adjustment procedure of this family
is guaranteed to reduce the respective proper loss, assuming that the true class
distribution is known exactly. To obtain more theoretical insights and answer
the open questions regarding coherence of adjustment procedures with Bregman
divergences and proper losses, we define a weaker variant of BGA called UGA
(Unbounded General Adjustment). As the name says, these methods can some-
times output predictions that are not in the range [0, 1]. On the other hand,
the UGA procedures turn out to be coherent with their corresponding diver-
gence measure, and hence have the decomposition stated in Theorem 9 and also
guarantee reduced loss. However, UGA procedures have less practical value, as
each UGA procedure is dominated by the respective BGA in terms of reductions
in loss. We start by defining the UGA procedures, as these are mathematically
simpler.

3.1 Unbounded General Adjustment (UGA)

We work here with the same notations as introduced earlier, with p denoting
the n × k matrix with the outputs of a k-class probabilistic classifier on a test
dataset with n instances, and y denoting the matrix with the same shape con-
taining one-hot encoded actual labels. We denote the unknown true posterior
class probabilities P(Y |X) on these instances by q, again a matrix with the same
shape as p and y.

Our goal is to reduce the loss 1
n

∑n
i=1 dφ(pi·, yi·) knowing the overall class

distribution π, while not having any other information about labels y. Due
to the defining property of any proper loss, the expected value of this quan-
tity is minimised at p = q. As we know neither y nor q, we consider instead
the set of all possible predictions Qπ that are adjusted to π, that is Qπ ={

a ∈ R
n×k

∣
∣
∣ 1

n

∑n
i=1 ai,j = πj ,

∑k
j=1 ai,j = 1

}
. Note that here we do not require

aij ≥ 0, as in this subsection we are working to derive unbounded adjustment
methods which allow predictions to go out from the range [0, 1].

The question is now whether there exists a prediction matrix a ∈ Qπ that
is better than p (i.e. has lower divergence from y) regardless of what the actual
labels y are (as a sidenote, y also belongs to Qπ). It is not obvious that such a
exists, as one could suspect that for any a there exists some bad y such that the
original p would be closer to y than the ‘adjusted’ a is.

Now we will define UGA and prove that it outputs adjusted predictions a�

that are indeed better than p, regardless of what the actual labels y are.

Definition 10 (Unbounded General Adjuster (UGA)). Consider a k-class
classification task with a test dataset of n instances, and let dφ be a Bregman diver-
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gence. Then the unbounded general adjuster corresponding to dφ is the function
α� : Rn×k × R

k → R
n×k defined as follows:

α�(p, π) = arg min
a∈Qπ

1
n

n∑

i=1

dφ(pi·, ai·)

Qπα□(p, π)

p

α (p, π)

y
□

Fig. 1. A schematic explanation with α�(p, π) of UGA and α�(p, π) of BGA.

The definition of UGA is correct in the sense that the optimisation task used
to define it has a unique optimum. This is because it is a convex optimisation
task, as will be explained in Sect. 3.3. Intuitively, Qπ can be thought of as an
infinite hyperplane of adjusted predictions, also containing the unknown y. The
original prediction p is presumably not adjusted, so it does not belong to Qπ.
UGA essentially ‘projects’ p to the hyperplane Qπ, in the sense of finding a in
the hyperplane which is closest from p according to dφ, see the diagram in Fig. 1.

The following theorem guarantees that the loss is reduced after applying
UGA by showing that UGA is coherent with its Bregman divergence.

Theorem 11. Let α� be the unbounded general adjuster corresponding to the
Bregman divergence dφ. Then α� is coherent with dφ.

The next theorem proves that UGA is actually the one and only adjustment
procedure that decomposes in the sense of Theorem 9. Therefore, UGA coin-
cides with additive and multiplicative adjustment on Brier score and log-loss,
respectively.

Theorem 12. Let dφ be a Bregman divergence, let p be a set of predictions,
and π be a class distribution over k classes. Suppose a ∈ Qπ is such that for any
y ∈ Qπ the decomposition of Eq. (1) holds. Then a = α�(p, π).

As explained in the example of additive adjustment (which is UGA for Brier
score), some adjusted predictions can get out from the range [0, 1]. It is clear that
a prediction involving negative probabilities cannot be optimal. In the following
section we propose the Bounded General Adjuster (BGA) which does not satisfy
the decomposition property but is guaranteed to be at least as good as UGA.
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3.2 Bounded General Adjustment

For a given class distribution π, let us constrain the set of all possible adjusted
predictions Qπ further, by requiring that all probabilities are non-negative:

Q�
π = {a ∈ Qπ | ai,j ≥ 0 for i = 1, . . . , n and j = 1, . . . , k}

We now propose our bounded general adjuster (BGA), which outputs predictions
within Q�

π .

Definition 13 (Bounded General Adjuster (BGA)). Consider a k-class
classification task with a test dataset of n instances, and let dφ be a Bregman
divergence. Then the bounded general adjuster corresponding to dφ is the func-
tion α� : [0, 1]n×k × [0, 1]k → [0, 1]n×k defined as follows:

α�(p, π) = arg min
a∈Q�

π

1
n

n∑

i=1

dφ(pi·, ai·)

Similarly as for UGA, the correctness of BGA is guaranteed by the convexity
of the optimisation task, as shown in Sect. 3.3. BGA solves almost the same opti-
misation task as UGA, except that instead of considering the whole hyperplane
Qπ it finds the closest a within a bounded subset Q�

π within the hyperplane.
Multiplicative adjustment is the BGA for log-loss, because log-loss is not defined
at all outside the [0, 1] bounds, and hence the UGA for log-loss is the same as
the BGA for log-loss. The following theorem shows that there is a guaranteed
reduction of loss after BGA, and the reduction is at least as big as after UGA.

Theorem 14. Let dφ be a Bregman divergence, let p be a set of predictions,
and π be a class distribution over k classes. Then for any y ∈ Q�

π the following
holds:

n∑

i=1

(dφ(pi·, yi·) − dφ(a�
i· , yi·))

≥
n∑

i=1

dφ(pi·, a�
i· ) ≥

n∑

i=1

dφ(pi·, a�
i·) =

n∑

i=1

(dφ(pi·, yi·) − dφ(a�
i·, yi·))

Note that the theorem is even more general than we need and holds for
all y ∈ Q�

π , not only those y which represent label matrices. A corollary of this
theorem is that the BGA for Brier score is a new adjustment method dominating
over additive adjustment in reducing Brier score. In practice, all practitioners
should prefer BGA over UGA when looking to adjust their classifiers. Coherence
and decomposition are interesting from a theoretical perspective but from a loss
reduction standpoint, BGA is superior to UGA.
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3.3 Implementation

Both UGA and BGA are defined through optimisation tasks, which can be shown
to be convex. First, the objective function is convex as a sum of convex functions
(Bregman divergences are convex in their second argument [2]). Second, the
equality constraints that define Qπ are linear, making up a convex set. Finally,
the inequality constraints of Q�

π make up a convex set, which after intersecting
with Qπ remains convex. These properties are sufficient [3] to prove that both
the UGA and BGA optimisation tasks are convex.

UGA has only equality constraints, so Newton’s method works fine with it.
For Brier score there is a closed form solution [9] of simply adding the difference
between the new distribution and the old distribution for every set of k probabil-
ities. BGA computations are a little more difficult due to inequality constraints,
therefore requiring interior point methods [3]. While multiplicative adjustment
is for log-loss both BGA and UGA at the same time, it is easier to calculate it
as a UGA, due to not having inequality constraints.

4 Experiments

4.1 Experimental Setup

While our theorems provide loss reduction guarantees when the exact class dis-
tribution is known, this is rarely something to be expected in practice. Therefore,
the goal of our experiments was to evaluate the proposed adjustment methods
in the setting where the class distribution is known approximately. For loss mea-
sures we selected Brier score and log-loss, which are the two most well known
proper losses. As UGA is dominated by BGA, we decided to evaluate only BGA,
across a wide range of different types of dataset shift, across different classifier
learning algorithms, and across many datasets. We compare the results of BGA
with the prior probability adjuster (PPA) introduced in Sect. 2, as this is to our
knowledge the only existing method that inputs nothing else than the predic-
tions of the model and the shifted class distribution. As reviewed in [17], other
existing transfer learning methods need either the information about the features
or a limited set of labelled data from the shifted context.

To cover a wide range of classifiers and datasets, we opted for using OpenML
[16], which contains many datasets, and for each dataset many runs of different
learning algorithms. For each run OpenML provides the predicted class proba-
bilities in 10-fold cross-validation. As the predictions in 10-fold cross-validation
are obtained with 10 different models trained on different subsets of folds, we
compiled the prediction matrix p from one fold at a time. From OpenML we
downloaded all user-submitted sets of predictions for both binary and multiclass
(up to eight classes) classification tasks, restricting ourselves to tasks with the
number of instances in the interval of [2000, 1000000]. Then we discarded every
dataset that included a predicted score outside the range (0, 1). To emphasize,
we did not include runs which contain a 0 or a 1 anywhere in the predictions,
since log-loss becomes infinite in case of errors with full confidence. We discarded
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datasets with less than 500 instances and sampled datasets with more than 1000
instances down to 1000 instances. This left us with 590 sets of predictions, each
from a different model. These 590 sets of predictions come from 59 different runs
from 56 different classification tasks. The list of used datasets and the source
code for running the experiments is available in the Online Supplementary at
https://github.com/teddyheiser/Shift Happens ECML PKDD 2019.

Shifting. For each dataset we first identified the majority class(es). After sorting
the classes by size decreasingly, the class(es) 1, . . . , m were considered as majority
class(es), where j was the smallest possible integer such that π1+ · · ·+πm > 0.5.
We refer to other class(es) as minority class(es). We then created 4 variants of
each dataset by artificially inducing shift in four ways. Each of those shifts has
a parameter ε ∈ [0.1, 0.5] quantifying the amount of shift, and ε was chosen
uniformly randomly and independently for each adjustment task.

The first method induces prior probability shift by undersampling the major-
ity class(es), reducing their total proportion from π1+· · ·+πm to π1+· · ·+πm−ε.
The second method induces a variety of concept shift by selecting randomly a
proportion ε of instances from majority class(es) and changing their labels into
uniformly random minority class labels. The third method induces covariate shift
by deleting within class m the proportion ε of the instances with the lowest val-
ues of the numeric feature which correlates best with this class label. The fourth
method was simply running the other three methods all one after another, which
produces an other type of shift.

Approximating the New Class Distribution. It is unlikely that a practitioner of
adjustment would know the exact class distribution of a shifted dataset. To inves-
tigate this, we ran our adjustment algorithms on our shifted datasets with not
only the exact class distribution, but also eight ‘estimations’ of the class distribu-
tion obtained by artificially modifying the correct class distribution (π1, . . . , πk)
into (π1 + δ, . . . , πm + δ, πm+1 − δ′, . . . , πk − δ′, where δ was one of eight val-
ues +0.01,−0.01,+0.02,−0.02,+0.04,−0.04,+0.08,−0.08, and δ′ was chosen to
ensure that the sum of class proportions adds up to 1. If any resulting class pro-
portion left the [0,1] bounds, then the respective adjustment task was skipped. In
total, we recorded results for 17527 adjustment tasks resulting from combinations
of dataset fold, shift amount, shift method, and estimated class distribution.

Adjustment. For every combination of shift and for the corresponding nine
different class distribution estimations, we adjusted the datasets/predictions
using the three above-mentioned adjusters: Brier-score-minimizing-BGA, log-
loss-minimizing-BGA, and PPA. PPA has a simple implementation, but for the
general adjusters we used the CVXPY library [6] to perform convex optimiza-
tion. For Brier-score-minimizing-BGA, the selected method of optimization was
OSQP (as part of the CVXPY library). For log-loss-minimizing-BGA, we used
the ECOS optimizer with the SCS optimizer as backup (under rare conditions
the optimizers could numerically fail, occurred 30 times out of 17527). For both

https://github.com/teddyheiser/Shift_Happens_ECML_PKDD_2019
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Fig. 2. The reduction in Brier score (left figure) and log-loss (right figure) after BGA
adjustment (left side of the violin) and after PPA adjustment (right side of the violin).
The rows correspond to different amounts of shift (with high shift at the top and low at
the bottom). The columns correspond to amount of induced error in class distribution
estimation, starting from left: 0.00, 0.01, 0.02, 0.04 and 0.08.

Brier score and log loss, we measured the unadjusted loss and the loss after
running the dataset through the aforementioned three adjusters.

4.2 Results

On different datasets the effects of our shifting procedures vary and thus we
have categorized the shifted datasets into 3 equal-sized groups by the amount
of squared Euclidean distance between the original and new class distributions
(high, medium and low shift). Note that these are correlated to the shift amount
parameter ε, but not determined by it. Figures 2 and 3 both visualise the loss
reduction after adjustment in proportion to the loss before adjustment. In these
violin plots the part of distributions above 0 stands for reduction of loss and
below 0 for increased loss after adjustment. For example, proportional reduction
value 0.2 means that 20% of the loss was eliminated by adjustment. The left
side of the left-most violins in Fig. 2 show the case where BGA for Brier score is
evaluated on Brier score (with high shift at the top row and low at the bottom).
Due to guaranteed reduction in loss the left sides of violins are all above 0. In
contrast, the right side of the same violins shows the effect of PPA adjustment,
and PPA can be seen to sometimes increase the loss, while also having lower
average reduction of loss (the horizontal black line marking the mean is lower).
When the injected estimation error in the class distribution increases (next 4
columns of violins), BGA adjustment can sometimes increase the loss as well,
but is on average still reducing loss more than PPA in all of the violin plots.
Similar patterns of results can be seen in the right subfigure of Fig. 2, where
BGA for log-loss is compared with PPA, both evaluated on log-loss. The mean
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Fig. 3. The reduction in Brier score (left figure) and log-loss (right figure) after BGA
adjustment to reduce Brier score (left side of the violin) and after BGA to reduce log-
loss (right side of the violin). The rows correspond to different amounts of shift (high
at the top and low at the bottom). The columns correspond to amount of induced error
in class distribution estimation, starting from left: 0.00, 0.01, 0.02, 0.04 and 0.08.

proportional reduction of loss by BGA is higher than by PPA in 13 out of 15
cases. The bumps in some violins are due to using 4 different types of shift.

Figure 3 demonstrates the differences between BGA aiming to reduce Brier
score (left side of each violin) and BGA to reduce log loss (right side of each
violin), evaluated on Brier score (left subfigure) and log-loss (right subfigure).
As seen from the right side of the leftmost violins, BGA aiming to reduce the
wrong loss (log-loss) can actually increase loss (Brier score), even if the class
distribution is known exactly. Therefore, as expected, it is important to adjust
by minimising the same divergence that is going to be used to test the method.

5 Conclusion

In this paper we have constructed a family BGA of adjustment procedures aiming
to reduce any proper loss of probabilistic classifiers after experiencing dataset
shift, using knowledge about the class distribution. We have proved that the loss
is guaranteed to reduce, if the class distribution is known exactly. According to
our experiments, BGA adjustment to an approximated class distribution often
still reduces loss more than prior probability adjustment.

Acknowledgments. This work was supported by the Estonian Research Council
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Abstract. Most positive and unlabeled data is subject to selection
biases. The labeled examples can, for example, be selected from the
positive set because they are easier to obtain or more obviously posi-
tive. This paper investigates how learning can be enabled in this setting.
We propose and theoretically analyze an empirical-risk-based method for
incorporating the labeling mechanism. Additionally, we investigate under
which assumptions learning is possible when the labeling mechanism is
not fully understood and propose a practical method to enable this. Our
empirical analysis supports the theoretical results and shows that taking
into account the possibility of a selection bias, even when the labeling
mechanism is unknown, improves the trained classifiers.

Keywords: PU learning · Unlabeled data · Classification

1 Introduction

Positive and unlabeled learning focuses on the setting where the training data
contains some labeled positive examples and unlabeled examples, which could
belong to either the positive or negative class. This contrasts to supervised learn-
ing, where a learner has a fully labeled training set and to semi-supervised
learning, where a learner (usually) observes some labeled examples from each
class. Positive and unlabeled (PU) data naturally arises in many applications.
Electronic medical records (EMR) list diseases that a patient has been diag-
nosed with, however, many diseases are undiagnosed. Therefore, the absence of
a diagnosis does not imply that a patient does not have the disease. Similarly,
automatically constructed knowledge bases (KBs) are incomplete, and hence any
absent tuple may be either true (i.e., belong in the knowledge base) or false [37].

Elkan and Noto [12] formalized one of the most commonly made assump-
tions in PU learning: the observed positive examples were selected completely
at random from the set of all positive examples. This assumption means that
the probability of observing the label of a positive example is constant (i.e., the
same for all positive examples), which facilitates and simplifies both theoretical
analysis and algorithmic design. This setting has been extensively explored in
the literature [4,5,7,9,10,15,16,21,22,24,26,27].
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Unfortunately, the “selected completely at random” assumption is often vio-
lated in real-world data sets. For example, a patient’s EMR will only contain
a diagnosis if she visits a doctor, which will be influenced by factors such as
the severity of the symptoms and her socio-economic status. The problem of
biases in the observed labels has been recognized in the recommender systems
and retrieval literature [19,25,32]. However, these works differ from PU learning
in that the labels for some examples from each “class” are observed. Still, within
the context of PU learning, there has been little (or no) work that focuses on
coping with biases in the observed positive labels.

The contribution of this paper is to take a step towards filling that gap
by proposing and analyzing a new, less restrictive assumption for PU learning:
the Selected At Random (SAR) assumption. Instead of assuming a constant
probability for all positive examples to be labeled, it assumes that the probability
is a function of a subset of an example’s attributes. To help analyze this new
setting, we leverage the idea of a propensity score, which is a term originating
from the causal inference literature [17]. Intuitively, the propensity score can
be thought of as an instance-specific probability that an example was selected
to be labeled. We show theoretically how using propensity scores in a SAR
setting provides benefits. Then, we discuss a practical approach for learning the
propensity scores from the data and using them to learn a model. Empirically,
we show that for SAR PU data, our approach results in improved performance
over making the standard selected completely at random assumption.

2 Preliminaries

PU learning entails learning a binary classifier only given access to positive exam-
ples and unlabeled data. This paper considers the single-training set scenario,
where the data can be viewed as a set of triples (x, y, s) with x a vector of the
attributes, y the class and s a binary variable representing whether the tuple
was selected to be labeled. While y is always missing, information about it can
be derived from the value of s. If s = 1, then the example belongs to the positive
class as Pr(y = 1|s = 1) = 1. If s = 0, the instance can belong to either class.

In PU learning, it is common to make the Selected Completely at Ran-
dom (SCAR) assumption, which assumes that the observed positive exam-
ples are a random subset of the complete set of positive examples. Select-
ing a positive example is therefore independent of the example’s attributes
Pr(s = 1|y = 1, x) = Pr(s = 1|y = 1). The probability for selecting a posi-
tive example to be labeled is known as the label frequency c = Pr(s = 1|y = 1).
A neat advantage of the SCAR assumption is that, using the label frequency, a
model that predicts the probability of an example being labeled can be trans-
formed to the classifier: Pr(y = 1|x) = Pr(s = 1|x)/c.

Knowing the label frequency is equivalent to knowing the class prior α =
Pr(y = 1) as one can be derived from the other: c = Pr(s = 1)/α. Under the
SCAR assumption, PU learning can therefore be reduced to estimating the class
prior or label frequency and training a model to predict the observed labels.
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Estimating the label frequency is an ill-defined problem because it is not
identifiable: the absence of a label can be explained by either a small prior prob-
ability for the positive class or a low label frequency [33]. For the class prior to
be identifiable, additional assumptions are necessary. Different assumptions have
been proposed, but they are all based on attributing as many missing classes as
possible to a lower label frequency as opposed to a lower positive class probabil-
ity. The following assumptions are listed from strongest to strictly weaker. The
strongest assumption is that the classes are non-overlapping, which makes the
class prior and the labeled distribution match the unlabeled one as closely as
possible [12,29]. Others make the assumption that there exists a positive sub-
domain of the instance space, but the classes can overlap elsewhere [1,28,33].
Ramaswamy et al. [30] assumes that a function exists which only selects pos-
itive instances. Finally, the irreducibility assumption states that the negative
distribution cannot be a mixture that contains the positive distribution [3,18].

3 Labeling Mechanisms for PU Learning

The labeling mechanism determines which positive examples are labeled. To
date, PU learning has largely focused on the SCAR setting. However, labels are
not missing completely at random in most real-world problems. For example,
facts in automatically constructed KBs are biased in several ways. One, they
are learned from Web data, and only certain types of information appear on the
Web (e.g., there is more text about high-level professional sports teams than low-
level ones). Two, the algorithms that extract information from the Web employ
heuristics to ensure that only information that is likely to be accurate (e.g.,
redundancy) is included in the KB. Similarly, biases arise when people decide to
like items online, bookmark web pages, or subscribe to mail lists. Therefore, we
believe it is important to consider and study other labeling mechanisms.

When Elkan and Noto [12] first formalized the SCAR assumption, they noted
the similarity of the PU setting to the general problem of learning in the presence
of missing data. Specifically, they noted that the SCAR assumption is some-
what analogous with the missing data mechanism called Missing Completely At
Random (MCAR) [31]. Apart from MCAR, the two other classes of missing
data mechanisms are Missing At Random (MAR) and Missing Not At Random
(MNAR). To complete this analogy, we propose the following corresponding
classes of PU labeling mechanisms:

SCAR Selected Completely At Random: The labeling mechanism does not
depend on the attributes of the example, nor on the probability of the
example being positive: each positive example has the same probability to
be labeled.

SAR Selected At Random: The labeling mechanism depends on the values of
the attributes of the example, but given the attribute values it does not
depend on the probability of the example being positive.

SNAR Selected Not At Random: All other cases: The labeling mechanism
depends on the real probability of this example being positive, even given
the attribute values.
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There is one very important difference between PU labeling mechanisms
and missingness mechanisms in that the labeling always depends on the class
value: only positive examples can be selected to be labeled. According to the
missingness taxonomy, all PU labeling mechanisms are therefore MNAR. SNAR
is a peculiar class because it depends on the real class probability, while the class
needs to be positive by definition. The class probability refers to the probability
of an identical instance to this one being positive. Consider, for example, the
problem of classifying pages as interesting. If a page is moderately interesting to
you, some days you might like it while other days you might not. The labeling
mechanism in this case could depend on how much you like them and therefore
on the instance’s class probability.

4 Learning with SAR Labeling Mechanisms

In this paper, we focus on SAR labeling mechanisms, where the key question
is how we can enable learning from SAR PU data. Our key insight is that the
labeling mechanism is also related to the notion of a propensity score from
causal inference [17]. In causal inference, the propensity score is the probability
that an instance is assigned to the treatment or control group. This probability
is instance-specific and based on a set of the instance’s attributes. We use an
analogous idea and define the propensity score as the labeling probability for
positive examples:
Definition 1 (Propensity Score). The propensity score for x, denoted e(x),
is the label assignment probability for positive instances with attributes x,

e(x) = Pr(s = 1|y = 1, x).

A crucial difference with the propensity score from causal inference is that our
score is conditioned on the class being positive.

We incorporate the propensity score when learning in a PU setting by using
the propensity scores to reweight the data. Our scheme generalizes an approach
taken for SCAR data [11,21,34] to the SAR setting. In causal inference, inverse-
propensity-scoring is a standard method where the examples are weighted with
the inverse of their propensity score [17,23,32]. This cannot be applied when
working with positive and unlabeled data, because we have zero probability for
labeling negative examples. But we can do a different kind of weighting. The
insight is that for each labeled example (xi, s = 1) that has a propensity score
ei, there are expected to be 1

ei
positive examples, of which 1

ei
− 1 did not get

selected to be labeled. This insight can be used in algorithms that use counts,
to estimate the correct count from the observed positives and their respective
propensity scores. In general, this can be formulated as learning with negative
weights: every labeled example gets a weight 1

ei
and for every labeled example

a negative example is added to the dataset that gets a negative weight 1 − 1
ei

.
We now provide a theoretical analysis of the propensity-weighted method, to

characterize its appropriateness. We consider two cases: (1) when we know the
true propensity scores and (2) when we must estimate them from data. All the
proofs are deferred to the appendix (https://dtai.cs.kuleuven.be/software/sar).

https://dtai.cs.kuleuven.be/software/sar
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4.1 Case 1: True Propensity Scores Known

Standard evaluation measures, such as Mean Absolute Error (MAE), Mean
Square Error (MSE) and log loss, can be formulated as follows:1

R(ŷ|y) =
1
n

n∑

i=1

yiδ1(ŷi) + (1 − yi)δ0(ŷi),

where y and ŷ are vectors of size n containing, respectively, the true labels and
predicted labels. The function δy(ŷ) represents the cost for predicting ŷ when
the class is y, for example:

MAE : δy(ŷ) = |y − ŷ|,
MSE : δy(ŷ) = (y − ŷ)2,

Log Loss : δ1(ŷ) = − ln ŷ , δ0(ŷ) = − ln(1 − ŷ).

We can formulate propensity-weighted variants of these cost functions as:

Definition 2 (Propensity-Weighted Estimator). Given the propensity
scores e and PU labels s, the propensity weighted estimator of R(ŷ|y) is

R̂(ŷ|e, s) =
1
n

n∑

i=1

si

(
1
ei

δ1(ŷi) + (1 − 1
ei

)δ0(ŷi)
)

+ (1 − si)δ0(ŷi),

where y and ŷ are vectors of size n containing, respectively, the true labels and
predicted labels. The function δy(ŷ) represents the cost for predicting ŷ when the
class is y.

This estimator is unbiased:

E[R̂(ŷ|e, s)])

=
1
n

n∑

i=1

yiei

(
1
ei

δ1(ŷi) + (1 − 1
ei

)δ0(ŷi)
)

+ (1 − yiei)δ0(ŷi)

=
1
n

n∑

i=1

yiδ1(ŷi) + (1 − yi)δ0(ŷi)

= R(ŷ|y).

To characterize how much the estimator can vary from the expected value,
we provide the following bound:

Proposition 1 (Propensity-Weighted Estimator Bound). For any pre-
dicted classes ŷ and real classes y of size n, with probability 1−η, the propensity-
weighted estimator R̂(ŷ|e, s) does not differ from the true evaluation measure
R(ŷ|y) more than

|R̂(ŷ|e, s) − R(ŷ|y)| ≤
√

δ2max ln 2
η

2n
,

with δmax the maximum absolute value of cost function δy.
1 We assume that 0 < ŷ < 1.
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The propensity-weighted estimator can be used as the risk for Empirical Risk
Minimization (ERM), which searches for a model in the hypothesis space H by
minimizing the risk:

ŷR̂ = argmin
ŷ∈H

R̂(ŷ|e, s).

The following proposition characterizes how much the estimated risk for hypoth-
esis ŷR̂ can deviate from its true risk.

Proposition 2 (Propensity-Weighted ERM Generalization Error
Bound). For a finite hypothesis space H, the difference between the propensity-
weighted risk of the empirical risk minimizer ŷR̂ and its true risk is bounded,
with probability 1 − η, by:

R(ŷR̂|y) ≤ R̂(ŷR̂|e, s) +

√
δ2max ln |H|

η

2n
.

4.2 Case 2: Propensity Scores Estimated from Data

Often the exact propensity score is unknown, but we have an estimate ê of it.
In this case, the bias of the propensity-weighted estimator is:

Proposition 3 (Propensity-Weighted Estimator Bias).

bias(R̂(ŷ|ê, s)) =
1
n

n∑

i=1

yi(1 − ei

êi
) (δ1(ŷi) − δ0(ŷi)) .

From the bias, it follows that the propensity scores only need to be accurate
for positive examples. An incorrect propensity score has a larger impact when
the predicted classes have more extreme values (i.e., tend towards zero or one).
Underestimated propensity scores are expected to result in a model with a higher
bias. Lower propensity scores result in learning models that estimate the positive
class to be more prevalent than it is, which results in a larger (δ1(ŷi) − δ0(ŷi))
for positive examples.

Side Note on Sub-optimality of Expected Risk. Another method that one
might be inclined to use when incorporating the propensity score is to minimize
the expected risk2:

R̂exp(ŷ|e, s) = Ey|e,s,ŷ [R(ŷ|y)]

=
1
n

n∑

i=1

(
si + (1 − si)

ŷi(1 − ei)
1 − ŷiei

)
δ1(ŷi) + (1 − si)

1 − ŷi

1 − ŷiei
δ0(ŷi).

2 Derivation in appendix, available on https://dtai.cs.kuleuven.be/software/sar.

https://dtai.cs.kuleuven.be/software/sar
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However, the expected risk is not an unbiased estimator of the true risk
and as a result, ŷR̂exp

= argminŷ∈HR̂exp(ŷ|e, s) is not expected to be the best
hypothesis. In fact, the hypothesis of always predicting the positive class ∀i :
ŷi = 1 always has an expected risk R̂exp(ŷ|e, s) = 0.

5 Learning Under the SAR Assumption

If the propensity scores for all examples are known (i.e., the exact labeling mech-
anism is known), they can be directly incorporated into the learning algorithm.
However, it is more likely that they are unknown. Therefore, this section inves-
tigates how to permit learning in the SAR setting when the exact propensity
scores are unknown. We discuss two such settings. The first is interesting from
a theoretical perspective and the second from a practical perspective.

5.1 Reducing SAR to SCAR

Learning the propensity scores from positive and unlabeled data requires making
additional assumptions: if any arbitrary instance can have any propensity score,
then it is impossible to know if an instance did not get labeled because of a
low propensity score or a low class probability. Therefore, the propensity score
needs to depend on fewer attributes than the final classifier [17]. A simple way
to accomplish this is to assume that the propensity function only depends on a
subset of the attributes xe called the propensity attributes:

Pr(s = 1|y = 1, x) = Pr(s = 1|y = 1, xe)
e(x) = e(xe).

Often, this a realistic assumption. It is trivially true if the labeling mechanism
does not have access to all attributes (e.g., because some were collected later).
It may also arise if a labeler cannot interpret some attributes (e.g., raw sensor
values) or only uses the attributes that are known to be highly correlated with
the class.

To see why this can be a sufficient assumption for learning in a SAR setting,
consider the case where the propensity attributes xe have a finite number of
configurations, which is true if these attributes are all discrete. In this case, it is
possible to partition the data into strata, with one stratum for each configuration
of xe. Within a stratum, the propensity score is a constant (i.e., all positive
examples have the same propensity score) and can thus be determined using
standard SCAR PU learning techniques. Note that, as previously discussed, the
SCAR assumption alone is not enough to enable learning from PU data, and
hence one of the additional assumptions [1,3,28,30,33] must be made.

Reducing SAR to SCAR is interesting because it demonstrates that learning
in the SAR setting is possible. However, it is suboptimal in practice as it does not
work if xe contains a continuous variable. Even for the discrete case, the number
of configurations grows exponentially as the size of xe increases. Furthermore,
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information is lost by partitioning the data. Some smoothness of the classifier
over the propensity attributes is expected, but this is not encouraged when
learning different classifiers for each configuration. Similarly, the propensity score
itself is expected to be a smooth function over the propensity variables.

5.2 EM for Propensity Estimation

The problems with reducing the SAR to the SCAR case motivate the need to
jointly search for a classifier and lower dimensional propensity score function
that best explain the observed data. This approach also offers the advantage
that it relaxes the additional assumptions: if they hold in the majority of the
propensity attributes’ configurations, the models’ smoothness helps to overcome
potential issues arising in the configurations where the assumptions are violated.
This subsection presents a simple expectation-maximization method for simul-
taneously training the classification and the propensity score model. It aims to
maximize the expected log likelihood of the combination of models.

Expectation. Given the expected classification model f̂ and propensity score
model ê, the expected probability of the positive class ŷi of instance xi with
label si is:3

ŷi = Pr(yi = 1|si, xi, f̂ , ê)

= si + (1 − si)
f̂(xi) (1 − ê(xi))

1 − f̂(xi)ê(xi)
.

Maximization. Given the expected probabilities of the positive class ŷi, the mod-
els f and e are trained to optimize the expected log likelihood:

argmaxf,e

n∑

i=1

Eyi|xi,si,f̂ ,ê ln Pr(xi, si, yi|f, e)

= argmaxf

n∑

i=1

[
ŷi ln f(xi) + (1 − ŷi) ln(1 − f(xi))

]
,

argmaxe

n∑

i=1

ŷi

[
si · ln e(xi) + (1 − si) · ln(1 − e(xi))

]

From the maximization formula, it can be seen that to optimize the log
likelihood, both models need to optimize the log loss of a weighted dataset. The
3 All derivations for this section are in the appendix, available on https://dtai.cs.
kuleuven.be/software/sar.

https://dtai.cs.kuleuven.be/software/sar
https://dtai.cs.kuleuven.be/software/sar
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classification model f receives each example i twice, once as positive, weighted
by the expected probability of it being positive ŷi and once as negative, weighted
by the expected probability of it being negative (1 − ŷi). The propensity score
model e receives each example once, positive if the observed label is positive and
negative otherwise, weighted by the expected probability of it being positive ŷi.

Because this approach minimizes log loss, it will work best if the classes are
separable. If the classes are not separable, then the trained classification model is
not expected to be the optimal one for the trained propensity model (see previous
section). In that case, it is advisable to retrain the classifier with the obtained
propensity score, using the propensity-weighted risk estimation method.

The classification model is initialized by fitting a balanced model which con-
siders the unlabeled examples as negative. The propensity score model is ini-
tialized by using the classification model to estimate the probabilities of each
unlabeled example being positive.

Classic EM converges when the log likelihood stops improving. However, the
likelihood could stop improving before the propensity score model has converged.
Convergence is therefore formulated as convergence of both the log likelihood
and the propensity model. We measure the change in the propensity score model
by the average slope of the minimum square error line through the propensity
score prediction of the last n iterations.

6 Empirical Evaluation

This section illustrates empirically that the SAR assumption facilitates better
learning from SAR PU data. We compare both SAR and SCAR methods, so that
the gain of using an instance-dependent propensity score over a constant label
frequency can be observed. More specifically, we address the following questions:

Q1. Does propensity score weighting (SAR) improve classification performance
over assuming that data is SCAR and using class prior weighting?

Q2. Can the propensity score function be recovered?
Q3. Does the number of propensity attributes affect the performance?

6.1 Data

We use eight real-world datasets which cover a range of application domains such
as text, images and tabular data. These datasets are summarized in Table 1. Since
the 20 News Groups, Cover Type, Diabetes and Image Segmentation datasets
are originally multi-class datasets, we first transformed them by either grouping
or ignoring classes. For 20 News Groups,4 we distinguish between computer (pos)
and recreational (neg) documents. After removing their headers, footers, quotes,
and English stop words, the documents were transformed to 200 word occurrence
attributes using the Scikit-Learn5 count vectorizer. For Cover Type (see footnote

4 http://archive.ics.uci.edu/ml/.
5 http://scikit-learn.org.

http://archive.ics.uci.edu/ml/
http://scikit-learn.org


80 J. Bekker et al.

4), we distinguish the Lodgepole Pine (pos) from all other cover types (neg).
The Diabetes (see footnote 4) data was preprocessed in a similar manner to
Strack et al. [35]. Additionally, we dropped attributes with the same value in
95% of the examples, and replaced uncommon attribute values by “other”. The
positive class is patients being readmitted within 30 days. Image Segmentation
(see footnote 4) was used to distinguish between nature (sky, grass or foliage) and
other scenes (brickface, cement, window, path). Adult (see footnote 4), Breast
Cancer (see footnote 4), Mushroom (see footnote 4), and Splice6 were used as
is. To enable using logistic regression, all the datasets were further preprocessed
to have exclusively continuous attributes, scaled between −1 and 1. Multivalued
attributes were binarized.

Table 1. Datasets

Dataset # Instances # Attrib Pr(y = 1)

20 Newsgroups 3,979 200 0.55

Adult 48,842 14 0.24

Breast cancer 683 9 0.35

Cover type 581,0124 54 0.49

Diabetes 99,492 127 0.11

Image Segm. 2,310 18 0.43

Mushroom 8,124 111 0.48

Splice 3,175 60 0.52

6.2 Methodology and Approaches

Constructing Datasets. First, we extended each dataset with four artificial
binary propensity attributes x

(i)
e ∈ {0, 1}. Therefore, we clustered each dataset

into five groups (based on the attribute values) and generated for each group
a random distribution between propensity attribute values {0, 1}. Intuitively,
this corresponds to a scenario where examples that are in the same cluster have
the same prior probability of belonging to the positive class. However, which
examples are labeled depend on the propensity attributes.

Next, the datasets were randomly partitioned into train (80%) and test (20%)
sets five times. For each of the five train-test splits, we transformed the data into
positive and unlabeled datasets by sampling the examples to be labeled according
to the following propensity score:

e(xe) =
k∏

i=1

(
p
1−x(i)

e

low · p
x(i)
e

high

) 1
k

6 Available on LIBSVM Data repository https://www.csie.ntu.edu.tw/∼cjlin/
libsvmtools/datasets/.

https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/
https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/
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This gives propensity scores between plow and phigh, with all artificial propensity
attributes xe attributing equally to it. In our experiments the propensity scores
were between 0.2 and 0.8. We generated five of such labelings for each of the five
train-test splits and report the average performance over these 25 experiments.

Approach. We compare the classification performance of our EM method under
the SAR assumption7 against four baselines. First, we assume the data is SCAR
and compare against two state-of-the art methods to estimate the class prior:
KM2 from Ramaswamy et al. [30]8 and TIcE from Bekker and Davis [1]9 with
standard settings. Second, we use the naive baseline which assumes that all
unlabeled examples belong to the negative class (denoted Naive). Finally, as an
illustrative upper bound on performance, we show results when given fully super-
vised data (denoted Sup.). All approaches use logistic regression with default
parameters from Scikit-Learn10 as the base classifier for the classification model
and also for the propensity score model in the SAR setting.

6.3 Results

Q1. Figure 1 compares SAR-EM to all baselines. Because we are considering
models that predict probabilities for binary classification problems, we report
two standard metrics. First, we report MSE which measures the quality of the
model’s probability estimates [13]. Second, we report ROC-AUC, which mea-
sures predictive performance. When the propensity attributes are known, learn-
ing both the propensity score and the classification model from the data outper-
forms assuming the data is SCAR and learning under that assumption. Based
on each method’s average ROC-AUC ranks over all eight benchmark datasets,
the Friedman test [8] rejects the null-hypothesis that all methods perform the
same (p < 0.001), regardless of the number of propensity attributes used. More-
over, using the Nemenyi post-hoc test on the ranks, the performance of our
SAR-EM method is significantly better (p < 0.01) than the naive approach,
KM2 and TIcE. Note that the naive approach sometimes outperforms the SCAR
approaches. This can be explained by the SCAR methods’ goal of predicting the
correct ratio of the instance space as positive. When it picks the wrong subpsace
to get to this ratio, it results in both false positives and false negatives, where
the more conservative naive approach would only give the false negatives.

Q2. To evaluate the quality of the learned propensity scores for each example,
we report the MSE [13]. Except for the mushroom dataset, the EM method
always obtains very accurate propensity score estimates with MSEs below 0.1
(Fig. 2). Furthermore, the MSEs are often very close to zero.

7 Implementation available on https://dtai.cs.kuleuven.be/software/sar.
8 http://web.eecs.umich.edu/∼cscott/code/kernel MPE.zip.
9 https://dtai.cs.kuleuven.be/software/tice/.

10 https://scikit-learn.org/stable/.

https://dtai.cs.kuleuven.be/software/sar
http://web.eecs.umich.edu/~cscott/code/kernel_MPE.zip
https://dtai.cs.kuleuven.be/software/tice/
https://scikit-learn.org/stable/


82 J. Bekker et al.

0.00 0.05 0.10 0.15 0.20

Sup.

SAR-EM

SCAR-KM2

SCAR-TIcE

Naive 0.127

0.058

0.057

0.089

0.028

breastcancer

0.2 0.4 0.6

0.289

0.171

0.216

0.506

0.170

covtype

0.0 0.2 0.4 0.6

0.173

0.103

0.102

0.443

0.000

mushroom

0.2 0.4

0.255

0.161

0.361

0.424

0.088

20ng

0.25 0.50 0.75 1.00

Sup.

SAR-EM

SCAR-KM2

SCAR-TIcE

Naive 0.102

0.138

0.888

0.877

0.096

diabetes

0.1 0.2 0.3 0.4

0.265

0.142

0.172

0.283

0.109

splice

0.2 0.4 0.6 0.8

0.156

0.104

0.117

0.726

0.102

adult

0.0 0.2 0.4 0.6

0.212

0.077

0.181

0.504

0.040

imagesegmentation

2 propensity attributes

4 propensity attributes0.123

(a) Classification performance (MSEf )

0.90 0.95 1.00 1.05

Sup.

SAR-EM

SCAR-KM2

SCAR-TIcE

Naive 0.992

0.983

0.971

0.950

0.994

breastcancer

0.5 0.6 0.7 0.8 0.9

0.771

0.826

0.760

0.506

0.827

covtype

0.6 0.8 1.0

1.000

1.000

0.924

0.574

1.000

mushroom

0.6 0.8 1.0

0.859

0.891

0.603

0.528

0.951

20ng

0.5 0.6 0.7

Sup.

SAR-EM

SCAR-KM2

SCAR-TIcE

Naive 0.632

0.659

0.500

0.504

0.669

diabetes

0.7 0.8 0.9 1.0

0.862

0.886

0.855

0.721

0.924

splice

0.6 0.8 1.0

0.875

0.903

0.887

0.523

0.907

adult

0.6 0.8 1.0 1.2

0.958

0.970

0.930

0.567

0.985

imagesegmentation

(b) Classification performance (ROC-AUCf )

Fig. 1. Given SAR data, jointly learning both the unknown propensity scores and the
classification model almost always outperforms learning under the SCAR assumption.
The dots correspond to the mean performance for respectively two (grey) and four
(blue) propensity attributes. The error bars represent a 95% confidence interval around
the mean. The exact performance metric value is given on the right for the setting
with four propensity attributes, with the best performing algorithm highlighted in
bold (ignoring Supervised). (Color figure online)

0.000 0.025 0.050 0.075

0.032

breastcancer

0.0010 0.0015 0.0020 0.0025

0.001

covtype

0.05 0.10 0.15 0.20 0.25

0.128

mushroom

0.000 0.002 0.004 0.006

0.003

20ng

0.06 0.08 0.10

0.059

diabetes

0.005 0.010

0.005

splice

0.001 0.002 0.003

0.001

adult

0.01 0.02 0.03 0.04

0.017

imagesegmentation

SAR-EM

SAR-EM

2 propensity attributes

4 propensity attributes0.123

Fig. 2. Accuracy of the propensity score estimates (MSEe). The dots correspond to the
mean performance for respectively two (grey) and four (blue) propensity attributes.
The error bars represent a 95% confidence interval around the mean. The exact perfor-
mance metric value is given on the right for the setting with four propensity attributes.
(Color figure online)
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Q3. Finally, we observe no correlation between the number of propensity
attributes and the MSE and ROC-AUC of the classification model, nor the MSE
of the propensity score estimates (Fig. 1a).

7 Related Work

PU learning is an active area and for a broad overview see [2]. This work focuses
on approaches that modify learning methods by exploiting the assumptions
about the labeling mechanism (e.g., [9,12,16,22,27,36]) for the single training
set scenario. The key difference is that this paper generalizes past work, which
has focused on the SCAR assumption, to the less restrictive SAR setting. The
weighting scheme used in this paper has been used under the SCAR assump-
tion [11,21,34]. Furthermore, a special case of this method has been applied
matrix completion [16].

Almost all PU learning work that we are aware of focuses on the SCAR
setting. One recent exception assumes that the probability of observing a label
for a positive example depends on how difficult the example is to label [14].
That is, the more similar a positive example is to a negative one, the less likely
it is to be labeled. The difficulty of labeling is defined by the probabilistic gap
ΔPr(x) = Pr(y = 1|x)−Pr(y = 0|x) [14]. Based on properties of the probabilistic
gap, it is possible to identify reliable positive and negative examples [14]. Because
the probabilistic gap labeling mechanism depends on the attribute values x, it is
a specific case of SAR. Concretely, it assumes a propensity score that is a non-
negative, monotonically decreasing function of the probabilistic gap ΔPr(x).

PU learning is a special case of semi-supervised learning [6]. It is also related
to one-class learning [20]. The work on dealing with biases in the observed ratings
for recommender systems [32] and implicit feedback [19] is closely related to ours.
They also make use of propensity scores to cope with the biases. However, there
is a crucial difference: they perform inverse propensity weighting, which is not
possible in our setting. In those works, the propensity score for each example
is non-zero. In contrast, in PU learning, the propensity score for any negative
example is zero: you never observe these labels. Moreover, they assume that
examples for the full label space are available (e.g., observe at least one rating of
each category for recommender systems) to learn the propensity model, which is
not the case for PU learning because we have no known negative examples. This
necessitates different ways to learn the propensity scores and weigh the data in
our setting.

8 Conclusions

We investigated learning from SAR PU data: positive and unlabeled data with
non-uniform labeling mechanisms. We proposed and theoretically analyzed an
empirical-risk-minimization based method for weighting PU datasets with the
propensity scores to achieve unbiased learning. We explored which assumptions
are necessary to learn from SAR PU data generated by an unknown labeling
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mechanism and proposed a practical EM-based method for this setting. Empir-
ically, for SAR PU data, our proposed propensity weighted method offers supe-
rior predictive performance over making the SCAR assumption. Moreover, we
are able to accurately estimate each example’s propensity score.
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Abstract. Measuring hardness of individual instances in machine learn-
ing contributes to a deeper analysis of learning performance. This work
proposes instance hardness measures for binary classification in cost-
sensitive scenarios. Here cost curves are generated for each instance,
defined as the loss observed for a pool of learning models for that instance
along the range of cost proportions. Instance hardness is defined as the
area under the cost curves and can be seen as an expected loss of dif-
ficulty along cost proportions. Different cost curves were proposed by
considering common decision threshold choice methods in literature, thus
providing alternative views of instance hardness.

1 Introduction

Measuring difficulty in machine learning (ML) strongly contributes to under-
standing the potential advantages and limitations of the learning algorithms.
Previous work has mainly focused on deriving complexity measures for datasets
[1,7,14]. Alternatively, the current work follows the instance-level approach,
focused on measuring hardness for individual instances. Instance hardness mea-
sures can be useful to a deeper analysis of algorithm performance and to investi-
gate specific causes of bad learning behavior [12,17]. Distinct areas of ML have
developed methods which somehow rely on measuring difficulty of instances (e.g.,
dynamic classifier selection [4,19,20], noise detection [3,16,18] and active learn-
ing [13]).

In [11,16,17], instance hardness is defined based on the learning behavior of
a pool of algorithms (e.g., the proportion of algorithms that misclassified the
instance). In [15], the authors addressed instance difficulty by proposing four
types of examples: safe (easy instances), borderline, rare and outliers (difficult
instances). Each instance is categorized into a difficulty type by considering
the distribution of classes in the neighborhood of the instance. However, these
straightforward ideas do not consider an important practical issue, which is
the cost associated to the classifier errors [5]. The costs of false positives and
false negatives may vary at deployment time. In this sense, misclassification in
specific areas of the instance space may have more significance. Instance hardness
measures should identify such areas by defining difficulty not only in terms of
observed errors, but also in terms of expected costs.
c© Springer Nature Switzerland AG 2020
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Additionally, in cost-sensitive scenarios, when a model returns scores (e.g.,
class probabilities), decision thresholds can be adapted according to the error
costs. For instance, when the cost of false negatives is higher than false positives,
the threshold can be set to increase the number of positive predictions. In [9],
the loss of a model depends on the threshold choice method (TCM) adopted. Yet,
model performance for instances may vary too, requiring new hardness measures.

This work proposes a new framework to measure instance hardness for
binary classification problems in cost-sensitive scenarios. Initially, the concept
of instance cost curve is proposed, which plots the loss produced by a model
for that instance along the cost proportions. A different instance cost curve is
produced for each different TCM. This is a new concept which extends previ-
ous work on cost curves, now aiming to evaluate and inspect loss for individual
instances. Instance cost curves were derived for five different TCMs: score-fixed,
score-driven, rate-driven, score-uniform and rate-uniform methods [9].

By plotting an instance cost curve, one can visualize how difficult the instance
is for each cost proportion. A global instance hardness measure can be defined as
the area under the cost curve (i.e., the expected loss obtained for a learned model
for an instance along the range of cost proportions). In order to avoid defining
instance hardness based upon a single model, the ensemble strategy proposed in
[17] was adopted here. More specifically, a set of instance cost curves is generated
using a pool of learned models and the average instance hardness is computed.

The proposed framework addresses different issues. First, it is possible to
identify the hard instances in a problem and under which operation conditions
(cost proportions) they are difficult. The use of different TCMs provides new per-
spectives for measuring hardness, including misclassification evaluation, proba-
bility estimation and ranking performance. Yet, for some TCMs, hardness can
be measured under cost proportion uncertainty. The instance-level approach
also supports the development of hardness measures for groups of instances
and particularly class hardness measures. Different ML areas which already use
instance hardness measures can benefit from the proposed framework. The ade-
quate hardness measure must be chosen depending on the application objectives.
For instance, if one wants to improve class probability estimation, a hardness
measure based on scores should be adopted. We believe that such areas can be
extended more adequately to cost-sensitive scenarios by adopting the proposed
measures.

2 Notation and Basic Definitions

The basic notation adopted in this work is based on [9]. Instances are classified
into one of the classes Y = {0, 1}, in which 0 is the positive class and 1 is
the negative class. A model m is a scoring function that receives an instance x
as input and returns a score s = m(x) indicating the chance of a negative class
prediction. A model is transformed into a classifier assuming a decision threshold
t. If s ≤ t then x is classified as positive and classified as negative otherwise.

The classifier errors can be associated to different costs. The cost of a false
negative is c0, while the cost of a false positive is c1. As in [9], the costs are
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normalized by setting c0 +c1 = b and the cost proportion c = c0/b represents the
operating condition faced by a model when it is deployed. For simplicity, this
work adopted b = 2 and hence c ∈ [0, 1], c0 = 2c and c1 = 2(1 − c).

Let f0(s) and f1(s) be the score density functions respectively for the positive
and negative classes. The true positive rate obtained by setting a threshold t is
defined as F0(t) =

∫ t

−∞ f0(s)ds. The true positive rate, in turn, is defined as

F1(t) =
∫ t

−∞ f1(s)ds. The positive rate R(t) (i.e., the proportion of instances
predicted as positive) is R(t) = π0F0(t) + π1F1(t), in which π0 and π1 are the
proportions of positive and negative examples. The loss for a threshold t and a
cost proportion c is defined as:

Q(t, c) = c0π0 (1 − F0(t)) + c1π1F1(t)
= 2{cπ0 (1 − F0(t)) + (1 − c)π1F1(t)} (1)

A threshold choice method (TCM) is a function T (c) which defines the deci-
sion threshold according to the operation condition. The expected loss of a model
can be expressed as Eq. 2, in which wc(c) is the distribution of cost proportions:

L =
∫ 1

0

Q(T (c), c)wc(c)dc (2)

3 Instance Hardness and Cost Curves

By assuming uniform distribution of operation conditions, in [9] it is proved that
the loss L is directly related to different performance measures depending on the
TCM. If the threshold is fixed (e.g., 0.5) regardless c, L is the error rate at that
threshold. Under the score-driven TCM (i.e., T(c) = c), in turn, the loss is equal
to the Brier score of the model. Under the rate-driven method, when a threshold
is set to obtain a desired positive prediction rate, the loss is linearly related to
AUC. The appropriate measure depends on the cost-sensitive scenario.

Similarly, instance hardness may depend on the TCM. For instance, consider
three positive instances with scores 0.2, 0.6 and 0.8. The 1st instance is correctly
classified if a fixed t = 0.5 is adopted, while the 2nd and 3rd instances are false
negatives. In this case, instance hardness depends solely on the threshold and the
score. In case T (c) = c is adopted, the 1st instance is very easy since it is correctly
classified in a wide range of operation conditions. Yet, the 3rd instance is harder
than the 2nd one. Here, hardness also depends on the operation condition.

This paper proposes a new framework for instance hardness evaluation which
takes the above nuances into account. The expected model loss expressed in Eq. 2
is an aggregation over the operation conditions. The main idea is to transform
the loss function to be expressed as an aggregation over scores (instead of costs)
and then to define the contribution of each instance in the model loss. Initially,
Q(t, c) (Eq. 1) is decomposed into two functions respectively for false negatives
and false positives. For false negatives: Q0(t, c) = 2cπ0(1 − F0(t)). After some
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algebraic operations, this term is defined as an integral over scores:

Q0(t, c) = 2cπ0(1 − F0(t))

= 2cπ0(1 −
∫ t

−∞
f0(s)ds)

= 2cπ0(
∫

s

f0(s)ds −
∫

s

δ(s, t)f0(s)ds) (3)

= 2cπ0(
∫

s

(1 − δ(s, t))f0(s)ds

=
∫

s

2cπ0(1 − δ(s, t))f0(s)ds

where δ(s, t) = 1 if s ≤ t and = 0 otherwise. Notice that a false negative occurs
when the instance is positive and 1 − δ(s, t) = 1, i.e., s > t. The expected loss
of the positive class over the operation conditions can be expressed as:

L0 =
∫

c

Q0(t, c)dc

=
∫

c

∫

s

2cπ0(1 − δ(s, t))f0(s)dsdc (4)

=
∫

s

∫

c

π0f0(s)2c(1 − δ(s, t))dcds

In Eq. 4, a positive instance is associated to a loss 2c when it is incorrectly
classified, i.e., when 1−δ(s, t) = 1. Otherwise, the loss is zero. Then, the instance
cost curve for a positive instance with score s is defined as:

QI0(s, t, c) = 2c(1 − δ(s, t)) (5)

Depending on the TCM, different curves can be produced along c. Instance
hardness is then defined as the area under the instance cost curve (the expected
loss for the range of operation conditions). In general, given a TCM T (c), the
hardness of a positive instance with score s is:

IHT
0 (s) =

∫

c

QI0(s, T (c), c)dc (6)

By replacing the instance hardness Eq. 6 in Eq. 4, the expected loss for the
positive class is alternatively defined as an aggregation of hardness over the
distribution of scores:

L0 = π0

∫

s

IHT
0 (s)f0(s)ds (7)

A similar derivation can be performed in order to define instance cost curves
and hardness values for negative instances. An error for a negative instance
occurs when δ(s, t) = 1 and the associated loss is 2(1 − c). The instance cost
curve for a negative instance with score s is defined as:

QI1(s, t, c) = 2(1 − c)δ(s, t) (8)



90 R. B. C. Prudêncio

Instance hardness assuming a function T (c) and the loss relative to the neg-
ative class is defined as:

Fig. 1. Instance cost curves assuming the SF method.

IHT
1 (s) =

∫

c

QI1(s, T (c), c)dc (9)

L1 = π1

∫

s

IHT
1 (s)f1(s)ds (10)

In this work, the hardness measures for five TCMs [10] were derived. For
robustness, as in [17], a set of models can be used to compute the average
hardness across models. All implementations are provided in an online material1.

3.1 Score-Fixed Instance Hardness

The score-fixed (SF) method assumes a fixed threshold regardless the condition
c. Typically, t is set to 0.5. Consider a positive instance with score s > t. This
instance is always a false negative regardless c, as the threshold is fixed. In this
case, δ(s, t) = 0. By replacing it in Eq. 5, the instance cost curve is defined as:

QI0(s, t, c) = 2c (11)

In turn, the cost curve for a false positive instance is:

QI1(s, t, c) = 2(1 − c) (12)

Figure 1 illustrates the SF instance cost curves for false negatives and false
positives. For correctly classified instances, the cost curve is just a constant line
QI(s, t, c) = 0. By integrating QI, the instance hardness values respectively for
false negatives and false positives are derived as follows:

IHsf
0 (x) =

∫ 1

0

2cdc =
[
c2

]1

0
= 1 (13)

1 https://tinyurl.com/y3cthlv8.

https://tinyurl.com/y3cthlv8
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IHsf
1 (x) =

∫ 1

0

2(1 − c) dc =
[
2c − c2

]1

0
= 1 (14)

Fig. 2. Instance cost curves assuming the SD method.

For correctly classified instances (either positive or negative), IHsf (x) = 0.
The SF hardness is simply the 0|1 loss. By adopting a pool of models, instance
hardness is the proportion of incorrect classifications provided by the pool.

3.2 Score-Driven Instance Hardness

Although SF is frequently used, when the classifier errors have different costs,
it is sound to assign thresholds accordingly [6]. In the score-driven (SD) TCM
[8], the threshold is set to c (i.e., T (c) = c). For instance, if c = 0.7, the cost of
false negatives is high. By setting t = 0.7, the classifier predicts more instances
as positive, minimizing the number of false negatives. In the SD method, a
positive instance is predicted as negative when s > c and correctly predicted
otherwise. Then δ(s, t) = 0 if s > c, which results in the following instance cost
curve (Eq. 15) by replacing δ(s, t) in Eq. 5. The area under the curve is defined
in Eq. 16. Figure 2(a) illustrates the SD cost curve for a positive instance with
s = 0.6.

QI0(s, t, c) =
{

2c, if s > c
0, otherwise (15)

IHsd(x) =
∫ s

0

2cdc =
[
c2

]s

0
= s2 (16)

Since y = 0 for positive instances, the abovemeasure canbe replacedby (y−s)2,
which is the squared-error of themodel. For negative instances, Eq. 17 and 18define
the cost curve andhardnessmeasure. Figure 2(b) illustrates the curve for a negative
instance with s = 0.7. For negative instances, y = 1. Again hardness corresponds
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to (y − s)2, the squared-error. When the ensemble is adopted, the hardness of an
instance is the average squared-error obtained by the pool.

QI1(s, t, c) =
{

2(1 − c), if s ≤ c
0, otherwise (17)

IHsd(x) =
∫ 1

s

2(1 − c) dc =
[
2c − c2

]1

s
= (1 − s)2 (18)

Fig. 3. Instance cost curve for a positive instance - RD method.

3.3 Rate-Driven Instance Hardness

The SD method is a natural choice when the model is assumed to be a class
probability estimator. However, SD is sensitive to the score estimation [9]. If
scores are highly concentrated, a small change in operating condition (and in
the threshold) may drastically affect performance. As an alternative, the positive
rate R(t) can be used to define thresholds [10]. In the rate-driven (RD) method,
the threshold is set to achieve a desired positive rate, i.e., T rd(c) = R−1(c). For
instance, if c = 0.7 the threshold t is set in such a way that 70% of the instances
are classified as positive. The operating condition c is then expressed as the
desired positive rate: c = R(t). Scores can be seen as rank indicators instead of
probabilities. The RD cost curve for a positive instance is defined as:

QI0(s, t, c) =
{

2c, if s > R−1(c)
0, otherwise (19)

For R(s) ≤ c (equivalent to s ≤ R−1(c)) loss is zero. When R(s) > c, the
loss varies linearly. The RD hardness is defined in Eq. 20, which is related to
the position of the instance in the ranking produced by the model (i.e., R(s)).
Different from SD, which measures error, RD measures ranking performance. A
hard instance for SD may be easy for RD depending on the score distribution.

IHrd(x) =
∫ R(s)

0

2cdc =
[
c2

]R(s)

0
= R(s)2 (20)
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An adjustment is necessary when the cost curve is built for real datasets. In
such case, the range of desired positive rates is continuous, whereas the number
of observed rates is limited by the dataset size. Figure 3 shows the cost curve for
x6 and model m1 in Table 1. The positive rate of x6 is 0.6, i.e., R(0.75) = 0.6. The
previous observed positive rate is 0.5 assuming the previous score 0.7 as threshold
(R(0.7) = 0.5). Instance x6 is correctly classified if the desired positive rate is
equal or higher than 0.6, (loss is zero for c ∈ [0.6; 1]). For c < 0.5, the instance
is classified as negative and its loss varies linearly. Positive rates between 0.5
and 0.6 can not be produced using m1. In such cases, the loss is estimated from
stochastic interpolation between 0.5 and 0.6 (dashed area in Fig. 3).

Fig. 4. Instance cost curve for a negative instance - RD method.

Table 1. Example of instances and scores provided by four models.

Instance Label m1 m2 m3 m4

x1 1 0.70 0.60 0.00 0.65

x2 1 0.80 1.00 1.00 0.90

x3 1 0.80 0.95 0.93 0.88

x4 1 0.70 0.25 0.91 0.48

x5 0 0.80 0.68 0.78 0.74

x6 0 0.75 0.64 0.83 0.70

x7 0 0.10 0.37 0.78 0.24

x8 0 0.55 0.30 0.95 0.43

x9 0 0.80 0.72 1.00 0.76

x10 0 0.15 0.25 0.87 0.20

In the general case, the loss is zero for c ≥ R(s). If there are l instances
with score s, the previous observed positive rate is R(s) − l/n. For the interval
[0;R(s)− l/n], the loss is Q(s, T rd(c), c) = 2c. For the interval [R(s)− l/n;R(s)],
the loss is derived from interpolation of the rates R(s)− l/n and R(s) as follows:

Q0(s, T rd(c), c) = 2c
(

R(s)−c
R(s)−(R(s)−l/n)

)
= 2c

(
R(s)−c

l/n

)
(21)
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When a positive rate c is desired, the instance is incorrectly classified with
the frequency

(
R(s)−c

l/n

)
. The hardness of positive instances can be derived as:

IHrd
0 (s) =

∫ R(s)−l/n

0

2cdc +
∫ R(s)

R(s)−l/n

2c

(
R(s) − c

l/n

)

dc

=
[
c2

]R(s)−l/n

0
+

2n

l

[
R(s)c2

2
− c3

3

]R(s)

R(s)−l/n

(22)

= (R(s) − l/n)2
lR(s)

n
− 2l2

3n2
= R(s)2 +

l

n

(
l

3n
− R(s)

)

For large values of n, the expression approaches R(s)2, which is equivalent
to the continuous case (Eq. 20). In turn, Eq. 23 defines the RD cost curve for
negative instances with score s and Eq. 34 the corresponding hardness measure.

QI1(s, t, c) =
{

2(1 − c), if s ≤ R−1(c)
0, otherwise (23)

IHrd(x) =
∫ 1

R(s)

2(1 − c) dc =
[
2c − c2

]1

R(s)
= (1 − R(s))2 (24)

Hardness is given by the square of the negative rate (1 − R(s)). It assesses
the ranking quality of the negative instances. For real datasets, the cost curve
is derived by interpolating the points R(s) − l/n and R(s):

Q1(s, T rd(c), c) = 2(1 − c)
(

c − R(s)
l/n

)

(25)

Instance hardness is derived by Eq. 26. For large n, IHrd
1 (x) approaches (1−

R(s)2). Figure 4 presents the RD curve for instance x4 using m1. The positive
rate of x4 is R(0.7) = 0.5. As there are two negative instances with score 0.7, the
previous rate is 0.3. The dashed area represents the interpolated loss in [0.3; 0.5].

IHrd
1 (x) =

∫ 1

R(s)

2(1 − c) dc +
∫ R(s)

R(s)−l/n

2(1 − c)
(

c − R(s)
l/n)

)

dc

= (1 − R(s))2 +
l

n

(
l

3n
+ (1 − R(s))

)

(26)

3.4 Score-Uniform Instance Hardness

The SD method assumes that c is known at deployment and then adequate
thresholds can be chosen. However, in some situations the operating condition
is poorly assessed. In the worst case, a random selection is performed using the
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score-uniform (SU) method [10]: T su(c) = U [0, 1]. The instance cost curve and
hardness for a positive instance can be derived as follows:

QI0(s, T su(c), c) =
∫ 1

0

QI0(s, t, c)dt

=
∫ 1

0

2c(1 − δ(s, t))dt (27)

=
∫ s

0

2cdt = 2cs

IHsu
0 (s) =

∫ 1

0

2csdc = s
[
c2

]1

0
= s (28)

The slope of the curve depends on s and ranges from 0 to 2c (i.e., from always
correctly predicted to always incorrectly predicted). For a positive instance, y =
0 and then IHsu

0 (x) = s = |y − s|, which is the absolute error of the model for
that instance. Similarly for a negative instance, IHsu

0 (x) = (1 − s) = |y − s|,
again the absolute error of the model as derived below.

QI1(s, T su(c), c) =
∫ 1

0

QI1(s, t, c)dt

=
∫ 1

0

2(1 − c)δ(s, t)dt (29)

=
∫ 1

s

2(1 − c)dt

= 2(1 − c)(1 − s)

IHsu
1 (s) =

∫ 1

0

2(1 − c)(1 − s)dc

= (1 − s)
[
2c − c2

]1

0
= (1 − s) (30)

3.5 Rate-Uniform Instance Hardness

Similar to SU, uncertain operation conditions can also be defined in terms of
rates. By adopting uniform distribution of positive rates, the following cost curve
is derived for positive instances, with instance hardness defined in Eq. 32.

QI0(s, T ru(c), c) =
∫ 1

0

QI0(s,R−1(r), c)dr

=
∫ 1

0

2c(1 − δ(s,R−1(r)))dr (31)

=
∫ R(s)

0

2cdr = 2cR(s)
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IHru
0 (x) =

∫ 1

0

2cR(s)dc = R(s)
[
c2

]1

0
= R(s) (32)

While hardness for RD is the square positive rate, for RU it is the absolute
positive rate. Poorly ranked instances will be more penalized, which is reasonable
since the operation condition is uncertain. For a negative instance, hardness is
its negative rate, as derived in the following equations.

QI1(s, T ru(c), c) =
∫ 1

0

QI1(s,R−1(r), c)dr

=
∫ 1

0

2(1 − c)δ(s,R−1(r))dr (33)

=
∫ 1

R(s)

2(1 − c)dr = 2(1 − c)(1 − R(s))

IHsu
1 (s) =

∫ 1

0

2(1 − c)(1 − R(s))dc

= (1 − R(s))
[
2c − c2

]1

0
= (1 − R(s)) (34)

4 Experiments

This section provides examples of the proposed cost curves and hardness mea-
sures. Figure 5 and 6 present the cost curves respectively for the negative and pos-
itive instances in Table 1 using SF, SD and RD. The hardest negative instances
are x1 and x4. In particular, x1 is even harder to rank, given the RD hardness.
Considering the positive class, x5, x6 and x9 have the highest hardness values.
However, for higher costs, they are easy for RD and SD. Different from SF, the
RD and SD methods can take advantage on the operation condition known in
deployment. Figure 7 in turn presents the class cost curves produced by averag-
ing the instance cost curves for each class. Class hardness (CH) is defined as the
average instance hardness in a given class. It is an estimation of the class loss
defined in Eq. 7 and 10. By assuming SF and SD, the positive class is relatively
more difficult than the negative class. A more balanced difficulty is observed by
assuming the RD method. Although the scores of the positive instances are not
well calibrated, they can produce a good ranking of instances.

Following, the framework was applied to a real dataset (German Credit, in
Fig. 8). The negative class is the majority (700 instances), while the positive class
has 300 instances. Both classes are largely spread, although the negative class
seems to be more compact. There is a class boundary in which the classes are
highly mixed. Five models were learned in this dataset using diverse algorithms
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Fig. 5. Instance cost curves for negative instances considering the TCMs: SF (1st row),
SD (2nd row) and RD (3rd row).

Fig. 6. Instance cost curves for positive instances considering the TCMs: SF (1st row),
SD (2nd row) and RD (3rd row).

in Weka2, with scores computed by 10-fold cross validation. Scores were more
concentrated towards 1, as negative is the majority class. By considering a fixed
threshold 0.5, many errors were observed for the positive class, particularly in the
class boundary (see Fig. 9(d)). The negative class is much easier (class hardness
is 0.12 against 0.56 for the positive class). By considering SD, as thresholds are
adapted, instances are in general easier, compared to SF (see Fig. 9(b) and (e)).
In fact, positive class hardness is 0.37 for SD. As there are still some hard positive
instances in the boundary, this class is still much harder than the negative one
(whose hardness is 0.10). For RD, hardness is more balanced among classes.

2 J48, IBk, Logistic Regression, Naive Bayes and Random Forest were adopted. IBK
adopted k = 5. The other algorithms were applied using default parameter values.
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Fig. 7. Class cost curves and hardness under different TCMs.

Fig. 8. German dataset visualized using PCA.

Fig. 9. Hardness of instances for the German-credit dataset.
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Some negative instances are poorly ranked (see Fig. 9(c)). On the other hand,
some positive instances in the boundary, which are difficult for SF and SD, are
easier to rank (see Fig. 9(f)). For RD, class hardness is respectively 0.25 and 0.17
for negatives and positives. The negative class becomes harder than the positive.
Although with good absolute scores, the negative instances are harder to rank.

Differences in difficulty can also be analyzed at specific operation conditions.
For the negative class, higher losses tend to be observed for higher values of c,
as expected. However different patterns are seen depending on the TCM (see
Fig. 10). For c = 0.8, the number of hard instances for RD is high, but extremely
hard instances are not observed. Notice that false positives are penalized by a low
cost in this case (1 − c) = 0.2. For c = 0.5, in turn, some very hard instances in
the class boundary are observed for RD. Distinct patterns can also be observed
for the positive class, which is difficult for SD (see Fig. 11). For c = 0.2 in SD,
most instances are hard, but not extremely hard as for c = 0.5. In this case, the
higher cost impacts instance hardness.

Fig. 10. Instance hardness for different c - Class 1.

Figure 12 presents the instance hardness for SU and RU, in which c is uncer-
tain. In these cases, hardness is more distributed and more difficult instances are
found beyond class boundary. Class hardness for SU is 0.22 and 0.54 respectively
for classes 1 and 0, which represents a harder scenario compared to SD. Similarly
for RU, class hardness is 0.39 and 0.35, which is greater than class hardness for
RD. The increase in hardness reflects the uncertainty in the cost proportions.
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Fig. 11. Instance hardness for different c - Class 0.

Fig. 12. Instance hardness under the SU and RU methods.

5 Conclusion

This paper proposes a new framework for measuring instance hardness in binary
classification. This work addresses different perspectives of evaluation by consid-
ering different TCMs in the definition of instance hardness. Future works point
at three directions: (1) derive new measures within the framework by adopting
other TCMs and distributions of operating condition; (2) perform more exten-
sive experiments on a large set of real problems using the proposed measures
- such studies would reveal advantages, limitations and relationships between
algorithms in different scenarios, which is relevant for understanding learning
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behavior [2]; and (3) develop applications in different contexts. In dynamic algo-
rithm selection, for example, instance cost curves can be adopted to select algo-
rithms for specific regions in the instance space given the operation condition. In
active learning, expected hardness can be used for selecting unlabeled instances
for label acquisition. In noise filtering and acquisition of missing values, the
effect of data preprocessing in the instance hardness can be analyzed.
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Abstract. Classifiers can often output a score or a probability indi-
cating how sure they are about the predicted class. Classifier calibra-
tion methods can map these into calibrated class probabilities, support-
ing cost-optimal decision making. Isotonic calibration is the standard
non-parametric calibration method for binary classifiers, and it can be
shown to yield the most likely monotonic calibration map on the given
data, where monotonicity means that instances with higher predicted
scores are more likely to be positive. Another non-parametric method
is ENIR (ensemble of near-isotonic regression models) which allows for
some non-monotonicity, but adds a penalty for it. We first demonstrate
that these two methods tend to be over-confident and show that applying
label smoothing improves calibration of both methods in more than 90%
of studied cases. Unfortunately, label smoothing reduces confidence on
the under-confident predictions also, and it does not reduce the ragged-
ness of isotonic calibration. As the main contribution we propose a non-
parametric Bayesian isotonic calibration method which has the flexibility
of isotonic calibration to fit maps of all monotonic shapes but it adds
smoothness and reduces over-confidence without requiring label smooth-
ing. The method introduces a prior over piecewise linear monotonic cal-
ibration maps and uses a simple Monte Carlo sampling based approach
to approximate the posterior mean calibration map. Our experiments
demonstrate that on average the proposed method results in better cali-
brated probabilities than the state-of-the-art calibration methods, includ-
ing isotonic calibration and ENIR.

Keywords: Binary classification · Classifier calibration ·
Non-parametric Bayesian

1 Introduction

With the advances in artificial intelligence, classifiers are being incorporated into
more and more decision-making processes. Sometimes it is enough to base the
decisions only on the classifier’s predicted labels. However, more often decision
making benefits from knowing about how confident the classifier is in its predic-
tion. For instance, in a medical diagnostic setting a high-confidence predicted
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Fig. 1. Examples of calibration curves of the state-of-the-art calibration methods with
and without Platt correction.

positive might be fully trusted by the doctor, whereas for low-confidence pre-
dicted positives the doctor might conduct additional tests. This usage requires
the diagnostic classifier to be well-calibrated and not over-confident, since errors
at high confidence levels are very costly. Most algorithms for learning binary
classifiers can provide some kind of scores interpretable as confidence levels. For
instance, in margin-based classifiers the distance from the decision boundary
reflects confidence. For decision-maker’s benefit it is useful if the confidence
scores can be related to the expected probability of error. This is achieved, if
the classifier outputs calibrated class probabilities [20]. The class probabilities in
binary classification are calibrated, if among all instances predicted to be posi-
tive with probability p, the proportion of actual positives is also approximately
p, for any p ∈ [0, 1]. Such interpretability of predicted probabilities combined
with information about how much a false positive or a false negative would cost,
allows decision-makers to estimate the expected cost for each possible decision
and to follow the least costly option [5].

If the classifier outputs non-calibrated probabilities or confidence scores that
are not probabilities at all, then one can apply classifier calibration methods
to transform these outputs into the scale of calibrated probabilities. In case
of binary classification this transformation can be represented as a mapping
from real-valued output scores into probabilities to be positive, known as the
calibration map, see examples in Fig. 1. There are two approaches to finding
these mappings: parametric and non-parametric. The best known parametric
and non-parametric calibration methods are logistic calibration (also known as
Platt scaling) [16] and isotonic calibration [21], respectively. Both methods model
calibration maps as non-strictly monotonically increasing, also called isotonic.
The reasoning behind this assumption is that if the classifier’s confidence in
the positive prediction increases then the probability to be positive should also
increase.
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Logistic calibration (also known as Platt scaling) fits a logistic sigmoid on
the training data [16]. This method has two parameters, one determining its
centre and another determining its slope at the centre. It can be implemented by
applying univariate logistic regression to predict the binary label (1 for positive
and 0 for negative) from the model output score. To reduce overfitting, Platt
proposed a correction to the procedure and instead of 1 and 0 use labels 1− 1

N++2

and 0+ 1
N−+2 in fitting logistic regression [16], where N+ and N− are the numbers

of positives and negatives in the training data. This correction procedure is
essentially label smoothing [6] but with a particular fixed amount of smoothing.
We use notation ‘Log’ and ‘Log-Platt’ to refer to the uncorrected and corrected
method, respectively.

Logistic calibration can be derived from first principles if assuming that the
model output scores on the positives and negatives are both Gaussian distributed,
with the same variance but different means. If the model outputs scores that
are already probabilities but still require calibration, then it is more natural
to use beta distributions instead of Gaussians, because beta distributions have
support over the range [0, 1]. Following this reasoning, the paper [8] derived
the Beta calibration method [8]. Beta calibration is a parametric family with
3 parameters, allowing a larger variety of shapes for the calibration map than
logistic calibration. The family contains reverse sigmoidal functions and also the
identity map, allowing the method to return the probabilities unchanged if the
model is already calibrated, a property that logistic calibration does not have.

Isotonic calibration is a non-parametric method, not constrained by the
shapes within a particular parametric family. It uses PAV (pool adjacent viola-
tors) algorithm to learn a calibration map which is optimal on the training data,
in the sense that no other monotonic calibration map yields a lower squared
error between the resulting calibrated probabilities and actual binary labels [21].
As optimality is determined on the scores present in the training instances, the
values of the calibration map on other scores are not determined: these gaps
are filled in by linear interpolation or by extension into a piecewise constant
function.

Ensemble of near isotonic regression (ENIR), is a calibration method that is
based on and is shown to improve isotonic calibration [10]. It drops the mono-
tonicity constraint, which makes sense in cases where the ROC curve of the
classifier is non-convex. ENIR makes multiple calls to the near isotonic regres-
sion algorithm [18] which introduces a penalty for non-monotonicity into the
loss measure. Each call is with a different value for penalty and the results are
averaged with weights to obtain the final calibration function.

Finally, there are several non-parametric methods using binning, either by
fixed width, fixed size, or more advanced methods, such as BBQ [12] and ABB
[11]. However, these methods have been shown in [10] to be inferior to ENIR, so
we will not consider them further in this paper.

It has been shown in [14] that logistic calibration outperforms isotonic cal-
ibration on smaller datasets and vice versa on larger datasets. This is because
non-parametric methods overfit on smaller data whereas parametric methods
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have less tendency to overfit. At the same time, when enough data is provided
for calibration, non-parametric methods can learn many different shapes while
parametric methods are restricted to their parametric families. These statements
will become one of the basis for constructing our experiments and interpreting
the results.

In the following Sect. 2 we introduce proper losses as evaluation measures for
calibration. In Sect. 3 we demonstrate that the existing non-parametric calibra-
tion methods are over-confident and propose to use Platt’s correction, reducing
log-loss and squared error in more than 90% of our studied cases. In Sect. 4 we
propose our main contribution, a new non-parametric Bayesian isotonic calibra-
tion method. In Sect. 5 we perform experiments on synthetic and real data to
demonstrate that on average, the new method performs either best or tied with
best for all considered calibration set sizes and loss measures. Finally, Sect. 6
concludes and discusses future work.

2 Evaluation of Calibration

Following the definition of calibrated probabilities one needs to check whether
among all instances with the same predicted probability p the actual proportion
of positives is also close to p. However, for methods outputting a continuous
scale of probabilities in [0, 1] there is hardly any hope to find multiple instances
with exactly the same predicted probability p. One way to evaluate calibration
methods is to introduce bins around p and compare p to the empirical proportion
of positives in the bins, as done by measures such as ECE (expected calibration
error) [7]. Such methods ignore the differences of predictions within each bin,
and therefore measure calibration to a limited granularity.

However, there is an alternative to this: proper losses (also called proper
scoring rules). Proper losses are minimized if the calibration method achieves
perfectly calibrated probabilities, due to the decomposition into calibration loss
and refinement loss [3,9]. Since refinement loss cannot decrease during calibra-
tion, any reduction in overall loss must be due to the reduction in calibration
loss.

The best known proper losses are log-loss (a.k.a. cross-entropy) and Brier
score (a.k.a. squared error), which are standard evaluation measures of class
probability estimators [14]. If the instance is positive and the model predicts it
to be positive with probability p̂, then log-loss (LL) penalizes it with loss − ln p̂
and Brier score (BS) with loss (1 − p̂)2. If the instance is negative, then the
losses are − ln(1 − p̂) and p̂2, respectively. Both these losses are non-negative
and minimized if the prediction is correct and with full confidence, i.e., p̂ = 1 for
positives and p̂ = 0 for negatives. However, these measures behave differently
with respect to over- and under-confidence. Brier score is symmetric in the sense
that over- and under-estimating the calibrated probability to be positive by the
same amount results in the same loss according to Brier score. In contrast, log-
loss is highly sensitive to over-confidence, particularly at the high confidence
cases. As an extreme case, full confidence in the wrong prediction yields infinite
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Fig. 2. Percentage of 153 dataset-model pairs where Platt correction improves over the
uncorrected calibration method for Brier score (BS) and log-loss (LL).

log-loss. Even if this happens only with one instance in the test set, the overall
loss on the whole test set is still infinite due to averaging. Exactly this can
happen often with isotonic calibration and ENIR, whenever the lowest score
in the training set has a negative class and/or highest score has positive class.
While penalized infinitely by log-loss, any other proper loss would also penalize
this.

3 Simple Improvement of Existing Methods

This motivates our first contribution: a simple improvement of isotonic calibra-
tion and ENIR. On these calibration methods we propose to use the same cor-
rection procedure as Platt used for logistic calibration. This means that isotonic
calibration and ENIR should also be applied after replacing the class labels 1 and
0 by 1 − 1

N++2 and 0 + 1
N−+2 , respectively, where N+ and N− are the numbers

of positives and negatives in the training data.
We have evaluated this simple modification on 459 = 9 × 17 × 3 calibration

tasks, obtained by training 9 different models on 17 datasets and in each using
either 100, 1000 or 3000 instances for learning the calibration map (see details
about the experimental setup in Sect. 5.2). In 458 cases out of 459 log-loss was
reduced when starting to use Platt’s correction on isotonic calibration (Fig. 2
top left, where the 459 cases are split between calibration sizes 100, 300, and
1000). The benefit is also obvious for Brier score, with improvement in 92% of
the cases (424 out of 459). For reference, Fig. 2 also shows the impact of Platt’s
correction on logistic and beta calibration methods. For logistic calibration the
results confirm the benefit of Platt’s correction, as expected. For beta calibration
the correction turns out to be useful only for log-loss, and not for Brier score
(improvement in <50% of cases).
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Fig. 3. Proportion of under- and over-confidence for 9 calibration methods on 153
data-model pairs over 3 different calibration data sizes.

Isotonic calibration can suffer infinite log-loss due to over-confidence on
instances at either end of the ranking by score. To understand the effect of
Platt’s correction on over- and under-confidence a bit better, we performed the
following analysis. We considered the first and last 2.5% of the instances accord-
ing to the ranking by score. We say that a calibration method is over-confident on
the last 2.5% instances, if the average calibrated probability on these instances
is closer to 1 than the actual proportion of positives. Otherwise, we call it under-
confident. Note that here we do not have a zone of being calibrated between over-
and under-confidence, because we are interested in seeing the changes in over-
and under-confidence after Platt correction. Similarly, we say that a calibration
method is over-confident on the first 2.5% instances, if the average calibrated
probability according to this method on these instances is closer to 0 than the
actual proportion of positives (because here the model is over-confident in pre-
dicting the negative class).

Figure 3 shows the proportions of cases where the calibration method is
over-confident at both ends (over-over), under-confident at both ends (under-
under) or over-confident at one end and under-confident at the other (over-
under). As expected, Platt correction reduces the proportion of over-over and
increases the proportion of under-under. Overall, the balance between over- and
under-confidence varies significantly across different methods. Interestingly, the
most equal proportions of over- and under-confidence are shown by Bayes-Iso
(non-parametric Bayesian isotonic calibration), which we will next motivate and
present.

4 Proposed Method

Even though Platt correction helps to overcome some issues regarding over-
confidence, there is no clear justification behind it. In case of fully separable
training data where all negative instances have lower scores than positives it can
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be thought of as performing Laplace smoothing, which is a standard method
to estimating class proportions, e.g. within a leaf of a decision tree. Laplace
smoothing has a Bayesian interpretation, but this interpretation does not seem
to apply to the Platt correction method. Our goal is to propose a fully Bayesian
non-parametric calibration method which would perform well on both smaller
and larger datasets, as opposed to current non-parametric methods which are
outperformed by parametric methods on smaller datasets.

Suppose we have a fixed scoring classifier and we need to learn a calibra-
tion map ̂cal from N training instances, given the (uncalibrated) scores str =
(s1, . . . , sN ) predicted by the classifier and the actual labels ytr = (y1, . . . , yN ).
The calibration map would be evaluated by drawing a random test instance X,
applying the classifier to obtain its score S = classifier(X), and then testing
the calibrated probability C = ̂cal(S) against the actual class Y with respect
to a loss measure l by calculating l(C,Y). If the loss measure is a proper loss,
then the expected loss would be minimized by the perfect calibration map cal
defined as cal(S) = E[Y|S]. This result follows from the fact that Bregman diver-
gences are minimized at the conditional expectation [1] and the proper losses are
Bregman divergences where one of the inputs has been restricted to be binary
[17]. Note that the perfectly calibrated probabilities cal(S) are different from the
Bayes-optimal probability estimator E[Y|X].

Isotonic calibration aims to find calibrated probability estimates ĉ =
(ĉ1, . . . , ĉN ) at the sorted scores s1 ≤ · · · ≤ sN present in the training data,
where ĉ must belong to the space IN of all real-valued vectors of length N con-
strained with isotonicity 0 ≤ ĉ1 ≤ · · · ≤ ĉN ≤ 1. This discrete calibration map
can then be extended to ̂cal as a piecewise constant calibration map, or linear
interpolation could be used to fill in the gaps between training scores. Since
proper losses are minimized at the conditional expectation [1,17], it is easy to
show that due to pooling the isotonic calibration ̂caliso is minimizing any proper
loss l on the training data. This means that ĉiso = arg minĉ∈IN L(ĉ,ytr) where
L(ĉ,ytr) =

∑N
i=1 l(ĉi, y

tr
i ).

4.1 Non-parametric Bayesian Isotonic Calibration

Inspired by isotonic calibration, we aim to estimate the calibration map on the
predicted scores present in the training data, and elsewhere we would use lin-
ear interpolation. While standard isotonic finds the monotonic calibration map
which minimises the loss on the training data (in the spirit of maximum likeli-
hood), we aim to minimise the expected loss on future test data (in the spirit
of maximum a posteriori). However, to avoid having to define a prior over all
possible isotonic calibration maps from R to [0, 1], we narrow the aim to min-
imise the expected loss on only those future test data which contain the same
scores as our training data. Due to this we only need to define the prior over
the N scores present in the training data. As actual test labels are not available
during training, then the expected loss on future test data can never be known
in practice, but can still be estimated based on the training data. To derive
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such an estimator, we will reason about the test labels and introduce notation
for them. To avoid confusion with the actual test labels, we will be using the
term hypothetical labels from now on. These hypothetical labels will only be used
notationally, for deriving the methods, and these are not needed for running the
proposed calibration algorithm.

Following the Bayesian paradigm we assume that the perfect calibration map
C = (C1, . . . ,CN ) was drawn from IN according to some prior distribution that
we will specify in Sect. 4.2. We assume that both the training labels Ytr =
(Ytr

1 , . . . ,Ytr
N ) and hypothetical labels Yhyp = (Yhyp

1 , . . . ,Yhyp
N ) were drawn inde-

pendently according to the probabilities C, that is Ytr
i ,Yhyp

i ∼ Bernoulli(Ci) for
i = 1, . . . , N . We define non-parametric Bayesian isotonic calibration as follows:

ĉBayes−iso = arg min
ĉ∈IN

E

[

L(ĉ,Yhyp) | Ytr =ytr
]

(1)

where L(ĉ,y) =
∑N

i=1 l(ĉi, yi).
The following Theorem 1 will form the basis for calculating this conditional

expectation numerically. It proves that the conditional expectation of Eq. (1)
can be calculated as a ratio of two unconditional expectations involving the
calibration map C and its likelihood under the observed training data, P(Ytr =
ytr | C). This result can be thought of as Bayesian model averaging: models are
sampled from the model prior and averaged weighting by their likelihoods.

Theorem 1. Let C, Ytr and Yhyp be random vectors of length N as defined
above. Suppose we observe Ytr = ytr, then for ĉBayes−iso as defined in Eq. (1)
the following holds:

ĉBayes−iso =
E

[

C · P(Ytr = ytr | C)
]

E
[

P(Ytr = ytr | C)
] (2)

where P(Ytr = ytr | C) =
N
∏

i=1
ytr
i =1

Ci

N
∏

i=1
ytr
i =0

(1 − Ci) (3)

Proof. Since proper losses are minimized at the conditional expectation [1,17],
we have ĉBayes−iso = E

[

Yhyp | Ytr =ytr
]

. According to the law of iterated

expectations this is equal to E

[

E

[

Yhyp | C
]

| Ytr =ytr
]

which simplifies into

E
[

C | Ytr =ytr
]

as the components in random binary vector Yhyp have been
drawn according to probabilities in random vector C. From the definition of
conditional expectation and Bayes formula we get:

E
[

C | Ytr =ytr
]

=
∫

C fC|Ytr (C,ytr) dC =
∫

C
P(Ytr=ytr|C)fC(C)

P(Ytr=ytr)
dC =

E
[

C P(Ytr=ytr|C)
]

P(Ytr=ytr)
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Eq. (2) follows from this using the law of iterated expectations and the fact that
for binary variables the expectations are probabilities. Finally, the calculation of
likelihood in Eq. (3) is straightforward, due to independence of the components
within the binary vector.

Our proposed non-parametric Bayesian isotonic calibration maps can be cal-
culated by drawing many isotonic calibration maps from the prior distribution,
calculating their likelihoods according to the training labels, and using these as
weights in averaging all the sampled maps into one final result as is described
in Algorithm 1. The algorithm returns a calibration map that is constructed
from pairs of scores and calibrated probabilities, which are joined by linear inter-
polation as in isotonic calibration, to make predictions over all possible scores.
Algorithm description mentions bounds which will be explained in Sect. 4.3. The
time complexity of this algorithm is O(sn) where n is the size of calibration data
and s is the number of candidate maps to be sampled from the prior.

Data: scores, labels, nrSamples
Result: calibration map
1. Calculate lower and upper bounds from labels
2. Generate nrSamples sample maps from prior with bounds
3. Evaluate the likelihood of each sample according to labels as shown in
Eq. (3)
4. Calculate weighted average of sampled maps using likelihoods as
weights
5. Compose the calibration map by joining the scores and the weighted
average of the sample maps by linear interpolation

Algorithm 1: Bayes-Iso algorithm.

4.2 Selecting the Prior over Isotonic Maps

To fully specify our calibration method we must specify the prior distribution
over the calibration maps in space IN . It is crucial to choose a prior which
assigns a reasonably high probability density to all calibration maps that we
deem reasonable, otherwise the method would never output such maps, even if
made likely by the data.

One possible simple prior can be defined as sampling N independent values
uniformly from [0, 1] and sorting them to obtain an isotonic calibration map
belonging to IN . However, this prior is highly concentrated around the calibra-
tion map where the values C1, . . . ,CN are equally spaced, represented as the
diagonal in Fig. 4A. Note that in this figure the X-axis represents relative ranks
of scores rather than absolute scores coming out from the classifier. Concentra-
tion of probability mass around the diagonal implies that any calibration map
that is not around the diagonal would be almost impossible to learn. However,
in practice the true calibration map can be far from the diagonal, particularly if
the classes are imbalanced.
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Therefore, we need a prior that covers the space of all isotonic calibration
maps more broadly. We have considered the existing priors on Bayesian isotonic
regression (not restricted to output in the range [0, 1]) [13] but these do not
adapt easily to our situation or do not provide broad coverage of the space of
all isotonic calibration maps. Our proposed solution to achieve broad coverage
is straightforward - while drawing a calibration map from our prior we first pick
uniformly randomly a point in the 2-dimensional space of Fig. 4 and then start
to construct a map that goes through this chosen point. Note that we use the
discrete uniform distribution for X-axis (because these are ranks 1, . . . , N) and
continuous uniform distribution for Y-axis (because these are probabilities). In
the next steps we apply the same procedure recursively, while ensuring isotonicity.
This means that we next choose the second point uniformly randomly to the
left and below from the first point and the third point uniformly randomly
to the right and above from the first point. For example, if the first point is
(x1, y1), then the second point (x2, y2) is chosen by sampling x2 uniformly from
{1, 2, . . . , x1 − 1}, and y2 uniformly from [0, y1]. Similarly, (x3, y3) is chosen by
sampling x3 uniformly from {x1+1, x1+2, . . . , N}, and y3 uniformly from [y1, 1].
This procedure recursively delves into all ranges between existing points, until
all points 1, . . . , N on the X-axis have been chosen. Figure 4B shows a random
sample of 200 calibration maps drawn from this prior for N = 100. Note that
we have renormalised the X-axis to be from 0 to 1 instead of from 1 to 100.

Fig. 4. Examples of 200 sampled curves of size 100. (A) Samples from a bad prior. (B)
Samples from our defined prior. (C) Samples from our defined prior using bounds.

4.3 Practically Efficient Sampling from Prior

Having defined the prior we have fully specified our non-parametric Bayesian
isotonic calibration method. However, straightforward implementation of this
would result in poor performance. The reason is that the space of isotonic cali-
bration maps IN is vast and maps with the highest likelihoods are hardly ever
found when randomly sampling from the prior. As a result, the estimation of
E

[

C · P(Ytr = ytr | C)
]

would mostly be based on maps C with low likelihood
and numerically dominated by very few maps with higher likelihood, resulting in
a high variance estimate that would not be precise enough. If we can avoid sam-
pling maps that have near-zero likelihoods, then the estimate stabilises, while
still being a good approximation of the true posterior mean map. Therefore,
we propose a method to use training data to obtain a lower and upper bound
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and to sample only those calibration maps that are fully between them. This
does change our prior and in this sense is not purely Bayesian, but in practice
it provides a reasonably good estimate of the posterior mean with the original
prior.

Our algorithm is inspired by calibration methods that use binning. Let us
consider a bin of B consecutive instances with labels yj+1, yj+2, . . . , yj+B within
a full ranked list of N training instances. If the proportion of positives in this bin
is p, then this can be used as an estimate for the average calibrated probability
within this bin, that is C = 1

B

∑B
i=1 Cj+i ≈ p. However, since the calibration is

isotonic, we know that Cj+1 ≤ C ≤ Cj+B . Hence, we can use p as an approximate
upper bound for Cj+1 and an approximate lower bound for Cj+B . Taking into
account that the estimation of the proportion of positives has variance in the
order of 1/

√
B, we use in practice the bounds Cj+1 ≤ p + 1/

√
B and Cj+B ≥

p − 1/
√
B.

The above shows how a bin can be used to set bounds for the lower and
upper end of the bin. In order to obtain bounds for the calibrated probability
at a given test instance we apply the above reasoning on the bins of size B to
the left and to the right of this instance within the ranking. If the considered
instance is close to one end of the full ranking, then of course the size of the bin
towards that end would necessarily be smaller. In the experiments we used the
bin size B = N/10. The advantage of a larger bin is that p can be approximated
more precisely, but at the same time the average is taken over a region where the
calibrated probability within the ranking is varying more, so there is a tradeoff
in selecting the size of B.

This method results in non-monotonic bounds: for si < si+1 the lower bound
at si could be higher than at si+1. In such cases we extended the lower bound to
monotonicity, that is si would adopt the lower bound from si+1. Symmetrically,
the same can happen with upper bounds: for si < si+1 the upper bound at si
could be higher than at si+1. In this case we raise the upper bound of si+1 to
match the upper bound of si. By ensuring monotonicity this way the bounds can
only become wider, lower bounds can only be lowered and upper bounds raised.

One possibility to apply the bounds on the sampling is to perform rejection
sampling - the drawn calibration maps which fall out of bounds would be dis-
carded. However, this can make the sampling very slow, as with tight bounds
most of the maps would be discarded. Fortunately, it is easy to modify our prior
slightly to be easily directly sampled from between the bounds. After drawing
the X-axis value from the discrete uniform distribution we draw the Y-axis value
from the uniform distribution between the bounds, rather than between 0 and
1. Similarly, we can at each step sample along the X-axis first, and then sam-
ple along the Y-axis uniformly, constrained between the bounds. An example of
sampling from between bounds can be seen in Fig. 4C. Note that the bounds
shown are learned from the actual training labels in an example dataset, which
is why they are not symmetric. They are shown to illustrate the idea, in reality
the bounds will be always different for different datasets.
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5 Experiments

We start the experiments with a case study on a synthetic dataset, in order
to demonstrate empirically how our proposed Bayesian isotonic calibration con-
verges to the true perfect calibration map as the dataset size increases, outper-
forming all state-of-the-art calibration methods. More precisely, we will demon-
strate how Bayes-Iso works in the setting that it is designed for. This is followed
by a large-scale study on real datasets, illustrating which calibration methods
work well when calibration data size is changed. We will see that based on aver-
age ranks over all dataset-model pairs Bayes-Iso performs either best or tied
with best for all considered training set sizes and loss measures.

5.1 Experiments on Synthetic Data

Bayes-Iso is designed to be better whenever the true calibration function is not
in the families of parametric methods. In such cases parametric methods perform
poorly due to model mismatch and the existing non-parametric methods due to
over-confidence. We will demonstrate this effect on a synthetic dataset. We have
generated a dataset where the calibration map does not belong to the logistic
and beta calibration map families, because in case of parametric shapes it would
be clear that parametric methods would be the best choice. According to our
generative model the classes are balanced, and a hypothetical scoring classifier
is generating scores that are on actual negatives distributed as Beta(1, 3), and
on positives as a balanced mixture of Beta(1.5, 3) and Beta(30, 3). The perfect
calibration map is shown in Fig. 5 with a red dashed line and on our gener-
ated test data with 100000 instances results with ideal log-loss of 0.1620 and
Brier score of 0.4741. Table 1 shows how close to the ideal each of the calibration
methods reaches on training set sizes 100 and 3000 (on size 1000 methods ranked
identically to 3000, not shown). Results were averaged over 10 replicate experi-
ments. Note that according to the results in Sect. 3, we applied Platt correction
on all reference methods, except for beta calibration with Brier score. Bayes-Iso
algorithm used 10000 samples to estimate the calibration map.

Results in Table 1 show that Bayes-Iso gets very close to the ideal, winning
over all other methods. Even though the true calibration map is not in the
parametric family, Beta calibration gets close enough shape to be the second
best on the smallest dataset. This example demonstrates that existing para-
metric methods are often better than non-parametric ones on smaller datasets,
because they don’t overfit to small data as easily. Bayes-Iso on the other hand is
less-confident than other non-parametric methods and works well also on small
datasets. On bigger datasets non-parametric methods dominate over parametric
ones as expected, and Bayes-Iso shows the best results. Figure 5 demonstrates
the variance of all considered calibration methods across the 10 replicate experi-
ments on training set size 1000. We can see that for size 1000 parametric methods
clearly cannot learn the true calibration function whereas non-parametric meth-
ods can.
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Table 1. Average Brier score and log-loss on synthetic datasets of sizes 100 and 3000.
Beta calibration is used for Brier score and Beta-Platt for log-loss. Numbers in subscript
show the ranking of the scores.

Method BS100 LL100 BS3000 LL3000

Ideal .1621 .4741 .1621 .4741

Bayes-Iso .16551 .48781 .16251 .47531

ENIR-Platt .16833 .50293 .16272 .47782

Iso-Platt .16854 .50364 .16273 .47793

Beta(-Platt) .16722 .48952 .16604 .48624

Log-Platt .17205 .51125 .17215 .50975

Fig. 5. 10 calibration maps learned on 10 replicate synthetic datasets of size 1000 for
six different calibration methods (blue). True underlying calibration map (red). (Color
figure online)

Since Bayes-Iso is a non-deterministic method its results can vary on the
same dataset across different runs. Figure 6 shows results on 10 runs on exactly
the same dataset on each of the 3 data sizes, complemented with bounds as
learned within the Bayes-Iso method. The figure demonstrates that each of the
runs results in a high-quality calibration map with very low variance across runs.
But we can also notice that the larger the calibration data, the more differences
the learned maps start to have. This is expected as we need more and more
sampling to converge with Bayes-Iso in case of larger data.

5.2 Experimental Setup on Real Data

The methods are evaluated on the following 17 datasets from OpenML
[19]: SEA(50), BNG(breast-w), BNG(sonar), BNG(heart-statlog), 2dplanes,
house 16H, cal housing, houses, house 8L, fried, letter, BNG(spectf test),
BNG(Australian), BNG(SPECTF), skin-segmentation, creditcard, numerai28.6.
These were selected as datasets with a binary target variable, no missing values,
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Fig. 6. 10 calibration maps for different sized data learned with Bayes-Iso on the same
dataset (blue). Green lines show the lower and upper bounds for sampling, red line
shows the true underlying calibration map. (Color figure online)

at most 100 numerical features, and the number of instances between 20000 and
1 million.

Performance of calibration methods is known to vary with dataset size [14].
We decided that we can see size-related effects best if we fix particular sizes
(100, 1000 and 3000) for the fold on which we apply the calibration method. To
make the losses on different sizes directly comparable we further chose to keep
the classifier and the test set constant. We achieved all this by first randomly
downsampling all datasets to the same size of 20000 instances, and then running
5-fold nested cross validation. In the internal 5-fold cross-validation we use 4 folds
to train the model and 1 fold to calibrate. This 1 internal fold was big enough
(3200) to allow randomly sampling calibration datasets of required 3 sizes. The
goodness of the calibration maps are evaluated on the outer fold, that we call the
test fold, which is of size 4000. To make experiments run faster we have trained
the classification models on 3000 out of the 12800 instances of the 4 internal
folds. This choice certainly makes the models weaker but still allows to achieve
our objective of comparing calibration methods. The classification models were
trained with 9 different learning algorithms, selected from among the same as
used in the large-scale comparisons in [14] and [2]: decision tree (DT), naive bayes
(NB), support vector machine (SVM), random forest (RF), logistic regression
(LR), K-nearest neighbors (KNN), boosted trees (ADA), bagged trees (BAG-DT)
and artificial neural networks (ANN). The implementations for these algorithms
were taken from the scikit-learn package [15] using the default parameters, except
for the decision tree, for which we used minimum leaf size of 10.

Overall, we trained a classifier for each of the 17 × 9 × 5 × 5 = 3825 combi-
nations of 17 datasets, 9 classifier learning algorithms, 5 external and 5 internal
cross-validation folds. For each trained classifier we learned 3×9 = 27 calibration
maps resulting from 3 dataset sizes and 9 calibration algorithms (logistic, beta,
isotonic calibration and ENIR with and without Platt correction, and Bayes-Iso).

We used existing packages for Beta calibration and ENIR, and modified
scikit-learn implementation for logistic calibration (to switch off Platt correc-
tion). Other methods were implemented from scratch.1

1 Code with implementations of the algorithms and experiments on real data is avail-
able at https://github.com/mlkruup/bayesiso.

https://github.com/mlkruup/bayesiso
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5.3 Experiment Results on Real Data

First, we evaluated Bayes-Iso against other non-parametric methods (that are
Platt corrected). Table 2 shows the percentage of dataset-model pairs where
Bayes-Iso outperformed both Iso-Platt and ENIR-Platt, across different sizes
of calibration datasets. Bayes-Iso was the best non-parametric method on the
majority of cases, in particular on smaller sizes. This is expected as isotonic
calibration and ENIR are known to be overfitting on smaller datasets but more
suitable on larger ones, where they become more competitive to Bayes-Iso.

Increase in dataset size leads to Bayes-Iso sampling the space of isotonic
maps more sparsely, and more often a single map dominates all others within
the sample, in the sense that its likelihood is higher than all others summed
up. This can be used as an indicator flag of potential poor performance. The
column 3000 LH in Table 2 shows results where the flagged cases (27% of all
cases) have been eliminated. The improvement from 56% and 59% in column
3000 to 71% and 73% in column 3000 LH means that there is a big potential in
improving our method further by more efficient bounds and more sampling. It
is also comforting that Bayes-Iso can itself flag cases of potential instability.

Secondly, we wanted to compare all state-of-the-art calibration methods,
including the parametric ones, to Bayes-Iso. We have an initial hypothesis that
Bayes-Iso should perform well both on larger and smaller datasets whereas para-
metric methods work better on smaller and other non-parametric methods on
larger datasets. We demonstrate this in a large-scale comparison against all con-
sidered calibration methods. We performed Friedman test with post hoc analysis
on average ranks [4] of models ordered by log-loss and Brier score. The results
are illustrated as critical difference diagrams in Fig. 7. We can see that Bayes-Iso
performs either best or tied with the best, based on the average ranks across all
dataset-model pairs. This holds true for all sizes of the calibration set (100, 1000,
3000) and both loss measures (BS, LL). This supports our hypothesis about the
behaviour of the methods with respect to the calibration set sizes.

It is not easy to give recommendations for the most suitable calibration
method for different models since good performance for a calibration method is
more dependent on the dataset size and how a particular model is performing on
a dataset. Factors like calibration data size, goodness of the model, distribution
of scores in the classes, class distribution, shape of the true calibration map
are probably more important factors and most likely have joint effects when
deciding on the best method to use. We have found some examples about how
these factors affect the performance of Bayes-Iso. One discovered case is when

Table 2. Percentage of improved dataset-model pairs where Bayes-Iso improved on
other non-parametric methods.

Size 100 1000 3000 3000 LH

BS 86% 79% 56% 71%

LL 92% 84% 59% 73%
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Fig. 7. Critical difference diagrams based on ranks of methods over 153 dataset-model
pairs over different calibration dataset sizes and losses.

we have a small dataset and a model with very high accuracy. In this case Bayes-
Iso is too under-confident when compared to ENIR-Platt and Iso-Platt. The
reason could be that since the model is very good then even with small dataset
for calibration it is beneficial to have high confidence predictions. Because of
the joint effects of the formerly mentioned factors, these patterns are difficult
to identify and interpret. Extensive experiments left for future work could give
us more insight into these effects and help us identify situations where one or
another calibration method is the most suitable.

6 Conclusions

For decision-making purposes it is important that the classifiers were well-
calibrated. Parametric calibration methods work well on small datasets, but
on bigger datasets the parametric assumption often does not hold and non-
parametric methods perform better. In this work we have first demonstrated
that existing non-parametric calibration methods produce over-confident predic-
tions. We have discovered that the same correction method that was used in
logistic calibration by Platt can be used for reducing over-confidence in isotonic
calibration and ENIR, reducing log-loss and Brier score in more than 90% of
our studied cases. Our main contribution is a novel non-parametric Bayesian
isotonic calibration (Bayes-Iso). Bayes-Iso has the flexibility of isotonic calibra-
tion to fit maps of all monotonic shapes but it additionally provides smoothness
and reduces over-confidence without requiring a separate correction procedure.
When comparing against the state-of-the-art methods on 153 calibration tasks
Bayes-Iso works either best or tied with the best depending on the size of the cal-
ibration dataset. The current version of Bayes-Iso experiences instability when
scaling up to learn a calibration map from many more than 3000 instances. As
future work we envision ways to make Bayes-Iso scale up to much larger sizes, as
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the calibration map could easily be learned in bins of 1000 consecutively ranked
instances and later merged into a single calibration map.
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Abstract. Partial label learning (PLL) is a weakly supervised learning
framework which learns from the data where each example is associated
with a set of candidate labels, among which only one is correct. Most
existing approaches are based on the disambiguation strategy, which
either identifies the valid label iteratively or treats each candidate label
equally based on the averaging strategy. In both cases, the disambigua-
tion strategy shares a common shortcoming that the ground-truth label
may be overwhelmed by the false positive candidate labels, especially
when the number of candidate labels becomes large. In this paper, a
probability propagation method for partial label learning (PP-PLL) is
proposed. Specifically, based on the manifold assumption, a biconvex
regular function is proposed to model the linear mapping relationships
between input features and output true labels. In PP-PLL, the topolog-
ical relations among training samples are used as additional information
to strengthen the mutual exclusiveness among candidate labels, which
helps to prevent the ground-truth label from being overwhelmed by a
large number of candidate labels. Experimental studies on both artificial
and real-world data sets demonstrate that the proposed PP-PLL method
can achieve superior or comparable performance against the state-of-the-
art methods.

Keywords: Partial label learning · Disambiguation strategy ·
Manifold assumption · Biconvex regular function

1 Introduction

In many real-world scenarios, data with explicit label information is hard to
obtain. Thus, we have to face with the problem of learning from ambiguous data.
Recently, partial label learning (PLL) provides an effective solution to cope with
this problem and has been widely used in many real-world applications such as
automatic image annotation [3], web mining [13], ecoinformatics [12], etc. Partial
label learning is regarded as a weakly-supervised learning where each sample is
associated with a set of candidate labels, among which only one is correct [2].
During the training process, the correct label of each training sample is concealed
in its candidate label set and not directly accessible to the learning algorithm.
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Since the exact labeling information is concealed in the candidate label set,
the key to partial label learning is to disambiguate labels in candidate label set.
To this end, many disambiguation methods have been proposed to extract the
ground-truth label from the ambiguously labeled data. These methods can be
categorized into two groups, i.e. identification based disambiguation strategies
(IDS) and averaging based disambiguation strategies (ADS). The IDS meth-
ods regard the ground-truth label as a latent variable which is identified via
iterative refining procedure [10,12,15,17,19]. The ADS methods treat each can-
didate label equally and make the final prediction by averaging the modeling
outputs [2,21]. Although IDS and ADS methods have yielded relatively good
performance for partial label learning, they still suffer from some defects. Due
to some misleading information in the candidate label set, both IDS and ADS
methods have the risk that the ground-truth label may be overwhelmed by false
positive labels, especially when the number of partially labeled training samples
or the size of candidate label set becomes large [19].

To extract as much useful information about the ground-truth label as possi-
ble from the partially labeled data, many weakly-supervised learning algorithms
assume that there exists a potential structure in the feature space of data, which
helps to reveal the mapping from input features to ground-truth labels. Clus-
tering based assumption and manifold based assumption are among the most
common ones of them [24]. In the clustering based assumption, data samples
are clustered into several clusters based on some similarity criterion such as
Euclidean distance, and samples within the same cluster are assumed to belong
to the same label. The manifold based assumption can be viewed as the exten-
sion of clustering based assumption. It assumes that the feature space of data
follows a manifold structure, and the output of each sample is similar to its
neighbors. Furthermore, manifold assumption based disambiguation strategies
(MADS) have also been proposed to alleviate the negative impact of false positive
labels [5,14,19,21]. However, the existing MADS methods ignore the mapping
relationships from input features to ground-truth label and excessively rely on
the potential topological structure of feature space, which makes the prediction
trend to be the frequent labels.

In this paper, a probability propagation method for partial label learning
(PP-PLL) is proposed. In PP-PLL, based on the manifold assumption we fur-
ther assume that neighboring samples have similar label distribution, and we
utilize the maximum entropy model to form a biconvex objective function. The
objective function is then optimized by the alternating method, which can be
regarded as a process of probability propagation. Different from the strategies
mentioned above, our proposed PP-PLL method utilizes the potential topo-
logical structure of feature space as additional information, which strengthens
the exclusiveness among labels and mitigates the risk of the ground-truth label
being overwhelmed by candidate labels. Furthermore, in the process of proba-
bility propagation the mapping from input features to the ground-truth labels is
modeled, which makes it less dependent on the intrinsic topological, and more
accurately distinguishes the ground-truth label from false positive labels in the
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candidate label set. Compared with many state-of-the-art partial label learning
methods, our proposed method can achieve better generalization performance
and superior prediction performance.

The rest of this paper is organized as follows. In Sect. 2, we briefly introduce
related works. The concrete formulation of our proposed PP-PLL method is pre-
sented in Sect. 3. In Sect. 4, the optimization of our model is presented. Section 5
provides experimental studies on various data sets, followed by the conclusions
and future works in Sect. 6.

2 Related Work

In partial label learning framework, the label information is no longer unique and
explicit. Real semantic information is concealed in the candidate label set, mak-
ing the learning from data extremely difficult. Existing methods for partial label
learning can be roughly grouped into three categories: ADS (Averaging-based
Disambiguation Strategies), IDS (Identification-based Disambiguation Strate-
gies) and MADS (Manifold Assumption-based Disambiguation Strategies).

ADS methods identify the ground-truth label via giving the label in can-
didate label set the same weight for each sample, and then obtain predic-
tion by averaging the outputs from all candidate labels or the candidate
labels in its neighbors. Following such strategy, ADS methods can be fur-
ther divided into discrimination-based learning and instance-based learning. For
the discrimination-based learning, Cour et al. [2,3] suppose that a parametric
model F (xi, y; θ) discriminates the average modeling output of candidate labels
from non-candidate labels as much as possible. For the instance-based learning,
Hüllermeier and Beringer [9] suppose that the model predicts unseen instance by
aggregating the weight of its neighbors’ candidate labels. Although ADS meth-
ods are intuitive with strong explanatory, the critical defect is that the false
positive labels in each set of candidate labels have greater advantages in weight
assignment, especially when the size of each candidate label set becomes large.

Different from ADS, existing IDS approaches consider the ground-truth label
as a latent variable, determined directly as ŷi = arg maxy∈Si

F (xi, y;θ). Fur-
thermore, the objective function is defined according to the maximum likelihood
criterion [7,10,12,23]:

∑m
i=1 log

(∑
y∈Si

F (xi, y;θ)
)

which is generally refined
iteratively via utilizing Expectation-Maximization (EM) procedure [4], or the
maximum margin criterion [15,18]:

∑m
i=1

(
maxy∈Si

F
(
xi, y;θ

) − maxy/∈Si

F (xi, y;θ)
)

which is optimized via the Pegasos method that alternately per-
forms sub-gradient descent and projection operations to update the model itera-
tively. Experimental results demonstrate that IDS have achieved more desirable
performance than ADS. Nonetheless, the information from the false positive
labels in all sets of candidate labels would mislead the model into updating
towards the wrong direction, especially when the number of partially labeled
training samples become large.

The strategies mentioned above utilize the set of candidate labels to construct
partial label learning algorithms. However, their performance improvements are
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usually limited by false positive labels. To break through this limitation, manifold
assumption-based disambiguation strategies (MADS) are proposed to extract as
much useful labeling information as possible from the ambiguously labeled data
through manifold assumption. To the best of our knowledge, the concept of
neighbor samples in partial label learning was first proposed by Hüllermeier
and Beringer [9]. However, it is unable to guarantee that the prediction of
each sample is similar to its neighbors. This is why we generalize it into ADS.
Following manifold assumption, existing MADS can be divided into nonpara-
metric and parametric model. Regardless of the model proposed, a weighted
graph of k-nearest neighbors should be constructed at first stage. At second
stage, the prediction is obtained directly by label propagation [5,19] for non-
parametric, and by a feature-aware disambiguation for parametric model [21].
Different from IDS and ADS, MADS can extract additional information from
the ambiguously labeled data, however, existing MADS excessively relies on the
potential topological structure of feature space.

In the next section, a novel partial label learning approach named PP-PLL
will be introduced. To address the problem mentioned above, PP-PLL utilizes
the character of the optimizing a biconvex formulation presented in this paper
to achieve probability propagation.

3 The PP-PLL Method

Let X = R
d denote the d-dimensional feature space, and Y = {1, 2, . . . , q} be a

label set with q class labels. Partial label learning is aimed at learning a classifier
f : X → Y from training data D = {(xi, Si) |1 ≤ i ≤ m} to predict the ground-
truth label of the unseen samples, where xi ∈ X is a d-dimensional feature
vector (xi1, xi2, . . . , xid)

�, and Si ⊆ Y is the candidate label set associated with
xi. The ground-truth label yi for xi is concealed in Si, i.e. yi ∈ Si, and is not
directly accessible to the learning algorithm.

Let F denote the set of m × q matrices with nonnegative entries. A matrix
F =

[
F�
1 , . . . , F�

m

]� ∈ F corresponds to ultimate label probability distribution
of m partial label samples, and each sample x is labeled as ŷi = arg maxj≤q Fij .
Therefore, one of the main goals is to obtain the ultimate label distribution
matrix F . To this end, some existing partial label learning approaches [7,10,12]
regard the ground-truth label as a latent variable and estimate the ground-
truth label by an iterative procedure. Although this kind of strategies have the
capability of mapping from input features to ground-truth label, they are failed
to correct the wrong updating direction caused by false positive labels during
the iterative learning process.

Accordingly, we proposed PP-PLL under the assumption that the probabil-
ity distribution of candidate labels for each sample is similar to its neighbors.
At first stage, we construct a weighted graph G = (V,E) over the ambigu-
ously labeled data, where each sample is considered as a node of the graph.
In order to characterize the manifold structure of feature space via conducting
some affinity relationship, E = {(xi,xj) |xi ∈ kNN (xj) , i �= j} is denoted as
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the set of directed edges from xi to xj in graph G if xi belongs to the k-nearest
neighbors of xj . Furthermore, W = [wij ]m×m is denoted as the non-negative
weight matrix where wij = 0 if (xi,xj) /∈ E. Otherwise, the j-th weight col-
umn w·j = (wi1j , wi2j , . . . , wikj)

� is denoted as the k-nearest neighbors’ opti-
mal weight column corresponding to the j-th sample via optimizing the following
linear least square problem:

min
w·j

∥
∥
∥
∥
∥
∥
xj −

∑

(xi,xj)∈E

wij · xi

∥
∥
∥
∥
∥
∥

2

2

(1)

s.t. wij ≥ 0 (∀ (xi,xj) ∈ E, 0 ≤ i, j ≤ m)

The OP(1) can be re-written as

min
w·j

(
xj − X�

j · w.j

)�
·
(
xj − X�

j · w.j

)
(2)

As shown in OP(2), the k × d matrix Xj = (xi1 ,xi2 , . . . ,xik
)� denotes the

k-nearest neighbors of xj . We further convert OP(2) into a standard quadratic
programming (QP) problem:

min
w·j

1
2
w�

.j

(
2XjX

�
j

)
w.j − 2x�

j X�
j w.j (3)

s.t. wij ≥ 0 (∀ (xi,xj) ∈ E, 0 ≤ i, j ≤ m)

Therefore, the optimized weight of OP(3) can be obtained through any off-
the-shelf QP method. Although the restriction

∑
(xi,xj)∈E wij = 1 is to avoid

probability divergence during subsequent iterative probability propagation pro-
cedure, it would cause some linear combinations of k-nearest neighbors far away
from the center sample. As a consequence, we would rather apply the normal-
ization of each weight column than embed restriction

∑
(xi,xj)∈E wij = 1 for the

j-th sample. In other words, for each weight column, we utilize the following
normalized column vector to replace primary weight column vector:

h·j = w·j/
∑

(xi,xj)∈E

wij (0 ≤ j ≤ m) (4)

At second stage, we develop a novel regularization framework that incorpo-
rates probabilistic propagation with the maximum entropy model:

J (D,θ,F ) = L (D,F ,θ) + λΩ (θ) + μQ (F ) (5)

As shown in Eq. (5), the first term L in the object function J is denoted
as fidelity term with a definition of the conditional probability matrix of the
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ground-truth labels C = [p(yi = j|xi,θ)]m×q. The definition of C is shown as:

P (yi = j|xi,θ) =

{
exp

(
θ�
j x

)
/
∑

j′∈Si
exp

(
θ�
j′x

)
, if j ∈ Si

0, otherwise
(6)

where θ ∈ R
d×q is a parameter matrix learned from the object function J . This

term suggests that the finally obtained label distribution matrix F is closed to
the maximum entropy model which builds a linear discriminative mapping from
input features to ground-truth labels smoothly. Meanwhile, we choose to apply
the Kullback-Leibler divergence of F relative to C rather than the quadratic
form to preserve the convex properties of the object function J with respect to
θ. Therefore L is formalized as:

L (D,F ,θ) =
m∑

i=1

∑

j∈Si

F ij log
F ij

Cij
(7)

The second term Ω in the object function J is aimed at avoiding parameter
redundancy caused by conditional probability matrix, which is defined as an
Frobenius norm:

Ω (θ) =
1
2

‖θ‖2F (8)

The third term Q (F ) in the object function J is formalized a smoothness
constraint which is to ensure the probability distribution candidate labels of
each sample not to vary too much from its k-nearest neighbors to satisfy the
realization of the manifold assumption. Based on the above description, Q can
be defined as:

Q (F ) =
1
2

n∑

i,j=1

wij

∥
∥
∥
∥
∥

1√
Dii

F i − 1
√

Djj

F j

∥
∥
∥
∥
∥

2

2

(9)

where wij is the similarity weight between the i-th sample and the j-th sam-
ple in graph G, and Dll is the l-th diagonal element in diagonal matrix
D = diag [

∑m
i=1 wi,1,

∑m
i=1 wi,2, . . . ,

∑m
i=1 wi,m]. As shown in Eq. (9), minimiz-

ing Q will force F i (i = 1, 2, . . . ,m) to get closer to F j (if xj ∈ kNN (xi)) when
wij is larger.

Finally, a novel regularization framework that incorporates probabilistic label
propagation with maximum likelihood criterion is presented as a constrained
optimization problem:

min
θ ,F

m∑

i=1

∑

j∈Si

F ij log
F ij

Cij
+

λ

2
‖θ‖2F +

μ

2

n∑

i,j=1

wij

∥
∥
∥
∥
∥

F i√
Dii

− F j√
Djj

∥
∥
∥
∥
∥

2

2

(10)

s.t.
q∑

j=1

Fij = 1,Fij ≥ 0, ∀i = 1, 2, . . . ,m
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4 Optimization

Apparently, OP(10) is convex with respect to θ when F is fixed, and it is also
convex with respect to F when θ is fixed. Therefore, OP(10) is regarded as a
biconvex problem which can be solved in an alternating way [6]. Specifically,
we first optimize OP(10) regarding F when θ is treated as a constant, and then
optimize OP(10) regarding θ when F is substituted by F ∗ which is the optimized
value of F in previous step.

4.1 Updating F

When θ is assumed as a constant, the conditional probability matrix C ∈ R
m×q

corresponding to θ is also considered as a constant.Therefore the optimization
of OP(10) can be simplified to

min
F

m∑

i=1

∑

j∈Si

F ij log
F ij

Cij
+

μ

2

n∑

i,j=1

wij

∥
∥
∥
∥
∥

1√
Dii

F i − 1
√

Djj

F j

∥
∥
∥
∥
∥

2

2

(11)

s.t.
q∑

j=1

Fij = 1,Fij ≥ 0, ∀i = 1, 2, . . . ,m

which is similar to a label propagation problem [22]. The first term of the OP(11)
guarantees that the ultimate label distribution F should be close to constant
matrix C, which is denoted as the mapping relationship from input features
to the ground-truth label. The second term guarantees that the ultimate label
distribution F of each sample should be close to its k-nearest neighbors, which
satisfies manifold assumption. In this paper, we present another convex function
with respect to F :

OB =
1
2

‖F − C‖2F +
μ

2

n∑

i,j=1

wij

∥
∥
∥
∥
∥

1√
Dii

F i − 1
√

Djj

F j

∥
∥
∥
∥
∥

2

2

(12)

As shown in OB, the first term in OP(11) is replaced by the quadratic form,
which is convex regarding F , and the optimal solution of OB can be obtained
directly via derivation rather than traditional Lagrangian method which is time-
consuming. Through label propagation method, the obtained optimal solution
of OB is the approximation of the solution of OP(11). Differentiating the OB
below with respect to F , we have

∂OB
∂F

∣
∣
∣
∣
F =F̃ ∗

= F̃ ∗ − C + μ
(
F̃ ∗ − HF̃ ∗

)
= 0 (13)

where H is equal to the m × m matrix (h·1,h·2, · · · ,h·m). Since I − µ
1+µH is

invertible, we have

F̃ ∗ =
1

1 + μ

(

I − μ

1 + μ
H

)−1

C (14)
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In order to satisfy the constraints in OP(11), F̃ ∗ is re-scaled into F ∗ via
consulting the sample in the ambiguously labeled data, which is similar to the
E-step in PL-EM [10]:

∀1 ≤ i ≤ m : F ∗
i,j =

{
F̃ ∗

i,j/
∑

j′∈Si
F̃ ∗

i,j′ , if j ∈ Si

0, otherwise
(15)

4.2 Updating θ

When F ∈ R
m×q is replaced by F ∗, we have

min
θ

m∑

i=1

∑

j∈Si

F ∗
ij log

F ∗
ij

Cij
+

λ

2
‖θ‖2F (16)

which is optimized via L-BFGS [11]. Apparently, the process of optimizing
OP(16) is similar to M-step in PL-EM, which models the mapping relationship
from input features to the ground-truth label.

At the beginning of optimization, it is necessary to initialize the conditional
probability matrix C = [p(yi = j|xi,θ)]m×q as follows:

p(yi = j|xi,θ) =
{ 1

|Si| if j ∈ Si

0, otherwise
(17)

Then we iteratively update the parameter θ by combining label propagation
with PL-EM algorithm, which is collectively called probability propagation pro-
cedure. During the testing phase, the conditional probability matrix C′ of each
unseen sample x′ is calculated as:

C′ =

⎡

⎣exp
(
θ�
k x′

)
/

∑

j′∈Y
exp

(
θ�
j′x′

)
⎤

⎦

1×q

(18)

And then, the ultimate label distribution F ′ of each unseen sample x′ can
be calculated according to Eq. (14) and Eq. (15). Finally, the predicted label y′

of each unseen sample x′ is given as follows:

y′ = arg max
k∈Y

[
F ′

1,k

]
1×q

(19)

The complete procedure of PP-PLL is presented in Algorithm 1, where we
creatively embed alternating optimization method into PL-EM algorithm to
update parameter θ. At first, given a partial label training dataset, a weighted
graph is constructed via asymmetric k-NN graph (Steps 1–9). And then, an prob-
ability propagation procedure based on EM procedure with alternating optimiza-
tion is implemented to calculate the optimal parameters (Step 10–15). Finally,
the predicted label of the unseen data is obtained according to the optimal
parameters (Step 16).
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Algorithm 1. PP-PLL
Input:
D: the PL training set {(xi, Si) |1 ≤ i ≤ m}
k: the number of nearest neighbors used for the similarity matrix
λ, μ: the parameters trading off each term in the object function
T : the number of iterations
x′: the unseen data
Output:
y′: the predicted label for x′

Process:

1: Construct weight graph G = (V, E) by the asymmetric k-NN graph with V =
{xi|1 ≤ i ≤ m} and E = {(xi, xj) |xi ∈ kNN (xj) , i �= j};

2: Initialize weight matrix W = [wij ]m×m with wij = 0;
3: for j = 1 to m do
4: Determine the j-th weight column corresponding to the j-th sample ŵ·j =

(ŵi1j , ŵi2j , . . . , ŵikj)
� via solving OP(3);

5: Normalize the ŵ·j to ĥ·j = ŵ·j/
∑k

a=1 ŵiaj =
(
ĥi1j , ĥi2j , . . . , ĥikj

)�

6: for xia ∈ kNN (xj) do
7: Set wiaj = ĥiaj ;
8: end for
9: end for

10: Initial C ∈ R
m ×q according to Eq. (17);

11: for t = 1 to T do
12: Update F according to Eq. (15);
13: Caculate θ by solving OP(16);
14: Update C by updated θ ∈ R

d×q ;
15: end for
16: Return the predicted label y′ according to Eq. (18) and Eq. (19).

5 Experiments

5.1 Experimental Setup

To verify the performance of the proposed PP-PLL method, we conduct exten-
sive experiments on four controlled UCI datasets and five real-world datasets.
Characteristics of the experimental datasets are summarized in Table 1.

Controlled UCI Datasets. To generate artificial PL datasets, controlled UCI
datasets are controlled by two parameters p and r, where p controls the propor-
tion of partially labeled samples, and r controls the size of distracting labels set
in the candidate label set.

Real-World Datasets. In addition, we have also collected five real-world
datasets which are partially labeled. The real-world datasets can be summa-
rized into four task domains:
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– Bird Song Classification: Spectrogram of the birds are considered as
instances while candidate labels is composed of bird species jointly singing [1].

– Automatic Face Naming: Each face recognized from images or a videos
are considered as instances and the names extracted from the corresponding
image captions or video subtitles are regarded as candidate labels, such as
Yahoo! News [8] and Lost [2];

– Facial Age Estimation: Human faces constitute the instance space and
candidate labels is composed of the ages annotated by ten crowd-sourced
labels and the ground-truth ages, such as FG-NET [16];

– Objective Classification: Image segmentations are considered as instances
and the objects appearing within the same image are represented as the can-
didate labels, such as MSRCv2 [12].

The average number of the candidate labels (Avg. CLs) for each real-world
dataset is also recorded in Table 1.

Table 1. Characteristics of the experimental datasets

Controlled UCI datasets Real-world datasets

Dataset Glass Ecoli Segment Letter Lost FG-NET MSRCv2 BirdSong Yahoo! News

Examples 214 336 2310 20000 1122 1002 1758 4,998 22991

Features 10 7 18 16 108 262 48 38 163

Classes 7 8 7 26 16 78 32 13 219

Avg. CLs - - - - 2.23 7.48 3.16 2.18 1.91

Comparing Algorithms. In this paper, the effectiveness of PP-PLL is evalu-
ated against five state-of-the-art partial label learning algorithms, and the rec-
ommended parameters for each comparing algorithm in corresponding literature
are used in our experiments:

– PL-KNN [9]: An k-nearest neighbor approach based on ADS averages the
output of respective neighbors to disambiguate the set of candidate labels
[Recommended configuration: k = 10]

– PL-SVM [15]: A maximum margin approach based on IDS incorporates
maximum margin to disambiguate the set of candidate labels [Recommended
configuration: regularization parameter pool with

{
10−3, · · · , 103

}
]

– PL-LEAF [21]: A partial-label learning method disambiguate the set of can-
didate labels via postulating that the potentially useful information from
feature space [Recommended configuration: k = 10, C1 = 10, C2 = 1];

– PL-ECOC [20]: It learns from partial-label training instances via adapt-
ing error-correcting output codes [Recommended configuration: the codeword
length L = �log2(q)�];

– GM-PLL [14]: A partial-label learning method disambiguate the set of candi-
date labels via incorporating the instance relationship and the co-occurrence
possibility of varying label based on Graph Matching (GM) scheme [Recom-
mended configuration:set β among {0.3, 0.4, . . . , 0.8}].
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The parameters employed by PP-PLL are set as T = 60, k = 10, μ = 1 and
λ = 0.005, which the analysis of parameter configuration is conducted in Subsect.
5.3. In this paper, we perform ten runs of 50%/50% random train/test on four
controlled UCI datasets as well as five real-world partial label datasets, and we
evaluate comparing algorithms by the mean predictive accuracies (with standard
deviation). Furthermore, we adopt pairwise t-test at 0.05 significance level to
investigate whether PP-PLL is significantly superior/inferior to the comparing
algorithms.

Fig. 1. The classification accuracy of each comparing method on four controlled UCI
datasets with stochastic r.

5.2 Experimental Results

Since four controlled UCI datasets are generated manually via two parameters
while five real-world datasets are generated via real world scenarios, we perform
two series of experiments to evaluate the performance of the proposed method.
Meanwhile, the following two subsections exhibit the experimental results sepa-
rately.

Controlled UCI Datasets. In Fig. 1, the classification accuracy of each com-
paring algorithm is illustrated where the probability of generating partial labeled
data p varies from 0.1 to 0.7 with step-size 0.1, while the size of distracting labels
set r is randomly selected among {1, 2, 3}.
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From Fig. 1, we can see that PP-PLL achieves better classification accuracy
than the comparing algorithms in most cases. Table 2 reports the experimen-
tal results with fixed value of r, along with the win/tie/loss counts between
PP-PLL and other comparing algorithms. The result of statistical comparisons
in Table 2 shows that PP-PLL achieves competitive classification performance
against other state-of-the-art partial label learning algorithms on most controlled
UCI datasets.

Table 2. Win/tie/loss counts (pairwise t-test at 0.05 significance level) on the con-
trolled UCI datasets between PP-PLL and the comparing algorithms with classification
accuracy.

PP-LEAF PL-KNN PL-SVM PL-ECOC GM-PLL

vary p(r = 1) 26/1/1 28/0/0 28/0/0 28/0/0 19/7/2

vary p(r = 2) 26/2/1 26/2/0 28/0/0 26/2/0 14/9/5

vary p(r = 3) 26/2/0 26/1/1 28/0/0 25/2/1 16/8/4

In Total 79/3/2 80/3/1 84/0/0 79/4/1 49/24/11

Real-World Datasets. We compare the PP-PLL with all above comparing
algorithms on the real-world datasets from four task domains mentioned above.
The classification performance of each algorithm in terms of accuracy is reported
in Table 3. As shown in Table 3, which is classification accuracy of each algorithm
on the real-world datasets, it is obvious that PP-PLL achieves superior classifica-
tion accuracy comparing with all the counterpart algorithms on these real-world
datasets except for GM-PLL, PL-SVM and PL-ECOC on Yahoo! News.

Table 3. Classification accuracy (mean ± standard deviation) of each algorithm on the
real-world datasets. Furthermore, • or ◦ is denoted as whether PP-PLL is statistically
superior or inferior to the comparing algorithm (pairwise t-test at 0.05 significance
level).

Lost MSRCv2 Yahoo!News BirdSong FG-NET

PP-PLL 0.748 ± 0.031 0.546 ± 0.045 0.554 ± 0.004 0.850 ± 0.24 0.128 ± 0.007

GM-PLL 0.737 ± 0.043 • 0.530 ± 0.019 • 0.629 ± 0.007 ◦ 0.663 ± 0.010 • 0.065 ± 0.021 •
PL-KNN 0.332 ± 0.030 • 0.417 ± 0.012 • 0.457 ± 0.009 • 0.614 ± 0.024 • 0.037 ± 0.008 •
PL-SVM 0.639 ± 0.056 • 0.417 ± 0.027 • 0.636 ± 0.018 ◦ 0.662 ± 0.032 • 0.058 ± 0.010 •
PL-ECOC 0.703 ± 0.052 • 0.505 ± 0.027 • 0.662 ± 0.010 ◦ 0.740 ± 0.016 • 0.040 ± 0.018 •
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Fig. 2. Parameter sensitivity analysis of PP-PLL on the real-world datasets BirdSong
and Lost.

5.3 Sensitivity Analysis

Figure 2 shows the performance of PP-PLL under different parameter configura-
tions, and the convergence of PP-PLL on BirdSong and Lost. As shown in (a),
‖C(t)−C(t−1)‖2F which is the square of Frobenius norm about difference in the
conditional probability matrix C between two continuous iterations gradually
approaches 0 as t tends to be infinite. Especially when the number of iterations
reaches 20–40 loops, PP-PLL becomes convergent. Therefore, the convergence of
PP-PLL is demonstrated, and PP-PLL shows relative stability with the varying
of parameters (k, μ, λ) in (b)–(d). In addition, Fig. 2 also reports that the param-
eter configuration specified for Subsect. 5.1 (T = 60, k = 10, μ = 1, λ = 0.005)
naturally follows from the analysis mentioned above, and makes PP-PLL obtain
relatively superior performance compared with other parameter combinations.

6 Conclusion

In this paper, we present a biconvex formulation containing a mapping relation-
ships from input features to the ground-truth label based on manifold assump-
tion, which is optimized by the alternating optimization method, to deal with
partial label learning via probability propagation procedure. Extensive experi-
mental results on controlled UCI datasets as well as real-world datasets demon-
strate that our proposed method can achieve superior classification performance
than the state-of-the-art partial label learning algorithms. However, In terms of
weighted graph, how to create a more meaningful weight matrix will be one of
the future directions of partial label learning. It would help all MADS (Manifold



136 K. Sun et al.

Assumption based Disambiguation Strategies) extend to the more special situ-
ations, especially when the size of each candidate label set is too large, which
causes the information of the ground-truth label in each candidate label set to
disappear. For PP-PLL, an important future work is to combine weighted graph
with probability distribution of candidate label sets, to improve the availability
of candidate label sets.
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Abstract. Multi-label classification (MLC) is the task of assigning a set
of target labels for a given sample. Modeling the combinatorial label inter-
actions in MLC has been a long-haul challenge. We propose Label Mes-
sage Passing (LaMP) Neural Networks to efficiently model the joint predic-
tion of multiple labels. LaMP treats labels as nodes on a label-interaction
graph and computes the hidden representation of each label node condi-
tioned on the input using attention-based neural message passing. Atten-
tion enables LaMP to assign different importances to neighbor nodes per
label, learning how labels interact (implicitly). The proposed models are
simple, accurate, interpretable, structure-agnostic, and applicable for pre-
dicting dense labels since LaMP is incredibly parallelizable. We validate
the benefits of LaMP on seven real-world MLC datasets, covering a broad
spectrum of input/output types and outperforming the state-of-the-art
results. Notably, LaMP enables intuitive interpretation of how classifying
each label depends on the elements of a sample and at the same time rely
on its interaction with other labels (We provide our code and datasets at
https://github.com/QData/LaMP.).

1 Introduction

Multi-label classification (MLC) is receiving increasing attention in areas such
as natural language processing, computational biology, and image recognition.
Accurate and scalable MLC methods are in urgent need for applications like
assigning topics to web articles, or identifying binding proteins on DNA. The
most common and straightforward MLC method is the binary relevance (BR)
approach that considers multiple target labels independently [46]. However, in
many MLC tasks there is a clear dependency structure among labels, which BR
methods ignore.

Unfortunately, accurately modelling all combinatorial label interactions is an
NP-hard problem. Many types of models, including a few deep neural network
(DNN) based, have been introduced to approximately model such interactions,
thus boosting classification accuracy.

Our main concern of this paper is how to represent multiple labels jointly
(and conditioned on the input features) in order to make accurate predictions.

c© Springer Nature Switzerland AG 2020
U. Brefeld et al. (Eds.): ECML PKDD 2019, LNAI 11907, pp. 138–163, 2020.
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The most relevant literature addressing this concern falls roughly into three
groups.

The first group, probabilistic classifier chain (PCC) models, formulate the
joint label dependencies using the chain rule and perform MLC in a sequen-
tial prediction manner [36,39,55]. Notably, [36] used a recurrent neural network
(RNN) sequence to sequence (Seq2Seq) architecture [17] for MLC and achieved
the state-of-the-art performance on multiple text-based datasets. However, these
methods are inherently unfit for MLC tasks due to their incapacity to be paral-
lelized, and inability to perform well in dense label settings, or when there are a
large number of positive labels (since errors propagate in the sequential predic-
tion). We refer the reader to the supplementary material for a full background
and analysis of PCC methods (AppendixA). The second group learns a shared
latent space representing both input features and output labels, and then upsam-
ples from the space to reconstruct the target labels [6,57]. The main drawback
of this group is the interpretability issue with a learned low dimensional latent
space, as many real-world applications prefer interpretable predictors. The third
group models conditional label dependencies using a structured output or graph-
ical model representation [29,45]. However, these methods are often limited to
only considering pair-wise dependencies due to computational constraints, or
are forced to use some variation of approximate inference which has no clear
representation of conditional dependencies.

Thus our main question is: is it possible to have accurate, flexible and explain-
able MLC methods that are applicable to many dense labels? This paper provides
empirical results showing that this is possible through extending attention based
Message Passing Neural Networks (MPNNs) to learn the joint representation of
multiple labels conditioned on input features.

MPNNs [15] are a class of methods that efficiently learn the joint repre-
sentations of variables using neural message passing strategies. They provide a
flexible framework for modeling multiple variables jointly which have no explicit
ordering.

The key idea of our method is to rely on attention-based neural message
passing entirely to draw global dependencies from labels to input features, and
from labels to labels. To the best of our knowledge, this is the first extension
of MPNNs to model a conditional joint representation of output labels, and
additionally the first extension of MPNNs to model the interactions of variables
where the exact structure is unknown. We name the proposed method Label
Message Passing (LaMP) Networks since it performs neural message passing on
an unknown, fully-connected label-to-label graph. Through intra-attention (aka
self-attention), LaMP assigns different importance to different neighbor nodes
per label, dynamically learning how labels interact conditioned on a specific
input. We further extend LaMP to cases when a known label interaction graph
is provided by modifying the intra-attention to only attend over a node’s known
neighbors. LaMP networks allow for parallelization in training and testing and
can work with dense labels, overcoming the drawbacks of PCC methods.
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LaMP most closely belongs to the third MLC category we mentioned above,
however it trains a unified model to classify each label and model the label to
label dependencies at the same time, in an end-to-end fashion. The important
aspect is that LaMP networks automatically learn the output label dependency
structure conditioned on a specific input using neural message passing. This in
turn can easily be interpreted to understand the conditional structure.

The main contributions of this paper include: (1) Accurate MLC: Our
model achieves similar, or better performance compared to the previous state of
the art across five MLC metrics. We validate our model on eight MLC datasets
which cover a wide spectrum of input data structure: sequences (English text,
DNA), tabular (binary word vectors), graph (drug molecules), and images, as
well as output label structure: unknown and graph. (2) Interpretable: Although
deep-learning based systems have widely been viewed as “black boxes”, our
attention based LaMP models allow for a straightforward way to extract three
different types of model visualization: intermediate network predictions, label to
feature dependencies, and label to label dependencies.

2 Method: LaMP Networks

Notations. We define the following notations, used throughout the paper. Let
D = {(xn,yn)}N

n=1 be the set of data samples with inputs x ∈ X and outputs
y ∈ Y . Inputs x are a (possibly ordered) set of S components {x1, x2, ..., xS},
and outputs y are a set of L labels {y1, y2, ..., yL}. MLC involves predicting the
set of binary labels {y1, y2, ..., yL}, yi ∈ {0, 1} given input x.

In general we can assume to represent the input feature components as
embedded vectors {z1,z2, ...,zS}, zi ∈ R

d, using some learned embedding matrix
Wx ∈ R

δ×d. Here d is the embedding size and, δ is the size of xi. xi can be any
component of a particular input (for example, words in a sentence, patches of
an image, nodes of a known graph, or one of the tabular features).

Similarly, labels can be first represented as embedded vectors {ut=0
1 ,ut=0

2 , ...,
ut=0

L }, ut
i ∈ R

d, through a learned embedding matrix Wy ∈ R
L×d, where L

denotes the number of labels. Here we use t to represent the ‘state’ of the embed-
ding after the tth update step.This is because inLaMPnetworks, each label embed-
ding is updated for t steps before the predictions are made. The key idea of LaMP
networks is that labels are represented as nodes in a label-interaction graph Gyy

denoting nodes as embedding vectors {ut
1:L}. LaMP networks use MPNN modules

with attention to pass messages from input embeddings {z1:S} to Gyy, and then
within Gyy to model the joint prediction of labels.

2.1 Background: Message Passing Neural Networks

Message Passing Neural Networks (MPNNs) [15] are a generalization of graph
neural networks (GNNs) [41]. MPNNs model variables as nodes on a graph G.
Here G = (V,E), where V describes the set of nodes (variables) and E denotes
the set of edges (about how variables interact with other variables). In MPNNs,
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joint representations of nodes and edges are modelled using message passing
rather than explicit probabilistic formulations, allowing for efficient inference.
MPNNs model the joint dependencies using message function M t and node
update function U t for T time steps, where t is the current time step. The
hidden state vt

i ∈ R
d of node i ∈ G is updated based on messages mt

i from its
neighboring nodes {vt

j∈N (i)} defined by neighborhood N (i):

mt
i =

∑

j∈N (i)

M t(vt
i ,v

t
j), (1)

vt+1
i = U t(mt

i). (2)

After T rounds of iterative updates to spread information to distant nodes, a
readout function R is used on the updated node embeddings to make predictions
like classifying nodes or classifying properties about the graph.

Many possibilities exist for functions M t and U t. We specifically choose to
pass messages using intra-attention (also called as self-attention) neural message
passing which enable nodes to attend over their neighborhoods differentially.
This allows for the network to learn different importances for different nodes
in a neighborhood, without depending on knowing the graph structure upfront
(essentially learning the unknown graph structure) [53]. In this formulation,
messages for node vt

i are obtained by a weighted sum of all its neighboring
nodes {vt

j∈N (i)} where the weights are calculated by attention representing the
importance of each neighbor for a specific node [2]. In the rest of the paper, we
use “graph attention” and “neural message passing” interchangeably.

Intra-attention neural message passing works as follows. We first calculate
attention weights αt

ij for pair of nodes (vt
i , v

t
j) using attention function a(·):

αt
ij = softmaxj(et

ij) =
exp(et

ij)∑
k∈N (i) exp(et

ik)
(3)

et
ij = a(vt

i ,v
t
j) (4)

a(vt
i ,v

t
j) =

(Wqvt
i)

�(Wuvt
j)√

d
(5)

where et
ij represents the importance of node j for node i, however un-normalized.

et
ij are normalized across all neighboring nodes of node i using a softmax function

(Eq. 3) to get αt
ij . For the attention function a(·), we used a scaled dot product

with node-wise linear transformations Wq ∈ R
d×d on node vt

i and Wu ∈ R
d×d

on node vt
j . Scaling by

√
d is used to mitigate training issues [52].

Then we use a so called attention message function M t
atn to produce the

message from node j to node i using the learned attention weights αt
ij and

another transformation matrix Wv ∈ R
d×d:

Matn(vt
i ,v

t
j ;W ) = αt

ijW
vvt

j , (6)

mt
i = vt

i +
∑

j∈N (i)

Matn(vt
i ,v

t
j ;W ). (7)
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Equation 7 computes the full message mt
i for node vt

i by linearly combining
messages from all neighbor nodes j ∈ N (i) with a residual connection on the
current vt

i .
Lastly, node vt

i is updated to next state vt+1
i using message mt

i by a multi-
layer perceptron (MLP) update function Umlp, plus a mt

i residual connection:

Umlp(mt
i;W ) = ReLU(Wrmt

i + b1)�Wb + b2 (8)

vt+1
i = mt

i + Umlp(mt
i;W ). (9)

Function Umlp is parameterized with matrices {Wr ∈ R
d×d,Wb ∈ R

d×d}. It is
important to note that W in Eq. 9 are shared (i.e., separately applied) across all
nodes. This can be viewed as 1-dimensional convolution operation with kernel
and stride sizes of 1. Weight sharing across nodes is a key aspect of MPNNs,
where node dependencies are learned in an order-invariant manner.

2.2 LaMP: Label Message Passing

Given the input embeddings {z1,z2, ...,zS}, the goal of Label Message Passing is
to model the conditional dependencies between label embeddings {ut

1,u
t
2, ...,u

t
L}

using Message Passing Neural Networks. We assume that the label embeddings
are nodes on a label-interaction graph called Gyy, where the initial state of the
embeddings {u0

1:L} at t = 0 are obtained using label embedding matrix Wy.
Each step t in Label Message Passing consists of two parts in order to update

the label embeddings: (a) Feature-to-Label Message Passing, where messages are
passed from the input embeddings to the label embeddings, and (b) Label-to-
Label Message Passing, where messages are passed between labels. An overview
of our model is shown in Fig. 1. We explain these two parts in detail in the
following subsections. LaMP Networks use T steps of attention-based neural
message passing to update the label nodes before a readout function makes a
prediction for each label i on its final state uT

i .

Updating Label Embeddings via Feature-to-Label Message Passing

Given a particular input x with embedded feature components {z1,z2, ...,zS},
the first step in LaMP is to update the label embeddings by passing messages
from the input embeddings to the label embeddings, as shown in the “Feature-to-
Label MP” block of Fig. 1. To do this, LaMP uses neural message passing module
MPNNxy to update the ith label node’s embedding ut

i using the embeddings of
all the components of an input.

That is, we update each ut
i by using a weighted sum of all input embeddings

{z1:S}, in which the weights represent how important an input component is to
the ith label node. The weights for the message are learned via Label-to-Feature
attention (i.e., each label attends to each input embedding differently to compute
the weights).
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Fig. 1. LaMP Networks. Given input x, we encode its components {x1, x2, x3} as
embedded input nodes {z1, z2, z3}. We encode labels {y1, y2, ..., y5} as embedded label
nodes {ut

1,u
t
2, ...,u

t
5} of label-interaction graph Gyy. First, MPNNxy is used to pass

messages from the input nodes to the labels nodes and update the label nodes. Then,
MPNNyy is used to pass messages between the label nodes and update label nodes.
Finally, readout function R performs node-level classification on label nodes to make
binary label predictions {ŷ1, ŷ2, ..., ŷ5}.

In this step, messages are only passed from the input nodes to the label
nodes, and not vice versa (i.e. Feature-to-Label message passing is directed).

More specifically, to update label embedding ut
i, MPNNxy uses attention

message function M t
atn on all embeddings of the input {z1:S} to produce mes-

sages mt
i, and MLP update function Umlp to produce the updated intermediate

embedding state ut′
i :

mt
i = ut

i +
S∑

j=1

Matn(ut
i,zj ;Wxy), (10)

ut′
i = mt

i + Umlp(mt
i;Wxy). (11)

The key advantage of Feature-to-Label message passing with attention is that
each label node can attend differently on input elements (e.g. different words in
an input sentence).

Updating Label Embeddings via Label-to-Label Message Passing

At this point, an independent prediction can be made for each label conditioned
on x using {ut′

1:L}. However, in order to consider label dependencies, we model
interactions between the label nodes {ut′

1:L} using Label-to-Label message pass-
ing and update them accordingly, as shown in the “Label-to-Label MP” block of
Fig. 1. Given the exponentially large number of possible conditional dependen-
cies, we use neural message passing as an efficient way to much such interactions,
which has been shown to work well in practice for other tasks.

We assume there exist a label interaction graph Gyy = (Vyy, Eyy), Vyy =
{y1:L}, and Eyy includes all undirected pairwise edges connecting node yi and
node yj . At this stage, we use another message passing module, MPNNyy to pass
messages between labels and update them. The label embedding ut′

i is updated
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by a weighted combination through attention of all its neighbor label nodes
{ut′

j∈N (i)}.

MPNNyy uses attention message function M t′
atn on all neighbor label embed-

dings {ut′
j∈N (i)} to produce message mt

i, and MLP update function U t′
mlp to

compute updated embedding ut+1
i :

mt′
i = ut′

i +
∑

j∈N (i)

Matn(ut′
i ,ut′

j ;Wyy), (12)

ut+1
i = mt′

i + Umlp(ut′
i ,mt′

i ;Wyy). (13)

If there exists a known label interaction graph Gyy, message mt
i for node i

is computed using its neighboring nodes j ∈ N (i), where the neighbors N (i)
are defined by the graph. If there is no known Gyy graph, we assume a fully
connected graph, which means N (i) = {j ∈ Vyy} (including i).

Message Passing for Multiple Time Steps

To learn more complex relations among nodes, we compute a total of T time steps
of updates. This is essentially a stack of T MPNN layers. In our implementation,
the label embeddings are updated by MPNNxy and MPNNyy for T time steps
to produce {uT

1 ,uT
2 , ...,uT

L}.

2.3 Readout Layer (MLC Predictions from the Label Embeddings)

After T updates to the label embeddings, the last module predicts each label
{ŷ1, ...ŷL}. A readout function R projects each of the L label embeddings uT

i

using projection matrix Wo ∈ R
L×d, where row Wo

i ∈ R
d is the learned out-

put vector for label i. The calculated vector of size L × 1 is then fed through
an element-wise sigmoid function to produce probabilities of each label being
positive:

ŷi = R(uT
i ;Wo) = sigmoid(Wo

iu
T
i ). (14)

2.4 Model Details

Multi-head Attention. In order to allow a particular node to attend to multi-
ple other nodes (or multiple groups of nodes) at once, LaMP uses multiple atten-
tion heads. Inspired by [52], we use K independent attention heads for each W·

matrix during the message computation, where each matrix column W·,k
j is of

dimension d/K. The generated representations are concatenated (denoted by ‖)
and linearly transformed by matrix Wz ∈ R

d×d. Multi-head attention changes
message passing function Matn, but update function Umlp stays the same.

et,k
ij = (Wq,kvt

i)
�(Wu,kvt

j)/
√

d (15)
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αt,k
ij =

exp(et,k
ij )

∑
j∈N (i) exp(et,k

ij )
(16)

Mk
atn(v

t
i ,v

t
j ;W ) = αt,k

ij Wv,kvt
j , (17)

mt
i = vt

i +

(∥∥∥∥∥

K

k=1

[
∑

j∈N (i)

Mk
atn(v

t
i ,v

t
j ;W )

])
Wc (18)

Matrices Wq
· ,Wu

· ,Wv
· ,Wr

· ,W
b
· ,W

c
· , are not shared across time steps (but are

shared across nodes).

Label Embedding Weight Sharing. To enforce each label’s input embedding
to correspond to that particular label, the label embedding matrix weights Wy

are shared with the readout projection matrix Wo. In other words, Wy is used
to produce the initial node vectors for Gyy, and then is used again to calculate
the pre-sigmoid output values for each label, so Wo ≡ Wy. This was shown
beneficial in Seq2Seq models for machine translation [38].

2.5 Loss Function

The final output of LaMP networks ŷ are trained using the mean binary cross
entropy (BCE) over all outputs yi. For one sample, given true binary label vector
y and predicted labels ŷ, the output loss Lout is:

Lout(y, ŷ) =
1
L

L∑

i=1

−(yi log(ŷi) + (1 − yi) log(1 − ŷi)) (19)

The final outputs ŷi are computed from the final label node states uT
i (Eq. 14).

However, since LaMP networks iteratively update the label nodes from t = 0 to
T , we can “probe” the label nodes at each intermediate state from t = 1 to T −1
and enforce an auxilary loss on those states. To do this, we use the same matrix
W o to extract the intermediate prediction ŷt

i at state t: ŷt
i = R(ut

i;W
o). We use

the same BCE loss on the these predictions to compute intermediate loss Lint:

Lint(y, ŷt) =
1
L

L∑

i=1

−(yi log(ŷt
i) + (1 − yi) log(1 − ŷt

i)). (20)

We note that the intermediate predictions ŷt
i are computed for both ut

i (after
Label-to-Label message passing), as well as ut′

i (after Feature-to-Label message
passing). The final loss is a combination of both the original and intermediate,
where the intermediate loss is weighted by λ:

LLaMP = Lout(y, ŷ) + λ

T−1∑

t=1

Lint(y, ŷt) (21)
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In LaMP networks, p(yi|{yj �=i},z1:S ;W) is approximated by jointly represent-
ing {y1:L} using message passing from {z1:S} and from the embeddings of all
neighboring labels {yj∈N (i)}.

2.6 LaMP Variation: Input Encoding with Feature Message Passing
(FMP)

Thus far, we have assumed that we use the raw feature embeddings {z1,z2, ...,zS}
to pass messages to the labels. However, we could also update the feature embed-
dings before they are passed to the label nodes by modelling the interactions
between features.

For a particular input x, we first assume that the input features {x1:S} are
nodes on a graph, Gxx. Gxx = (Vxx, Exx), Vxx = {x1:S}, and E includes all
undirected pairwise edges connecting node xi and node xj . MPNNxx, param-
eterized by Wxx, is used to pass messages between the input embeddings in
order to update their states. Nodes on Gxx are represented as embedding vec-
tors {zt

1,z
t
2, ...,z

t
S}, where the initial states {z0

1:S} are obtained using embed-
ding matrix Wx on input components {x1, x2, ..., xS}. The embeddings are
then updated by MPNNxx using message passing for T time steps to produce
{zT

1 ,zT
2 , ...,zT

S }.
To update input embedding zt

i , MPNNxx uses attention message function
M t

atn (Eq. 6) on all neighboring input embeddings {zt
j∈N (i)} to produce messages

mt
i, and MLP update function Umlp (Eq. 9) to produce updated embedding zt+1

i :

mt
i = zt

i +
∑

j∈N (i)

Matn(zt
i ,z

t
j ;Wxx), (22)

zt+1
i = mt

i + Umlp(mt
i;Wxx). (23)

If there exists a known Gxx graph, message mt
i for node i is computed using its

neighboring nodes j ∈ N (i), where the neighbors N (i) are defined by the graph.
If there is no known graph, we assume a fully connected Gxx graph, which means
N (i) = {j ∈ Vxx}. Inputs with a sequential ordering can be modelled as a fully
connected graph using positional embeddings [4].

In summary, MPNNxx is used to update input feature nodes {zt
1:S} by pass-

ing messages within the feature-interaction graph. MPNNxy, is used to update
output label nodes {ut

1:L} by passing messages from the features to labels (from
input nodes {zt

1:S} to output nodes {ut
1:L}). MPNNyy, is used to update out-

put label nodes {ut
1:L} by passing messages within the label-interaction graph

(between label nodes). Once messages have been passed to update the feature
and label nodes for T integrative updates, a readout function R is then used
on the label nodes to make a binary classification prediction on each label,
{ŷ1, ŷ2, ..., ŷL}. Figure 1 shows the LaMP network without the feature-interaction
graph.
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2.7 Advantages of LaMP Models

Efficiently Handling Dense Label Predictions. It is known that autoregres-
sive models such as RNN Seq2Seq suffer from the propagation of errors over the
sequential positive label predictions. This makes it difficult for these models to
handle dense, or many positive label, samples. In addition, autoregressive mod-
els require a time consuming post-processing step such as beam search to obtain
the optimal label set. Lastly, autoregressive models require a predefined label
ordering for training the sequential prediction, which can lead to instabilities at
testing time [54].

Motivated by the drawbacks of autoregressive models for MLC, the proposed
LaMP model removes the reliance on sequential predictions, beam search, and
a chosen label ordering, while still modelling the label dependencies. This is
particularly beneficial when the number of positive output labels is large (i.e.
dense). LaMP networks predict the output set of labels all at once, which is
made possible by the fact that inference doesn’t use a probabilistic chain, but
there is still a representation of label dependencies via label to label attention.
As an additional benefit, as noted by [5], it may be useful to maintain ‘soft’
predictions for each label in MLC. This is a major drawback of the PCC models
which make ‘hard’ predictions of the positive labels, defaulting all other labels
to 0.

Structure Agnostic. Many input or output types are instances where the
relational structure is not made explicit, and must be inferred or assumed [4].
LaMP networks allow for greater flexibility of both input structures (known
structure such as sequence or graph, or unknown such as tabular), as well as
output structures (e.g., known graph vs unknown structure). To the best of our
knowledge, this is the first work to use MPNNs to infer the relational structure
of the data by using attention mechanisms.

Interpretability. Our formulation of LaMP allows us to visualize predictions
in several different ways. First, since predictions are made in an iterative manner
via graph update steps, we can “probe” each label’s state at each step to get
intermediate predictions. Second, we can visualize the attention weights which
automatically learn the relational structure. Combining these two visualization
methods allows us to see how the predictions change from the initial predictions
given only the input sequence to the final state where messages have been passed
from other labels, leading us to better insights for specific MLC samples.

2.8 Connecting to Related Topics

Structured Output Predictions. The use of graph attention in LaMP models
is closely connected to the literature of structured output prediction for MLC.
[14] used conditional random fields (CRFs) [29] to model dependencies among
labels and features for MLC by learning a distribution over pairs of labels to
input features, but these are limited to pairwise dependencies.
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Table 1. ebF1 Scores across all 8 datasets

Reuters Bibtex Bookmarks Delicious RCV1 TFBS SIDER NUSWIDE

FastXML [37] – – – – 0.841 – – –

Madjarov [32] – 0.434 0.257 0.343 – – – –

SPEN [5] – 0.422 0.344 0.375 – – – –

RNN Seq2Seq [36] 0.894 0.393 0.362 0.320 0.890 0.249 0.356 0.329

Emb+MLP 0.854 0.363 0.368 0.371 0.865 0.167 0.766 0.371

Emb+LaMPel 0.859 0.379 0.351 0.358 0.868 0.289 0.767 0.376

Emb+LaMPfc 0.896 0.427 0.376 0.368 0.871 0.319 0.763 0.376

Emb+LaMPpr 0.895 0.424 0.373 0.366 0.870 0.317 0.765 0.372

FMP+LaMPel 0.883 0.435 0.375 0.369 0.887 0.310 0.766 –

FMP+LaMPfc 0.906 0.445 0.389 0.372 0.889 0.321 0.764 –

FMP+LaMPpr 0.902 0.447 0.386 0.372 0.887 0.321 0.766 –

To overcome the naive pairwise dependency constraint of CRFs, structured
prediction energy networks (SPENS) [5] and related methods [20,50] locally
optimize an unconstrained structured output. In contrast to SPENs which use
an iterative refinement of the output label predictions, our method is a sim-
pler feed forward block to make predictions in one step, yet still models depen-
dencies through attention mechanisms on embeddings, which gives the added
interpretability benefit.

Multi-label Classification By Modeling Label Interaction Graphs. [19]
formulate MLC using a label graph and they introduced a conditional depen-
dency SVM where they first trained separate classifiers for each label given the
input and all other true labels and used Gibbs sampling to find the optimal label
set. The main drawback is that this method does not scale to a large number of
labels. [42] proposes a method to label the pairwise edges of randomly generated
label graphs, and requires some chosen aggregation method over all random
graphs. The authors introduce the idea that variation in the graph structure
shifts the inductive bias of the base learners. Our fully connected label graph
with attention on the neighboring nodes can be regarded as a form of graph
ensemble learning [22]. [11] use graph neural networks for MLC, but focus on
graph inputs. They do not explicitly model label the label-to-label dependencies,
thus resulting in a worse performance than LaMP.

Graph Neural Networks (GNNs). Passing embedding messages from node
to neighbor nodes connects to a large body of literature on graph neural networks
[4] and embedding models for structures [8].

The key idea is that instead of conducting probabilistic operations (e.g.,
product or re-normalization), the proposed models perform nonlinear function
mappings in each step to learn feature representations of structured components.
[3,15,53] all follow similar ideas to pass the embedding from node to neighbor
nodes or neighbor edges.

There have been many recent works extending the basic GNN framework
to update nodes using various message passing, update, and readout functions
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[3,12,15,21,24,26,31,59]. We refer the readers to [4] for a survey. However, none
of these have used GNNs for MLC. In addition, none of these have attempted to
learn the graph structure by using neural attention on fully connected graphs.

3 Experiments

We validate our model on eight real world MLC datasets. These datasets vary in
the number of samples, number of labels, input type (sequential, tabular, graph,
vector), and output type (unknown, known label graph). They also cover a wide
spectrum of input data types, including: raw English text (sequential form),
binary word vector (tabular form), drug molecules (graph form), and images
(vector form). Data statistics are in Table 6 and AppendixD.1. Due to the space
limit, we move the details of evaluation metrics to Appendix D.2 and the hyper-
parameters to AppendixD.3. Details of previous results from the state-of-the-art
baselines are in AppendixD.4.

3.1 LaMP Variations

For LaMP models, we use two variations of input features, and three variations
of Label-to-Label Message Passing. For input features, we use (1) Emb, which
is the raw learned feature embeddings of dimension d, and (2) FMP1 which is
the updated state of each feature embedding after 2 layers of Feature Message
Passing, as explained in Sect. 2.6. For each of the two input feature variations,
we use three variations of the label graph which Label-to-Label Message Passing
uses to update the labels given the input features, explained as follows.

Table 2. miF1 Scores across all 8 datasets

Reuters Bibtex Bookmarks Delicious RCV1 TFBS SIDER NUSWIDE

FastXML [37] – – – – 0.847 – – –

SVM [9] 0.787 – – – – – – –

GAML [11] – – 0.333 – – – – 0.398

Madjarov [32] – 0.462 0.268 0.339 – – – –

RNN Seq2Seq [36] 0.858 0.384 0.329 0.329 0.884 0.311 0.389 0.418

Emb+MLP 0.835 0.389 0.349 0.385 0.855 0.218 0.795 0.465

Emb+LaMPel 0.842 0.413 0.334 0.372 0.858 0.401 0.797 0.472

Emb+LaMPfc 0.871 0.458 0.363 0.379 0.859 0.449 0.797 0.470

Emb+LaMPpr 0.877 0.462 0.363 0.380 0.859 0.448 0.798 0.468

FMP+LaMPel 0.870 0.455 0.355 0.381 0.877 0.445 0.795 –

FMP+LaMPfc 0.886 0.465 0.373 0.384 0.877 0.450 0.795 –

FMP+LaMPpr 0.889 0.473 0.371 0.386 0.877 0.449 0.797 –

1 For NUS-WIDE, since we use the 128-dimensional cVLAD features as input to com-
pare to [11], we cannot use the FMP method.
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LaMPel uses an edgeless label graph and messages are not passed between
labels, assuming no label dependencies.

LaMPfc uses a fully connected label graph where each label is able to attend
to all other labels (including itself) in order to compute the messages.

LaMPpr uses a prior label graph where each label is able to attend to only
other labels from the known label graph (including itself) in order to compute
the messages. For RCV1, we use the known tree label structure, and for TFBS
we use known protein-protein interactions (PPI) from [44]. For all other datasets,
we create a graph where we place an edge on the adjacency matrix for all labels
that co-occur in any sample for the training set. This is summarized in the last
column of Appendix Table 5.

3.2 Performance Evaluation

ebF1. Table 1 shows the most commonly used evaluation, example-based F1
(ebF1) scores, for the seven datasets. LaMP outperforms the baseline MLP mod-
els which assume no label dependencies, as well as RNN Seq2Seq, which models
label dependencies using a classifier chain. More importantly, we compare using
an output graph with no edges (LaMPel), which assumes no label dependen-
cies vs. an output graph with edges (LaMPfc). The two models have the same
architecture and number of parameters, with the only thing varying being the
message passing between label nodes. We can see that for most datasets, mod-
elling label dependencies using LaMPfc does in fact help. We found that using
a known prior label structure (LaMPpr) did not improve the results signifi-
cantly. LaMPfc predictions produced an average 1.8% ebF1 score increase over
the independent LaMPel predictions. LaMPpr resulted in an average 1.7% ebF1
score increase over LaMPel. When comparing to the MLP baseline, LaMPfc and
LaMPpr produced an average 18.5% and 18.4% increase, respectively.

miF1. While high ebF1 scores indicate strong average F1 scores over all samples,
the label-based Micro-averaged F1 (miF1) scores indicate strong results on the
most frequent labels. Table 2 shows the miF1 scores, for the all datasets. LaMPfc

produced an average 1.6% miF1 score increase over the independent LaMPel.
LaMPpr produced an average 1.8% miF1 score increase over LaMPel. When
comparing to the MLP baseline, LaMPfc and LaMPpr resulted in an average
20.2% and 20.5% increase, respectively.

maF1. Contrarily, high label-based Macro-averaged F1 (maF1) scores indicate
strong results on less frequent labels. Table 2 shows maF1 scores, which show the
strongest improvement of LaMPfc and LaMPpr variation over independent pre-
dictions. LaMPfc resulted in an average 2.4% maF1 score increase over the inde-
pendent LaMPel. LaMPpr produced an average 2.1% maF1 score increase over
LaMPel. This indicates that Label-to-Label message passing can help boost the
accuracy of rare label predictions. When comparing to Emb + MLP, LaMPfc and
LaMPpr produced an average 57.0% and 56.7% increase, respectively (Table 3).
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Table 3. maF1 Scores across all 8 datasets

Reuters Bibtex Bookmarks Delicious RCV1 TFBS SIDER NUSWIDE

SVM [9] 0.468 – – – – – – –

FastXML [37] – – – – 0.592 – – –

GAML [11] – – 0.217 – – – – 0.114

Madjarov [32] – 0.316 0.119 0.142 – – – –

RNN Seq2Seq [36] 0.457 0.282 0.237 0.166 0.741 0.210 0.207 0.143

Emb+MLP 0.366 0.275 0.248 0.180 0.667 0.094 0.665 0.173

Emb+LaMPel 0.476 0.308 0.229 0.176 0.680 0.326 0.666 0.198

Emb+LaMPfc 0.547 0.366 0.271 0.192 0.691 0.362 0.663 0.203

Emb+LaMPpr 0.560 0.372 0.267 0.192 0.698 0.365 0.663 0.196

FMP+LaMPel 0.508 0.353 0.266 0.192 0.742 0.368 0.664 –

FMP+LaMPfc 0.520 0.371 0.286 0.195 0.743 0.364 0.668 –

FMP+LaMPpr 0.517 0.376 0.280 0.196 0.740 0.364 0.664 –

Other Metrics. Due to space constraints, we report subset accuracy in
Appendix (supplementary) Table 7. RNN Seq2Seq models mostly perform all
other models for this metric since they are trained to maximize it [36]. However,
for all other metrics, RNN Seq2Seq does not perform as well, concluding that
for most applications, PCC models aren’t necessary. We also report Hamming
Accuracy in Appendix Table 8, and we note that LaMP networks outperform or
perform similarly to baseline methods, but we observe that this metric is mostly
unhelpful.

Metrics Performance Summary. While LaMP does not explicitly model label
dependencies as autoregressive or structured prediction models do, the attention
weights do learn some dependencies among labels (Sect. 3.3). This is indicated
by the fact that LaMP, which uses Label-to-Label attention, mostly outperforms
the ones which don’t, indicating that it is learning label dependencies.

Speed. LaMP results in a mean of 1.7x and 5.0x training and testing speedups,
respectively, over the previous state-of-the-art probabilistic MLC method, RNN
Seq2Seq. Speedups over RNN Seq2Seq model are shown in Table 4.

3.3 Interpretability Evaluation

The structure of LaMP networks allows for three different types of visualization
methods to understand how the network predicts each label. We explain the
three types here and show the results for a sample from the Bookmarks dataset
using the FMP+ LaMPfc model.

Intermediate Output Prediction. One advantage of the multi step formula-
tion of label embedding updates is that it gives us the ability to probe the state of
each label at intermediate steps and view the model’s predictions at those steps.
To do this, we use the readout function R on each intermediate label embeddings
state ut

i to find the probability that the label embedding would predict a posi-
tive label. In other words, this is the post-sigmoid output of the readout function
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of each embedding R(ut
i;W

o) at each step t = 1, ..., T . We note that each step
contains two stages: t.1 is the output after the Feature-to-Label message passing,
and t.2 is output after the Label-to-Label message passing. The output after the
second stage of the final step (i.e. T.2) is the model’s final output.

Figure 2(a) shows the intermediate prediction outputs from the T = 2 step
model. On the horizontal axis are a selected subset of all possible labels, with the
red colored axis labels being all true positive labels. On the vertical axis, each
row represents one of the label embedding states in the T = 2 step model. Each
cell represents the readout function’s prediction for each label embedding’s state.
The brighter the grid cell, the more likely that label is positive at the current
stage. Starting from the bottom, the first row (1.1) shows the prediction of
each label after the first Feature-to-Label message passing. The second row (1.2)
shows the prediction of each label after the first Label-to-Label message passing.
This is then repeated once more in (2.1) and (2.2) for the second layer’s output
states, where the final output, 2.2 is the network’s final output predictions. The
most important aspect of this figure is that we can see the labels “design”,
“html”, and “web design”, all change from weakly positive to strongly positive
after the first Label-to-Label message passing step (row 1.2). In other words, this
indicates that these labels change to a strongly positive prediction by passing
messages between each other.

Label-to-FeatureAttention.While the iterative prediction visualization shows
how the model updates its prediction of each label, it doesn’t explicitly show how
or why. To understand why each label changes its predictions, we first look at the
Feature-to-Label attention, which tells us the input nodes that each label node
attends to in order to update its state (and thus producing the predictions in
Fig. 2(a)). Figure 2(b) shows us which input nodes (i.e. features) each of the posi-
tive label attends to in order to make its first update step 1.1. The colors represent

Fig. 2. (a) Visualization of Model Predictions and Attention Weights Inter-
mediate Predictions: this shows the readout function predictions for each intermediate
state in the two update steps. (b) Label-to-Feature Attention Weights for the
first step of Feature-to-Label message passing (1.1). (c) Label-to-Label Attention
Weights for the first step of Label-to-Label message passing (1.2).
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Table 4. Speed. Each column shows training or testing speed for LaMP in minutes
per epoch. Speedups over RNN Seq2Seq are in parentheses. Since LaMP does not
depend on sequential prediction, we see a drastic speedup, especially during testing
where RNN Seq2Seq requires beam search.

Dataset Training Testing

Reuters 0.788 (1.5x) 0.116 (2.1x)

Bibtex 0.376 (2.1x) 0.080 (2.1x)

Delicious 3.172 (1.1x) 0.473 (3.2x)

Bookmarks 9.664 (1.2x) 1.849 (1.3x)

RCV1 98.346 (1.2x) 1.003 (1.7x)

TFBS 187.14 (2.5x) 13.04 (4.2x)

NUS-WIDE 3.201 (1.2x) 0.921 (8.0x)

SIDER 0.027 (2.5x) 0.003 (21x)

the post-softmax attention weight (summed over the 4 attention heads), with the
darker cells representing high attention. In this example, we can see that the “web
design” label attends to the “pick”, “smart”, and “version” features, but as we
can see from the first row of Fig. 2(a), prediction for the current state of the “web
design” label isn’t very strong yet.

Label-to-LabelAttention.Label-to-Feature attention shows us the input nodes
that each label node attends to in order to make its first update, but the second
step of the label graph update is the Label-to-Label message passing step where
labels are updated according to the states of all other nodes after the first Feature-
to-Label message passing. Figure 2(c) shows us the first Label-to-Label attention
stage 1.2 where each label node can attend to the other label nodes in order to
update its state. Here we show only the Label-to-Label attention for the positive
labels in this example. We then look at the second row of Fig. 2(a) which shows
the model’s prediction of each label node after the Label-to-Label attention. The
interesting thing to note here is we can see many of the true positive labels change
their state topositive after thepositive labels attend to eachother during theLabel-
to-Label attention step, indicating that dependencies are learned.

Attention weights for the second step t = 2 are not as interpretable since
they model higher order interactions. We have added these plots in Appendix
Fig. 3.

4 Conclusion

In this work we present Label Message Passing (LaMP) Networks which achieve
better than, or close to the same accuracy as previous methods across five met-
rics and seven datasets. In addition, the iterative label embedding updates with
attention of LaMP provide a straightforward way to shed light on the model’s
predictions and allow us to extract three forms of visualizations, including con-
ditional label dependencies which influence MLC classifications.
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A Appendix: MLC Background

A.1 Background of Multi-label Classification

MLC has a rich history in text [33,51], images [13,46], bioinformatics [13,46],
and many other domains. MLC methods can roughly be broken into several
groups, which are explained as follows.

Label powerset models (LP) [40,49], classify each input into one label combi-
nation from the set of all possible combinations Y = {{1}, {2}, ..., {1, 2, ..., L}}.
LP explicitly models the joint distribution by predicting the one subset of all
positive labels. Since the label set Y grows exponentially in the number of total
labels (2L), classifying each possible label set is intractable for a modest L. In
addition, even in small L tasks, LP suffers from the “subset scarcity problem”
where only a small amount of the label subsets are seen during training, leading
to bad generalization.

Binary relevance (BR) methods predict each label separately as a logistic
regression classifier for each label [16,58]. The näıve approach to BR prediction
is to predict all labels independently of one another, assuming no dependencies
among labels. That is, BR uses the following conditional probability parameter-
ized by learned weights W :

PBR(Y |X;W ) =
L∏

i=1

p(Yi|X1:S ;W ) (24)

Probabilistic classifier chain (PCC) methods [10,39] are autoregressive models
that estimate the true joint probability of output labels given the input by using
the chain rule, predicting one label at a time:

PPCC(Y |X;W ) =
L∏

i=1

p(Yi|Y1:i−1,X1:S ;W ) (25)

Two issues with PCC models are that inference is very slow if L is large, and
the errors propagate as L increases [34]. To mitigate the problems with both
LP and PCC methods, one solution is to only predict the true labels in the
LP subset. In other words, only predicting the positive labels (total of ρ for a
particular sample) and ignoring all other labels, which we call PCC+. Similar to
PCC, the joint probability of PCC+ can be computed as product of conditional
probabilities, but unlike PCC, only ρ < L terms are predicted as positive:

PPCC+(Y |X;W ) =
ρ∏

i=1

p(Ypi
|Yp1:i−1 , x1:S ;W ) (26)

This can be beneficial when the number of possible labels L is large, reducing the
total number of prediction steps. However, in both PCC and PCC+, inference
is done using beam search, which is a costly dynamic programming step to find
the optimal prediction.
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Recently, Recurrent neural network (RNN) based encoder-decoder models
following PCC and PCC+ have shown state-of-the-art performance for solving
MLC. However, the sequential nature of modeling label dependencies through
an RNN limits its ability in parallel computation, predicting dense labels, and
providing interpretable results.

The main drawback of classifier chain models is that their inherently sequen-
tial nature precludes parallelization during training and inference. This can be
detrimental when there are a large number of positive labels as the classifier
chain has to sequentially predict each label, and often requires beam search to
obtain the optimal set. Aside from time-cost disadvantages, PCC methods have
several other drawbacks. First, PCC methods require a defined ordering of labels
for the sequential prediction, but MLC output labels are an unordered set, and
the chosen order can lead to prediction instability [36]. Secondly, even if the
optimal ordering is known, PCC methods struggle to accurately capture long-
range dependencies among labels in cases where the number of positive labels
is large (i.e., dense labels). For example, the Delicious dataset we used in the
experiment has a median of 19 positive labels per sample, so it can be difficult
to correctly predict the labels at the end of the prediction chain. Lastly, many
real-world applications prefer interpretable predictors. For instance, in the task
of predicting which proteins (labels) will bind to a DNA sequence based binding
site, users care about how a prediction is made and how the interactions among
labels (proteins) influence the binding predictions. An important task is mod-
elling what is known as “co-binding” effects, where one protein will only bind
if there is another specific protein already binding, or similarly will not bind if
there is another already binding.

LaMP methods approximate the following factored formulation, where N (Yi)
denotes the neighboring nodes of Yi.

PG2G(Y |X;W ) =
L∏

i=1

p(Yi|{YN (Yi)},X1:S ;W ). (27)

A.2 Seq2Seq Models

In machine translation (MT), sequence-to-sequence (Seq2Seq) models have
proven to be the superior method, where an encoder RNN reads the source
language sentence into an encoder hidden state, and a decoder RNN translates
the hidden state into a target sentence, predicting each word autoregressively
[43]. [2] improved this model by introducing “neural attention” which allows the
decoder RNN to “attend” to every encoder word at each step of the autoregres-
sive translation.

Recently, [36] showed that, across several metrics, state-of-the-art MLC
results could be achieved by using a recurrent neural network (RNN) based
encoder-to-decoder framework for Eq. 26 (PCC+). They use a Seq2Seq RNN
model (Seq2Seq Autoregressive) which uses one RNN to encode x, and a second
RNN to predict each positive label sequentially, until it predicts a ‘stop’ signal.
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This type of model seeks to maximize the ‘subset accuracy’, or correctly predict
every label as its exact 0/1 value.

[52] eliminated the need for the recurrent network in MT by introducing the
Transformer. Instead of using an RNN to model dependencies, the Transformer
explicitly models pairwise dependencies among all of the features by using atten-
tion [2,56] between signals. This speeds up training time because RNNs can’t
be fully parallelized but, the transformer still uses an autoregressive decoder.

A.3 Drawbacks of Autoregressive Models

Seq2Seq MLC [36] uses an encoder RNN encoding elements of an input sequence,
a decoder RNN predicting output labels one after another, and beam search that
computes the probability of the next T predictions of labels and then chooses
the solution with the max combined probability.

Autoregressive models have been proven effective for machine translation
and MLC [2,36,43]. However, predictions must be made sequentially, eliminating
parallelization. Also, beam search is typically used at test time to find optimal
predictions. But beam search is limited by the time cost of large beams sizes,
making it difficult to optimally predict many output labels [27].

In addition to speed constraints, beam search for autoregressive inference
introduces a second drawback: initial wrong predictions will propagate when
using a modest beam size (e.g. most models use a beam size of 5). This can
lead to significant decreases in performance when the number of positive labels
is large. For example, the Delicious dataset has a median of 19 positive labels
per sample, and it can be very difficult to correctly predict the labels at the end
of the prediction chain.

Autoregressive models are well suited for machine translation because these
models mimic the sequential decoding process of real translation. However, for
MLC, the output labels have no intrinsic ordering. While the joint probability of
the output labels is independent of the label ordering via autoregressive based
inference, the chosen ordering can make a difference in practice [36,54]. Some
ordering of labels must be used during training, and this chosen ordering can
lead to unstable predictions at test time.

Our LaMP connects to [18] who removed the autoregressive decoder in MT
with the Non-Autoregressive Transformer. In this model, the encoder makes a
proxy prediction, called “fertilities”, which are used by the decoder to predict all
translated words at once. The difference between their model and ours is that
we have a constant label at each position, so we don’t need to marginalize over
all possible labels at each position.



Neural Message Passing for Multi-label Classification 157

B Appendix: Dataset Details

Table 5. Dataset Statistics. We use 7 well studied MLC datasets, plus our own TFBS
protein binding dataset. Each dataset varies in the input type, number of samples,
number of labels, and number of input features. The last column shows the prior graph
structure type we explore for the LaMPpr model.

Dataset Input Type Domain #Train #Val #Test Labels (L) Features Prior

graph

structure

Reuters-21578 Sequential Text 6,993 777 3,019 90 23,662 Co-occur

RCV1-V2 Sequential Text 703,135 78,126 23,149 103 368,998 Tree

TFBS Sequential Biology 1,671,873 301,823 323,796 179 4 PPI

BibTex Binary Vector Text 4,377 487 2,515 159 1,836 Co-occur

Delicious Binary Vector Text 11,597 1,289 3,185 983 500 Co-occur

Bookmarks Binary Vector Text 48,000 12,000 27,856 208 368,998 Co-occur

NUS-WIDE Vector Image 129,431 32,358 107,859 85 128 Co-occur

SIDER Graph Drug 1,141 143 143 27 37 Co-occur

Table 6. Additional Dataset Statistics. Here we show additional statistics of
datasets with respect to the specific number of labels for each dataset. This shows
how each dataset has a varying degree of MLC difficulty regarding the number of
labels which need to be predicted.

Dataset Mean
labels
/sample

Median
labels
/sample

Max
labels
/sample

Mean
samples
/label

Median
samples
/label

Max
samples
/label

Reuters-21578 1.23 1 15 106.50 18 2,877

RCV1-V2 3.21 3 17 24,362 7,250 363,991

TFBS 7.62 2 178 84,047 45,389 466,876

BibTex 2.38 2 28 72.79 54 689

Delicious 19.06 20 25 250.15 85 5,189

Bookmarks 2.03 1 44 584.67 381 4,642

NUS-WIDE 1.86 1 12 3721.7 1104 44255

SIDER 15.3 16 26 731.07 851 1185

C Appendix: Extra Metrics

Here we provide the results from an extra two metrics: subset accuracy and
hamming accuracy.



158 J. Lanchantin et al.

Table 7. Subset Accuracy Scores across all 7 datasets

Reuters Bibtex Bookmarks Delicious RCV1 TFBS SIDER NUSWIDE

Madjarov - 0.202 0.209 0.018 – – – –

RNN Seq2Seq 0.837 0.195 0.273 0.016 0.6798 0.114 0.000 0.252

Emb+MLP 0.774 0.151 0.234 0.180 0.620 0.040 0.014 0.263

Emb+LaMPel 0.757 0.141 0.214 0.176 0.619 0.077 0.014 0.268

Emb+LaMPfc 0.813 0.171 0.234 0.192 0.630 0.086 0.007 0.269

Emb+LaMPpr 0.813 0.169 0.232 0.192 0.621 0.087 0.007 0.267

FMP+LaMPel 0.808 0.158 0.231 0.192 0.656 0.084 0.007 –

FMP+LaMPfc 0.835 0.182 0.242 0.195 0.660 0.090 0.014 –

FMP+LaMPpr 0.828 0.185 0.241 0.196 0.659 0.090 0.007 –

Table 8. Hamming Accuracy across all 7 datasets

Reuters Bibtex Bookmarks Delicious RCV1 TFBS SIDER NUSWIDE

Madjarov – 0.988 0.991 0.982 – – – –

RNN Seq2Seq 0.996 0.985 0.990 0.980 0.9925 0.961 0.593 0.980

Emb+MLP 0.996 0.987 0.991 0.982 0.992 0.959 0.752 0.980

Emb+LaMPel 0.996 0.987 0.991 0.982 0.992 0.963 0.750 0.980

Emb+LaMPfc 0.997 0.988 0.992 0.982 0.992 0.964 0.752 0.980

Emb+LaMPpr 0.997 0.988 0.991 0.982 0.992 0.964 0.751 0.980

FMP+LaMPel 0.997 0.987 0.991 0.982 0.993 0.964 0.748 –

FMP+LaMPfc 0.997 0.988 0.992 0.982 0.993 0.964 0.749 –

FMP+LaMPpr 0.997 0.988 0.992 0.982 0.993 0.964 0.747 –

Fig. 3. This shows the step t = 2 visualization results from Fig. 2 (a). 2.1 Label-to-
Feature Attention Weights (b). 2.2 Label-to-Label Attention Weights (c)

D Appendix: More About Experiments

D.1 Datasets

We test our method against baseline methods on seven different multi-label
sequence classification datasets. The datasets are summarized in Table 6. We
use Reuters-21578 [30], Bibtex [48], Delicious [47], Bookmarks [23], RCV1-V2
[30], our own DNA protein binding dataset (TFBS) from [7], and SIDER [28],
which is side effects of drug molecules. As shown in the table, each dataset has
a varying number of samples, number of labels, positive labels per sample, and
samples per label. For BibTex and Delicious, we use 10% of the provided training
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set for validation. For the TFBS dataset, we use 1 layer of convolution at the first
layer to extract “words” from the DNA characters (A, C, G, T), as commonly
done in deep learning models for DNA.

For datasets which have sequential ordering of the input components
(Reuters, RCV1), we add a positional encoding to the word embedding as used
in [52] (sine and cosine functions of different frequencies) to encode the location
of each word in the sentence. For datasets with no ordering or graph structure
(Bibtex, Delicious, Bookmarks, which use bag-of-word input representations) we
do not use positional encodings. For inputs with an explicit graph representation
(SIDER), we use the known graph structure.

D.2 Evaluation Metrics

Multi-label classification methods can be evaluated with many different met-
rics which each evaluate different strengths or weaknesses. We use the same 5
evaluation metrics from [36].

All of our autoregressive models predict only the positive labels before out-
putting a stop signal. This is a special case of PCC models, which have been
shown to outperform the binary prediction of each label in terms of performance
and speed. These models use beam search at inference time with a beam size
of 5. For the non-autoregressive models, to convert the labels to {0, 1} we chose
the best threshold on the validation set from the same set of thresholds used in
[50].

Example-based measures are defined by comparing the target vector y
to the prediction vector ŷ. Subset Accuracy (ACC) requires an exact match
of the predicted labels and the true labels: ACC(y, ŷ) = I[y = ŷ]. Ham-
ming Accuracy (HA) evaluates how many labels are correctly predicted in ŷ:
HA(y, ŷ) = 1

L

∑L
j=1 I[yj = ŷj ]. Example-based F1 (ebF1) measures the ratio

of correctly predicted labels to the sum of the total true and predicted labels:
2

∑L
j=1 yj ŷj

∑L
j=1 yj+

∑L
j=1 ŷj

.

Label-based measures treat each label yj as a separate two-class predic-
tion problem, and compute the number of true positives (tpj), false positives
(fpj), and false negatives (fnj) for a label. Macro-averaged F1 (maF1) mea-
sures the label-based F1 averaged over all labels: 1

L

∑L
j=1

2tpj

2tpj+fpj+fnj
. Micro-

averaged F1 (miF1) measures the label-based F1 averaged over each sample:
∑L

j=1 2tpj
∑L

j=1 2tpj+fpj+fnj
. High maF1 scores usually indicate high performance on less

frequent labels. High miF1 scores usually indicate high performance on more
frequent labels.

D.3 Model Hyperparameter Tuning

For all 7 datasets (Table 6), we use the same LaMP model with T = 2 time
steps, d = 512, and K = 4 attention heads. We trained our models on an
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NVIDIA TITAN X Pascal with a batch size of 32. We used Adam [25] with
betas = (0.9, 0.999), eps = 1e−08, and a learning rate of 0.0002 for each dataset.
We used dropout of p = 0.2 for the smaller datasets (Reuters, Bibtex, SIDER),
and dropout of p = 0.1 for all other datasets. The LaMP models also use
layer normalization [1] around each of the attention and feedforward layers. All
LaMP models are trained with the LaMP loss (Eq. 21). The hyperparameter λ is
selected from the best performing value in {0, 0.1, 0.2, 0.3} for each model. MLP
models are trained with regular binary cross entropy (Eq. 19), and RNN Seq2Seq
model are trained with cross entropy across all possible labels at each position.
To convert the soft predictions into {0, 1} values, we use the same thresholds in
[5] and select the best one for each metric on the validation set. For the TFBS
dataset, which uses DNA input sequences, we use one layer of convolution to
get 512 dimensional embeddings as commonly done for deep neural network
prediction tasks on DNA sequences.

D.4 Baseline Comparisons

Briefly, we compare against the following methods for all reported datasets and
metrics. For those results named as “Madjarov”: we take the best method for
each reported metric from [32] who compared 12 different types of models includ-
ing SVMs, decision trees, boosting, classification rules, and neural networks. For
results of “SPEN”: Structured prediction energy networks from [5]. For results
of “SVM”: SVM method from the Reuters dataset authors [9]. For results of
“FastXML”: Fast random forest model [37]. For results of “GAML”: graph
attention for MLC from [11]. For “RNN Seq2Seq”: RNN Sequence to Sequence
model from [35] which is a PCC model that predicts only the positive labels. For
“Emb + MLP”: we use the mean embeddings of all input features as the input
to a 4 layer multi-layer perceptron (MLP). This is a BR baseline which predicts
all labels independently.
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ECML PKDD 2009. LNCS (LNAI), vol. 5782, pp. 254–269. Springer, Heidelberg
(2009). https://doi.org/10.1007/978-3-642-04174-7 17

40. Read, J., Pfahringer, B., Holmes, G., Frank, E.: Classifier chains for multi-label
classification. Mach. Learn. 85(3), 333 (2011). https://doi.org/10.1007/s10994-
011-5256-5

41. Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The graph
neural network model. IEEE Trans. Neural Netw. 20(1), 61–80 (2009)

42. Su, H., Rousu, J.: Multilabel classification through random graph ensembles. In:
Asian Conference on Machine Learning, pp. 404–418 (2013)

43. Sutskever, I., Vinyals, O., Le, Q.V.: Sequence to sequence learning with neural
networks. In: Advances in Neural Information Processing Systems, pp. 3104–3112
(2014)

44. Szklarczyk, D., et al.: The STRING database in 2017: quality-controlled protein-
protein association networks, made broadly accessible. Nucleic Acids Res. 45,
D362–D368 (2016)

45. Tsochantaridis, I., Joachims, T., Hofmann, T., Altun, Y.: Large margin methods for
structured and interdependent output variables. JMLR 6(Sep), 1453–1484 (2005)

46. Tsoumakas, G., Katakis, I.: Multi-label classification: an overview. Int. J. Data
Warehous. Min. 3(3), 1–13 (2006)

http://arxiv.org/abs/1511.05493
https://doi.org/10.1007/978-3-662-44851-9_28
https://doi.org/10.1007/978-3-662-44851-9_28
http://arxiv.org/abs/1608.05859
https://doi.org/10.1007/978-3-642-04174-7_17
https://doi.org/10.1007/s10994-011-5256-5
https://doi.org/10.1007/s10994-011-5256-5


Neural Message Passing for Multi-label Classification 163

47. Tsoumakas, G., Katakis, I., Vlahavas, I.: Effective and efficient multilabel classifi-
cation in domains with large number of labels

48. Tsoumakas, G., Katakis, I., Vlahavas, I.: Mining multi-label data. In: Maimon, O.,
Rokach, L. (eds.) Data Mining and Knowledge Discovery Handbook, pp. 667–685.
Springer, Boston (2009). https://doi.org/10.1007/978-0-387-09823-4 34

49. Tsoumakas, G., Vlahavas, I.: Random k -labelsets: an ensemble method for mul-
tilabel classification. In: Kok, J.N., Koronacki, J., Mantaras, R.L., Matwin, S.,
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Abstract. Before constructing a classifier, we should examine the data
to gain an understanding of the relationships between the variables, to
assist with the design of the classifier. Using multi-label data requires
us to examine the association between labels: its multi-labelness. We
cannot directly measure association between two labels, since the labels’
relationships are confounded with the set of observation variables. A bet-
ter approach is to fit an analytical model to a label with respect to the
observations and remaining labels, but this might present false relation-
ships due to the problem of multicollinearity between the observations
and labels. In this article, we examine the utility of regularised logis-
tic regression and a new form of split logistic regression for assessing
the multi-labelness of data. We find that a split analytical model using
regularisation is able to provide fewer label relationships when no rela-
tionships exist, or if the labels can be partitioned. We also find that
if label relationships do exist, logistic regression with l1 regularisation
provides the better measurement of multi-labelness.

1 Introduction

Multi-label classification models allow the classification of a set of unknown
binary labels conditioned on a set of known observations. A review of common
multi-label classification algorithms is given in [7].

Before modelling any data, we should examine it to determine an appropriate
form of model for the data. When faced with multi-label data, we must also
examine the relationships between the labels to determine the multi-labelness
of the data: if a multi-label model is appropriate and how the labels should be
modelled. If we can detect that a given set of labels are independent from each
other, we can include this knowledge in the model, making the fitting time faster,
resulting in a less complex model.

Unfortunately, measuring high correlation between a pair of label variables
does not imply that the multi-labelness of the data is high, since the correlation
might be explained by a set of confounding observation variables. Therefore, to
determine the set of relationships between labels, we must model each label,
c© Springer Nature Switzerland AG 2020
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with respect to all other labels and all observation variables, and examine the
coefficients of the model. The number of non-zero coefficients between labels of
the model provide us with a measure of multi-labelness of the data.

When modelling the response of a label, with respect to the remaining labels
and the observation variables, we introduce the problem of multicollinearity;
there is likely to be correlation between the observation variables and the labels,
so it is also likely that many subsets of observation variables and labels provide
an equally good fit to the data, but our model will only provide one subset. This
implies that even though a label is independent of other labels, the model may
show association to other labels due to their multicollinearity with the set of
observation variables, and suggest a false high multi-labelness of the data.

In this article, we investigate the use of logistic regression in a full and split
form to measure the multi-labelness of the data. The contributions of this article
are:

– Derivation of a split analytical model with regularisation (Sect. 3.2).
– Investigation of the utility of a full and split regularised model for mea-

suring multi-labelness on synthetic data using various multi-label structures
(Sect. 4).

– Verification of the analysis using real data (Sect. 5).

The article will proceed as follows: Sect. 2 introduces the problem and required
background knowledge, Sect. 3 introduces measuring multi-labelness with full
and split analytical models. Section 4 examines the utility of each analytical
model for measuring multi-labelness on generated data. Finally, Sect. 5 verifies
the findings using real data.

2 Background: Multi-label Data and Multicollinearity

The multi-label classification problem requires modelling L label set variables
y ∈ {−1,+1}L conditioned on a set of M observation variables x ∈ R

M . Typi-
cally, sample data is provided as a set of N label sets and associated observations
(y,x), where the task is to construct a model f that provides good estimates of
the label sets ŷ conditioned on the observations, such that ŷ = f(x), for a given
metric [3,4].

A common technique for modelling multi-label relationships is to construct a
set of models that predict only one label variable yi or a subset of labels, based
on the observations and a subset of the remaining labels. The coefficients of the
models β provide us with insight of the level of association of the label yi to each
observation variable and remaining labels. For example, single label models can
be chained [5,6], use a tree structure [2] or even retain cyclic dependencies in a
network [1,8]. In each of these cases, higher level models predict the state of a
label based on the predicted states of other labels. This implies that any error in
label classification will be propagated through to other labels. Therefore, when
constructing these models, if we can remove model dependencies between labels
and maintain accuracy, then we should do so.
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Before we fit a multi-label model to data, we should examine the data and
determine if there is association between the labels; we call this measuring the
multi-labelness of the data, where the measurement of multi-labelness is the
number of inter-label relationships. Why is it important to examine the multi-
labelness of the data?

– If no labels are associated to each other, then the multi-label problem reduces
to a set of binary classification problems.

– If there are at least two sets of labels that have no association between them,
then we can split the multi-label problems into a two or more multi-label
classification problems, each independent of each other.

Also, knowing which labels are correlated will assist us in designing a suitable
multi-label classifier.

Problem: Confounding Variables. When determining the dependence of one label
variable yi to another yj , we must note that the set of observation variables are
confounding variables. Both labels yi and yj are dependent on the observations
x, so any association between the labels might actually be explained entirely
by the observations x. Therefore, we must take our analysis a step further and
model the variance of yi with respect to each observation x and each other label
variable y−i. The fitted analytical model coefficients β will describe the level of
association of yi to x and y−i.

Analytical models are fitted to data to provide us with deeper insight into
the generating process behind the data. For example, when using simple linear
regression, we can observe the fitted model coefficients β to identify how each of
the observed variables effects the response variable. For our data we will model
a given label yi with respect to the observations x and the remaining labels y−i.
The coefficients of the analytical model β show which of the elements of x and
y−i are associated to yi. If a coefficient βi is found to be 0, we then assume that
there is no association between the associated covariate and the response.

Problem: Multicollinearity. Unfortunately, the correlation between labels, that
we use to improve the accuracy of predictions of a multi-label model, cause prob-
lems when analysing the coefficients of the analytical models. Multicollinearity
occurs when two or more dependent variables are linearly related, and therefore,
the analytical model can use different linear combinations of each variable to
obtain the same model accuracy. In our case, we have the response label yi in
which we want to determine its relationship to the observed variables x and the
remaining labels y−i.

yi = f(x,y−i;βi) (1)

If we believe that another label yj is also dependent on x, we get the relationships

yi = f(x, yj ,y−(ij);βi), yj = f(x;βj) (2)
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where y−(ij) is the set of labels y excluding the labels yi and yj . If the above
relationships hold, do we then conclude that the label yi is dependent on yj ,
or do we conclude that it is not dependent on yj but dependent on x, since
yj is dependent on x? The former will suggest high multi-labelness, while the
latter suggests low multi-labelness. Fitting a model to data containing the above
relationships will provide a fit, but will not reveal the additional information that
there may be another preferred fit that is just as suitable. In fact by definition,
multi-label data must contain multicollinearity between the x and y, otherwise
we would not be able to obtain accurate label predictions (the set of labels must
be associated to the set of observations).

If multicollinearity effects all multi-label models, we must ask how it effects
the fit of analytical models and the measurement of multi-labelness, and what
we can do to control it. In the next sections, we will investigate the effects of
different forms of regularisation on multi-label analytical models.

3 Analytical Models for Measuring Multi-labelness

Analytical models can be used to gain insight into the associations between each
label, which in turn allows us measure the multi-labelness of the data. But as we
showed in the previous section, multi-label data suffers from multicollinearity,
therefore, there may be many combinations of observation variables and label
variables that can provide a good fit to a given label yi.

Two well known forms of regularisation may be useful in reducing the effect
of multicollinearity; the l2 and l1 norm. Analytical models provide a set of coef-
ficients β that show how much of the variance of the response is explained by
each covariate. Given the choice, we would rather the model to show most of the
variance to be explained by the observations x, but unfortunately regularisation
does not take this into account.

In this section, we present two candidates for measuring the multi-labelness
of data: an analytical model with regularisation, and we introduce a split model
that models each label using the observations before modelling with respect to
the other labels.

3.1 Regularisation of Analytical Models

Analytical models (as opposed to predictive models) are fit to data to provide
insight into the associations between variables. A common form of analytical
model for a binary response is logistic regression.

log
(

pi
1 − pi

)
= βix (3)

where x is the vector of observations, βi is the vector of model coefficients and pi
is the probability of the response yi being positive or negative. Once the model is
fit to data, βi is observed to determine which of the elements of x are associated
to pi.



168 L. A. F. Park et al.

A multi-label analytical model allows us to identify which of the elements of
x and labels y−i are associated to label yi. Using logistic regression, we have:

log
(

pi
1 − pi

)
= βxix + βyiy−i (4)

where βxi are the regression coefficients associated to the observations variables,
and βyi are the coefficients associated to the set of labels excluding the ith label.

Fitting the model to data consists of identifying the coefficients βxi and βyi

that maximise the likelihood function, or equivalently minimise the negative
log likelihood function. Regularisation is used to avoid overfitting the model,
by penalising the likelihood, leading to lower model variance, but introducing a
bias. Common forms of regularisation are l1 and l2 norm regularisation, giving
the loss functions:

l1 : λ‖[βxi βyi]‖1 − L([βxi βyi]; [x y−i], yi)

l2 : λ‖[βxi βyi]‖2 − L([βxi βyi]; [x y−i], yi)

l1 + l2 : λ(‖[βxi βyi]‖1 + ‖[βxi βyi]‖2) − L([βxi βyi]; [x y−i], yi)

where L([βxi βyi]; [x y−i], yi) is the log likelihood of the logistic regression model
of label yi with coefficients βxi and βyi, ‖β‖1 is the l1 norm of β, ‖β‖2 is the l2
norm, and λ is estimated using cross validation.

The l2 norm induces bias in the coefficients β in an attempt to obtain a
more robust set of coefficients that generalise to new data, but in the process,
usually provides relationships between all variables. The l1 norm induces bias
in the coefficients to act as a variable selector, but is usually highly unstable
when faced with multicollinearity. The combined l1 + l2 norm usually provides
robustness and variable selection [9].

Multicollinearity in the data means that the l1 regularisation might lead to
different non-zero coefficients for a new sample. As a simple example, consider
the case where all labels yi are functions of x, independent of the other yj .
Ideally, l1 regularisation should provide zero to all coefficients of βyi, but the
multicollinearity might lead to non-zero coefficient in βyi in place of some from
βxi.

3.2 Split Analytical Model

To measure the multi-labelness of data, a multi-label analytical model is used
(such as logistic regression), and the label coefficients of the model are observed.
We have stated that multi-label analytical models might provide superfluous
inter-label relationships due to the multicollinearity of the multi-label data.

Rather than treating each observation xj and labels y−ij equally where j is
the observation id, we propose that the model should first fit the variables xj

and then fit any residual variance to y−ij .

logit(pij) = βxixj + εij

εij = βyiy−ij + ηij
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where pij is the probability of label i given xj , εij is the residual of the ith label
and jth observation after fitting the model using only the observations, and ηij
is the residual from fitting the labels to the residual from the previous model.
This will force the multi-label model to not provide inter-label dependencies
that could be explained with xj , due to the multicollinearity of the variables.
We hypothesise that this split analytical model will provide a lower number
of non-zero label coefficients βyi, since the model is forced to find associations
between yi and x first, hence providing a better measurement of multi-labelness.

The model residual cannot be measured from logistic regression in the model
space, since the true label value of 0 or 1 is mapped to −∞ or +∞. Therefore
we keep the model in the logistic space and instead supply an model offset zij
for each label i and observation j.

logit(pij) = zij + βyiy−ij + ηij where zij = βxixj

To generalise the model, we also add regularisation to each stage of the model,
providing us with the fitting process:

Stage 1: arg min
βx

(λx‖βx‖m − L(βx|x, yi)) (5)

Stage 2: arg min
βy

(
λy‖βy‖n − L(βy|y−i, yi, zi)

)

where m and n are either 1 or 2 (for l1 or l2 regularisation), L(βy|y−i, yi, zi) is
the logistic regression log likelihood function using offset zi for each observation,
and λx and λy are estimated using cross validation.

4 Analysis of Full and Split Analytical Models

A full and split analytical model were presented in the previous section. In
this section we devise an experiment to deduce where each form of model is
most effective at measuring multi-labelness (identifying the number of inter-label
relationships) of multi-label data, with minimum superfluous relationships.

4.1 Measuring Multi-labelness

Recall that multi-labelness is the number of inter-label relationships. The usual
procedure for determining if an observation variable is associated to the response
variable is to examine the standard error of the fitted regression coefficient, and
assess if it provides evidence against the true coefficient being zero. Unfortu-
nately, regularisation induces bias into the regression coefficient estimates β,
therefore the coefficient standard error is not as useful1. To determine signifi-
cance we must compute the confidence interval for each coefficient. But, reporting

1 Section 6 of https://cran.r-project.org/web/packages/penalized/vignettes/
penalized.pdf.

https://cran.r-project.org/web/packages/penalized/vignettes/penalized.pdf
https://cran.r-project.org/web/packages/penalized/vignettes/penalized.pdf
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the interval of each coefficient would ignore any association between coefficients
(treating them as independent), and be misleading.

We want to determine which form of regularisation provides an analytical
model with a good fit to the data, and showing the least dependence between
each label to the regression label. We are not concerned with the association
between the observations x and the response label; our goal is to determine
which form of regularisation provides the least label interdependence.

We are also not concerned with which labels are associated to the response.
We stated that we cannot show causality, and that multicollinearity exists, so
are unable to determine the true associations. The best we can do is to assess
which form of regression provides the least inter-dependence between labels,
while providing a good fit. Therefore, we measure multi-labelness as the number
of non-zero label coefficients of the analytical model. The lower the number, the
fewer relationships have been established between labels (meaning that more
association has been found to the observations x) leading to lower complexity
models.

4.2 Generating Multi-label Data

To assess the measurement of multi-labelness of different data structures from
a given analytical model, we need to know the true underlying model form that
generated the data. Unfortunately, we do not know the underlying model that
was used to generate existing real multi-label data sets, therefore, if using them,
we will not be able to determine what about the data is effecting the fit.

Therefore, we are required to simulate multi-label data using strategically
designed multi-label data models, where the models exhibit the characteris-
tics that we want to test, but remain simple in order to reduce the chance of
other effects being introduced. We present ten multi-label data models, all using
three observation variables and three label variables. Each data model consists
of three observation variables x1, x2, x3 ∈ [−1, 1] which are independent, and all
Bernoulli, with p = 0.5, and three response labels y1, y2, y3 ∈ [−1, 1]. The mod-
els differ in the dependence of the response labels, and use the Model Factor a
associated to the likelihood of the model (larger a leads to data that provides
higher likelihood). The ten models are:

OneXOneY logit(yi) = axi∀i. All yi depend on only one xi. A multi-label
model should find no interdependence between the labels. The non-zero label
coefficient count should be 0.

ManyXOneY logit(yi) = ax1/3 + ax2/3 + ax3/3∀i. All yi depend on every xi.
A multi-label model should find no interdependence between the labels. The
non-zero label coefficient count should be 0.

OneXChainY logit(y1) = ax1, logit(y2) = ay1, logit(y3) = ay2. The first label
y1 depends on one observation variable x1, the second label depends on the
first and the third depends on the second. The non-zero label coefficient count
should be 2.
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ManyXChainY logit(y1) = ax1/3+ax2/3+ax3/3, logit(y2) = ay1, logit(y3) =
ay2. The same as OneXChainY, but the first label depends on all observed
variables xi. The non-zero label coefficient count should be 2.

OneXPartitionY logit(y1) = ax1, logit(y2) = ay1, logit(y3) = ax1. The first
and third labels depend on an observed variable x1 and the second label
depends on the first label. The non-zero label coefficient count should be 1.

ManyXPartitionY logit(y1) = ax1/3 + ax2/3 + ax3/3, logit(y2) = ay1,
logit(y3) = ax1/3 + ax2/3 + ax3/3. The same as OneXPartitionY, but the
first and third labels depend on all observed variables xi. The non-zero label
coefficient count should be 1.

OneXTreeY logit(y1) = ax1, logit(y2) = ay1, logit(y3) = ay1. The first label
depends on an observed variable, the second and third labels depend on the
first label. The non-zero label coefficient count should be 2.

ManyXTreeY logit(y1) = ax1/3 + ax2/3 + ax3/3, logit(y2) = ay1, logit(y3) =
ay1. The same as OneXTreeY, but the first label depends on all observed
variables. The non-zero label coefficient count should be 2.

OneXFanY logit(y1) = ax1, logit(y2) = ay1, logit(y3) = ay1/2 + ay2/2. The
first label depends on an observed variable, the second label depend on the
first label, and the third label depends on the second and first labels. The
non-zero label coefficient count should be 3.

ManyXFanY logit(y1) = ax1/3 + ax2/3 + ax3/3, logit(y2) = ay1, logit(y3) =
ay1/2 + ay2/2. The same as OneXFanY, but the first label depends on all
observed variables.

The dependencies of each model are shown in Fig. 1. These 10 data models
contain a set of simple relationships that we would expect to find in multi-label
data. We will generate data using these known models and examine how the
analytical models measure their multi-labelness.

For this investigation, we generated 100 training and 100 testing data sets
for each of the above ten data types using Model Factors a = 0.1, 0.5, 1 and
2, providing 4000 training and 4000 testing sets. The data was generated by
sampling from the models using the model probabilities. We can see that as a
increases, the probability of each label is likely to increase in magnitude, so the
resulting data sample will have less variance.

In the following sections we will fit this generated data using logistic regres-
sion with regularisation, and examine how the regularisation effects the coeffi-
cients of the model.

4.3 Investigation: Full Model with l1 and l2 Regularisation

To begin our investigation, we examine the effect of l1 (lasso regularisation), l2
(ridge regularisation) and a combination of l1 and l2 (elastic net regularisation)
regularisation.

To examine how well each analytical model is able to fit the data from each
data model, we fitted the analytical model to the generated data and counted
the number of non-zero coefficients associated to labels, from the fit. Since there
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x1 x2 x3

y1 y2 y3

OneXOneY

x1 x2 x3

y1 y2 y3

ManyXOneY

x1 x2 x3
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OneXChainY

x1 x2 x3

y1 y2 y3

ManyXChainY

x1 x2 x3

y1 y2 y3

OneXPartitionY

x1 x2 x3

y1 y2 y3

ManyXPartitionY
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OneXTreeY
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y1 y2 y3

ManyXTreeY

x1 x2 x3

y1 y2 y3

OneXFanY

x1 x2 x3

y1 y2 y3

ManyXFanY

Fig. 1. Dependencies of the 10 data models used for simulation.

are three labels in each data set, each can have association to zero, one or two
other labels, providing a range of zero to six non-zero coefficients for the three
fitted labels. The results are shown in Fig. 2.

Figure 2 provides one plot for each data model type. Each plot contains sets of
box plots for model factors 0.1, 0.5, 1 and 2, and each set of box plots contains
three box plots of the non-zero label coefficient count for the three forms of
regularisation over the 100 replications. As expected, l2 regularisation provides
all six of the label coefficients as non-zero. We can also see that l1 provides either
an equivalent or fewer number of non-zero label coefficients compared to l1 + l2.
But we also find that each of these forms of regularisation provide non-zero
label coefficients for the OneXOneY and ManyXOneY data, in which there is no
interdependence on the labels. Therefore, using l1, l2 or a mixture will suggest
that label dependencies exist, when in fact they do not.

4.4 Investigation: Split Model with l1 and l2 Regularisation

In this section, we will examine the effect of the two stage analytical model from
Sect. 3.2 to try to force the dependence of yi towards the observations x, and
then fit the remaining label variance to the labels y−i. The two stages of the split
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Fig. 3. The distribution of the number of non-zero label coefficients for split regular-
isation (l2 for observed variables and l1, l1 + l2 and l2 for labels), on each data type,
using Model Factors 0.1, 0.5, 1, and 2.

model from Eq. 5 require two norms to be set. We used the data from Sect. 4.2
to obtain results when each of m and n are 1 or 2. The results are shown in
Figs. 3, 4 and 5.

Figure 3 provides box plots for the number of non-zero label coefficients using
l2 regularisation for the x variables and a selection of l2, l1 and l1 + l2 regulari-
sation for the labels yi . We find again that l2 always provides 6 non-zero coef-
ficients, and that l1 provides either equivalent or fewer labels than l1 + l2. We
also find that the median non-zero label coefficient count is 0 for l1 and l1 + l2
regularisation for the OneXOneY and ManyXOneY data structures, showing
that the split regularisation has had an impact in removing non-existent label
inter-dependencies.

Figures 4 and 5 provide the non-zero label coefficient count when using the
l1 + l2 regularisation for x and l1 regularisation for x respectively. These results



174 L. A. F. Park et al.

●

●●●●

●

●●

●

●

●

●

●

●●

●

●

●●●●

●

●●

●

●

●

●

●

●●

● ●●●

●

●●●●●

●

●●●

●

●

●●

●

●

●

●

●

●

●

●●

●

●●●●

●●

●●●●

●●

●●

●

●●

●

●

●●

●

●

●

●●

●●●●●●●●●●●● ●●●●●●●●●●●●●●●●

● ●● ● ●● ● ● ●

●●● ●●●

●●

●

●●●

●●●

●

●

●

●

●

●

●

●●

●

●●

●●

●

●

●●●

●●●

●

●

●●

●

●●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●●●

●

●●●●●

●

●●

●●

●●●●●●●

●

●●●●

●●

●●●●

●

●

●

●

●

●●●●●

●●

●

●

●

●●

●●●●

●

●

●

●

●

●●●●●

●●

●

●

●

●●●●●●●●●●● ●●●●●●●●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●●●

●

●

●

●●

●

●

●●●

●

●●●

●

●

●

●●●

●

●

●

●

●

●

●

●

●●

●● ●●

●●●

●●

●●●●●●●

●

●●

●●

●

● ●●

ManyXPartitionY OneXTreeY ManyXTreeY OneXFanY ManyXFanY

OneXOneY ManyXOneY OneXChainY ManyXChainY OneXPartitionY

0.1 0.5 1 2 0.1 0.5 1 2 0.1 0.5 1 2 0.1 0.5 1 2 0.1 0.5 1 2

0.1 0.5 1 2 0.1 0.5 1 2 0.1 0.5 1 2 0.1 0.5 1 2 0.1 0.5 1 2
0

2

4

6

0

2

4

6

0

2

4

6

0

2

4

6

0

2

4

6

0

2

4

6

0

2

4

6

0

2

4

6

0

2

4

6

0

2

4

6

Model Factor

N
on

−z
er

o 
La

be
l C

oe
f C

ou
nt

Regularisation
Split l1+l2,l2

Split l1+l2,l1+l2

Split l1+l2,l1

Fig. 4. The distribution of the number of non-zero label coefficients for split regulari-
sation (l + 1 + l2 for observed variables and l1, l1 + l2 and l2 for labels), on each data
type, using Model Factors 0.1, 0.5, 1, and 2.

lead us to the same conclusion, that l1 regularisation for the labels leads to lower
non-zero label coefficient counts in the analytical models.

4.5 Comparing Full and Split Regression

We have provided the non-zero label coefficient count and prediction error results
from using l1 regularisation on all coefficients (Full l1, from Sect. 4.3) and the split
model results using l1, l1 + l2 and l2 regularisation for x and l1 regularisation
for y−i in Figs. 6 and 7 (comparing the best forms of regularisation from the
previous results).

Figure 6 shows that the split models provide a lower distribution (shifted
towards zero) of non-zero label coefficients compared to the Full model for OneX-
OneY, ManyXManyY, and for OneXPartitionY, ManyXPartitionY when the
Model Factor (a) is high. For all other data models, the Full l1 model provides
an equivalent or fewer non-zero label coefficients.

The accuracy results in Fig. 7 provides the mean absolute error between the
predicted label probability and the true label probability (from the model). We
find that each analytical model provides equivalent accuracy, but there are a few
occurrences (from the Fan, Tree and Chain data structures) of the Full l1 model
providing lower error when the Model factor (a) is 1 or 2.

The mean number of non-zero label coefficients for each regularisation
method on each data type in Fig. 6 are shown in Table 1. We find that the split
regularisation provided significantly fewer non-zero label coefficients for the data
where there was no inter-label dependencies (OneXOneY and ManyXOneY) and
the partitioned labels (OneXPartY and ManyXPartY), but provided more non-
zero coefficients for the Chain, Tree and Fan data. This suggests that the Split
models are useful when no label relationships exists, otherwise the Full model
should be used for measuring multi-labelness.
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Fig. 5. The distribution of the number of non-zero label coefficients for split regular-
isation (l1 for observed variables and l1, l1 + l2 and l2 for labels), on each data type,
using Model Factors 0.1, 0.5, 1, and 2.

5 Full and Split Analytical Models on Real Data

In this section, we examine the effect of regularisation on the non-zero label
coefficient proportion from five commonly used multi-label data sets. We assume
that there is dependence amongst the labels in each of the data sets, due to their
use in multi-label classification research.

We use the Emotions, Stare, Scene, Slashdot, and Enron multi-label data
sets2. A 50/50 train/test split is used, and the regularisation parameters λ, λx

and λy were fit using 10 fold cross validation on the training data. The mod-
els are then used to examine the effect of regularisation and the classification
accuracy using the testing set. The mean non-zero label coefficient proportion for
each label is reported, representing the detected number of relationships between
labels. The accuracy is measured in terms of mean Hamming similarity (propor-
tion of correctly predicted labels), Jaccard similarity (ratio of true positive count
and 1 - true negative count) and Exact similarity (score 1 if all labels are correct,
otherwise score 0) of the predicted label state compared to the true label state,
computed over the set of test observations. Note that each model is a function
of x and y−i, therefore, we have provided two accuracy scores for each regulari-
sation method for each metric, providing an evaluation interval. The lower score
is computed using label estimates ŷ−i from an independent model (predicting
each label based on the observations x alone, not using other label information).
The upper score is computed using the true label values y−i. The results are
presented in Table 2.

2 All available from http://mulan.sourceforge.net/datasets-mlc.html, https://
sourceforge.net/projects/meka/files/Datasets/ (Slashdot), and http://cecas.
clemson.edu/∼ahoover/stare/ (Stare).

http://mulan.sourceforge.net/datasets-mlc.html
https://sourceforge.net/projects/meka/files/Datasets/
https://sourceforge.net/projects/meka/files/Datasets/
http://cecas.clemson.edu/~ahoover/stare/
http://cecas.clemson.edu/~ahoover/stare/
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Fig. 6. The distribution of the number of non-zero label coefficients for split regularisa-
tion (l1, l1 + l2 and l2 for observed variables and l1 for labels) and full l1 regularisation,
on each data type, using Model Factors 0.1, 0.5, 1, and 2.

5.1 Label Interdependence

We first examine the non-zero label coefficient proportion in Table 2 to determine
which form of analytical model provides the most appropriate measure of multi-
labelness. We find that using Full l1 regularisation provides the lowest proportion
over all but the Emotions data set, where it is close to the minimum. This is
consistent with the simulated results, assuming that each of the multi-label data
sets have no independent sets of labels. Calculating the maximum likelihood
score for each data set also reveals that they all are most similar to the generated
data where a = 0.1, further reinforcing the results from the generated data.

5.2 Effect of Label-Interdependence Reduction on Accuracy

We next assess the accuracy of the model to determine if the smaller number
of label relationships is due to the model making better use of the observa-
tions x (meaning that the number of non-zero label coefficients is smaller, but
the accuracy is not lower), or it is simply due to a poorer use of the label set
y−i (meaning that the number of non-zero label coefficients is smaller, and the
accuracy is lower).

The accuracy of each regularised analytical model is provided as two scores;
the first when using estimates of the label state (from an independent model),
and the second when using the true labels. The second score provides us with
a measure of the accuracy of the analytical model, the first score gives us an
indication of the effect when using computed label relationships.

Most of the split models provide significantly greater upper scores. Exam-
ining the lower scores, we find that many of the Split score are significantly
worse than the Full l1 score. This suggests that the Full l1 provides a good
base set of label relationships and that further relationships can be found using
Split regularisation, but they are only useful when obtaining accurate label esti-
mates. These results align with those from the simulation; where the labels are
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Fig. 7. The distribution of mean absolute error of the label probability and predicted
probability for split regularisation (l1, l1 + l2 and l2 for observed variables and l1 for
labels) and full l1 regularisation, on each data type, using Model Factors 0.1, 0.5, 1,
and 2.

associated, Full l1 provided the least number of non-zero label coefficients with
equivalent accuracy to the other forms of regularisation.

These experiments conducted on both the generated and real data lead to
the same conclusion, that a split analytical model provides a better measure
of multi-labelness when the labels are all independent, or when they can be
partitioned into models with high likelihood. Otherwise, using the full model
with l1 regularisation provides a better measure of multi-labelness. Analysing
the results has shown that the regularisation has a major impact for the split
model; it is shared for the observations and labels in the full model, but not for
the split model. We will investigate this impact in future work.

Table 1. The mean number of non-zero label coefficients for each regularisation meth-
ods and each data type. A star (*) represents a significant difference to the Full l1
regularisation using a paired Wilcoxon test.

Reg OneXOneY ManyXOneY OneXChainY ManyXChainY OneXPartY

Full l1 1.55 1.84 4.24 4.31 2.98

Split l2,l1 0.47* 0.82* 4.59* 4.55* 2.81*

Split l1 + l2,l1 0.62* 0.80* 4.53* 4.51* 2.86*

Split l1,l1 0.59* 0.76* 4.55* 4.51* 2.77*

Reg ManyXPartY OneXTreeY ManyXTreeY OneXFanY ManyXFanY

Full l1 3.01 4.26 4.06 4.74 4.47

Split l2, l1 2.66* 4.62* 4.51* 4.78 4.67*

Split l1 + l2,l1 2.69* 4.62* 4.53* 4.84* 4.74*

Split l1,l1 2.72* 4.62* 4.42* 4.83 4.67*
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Table 2. Measurement of Hamming, Jaccard and Exact accuracy, and the average
number of non-zero label coefficients for five commonly used multi-label data sets.
Each cell contains the score when using label estimates ŷi for prediction, and the true
labels yi for prediction. An asterisk (*) shows a significant difference of each Split
method compared to Full l1.

Accuracy Non-zero
coefficients

Hamming Jaccard Exact

Emotions (5 labels)

Full l2 0.765, 0.822 0.508, 0.560 0.251, 0.309 1

Full l1 + l2 0.762, 0.828 0.533, 0.598 0.242, 0.358 0.866

Full l1 0.746, 0.835 0.527, 0.622 0.222, 0.373 0.832

Split l1, l1 0.764*, 0.842 0.551*, 0.611 0.248, 0.349 0.8

Split l2, l1 0.748, 0.834 0.548*, 0.600 0.227, 0.344 0.832

Split l1 + l2, l1 0.757, 0.838 0.551*, 0.608 0.239, 0.358 0.832

Stare (12 labels)

Full l2 0.920, 0.951 0.539, 0.596 0.410, 0.537 1

Full l1 + l2 0.907, 0.947 0.509, 0.577 0.364, 0.520 0.538

Full l1 0.896, 0.945 0.495, 0.600 0.335, 0.531 0.461

Split l1, l1 0.864*, 0.954* 0.488*, 0.679* 0.335, 0.618* 0.872

Split l2, l1 0.860, 0.955* 0.471*, 0.676* 0.324, 0.624* 0.891

Split l1 + l2, l1 0.874, 0.956* 0.497*, 0.684* 0.341, 0.635* 0.872

Scene (5 labels)

Full l2 0.894, 0.947 0.684, 0.789 0.579, 0.740 1

Full l1 + l2 0.834, 0.971 0.647, 0.904 0.528, 0.869 1

Full l1 0.774, 0.976 0.616, 0.927 0.522, 0.903 1

Split l1, l1 0.749*, 0.975 0.613*, 0.926 0.523, 0.892* 1

Split l2, l1 0.746*, 0.976 0.611*, 0.928 0.523, 0.899 1

Split l1 + l2, l1 0.745*, 0.976 0.613*, 0.927 0.525, 0.897 1

Slashdot (18 labels)

Full l2 0.956, 0.957 0.407, 0.403 0.367, 0.369 1

Full l1 + l2 0.947, 0.963 0.490, 0.523 0.397, 0.472 0.462

Full l1 0.904, 0.969 0.463, 0.623 0.331, 0.570 0.424

Split l1, l1 0.857*, 0.976* 0.454, 0.736* 0.323*, 0.676* 0.886

Split l2, l1 0.907, 0.972* 0.483*, 0.652* 0.333, 0.612* 0.801

Split l1 + l2, l1 0.835*, 0.976* 0.443*, 0.741* 0.324, 0.682* 0.848

Enron (47 labels)

Full l2 0.945, 0.948 0.200, 0.229 0.001, 0.001 1

Full l1 + l2 0.937, 0.957 0.318, 0.483 0.117, 0.195 0.210

Full l1 0.929, 0.957 0.275, 0.482 0.013, 0.198 0.153

Split l1, l1 0.915*, 0.956 0.243*, 0.491 0.004, 0.200 0.315

Split l2, l1 0.898*, 0.963* 0.251*, 0.590* 0.001*, 0.289* 0.326

Split l1 + l2, l1 0.917*, 0.957 0.247*, 0.502* 0.003*, 0.203 0.318



Assessing the Multi-labelness of Multi-label Data 179

6 Conclusion

Examining the relationships between labels in multi-label data before construct-
ing a multi-label classifier, provides us with insight as to how to design the
classifier. Measuring the multi-labelness of the data (the number of relationships
between labels) allows us to determine if a multi-label classifier is appropriate
for the data.

Multi-labelness of data cannot simply be measured using the correlation
between labels, since the label relationships are confounded by the data observa-
tions. Fitting an analytical model to a label with respect to the other labels and
observations can also present false label relationships due to multicollinearity
between the labels and observations.

We investigated the effect of using a full model and proposed a new split
analytical model to minimise the number of spurious relationships and measure
the multi-labelness of data. We examined l1, l2, and combined l1 and l2 regular-
isation with each of the full and split models. It was found that split analytical
models using regularisation have a greater likelihood of detecting independence
of labels. But if labels are not independent from each other, a full model using l1
regularisation provides the fewest dependencies between labels making it more
suitable for measuring the multi-labelness of data.
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Abstract. Class-imbalance is an inherent characteristic of multi-label
data which affects the prediction accuracy of most multi-label learn-
ing methods. One efficient strategy to deal with this problem is to
employ resampling techniques before training the classifier. Existing
multi-label sampling methods alleviate the (global) imbalance of multi-
label datasets. However, performance degradation is mainly due to rare
sub-concepts and overlapping of classes that could be analysed by look-
ing at the local characteristics of the minority examples, rather than the
imbalance of the whole dataset. We propose a new method for synthetic
oversampling of multi-label data that focuses on local label distribu-
tion to generate more diverse and better labeled instances. Experimen-
tal results on 13 multi-label datasets demonstrate the effectiveness of the
proposed approach in a variety of evaluation measures, particularly in
the case of an ensemble of classifiers trained on repeated samples of the
original data.

Keywords: Multi-label learning · Class-imbalance · Synthetic
oversampling · Local label distribution · Ensemble methods

1 Introduction

In multi-label data, each example is typically associated with a small number
of labels, much smaller than the total number of labels. This results in a sparse
label matrix, where a small total number of positive class values is shared by a
much larger number of example-label pairs. From the viewpoint of each separate
label, this gives rise to class imbalance, which has been recently recognized as a
key challenge in multi-label learning [6,7,11,18,31].

Approaches for handling class imbalance in multi-label data can be divided
into two categories: (a) reducing the imbalance level of multi-label data via
resampling techniques, including synthetic data generation [5–8], and (b) making
multi-label learning methods resilient to class imbalance [11,18,31]. This work
focuses on the first category, whose approaches can be coupled with any multi-
label learning method and are therefore more flexible.

Existing resampling approaches for multi-label data focus on class imbal-
ance at the global scale of the whole dataset. However, previous studies of class
c© Springer Nature Switzerland AG 2020
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imbalance in binary and multi-class classification [19,20] have found that the
distribution of class values in the local neighbourhood of minority examples,
rather than the global imbalance level, is the main reason for the difficulty of
a classifier to recognize the minority class. We hypothesize that this finding is
also true, and even more important to consider, in the more complex setting of
multi-label data, where it has not been examined yet.

Consider for example the 2-dimensional multi-label datasets (a) and (b) in
Fig. 1 concerning points in a plane. The points are characterized by three labels,
concerning the shape of the points (triangles, circles), the border of the points
(solid, none) and the color of the points (green, red). These datasets have the
same level of label imbalance. Yet (b) appears much more challenging due to
the presence of sub-concepts for the triangles and the points without border and
the overlap of the green and red points as well as the points with solid and no
border.

Fig. 1. Two 2-dimensional multi-label datasets (a) and (b) concerning points in a plane
characterized by three labels. On the right we see the five different label combinations
that exist in the datasets. (Color figure online)

This work proposes a novel multi-label synthetic oversampling method,
named MLSOL, whose seed instance selection and synthetic instance generation
processes depend on the local distribution of the labels. This allows MLSOL to
create more diverse and better labelled synthetic instances. Furthermore, we con-
sider the coupling of MLSOL and other resampling methods with a simple but
flexible ensemble framework to further improve its performance and robustness.
Experimental results on 13 multi-label datasets demonstrate the effectiveness of
the proposed sampling approach, especially its ensemble version, for three dif-
ferent imbalance-aware evaluation metrics and six different multi-label methods.

The remainder of this paper is organized as follows. Section 2 offers a brief
review of methods for addressing class imbalance in multi-label data. Then, our
approach is introduced in Sect. 3. Section 4 presents and discusses the experi-
mental results. Finally, Sect. 5 summarizes the main contributions of this work.
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2 Related Work

A first approach to dealing with class imbalance in the context of multi-label
data is to utilize the resampling technique, which is applied in a pre-processing
step and is independent of the particular multi-label learning algorithm that
will be subsequently applied to the data. LP-RUS and LP-ROS are two twin
sampling methods, of which the former removes instances assigned with the
most frequent labelset (i.e. particular combination of label values) and the latter
replicates instances whose labelset appears the fewest times [4].

Instead of considering whole labelset, several sampling methods alleviate the
imbalance of the dataset in the individual label aspect, i.e. increasing the fre-
quency of minority labels and reducing the number of appearances of major-
ity labels. ML-RUS and ML-ROS simply delete instances with majority labels
and clone examples with minority labels, respectively [7]. MLeNN eliminates
instances only with majority labels and similar labelset of its neighbors in a
heuristic way based on the Edited Nearest Neighbor (ENN) rule [5]. To make a
multi-label dataset more balanced, MLSMOTE randomly selects instance con-
taining minority labels and its neighbors to generate synthetic instances which
are associated with labels that appear more that half times of the seed instance
and its neighbors according to Ranking strategy [6].

REMEDIAL tackles the concurrence of labels with different imbalance level
in one instance, of which the level is assessed by SCUMBLE, by decompos-
ing the sophisticated instance of into two simpler examples, but may introduce
extra confusions into the learning task, i.e. there are several pairs of instances
with same features and disparate labels [8]. The REMEDIAL could be either a
standalone sampling method or the prior part of other sampling techniques, i.e.
RHwRSMT combines REMEDIAL with MLSMOTE [9].

Apart from resampling methods, another group of approaches focuses on
multi-label learning method handling the class-imbalance problem directly. Some
methods deal with the imbalance issue of multi-label learning via transform-
ing the multi-label dataset to several binary/multi-class classification problems.
COCOA converts the original multi-label dataset to one binary dataset and
several multi-class datasets for each label, and builds imbalance classifiers with
the assistance of sampling for each dataset [31]. SOSHF transforms the multi-
label learning task to an imbalanced single label classification assignment via
cost-sensitive clustering, and the new task is addressed by oblique structured
Hellinger decision trees [11]. Besides, many approaches aims to modify cur-
rent multi-label learning methods to handle class-imbalance problem. ECCRU3
extends the ECC resilient to class imbalance by coupling undersampling and
improving of the exploitation of majority examples [18]. Apart from ECCRU3,
the modified models based on neural network [16,23,26], SVM [3], hypernet-
work [24] and BR [10,12,25,28] have been proposed as well. Furthermore, other
strategies, such as representation learning [17], constrained submodular mini-
mization [29] and balanced pseudo-label [30], have been utilized to address the
imbalance obstacle of multi-label learning as well.
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3 Our Approach

We start by introducing our mathematical notation. Let X = R
d be a d-

dimensional input feature space, L = {l1, l2, ..., lq} a label set containing q labels
and Y = {0, 1}q a q-dimensional label space. D = {(xi,yi)|1 � i � n} is a
multi-label training data set containing n instances. Each instance (xi,yi) con-
sists of a feature vector xi ∈ X and a label vector yi ∈ Y, where yij is the
j-th element of yi and yij = 1(0) denotes that lj is (not) associated with i-th
instance. A multi-label method learns the mapping function h : X → {0, 1}q and
(or) f : X → R

q from D that given an unseen instance x, outputs a label vec-
tor ŷ with the predicted labels of and (or) real-valued vector f̂y corresponding
relevance degrees to x respectively.

We propose a novel Multi-Label Synthetic Oversampling approach based
on the Local distribution of labels (MLSOL). The pseudo-code of MLSOL is
shown in Algorithm 1. Firstly, some auxiliary variables, as the weight vector
w and type matrix T used for seed instance selection and synthetic examples
generation respectively, are calculated based on the local label distribution of
instances (line 3–6 in Algorithm 1). Then in each iteration, the seed and reference
instances are selected, upon which a synthetic example is generated and added
into the dataset. The loop (line 7–12 in Algorithm1) would terminate when
expected number of new examples are created. The following subsections detail
the definition of auxiliaries as well as strategies to pick seed instances and create
synthetic examples.

Algorithm 1: MLSOL
input : multi-label data set: D, percentage of instances to generated: P ,

number of nearest neighbour: k
output: new data set D′

1 GenNum ← |D| ∗ P ; /* number of instances to generate */

2 D′ ← D ;
3 Find the kNN of each instance ;
4 Calculate C according to Eq.(1) ;
5 Compute w according to Eq.(3) ;
6 T ← InitTypes(C , k) ; /* Initialize the type of instances */

7 while GenNum > 0 do
8 Select a seed instance (xs,ys) from D based on the w;
9 Randomly choose a reference instance (xr,yr) from kNN(xs) ;

10 (xc,yc) ← GenerateInstance ((xs,ys), Ts, (xr,yr), Tr);
11 D′ ← D′ ∪ (xc,yc) ;
12 GenNum ← GenNum − 1 ;

13 return D′ ;
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3.1 Selection of Seed Instances

We sample seed instances with replacement, with the probability of selection
being proportional to the minority class values it is associated with, weighted
by the difficulty of correctly classifying these values based on the proportion of
opposite (majority) class values in the local neighborhood of the instance.

For each instance xi we first retrieve its k nearest neighbours, kNN(xi).
Then for each label lj we compute the proportion of neighbours having opposite
class with respect to the class of the instance and store the result in the matrix
C ∈ R

n×q according to the following equation, where �π� is the indicator function
that returns 1 if π is true and 0 otherwise:

Cij =
1
k

∑

xm∈kNN(xi)

�ymj �= yij� (1)

The values in C range from 0 to 1, with values close to 0 (1) indicating a
safe (hostile) neighborhood of similarly (oppositely) labelled examples. A value of
Cij = 1 can further be viewed as a hint that xi is an outlier in this neighborhood
with respect to lj .

The next step is to aggregate the values in C per training example, xi, in
order to arrive at a single sampling weight, wi, characterizing the difficulty in
correctly predicting the minority class values of this example. A straightforward
way to do this is to simply sum these values for the labels where the instance
contains the minority class. Assuming for simplicity of presentation that the
value 1 corresponds to the minority class, we arrive at this aggregation as follows:

wi =
q∑

j=1

Cij�yij = 1� (2)

There are two issues with this. The first one is that we have also taken into
account the outliers. We will omit them by adding a second indicator function
requesting Cij to be less than 1. The second issue is that this aggregation does
not take into account the global level of class imbalance of each of the labels.
The fewer the number of minority samples, the higher the difficulty of correctly
classifying the corresponding minority class. In contrast, Eq. 2 treats all labels
equally. To resolve this issue, we can normalize the values of the non-outlier
minority examples in C so that they sum to 1 per label, by dividing with the
sum of the values of all non-outlier minority examples of that label. This will
increase the relative importance of the weights of labels with fewer samples.
Addressing these two issues we arrive at the following proposed aggregation:

wi =
q∑

j=1

Cij�yij = 1��Cij < 1�∑n
i=1 Cij�yij = 1��Cij < 1�

(3)
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3.2 Synthetic Instance Generation

The definition of the type of each instance-label pair is indispensable for the
assignment of appropriate labels to the new instances that we shall create.
Inspired by [19], we distinguish minority class instances into four types, namely
safe (SF ), borderline (BD), rare (RR) and outlier (OT ), according to the pro-
portion of neighbours from the same (minority) class:

– SF : 0 � Cij < 0.3. The safe instance is located in the region overwhelmed
by minority examples.

– BD: 0.3 � Cij < 0.7. The borderline instance is placed in the decision bound-
ary between minority and majority classes.

– RR: 0.7 � Cij < 1, and only if the type of its neighbours from the minority
class are RR or OT . Otherwise there are some SF or BD examples in the
proximity, which suggests that it could be rather a BD. The rare instance,
accompanied with isolated pairs or triples of minority class examples, is
located in the majority class area and distant from the decision boundary.

– OT : Cij = 1. The outlier is surrounded by majority examples.

For the sake of uniform representation, the type of majority class instance
is defined as majority (MJ). Let T ∈ {SF,BD,RR,OT,MJ}n×q be the type
matrix and Tij be the type of yij . The detailed steps of obtaining T are illustrated
in Algorithm 2.

Once the seed instance (xs,ys) has been decided, the reference instance
(xr,yr) is randomly chosen from the k nearest neighbours of the seed instance.
Using the selected seed and reference instance, a new synthetic instance is gen-
erated according to Algorithm 3. The feature values of the synthetic instance
(xc,yc) are interpolated along the line which connects the two input samples
(line 1–2 in Algorithm 3). Once xc is confirmed, we compute cd ∈ [0, 1], which
indicates whether the synthetic instance is closer to the seed (cd < 0.5) or closer
to the reference instance (cd > 0.5) (line 3–4 in Algorithm3).

With respect to label assignment, we employ a scheme considering the labels
and types of the seed and reference instances as well as the location of the synthetic
instance, which is able to create informative instances for difficult minority class
labels without bringing in noise for majority labels. For each label lj , ycj is set as ysj
(line 6–7 inAlgorithm 3) if ysj and yrj belong to the same class. In the casewhere ysj
is majority class, the seed instance and the reference example should be exchanged
to guarantee that ysj is always the minority class (line 9–11 in Algorithm 3). Then,
θ, a threshold for cd is specified based on the type of the seed label, Tsj (line 12–16
in Algorithm 3), which is used to determine the instance (seed or reference) whose
labels will be copied to the synthetic example. For SF , BD and RR, where the
minority (seed) example is surrounded by several majority instances and suffers
more risk to be classified wrongly, the cut-point of label assignment is closer to
the majority (reference) instance. Specifically, θ = 0.5 for SF represents that the
frontier of label assignment is in the midpoint between seed and reference instance,
θ = 0.75 for BD denotes that the range of minority class extends as three times as
large than the majority class, and θ > 1 � cd for RR ensures that the generated
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Algorithm 2: InitTypes
input : The matrix storing proportion of kNNs with opposite class for each

instance and each label: C , number of nearest neighbour: k
output: types of instances T

1 for i ← 1 to n do /* n is the number of instances */

2 for j ← 1 to q do /* q is the number of labels */

3 if yij = majority class then
4 Tij ← MJ ;
5 else/* yij is the minority class */

6 if Cij < 0.3 then Tij ← SA ;
7 else if Cij < 0.7 then Tij ← BD ;
8 else if Cij < 1 then Tij ← RR ;
9 else Tij ← OT ;

10 repeat /* re-examine RR type */

11 for i ← 1 to n do
12 for j ← 1 to q do
13 if Tij = RR then
14 foreach xm in kNN(xi) do
15 if Tmj = SF or Tmj = BD then
16 Tij ← BD;
17 break ;

18 until no change in T ;
19 return T ;

instance is always set asminority class regardless of its location.With respect toOT
as a singular point placed at majority class region, all possible synthetic instances
are assigned the majority class due to the inability of an outlier to cover the input
space. Finally, ycj is set as ysj if cd is not larger than θ, otherwise ycj is equal to yrj
(line 17–20 in Algorithm3).

Compared with MLSMOTE, MLSOL is able to generate more diverse and
well-labeled synthetic instances. As the example in Fig. 2 shows, given a seed
instance, the labels of the synthetic instance are fixed in MLSMOTE, while the
labels of the new instance change according to its location in MLSOL, which
avoids the introduction of noise as well.

3.3 Ensemble of Multi-Label Sampling (EMLS)

Ensemble is a effective strategy to increase overall accuracy and overcome over-
fitting problem, but has not been leveraged to multi-label sampling approaches.
To improve the robustness of MLSOL and current multi-label sampling methods,
we propose the ensemble framework called EMLS where any multi-label sampling
approach and classifier could be embedded. In EMLS, M multi-label learning
models are trained and each model is built upon a re-sampled dataset generated
by a multi-label sampling method with various random seed. There are many
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Algorithm 3: GenerateInstance
input : seed instance: (xs,ys), types of seed instance: Ts, reference instance:

(xr,yr), types of reference instance: Tr

output: synthetic instance: (xc,yc)
1 for j ← 1 to d do
2 xcj ← xsj + Random(0, 1) ∗ (xrj − xsj) ; /* Random(0,1) generates a

random value between 0 and 1 */

3 ds ← dist(xc, xs), dr ← dist(xc, xr) ; /* dist return the distance between 2

instances */

4 cd ← ds/(ds + dr) ;
5 for j ← 1 to q do
6 if ysj = yrj then
7 ycj ← ysj ;
8 else
9 if Tsj = MJ then /* ensure ysj being minority class */

10 s ←→ r ; /* swap indices of seed and reference instance */

11 cd ← 1 − cd ;

12 switch Tsj do
13 case SF do θ ← 0.5 ; break ;
14 case BD do θ ← 0.75 ; break ;
15 case RR do θ ← 1 + 1e − 5 ; break ;
16 case OL do θ ← 0 − 1e − 5 ; break ;

17 if cd � θ then
18 ycj ← ysj ;
19 else
20 ycj ← yrj ;

21 return (xt,yt) ;

random operations in existing and proposed multi-label learning sampling meth-
ods [6,7], which guarantees the diversity of training set for each model in the
ensemble framework via employing different random seed. Then the bipartition
threshold of each label is decided by maximizing F-measure on training set, as
COCOA [31] and ECCRU3 [18] do. Given the test example, the predicting rele-
vant scores is calculated as the average output relevant degrees obtained from M
models, and the labels whose relevance degree is larger than the corresponding
bipartition threshold are predicted as “1”, and “0” otherwise.

3.4 Complexity Analysis

The complexity of searching kNN of input instances is O(n2d + n2k). The com-
plexity of computing C, w and T is O(knq), O(nq) and O(nq), respectively. The
complexity of creating instances is O(nP (n + d)) where nP is the number of
generated examples. The overall complexity of MLSOL is O(n2d + n2k + nkq),
of which the kNN searching is the most time-consuming part.
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Fig. 2. An example of MLSOL excelling MLSMOTE. s is the seed instance, r∗ are
candidate reference instances (kNNs of s), and c∗ are possible synthetic examples.
The synthetic instances created by MLSMOTE are associated with unique label vector
([1,0,0]) decided by predominant kNNs, while MLSOL assigns labels to new examples
according to its location. The two sampling approaches are identical if the synthetic
instance (c1 and c4) is near the instance whose labels are same with majority kNNs
or seed instance, otherwise (c2 and c3) the MLSMOTE introduces noise while MLSOL
could tackle it by copying the labels of nearest instance to the new example.

Let’s define Θt(n, d, q) and Θp(d, q) the complexity of training and prediction
of multi-label learning method respectively, and Θs(n, d, q) the complexity of a
multi-label sampling approach. The complexity of EMLS is O(MΘp(d, q)) for
prediction and O (M (Θs(n, d, q) + Θt(n, d, q) + nΘp(d, q))) for training.

4 Empirical Analysis

4.1 Setup

Table 1 shows detailed information for the 13 benchmark multi-label datasets,
obtained from Mulan’s repository1, that are used in this study. Besides, in tex-
tual data sets with more than 1000 features we applied a simple dimension-
ality reduction approach that retains the top 10% (bibtex, enron, medical) or
top 1% (rcv1subset1, rcv1subset2, yahoo-Arts1, yahoo-Business1) of the features
ordered by number of non-zero values (i.e. frequency of appearance). Besides, we
remove labels only containing one minority class instance, because when split-
ting the dataset into training and test sets, there may be only majority class
instances of those extremely imbalanced labels in training set.

Four multi-label sampling methods are used for comparison, namely the
state-of-the-art MLSMOTE [6] and RHwRSMT [9] that integrates REME-
DIAL [8] and MLSMOTE, as well as their ensemble versions, called EMLSMOTE
and ERHwRSMT respectively. Furthermore, the base learning approach with-
out employing any sampling approach, denoted as Default, is also used for
comparing. For all sampling methods, the number of nearest neighbours is set
to 5 and the Euclidean distance is used to measure the distance between the
examples. In MLSOL, the sampling ratio is set to 0.3. In RHwRSMT, the
threshold for decoupling instance is set to SCUMBLE. For MLSMOTE and
RHwRSMT, the label generation strategy is Ranking. The ensemble size is set
to 5 for all ensemble methods. In addition, six multi-label learning methods
1 http://mulan.sourceforge.net/datasets-mlc.html.

http://mulan.sourceforge.net/datasets-mlc.html
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Table 1. The 16 multi-label datasets used in this study. Columns n, d, q denote
the number of instances, features and labels respectively, LC the label cardinality,
MeanImR the average imbalance ratio of labels, where imbalance ratio of a label is
computed as the number of majority instances divided by the number of minority
instance of the label.

Dataset Domain n d q LC MeanImR

bibtex text 7395 183 159 2.402 87.7

cal500 music 502 68 174 26 22.3

corel5k image 5000 499 347 3.517 522

enron text 1702 100 52 3.378 107

flags image 194 19 7 3.392 2.753

genbase biology 662 1186 24 1.248 78.8

medical text 978 144 35 1.245 143

rcv1subset1 text 6000 472 101 2.88 236

rcv1subset2 text 6000 472 101 2.634 191

scene image 2407 294 6 1.074 4.662

yahoo-Arts1 text 7484 231 25 1.654 101

yahoo-Business1 text 11214 219 28 1.599 286

yeast biology 2417 103 14 4.237 8.954

are employed as base learning methods, comprising four standard multi-label
learning methods (BR [2], MLkNN [32], CLR [13], RAkEL [27]), as well as two
state-of-the-art methods addressing the class imbalance problem (COCOA [31]
and ECCRU3 [18]).

Threewidely used imbalance aware evaluationmetrics are leveraged tomeasure
the performance of methods, namely macro-averaged F-measure, macro-averaged
AUC-ROC (area under the receiver operating characteristic curve) and macro-
averaged AUCPR (area under the precision recall curve). For simplicity, we omit
the “macro-averaged” in further references to these metrics within the rest of this
paper.

The experiments were conducted on a machine with 4 × 10-core CPUs run-
ning at 2.27 GHz. We apply 5×2-fold cross validation with multi-label stratifica-
tion [22] to each dataset and the average results are reported. The implementa-
tion of our approach and the scripts of our experiments are publicly available at
Mulan’s GitHub repository2. The default parameters are used for base learners.

4.2 Results and Analysis

Detailed experimental results are listed in the supplementary material3 of this
paper. The statistical significance of the differences among the methods par-
2 https://github.com/tsoumakas/mulan/tree/master/mulan.
3 https://intelligence.csd.auth.gr/wp-content/uploads/2019/10/ecml-pkdd-2019-

supplementary.pdf.

https://github.com/tsoumakas/mulan/tree/master/mulan
https://intelligence.csd.auth.gr/wp-content/uploads/2019/10/ecml-pkdd-2019-supplementary.pdf
https://intelligence.csd.auth.gr/wp-content/uploads/2019/10/ecml-pkdd-2019-supplementary.pdf
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Table 2. Average rank of the compared methods using 6 base learners in terms of
three evaluation metrics. A1, A2, EA1 and, EA2 stands for MLSMOTE, RHwRSMT,
EMLSMOTE and ERHwRSMT, respectively. The parenthesis (n1/n2) indicates the
corresponding method is significantly superior to n1 methods and inferior to n2 meth-
ods based on the Wilcoxon signed rank test with Bergman-Hommel’s correction at the
5% level.

Base Method Default A1 A2 MLSOL EA1 EA2 EMLSOL

F-measure

BR 5.19(1/4) 3.73(2/2) 7.00(0/6) 4.23(2/2) 2.08(5/1) 4.38(1/2) 1.38(6/0)

MLkNN 5.81(1/5) 4.92(2/4) 7.00(0/6) 4.27(3/3) 1.62(5/0) 2.69(4/2) 1.69(5/0)

CLR 5.04(1/3) 4.5(1/3) 7.00(0/6) 4.15(1/3) 2.58(4/0) 2.62(4/0) 2.12(4/0)

RAkEL 5.04(1/4) 3.88(2/2) 7.00(0/6) 3.5(2/2) 2.46(5/1) 4.69(1/2) 1.42(6/0)

COCOA 3.58(1/0) 4.42(1/1) 6.35(0/5) 5.23(0/1) 3.27(1/0) 3.31(1/0) 1.85(3/0)

ECCRU3 3(2/0) 4.58(1/1) 6.31(0/5) 5.46(0/2) 3.35(1/0) 3.46(1/1) 1.85(4/0)

Total 7/16 9/13 0/34 8/13 21/2 12/7 28/0

AUC-ROC

BR 5.23(1/3) 4.65(1/3) 6.27(0/6) 3.46(3/1) 2.81(4/1) 4.58(1/2) 1.00(6/0)

MLkNN 4.69(1/1) 3.73(2/2) 6.35(0/6) 4.23(2/1) 2.58(3/1) 5.35(1/4) 1.08(6/0)

CLR 4.35(0/1) 4.77(0/2) 5.58(0/3) 5.00(0/2) 2.85(4/1) 4.08(1/2) 1.38(6/0)

RAkEL 4.38(2/4) 3.73(3/2) 6.77(0/6) 3.54(3/2) 2.54(5/1) 6.00(1/5) 1.04(6/0)

COCOA 5.23(0/1) 4.73(0/1) 5.42(0/1) 4.54(0/1) 3.42(0/1) 3.65(0/1) 1.00(6/0)

ECCRU3 4.73(0/1) 4.23(0/2) 5.73(0/3) 5.46(0/1) 2.65(3/1) 4.12(1/2) 1.08(6/0)

Total 4/11 6/12 0/25 8/8 19/6 5/16 36/0

AUCPR

BR 4.81(1/2) 3.85(1/2) 6.46(0/6) 4.15(1/2) 2.46(5/1) 5.19(1/2) 1.08(6/0)

MLkNN 5.04(0/2) 4.5(1/2) 5.92(0/5) 4.08(1/1) 3.04(4/1) 4.42(1/2) 1.00(6/0)

CLR 4.15(1/1) 4.88(0/2) 5.92(0/4) 5.00(0/3) 3.00(3/1) 3.81(2/1) 1.23(6/0)

RAkEL 4.42(1/2) 3.92(1/2) 6.77(0/6) 3.92(1/2) 2.5(5/1) 5.46(1/2) 1.00(6/0)

COCOA 5.31(0/1) 4.85(0/1) 5.31(0/1) 4.62(0/1) 3.15(0/1) 3.77(0/1) 1.00(6/0)

ECCRU3 4.96(0/2) 4.5(0/2) 5.50(0/3) 5.04(0/2) 2.88(5/1) 4.12(1/2) 1.00(6/0)

Total 3/10 3/11 0/25 3/11 22/6 6/10 36/0

ticipating in our empirical study is examined by employing the Friedman test,
followed by the Wilcoxon signed rank test with Bergman-Hommel’s correction
at the 5% level, following literature guidelines [1,14]. Table 2 shows the average
rank of each method as well as its significant wins/losses versus each one of the
rest of the methods for each of the three evaluation metrics and each of the six
base multi-label methods. The best results are highlighted with bold typeface.

We start our discussion by looking at the single model version of the three
resampling methods. We first notice that RHwRSMT achieves the worst results
and that it is even worse than no resampling at all (default), which is mainly due to
the additional bewilderment yielded by REMEDIAL, i.e. there are several pairs of
instanceswith same features anddisparate labels.MLSOLandMLSMOTEexhibit
similar total wins and losses, especially in AUCPR, which is considered as the most
appropriate measure in the context of class imbalance [21]. Moreover, the wins and
losses of MLSOL and MLSMOTE are not that different from no resampling at all.
This is particularly true when using a multi-label learning method that already
handles class imbalance, such as COCOA and ECCRU3, which is not surprising.

We then notice that the ensemble versions of the three multi-label resam-
pling methods outperform their corresponding single model versions in all cases.
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This verifies the known effectiveness of resampling approaches in reducing the
error, in particular via reducing the variance component of the expected error
[15]. Ensembling enables MLSMOTE and MLSOL to achieve much better results
compared to no resampling and it even helps RHwRSMT to do slightly better
than no resampling.

Focusing on the ensemble versions of the three resampling methods we notice
that EMLSOL achieves the best average rank and the most significant wins
without suffering any significant loss in all 18 different pairs of the 6 base
multi-label methods and the 3 evaluation measures, with the exception that
MLSMOTE with MLkNN as base learner achieves best average rank in terms of
F-measure. EMLSMOTE comes second in total wins and losses in most cases,
while ERHwRSMT does much worse than EMLSMOTE.

An interesting observation here is that while MLSOL and MLSMOTE have
similar performance, MLSOL benefitted much more than MLSMOTE from the
ensemble approach. This happens because randomization plays a more important
role in MLSOL than in MLSMOTE. MLSOL uses weighted sampling for seed
instance selection, while MLSMOTE takes all minority samples into account
instead. This allows EMLSOL to create more diverse models, which achieve
greater error correction when aggregated.

5 Conclusion

We proposed MLSOL, a new synthetic oversampling approach for tackling the
class-imbalance problem in multi-label data. Based on the local distribution of
labels, MLSOL selects more important and informative seed instances and gener-
ates more diverse and well-labeled synthetic instances. In addition, we employed
MLSOL within a simple ensemble framework, which exploits the random aspects
of our approach during sampling training examples to use as seeds and during
the generation of synthetic training examples.

We experimentally compared the proposed approach against two state-of-the
art resampling methods on 13 benchmark multi-label datasets. The results offer
strong evidence on the superiority of MLSOL, especially of its ensemble ver-
sion, in three different imbalance-aware evaluation measures using six different
underlying base multi-label methods.
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Abstract. We present the optimal weighted average (OWA) distributed
learning algorithm for linear models. OWA achieves statistically optimal
learning rates, uses only one round of communication, works on non-
convex problems, and supports a fast cross validation procedure. The
OWA algorithm first trains local models on each of the compute nodes;
then a master machine merges the models using a second round of opti-
mization. This second optimization uses only a small fraction of the
data, and so has negligible computational cost. Compared with similar
distributed estimators that merge locally trained models, OWA either
has stronger statistical guarantees, is applicable to more models, or has
a more computationally efficient merging procedure.

Keywords: Distributed machine learning · Linear models

1 Introduction

Many datasets are too large to fit in the memory of a single machine. To analyze
them, we must partition the data onto many machines and use distributed algo-
rithms. Existing distributed learning algorithms fall into one of two categories:

Interactive algorithms require many rounds of communication between
machines. Representative examples include [4,8,14,16,23,27]. These algorithms
resemble standard iterative algorithms where each iteration is followed by a
communication step. The appeal of interactive algorithms is that they enjoy the
same statistical performance as standard sequential algorithms. That is, given
m machines each with n data points of dimension d, interactive algorithms have
error that decays as O(

√
d/mn) for linear models. But, interactive algorithms

have three main disadvantages. First, these algorithms are slow when commu-
nication latency is the bottleneck. An extreme example occurs in the federated
learning environment proposed by McMahan et al. [18], which uses cell phones
as the computational nodes. Recent work on interactive algorithms focuses on
reducing this communication as much as possible [8,23,27]. Second, these algo-
rithms require special implementations. They are not easy for non-experts to
c© Springer Nature Switzerland AG 2020
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implement or use, and in particular they do not work with off-the-shelf statis-
tics libraries provided by (for example) Python, R, and Matlab. Third, because
of the many rounds of communication, any sensitive information in the data is
likely to leak between machines.

Non-interactive algorithms require only a single round of communication.
Each machine independently solves the learning problem on a small subset of
data, then a master machine merges the solutions together. These algorithms
solve all the problems of interactive ones: they are fast when communication
is the main bottleneck; they are easy to implement with off-the-shelf statistics
packages; and they are robust to privacy considerations. The downside is worse
statistical performance. The popular naive averaging estimator has worst case
performance O(

√
d/n) completely independent of the number of machines m.

A growing body of work improves the analysis of the averaging estimator under
special conditions [17,22,24–26], and develops more robust non-interactive esti-
mators [2,6,9,12,15,28]. All of these estimators either work on only a limited
class of models or have computationally intractable merge procedures.

In this paper, we propose a novel non-interactive estimator called the opti-
mal weighted average (OWA). OWA’s merge procedure uses a second round of
optimization over the data. (All previous merge procedures do not depend on
the data.) This data dependent merge procedure has four advantages: (i) OWA
achieves the optimal error of O(

√
d/mn) in a general setting and with a sim-

ple analysis. In particular, we do not require a convex loss function. (ii) This
second optimization uses a small number of data points projected onto a small
dimensional space. It therefore has negligible computational and communication
overhead. (iii) OWA is easily implemented on most distributed architectures with
standard packages. Our implementation uses only a few dozen lines of Python
and scikit-learn [21]. (iv) OWA is robust to the regularization strength used in the
first round of optimization. In practice, this means that OWA does not require
communication between nodes even in the model selection step of learning.

We also show a simple extension to the OWA algorithm that uses two rounds
of communication to compute a cross validation estimate of the model’s perfor-
mance. The standard version of cross validation is too slow for large scale data,
and therefore not widely used in the distributed setting. This procedure is the
first fast cross validation method designed for the distributed setting, and is an
additional advantage OWA has over interactive distributed learning algorithms.

Section 2 formally describes our problem setting, and Sect. 3 describes the
OWA algorithm and its fast cross validation procedure. We take special care
to show how OWA can be implemented with off-the-shelf optimizers. Section 4
provides a simple proof that OWA achieves the optimal O(

√
d/mn) error. Our

main condition is that the single machine parameter vectors have a “sufficiently
Gaussian” distribution. We show that this is a mild condition known to hold
in many situations of interest. Section 5 compares OWA to existing distributed
algorithms. We highlight how the analysis of existing algorithms requires more
limiting assumptions than OWA’s. Section 6 shows empirically that OWA per-
forms well on synthetic and real world advertising data. We demonstrate that
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OWA is robust to the strength of regularization, which is one of the reasons it
performs well in practice.

2 Problem Setting

Let Y ⊆ R be the space of response variables, X ⊆ R
d be the space of covariates,

and W ⊆ R
d be the parameter space. We assume a linear model where the loss of

data point (x, y) ∈ X × Y given the parameter w ∈ W is denoted by �(y,xTw).
We define the true loss of parameter vector w to be L∗(w) = E�(y;xTw), and the
optimal parameter vector w∗ = arg minw∈W L∗(w). We do not require that the
model be correctly specified, nor do we require that � be convex with respect to
w. Let Z ⊂ X × Y be a dataset of mn i.i.d. observations. Finally, let r : W → R

be a regularization function (typically the L1 or L2 norm) and λ ∈ R be the
regularization strength. Then the regularized empirical risk minimizer (ERM) is

ŵerm = arg min
w∈W

∑

(x,y)∈Z

�(y,xTw) + λr(w). (1)

Assume that the dataset Z has been partitioned onto m machines so that each
machine i has dataset Zi of size n, and all the Zi are disjoint. Then each machine
calculates the local ERM

ŵerm
i = arg min

w∈W

∑

(x,y)∈Zi

�(y,xTw) + λr(w). (2)

Notice that computing ŵerm
i requires no communication with other machines.

Our goal is to merge the ŵerm
i s into a single improved estimate.

To motivate our OWA merge procedure, we briefly describe a baseline pro-
cedure called naive averaging :

ŵave =
1
m

m∑

i=1

ŵerm
i . (3)

Naive averaging is simple to compute but has only limited theoretical guarantees.
Recall that the quality of an estimator ŵ can be measured by the estimation
error ‖ŵ − w∗‖, and we can use the triangle inequality to decompose this error
as

‖ŵ − w∗‖ ≤ ‖ŵ − Eŵ‖ + ‖Eŵ − w∗‖. (4)

We refer to ‖ŵ − Eŵ‖ as the variance of the estimator and ‖Eŵ − w∗‖ as the
bias. McDonald et al. [17] show that the ŵave estimator has lower variance than
the estimator ŵerm

i trained on a single machine, but the same bias. Zhang et al.
[25] extend this analysis to show that if ŵerm

i is a “nearly unbiased estimator,”
then naive averaging is optimal. But Rosenblatt and Nadler [22] show that in
high dimensional regimes, all models are heavily biased, and so naive averaging is
suboptimal. All three results require � to be convex in addition to other technical
assumptions. Our goal is to design a merging procedure that has good error
bounds in a more general setting.
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3 The OWA Estimator

The optimal weighted average (OWA) estimator uses a second round of opti-
mization to calculate the optimal linear combination of the ŵerm

i s. This second
optimization reduces the bias at the optimal rate. Furthermore, this second opti-
mization occurs over a small fraction of the dataset, so its computational and
communication cost is negligible.

3.1 Warmup: The Full OWA

To motivate the OWA estimator, we first present a less efficient estimator that
uses the full dataset for the second round of optimization. Define the matrix
Ŵ : Rd×m to have its ith column equal to ŵerm

i . Now consider the estimator

ŵowa,full = Ŵ v̂owa,full, (5)

where
v̂owa,full = arg min

v∈Rm

∑

(x,y)∈Z

�
(
y,xTŴv

)
+ λr(Ŵv). (6)

Notice that ŵowa,full is just the empirical risk minimizer when the parameter
space W is restricted to the subspace Ŵowa = span{ŵerm

i }mi=1. In other words,
the v̂owa,full vector contains the optimal weights to apply to each ŵerm

i when
averaging. Figure 1 shows graphically that no other estimator in Ŵowa can have
lower regularized empirical loss than ŵowa,full.

ŵerm

ŵaveŵerm
1 ŵerm

2

ŵowa,full
ŵowa

�(y,xTw) + λr(w)

Ŵowa

Fig. 1. ŵowa,full is the estimator with best loss in Ŵowa, and ŵowa is close with high
probability.

3.2 The OWA Estimator

The OWA estimator uses fewer data points in the second round of optimization.
Recall that in a linear model, the amount of data needed is proportional to the
problem’s dimension. Since the dimension of the second round is a fraction m/d
smaller than the first round, only an m/d fraction of data is needed for the
same accuracy. To simplify OWA’s analysis in Sect. 4, we will assume here that
this data is independent of the data used in the first round. This assumption,
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Algorithm 1. Calculating ŵowa only
Preconditions:

each machine i already has dataset Zi

the master machine additionally has dataset Zowa

Each machine i independently:
calculates ŵerm

i using Equation (2)
transmits ŵerm

i to the master
The master calculates ŵowa using Equation (7)

(optionally) master uses approximation Equation (9)

however, is an artifact of Sect. 4’s simple analysis, and all our experiments in
Sect. 6 reuse the same data for both optimizations.

Formally, let Zowa be a set of m2n/d additional data points sampled i.i.d.
from the original data distribution. Thus the total amount of data the OWA
estimator requires is mn+m2n/d. Whenever m/d ≤ 1, this expression simplifies
to O(mn), which is the same order of magnitude of data in the original problem.
The OWA estimator is then defined as

ŵowa = Ŵ v̂owa, (7)

where
v̂owa = arg min

v∈Rm

∑

(x,y)∈Zowa

�
(
y,xTŴv

)
+ λr(Ŵv). (8)

Algorithm 1 shows the procedure for calculating ŵowa in a distributed setting.
Notice that we assume that a predesignated master machine already has access to
the full Zowa dataset.1 Because this data is pre-assigned to the master machine,
each machine i only needs to transmit the local parameter vector ŵerm

i to the
master. Thus, the total number of bits communicated is O(dm), which is the
same as the naive averaging estimator. OWA’s merge procedure is more com-
plicated than the naive averaging merge procedure, but still very fast. Notice
that the projected data points xTŴ have dimensionality m << d, and there are
only m2n/d of them. Because the optimization uses a smaller dimension and
fewer data points, it takes a negligible amount of time. In Sect. 6, we show an
experiment where the first round of optimizations takes about a day, and the
second optimization takes about a minute.

3.3 Implementing OWA with Existing Optimizers

In theory, standard optimization algorithms can be used to directly solve the
second round of optimization in Eq. (8). In practice, however, standard tools
1 Other non-interactive estimators have made similar assumptions (e.g. [28]). If this

assumption is too limiting, however, Appendix A shows how to transfer these data
points to the master machine after optimizing the local models. The idea is to first
project the data onto the subspace Ŵowa before transfer, reducing the dimensionality
of the data. The communication complexity of this alternate procedure is O(dm2).
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such as scikit-learn [21] do not support the regularization term r(Ŵv), where
the parameter vector is projected onto an alternative coordinate system before
regularization. To make OWA easy to implement, we show in this section how
to approximately solve (8) using these optimizers.

We suggest approximating the regularization term by L2 regularization
directly on the v vector:

λr(Ŵv) ≈ λ2‖v‖2, (9)

where λ2 is a new hyperparameter. We provide two justifications for this approx-
imation:

1. When we want the parameter vector w to be sparse (and so the regularizer
r is the L1 norm), we have no reason to believe that the v vector should be
sparse. The desired sparsity is induced by the regularization when solving for
ŵerm

i s on the local machines, and it is maintained in any linear combination
of the ŵerm

i s.
2. As the size of the dataset increases, the importance of the regularizer

decreases. In this second optimization, the dimensionality of the problem is
small and the theory requires few data points, guaranteeing the optimization
runs fast. If we can increase the number of data points by several orders of
magnitude (say from m2n/d to 100m2n/d), the optimization will remain fast
in practice and the influence of the regularization term becomes negligible.

The new λ2 regularization parameter should be set by cross validation.
This is a fast procedure, however, because the second optimization has so little
data. Furthermore, this cross validation can be computed locally on the master
machine without any communication. We again emphasize that Sect. 6 contains
experiments where the first round of optimization took about a day, and the
second round (including the selection of λ2) took only about a minute.

3.4 Fast Cross Validation for OWA

We now introduce a novel fast cross validation algorithm for estimating the
predictive performance of OWA. The standard method for k-fold cross valida-
tion takes linear time in the number of folds k. For large scale problems, this
is too computationally expensive, and so cross validation is typically not used
in this regime. Our fast cross validation procedure can estimate the predictive
performance of OWA in constant time (relative to k). This makes our proce-
dure suitable for large scale problems. Our method has two restrictions. First,
we require the number of folds k must be equal to the number of machines m.
Second, we require each machine already have access to the full Zowa dataset.

Our procedure uses two rounds of computation and is shown in Algorithm2.
The first round trains the local estimators ŵerm

i as in Algorithm 1, but then
broadcasts these parameter vectors to all machines (rather than just the master).
In the second round, each machine i calculates ŵowa

−i , which is a version of the
OWA estimator trained on the data from all the machines except machine i.
More formally, we define the matrix Ŵ−i : Rd×(m−1) to be the matrix Ŵ with



Distributed Learning with One Round of Communication 203

Algorithm 2. Calculating ŵowa with fast cross validation
Preconditions:

each machine i already has dataset Zi

each machine (not just the master) also has dataset Zowa

Each machine i independently:
calculates ŵerm

i using Equation (2)
broadcasts ŵerm

i to all other machines
Each machine i independently:

calculates ŵowa
−i using Equation (10)

(optionally) ŵowa
−i calculated with approx. Eq. (9)

computes êrri using Equation (12)
transmits êrri to the master

The master
computes ŵowa using Equation (7)
computes 1

m

∑m
i=1 êrri

ith column removed. That is, Ŵ−i is the concatenation of the ŵerm
j vectors

for all j 	= i. Then let Zowa
−i = {Zj}j �=i be the data set used in the second

round of optimization without the data points from machine i. Finally, define
the estimator

ŵowa
−i = Ŵ−iv̂owa

−i , (10)

where
v̂owa

−i = arg min
v∈Rm−1

∑

(x,y)∈Zowa
−i

�
(
y,xTŴ−iv

)
+ λr(Ŵ−iv). (11)

Notice that ŵowa
−i does not depend on the local data set Zi. So

êrri =
1
n

∑

(x,y)∈Zi

�(y,xTŵowa
−i ) (12)

is an unbiased estimate of the true error L∗(ŵowa
−i ). The algorithm then trans-

mits the êrri values to the master machine, which computes ŵowa as normal and
computes the average of the error estimates. In total, O(dm2) bits are transmit-
ted in the first round, and O(dm) bits in the second round. When compared
with Algorithm 1, the fast cross validation method requires a factor of m times
more communication, and approximately twice as much computation.

This fast cross validation procedure critically used the fact that the OWA
estimator is non-interactive. Similar procedures can be developed for other non-
interactive distributed learning algorithms, but this technique cannot be used
to develop fast cross validation methods for interactive algorithms. OWA’s fast
cross validation procedure is closely related to the out-of-bag method [5], monoid
fast cross validation [7], and incremental fast cross validation [10], but none of
these previous methods was developed specifically for the distributed setting.
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4 Analysis

A major advantage of OWA’s analysis is that it requires only simple and general
conditions. Essentially, we will prove that whenever ERM is an optimal estima-
tor, then OWA is also optimal. In Sect. 5 below, we will see that previous meth-
ods require more complicated and less general conditions. In this section, we first
describe our main condition in detail. Then we outline the argument that OWA’s
estimation error ‖ŵowa − w∗‖ and generalization error L∗(ŵowa)−L∗(w∗) both
decay as O(

√
d/mn). Full proofs of all theorems are provided in Appendix B.

4.1 The Sub-Gaussian Tail (SGT) Condition

Recall that each estimator is a random vector that is a function of the data.
Informally, our main condition is that these vectors follow an approximately
Gaussian distribution. This is a mild condition that many statistical models
are known to satisfy. For example, the estimated parameters for all generalized
linear models (such as logistic regression and ordinary least squares regression)
are known to be approximately Gaussian. We now formally define our criterion
and describe in detail how to establish that it holds.

Definition 1. We say that a statistical model satisfies the sub-Gaussian tail
(SGT) condition if the empirical risk minimizer ŵ trained on n i.i.d. data points
of dimension d has the sub-Gaussian estimation error

Pr
[
‖ŵ − w∗‖ ≤ O(

√
dt/n)

]
≥ 1 − exp(−t). (13)

Remark 1. Notice that if ŵ has a Gaussian distribution it will satisfy the SGT
condition, even if ŵ has arbitrary non-zero mean. (This is a standard property
of sub-Gaussian distributions.) Thus, the SGT condition makes no assumptions
about the model’s bias.

A large body of statistical literature establishes the SGT condition for many
models. Chapter 7 of Lehmann [13] provides an elementary introduction to
results in the asymptotic regime as n → ∞. Lehman requires only that the
loss � be three times differentiable, that the data points be i.i.d., and that w∗

be identifiable. For example, models using the non-convex sigmoid loss satisfy
these conditions, and thus can be used with the OWA estimator. Lehmann [13]
also contains references to stronger asymptotic results that relax these already
mild conditions.

Other work establishes the SGT condition in the non-asymptotic regime n <
∞. Panov et al. [20] provides a particularly strong example. Their only condition
is that the empirical loss admit a local approximation via the so-called bracketing
device, which can be thought of as a generalization of the Taylor expansion. The
full explanation of this condition is rather technical, but we highlight that this
result does not require a convex loss or even that the data be i.i.d.

The proofs of theorems establishing the SGT condition are typically long
and technical. In our view, a limitation of previous non-interactive estimators is
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that their analysis proves limited forms of the SGT condition from scratch. This
makes their proofs long and technical as well. It also limits the applicability of
their results, because they do not prove the more general versions of the SGT
condition cited above. Our work improves on this practice by “factoring out”
these technical details. By relying on this established body of literature to prove
the SGT condition for us, we get simpler proofs that apply more generally. In
particular, we essentially conclude that whenever the ERM estimator success-
fully learns on a single machine (i.e. the SGT condition holds), then the OWA
estimator successfully learns in a distributed environment. No other distributed
estimator (interactive or non-interactive) can make such a strong claim.

4.2 The Main Idea: Ŵowa Contains Good Solutions

The most important idea of OWA’s analysis is to show that when the local
ŵerm

i estimators satisfy the SGT condition, then Ŵowa is a good subspace to
optimize over. In particular, if we let πŴowaw∗ denote the projection of w∗ onto
Ŵowa, then we have that πŴowaw∗ ≈ w∗. This idea is formalized in the following
lemma.

Lemma 2. Assume the model satisfies the SGT condition. Let t > 0. Then with
probability at least 1 − exp(−t),

‖πŴowaw∗ − w∗‖ ≤ O(
√

dt/mn). (14)

The proof of Lemma 2 is a direct consequence of the SGT condition.

4.3 Bounding the Generalization Error

In order to connect the result of Lemma 1 to OWA’s generalization error, we
need to introduce a smoothness condition on the true loss function L∗. Lipschitz
continuity is a widely used technique in both convex and non-convex analysis.

Definition 2. We say that L∗ is β-Lipschitz continuous if for all w1 and w2,

|L∗(w1) − L∗(w2)| ≤ β‖w1 − w2‖. (15)

We now state our first main result, which guarantees that OWA will generalize
well.

Theorem 3. Assume the model satisfies the SGT condition, and that L∗ is β-
Lipschitz continuous. Let t > 0. Then with probability at least 1 − exp(−t),

L∗(ŵowa) − L∗(w∗) ≤ O(β
√

dt/mn). (16)
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4.4 Bounding the Estimation Error

To bound the estimation error, we introduce a quadratic restriction on the
growth of the true loss L∗.

Definition 3. We say the true loss L∗ satisfies the lower quadratic growth
(lower QG) condition if for all points w ∈ W,

αlo‖w − w∗‖2 ≤ L∗(w) − L∗(w∗). (17)

We say that L∗ satisfies the upper quadratic growth (upper QG) condition if it
satisfies

L∗(w) − L∗(w∗) ≤ αhi‖w − w∗‖2. (18)

The lower QG condition has previously been used to study the convergence of
non-convex optimization (e.g. [1,3]). This condition is a generalization of strong
convexity that needs to hold only at the optimum w∗ rather than all points in
the domain. In particular, functions satisfying the lower QG condition may have
many local minima with different objective values. Karimi et al. [11] compares
the lower QG condition to six related generalizations of convexity, and shows
that the QG condition is the weakest of these conditions in the sense that it is
implied by all other conditions.

The intuitive meaning of the lower and upper QG conditions is that a
quadratic function can be used to lower and upper bound L∗. As the domain
W shrinks to include only the optimal point w∗, these lower and upper bounds
converge to the Taylor expansion of L∗. In this limit, the constant αlo is the
minimum eigenvalue of the Hessian at w∗, and αhi is the maximum eigenvalue.
The ratio αhi/αlo can then be thought of as a generalized condition number.

Our main result is:

Theorem 4. Assume the SGT condition and that that L∗ satisfies the lower
and upper QG conditions. Let t > 0. Then with probability at least 1 − exp(−t),

‖ŵowa − w∗‖ ≤ O
(√

(αhi/αlo)(dt/mn)
)

. (19)

Note that up to the constant factor
√

αhi/αlo, OWA’s estimation error
matches that of the oracle ERM.

5 Other Non-interactive Estimators

Compared with similar non-interactive distributed estimators, OWA either has
stronger statistical guarantees, is applicable to more models, or has a more com-
putationally efficient merging procedure.

Lee et al. [12] and Battey et al. [2] independently develop closed form formu-
las for debiasing L1 regularized least squares regressions. They combine these
debiased estimators with the averaging estimator to create a non-interactive esti-
mator that reduces both bias and variance at the optimal rate. OWA’s advantage
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over these methods is that it is that it can be applied to a much larger class of
problems.

Jordan et al. [9] develop a more general approach that uses a single approx-
imate Newton step in the merge procedure. As long as the initial starting point
(they suggest using ŵave) is within O(

√
1/n) of the true parameter vector, then

this approach converges at the optimal rate. When implementing Jordan et al.’s
approach, we found it suffered from two practical difficulties. First, Newton steps
can diverge if the starting point is not close enough. We found in our experiments
that ŵave was not always close enough. Second, Newton steps require inverting
a Hessian matrix. In Sect. 6, we consider a problem with dimension d ≈ 7 × 105;
the corresponding Hessian is too large to practically invert. For these reasons,
we do not compare against Jordan et al. [9] in our experiments.

Zhang et al. [25] provide a debiasing technique that works for any estimator.
Let s ∈ (0, 1), and Zs

i be a bootstrap sample of Zi of size sn. Then the bootstrap
average estimator is

ŵboot =
ŵave − sŵave,s

1 − s
, (20)

where

ŵave,s =
1
m

m∑

i=1

arg min
w

∑

(x,y)∈Zs
i

�(y,xTw) + λr(w).

The intuition behind this estimator is to use the bootstrap sample to directly
estimate and correct for the bias. When the loss function is convex, ŵboot enjoys a
mean squared error (MSE) that decays as O((mn)−1 +n−3). Theorem 2 directly
implies that the MSE of ŵowa decays as O((mn)−1) under more general condi-
tions. There are two additional limitations to ŵboot. First, the optimal value of s
is not obvious and setting the parameter requires cross validation on the entire
data set. Our proposed ŵowa estimator has a similar parameter λ2 that needs
tuning, but this tuning happens on a small fraction of the data and always with
the L2 regularizer. So properly tuning λ2 is more efficient than s. Second, per-
forming a bootstrap on an unbiased estimator increases the variance. This means
that ŵboot could perform worse than ŵave on unbiased estimators. Our ŵowa

estimator, in contrast, will perform at least as well as ŵave with high probability
even for highly biased estimators (see Fig. 1). The next section shows that ŵowa

has better empirical performance than ŵboot.
Liu and Ihler [15] propose a more Bayesian approach. Instead of averaging

the model’s parameters, they directly “average the models” with the following
KL-average estimator:

ŵkl = arg min
w∈W

m∑

i=1

KL(p(·; ŵerm
i )||p(·;w)). (21)

Liu and Ihler show theoretically that this is the best merge function in the
class of functions that do not depend on the data. Since OWA’s merge depends
on the data, however, this bound does not apply. The main disadvantage of
KL-averaging is computational. The minimization in (21) is performed via a
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bootstrap sample from the local models, which is computationally expensive. Let
k be the size of the bootstrap sample. Then Liu and Ihler’s method has MSE that
shrinks as O((mn)−1 +k−1). This implies that the bootstrap procedure requires
as many samples as the original problem to get a MSE that shrinks at the same
rate as the averaging estimator. Han and Liu [6] provide a method to reduce the
MSE to O((mn)−1 +(n2k)−1) using control variates, but the procedure remains
prohibitively expensive. Their experiments show the procedure scaling only to
datasets of size mn ≈ 104, whereas our experiments involve a dataset of size
mn ≈ 108.

d = 100, n = 1000 d = 1000, n = 1000 d = 10000, n = 1000

er
ro
r

‖w
∗

−
ŵ

‖

ŵerm
iŵave

ŵboot

ŵerm

ŵowa,full

ŵowa

20 40 60 80 10010−2

10−1

100

101

20 40 60 80 100
100

101

102

20 40 60 80 100

102.6

102.8

103

number of machines (m)

Fig. 2. The left figure shows scalability in the low dimension regime, the middle figure
in a medium dimension regime, and the right figure in a high dimension regime. ŵowa

scales well with the number of machines in all cases. Surprisingly, ŵowa outperforms
the oracle estimator trained on all of the data ŵerm in some situations.

6 Experiments

We evaluate OWA on synthetic and real-world logistic regression tasks. In each
experiment, we compare ŵowa with four baseline estimators: the naive esti-
mator using the data from only a single machine ŵerm

i ; the averaging esti-
mator ŵave; the bootstrap estimator ŵboot; and the oracle estimator of all
data trained on a single machine ŵerm. The ŵboot estimator has a param-
eter s that needs to be tuned. In all experiments we evaluate ŵboot with
s ∈ {0.005, 0.01, 0.02, 0.04, 0.1, 0.2}, which is a set recommended in the origi-
nal paper [25], and then report only the value of s with highest true likelihood.
Thus we are reporting an overly optimistic estimate of the performance of ŵboot,
and as we shall see ŵowa still tends to perform better. OWA is always trained
using the regularization approximation of Sect. 3.3, and Zowa is always resampled
from the original dataset.

In all experiments, we use the scikit-learn machine learning library [21] to
perform the optimizations. We made no special efforts to tune parameters of the
optimization routines. For example, all optimizations are performed with the
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Fig. 3. OWA is robust to the regularization strength used to solve ŵerm
i . Our theory

states that as m → d, we have that Ŵowa → W, and so ŵowa → ŵerm. This is
confirmed in the middle experiment. In the left experiment, m < d, but ŵowa still
behaves similarly to ŵerm. In the right experiment, ŵowa has similar performance as
ŵave and ŵboot but over a wider range of λ values.

default target accuracy of 1×10−3. Additionally, when performing the hyperpa-
rameter optimization for λ2 in (9), we use the default hyperparameter selection
procedure.

6.1 Synthetic Data

We generate the data according to a sparse logistic regression model. Each com-
ponent of w∗ is sampled i.i.d. from a spike and slab distribution. With prob-
ability 0.9, it is 0; with probability 0.1, it is sampled from a standard normal
distribution. The data points are then sampled as

xi ∼ N (0, I) (22)

yi ∼ Bernoulli
(
1/

(
1 + exp(−xT

i w
∗)

))
. (23)

The primary advantage of synthetic data is that we know the model’s true param-
eter vector. So for each estimator ŵ that we evaluate, we can directly calculate
the error ‖ŵ − w∗‖. We run two experiments on the synthetic data. In both
experiments, we use the L1 regularizer to induce sparsity in our estimates of w∗.
Results are qualitatively similar when using a Laplace, Gaussian, or uniform
prior on w∗, and with L2 regularization.

Our first experiment shows how the estimators scale as the number of machines
m increases. We fix n = 1000 data points per machine, so the size of the dataset
mn grows as we add more machines. This simulates the typical “big data” regime
where data is abundant, but processing resources are scarce. For each value ofm, we
generate 50 datasets and report the average of the results. The results are shown in
Fig. 2. As the analysis predicted, the performance of ŵowa scales much better than
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ŵboot
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ŵowa

21 22 23 24 25 26 27
0.137

0.138

0.139

0.140

0.141

0.142

number of machines (m)

Fig. 4. (left) Relatively few data points are needed in the second round of optimization
for ŵowa to converge. On this dataset, only 2.7 × 10−6 percent of the data is needed.
(right) Performance of the parallel estimators on advertising data as the number of
machines m increases.

ŵave and ŵboot. Surprisingly, in the low dimensional regimes, ŵowa outperforms
the single machine oracle ŵerm.

Our second experiment shows the importance of proper λ selection. We eval-
uate the performance of the estimators with λ varying from 10−4 to 104 on a
grid of 80 points. Figure 3 shows the results. The ŵowa estimator is more robust
to the choice of λ than the other distributed estimators. We suspect that slight
misspecification of λ in the first round of optimization is compensated for in the
second round of optimization.

6.2 Real World Advertising Data

We evaluate the estimators on real world data from the KDD 2012 Cup [19]. The
goal is to predict whether a user will click on an ad from the Tencent internet
search engine. This dataset was previously used to evaluate the performance
of ŵboot [25]. This dataset is too large to fit on a single machine, so we must
use distributed estimators, and we do not provide results of the oracle estimator
ŵerm in our figures. There are 235,582,879 distinct data points, each of dimension
741,725. The data points are sparse, so we use the L1 norm to encourage sparsity
in our final solution. The regularization strength was set using cross validation in
the same manner as for the synthetic data. For each test, we split the data into
80% training data and 20% test data. The training data is further subdivided
into 128 partitions, one for each of the machines used. It took about 1 day to
train the local model on each machine in our cluster.

Our first experiment measures the importance of the number of data points
used in the second optimization (i.e. |Zowa|). We fix m = 128, and allow |Zowa|
to vary from 20 to 220. When |Zowa| = 220, almost the entire dataset is used in
the second optimization. We repeated the experiment 50 times, each time using



Distributed Learning with One Round of Communication 211

a different randomly selected set Zowa for the second optimization. Figure 4
(left) shows the results. Our ŵowa estimator has lower loss than ŵave using only
|Zowa| = 215 data points (approximately 4 × 10−8 percent of the full training
set) and ŵowa has converged to its final loss value with only |Zowa| = 217

data points (approximately 2.7 × 10−6 percent of the full training set). This
justifies our claim that only a small number of data points are needed for the
second round of optimization. The computation is also very fast due to the lower
dimensionality and L2 regularization in the second round of optimization. When
|Zowa| = 217, computing the merged model took about a minute (including
the cross validation time to select λ2). This time is negligible compared to the
approximately 1 day it took to train the models on the individual machines.

Our last experiment shows the performance as we scale the number of
machines m. The results are shown in Fig. 4 (right). Here, ŵowa performs espe-
cially well with low m. For large m, ŵowa continues to slightly outperform ŵboot

without the need for an expensive model selection procedure to determine the s
parameter.

7 Conclusion

We introduced OWA, a non-interactive distributed estimator for linear models.
OWA is easy to implement and has optimal statistical guarantees that hold
under general conditions. We showed experimentally that OWA outperforms
other non-interactive estimators, and in particular that OWA exhibits a weaker
dependence on the regularization strength.

Acknowledgments. Shelton was supported by the National Science Foundation (IIS
1510741).
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23. Smith, V., Forte, S., Ma, C., Takáč, M., Jordan, M.I., Jaggi, M.: Cocoa: a general

framework for communication-efficient distributed optimization. JMLR 18, 230
(2018)

24. Wang, S.: A sharper generalization bound for divide-and-conquer ridge regression.
In: AAAI (2019)

25. Zhang, Y., Wainwright, M.J., Duchi, J.C.: Communication-efficient algorithms for
statistical optimization. In: NeurIPS, pp. 1502–1510 (2012)

26. Zhang, Y., Duchi, J.C., Wainwright, M.J.: Divide and conquer kernel ridge regres-
sion. In: COLT (2013)

27. Zhao, S.-Y., Ru, X., Shi, Y.-H., Gao, P., Li, W-J.: Scope: scalable composite opti-
mization for learning on spark. In: AAAI (2017)

28. Zinkevich, M., Weimer, M., Li, L., Smola, A.J.: Parallelized stochastic gradient
descent. In: NeurIPS, pp. 2595–2603 (2010)

http://arxiv.org/abs/1605.07689
https://doi.org/10.1007/978-3-319-46128-1_50
https://doi.org/10.1007/978-3-319-46128-1_50
https://doi.org/10.1007/b98855


SLSGD: Secure and Efficient Distributed
On-device Machine Learning

Cong Xie(B) , Oluwasanmi Koyejo , and Indranil Gupta

University of Illinois at Urbana-Champaign, Urbana and Champaign, USA
{cx2,sanmi,indy}@illinois.edu

Abstract. We consider distributed on-device learning with limited com-
munication and security requirements. We propose a new robust dis-
tributed optimization algorithm with efficient communication and attack
tolerance. The proposed algorithm has provable convergence and robust-
ness under non-IID settings. Empirical results show that the proposed
algorithm stabilizes the convergence and tolerates data poisoning on a
small number of workers.
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1 Introduction

Edge devices/IoT such as smart phones, wearable devices, sensors, and smart
homes are increasingly generating massive, diverse, and private data. In response,
there is a trend towards moving computation, including the training of machine-
learning models, from cloud/datacenters to edge devices [1,24]. Ideally, since
trained on massive representative data, the resulting models exhibit improved
generalization. In this paper, we consider distributed on-device machine learn-
ing. The distributed system is a server-worker architecture. The workers are
placed on edge devices, which train the models on the private data. The servers
are placed on the cloud/datacenters which maintain a shared global model. Dis-
tributed settings require addressing some novel engineering challenges, including
the following:

– Limited, heterogeneous computation. Edge devices, including smart
phones, wearable devices, sensors, or vehicles typically have weaker compu-
tational ability, compared to the workstations or datacenters used in typical
distributed machine learning. Thus, simpler models and stochastic training
are usually applied in practice. Furthermore, different devices have different
computation capabilities.

– Limited communication. The connection to the central servers are not
guaranteed. Communication can be frequently unavailable, slow, or expensive
(in money or in the power of battery). Thus, frequent high-speed communi-
cation is typically unaffordable.

c© Springer Nature Switzerland AG 2020
U. Brefeld et al. (Eds.): ECML PKDD 2019, LNAI 11907, pp. 213–228, 2020.
https://doi.org/10.1007/978-3-030-46147-8_13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-46147-8_13&domain=pdf
http://orcid.org/0000-0002-5682-0230
http://orcid.org/0000-0002-4023-419X
http://orcid.org/0000-0002-9372-5937
https://doi.org/10.1007/978-3-030-46147-8_13


214 C. Xie et al.

– Decentralized, non-IID training data. Privacy needs and legal require-
ments (e.g., US HIPAA laws [12] in a smart hospital, or Europe’s GDPR
law [8]) may necessitate that training be performed on-premises using IoT
devices and edge machines, and that data and models must not be deposited
in the cloud or cloudlets. In more general cases, the users simply dislike shar-
ing their on-device data which potentially reveals private information. As a
result, the data distribution on different devices are neither mixed nor IID i.e.
unlike standard settings, device data are non-identically distributed samples
from the population. This is particularly true when each device is controlled
by a specific user whose behavior is supposed to be unique. Furthermore, the
sampled data on nearby devices are potentially non-independent, since such
devices can be shared by the same user or family. For example, the data of
a step counter from a wearable fitness tracker and a smart phone owned by
the same user can have different distributions of motion data with mutual
dependency. Imagine that the fitness tracker is only used when the user is
running, and the smart phone is only used when the user is walking, which
results in different distributions. On the other hand, the complementation
yields dependency.

– Untrusted workers and data poisoning. The servers have limited con-
trol over the users’ behavior. To protect the privacy, the users are in general
anonymous to the servers. Although it is possible to verity the identity of
workers/devices [25], nefarious users can feed poisoned data with abnormal
behaviors without backdooring OS. As a result, some workers may push mod-
els learned on poisoned data to the servers.

To overcome the challenges above, we introduce Secure Local Stochastic
Gradient Descent (SLSGD), which reduces the communication overhead with
local updates, and secures the global model against nefarious users and poisoned
data. We summarize the key properties of SLSGD below:

– Local SGD. SGD is widely used for training models with lower computa-
tion overhead. To reduce communication overhead, we use SGD with local
updates. The workers do not synchronize with the server after each local
gradient descent step. After several local iterations, the workers push the
updated model to the servers, which is different from the traditional dis-
tributed synchronous SGD where gradients are pushed in each local gradient
descent step. To further reduce the communication overhead, the training
tasks are activated on a random subset of workers in each global epoch.

– Secure aggregation. In each global epoch, the servers send the latest global
model to the activated workers, and aggregate the updated local models. In
such procedure, there are two types of threats: (i) poisoned models pushed
from comprised devices, occupied or hacked by nefarious users; (ii) accumu-
lative error, variance, or models over-fitted on the local dataset, caused by
infrequent synchronization of local SGD. To secure the global model against
these two threats, we use robust aggregation which tolerates abnormal models,
and moving average which mitigates the errors caused by infrequent synchro-
nization.
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To our knowledge, there is limited work on local SGD with theoretical guar-
antees [26,31]. The existing convergence guarantees are based on the strong
assumption of IID training data or homogeneous local iterations, which we have
argued is inappropriate for distributed learning on edge devices.

We propose SLSGD, which is a variant of local SGD with provable con-
vergence under non-IID and heterogeneous settings, and tolerance to nefarious
users. In summary, the main contributions are listed as follows:

– We show that SLSGD theoretically converges to global optimums for strongly
convex functions, non-strongly convex functions, and a restricted family of
non-convex functions, under non-IID settings. Furthermore, more local iter-
ations accelerate the convergence.

– We show that SLSGD tolerates a small number of workers training on poi-
soned data. As far as we know, this paper is the first to investigate the robust-
ness of local SGD.

– We show empirically that the proposed algorithm stabilizes the convergence,
and protects the global model from data poisoning.

2 Related Work

Our algorithm is based on local SGD introduced in [26,31]. The major differences
are:

1. We assume non-IID training data and heterogeneous local iterations among
the workers. In previous work, local SGD and its convergence analysis required
IID training data, or same number of local iterations within each global
epoch (or both). However, these assumptions are unreasonable for edge com-
puting, due to privacy preservation and heterogeneous computation.

2. Instead of using the averaged model to overwrite the current global model on
the server, we take robust aggregation, and use a moving average to update
the current model. These techniques not only secure the global model against
data poisoning, but also mitigate the error caused by infrequent synchroniza-
tion of local SGD.

The limited communication power of edge devices also motivates federated
learning [16,17,22], whose algorithm is similar to local SGD, and scenario is sim-
ilar to our non-IID and heterogeneous settings. Unfortunately, federated learning
lacks provable convergence guarantees. Furthermore, the issues of data poison-
ing have not been addressed in previous work. To the best of our knowledge,
our proposed work is the first that considers both convergence and robustness,
theoretically and practically, on non-IID training data.

Similar to the traditional distributed machine learning, we use the server-
worker architecture, which is similar to the Parameter Server (PS) architecture.
Stochastic Gradient Descent (SGD) with PS architecture, is widely used in typ-
ical distributed machine learning [13,19,20]. Compared to the traditional dis-
tributed learning on PS, SLSGD has much less synchronization. Furthermore,
in SLSGD, the workers push trained models instead of gradients to the servers.
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Approaches based on robust statistics are often used to address security
issues in the PS architecture [27,30]. This enables procedures which tolerate
multiple types of attacks and system failures. However, the existing methods
and theoretical analysis do not consider local training on non-IID data. So far,
the convergence guarantees are based on robust gradient aggregation. In this
paper, we provide convergence guarantees for robust model aggregation. Note
that gradients and models (parameters) have different properties. For example,
the gradients converge to 0 for unconstrained problems, while the models do not
have such property. On the other hand, recent work has considered attacks not
only targeting traditional distributed SGD [28], but also federated learning [3,4,
9], but do not propose defense techniques with provable convergence. There are
other robust SGD algorithms whose defense techniques are not based on robust
stochastic [29].

There is growing literature on the practical applications of edge and fog com-
puting [10,14] in various scenarios such as smart home or sensor networks. More
and more big-data applications are moving from the cloud to the edge, including
for machine-learning tasks [5,21,32]. Although computational power is growing,
edge devices are still much weaker than the workstations and datacenters used
in typical distributed machine learning e.g. due to the limited computation and
communication capacity, and limited power of batteries. To this end, there are
machine-learning frameworks with simple architectures such as MobileNet [15]
which are designed for learning with weak devices.

3 Problem Formulation

Consider distributed learning with n devices. On each device, there is a worker
process that trains the model on local data. The overall goal is to train a global
model x ∈ R

d using data from all the devices.
To do so, we consider the following optimization problem: minx∈Rd F (x),

where F (x) = 1
n

∑
i∈[n] Ezi∼Dif(x; zi), for ∀i ∈ [n], zi is sampled from the local

data Di on the ith device.

3.1 Non-IID Local Datasets

Note that different devices have different local datasets, i.e., Di �= Dj ,∀i �=
j. Thus, samples drawn from different devices have different expectations, i.e.,
Ezi∼Dif(x; zi) �= Ezj∼Djf(x; zj),∀i �= j. Further, since different devices can be
possessed by the same user or the same group of users (e.g., families), samples
drawn from different devices can be potentially dependent on each other.

3.2 Data Poisoning

The users are anonymous to the servers. Furthermore, it is impossible for the
servers to verify the benignity of the on-device training data. Thus, the servers
can not trust the edge devices. A small number of devices may be susceptible to
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Table 1. Notations and terminologies

Notation/term Description

n Number of devices

k Number of simultaneously updating devices

T Number of communication epochs

[n] Set of integers {1, . . . , n}
St Randomly selected devices in the tth epoch

b Parameter of trimmed mean

Hmin Minimal number of local iterations

Hi
t Number of local iterations in the tth epoch

on the ith device

xt Initial model in the tth epoch

xi
t,h Model updated in the tth epoch, hth local iteration, on the

ith device

Di Dataset on the ith device

zi
t,h Data (minibatch) sampled in the tth epoch,

hth local iteration, on the ith device

γ Learning rate

α Weight of moving average

‖ · ‖ All the norms in this paper are l2-norms

Device Where the training data are placed

Worker One worker on each device, process that trains the model

User Agent that produces data on the devices, and/or controls the
devices

Nefarious user Special user that produces poisoned data or has abnormal
behaviors

data poisoned by abnormal user behaviors or in the worst case, are controlled
by users or agents who intend to directly upload harmful models to the servers.

In this paper, we consider a generalized threat model, where the workers can
push arbitrarily bad models to the servers. The bad models can cause divergence
of training. Beyond more benign issues such as hardware, software or commu-
nication failures, there are multiple ways for nefarious users to manipulate the
uploaded models e.g. data poisoning [2]. In worst case, nefarious users can even
directly hack the devices and replace the correct models with arbitrary values.
We provide a more formal definition of the threat model in Sect. 4.1.

4 Methodology

In this paper, we propose SLSGD: SGD with communication efficient local
updates and secure model aggregation. A single execution of SLSGD is com-
posed of T communication epochs. At the beginning of each epoch, a randomly
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selected group of devices St pull the latest global model from the central server.
Then, the same group of devices locally update the model without communi-
cation with the central server. At the end of each epoch, the central server
aggregates the updated models and then updates the global model.

In the tth epoch, on the ith device, we locally solve the following opti-
mization problem using SGD for Hi

t iterations: minx∈Rd Ezi∼Dif(x; zi). Then,
the server collects the resulting local models xi

t,Hi
t
, and aggregates them using

Aggr
(
{xi

t,Hi
t

: i ∈ St}
)
. Finally, we update the model with a moving average

over the current model and the aggregated local models.
The detailed algorithm is shown in Algorithm1. xi

t,h is the model parameter
updated in hth local iteration of the tth epoch, on the ith device. zi

t,h is the
data randomly drawn in hth local iteration of the tth epoch, on the ith device.
Hi

t is the number of local iterations in the tth epoch, on the ith device. γ is
the learning rate and T is the total number of epochs. Note that if we take
Option I (or Option II with b = 0) with α = 1, the algorithm is the same as the
federated learning algorithm FedAvg [22]. Furthermore, if we take homogeneous
local iterations Hi

t = H,∀i, Option I with α = 1 is the same as local SGD [26].
Thus, FedAvg and local SGD are both special cases of SLSGD.

Algorithm 1. SLSGD
1: Input: k ∈ [n], b
2: Initialize x0

3: for all epoch t ∈ [T ] do
4: Randomly select a group of k workers, denoted as St ⊆ [n]
5: for all i ∈ St in parallel do
6: Receive the latest global model xt−1 from the server
7: xi

t,0 ← xt−1

8: for all local iteration h ∈ [Hi
t ] do

9: Randomly sample zi
t,h

10: xi
t,h ← xi

t,h−1 − γ∇f(xi
t,h−1; z

i
t,h)

11: end for
12: Push xi

t,Hi
t

to the server

13: end for

14: Aggregate: x′
t ←

⎧
⎨

⎩

Option I: 1
k

∑
i∈St

xi
t,Hi

t

Option II: Trmeanb

({
xi
t,Hi

t
: i ∈ St

})

15: Update the global model: xt ← (1 − α)xt−1 + αx′
t

16: end for

4.1 Threat Model and Defense Technique

First, we formally define the threat model.

Definition 1 (Threat Model). In Line 12 of Algorithm1, instead of the cor-
rect xi

t,Hi
t
, a worker, training on poisoned data or controlled by an abnor-

mal/nefarious user, may push arbitrary values to the server.
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Remark 1. Note that the users/workers are anonymous to the servers, and the
nefarious users can sometimes pretend to be well-behaved to fool the servers.
Hence, it is impossible to surely identify the workers training on poisoned data,
according to their historical behavior.

In Algorithm 1, Option II uses the trimmed mean as a robust aggregation
which tolerates the proposed threat model. To define the trimmed mean, we
first define the order statistics.

Definition 2 (Order Statistics). By sorting the scalar sequence {ui : i ∈
[k], ui ∈ R}, we get u1:k ≤ u2:k ≤ . . . ≤ uk:k, where ui:k is the ith smallest
element in {ui : i ∈ [k]}.
Then, we define the trimmed mean.

Definition 3 (Trimmed Mean). For b ∈ {0, 1, . . . , �k/2� − 1}, the b-trimmed
mean of the set of scalars {ui : i ∈ [k]} is defined as follows:

Trmeanb({ui : i ∈ [k]}) =
1

k − 2b

k−b∑

i=b+1

ui:k,

where ui:k is the ith smallest element in {ui : i ∈ [k]} defined in Definition 2.
The high-dimensional version (ui ∈ R

d) of Trmeanb(·) simply applies the trimmed
mean in a coordinate-wise manner.

Note that the trimmed mean (Option II) is equivalent to the standard mean
(Option I) if we take b = 0.

Remark 2. Algorithm 1 provides two levels of defense: robust aggregation (Line
14) and moving average (Line 15). The robust aggregation tries to filter out the
models trained on poisoned data. The moving average mitigates not only the
extra variance/error caused by robust aggregation and data poisoning, but also
the accumulative error caused by infrequent synchronization of local updates.

Remark 3. We can also replace the coordinate-wise trimmed mean with other
robust statistics such as geometric median [7]. We choose coordinate-wise
median/trimmed mean in this paper because unlike geometric median, trimmed
mean has a computationally efficient closed-form solution.

5 Convergence Analysis

In this section, we prove the convergence of Algorithm1 with non-IID data,
for a restricted family of non-convex functions. Furthermore, we show that the
proposed algorithm tolerates the threat model introduced in Definition 1. We
start with the assumptions required by the convergence guarantees.
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5.1 Assumptions

For convenience, we denote F i(x) = Ezi∼Dif(x; zi).

Assumption 1 (Existence of Global Optimum). We assume that there exists
at least one (potentially non-unique) global minimum of the loss function F (x),
denoted by x∗.

Assumption 2 (Bounded Taylor’s Approximation). We assume that for ∀x, z,
f(x; z) has L-smoothness and μ-weak convexity: 〈∇f(x; z), y − x〉+ μ

2 ‖y −x‖2 ≤
f(y; z) − f(x; z) ≤ 〈∇f(x; z), y − x〉 + L

2 ‖y − x‖2, where μ ≤ L, and L > 0.

Note that Assumption 2 covers the case of non-convexity by taking μ < 0, non-
strong convexity by taking μ = 0, and strong convexity by taking μ > 0.

Assumption 3 (Bounded Gradient). We assume that for ∀x ∈ R
d, i ∈ [n], and

∀z ∼ Di, we have ‖∇f(x; z)‖2 ≤ V1.

Based on the assumptions above, we have the following convergence guaran-
tees. All the detailed proofs can be found in the appendix.

5.2 Convergence Without Data Poisoning

First, we analyze the convergence of Algorithm 1 with Option I, where there are
no poisoned workers.

Theorem 1. We take γ ≤ min
(
1
L , 2

)
. After T epochs, Algorithm1 with Option

I converges to a global optimum:

E [F (xT ) − F (x∗)] ≤
(
1 − α + α(1 − γ

2
)Hmin

)T

[F (x0) − F (x∗)]

+
[

1 −
(
1 − α + α(1 − γ

2
)Hmin

)T
]

O
(

V1 +
(

1 +
1
k

− 1
n

)

V2

)

,

where V2 = maxt∈{0,T−1},h∈{0,Hi
t−1},i∈[n] ‖xi

t,h − x∗‖2.

Remark 4. When α → 1,
(
1 − α + α(1 − γ

2 )Hmin
)T → (1 − γ

2 )THmin , which
results in nearly linear convergence to the global optimum, with error O(V1 +V2).
When α → 0, the error is nearly reduced 0, but the convergence will slow down.
We can tune α to trade-off between the convergence rate and the error. In prac-
tice, we can take diminishing α: αt ∝ 1

t2 , where αt is the α in the tth global epoch.

Furthermore, taking αT = 1
T 2 , limT→+∞

[
1 − (

1 − αT + αT (1 − γ
2 )Hmin

)T
]

= 0.

5.3 Convergence with Data Poisoning

Under the threat model defined in Definition 1, in worst case, Algorithm 1 with
Option I and α = 1 (local SGD) suffers from unbounded error.
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Proposition 1 (Informal). Algorithm1 with Option I and α = 1 can not toler-
ate the threat model defined in Definition 1.

Proof (Sketch). Without loss of generality, assume that in a specific epoch
t, among all the k workers, the last q1 of them are poisoned. For the poi-
soned workers, instead of pushing the correct value xi

t,Hi
t

to the server, they

push −k−q1
q1

xi
t,Hi

t
+ c, where c is an arbitrary constant. For convenience, we

assume IID (required by local SGD, but not our algorithm) local datasets
for all the workers. Thus, the expectation of the aggregated global model
becomes 1

k

{
(k − q1)E

[
xi

t,Hi
t

]
+ q1E

[
−k−q1

q1
xi

t,Hi
t
+ c

]}
= q1

k c, which means
that in expectation, the aggregated global model can be manipulated to take
arbitrary values, which results in unbounded error.

In the following theorems, we show that using Algorithm1 with Option II, the
error can be upper bounded.

Theorem 2. Assume that additional to the n normal workers, there are q work-
ers training on poisoned data, where q � n, and 2q ≤ 2b < k. We take
γ ≤ min

(
1
L , 2

)
. After T epochs, Algorithm1 with Option II converges to a global

optimum:

E [F (xT ) − F (x∗)] ≤
(
1 − α + α(1 − γ

2
)Hmin

)T

[F (x0) − F (x∗)]

+
[

1 −
(
1 − α + α(1 − γ

2
)Hmin

)T
]

[O(V1) + O(βV2)] ,

where V2 = maxt∈{0,T−1},h∈{0,Hi
t−1},i∈[n] ‖xi

t,h−x∗‖2, β = 1+ 1
k−q − 1

n + k(k+b)
(k−b−q)2 .

Remark 5. Note that the additional error caused by the q poisoned workers and
b-trimmed mean is controlled by the factor k(k+b)

(k−b−q)2 , which decreases when q

and b decreases, or k increases.

6 Experiments

In this section, we evaluate the proposed algorithm by testing its convergence
and robustness. Note that zoomed figures of the empirical results can be found
in the appendix.

6.1 Datasets and Evaluation Metrics

We conduct experiments on the benchmark CIFAR-10 image classification
dataset [18], which is composed of 50k images for training and 10k images for
testing. Each image is resized and cropped to the shape of (24, 24, 3). We use
a convolutional neural network (CNN) with 4 convolutional layers followed by
1 fully connected layer. We use a simple network architecture, so that it can
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be easily handled by edge devices. The detailed network architecture can be
found in our submitted source code (will also be released upon publication).
The experiments are conducted on CPU devices. We implement SLSGD using
the MXNET [6] framework.

We also conduct experiments of LSTM-based language models on WikiText-2
dataset [23]. The model architecture was taken from the MXNET and Gluon-
NLP tutorial [11]. The results can be found in the appendix.

In each experiment, the training set is partitioned onto n = 100 devices. We
test the performance of SLSGD on both balanced and unbalanced partitions:

– Balanced Partition. Each of the n = 100 partitions has 500 images.
– Unbalanced Partition. To make the setting more realistic, we partition

the training set into unbalanced sizes. The sizes of the 100 partitions are
104, 112, . . . , 896 (an arithmetic sequence with step 8, starting with 104).
Furthermore, to enlarge the variance, we make sure that in each partition,
there are at most 5 different labels out of all the 10 labels. Note that some
partitions only have one label.

In each epoch, k = 10 devices are randomly selected to launch local updates,
with the minibatch size of 50. We repeat each experiment 10 times and take
the average. We use top-1 accuracy on the testing set, and cross entropy loss
function on the training set as the evaluation metrics.

The baseline algorithm is FedAvg introduced by [22], which is a special case
of our proposed Algorithm 1 with Option I and α = 1. To make the comparison
clearer, we refer to FedAvg as “SLSGD, α = 1, b = 0”.

We test SLSGD with different hyperparameters γ, α, and b (definitions can
be found in Table 1).
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Fig. 1. Convergence on training data with balanced partition, without attack. Each
epoch is a full pass of the local training data. Legend “SLSGD, γ = 0.1, α = 0.8, b = 2”
means that SLSGD takes the learning rate 0.1 and Trmean2 for aggregation, and the
initial α = 1 decays by the factor of 0.8 at the 400th epoch. SLSGD with α = 1 and
b = 0 is the baseline FedAvg. Note that we fix the random seeds. Thus, before α decays
at the 400th epoch, results with the same γ and b are the same.
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Fig. 2. Convergence on training data with unbalanced partition, without attack. Each
epoch is a full pass of the local training data. Legend “SLSGD, γ = 0.1, α = 0.8, b = 2”
means that SLSGD takes the learning rate 0.1 and Trmean2 for aggregation, and the
initial α = 1 decays by the factor of 0.8 at the 400th epoch. SLSGD with α = 1 and
b = 0 is the baseline FedAvg. Note that we fix the random seeds. Thus, before α decays
at the 400th epoch, results with the same γ and b are the same.

6.2 SLSGD Without Attack

We first test the performance of SLSGD on the training data with balanced
partition, without data poisoning. The result is shown in Fig. 1. When there are
no poisoned workers, using trimmed mean results in extra variance. Although
larger b and smaller α makes the convergence slower, the gap is tiny. In general,
SLSGD is insensitive to hyperparameters.

Then, we test the performance with unbalanced partition, without data poi-
soning. The result is shown in Fig. 2. Note that the convergence with unbalanced
partition is generally slower compared to balanced partition due to the larger
variance. Using appropriate α (α = 0.8) can mitigate such extra variance.

6.3 SLSGD Under Data Poisoning Attack

To test the tolerance to poisoned workers, we simulate data poisoning which
“flips” the labels of the local training data. The poisoned data have “flipped”
labels, i.e., each label ∈ {0, . . . , 9} in the local training data will be replaced by
(9 − label). The experiment is set up so that in each epoch, in all the k = 10
randomly selected workers, q workers are compromised and subjected to data
poisoning. The results are shown in Fig. 3 and Fig. 4. We use FedAvg/SLSGD
without data poisoning (Option I) as the ideal benchmark. As expected, SLSGD
without trimmed mean can not tolerate data poisoning, which causes catas-
trophic failure. SLSGD with Option II tolerates the poisoned worker, though
converges slower compared to SLSGD without data poisoning. Furthermore,
larger b and smaller α improves the robustness and stabilizes the convergence.

Note that taking q = 4 in every epoch pushes to the limit of SLSGD since
the algorithm requires 2q < k. In practice, if there are totally q = 4 poisoned
workers in the entire n = 100 workers, there is no guarantee that the poisoned
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Fig. 3. Convergence on training data with balanced partition, with “label-flipping”
attack. In each epoch, we guarantee that q ∈ {2, 4} of the k = 10 selected workers
are poisoned. Each epoch is a full pass of the local training data. Legend “SLSGD,
γ = 0.1, α = 0.8, b = 2” means that SLSGD takes the learning rate 0.1 and Trmean2
for aggregation, and the initial α = 1 decays by the factor of 0.8 at the 400th epoch.
SLSGD with α = 1 and b = 0 is the baseline FedAvg. Note that we fix the random
seeds. Thus, before α decays at the 400th epoch, results with the same γ and b are the
same.

workers will always be activated in each epoch. Poisoning 40% of the sampled
data in each epoch incurs huge noise, while SLSGD can still prevent the global
model from divergence.

In Fig. 5, we show how α and b affect the convergence when data poisoning
and unbalanced partition cause extra error and variance. In such scenario, larger
b and smaller α makes SLSGD more robust and converge faster.

6.4 Acceleration by Local Updates

According to our theoretical analysis, more local updates in each epoch accelerate
the convergence. We test this theory in Fig. 6 with balanced partition, without
data poisoning. In the legend, “pass=3” means each epoch is 3 full passes of the
local datasets (H = 3 × 500/50 = 30 local iterations) on the selected workers.
We show that with more local iterations, SLSGD converges faster.
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Fig. 4. Convergence on training data with unbalanced partition, with “label-flipping”
attack. In each epoch, we guarantee that q of the k = 10 selected workers are poisoned.
Each epoch is a full pass of the local training data. Legend “SLSGD, γ = 0.1, α =
0.8, b = 2” means that SLSGD takes the learning rate 0.1 and Trmean2 for aggregation,
and the initial α = 1 decays by the factor of 0.8 at the 400th epoch. SLSGD with α = 1
and b = 0 is the baseline FedAvg. Note that we fix the random seeds. Thus, before α
decays at the 400th epoch, results with the same γ and b are the same.
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Fig. 5. Number of global epochs to reach training loss value 0.5, with unbalanced
partition and q = 2 poisoned workers. γ = 0.1. α and b varies. “α” on the x-axis is the
initial value of α, which does not decay during training.
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Fig. 6. Number of global epochs to reach training loss value 0.003, with balanced
partition, without poisoned workers. γ = 0.1. α and number of local iterations varies.
“pass= 3” means each epoch is 3 full passes of the local datasets on the selected workers.
“α” on the x-axis is the initial value of α, which does not decay during training.

6.5 Discussion

The hyperparameters of SLSGD affects the convergence differently in different
scenarios:

– Balanced partition, no attacks. In this case, the overall variance is relatively
small. Thus, it is not necessary to use smaller α to mitigate the variance. The
extra variance caused by trimmed mean slows down the convergence. Since
the variance does not dominate, smaller α and larger b potentially slow down
the convergence, but the gap is tiny.

– Unbalanced partition, no attacks. In this case, the overall variance is larger
than the balanced case. Note that not only the size of local datasets, but also
the label distribution are unbalanced among the devices. Some partitions
only contains one label, which enlarges the accumulative error caused by
infrequent synchronization and overfitting the local training data. Thus, using
appropriate α can mitigate the variance. However, it is not necessary to use
the trimmed mean, since the variance caused by unbalanced partition is not
too bad compared to data poisoning.

– Balanced partition, under attacks. In this case, the error caused by poisoned
workers dominates. We must use trimmed mean to prevent divergence. Larger
b improves the robustness and convergence. Furthermore, using smaller α also
mitigates the error and improves the convergence.

– Unbalanced partition, under attacks. In this case, the error caused by poisoned
workers still dominates. In general, the usage of hyperparameters is similar
to the case of balanced partition under attacks. However, the unbalanced
partition makes it more difficult to distinguish poisoned workers from normal
workers. As a result, the convergence gets much slower. Smaller α obtain more
improvement and better stabilization.

In general, there is a trade-off between convergence rate and variance/error
reduction. In the ideal case, if the variance is very small, SLSGD with α = 1
and b = 0, i.e., FedAvg, has fastest convergence. Using other hyperparameters
slightly slows down the convergence, but the gap is tiny. When variance gets
larger, users can try smaller α. When the variance/error gets catastrophically
large, the users can use the trimmed mean to prevent divergence.
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7 Conclusion

We propose a novel distributed optimization algorithm on non-IID training data,
which has limited communication and tolerates poisoned workers. The algorithm
has provable convergence. Our empirical results show good performance in prac-
tice. In future work, we are going to analyze our algorithm on other threat
models, such as hardware or software failures.
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fog: a programming model for large-scale applications on the Internet of Things.
In: Proceedings of the Second ACM SIGCOMM Workshop on Mobile Cloud Com-
puting, pp. 15–20. ACM (2013)

http://arxiv.org/abs/1807.11655
http://arxiv.org/abs/1807.00459
http://arxiv.org/abs/1811.12470
http://arxiv.org/abs/1512.01274
https://eugdpr.org/
http://arxiv.org/abs/1808.04866
https://gluon-nlp.mxnet.io/master/examples/language_model/language_model.html
https://gluon-nlp.mxnet.io/master/examples/language_model/language_model.html


228 C. Xie et al.

15. Howard, A.G., et al.: MobileNets: efficient convolutional neural networks for mobile
vision applications. arXiv preprint arXiv:1704.04861 (2017)
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Abstract. The development of cluster computing frameworks has
allowed practitioners to scale out various statistical estimation and
machine learning algorithms with minimal programming effort. This is
especially true for machine learning problems whose objective function
is nicely separable across individual data points, such as classification
and regression. In contrast, statistical learning tasks involving pairs (or
more generally tuples) of data points—such as metric learning, clus-
tering or ranking—do not lend themselves as easily to data-parallelism
and in-memory computing. In this paper, we investigate how to bal-
ance between statistical performance and computational efficiency in
such distributed tuplewise statistical problems. We first propose a sim-
ple strategy based on occasionally repartitioning data across workers
between parallel computation stages, where the number of repartition-
ing steps rules the trade-off between accuracy and runtime. We then
present some theoretical results highlighting the benefits brought by the
proposed method in terms of variance reduction, and extend our results
to design distributed stochastic gradient descent algorithms for tuple-
wise empirical risk minimization. Our results are supported by numerical
experiments in pairwise statistical estimation and learning on synthetic
and real-world datasets.
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1 Introduction

Statistical machine learning has seen dramatic development over the last
decades. The availability of massive datasets combined with the increasing need
to perform predictive/inference/optimization tasks in a wide variety of domains
has given a considerable boost to the field and led to successful applications.
In parallel, there has been an ongoing technological progress in the architec-
ture of data repositories and distributed systems, allowing to process ever larger
(and possibly complex, high-dimensional) data sets gathered on distributed stor-
age platforms. This trend is illustrated by the development of many easy-to-use
cluster computing frameworks for large-scale distributed data processing. These
frameworks implement the data-parallel setting, in which data points are par-
titioned across different machines which operate on their partition in parallel.
Some striking examples are Apache Spark [26] and Petuum [25], the latter being
fully targeted to machine learning. The goal of such frameworks is to abstract
away the network and communication aspects in order to ease the deployment
of distributed algorithms on large computing clusters and on the cloud, at the
cost of some restrictions in the types of operations and parallelism that can
be efficiently achieved. However, these limitations as well as those arising from
network latencies or the nature of certain memory-intensive operations are often
ignored or incorporated in a stylized manner in the mathematical description and
analysis of statistical learning algorithms (see e.g., [1,2,4,15]). The implementa-
tion of statistical methods proved to be theoretically sound may thus be hardly
feasible in a practical distributed system, and seemingly minor adjustments to
scale-up these procedures can turn out to be disastrous in terms of statistical
performance, see e.g. the discussion in [18]. This greatly restricts their practi-
cal interest in some applications and urges the statistics and machine learning
communities to get involved with distributed computation more deeply [3].

In this paper, we propose to study these issues in the context of tuplewise
estimation and learning problems, where the statistical quantities of interest
are not basic sample means but come in the form of averages over all pairs (or
more generally, d-tuples) of data points. Such data functionals are known as
U -statistics [19,21], and many empirical quantities describing global properties
of a probability distribution fall in this category (e.g., the sample variance, the
Gini mean difference, Kendall’s tau coefficient). U -statistics are also natural
empirical risk measures in several learning problems such as ranking [13], metric
learning [24], cluster analysis [11] and risk assessment [5]. The behavior of these
statistics is well-understood and a sound theory for empirical risk minimization
based on U -statistics is now documented in the machine learning literature [13],
but the computation of a U -statistic poses a serious scalability challenge as
it involves a summation over an exploding number of pairs (or d-tuples) as
the dataset grows in size. In the centralized (single machine) setting, this can
be addressed by appropriate subsampling methods, which have been shown to
achieve a nearly optimal balance between computational cost and statistical
accuracy [12]. Unfortunately, naive implementations in the case of a massive
distributed dataset either greatly damage the accuracy or are inefficient due to
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a lot of network communication (or disk I/O). This is due to the fact that, unlike
basic sample means, a U -statistic is not separable across the data partitions.

Our main contribution is to design and analyze distributed methods for sta-
tistical estimation and learning with U -statistics that guarantee a good trade-off
between accuracy and scalability. Our approach incorporates an occasional data
repartitioning step between parallel computing stages in order to circumvent the
limitations induced by data partitioning over the cluster nodes. The number of
repartitioning steps allows to trade-off between statistical accuracy and compu-
tational efficiency. To shed light on this phenomenon, we first study the setting
of statistical estimation, precisely quantifying the variance of estimates corre-
sponding to several strategies. Thanks to the use of Hoeffding’s decomposition
[17], our analysis reveals the role played by each component of the variance in
the effect of repartitioning. We then discuss the extension of these results to
statistical learning and design efficient and scalable stochastic gradient descent
algorithms for distributed empirical risk minimization. Finally, we carry out some
numerical experiments on pairwise estimation and learning tasks on synthetic
and real-world datasets to support our results from an empirical perspective.

The paper is structured as follows. Section 2 reviews background on U -
statistics and their use in statistical estimation and learning, and discuss the
common practices in distributed data processing. Section 3 deals with statisti-
cal tuplewise estimation: we introduce our general approach for the distributed
setting and derive (non-)asymptotic results describing its accuracy. Section 4
extends our approach to statistical tuplewise learning. We provide experiments
supporting our results in Sect. 5, and we conclude in Sect. 6. Proofs, technical
details and additional results can be found in the supplementary material.

2 Background

In this section, we first review the definition and properties of U -statistics, and
discuss some popular applications in statistical estimation and learning. We then
discuss the recent randomized methods designed to scale up tuplewise statistical
inference to large datasets stored on a single machine. Finally, we describe the
main features of cluster computing frameworks.

2.1 U-Statistics: Definition and Applications

U -statistics are the natural generalization of i.i.d. sample means to tuples of
points. We state the definition of U -statistics in their generalized form, where
points can come from K ≥ 1 independent samples. Note that we recover classic
sample mean statistics in the case where K = d1 = 1.

Definition 1 (Generalized U -statistic). Let K ≥ 1 and (d1, . . . , dK) ∈
N

∗K . For each k ∈ {1, . . . , K}, let X{1, ..., nk} = (X(k)
1 , . . . , X

(k)
nk ) be an inde-

pendent sample of size nk ≥ dk composed of i.i.d. random variables with values in
some measurable space Xk with distribution Fk(dx). Let h : X d1

1 ×· · ·×X dK

K → R
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be a measurable function, square integrable with respect to the probability dis-
tribution μ = F⊗d1

1 ⊗ · · · ⊗ F⊗dK

K . Assume w.l.o.g. that h(x(1), . . . , x(K)) is
symmetric within each block of arguments x(k) (valued in X dk

k ). The generalized
(or K-sample) U -statistic of degrees (d1, . . . , dK) with kernel H is defined as

Un(h) =
1

∏K
k=1

(
nk

dk

)
∑

I1

. . .
∑

IK

h(X(1)
I1

, X(2)
I2

, . . . , X(K)
IK

), (1)

where
∑

Ik
denotes the sum over all

(
nk

dk

)
subsets X(k)

Ik
= (X(k)

i1
, . . . , X

(k)
idk

)
related to a set Ik of dk indexes 1 ≤ i1 < . . . < idk

≤ nk and n = (n1, . . . , nK).

The U -statistic Un(h) is known to have minimum variance among all unbiased esti-
mators of the parameter μ(h) = E

[
h(X(1)

1 , . . . , X
(1)
d1

, . . . , X
(K)
1 , . . . , X

(K)
dK

)
]
.

The price to pay for this low variance is a complex dependence structure exhibited
by the terms involved in the average (1), as each data point appears in multiple
tuples. The (non)asymptotic behavior of U -statistics and U -processes (i.e., collec-
tions of U -statistics indexed by classes of kernels) can be investigated by means
of linearization techniques [17] combined with decoupling methods [21], reducing
somehow their analysis to that of basic i.i.d. averages or empirical processes. One
may refer to [19] for an account of the asymptotic theory of U -statistics, and to [23]
(Chap. 12 therein) and [21] for nonasymptotic results.

U -statistics are commonly used as point estimators for inferring certain global
properties of a probability distribution as well as in statistical hypothesis testing.
Popular examples include the (debiased) sample variance, obtained by setting
K = 1, d1 = 2 and h(x1, x2) = (x1 − x2)2, the Gini mean difference, where
K = 1, d1 = 2 and h(x1, x2) = |x1 − x2|, and Kendall’s tau rank correlation,
where K = 2, d1 = d2 = 1 and h((x1, y1), (x2, y1)) = I{(x1 −x2) · (y1 − y2) > 0}.

U -statistics also correspond to empirical risk measures in statistical learning
problems such as clustering [11], metric learning [24] and multipartite ranking
[14]. The generalization ability of minimizers of such criteria over a class H of
kernels can be derived from probabilistic upper bounds for the maximal deviation
of collections of centered U -statistics under appropriate complexity conditions
on H (e.g., finite VC dimension) [12,13]. Below, we describe the example of
multipartite ranking used in our numerical experiments (Sect. 5). We refer to
[12] for details on more learning problems involving U -statistics.

Example 2 (Multipartite Ranking). Consider items described by a random vec-
tor of features X ∈ X with associated ordinal labels Y ∈ {1, . . . , K}, where
K ≥ 2. The goal of multipartite ranking is to learn to rank items in the same
preorder as that defined by the labels, based on a training set of labeled exam-
ples. Rankings are generally defined through a scoring function s : X → R

transporting the natural order on the real line onto X . Given K independent
samples, the empirical ranking performance of s(x) is evaluated by means of the
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empirical VUS (Volume Under the ROC Surface) criterion [14]:

V̂ US(s) =
1

∏K
k=1 nk

n1∑

i1=1

. . .

nK∑

iK=1

I{s(X(1)
i1

) < . . . < s(X(K)
iK

)}, (2)

which is a K-sample U -statistic of degree (1, . . . , 1) with kernel
hs(x1, . . . , xK) = I{s(x1) < . . . < s(xK)}.

2.2 Large-Scale Tuplewise Inference with Incomplete U-Statistics

The cost related to the computation of the U -statistic (1) rapidly explodes as
the sizes of the samples increase. Precisely, the number of terms involved in the
summation is

(
n1
d1

)×· · ·×(
nK

dK

)
, which is of order O(nd1+...+dK ) when the nk’s are

all asymptotically equivalent. Whereas computing U -statistics based on subsam-
ples of smaller size would severely increase the variance of the estimation, the
notion of incomplete generalized U -statistic [6] enables to significantly mitigate
this computational problem while maintaining a good level of accuracy.

Definition 3 (Incomplete generalized U -statistic). Let B ≥ 1. The
incomplete version of the U -statistic (1) based on B terms is defined by:

ŨB(H) =
1
B

∑

I=(I1, ..., IK)∈DB

h(X(1)
I1

, . . . , X(K)
IK

) (3)

where DB is a set of cardinality B built by sampling uniformly with replacement
in the set Λ of vectors of tuples ((i(1)1 , . . . , i

(1)
d1

), . . . , (i(K)
1 , . . . , i

(K)
dK

)), where

1 ≤ i
(k)
1 < . . . < i

(k)
dk

≤ nk and 1 ≤ k ≤ K.

Note incidentally that the subsets of indices can be selected by means of other
sampling schemes [12], but sampling with replacement is often preferred due
to its simplicity. In practice, the parameter B should be picked much smaller
than the total number of tuples to reduce the computational cost. Like (1), the
quantity (3) is an unbiased estimator of μ(H) but its variance is naturally larger:

Var(ŨB(h)) =
(
1 − 1

B

)
Var(Un(h)) +

1
B

Var(h(X(1)
1 , . . . , X

(K)
dK

)). (4)

The recent work in [12] has shown that the maximal deviations between (1)
and (3) over a class of kernels H of controlled complexity decrease at a rate
of order O(1/

√
B) as B increases. An important consequence of this result is

that sampling B = O(n) terms is sufficient to preserve the learning rate of
order OP(

√
log n/n) of the minimizer of the complete risk (1), whose computa-

tion requires to average O(nd1+...+dK ) terms. In contrast, the distribution of a
complete U -statistic built from subsamples of reduced sizes n′

k drawn uniformly
at random is quite different from that of an incomplete U -statistic based on
B =

∏K
k=1

(
n′
k

dk

)
terms sampled with replacement in Λ, although they involve
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the summation of the same number of terms. Empirical minimizers of such a
complete U -statistic based on subsamples achieve a much slower learning rate of
OP(

√
log(n)/n1/(d1+...+dK)). We refer to [12] for details and additional results.

We have seen that approximating complete U -statistics by incomplete ones
is a theoretically and practically sound approach to tackle large-scale tuplewise
estimation and learning problems. However, as we shall see later, the implemen-
tation is far from straightforward when data is stored and processed in standard
distributed computing frameworks, whose key features are recalled below.

2.3 Practices in Distributed Data Processing

Data-parallelism, i.e. partitioning the data across different machines which oper-
ate in parallel, is a natural approach to store and efficiently process massive
datasets. This strategy is especially appealing when the key stages of the com-
putation to be executed can be run in parallel on each partition of the data. As
a matter of fact, many estimation and learning problems can be reduced to (a
sequence of) local computations on each machine followed by a simple aggrega-
tion step. This is the case of gradient descent-based algorithms applied to stan-
dard empirical risk minimization problems, as the objective function is nicely
separable across individual data points. Optimization algorithms operating in
the data-parallel setting have indeed been largely investigated in the machine
learning community, see [1,3,8,22] and references therein for some recent work.

Because of the prevalence of data-parallel applications in large-scale machine
learning, data analytics and other fields, the past few years have seen a sustained
development of distributed data processing frameworks designed to facilitate the
implementation and the deployment on computing clusters. Besides the semi-
nal MapReduce framework [16], which is not suitable for iterative computations
on the same data, one can mention Apache Spark [26], Apache Flink [10] and
the machine learning-oriented Petuum [25]. In these frameworks, the data is
typically first read from a distributed file system (such as HDFS, Hadoop Dis-
tributed File System) and partitioned across the memory of each machine in
the form of an appropriate distributed data structure. The user can then easily
specify a sequence of distributed computations to be performed on this data
structure (map, filter, reduce, etc.) through a simple API which hides low-level
distributed primitives (such as message passing between machines). Importantly,
these frameworks natively implement fault-tolerance (allowing efficient recovery
from node failures) in a way that is also completely transparent to the user.

While such distributed data processing frameworks come with a lot of benefits
for the user, they also restrict the type of computations that can be performed
efficiently on the data. In the rest of this paper, we investigate these limitations in
the context of tuplewise estimation and learning problems, and propose solutions
to achieve a good trade-off between accuracy and scalability.
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3 Distributed Tuplewise Statistical Estimation

In this section, we focus on the problem of tuplewise statistical estimation in the
distributed setting (an extension to statistical learning is presented in Sect. 4).
We consider a set of N ≥ 1 workers in a complete network graph (i.e., any pair
of workers can exchange messages). For convenience, we assume the presence of
a master node, which can be one of the workers and whose role is to aggregate
estimates computed by all workers.

For ease of presentation, we restrict our attention to the case of two sample U -
statistics of degree (1, 1) (K = 2 and d1 = d2 = 1), see Remark 7 in Sect. 3.3 for
extensions to the general case. We denote by Dn = {X1, . . . , Xn} the first sample
and by Qm = {Z1, . . . , Zm} the second sample (of sizes n and m respectively).
These samples are distributed across the N workers. For i ∈ {1, . . . , N}, we
denote by Ri the subset of data points held by worker i and, unless otherwise
noted, we assume for simplicity that all subsets are of equal size |Ri| = n+m

N ∈ N.
The notations RX

i and RZ
i respectively denote the subset of data points held

by worker i from Dn and Qm, with RX
i ∪ RZ

i = Ri. We denote their (possibly
random) cardinality by ni = |RX

i | and mi = |RZ
i |. Given a kernel h, the goal is

to compute a good estimate of the parameter U(h) = E[h(X1, Z1)] while meeting
some computational and communication constraints.

3.1 Naive Strategies

Before presenting our approach, we start by introducing two simple (but ineffec-
tive) strategies to compute an estimate of U(h). The first one is to compute the
complete two-sample U -statistic associated with the full samples Dn and Qm:

Un(h) =
1

nm

n∑

k=1

m∑

l=1

h(Xk, Zl), (5)

with n = (n,m). While Un(h) has the lowest variance among all unbiased esti-
mates that can be computed from (Dn,Qm), computing it is a highly undesirable
solution in the distributed setting where each worker only has access to a subset
of the dataset. Indeed, ensuring that each possible pair is seen by at least one
worker would require massive data communication over the network. Note that a
similar limitation holds for incomplete versions of (5) as defined in Definition 3.

A feasible strategy to go around this problem is for each worker to compute
the complete U -statistic associated with its local subsample Ri, and to send it
to the master node who averages all contributions. This leads to the estimate

Un,N (h) =
1
N

N∑

i=1

URi
(h) where URi

(h) =
1

nimi

∑

k∈RX
i

∑

l∈RZ
i

h(Xk, Zl). (6)

Note that if min(ni,mi) = 0, we simply set URi
(h) = 0.
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Alternatively, as the Ri’s may be large, each worker can compute an incom-
plete U -statistic ŨB,Ri

(h) with B terms instead of URi
, leading to the estimate

Ũn,N,B(h) =
1
N

N∑

i=1

ŨB,Ri
(h) where ŨB,Ri

(h) =
1
B

∑

(k,l)∈Ri,B

h(Xk, Zl), (7)

with Ri,B a set of B pairs built by sampling uniformly with replacement from
the local subsample RX

i × RZ
i .

As shown in Sect. 3.3, strategies (6) and (7) have the undesirable property
that their accuracy decreases as the number of workers N increases. This moti-
vates our proposed approach, introduced in the following section.

3.2 Proposed Approach

The naive strategies presented above are either accurate but very expensive
(requiring a lot of communication across the network), or scalable but poten-
tially inaccurate. The approach we promote here is of disarming simplicity and
aims at finding a sweet spot between these two extremes. The idea is based on
repartitioning the dataset a few times across workers (we keep the repartition-
ing scheme abstract for now and postpone the discussion of concrete choices to
subsequent sections). By alternating between parallel computation and repar-
titioning steps, one considers several estimates based on the same data points.
This allows to observe a greater diversity of pairs and thereby refine the quality
of our final estimate, at the cost of some additional communication.

Formally, let T be the number of repartitioning steps. We denote by Rt
i

the subsample of worker i after the t-th repartitioning step, and by URt
i
(h) the

complete U -statistic associated with Rt
i. At each step t ∈ {1, . . . , T}, each worker

i computes URt
i
(h) and sends it to the master node. After T steps, the master

node has access to the following estimate:

Ûn,N,T (h) =
1
T

T∑

t=1

U t
n,N (h), (8)

where U t
n,N (h) = 1

N

∑N
i=1 URt

i
(h). Similarly as before, workers may alternatively

compute incomplete U -statistics ŨB,Rt
i
(h) with B terms. The estimate is then:

Ũn,N,B,T (h) =
1
T

T∑

t=1

Ũ t
n,N,B(h), (9)

where Ũ t
n,N,B(h) = 1

N

∑N
i=1 ŨB,Rt

i
(h). These statistics, and those introduced in

Sect. 3.1 which do not rely on repartition, are summarized in Fig. 1.
Of course, the repartitioning operation is rather costly in terms of runtime

so T should be kept to a reasonably small value. We illustrate this trade-off by
the analysis presented in the next section.
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Fig. 1. Graphical summary of the statistics that we compare: with/without repartition
and with/without subsampling. Note that {(σt, πt)}Tt=1 denotes a set of T independent
couples of random permutations in Sn ×Sm.

3.3 Analysis

In this section, we analyze the statistical properties of the various estimators
introduced above. We focus here on repartitioning by proportional sampling with-
out replacement (prop-SWOR). Prop-SWOR creates partitions that contain the
same proportion of elements of each sample: specifically, it ensures that at any
step t and for any worker i, |Rt

i| = n+m
N with |Rt,X

i | = n
N and |Rt,Z

i | = m
N .

We discuss the practical implementation of this repartitioning scheme as well as
some alternative choices in Sect. 3.4.

All estimators are unbiased when repartitioning is done with prop-SWOR.
We will thus compare their variance. Our main technical tool is a linearization
technique for U -statistics known as Hoeffding’s Decomposition (see [12,13,17]).

Definition 4 (Hoeffding’s decomposition). Let h1(x) = E[h(x,Z1)], h2(z)
= E[h(X1, z)] and h0(x, z) = h(x, z) − h1(x) − h2(z) + U(h). Un(h) − U(h) can
be written as a sum of three orthogonal terms:

Un(h) − U(h) = Tn(h) + Tm(h) + Wn(h),

where Tn(h) = 1
n

∑n
k=1 h1(Xk) − U(h) and Tm(h) = 1

m

∑n
l=1 h2(Zl) − U(h) are

sums of independent r.v, while Wn(h) = 1
nm

∑n
k=1

∑m
l=1 h0(Xk, Zl) is a degen-

erate U -statistic (i.e., E[h(X1, Z1)|X1] = U(h) and E[h(X1, Z1)|Z1] = U(h)).

This decomposition is very convenient as the two terms Tn(h) and Tm(h) are
decorrelated and the analysis of Wn(h) (a degenerate U -statistic) is well docu-
mented [12,13,17]. It will allow us to decompose the variance of the estimators of
interest into single-sample components σ2

1 = Var(h1(X)) and σ2
2 = Var(h2(Z))

on the one hand, and a pairwise component σ2
0 = Var(h0(X1, Z1)) on the other

hand. Denoting σ2 = Var(h(X1, Z1)), we have σ2 = σ2
0 + σ2

1 + σ2
2 .

It is well-known that the variance of the complete U -statistic Un(h) can be
written as Var(Un(h)) = σ2

1
n + σ2

2
m + σ2

0
nm (see supplementary material for details).

Our first result gives the variance of the estimators which do not rely on a
repartitioning of the data with respect to the variance of Un(h).
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Theorem 5. If the data is distributed over workers using prop-SWOR, we have:

Var(Un,N (h)) = Var(Un(h)) + (N − 1)
σ2
0

nm
,

Var(Ũn,N,B(h)) =
(

1 − 1
B

)

Var(Un,N (h)) +
σ2

NB
.

Theorem 5 precisely quantifies the excess variance due to the distributed
setting if one does not use repartitioning. Two important observations are in
order. First, the variance increase is proportional to the number of workers N ,
which clearly defeats the purpose of distributed processing. Second, this increase
only depends on the pairwise component σ2

0 of the variance. In other words, the
average of U -statistics computed independently over the local partitions con-
tains all the information useful to estimate the single-sample contributions, but
fails to accurately estimate the pairwise contributions. The resulting estimates
thus lead to significantly larger variance when the choice of kernel and the data
distributions imply that σ2

0 is large compared to σ1
2 and/or σ2

1 . The extreme case
happens when Un(h) is a degenerate U -statistic, i.e. σ2

1 = σ2
2 = 0 and σ2

0 > 0,
which is verified for example when h(x, z) = x · z and X,Z are both centered
random variables.

We now characterize the variance of the estimators that leverage data repar-
titioning steps.

Theorem 6. If the data is distributed and repartitioned between workers using
prop-SWOR, we have:

Var(Ûn,N,T (h)) = Var(Un(h)) + (N − 1)
σ2
0

nmT
,

Var(Ũn,N,B,T (h)) = Var(Ûn,N,T (h)) − 1
TB

Var(Un,N (h)) +
σ2

NTB
.

Theorem 6 shows that the value of repartitioning arises from the fact that
the term accounting for the pairwise variance in Ûn,N,T (h) is T times lower than
that of Un,N (h). This validates the fact that repartitioning is beneficial when the
pairwise variance term is significant in front of the other terms. Interestingly,
Theorem 6 also implies that for a fixed budget of evaluated pairs, using all pairs
on each worker is always a dominant strategy over using incomplete approxima-
tions. Specifically, we can show that under the constraint NBT = nmT0/N ,
Var(Ûn,N,T0(h)) is always smaller than Var(Ũn,N,B,T (h)), see supplementary
material for details. Note that computing complete U -statistics also require fewer
repartitioning steps to evaluate the same number of pairs (i.e., T0 ≤ T ).

We conclude the analysis with a visual illustration of the variance of various
estimators with respect to the number of pairs they evaluate. We consider the
imbalanced setting where n 	 m, which is commonly encountered in applica-
tions such as imbalanced classification, bipartite ranking and anomaly detection.
In this case, it suffices that σ2

2 be small for the influence of the pairwise compo-
nent of the variance to be significant, see Fig. 2 (left). The figure also confirms
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Fig. 2. Theoretical variance as a function of the number of evaluated pairs for different
estimators under prop-SWOR, with n = 100, 000, m = 200 and N = 100.

that complete estimators dominate their incomplete counterparts. On the other
hand, when σ2

2 is not small, the variance of Un mostly originates from the rarity
of the minority sample, hence repartitioning does not provide estimates that are
significantly more accurate (see Fig. 2, right). We refer to Sect. 5 for experiments
on concrete tasks with synthetic and real data.

Remark 7 (Extension to high-order U -statistics). The extension of our analysis
to general U -statistics is straightforward and left to the reader (see [12] for
a review of the relevant technical tools). We stress the fact that the benefits
of repartitioning are even stronger for higher-order U -statistics (K > 2 and/or
larger degrees) because higher-order components of the variance are also affected.

3.4 Practical Considerations and Other Repartitioning Schemes

The analysis above assumes that repartitioning is done using prop-SWOR, which
has the advantage of exactly preserving the proportion of points from the two
samples Dn and Qm even in the event of significant imbalance in their size. How-
ever, a naive implementation of prop-SWOR requires some coordination between
workers at each repartitioning step. To avoid exchanging many messages, we pro-
pose that the workers agree at the beginning of the protocol on a numbering of
the workers, a numbering of the points in each sample, and a random seed to
use in a pseudorandom number generator. This allows the workers to imple-
ment prop-SWOR without any further coordination: at each repartitioning step,
they independently draw the same two random permutations over {1, . . . , n} and
{1, . . . , m} using the common random seed and use these permutations to assign
each point to a single worker.

Of course, other repartitioning schemes can be used instead of prop-SWOR.
A natural choice is sampling without replacement (SWOR), which does not
require any coordination between workers. However, the partition sizes gener-
ated by SWOR are random. This is a concern in the case of imbalanced samples,
where the probability that a worker i does not get any point from the minority
sample (and thus no pair to compute a local estimate) is non-negligible. For these
reasons, it is difficult to obtain exact and concise theoretical variances for the
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SWOR case, but we show in the supplementary material that the results with
SWOR should not deviate too much from those obtained with prop-SWOR. For
completeness, in the supplementary material we also analyze the case of propor-
tional sampling with replacement (prop-SWR): results are quantitatively similar,
aside from the fact that redistribution also corrects for the loss of information
that occurs because of sampling with replacement.

Finally, we note that deterministic repartitioning schemes may be used in
practice for simplicity. For instance, the repartition method in Apache Spark
relies on a deterministic shuffle which preserves the size of the partitions.

4 Extensions to Stochastic Gradient Descent for ERM

The results of Sect. 3 can be extended to statistical learning in the empirical risk
minimization framework. In such problems, given a class of kernels H, one seeks
the minimizer of (6) or (8) depending on whether repartition is used.1 Under
appropriate complexity assumptions on H (e.g., of finite VC dimension), excess
risk bounds for such minimizers can be obtained by combining our variance
analysis of Sect. 3 with the control of maximal deviations based on Bernstein-
type concentration inequalities as done in [12,13]. Due to the lack of space, we
leave the details of such analysis to the readers and focus on the more practi-
cal scenario where the ERM problem is solved by gradient-based optimization
algorithms.

4.1 Gradient-Based Empirical Minimization of U-statistics

In the setting of interest, the class of kernels to optimize over is indexed by a
real-valued parameter θ ∈ R

q representing the model. Adapting the notations
of Sect. 3, the kernel h : X1 × X2 × R

q → R then measures the performance of
a model θ ∈ R

q on a given pair, and is assumed to be convex and smooth in θ.
Empirical Risk Minimization (ERM) aims at finding θ ∈ R

q minimizing

Un(θ) =
1

nm

n∑

k=1

m∑

l=1

h(Xk, Zl; θ). (10)

The minimizer can be found by means of Gradient Descent (GD) techniques.2

Starting at iteration s = 1 from an initial model θ1 ∈ R
q and given a learning

rate γ > 0, GD consists in iterating over the following update:

θs+1 = θs − γ∇θUn(θs). (11)

Note that the gradient ∇θUn(θ) is itself a U -statistic with kernel given by ∇θH,
and its computation is very expensive in the large-scale setting. In this regime,
1 Alternatively, for scalability purposes, one may instead work with their incomplete

counterparts, namely (7) and (9) respectively.
2 When H is nonsmooth in θ, a subgradient may be used instead of the gradient.
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Stochastic Gradient Descent (SGD) is a natural alternative to GD which is
known to provide a better trade-off between the amount of computation and
the performance of the resulting model [7]. Following the discussion of Sect. 2.2,
a natural idea to implement SGD is to replace the gradient ∇θUn(θ) in (11)
by an unbiased estimate given by an incomplete U -statistic. The work of [20]
shows that SGD converges much faster than if the gradient is estimated using a
complete U -statistic based on subsamples with the same number of terms.

However, as in the case of estimation, the use of standard complete or incom-
plete U -statistics turns out to be impractical in the distributed setting. Building
upon the arguments of Sect. 3, we propose a more suitable strategy.

4.2 Repartitioning for Stochastic Gradient Descent

The approach we propose is to alternate between SGD steps using within-
partition pairs and repartitioning the data across workers. We introduce a param-
eter nr ∈ Z

+ corresponding to the number of iterations of SGD between each
redistribution of the data. For notational convenience, we let r(s) := �s/nr� so
that for any worker i, Rr(s)

i denotes its data partition at iteration s ≥ 1 of SGD.
Given a local batch size B, at each iteration s of SGD, we propose to adapt

the strategy (9) by having each worker i compute a local gradient estimate using
a set Rs

i,B of B randomly sampled pairs in its current local partition Rr(s)
i :

∇θŨB,Rr(s)
i

(θs) =
1
B

∑

(k,l)∈Rs
i,B

∇θh(Xk, Zl; θs).

This local estimate is then sent to the master node who averages all contribu-
tions, leading to the following global gradient estimate:

∇θŨn,N,B(θs) =
1
N

N∑

i=1

∇θŨB,Rr(s)
i

(θs). (12)

The master node then takes a gradient descent step as in (11) and broadcasts
the updated model θs+1 to the workers.

Following our analysis in Sect. 3, repartitioning the data allows to reduce the
variance of the gradient estimates, which is known to greatly impact the conver-
gence rate of SGD (see e.g. [9], Theorem 6.3 therein). When nr = +∞, data is
never repartitioned and the algorithm minimizes an average of local U -statistics,
leading to suboptimal performance. On the other hand, nr = 1 corresponds to
repartitioning at each iteration of SGD, which minimizes the variance but is very
costly and makes SGD pointless. We expect the sweet spot to lie between these
two extremes: the dominance of Ûn,N,T over Ũn,N,B,T established in Sect. 3.3,
combined with the common use of small batch size B in SGD, suggests that occa-
sional redistributions are sufficient to correct for the loss of information incurred
by the partitioning of data. We illustrate these trade-offs experimentally in the
next section.
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5 Numerical Results

In this section, we illustrate the importance of repartitioning for estimating and
optimizing the Area Under the ROC Curve (AUC) through a series of numeri-
cal experiments. The corresponding U -statistic is the two-sample version of the
multipartite ranking VUS introduced in Example 2 (Sect. 2.1). The first experi-
ment focuses on the estimation setting considered in Sect. 3. The second experi-
ment shows that redistributing the data across workers, as proposed in Section 4,
allows for more efficient mini-batch SGD. All experiments use prop-SWOR and
are conducted in a simulated environment.

10−3 10−2 10−1

ε

1

2

3

R
el
.
va
r. Un

Un,N

Un,N,T

Fig. 3. Relative variance estimated over 5000 runs, n = 5000, m = 50, N = 10 and
T = 4. Results are divided by the true variance of Un deduced from (13) and Theorem 5.

Fig. 4. Learning dynamics for different repartition frequencies computed over 100 runs.

Estimation Experiment. We seek to illustrate the importance of redistribution
for estimating two-sample U -statistics with the concrete example of the AUC.
The AUC is obtained by choosing the kernel h(x, z) = I{z < x}, and is widely
used as a performance measure in bipartite ranking and binary classification with
class imbalance. Recall that our results of Sect. 3.3 highlighted the key role of the
pairwise component of the variance σ2

0 being large compared to the single-sample
components. In the case of the AUC, this happens when the data distributions
are such that the expected outcome using single-sample information is far from
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the truth, e.g. in the presence of hard pairs. We illustrate this on simple discrete
distributions for which we can compute σ2

0 , σ2
1 and σ2

2 in closed form. Consider
positive points X ∈ {0, 2}, negative points Z ∈ {−1,+1} and P (X = 2) = q,
P (Z = +1) = p. It follows that:

σ2
1 = p2q(1 − q), σ2

2 = (1 − q)2p(1 − p), and σ2 = p(1 − p + pq)(1 − q). (13)

Assume that the scoring function has a small probability ε to assign a low score
to a positive instance or a large score to a negative instance. In our formal
setting, this translates into letting p = 1− q = ε for a small ε > 0, which implies
that σ2

0
σ2
1+σ2

2
= 1−ε

2ε →
ε→0

∞. We thus expect that as the true AUC U(h) = 1 − ε2

gets closer to 1, repartitioning the dataset becomes more critical to achieve good
relative precision. This is confirmed numerically, as shown in Fig. 3. Note that
in practice, settings where the AUC is very close to 1 are very common as they
correspond to well-functioning systems, such as face recognition systems.

Learning Experiment. We now turn to AUC optimization, which is the task of
learning a scoring function s : X → R that optimizes the VUS criterion (2) with
K = 2 in order to discriminate between a negative and a positive class. We learn a
linear scoring function sw,b(x) = w�x+b, and optimize a continuous and convex
surrogate of (2) based on the hinge loss. The resulting loss function to minimize
is a two-sample U-statistic with kernel gw,b(x, z) = max(0, 1 + sw,b(x) − sw,b(z))
indexed by the parameters (w, b) of the scoring function, to which we add a small
L2 regularization term of 0.05‖w‖22.

We use the shuttle dataset, a classic dataset for anomaly detection.3 It con-
tains roughly 49,000 points in dimension 9, among which only 7% (approx. 3,500)
are anomalies. A high accuracy is expected for this dataset. To monitor the gen-
eralization performance, we keep 20% of the data as our test set, corresponding
to 700 points of the minority class and approx. 9,000 points of the majority class.
The test performance is measured with complete statistics over the 6.3 million
pairs. The training set consists of the remaining data points, which we distribute
over N = 100 workers. This leads to approx. 10, 200 pairs per worker. The gra-
dient estimates are calculated following (12) with batch size B = 100. We use
an initial learning rate of 0.01 with a momentum of 0.9. As there are more than
100 million possible pairs in the training dataset, we monitor the training loss
and accuracy on a fixed subset of 4.5 × 105 randomly sampled pairs.

Figure 4 shows the evolution of the continuous loss and the true AUC on
the training and test sets along the iteration for different values of nr, from
nr = 1 (repartition at each iteration) to nr = +∞ (no repartition). The lines
are the median at each iteration over 100 runs, and the shaded area correspond
to confidence intervals for the AUC and loss value of the testing dataset. We
can clearly see the benefits of repartition: without it, the median performance
is significantly lower and the variance across runs is very large. The results
also show that occasional repartitions (e.g., every 25 iterations) are sufficient to
mitigate these issues significantly.
3 http://odds.cs.stonybrook.edu/shuttle-dataset/.

http://odds.cs.stonybrook.edu/shuttle-dataset/
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6 Future Work

We envision several further research questions on the topic of distributed tuple-
wise learning. We would like to provide a rigorous convergence rate analysis of
the general distributed SGD algorithm introduced in Sect. 4. This is a challeng-
ing task because each series of iterations executed between two repartition steps
can be seen as optimizing a slightly different objective function. It would also
be interesting to investigate settings where the workers hold sensitive data that
they do not want to share in the clear due to privacy concerns.

References

1. Arjevani, Y., Shamir, O.: Communication complexity of distributed convex learn-
ing and optimization. In: NIPS (2015)

2. Balcan, M.F., Blum, A., Fine, S., Mansour, Y.: Distributed learning, communica-
tion complexity and privacy. In: COLT (2012)

3. Bekkerman, R., Bilenko, M., Langford, J.: Scaling Up Machine Learning: Parallel
and Distributed Approaches. Cambridge University Press, Cambridge (2011)

4. Bellet, A., Liang, Y., Garakani, A.B., Balcan, M.F., Sha, F.: A distributed frank-
wolfe algorithm for communication-efficient sparse learning. In: SDM (2015)

5. Bertail, P., Tressou, J.: Incomplete generalized U-statistics for food risk assessment.
Biometrics 62(1), 66–74 (2006)

6. Blom, G.: Some properties of incomplete U -statistics. Biometrika 63(3), 573–580
(1976)

7. Bottou, L., Bousquet, O.: The Tradeoffs of large scale learning. In: NIPS (2007)
8. Boyd, S.P., Parikh, N., Chu, E., Peleato, B., Eckstein, J.: Distributed optimization

and statistical learning via the alternating direction method of multipliers. Found.
Trends Mach. Learn. 3(1), 1–122 (2011)

9. Bubeck, S.: Convex optimization: algorithms and complexity. Found. Trends Mach.
Learn. 8(3–4), 231–357 (2015)

10. Carbone, P., Katsifodimos, A., Ewen, S., Markl, V., Haridi, S., Tzoumas, K.:
Apache FlinkTM: stream and batch processing in a single engine. IEEE Data Eng.
Bull. 38(4), 28–38 (2015)
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Abstract. While deep generative networks can simulate from complex
data distributions, their utility can be hindered by limitations on the data
available for training. Specifically, the training data distribution may dif-
fer from the target sampling distribution due to sample selection bias,
or because the training data comes from a different but related distribu-
tion. We present methods to accommodate this difference via importance
weighting, which allow us to estimate a loss function with respect to a tar-
get distribution even if we cannot access that distribution directly. These
estimators, which differentially weight the contribution of data to the
loss function, offer theoretical guarantees that heuristic approaches lack,
while giving impressive empirical performance in a variety of settings.

Keywords: Importance weights · Generative networks · Bias
correction

1 Introduction

Deep generative models have important applications in many fields: we can
automatically generate illustrations for text [48]; simulate video streams [46]
or molecular fingerprints [27]; and create privacy-preserving versions of medical
time-series data [14]. Such models use a neural network to parametrize a func-
tion G(Z), which maps random noise Z to a target probability distribution P.
This is achieved by minimizing a loss function between simulations and data,
which is equivalent to learning a distribution over simulations that is indistin-
guishable from P under an appropriate two-sample test. In this paper we focus
on Generative Adversarial Networks (GANs) [2,4,17,30], which incorporate an
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adversarially learned neural network in the loss function; however the results are
also applicable to non-adversarial networks [13,31].

An interesting challenge arises when we do not have direct access to i.i.d.
samples from P. This could arise either because observations are obtained via
a biased sampling mechanism [6,49], or in a transfer learning setting where our
target distribution differs from our training distribution. As an example of the
former, a dataset of faces generated as part of a university project may contain
disproportionately many young adult faces relative to the population. As an
example of the latter, a Canadian hospital system might want to customize
simulations to its population while still leveraging a training set of patients
from the United States (which has a different statistical distribution of medical
records). In both cases, and more generally, we want to generate data from
a target distribution P but only have access to representative samples from a
modified distribution MP. We give a pictorial example of this setting in Fig. 1.

(a) Target distri-
bution P

(b) Observed dis-
tributionMP and
samples from MP

(c) Simulations
using a standard
estimator

(d) Simulations
using an impor-
tance weighted
estimator

Fig. 1. If our target distribution P differs from our observed distribution MP, using
the standard estimator will replicate MP, while an importance weighted estimator can
replicate the target P.

In some cases, we can approach this problem using existing methods. For
example, if we can reduce our problem to a conditional data-generating mech-
anism, we can employ Conditional Generative Adversarial Networks (C-GANs)
or related models [33,36], which enable conditional sampling given one or more
latent variables. However, this requires that M can be described on a low-
dimensional space, and that we can sample from our target distribution over
that latent space. Further, C-GANs rely on a large, labeled dataset of train-
ing samples with diversity over the conditioning variable (within each batch),
which becomes a challenge when conditioning on a high-dimensional variable.
For example, if we wish to modify a distribution over faces with respect to age,
gender and hair length, there may be few exemplars of 80-year-old men with
long hair with which to learn the corresponding conditional distribution.

In this paper, we propose an alternate approach based on importance sam-
pling [37]. Our method modifies an existing GAN by rescaling the observed data
distribution MP during training, or equivalently by reweighting the contribution
of each data point to the loss function. When training a GAN with samples from
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MP, the standard estimator equally weights the contribution of each point, yield-
ing an estimator of the loss with respect to MP and corresponding simulations,
as shown in Fig. 1b and Fig. 1c. This is not ideal.

In order to yield the desired estimator with respect to our target distribution
P, we modify the estimator by reweighting the loss function evaluation for each
sample. When the Radon-Nikodym derivative between the target and observed
distributions (aka the modifier function M) is known, we inversely scale each
evaluation by that derivative, yielding the finite-sample importance sampling
transform on the estimate, which we call the importance weighted estimator. This
reweighting asymptotically ensures that discrimination, and the corresponding
GAN update, occurs with respect to P instead of MP, as shown in Fig. 1a and
Fig. 1d.

This approach has multiple advantages and extensions. First, if M is known,
we can estimate importance weighted losses using robust estimators like the
median-of-means estimator, which is crucial for controlling variance in settings
where the modifier function M has a large dynamic range. Second, even when
the modifier function is only known up to a scaling factor, we can construct an
alternative estimator using self-normalized sampling [37,41] to use this partial
information, while still maintaining asymptotic correctness. Finally and impor-
tantly, for the common case of an unknown modifier function, we demonstrate
techniques for estimating it from partially labeled data.

Our contributions are as follows: (1) We provide a novel application of tra-
ditional importance weighting to deep generative models. This has connections
to many types of GAN loss functions through the theory of U-statistics. (2)
We propose several variants of our importance weighting framework for differ-
ent practical scenarios. When dealing with particularly difficult functions M , we
propose to use robust median-of-means estimation and show that it has similar
theoretical guarantees under weaker assumptions, i.e. bounded second moment.
When M is not known fully (only up to a scaling factor), we propose a self-
normalized estimator. (3) We conduct an extensive experimental evaluation of
the proposed methods on both synthetic and real-world datasets. This includes
estimating M when less than 4% of the data is labeled with user-provided
exemplars.

1.1 Related Work

Our method aims to generate samples from a distribution P, given access to
samples from MP. While to the best of our knowledge this has not been explicitly
addressed in the GAN literature, several approaches have related goals.

Domain Adaptation: Our formulation is related to but distinct from the prob-
lem of Domain Adaptation (DA). The challenge of DA is, “If I train on one
distribution and test on another, how do I maximize performance on test data?”
Critically, the test data is available and extensively used. Instead, our method
solves the problem, “Given only a training data distribution, how do I generate
from arbitrarily modified versions of it?” The former uses two datasets – one
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source and one target – while the latter uses one dataset and accommodates an
arbitrary number of targets. The methodologies are inherently different because
the information available is different.

Typical approaches to DA involve finding domain-invariant feature represen-
tations for both source and target data. Blitzer, Pereira, Ben-David, and Daume
[3,5,9] write extensively on techniques involving feature correlation and mutual
information within classification settings. Pan, Huang, and Gong [16,24,38,39]
propose methods with similar goals that find kernel representations under which
source and target distributions are close. The work of [24] and [43] address
covariate shift using kernel-based and importance-weighted techniques, but still
inhabit a different setting from our problem since they perform estimation on
specific source and target datasets.

Recently, the term DA has been used in the context of adversarially-
trained image-to-image translation and downstream transfer learning tasks
[22,25,45,50]. Typically the goal is to produce representations of the same image
in both source and target domains. Such problems begin with datasets from both
domains, whereas our setting presents only one source dataset and seeks to gen-
erate samples from a hypothetical, user-described target domain.

Inverse Probability Weighting: Inverse probability weighting (IPW), origi-
nally proposed by [23] and still in wide use in the field of survey statistics [32],
can be seen as a special case of importance sampling. IPW is a weighting scheme
used to correct for biased treatment assignment methods in survey sampling. In
such settings, the target distribution is known and the sampling distribution is
typically finite and discrete, and can easily be estimated from data.

Conditional GANs: Conditional GANs (C-GANs) are an extension of GANs
that aim to simulate from a conditional distribution, given some covariate. In
the case where our modifier function M can be represented in terms of a low-
dimensional covariate space, and if we can generate samples from the marginal
distribution of MP on that space, then we can, in theory, use a C-GAN to
generate samples from P, by conditioning on the sampled covariates. This strat-
egy suffers from two limitations. First, it assumes we can express M in terms
of a sampleable distribution on a low-dimensional covariate space. For settings
where M varies across many data dimensions or across a high-dimensional latent
embedding, this ability to sample becomes untenable. Second, learning a family
of conditional distributions is typically more difficult than learning a single joint
distribution. As we show in our experiments, C-GANs often fail if there are too
few real exemplars for a given covariate setting.

Related to C-GANs, [8] proposes conditional generation and a classifier for
assigning samples to specific discriminators. While not mentioned, such a struc-
ture could feasibly be used to preferentially sample certain modes, if a corre-
spondence between latent features and numbered modes were known.

Weighted Loss: In the context of domain adaptation for data with discrete class
labels, the strategy of reweighting the Maximum Mean Discrepancy (MMD) [18]
based on class probabilities has been proposed by [47]. This approach, however,
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differs from ours in several ways: It is limited to class imbalance problems, as
opposed to changes in continuous-valued latent features; it requires access to the
non-conforming target dataset; it provides no theoretical guarantees about the
weighted estimator; and it is not in the generative model setting.

Other Uses of Importance Weights in GANs: The language and use of
importance weights is not unique to this application, and has been used for
other purposes within the GAN context. In [19], for example, importance weights
are used to provide policy gradients for GANs in a discrete-data setting. Our
application is different in that our target distribution is not that of our data,
as it is in [19]. Instead we view our data as having been modified, and use
importance weights to simulate closer to the hypothetical and desired unmodified
distribution.

2 Problem Formulation and Technical Approach

The Problem: Given training samples from a distribution MP, our goal is to
construct (train) a generator function G(·) that produces i.i.d. samples from a
distribution P.

To train G(·), we follow the methodology of a Generative Adversarial Net-
work (GAN) [17]. In brief, a GAN consists of a pair of interacting and evolving
neural networks – a generator neural network with outputs that approximate
the desired distribution, and a discriminator neural network that distinguishes
between increasingly realistic outputs from the generator and samples from a
training dataset.

The loss function is a critical feature of the GAN discriminator, and evaluates
the closeness between the samples of the generator and those of the training
data. Designing good loss functions remains an active area of research [2,30].
One popular loss function is the Maximum Mean Discrepancy (MMD) [18], a
distributional distance that is zero if and only if the two distributions are the
same. As such, MMD can be used to prevent mode collapse [7,42] during training.

Our Approach: We are able to train a GAN to generate samples from P using
a simple reweighting modification to the MMD loss function. Reweighting forces
the loss function to apply greater penalties in areas of the support where the
target and observed distributions differ most.

Below, we formally describe the MMD loss function, and describe its impor-
tance weighted variants.

Remark 1 (Extension to other losses). While this paper focuses on the MMD
loss, we note that the above estimators can be extended to any estimator that
can be expressed as the expectation of some function with respect to one or more
distributions. This class includes losses such as squared mean difference between
two distributions, cross entropy loss, and autoencoder losses [20,34,44]. Such
losses can be estimated from data using a combination of U-statistics, V-statistics
and sample averages. Each of these statistics can be reweighted, in a manner
analogous to the treatment described above. We provide more comprehensive
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details in Table 1, and in Sect. 3.1 we evaluate all three importance weighting
techniques as applied to the standard cross entropy GAN objective.

2.1 Maximum Mean Discrepancy Between Two Distributions

The MMD projects two distributions P and Q into a reproducing kernel Hilbert
space (RKHS) H, and evaluates the maximum mean distance between the two
projections, i.e.

MMD(P, Q) := sup
f∈H

(EX∼P[f(X)] − EY ∼Q[f(Y )]) .

If we specify the kernel mean embedding μP of P as μP =
∫

k(x, ·)dP(x), where
k(·, ·) is the characteristic kernel defining the RKHS, then we can write the
square of this distance as

MMD2(P, Q) = ||μP − μQ||2H
= EX,X′∼P[k(X,X ′)] + EY,Y ′∼Q[k(Y, Y ′)]

− 2EX∼P,Y ∼Q[k(X,Y )]. (1)

In order to be a useful loss function for training a neural network, we must be able
to estimate MMD2(P, Q) from data, and compute gradients of this estimate with
respect to the network parameters. Let {xi}n be a sample {X1 = x1, . . . , Xn =
xn} : Xi ∼ P, and {yi}m be a sample {Y1 = y1, . . . , Ym = ym} : Yi ∼ Q. We can
construct an unbiased estimator M̂MD2(P, Q) of MMD2(P, Q) [18] using these
samples as

M̂MD2(P, Q) =
1

n(n − 1)

∑n

i�=j
k(xi, xj)

+
1

m(m − 1)

∑m

i�=j
k(yi, yj)

− 2
nm

∑n

i=1

∑m

j=1
k(xi, yj). (2)

2.2 Importance Weighted Estimator for Known M

We begin with the case where M (which relates the distribution of the samples
and the desired distribution; formally the Radon-Nikodym derivative) is known.
Here, the reweighting of our loss function can be framed as an importance sam-
pling problem: we want to estimate MMD2(P, Q), which is in terms of the target
distribution P and the distribution Q implied by our generator, but we have
samples from the modified MP. Importance sampling [37] provides a method for
constructing an estimator for the expectation of a function φ(X) with respect
to a distribution P, by taking an appropriately weighted sum of evaluations of
φ at values sampled from a different distribution. We can therefore modify the
estimator in (2) by weighting each term in the estimator involving data point
xi using the likelihood ratio P(xi)/M(xi)P(xi) = 1/M(xi), yielding an unbiased
importance weighted estimator that takes the form
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M̂MD2
IW (P, Q) =

1
n(n − 1)

∑n

i�=j

k(xi, xj)
M(xi)M(xj)

+
1

m(m − 1)

∑m

i�=j
k(yi, yj)

− 2
nm

∑n

i=1

∑m

j=1

k(xi, yj)
M(xi)

. (3)

While importance weighting using the likelihood ratio yields an unbiased
estimator (3), the estimator may not concentrate well because the weights
{1/M(xi)}n may be large or even unbounded. We now provide a concentra-
tion bound for the estimator in (3) for the case where weights {1/M(xi)}n are
upper-bounded by some maximum value.

Theorem 1. Let M̂MD2
IW (P, Q) be the unbiased, importance weighted estimator

for MMD2(P, Q) defined in (3), given m i.i.d samples from MP and Q, and
maximum kernel value K. Further assume that 1 ≤ 1/M(x) ≤ W for all x ∈ X .
Then

P

(
M̂MD2

IW (P, Q) − MMD2(P, Q) > t
)

≤ C,

where C = exp((−2t2m2)/(K2(W + 1)4))
m2 := �m/2�

These guarantees are based on estimator guarantees in [18], which in turn
build on classical results by Hoeffding [20,21]. We defer the proof of this theorem
to the extended version of this work [12].

2.3 Robust Importance Weighted Estimator for Known M

Theorem 1 is sufficient to guarantee good concentration of our importance
weighted estimator only when 1/M(x) is uniformly bounded by some constant
W , which is not too large. Many class imbalance problems fall into this set-
ting. However, 1/M(x) may be unbounded in practice. Therefore, we now intro-
duce a different estimator, which enjoys good concentration even when only
EX∼MP[1/M(X)2] is bounded, while 1/M(x) may be unbounded for many val-
ues of x.

The estimator is based on the classical idea of median of means [1,26,29,35]1.
Given m samples from MP and Q, we divide these samples uniformly at random
into k equal sized groups, indexed {(1), ..., (k)}. Let M̂MD2

IW (P, Q)(i) be the
value obtained when the estimator in (3) is applied on the i-th group of samples.
Then our median of means based estimator is given by

M̂MD2
MIW (P, Q) = median

{
M̂MD2

IW (P, Q)(1), . . . , M̂MD2
IW (P, Q)(k)

}
. (4)

1 [29] appeared concurrently and contains a different approach for the unweighted
estimator. Comparisons are left for future work.
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Theorem 2. Let M̂MD2
MIW (P, Q) be the asymptotically unbiased median of

means estimator defined in (4) using k = mt2/(8K2σ2) groups. Further assume
that n=m and let W2 = EX∼MP[1/M(X)2] be bounded. Then

P

(
|M̂MD2

MIW (P, Q) − MMD2(P, Q)| > t
)

≤ C,

where C = exp((−mt2)/(64K2σ2))

σ2 = O
(
W 2

2 + MMD4(P, Q)
)
.

We defer the proof of this theorem to the extended version of this work [12].
Note that the confidence bound in Theorem 2 depends on the term W2 being
bounded. This is the second moment of 1/M(X) where X ∼ MP. Thus, unlike in
Theorem 1, this confidence bound may still hold even if 1/M(x) is not uniformly
bounded. When 1/M(X) is heavy-tailed with finite variance, e.g. Pareto (α > 2)
or log-normal, then Theorem 2 is valid but Theorem 1 does not apply.

In addition to increased robustness, the median of means MMD estimator is
more computationally efficient: since calculating M̂MD2

IW (P, Q) scales quadrat-
ically in the batch size, using the median of means estimator introduces a speed-
up that is linear in the number of groups.

2.4 Self-normalized Importance Weights for Unknown M

To specify M , we must know the forms of our target and observed distributions
along any marginals where the two differ. In some settings this is available: con-
sider for example a class rebalancing setting where we have class labels and a
desired class ratio, and can estimate the observed class ratio from data. This,
however, may be infeasible if M is continuous and/or varies over several dimen-
sions, particularly if data are arriving in a streaming manner. In such a setting
it may be easier to specify a thinning function T that is proportional to M , i.e.
MP = TP

Z for some unknown Z, than to estimate M directly. This is because
T can be directly obtained from an estimate of how much a given location is
underestimated, without any knowledge of the underlying distribution.

This setting—where the 1/M weights used in Sect. 2.2 are only known up
to a normalizing constant—motivates the use of a self-normalized importance
sampling scheme, where the weights wi ∝ P(xi)

M(xi)P(xi)
= Z

T (xi)
are normalized

to sum to one [37,41]. For example, by letting wi = 1
T (xi)

, the resulting self-
normalized estimator for the squared MMD takes the form

M̂MD2
IW (P, Q) =

∑n
i�=j wiwjk(xi, xj)

∑n
i�=j wiwj

+
∑m

i�=j

k(yi, yj)
m(m − 1)

− 2

∑n
i=1

∑m
j=1 wik(xi, yj)

m
∑n

i=1 wi
. (5)
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While use of self-normalized weights means this self-normalized estimator is
biased, it is asymptotically unbiased, with the bias decreasing at a rate of 1/n
[28]. Although we have motivated self-normalized weights out of necessity, in
practice they often trade off bias for reduced variance, making them preferable
in some practical applications [37].

More generally, in addition to not knowing the normalizing constant Z, we
might also not know the thinning function T . For example, T might vary along
some latent dimension—perhaps we want to have more images of people fitting
a certain aesthetic, rather than corresponding to a certain observed covariate or
class. In this setting, a practitioner may be able to estimate T (xi), or equiva-
lently wi, for a small number of training points xi, by considering how much those
training points are under- or over-represented. Continuous-valued latent prefer-
ences can therefore be expressed by applying higher weights to points deemed
more appealing. From here, we can use function estimation techniques, such as
neural network regression, to estimate T from a small number of labeled data
points.

2.5 Approximate Importance Weighting by Data Duplication

In the importance weighting scheme described above, each data point is assigned
a weight 1/M(xi). We can obtain an approximation to this method by including
�1/M(xi)	 duplicates of data point xi in our training set. We refer to this app-
roach as importance duplication. Importance duplication obviously introduces
discretization errors, and if our estimator is a U-statistic it will introduce bias
(e.g. in the MMD example, if two or more copies of the data point xi appear in
a minibatch, then k(xi, xi) will appear in the first term of (2)). However, as we
show in the experimental setting, even though this approach lacks theoretical
guarantees it provides generally good performance.

Data duplication can be done as a pre-processing step, making it an appealing
choice if we have an existing GAN implementation that we do not wish to modify.
In other settings, it is less appealing, since duplicating data adds an additional
step and increases the amount of data the algorithm must process. Further, if
we were to use this approximation in a setting where M is unknown, we would
have to perform this data duplication on the fly as our estimate of M changes.

3 Evaluation

In this section, we show that our estimators, in conjunction with an appropriate
generator network, allow us to generate simulations that are close in distribution
to our target distribution, even when we only have access to this distribution
via a biased sampling mechanism. Further, we show that our method performs
comparably with, or better than, conditional GAN baselines.

Most of our weighted GAN models are based on the MMD-GAN of [30],
replacing the original MMD loss with either our importance weighted loss
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Table 1. Constructing importance weighted estimators for losses involving U-statistics,
V-statistics and sample averages. Here, U is the set of all r-tuples of numbers from 1
to n without repeats, and V is the set of r-tuples allowing repeats. Below, let Xu,∗ =
Xu1 , ... , Xur .

̂D(P,Q) ̂DIW (P,Q) ̂DSNIW (P,Q)

U-statistic
1

nPr

∑

u∈U
g(Xu,∗)

1
nPr

∑

u∈U

g(Xu,∗)
M(Xu1 )···M(Xur )

∑

u∈U wu1 ···wur g(Xu,∗)
∑

u∈U wu1 ···wur

V-statistic
1

nr

∑

v∈V
g(Xv,∗)

1

nr

∑

v∈V

g(Xv,∗)
M(Xv1 )···M(Xvr )

∑

v∈V wv1 ···wvr g(Xv,∗)
∑n

vr=1 wv1 ···wvr

Average
1

nm

n
∑

i=1

m
∑

j=1

f(Xi, Yj)
1

nm

n
∑

i=1

m
∑

j=1

f(Xi, Yj)

M(Xi)

∑n
i=1 wi

∑m
j=1 f(Xi, Yj)

m
∑n

i=1 wi

M̂MD2
IW (P, Q) (IW-MMD), our median of means loss M̂MD2

MIW (P, Q) (MIW-
MMD), or our self-normalized loss M̂MD2

SNIW (P, Q) (SNIW-MMD). We also
use a standard MMD loss with an importance duplicated dataset (ID-MMD).
Other losses used in [30] are also appropriately weighted, following the form in
Table 1. In the synthetic data examples of Sect. 3.1, the kernel is a fixed radial
basis function, while in all other sections it is adversarially trained using a dis-
criminator network as in [30].

To demonstrate that our method is applicable to other losses, in Sect. 3.1
we also create models that use the standard cross entropy GAN loss, replacing
this loss with either an importance weighted estimator (IW-CE), a median of
means estimator (MIW-CE) or a self-normalized estimator (SNIW-CE). We also
combine a standard cross entropy loss with an importance duplicated dataset
(ID-CE). These models used a two-layer feedforward neural network with ten
nodes per layer.

Where appropriate, we compare against a conditional GAN (C-GAN). If M is
known exactly and expressible in terms of a lower-dimensional covariate space, a
conditional GAN (C-GAN) offers an alternative method to sample from P: learn
the appropriate conditional distributions given each covariate value, sample new
covariate values, and then sample from P using each conditional distribution.

3.1 Can GANs with Importance Weighted Estimators Recover
Target Distributions, Given M?

To evaluate whether using importance weighted estimators can recover target
distributions, we consider a synthetically generated distribution that has been
manipulated along a latent dimension. Under the target distribution, a latent
representation θi of each data point lives in a ten-dimensional space, with each
dimension independently Uniform(0,1). The observed data points xi are then
obtained as θTi F , where Fij ∼ N (0, 1) represents a fixed mapping between the
latent space and D-dimensional observation space. In the training data, the first
dimension of θi has distribution p(θ) = 2θ, 0 < θ ≤ 1. We assume that the
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modifying function M(xi) = 2θi,1 is observed, but that the remaining latent
dimensions are unobserved.

In our experiments, we generate samples from the target distribution using
each of the methods described above, and include weighted versions of the cross
entropy GAN to demonstrate that importance weighting can be generalized to
other losses.

To compare methods, we report the empirically estimated KL divergence
between the target and generated samples in Table 2. Similar results using
squared MMD and energy distance are shown in the extended version of this
work [12]. For varying real dimensions D, importance weighted methods outper-
form C-GAN under a variety of measures.

In some instances C-GAN performs well in two dimensions, but deteriorates
quickly as the problem becomes more challenging with higher dimensions. We
also note that many runs of C-GAN either ran into numerical issues or diverged;
in these cases we report the best score among runs, before training failure.

Table 2. Estimated KL divergence between generated and target samples (mean ±
standard deviation over 20 runs).

Model 2D 4D 10D

IW-CE 0.1768 ± 0.0635 0.4934 ± 0.1238 2.7945 ± 0.5966

MIW-CE 0.3265 ± 0.1071 0.6251 ± 0.1343 3.3093 ± 0.7179

SNIW-CE 0.0925 ± 0.0272 0.3864 ± 0.1478 2.3060 ± 0.6915

ID-CE 0.1526 ± 0.0332 0.3444 ± 0.0766 1.4128 ± 0.3288

IW-MMD 0.0343 ± 0.0230 0.0037 ± 0.0489 0.5133 ± 0.1718

MIW-MMD 0.2698 ± 0.0618 0.0939 ± 0.0522 0.8501 ± 0.3271

SNIW-MMD 0.0451 ± 0.0132 0.1435 ± 0.0377 0.6623 ± 0.0918

C-GAN 0.0879 ± 0.0405 0.3108 ± 0.0982 6.9016 ± 2.8406

While the above experiment can be evaluated numerically and provide good
results for thinning on a continuous-valued variable, it is difficult to visualize the
outcome. In order to better visualize whether the target distribution is correctly
achieved, we also run experiments with explicit and easily measurable class dis-
tributions. In Fig. 2, we show a class rebalancing problem on MNIST digits,
where an initial uneven distribution between three classes can be accurately
rebalanced. In the extended version of this work [12], we also show good per-
formance modifying a balanced distribution to specific boosted levels. Together,
these experiments provide evidence that importance weighting controls the sim-
ulated distribution in the desired way.
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(a) Source, uneven distri-
bution of 0s, 1s, and 5s

(b) Source (left), simula-
tion (right); target of
1/3-1/3-1/3

(c) Simulations,
balanced distribution

Fig. 2. Importance weights are used to accurately rebalance an uneven class
distribution.

3.2 In a High-Dimensional Image Setting, How Does Importance
Weighting Compare with Conditional Generation?

Next we evaluate performance of importance weighted MMD on high-
dimensional image generation. In this section we address two questions: Can
our estimators generate simulations from P in such a setting, and how do the
resulting images compare with those obtained using a C-GAN? To do so, we
evaluate several generative models on the Yearbook dataset [15], which contains
over 37,000 high school yearbook photos across over 100 years and demonstrates
evolving styles and demographics. The goal is to produce images uniformly across
each half decade. Each GAN, however, is trained on the original dataset, which
contains many more photos from recent decades.

Since we have specified M in terms of a single covariate (time), we can
compare with C-GANs. For the C-GAN, we use a conditional version of the
standard DCGAN architecture (C-DCGAN) [40].

Figure 3 shows generated images from each network. All networks were
trained until convergence. The images show a diversity across hairstyles, demo-
graphics and facial expressions, indicating the successful temporal rebalancing.
Even while importance duplication introduces approximations and lacks the the-
oretical guarantees of the other two methods, all three importance-based meth-
ods achieve comparable quality. Since some covariates have fewer than 65 images,
C-DCGAN cannot learn the conditional distributions, and is unstable across a
variety of training parameters. Implementation details and additional experi-
ments are shown in the extended version of this work [12].

3.3 When M Is Unknown, But Can Be Estimated Up to a
Normalizing Constant on a Subset of Data, Are We Able to
Sample from Our Target Distribution?

In many settings, especially those with high-dimensional latent features, we
will not know the functional form of M , or even the corresponding thinning
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(a) Conditional DCGAN (b) ID-MMD

(c) Importance Weighting (IW-MMD) (d) Median of Means (MIW-MMD)

Fig. 3. Example generated images for all example networks, Yearbook dataset [15].
Target distribution is uniform across half-decades, while the training set is unbalanced.

function T . We would still, however, like to be able to express a preference for
certain areas of the latent space. To do so, we propose labeling a small subset
of data using weights that correspond to preference. To expand those weights
to the entire dataset, we train a neural network called the estimated weight-
ing function. This weighting function takes encoded images as input, and out-
puts continuous-valued weights. Since this function exists in a high-dimensional
space that changes as the encoder is updated, and since we do not know the full
observed distribution on this space, we are in a setting unsuitable for conditional
methods, and therefore use self-normalized estimators (SNIW-MMD).

We evaluate using a collection of sevens from the MNIST dataset, where
the goal is to generate more European-style sevens with horizontal bars. Out of
5915 images, 200 were manually labeled with a weight (reciprocal of a thinning
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(a) Data (b) Generator (c) KS distance

Fig. 4. Partial labeling and an importance weighted estimator boost the presence of
sevens with horizontal bars. In a and b, samples are sorted by predicted weight, and in
c, the empirical CDFs of data, generated, and importance duplicated draws, are shown,
where the latter serves as a theoretical target. The generated distribution is close in
distance to the target.

function value), where sevens with no horizontal bar were assigned a 1, and
sevens with horizontal bars were assigned weights between 2 and 9 based on the
width of the bar.

Figure 4a shows 64 real images, sorted in terms of their predicted weights –
note that the majority have no horizontal bar. Figure 4b shows 64 generated sim-
ulations, sorted in the same manner, clearly showing an increase in the number
of horizontal-bar sevens.

To test the quantitative performance, we display and compare the empirical
CDFs of weights from simulations, data, and importance duplicated data. For
example, if a batch of data [A,B,C] has weights [1, 3, 2], this implies that we
expected three times as many B-like points and two times as many C-like points
as A-like points. A simulator that achieves this target produces simulations like
[A,B,B,B,C,C] with weights [1, 3, 3, 3, 2, 2], equivalent to an importance dupli-
cation of data weights. Using importance duplicated weights as a theoretical
target, we measure our model’s performance by computing the Kolmogorov-
Smirnov (KS) distance between CDFs of simulated and importance duplicated
weights. Figure 4c shows a small distributional distance between simulations and
their theoretical target, with dKS = 0.03, p = 0.457.

4 Conclusions and Future Work

We present three estimators for the MMD (and a wide class of other loss func-
tions) between target distribution P and the distribution Q implied by our gen-
erator. These estimators can be used to train a GAN to simulate from the target
distribution P, given samples from a modified distribution MP. We present solu-
tions for when M is potentially unbounded, is unknown, or is known only up to
a scaling factor.

We demonstrate that importance weighted estimators allow deep generative
models to match target distributions for common and challenging cases with



Importance Weighted Generative Networks 263

continuous-valued, multivariate latent features. This method avoids heuristics
while providing good empirical performance and theoretical guarantees.

Though the median of means estimator offers a more robust estimate of the
MMD, we may still experience high variance in our estimates, for example if we
rarely see data points from a class we want to boost. An interesting future line
of research is exploring how variance-reduction techniques [11] or adaptive batch
sizes [10] could be used to overcome this problem.
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Abstract. In this paper, we first identify activation shift, a simple but
remarkable phenomenon in a neural network in which the preactivation
value of a neuron has non-zero mean that depends on the angle between
the weight vector of the neuron and the mean of the activation vector in
the previous layer. We then propose linearly constrained weights (LCW)
to reduce the activation shift in both fully connected and convolutional
layers. The impact of reducing the activation shift in a neural network
is studied from the perspective of how the variance of variables in the
network changes through layer operations in both forward and back-
ward chains. We also discuss its relationship to the vanishing gradient
problem. Experimental results show that LCW enables a deep feedfor-
ward network with sigmoid activation functions to be trained efficiently
by resolving the vanishing gradient problem. Moreover, combined with
batch normalization, LCW improves generalization performance of both
feedforward and convolutional networks.

Keywords: Artificial neural networks · Feedforward neural networks ·
Vanishing gradient problem · Analysis of variance

1 Introduction

Neural networks with a single hidden layer have been shown to be universal
approximators [9,12]. However, an exponential number of neurons may be nec-
essary to approximate complex functions. One solution to this problem is to use
more hidden layers. The representation power of a network increases exponen-
tially with the addition of layers [2,22]. Various techniques have been proposed
for training deep nets, that is, neural networks with many hidden layers, such
as layer-wise pretraining [8], rectified linear units [13,17], residual structures [6],
and normalization layers [5,11].

In this paper, we first identify the activation shift that arises in the calculation
of the preactivation value of a neuron. The preactivation value is calculated as
the dot product of the weight vector of a neuron and an activation vector in the
previous layer. In a neural network, an activation vector in a layer can be viewed
as a random vector whose distribution is determined by the input distribution
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and the weights in the preceding layers. The preactivation of a neuron then
has a non-zero mean depending on the angle between the weight vector of the
neuron and the mean of the activation vector in the previous layer. The angles
are generally different according to the neuron, indicating that neurons have
distinct mean values, even those in the same layer.

We propose the use of so-called linearly constrained weights (LCW) to resolve
the activation shift in both fully connected and convolutional layers. An LCW is
a weight vector subject to the constraint that the sum of its elements is zero. We
investigate the impact of resolving activation shift in a neural network from the
perspective of how the variance of variables in a neural network changes accord-
ing to layer operations in both forward and backward directions. Interestingly, in
a fully connected layer in which the activation shift has been resolved by LCW,
the variance is amplified by the same rate in both forward and backward chains.
In contrast, the variance is more amplified in the forward chain than in the back-
ward chain when activation shift occurs in the layer. This asymmetric character-
istic is suggested to be a cause of the vanishing gradient in feedforward networks
with sigmoid activation functions. We experimentally demonstrate that we can
successfully train a deep feedforward network with sigmoid activation functions
by reducing the activation shift using LCW. Moreover, our experiments sug-
gest that LCW improves generalization performance of both feedforward and
convolutional networks when combined with batch normalization (BN) [11].

In Sect. 2, we give a general definition of activation shift in a neural network.
In Sect. 3, we propose LCW as an approach to reduce activation shift and present
a technique to efficiently train a network with LCW. In Sect. 4 we study the
impact of removing activation shift in a neural network from the perspective
of variance analysis and then discuss its relationship to the vanishing gradient
problem. In Sect. 5, we review related work. We present empirical results in
Sect. 6 and conclude the study in Sect. 7.

2 Activation Shift

We consider a standard multilayer perceptron (MLP). For simplicity, the number
of neurons m is assumed to be the same in all layers. The activation vector in
layer l is denoted by al =

(
al
1, . . . , a

l
m

)� ∈ R
m. The input vector to the network

is denoted by a0. The weight vector of the i-th neuron in layer l is denoted
by wl

i ∈ R
m. It is generally assumed that ‖wl

i‖ > 0. The activation of the i-th
neuron in layer l is given by al

i = f
(
zl

i

)
and zl

i = wl
i · al−1 + bl

i, where f is a
nonlinear activation function, bl

i ∈ R is the bias term, and zl
i ∈ R denotes the

preactivation value. Variables zl
i and al

i are regarded as random variables whose
distributions are determined by the distribution of the input vector a0, given
the weight vectors and the bias terms in the preceding layers.

We introduce activation shift using the simple example shown in Fig. 1.
Figure 1(a) is a heat map representation of a weight matrix W l ∈ R

100×100,
whose i-th row vector represents wl

i. In Fig. 1(a), each element of W l is inde-
pendently drawn from a uniform random distribution in the range (−1, 1).
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(a) Weight W l. (b) Activation Al−1. (c) Preactivation Zl.

Fig. 1. Activation shift causes a horizontal stripe pattern in preactivation Z l =
W lAl−1, in which each element of W l and Al−1 is randomly generated from the
range (−1, 1) and (0, 1), respectively.

Figure 1(b) shows an activation matrix Al−1 ∈ R
100×100, whose j-th column

vector represents the activation vector corresponding to the j-th sample in a
minibatch. Each element of Al−1 is randomly sampled from the range (0, 1).
We multiply W l and Al−1 to obtain the preactivation matrix Zl, whose i-th
row vector represents preactivation values of the i-th neuron in layer l, which is
shown in Fig. 1(c). It is assumed that bias terms are all zero. Unexpectedly, a
horizontal stripe pattern appears in the heat map of Zl even though both W l

and Al−1 are randomly generated. This pattern is attributed to the activation
shift, which is defined as follows:

Definition 1. Pγ is an m-dimensional probability distribution whose expected
value is γ1m, where γ ∈ R and 1m is an m-dimensional vector whose elements
are all one.

Proposition 1. Assume that the activation vector al−1 follows Pγ . Given a
weight vector wl

i ∈ R
m such that ‖wl

i‖ > 0, the expected value of wl
i · al−1

is |γ|√m‖wl
i‖ cos θl

i, where θl
i is the angle between wl

i and 1m.

Proofs of all propositions are provided in Appendix A in the supplementary
material.

Definition 2. From Proposition 1, the expected value of wl
i ·al−1 depends on θl

i

as long as γ �= 0. The distribution of wl
i · al−1 is then biased depending on θl

i;
this is called activation shift.

In Fig. 1, each column vector of Al−1 follows Pγ with γ = 0.5. Therefore, the
i-th row of Zl is biased according to the angle between wl

i and 1m. We can
generalize Proposition 1 for any m-dimensional distribution P̂ instead of Pγ by
stating that the distribution of wl · âl−1 is biased according to θ̂l

i unless ‖µ̂‖ = 0
as follows:

Proposition 2. Assume that the activation vector âl−1 follows an m-
dimensional probability distribution P̂ whose expected value is µ̂ ∈ R

m.
Given wl

i ∈ R
m such that ‖wl

i‖ > 0, it follows that E(wl
i·âl−1) = ‖wl

i‖ ‖µ̂‖ cos θ̂l
i

if ‖µ̂‖ > 0; otherwise, E(wl
i · âl−1) = 0, where θ̂l

i is the angle between wl
i and µ̂.
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From Proposition 2, if al−1 follows P̂ with the mean vector µ̂ such that ‖µ̂‖ >
0, the preactivation zl

i is biased according to the angle between wl
i and µ̂.

Note that differences in E(zl
i) are not resolved by simply introducing bias

terms bl
i, because bl

i are optimized to decrease the training loss function and
not to absorb the differences between E(zl

i) during the network training. Our
experiments suggest that pure MLPs with several hidden layers are not trainable
even though they incorporate bias terms. We also tried to initialize bl

i to absorb
the difference in E(zl

i) at the beginning of the training, though it was unable to
train the network, especially when the network has many hidden layers.

3 Linearly Constrained Weights

There are two approaches to reducing activation shift in a neural network. The
first one is to somehow make the expected value of the activation of each neu-
ron close to zero, because activation shift does not occur if ‖µ̂‖ = 0 from
Proposition 2. The second one is to somehow regularize the angle between wl

i

and E
(
al−1

)
. In this section, we propose a method to reduce activation shift in

a neural network using the latter approach. We introduce WLC as follows:

Definition 3. WLC is a subspace in R
m defined by

WLC := {w ∈ R
m | w · 1m = 0} .

We call weight vector wl
i in WLC the linearly constrained weights (LCWs).

The following holds for w ∈ WLC:

Proposition 3. Assume that the activation vector al−1 follows Pγ . Given wl
i ∈

WLC such that ‖wl
i‖ > 0, the expected value of wl

i · al−1 is zero.

Generally, activation vectors in a network do not follow Pγ , and consequently,
LCW cannot resolve the activation shift perfectly. However, we experimentally
observed that the activation vector approximately follows Pγ in eachd layer.
Figure 2(a) shows boxplot summaries of al

i in a 10-layer sigmoid MLP with
LCW, in which the weights of the network were initialized using the method
that will be explained in Sect. 4. We used a minibatch of samples in the CIFAR-
10 dataset [14] to evaluate the distribution of al

i. In the figure, the 1%, 25%, 50%,
75%, and 99% quantiles are displayed as whiskers or boxes. We see that al

i dis-
tributes around 0.5 in each neuron, which suggests that al ∼ Pγ approximately
holds in every layer. We also observed the distribution of al

i after 10 epochs of
training, which are shown in Fig. 2(b). We see that al are less likely follow Pγ ,
but al

i takes various values in each neuron. In contrast, if we do not apply LCW
to the network, the variance of al

i rapidly shrinks through layers immediately
after the initialization as shown in Fig. 3, in which weights are initialized by the
method in [3]. Experimental results in Sect. 6 suggest that we can train MLPs
with several dozens of layers very efficiently by applying the LCW. The effect of
resolving the activation shift by applying LCW will be theoretically analyzed in
Sect. 4.
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(a) Immediately after the initialization.

(b) After 10 epochs training.

Fig. 2. Boxplot summaries of al
i on the first 20 neurons in layers 1, 5, and 9 of the

10-layer sigmoid MLP with LCW.

It is possible to force al to follow Pγ by applying BN to preactivation zl
i.

The distribution of zl
i is then normalized to have zero-mean and unit variance,

and consequently, al
i = f(zl

i) are more likely to follow the same distribution,
indicating that al ∼ Pγ holds. As will be discussed in Sect. 5, BN itself also has
an effect of reducing activation shift. However, our experimental results suggest
that we can train deep networks more smoothly by combining LCW and BN,
which will be shown in Sect. 6.

3.1 Learning LCW via Reparameterization

A straightforward way to train a neural network with LCW is to solve a con-
strained optimization problem, in which a loss function is minimized under the
condition that each weight vector is included in WLC. Although several methods
are available to solve such constrained problems, for example, the gradient pro-
jection method [15], it might be less efficient to solve a constrained optimization
problem than to solve an unconstrained one. We propose a reparameterization
technique that enables us to train a neural network with LCW using a solver for
unconstrained optimization. The constraints on the weight vectors are embedded
into the structure of the neural network by the following reparameterization.

Reparameterization: Let wl
i ∈ R

m be a weight vector in a neural network. To
apply LCW to wl

i, we reparameterize wl
i using vector vl

i ∈ R
m−1 as wl

i = Bmvl
i,
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Fig. 3. Boxplot summaries of al
i on neurons in layers 1, 5, and 9 of the 10-layer sigmoid

MLP without LCW, in which weights are initialized by the method in [3].

where Bm ∈ R
m×(m−1) is an orthonormal basis of WLC, written as a matrix of

column vectors.
It is obvious that wl

i = Bmvl
i ∈ WLC. We then solve the optimization prob-

lem in which vl
i is considered as a new variable in place of wl

i. This optimization
problem is unconstrained because vl

i ∈ R
m−1. We can search for wl

i ∈ WLC

by exploring vl
i ∈ R

m−1. The calculation of an orthonormal basis of WLC is
described in Appendix B in the supplementary material. Note that the pro-
posed reparameterization can be implemented easily and efficiently using modern
frameworks for deep learning based on GPUs.

3.2 LCW for Convolutional Layers

We consider a convolutional layer with Cout convolutional kernels. The size of
each kernel is Cin × Kh × Kw, where Cin, Kh, and Kw are the number of the
input channels, height of the kernel, and width of the kernel, respectively. The
layer outputs Cout channels of feature maps. In a convolutional layer, activation
shift occurs at the channel level, that is, the preactivation has different mean
value in each output channel depending on the kernel of the channel. We propose
a simple extension of LCW for reducing the activation shift in convolutional
layers by introducing a subspace Wkernel

LC in R
Cin×Kh×Kw defined as follows:

Wkernel
LC :=

⎧
⎨

⎩
w ∈ R

Cin×Kh×Kw

∣
∣
∣
∣
∣

Cin∑

i=1

Kh∑

j=1

Kw∑

k=1

wi,j,k = 0

⎫
⎬

⎭
,

where wi,j,k indicates the (i, j, k)-th element of w. Subspace Wkernel
LC is a straight-

forward extension of WLC to the kernel space. To apply LCW to a convolutional
layer, we restrict each kernel of the layer in Wkernel

LC . It is possible to apply
the reparameterization trick described in the previous subsection to LCW for
convolutional layers. We can reparameterize the kernel using an orthonormal
basis of Wkernel

LC in which the kernel in R
Cin×Kh×Kw is unrolled into a vector of

length CinKhKw.
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4 Variance Analysis

In this section, we first investigate the effect of removing activation shift in a
neural network based on an analysis of how the variance of variables in the net-
work changes through layer operations both in forward and backward directions.
Then, we discuss its relationship to the vanishing gradient problem.

4.1 Variance Analysis of a Fully Connected Layer

The forward calculation of a fully connected layer is zl = W lal−1 + bl,
where W l = (wl

1, . . . ,w
l
m)�. We express the j-th column vector of W l as w̃l

j . If
we denote the gradient of a loss function with respect to parameter v as ∇v, the
backward calculation regarding al−1 is ∇al−1 = (W l)�∇zl . The following propo-
sition holds for the forward computation, in which Im is the identity matrix of
order m×m, V indicates the variance, and Cov denotes the variance-covariance
matrix.

Proposition 4. Assuming that wl
i ∈ WLC, E(al−1) = γal−11m with γal−1 ∈ R,

Cov(al−1) = σ2
al−1Im with σal−1 ∈ R, and bl = 0, it holds that E(zl

i) = 0
and V (zl

i) = σ2
al−1‖wl

i‖2.1
We also have the following proposition for the backward computation.

Proposition 5. Assuming that E(∇z l) = 0 and Cov(∇z l) = σ2
∇

z l
Im

with σ∇
z l

∈ R, it holds that E(∇al−1
j

) = 0 and V (∇al−1
j

) = σ2
∇

z l
‖w̃l

j‖2.
For simplicity, we assume that ∀i, ‖wl

i‖2 = ηl and ∀j, ‖w̃l
j‖2 = ξl. Proposition 4

then indicates that, in the forward computation, V (zl
i), the variance of the out-

put, becomes ηl times larger than that of the input, V (al−1
i ). Proposition 5

indicates that, in the backward chain, V (∇al−1
i

), the variance of the output,
becomes ξl times larger than that of the input, V (∇zl

i
). If W l is a square matrix,

then ηl = ξl (see Appendix A for proof), meaning that the variance is amplified
at the same rate in both the forward and backward directions. Another impor-
tant observation is that, if we replace W l with κW l, the rate of amplification of
the variance becomes κ2 times larger in both the forward and backward chains.
This property does not hold if wl

i �∈ WLC, because in this case E(zl
i) �= 0 because

of the effect of the activation shift. The variance is then more amplified in the
forward chain than in the backward chain by the weight rescaling.

4.2 Variance Analysis of a Nonlinear Activation Layer

The forward and backward chains of the nonlinear activation layer are given
by al

i = f(zl
i) and ∇zl

i
= f ′(zl

i)∇al
i
, respectively. The following proposition holds

if f is the ReLU [13,17] function.
1 A similar result is discussed in [10], but our result is more general because we do

not assume the distribution of al−1 to be Gaussian distribution, which is assumed
in [10].
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Proposition 6. Assuming that zl
i and ∇al

i
independently follow N (0, σ2

zl
i
) and

N (0, σ2
∇

al
i

), respectively, where N (μ, σ2) indicates a normal distribution with

mean μ and variance σ2, it holds that

V (al
i) =

σ2
zl
i

2

(
1 − 1

π

)
and V (∇zl

i
) =

σ2
∇

al
i

2
.

We denote the rate of amplification of variance in the forward and backward
directions of a nonlinear activation function by φfw := V (al

i)/V (zl
i) and φbw :=

V (∇zl
i
)/V (∇al

i
), respectively. Proposition 6 then indicates that the variance is

amplified by a factor of φfw = 0.34 in the forward chain and by a factor of φbw =
0.5 in the backward chain through the ReLU activation layer.

If f is the sigmoid activation, there is no analytical solution for the variance
of al

i and ∇zl
i
. We therefore numerically examined φfw and φbw for the sig-

moid activation under the conditions that zl
i follows N (0, σ̂2) for σ̂ ∈ {0.5, 1, 2}

and ∇al
i

follows N (0, 1). As a result, we obtained (φfw, φbw) = (0.236, 0.237),
(0.208, 0.211), and (0.157, 0.170) for σ̂ = 0.5, 1, and 2, respectively. It suggests
that the difference between φfw and φbw in the sigmoid activation layer decreases
as the variance of zl

i decreases.

4.3 Relationship to the Vanishing Gradient Problem

We consider an MLP in which the number of neurons is the same in all hidden
layers. We initialize weights in the network by the method based on minibatch
statistics: weights are first generated randomly, then rescaled so that the pre-
activation in each layer has unit variance on the minibatch of samples. In fully
connected layers with standard weights, the variance of variables in the network
is more amplified in the forward chain than in the backward chain by the weight
rescaling, as discussed in Subsect. 4.1. In contrast, in the sigmoid activation
layers, the rate of amplification of the variance is almost the same in the for-
ward and backward directions, as mentioned in the previous subsection. Then,
the variance of the preactivation gradient decreases exponentially by rescaling
the weights to maintain the variance of the preactivation in the forward chain,
resulting in the vanishing gradient, that is, the preactivation gradient in earlier
layers has almost zero variance, especially when the network have many layers.

In contrast, when the LCW is applied to the network, the variance is ampli-
fied at the same rate in both the forward and backward chains through fully
connected layers regardless of the weight rescaling. In this case, the preactiva-
tion gradient has a similar variance in each layer after the initialization, assum-
ing that the sigmoid activation is used. Concretely, the variance is amplified by
approximately 0.21 through the sigmoid activation layers in both the forward
and backward chains. Then, fully connected layers are initialized to have the
amplification rate of 1/0.21 to keep the preactivation variance in the forward
chain. The gradient variance is then also amplified by 1/0.21 in the backward
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chain of fully connected layers with LCW, indicating that the gradient variance
is also preserved in the backward chain.

From the analysis in the previous subsections, we also see that normal fully
connected layer and the ReLU layer have opposite effect on amplifying the vari-
ance in each layer, This may be another explanation why ReLU works well in
practice without techniques such as BN.

4.4 Example

For example, we use a 20-layered MLP with sigmoid activation functions. The
weights of the MLP are initialized according to the method described in the pre-
vious subsection. We randomly took 100 samples from the CIFAR-10 dataset and
input them into the MLP. The upper part of Fig. 4(a) shows boxplot summaries
of the preactivation in each layer. The lower part shows boxplot summaries of
the gradient with respect to the preactivation in each layer, in which the stan-
dard cross-entropy loss is used to obtain the gradient. From Fig. 4(a), we see that
the variance of the preactivation is preserved in the forward chain, whereas the
variance of the preactivation gradient rapidly shrinks to zero in the backward
chain, suggesting the vanishing gradient.

Next, LCW is applied to the MLP, and then, the weighs are initialized by the
same procedure. Figure 4(b) shows the distribution of the preactivation and its
gradient in each layer regarding the same samples from CIFAR-10. In contrast
to Fig. 4(a), the variance of the preactivation gradient does not shrink to zero
in the backward chain. Instead we observe that the variance of the gradient
slightly increases through the backward chain. This can be explained by the
fact that the variance is slightly more amplified in the backward chain than in
the forward chain through the sigmoid layer, as discussed in Subsect. 4.2. These
results suggest that we can resolve the vanishing gradient problem in an MLP
with sigmoid activation functions by applying LCW and by initializing weights
to preserve the preactivation variance in the forward chain.

5 Related Work

Ioffe and Szegedy [11] proposed the BN approach for accelerating the training of
deep nets. BN was developed to address the problem of internal covariate shift,
that is, training deep nets is difficult because the distribution of the input to
a layer changes as the weights of the preceding layers change during training.
BN is widely adopted in practice and shown to accelerate the training of deep
nets, although it has recently been argued that the success of BN does not stem
from the reduction of the internal covariate shift [20]. BN computes the mean
and standard deviation of zl

i based on a minibatch, and then, normalizes zl
i

by using these statistics. Gülçehre and Bengio [5] proposed the standardization
layer (SL) approach, which is similar to BN. The main difference is that SL
normalizes al

i, whereas BN normalizes zl
i. Interestingly, both BN and SL can

be considered mechanisms for reducing the activation shift. On one hand, SL
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(a) MLP with standard weights.

(b) MLP with LCWs.

Fig. 4. Boxplot summaries of the preactivation (top) and its gradient (bottom) in
20-layered sigmoid MLPs with standard weights (a) and LCWs (b).

reduces the activation shift by forcing ‖µ̂‖ = 0 in Proposition 2. On the other
hand, BN reduces the activation shift by removing the mean from zl

i for each
neuron. A drawback of both BN and SL is that the model has to be switched
during inference to ensure that its output depends only on the input and not
the minibatch. In contrast, the LCW proposed in this paper do not require any
change in the model during inference.

Salimans and Kingma [19] proposed weight normalization (WN) in which
a weight vector wl

i ∈ R
m is reparameterized as wl

i = (gl
i/‖vl

i‖)vl
i, where gl

i ∈
R and vl

i ∈ R
m are new parameters. By definition, WN does not have the

property of reducing the activation shift, because the degrees of freedom of wl
i

are unchanged by the reparameterization. They also proposed a minibatch-based
initialization by which weight vectors are initialized so that zl

i has zero mean
and unit variance, indicating that the activation shift is resolved immediately
after the initialization. Our preliminary results presented in Sect. 6 suggest that
to start learning with initial weights that do not incur activation shift is not
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sufficient to train very deep nets. It is important to incorporate a mechanism
that reduces the activation shift during training.

Ba et al. [1] proposed layer normalization (LN) as a variant of BN. LN
normalizes zl

i over the neurons in a layer on a sample in a minibatch, whereas
BN normalizes zl

i over the minibatch on a neuron. From the viewpoint of reducing
the activation shift, LN is not as direct as BN. Although LN does not resolve the
activation shift, it should normalize the degree of activation shift in each layer.

Huang et al. [10] proposed centered weight normalization (CWN) as an
extension of WN, in which parameter vl

i in WN is reparameterized by vl
i =

ṽl
i − 1m(1�

mṽl
i)/m with ṽl

i ∈ Rm. CWN therefore forces a weight vector wl
i to

satisfy both ‖wl
i‖ = 1 and 1�

mwl
i = 0. CWN was derived from the observation

that, in practice, weights in a neural network are initially sampled from a dis-
tribution with zero-mean. CWN and LCW share the idea of restricting weight
vectors so that they have zero mean during training, although they come from
different perspectives and have different implementations. The main differences
between CWN and LCW are the following: CWN forces weight vectors to have
both unit norm and zero mean, whereas LCW only forces the latter from the
analysis that the latter constraint is essential to resolve the activation shift;
LCW embeds the constraint into the network structure using the orthonormal
basis of a subspace of weight vectors; the effect of reducing activation shift by
introducing LCW is analyzed from the perspective of variance amplification in
both the forward and backward chains.

Miyato et al. [16] proposed spectral normalization (SN) that constrains the
spectral norm, that is, the largest singular value, of a weight matrix equal to
1. SN was introduced to control the Lipschitz constant of the discriminator in
the GAN framework [4] to stabilize the training. The relationship between the
spectral norm of weights and the generalization ability of deep nets is discussed
in [23]. However, controlling the spectral norm of weight matrices is orthogonal
to the reduction of the activation shift.

He et al. [6] proposed residual network that consists of a stack of residual
blocks with skip connections. If we denote the input to the l-th residual block
by xl ∈ R

m, the output xl+1, which is the input to the next residual block,
is given by xl+1 = xl + F l(xl), where F l : Rm → R

m is a mapping defined
by a stack of nonlinear layers. In contrast to the original residual network that
regard the activation as xl, He et al. [7] proposed preactivation structure in
which the preactivation is regarded as xl. Residual network will indirectly reduce
the impact of the activation shift. The reason is explained below: In a residual
network, it holds that xL = x0 +

∑L−1
l=0 F l(xl). The activation shift can occur

in each of F l(xl), that is, each output element of F l(xl) has different mean.
However, the shift pattern is almost random in each F l(xl), and consequently,
the mean shift in xL can be moderate because it is the average over these
random shifts. This may be another reason why residual networks are successful
in training deep models.
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6 Experiments

We conducted experiments using the CIFAR-10 and CIFAR-100 datasets [14],
which consist of color natural images each of which is annotated corresponding
to 10 and 100 classes of objects, respectively. We preprocessed each dataset by
subtracting the channel means and dividing by the channel standard deviations.
We adopted standard data augmentation [6]: random cropping and horizontal
flipping.

All experiments were performed using Python 3.6 with PyTorch 0.4.1 [18]
on a system running Ubuntu 16.04 LTS with GPUs. We implemented LCW
using standard modules equipped with PyTorch. As implementation of BN, SL,
WN, and SN, we employed corresponding libraries in PyTorch. We implemented
CWN by modifying modules for WN.

6.1 Deep MLP with Sigmoid Activation Functions

We first conducted experiments using an MLP model with 50 hidden layers,
each containing 256 hidden units with sigmoid activation functions, followed by
a softmax layer combined with a cross-entropy loss function. We applied each of
LCW, BN, SL, WN, CWN, and SN to the model, and compared the performance.
We also considered models with each of the above techniques (other than BN)
combined with BN. These models are annotated with, for example, “BN+LCW”
in the results.

Models with LCW were initialized following the method described in
Sect. 4.3. Models with WN or CWN were initialized according to [19]. Mod-
els with BN, SL, or SN were initialized using the method proposed in [3]. Each
model was trained using a stochastic gradient descent with a minibatch size
of 128, momentum of 0.9, and weight decay of 0.0001 for 100 epochs. The learn-
ing rate starts from 0.1 and is multiplied by 0.95 after every epoch until it reaches
the lower threshold of 0.001.

Figure 5 shows the curve of training loss, test loss, training accuracy, and
test accuracy of each model on each dataset, in which the horizontal axis shows
the training epoch. The results of MLPs with WN or SN are omitted in Fig. 5,
because the training of these models did not proceed at all. This result matches
our expectation that reducing the activation shift is essential to train deep neural
networks, because WN and SN themselves do not have the effect of reducing
activation shift as discussed in Sect. 5. We see that LCW achieves higher rate of
convergence and gives better scores with respect to the training loss/accuracy
compared with other models. However, with respect to the test loss/accuracy, the
scores of LCW are no better than that of other models. This result suggests that
LCW has an ability to accelerate the network training but may increase the risk
of overfitting. In contrast, combined with BN, LCW achieves better performance
in test loss/accuracy, as shown by the results annotated with “BN+LCW” in
Fig. 5. We think such improvement was provided because LCW accelerated the
training while the generalization ability of BN was maintained.
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(a) Results for the CIFAR-10 dataset.

(b) Results for the CIFAR-100 dataset.

Fig. 5. Training loss (upper left), test loss (upper right), training accuracy (lower left),
and test accuracy (lower right) of 50-layer MLPs for CIFAR-10 (a) and CIFAR-100
(b).
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Table 1. Test accuracy/loss of convolutional models for CIFAR-10 and CIFAR-100
datasets.

Model CIFAR-10 CIFAR-100

Test accuracy Test loss Test accuracy Test loss

VGG19 0.936 0.354 0.732 1.788

VGG19+LCW 0.938 0.332 0.741 1.569

VGG19+WN 0.931 0.391 0.725 1.914

VGG19+CWN 0.934 0.372 0.727 1.827

VGG19+SN 0.936 0.358 0.733 1.644

ResNet18 0.952 0.204 0.769 0.978

ResNet18+LCW 0.952 0.187 0.770 0.955

ResNet18+WN 0.951 0.206 0.777 0.947

ResNet18+CWN 0.948 0.216 0.781 0.949

ResNet18+SN 0.952 0.206 0.780 1.015

6.2 Deep Convolutional Networks with ReLU Activation Functions

In this subsection, we evaluate LCW using convolutional networks with ReLU
activation functions. As base models, we employed the following two models:

VGG19: A 19-layer convolutional network in which 16 convolutional layers are
connected in series, followed by three fully connected layers with dropout [21].
We inserted BN layers before each ReLU layer in VGG19, although the original
VGG model does not include BN layers.2

ResNet18: An 18-layer convolutional network with residual structure [6], which
consists of eight residual units each of which contains two convolutional layers in
the residual part. We employed the full preactivation structure proposed in [7].
In ResNet18, BN layers are inserted before each ReLU layer.

We applied LCW, WN, CWN, or SN to VGG19 and ResNet18, respectively,
and compared the performance including the plain VGG19 and ResNet18 mod-
els. Each model was trained using a stochastic gradient descent with a minibatch
size of 128, momentum of 0.9, and weight decay of 0.0005. For the CIFAR-10
dataset, we trained each model for 300 epochs with the learning rate that starts
from 0.1 and is multiplied by 0.95 after every three epochs until it reaches 0.001.
For the CIFAR-100 dataset, we trained each model for 500 epochs with the
learning rate multiplied by 0.95 after every five epochs.

Table 1 shows the test accuracy and loss for the CIFAR-10 and CIFAR-100
datasets, in which each value was evaluated as the average over the last ten
epochs of training. We see that LCW improves the generalization performance
of VGG19 with respect to both the test accuracy and loss. The improvement is
more evident for the CIFAR-100 dataset. The curve of training loss and accuracy

2 This is mainly because VGG was proposed earlier than BN.
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Fig. 6. Training loss (left) and training accuracy (right) of the VGG19-based models
for the CIFAR-100 dataset.

of VGG19-based models for CIFAR-100 are shown in Fig. 6. We see that LCW
enhances the rate of convergence, which we think lead to the better performance.
In contrast, the improvement brought by LCW is less evident in ResNet18, in
particular, with respect to the test accuracy. We observed little difference in the
training curve of ResNet18 with and without LCW. A possible reason for this
is that the residual structure itself has an ability to mitigate the impact of the
activation shift, as discussed in Sect. 5, and therefore the reduction of activation
shift by introducing LCW was less beneficial for ResNet18.

7 Conclusion

In this paper, we identified the activation shift in a neural network: the pre-
activation of a neuron has non-zero mean depending on the angle between the
weight vector of the neuron and the mean of the activation vector in the previous
layer. The LCW approach was then proposed to reduce the activation shift. We
analyzed how the variance of variables in a neural network changes through layer
operations in both forward and backward chains, and discussed its relationship to
the vanishing gradient problem. Experimental results suggest that the proposed
method works well in a feedforward network with sigmoid activation functions,
resolving the vanishing gradient problem. We also showed that existing methods
that successfully accelerate the training of deep neural networks, including BN
and residual structures, have an ability to reduce the effect of activation shift,
suggesting that alleviating the activation shift is essential for efficient training
of deep models. The proposed method achieved better performance when used
in a convolutional network with ReLU activation functions combined with BN.
Future work includes investigating the applicability of the proposed method for
other neural network structures, such as recurrent structures.
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Abstract. In spite of the amazing results obtained by deep learning in
many applications, a real intelligent behavior of an agent acting in a com-
plex environment is likely to require some kind of higher-level symbolic
inference. Therefore, there is a clear need for the definition of a general
and tight integration between low-level tasks, processing sensorial data
that can be effectively elaborated using deep learning techniques, and the
logic reasoning that allows humans to take decisions in complex environ-
ments. This paper presents LYRICS, a generic interface layer for AI,
which is implemented in TersorFlow (TF). LYRICS provides an input
language that allows to define arbitrary First Order Logic (FOL) back-
ground knowledge. The predicates and functions of the FOL knowledge
can be bound to any TF computational graph, and the formulas are
converted into a set of real-valued constraints, which participate to the
overall optimization problem. This allows to learn the weights of the
learners, under the constraints imposed by the prior knowledge. The
framework is extremely general as it imposes no restrictions in terms of
which models or knowledge can be integrated. In this paper, we show
the generality of the approach showing some use cases of the presented
language, including model checking, supervised learning and collective
classification.

Keywords: Deep learning · Prior knowledge injection · First Order
Logic

1 Introduction

The success of deep learning relies on the availability of a large amount of super-
vised training data. This prevents a wider application of machine learning in
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real world applications, where the collection of training data is often a slow and
expensive process, requiring an extensive human intervention. The introduction
of prior-knowledge into the learning process is a fundamental step in overcoming
these limitations. First, it does not require the training process to induce the
rules from the training set, therefore reducing the number of required training
data. Secondly, the use of prior knowledge can be used to express the desired
behavior of the learner on any input, providing better behavior guarantees in an
adversarial or uncontrolled environment.

This paper presents LYRICS, a TensorFlow [1] environment based on a
declarative language for integrating prior knowledge into machine learning,
which allows the full expressiveness of First Order Logic (FOL) to define the
knowledge. LYRICS has its root in frameworks like Semantic Based Regulariza-
tion (SBR) [6,7] built on top of Kernel Machines and Logic Tensor Networks
(LTN) [23] that can be applied to neural networks. These frameworks trans-
form the FOL clauses into a set of constraints that are jointly optimized during
learning. However, LYRICS generalizes both approaches by allowing to enforce
the prior knowledge transparently at training and test time and dropping the
previous limitations regarding the form of the prior knowledge. SBR and LTN
are also hard to extend beyond classical classification tasks, where they have
been applied in previous works, because the lack of a declarative front-end. On
the other hand, LYRICS define a declarative language, dropping the barrier to
build models exploiting the available domain knowledge in any machine learning
context.

In particular, any many-sorted first-order logical theory can be expressed in
the framework, allowing to declare domains of different sort, with constants,
predicates and functions. LYRICS provides a very tight integration of learning
and logic as any computational graph can be bound to a FOL predicate. This
allows to constrain the learner both during training and inference. Since the
framework is agnostic to the learners that are bound to the predicates, it can
be used in a vast range of applications including classification, generative or
adversarial ML, sequence to sequence learning, collective classification, etc.

1.1 Previous Work

In the past few years many authors tackled specific applications by integrating
logic and learning. Minervini et al. [16] proposes to use prior knowledge to correct
the inconsistencies of an adversarial learner. Their methodology is designed ah-
hoc for the tackled task, and limited to Horn clauses. A method to distill the
knowledge in the weights of a learner is presented by Hu et al. [11], which is also
based on a fuzzy generalization of FOL. However, the definition of the framework
is limited to universally quantified formulas and to a small set of logic operators.
Another line of research [5,21] attempts at using logical background knowledge
to improve the embeddings for Relation Extraction. However, these works are
also based on ad-hoc solutions that lack a common declarative mechanism that
can be easily reused. They are all limited to a subset of FOL and they allow to
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injecting the knowledge at training time, with no guarantees that the output on
the test set respect the knowledge.

Markov Logic Networks (MLN) [20] and Probabilistic Soft Logic (PSL) [2,13]
provide a generic AI interface layer for machine learning by implementing a
probabilistic logic. However, the integration with the underlying learning pro-
cesses working on the low-level sensorial data is shallow: a low-level learner can
be trained independently, then frozen and stacked with the AI layer provid-
ing a higher-level inference mechanism. The language proposed in this paper
instead allows to directly improve the underlying learner, while also providing
the higher-level integration with logic. TensorLog [3] is a more recent framework
to integrate probabilistic logical reasoning with the deep-learning infrastructure
of TF, however TensorLog is limited to reasoning and does not allow to opti-
mize the learners while performing inference. TensorFlow Distributions [9] and
Edward [25] are also a related frameworks for integrating probability theory and
deep learning. However, these frameworks focus on probability theory and not
the representation of logic and reasoning.

2 The Declarative Language

LYRICS defines a TensorFlow (TF)1 environment in which learning and reason-
ing are integrated. LYRICS provides a short number of basic constructs, which
can be used to define the problem under investigation.

A domain determines a collection of individuals that share the same repre-
sentation space and are analyzed and manipulated in a homogeneous way. For
example, a domain can collect a set of 30 × 30 pixel images or the sentences of
a book as bag-of-words.

Domain(label="Images")

Individuals (i.e. elements) can be added to their domain as follows:

Individual(label="Tweety", domain=("Images"), value=img0)

where Tweety is a label to uniquely identify a specific individual of the Images
domain, represented by the image img0. This allows the user to directly reason
about single individuals. The user can also provide a large amount of individuals
without a specific label for each of them by specifying the tensor of their features
during the domain definition.

A function can be defined to map elements from the input domains into an
element of an output domain. A unary function takes as input an element from
a domain and transforms it into an element of the same or of another domain,
while an n-ary function takes as input n elements, mapping them into an output
element of its output domain. The following example defines a function that
returns a rotated image:

Function(label="rotate", domains=("Images"), function=RotateFunction)

1 https://www.tensorflow.org/.

https://www.tensorflow.org/
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where the FOL function is bound to its TF implementation, which in this case
is the RotateFunction function in the TF code.

A predicate can be defined as a function, mapping elements of the input
domains to truth values. For example, a predicate bird determining whether an
input pattern from the Images domain contains a bird and approximated by a
neural network NN is defined as:

Predicate(label="bird", domains=("Images"), function=NN)

It is possible to state the knowledge about the world by means of a set
of constraints. Each constraint is a generic FOL formula using as atoms the
previously defined functions and predicates. For instance, if we want to learn
the previously defined predicate bird to be invariant to rotations, the user can
express this knowledge by means of the following constraint:

Constraint("forall x: bird(x) -> bird(rotate(x))")

Finally, any available supervision for the functions or predicates can be
directly integrated into the learning problem. LYRICS provides a specific con-
struct where this fitting is expressed, called PointwiseConstraint. This construct
links to a computational graph where a loss is applied for each supervision.
The loss defaults to the cross-entropy loss but it can be overridden to achieve a
different desired behavior:

PointwiseConstraint(model, labels, inputs)

where model is a TF function like the NN function used before fitting the super-
visions labels on the provided inputs.

3 From Logic to Learning

LYRICS transparently transforms a declarative description of the available
knowledge applied to a set of objects into an optimization task. In this section,
we show how the optimization algorithm is derived from its declaration.

Domains and Individuals. Domains of individuals allow users to provide data
to the framework as tensors that represent the leaves of the computational graph.
A Domain Di is always bound to a tensor Xi ∈ R

di×ri , where di denotes the
number of individuals in the i-th domain and ri denotes the dimension of the
representation of the data in the i-th domain2. Thus, individuals correspond
to rows of the Xi tensor. Individuals can be represented by both constant and
variable feature tensors. By taking into account partially or totally variable fea-
tures for the individuals, LYRICS allows to consider individuals as learnable
objects too. For example, given two individuals Marco and Michelangelo bound
to a constant and a variable tensor respectively, we may want to learn the rep-
resentation of Michelangelo by exploiting some joint piece of knowledge (e.g.
fatherOf(Marco, Michelangelo) -> similarTo(Michelangelo, Marco)).
2 Here, we assume that the feature representation is given by a vector. However, the

system also allows the individuals to be represented by a generic tensor.



LYRICS: A General Interface Layer to Integrate Logic Inference 287

Table 1. Operations performed by the units of an expression tree given the inputs x, y
and the used t-norm in the fundamental fuzzy logics.

op t-norm

Product Lukasiewicz Gödel

x ∧ y x · y max(0, x + y − 1) min(x, y)

x ∨ y x + y − x · y min(1, x + y) max(x, y)

¬x 1 − x 1 − x 1 − x

x ⇒ y x ≤ y?1 : y
x

min(1, 1 − x + y) x ≤ y?1 : y

Functions and Predicates. FOL functions allow the mapping between indi-
viduals of the input domains to an individual of the output domain, i.e.
fi : Df

i1
× · · · × Df

im
→ Df

i , where Df
i1

, . . . , Df
im

are the input domains and
Df

i is the output domain. On the other hand, FOL predicates allow to express
the truth degree of some property for individuals of the input domains; i.e.
pi : Dp

i1
× . . . × Dp

im
→ {true, false}, where Dp

ij
is the j-th domain of the i-th

predicate. Functions and predicates are implemented using a TF architecture
as explained in the previous section. If the graph does not contain any vari-
able tensor (i.e. it is not parametric), then we say it to be given; otherwise
it will contains variables which will be automatically learned to maximize the
constraints satisfaction. In this last case, we say the function/predicate to be
learnable. Learnable functions can be (deep) neural networks, kernel machines,
radial basis functions, etc.

The evaluation of a function or a predicate on a particular tuple x1, . . . , xm of
input individuals (i.e. fi(x1, . . . , xm) or pi(x1, . . . , xm)) is said a grounding for the
function or for the predicate, respectively. LYRICS, like related frameworks [7,
23], follows a fully grounded approach, which means that all the learning and
reasoning processes take place only once functions and predicates have been fully
grounded over all the possible input tuples (i.e. on the entire Cartesian product
of the corresponding input domains).

Let us indicate as Xk the set of patterns in the domain Dk, then X f
i = Xf

i1
×

· · ·×Xf
im

is the set of groundings of the i-th function. Similarly, X p
i is the collec-

tion of groundings for the i-th predicate. Finally, F(X ) = {f1(X f
1 ), f2(X f

2 ), . . . , }
and P(X ) = {p1(X p

1 ), p2(X p
2 ), . . .} are the outputs for all function and predicates

over their corresponding groundings, respectively.

Connectives and Quantifiers. Connectives and quantifiers are converted
using the fuzzy generalization of FOL that was first proposed by Novák [19].
In particular, a t-norm fuzzy logic [10] generalizes Boolean logic to variables
assuming values in [0, 1]. A t-norm fuzzy logic is defined by its t-norm that mod-
els the logical AND, and from which the other operations can be derived. Table 1
shows some possible implementation of the connectives using the fundamental
t-norm fuzzy logics i.e. Product, �Lukasiewicz and Gödel logics.
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In general, formulas involve more than a predicate and are evaluated on
the overall grounding vectors of such predicates. The way different evaluations
of a certain formula are aggregated depend on the quantifiers occurring on its
variables and their implementation. In particular, we consider the universal and
existential quantifier that can be seen as a logic AND and OR applied over each
grounding of the data, respectively.

For instance, given a certain logical expression E with a universally quantified
variable xi can be calculated as the average of the t-norm generalization tE(·),
when grounding xi over its groundings Xi:

∀xi E
(P(X )

) −→ Φ∀(P(X )
)

=
1

|Xi|
∑

xi∈Xi

tE
(P(X )

)
(1)

The truth degree of the existential quantifier is instead defined as the maximum
of the t-norm expression over the domain of the quantified variable:

∃xi E
(P(X )

) −→ Φ∃
(P(X )

)
= max

xi∈Xi

tE
(P(X )

)
(2)

When multiple quantified variables are present, the conversion is recursively
performed from the inner to the outer variables.

Constraints. Integration of learning and logical reasoning is achieved by trans-
lating logical expressions into continuous real-valued constraints. The logical
expressions correlate the defined elements and enforce some desired behaviour
on them.

Variables, functions, predicates, logical connectives and quantifiers can all be
seen as nodes of an expression tree [8]. The real-valued constraint is obtained
by a post-fix visit of the expression tree, where the visit action builds the corre-
spondent portion of computational graph. In particular:

– visiting a variable xi substitutes the variable with the tensor Xi bound to
the domain it belongs to;

– visiting a function or predicate corresponds to the grounding operation,
where, first, the Cartesian product of the input domains is computed and,
then, the TF models implementing those functions are evaluated on all
groundings (i.e. f(X ) or p(X ))

– visiting a connective combines predicates by means of the real-valued opera-
tions associated to the connective by the considered t-norm fuzzy logic;

– visiting a quantifier aggregates the outputs of the expressions obtained for
the single variable groundings.

Figure 1 shows the translation of a logic formula into its expression tree and
successively into a TensorFlow computational graph.

It is useful for the following to consider the real-valued constraint obtained
by the described compilation process of the j-th logical rule and implemented
by a TF graph as a parametric real function ψj(Xj ;wi

j , w
f
j , wp

j ). The function ψj

takes as input the Cartesian product Xj of the domains of its quantified variables,
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returns the truth degree of the formula and it is parameterized by wi
j , wf

j and wp
j ,

which are the sets of variable tensors related to the features of learnable individ-
uals, to the parameters of learnable functions and to the parameters of learnable
predicates, respectively. Let be W i = {wi

1, w
i
2, . . . }, W f = {wf

1 , wf
2 , . . . } and

W p = {wp
1 , w

p
2 , . . . }.

Tensor

CNNCNN

forall x: dog(x) -> mammal(x)

ForAll(Quantifier)

Predicate

FOL Formula LYRICS Expression Tree TF Computational Graph

Implies(BinOp)

Predicate

VariableVariable

tf.reduce_min

tf.minimum(1., 1. - a + b)

Tensor

Compiling with Lukasiewicz(FuzzyLogic)

Fig. 1. The translation of the FOL formula ∀x dog(x) → mammal(x) into a Lyrics
expression tree and then its mapping to a TF computational graph.

Optimization Problem. The goal of LYRICS is to build a learning process for
some elements of interest (individuals, functions or predicates) by a declarative
description of the desired behaviour of these elements. The desired behaviour
is expressed by means of logical formulas. Thus, the optimization process is
framed as finding the unknown elements which maximize the satisfaction of the
set of logical formulas. Let ψj(Xj ;wi

j , w
f
j , wp

j ) indicate the real-valued constraint
related to the j-th formula, as previously defined. Then, the derived optimization
problem is:

max
W i,W f ,Wp

T∑

j=1

λj
cψj(Xj ;wi

j , w
f
j , wp

j ),

where λj
c denotes the weight for the j-th logical constraint. These weights are

considered hyper-parameters of the model and are provided by the user dur-
ing constraint definition. The maximization problem can be translated into a
minimization problem as follows:

min
W i,W f ,Wp

T∑

j=1

λj
cL

(
ψj(Xj ;wi

j , w
f
j , wp

j )
)
,

Here, the function L represents any monotonically decreasing transformation
of the constraints conveniently chosen according to the problem under investi-
gation. In particular, we may exploit the following mappings:

(a) L
(
ψj(Xj ;wi

j , w
f
j , wp

j )
)

= 1 − ψj(Xj ;wi
j , w

f
j , wp

j ),

(b) L
(
ψj(Xj ;wi

j , w
f
j , wp

j )
)

= − log
(
ψj(Xj ;wi

j , w
f
j , wp

j )
)
.

(3)
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These specific choices for the function L are directly related to the �Lukasiewicz
and Product t-norms, indeed they are additive generators for these t-norm fuzzy
logics. For more details on generated t-norms we recommend e.g. [14].

4 Learning and Reasoning with Lyrics

This section presents a list of examples illustrating the range of learning tasks
that can be expressed in the proposed framework. In particular, it is shown how
it is possible to force label coherence in semi-supervised or transductive learning
tasks, how to implement collective classification over the test set and how to
perform model checking. Moreover, we applied the proposed framework to two
standard benchmarks: document classification in citation networks and term
chunking in natural language text. The examples are presented using LYRICS
syntax directly to show that the final implementation of a problem fairly retraces
its abstract definition3.

Semi-supervised Learning. In this task we assume to have available a set of 420
points distributed along an outer and inner circle. The inner and outer points
belong and do not belong to some given class A, respectively. A random selection
of 20 points is supervised (either positively or negatively), as shown in Fig. 2(a).
The remaining points are split into 200 unsupervised training points, shown in
Fig. 2(b) and 200 points left as test set. A neural network is assumed to have been
created in TF to approximate the predicate A. The network can be trained by
making it fit the supervised data. So, given the vector of data X, a neural network
NN A and the vector of supervised data X s, with the vector of associated labels
y s, the supervised training of the network can be expressed by the following:

# Definition of the data points domain.

Domain(label="Points", data=X)

# Approximating the predicate A via a NN.

Predicate("A", ("Points"), NN_A)

# Fit the supervisions

PointwiseConstraint(A, y_s, X_s)

Let’s now assume that we want to express manifold regularization for the
learned function: e.g. points that are close should be similarly classified. This
can be expressed as:

# Predicate stating whether 2 patterns are close.

Predicate("Close", ("Points","Points"), f_close)

# Manifold regularization constraint.

Constraint("forall p:forall q: Close(p,q)->(A(p)<->A(q))")

where f close is a given predicate determining if two patterns are close accord-
ing to a validated threshold of the Euclidean distance. The training is then
re-executed starting from the same initial conditions as in the supervised-only
case.
3 The software of the framework and the experiments are made available at https://

github.com/GiuseppeMarra/lyrics.

https://github.com/GiuseppeMarra/lyrics
https://github.com/GiuseppeMarra/lyrics
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(a) (b)

(c) (d)

Fig. 2. Semi-supervised learning: (a) data that is provided with a positive and negative
supervision for class A; (b) the unsupervised data provided to the learner; (c) class
assignments using only the supervised examples; (d) class assignments using learning
from examples and constraints.

Figure 2(c) shows the class assignments of the patterns in the test set, when
using only classical learning from supervised examples. Finally, Fig. 2(d) presents
the assignments when learning from examples and constraints.

Collective Classification. Collective classification [22] performs the class assign-
ments exploiting any known correlation among the test patterns. This paragraph
shows how to exploit these correlations in LYRICS. Here, we assume that the
patterns are represented as R

2 datapoints. The classification task is a multi-
label problem where the patterns belongs to three classes A,B,C. In partic-
ular, the class assignments are defined by the following membership regions:
A = [−2, 1] × [−2, 2],B = [−1, 2] × [−2, 2],C = [−1, 1] × [−2, 2]. These regions
correspond to three overlapping rectangles as shown in Fig. 3(a). The examples
are partially labeled and drawn from a uniform distribution on both the positive
and negative regions for all the classes.

In a first stage, the classifiers for the three classes are trained in a supervised
fashion using a two-layer neural network taking four positive and four negative
examples for each class. This is implemented via the following declaration:
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(a) (b) (c)

Fig. 3. Collective classification: (a) classes assignments; (b) the predictions after the
supervised step; (c) the predictions with collective classification and rules satisfaction
(best viewed in colors). (Color figure online)

Domain(label="Points", data=X)

Predicate(label="A",domains=("Points"),NN_A)

Predicate(label="B",domains=("Points"),NN_B)

Predicate(label="C",domains=("Points"),NN_C)

PointwiseConstraint(NN_A, y_A, X_A)

PointwiseConstraint(NN_B, y_B, X_B)

PointwiseConstraint(NN_C, y_C, X_C)

The test set is composed by 256 random points and the assignments per-
formed by the classifiers after the training are reported in Fig. 3(b). In a second
stage, it is assumed that it is available some prior knowledge about the task at
hand. In particular, any pattern must belongs to (at least) one of the classes A
or B. Furthermore, it is known that class C is defined as the intersection of A
and B. The collective classification step is performed by seeking the class assign-
ments that are as close as possible to the initial classifier predictions, acting as
priors, but also respecting the logical constraints on the test set:

Constraint("forall x: A(x) or B(x)")

Constraint("forall x:(A(x) and B(x)) <-> C(x)")

# Minimize the distance from classifier outputs.

PointwiseConstraint(A, priorsA, X_test)

PointwiseConstraint(B, priorsB, X_test)

PointwiseConstraint(C, priorsC, X_test)

where X test is the set of test datapoints and priorsA, priorsB, priorsC denote
the predictions of the classifiers to which the final assignments have to stay close.
As we can see from Fig. 3(c), the collective step fixes some wrong predictions.

Model Checking. In this example, we show how the framework can be used to
perform model checking. Let us consider a simple multi-label classification task
where the patterns belong to two classes A and B, and B is contained in A. This
case models a simple hierarchical classification task. In particular, the classes
are defined by the following membership regions: A = [−2, 2] × [−2, 2], B =
[−1, 1] × [−1, 1]. A set of points X is drawn from a uniform distribution in the
[−3, 3] × [−3, 3] region. Two neural network classifiers are trained to classify the
points using the vectors of supervisions yA and yB for the predicates A and B,
respectively:
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Domain(label="Points", data=X)

Predicate(label="A", domains=("Points"),NN_A)

Predicate(label="B", domains=("Points"),NN_B)

PointwiseConstraint(NN_A, y_A, X)

PointwiseConstraint(NN_B, y_B, X)

It could be interesting to check if some given rule has been learned by the
classifiers. To this hand, LYRICS allows to mark a set of constraints as test
only, in order to perform model checking. In this case, constraints are only used
to compute the degree of satisfaction of the corresponding FOL formulas over the
data. For example, we checked the degree of satisfaction of all possible formulas
in Disjunctive Normal Form (DNF) that are universally quantified with a single
variable. Only the constraint:

Constraint("forall x: (not A(x) and not B(x)) or (A(x) and not B(x)) or

(A(x) and B(x))")

has a high truth degree (0.9997). As one could expect, the only fully-satisfied con-
straint (translated from DNF to its minimal form) is indeed ∀xB(x) → A(x),
that states the inclusion of B in A. Model checking can be used as a funda-
mental step to perform rule deduction using the Inductive Logic Programming
techniques [17].

Chunking. Given a sequence of words, term chunking (or shallow parsing) is a
sequence tagging task aiming at linking constituent parts of sentences (nouns,
verbs, adjectives, etc.) into phrases that form a single semantic unit. Following
the seminal work by Collobert et al. [4], many papers have applied deep neu-
ral networks to text chunking. In this paper, deep learner is used to learn from
examples as in classical supervised learning. Then we perform collective classi-
fication to fix some misclassification made by the network, according to certain
logical rules expressing available prior knowledge.

We used the CoNLL 2000 shared task dataset [24] to test the proposed
methodology. The dataset contains 8936 training and 893 test English sentences.
The task uses 12 different chunk types, which correspond to 22 chunk labels
when considering the position modifiers. In particular, some labels have a B
and I modifier to indicate for beginning and intermediate position in the chunk,
respectively. For example, BV P indicates the start of a verbal phrase and IV P
an intermediate term of the verbal phrase. The final performance is measured
in terms of F1-score, computed by the public available script provided by the
shared task organizers.

We selected the classifier proposed by Huang et al. [12] as our baseline, which
is one of the best performers on this task. We used a variable portion of training
phrases from the training set, ranging from 5% to 100%, to train the classifier,
reusing the same parameters reported by the authors. The trained networks have
then been applied on the test set providing an output score for each label for each
term. It is well known that the output of the trained networks may not respect
the semantic consistencies of the labels. For example, an intermediate token for
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Table 2. CoNLL2000 evaluation script on all the classes and on the less common pos
tags that have an initial lower performance.

% data in training set

5 10 30 50 100

F1 NN 87.39 89.55 92.15 93.31 94.18

LYRICS 87.75 89.78 92.26 93.53 94.27

F1 (rare tags) NN 56.24 60.84 75.19 76.74 79.42

LYRICS 57.65 61.36 75.68 77.45 79.71

a label must follow either a begin or intermediate one for the same label. For
example, ∀ x ∀ t BNP (x, t) ⇒ ¬IV P (x, t+1)∧¬IPP (x, t+1)∧¬IADV P (x, t+
1)∧. . . expresses that if the t-th token is marked as the begin of a nominal phrase
BNP the following token can not be an intermediate verbal IV P , intermediate
prepositional IPP or intermediate adverbial IADV P phrase. A small sample of
the constraints stating the output consistency can be expressed in FOL using
the following statements:

∀ x ∀ t BNP (x, t) ⇒ ¬IV P (x, t+ 1) ∧ ¬IPP (x, t+ 1) ∧ ¬IADV P (x, t+ 1) ∧ . . .
∀ x ∀ t BV P (x, t) ⇒ ¬INP (x, t+ 1) ∧ ¬IPP (x, t+ 1) ∧ ¬IADV P (x, t+ 1) ∧ . . .
∀ x ∀ t BPP (x, t) ⇒ ¬IV P (x, t+ 1) ∧ ¬INP (x, t+ 1) ∧ ¬IADV P (x, t+ 1) ∧ . . .

∀ x ∀ t INP (x, t) ⇒ [¬IV P (x, t+ 1) ∧ ¬IPP (x, t+ 1) ∧ ¬IADV P (x, t+ 1) ∧ . . .
∀ x ∀ t IV P (x, t) ⇒ [¬INP (x, t+ 1) ∧ ¬IPP (x, t+ 1) ∧ ¬IADV P (x, t+ 1) ∧ . . .
∀ x ∀ t IPP (x, t) ⇒ [¬IV P (x, t+ 1) ∧ ¬INP (x, t+ 1) ∧ ¬IADV P (x, t+ 1) ∧ . . .
∀ x ∀ t INP (x, t+ 1) ⇒ BNP (x, t) ∨ INP (x, t)
∀ x ∀ t IV P (x, t+ 1) ⇒ BV P (x, t) ∨ IV P (x, t)
∀ x ∀ t IPP (x, t+ 1) ⇒ BPP (x, t) ∨ IPP (x, t)
. . .

where P (x, t) indicates the output of the network associated to label P for the
phrase x and the t-th term in the phrase.

In order to evaluate the proposed methodology, collective classification is
performed to assign the labels in order to minimize the distance from the network
outputs, acting as priors, while maximizing the verification of the constraints
built from the previously reported rules. Table 2 reports the F1 results for the
different percentages of supervised phrases used to train the network. The results
have been evaluated both on all classes, and then zooming in for some of the
rare classes that are often wrongly classified. The effect of the rules is overall
mildly positive as most of the tags can be correctly predicted by the supervised
examples. However, the effect of the knowledge is more clear when zooming in to
see the effect on the some of the less common tags (ADJ,ADV,PRT, SBAR):
since not enough examples are observed for these tags, the extra knowledge
allows to improve their classification. Since these tags are relatively rare the
overall effect on the metrics is not large on this dataset, but it is a very promising
start to allow the application of pos tagging to challenging domains.
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Document Classification on the Citeseer Dataset. This section applies the pro-
posed framework to a standard ML dataset. The CiteSeer dataset4 [15] consists
of 3312 scientific papers, each one assigned to one of 6 classes: Agents, AI,
DB, ML and HCI. The papers are not independent as they are connected by
a citation network with 4732 links. Each paper in the dataset is described via
its bag-of-word representation, which is a vector having the same size of the
vocabulary with the i-th element having a value equal to 1 or 0, depending on
whether the i-th word in the vocabulary is present or not present in the docu-
ment, respectively. The dictionary consists of 3703 unique words. This learning
task is expressed as:

Domain(label="Papers", data=X)

Predicate("Agents",("Papers"), Slice(NN, 0))

Predicate("AI",("Papers"), Slice(NN, 1))

Predicate("DB",("Papers"), Slice(NN, 2))

Predicate("IR",("Papers"), Slice(NN, 3))

Predicate("ML",("Papers"), Slice(NN, 4))

Predicate("HCI",("Papers"), Slice(NN, 5))

where the first line defines the domain of scientific articles to classify, and one
predicate for each class is defined and bound to an output of a neural network
NN , which features a softmax activation function on the output layer.

The domain knowledge that if a paper cites another one, they are likely to
share the same topic, is expressed as:

Predicate("Cite",("Papers","Papers"),f_cite)

Constraint("forall x: forall y: Agent(x) and Cite(x, y) -> Agent(y)")

Constraint("forall x: forall y: AI(x) and Cite(x, y) -> AI(y)")

Constraint("forall x: forall y: DB(x) and Cite(x, y) -> DB(y)")

Constraint("forall x: forall y: IR(x) and Cite(x, y) -> IR(y)")

Constraint("forall x: forall y: ML(x) and Cite(x, y) -> ML(y)")

Constraint("forall x: forall y: HCI(x) and Cite(x, y) -> HCI(y)")

where f cite is a given function determining whether a pattern cites another
one. Finally, the supervision on a variable size training set can be provided by
means of:

PointwiseConstraint(NN, y_s, X_s)

where X s is a subset of the domain of papers where we enforce supervisions y s.

Table 3 reports the accuracy obtained by a neural network with one hid-
den layer (200 hidden neurons) trained in a supervised fashion and by training
the same network from supervision and logic knowledge in LYRICS, varying the
amount of available training data and averaged over 10 random splits of the train-
ing and test data. The improvements over the baseline are statistically significant
for all the tested configurations. Table 4 compares the neural network classifiers
against other two content-based classifiers, namely logistic regression (LR) and

4 https://linqs.soe.ucsc.edu/data.

https://linqs.soe.ucsc.edu/data
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Table 3. Citeseer dataset: comparison of the 10-fold average accuracy obtained by
supervised training of a neural network (NN), and by learning the same NN from
supervision and logic knowledge in LYRICS for a variable percentage of training data.
Bold values indicate statistically significant improvements.

% data in training set

10 30 50 70 90

NN 60.08 68.61 69.81 71.93 72.59

LYRICS 67.39 72.96 75.97 76.86 78.03

Table 4. Citeseer dataset: comparison of the 10-fold average accuracy obtained by
content based and network based classifiers and by learning from supervision and logic
knowledge in LYRICS.

Method Accuracy

Naive Bayes 74.87

ICA Naive Bayes 76.83

GS Naive Bayes 76.80

Logistic regression 73.21

ICA Logistic regression 77.32

GS Logistic regression 76.99

Loopy belief propagation 77.59

Mean field 77.32

NN 72.59

LYRICS 78.03

Naive Bayes (NB), and against collective classification approaches using network
data: Iterative Classification Algorithm (ICA) [18] and Gibbs Sampling (GS) [15]
both applied on top of the output of LR and NB content-based classifiers. Fur-
thermore, the results against the two top performers on this task: Loopy Belief
Propagation (LBP) [22] and Relaxation Labeling through Mean-Field Approach
(MF) [22] are reported. The accuracy values are obtained as average over 10-
folds created by random splits of size 90% and 10% of the overall data for the
train and test sets, respectively. Unlike the other network based approaches that
only be run at test-time (collective classification), LYRICS can distill the knowl-
edge in the weights of the neural network. The accuracy results are the highest
among all the tested methodologies in spite that the underlying neural network
classifier trained only via the supervisions did perform slightly worse than the
other content-based competitors.
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5 Conclusions

This paper presents a novel and general framework, called LYRICS, to bridge
logic reasoning and deep learning. The framework is directly implemented in
TensorFlow, allowing a seaming-less integration that is architecture agnostic.
The frontend of the framework is a declarative language based on First–Order
Logic. Throughout the paper are presented a set of examples illustrating the
generality and expressivity of the framework, which can be applied to a large
range of tasks.

Future developments of the proposed framework include a learning mecha-
nism of the weights of the constraints. This would allow to consider more general
rule schemata that will be weighted with coefficients automatically learned by the
parameter optimization according to the degree of satisfaction of any rule. This
will improve the framework especially to deal with soft constraints expressing
some statistical co-occurrence among the classes involved in the learning prob-
lem. Moreover, the differentiability of fuzzy logic could suggest new methods for
learning a set of constraints in logical form that may be understandable.
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21. Rocktäschel, T., Singh, S., Riedel, S.: Injecting logical background knowledge into

embeddings for relation extraction. In: Proceedings of the 2015 Conference of the
North American Chapter of the Association for Computational Linguistics: Human
Language Technologies, pp. 1119–1129 (2015)

22. Sen, P., Namata, G., Bilgic, M., Getoor, L., Galligher, B., Eliassi-Rad, T.: Collec-
tive classification in network data. AI Mag. 29(3), 93 (2008)

23. Serafini, L., d’Avila Garcez, A.S.: Learning and reasoning with logic tensor net-
works. In: Adorni, G., Cagnoni, S., Gori, M., Maratea, M. (eds.) AI*IA 2016. LNCS
(LNAI), vol. 10037, pp. 334–348. Springer, Cham (2016). https://doi.org/10.1007/
978-3-319-49130-1 25

24. Tjong Kim Sang, E.F., Buchholz, S.: Introduction to the CoNLL-2000 shared task:
chunking. In: Proceedings of the 2nd Workshop on Learning Language in Logic and
the 4th Conference on Computational Natural Language Learning, vol. 7, pp. 127–
132. Association for Computational Linguistics (2000)

25. Tran, D., Hoffman, M.D., Saurous, R.A., Brevdo, E., Murphy, K., Blei, D.M.: Deep
probabilistic programming. In: International Conference on Learning Representa-
tions (2017)

http://arxiv.org/abs/1707.07596
https://doi.org/10.1007/s10994-006-5833-1
https://doi.org/10.1007/978-3-319-49130-1_25
https://doi.org/10.1007/978-3-319-49130-1_25


Deep Eyedentification: Biometric
Identification Using Micro-movements

of the Eye
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Abstract. We study involuntary micro-movements of the eye for bio-
metric identification. While prior studies extract lower-frequency macro-
movements from the output of video-based eye-tracking systems and
engineer explicit features of these macro-movements, we develop a deep
convolutional architecture that processes the raw eye-tracking signal.
Compared to prior work, the network attains a lower error rate by one
order of magnitude and is faster by two orders of magnitude: it identifies
users accurately within seconds.

Keywords: Machine learning · Eye-tracking · Eye movements · Deep
learning · Biometrics · Ocular micro-movements

1 Introduction

Human eye movements are driven by a highly complex interplay between volun-
tary and involuntary processes related to oculomotor control, high-level vision,
cognition, and attention. Psychologists distinguish three types of macroscopic
eye movements. Visual input is obtained during fixations of around 250 ms. Sac-
cades are fast relocation movements of typically 30 to 80 ms between fixations
during which visual uptake is suppressed. When tracking a moving target, the
eye performs a smooth pursuit [21].

A large body of psychological evidence shows that these macroscopic eye
movements are highly individual. For example, a large-scale study with over
1,000 participants showed that the individual characteristics of eye movements
are highly reliable and, importantly, persist across experimental sessions [3].
Motivated by these findings, macro-movements of the eye have been studied for
biometric identification [4,24]. Since macroscopic eye movements occur at a low
frequency, long sequences must be observed before movement patterns give away
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the viewer’s identity—a recent study finds that users can be identified reliably
after reading around 10 lines of text [33]. For use cases such as access control,
this process is too slow by one to two orders of magnitude.

During fixations, the eye additionally performs involuntary micro-movements
which prevent the gradual fading of the image that would otherwise occur as the
neurons become desensitized to a constant light stimulus [12,46]. Microsaccades
have a duration ranging from 6 to 30 ms [34–36]. Between microsaccades, a very
slow drift away from the center of the fixation occurs, which is superimposed by a
low-amplitude, high-frequency tremor of approximately 40–100 Hz [34]. There is
evidence that microsaccades exhibit measurable individual differences [41], but
it is still unclear to what extent drift and tremor vary between individuals [28].

Video-based eye-tracking systems measure gaze angles at a rate of up to
2,000 Hz. Since the amplitudes of the smallest micro-movements are in the order
of the precision of widely-used systems, the micro-movement information in the
output signal is superimposed by a considerable level of noise. It is established
practice in psychological research to smooth the raw eye-tracking signal, and
to extract the specific types of movements under investigation. Criteria that
are applied for the distinction of specific micro-movements are to some degree
arbitrary [39,40], and their detection is less reliable [28]. Without exception,
prior work on biometric identification only extracts macro-movements from the
eye-tracking signal and defines explicit features such as distributional features
of fixation durations and saccade amplitudes.

The additional information in the high-frequency and lower-amplitude micro-
movements motivates us to explore the raw eye-tracking signal for a potentially
much faster biometric identification. To this end, we develop a deep convolutional
neural network architecture that is able to process this signal. One key challenge
lies in the vastly different scales of velocities of micro- and macro-movements.

The remainder of this paper is structured as follows. Section 2 reviews prior
work. Section 3 lays out the problem setting and Sect. 4 develops a neural-
network architecture for biometric identification based on a combination of
micro- and macro-movements of the eye. Section 5 presents experimental results.
Section 6 discusses micro-movement-based identification in the context of other
biometric technologies; Sect. 7 concludes.

2 Related Work

There is a substantial body of research on biometric identification using macro-
movements of the eye. Most work uses the same stimulus for training and
testing—such as a static cross [4], a jumping point [8,22,23,44,47], a face image
[5,17,43], or various other kinds of images [10]. Using the same known stimulus
for training and testing opens the methods to replay attacks.

Kinnunen and colleagues present the first approach that uses different stimuli
for training and testing and does not involve a secondary task; they identify
subjects who watch a movie sequence [27]. Later approaches use eye movements
on novel text to identify readers [19,30].
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A number of methods have been benchmarked in challenges [24,25]. All
participants in these challenges and all follow-up work [45] present methods
that extract saccades and fixations, and define a variety of features on these
macro-movements, including distributions of fixation durations and of ampli-
tudes, velocities, and directions of saccades. Landwehr and colleagues define a
generative graphical model of saccades and fixations [30] from which Makowski
and colleagues derive a Fisher Kernel [33]; Abdelwahab et al. develop a semi-
parametric discriminative model [2]. All known methods are designed to oper-
ate on an eye-gaze sequence of considerable length; for example, one minute of
watching a video or reading about one page of text.

3 Problem Setting

We study three variations of the problem of biometric identification based on
a sequence 〈(x0, y0), . . . , (xn, yn)〉 of yaw gaze angles xi and pitch gaze angles
yi measured by an eye tracker. For comparison with prior work, we adopt a
multi-class classification setting. For each user from a fixed population of users,
one or more enrollment eye-gaze sequences are available that are recorded while
the user is reading text documents. A multi-class classification model trained on
these enrollment sequences recognizes users from this population at application
time while the users are reading different text documents. Classification accuracy
serves as performance metric in this setting.

Multi-class classification is a slight abstraction of the realistic use case in two
regards. First, this setting disregards the possibility of encountering a user from
outside the training population of users. Secondly, the learning algorithm has to
train the model on enrollment sequences of all users. This training would have
to be carried out on an end device or a cloud backend whenever a new user is
enrolled; this is unfavorable from a product perspective.

In the more realistic settings of identification and verification, an embedding
is trained offline on eye-gaze sequences for training stimuli of a population of
training identities. At application time, the model encounters users from a dif-
ferent population who may view different stimuli. Users are enrolled by simply
storing the embedding of their enrollment sequences. The model identifies a user
when a similarity metric between an observed sequence and one of the enrollment
sequences exceeds a recognition threshold.

In the identification setting, multiple users can be enrolled. Since the ratio
of enrolled users to impostors encountered by the system at application time is
not known, the system performance has to be characterized by two ROC curves.
One curve characterizes the behavior for enrolled users; here, false positives are
enrolled users who are mistaken for different enrolled users. The second curve
characterizes the behavior for impostors; false positives are impostors who are
mistaken for one of the enrolled users.

In the verification setting, the model verifies a user’s presumed identity. This
setting is a special case of identification in which a single user is enrolled. As
no confusion of enrolled users is possible, a single ROC curve characterizes the
system performance.
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4 Network Architecture

We transform each eye-gaze sequence 〈(x0, y0), . . . , (xn, yn)〉 of absolute angles
into a sequence 〈(δx1 , δy1 ), . . . , (δxn, δyn)〉 of angular gaze velocities in ◦/s with δxi =
r(xi−xi−1) and δyi = r(yi−yi−1), where r is the sampling rate of the eye tracker
in Hz.

The angular velocity of eye movements differs greatly between the different
types of movement. While drift occurs at an average speed of around 0.1–0.4◦/s
and tremor at up to 0.3◦/s, microsaccades move at a rapid 15 to 120◦/s and sac-
cades even at up to 500◦/s [21,34,36,40]; there is, however, no general agreement
about the exact cut-off values between movement types. Global normalization of
the velocities squashes the velocities of drift and tremor to near-zero and models
trained on such data resort to extracting patterns only from macro-movements.
For this reason, our key design element of the architecture consists of independent
subnets for slow and fast movements which observe the same input sequences
but with different scaling.

Both subnets have the same number and type of layers; Fig. 1 shows the
architecture. Both subnets process the same sliding window of 1,000 velocity
pairs which corresponds to one second of input data, but the input is scaled dif-
ferently. Equation 1 transforms the input such that the low velocities that occur
during tremor and drift roughly populate the value range between −0.5 and +0.5
while velocities of microsaccades and saccades are squashed to values between
−0.5 and −1 or +0.5 and +1, depending on their direction. The parameter c
has been tuned within the range of psychologically plausible values from 0.01 to
0.06.

ts(δxi , δyi ) = (tanh(cδxi ), tanh(cδyi )) (1)

Equation 2, in which z(·) is the z-score normalization, truncates absolute
velocities that are below the minimal velocity νmin of microsaccades and sac-
cades. Based on the psychological literature, the threshold νmin was tuned within
the range of 10 to 60◦/s.

tf (δxi , δyi ) =

{
z(0) if

√
δxi

2 + δyi
2

< νmin

(z(δxi ), z(δyi )) otherwise
(2)

Each subnet consists of 9 pairs of one-dimensional convolutional and average-
pooling layers. The model performs a batch normalization on the output of each
convolutional layer before applying a ReLU activation function and performing
average pooling. Subsequently, the data feeds into two fully connected layers with
batch-normalization and ReLU activation with a fixed number of 28 and 27 units,
followed by a fully connected layer of 27 units with ReLU activation that serves
as embedding layer for identification and verification. For classification and for
the purpose of training the network in the identification and verification setting,
this is followed by a softmax output layer with a number of units equal to the
number of training identities that is discarded after training in the identification
and verification settings.
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Table 1. Parameter space used for grid search: kernel size k and number of filters f
of the convolutional layers, the scaling parameter c of Eq. 1 and the velocity threshold
νmin of Eq. 2.

Parameter Search space

c {0.01, 0.02, 0.04, 0.06}
νmin {10◦/s, 20◦/s, 30◦/s, 40◦/s, 60◦/s}
k {3, 5, 7, 9}
f {32, 64, 128, 256, 512}

Table 2. Best hyperparameter configuration found via grid search in the search space
shown in Table 1.

Parameter Layer Slow subnet Fast subnet

c ts 0.02 –

νmin tf – 40◦/s

k conv 1–3 9 9

conv 4–7 5 5

conv 8–9 3 3

f conv 1–3 128 32

conv 4–7 256 512

conv 8–9 256 512

Figure 1 shows the overall architecture which we refer to as the DeepEyeden-
tification network. The output of the subnets is concatenated and flows through
a fully connected layer of 28 units and a fully connected layer with 27 units that
serves as embedding layer for identification and verification, both with batch
normalization and ReLU activation. The overall architecture is trained in three
steps. The fast and the slow subnets are pre-trained independently and their
weights are frozen in the final step where the joint architecture is trained.

In the identification and verification settings, the final embedding consists of
the concatenation of the joint embedding and the embeddings generated by the
fast and slow subnets. In this case, the cosine similarity serves as metric for the
comparison of enrollment and input sequences.

5 Experiments

This section reports on experiments in the settings of multi-class classification,
identification, and verification. All code is available at https://osf.io/ps9qj/.

5.1 Data Collection

We use two data collections for our experiments. Makowski et al. [33] have
collected the largest eye-tracking data set for which the raw output signal is

https://osf.io/ps9qj/
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Conv1D

Average pooling

Fully connected

So max

Concatenate

Fla en

Embedding

Fig. 1. Network architecture. Parameter c denotes the scaling factor of Eq. 1, νmin the
velocity threshold of Eq. 2, k the kernel size, f the number of filters and m the number
of fully connected units. Batch normalization and ReLU activation are applied to the
output of all convolutional and fully connected layers. All convolutional layers have a
stride of 1; all pooling layers have a pooling size of 2 and a stride of 1.

available. It consists of monocular eye-tracking data sampled at 1,000 Hz from
75 participants who are reading 12 scientific texts of approximately 160 words.
In order to extract absolute gaze angles, the eye tracker has to be calibrated for
each participant. Makowski et al. exclude data from 13 participants whose data
is poorly calibrated. Since DeepEyedentification only processes velocities, we do
not exclude any data. We refer to this data set as Potsdam Textbook Corpus.

The Potsdam Textbook Corpus was acquired in a single session per user.
To explore whether individuals can be recognized across sessions, we collect an
additional data set from 10 participants à four sessions with a temporal lag of
at least one week between any two sessions. We record participants’ gaze using
a binocular Eyelink Portable Duo eye tracker at a sampling rate of 1,000 Hz.
During each session, participants are presented with 144 trials in which a black
point consecutively appears at 5 random positions on a light gray background on
a 38 × 30 cm monitor (1280 × 1024 px). The interval in which the point changes
its location varies between trials (250, 500, 1000 or 1500 ms). We refer to these
data as JuDo (Jumping Dots) data set. We use the Potsdam Textbook Corpus
for hyperparameter optimization, and evaluation of the DeepEyedentification
network in a multi-class classification and an identification and verification set-
ting, while we use the much smaller JuDo data set to assess the model’s session
bias.

5.2 Reference Methods

Existing methods for biometric identification using eye movements only operate
on macroscopic eye movements; they first preprocess the data into sequences of
saccades and fixations and use different features computed from these macro-
movements such as fixation duration or saccade amplitude. Existing methods
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that allow different stimuli for training and testing can be classified into (i)
approaches which aggregate the extracted features over the relevant record-
ing window, (ii) statistical approaches that compute the similarity of scanpaths
by applying statistical tests to the distributions of the extracted features, and
(iii) graphical models that generate sequences of fixation durations and saccade
amplitudes. As representative aggregational reference method, we choose the
model by Holland and Komogortsev (2011) that is specifically designed for eye
movements in reading [19]. As statistical reference approaches we use the first
model of this kind by Holland and Komogortsev (2013) [20] and the current
state-of-the-art model by Rigas et al. (2016) [45]. As representative graphical
models, we also use the first model of this kind by Landwehr et al. (2014) [30]
and the state-of-the-art model by Makowski et al. (2018) [33].

5.3 Hyperparameter Tuning

We optimize the hyperparameters via grid search on one hold-out validation text
from the Potsdam Textbook Corpus which we subsequently exclude from the
training and testing of the final network; Table 1 gives an overview of the space
of values and Table 2 the selected values that we keep fixed for all subsequent
experiments. We vary the kernel sizes and numbers of filters of each subnet
independently, but constrain them to be identical within convolutional layers
1–3, 4–7, and 8–9. Moreover, we constrain the kernel size to be smaller or equal
and the number of filters to be greater or equal compared to the preceding block.

5.4 Hardware and Framework

We train the networks on a server with a 40-core Intel(R) Xeon(R) CPU E5-2640
processor and 128 GB of memory and a GeForce GTX TITAN X GPU using
the NVidia CUDA platform with Tensorflow version 1.12.0 [1] and Keras version
2.2.4 [7]. As optimizer, we use Adam [26,42] with a learning rate of 0.001 for
the training of the subnets and 0.0001 for the common layers. All models and
submodels are trained with a batch size of 64 sequences.

5.5 Multi-class Classification

This section focuses on the multi-class classification setting in which the model
is trained on the Potsdam Textbook Corpus to identify users from a fixed popu-
lation of 75 users who are represented in the training data, based on an eye-gaze
sequence for an unseen text.

In this setting, data are split across texts, to ensure that the same stimulus
does not occur in training and test data. We perform leave-one-text-out cross
validation over 11 text documents. We study the accuracy as a function of the
duration of the eye-gaze signal. For each duration, we let the model process
a sliding window of 1,000 time steps and average the scores over all window
positions.
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The reference models are evaluated on the same splits. They receive prepro-
cessed data as input: sequences are split into saccades and fixations, and the
relevant fixation and saccade features are computed. At test time, these models
receive only as many macro-movements as input as fit into the duration.

Fig. 2. Multi-class classification on the Potsdam Textbook Corpus. Categorical accu-
racy as a function of the amount of available test data in seconds; error bars show
the standard error. The models marked with ∗ are evaluated on a subset of the data
containing 62 well-calibrated users, all other methods are evaluated on the full data
set of 75 readers.

Figure 2 shows that for any duration of an input sequence, the error rate of
DeepEyedentification is roughly one order of magnitude below the error rate of
the reference methods. DeepEyedentification exceeds an accuracy of 91.4% after
one second, 99.77% after 10 s and reaches 99.86% accuracy after 40 s of input,
whereas Rigas et al. [45] reach 8.37% accuracy after one second and 43.02%
after 10 s, and the method of Makowski et al. [33] reaches 91.53% accuracy after
100 s of input. We can conclude that micro-movements convey substantially more
information than lower-frequency macro-movements of the eye.

The figure also shows that the overall network is significantly more accu-
rate than either of its subnets. The fast subnet, for which only velocities of
microsaccades and saccades are visible while tremor and drift are truncated to
zero, reaches an accuracy of approximately 77% after one second. The slow sub-
net, which perceives the velocities of tremor and drift on an almost-linear scale
while the velocities of microsaccades and saccades are squashed by the sigmoidal
transformation, achieves roughly 88% of accuracy after one second.

5.6 Identification and Verification

In these settings, the input window slides over the test sequence and an enrolled
user is identified (true positive) if and when the cosine similarity between the
input window and any window in his enrollment sequence exceeds the recognition
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threshold; otherwise, the user counts as a false negative. A false positive arises
when the similarity between a test sequence from an enrolled user (confusion
setting) or an impostor (impostor setting) and the enrollment sequence of a
different user exceeds the threshold; otherwise a true negative arises. We perform
50 iterations of random resampling on the Potsdam Textbook Corpus. In each
iteration, we randomly draw 50 training users and train the DeepEyedentification
model on 9 training documents for these users. One text serves as enrollment
sequence and one text remains as observation. In the identification setting, a
randomly drawn set of 20 of the 25 users who are not used for training are
enrolled, and the remaining 5 users act as impostors. In the verification setting,
one user is enrolled and 24 impostors remain.

(a) Confusions between 20 enrolled users. (b) Confusions between an unknown num-
ber of impostors and 20 enrolled users.

Fig. 3. Identification on the Potsdam Textbook Corpus. ROC curves for the confusion
setting (a) and the impostor setting (b) as a function of the duration of the input signal
at application time, both with 20 enrolled users. Error bars show the standard error.

For the identification setting, Fig. 3a shows the ROC curves for confusions
between the 20 enrolled users on a logarithmic scale. The area under the ROC
curve increases from 0.9687 for one second of data to 0.9915 for 10 and 0.9964
after 90 s; the corresponding EER values are 0.09, 0.04, and 0.02. Figure 3b shows
the ROC curves for confusions between an impostor and one of the 20 enrolled
users; here, the AUC values lie between 0.7382 and 0.9385, the corresponding
EER values between 0.31 and 0.1.

Figure 4 shows the ROC curve for the verification setting. Here, the AUC
lies between 0.9556 for one second, 0.9879 for 10, and 0.9924 for 90 s. In this
setting, each impostor can only be confused with one presumed identity, whereas,
in the identification setting, an impostor can be confused with each of the 20
enrolled users. Figure 5 shows a t-SNE visualization [31] that illustrates how the
embedding layer clusters 10 users randomly drawn from outside the training
identities. Finally, Fig. 6 shows the time to identification as a function of the
false-positive rate for the identification and verification settings.
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Fig. 4. Verification on the Potsdam Textbook Corpus. ROC curves for the confusions
between one enrolled user and an unknown number of impostors as a function of the
duration of the input signal at application time. Error bars show the standard error.

Fig. 5. t-sne visualization of the
embedding for 10 users.

Fig. 6. Time to classification with
standard error over false-positive rate.

5.7 Assessing Session Bias

Using the JuDo data set, we investigate the DeepEyedentification network’s
ability to generalize across recording sessions by comparing its multi-class clas-
sification performance on test data taken either from the same sessions that
are used for training or from a new session. We train the DeepEyedentification
network and the reference method that performed best on the Potsdam Text-
book Corpus [45] on one to three sessions using the same hyperparameters and
learning framework as for the main experiments (see Sects. 5.3 and 5.4). We
evaluate the models using leave-one-session-out cross-validation on one held-out
session (test on a new session) and on 20% held-out test data from the remain-
ing session(s) (test on a known session). When training on multiple sessions, the
amount of training data from each session is reduced such that the total amount
of data used for training remains constant. Since binocular data is available, we
also evaluate the DeepEyedentification network on binocular data by applying
it independently to synchronous data from both eyes and averaging the softmax
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Fig. 7. Multi-class classification on the JuDo data set. Categorical accuracy on one
second of test data from either a known or a new recording session as a function of
the number of sessions used for training with a constant total amount of training data.
The results are averaged over ten iterations for each held-out test session. Error bars
show the standard error.

scores of the output layer. At training, the data from the two eyes are treated
as separate instances.

Figure 7a shows the results for monocular test sequences of one second. After
one second of input data, the model reaches a classification accuracy of 81.96%
when testing and training it on data from a single session, and an accuracy of
up to 61.16% when training and testing it on different sessions. Increasing the
number of training sessions reduces the session bias significantly (p < 0.01 for one
versus three sessions). The model of Rigas et al. [45] reaches accuracies around
16% in all settings. The use of binocular data (see Fig. 7b) not only improves the
overall performance of the DeepEyedentification network, but also significantly
reduces the session bias compared to monocular data (p < 0.01 for one training
session). When being trained on three sessions, the model achieves an accuracy
of 78.34% on a new test session after only one second of input data.

5.8 Additional Exploratory Experiments

We briefly summarize the outcome of additional exploratory experiments. First,
we explore the behavior of a variant of the DeepEyedentification architecture
that has only a single subnet which processes the globally normalized input.
This model does not exceed the performance of the fast subnet, which indicates
that it extracts only macro-movement patterns.

Second, we find that adding an input channel that indicates whether a time
step is part of a fixation or part of a saccade according to established psycholog-
ical criteria [14,15] does not improve the model performance. Moreover, forcing
the slow subnet to only process movements during fixations and forcing the
fast subnet to only process movements during saccades deteriorates the model
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performance. Our interpretation of this finding is that given the amount of infor-
mation contained in the training data, an established heuristic categorization of
movement types contributes no additional value.

Lastly, we change the convolutional architecture into a recursive architec-
ture with varying numbers of LSTM units [18]. We find that the convolutional
architecture consistently outperforms the explored LSTM architectures.

6 Discussion

This section discusses eye movements in relation to other biometric technologies.
We discuss relevant qualitative properties of biometric methods: the required
level of user interaction, the population for which the method can be applied,
attack vectors, and anti-spoofing techniques.

While fingerprints and hand-vein scans require an explicit user action—
placing the finger or the hand on a scanning device—face identification, scanning
the iris, and tracking micro-movements of the eye can in principle be performed
unobtrusively, without explicit user interaction. Scanning the iris or recording
the micro-movements of the eye without requesting the user to step close to a
camera would, however, require a camera that offers a sufficiently high resolution
over a sufficiently wide field of view.

Biometric technologies differ with respect to intrinsic limitations of their
applicability. For instance, fingerprints are worn down by hard physical labor,
iris scanning requires users with small eyes to open their eyes unnaturally wide
and is not available for users who wear cosmetic contact lenses. Since micro-
movements of the eye are a prerequisite for vision, this method applies to a large
potential user base.

All biometric identification methods can be attacked by acquiring biomet-
ric features from an authorized user and replaying the recorded data to the
sensor. For instance, face identification can be attacked by photographs, video
recordings, and 3D masks [16]. A replay attack on ocular micro-movement-based
identification is theoretically possible but requires a playback device that is able
to display a video sequence in the infrared spectrum at a rate of 1,000 frames per
second. Biometry can similarly be attacked by replaying recorded or artificially
generated data during enrollment. For instance, wearing cosmetic contact lenses
during enrollment with an iris scanner can cause the scanner to accept other
individuals who wear the same contact lens as false positives [37].

Anti-spoofing techniques for all biometric technologies firstly aim at detect-
ing imperfections in replayed data; for example, missing variation in the input
over time can indicate a photograph attack. This problem is intrinsically difficult
because it is an adversarial problem; an attacker can always minimize artifacts
in the replayed data. As an illustration, an attacker can replay a video recording
instead of a still image to add liveliness. Liveliness detection is implicitly included
in identification based on eye movements. Secondly, additional sensors can be
added—such as multi-spectral cameras or depth sensors to prevent photograph-
based and video-based replay attacks. This of course comes at additional costs
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and can still be attacked with additional effort, such as by using 3D-printed
models instead of photographs. Thirdly, the identification procedure can include
a randomized challenge to which the user has to respond. For example, a user can
be asked to look at specific positions on a screen [9,11,13,29,32,48]. Challenges
prevent replay attacks at the cost of obtrusiveness, bypassing them requires a
data generator that is able to generate the biometric feature and also respond to
the challenge. Identification based on movements of the eye is unique: respond-
ing to challenges demands neither the user’s attention nor a conscious response.
Randomized salient stimuli in the field of view immediately trigger an involun-
tary eye movement that can be validated.

7 Conclusion

Our research adds to the list of machine-learning problems for which processing
raw input data with a deep CNN greatly improves the performance over methods
that extract engineered features. In this case, the improvement is particularly
remarkable and moves a novel biometric-identification technology close to prac-
tical applicability. The error rate of the DeepEyedentification network is lower
by one order of magnitude and identification is faster by two orders of magnitude
compared to the best-performing previously-known method.

We would like to point out that at this point the embedding layer of Deep-
Eyedentification has been trained with 50 users. Nevertheless, it attains a true-
positive rate of 60% at a false-positive rate of 1% after two seconds of input in
the verification setting. By comparison, the embedding layer of a current face-
identification model that attains a true-positive rate of 95.6% at a false-positive
rate of 1% has been trained with 9,000 users [6]. A recent iris-recognition model
attains a true-positive rate of 83.8% at a false-positive rate of 1% [38]. This com-
parison highlights the high potential of identification based on micro-movements.

We have developed an approach to processing input that contains signals
on vastly different amplitudes. Global normalization squashes the velocities of
the most informative, high-frequency but low-amplitude micro-movements to
nearly zero, and networks which we train on this type of input do not exceed
the performance of the fast subnet. The DeepEyedentification network contains
two separately trained subnets that process the same signal scaled such that the
velocities of slow movements, in case of the slow subnet, and of fast movements,
in case of the fast subnet, populate the input value range.

Biometric identification based on eye movements has many possible fields of
application. In contrast to fingerprints and hand-vein scans, it is unobtrusive.
While iris scans fail for cosmetic contact lenses and frequently fail for users with
small eyes, it can be applied for all individuals with vision. A replay attack would
require a device able to display 1,000 frames per second in the infrared spectrum.
Moreover, replay attacks can be prevented by including a challenge in the form
of a visual stimulus in the identification procedure to which the user responds
with an involuntary eye movement without assigning attention to the task.
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Abstract. Learning domain-invariant representation is a dominant app-
roach for domain generalization (DG), where we need to build a clas-
sifier that is robust toward domain shifts. However, previous domain-
invariance-based methods overlooked the underlying dependency of
classes on domains, which is responsible for the trade-off between classi-
fication accuracy and domain invariance. Because the primary purpose
of DG is to classify unseen domains rather than the invariance itself,
the improvement of the invariance can negatively affect DG performance
under this trade-off. To overcome the problem, this study first expands
the analysis of the trade-off by Xie et al. [33], and provides the notion
of accuracy-constrained domain invariance, which means the maximum
domain invariance within a range that does not interfere with accuracy.
We then propose a novel method adversarial feature learning with accu-
racy constraint (AFLAC), which explicitly leads to that invariance on
adversarial training. Empirical validations show that the performance of
AFLAC is superior to that of domain-invariance-based methods on both
synthetic and three real-world datasets, supporting the importance of
considering the dependency and the efficacy of the proposed method.

Keywords: Invariant feature learning · Adversarial training · Domain
generalization · Transfer learning

1 Introduction

In supervised learning we typically assume that samples are obtained from the
same distribution in training and testing; however, because this assumption does
not hold in many practical situations it reduces the classification accuracy for
the test data [30]. This motivates research into domain adaptation (DA) [9] and
domain generalization (DG) [3]. DA methods operate in the setting where we
have access to source and (either labeled or unlabeled) target domain data during
training, and run some adaptation step to compensate for the domain shift. DG
addresses the harder setting, where we have labeled data from several source
domains and collectively exploit them such that the trained system generalizes
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Fig. 1. Explanation of domain-class dependency and the induced trade-off. (a) When
the domain and the class are independent, (b) domain invariance and classification
accuracy can be optimized at the same time, and the invariance prevents the classifier
from overfitting to source domains. (c) When they are dependent, a trade-off exists
between these two: (d) optimal classification accuracy cannot be achieved when perfect
invariance is achieved, and (e) vice versa. We propose a method to lead explicitly to (e)
rather than (d), because the primary purpose for domain generalization is classification,
not domain-invariance itself.

to target domain data without requiring any access to them. Such challenges
arise in many applications, e.g., hand-writing recognition (where domain shifts
are induced by users, [28]), robust speech recognition (by acoustic conditions,
[29]), and wearable sensor data interpretation (by users, [7]).

This paper considers DG under the situation where domain d and class labels
y are statistically dependent owing to some common latent factor z (Fig. 1-(c)),
which we referred to as domain-class dependency. For example, the WISDM
Activity Prediction dataset [16], where classes and domains correspond to activ-
ities and wearable device users, exhibits this dependency because of the (1) data
characteristics: some activities (jogging and climbing stairs) are strenuous to
the extent that some unathletic subjects avoided them, and (2) data-collection
errors: other activities were added only after the study began and the initial
subjects could not perform them. Note that the dependency is common in real-
world datasets and a similar setting has been investigated in DA studies [12,36],
but most prior DG studies overlooked the dependency; moreover, we need to
follow a approach separate from DA because DG methods cannot require any
access to target data, as we discuss further in Sect. 2.2.

Most prior DG methods utilize invariant feature learning (IFL) [7,10,27,33],
which can be negatively affected by the dependency. IFL attempts to learn latent
representation h from input data x which is invariant to domains d, or match
multiple source domain distributions in feature space. When source and tar-
get domains have some common structure (see, [27]), matching multiple source
domains leads to match source and target ones and thereby prevent the classifier
from overfitting to source domains (Fig. 1-(b)). However, under the dependency,
merely imposing the perfect domain invariance (which means h and d are indepen-
dent) adversely affects the classification accuracy as pointed out by Xie et al. [33]
and illustrated in Fig. 1. Intuitively speaking, since y contains information about
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d under the dependency, encoding information about d into h helps to predict y;
however, IFL attempts to remove all domain information from h, which causes the
trade-off. Although that trade-off occurs in source domains (because we use only
source data during optimization), it can also negatively affect the classification
performance for target domains. For example, if the target domain has charac-
teristics similar (or same as an extreme case) to those of a certain source domain,
giving priority to domain invariance obviously interferes with the DG performance
(Fig. 1-(d)).

In this paper, considering that prioritizing domain invariance under the trade-
off can negatively affect the DG performance, we propose to maximize domain
invariance within a range that does not interfere with the classification accu-
racy (Fig. 1-(e)). We first expand the analysis by [33] about domain adversar-
ial nets (DAN), a well-used IFL method, and derive Theorems 1 and 2 which
show the conditions under which domain invariance harms the classification
accuracy. In Theorem 3 we show that accuracy-constrained domain invariance,
which we define as the maximum H(d|h) (H denotes entropy) value within
a range that does not interfere with accuracy, equals H(d|y). In other words,
when H(d|h) = H(d|y), i.e., the learned representation h contains as much
domain information as the class labels, it does not affect the classification per-
formance. After deriving the theorems, we propose a novel method adversarial
feature learning with accuracy constraint (AFLAC), which leads to that invari-
ance on adversarial training. Empirical validations show that the performance
of AFLAC is superior to that of baseline methods, supporting the importance of
considering domain-class dependency and the efficacy of the proposed approach
for overcoming the issue.

The main contributions of this paper can be summarized as follows. Firstly,
we show that the implicit assumption of previous IFL methods, i.e., domain and
class are statistically independent, is not valid in many real-world datasets, and
it degrades the DG performance of them. Secondly, we theoretically show to what
extent latent representation can become invariant to domains without interfer-
ing with classification accuracy. This is significant because the analysis guides
the novel regularization approach that is suitable for our situation. Finally, we
propose a novel method which improves domain invariance while maintaining
classification performance, and it enjoys higher accuracy than the IFL methods
on both synthetic and three real-world datasets.

2 Preliminary and Related Work

2.1 Problem Statement of Domain Generalization

Denote X ,Y, and D as the input feature, class label, and domain spaces, respec-
tively. With random variables x ∈ X , y ∈ Y, d ∈ D, we can define the probability
distribution for each domain as p(x, y|d). For simplicity this paper assumes that
y and d are discrete variables. In domain generalization, we are given a training
dataset consisting of {xs

i , y
s
i }n

s

i=1 for all s ∈ {1, 2, ...,m}, where each {xs
i , y

s
i }n

s

i=1

is drawn from the source domain p(x, y|d = s). Using the training dataset, we
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train a classifier g : X → Y, and use the classifier to predict labels of samples
drawn from unknown target domain p(x, y|d = t).

2.2 Related Work

DG has been attracting considerable attention in recent years [27,28]. [18] showed
that non-end-to-end DG methods such as DICA [27] and MTAE [11] do not
tend to outperform vanilla CNN, thus end-to-end methods are desirable. End-
to-end methods based on domain invariant representation can be divided into
two categories: adversarial-learning-based methods such as DAN [9,33] and pre-
defined-metric-based methods [10,20].

In particular, our analysis and proposed method are based on DAN, which
measures the invariance by using a domain classifier (also known as a discrim-
inator) parameterized by deep neural networks and imposes regularization by
deceiving it. Although DAN was originally invented for DA, [33] demonstrated
its efficacy in DG. In addition, they intuitively explained the trade-off between
classification accuracy and domain invariance, but did not suggest any solution
to the problem except for carefully tuning a weighting parameter. AFLAC also
relates to domain confusion loss [31] in that their encoders attempted to mini-
mize Kullback-Leibler divergence (KLD) between the output distribution of the
discriminators and some domain distribution (p(d|y) in AFLAC and uniform
distribution in [31]), rather than to deceive the discriminator as DAN.

Several studies that address DG without utilizing IFL have been conducted.
For example, CCSA [26], CIDG [21], and CIDDG [22] proposed to make use of
semantic alignment, which attempts to make latent representation given class
label (p(h|y)) identical within source domains. This approach was originally pro-
posed by [12] in the DA context, but its efficacy to overcome the trade-off prob-
lem is not obvious. Also, CIDDG, which is the only adversarial-learning-based
semantic alignment method so far, needs the same number of domain classifica-
tion networks as domains whereas ours needs only one. CrossGrad [28], which is
one of the recent state-of-the-art DG methods, utilizes data augmentation with
adversarial examples. However, because the method relies on the assumption
that y and d are independent, it might not be directly applicable to our setting.
MLDG [19], MetaReg [2], and Feature-Critic [23], other state-of-the-art meth-
ods, are inspired by meta-learning. These methods make no assumption about
the relation between y and d; hence, they could be combined with our proposed
method in principle.

As with our paper, [21,22] also pointed out the importance of considering
the types of distributional shifts that occur, and they address the shift of p(y|x)
across domains caused by the causal structure y → x. However, the causal struc-
ture does not cause the trade-off problem as long as y and d are independent
(Fig. 1-(a, b)), thus it is essential to consider and address domain-class depen-
dency problem. They also proposed to correct the domain-class dependency with
the class prior-normalized weight, which enforces the prior probability for each
class to be the same across domains. Its motivation is different from ours in that
it is intended to avoid overfitting whereas we address the trade-off problem.
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In DA, [12,36] address the situation where p(y) changes across the source and
target domains by correcting the change of p(y) using unlabeled target domain
data, which is often accomplished at the cost of classification accuracy for the
source domain. However, this approach is not applicable (or necessary) to DG
because we are agnostic on target domains and cannot run such adaptation step
in DG. Instead, this paper is concerned with the change of p(y) within source
domain and proposes to maximize the classification accuracy for source domains
while improving the domain invariance.

It is worth mentioning that IFL has been used for many other context other
than DG, e.g., DA [9,32], domain transfer [6,17], and fairness-aware classification
[24,25,35]. However, adjusting it to each specific task is likely to improve per-
formance. For example, in the fairness-aware classification task [25] proposed to
optimize the fairness criterion directly instead of applying invariance to sensitive
variables. By analogy, we adapted IFL for DG so as to address the domain-class
dependency problem.

3 Our Approach

3.1 Domain Adversarial Networks

In this section, we provide a brief overview of DAN [9], on which our analysis and
proposed method are based. DAN trains a domain discriminator that attempts
to predict domains from latent representation encoded by an encoder, while
simultaneously training the encoder to remove domain information by deceiving
the discriminator.

Formally, we denote fE(x), qM (y|h), and qD(d|h) (E,M , and D are their
parameters) as the deterministic encoder, probabilistic model of the label classi-
fier, and that of domain discriminator, respectively. Then, the objective function
of DAN is described as follows:

min
E,M

max
D

J(E,M,D) = Ep(x,d,y)[−γLd + Ly], (1)

where Ld := − log qD(d|h = fE(x)), Ly := − log qM (y|h = fE(x)).

Here, the second term in Eq. 1 simply maximizes the log likelihood of qM and fE
as well as in standard classification problems. On the other hand, the first term
corresponds to a minimax game between the encoder and discriminator, where
the discriminator qD(d|h) tries to predict d from h and the encoder fE(x) tries
to fool qD(d|h).

As [33] originally showed, the minimax game ensures that the learned rep-
resentation has no or little domain information, i.e., the representation becomes
domain-invariant. This invariance ensures that the prediction from h to y is inde-
pendent from d, and therefore hopefully facilitates the construction of a classifier
capable of correctly handling samples drawn from unknown domains (Fig. 1-(b)).
Below is a brief explanation.
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Because h is a deterministic mapping of x, the joint probability distribution
p(h, d, y) can be defined as follows:

p(h, d, y) =
∫
x

p(x, d, h, y)dx =
∫
x

p(x, d, y)p(h|x)dx

=
∫
x

p(x, d, y)δ(fE(x) = h)dx, (2)

and in the rest of the paper, we denote p(h, d, y) as p̃E(h, d, y) because it depends
on the encoder’s parameter E. Using Eq. 2, Eq. 1 can be replaced as follows:

min
E,M

max
D

J(E,M,D) = Ep̃E(h,d,y)[γ log qD(d|h) − log qM (y|h)]. (3)

Assuming E is fixed, the solutions M∗ and D∗ to Eq. 3 satisfy qM∗(y|h) =
p̃E(y|h) and qD∗(d|h) = p̃E(d|h). Substituting qM∗ and qD∗ into Eq. 3 enable
us to obtain the following optimization problem depending only on E:

min
E

J(E) = − γHp̃E
(d|h) + Hp̃E

(y|h). (4)

Solving Eq. 4 allows us to obtain the solutions M∗, D∗, and E∗, which are
in Nash equilibrium. Here, Hp̃E

(d|h) means conditional entropy with the joint
probability distribution p̃E(d, h). Thus, minimizing the second term in Eq. 4
intuitively means learning (the mapping function fE to) the latent representation
h which contains as much information about y as possible. On the other hand,
the first term can be regarded as a regularizer that attempts to learn h that is
invariant to d.

3.2 Trade-Off Caused by Domain-Class Dependency

Here we show that the performance of DAN is impeded by the existence of
domain-class dependency. Concretely, we show that the dependency causes the
trade-off between classification accuracy and domain invariance: when d and y
are statistically dependent, no values of E would be able to optimize the first
and second term in Eq. 4 at the same time. Note that the following analysis also
suggests that most IFL methods are negatively influenced by the dependency.

To begin with, we consider only the first term in Eq. 4 and address the opti-
mization problem:

min
E

J1(E) = − γHp̃E
(d|h). (5)

Using the property of entropy, Hp̃E
(d|h) is bounded:

Hp̃E
(d|h) ≤ H(d). (6)

Thus, Eq. 5 has the solution E∗
1 which satisfies the following condition:

Hp̃E∗
1
(d|h) = H(d). (7)
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Equation 7 suggests that the regularizer in DAN is intended to remove all infor-
mation about domains from latent representation h, thereby ensuring the inde-
pendence of domains and latent representation.

Next, we consider only the second term in Eq. 4, thereby addressing the
following optimization problem:

min
E

J2(E) = Hp̃E
(y|h). (8)

Considering h is the mapping of x, i.e., h = fE(x), the solution E∗
2 to Eq. 8

satisfies the following equation:

Hp̃E∗
2
(y|h) = H(y|x). (9)

Here we obtain E∗
1 and E∗

2 , which can achieve perfect invariance and opti-
mal classification accuracy, respectively. Using them, we can obtain the following
theorem, which shows the existence of the trade-off between invariance and accu-
racy: perfect invariance (E∗

1 ) and optimal classification accuracy (E∗
2 ) cannot be

achieved at the same time.

Theorem 1. When H(y|x) = 0, i.e., there is no labeling error, and H(d) >
H(d|y), i.e., the domain and class are statistically dependent, E∗

1 �= E∗
2 holds.

Proof 1. Assume E∗
1 = E∗

2 = E∗. Using the properties of entropy, we can
obtain the following:

Hp̃E
(d|h) ≤ Hp̃E

(d, y|h) = Hp̃E
(d|h, y) + Hp̃E

(y|h) ≤ Hp̃E
(d|y) + Hp̃E

(y|h).
(10)

Substituting Hp̃E∗ (y|h) = H(y|x) and Hp̃E∗ (d|h) = H(d) into Eq. 10, we can
obtain the following condition:

H(d) − H(d|y) ≤ H(y|x). (11)

Because the domain and class are dependent on each other, the following condi-
tion holds:

0 < H(d) − H(d|y) ≤ H(y|x), (12)

but Eq. 12 contradicts with H(y|x) = 0. Thus, E∗
1 �= E∗

2 .

Theorem 1 shows that the domain-class dependency causes the trade-off prob-
lem. Although it assumes H(y|x) = 0 for simplicity, we cannot know the true
value of H(y|x) and there are many cases in which little or no labeling errors
occur and thus H(y|x) is close to 0.

In addition, we can omit the assumption and obtain a more general result:

Theorem 2. When I(d; y) := H(d) − H(d|y) > H(y|x), E∗
1 �= E∗

2 holds.

Proof 2. Similar to Proof 1, we assume that E∗
1 = E∗

2 and thus Eq. 11 is
obtained. Obviously, Eq. 11 does not hold when H(d) − H(d|y) > H(y|x).
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Theorem 2 shows that when the mutual information of the domain and class
I(d; y) is greater than the labeling error H(y|x), the trade-off between invariance
and accuracy occurs. Then, although we cannot know the true value of H(y|x),
the performance of DAN and other IFL methods are likely to decrease when
I(d; y) has large value.

3.3 Accuracy-Constrained Domain Invariance

If we cannot avoid the trade-off, the next question is to decide how to accommo-
date it, i.e., to what extent the representation should become domain-invariant
for DG tasks. Here we provide the notion of accuracy-constrained domain invari-
ance, which is the maximum domain invariance within a range that does not
interfere with the classification accuracy. The reason for the constraint is that
the primary purpose of DG is the classification for unseen domains rather than
the invariance itself, and the improvement of the invariance could detrimentally
affect the performance. For example, in WISDM, if we know the target activity
was performed by a young rather than an old man, we might predict the activity
to be jogging with a higher probability; thus, we would have to avoid removing
such domain information that may be useful in the classification task.

Theorem 3. Define accuracy-constrained domain invariance as the maximum
Hp̃E

(d|h) value under the constraint that H(y|x) = 0, i.e., there is no labeling
error, and classification accuracy is maximized, i.e., Hp̃E

(y|h) = H(y|x). Then,
accuracy-constrained domain invariance equals H(d|y).

Proof 3. Using Eq. 10 and Hp̃E
(y|h) = H(y|x), the following inequation holds:

Hp̃E
(d|h) ≤ H(y|x) + H(d|y). (13)

Substituting H(y|x) = 0 into Eq. 13, the following inequation holds:

Hp̃E
(d|h) ≤ H(d|y). (14)

Thus, the maximum Hp̃E
(d|h) value under the optimal classification accuracy

constraint is H(d|y).

Note that we could improve the invariance more when H(y|x) > 0 (that is
obvious considering Eq. 13), but we cannot know the true value of H(y|x) as
we discussed in Sect. 3.2. Thus, accuracy-constrained domain invariance can be
viewed as the worst-case guarantee.
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Fig. 2. Comparative illustration of DAN and AFLAC. (a) The classifier and discrimi-
nator try to minimize Ly and Ld, respectively. The encoder tries to minimize Ly and
maximize Ld (fool the discriminator). (b) The discriminator tries to approximate true
p̃E(d|h) by minimizing Ld. The encoder tries to minimize divergence between p̃E(d|h)
and p(d|y) by minimizing LDKL .

3.4 Proposed Method

Based on the above analysis, the remaining challenge is to determine how to
achieve accuracy-constrained domain invariance, i.e., imposing regularization
such that makes Hp̃E

(d|h) = H(d|y) holds. Although DAN might be able to
achieve this condition by carefully tuning the strength of the regularizer (γ in
Eq. 1), such tuning is time-consuming and impractical, as suggested by our exper-
iments. Alternatively, we propose a novel method named AFLAC by modifying
the regularization term of DAN: whereas the encoder of DAN attempts to fool the
discriminator, that of AFLAC attempts to directly minimize the KLD between
p(d|y) and qD(d|h). Formally, AFLAC solves the following joint optimization
problem by alternating gradient descent.

min
D

W (E,D) = Ep(x,d)[Ld] (15)

min
E,M

V (E,M) = Ep(x,d,y)[γLDKL
+ Ly], (16)

where LDKL
:= DKL[p(d|y)|qD(d|h = fE(x))].

The minimization of Ly and Ld, respectively, means maximization of the log-
likelihood of qM and qD as well as in DAN. However, the minimization of LDKL

differs from the regularizer of DAN in that it is intended to satisfy qD(d|h) =
p(d|y). And if qD(d|h) well approximates p̃E(d|h) by the minimization of Ld in
Eq. 15, the minimization of LDKL

leads to p̃E(d|h) = p(d|y). Figure 2-(b) outlines
the training of AFLAC.
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Here we formally show that AFLAC is intended to achieve Hp̃E
(d|h) =

H(d|y) (accuracy-constrained domain invariance) by a Nash equilibrium analysis
smilar to [13,33]. As well as in Sect. 3.1, D∗ and M∗, which are the solutions to
Eqs. 15, 16 with fixed E, satisfy q∗

D = p̃E(d|h) and q∗
M = p̃E(y|h), respectively.

Thus, V in Eq. 16 can be written as follows:

V (E) = E[γDKL[p(d|y)|p̃E(d|h)]] + Hp̃E
(y|h). (17)

E∗, which is the solution to Eq. 17 and in Nash equilibrium, satisfies
not only Hp̃E∗ (y|h) = H(y|x) (optimal classification accuracy) but also
Eh,y∼p̃E∗ (h,y)[DKL[p(d|y)|p̃E∗(d|h)]] = 0, which is a sufficient condition for
Hp̃E∗ (d|h) = H(d|y) by the definition of the conditional entropy.

In training, p(x, d, y) in the objectives (Eqs. 15, 16) is approximated by empir-
ical distribution composed of the training data obtained from m source domains,
i.e., {x

(1)
i , y

(1)
i , d = 1}n(1)

i=1 , ..., {x
(m)
i , y

(m)
i , d = m}n(m)

i=1 . Also, p(d|y) used in Eq. 16
can be replaced by the maximum likelihood or maximum a posteriori estimator
of it. Note that, we could use some distances other than DKL[p(d|y)|qD(d|h)] in
Eq. 16, e.g., DKL[qD(d|h)|p(d|y)], but in doing so, we could not observe perfor-
mance gain, hence we discontinued testing them.

4 Experiments

4.1 Datasets

Here we provide a brief overview of one synthetic and three real-world datasets
(PACS, WISDM, IEMOCAP) used for the performance evaluation. Although
WISDM and IEMOCAP have not been widely used in DG studies, previous
human activity recognition and speech emotion recognition studies (e.g., [1,5,8])
used them in the domain generalization setting (i.e., source and target domains
are disjoint), so they can be regarded as the practical use case of domain general-
ization. The concrete sample sizes for each d and y, and the network architectures
for each dataset are shown in supplementary.1

BMNISTR. We created the Biased and Rotated MNIST dataset (BMNISTR)
by modifying the sample size of the popular benchmark dataset MNISTR [11],
such that the class distribution differed among the domains. In MNISTR, each
class is represented by 10 digits. Each domain was created by rotating images
by 15◦ increments: 0, 15, 30, 45, 60, and 75 (referred to as M0, ..., M75). Each
image was cropped to 16 × 16 in accordance with [11]. We created three variants
of MNISTR that have different types of domain-class dependency, referred to as
BMNISTR-1 through BMNISTR-3. As shown in Table 1-left, BMNISTR-1, -2
have similar trends but different degrees of dependency, whereas BMNISTR-1
and BMNISTR-3 differ in terms of their trends.

PACS. The PACS dataset [18] contains 9991 images across 7 categories (dog,
elephant, giraffe, guitar, house, horse, and person) and 4 domains comprising
1 Code and Supplementary are available at https://github.com/akuzeee/AFLAC.

https://github.com/akuzeee/AFLAC
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different stylistic depictions (Photo, Art painting, Cartoon, and Sketch). It has
domain-class dependency probably owing to the data characteristics. For exam-
ple, p(y = person|d = Phot) is much higher than p(y = person|d = Sketch),
indicating that photos of a person are easier to obtain than those of animals,
but sketches of persons are more difficult to obtain than those of animals in the
wild. For training, we used the ImageNet pre-trained AlexNet CNN [15] as the
base network, following previous studies [18,19]. The two-FC-layer discriminator
was connected to the last FC layer, following [9].

WISDM. The WISDM Activity Prediction dataset contains sensor data of
accelerometers of six human activities (walking, jogging, upstairs, downstairs,
sitting, and standing) performed by 36 users (domains). WISDM has the depen-
dency for the reason noted in Sect. 1. In data preprocessing, we use the sliding-
window procedure with 60 frames (=3 s) referring to [1], and the total number of
samples was 18210. We parameterized the encoder using three 1-D convolution
layers followed by one FC layer and the classifier by logistic regression, following
previous studies [14,34].

IEMOCAP. The IEMOCAP dataset [4] is the popular benchmark dataset for
speech emotion recognition (SER), which aims at recognizing the correct emo-
tional state of the speaker from speech signals. It contains a total of 10039
utterances pronounced by ten actors (domains, referred to as Ses01F, Ses01M
through Ses05F, Ses05M) with emotional categories, and we only consider the
four emotional categories (happy, angry, sad, and neutral) referring to [5,8].
Also, we referred to [5] about data preprocessing: we split the speech signal into
equal-length segments of 3s, and extracted 40-dimensional log Mel-spectrogram,
its deltas, and delta-deltas. We parameterized the encoder using three 2-D con-
volution layers followed by one FC layer and the classifier by logistic regression.

4.2 Baselines

To demonstrate the efficacy of the proposed method AFLAC, we compared
it with vanilla CNN and adversarial-learning-based methods. Specifically, (1)
CNN is a vanilla convolutional networks trained on the aggregation of data
from all source domains. Although CNN has no special treatments for DG, [18]
reported that it outperforms many traditional DG methods. (2) DAN [33] is
expected to generalize across domains utilizing domain-invariant representation,
but it can be affected by the trade-off between domain invariance and accuracy
as explained in Sect. 3.2. (3) CIDDG is our re-implementation of the method
proposed in [22], which is designed to achieve semantic alignment on adver-
sarial training. Additionally, we used (4) AFLAC-Abl, which is a version of
AFLAC modified for ablation studies. AFLAC-Abl replaces DKL[p(d|y)|qD(d|h)]
in Eq. 16 of DKL[p(d)|qD(d|h)], thus it attempts to learn the representation that
is perfectly invariant to domains or make H(d|h) = H(d) hold as well as DAN.
Comparing AFLAC and AFLAC-Abl, we measured the genuine effect of taking
domain-class dependency into account. When training AFLAC and AFLAC-Abl,
we cannot obtain true p(d|y) and p(d), hence we used their maximum likelihood
estimators for calculating the KLD terms.
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Table 1. Left: Sample sizes for each domain-class pair in BMNISTR. Those for the
classes 0∼4 are variable across domains, whereas the classes 5∼9 have identical sample
sizes across domains. Right: Mean F-measures for the classes 0∼4 and classes 5∼9 with
the target domain M0. RI denotes relative improvement of AFLAC to AFLAC-Abl

Dataset Class M0 M15 M30 M45 M60 M75
BMNISTR-1 0∼4 100 85 70 55 40 25

5∼9 100 100 100 100 100 100
BMNISTR-2 0∼4 100 90 80 70 60 50

5∼9 100 100 100 100 100 100
BMNISTR-3 0∼4 100 25 100 25 100 25

5∼9 100 100 100 100 100 100

CNN DAN CIDDG AFLAC AFLAC RI
Dataset Class -Abl

BMNISTR-1 0∼4 83.86 84.54 87.50 87.46 90.62 3.6%
5∼9 83.90 85.24 87.46 86.46 88.10 1.9%

BMNISTR-2 0∼4 82.54 85.30 87.64 88.60 89.64 1.2%
5∼9 82.18 85.80 86.74 87.60 89.04 1.6%

BMNISTR-3 0∼4 71.26 79.22 76.76 76.56 80.02 4.5%
5∼9 78.62 83.14 82.64 82.94 82.80 -0.2%

4.3 Experimental Settings

For all the datasets and methods, we used RMSprop for optimization. Further, we
set the learning rate, batch size, and the number of iterations as 5e−4, 128, and
10k for BMNISTR; 5e−5, 64, and 10k for PACS; 1e−4, 64, and 10k for IEMO-
CAP; 5e−4 (with exponential decay with decay step 18k and 24k, and decay
rate 0.1), 128, and 30k for WISDM, respectively. Also, we used the annealing of
weighting parameter γ proposed in [9], and unless otherwise mentioned chose γ
from {0.0001, 0.001, 0.01, 0.1, 1, 10} for DAN, CIDDG, AFLAC-Abl, and AFLAC.
Specifically, onBMNISTRandPACS,we employeda leave-one-domain-out setting
[11], i.e., we chose one domain as target and used the remaining domains as source
data. Then we split the source data into 80% of training data and 20% of validation
data, assuming that target data are not absolutely available in the training phase.
On IEMOCAP, we chose the best γ from {0.0001, 0.001, 0.01, 0.1, 1, 10, 100, 1000}
using disjoint validation domain, referring to [5,8]. On WISDM, we randomly
selected <20/16> users as <source/target> domains, and split the source data
into training and validation data because one-domain-leave-out evaluation is com-
putationally expensive. Then, we conducted experiments multiple times with dif-
ferent random weight initialization; we trained the models on 10, 20, and 20
seeds in BMNISTR, WISDM, and IEMOCAP, chose the best hyperparameter
that achieved the highest validation accuracies measured in each epoch, and
reported the mean scores (accuracies and F-measures) for the hyperparameter.
On PACS, because it requires a long time to train on, we chose the best γ from
{0.0001, 0.001, 0.01, 0.1} after three experiments, and reported the mean scores in
experiments with 15 seeds.

4.4 Results

We first investigated the extent to which domain-class dependency affects the
performance of the IFL methods. In Table 1-right, we compared the mean F-
measures for the classes 0 through 4 and classes 5 through 9 in BMNISTR with
the target domain M0. Recall that the sample sizes for the classes 0∼4 are vari-
able across domains, whereas the classes 5∼9 have identical sample sizes across



Adversarial Invariant Feature Learning with Accuracy Constraint 327

Table 2. Accuracies for each dataset and target domain. The I(d; y) column is esti-
mated from source domain data, which indicates the domain-class dependency.

Dataset Target I(d; y) CNN DAN CIDDG AFLAC-Abl AFLAC

BMNISTR-1 M0 0.026 83.9 ± 0.4 85.0 ± 0.4 87.4 ± 0.3 87.0 ± 0.4 89.3 ± 0.4

M15 0.034 98.5 ± 0.2 98.5 ± 0.1 98.3 ± 0.2 98.3 ± 0.2 98.8 ± 0.1

M30 0.037 97.5 ± 0.1 97.4 ± 0.1 97.4 ± 0.2 97.6 ± 0.1 98.3 ± 0.2

M45 0.036 89.9 ± 0.9 90.2 ± 0.6 89.8 ± 0.5 92.8 ± 0.5 93.3 ± 0.6

M60 0.030 96.7 ± 0.3 97.0 ± 0.2 97.2 ± 0.1 96.6 ± 0.2 97.4 ± 0.2

M75 0.017 87.1 ± 0.5 87.3 ± 0.4 88.2 ± 0.3 87.7 ± 0.5 88.1 ± 0.4

Avg 92.3 92.6 93.1 93.3 94.2

BMNISTR-2 Avg 92.2 92.7 93.1 94.0 94.5

BMNISTR-3 Avg 90.6 91.7 91.4 91.6 92.9

PACS Photo 0.102 82.2 ± 0.4 81.8 ± 0.4 – 82.5 ± 0.4 83.5 ± 0.3

Art painting 0.117 61.0 ± 0.5 60.9 ± 0.5 – 62.6 ± 0.4 63.3 ± 0.3

Cartoon 0.131 64.9 ± 0.5 64.9 ± 0.6 – 64.2 ± 0.3 64.9 ± 0.3

Sketch 0.023 61.4 ± 0.5 61.4 ± 0.5 – 59.6 ± 0.7 60.1 ± 0.7

Avg 67.4 67.2 – 67.2 68.0

WISDM 16 users 0.181 84.0 ± 0.4 83.8 ± 0.3 84.4 ± 0.4 83.7 ± 0.3 84.4 ± 0.3

IEMOCAP Ses01F 0.005 56.0 ± 0.7 60.1 ± 0.7 – 62.9 ± 0.5 60.4 ± 0.9

Ses01M 61.0 ± 0.3 63.5 ± 0.5 – 68.0 ± 0.5 66.1 ± 0.3

Ses02F 0.045 61.2 ± 0.5 60.4 ± 0.5 – 65.8 ± 0.5 64.2 ± 0.4

Ses02M 76.6 ± 0.4 47.2 ± 0.7 – 64.7 ± 1.7 74.3 ± 1.3

Ses03F 0.037 69.2 ± 0.9 71.9 ± 0.4 – 70.0 ± 0.6 70.1 ± 0.4

Ses03M 56.9 ± 0.4 57.3 ± 0.5 – 56.2 ± 0.4 56.8 ± 0.4

Ses04F 0.120 75.5 ± 0.5 75.5 ± 0.6 – 75.4 ± 0.6 75.7 ± 0.6

Ses04M 58.5 ± 0.5 57.4 ± 0.5 – 58.7 ± 0.5 59.2 ± 0.5

Ses05F 0.063 61.8 ± 0.4 62.4 ± 0.5 – 61.9 ± 0.3 63.4 ± 0.7

Ses05M 47.6 ± 0.3 46.9 ± 0.4 – 49.6 ± 0.4 49.9 ± 0.4

Avg 62.4 60.3 – 63.3 64.0

domains (Table 1-left). The F-measures show that AFLAC outperformed base-
lines in most dataset-class pairs, which supports that domain-class dependency
reduces the performance of domain-invariance-based methods and that AFLAC
can mitigate the problem. Further, the relative improvement of AFLAC to
AFLAC-Abl is more significant for the classes 0∼4 than for 5∼9 in BMNISTR-1
and BMNISTR-3, suggesting that AFLAC tends to increase performance more
significantly for classes in which the domain-class dependency occurs. More-
over, the improvement is more significant in BMNISTR-1 than in BMNISTR-2,
suggesting that the stronger the domain-class dependency is, the lower the per-
formance of domain-invariance-based methods becomes. This result is consistent
with Theorem 2, which shows that the trade-off is likely to occur when I(d; y) is
large. Finally, although the dependencies of BMNISTR-1 and BMNISTR-3 have
different trends, AFLAC improved the F-measures in both datasets.

Next we compared the mean accuracies (with standard errors) in both syn-
thetic (BMNISTR) and real-world (PACS, WISDM, and IEMOCAP) datasets
(Table 2). Note that the performance of our baseline CNN on PACS, WISDM,
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and IEMOCAP is similar but partly different from that reported in previous
studies ([22], [1], and [8], respectively) probably because the DG performance
strongly depends on validation methods and other implementation details as
reported in many recent studies [1,2,8,23]. Also, we trained CIDDG only on
BMNISTR and WISDM due to computational resource constraint. This table
enables us to make the following observations. (1) Domain-class dependency in
real-world datasets negatively affects the DG performance of IFL methods. The
results obtained on PACS (Avg) and WISDM showed that the vanilla CNN out-
performed the IFL methods (DAN and AFLAC-Abl). Additionally, the results on
IEMOCAP shows that AFLAC tended to outperform AFLAC-Abl when I(d; y)
had large values (in Ses04 and Ses05), which is again consistent with Theorem2.
These results support the importance of considering domain-class dependency in
real-world datasets. (2) AFLAC performed better than the baselines on all the
datasets in average, except for CIDDG on WISDM. Note that AFLAC is more
parameter efficient than CIDDG as we noted in Sect. 2.2. These results supports
the efficacy of the proposed model to overcome the trade-off problem.

Finally, we investigated the relationship between the strength of regulariza-
tion and performance. In DG, it is difficult to choose appropriate hyperparame-
ters because we cannot use target domain data at validation step (since they are
not available during training); therefore, hyperparameter insensitivity is signif-
icant in DG. Figure 3 shows the hyperparameter sensitivity of the classification
accuracies for DAN, CIDDG, AFLAC-Abl, and AFLAC. These figures suggest
that DAN and AFLAC-Abl sometimes outperformed AFLAC with appropriate
γ values, but there is no guarantee that such γ values will be chosen by vali-
dation whereas AFLAC is robust toward hyperparameter choice. Specifically, as
shown in Figs. 3-(b, d), DAN and AFLAC-Abl outperformed AFLAC with γ = 1
and 10, respectively. One possible explanation of those results is that accuracy
for target domain sometimes improves by giving priority to domain invariance
at the cost of the accuracies for source domains, but AFLAC improves domain
invariance only within a range that does not interfere with accuracy for source
domains. However, as shown in Fig. 3, the performance of DAN and AFLAC-
Abl are sensitive to hyperparameter choice. For example, although they got high
scores with γ = 1 in Fig. 3-(b), the scores dropped rapidly when γ increases to
10 or decreases to 0.01. Also, the scores of DAN and AFLAC-Abl in Fig. 3-(c)
dropped significantly with γ > 10, and such large γ was indeed chosen by over-
fitting to validation domain. On the other hand, Figs. 3-(a, b, c, d) show that the
accuracy gaps of AFLAC-Abl and AFLAC increase with strong regularization
(such as when γ = 10 or 100). These results suggest that AFLAC, as it was
designed, does not tend to reduce the classification accuracy with strong regu-
larizer, and such robustness of AFLAC might have yielded the best performance
shown in Table 2.
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(a) BMNISTR-1, M0 (b) WISDM (c) IEMOCAP, 02M (d) IEMOCAP, 05F

Fig. 3. Classification Accuracy with various γ. Each caption shows dataset name and
target domain. The round markers correspond to γ values chosen by validation. The
error bars correspond to standard errors.

5 Conclusion

In this paper, we addressed domain generalization under domain-class depen-
dency, which was overlooked by most prior DG methods relying on IFL. We
theoretically showed the importance of considering the dependency and the way
to overcome the problem by expanding the analysis of [33]. We then proposed a
novel method AFLAC, which maximizes domain invariance within a range that
does not interfere with classification accuracy on adversarial training. Empirical
validations show the superior performance of AFLAC to the baseline methods,
supporting the importance of the domain-class dependency in DG tasks and the
efficacy of the proposed method to overcome the issue.
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Abstract. Human eye gaze patterns are highly individually character-
istic. Gaze patterns observed during the routine access of a user to a
device or document can therefore be used to identify subjects unobtru-
sively, that is, without the need to perform an explicit verification such
as entering a password. Existing approaches to biometric identification
from gaze patterns segment raw gaze data into short, local patterns called
saccades and fixations. Subjects are then identified by characterizing the
distribution of these patterns or deriving hand-crafted features for them.
In this paper, we follow a different approach by training deep neural net-
works directly on the raw gaze data. As the distribution of short, local
patterns has been shown to be particularly informative for distinguishing
subjects, we introduce a parameterized and end-to-end learnable statis-
tical aggregation layer called the quantile layer that enables the network
to explicitly fit the distribution of filter activations in preceding layers.
We empirically show that deep neural networks with quantile layers out-
perform existing probabilistic and feature-based methods for identifying
subjects based on eye movements by a large margin.

Keywords: Eye movements · Deep learning · Biometry

1 Introduction

Human visual perception is a fundamentally active process. We are not simply
exposed to an incoming flow of visual sensory data, but rather actively control the
visual input by continuously performing eye movements that direct the gaze focus
to those points in space that are estimated to be most informative. The interplay
between visual information processing and gaze control has been extensively
studied in cognitive psychology, as it constitutes an important example of the
link between cognitive processing and motor control [9,19].

One insight from existing studies in psychology is that the resulting gaze
patterns are highly individually characteristic [22,23]. It is therefore possible
to identify subjects based on their observed gaze patterns with high accuracy,
and the use of gaze patterns as a biometric feature has been widely studied.
c© Springer Nature Switzerland AG 2020
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Approaches for using gaze patterns for identification can be divided into two
groups. One group of methods uses an active challenge-response protocol, that
is, identification is based on eye movements in response to an artificial visual
stimulus [13,25]. This has the disadvantage that additional time and effort of a
user is required in order to confirm her identity. In the second group of methods,
biometric identification is based on gaze patterns observed during the routine
access of a user to a device or document [17,26]. This way the identity can be
confirmed unobtrusively, without requiring reaction to a specific challenge proto-
col. If the observed gaze patterns are unlikely to be generated by an authorized
individual, access can be terminated or an additional verification requested.

Existing approaches for identifying subjects from gaze patterns mostly seg-
ment the raw eye gaze data into fixations (short periods of time in which the
gaze is relatively stable) and saccades (rapid movements of the gaze to a new
fixation position). They then either use probabilistic models that characterize
the distribution of saccades and fixations [1,17,20], or hand-crafted statistical
features that characterize different properties of saccades such as lengths, veloc-
ities, or accelerations [7,12,26]. In this paper, we follow a different approach by
training deep neural networks on the raw gaze position data, without segmenting
gaze movements into saccades and fixations or applying handcrafted aggregate
features. However, we take inspiration from existing probabilistic approaches,
which have shown that the distribution of local, short-term patterns in gaze
movements such as saccades and fixations can be highly characteristic for dif-
ferent individuals. We therefore design neural network architectures that can
extract such local patterns and characterize their distribution.

More specifically, we introduce a parameterized and end-to-end learnable
statistical aggregation layer called the quantile layer that enables the network
to explicitly fit the distribution of filter activations in preceding layers. We design
network architectures in which stacked 1D-convolution layers extract local, short-
term patterns from eye movement sequences. The quantile layer characterizes
the distribution of these patterns by approximating the quantile function, that
is, the inverse cumulative distribution function, of the activations of the filters
across the time series of gaze movements. The quantile function is approximated
by sampling the empirical quantile function of the activations at a set of points,
which are trainable model parameters. Natural special cases of the quantile layer
are global maximum pooling and global median pooling; median pooling will
approximate average pooling if filter activations are approximately symmetric.
The proposed quantile layer can thus be seen as an extension of standard global
pooling layers that retains more information about the distribution of activations
than the average or maximum. In the same way as standard global pooling layers,
the quantile layer aggregates over the entire sequence, enabling the model to work
with variable-length sequences. By learning the sampling points, the model can
focus on those parts of the distribution function that are most discriminative for
identification. Using a piecewise linear approximation to the empirical quantile
function makes the layer fully differentiable; models can thus be trained end-to-
end using gradient descent. We empirically show that deep neural networks using
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quantile layers outperform existing probabilistic and feature-based approaches
for identification based on gaze movements by a large margin.

Unobtrusive biometric identification has been most extensively studied based
on gaze patterns during reading. In this paper, we study biometric eye gaze
models for arbitrary non-text input. We specifically use data from the dynamic
images and eye movements (DIEM) project, a large-scale data collection effort
during which gaze movements of over 200 participants each watching a subset of
84 video sequences were recorded [21]. This data is approximately representative
of scenarios where a user is not reading text (e.g., watching a live stream from
a security camera), broadening the application range of gaze-based biometrics.

The rest of the paper is organized as follows. Section 2 discusses related work.
Section 3 introduces the quantile layer, Sect. 4 discusses deep neural network
architectures for eye gaze biometrics. We empirically study identification accu-
racy of the proposed methods and different baselines in Sect. 5.

2 Related Work

Biometric identification from eye gaze patterns observed as a response to a spe-
cific stimulus has been studied extensively. The stimulus can for example be a
moving [13,16,18,31] or fixed [2] dot on a monitor, or a specific image stimu-
lus [25]. More recently, unobtrusive biometric identification based on gaze pat-
terns observed during the routine access of a user to a device or document
has been studied. This approach has the advantage that no additional time and
attention of a user are needed for identification, because gaze patterns are gener-
ated on material that is viewed anyway. Most unobtrusive approaches are based
on observing eye movements of subjects generated while reading text [1,11,26],
but identification based on eye movements generated while viewing non-text
input has also been studied [15].

Existing approaches for biometric identification (with the exception of the
work by Kinnunen et al. [15], see below) first segment the observed eye move-
ment data into fixations (periods of little gaze movement during which the visual
content at the current position is processed) and saccades (short, ballistic move-
ments that relocate the gaze to a new fixation position). One approach that has
been widely studied in the literature is to derive hand-crafted features of these
saccades and fixations that are believed to be characteristic for individual sub-
jects. Holland and Komogortsev have studied relatively simple features such as
average fixation duration, average saccade amplitude and average saccade veloc-
ity [11,12]. This line of work was later extended to more complex features such as
saccadic vigor, acceleration, or the so-called main sequence feature [7,26]. Sub-
jects are then identified by matching the features of observed eye gaze sequences
generated by an unknown individual to those of known individuals, using for
example shortest distance [11], statistical tests [12,26], or an RBF classifier [7].

Another popular approach is to use probabilistic models that characterize
user-specific distributions over saccades and fixations. Landwehr et al. [17] have
studied simple parametric models based on the Gamma family. Abdelwahab
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et al. [1] have studied semiparametric models in which the identity of a user
is inferred by Bayesian inference based on Metropolis-Hastings sampling under
a Gaussian process prior. Makowski et al. [20] study a discriminative model
that takes into account lexical features of fixated words, such as word frequency
and word lengths, and show that this can further increase identification accu-
racy from gaze patterns obtained during reading. The approach discussed by
Kinnunen et al. [15] also uses a probabilistic approach, by fitting a Gaussian
mixture model to the distribution of angles between successive gaze positions.
Unlike the approaches discussed above, Kinnunen et al. do not segment the eye
signal into fixations and saccades, but rather use all recorded gaze positions. Our
work differs from these existing approaches to biometric identification from gaze
patterns in that we train deep neural networks on the raw eye gaze to distinguish
between different subjects. We show empirically that this leads to large gains
in identification accuracy compared to existing feature-based and probabilistic
approaches, including the model by Kinnunen et al. [15].

The quantile layer we propose as a more expressive statistical aggregation
layer than standard global pooling is related to the learnable histogram layers
proposed by Wang et al. [30] and Sedighi and Fridrich [27]. Histogram layers
are also fully differentiable, parameterized statistical aggregation layers. They
characterize the distribution of values in the input to the layer in terms of an
approximation to a histogram, in which bin centers and bin widths are learnable
parameters. Wang et al. [30] use linear approximations to smoothen the sharp
edges in a traditional histogram function and enable gradient flow. Sedighi and
Fridrich [27] use Gaussian kernels as a soft, differentiable approximation to his-
togram bins. The histogram layers proposed by Wang et al. [30] and Sedighi and
Fridrich [27] directly approximate the probability density of the input values,
while the quantile layer we propose approximates the cumulative distribution
function. The quantile layer also naturally generalizes maximum pooling and
median pooling, while the histogram layers do not directly relate to standard
pooling operations. We use architectures based on the histogram layers of Wang
et al. [30] and Sedighi and Fridrich [27] as baselines in our empirical study.

Finally, Couture et al. [5] have recently studied quantiles as a method to
aggregate instance-level predictions when training deep multi-instance neural
networks for detecting tumor type from tissue images. In their application,
images are represented as bags of subimages, and predictions on individual
subimages are combined into a bag prediction based on the quantile function.

3 The Quantile Layer

This section introduces the quantile layer, a parameterized and end-to-end learn-
able layer for characterizing the distribution of filter activations in a preceding
convolution layer. This layer will be a central component in the deep neural net-
work architectures for eye gaze biometrics that we develop in the next section.

The gaze movement data we study is a discrete time series of 2D-coordinates
that indicate the current focus point of the gaze on a plane (e.g., a monitor).
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Fig. 1. Density function, cumulative distribution function, and quantile function
(dashed lines) with empirical counterparts (solid lines) for a normally distributed vari-
able x ∼ N (0, 1). Tick marks at zero line show a sample from the distribution.

The discrete time series is obtained by sampling the continuous gaze movements
at a regular frequency, and can be observed using standard eye tracking devices.
Existing approaches for user identification from eye movements first preprocess
the raw signal into two kinds of short, local patterns: saccades (rapid movements,
characterized by their amplitude) and fixations (periods of almost constant gaze
position, characterized by their duration). They then distinguish users based
on their distribution of saccade amplitudes and fixation durations (and possi-
bly other local features). This is done either by computing aggregate features
[11,12,26] or by fitting parametric or semiparametric probabilistic models to the
observed distributions [1,17,20]. The key insight from this existing work is that
the most informative feature for identification is the distribution of short, local
gaze patterns seen in a particular sequence. In contrast, long-term dependen-
cies in the time series will be less informative, as these are more likely to be a
function of the visual input than the identity of the viewer.

Motivated by these observations in earlier work, we study network archi-
tectures that consists of a deep arrangement of 1D-convolution filters, which
extract local, short-term patterns from the raw gaze signal, followed by the
quantile layer whose output characterizes the distribution of these patterns. We
design the quantile layer in such a way that it naturally generalizes global max-
imum, median, and minimum pooling. As we assume that the distribution of
short-term patterns is most informative, we use standard non-dilated convolu-
tion operations, rather than dilated convolution operations which have recently
been used for modeling more long-term patterns in time series, for example for
audio data [29].

Let x denote a real-valued random variable whose distribution is given by
the probability density function f(x). The distribution of x can be expressed
in different forms: by the density function f(x), by the cumulative distribution
function F : R → [0, 1] defined by

F (x) =
∫ x

−∞
f(z)dz, (1)
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or by the quantile function Q : (0, 1) → R defined by

Q(r) = inf{x ∈ R : r ≤ F (x)} (2)

where inf denotes the infimum and (0, 1) ⊂ R the open interval from zero to
one. The quantile function Q is characterized by p(x ≤ Q(r)) = r. That is,
the quantile function yields the value Q(r) ∈ R such that all values of the
random variable x smaller than Q(r) together account for probability mass r. If
the cumulative distribution function F is continuous and strictly monotonically
increasing, which it will be if the density function f(x) is continuous and positive
everywhere on R, the quantile function Q is simply the inverse of the cumulative
distribution function, Q = F−1. Figure 1 visualizes the relationship between
density, cumulative distribution, and quantile functions for a standard normally
distributed variable x ∼ N (0, 1).

If X = {x1, ..., xn} with xi ∼ p(x) denotes a sample of the random variable
x, the empirical cumulative distribution function F̂X : R → [0, 1] is a non-
parametric estimator of the cumulative distribution function F . It is given by

F̂X (x) =
1
n

n∑
i=1

I(xi ≤ x) (3)

where

I(xi ≤ x) =

{
1 if xi ≤ x

0 if xi > x.
(4)

In analogy to the empirical distribution function, the empirical quantile function
Q̂X : (0, 1] → R is a non-parametric estimator of the quantile function Q. It is
defined by

Q̂X (r) = inf{x ∈ R : r ≤ F̂X (x)}. (5)

Figure 1 visualizes the empirical cumulative distribution function F̂ (x) and the
empirical quantile function Q̂(r) together with a set of samples for a standard
normally distributed variable. For sufficiently large sample size n, the empirical
quantile function faithfully characterizes the distribution of x in the following
sense. According to the Glivenko-Cantelli theorem, F̂X uniformly converges to
the true cumulative distribution function F ,

sup
x∈R

|F̂X (x) − F (x)| a.s.−−→ 0 (6)

[28], where we use a.s.−−→ to denote almost sure convergence in the sample size n.
For all r ∈ (0, 1) this implies almost sure convergence of Q̂X (r) to Q(r),

|Q̂X (r) − Q(r)| a.s.−−→ 0 (7)

provided that Q is continuous at r [24]. The empirical quantile function thus
faithfully estimates the quantile function in the limit. Finally, the quantile func-
tion Q determines the distribution over x, that is, for a given quantile func-
tion Q there is a unique cumulative distribution function F such that Eq. 2 is
satisfied [6].
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Let π : {1, ..., n} → {1, ..., n} denote a permutation that sorts the sample in
ascending order, that is, xπ(i) ≤ xπ(i+1) for i ∈ {1, ..., n − 1}. Then

Q̂X (r) = xπ(k) (8)

for the unique k ∈ N fulfilling the condition

k − 1
n

< r ≤ k

n
. (9)

That is, the empirical quantile function Q̂X (r) can be computed by sorting the
samples in ascending order, and returning the sample at position �r · n�, where
for x ∈ R we use �x� to denote the smallest integer larger than or equal to x.
This is visualized in Fig. 2, where the ordered samples xπ(1), ..., xπ(n) are shown
as a bar plot together with Q̂X .

Fig. 2. Empirical quantile function, sorted samples, and piecewise linear approximation
to the empirical quantile function. The set of samples is identical to that in Fig. 1.

We will also work with a piecewise linear approximation Q̃X to the empirical
quantile function Q̂X , as shown in Fig. 2. This function is defined on the interval
[ 1
2n , 1 − 1

2n ] by Q̃X ( 2k−1
2n ) = Q̂X ( 2k−1

2n ) for k ∈ {1, ..., n} and by being piecewise
linear in between. The piecewise linear approximation is needed in order to make
the quantile layer that we introduce below fully differentiable. Note that Q̃X
will return the minimum, median, and maximum of the set of samples as special
cases. Equation 8 implies Q̃X ( 1

2n ) = min{x1, ..., xn}, Q̃X (0.5) = med{x1, ..., xn},
and Q̃X (1 − 1

2n ) = max{x1, ..., xn}.
We now define the quantile layer as the operation of sampling the piecewise

linear approximation Q̃X to the empirical quantile function Q̂X for a set X of
incoming filter activations. The quantile layer takes as input the output of a
convolution layer, and outputs a set of features in which the temporal dimension
has been aggregated out. The input to the quantile layer is thus a matrix Z ∈
R

T×K of activations, where K is the number of filters and T the temporal
dimension in the preceding convolution layer. The output of the quantile layer
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is a matrix Y ∈ R
K×M , where M is a hyperparameter that determines at how

many points Q̂X is sampled. Let zt,k denote the element at row t and column
k of Z, and yk,m denote the element at row k and column m of Y. Then the
outputs yk,m of the layer are defined by

yk,m = Q̃Xk

(
σ(αk,m)

T − 1
T

+
1

2T

)
(10)

where Xk = {zt,k|1 ≤ t ≤ T} is the set of activations of filter k across time,
σ(α) = 1

1+exp(−α) is the sigmoid function, and αk,m are learnable weights. The

quantity σ(αk,m) ∈ (0, 1) determines the point at which the approximation Q̃Xk

to the empirical quantile function of the set Xk is sampled. As σ(αk,m) is varied
from near zero to near one, yk,m will change continuously from the minimum
to the maximum of the values in Xk, following the piecewise linear function
in Fig. 2. Due to the piecewise linear approximation, gradients of the weights
αk,m with respect to the network loss are nonzero and the layer can be trained
end-to-end using standard stochastic gradient methods.

The quantile layer is easily implemented in deep learning frameworks by sort-
ing the incoming activations for each filter k, linearly interpolating, and returning
the linearly interpolated values at the points prescribed by weights αk,1, ..., αk,M .
The output of the layer is a discrete approximation to the empirical quantile
function of the activations of filter k. The learnable weights determine at which
part of the cumulative distribution function the approximation is focused. For
example, sampling points can be spaced uniformly across the spectrum of values
or concentrate on those values that are near the maximum or minimum.

4 Model Architectures

We treat user identification from gaze movement patterns as a sequence clas-
sification problem. The input is a sequence of two-dimensional gaze positions,
separately recorded for the left and right eye, and sampled regularly over time.
The data we work with additionally contains a scalar measurement of the pupil
dilation for the left and the right eye at each point in time. We concatenate the
gaze positions and pupil dilations to form a sequence of shape T × 6, where the
sequence length T is typically different for each input.

We study 1D-convolutional neural networks to classify gaze movement
sequences, using two different architectures. The first architecture stacks 1D-
convolution layers to extract local features from the sequence without reducing
the temporal dimension by intermediate pooling layers; the temporal dimension
is then aggregated out in a statistical aggregation layer before classification is
performed. The second architecture reduces the temporal dimension with inter-
mediate pooling layers to capture more large-scale temporal patterns before per-
forming aggregation. Both architectures are 17 layers deep (not including pooling
or aggregation layers) and are shown in Table 1. As aggregation layer, we study
the quantile layer introduced in Sect. 3, global maximum pooling, global average
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Table 1. Network architectures without (left) and with (right) intermediate pooling
layers. T denotes the sequence length. All convolution layers use stride one, the pooling
layers use stride two. Both architectures use dropout with parameter 0.5 before the fully
connected layer. As aggregation layer we study the quantile layer, global maximum
or average pooling, and the histogram layers by Wang et al. [30] and Sedighi and
Fridrich [27]. Output shape M and parameters vary across aggregation layers.

Architecture without intermediate pooling Architecture with intermediate pooling

Layer Output size Layer Output size Parameters

Input T × 6 Input T × 6 0
[
conv 3 × 1 − 16

] × 4 T × 16
[
conv 3 × 1 − 16

] × 4 T × 16 2660

– – Pool 2 × 1 T/2 × 16 0
[
conv 3 × 1 − 32

] × 4 T × 32
[
conv 3 × 1 − 32

] × 4 T/2 × 32 10884

– – Pool 2 × 1 T/4 × 32 0
[
conv 3 × 1 − 64

] × 4 T × 64
[
conv 3 × 1 − 64

] × 4 T/4 × 64 43268

– – Pool 2 × 1 T/8 × 64 0
[
conv 3 × 1 − 128

] × 4 T × 128
[
conv 3 × 1 − 128

] × 4 T/8 × 128 172548

Aggregation 128 × M Aggregation 128 × M Variable

Fully connected 210 Fully connected 210 27090 · M

pooling, and the histogram layers proposed by Wang et al. [30] and Sedighi and
Fridrich [27]. More details about baselines are given in Sect. 5.

All convolution layers are followed by a nonlinear activation function. We
use parameterized ReLU activations [8], a generalization of leaky ReLUs, of the
form

s(y) =

{
y if y > 0
(1 − βj)y if y ≤ 0.

(11)

where βj is a layer-specific parameter and j is the layer index. The parameters
βj are fitted during training and regularized towards zero, such that the slope of
the activation below zero does not become too small. The rationale for using this
activation is that we want to preserve as much information as possible about the
distribution of the responses of the convolution filters, so that this information
can later be exploited in the statistical aggregation layer. In contrast, regular
ReLU activations discard much information by not distinguishing between any
activation values that fall below zero.

As an alternative to the 1D-convolutional architectures shown in Table 1, we
also study a recurrent neural network architecture. We choose gated recurrent
units (GRU, [3]) as the recurrent unit, because we found architectures based on
GRUs to be faster and more robust to train and these architectures have been
shown to yield very similar predictive performance [4] as architectures based on
LSTM units [10]. We study a sequence classification architecture in which the
input layer is followed by two layers of gated recurrent units, and the state vector
of the last GRU in the second layer is fed into a dense layer that predicts the
class label. The first layer of GRUs contains 64 units and the second layer 128
units. We employ dropout with dropout parameter 0.5 before the dense layer.
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5 Empirical Study

In this section, we empirically study how accurately subjects can be distin-
guished based on observed gaze patterns. We evaluate different neural network
architectures and aggregation layers, and compare with existing probabilistic
and feature-based models for eye gaze biometrics.

5.1 Experimental Setup

Data. The Dynamic Images and Eye Movements (DIEM) project is a large-scale
data collection effort in which gaze movements of subjects have been recorded
while viewing non-text visual input [21]. The DIEM data set contains gaze move-
ment observations of 223 subjects on 85 short video sequences that contain a vari-
ety of visual material, such as recordings of street scenes, documentary videos,
movie excerpts, recordings of sport matches, or television advertisements. Sub-
jects in the data set have viewed between 6 and 26 videos. We restrict ourselves
to those subjects which have viewed at least 25 videos, which leaves 210 of the
223 subjects in the data. The average length of a video sequence is 95 seconds.
The entire data set contains 5381 gaze movement sequences.

Gaze movements have been recorded with an SR Research Eyelink 2000 eye
tracker. While the original temporal resolution of the eye tracker is 1000 Hz, in
the DIEM data set gaze movements are sampled down to a temporal resolution of
30 Hz [21]. This is a lower resolution than used in most other studies; for example,
Abdelwahab et al. [1] use 500 Hz, while studies by Holland and Komogortsev [11,
12] use either 1000 Hz or 75 Hz data. At each of the 30 time points per second,
the two-dimensional gaze position and a scalar measurement of the pupil dilation
is available for the left and the right eye, which we concatenate to form a six-
dimensional input.

Problem Setup. We treat the problem of identifying individuals in the DIEM
data set based on their gaze patterns as a 210-class classification problem. A
training instance is a sequence of gaze movements (of one individual on one
video), annotated with the individual’s identity as the class label. We split the
entire set of 5381 gaze movement sequences into a training set (2734 sequences),
a validation set (537 sequences), and a test set (2110 sequences). The split is
constructed by splitting the 84 videos into 50% (42) training videos, 10% (8)
validation videos, and 40% (34) test videos, and including the gaze movement
observations of all individuals on the training, validation, and test videos in
the respective set of sequences. This ensures that predictions are evaluated on
novel visual input not seen in the training data. At test time, the task is to
infer the unknown identity of an individual after observing gaze patterns of that
individual on N video sequences drawn at random from all videos in the test
set viewed by that individual, where N is varied from one to five. Applying a
learned model to each of the N sequences yields predictive class probabilities
pi,j for 1 ≤ i ≤ N and 1 ≤ j ≤ 210. The most likely identity is then inferred by
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arg maxj

∏N
i=1 pi,j and compared to the true identity. We measure identification

error, defined as the fraction of experiments in which the inferred identity is not
equal to the true identity of the individual. Results are averaged over the 210
individuals and 10 random draws of test videos for each individual.
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Fig. 3. Identification error for convolutional neural network architectures without inter-
mediate pooling (left), with intermediate pooling (right) and for the recurrent neural
network architecture (right) as a function of the number of test videos N on which a
user is observed. Error bars indicate the standard error.

Methods Under Study. We study the deep neural network architectures with
and without intermediate pooling layers shown in Table 1 in combination with
different aggregation layers: the quantile layer as described in Sect. 3 (Quantile),
global maximum or average pooling (Global Maximum, Global Average), and
the histogram layers proposed by Wang et al. [30] and Sedighi and Fridrich [27].
The input to the histogram layers is identical to the input of the quantile layer,
namely a matrix Z ∈ R

T×K of activations of the preceding convolution layer. The
layers approximate the distribution of values per filter k in Z by a histogram with
M bins, where bin centers and bin widths are learnable parameters. The output
is a matrix Y ∈ R

K×M ; an element yk,m of the output computes the fraction of
values of filter k that fall into bin m. The two histogram baselines differ in how
they smoothen the sharp edges in traditional histogram functions in order to
enable gradient flow: using linear approximations [30] or Gaussian kernels [27].
For the models with quantile and histogram layers, the hyperparameter M is
optimized on the validation set on a grid M ∈ {4, 8, 16, 32}, yielding M = 8 for
both histogram-based models and M = 16 for the quantile-based model. We use
the Adam optimizer [14] with initial learning rate 0.0001 and train all models for
2000 epochs. For histogram-based models, optimization failed with the default
initial learning rate of 0.0001. We instead use an initial learning rate of 0.00001,
with which optimization succeeded. The batch size is one in all experiments.

We also study the recurrent neural network architecture with two hidden
layers of gated recurrent units as discussed in Sect. 4. It is trained with the
Adam optimizer for 2000 episodes, using an initial learning rate of 0.001.
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Fig. 4. Identification error (left) and loss (right) for convolutional network architectures
without intermediate pooling and recurrent neural network as a function of the epoch
number during training. Dashed curves denote training error and loss while solid curves
denote test error and loss.

As further baselines, we study the probabilistic approaches by Kinnunen
et al. [15], Landwehr et al. [17], and Abdelwahab et al. [1], which respectively
employ Gaussian mixture models, parametric models based on the Gamma fam-
ily, and semiparametric models based on Gaussian processes in order to char-
acterize distributions over gaze patterns. The model of Kinnunen et al. can be
directly applied in our domain. We tune the number of histogram bins, window
size, and number of mixture components on the validation data. The models of
Landwehr et al. [17] and Abdelwahab et al. [1] were designed for gaze movements
during reading; they are therefore not directly applicable. We adapt these models
of to our non-text domain as follows. Both models characterize individual gaze
patterns by separately fitting the distribution of saccade amplitudes and fixation
durations for different so-called saccade types: regression, refixation, next word
movement, and forward skip. The saccade types relate the gaze movement to the
structure of the text being read. We instead separately fit distributions for sac-
cade types up, down, left, right, which indicate the predominant direction of the
gaze movement. The DIEM data contains saccade and fixation annotations; we
can thus preprocess the data into sequences of saccades and fixations as needed
for an empirical comparison with these models. Another recently published prob-
abilistic model is that of Makowski et al. [20]. This model is more difficult to
adapt because it is built around lexical features of the text being read; without
lexical features it was empirically found to be no more accurate than the model
by Abdelwahab et al. [20]. We therefore exclude it from the empirical study.

We finally compare against the feature-based methods of Holland and
Komogortsev [12] and Rigas et al. [26]. Both of these methods follow the same
general approach, only using different sets of features. We use the variant that
employs two-sample Kolmogorov-Smirnov test for the matching module and
weighted mean as the fusion method, since results reported in the paper were
best for these variants on low-resolution data [12].
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Fig. 5. Learned quantile sampling points σ(αk,m) as defined by Eq. 10.

5.2 Results

Figure 3 shows error rates for identifying individuals in the DIEM data set for
different neural network architectures, including the recurrent neural network,
as a function of the number N of test videos on which gaze patterns of the
unknown individual are observed. We observe that architectures without inter-
mediate pooling layers have lower error rates. This is in line with the assumption
that local, short-term gaze patterns are most informative for identification: the
larger receptive fields of neurons in architectures with intermediate pooling do
not appear to be advantageous. We will therefore focus on architectures without
intermediate pooling in the remaining discussion. Architectures based on gated
recurrent units are also focused on fitting relatively long-term temporal patterns
in data; the recurrent architecture we study performs slightly better than con-
volutional architectures with intermediate pooling but worse than convolutional
architectures without intermediate pooling. Employing quantile layers for sta-
tistical aggregation outperforms global maximum or average pooling, indicating
that retaining more information about the distribution of filter activations is
informative for identification. Surprisingly, architectures based on the histogram
layers proposed by Wang et al. [30] and Sedighi and Fridrich [27] do not consis-
tently improve over the global pooling methods.

Figure 4 shows error rates and losses for architectures without intermediate
pooling layers on the training and test data as a function of the epoch number
during training. We observe that architectures with quantile and histogram layers
both achieve lower training error than architectures with global maximum or
average pooling, but only for the quantile-based model this translates into lower
error on the test data. Figure 4 thus does not suggest that there are any problems
with fitting the histogram-based models using our training protocol; manual
inspection of the learned histogram bins also showed reasonable bin centers and
widths. Rather, results seem to indicate that characterizing distributions in terms
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of quantiles – which is closer to standard average or maximum pooling operations
– generalizes better than characterizing distributions by histograms.

Figure 5 shows learned values for the quantile sampling points σ(αk,m) (see
Eq. 10). We observe that sampling points adapt to each filter, and outputs yk,m

of the quantile layer focus more on values close to the maximum (σ(αk,m) near
one) than the minimum (σ(αk,m) near zero).
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Fig. 6. Identification error as a function of the number of test videos N on which a
user is observed, using average gaze point only. Error bars indicate the standard error.

We finally compare against probabilistic and feature-based baselines from the
literature, specifically the models of Kinnunen et al. [15], Landwehr et al. [17],
Abdelwahab et al. [1], Holland and Komogortsev [12] and Rigas et al. [26]. These
models only use the gaze position averaged over the left and right eye, and do
not use pupil dilation. We also study our models in this setting, using only the
average gaze position as input in the neural networks. Figure 6 shows identifica-
tion error as a function of the number of test videos for this setting. We observe
that identification errors are generally higher than in the setting where separate
gaze positions and pupil dilations are available. Moreover, the best neural net-
works outperform the probabilistic and feature-based models by a large margin.
This may partially be explained by the fact that the probabilistic models were
originally developed for text reading, and for data with a much higher temporal
resolution (500 Hz versus 30 Hz in our study). The quantile-based model again
performs best among the neural network architectures studied.
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6 Conclusions

We have studied deep neural networks for unobtrusive biometric identification
based on gaze patterns observed on non-text visual input. Differences in the
distribution of local, short-term gaze patterns are most informative for distin-
guishing between individuals. To characterize these distributions, we introduced
the quantile layer, a learnable statistical aggregation layer that approximates
the empirical quantile function of the activations of a preceding stack of 1D-
convolution layers. In contrast to existing learnable statistical aggregation lay-
ers that approximate the distribution of filter activations by a histogram, the
quantile layer naturally generalizes standard global pooling layers. From our
empirical study we can conclude that neural networks with quantile layers out-
perform networks with global average or maximum pooling, as well as networks
that use histogram layers. In our domain, deep neural networks also outperform
probabilistic and feature-based models from the literature by a wide margin.
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Abstract. Multitask algorithms typically use task similarity informa-
tion as a bias to speed up and improve the performance of learning
processes. Tasks are learned jointly, sharing information across them, in
order to construct models more accurate than those learned separately
over single tasks. In this contribution, we present the first multitask
model, to our knowledge, based on Hopfield Networks (HNs), named
HoMTask. We show that by appropriately building a unique HN embed-
ding all tasks, a more robust and effective classification model can be
learned. HoMTask is a transductive semi-supervised parametric HN, that
minimizes an energy function extended to all nodes and to all tasks under
study. We provide theoretical evidence that the optimal parameters auto-
matically estimated by HoMTask make coherent the model itself with the
prior knowledge (connection weights and node labels). The convergence
properties of HNs are preserved, and the fixed point reached by the
network dynamics gives rise to the prediction of unlabeled nodes. The
proposed model improves the classification abilities of singletask HNs on
a preliminary benchmark comparison, and achieves competitive perfor-
mance with state-of-the-art semi-supervised graph-based algorithms.

Keywords: Multitask Hopfield networks · Multitask learning

1 Introduction

Multitask learning is concerned with simultaneously learning multiple predic-
tion tasks that are related to one another. It has been frequently observed in
the recent literature that, when there are relations between the tasks, it can be
advantageous to learn them simultaneously instead of learning each task sepa-
rately [7,11]. A major challenge in multitask learning is how to selectively screen
the sharing of information so that unrelated tasks do not end up influencing each
other. Sharing information between two unrelated tasks can worsen the perfor-
mance of both tasks.

Multitasking thus plays an important role in a variety of practical situations,
including: the prediction of user ratings for unseen items based on rating infor-
mation from related users [32], the simultaneously forecasting of many related
financial indicators [19], the categorization of genes associated with a genetic
disorder by exploiting genes associated with related diseases [15].
c© Springer Nature Switzerland AG 2020
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There is a vast literature on multitask learning. The most important lines
of work include: regularizers biasing the solution towards functions that lie geo-
metrically close to each other in a RKHS [11,12], or lie in a low dimensional
subspace [3,26]; structural risk minimization methods, where multitask relations
are established by enforcing predictive functions for the different tasks to belong
to the same hypothesis set [2]; spectral [4,10] and cluster-based [23,38] assump-
tions on the task relatedness; Bayesian approaches where task parameters share
a common prior [9,39,42]; methods allowing a small number of outlier tasks that
are not related to any other task [8,40]; approaches attempting to learn the full
task covariance matrix [20,41]. To our knowledge, no multitask attempts have
been proposed for Hopfield networks (HNs) [21], whereas several studies inves-
tigated HNs as singletask classifier [17,22,24,27]. Indeed, HNs are efficient local
optimizers, using the local minima of the energy function determined by network
dynamics as a proxy to node classification.

In this paper we develop HoMTask, Hopfield multitask Network, an approach
to multitask learning based on exploiting a family of parametric HNs. Our app-
roach builds on COSNet [6], a singletask HN proposed to classify instances in a
transductive semi-supervised scenario with unbalanced data. A main feature of
HoMTask is that the energy function is extended to all tasks to be learned and
to all instances (labeled and unlabeled), so as to learn the model parameters
and to infer the node labels simultaneously for all tasks. The obtained network
can be seen as a collection of singletask HNs, appropriately interconnected by
exploiting the task relatedness. In particular, each task is associated with a cou-
ple of parameters determining the neuron activation values and thresholds, and
we theoretically prove that in the optimal case, the learning procedure adopted
is able to learn the parameters so as to move the multitask state of the labeled
sub-network to a minimum of the energy. This is an important result, which
allows the model to better fit the input data, since the classification of unla-
beled nodes is based upon a minimum of the unlabeled subnetwork. Another
interesting feature of HoMTask is that the complexity of the learning procedure
linearly increases with the number of tasks, thus allowing the model to nicely
scale on settings including numerous tasks. Finally, a proof of convergence of the
multitask dynamics to a minimum of the energy is also supplied.

Experiments on a real-world classification problem have shown that HoM-
Task remarkably outperforms singletask HNs, and has competitive performance
with state-of-the-art graph-based methods proposed in the same context.

2 Methods

2.1 Problem Definition

The problem input is composed of an undirected weighted graph G(V,W ), where
V = {1, 2, . . . , n} is the set of instances and the non negative symmetric matrix
W = (wij) denotes the degree of functional similarity between each pair of nodes
i and j. A set of binary learning tasks C = {ck|k = 1, 2, . . . ,m} over G is given,
where for every task ck, V is labelled with {+,−}. The labeling is known only for
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the subset L ⊂ V , whereas it is unknown for U := V \ L. Moreover, the subsets
of vertices labelled with + (positive) and − (negative) are denoted by Lk,+ and
Lk,−, respectively, for each task ck ∈ C. Without loss of generality, we assume
U = {1, 2, · · · , h} and L = {h + 1, h + 2, · · · , n}. As further assumption, task
labelings are highly unbalanced, that is |Lk,+|

|Lk,−| � 1, for each k ∈ {1, 2, . . . ,m}.
In the multitask scenario, a m×m symmetric matrix S = skr|mk,r=1 is also given,
where skr ∈ [0, 1] is an index of relatedness/similarity between the tasks ck and
cr, and skk = 0 for each k ∈ {1, 2, . . . ,m}, to learn just from the other tasks.

The aim is determining a set of bipartitions (Uk,+, Uk,−) of vertices in U
for each task ck ∈ C by jointly learning tasks in C, on the basis of the prior
information encoded in G and S. In the following, the bold font is adopted
to denote vectors and matrices, and the calligraphic font to denote multitask
Hopfield networks. Moreover, we denote by W LL and W UU the submatrices of
W relative to nodes L and U , respectively.

2.2 Previous Singletask Model

In this section we recall the basic model proposed in [6,13] for singletask mod-
eling, named COSNet, that has inspired the multitask setting presented here.
Essentially, it relies on a parametric family of the Hopfield model [21], where the
network parameters are learned to cope with the label imbalance and the net-
work equilibrium point is interpreted to classify the unlabeled nodes. A COSNet
network over G = 〈V,W 〉 is a triple H = 〈W , λ, ρ〉, where λ ∈ R denotes the
neuron activation threshold (unique for all neurons), and ρ ∈ [0, π

2 ) is a param-
eter which determines the two neuron activation (state) values {sin ρ,− cos ρ}.
The model parameters are appropriately learned in order to allow the algorithm
to counterbalance the large imbalance towards negatives (see [13]). The initial
state of a neuron i ∈ V is set to xi(0) = sin ρ, if i is positive, xi(0) = − cos ρ, if
i is negative, and xi(0) = 0 when i in unlabeled. The network evolves according
to the following asynchronous dynamics:

xi(t) =

⎧
⎪⎪⎨

⎪⎪⎩

sin ρ if
i−1∑

j=1

wijxj(t) +
n∑

k=i+1

wikxk(t − 1) − λ > 0

− cos ρ if
i−1∑

j=1

wijxj(t) +
n∑

k=i+1

wikxk(t − 1) − λ ≤ 0

(1)

where xi(t) is the state of neuron i ∈ V at time t. At each time t, the vector
x(t) = (x1(t), x2(t), . . . , xh(t)) represents the state of the whole network. The
network admits a state function named energy function:

E(x) = −1
2

∑

i�=j

wijxixj + λ

n∑

i=1

xi. (2)

The convergence properties of the dynamics (1) depend on the weight matrix W
and the rule by which the nodes are updated. In particular, if W is symmetric
and the dynamic is asynchronous, it has been proved that the network converges
to a stable state in polynomial time. As a major result, it has been shown that (2)
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is a Lyapunov function for the Hopfield dynamical systems with asynchronous
dynamics, i.e., for each t > 0, E(x(t + 1)) ≤ E(x(t)) and there exists a time
t̄ such that E(x(t)) = E(x(t̄)), for all t ≥ t̄. Moreover, the reached fixed point
x̄ = x(t̄) is a local minimum of (2). Then, a neuron i in U is classified as positive
if x̄i = sin ρ, as negative otherwise. COSNet has also a dynamics control to avoid
trajectories towards trivial equilibrium minima (see [13] for details).

2.3 Multitask Hopfield Networks

A Hopfield multitask network, named HoMTask, with neurons V is a quadruple
H = 〈W ,γ,ρ,S〉, where S is the task similarity matrix, γ = (γ1, . . . , γm) ∈ R

m,
ρ = (ρ1, . . . , ρm) ∈ [π

4 , π
2 )m. The couple of parameters (γk, ρk) is associated

with task ck, for each k ∈ {1, 2, . . . ,m}: by leveraging the approach adopted
in COSNet, for a task ck, the neuron activation values are {sin ρk,− cos ρk},
whereas γk is the neuron activation threshold (the same for every neuron). Such
a formalization allows to keep the absolute activation value in the range [0, 1],
and to calibrate it by suitably learning ρk ∈ [π

4 , π
2 ). For instance, in presence of a

large majority of negative neurons, ρk close to π
2 would prevent positive neurons

to be overwhelmed during the net dynamics.
The state of the network is the n×m matrix X = (x(1),x(2), . . . ,x(m)), where

x(k) = (x1k, x2k, . . . , xnk) ∈ {sin ρk,− cos ρk}n is the state vector correspond-
ing to task ck. When simultaneously learning related tasks ck and cr, an usual
approach consists in expecting that the higher the relatedness srk, the closer the
corresponding states. In our setting, this can be achieved by minimizing

‖x(k) − x(r)‖2,

for any couple of tasks ck, cr ∈ C, with k 
= r. To this end, we incorporate a term
proportional to

∑
k

∑
r skr‖x(k) − x(r)‖2 into the energy of H, thus obtaining:

EH(X) =
m∑

k=1

⎛

⎜⎝E
(
x(k)

)
+

α

4

m∑

r=1
r �=k

skr ‖x(k) − x(r)‖2
⎞

⎟⎠ , (3)

where E
(
x(k)

)
= − 1

2x(k)T Wx(k) + x(k)T γken, en is the n-dimensional vector
made by all ones, and α is a real hyper-parameter regulating the multitask
contribution. Without the second additive term in brackets, energy (3) would
be the summation of the energy functions of m independent singletask Hopfield
networks, as recalled in the previous section.

By using the equality ‖x(k) −x(r)‖2 = ‖x(k)‖2 + ‖x(r)‖2 − 2x(k) ·x(r), where
· denotes the inner product, and giving that

m∑

k=1

m∑

r=1
r �=k

skr

(‖x(k)‖2 + ‖x(r)‖2) = 2
( m∑

k=1

Sk‖x(k)‖2
)
,
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Fig. 1. Topology of H in the case m = 3. Black circles, gray squares and white circles
represent elements of L−, L+ and U respectively. The local topology is the same across
sub-networks H1, H2 and H3, but the labeling varies with the task.

with Sk =
∑m

r=1 skr, the energy (3) can be rewritten as:

EH(X) =
m∑

k=1

⎛

⎜⎝E
(
x(k)

)
+

α

2

(
Sk

n∑

i=1

x2
ik −

m∑

r=1
r �=k

skr

n∑

i=1

xikxir

)
⎞

⎟⎠ . (4)

Informally, H can be thought as m interconnected singletask parametric Hop-
field networks H1 = 〈W ,γ1,ρ1〉, . . . , Hm = 〈W ,γm,ρm〉 on V , having all the
same topology given by W . In addition, the multitask energy term introduces
self loops for all neurons, and a novel connection for each neuron i ∈ V with i
itself in the network Hr, r ∈ C \ {ck}, whose weight is αskr (see Fig. 1). It is
worth nothing that usually in Hopfield networks there are no self-loops; never-
theless, we show that it does not affect the convergence properties of the overall
network.

Update Rule and Dynamics Convergence. Starting from an initial state
X(0) and adopting the asynchronous dynamic, in nm steps all neurons are
updated in random order according to the following update rule:

xik(t + 1) =

{
sin ρk, if φik(t) > 0
− cos ρk, if φik(t) ≤ 0

(5)

where xik(t + 1) is the state of neuron i ∈ X in task ck (ik-th) at time t + 1,
and

φik(t) := Aik(t) − θik + αBik(t) (6)
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is the input of the ik-th neuron at time t, whose terms are Aik(t) =
n∑

j=1

wijxjk(t),

θik = γk + αSk

2

(
sin ρk − cos ρk

)
, and Bik(t) =

m∑
r=1
r �=k

skrxir(t). Aik represents the

singletask input (Eq. (1)), Bik(t) is the multitask contribution, and θik is the
activation threshold for neuron ik, including also the ‘singletask’ threshold. The
form of θik derives from the following theorem, stating a HoMTask Hopfield
network preserves the convergence properties of a Hopfield network.

Theorem 1. A HoMTask Hopfield network H = 〈W ,γ,ρ,S〉 with n neurons
and the asynchronous dynamics (5), which starts from any given network state,
eventually reaches a stable state at a local minimum of the energy function (4).

Proof. Let Eik(t) be the energy contribution to (4) of the ik-th neuron at time
t, with

Eik(t) = −1
2
xik(t)

h∑

j=1

(wij + wji)xjk(t) + γkxik(t) +
αSk

2
x2

ik(t)

− α

2
xik(t)

m∑

r=1
r �=k

(skr + srk)xir(t).

Let ΔikE(t + 1) = Eik(t + 1) − Eik(t) be the energy variation after updating
the state xik at time t + 1 according to (5). Due to the symmetry of W and S,
it follows

ΔikE(t + 1) = −(
xik(t + 1) − xik(t)

)

(
Aik(t) − γk − αSk

2
(
xik(t + 1) + xik(t)

)
+ αBik(t)

)
.

(7)

Since (4) is lower bounded, to complete to proof we need to prove that after
updating xik at time t + 1 according to (5), it holds ΔikE(t + 1) ≤ 0. From (7),
when xik(t + 1) = xik(t) (no neuron state change) it follows ΔikE(t + 1) = 0.
Accordingly, we need to investigate the remaining two cases: (a) xik(t) = sin ρk

and xik(t + 1) = − cos ρk; (b) xik(t) = − cos ρk and xik(t + 1) = sin ρk. In both
cases it holds (by definition of θik) γk+αSk

2

(
xik(t + 1) + xik(t)

)
= θik.

(a) (xik(t+1)−xik(t)) = (− cos ρk −sin ρk) < 0, and, according to (5), Aik(t)−
θik + αBik(t) ≤ 0. It follows ΔikE(t + 1) ≤ 0.

(b) (xik(t + 1) − xik(t)) = (sin ρk + cos ρk) > 0, and Aik(t) − θik + αBik(t) > 0.
Thus ΔikE(t + 1) < 0.

Every neuron update thereby does not increase the network energy, and, since the
energy is lower bounded, there will be a time t′ > 0 from which the update of any
neuron will not change the current state, which is the definition of equilibrium
state of the network, and which makes X(t′) a local minimum of (4). ��
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Learning the Model Parameters. Considered the subnetwork HL =
〈W LL,γ,ρ,S〉 restricted to labeled nodes L, its energy is:

EHL(L) =
m∑

k=1

⎛

⎜⎝EL

(
l(k)

)
+

α

2

(
Sk

∑

i∈L

l2ik −
m∑

r=1
r �=k

skr

∑

i∈L

liklir

)
⎞

⎟⎠ , (8)

where L = (l(1), l(2), . . . , l(m)) with components l(k) = (l1k, l2k, . . . , l(n−h)k)

belonging to the set {sin ρk,− cos ρk}(n−h), and EL

(
l(k)

)
= − 1

2 l(k)
T
W LLl(k) +

l(k) · γke(n−h).
The given bipartition (Lk,+, Lk,−) for each task ck naturally induces the

labeling l̄
(k) = {l̄1k, l̄2k, . . . , l̄(n−h)k}, defined as it follows:

l̄ik =

{
sin ρk, if i ∈ Lk,+

− cos ρk, if i ∈ Lk,−
,

and constituting the known ‘multitask’ state L̄ = (̄l(1), l̄(2), . . . , l̄(m)).
Given L̄ as known components of a final state X̄ of the multitask network

H = 〈W ,γ,ρ,S〉, the purpose of the learning step is to compute the pair (γ̂, ρ̂)
which makes X̄ an energy global minimizer of (3), the energy function associated
with H. Since our aim is also keeping the model scalable on large sized data,
and finding the global minimum of the energy requires time/memory intensive
procedures, we employ a learning procedure leading L̄ towards an fixed point
of HL, being in general a local minimum of (8). We provide the details of the
learning procedure in the following, showing that such an approach also helps
to handle the label imbalance at each task.

Maximizing a Cost-Sensitive Criterion. When the parameters γ,ρ are fixed,
each neuron ik has input

φL
ik(γ,ρ) =

∑

j∈L

wij

(
sin ρkχjk − cos ρk

(
1 − χjk

)) − θik

+ α
∑

r=1
r �=k

skr

(
sin ρkχir − cos ρk

(
1 − χir

))
,

where, for each k ∈ {1, . . . , m} and j ∈ L, χjk = 1 if j ∈ Lk,+,
0 otherwise. φL

ik corresponds to φik of Eq. (6) restricted to L; to sim-
plify the notation, in the following φL

ik is thereby denoted by φik. Since
the subnetwork is labeled, it is possible to define the set of true positive
tpk(γ,ρ) = {i ∈ Lk,+|φik(γ,ρ) > 0}, false negative fnk(γ,ρ) = {i ∈
Lk,+|φik(γ,ρ) ≤ 0}, and false positive fpk(γ,ρ) = {i ∈ Lk,−|φik(γ,ρ) >
0}, for every task ck. Following the approach proposed in [16], a set of
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membership functions can be defined, extending the crisp memberships intro-
duced above:

TP(i, k,γ,ρ) = f(τφik(γ,ρ)), i ∈ Lk,+

FN(i, k,γ,ρ) = 1 − f(τφik(γ,ρ)), i ∈ Lk,+

FP(i, k,γ,ρ) = f(τφik(γ,ρ)), i ∈ Lk,−
(9)

where f : R → [0, 1] is a suitable monotonically increasing membership function.
For instance f1(x) = 1/

(
1+e−x

)
or f2(x) = 1

2

(
2
π arctg(x) + 1

)
. τ > 0 is a real

parameter. If f is the Heaviside step function, we obtain the crisp memberships.
For example, when f = f1 or f = f2, if i ∈ Lk,+ and τφik(γ,ρ) = 0, if follows
TP(i, k,γ,ρ) = FN(i, k,γ,ρ) = 0.5; if i ∈ Lk,+ and τφik(γ,ρ) → ∞, it follows
TP(i, k,γ,ρ) = 1 and FN(i, k,γ,ρ) = 0. The intermediate cases lead to 0 <
TP(i, k,γ,ρ),FN(i, k,γ,ρ) < 1.

Such a generalization, in a different setting (singletask, multi-category)
increased both the learning capability of the model and its classification per-
formance [16]. By means of the membership functions (9), we can define the
objective F :

F(γ,ρ) = σ
(
F1(γ,ρ), F2(γ,ρ), . . . , Fm(γ,ρ)

)
, (10)

where Fk(γ,ρ) =
2

∑

i∈Lk,+

TP(i,k,γ ,ρ)

2
∑

i∈Lk,+

TP(i,k,γ ,ρ)+
∑

i∈Lk,−
FP(i,k,γ ,ρ)+

∑

i∈Lk,+

FN(i,k,γ ,ρ) and σ is

an appropriately chosen function, e.g. the mean, the minimum, or the harmonic
mean function. The property σ must satisfy is that

F (γ,ρ) = 1 =⇒ F1(γ,ρ) = F2(γ,ρ) = . . . = Fm(γ,ρ) = 1.

By definition, Fk (a generalization of the F-measure) is penalized more by the
misclassification of a positive instance than by the misclassification of a negative
one. By maximizing F (γ,ρ) we can thereby cope with the label imbalance.
To this end, the learning criterion for the model parameters adopted here is
(γ̂, ρ̂) = arg max

γ ,ρ
F(γ,ρ), which also leads to the following important result.

Theorem 2. If F(γ,ρ) = 1, then L̄ is an equilibrium state of the sub-network
HL〈WLL,γ,ρ,S〉.

Learning Procedure. Denoted by δ = (γ,ρ) the vector of model parameters, this
procedure learns the values δ̂ that maximize Eq. (10), that is δ̂ = argmax

δ
F (δ).

Following the approach in [16], we adopt the simplest search method [28], which
employs an iterative and incremental procedure estimating in turn a single
parameter at a time, by fixing the other ones, until a suitable criterion is met
(e.g. convergence, or number of iterations). Thus, the complexity of the learning
procedure just linearly increases with the number of tasks. In particular, fixed
an assignment of parameters (δ1, . . . , δi−1, δi+1, . . . , δ2m), δ̂i is estimated through
δi = argmaxδi F (δ), i ∈ {1, . . . , 2m}. The learning procedure is sketched below:

1. Randomly permute the vector δ, and randomly initialize δ;
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2. Determine an estimate δi of δ̂i with a standard line search procedure for
optimizing continuous functions of one variable, and fix δi = δi;

3. Iterate Step 2 for each i ∈ {1, 2, . . . , 2m};
4. Repeat Step 3 till a stopping criterion is satisfied.

As stopping criterion we used a combination of the maximum number of itera-
tions and of the maximum norm of the difference of two subsequent estimates
δ (falling below a given threshold). As initial test, at Step 2 we simply adopted
a grid search optimization algorithm, where a set of trials is formed for each
parameter, and all possible parameter combinations are assembled and tested.

Label Inference. Once the parameters γ̂, ρ̂ have been estimated, we consider
the subnetwork HU = 〈WUU, γ̂, ρ̂,S〉 restricted to the unlabeled nodes U , whose
energy is

EHU (U) =
m∑

k=1

⎛

⎜⎝EU

(
u(k)

)
+

α

2

(
Sk

h∑

i=1

u2
ik −

m∑

r=1
r �=k

skr

h∑

i=1

uikuir

)
,

⎞

⎟⎠ (11)

with U = (u(1),u(2), . . . ,u(m)) state of HU , u(k) = (u1k, u2k, . . . , uhk) =
(x1k, x2k, . . . , xhk) ∈ {sin ρ̂k,− cos ρ̂k}h, EU

(
u(k)

)
= − 1

2u(k)T W UUu(k) +

u(k)T θk, and θk = γ̂keh − WULl̄
(k) is the vector of activation thresholds for

task ck, including the contribution of labeled nodes (which are clamped). In the
case the learned parameters make L̄ a part of global minimum of H, by determin-
ing the global minimum of HU , it is possible to determine the global minimum of
H (as stated by the following theorem), and consequently the problem solution.

Theorem 3. Given a multitask Hopfield network H = 〈W,γ,ρ,S〉 on neurons
V , bipartitioned into the sets L and U , if L is a part of a global minimum of the
energy of H, and U is a global minimum of the energy of HU = 〈WUU ,γ,ρ,S〉,
then (L,U) is a global minimum of the energy of H.

On the other side, computing the energy global minimum of HU would require
time intensive algorithms; to preserve the model efficiency and scalability, we
run the dynamics of HU till an equilibrium state is reached, which, in general, is
an energy local minimum. Given an initial state U(0), at each time t one neuron
is updated, and in nm consecutive steps all neurons are updated asynchronously
and in a randomly chosen order according to the following update rule:

uik(t + 1) =

{
sin ρ̂, if φU

ik(t) > 0
− cos ρ̂, if φU

ik(t) ≤ 0
, (12)

where uik(t+1) is the state of neuron ik at time t+1, and φU
ik(t) is the restriction

of φik(t) to U . According to Theorem 1, the dynamics (12) converges to an
equilibrium state Ū of HU , and the predicted bipartition (Uk,+, Uk,−) for task
k is: Uk,+ := {i ∈ U |ūik = sin ρ̂} and Uk,− := {i ∈ U |ūik = − cos ρ̂}.
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Dynamics Regularization. As shown by [13], the network dynamics might
get stuck in trivial equilibrium states when input labeling are highly unbalanced–
e.g. states made up by almost all negative neurons. To prevent this behaviour,
they applied a dynamics regularization, with the aim to control the number of
positive neurons in the current state. By extending that approach, and denoted
by pk,+ = |Lk,+|

|L| the proportion of positives in the training set for task ck, the
following regularization term is added to the energy function EHU (U)

ηk

(
h∑

i=1

(akuik + bk) − hpk,+

)2

, (13)

where ak = 1
sin ρ̂k+cos ρ̂k

, bk = cos ρ̂k

sin ρ̂k+cos ρ̂k
, and ηk is a real regularization parame-

ter. Since ak and bk are such that (akuik+bk) = 1 when uik = sin ρ̂k, 0 otherwise,
the

∑h
i=1(akui + bk) is the number of positive neurons in u(k). The term (13) is

thereby minimized when the number of positive neurons in u(k) is hpk,+. This
choice is motivated by the fact that

hpk,+ = arg max
q

Prob
{
|Uk,+| = q

∣∣∣ L contains |Lk,+| positives
}

,

when U and L are randomly drawn from V —see [13]. By simplifying Eq. (13),
up to a constant terms, we obtain the quadratic term:

ηkak

(
ak

h∑

i=1

h∑

j=1
j �=i

uikujk +
(
2bk(h − 1) + 1 − 2pk,+

) h∑

i=1

uik

)
,

which can be included into EU (u(k)) = − 1
2

∑h
i=1

∑h
j=1
j �=i

w
(k)
ij uikujk+

∑h
i=1 uikθ̃ik,

where θ̃ik = θik + ηkak [2bk(h − 1) + (1 − 2pk,+h)] and w
(k)
ij = (wij − 2ηka2

k). By
adding a regularization term for each task ck, the following energy is derived:

EHU (U) =
m∑

k=1

(
− 1

2
u(k)T W

(k)
UUu(k) + u(k)T θ̃k

+
α

2

(
Sk

h∑

i=1

u2
ik −

m∑

r=1
r �=k

skr

h∑

i=1

uikuir

))

Informally, this regularization leads to a different network topology for each
task, in addition to a modification of the neuron activation thresholds. Never-
theless, since the connection weights are modified by a constant value, from an
implementation standpoint this regularization just need to memorize m different
constant values, thus not increasing the space complexity of the model. As pre-
liminary approach, and to have a fair comparison, the parameters ηk have been
set as for the singletask case [13], that is ηk = β

∣∣ tan
(
(ρ̂k − π

4 ) ∗ 2
)∣∣ , where β

is a non negative real constant. Another advantage of this choice is that we have
to learn just one parameter β, instead of m dedicated parameters.
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2.4 Model Complexity

The time complexity of HoMTask depends in turn on the computational com-
plexity of the learning procedure and the network dynamics. The learning pro-
cedure updates at each iteration 2m parameters, and each update requires com-
puting Eq. 10 for each of the z possible values of the grid search. Since the
labeling is fixed, the weighted sum of positive and negative neighbors can be
computed offline, thus the update of φL

ik can be performed in constant time,
allowing computing Eq. 10 in O(|L|) time. The time complexity of the learning
procedure is thereby O(mz|L|I), where I is the number of iterations to converge
(Step 4 of learning procedure). The complexity of the network dynamics depends
on the number of iterations needed to converge, and each iteration takes time
O(m|W UU |), where where |T | is the number of non-null entries in the matrix T .
We empirically observed that the network in average converges in few iterations
(less than 10), confirming the notes in [13,27]. Thus, the overall time complex-
ity is O(mz|L|I + m|W UU |), which is O(mz|L|I + m|U |) when the connection
matrix is sparse, that is when |W UU | = O(|U |).

Finally, the space complexity is O(nm + n2), deriving from the storage of
matrices X and W , which becomes O(nm) when W is sparse.

3 Preliminary Results and Discussion

In this section we evaluate our algorithm on the prediction of the bio-molecular
functions of proteins, a binary classification problem aiming at associating
sequenced proteins with their biological functions. Next we describe the experi-
mental setting, analyze the impact on performance of parameter configurations,
and we compare HoMTask against other state-of-the-art graph-based methods.

3.1 Benchmark Data

In our experiments we considered the Gene Ontology [5] terms, i.e. the reference
functional classes in this context, and their annotations to the Saccaromyces cere-
visiae (yeast) proteins, one of the most studied model organisms. The connection
matrix W has been retrieved from the STRING database, version 10.5 [35], and
contains 6391 yeast proteins. As common in this context, the GO terms with
less than 10 and more than 100 yeast protein annotations (positives) have been
discarded, in order to have a minimum of information and to avoid too generic
terms—GO is a DAG, where annotations for a term are transferred to all its
ancestors. We considered the UniProt GOA (release 87, 12 March 2018) experi-
mentally validated annotations from all GO branches, Cellular Component (CC),
Molecular Function (MF) and Biological Process (BP), for a total of 162, 227,
and 660 CC, MF, BP GO terms, respectively.
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3.2 Evaluation Setting

To evaluate the generalization capabilities of our algorithm, we used a 3-fold
cross validation (CV), and measured the performance in terms of Area Under
the ROC curve (AUC) and Area Under the Precision-Recall curve (AUPR).
The AUPR has been adopted in the recent CAFA2 international challenge for
the critical assessment of protein functions [25], since in this imbalanced setting
AUPR is more informative than AUC [33].

3.3 Model Configuration

HoMTask has three hyper-parameters, τ , β and α, and two functions to be cho-
sen: f in Eq. (9), and σ in Eq. (10). τ , β and α were learned through inner 3-fold
CV, considering also the cases α and β in turn or together clamped to = 0, to
evaluate their individual impact on the performance. A different discussion can
be made for the τ parameter, since in our experimentations best performance
correspond to large values of τ (e.g. τ > 500), thus making the model less sensi-
tive to this choice (the function f becomes a Heaviside function). This behaviour
apparently conflicts with results reported in [16], where typically 0.5 < τ < 2
performed best. However, in that work the authors focused on a substantially
different learning task, i.e. a singletask Hopfield model, where nodes were divided
into categories, and the model parameters were not related to different tasks,
but to different node categories. We still include τ in the formalization proposed
in Sect. 2.3 because it permits also future analytic studies about the derivatives
of σ, to determine close formulations for the optimal parameters. Further, We
set f(x) = 1

2

(
2
π arctg(x)+1

)
, since this choice in a multi-category context leaded

to excellent results [16], even if different choices are possible (Sect. 2.3).
On the other side, we tested two choices for σ: the harmonic mean (σ1) and

mean functions (σ2). Furthermore, another central factor of our model is the
computation of the task similarity matrix S, which can be computed by using
several metrics (see for instance [15]), and how to group the tasks that should
be learned together. We employed in this work the Jaccard similarity measure,
since it performed nicely in hierarchical contexts [14,15,37], defined as follows:

skr =

⎧
⎨

⎩

∣∣Lk,+ ∧ Lr,+

∣∣
∣∣Lk,+ ∨ Lr,+

∣∣ if Lk,+ ∨ Lr,+ 
= ∅
0 otherwise.

Thus, skr is the ratio between the number of instances that are positive for
both tasks and the number of instances that are positive for at least one task.
The higher the number of shared instances, the higher the similarity (up to
1); conversely, if two tasks do not share items, their similarity is zero. Due to
the numerous experiments to be carried out, just for this analysis the focus
is only on CC terms, which are less numerous than those in the MF and BP
branches, while showing very similar trends, as shown in the benchmark compar-
ison described in next section. Finally, we grouped tasks by GO branch, and by
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GO branch and number of positives: in the first case (Branch), all tasks within
the CC branch are learned simultaneously; in the latter one (Card), CC tasks
having 10–20 (76 tasks), 21–50 (60), or 51–100 (26) positives have been grouped
together. Both approaches are quite usual when predicting GO terms [14,31].

Table 1. Performance averaged across CC terms for different configuration of the
model.

Configuration AUC AUPR

Branch, σ1 0.961 0.439

Card, σ1 0.959 0.439

Card, σ1, α = 0 0.959 0.431

Card, σ1, β = 0 0.810 0.204

Card, σ1, α = β = 0 0.811 0.204

Card, σ2 0.937 0.312

The Table 1 reports the obtained results. First, the two different strategies for
grouping tasks led to similar results in this setting, with the Branch grouping
being experimentally slower because the learning procedure needs more itera-
tions to converge when the number of parameters increases (due to the max norm
adopted here as stopping criterion). Nevertheless, we remark that no threshold-
ing on the matrix S has been applied in both cases; thus, in the same model even
tasks with small similarities can be included, which in principle might introduce
noise in the learning and inference processes. Consequently, the advantage of
jointly learning a larger number of similar tasks can be compensated by this
potential noise; investigating other task grouping and similarity thresholding
strategies could thereby give rise to further insights about model, which for lack
of room we destine to future study.

Regarding the impact of parameter β, regulating the effect of dynamics reg-
ularization, a strong decay in performance is obtained when no regularization
is applied (β = 0): this confirms the tendency of the network trajectory to be
attracted in some limit cases by trivial fixed points, already observed in the sin-
gletask Hopfield model [13]. In this experiment, the contribution of regularization
is even more dominating, since it allows to double the AUPR performance.

The parameter α, which regulates the multitask contribution in Eq. (3), has
apparently less impact on the performance. Indeed, the performance reduces
just around 2% when α = 0; however, this behaviour should be further stud-
ied, because it can be strictly related to the noise we introduced by grouping
tasks without filtering out connections between less similar task. Thus, further
experiments with different organisms would help this analysis and potentially
reveal novel and more clear trends. It is also important noting that by setting
α = 0, the overall multitask contribution is not cancelled: the learning procedure,
by maximizing criterion (10), still learns tasks jointly, even when the multitask
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contribution in formula (9) is removed. For instance, choosing σ equal to the
minimum function would mean learning individual task parameters in order to
maximize the minimum performance (mink Fk) across tasks, even when α = 0.

Finally, the function σ itself seems having a marked impact on the model.
When using the mean function (σ2) the AUPR decreases of around 25% with
respect to the AUPR obtained using the harmonic mean (σ1). To some extent
such a result is expected, since the harmonic mean tends to penalize more the
outliers towards 0, thus fostering the learning procedure to estimate the param-
eters in order not to penalize some tasks in favors of the remaining ones, which
instead can happen when using the mean function. This preliminary model anal-
ysis suggested to adopt the configuration “Card, σ1” in the comparison with the
state-of-the-art methodologies, which is described in the next section.

3.4 Model Performance

We compared our method with several state-of-the-art graph-based algorithms,
ranging from singletask Hopfield networks and other multitask methodologies, to
some methods specifically designed to predicting protein functions: RW, random
walk [30], the classical t-step random walk algorithm, predicting a score corre-
sponding to the probability that a t-step random walk in G, starting from positive
nodes, ends in the node to be predicted; RWR, random walk with restart, since
in RW after many steps the walker may forget the prior information coded in
the initial probability vector (0 for negative nodes 1/|Lk,+| for positive nodes),
RWR allows the walker to move another random walk step with probability
1 − θ, or to restart from its initial condition with probability θ; GBA, guilt-by-
association [34], a method based on the assumption that interacting proteins
are more likely to share similar functions; LP, label propagation [43], a popular
semi-supervised learning algorithm which propagates labels to unlabeled nodes
through an iterative process based on Gaussian random fields over a contin-
uous state space; MTLP, MTLP-inv [14], two recent multitask extensions of
LP, exploiting task dissimilarities (MTLP) and similarities (MTLP-inv); MS-
kNN, Multi-Source k-Nearest Neighbors [29], a method based on the k-Nearest
Neighbours (kNN) algorithm [1], among the top-ranked methods in the recent
CAFA2 international challenge for AFP [25]; RANKS [36], a recent graph-based
method proposed to rank proteins, adopting a suitable kernel matrix to extend
the notion of node similarity also to non neighboring nodes; COSNet, employing
the neuron internal energy at equilibrium to compute node ranking, in order to
properly calculating both AUC and AUPR, as done in [18]. Free parameters for
compared methods have been learned through inner 3-fold cross-validation.

In Table 2 we show the obtained results. Our method achieves the highest
AUPR in all the experiments, with statistically significant difference over the sec-
ond top method (RWR) in 2 out of 3 experiments (Wilcoxon signed rank test,
α = 0.05). The performance improvement compared with COSNet is notice-
able, showing the remarkable contribution supplied by our multitask extension.
Interestingly, MTLP and MTLP-inv increase the AUPR results of LP not so
remarkably as HoMTask: this means that the further information regarding task
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similarities should be appropriately exploited in order to achieve relevant gains.
RANKS is the third method in all experiments, followed by MTLP(-inv), while
MS-kNN is surprisingly the last method. Our method achieves good results also
in terms of AUC (which however is less informative in this context), being close
to top performing methods (RWR on CC and MF, and MTLP-inv on BP terms).

Table 2. Performance comparison averaged across GO branches. In bold the top
results, underlined when statistically different from the second top result.

RW RWR GBA LP MTLP MTLP-inv MS-kNN RANKS COSNet HoMTask

AUC

CC 0.954 0.966 0.944 0.964 0.957 0.964 0.790 0.958 0.904 0.959

MF 0.934 0.955 0.931 0.951 0.939 0.953 0.742 0.945 0.859 0.945

BP 0.943 0.959 0.935 0.955 0.947 0.961 0.764 0.949 0.855 0.954

AUPR

CC 0.367 0.437 0.207 0.308 0.343 0.342 0.218 0.398 0.361 0.439

MF 0.199 0.272 0.125 0.201 0.229 0.234 0.090 0.236 0.214 0.291

BP 0.244 0.313 0.145 0.224 0.246 0.250 0.116 0.271 0.241 0.330

4 Conclusions

We have proposed the first multitask Hopfield Network for classification pur-
poses, HoMTask, capable to simultaneously learn multiple tasks and to cope
with the label imbalance. In our validation experiments, it significantly outper-
formed singletask HNs, and favorably compared with state-of-the-art single and
multitask graph-based methodologies. Future investigations might reveal novel
insights about the model, in particular regarding the choice of the task related-
ness matrix, the task grouping strategy, the multitask criterion to be optimized
during the learning phase, the optimization procedure itself, and the robustness
against different proportions of labeled data.
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Abstract. Recently, neural networks trained as optimizers under the
“learning to learn” or meta-learning framework have been shown to be
effective for a broad range of optimization tasks including derivative-
free black-box function optimization. Recurrent neural networks (RNNs)
trained to optimize a diverse set of synthetic non-convex differen-
tiable functions via gradient descent have been effective at optimizing
derivative-free black-box functions. In this work, we propose RNN-Opt :
an approach for learning RNN-based optimizers for optimizing real-
parameter single-objective continuous functions under limited budget
constraints. Existing approaches utilize an observed improvement based
meta-learning loss function for training such models. We propose training
RNN-Opt by using synthetic non-convex functions with known (approx-
imate) optimal values by directly using discounted regret as our meta-
learning loss function. We hypothesize that a regret-based loss func-
tion mimics typical testing scenarios, and would therefore lead to better
optimizers compared to optimizers trained only to propose queries that
improve over previous queries. Further, RNN-Opt incorporates simple
yet effective enhancements during training and inference procedures to
deal with the following practical challenges: (i) Unknown range of possi-
ble values for the black-box function to be optimized, and (ii) Practical
and domain-knowledge based constraints on the input parameters. We
demonstrate the efficacy of RNN-Opt in comparison to existing methods
on several synthetic as well as standard benchmark black-box functions
along with an anonymized industrial constrained optimization problem.

Keywords: Black-box optimization · Learning to optimize ·
Meta-learning · Recurrent neural networks · Constrained optimization

1 Introduction

Several practical optimization problems such as process black-box optimization
for complex dynamical systems pose a unique challenge owing to the restriction
on the number of possible function evaluations. Such black-box functions do
not have a simple closed form but can be evaluated (queried) at any arbitrary
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query point in the domain. However, evaluation of real-world complex processes
is expensive and time consuming, therefore the optimization algorithm must
optimize while employing as few real-world function evaluations as possible.
Most practical optimization problems are constrained in nature, i.e. have one or
more constraints on the values of input parameters. In this work, we focus on
real-parameter single-objective black-box optimization (BBO) where the goal is
to obtain a value as close to the maximum value of the objective function as
possible by adjusting the values of the real-valued continuous input parameters
while ensuring domain constraints are not violated. We further assume a limited
budget, i.e. assume that querying the black-box function is expensive and thus
only a small number of queries can be made.

Efficient global optimization of expensive black-box functions [14] requires
proposing the next query (input parameter values) to the black-box function
based on past queries and the corresponding responses (function evaluations).
BBO can be mapped to the problem of proposing the next query given past
queries and the corresponding responses such that the expected improvement
in the function value is maximized, as in Bayesian Optimization approaches
[4]. While most research in optimization has focused on engineering algorithms
catering to specific classes of problems, recent meta-learning [24] approaches,
e.g. [2,5,7,18,27], cast design of an optimization algorithm as a learning prob-
lem rather than the traditional hand-engineering approach, and then, propose
approaches to train neural networks that learn to optimize. In contrast to a tra-
ditional machine learning approach involving training of a neural network on a
single task using training data samples so that it can generalize to unseen data
samples from the same data distribution, here the neural network is trained on
a distribution of similar tasks (in our case optimization tasks) so as to learn a
strategy that generalizes to related but unseen tasks from a similar task dis-
tribution. The meta-learning approaches attempt to train a single network to
optimize several functions at once such that the network can effectively gener-
alize to optimize unseen functions.

Recently, [5] proposed a meta-learning approach wherein a recurrent neural
network (RNN with gated units such as Long Short Term Memory (LSTM)
[9]) learns to optimize a large number of diverse synthetic non-convex functions
to yield a learned task-independent optimizer. The RNN iteratively uses the
sequence of past queries and corresponding responses to propose the next query
in order to maximize the observed improvement (OI) in the response value.
We refer to this approach as RNN-OI in this work. Once the RNN is trained
to optimize a diverse set of synthetic functions by using gradient descent, it
is able to generalize well to solve unseen derivative-free black-box optimization
problems [5,29]. Such learned optimizers are shown to be faster in terms of the
time taken to propose the next query compared to Bayesian optimizers as they
do not require any matrix inversion or optimization of acquisition functions, and
also have lower regret values within the training horizon, i.e. the number of steps
of the optimization process for which the RNN is trained to generate queries.
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Key contributions of this work and the challenges addressed can be summa-
rized as follows:

1. Regret-based loss function: We hypothesize that training an RNN optimizer
using a loss function that minimizes the regret observed for a given number
of queries more closely resembles the performance measure of an optimizer.
So it is better than a loss function based on OI such as the one used in [5,29].
To this end, we propose a simple yet highly effective loss function that yields
superior results than the existing OI loss for black-box optimization. Regret
of the optimizer is the difference between the optimal value (maximum of the
black-box function) and the realized maximum value.

2. Deal with lack of prior knowledge on range of the black-box function: In many
practical optimization problems, it may be difficult to ascertain the possible
range of values the function can take, and the range of values would vary
across applications. On the other hand, neural networks are known to work
well only on normalized inputs, and can be numerically unstable and difficult
to train on very large or very small values as typical non-linear activation
functions like sigmoid activation function tend to saturate for large inputs
and will then adjust slowly during training. RNNs are most easily trained
when their inputs are well conditioned, and have a similar scale as their
latent state, and suitable scaling often accelerates training [27]. We, therefore,
propose incremental normalization that dynamically normalizes the output
(response) from the black-box function using the response values observed so
far before the value is passed as an input to the RNN, and observe significant
improvements in terms of regret by doing so.

3. Incorporate domain-constraints: Any practical optimization problem has a set
of constraints on the input parameters. It is important that the RNN opti-
mizer is penalized when it proposes query points outside the desired limits.
We introduce a mechanism to achieve this by giving an additional feedback to
the RNN whenever it proposes a query that violates domain constraints. In
addition to regret-based loss, RNN is also trained to simultaneously minimize
domain constraint violations. We show that an RNN optimizer trained in this
manner attains lower regret values in fewer steps when subjected to domain
constraints compared to an RNN optimizer not explicitly trained to utilize
feedback.

We refer to the proposed approach as RNN-Opt. As a result of the above con-
siderations, RNN-Opt can deal with an unknown range of function values and
also incorporate domain constraints. We demonstrate that RNN-Opt works well
on optimizing unseen benchmark black-box functions and outperforms RNN-OI
in terms of the optimal value attained under a limited budget for 2-dimensional
and 6-dimensional input spaces. We also perform extensive ablation experiments
demonstrating the importance of each of the above-stated features in RNN-Opt.

The rest of the paper is organized as follows: We contrast our work to existing
literature in Sect. 2, followed by defining the problem in Sect. 3. We present the
details of our approach in Sect. 4, followed by experimental evaluation in Sect. 5,
and conclude in Sect. 6.
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2 Related Work

Our work falls under the category of real-parameter black-box global opti-
mization [21]. Traditional approaches for black-box optimization like covari-
ance matrix adaptation evolution strategy (CMA-ES) [8], Nelder-Mead [20],
and Particle Swarm Optimization (PSO) [15] hand-design rules using heuristics
(e.g. using nature-inspired genetic algorithms) to decide the next query point(s)
given the observations made so far. Another category of approaches for global
optimization of black-box functions include Bayesian optimization techniques
[4,25,26]. These approaches use observations (query and response) made thus
far to approximate the black-box function via a surrogate (meta-) model, e.g.
using a Gaussian Process [10], and then use this model to construct an acquisi-
tion function to decide the next query point. The acquisition function updates
needed at each step are known to be costly [5].

Learned optimizers: There has been a recent interest in learning optimizers
under the meta-learning setting [24] by training RNN optimizers via gradient
descent. For example, [2] casts the design of an optimization algorithm as a
learning problem and uses an LSTM model to learn an optimizer for a par-
ticular class of optimization problems, e.g. quadratic functions, training neural
networks, etc. Similarly, [7,18] cast optimizer learning as learning a policy under
a reinforcement learning setting. [27] proposes a hierarchical RNN architecture
to learn optimizers that scale well to optimize a large number of parameters
(high-dimensional input space). However, the above meta-learning approaches
for optimization assume the availability of gradient information to decide the
next set of parameters, which is not available in the case of black-box optimiza-
tion. Our work builds upon the meta-learning approach for learning black-box
optimizers proposed in [5]. This approach mimics the sequential model-based
Bayesian approaches in the sense that it proposes an RNN optimizer that stores
sequential information about previous queries and responses, and accesses this
memory to generate the next candidate query. RNN-OI mimics the Bayesian
optimization based sequential decision-making process [4] (refer [5] for details)
while being significantly faster than standard BBO algorithms like SMAC [11]
and Spearmint [26] as it does not involve any matrix inversion or optimization
of acquisition functions. RNN-OI was successfully tested on Gaussian process
bandits, simple low dimensional controllers, and hyper-parameter tuning.

Handling domain constraints in neural networks: Recent work on Physics-
guided deep learning [13,19] incorporates domain knowledge in the learning pro-
cess via additional loss terms. Such approaches can be useful in our setting if the
optimizer network is to be trained from scratch for a given application. How-
ever, the purpose of building a generic optimizer that can be transferred to new
applications requires incorporating domain constraints in a posterior manner
during inference time when the optimizer is suggesting query points. This is not
only useful to adapt the same optimizer to a new application but also useful in
another practical scenario of adapting to a new set of domain constraints for a
given application. ThermalNet [6] uses a deep Q-network as an optimizer and
uses an LSTM predictor for combustion optimization of a boiler in a power plant
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but does not handle domain constraints. Similar to our approach, ChemOpt [29]
uses an RNN based optimizer for chemical reaction optimization but does not
address aspects related to handling an unknown range for the function being
optimized and incorporating domain constraints.

Handling unknown range of function values: Suitable scaling of input and
output of hidden layers in neural networks has been shown to accelerate training
of neural networks [3,12,17,23]. Dynamic input scaling has been used in a similar
setting as ours [27] to ensure that the neural network based optimizer is invariant
to parameter scale. However, the scaling is applied to the average gradients. In
our setting, we use a similar approach but apply dynamic scaling to the function
evaluations being fed back as input to RNN-Opt.

3 Problem Overview

We consider learning an optimizer that can optimize (e.g., maximize) a black-
box function fb : Θ �→ R, where Θ ⊆ R

d is the domain of the input parameters.
We assume that the function fb does not have a closed-form representation, is
costly to evaluate, and does not allow the computation of gradients. In other
words, the optimizer can query the function fb at a point x to obtain a response
y = fb(x), but it does not obtain any gradient information, and in particular it
cannot make any assumptions on the analytical form of fb. The goal is to find
xopt = arg maxx∈Θ fb(x) within a limited budget, i.e. within a limited number
of queries T that can be made to the black-box.

We consider training an optimizer fopt with parameters θopt such that,
given the queries x1...t = x1,x2, . . . ,xt and the corresponding responses y1...t =
y1, y2, . . . , yt from fb where yt = fb(xt), fopt proposes the next query point xt+1

under a budget constraint of T queries, i.e. t ≤ T − 1:

xt+1 = fopt(x1...t, y1...t;θopt). (1)

4 RNN-Opt

We model fopt using an LSTM-based RNN. (For implementation, we use a vari-
ant of LSTMs as described in [28].) Recurrent Neural Networks (RNNs) with
gated units such as Long Short Term Memory (LSTM) [9] units are a popular
choice for sequence modeling to make predictions about future values given the
past. They do so by maintaining a memory of all the relevant information from
the sequence of inputs observed so far. In the meta-learning or training phase, a
diverse set of synthetically-generated differentiable non-convex functions (refer
Appendix A) with known global optima are used to train the RNN (using gra-
dient descent). The RNN is then used to predict the next query in order to
intelligently explore the search space given the sequence of previous queries and
the function responses. The RNN is expected to learn to retain any informa-
tion about previous queries and responses that is relevant to proposing the next
query to minimize the regret as shown in Fig. 1.
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4.1 RNN-Opt Without Domain Constraints

Given a trained RNN-based optimizer and a differentiable function fg, inference
in RNN-Opt follows the following iterative process for t = 1, . . . , T − 1: At each
step t, the output of the final recurrent hidden layer of the RNN is used to
generate the output via an affine transformation to finally obtain xt+1.

ht+1 = fo(ht,xt, yt;θ), (2)
μx

t+1,Σ
x
t+1 = W2m,d(ht+1), (3)

xt+1 ∼ N (μx
t+1,Σ

x
t+1), (4)

yt+1 = fg(xt+1), (5)

where fo represents the RNN with parameters θ, fg is the function to be opti-
mized, W2m,d defines the affine transformation of the final output (hidden state)
ht+1 of the RNN. The parameters θ and W2m,d together constitute θopt. Instead
of directly training fo to propose the next query xt+1 as in [5], we use a stochastic
RNN to estimate μx

t+1 ∈ R
d and Σx

t+1 ∈ R
d×d as in Eq. 3, then sample xt+1 from

a multivariate Gaussian distribution N (μx
t+1,Σ

x
t+1). Introducing randomness in

the query generation process leads to better exploration compared to a deter-
ministic model [29]. The first query x1 is sampled from a uniform distribution
over the domain of the function fg to be optimized. Once the network is trained,
fg can be replaced by any black-box function fb that takes d-dimensional input.

For any synthetically generated function fg ∈ F , we assume xopt (approx-
imate) can be found, e.g. using gradient-descent, since the closed form of the
function is known. Hence, we assume that yopt of fg given by yopt = fg(xopt)
is known. Therefore, it is easy to determine the regret yopt − maxi≤t yi after t
iterations (queries) to the function fg. We can then define a regret-based loss
function as follows:

LR =
∑

fg∈F

T∑

t=2

1
γt

ReLU(yopt − max
i≤t

yi), (6)

where ReLU(x) = max(x, 0). Since the regret is expected to be high during initial
iterations because of random initialization of x but desired to be low close to
T , we give exponentially increasing importance to regret terms via a discount
factor 0 < γ ≤ 1. In contrast to regret loss, OI loss used in RNN-OI is given by
[5,29]:

LOI =
∑

fg∈F

T∑

t=2

1
γt

ReLU(yt − max
i<t

yi) (7)

It is to be noted that using LR as the loss function mimics a supervised sce-
nario where the target yopt for each optimization task is known and explicitly
used to guide the learning process. On the other hand, LOI mimics an unsuper-
vised scenario where the target yopt is unknown and the learning process solely
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Fig. 1. Computation flow in RNN-Opt. During training, the functions fg are dif-
ferentiable and obtained using Eq. 12. Once trained, fg is replaced by the black-box
function fb.

relies on the feedback about whether it is able to improve yt over iterations. It
is important to note that once trained, the model requires neither yopt nor xopt

during inference.

Incremental Normalization. We do not assume any constraint on the range
of values the functions fg and fb can take. Although this feature is critical for
most practical aspects, it poses a challenge on the training and inference proce-
dures using RNN: Neural networks are known to work well only on normalized
inputs, and can be numerically unstable and difficult to train on very large or
very small values as typical non-linear activation functions like sigmoid activation
function tend to saturate for large inputs and will adjust slowly during training.
RNNs are most easily trained when their inputs are well conditioned, and have a
similar scale as their latent state, and suitable scaling often accelerates training
[12,27]. This poses a challenge during both training and inference if we directly
use yt as an input to the RNN. Figure 2 illustrates the saturation effect if suitable
incremental normalization of function values is not used during inference. This
behavior at inference time was noted1 in [5], however, was not considered while

Fig. 2. Effect of not using suitable scaling (incremental normalization in our case) of
black-box function value during inference.

1 As per electronic correspondence with the authors.
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training RNN-OI. In order to deal with any range of values that fg can take
during training or that fb can take during inference, we consider incremental
normalization while training such that yt in Eq. 2 is replaced by ỹt = yt−μt√

σ2
t+ε

such that ht+1 = fo(ht,xt, ỹt;θ), where μt = 1
t

∑t
i=1 yi, σ2

t = 1
t

∑t
i=1(yi − μt)2,

and 0 < ε 	 1. (We used ε = 0.05 in our experiments).

4.2 RNN-Opt with Domain Constraints (RNN-Opt-DC)

Consider a constrained optimization problem of finding arg maxx fb(x) subject
to constraints given by cj(x) ≤ 0, j = 1, . . . , C, where C is the number of con-
straints. To ensure that the optimizer proposes queries that satisfy the domain
constraints, or is at least able to receive feedback when it proposes a query
that violates any domain constraints, we consider the following enhancements in
RNN-Opt, as depicted in Fig. 3:

Fig. 3. Computation flow in RNN-Opt-DC. Here fg is the function to be optimized,
and fp is used to compute the penalty pt. Further, if pt = 0, actual value of fg, i.e. yt

is passed to the loss function and RNN, else yt is set to yt−1.

1. Input an explicit feedback pt via a penalty function s.t. pt = fp(xt) to the
RNN that captures the extent to which a proposed query xt violates any of
the C domain constraints. We consider the following instantiation of penalty
function: fp(xt) =

∑C
j=1 ReLU(cj(xt)), i.e. for any j for which cj(xt) > 0

a penalty equal to cj(xt) is considered, while for any j with cj(xt) ≤ 0 the
contribution to penalty is 0. The real-valued penalty captures the cumulative
extent of violation as well. Further, similar to normalizing yt, we also nor-
malize pt incrementally and use p̃t as an additional input to the RNN, such
that:
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ht+1 = fo(ht,xt, ỹt, p̃t;θ). (8)

Further, whenever pt > 0, i.e. when one or more of the domain constraints are
violated for the proposed query, we set yt = yt−1 rather than actually getting
a response from the black-box. This is useful in practice: for example, when
trying to optimize a complex dynamical system, getting a response from the
system for such a query is not possible as it can be catastrophic.

2. During training, an additional domain constraint loss LD is considered that
penalizes the optimizer if it proposes a query that does not satisfy one or
more of the domain constraints.

LD =
1
C

∑

fg∈F

T∑

t=2

pt. (9)

The overall loss is then given by:

L = LR + λLD, (10)

where λ controls how strictly the constraints on the domain of parameters
should be enforced; higher λ implies stricter adherence to constraints. It is
worth noting that the above formulation of incorporating domain constraints
does not put any restriction on the number of constraints C nor on the nature
of constraints in the sense that the constraints can be linear or non-linear in
nature. Further, complex non-linear constraints based on domain knowledge
can also be incorporated in a similar fashion during training, e.g. as used in
[13,19]. Apart from optimizing (in our case, maximizing) fg, the optimizer is
also being simultaneously trained to minimize fp.

Example of Penalty Function. Consider simple limit constraints on the input
parameters such that the domain of the function fg is given by Θ = [xmin,xmax],
then we have:

fp(xt) =
d∑

j=1

(
ReLU(xj

t − xj
max) + ReLU(xj

min − xj
t )

)
, (11)

where xj
t denotes the j-th dimension of xt where xj

min and xj
max are the j-th

elements of xmin and xmax, respectively.

5 Experimental Evaluation

We conduct experiments to evaluate the following: i. regret loss (LR) versus
OI loss (LOI), ii. effect of including incremental normalization during training,
and iii. ability of RNN-Opt trained with domain constraints using L (Eq. 10) to
generate more feasible queries and leverage feedback to quickly adapt in case it
proposes queries violating domain constraints.
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For the unconstrained setting, we test RNN-Opt on (i) standard benchmark
functions for d = 2 and d = 6, and (ii) 1280 synthetically generated GMM-DF
functions (refer Appendix A) not seen during training. We choose the benchmark
functions such as Goldstein, Rosenbrock, and Rastrigin (and the simple spherical
function) that are known to be challenging for standard optimization methods.
None of these functions were used for training any of the optimizers.

We use regret rt = yopt − maxi≤t yi to measure the performance of any
optimizer after t iterations, i.e. after proposing t queries. Lower values of rt

indicate superior optimizer performance. We test all the optimizers under limited
budget setting such that T = 10 × d. For each test function, the first query
is randomly sampled from U(−4.0, 4.0), and we report average regret rt over
1280 random initializations. For synthetically generated GMM-DF functions, we
report average regret over 1280 functions with one random initialization for each.

All RNN-based optimizers (refer Table 1) were trained for 8000 iterations
using Adam optimizer [16] with an initial learning rate of 0.005. The network
consists of two hidden layers with the number of LSTM units in each layer
being chosen from {80, 120, 160} using a hold-out validation set of 1280 GMM-
DF. Another set of 1280 randomly generated functions constitute the GMM-
DF test set. An initial code base2 developed using Tensorflow [1] was adapted
to implement our algorithm. We used a batch size of 128, i.e. 128 randomly-
sampled functions (refer Eq. 12) are processed in one mini-batch for updating
the parameters of LSTM.

Table 1. Variants of trained optimizers considered. Each row corresponds to a method.
Y/N denote whether a feature (incremental normalization or domain constraint) was
considered (Y) or not (N) during training or inference in a particular method.

Method Loss γ Inc. Norm. Domain Const. (DC)

Training Inference Training Inference

RNN-OI LOI 1.0 N Y N N

RNN-Opt-Basic LR 0.98 N Y N N

RNN-Opt LR 0.98 Y Y N N

RNN-Opt-P LR 0.98 Y Y N Y

RNN-Opt-DC LR + λLD 0.98 Y Y Y Y

5.1 Observations

We make the following key observations for unconstrained optimization setting:

1. RNN-Opt is able to optimize black-box functions not seen during
training, and hence, generalize. We compare RNN-Opt with RNN-OI

2 https://github.com/lightingghost/chemopt.

https://github.com/lightingghost/chemopt
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and two standard black-box optimization algorithms CMA-ES [8] and Nelder-
Mead [20]. RNN-OI uses xt, yt, and ht to get the next hidden state ht+1,
which is then used to get xt+1 (as in Eq. 4), such that ht+1 = fo(ht,xt, yt;θ),
with OI loss as given in Eq. 7. From Fig. 4(a)-(i), we observe that RNN-Opt
outperforms all the baselines considered on most functions considered while
being at least as good as the baselines in few remaining cases. Except for the
simple convex spherical function, RNN-based optimizers outperform CMA-
ES and Nelder-Mead under limited budget, i.e. with T = 20 for d = 2 and
T = 60 for d = 6. We observe that trained optimizers outperform CMA-ES
and Nelder-Mead for higher-dimensional cases (d = 6 here, as also observed
in [5,29]).

2. Regret-based loss is better than the OI loss. We compare RNN-Opt-
Basic with RNN-OI (refer Table 1) where RNN-Opt-Basic differs from RNN-
OI only in the loss function (and the discount factor, as discussed in next
point). For fair comparison with RNN-OI, RNN-Opt-Basic does not include
incremental normalization during training. From Fig. 4(j)-(k), we observe that
RNN-Opt-Basic (with γ = 0.98) performs better than RNN-OI during initial

(a) GMM-DF (d=2) (b) Goldstein (d=2) (c) Rastrigin (d=2) (d) Rosenbrock (d=2)

(e) Spherical (d=2) (f) GMM-DF (d=6) (g) Rastrigin (d=6) (h) Rosenbrock (d=6)

(i) Spherical (d=6) (j) GMM-DF (d=2) (k) GMM-DF (d=6)

Fig. 4. (a)-(i) RNN-Opt versus CMA-ES, Nelder-Mead and RNN-OI for benchmark
functions for d = 2 and d = 6. (j)-(k) Regret loss versus OI Loss with varying discount
factor γ mentioned in brackets in the legend. (Lower regret is better.)



Meta-Learning for Black-Box Optimization 377

steps for d = 2 (while being comparable eventually) and across all steps for
d = 6, proving the advantage of using regret loss over OI loss.

3. Significance of discount factor when using regret-based loss versus
OI loss. From Fig. 4(j)-(k), we also observe that the results of RNN-Opt and
RNN-OI are sensitive to the discount factor γ (refer Eqs. 6 and 7). γ < 1 works
better for RNN-Opt while γ = 1 (i.e. no discount) works better for RNN-OI.
This can be explained as follows: the queries proposed initially (small t) are
expected to be far from yopt due to random initialization, and therefore, have
high initial regret. Hence, components of the loss term for smaller t should
be given lower weightage in the regret-based loss. On the other hand, during
later steps (close to T ), we would like the regret to be as low as possible,
and hence a higher importance should be given to the corresponding terms
in the regret-based loss. In contrast, RNN-OI is trained to keep improving
irrespective of yopt, and hence giving equal importance to the contribution of
each step to the OI loss works best.

4. Incremental normalization during training and inference to optimize
functions with diverse range of values. We compare RNN-Opt-Basic and
RNN-Opt, where RNN-Opt uses incremental normalization of inputs during
training as well as testing (as described in Sect. 4.1) while RNN-Opt-Basic
uses incremental normalization only during testing (refer Table 1). From Fig. 5,
we observe that RNN-Opt performs significantly better than RNN-Opt-Basic
proving the advantage of incorporating incremental normalization during train-
ing. Note that since most of the functions considered have large range of values,
incremental normalization is by-default enabled for all RNN-based optimizers
during testing to obtain meaningful results, as illustrated earlier in Fig. 2, espe-
cially for functions with large range, e.g. Rosenbrock.

(a) GMM-DF (d=2) (b) Rosenbrock (d=2) (c) GMM-DF (d=6) (d) Rosenbrock (d=6)

Fig. 5. Regret plots showing effect of incremental normalization in RNN-Opt. Similar
results are observed for all functions. We omit them here for brevity.

5.2 RNN-Opt with Domain Constraints

To train RNN-Opt-DC, we generate synthetic functions with random limit con-
straints as explained in Sect. 4.2. The limits of the search space are set as
[xopt − Δx,xopt + Δx] where Δxj (j-th component of Δx) is sampled from
U(τ1, τ2) (we use τ1 = 1.0, τ2 = 2.0 during training).
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We use λ = 0.2 for RNN-Opt-DC. As a baseline, we use RNN-Opt with minor
variation during inference time (with no change in training procedure) where,
instead of passing ỹt as input to the RNN, we pass ỹt−p̃t so as to capture penalty
feedback. We call this baseline approach as RNN-Opt-P (refer Table 1). While
RNN-Opt-DC is explicitly trained to minimize penalty pt explicitly, RNN-Opt-
P captures the requirement of trying to maximize yt under a soft-constraint of
minimizing pt only during inference time.

We use the standard quadratic (disk) constraint used to evaluate constrained
optimization approaches, i.e. ||x||22 ≤ τ ×d (we use τ = {0.5, 1.0, 2.0}) for Rosen-
brock function. For GMM-DF, we generate random limit constraints on each
dimension around the global optima, s.t. the optimal solution is still the same
as the one without constraints, while the feasible search space varies randomly
across functions. Limits of the domain is [xopt − Δx,xopt + Δx], where Δxj (j-
th component of Δx) is sampled from U(τ1, τ2) (we use τ1 = {0.5, 1.0, 1.5},
τ2 = {1.5, 2.0, 2.5}). We also consider two instances of (anonymized) non-
linear surrogate model for a real-world industrial process built by subject-matter
experts with six controllable input parameters (d = 6) as black-box functions,
referred to as Industrial-1 and Industrial-2 in Fig. 6. This process imposes limit
constraints on all six parameters guided by domain-knowledge. The ground-truth
optimal value for these functions was obtained by querying the surrogate model
200k times via grid search. The regret results are averaged over runs assuming
diverse environmental conditions.

(a) GMM-DF (d=2) (b) Rosenbrock (d=2) (c) GMM-DF (d=6)

(d) Rosenbrock (d=6) (e) Industrial-1 (d=6) (f) Industrial-2 (d=6)

Fig. 6. Regret plots comparing RNN-Opt-DC (DC) and RNN-Opt-P (P). The entries
in the brackets denote values for (τ1, τ2) for GMM-DF, and τ for Rosenbrock.

RNN-Opt-DC and RNN-Opt-P are not guaranteed to propose feasible queries
at all steps because of the soft constraints during training and/or inference.
Therefore, despite training the optimizers for T steps we unroll the RNNs up to
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a maximum of 5T steps and take the first T proposed queries that are feasible, i.e.
satisfy domain constraints. For functions where optimizer is not able to propose
T feasible queries in 5T steps, we replicate the regret corresponding to best
solution for remaining steps. As shown in Fig. 6, we observe that RNN-Opt
with domain constraints, namely, RNN-Opt-DC is able to effectively
use explicit penalty feedback, and at least as good as RNN-Opt-P in
all cases. As expected, we also observe that the performance of both optimizers
degrades with increasing values of τ or τ2 −τ1 as the search space to be explored
by the optimizer increases.

6 Conclusion and Future Work

Learning optimization algorithms under the meta-learning paradigm is an area
of active research. In this work, we have shown that using regret directly as a loss
for training optimizers using recurrent neural networks is possible, and that it
yields better optimizers than those obtained using observed-improvement based
loss. We have proposed useful extensions of practical importance to optimization
algorithms for black-box optimization that allow dealing with diverse range of
function values and handle domain constraints more effectively. One shortcoming
of this approach is that a different optimizer needs to be trained for varying
number of input parameters. In future, we plan to extend this work to train
optimizers that can ingest input with varying and high number of parameters,
e.g. by first proposing a change in a latent space and then estimating changes in
actual input space as in [22,27]. Further, training optimizers for multi-objective
optimization can be a useful extension.

A Generating Diverse Non-convex Synthetic Functions

We generate synthetic non-convex continuous functions fg defined over Θ ⊆ R
d

via a Gaussian Mixture Model density function (GMM-DF, similar to [29]):

fg(xt) =
N∑

i=1

ci

(2π)
k
2 |Σi| 1

2
exp(−1

2
(xt − μi)

T Σ−1
i (xt − μi)). (12)

In this work, we used GMM-DF instead of Gaussian Processes used in [5] for
ease of implementation and faster response time to queries: Functions obtained
in this manner are often non-convex and have multiple local minima/maxima.
Sample plots for functions obtained over 2-D input space are shown in Fig. 7.
We use ci ∼ N (0, 0.2), μi ∼ U(−2.0, 2.0) and Σi ∼ TruncatedN (0.9, 0.9/5) for
d = 2, μi ∼ U(−3.0, 3.0) and Σi ∼ TruncatedN (3.0, 3.0/5) for d = 6 in our
experiments (all covariance matrices are diagonal).

For any function fg, we use an estimated value ŷopt = maxi fg(μi) (i =
1, 2, . . . , N) instead of yopt. This assumes that the global maximum of the func-
tion is at the mean of one of the N Gaussian components. We validate this
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Fig. 7. Sample synthetic GMM density functions for d = 2.

assumption by obtaining better estimates of the ground truth for yopt via grid
search over randomly sampled 0.2M query points over the domain of fg. For 10k
randomly sampled GMM-DF functions, we obtained an average error of 0.03
with standard deviation of 0.02 in estimating yopt, suggesting that the assump-
tion is reasonable, and in practice, approximate values of yopt suffice to estimate
the regret values for supervision. However, in general, yopt can also be obtained
using gradient descent on fg.
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Abstract. Since resource-constrained devices hardly benefit from the
trend towards ever-increasing neural network (NN) structures, there is
growing interest in designing more hardware-friendly NNs. In this paper,
we consider the training of NNs with discrete-valued weights and sign
activation functions that can be implemented more efficiently in terms
of inference speed, memory requirements, and power consumption. We
build on the framework of probabilistic forward propagations using the
local reparameterization trick, where instead of training a single set of
NN weights we rather train a distribution over these weights. Using this
approach, we can perform gradient-based learning by optimizing the con-
tinuous distribution parameters over discrete weights while at the same
time perform backpropagation through the sign activation. In our exper-
iments, we investigate the influence of the number of weights on the
classification performance on several benchmark datasets, and we show
that our method achieves state-of-the-art performance.

Keywords: Resource-efficiency · Deep learning · Weight distributions

1 Introduction

In recent years, deep neural networks (NNs) achieved unprecedented results in
many applications such as computer vision [17], speech recognition [10], and
machine translation [32], among others. These improved results, however, can
be largely attributed to the growing amount of available data and to increasing
hardware-capabilities as NNs are essentially known for decades. On the opposite
side, there is also a growing number of hardware-constrained embedded devices
that barely benefit from this trend in machine learning. Consequently, over the
past years an own research field has emerged that is concerned with developing
NN architectures that allow for fast and energy-efficient inference and require
little memory for the weights.
c© Springer Nature Switzerland AG 2020
U. Brefeld et al. (Eds.): ECML PKDD 2019, LNAI 11907, pp. 382–398, 2020.
https://doi.org/10.1007/978-3-030-46147-8_23

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-46147-8_23&domain=pdf
https://doi.org/10.1007/978-3-030-46147-8_23


Discrete-Valued Neural Networks Using Weight Distributions 383

(a) Overview
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x2

xd0

∑

(b) Central Limit Approximation

Fig. 1. (a) Overview of our method. We train distributions over discrete weights (left).
After training, a discrete-valued NN can be obtained by selecting the most probable
weights or sampling from these distributions. (b) The expectation in Eq. (2) is approx-
imated by invoking a central limit approximation at the neurons and propagating the
resulting Gaussians through the sign activations. This results in a loss function that is
differentiable with respect to the weight probabilities.

In this paper, we consider NNs with discrete-valued (ternary, quaternary,
quinary) weights and sign activation functions. While such weight representa-
tions offer an obvious reduction in memory requirements compared to the com-
monly used 32-bit floating-point representation, discrete weights and activations
can also be exploited to speed up inference. For instance, when using ternary
weights {−1, 0, 1}, we can effectively get rid of multiplications.

However, there is one fundamental problem when learning discrete-valued
NNs. Real-valued NNs are commonly trained with gradient-based learning using
the backpropagation algorithm which is not feasible for discrete weights and/or
piecewise constant activation functions. Most of the research concerned with the
training of low-bit NNs can be divided into two categories. (i) Methods that
quantize the weights of a pre-trained real-valued NN in a more or less heuristic
post-processing step. (ii) Methods that perform “quantization aware” training
by employing the so called straight-through gradient estimator [1]. Such meth-
ods maintain a set of auxiliary real-valued weights wr that are quantized during
forward propagation using some zero-gradient quantization function to obtain
wq. During backpropagation the gradient of the zero-gradient quantization func-
tion is assumed to be non-zero and gradient updates are subsequently applied
to the auxiliary weights wr. Analogously, the same technique can be applied for
the sign activation by assuming that its derivative is non-zero. At test time, the
real-valued weights wr are ignored and only the quantized weights wq are kept.
Although these methods achieve impressive results in practice, they are theoret-
ically not well understood. Therefore, it is desired to develop methods that are
not based on quantization heuristics.

To this end, we adopt a probabilistic view of NNs by considering a dis-
tribution q(W|ν) over the discrete weights [23,28,31]. We can then introduce
an expectation of the zero-gradient loss function over q to obtain a new loss
function that is differentiable with respect to the distribution parameters ν.
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This allows us to perform gradient-based learning over the distribution param-
eters ν. After training has finished, a discrete-valued resource-efficient NN is
obtained by either sampling or taking the most probable weights from q, respec-
tively. This is illustrated in Fig. 1(a).

Compared to the most relevant previous work in [23,28] which used binary
and ternary weights, we consider general discrete weights. These methods use a
parameterization for q that is tailored to binary and ternary weights and does
not easily generalize to more than three weights. Similarly, their initialization
method for q that is crucial to achieve competitive results does also not easily
generalize to more than three weights. We introduce a simpler parameterization
and initialization method that generalizes to arbitrary discrete weights. We intro-
duce a variance-aware approximation for max-pooling as opposed to the method
in [23] which effectively ignores the variance. In contrast to several other works
that require real-valued weights in the input and/or output layers [24,28,36],
we employ discrete weights in all layers. Our method achieves state-of-the-art
performance on several benchmark datasets. In our experiments, we show that
more weights typically result in better performance. We found a two-stage pro-
cedure, where we first train a NN using discrete weights only, and subsequently
also train with the sign activation function to mostly improve results compared
to training with discrete weights and the sign activation immediately.

The remainder of the paper is structured as follows. Section 2 reviews the
most relevant work. In Sect. 3 we introduce our probabilistic neural network
framework. Section 4 presents an efficient approximation to the intractable
expected loss function followed by model details in Sect. 5. We show results
of our model in Sect. 6 before we conclude in Sect. 7. Code related to the paper
is available online at https://github.com/wroth8/nn-discrete.

2 Related Work

In our literature review, we focus on work that is most related to this paper,
namely work that quantizes weights and/or activations. Most recent works con-
cerned with the training of low-precision NNs rely on the straight-through gradi-
ent estimator and introduce different quantizers [2,5,11,19,24,37]. Soudry et al.
[31] used a Bayesian approach based on expectation propagation to obtain dis-
tributions over discrete weights. The work of Shayer et al. [28] is closely related
to our work, but they only consider binary and ternary NNs with full-precision
ReLU activations. Most related to our work is the work of Peters and Welling
[23]. They consider binary and ternary weights using sign activations. We extend
the work of [23,28] to general discrete weights and introduce a variance-aware
approximation for max-pooling.

Beyond work focusing on low-bit NNs, there exist several orthogonal direc-
tions that facilitate resource-efficient inference. Weight pruning methods, i.e.,
setting a large portion of the weights to zero, can be utilized to reduce the
memory footprint and to improve inference speed [8,21]. The work in [3,26,33]
introduces weight sharing to reduce the memory footprint. More global strate-
gies are concerned with special matrix structures that facilitate efficient inference

https://github.com/wroth8/nn-discrete
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[4,6,7]. There also exists work regarding efficient training of neural networks that
is not within the scope of this paper [35,36].

3 Neural Networks and Weight Distributions

A NN with L layers and weights W = (W1, . . . ,WL) defines a function
f(x0;W) by repeatedly computing a linear transformation al = Wlxl−1 fol-
lowed by a non-linear activation function xl = φl(al). The linear function is
either a general matrix-vector multiplication or a convolution operation.1 For
layers l = 1, . . . , L − 1, typical choices for the non-linear activation function
φl(a) are the ReLU activation max(0, a), tanh(a), or, in the context of resource-
efficient NNs, sign(a) = I(a ≥ 0) − I(a < 0), where I is the indicator function.
In this paper we consider classification problems where the task is to assign an
input x0 to one of C classes. For classification, the activation function φL at
the output is the softmax function xL

i = exp(aL
i )/

∑C
j=1 exp(aL

j ). An input x0 is
classified according to c = arg maxjx

L
j . Note that the computationally expensive

softmax does not change the maximum of its inputs, and, therefore, computing
the softmax is not required to determine the predicted class label.

Let D = {(x0
1, t1), . . . , (x

0
N , tN )} be a dataset of N input-target pairs and let

yn = xL
n = f(x0

n;W) be the NN output for the nth sample. The weights W are
typically obtained by performing gradient descent on a loss function

L(W;D) =
1
N

N∑

n=1

l(f(x0
n;W), tn) + λr(W), (1)

where l(yn, tn) penalizes the weights W if the nth sample is misclassified, r is a
regularizer that favors simpler models to enforce generalization, and λ > 0 is a
tunable hyperparameter.

However, when considering weights from a discrete set, gradient-based learn-
ing cannot be applied. Moreover, the sign activation function results in a gradient
that is zero almost everywhere, rendering backpropagation not usable. In this
paper, we employ weight distributions to solve both of these problems at the
same time. Instead of a single set of NN weights W, we consider a distribution
q(W|ν) over the discrete weights, where ν are the parameters governing the
distribution q. By redefining (1) using an expectation with respect to q, i.e.,

Lprob(ν;D) =
1
N

N∑

n=1

Eq(W|ν)
[
l(f(x0

n;W), tn)
]
+ λr(ν), (2)

we obtain a differentiable function with respect to the parameters ν of q. In
principle, this allows us to perform gradient-based learning over the distribution
parameters ν, and subsequently to determine the discrete-valued weights by
either sampling or selecting the most probable weights from q, respectively.2

1 A convolution can be cast as a matrix-vector multiplication.
2 We only consider distributions q where sampling and maximization is easy.
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However, the expectation in (2) is essentially a sum over exponentially many
terms which is generally intractable. In Sect. 4 we show how the gradient of (2)
can be approximated.

3.1 Discrete Neural Networks

Let D
D = {w1, . . . , wD} be a discrete set of weight values with w1 < . . . <

wD. In this paper we consider discrete weights with D ∈ {3, 4, 5}, i.e., ternary,
quaternary, and quinary weights. The choice of the particular weights wd is
arbitrary and we restrict ourselves to equidistributed weights with constant δw =
wd+1 − wd. In particular, we have D

3 = {−1, 0, 1}, D
4 = {−1,− 1

3 , 1
3 , 1}, and

D
5 = {−1,− 1

2 , 0, 1
2 , 1}. We use the sign activation function which implies that

the scale of the discrete weight set becomes irrelevant as either the sign stays
unaffected or batch normalization [12] compensates for the change in scale.

For the weight distribution q, we assume independence among the weights
which is commonly referred to as the mean-field assumption in the variational
inference framework. This implies that q factorizes into a product of factors
q(w|νw) for each weight w ∈ W. Each of these factors is a probability mass
function (pmf) over D values. We elaborate more on the parameterization of the
pmf over discrete weights in Sect. 5.2.

3.2 Relation to Variational Inference

The presented work is closely related to the Bayesian variational inference frame-
work. For a Bayesian treatment of NNs, we assume a prior distribution p(W)
over the weights and interpret the NN output after the softmax as likelihood
p(D|W) to obtain a posterior p(W|D) ∝ p(D|W)p(W) over the weights. As the
induced posterior p(W|D) is generally intractable, the aim of variational infer-
ence is to approximate it by a simpler distribution q(W|ν) by minimizing the
negative evidence lower bound

Lelbo(ν;D) =
N∑

n=1

Eq(W|ν)[− log p(tn|xn,W)] + KL(q(W|ν)||p(W)). (3)

Equation (3) is proportional to (2) for l(yn, tn) being the cross-entropy loss, r(ν)
being the KL-divergence, and λ = 1/N . The main difference to variational infer-
ence is our motivation to use distributions in order to obtain a gradient-based
learning scheme for discrete-valued NNs with discrete activation functions. Vari-
ational inference is typically used to approximate expectations over the posterior
p(W|D) and to obtain well calibrated uncertainty estimates for NN predictions.

4 Approximation of the Expected Loss

The expected loss in (2) is given by

Eq(W|ν)
[
l(f(x0

n;W), tn)
]

=
∑

W1

· · ·
∑

WL

q(W|ν) l(f(x0
n;W), tn). (4)
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Equation (4) contains a sum over exponentially many terms and is generally
intractable. Nevertheless, we adopt a practical approximation based on the cen-
tral limit theorem that has been widely used in the literature [9,23,25,28,31].
As each neuron computes a sum over many random variables, we can apply
the central limit theorem and approximate the neuron distribution by a Gaus-
sian N (a1

i |μa1
i
, σ2

a1
i
) where μa1

i
=

∑
j E[w1

i,j ] x0
j and σ2

a1
i

=
∑

j V[w1
i,j ] (x0

j )
2. The

binary distribution after the sign function is obtained by q(x1
i = 1) = Φ(μa1

i
/σa1

i
)

where Φ denotes the cumulative distribution function (cdf) of a zero-mean unit-
variance Gaussian.3 This is illustrated in Fig. 1(b). This approach transfers the
weight distributions q(W1) to distributions over the inputs of the next layer
q(x1

n), i.e.,

Eq(W|ν)
[
l(f(x0

n;W), tn)
] ≈

∑

W2

· · ·
∑

WL

∑

x1
n

q(W>1|ν) q(x1
n) l(f(x1

n;W>1), tn),

(5)

where W>1 = (W2, . . . ,WL). In principle, we can iterate this procedure
up to the output layer where it remains to compute the expected loss function
l(yn, tn) with respect to a Gaussian. However, there are two disadvantages with
this approach. (i) For the following layers, the inputs x are random variables
rather than fixed values which requires, assuming independence, to compute
σ2

al
i

=
∑

j V[wl
i,j ] E[xl−1

j ]2 + E[wl
i,j ]

2
V[xl−1

j ] + V[wl
i,j ] V[xl−1

j ]. This boils down

to computing three linear transformations for the variances σ2
a1
i

rather than just
one as for the first layer which is impractical. (ii) Since x1 is not observed, the
neurons in the next layer x2 are not independent and, thus, we are effectively
introducing an unreasonable independence assumption.

To avoid these problems, we adopt the local reparameterization trick
[15,23,28]. Since the reparameterized distribution is discrete, we apply the Gum-
bel softmax approximation [13,20]. The reparameterization trick transforms the
activation distribution into an observed value that eliminates the before men-
tioned problems at the cost of introducing a small bias due to the Gumbel
softmax approximation. We iterate this scheme up to the output layer where
we approximate the expectation of the loss function again by applying the local
reparameterization trick at the output activations. Note that due to the zero
derivative of the sign activation, the reparameterization trick cannot be applied
before the sign activation function. This implies that we have to propagate distri-
butions through max-pooling and batch normalization [12] which is not straight-
forward and could otherwise be circumvented by simply reparameterizing before
these operations.

Since our goal is to obtain a single discrete-valued NN achieving a good per-
formance, the question arises whether we can expect the most probable discrete

3 Given finite integer-valued summands, the activation distribution could also be com-
puted exactly in sub-exponential time by convolving the probabilities. However, this
would be impractical for gradient-based learning.
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weights to perform well if we perform well in expectation. In our probabilis-
tic forward propagation, the loss function essentially only depends on the means
Eq[w] and the variances Vq[w]. Using discrete weights with d1 = −1 and dD = 1,
we can represent any mean in the interval [−1, 1]. However, we can only achieve
low variance if the expectation is close to a weight in D. Therefore, our approach
can be seen as a way of parameterizing expectations and constrained variances,
respectively. As we require small variances to obtain a small expected loss –
in fact a point mass would be optimal – optimization favors expectations that
are closer to values in D. Consequently, also the most probable weights in q are
expected to perform well.

However, there is one caveat when applying this scheme to convolutional
layers that was not mentioned in the works of [23,28]. As weights in our frame-
work are not observed and a single weight in convolutional layers is used in
the computation of many activations, these activations actually become depen-
dent. However, when applying the local reparameterization trick, we effectively
assume independence among the activations which would be equivalent to sam-
pling different weights for each activation. Note that this problem does not arise
in fully-connected layers as weights are not shared among neurons.

4.1 Approximation of the Maximum Function

Many CNN architectures involve a max-pooling operation where feature maps
are downscaled by only passing the maximum of several spatially neighboring
activations to the next layer. To this end, we approximate the maximum of two
Gaussians by another Gaussian by moment-matching. Let μ1, μ2 and σ2

1 , σ2
2 be

the means and the variances of two independent Gaussians. Then the mean μmax

and the variance σ2
max of the maximum of these Gaussians is given by [30]

μmax = μ1Φ(β) + μ2Φ(−β) + αφ(β) and (6)

σ2
max = (σ2

1 + μ2
1)Φ(β) + (σ2

2 + μ2
2)Φ(−β) + (μ1 + μ2)αφ(β) − μ2

max, (7)

where φ and Φ are the pdf and the cdf of a zero-mean unit-variance Gaussian
and

α =
√

σ2
1 + σ2

2 and β =
μ1 − μ2

α
. (8)

This scheme can be iteratively applied to approximate the maximum of several
Gaussians. As long as the number of Gaussians is relatively small – CNNs typi-
cally involve 2×2 max-pooling – this scheme results in a fairly efficient approxi-
mation for max-pooling. In particular, we first approximate the maximum of the
two upper and the two lower activations by a Gaussian, respectively, and then we
approximate the maximum of these two Gaussians by another Gaussian. This is
in contrast to the method proposed in [23] where max-pooling is approximated
by selecting the mean and the variance of the activation whose mean is maximal,
which effectively ignores the variance in the process.



Discrete-Valued Neural Networks Using Weight Distributions 389

5 Model Details

A basic convolutional block is depicted in Fig. 2. We typically start with dropout,
followed by a convolution layer. Motivated by [24], we perform the pooling oper-
ation (if present) right after the convolutional layer to avoid information loss.
Afterwards we perform batch normalization as described in Sect. 5.1, followed
by computing the pmf after the sign function, and finally performing the local
reparameterization trick using the Gumbel softmax approximation.

Dropout Conv Max-Pool BatchNorm Sign Reparam

Fig. 2. The convolutional block used in this paper. Max-pooling is not always present.

We do not perform batch normalization in the final layer. Instead we intro-
duce a real-valued bias and divide the output activations by the square root of
the number of incoming neurons. This normalization step is crucial for train-
ing as otherwise the output softmax would be saturated in most cases as the
output activations are typically large due to the discreteness of the weights and
inputs from the previous layer, respectively. Moreover, we found dropout in our
experiments to be particularly helpful as it improved performance considerably.
Dropout was performed by randomly setting both the neuron’s mean and its
variance to zero in order to completely remove its influence.

5.1 Batch Normalization

As briefly mentioned in Sect. 4, we are required to generalize batch normalization
to distributions. Batch normalization is particularly important when using sign
activations to avoid excessive information loss [24]. We use the method proposed
in [23] to normalize distributions to approximately having zero-mean and unit-
variance. The mini-batch statistics for NB samples are computed as

μi,bn =
1

NB

NB∑

n=1

μan,i
and σ2

i,bn =
1

NB − 1

NB∑

n=1

σ2
an,i

+ (μan,i
− μi,bn)2. (9)

Subsequently, batch normalization is computed as

μai
← μai

− μi,bn

σi,bn
γi + βi and σ2

ai
← σ2

ai

σ2
i,bn

γ2
i , (10)

where βi and γi are the learnable batch normalization parameters. For predic-
tions, it is important to compute the batch statistics using the discrete NN as
the batch statistics computed during training might differ significantly. Using
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batch statistics computed during training resulted in severe fluctuations in the
validation errors. However, this implies that estimating the training set statis-
tics using exponential moving averages4 during training, as is commonly done in
practice, is not applicable anymore, and we have to compute a separate forward
pass using the discrete NN to obtain these statistics. We estimate the training
set statistics using an exponential moving average over the whole training set
after each epoch and right before computing the validation error. Note that
batch normalization, although introducing real-valued variables, requires only a
marginal computational overhead at test time [34].

5.2 Parameterization and Initialization of q

Shayer et al. [28] introduced a parameterization for ternary distributions based
on two probabilities, q(w = 0) and q(w = 1|w �= 0), which is not easily generaliz-
able to distributions over more than three weights. In this work, we parameterize
distributions over D values using unconstrained unnormalized log-probabilities
(logits) νd

w for d ∈ {1, . . . , D}. The normalized probabilities q(w|νw) can be
recovered by applying the softmax function to the logits νw. This straightfor-
ward parameterization allows to select the dth weight by setting νd

w > νd′
w for

d′ �= d. Due to the sum-to-one constraint of probabilities, we can reduce the
number of parameters in ν by fixing an arbitrary logit, e.g., ν1

w = 0. However,
we refrain to do so as it is more natural to increase a probability explicitly by
increasing its corresponding logit rather than indirectly by reducing all other
logits.

Moreover, Shayer et al. [28] introduced an initialization method for the dis-
tribution parameters ν by matching the expectation Eq[w] to the real weights
w̃ of a pre-trained network. In our experiments, we found such an initialization
scheme to be crucial as starting from randomly initialized logits one usually gets
stuck in a bad local minimum. However, their initialization method also does not
generalize easily to more than three weights, especially since matching the expec-
tation Eq[w] = w̃ is already an underconstrained problem for D = 3. Hence, we
propose to use the following initialization scheme to approximately match the
expectations which we found to be at least as effective as Shayer et al.’s app-
roach for ternary weights. Let w1 < . . . < wD be the set of discrete weights.
Furthermore, let qmin be a minimal probability that is required to avoid zero
probabilities. The maximum probability is then given by qmax = 1−(D−1)qmin

and we define δq = qmax − qmin. Given a real-valued weight w̃, we initialize q as

q(w = wj) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

qmin + δq
w̃−wj−1
wj−wj−1

wj−1 < w̃ ≤ wj

qmin + δq
wj+1−w̃
wj+1−wj

wj < w̃ ≤ wj+1

qmax (j = 1 ∧ w̃ < w1) ∨ (j = D ∧ w̃ > wD)
qmin otherwise.

(11)

4 μnew
i,tr ← ξbnμi,bn + (1 − ξbn)μold

i,tr for ξbn ∈ (0, 1), and similarly for σ2
i,tr.
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This scheme is illustrated in Fig. 3(a). However, weight magnitudes might differ
across layers which Shayer et al. [28] addressed by dividing the weights in each
layer by their standard deviation before applying (11). We propose the following
scheme which distributes probabilities more uniformly across the discrete weights
in order to benefit from the increased expressiveness when using a larger D.
Let Φl

e(w) = 1/|Wl|∑w̃∈Wl I[w̃ ≤ w] be the empirical cdf of the weights in
layer l. We compute w̃l ← Φl

e(w̃
l) such that the weights cover the unit interval

with equal spacing while keeping the relative order of the weights, essentially
removing the scale. Then we shift and scale the weights w̃ to cover the interval
[w1 − δw/2, wD + δw/2], followed by assigning the probabilities to q according to
(11). This ensures that each discrete weight is initially selected equally often as
the most likely weight in q. We propose to use this scheme for the positive and
the negative weights separately such that the signs of the weights are preserved.

6 Experiments

We performed classification experiments on several datasets that are described in
Sect. 6.1. We optimized (2) using ADAM [14], and we report the test classification
error of the epoch resulting in the best validation classification error. All results
for discrete-valued NNs are reported using the most probable model from q.
We selected l(yn, tn) to be the cross-entropy loss, r(ν) to be the squared 
2-
norm over the logits [28], and λ = 10−10. Penalizing large logits can be seen
as enforcing a uniform pmf and therefore increasing entropy and variance. As
stated in [28], this rather helps to obtain better Gaussian approximations using
the central limit theorem rather than to reduce overfitting. After each gradient
update we clip the logits to the range [−5, 5]. We set the initial step size to 10−2

for the logits and to 10−3 for all other parameters (batch normalization, bias
in the final layer). We use the following plateau learning rate reduction scheme:
The learning rate is kept for at least τ1 epochs and after τ1 epochs we multiply
the learning rate by 1/2 if the validation error has not improved within the last
τ2 epochs. The parameters τ1 and τ2, as well as some other dataset-depending
settings can be found in Sect. 6.1. We selected qmax = 0.95, the Gumbel softmax
temperature τg = 1, and ξbn = 0.1.

6.1 Datasets

MNIST. The MNIST dataset [18] contains grayscale images of size 28 × 28
pixels showing handwritten digits from 0–9. The training set contains 60,000
images and the test set contains 10,000 images. We split the training set into a
training set of 50,000 training images and 10,000 validation images. We normalize
the pixels to be in the range [−1, 1]. We considered two scenarios for the MNIST
dataset: (i) A permutation-invariant (PI) setting where each pixel is treated as
independent feature without taking pixel locality into account, i.e., we do not
use a CNN. For this setting we use the fully-connected architecture

FC1200 − FC1200 − FC10,
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Fig. 3. (a) Our initialization method for quinary weight distributions based on pre-
trained real-valued weights w̃. (b) Test classification error [%] over number of epochs on
Cifar-10 for ternary weights using different initialization methods for q. For randomly
initialized probabilities, we either sampled real-valued weights w̃ ∼ N (0, 1) (Gauss)
or randomly assigned equidistributed values in the interval [−1.5, 1.5] randomly to the
weights w̃ (equidistr.) before applying the method described in (a).

where FC1200 denotes a fully-connected layer with 1200 output neurons. We
refer to this setting as MNIST (PI). (ii) We keep the image structure and use
CNNs with the architecture

32C5 − P2 − 64C5 − P2 − FC512 − FC10,

where 32C5 means that 5×5 filter kernels are applied and 32 output feature maps
are generated, and P2 means that 2×2 max-pooling is applied. We trained both
architectures for 500 epochs using mini-batches of 100 samples with τ1 = 50 and
τ2 = 10. We used dropout probabilities (0.1, 0.2, 0.3) for MNIST (PI) and (0,
0.2, 0.3, 0) for the CNN setting, respectively, where the first entry corresponds
to the input layer and the following entries correspond to the subsequent layers.

Cifar-10 and Cifar-100. The Cifar-10 dataset [16] contains 32×32 pixel RGB
images showing objects from ten different categories. The dataset is split into
50,000 training images and 10,000 test images. We split the training set into
45,000 training images and 5,000 validation images. The pixels are again nor-
malized to be in the range [−1, 1]. For training, we perform data augmentation
by shifting the images randomly by up to four pixels in each direction, and we
randomly flip images along the vertical axis similar as in [28]. Cifar-100 is sim-
ilar to Cifar-10 except that the task is to assign an image to one of 100 object
categories. As the image sizes and the training and test set sizes are equal, we
perform the same preprocessing steps as described above. For both datasets, we
use the VGG-inspired [29] CNN architecture

2 × 128C3 − P2 − 2 × 256C3 − P2 − 2 × 512C3 − P2 − FC1024 − FC10/100,



Discrete-Valued Neural Networks Using Weight Distributions 393

Table 1. Classification errors [%] of various NN models. Real+Tanh is the baseline
that was used to initialize the discrete NNs. For discrete NNs, we conducted each
experiment five times and report the means and standard deviations, respectively.

Dataset Real+Tanh Ternary+Sign Quaternary+Sign Quinary+Sign

MNIST (PI) 1.030 1.350 ± 0.058 1.326 ± 0.012 1.334 ± 0.027
MNIST 0.560 0.712 ± 0.040 0.652 ± 0.020 0.654 ± 0.040
Cifar-10 7.620 9.508 ± 0.289 9.494 ± 0.210 9.078 ± 0.218
Cifar-100 30.150 33.550 ± 0.161 33.534 ± 0.400 33.026 ± 0.231
SVHN 2.259 2.618 ± 0.047 2.631 ± 0.051 2.605 ± 0.045

where 2 × 128C3 denotes two consecutive 128C3 blocks. We trained for 300
epochs using mini-batches of 100 samples with τ1 = 30 and τ2 = 10. We used
dropout probabilities (0, 0.2, 0.2, 0.3, 0.3, 0.3, 0.4, 0) for both datasets.

SVHN. The SVHN dataset [22] contains 32 × 32 pixel RGB images showing
parts of pictures containing house numbers that need to be classified to the digits
0–9. The dataset is split into 604,388 training images and 26,032 test images. We
follow the procedure of [27] to split the training set into 598,388 training images
and 6,000 validation images. Once again, we normalize pixels to be in the range
[−1, 1]. Since the dataset is quite large, we do not perform data augmentation.
We use the same CNN architecture as for the Cifar datasets except that we only
use half the number of feature maps in the convolutional layers, i.e.,

2 × 64C3 − P2 − 2 × 128C3 − P2 − 2 × 256C3 − P2 − FC1024 − FC10.

Since SVHN is quite large, we performed only 100 epochs of training using mini-
batches of 250 samples with τ1 = 15 and τ2 = 5. We used the same dropout
probabilities as for the Cifar datasets.

6.2 Classification Results

In the first experiment, we used pre-trained real-valued NNs with tanh acti-
vation to initialize the discrete NNs with sign activation function as shown in
Sect. 5.2. The results are shown in Table 1. The performance gap compared to
the real-valued NN tends to become smaller as more weights are used. There is
a consistent improvement of quinary weights over ternary weights. Quaternary
weights improve on four datasets compared to ternary weights whereas they
achieve worse performance than quinary weights on the more challenging Cifar
and SVHN datasets. We attribute the mixed behavior of quaternary weights to
the missing zero-weight that might be important.

In the next experiment, we performed an intermediate step where we first
only discretized the weights and kept the tanh activation. In a next step, we used
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Table 2. Classification errors [%] of various NN models. The first three models were
initialized with Real+Tanh from Table 1. The last three models were initialized with
the corresponding discrete-weight model with tanh activation. For discrete NNs with
sign activation, we conducted each experiment five times and report the means and
standard deviations, respectively.

Dataset Ternary+TanhQuaternary+TanhQuinary+Tanh Ternary+Sign Quaternary+Sign Quinary+Sign

MNIST (PI) 1.310 1.300 1.280 1.352 ± 0.053 1.292 ± 0.031 1.298 ± 0.040
MNIST 0.570 0.560 0.620 0.736 ± 0.037 0.678 ± 0.042 0.736 ± 0.039
Cifar-10 7.770 7.810 8.030 9.174 ± 0.139 9.246 ± 0.251 9.080 ± 0.246
Cifar-100 29.770 29.840 29.120 33.608 ± 0.199 33.236 ± 0.265 32.910 ± 0.196
SVHN 2.328 2.324 2.362 2.574 ± 0.086 2.591 ± 0.081 2.532 ± 0.056
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Fig. 4. (a) Test classification error [%] on Cifar-10 obtained by using two different real-
valued NNs for the initial parameters of q. Init Model 1 uses less dropout and achieves
7.05% test error whereas Init Model 2 achieves 7.62% test error. However, Init Model
2 results in a better discrete-valued NN. (b) Test classification error [%] on Cifar-10 by
estimating the training set batch statistics using an exponential moving average once
during training and once using the discrete-valued NN.

this NN as initial model to train a NN with discrete weights and sign activation.
The results of these experiments are shown in Table 2. When only the weights
are discretized and tanh is kept, the performance gap compared to real-valued
NNs in Table 1 is less severe than when discretizing both the weights and the
activations. The only exception is on MNIST (PI) where the gap is similar to the
gap when in addition the sign activation is used. Interestingly, the performance
on Cifar-100 improves compared to real-valued NNs, indicating a regularizing
effect similar as in [37]. These findings are in line with other papers that have
shown little performance degradation when the real-valued activation function
is kept and only the weights are discretized [28,37].

Next, we compare the corresponding values of discrete-valued NNs with sign
activation from Table 1 and 2. Except on MNIST where results do not improve,
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the performance using a pre-trained discrete-valued NN with tanh activation for
initialization improves in nine out of twelve cases on the other datasets, showing
that a two stage training procedure is mostly beneficial.

We also compare our model with [11,23,24,36] as their quantization is simi-
lar to ours. Hubara et al. [11] use binary weights and sign activations, albeit
using larger architectures. They report two results and achieve on average
1.18 ± 0.22% on MNIST (PI), 10.775 ± 0.625% on Cifar-10, and 2.66± 0.135 on
SVHN. XNOR-Net [24] uses real-valued data-dependent scale factors to perform
a binary convolution. Using the same structure as [11], they achieve 10.17% on
Cifar-10. DoReFa-Net [36] achieves 2.9% on SVHN using binary weights and
binary 0–1 activations. The work in [23] is closest to ours and achieves 0.74% on
MNIST and 10.30% on Cifar-10 using ternary weights and sign activations.

6.3 Ablation Study

In this Section, we investigate the influence of the initialization of q, dropout, and
batch normalization on Cifar-10. Figure 3(b) compares our initialization method
for q described in Sect. 5.2 to random initialization strategies. Our method con-
verges faster than the random strategies and achieves almost 4% less absolute
classification error than the random strategies which seem to get stuck in bad
local minima. This highlights the importance of a proper initialization strategy
for the training of weight distributions as the loss surface being optimized seems
to be substantially more delicate than that of a conventional real-valued NN.

This raises the question if it might pay off to put more effort into the train-
ing of the real-valued NN serving for initialization. To answer this question, we
optimized several dropout rates for the initial real-valued NN with tanh activa-
tion, keeping all the other hyperparameters the same. This resulted in dropout
rates (0, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1. 0.1) achieving a test error of 7.05% – an
almost 0.6% absolute improvement compared to the result in Table 1. However,
when using this model to initialize q, we achieved inferior performance for the
discrete-valued NN with sign activation as can be seen in Fig. 4(a).

As mentioned in Sect. 5.1, computing exponential moving averages during
training to estimate the training set statistics required at test time could lead
to severely different statistics as those obtained using the discrete-valued NN.
To verify this, we performed two runs that only differ in the estimation of the
training set statistics. This is shown in Fig. 4(b). The performance deteriorates
heavily and especially in the beginning there are substantial fluctuations.

7 Conclusion

In this paper, we have generalized previous work on discrete weight distribu-
tions to arbitrary discrete weights. To this end, we introduced simpler schemes
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to parameterize and initialize the weight distributions q, respectively. We intro-
duced a Gaussian approximation for max-pooling that takes the variance into
account. Our method achieves state-of-the-art performance on several image clas-
sification datasets using discrete weights in all layers. We found initialization of
q using a pre-trained real-valued NN crucial in order to obtain reasonable perfor-
mances. However, it remains unclear what properties of a pre-trained NN make
it a good choice for an initial model since we observed that a better performing
real-valued NN does not necessarily result in a better performing discrete-valued
NN.
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Abstract. With Sobolev Training, neural networks are trained to fit tar-
get output values as well as target derivatives with respect to the inputs.
This leads to better generalization and fewer required training examples
for certain problems. In this paper, we present a training pipeline that
enables Sobolev Training for regression problems where target deriva-
tives are not directly available. Thus, we propose to use a least-squares
estimate of the target derivatives based on function values of neighboring
training samples. We show for a variety of black-box function regression
tasks that our training pipeline achieves smaller test errors compared
to the traditional training method. Since our method has no additional
requirements on the data collection process, it has great potential to
improve the results for various regression tasks.

Keywords: Sobolev Training · Neural networks · Machine Learning

1 Introduction

Neural networks are used as function approximators for a variety of regression
tasks like forecasting problems, policy regression or black-box function approxi-
mation (i.e. functions for which the analytical form is unknown). The standard
approach of training neural networks is backpropagation, which updates the
trainable parameters in the neural network by propagating the output error
through the network. A strategy to increase the efficiency of the backpropa-
gation algorithm proposed by several authors [1,2,10,16,17] is to incorporate
information on derivatives of the target function into the training algorithm.
For example, terms can be added to the error definition which penalize devia-
tions of the network’s partial derivatives to the partial derivatives of the target
function. This is based on the idea that the neural network should match the
outputs of the target function and its partial derivatives at the training points in
order to match the desired function accurately. In the remainder of this paper we
will use the terms introduced by Czarnecki et al. [1] and Masouka et al. [10] and
c© Springer Nature Switzerland AG 2020
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refer to the standard backpropagation approach for neural network training as
Value Training, and to the modified backpropagation incorporating information
on derivatives as Sobolev Training.

It has been shown that Sobolev Training outperforms Value Training in terms
of validation error and convergence speed for several applications. For example,
Witkosie et al. [26] showed that using Sobolev Training to model potential energy
surfaces can greatly reduce the density of data needed while still resulting in a
better fit. Mitchell et al. [11] showed that Sobolev Training can lead to better
generalization even by using fewer data points for training in the robotics and
reinforcement learning domain. Besides better training performance, Sobolev
Training can also decrease the sensitivity to noise in the training data as shown
by Lee and Oh [9]. These publications are consistent with each other in the
sense that they all claim that Sobolev Training is advantageous over Value
Training in their chosen application. Indeed, Masouka et al. [10] argued that
adding derivative information to the training increases the probability for better
generalization.

In real world applications and in many toy-examples, however, information
on the derivatives of the target function are typically not available. Several pub-
lications overcome this problem by rewriting a-priori or expert knowledge as
derivatives which can be incorporated into the training process. For example,
Lampinen et al. [8] proposed to use numerically inaccurate expert knowledge
to design target derivatives which can be used during the training of a neural
network. Simard et al. [18] utilized the fact that the derivatives have to be zero if
the input data is transformed in specific ways (e.g. for translations or rotations).
They claim that by explicitly adding these assumptions into the training process
the learning speed is improved. Rifai et al. [17] used regularization terms incorpo-
rating the derivative to train an autoencoder for unsupervised feature extraction.
By that, the autoencoder is more robust to corruptions in the input data and
more relevant information is extracted. Similarly, Varga et al. [25] showed that
gradient regularization can increase classification accuracy especially for small
training datasets. Another approach is explanation-based learning [10,11], where
knowledge about derivatives is extracted from previously learned tasks and seen
examples.

In contrast to the assumptions in the existing approaches, we assume that
for our applications no information on derivatives is accessible and no a-priori
knowledge or expert knowledge is available. Moreover it is assumed that the ana-
lytical structure of the target function is unknown, i.e. we investigate the case
of black-box function regression. For this application case, we propose a train-
ing pipeline which approximates the partial derivatives of the target function.
Derivatives are approximated by a least squares estimate based on the function
values of neighboring training samples.

Our goal is to give empirical evidence for the superiority of our train-
ing method. Therefore, we evaluate our algorithm by performing experiments
with various black-box function regression tasks and different training dataset
sizes. Besides comparing our training method with the standard Value Training
algorithm, we compare our algorithm with the approach of approximating the
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Algorithm 1. Sobolev Training with Least-Squares approximated Derivatives
In-/Output: Input Data X, Output Data Y
1: Approximate Target Derivatives
2: Transform Data
3: Initialize Neural Network and Optimizer
4: Initialize Sobolev Weight Factor ρ
5: while Stopping Criterion not met do
6: Shuffle the Dataset and create Batches
7: for batch in Batches do
8: Compute Gradients of the Error for batch w.r.t. the Weights of the Neural

Network
9: Update the Weights of the Neural Network

10: end for
11: Update ρ
12: end while

target derivatives using a straightforward finite-difference method. We show that
our pipeline has the potential to greatly improve the training results for regres-
sion tasks compared to the other methods, which we also validate on multiple
real-world regression datasets.

The remainder of this paper is organized as follows. In Sect. 2 we present our
training pipeline for Sobolev Training with approximated derivatives. Results of
our experiments with various black-box function regression tasks are presented
in the subsequent Sect. 3. Finally, we summarize our results in Sect. 4.

2 Sobolev Training with Approximated Target
Derivatives

Our goal is to enable Sobolev Training for the regression of black-box functions.
The difficulty here is that no analytical description of the target function is avail-
able, and therefore the required information about the target derivatives are not
available in general. We overcome this problem by approximating these deriva-
tives. The training pipeline presented in the following facilitates the approxima-
tion of the target derivatives on the basis of the data already collected (i.e. with-
out the need to collect more data). Moreover, our proposed pipeline describes
the sequence of steps in which the actual training is embedded. This sequence
comprises of steps such as data preprocessing, which need to be tailored to the
Sobolev Training.

Algorithm 1 gives an overview over the training pipeline. The inputs to the
training pipeline are the training input data X and the corresponding function
values Y of the target function. The first step is to approximate the partial
derivatives of the target function (details are given in Sect. 2.1). Subsequently,
inputs, outputs and derivatives are transformed while preserving their relative
magnitudes (described in Sect. 2.2). Finally, the neural network is trained using
the corresponding error function and the respective sobolev weight factor, as
introduced in Sect. 2.3, until the stopping criterion is met.
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2.1 Target Derivative Approximation

We propose to approximate the partial derivatives of the target function with
respect to all input dimensions evaluated at each training input. In the following,
we describe this approximation for a single input Xs ∈ R

n, where Xs represents
the sth row of the training input matrix X ∈ R

m×n.
The aim is to approximate the partial derivatives of the unknown target

function f(x) at input Xs with x, d ∈ R
n such that

di ≈ δf(x)
δxi

∣
∣
∣
∣
x=Xs

. (1)

This is done by approximating f(x) with a linear model in the neighborhood
of the regarded training input Xs. For this, the function values of the p nearest
neighbors f(n1), . . . , f(np) to Xs (with respect to the euclidean distance ||ni −
Xs||2) are used, where each ni represents a row of the input matrix X (note that
the indices of ni do not correspond to the index of the row in the training input
matrix X). Approximating the partial derivatives then results in a least squares
problem

mind||W (Ad − b)||2, (2)

where A contains the differences of the inputs

A =

⎛

⎜
⎝

(n1 − Xs)
...

(np − Xs)

⎞

⎟
⎠ , (3)

and b contains the difference of the output values

b =

⎛

⎜
⎝

f(n1) − f(Xs)
...

f(np) − f(Xs)

⎞

⎟
⎠ . (4)

The p nearest neighbors are determined using a k-dimensional tree (implementa-
tion provided by Pedregosa et al. [14]). W is a diagonal matrix that controls the
influence of neighboring training points on the approximation of the derivatives
depending on their distance to Xs. The respective diagonal entries are

Wii =
1

∑p
j=1 e−||nj−Xs||2 e−||ni−Xs||2 . (5)

After solving the minimization problem in Eq. 2, d contains the approximated
partial derivatives of the target function evaluated at Xs. Thus, solving the
respective minimization problem for each input vector in the training dataset
determines all target derivatives required for training.
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2.2 Data Transformation

Several standard methods for data transformation exist for Value Training, e.g.
the standard scaler which transforms data to zero mean and unit variance [14].
We propose to adapt this approach for Sobolev Training in order to preserve
the relative magnitudes between outputs, derivatives and inputs. The presented
method is limited to regression functions with a one-dimensional output. How-
ever, the methods can be extended to functions with multidimensional outputs.
The adapted transformation comprises three steps.

First, the input values are scaled column-wise to zero mean and unit variance

x̃i = αixi + βi. (6)

Secondly, the output values y = f(x) are shifted such that the mean magnitude
of the outputs equals the mean magnitude of the partial derivatives

ŷ = y + ζ. (7)

This step reduces the magnitude difference between outputs and derivatives. In
the third step outputs and derivatives are scaled to

ỹ = γŷ (8)

and
d̃i =

γ

αi
di, (9)

where di are the approximated target derivatives. The factor γ is chosen such
that outputs and derivatives have combined unit variance.

2.3 Error Functions

The main distinguishing characteristics between Sobolev Training and Value
Training is the function used to compute the error of the network, i.e. the loss
which is backpropagated through the network during training. In Value Training,
any loss function l(x, y) can be used to compare the output of the network with
the desired value, e.g. the mean squared error. The resulting training error eV T

for a training input Xs is

eV T = l(o, od)
∣
∣
∣
∣
Xs

, (10)

where o is the output of the network for input Xs and od is the corresponding
desired output.

In Sobolev Training, the neural network is trained to fit the desired outputs
and the respective partial derivatives of the target function. This is achieved
by adding terms to the error function of Value Training. By that, discrepancies
between the partial derivatives of the neural network to the partial derivatives of
the target function are explicitly penalized. The resulting error function eST is

eST = l(o, od) + ρ

n∑

i=1

l

(
δnet(x)

δxi
, di

)∣
∣
∣
∣
Xs

, (11)
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where n refers to the dimension of the input space. The derivative of the network
with respect to input dimension xi is given by δnet(x)

δxi
and the approximated

partial derivatives of the target function f(X) by d.
The terms added for Sobolev Training are weighted with a factor ρ, which

determines the importance of these terms in relation to the Value Training loss
function. We propose to decrease this weight factor after each epoch of training
to emphasize the importance of accurate output values at the end of the training

ρυ+1 = ρυρup, (12)

where ρup is the corresponding update factor and υ the index of the regarded
training epoch.

The theoretical basis for the proposed error function is given by Hornik et al.
[5] and Czarnecki et al. [1]. Hornik et al. [5] proved that neural networks with at
least one hidden layer are able to arbitrarily well approximate any function and
its derivatives if the activation function of the neurons is appropriately smooth.
Moreover, Czarnecki et al. [1] showed that Rectified Linear Units (ReLU) can be
used as activation function to achieve universal approximation of function values
and derivatives up to the first order. Furthermore it should be noted that any
gradient-based optimization algorithm such as Adam [7] used for Value Training
can be used for Sobolev Training [15].

2.4 Derivative Approximation Using Finite-Differences

In order to compare our pipeline with the approach of using a straightforward
finite-difference method for derivative approximation, we introduce a slightly
modified training pipeline depicted in Algorithm 2. This approach requires addi-
tional data collected in a small neighborhood of the given training data. To
ensure a fair comparison, we consider this extra effort. Therefore, we assume
that the total amount of data which can be collected is limited, i.e. there is a
trade-off between collecting data to explore the whole input space versus collect-
ing data for derivative approximation.

For example, if the target function has two-dimensional inputs, the training
dataset size passed to the pipeline in Algorithm 2 is only one-third of the size used
for the other training approaches. This results from the fact that additional data
points required for derivative approximation are collected during the execution of
this pipeline. However, the total number of target function evaluations remains
the same for all training methods, which allows a fair comparison of the methods.

Derivatives are approximated using a one-sided-difference approach [12]
defined as:

δf(x)
δxi

≈ f(x + εei) − f(x)
ε

(13)
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Algorithm 2. Sobolev Training with Finite Differences
In-/Output: Input Data X, Output Data Y
1: Collect Data for Derivative Approximation
2: Approximate Target Derivatives using Finite-Differences
3: Transform Data
4: Initialize Neural Network and Optimizer
5: Initialize Sobolev Weight Factor ρ
6: while Stopping Criterion not met do
7: Shuffle the Dataset and create Batches
8: for batch in Batches do
9: Compute Gradients of the Error for batch w.r.t. the Weights of the Neural

Network
10: Update the Weights of the Neural Network
11: end for
12: Update ρ
13: end while

Where ei has zero entries except for the ith entry and ε is the step-size used
for derivative approximation. We use the one-sided-difference approach as the
small gain in accuracy obtained by using the two-sided-difference often does not
justify the extra effort for collecting additional data [12].

To make use of all obtained information we propose to add the data collected
for derivative approximation to the training data. Moreover, for each of these
data points one partial derivative can be added to the training data without
extra effort. This is achieved by exchanging ei with −ei in Eq. 13 to calculate the
respective partial derivative at the new data point. After adding the additional
data to the training dataset, the number of training points for this method is
the same as for the other training methods. However, the data distribution of
the training data is different.

The one-sided-difference (Eq. 13) results in an error linearly depending on
the chosen step-size ε, i.e. the error is O(ε) [12]. Hence, in order to decrease the
approximation error, a sufficiently small step size must be chosen. However, note
that choosing ε too small can lead to underflow in the input as well as the output
data depending on the machine precision.

The other steps of the training pipeline remain the same as introduced before.
It should be noted that this training pipeline can only be used for regression tasks
where training data points can be collected at any desired position in the input
space. This is, however, not the case for most real world applications.

3 Results

We compare our training pipeline to existing approaches in terms of their perfor-
mance on approximating specific black-box functions. The black-box functions
are chosen to represent functions with different shapes, input-value domains
and output-value ranges. Therefore, we chose optimization test functions with
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Table 1. Black-box functions used in the experiments and their respective category

Function Category Definition Input range

Sphere Bowl-Shaped f(x) =
∑n

i=1 x2
i xi ∈ [−5.12; 5.12]

Sum Diff. Pow. Bowl-Shaped f(x) =
∑n

i=1 |xi|i+1 xi ∈ [−1; 1]

Sum Squares Bowl-Shaped f(x) =
∑n

i=1 ix2
i xi ∈ [−10; 10]

Trid Bowl-Shaped f(x) =
∑n

i=1(xi − 1)2 − ∑n
i=2 xixi−1 xi ∈ [−4; 4]

Booth Plate-Shaped f(x) = (x1 + 2x2 − 7)2 + (2x1 + x2 − 5)2 xi ∈ [−10; 10]

McCormick Plate-Shaped f(x) = sin(x1 + x2) + (x1 − x2)2 x1 ∈ [−1.5; 4]

−1.5x1 + 2.5x2 + 1 x2 ∈ [−3; 4]

Matyas Plate-Shaped f(x) = 0.26(x2
1 + x2

2) − 0.48x1x2 xi ∈ [−10; 10]

Powersum Plate-Shaped f(x) =
∑n

i=1[(
∑n

j=1 xi
j) − bi]

2 xi ∈ [0; 2]

b = (8, 18)T

Rosenbrock Valley-Shaped f(x) =
∑n−1

i=1 [100(xi+1 − x2
i )2 + (xi − 1)2] xi ∈ [−5; 10]

Three Hump Camel Valley-Shaped f(x) = 2x2
1 − 1.05x4

1 +
x6
1
6 + x1x2 + x2

2 xi ∈ [−5; 5]

Six Hump Camel Valley-Shaped f(x) = (4 − 2.1x2
1 +

x4
1
3 )x2

1 x1 ∈ [−3; 3]

+x1x2 + (−4 + 4x2
2)x2

2 x2 ∈ [−2; 2]

Dixon Price Valley-Shaped f(x) = (x1 − 1)2 +
∑n

i=2 i(2x2
i − xi−1)2 xi ∈ [−10; 10]

Easom Steep Ridges f(x) = −cos(x1)cos(x2)exp(−(x1 − π)2 − (x2 − π)2) xi ∈ [−5; 5]

Michalewicz Steep Ridges f(x) = − ∑n
i=1 sin(xi)sin20(

ix2
i

π
) xi ∈ [0; π]

Styblinski Tang Others f(x) = 1
2

∑n
i=1(x4

i − 16x2
i + 5xi) xi ∈ [−5; 5]

Beale Others f(x) = (1.5 − x1 + x1x2)2 + (2.25 − x1 + x1x2
2)2 xi ∈ [−4.5; 4.5]

+(2.625 − x1 + x1x3
2)2

Branin Others f(x) = (x2 − 5.1
4π2 x2

1 + 5
π

x1 − 6)2 x1 ∈ [−5; 10]

+10(1 − 1
8π

)cos(x1) + 10 x2 ∈ [0; 15]

Golstein Price Others f(x) = [1 + (x1 + x2 + 1)2(19 − 14x1 + 3x2
1 − 14x2 xi ∈ [−2; 2]

+6x1x2 + 3x2
2)] × [30 + (2x1 − 3x2)2

×(18 − 32x1 + 12x2
1 + 48x2 − 36x1x2 + 27x2

2)]

two-dimensional input from five different categories proposed by Surjanovic and
Bingham [19]: Bowl-shaped functions, plate-shaped functions, functions with
steep ridges or drops, valley-shaped functions and special functions grouped in
the category named others. A list of all functions and their definitions can be
found in Table 1.

With our experiments we aim to empirically answer the following questions:

– How does our training pipeline compare to the standard training method
(Value Training)?

– Does the size of the training dataset or the shape of the target function have
an influence on the performance of our training method?

– How does the performance compare to the approach of approximating deriva-
tives directly with a finite-difference method?

These questions are addressed in the following Sections by interpreting the
results of our experiments. Furthermore, at the end of this Section we evaluate
our training pipeline on several real-world regression problems. The Hyperpa-
rameters of our experiments are listed in Table 2. We would like to emphasize
that we did not optimize these hyperparameters. Exemplary code of our training
methods can be found on GitHub1.
1 https://github.com/MatthiasKi/SobolevTrainingApproxDerivatives.

https://github.com/MatthiasKi/SobolevTrainingApproxDerivatives
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Table 2. Hyperparameters of the experiments

Hyperparameter Value

Hidden layers 2

Neurons per Layer 200

Hidden layer activation ReLU

Output layer activation Linear

Loss function Mean squared error

Optimizer Adam

Adam - learning rate 1e − 3

Adam - β1 0.9

Adam - β2 0.999

Repetitions per experiment 10

Amount batches 10

Data collection strategy Uniform-Random

Validation set size 4000

Test set size 4000

Finite-difference step size ε 1e − 4

Number of neighbors for least squares 5

Initial ρ 1.0

Update factor ρup 0.95

Stopping criterion Validation error convergence

Patience pc 10

3.1 Sobolev Training with Approximated Target Derivatives versus
Value Training

First, we compare the performance of our training pipeline with the standard
method of training neural networks (Value Training) by conducting various
experiments. Each experiment consists of training a neural network with the con-
sidered training method to approximate one of our regression functions. Experi-
ments are carried out with different training dataset sizes, whereas the collected
training data is distributed random-uniformly over the input space. During the
experiments, the number of training epochs is not limited. Instead, the neural
network is trained until the stopping criterion is met. For our experiments, we
chose to stop the training if there is no improvement in the validation error over a
period of pc epochs (pc is referred to as patience). Each experiment is conducted
ten times in order to decrease the influence of statistical effects, where we plot
the mean value of the test error in combination with the respective minimum
and maximum values. We compare the results of different training methods by
means of the mean squared error of the test dataset for the trained network.
For this, the network parameters of the epoch with lowest validation set error
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are used to compute the test error (in general, this is not the test error of the
last training epoch). To make the results comparable regarding the differences in
the output data ranges, we divide this error by the mean squared output of the
respective function (the mean squared output is calculated beforehand and the
same value is used to normalize all training results of the same target function).
All relevant hyper parameters used for training are depicted in Table 2.

The reader can see the training results for one representative function of
each category in Fig. 1. As expected, Sobolev Training with exact derivative
information clearly outperforms the other training methods for most functions.
This results from the extra information added to the training algorithm (note
that for Sobolev Training with exact derivatives the same training data as for
Value Training is used, plus the partial derivatives of the target function for each
training data point). Furthermore, Sobolev Training with Least Squares approx-
imated derivatives consistently (except for the function Michalewicz ) achieves
better results than Value Training.

In order to combine the training results of different functions of the same cat-
egory in one plot, we consider the test error of the respective training method
divided by the test error achieved by using Value Training. By that, the magni-
tude of the output data is canceled out and the results for different functions can
be directly compared with each other. The combined performance for functions
of the same category is depicted in Fig. 2. In the Figure, the lines represent the
mean values over the results of all functions of the respective function category
(whereas for each target function, training method and training dataset size 10
independent experiments have been conducted). In addition, the minimum and
maximum performance of the respective function category are depicted. Values
greater than 1.0 indicate that the respective training method achieved higher
test errors than Value Training (and therefor has a worse performance), and
values less than 1.0 indicate a lower test error, respectively. We observe that
Sobolev Training with Least-Squares approximated derivatives achieves consis-
tently lower test errors than Value Training (except for functions with steep
ridges or drops).

For some function shapes the effect of our training pipeline is bigger than for
others. This is due to the different value of information about derivatives for dif-
ferent function shapes. This can also be seen by looking at the effect of classical
Sobolev Training compared to Value Training for the respective function shapes
(i.e. Sobolev Training with exact derivatives). For example, Sobolev Training
with exact derivatives achieves much lower relative test errors than Value Train-
ing for valley shaped functions compared to plate shaped functions (as depicted
in Fig. 2). In case of our functions with steep ridges or drops, Sobolev Training
even tends to worsen the training results. This fits to the expectations as infor-
mation about target derivatives is of small value for functions of these shapes
and, due to the limited accuracy of the learned model, can even be misleading
for some functions.

In general, the effect of our training pipeline increases with the number of
data points in the training set. This is in line with the expectations, as increasing
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Fig. 1. Comparison of the test errors for different training methods

the dataset size leads to a higher density of the data points distributed in the
input space, i.e. neighboring points in the dataset lie closer to each other. This in
turn increases the accuracy of the derivative approximation, since as indicated
in Sect. 2.4, the approximation error of the derivatives increases linearly with
the distance of neighboring points.

3.2 Sobolev Training with Approximated Derivatives Based
on Finite-Differences

In this Section, we compare the performance of our training pipeline with the
approach of approximating derivatives directly using a finite-difference method.
As explained in Sect. 2.4, the size of the training dataset passed to the training
pipeline directly using finite-differences is one third of the size of the training
dataset used for Value Training. This ensures a fair comparison, as the number
of data points which can be collected is limited for most applications.
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Fig. 2. Comparison of the test error for different training methods in relation to the
test error achieved with Value Training

As shown in Fig. 2, Value Training outperforms Sobolev Training with Finite-
Difference approximated derivatives especially in the low-data regime. This is
due to the fact that this method uses some of the samples for derivative approx-
imation, i.e. obtaining more local information instead of exploring unknown
regions of the input space. Of course, this effect decreases for larger training
datasets.

For all function shapes except for valley shaped functions, our train-
ing pipeline clearly outperforms the straightforward approach of using finite-
differences for derivative approximation. Our experiments induce that the local
additional information in the form of accurate derivatives provide a great deal
of additional value for describing our valley shaped functions. This also explains
the small magnitude of the relative test error of Sobolev Training with exact
derivatives compared to Value Training. Of course, the derivatives approximated
with the direct finite-difference method are more accurate than the least-squares
approximated ones, which leads to the good performance of this training method
for valley-shaped functions.
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3.3 Real-World Regression Problems

To show the applicability of our pipeline for problems with high dimensional
inputs and noise in the collected data, we evaluate our pipeline with several
existing datasets for real-world regression problems. In contrast to the previous
Subsections, we do not intend to represent a broad spectrum of different regres-
sion problems with our selection. Instead, we aim to show the abilities of our
pipeline to be applied to real-world regression tasks using problems selected from
the UCI Machine Learning Repository [3], which are presented in the following.
Moreover, Table 3 gives an overview over the properties of the different datasets.

– Combined Cycle Power Plant [6,20]: The goal of this regression problem is
to predict the net hourly electrical energy output of a combined cycle power
plant composed of gas turbines, steam turbines and heat recovery generators.
The predictions are based on features such as the ambient pressure and the
relative humidity.

– Communities and Crime [21–24]: This dataset contains data about different
communities such as the age distribution of its population or the number of
full time police officers. The aim is to predict the total number of violent
crimes per population for each community based on these features. Note that
for our experiments, we considered only features which are available for all
communities.

– Concrete Compressive Strength [27]: This dataset was created to analyze the
compressive strength of concrete based on features like the age of the concrete
or its components (e.g. the amount of cement).

– Yacht Hydrodynamics [4,13]: The purpose of this dataset is to find a connec-
tion between the residuary resistance of sailing yachts and geometric features
of the yacht like the hull geometry coefficients.

For our experiments, each dataset is split randomly into training, validation
and test set, whereas the validation set and the test set comprise 20% of the total
data each. The calculation of the neighboring points of a considered sample was
performed using the transformed data matrix as described in Sect. 2.2. This is
necessary, because the entries of the data matrix can have different units or
can be of different orders of magnitudes for datasets comprising real-world data,
which can distort the calculation of the neighboring points. In addition, we found
that the weighted data matrix can be ill-conditioned in some cases. Therefore,
we cut-off singular values which are smaller than 0.01σmax to compute the least-
squares solution, where σmax is the largest singular value of A belonging to the
least-squares problem minx||Ax − b||2.

Each experiment was performed 50 times to account for the random ini-
tialization of the neural networks and the shuffling of the data before splitting
into training, validation and test datasets. We report the mean and standard
deviation of the root mean squared errors of both models on the respective test
dataset after training in Table 4. The experiments show that our pipeline can
have advantages for some real-world regression problems with high-dimensional



412 M. Kissel and K. Diepold

Table 3. Properties of the datasets for the real-world regression problems (Considered
Neighbors is the number of neihbors considered for the least-squares approximation of
the partial derivatives)

Dataset name Input dimensionality Dataset size Considered neighbors

Combined Cycle Power Plant 4 9568 20

Communities and Crime 101 1994 3

Concrete Compressive Strength 9 1030 10

Yacht Hydrodynamics 7 308 2

Table 4. Mean and standard deviation of the RMSE over 50 independent experiments
trained with either Value Training or our proposed training pipeline

Dataset name LS-Sobolev training Value training

Combined Cycle Power Plant 3.97 ± 0.13 4.01 ± 0.12

Communities and Crime 369.95 ± 26.02 375.42 ± 25.93

Concrete Compressive Strength 5.91 ± 0.59 5.24 ± 0.5

Yacht Hydrodynamics 1.53 ± 0.42 2.16 ± 0.8

inputs and noise in the collected data. Note that we did not tune the mod-
els, nor performed a hyperparameter optimization (we used the hyperparame-
ters depicted in Table 2 except for the number of neighboring samples used for
derivative approximation for which we found suitable numbers by hand). Indeed,
a sophisticated parameter optimization is not needed, since our focus lies on the
comparison between Value Training and Sobolev Training with Least-Squares
approximated derivatives, and we therefore only have to guarantee fair compar-
ison conditions.

4 Conclusion

We introduced a training pipeline for neural networks, which makes it possible
to use Sobolev Training for black-box function regression tasks where the target
derivatives are not directly accessible. Our pipeline describes the various steps
necessary for training, which includes a preprocessing procedure designed for
Sobolev Training.

With our experiments we showed empirically that our training pipeline out-
performed the standard training approach (i.e. Value Training) for functions with
various different shapes. Furthermore, our approach outperforms the straightfor-
ward approach of approximating derivatives using finite-differences. In addition
to experiments with optimization functions from different categories, we illus-
trated the practical benefit by evaluating our training pipeline on multiple real
world regression problems.

Our pipeline does not require additional training samples and has no spe-
cial requirements on the data generation process. We observed that our training
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method leads to improved performance for almost all tested functions, especially
if the training dataset is large. Therefore, we believe that the presented train-
ing pipeline has the potential to greatly improve the training results for many
regression applications.

Our results raise further research questions that lie out of the scope of this
paper. For example, it would be interesting to examine the influence of the train-
ing data distribution on the learning performance, or to explicitly use informa-
tion about the data distribution for approximating target derivatives.
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Abstract. Deep neural networks achieve state-of-the-art results in var-
ious classification and synthetic data generation tasks. However, only
little is known about why depth improves a model. We investigate the
structure of stochastic deep neural works, also known as Deep Boltzmann
Machines, to shed some light on this issue. While the best known results
postulate an exponential dependence between the number of visible units
and the depth of the model, we show that the required depth is upper
bounded by the longest path in the underlying junction tree, which is
at most linear in the number of visible units. Moreover, we show that
the conditional independence structure of any categorical Deep Boltz-
mann Machine contains a sub-tree that allows the consistent estimation
of the full joint probability mass function of all visible units. We connect
our results to l1-regularized maximum-likelihood estimation and Chow-
Liu trees. Based on our theoretical findings, we present a new tractable
version of Deep Boltzmann Machines, namely the Deep Boltzmann Tree
(DBT). We provide a hyper-parameter-free algorithm for learning the
DBT from data, and propose a new initialization method to enforce con-
vergence to good solutions. Our findings provide some theoretical evi-
dence for why a deep model might be beneficial. Experimental results on
benchmark data show, that the DBT is a theoretical sound alternative
to likelihood-free generative models.

Keywords: Deep Boltzmann Machine · Structure learning ·
Generative model

1 Introduction

Modern applications of data science necessitate expressive, robust and efficient
probabilistic models, to capture the rich structure in complex data sets. These
models generally fall into two major categories: likelihood-based and likelihood-
free. The former explicitly assigns a likelihood function Pθ (X) with parameters
θ to describe the data X, while the latter learns a model from which samples
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from the desired distribution may be drawn (but does not assign or learn a form
for the distribution itself). In this work, we study deep generative models w.r.t.
their structure, also known as network architecture.

Specifically, likelihood-free methods typically pass samples z from a pre-
specified simple distribution q(z) through a deterministic mapping G(z;θ) :
Z → X , commonly known as the generator. While likelihood-free methods gain
a lot of attention, they lack theoretical insights on almost every fundamental
aspect, including model selection, parameter learning, and sample complexity.
Selecting the right model suffers from an countable infinite search space. In
most cases, training such generative adversarial networks [10] is cumbersome and
involves sophisticated hyper-parameter tuning strategies. However, generaliza-
tion bounds [2,9,18] which quantify the model’s error w.r.t. inherent properties,
like depth and width of the underlying neural network, can guide this process.
Other research directions try to bring likelihood and entropy back in implicitly
defined generative models [13,25].

In contrast, likelihood-based methods enjoy theoretical insights and statisti-
cal guarantees, but suffer from a high computational complexity. To bridge the
gap between popular deep generative models and classic probabilistic models,
we consider Deep Boltzmann Machines (DBMs) [20] with arbitrary categorical
hidden state spaces, as a generic class of stochastic neural networks. They have
their roots in statistical physics and have been studied intensively as special
types of graphical model. In particular, information geometry has provided deep
geometric insights about learning and approximation of probability distributions
by this kind of networks. It is well known that general Boltzmann machines are
universal approximators of probability distributions over the states of their vis-
ible units, provided they have sufficiently many hidden units. Moreover, the
universal approximation capability has been shown for Restricted Boltzmann
Machines, provided their single hidden layer has exponentially more units than
the visible layer. In a similar way, universal approximation results for DBMs
suggest that the number of layers should be exponential in the number of visible
units [16].

However, practical deep models are far from having exponentially many lay-
ers, still providing superior quality. Driven by this apparent contradiction, we
study the structure of DBMs to gain new theoretical insights about deep proba-
bilistic models in general. Our findings guide us to a new model class: the Deep
Boltzmann Tree (DBT). Like a DBM, a DBT has one layer of visible (input)
units and multiple hidden layers, containing latent variables (Fig. 1). Unlike a
DBM, the structure of a DBT contains no loops, and thus, allows for tractable,
poly-time probabilistic inference.

Our contributions can be summarized as follows:

– We state a new universal approximation theorem for Deep Boltzmann
Machines, which shows that the dependence between the number of layers
and the number of visible units is at most linear.
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a) b)

c) d)

Fig. 1. The conditional independence structure of a Deep Boltzmann Machine with
n0 = 8 visible units and 5 × 5 hidden units is shown in (a). Dashed edges and
white neurons in (c) and (d) are not required to represent the full joint probabil-
ity mass function—they can be dropped by nullifying the corresponding edge weights
θe ← 0. The colored neuron in (c) and (d) both correspond to the DBT shown in (b).
Blue hidden units copy the state of one visible unit to a deeper layer by setting the
corresponding edge weight θe to the identity function θid. (Color figure online)

– We define a new, tractable type of deep probabilistic model: the Deep Boltz-
mann Tree. We show that DBTs are universal approximators and connect
them to results in structure learning.

– We provide hyper-parameter-free algorithms for constructing and learning
DBTs. Here, hyper-parameter-free means that “magic constants” like learn-
ing rate, model architecture, and hidden state space, are automatically deter-
mined from data. The proposed method has literally no tuneable parameter.

2 Notation and Background

Let us summarize the notation and background necessary for the subsequent
development. The Kullback-Leibler divergence between two probability mass
functions P and Q is defined by KL[Q‖P] =

∑
x∈X Q(x)(logQ(x) − logP(x)),

which is never negative and only zero if and only if P = Q. If f is a function,
f−1 refers to its inverse.

2.1 Graphical Models

An undirected graph G = (V,E) consists of n = |V | vertices, connected via edges
(v, w) ∈ E. For two graphs G1, G2, we write V (G1) and V (G2) to denote the
vertices of G1 and G2, respectively and similar E(G1) and E(G2) for the edges.
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Fig. 2. The conditional independence structure (a) of the underlying random variable
X is first converted to the junction tree (b).

A clique C is a fully-connected subset of vertices, i.e., ∀v, w ∈ C : (v, w) ∈ E. The
set of all cliques of G is denoted by C. Here, any undirected graph represents the
conditional independence structure of an undirected graphical model or Markov
random field [24], shown in Fig. 2(a). To this end, we identify each vertex v ∈ V
with a random variable Xv taking values in the state space Xv. The random
vector X = (Xv : v ∈ V ), with probability mass function (pmf) P, represents
the random joint state of all vertices in some arbitrary but fixed order, taking
values x in the Cartesian product space X =

⊗
v∈V Xv. If not stated otherwise,

X is a discrete set. Moreover, we allow to access these quantities for any proper
subset of variables S ⊂ V , i.e., XS = (Xv : v ∈ S), xS , and XS , respectively.
We write Cmax for the clique C that has the largest state space XC . According to
the Hammersley-Clifford theorem [11], the probability mass of X factorizes over
positive functions ψC : X → R+, one for each maximal clique of the underlying
graph,

P(X = x) =
1
Z

∏

C∈C
ψC(xC), (1)

normalized via Z =
∑

x∈X
∏

C∈C ψC(xC). Due to positivity of ψC , it can
be written as an exponential, i.e., ψC(xC) = exp(〈θC , φC(xC)〉) with suf-
ficient statistic φC : XC → R

|XC |. The overcomplete sufficient statistic of
discrete data is a “one-hot” vector that selects a specific weight value, e.g.,
ψC(xC) = exp(θC=xC

). The full joint can be written in the famous exponential
family form P(X = x) = exp(〈θ, φ(x)〉 − log Z) with θ = (θC : C ∈ C) and
φ(x) = (φC(xC) : C ∈ C).

The parameters of exponential family members are estimated by minimizing
the negative average log-likelihood �(θ;D) = −(1/|D|)∑

x∈D logPθ (x) for some
data set D via first-order numeric optimization methods. D contains samples
from X, and it can be shown that the estimated probability mass converges to
the data generating distribution as the size of D increases. However, computing Z
and hence performing probabilistic inference is #P-hard [4,23]. Exact inference
can be carried out via the junction tree algorithm. The junction tree representa-
tion of an undirected model is a tree, in which each vertex represents a maximal
clique of a chordal completion of G ([24], Sec. 2.5.2). The cutset of each pair
of adjacent clique-vertices is called separator. Here, we consider junction trees
which contain separators as explicit vertices, as shown in Fig. 2(b).
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2.2 Deep Boltzmann Machines

Deep Boltzmann Machines are undirected graphical models for the joint prob-
ability mass of an “ordinary” random variable X and a latent variable H that
represents a set of so-called hidden units. Latent means that the value of H
cannot be observed and is not contained in the data set D.

a) b)

Fig. 3. Two different planar embeddings of the same
8-clique of binary hidden units. Both are equivalent
to a single discrete hidden unit with q = 28 states.

To estimate the param-
eters in the presence of
latent variables, expectation-
maximization [6] or con-
trastive divergence [20] tech-
niques must be applied.
In contrast to other undi-
rected models, the condi-
tional independence struc-
ture of DBMs is not learned
from data. Instead, the con-
nectivity between visible and
hidden units as well as between hidden and hidden units is pre-specified and fol-
lows the multipartite layered structure that is well known from artificial neural
feed-forward networks. An exemplary DBM is shown in Fig. 1(a).

In most cases, the hidden units are assumed to have a binary state space.
This is, however, not necessary. We like to stress the fact that DBMs are plain
undirected models and as such, any vertex can have any state space. For now,
we consider so-called categorical DBMs, where all hidden units have the same
state space of size q. For convenience, such DBMs are called q-state DBMs. A
vertex with q states is called q-state unit.

Fixing the depth L, the width of each layer W = (n1, n2, . . . , nL), and the
state space size q defines a family of probability mass functions ML,W,H . To
measure the expressive power of such a family, we resort to the same notion of
approximation guarantee that is used in the DBM literature, e.g., [16].

Definition 1 (Universal Approximation). A set M of probability mass
functions on X is called universal approximator when, for any probability mass
Q on X and any ε > 0, there is a pmf P in M with KL[Q‖P] ≤ ε.

An obvious question is which choices of L, W , and q make a DBM an uni-
versal approximator. A rather indirect way to explain this is the identification
of settings in which the (undirected) DBM can be treated as if it is a directed
(feed-forward) network [14,15]. While the required proof technique is rather cum-
bersome and mathematically involved, this point of view paves the way to the
best currently known result on the depth of DBMs:

Theorem 1 (DBMs are Universal Approximators with Exponential
Dependence on n0 [15]). Let M be a q-state DBM with n0 q-state visible
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units and L hidden layers of n0 units each. Let further X = (X1,X2, . . . ,Xn0)
be the random variable that represents all visible units. Then, M is a uni-
versal approximator for P(X) provided L is large enough. More precisely, for
any n0 ≤ n := qk + k + 1, for some k ∈ N, a sufficient condition is
L ≥ 1 + (qn + 1)/(q(q − 1)(n − logq(n) − 1)). For any n0, a necessary condi-
tion is L ≥ (qn0 − 1)/(n0(q − 1)(n0(q − 1) + 2)).

Fig. 4. An exemplary Deep Boltzmann Tree with 8
visible units (blue), 4 hidden clique-units (green),
and 3 hidden separator-units (grey). The separator-
hidden units are annotated with the separating ver-
tices, i.e., with the intersection of their incident
cliques in the underlying junction tree. (Color figure
online)

A closer look at the
necessary condition suggests
that this result is rather
pessimistic: for n0 = 16
and q = 2, we have L ≥
227—a fairly deep model for
16 binary inputs. Consider-
ing an MNIST-scale binary
input, i.e., n0 = 784, we
have L ≥ 1.6511×10230—an
astronomically deep network
when compared to state-of-
the-art architectures [12,22].

A disturbing fact about
the above theorem is that a
larger latent state space, i.e., increasing q, does not decrease the required depth
of the network. Instead, the theorem tells us that a deeper network is required.
This is especially odd because a single hidden unit with q = bk states can be
reinterpreted as a fully connected set of k hidden units having b states each.
As shown in Fig. 3, we can rearrange the clique to emulate 2 DBM layers with
inter-layer connections. Thus, increasing the state space of hidden units is equiv-
alent to increasing the depth! Hence, a meaningful lower bound on the depth
of a network should decrease with the expressivity of the hidden units. Driven
by this observation, we exploit classic insights about conditional independence
structures to derive a new model class as well as new theoretical insights on the
depth of q-state DBMs.

3 Deep Boltzmann Trees

Deep learning architectures are ubiquitous, mostly application specific, and val-
idated on benchmark data. Theoretical justifications are usually replaced by
superior benchmark results. Stochastic DBM-based architectures inherit their
computational complexity from ordinary graphical models which renders exact
inference intractable and forces the user to resort to Markov chain Monte Carlo
techniques [21].

In contrast, we present a generic deep architecture that can be learned from
data. In what follows, we explain the learning procedure and prove that the
learned model can approximate the true underlying probability mass function
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Algorithm 1: Constructing the Deep Boltzmann Tree
Require: Conditional independence structure G
1: J ← Junction tree of G
2: V ← V (J)
3: E ← E(J)
4: for clique vertices C ∈ J do
5: for vertices v ∈ C do
6: if v �∈ V then
7: E ← E ∪ {(v, C)}
8: V ← V ∪ {v}
9: end if

10: end for
11: end for
12: return T = (V, E) // The DBT

with arbitrary small error. As a by-product, we obtain the best known bounds
on the depth required by any q-state DBM to be an universal approximator.

Our proposed model class is called Deep1 Boltzmann Tree. The algorithmic
procedure for the construction of DBTs is provided in Algorithm1. An exemplary
DBT is shown in Fig. 4. While the DBT architecture relies heavily on the junction
tree structure, it is important to understand that all vertices inherited from J
(line 2 of Algorithm 1) represent hidden units (latent variables) in the DBT.
This difference is of utmost importance: plain junction tree models enforce clique
states which do not appear in the training data to be unlikely. Instead, DBTs
are capable of learning that the probability mass of unknown states is similar to
that of some known states.

Moreover, we make no use of specialized junction tree inference algorithms,
like Shafer-Shenoy algorithm or Hugin algorithm [24]. The asymptotic runtime
of Algorithm 1 is TIME(JT) + O(n|Cmax|), where TIME(JT) is the runtime of
the junction tree construction and |Cmax| is 1 plus the tree-width of the input
graph. Here, an (NP-complete) minimum chordal completion is not required—
any non-minimal poly-time triangulation suffices.

The joint pmf of visible and hidden units can then be written as

PT (X = x,H = h) =
1

ZT

∏

(u,C)∈EUC

ψ(u,C)(xu,hC)
∏

(C,S)∈ECS

ψ(C,S)(hC ,hS),

(2)
where EUC = E(T )∩U ×C, ECS = E(T )∩C ×S, V (T ) = U ∪C ∪S, U being the
set of visible units, C being the set of hidden clique-units, and S being the set
of hidden separator-units—visualized in Fig. 4 by blue, green, and grey vertices,

1 It turns out that DBTs consist of exactly two hidden layers. While this kind of depth
seems rather “shallow”, original work on DBMs [20] define the DBM as a restricted
Boltzmann machine which has more than one hidden layer. Thus, to be consistent
with the common terminology, we decided to denote our proposed model as “deep”.
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respectively. The random variable H represents the random joint realization
of all hidden (green and grey) units. Note that Eq. 2 arises from the general
factorization of undirected graphical models Eq. 1, having maximal cliques of
size two only.

Being an undirected graphical model, the DBT pmf can be written in expo-
nential family form, and as such, it obeys a canonical parametrization in terms
of edge weights. We will now exploit this parametrization to declare universal
approximation for any DBT with sufficiently large hidden state space.

Theorem 2 (Deep Boltzmann Trees are Universal Approximators). Let
PG be the full joint pmf of the random variable X with conditional independence
structure G. Let further T be the output of Algorithm1. When the state space of
each DBT hidden unit is at least |XCmax |, then there exists a canonical weight
vector θ, such that

KL[PG‖P′
T ] ≤ ε

for any ε > 0 and with P
′
T (x) =

∑
h PT (x,h).

Proof. Let θUC = (θ(v,C) : EUC) with EUC = E(T ) ∩ U × C contain all DBT
weight vectors for edges that connect a visible vertex with a clique vertex. In a
similar way, let θCS = (θ(C,S) : ECS) with ECS = E(T ) ∩ C × S contain all DBT
weight vectors for edges that connect a clique vertex with a separator vertex.
Finally, let θ∗ = (θC : C is maximal clique in chordal completion of G) denote
the clique weights of a chordal completion of G. In other words, θ∗ contains
the junction tree weights. We will now choose values for θUC and θCS which
guarantee the conclusion of the theorem.

Any hidden unit of T corresponds to a clique or separator vertex of the
junction tree. Each hidden clique-unit F ∈ V (T ) is connected to visible units
and hidden separator-units only. We do now abuse notation and identify F with
the union of its visible neighbors and the content of their neighboring hidden
separator-units. E.g., if F = D in Fig. 4, we have F = {3, 5, 8}.

Let us fix some constant ω ∈ R+. We will now assign two types of edge
weights to any hidden clique-unit F :

(I) Each hidden clique-unit is incident to exactly one edge of type I—it is irrele-
vant which of the incident edges. Type I edges simulate the original junction
tree weight θ∗

F of the junction tree vertex F . The precondition of the theo-
rem guarantees that the state space of the DBT unit F is at least as large
as the state space of the corresponding clique in the chordal completion of
G. Thus, there exist an injective function ρ, that maps the joint state of F ’s
neighbors to exactly one of F ’s states. Assume that v is a neighbor of F and
consider the edge (v, F ). When (v, F ) is a type I edge, then, for each weight
θ(v=x,F=y) we have θ(v=x,F=y) = θ∗

F=y if and only if ρ−1(y)v = x, e.g.,
the joint state of F ’s neighbors that corresponds to y agrees with v = x.
Otherwise, we have θ(v=x,F=y) = −ω. Moreover, for all weights θ(v=x,F=y′)
which correspond to hidden states y′ that have no corresponding joint state,
i.e., when the hidden state space is larger than the number of clique states,
we set θ(v=x,F=y′) = −ω.
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(II) When (v, F ) is a type II edge, then, for each weight θ(v=x,F=y) we have
θ(v=x,F=y) = 0 if and only if ρ−1(y)v = x. Otherwise, we have θ(v=x,F=y) =
−ω. Again, we set all weights θ(v=x,F=y′) which correspond to hidden states
y′ that have no corresponding joint state to −ω.

For both edge types, we call edge states whose weight is −ω not realizable, and
otherwise realizable. The concept of realizable edge states extends naturally to
full joint states, i.e., whenever a joint state (x,h) of visible and hidden units
contains at least one not realizable edge state, (x,h) itself is not realizable. Let
R denote the set of all realizable joint states and R its complement. Having that
said, let us investigate the partition function ZT of (Eq. 2):

ZT =
∑

(x,h)

∏

(u,C)∈EUC

ψ(u,C)(xu,hC)
∏

(C,S)∈ECS

ψ(C,S)(hC ,hS).

Now, partition the summation w.r.t. realizability, and observe that each factor
of a realizable joint state is either exp(0) = 1 or exp(θ∗

F=ρ(xF )):

ZT =
∑

x

∏

F

exp(θ∗
F=ρ(xF ))

+
∑

(x,h)∈R

∏

(u,C)∈EUC

ψ(u,C)(xu,hC)
∏

(C,S)∈ECS

ψ(C,S)(hC ,hS).

In the limit of ω → ∞, the sum over not realizable states vanishes (because
exp(−ω) → 0) and ZT converges to the partition function of the ordinary junc-
tion tree factorization. In the same way, limω→∞ PT (x,h) converges either to
0 whenever (x,h) ∈ R, or to PJ (x) whenever (x,h) ∈ R. Since the junc-
tion tree pmf PJ is identical to the original undirected model PG, we have
limω→∞

∑
h PT (x,h) = PG(x). Thus, for any ε > 0, there exists ω > 0 such

that KL[PG‖P′
T ] ≤ ε. ��

The theorem tells us that it is always possible to find DBT weights θ which
make the approximation error arbitrarily small as long as the DBT’s latent state
space is large enough. Surprisingly, the result carries over to q-state DBMs. The
idea is to embed the DBT into the DBM as visualized in Fig. 1(c) and (d).

Theorem 3 (DBMs are Universal Approximators with Linear Depen-
dence on n0). Let M be a q-state DBM with n0 visible units and L hidden
layers of n0 units each. Let further X be the random variable that represents all
visible units. Then, M is a universal approximator for P(X) provided L and q
are large enough. More precisely, if q ≥ |XCmax |, it suffices that L ≥ 2.

Proof. Notice that the output T of Algorithm 1 is an especially simple tripartite
graph, indicated by the coloring in Fig. 4. By identifying the visible units of T
with the visible units of M , the remainder is a bipartite graph that consists of
hidden clique-units and hidden separator-units. The precondition of the theo-
rem asserts that each hidden layer has n0 units. Each hidden clique-unit of T
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arises from some maximal clique of a chordal completion of the true conditional
independence structure of X. The number of maximal cliques in a chordal graph
with n vertices is at most n [7]. Thus, T has at most n0 units per layer. Since each
pair of hidden DBM layers forms a complete bipartite graph, it is straightforward
to embed the two hidden layers of T into the first two layers of M (visualized
in Fig. 1(d)). Finally, setting all edge weights θe of some edge e to the all-zero
vector 0, implies that the corresponding edge potential ψe(xe) is 1 for all choices
of xe—the edge e is effectively removed from the undirected model. Thus, all
edges which are not required to embed T into M can be removed. Together with
Theorem 2, this shows that there exists a canonical weight vector θ for the DBM
which induces a probability mass that is arbitrarily close to the true pmf of X.
Hence, M is an universal approximator. ��

Note, however, that this result is not contradictory to Theorem1. Our theo-
rem does not assume that observed and hidden units have the same state space.
In our setting, the latent state space and thus, the complexity of the learned
activation functions, is allowed to vary with the complexity of the input data.
This is an important difference to ordinary feed-forwards architectures where
the functional form of the activation functions is usually fixed.

While the theorem shows a constant dependence of the depth on the number
of visible units, the dependence of the width is still linear. Inspecting the proof
reveals that even the “vertical” worst-case embedding (Fig. 1(c)) of any DBT
into the corresponding DBM can be realized as long as L ≥ 2n0 − 1—a linear
worst-case depth. This suggests that no DBM must be deeper than 2n0−1 layers
as long as the hidden units are expressive enough to cover the underlying clique
potentials. Motivated by this observation, we state the following conjecture:

Conjecture 1 (The Depth of Deep Networks). DBMs with more than two hidden
layers are only required if the underlying learning algorithm cannot find a shallow
DBT embedding into the DBM structure.

Results on model compression suggest that shallow networks can be on par
with state-of-the-art deep models [1,3]. Such results rely on specialized training
procedures, but finding a superior shallow solution directly might not be easy
for the learning algorithm. Indeed, learning the weights of DBMs and other
deep architectures suffers from various local minima—the 2-layer solution from
Theorem 3 is only one of them. Which solution is learned eventually depends
crucially on the weight initialization [8].

Another interesting fact is that the proof tells us how DBT learning is con-
nected to classic and recent structure learning techniques.

Corollary 1 (Chow-Liu DBM). Consider a data set D = {(x,h)i : 1 ≤
i ≤ N}, sampled from the Deep Boltzmann Machine described in Theorem3.
Running the Chow-Liu structure estimation algorithm [5] on D, and dropping all
edges with uniform edge marginals and disconnected vertices reveals the DBT.

By construction, the Chow-Liu tree is the pairwise undirected model that
minimizes the Kullback-Leibler divergence to the actual joint pmf that generated
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Algorithm 2: Learning the Deep Boltzmann Tree Weights
Require: Data set D = {x1, . . . , xN}, DBT T = (V, E) from Alg. 1
1: Initialize θ ← 0
2: ∀ hidden unit u: initialize Xu ← ∅
3: for training data xi ∈ D do
4: y ← empty state ()
5: for hidden unit u ∈ V do
6: for vertex v ∈ V (u) do
7: y ← y ◦ xi

v

8: end for
9: if y �∈ Xu then

10: Xu ← Xu ∪ {y}
11: end if
12: h(xi)u ← y
13: end for
14: end for
15: while ‖∇(θ)‖ > 0 do
16: θ ← θ − 1

2|E|∇�(θ)
17: end while
18: return θ // Optimal weights

the data. While we assume that the data was generated by a Boltzmann machine,
we know that there is a Boltzmann tree which represents the exact same pmf.
Thus, the Chow-Liu tree must be the DBT given N is large enough.

Corollary 2 ( l1-regularized DBM). Consider a data set D = {(x,h)i : 1 ≤
i ≤ N}, sampled from the Deep Boltzmann Machine described in Theorem3.
Running the Elem-GM structure estimation algorithm [27] on D and dropping
all fully disconnected vertices reveals the DBT.

The so called elementary estimator for graphical models (Elem-GM) is a reg-
ularization based structure learning technique. In contrast to the Chow-Liu tree,
Elem-GM can output non-tree structures. The method performs l1-regularization
to identify unnecessary edges which are then excluded from the learned model.
Since we know that many edges are actually unnecessary to recover the full joint
pmf, we conclude that the DBT is an optimal solution to the Elem-GM problem
given N is large enough.

3.1 Learning the DBT Weights

So far, we only discussed how to find the DBT. We will now explain how to
estimate the DBT weights from data. Learning the parameters of a DBT fac-
torizes into two phases: in the first phase, we have to find good initial values for
the hidden units h—this choice is crucial and failing to find good values implies
inferior learning results. Moreover, phase one determines the state space Xu of
each hidden units u. In phase two, numerical first-order optimization is applied
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to find a minimizer of �. The problem in phase two is convex given any fixed hid-
den values from phase one. The learning procedure is provided in Algorithm2.
Let us quickly go through it line-by-line. First, we initialize the weight vector
and the hidden state spaces (lines 1 and 2). We then loop over all N training
instances xi (line 3). We initialize a new empty state (line 4) and recall from
Theorem 2 that each hidden unit u originates from a clique or separator vertex of
the junction tree. Denote the set of visible units connected to the original clique
or separator vertex by V (u). In lines 6–8 we read the states of all visible units
in V (u) and construct a new hidden state y. If that hidden state was never seen
before (line 9), we create a new state in u’s state space (line 10), and assign that
new state to the hidden activation h(xi)u that is associated with the current
data point xi (line 12). Lines 15 to 17 correspond to gradient descent.

Notice that we stop the optimization when the gradient’s norm is zero. Since
the objective function is convex, we will surely arrive at a global minimizer of �
given our learning rate is correct. Notice further that we set the learning rate to
1/(2|E|). This originates from the fact that gradient descent with learning rate
1/L is guaranteed to converge to the next local minimum (which is also global
due to convexity). Here L denotes the gradients Lipschitz constant. As we could
not find the following result in the literature, we state it for completeness. A
proof is provided in the supplementary material.

Lemma 1 (Lipschitz Continuous Gradient). The gradient of any tree-
structured, undirected model is Lipschitz continuous with constant L = 2|E|.

For simplicity, we state Algorithm 2 as plain gradient descent method. In our
experiments however, we use Nesterov-acceleration [17] to speed-up learning.
More on gradient computation for exponential families can be found in [24].

The proposed algorithm grows the hidden state space to cover joint realiza-
tions of the underlying chordal model. Note, however, that only clique states
that actually appear in the data set are generated. This is in contrast to the
junction tree algorithm, whose runtime is always exponential in the size of the
largest clique. However, if one cannot effort to grow the hidden state space as
large as the data tells us, i.e., due to limited resources, we can assign some
already known state. In that case, we suggest to iterate phase two and use the
estimated model weights θ to re-sample the hidden activation. Thus, performing
an expectation-maximization procedure [6].

4 Experiments

We conduct a small set of experiments to provide a proof of concept of the gen-
erative capabilities of Deep Boltzmann Trees. The source code, and a docker
image that contains everything which is required to repeat our experiments, are
available for download (http://www.randomfields.org/dbt). To facilitate repro-
ducability, we employ the following freely available benchmark data sets:

– MNIST (http://yann.lecun.com/exdb/mnist)

http://www.randomfields.org/dbt
http://yann.lecun.com/exdb/mnist
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Fig. 5. The training progress and mean neg. avg. log-likelihood of DBT learning on all
benchmark data sets.

– Fashion-MNIST (https://github.com/zalandoresearch/fashion-mnist)
– Caltech101 Silhouette (https://people.cs.umass.edu/∼marlin/data.shtml)

Numeric attributes (MNIST and Fashion-MNIST) are discretized via quantiles
to contain at most 10 distinct states. The Caltech101 data contains various
classes with very few data points (< 100). Thus, we took only the ten classes
with most training instances. For each data set, we join the predefined training
data and test data, and run Algorithms 1 and 2 until convergence to estimate the
DBTs and their weights. Recall that Algorithm 1 requires a graphical structure
as input. We run Chordalysis [26] to compute chordal conditional independence
structures. Chordalysis allows to control the false discovery rate to get rid of
spurious dependencies, which we set2 to 0.05. The training progress and final
mean objective function values are provided in Fig. 5. The plots show how the
conditional likelihood of each class evolves during training. We see that the model
achieves much lower neg. log-likelihoods on MNIST and Caltech101 than on
Fashion-MNIST. Since the DBT itself is a universal estimator, we conclude that
Fashion-MNIST does not contain enough data to allow a reliable estimation of
the underlying conditional independence structure. Having a reasonable estimate
of that structure is crucial for the DBT construction.

2 We have to stress that this is not a hyper-parameter of the DBT. Moreover, 0.05 is
not “tuned” either as it is the default value in Chordalysis.

https://github.com/zalandoresearch/fashion-mnist
https://people.cs.umass.edu/~marlin/data.shtml
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Fig. 6. Synthetic MNIST data (top) and synthetic Fashion-MNIST data (bottom),
sampled from the DBT.

Fig. 7. Synthetic Caltech101 Silhouette data, sampled from the Deep Boltzmann Tree.

After learning, we perform Perturb-and-MAP sampling [19] to generate sam-
ples from the models. Due to large likelihood values, we expect that samples from
the Fashion-MNIST model have rather low quality. Some resulting samples are
shown in Figs. 6 and 7. We see that the model produces crisp MNIST samples
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without mode collapse, i.e., they are not just noisy versions of the same number.
Each class is able to generate multiple samples which look like different ways to
write the particular number. As expected, the quality of Fashion-MNIST sam-
ples is rather low. The type of class, like pants, bag, shirt, shoe, or dress can
be identified in most cases, but the resulting samples are close to mode col-
lapse. The diversity of Caltech101 Silhouette samples is also low. However, this
is already true for the original silhouette data. Of course, the model can only
learn to generate diverse samples if the underlying data contains some diversity.

5 Conclusion

State-of-the-art results in various classification and synthetic data generation
tasks are often achieved by deep learning. While the field of deep learning evolves
fast, theoretical insights are rare. Moreover, many hyper-parameters have to be
tuned in order to reach actual state-of-the-art performance. Driven by the wish
for a better understanding of how depth improves a model, we studied the struc-
ture of DBMs. We discovered a new deep generative model, the Deep Boltzmann
Tree, which can be learned from data without tuning a single hyper-parameter.
We proved that DBTs are universal approximators and showed connections to
other structure learning methods. Experiments on benchmark data suggest, that
high-quality synthetic data can be generated if the data set is large enough to
allow for a reasonable estimation of the underlying conditional independence
structure. Due to its tree structure, the DBT does not suffer from computational
issues like the Deep Boltzmann Machine does. As a by-product, we discovered
the best known bound on the depth of categorical DBMs and proposed a con-
jecture on why depth can improve a model in practice. Our results pave the way
for several new research directions, including likelihood-based hybrid classifica-
tion/generation models, and the consistent estimation of high-resolution image
and audio data with theoretical guarantees.

Acknowledgments. This research has been funded by the Federal Ministry of Edu-
cation and Research of Germany as part of the competence center for machine learning
ML2R (01S18038A).

References

1. Ba, J., Caruana, R.: Do deep nets really need to be deep? In: Advances in Neural
Information Processing Systems (NIPS), pp. 2654–2662 (2014)

2. Bartlett, P.L., Foster, D.J., Telgarsky, M.J.: Spectrally-normalized margin bounds
for neural networks. In: Advances in Neural Information Processing Systems
(NIPS) 30, pp. 6241–6250 (2017)

3. Bucila, C., Caruana, R., Niculescu-Mizil, A.: Model compression. In: International
Conference on Knowledge Discovery and Data Mining (SIGKDD), pp. 535–541
(2006)



430 N. Piatkowski

4. Bulatov, A., Grohe, M.: The complexity of partition functions. In: Dı́az, J.,
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15. Montúfar, G.: Deep narrow Boltzmann machines are universal approximators. In:
International Conference on Learning Representations (ICLR) (2015)
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Abstract. We consider network sparsification as an L0-norm regular-
ized binary optimization problem, where each unit of a neural network
(e.g., weight, neuron, or channel, etc.) is attached with a stochastic
binary gate, whose parameters are jointly optimized with original net-
work parameters. The Augment-Reinforce-Merge (ARM) [27], a recently
proposed unbiased gradient estimator, is investigated for this binary opti-
mization problem. Compared to the hard concrete gradient estimator
from Louizos et al. [19], ARM demonstrates superior performance of
pruning network architectures while retaining almost the same accura-
cies of baseline methods. Similar to the hard concrete estimator, ARM
also enables conditional computation during model training but with
improved effectiveness due to the exact binary stochasticity. Thanks to
the flexibility of ARM, many smooth or non-smooth parametric func-
tions, such as scaled sigmoid or hard sigmoid, can be used to parame-
terize this binary optimization problem and the unbiasness of the ARM
estimator is retained, while the hard concrete estimator has to rely on
the hard sigmoid function to achieve conditional computation and thus
accelerated training. Extensive experiments on multiple public datasets
demonstrate state-of-the-art pruning rates with almost the same accura-
cies of baseline methods. The resulting algorithm L0-ARM sparsifies the
Wide-ResNet models on CIFAR-10 and CIFAR-100 while the hard con-
crete estimator cannot. The code is public available at https://github.
com/leo-yangli/l0-arm.

Keywords: Network sparsification · L0-norm regularization · Binary
optimization

1 Introduction

Deep Neural Networks (DNNs) have achieved great success in a broad range
of applications in image recognition [3], natural language processing [4], and
games [23]. Latest DNN architectures, such as ResNet [9], DenseNet [10] and
Wide-ResNet [28], incorporate hundreds of millions of parameters to achieve
state-of-the-art predictive performance. However, the expanding number of
parameters not only increases the risk of overfitting, but also leads to high
computational costs. Many practical real-time applications of DNNs, such as
c© Springer Nature Switzerland AG 2020
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for smart phones, drones and the IoT (Internet of Things) devices, call for com-
pute and memory efficient models as these devices typically have very limited
computation and memory capacities.

Fortunately, it has been shown that DNNs can be pruned or sparsified sig-
nificantly with minor accuracy losses [7,8], and sometimes sparsified networks
can even achieve higher accuracies due to the regularization effects of the net-
work sparsification algorithms [19,22]. Driven by the widely spread applications
of DNNs in real-time systems, there has been an increasing interest in pruning
or sparsifying networks recently [7,8,17–19,21,22,25]. Earlier methods such as
the magnitude-based approaches [7,8] prune networks by removing the weights
of small magnitudes, and it has been shown that this approach although simple
is very effective at sparsifying network architectures with minor accuracy losses.
Recently, the L0-norm based regularization method [19] is getting attraction as
this approach explicitly penalizes number of non-zero parameters and can drive
redundant or insignificant parameters to be exact zero. However, the gradient of
the L0 regularized objective function is intractable. Louizos et al. [19] propose
to use the hard concrete distribution as a close surrogate to the Bernoulli dis-
tribution, and this leads to a differentiable objective function while still being
able to zeroing out redundant or insignificant weights during training. Due to
the hard concrete substitution, however, the resulting hard concrete estimator
is biased with respect to the original objective function.

In this paper, we propose L0-ARM for network sparsification. L0-ARM is
built on top of the L0 regularization framework of Louizos et al. [19]. How-
ever, instead of using a biased hard concrete gradient estimator, we investigate
the Augment-Reinforce-Merge (ARM) [27], a recently proposed unbiased gra-
dient estimator for stochastic binary optimization. Because of the unbiasness
and flexibility of the ARM estimator, L0-ARM exhibits a significantly faster
rate at pruning network architectures and reducing FLOPs than the hard con-
crete estimator. Extensive experiments on multiple public datasets demonstrate
the superior performance of L0-ARM at sparsifying networks with fully con-
nected layers and convolutional layers. It achieves state-of-the-art prune rates
while retaining similar accuracies compared to baseline methods. Additionally,
it sparsifies the Wide-ResNet models on CIFAR-10 and CIFAR-100 while the
original hard concrete estimator cannot.

The remainder of the paper is organized as follows. In Sect. 2 we describe the
L0 regularized empirical risk minimization for network sparsification and formu-
late it as a stochastic binary optimization problem. A new unbiased estimator to
this problem L0-ARM is presented in Sect. 3, followed by related work in Sect. 4.
Example results on multiple public datasets are presented in Sect. 5, with com-
parisons to baseline methods and the state-of-the-art sparsification algorithms.
Conclusions and future work are discussed in Sect. 6.

2 Formulation

Given a training set D = {(xi, yi) , i = 1, 2, · · · , N}, where xi denotes the input
and yi denotes the target, a neural network is a function h(x;θ) parametrized
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by θ that fits to the training data D with the goal of achieving good general-
ization to unseen test data. To optimize θ, typically a regularized empirical risk
is minimized, which contains two terms – a data loss over training data and a
regularization loss over model parameters. Empirically, the regularization term
can be weight decay or Lasso, i.e., the L2 or L1 norm of model parameters.

Since the L2 or L1 norm only imposes shrinkage for large values of θ, the
resulting model parameters θ are often manifested by smaller magnitudes but
none of them are exact zero. Intuitively, a more appealing alternative is the
L0 regularization since the L0-norm measures explicitly the number of non-zero
elements, and minimizing of it over model parameters will drive the redundant or
insignificant weights to be exact zero. With the L0 regularization, the empirical
risk objective can be written as

R(θ) =
1
N

N∑

i=1

L (h(xi;θ), yi) + λ‖θ‖0 (1)

where L(·) denotes the data loss over training data D, such as the cross-entropy
loss for classification or the mean squared error (MSE) for regression, and
‖θ‖0 denotes the L0-norm over model parameters, i.e., the number of non-zero
weights, and λ is a regularization hyper-parameter that balances between data
loss and model complexity.

To represent a sparsified model, we attach a binary random variable z to
each element of model parameters θ. Therefore, we can re-parameterize the
model parameters θ as an element-wise product of non-zero parameters θ̃ and
binary random variables z:

θ = θ̃ � z, (2)

where z ∈ {0, 1}|θ |, and � denotes the element-wise product. As a result, Eq. 1
can be rewritten as:

R(θ̃,z) =
1
N

N∑

i=1

L
(
h
(
xi; θ̃ � z

)
, yi

)
+ λ

|θ̃|∑

j=1

1[zj �=0], (3)

where 1[c] is an indicator function that is 1 if the condition c is satisfied, and 0
otherwise. Note that both the first term and the second term of Eq. 3 are not
differentiable w.r.t. z. Therefore, further approximations need to be considered.

According to stochastic variational optimization [2], given any function F(z)
and any distribution q(z), the following inequality holds

min
z

F(z) ≤ Ez∼q(z)[F(z)], (4)

i.e., the minimum of a function is upper bounded by the expectation of the
function. With this result, we can derive an upper bound of Eq. 3 as follows.

Since zj ,∀j ∈ {1, · · · , |θ|} is a binary random variable, we assume zj is
subject to a Bernoulli distribution with parameter πj ∈ [0, 1], i.e. zj ∼ Ber(z;πj).
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Thus, we can upper bound minz R(θ̃,z) by the expectation

R̂(θ̃,π) = Ez∼Ber(z ;π)R(θ̃,z)

= Ez∼Ber(z ;π)

[
1
N

N∑

i=1

L
(
h(xi; θ̃ � z), yi

)]
+ λ

|θ̃ |∑

j=1

πj . (5)

As we can see, now the second term is differentiable w.r.t. the new model param-
eters π, while the first term is still problematic since the expectation over a large
number of binary random variables z is intractable and so its gradient. Since z
are binary random variables following a Bernoulli distribution with parameters
π, we now formulate the original L0 regularized empirical risk (1) to a stochastic
binary optimization problem (5).

Existing gradient estimators for this kind of discrete latent variable models
include REINFORCE [26], Gumble-Softmax [11,20], REBAR [24], RELAX [6]
and the Hard Concrete estimator [19]. However, these estimators either are
biased or suffer from high variance or computationally expensive due to aux-
iliary modeling. Recently, the Augment-Reinforce-Merge (ARM) [27] gradient
estimator is proposed for the optimization of binary latent variable models,
which is unbiased and exhibits low variance. Extending this gradient estimator
to network sparsification, we find that ARM demonstrates superior performance
of prunning network architectures while retaining almost the same accuracies
of baseline models. More importantly, similar to the hard concrete estimator,
ARM also enables conditional computation [1] that not only sparsifies model
architectures for inference but also accelerates model training.

3 L0-ARM: Stochastic Binary Optimization

To minimize Eq. 5, we propose L0-ARM, a stochastic binary optimization algo-
rithm based on the Augment-Reinforce-Merge (ARM) gradient estimator [27].
We first introduce the main theorem of ARM. Refer readers to [27] for the proof
and other details.

Theorem 1 (ARM) [27]. For a vector of V binary random variables z =
(z1, · · · , zV ), the gradient of

E(φ) = Ez∼∏V
v=1 Ber(zv ;g(φv))

[f(z)] (6)

w.r.t. φ = (φ1, · · · , φV ), the logits of the Bernoulli distribution parameters, can
be expressed as

∇φE(φ)=Eu∼∏V
v=1Uniform(uv ;0,1)

[(
f(1[u>g(−φ)]) − f(1[u<g(φ)])

)
(u − 1/2)

]
, (7)

where 1[u>g(−φ)] :=
(
1[u1>g(−φ1)], · · · ,1[uV >g(−φV )]

)T and g(φ) = σ(φ) = 1/(1+
exp(−φ)) is the sigmoid function.
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Parameterizing πj ∈ [0, 1] as g(φj), Eq. 5 can be rewritten as

R̂(θ̃,φ) = Ez∼Ber(z ;g(φ)) [f(z)] + λ

|θ̃|∑

j=1

g(φj)

= Eu∼Uniform(u ;0,1)

[
f(1[u<g(φ)])

]
+ λ

|θ̃|∑

j=1

g(φj), (8)

where f(z) = 1
N

∑N
i=1 L

(
h(xi; θ̃ � z), yi

)
. Now according to Theorem 1, we can

evaluate the gradient of Eq. 8 w.r.t. φ by

∇ARM
φ R̂(θ̃,φ) = Eu∼Uniform(u ;0,1)

[(
f(1[u>g(−φ)]) − f(1[u<g(φ)])

)
(u − 1/2)

]

+ λ

|θ̃|∑

j=1

∇φj
g(φj), (9)

which is an unbiased and low variance estimator as demonstrated in [27].
Note from Eq. 9 that we need to evaluate f(·) twice to compute the gradient,

the second of which is the same operation required by the data loss of Eq. 8.
Therefore, one extra forward pass f(1[u>g(−φ)]) is required by the L0-ARM gra-
dient estimator. This additional forward pass might be computationally expen-
sive, especially for networks with millions of parameters. To reduce the compu-
tational complexity of Eq. 9, we further consider another gradient estimator –
Augment-Reinforce (AR) [27]:

∇AR
φ R̂(θ̃,φ) = Eu∼Uniform(u ;0,1)

[
f(1[u<g(φ)])(1 − 2u)

]

+ λ

|θ̃|∑

j=1

∇φj
g(φj), (10)

which requires only one forward pass f(1[u<g(φ)]) that is the same operation
as in Eq. 8. This L0-AR gradient estimator is still unbiased but with higher
variance. Now with L0-AR, we can trade off the variance of the estimator with
the computational complexity. We will evaluate the impact of this trade-off in
our experiments.

3.1 Choice of g(φ)

Theorem 1 of ARM defines g(φ) = σ(φ), where σ(·) is the sigmoid function. For
the purpose of network sparsification, we find that this parametric function isn’t
very effective due to its slow transition between values 0 and 1. Thanks to the
flexibility of ARM, we have a lot of freedom to design this parametric function
g(φ). Apparently, it’s straightforward to generalize Theorem1 for any parametric
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Fig. 1. The plots of g(φ) with different k for sigmoid and hard sigmoid functions. A
large k tends to be more effective at sparsifying networks. Best viewed in color. (Color
figure online)

functions (smooth or non-smooth) as long as g : R → [0, 1] and g(−φ) = 1−g(φ)1.
Example parametric functions that work well in our experiments are the scaled
sigmoid function

gσk
(φ) = σ(kφ) =

1
1 + exp(−kφ)

, (11)

and the centered-scaled hard sigmoid

gσ̄k
(φ) = min(1,max(0,

k

7
φ + 0.5)), (12)

where 7 is introduced such that gσ̄1(φ) ≈ gσ1(φ) = σ(φ). See Fig. 1 for some
example plots of gσk

(φ) and gσ̄k
(φ) with different k. Empirically, we find that

k = 7 works well for all of our experiments.
One important difference between the hard concrete estimator from Louizos

et al. [19] and L0-ARM is that the hard concrete estimator has to rely on the
hard sigmoid gate to zero out some parameters during training (a.k.a. conditional
computation [1]), while L0-ARM achieves conditional computation naturally by
sampling from the Bernoulli distribution, parameterized by g(φ), where g(φ)
can be any parametric function (smooth or non-smooth) as shown in Fig. 1. We
validate this in our experiments.
1 The second condition is not necessary. But for simplicity, we will impose this condi-

tion to select parametric function g(φ) that is antithetic. Designing g(φ) without this
constraint could be a potential area that is worthy of further investigation.
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Fig. 2. Evolution of the histogram of g(φ) over training epochs. All g(φ) are initialized
by random samples from a normal distribution N (0.5, 0.01), which are split into two
spikes during training.

3.2 Sparsifying Network Architectures for Inference

After training, we get model parameters θ̃ and φ. At test time, we can use the
expectation of z ∼ Ber(z; g(φ)) as the mask ẑ for the final model parameters θ̂:

ẑ = E[z] = g(φ), θ̂ = θ̃ � ẑ. (13)

However, this will not yield a sparsified network for inference since none of the
element of ẑ = g(φ) is exact zero (unless the hard sigmoid gate gσ̄k

(φ) is used).
A simple approximation is to set the elements of ẑ to zero if the corresponding
values in g(φ) are less than a threshold τ , i.e.,

z̄j =
{

0, g(φj) ≤ τ
g(φj), otherwise j = 1, 2, · · · , |z| (14)

We find that this approximation is very effective in all of our experiments as the
histogram of g(φ) is widely split into two spikes around values of 0 and 1 after
training because of the sharp transition of the scaled sigmoid (or hard sigmoid)
function. See Fig. 2 for a typical plot of the histograms of g(φ) evolving during
training process. We notice that our algorithm isn’t very sensitive to τ , tuning
which incurs negligible impacts to prune rates and model accuracies. Therefore,
for all of our experiments we set τ = 0.5 by default. Apparently, better designed
τ is possible by considering the histogram of g(φ). However, we find this isn’t
very necessary for all of our experiments in the paper. Therefore, we will consider
this histogram-dependent τ as our future improvement.

3.3 Imposing Shrinkage on Model Parameters θ

The L0 regularized objective function (8) leads to sparse estimate of model
parameters without imposing any shrinkage on the magnitude of θ. In some
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cases it might still be desirable to regularize the magnitude of model parameters
with other norms, such as L1 or L2 (weight decay), to improve the robustness of
model. This can be achieved conveniently by computing the expected L1 or L2

norm of θ under the same Bernoulli distribution: z ∼ Ber(z; g(φ)) as follows:

Ez∼Ber(z ;g(φ)) [||θ||1] =
|θ|∑

j=1

Ezj∼Ber(zj ;g(φj))

[
zj |θ̃j |

]
=

|θ|∑

j=1

g(φj)|θ̃j |, (15)

Ez∼Ber(z ;g(φ))

[||θ||22
]

=
|θ|∑

j=1

Ezj∼Ber(zj ;g(φj))

[
z2j θ̃2j

]
=

|θ|∑

j=1

g(φj)θ̃2j , (16)

which can be incorporated to Eq. 8 as additional regularization terms.

3.4 Group Sparsity Under L0 and L2 Norms

The formulation so far promotes a weight-level sparsity for network architectures.
This sparsification strategy can compress model and reduce memory footprint of
a network. However, it will usually not lead to effective speedups because weight-
sparsified networks require sparse matrix multiplication and irregular memory
access, which make it extremely challenging to effectively utilize the parallel
computing resources of GPUs and CPUs. For the purpose of computational
efficiency, it’s usually preferable to perform group sparsity instead of weight-level
sparsity. Similar to [19,22,25], we can achieve this by sharing a stochastic binary
gate z among all the weights in a group. For example, a group can be all fan-
out weights of a neuron in fully connected layers or all weights of a convolution
filter. With this, the group regularized L0 and L2 norms can be conveniently
expressed as

Ez∼Ber(z ;g(φ)) [||θ||0] =
|G|∑

g=1

|g|g(φg) (17)

Ez∼Ber(z ;g(φ))

[||θ||22
]

=
|G|∑

g=1

⎛

⎝g(φg)
|g|∑

j=1

θ̃2j

⎞

⎠ (18)

where |G| denotes the number of groups and |g| denotes the number of weights
of group g. For the reason of computational efficiency, we perform this group
sparsity in all of our experiments.

4 Related Work

It is well-known that DNNs are extremely compute and memory intensive.
Recently, there has been an increasing interest to network sparsification [7,8,17–
19,21,22,25] as the applications of DNNs to practical real-time systems, such as
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the IoT devices, call for compute and memory efficient networks. One of the
earliest sparsification methods is to prune the redundant weights based on the
magnitudes [16], which is proved to be effective in modern CNN [8]. Although
weight sparsification is able to compress networks, it can barely improve compu-
tational efficiency due to unstructured sparsity [25]. Therefore, magnitude-based
group sparsity is proposed [17,25], which can compress networks while reducing
computation cost significantly. These magnitude-based methods usually proceed
in three stages: pre-train a full network, prune the redundant weights or fil-
ters, and fine-tune the pruned model. As a comparison, our method L0-ARM
trains a sparsified network from scratch without pre-training and fine-tuning,
and therefore is more preferable.

Another category of sparsification methods is based on Bayesian statis-
tics and information theory [18,21,22]. For example, inspired by variational
dropout [13], Molchanov et al. propose a method that unbinds the dropout rate,
and also leads to sparsified networks [21].

Recently, Louizos et al. [19] propose to sparsify networks with L0-norm.
Since the L0 regularization explicitly penalizes number of non-zero parameters,
this method is conceptually very appealing. However, the non-differentiability of
L0 norm prevents an effective gradient-based optimization. Therefore, Louizos
et al. [19] propose a hard concrete gradient estimator for this optimization prob-
lem. Our work is built on top of their L0 formulation. However, instead of
using a hard concrete estimator, we investigate the Augment-Reinforce-Merge
(ARM) [27], a recently proposed unbiased estimator, to this binary optimization
problem.

5 Experimental Results

We evaluate the performance of L0-ARM and L0-AR on multiple public datasets
and multiple network architectures. Specifically, we evaluate MLP 500-300 [15]
and LeNet 5-Caffe2 on the MNIST dataset [15], and Wide Residual Networks [28]
on the CIFAR-10 and CIFAR-100 datasets [14]. For baselines, we refer to the
following state-of-the-art sparsification algorithms: Sparse Variational Dropout
(Sparse VD) [21], Bayesian Compression with group normal-Jeffreys (BC-GNJ)
and group horseshoe (BC-GHS) [18], and L0-norm regularization with hard con-
crete estimator (L0-HC) [19]. For a fair comparison, we closely follow the exper-
imental setups of L0-HC.3

5.1 Implementation Details

We incorporate L0-ARM and L0-AR into the architectures of MLP, LeNet-5
and Wide ResNet. As we described in Sect. 3.4, instead of sparsifying weights,
we apply group sparsity on neurons in fully-connected layers or on convolution

2 https://github.com/BVLC/caffe/tree/master/examples/mnist.
3 https://github.com/AMLab-Amsterdam/L0 regularization.

https://github.com/BVLC/caffe/tree/master/examples/mnist
https://github.com/AMLab-Amsterdam/L0_regularization
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filters in convolutional layers. Once a neuron or filter is pruned, all related weights
are removed from the networks.

The Multi-Layer Perceptron (MLP) [15] has two hidden layers of size 300
and 100, respectively. We initialize g(φ) = π by random samples from a normal
distribution N (0.8, 0.01) for the input layer and N (0.5, 0.01) for the hidden
layers, which activate around 80% of neurons in input layer and around 50%
of neurons in hidden layers. LeNet-5-Caffe consists of two convolutional layers
of 20 and 50 filters interspersed with max pooling layers, followed by two fully-
connected layers with 500 and 10 neurons. We initialize g(φ) = π for all neurons
and filters by random samples from a normal distribution N (0.5, 0.01). Wide-
ResNets (WRNs) [28] have shown state-of-the-art performance on many image
classification benchmarks. Following [19], we only apply L0 regularization on the
first convolutional layer of each residual block, which allows us to incorporate
L0 regularization without further modifying residual block architecture. The
architectural details of WRN are listed in Table 1. For initialization, we activate
around 70% of convolutional filters.

Table 1. Architectural details of WRN incorporated with L0-ARM. The number in
parenthesis is the size of activation map of each layer. For brevity, only the modified
layers are included.

Group name Layers

conv1 [Original Conv (16)]

conv2 [L0 ARM (160); Original Conv (160)] × 4

conv3 [L0 ARM (320); Original Conv (320)] × 4

conv4 [L0 ARM (640); Original Conv (640)] × 4

For MLP and LeNet-5, we train with a mini-batch of 100 data samples and
use Adam [12] as optimizer with initial learning rate of 0.001, which is halved
every 100 epochs. For Wide-ResNet, we train with a mini-batch of 128 data
samples and use Nesterov Momentum as optimizer with initial learning rate of
0.1, which is decayed by 0.2 at epoch 60 and 120. Each of these experiments run
for 200 epochs in total. For a fair comparison, these experimental setups closely
follow what were described in L0-HC [19] and their open-source implementation
(see Footnote 3).

5.2 MNIST Experiments

We run both MLP and LeNet-5 on the MNIST dataset. By tuning the regular-
ization strength λ, we can control the trade off between sparsity and accuracy.
We can use one λ for all layers or a separate λ for each layer to fine-tune the spar-
sity preference. In our experiments, we set λ = 0.1/N or λ = (0.1, 0.3, 0.4)/N
for MLP, and set λ = 0.1/N or λ = (10, 0.5, 0.1, 10)/N for LeNet-5, where N
denotes to the number of training datapoints.
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We use three metrics to evaluate the performance of an algorithm: prediction
accuracy, prune rate, and expected number of floating point operations (FLOPs).
Prune rate is defined as the ratio of number of pruned weights to number of all
weights. Prune rate manifests the memory saving of a sparsified network, while
expected FLOPs demonstrates the training/inference cost of a sparsification
algorithm.

Table 2. Performance comparison on MNIST. Each experiment was run five times and
the median (in terms of accuracy) is reported. All the baseline results are taken from
the corresponding papers.

Network Method Pruned architecture Prune rate (%) Accuracy (%)

MLP 784-300-100 Sparse VD 219-214-100 74.72 98.2

BC-GNJ 278-98-13 89.24 98.2

BC-GHS 311-86-14 89.45 98.2

L0-HC (λ = 0.1/N) 219-214-100 73.98 98.6

L0-HC (λ sep.) 266-88-33 89.99 98.2

L0-AR (λ = 0.1/N) 453-150-68 70.39 98.3

L0-ARM (λ = 0.1/N) 143-153-78 87.00 98.3

L0-AR (λ sep.) 464-114-65 77.10 98.2

L0-ARM (λ sep.) 159-74-73 92.96 98.1

LeNet-5-Caffe 20-50-800-500 Sparse VD 14-19-242-131 90.7 99.0

GL 3-12-192-500 76.3 99.0

GD 7-13-208-16 98.62 99.0

SBP 3-18-284-283 80.34 99.0

BC-GNJ 8-13-88-13 99.05 99.0

BC-GHS 5-10-76-16 99.36 99.0

L0-HC (λ = 0.1/N) 20-25-45-462 91.1 99.1

L0-HC (λ sep.) 9-18-65-25 98.6 99.0

L0-AR (λ = 0.1/N) 18-28-46-249 93.73 98.8

L0-ARM (λ = 0.1/N) 20-16-32-257 95.52 99.1

L0-AR (λ sep.) 5-12-131-22 98.90 98.4

L0-ARM (λ sep.) 6-10-39-11 99.49 98.7

We compare L0-ARM and L0-AR to five state-of-the-art sparsification algo-
rithms on MNIST, with the results shown in Table 2. For the comparison between
L0-HC and L0-AR(M) when λ = 0.1/N , we use the exact same hyper-parameters
for both algorithms (the fairest comparison). In this case, L0-ARM achieve
the same accuracy (99.1%) on LeNet-5 with even sparser pruned architectures
(95.52% vs. 91.1%). When separated λs are considered (λ sep.), since L0-HC
doesn’t disclose the specific λs for the last two fully-connected layers, we tune
them by ourselves and find that λ = (10, 0.5, 0.1, 10)/N yields the best per-
formance. In this case, L0-ARM achieves the highest prune rate (99.49% vs.
98.6%) with very similar accuracies (98.7% vs. 99.1%) on LeNet-5. Similar pat-
terns are also observed on MLP. Regarding L0-AR, although its performance is
not as good as L0-ARM, it’s still very competitive to all the other methods. The
advantage of L0-AR over L0-ARM is its lower computational complexity during
training. As we discussed in Sect. 3, L0-ARM needs one extra forward pass to
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estimate the gradient w.r.t. φ; for large DNN architectures, this extra cost can
be significant.

To evaluate the training cost and network sparsity of different algorithms,
we compare the prune rates of L0-HC and L0-AR(M) on LeNet-5 as a function
of epoch in Fig. 3(a, b). Similarly, we compare the expected FLOPs of differ-
ent algorithms as a function of epoch in Fig. 3(c, d). As we can see from (a,
b), L0-ARM yields much sparser network architectures over the whole train-
ing epochs, followed by L0-AR and L0-HC. The FLOPs vs. Epoch plots in (c,
d) are more complicated. Because L0-HC and L0-AR only need one forward
pass to compute gradient, they have the same expected FLOPs for training and
inference. L0-ARM needs two forward passes for training. Therefore, L0-ARM
is computationally more expensive during training (red curves), but it leads to
sparser/more efficient architectures for inference (green curves), which pays off
its extra cost in training.

5.3 CIFAR Experiments

We further evaluate the performance of L0-ARM and L0-AR with Wide-
ResNet [28] on CIFAR-10 and CIFAR-100. Following [19], we only apply L0 reg-
ularization on the first convolutional layer of each residual block, which allows
us to incorporate L0 regularization without further modifying residual block
architecture.

Table 3 shows the performance comparison between L0-AR(M) and three
baseline methods. We find that L0-HC cannot sparsify the Wide-ResNet archi-
tecture (prune rate 0%)4, while L0-ARM and L0-AR prune around 50% of the
parameters of the impacted subnet. As we activate 70% convolution filters in
initialization, the around 50% prune rate is not due to initialization. We also
inspect the histograms of g(φ): As expected, they are all split into two spikes
around the values of 0 and 1, similar to the histograms shown in Fig. 2. In terms
of accuracies, both L0-ARM and L0-AR achieve very similar accuracies as the
baseline methods.

To evaluate the training and inference costs of different algorithms, we com-
pare the expected FLOPs of L0-HC and L0-AR(M) on CIFAR-10 and CIFAR-
100 as a function of iteration in Fig. 4. Similar to Fig. 3, L0-ARM is more compu-
tationally expensive for training, but leads to sparser/more efficient architectures
for inference, which pays off its extra cost in training. It’s worth to emphasize
that for these experiments L0-AR has the lowest training FLOPs and inference
FLOPs (since only one forward pass is needed for training and inference), while
achieving very similar accuracies as the baseline methods (Table 3).

4 This was also reported recently in the appendix of [5], and can be easily reproduced
by using the open-source implementation of L0-HC (see footnote 3).



444 Y. Li and S. Ji

(a) λ = 0.1/N (b) λ = sep.

(c) λ = 0.1/N (d) λ = sep.

Fig. 3. (a, b) Comparison of prune rate of sparsified network as a function of epoch
for different algorithms. (c, d) Comparison of expected FLOPs as a function of epoch
for different algorithms during training and inference. The results are on LeNet-5 with
L0-HC and L0-AR(M). Because L0-HC and L0-AR only need one forward pass to
compute gradient, they have the same expected FLOPs for training and inference. L0-
ARM needs two forward passes for training. Therefore, L0-ARM is computationally
more expensive during training (red curves), but it leads to sparser/more efficient
architectures for inference (blue curves), which pays off its extra cost in training. (Color
figure online)

Finally, we compare the test accuracies of different algorithms as a function
of epoch on CIFAR-10, with the results shown in Fig. 5. We apply the exact
same hyper-parameters of L0-HC to L0-AR(M). As L0-AR(M) prunes around
50% parameters during training (while L0-HC prunes 0%), the test accuracies of
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Table 3. Performance comparison of WRN on CIFAR-10 and CIFAR-100. Each exper-
iment was run five times and the median (in terms of accuracy) is reported. All the
baseline results are taken from the corresponding papers. Only the architectures of
pruned layers are shown.

Network Method Pruned architecture Prune rate (%)Accuracy (%)

WRN-28-10

CIFAR-10

Original WRN [28] Full model 0 96.00

Original WRN-dropout [28] Full model 0 96.11

L0-HC (λ = 0.001/N) [19] Full model 0 96.17

L0-HC (λ = 0.002/N) [19] Full model 0 96.07

L0 AR (λ = 0.001/N) 83-77-83-88-

169-167-153-165-

324-323-314-329

49.49 95.58

L0 ARM (λ = 0.001/N) 74-86-83-83-

164-145-167-153-

333-333-310-330

49.46 95.68

L0 AR (λ = 0.002/N) 82-75-82-87-

164-169-156-161-

317-317-317-324

49.95 95.60

L0 ARM (λ = 0.002/N) 75-72-78-78-

157-165-131-162-

336-325-331-343

49.63 95.70

WRN-28-10

CIFAR-100

Original WRN [28] Full model 0 78.82

Original WRN-dropout [28] Full model 0 81.15

L0-HC (λ = 0.001/N) [19] Full model 0 81.25

L0-HC (λ = 0.002/N) [19] Full model 0 80.96

L0-AR (λ = 0.001/N) 78-78-79-85-

168-168-162-164-

308-326-319-330

49.37 80.50

L0-ARM (λ = 0.001/N) 75-83-80-58-

172-156-160-165-

324-311-313-318

50.51 80.74

L0-AR (λ = 0.002/N) 75-76-72-80-

158-158-137-168-

318-295-327-324

50.93 80.09

L0-ARM (λ = 0.002/N) 81-74-77-73-

149-157-156-152-

299-332-305-325

50.78 80.56

the former are lower than the latter before convergence, but all the algorithms
yield very similar accuracies after convergence, demonstrating the effectiveness
of L0-AR(M).
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(a) CIFAR-10 (b) CIFAR-100

Fig. 4. Comparison of expected FLOPs as a function of iteration during training and
inference. Similar to Fig. 3, L0-ARM is more computationally expensive for training,
but leads to sparser/more efficient architectures for inference. For these experiments,
L0-AR has the lowest training FLOPs and inference FLOPs, while achieving very
similar accuracies as the baseline methods (Table 3).

Fig. 5. Comparison of test accuracy as a function of epoch for different algorithms on
CIFAR-10. We apply the exact same hyper-parameters of L0-HC to L0-AR(M), which
yield similar accuracies for converged models even though the latter prunes around
50% parameters while the former prunes 0%.
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6 Conclusion

We propose L0-ARM, an unbiased and low-variance gradient estimator, to spar-
sify network architectures. Compared to L0-HC [19] and other state-of-the-
art sparsification algorithms, L0-ARM demonstrates superior performance of
sparsifying network architectures while retaining almost the same accuracies of
the baseline methods. Extensive experiments on multiple public datasets and
multiple network architectures validate the effectiveness of L0-ARM. Overall,
L0-ARM yields the sparsest architectures and the lowest inference FLOPs for
all the networks considered with very similar accuracies as the baseline methods.

As for future extensions, we plan to design better (possibly non-antithetic)
parametric function g(φ) to improve the sparsity of solutions. We also plan to
investigate more efficient algorithm to evaluate L0-ARM gradient (9) by utilizing
the antithetic structure of two forward passes.
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pierre.wolinski@u-psud.fr

2 Facebook AI Research, Paris, France
{leonardb,yol}@fb.com

Abstract. In neural network optimization, the learning rate of the gra-
dient descent strongly affects performance. This prevents reliable out-
of-the-box training of a model on a new problem. We propose the All
Learning Rates At Once (Alrao) algorithm for deep learning architec-
tures: each neuron or unit in the network gets its own learning rate, ran-
domly sampled at startup from a distribution spanning several orders
of magnitude. The network becomes a mixture of slow and fast learn-
ing units. Surprisingly, Alrao performs close to SGD with an optimally
tuned learning rate, for various tasks and network architectures. In our
experiments, all Alrao runs were able to learn well without any tuning.

1 Introduction

Deep learning models require delicate hyperparameter tuning [1]: when facing
new data or new model architectures, finding a configuration that enables fast
learning requires both expert knowledge and extensive testing. This prevents
deep learning models from working out-of-the-box on new problems without
human intervention (AutoML setup, [2]). One of the most critical hyperparame-
ters is the learning rate of the gradient descent [3, p. 892]. With too large learning
rates, the model does not learn; with too small learning rates, optimization is
slow and can lead to local minima and poor generalization [4–7].

Efficient methods with no learning rate tuning are a necessary step towards
more robust learning algorithms, ideally working out of the box. Many methods
were designed to directly set optimal per-parameter learning rates [8–12], such
as the popular Adam optimizer. The latter comes with default hyperparameters
which reach good performance on many problems and architectures; yet fine-
tuning and scheduling of its learning rate is still frequently needed [13], and
the default setting is specific to current problems and architecture sizes. Indeed
Adam’s default hyperparameters fail in some natural setups (Sect. 6.2). This
makes it unfit in an out-of-the-box scenario.

We propose All Learning Rates At Once (Alrao), a gradient descent method
for deep learning models that leverages redundancy in the network. Alrao uses
multiple learning rates at the same time in the same network, spread across sev-
eral orders of magnitude. This creates a mixture of slow and fast learning units.

c© Springer Nature Switzerland AG 2020
U. Brefeld et al. (Eds.): ECML PKDD 2019, LNAI 11907, pp. 449–464, 2020.
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Alrao departs from the usual philosophy of trying to find the “right” learning
rates; instead we take advantage of the overparameterization of network-based
models to produce a diversity of behaviors from which good network outputs
can be built. The width of the architecture may optionally be increased to get
enough units within a suitable learning rate range, but surprisingly, performance
was largely satisfying even without increasing width.

Our contributions are as follows:

– We introduce Alrao, a gradient descent method for deep learning models
with no learning rate tuning, leveraging redundancy in deep learning models
via a range of learning rates in the same network. Surprisingly, Alrao does
manage to learn well over a range of problems from image classification, text
prediction, and reinforcement learning.

– In our tests, Alrao’s performance is always close to that of SGD with the
optimal learning rate, without any tuning.

– Alrao combines performance with robustness: not a single run failed to learn
with the default learning rate range we used. In contrast, our parameter-free
baseline, Adam with default hyperparameters, is not reliable across the board.

– Alrao vindicates the role of redundancy in deep learning: having enough units
with a suitable learning rate is sufficient for learning.

2 Related Work

Redundancy in Deep Learning. Alrao specifically exploits the redundancy of
units in network-like models. Several lines of work underline the importance of
such redundancy in deep learning. For instance, dropout [14] relies on redun-
dancy between units. Similarly, many units can be pruned after training with-
out affecting accuracy [15–18]. Wider networks have been found to make training
easier [19–21], even if not all units are useful a posteriori.

The lottery ticket hypothesis [22,23] posits that “large networks that train
successfully contain subnetworks that—when trained in isolation—converge in a
comparable number of iterations to comparable accuracy”. This subnetwork is
the lottery ticket winner : the one which had the best initial values. In this view,
redundancy helps because a larger network has a larger probability to contain a
suitable subnetwork. Alrao extends this principle to the learning rate.

Learning Rate Tuning. Automatically using the “right” learning rate for each
parameter was one motivation behind “adaptive” methods such as RMSProp [8],
AdaGrad [9] or Adam [10]. Adam with its default setting is currently considered
the default method in many works [24]. However, further global adjustment of the
Adam learning rate is common [25]. Other heuristics for setting the learning rate
have been proposed [11]; these heuristics often start with the idea of approximat-
ing a second-order Newton step to define an optimal learning rate [12]. Indeed,
asymptotically, an arguably optimal preconditioner is either the Hessian of the
loss (Newton method) or the Fisher information matrix [26]. Another approach
is to perform gradient descent on the learning rate itself through the whole



Learning with Random Learning Rates 451

training procedure [27–32]. Despite being around since the 80’s [27], this has
not been widely adopted, because of sensitivity to hyperparameters such as the
meta-learning rate or the initial learning rate [33]. Of all these methods, Adam
is probably the most widespread at present [24], and we use it as a baseline.

The learning rate can also be optimized within the framework of architec-
ture or hyperparameter search, using methods from from reinforcement learning
[1,34,35], evolutionary algorithms [36–38], Bayesian optimization [39], or differ-
entiable architecture search [40]. Such methods are resource-intensive and do not
allow for finding a good learning rate in a single run.

3 Motivation and Outline

We first introduce the general ideas behind Alrao. The detailed algorithm is
explained in Sect. 4 and in Algorithm 1. We also release a Pytorch [41] imple-
mentation, including tutorials: http://github.com/leonardblier/alrao.

Different Learning Rates for Different Units. Instead of using a single learning
rate for the model, Alrao samples once and for all a learning rate for each unit in
the network. These rates are taken from a log-uniform distribution in an interval
[ηmin; ηmax]. The log-uniform distribution produces learning rates spread over
several order of magnitudes, mimicking the log-uniform grids used in standard
grid searches on the learning rate.

A unit corresponds for example to a feature or neuron for fully connected net-
works, or to a channel for convolutional networks. Thus we build “slow-learning”
and “fast-learning” units. In contrast, with per-parameter learning rates, every
unit would have a few incoming weights with very large learning rates, and
possibly diverge.

Intuition. Alrao is inspired by the fact that not all units in a neural network end
up being useful. Our idea is that in a large enough network with learning rates
sampled randomly per unit, a sub-network made of units with a good learning
rate will learn well, while the units with a wrong learning rate will produce
useless values and just be ignored by the rest of the network. Units with too
small learning rates will not learn anything and stay close to their initial values;
this does not hurt training (indeed, even leaving some weights at their initial
values, corresponding to a learning rate 0, does not hurt training). Units with
a too large learning rate may produce large activation values, but those will be
mitigated by subsequent normalizing mechanisms in the computational graph,
such as sigmoid/tanh activations or BatchNorm.

Alrao can be interpreted within the lottery ticket hypothesis [22]: viewing
the per-unit learning rates of Alrao as part of the initialization, this hypothesis
suggests that in a wide enough network, there will be a sub-network whose
initialization (both values and learning rate) leads to good convergence.

http://github.com/leonardblier/alrao
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Fig. 1. Left: a standard fully connected neural network for a classification task with
three classes, made of several internal layers and an output layer. Right: Alrao version
of the same network. The single classifier layer is replaced with a set of parallel copies
of the original classifier, averaged with a model averaging method. Each unit uses its
own learning rate for its incoming weights (represented by different styles of arrows).

Slow and Fast Learning Units for the Output Layer. Sampling a learning rate
per unit at random in the last layer would not make sense. For classification,
each unit in the last layer represents a single category: using different learning
rates for these units would favor some categories during learning. Moreover for
scalar regression tasks there is only one output unit, thus we would be back to
selecting a single learning rate.

The simplest way to obtain the best of several learning rates for the last
layer, without relying on heuristics to guess an optimal value, is to use model
averaging over several copies of the output layer (Fig. 1), each copy trained with
its own learning rate from the interval [ηmin; ηmax]. All these untied copies of the
output layer share the same Alrao internal layers (Fig. 1). This can be seen as a
smooth form of model selection or grid-search over the output layer learning rate;
actually, this part of the architecture can even be dropped after a few epochs,
as the model averaging quickly concentrates on one model.

Increasing Network Width. With Alrao, neurons with unsuitable learning rates
will not learn: those with too large learning rates might learn no useful signal,
while those with too small learning rates will learn too slowly. Thus, Alrao may
reduce the effective width of the network to only a fraction of the actual architec-
ture width, depending on [ηmin; ηmax]. This may be compensated by multiplying
the width of the network by a factor γ. Our first intuition was that γ > 1 would
be necessary; still Alrao turns out to work well even without width augmenta-
tion.
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4 All Learning Rates at Once: Description

4.1 Notation

We now describe Alrao more precisely for deep learning models with softmax
output, on classification tasks; the case of regression is similar.

Let D = {(x1, y1), ..., (xN , yN )}, with yi ∈ {1, ...,K}, be a classification
dataset. The goal is to predict the yi given the xi, using a deep learning
model Φθ. For each input x, Φθ(x) is a probability distribution over {1, ...,K},
and we want to minimize the categorical cross-entropy loss � over the dataset:
1
N

∑
i �(Φθ(xi), yi).

We denote log − U(·; ηmin, ηmax) the log-uniform probability distribution
on an interval [ηmin; ηmax]. Namely, if η ∼ log − U(·; ηmin, ηmax), then log η
is uniformly distributed between log ηmin and log ηmax. Its density function is
log − U(η; ηmin, ηmax) = 1

η

1ηmin≤η≤ηmax
log(ηmax)−log(ηmin)

.

Algorithm 1 Alrao-SGD for model Φθ = Cθout ◦ φθr with Nout classifiers
and learning rates in [ηmin; ηmax]

1: aj ← 1/Nout for each 1 ≤ j ≤ Nout � Initialize the Nout model averaging weights
aj

2: ΦAlrao
θ (x) :=

∑Nout
j=1 aj Cθout

j
(φθint(x)) � Define the Alrao architecture

3: for all layers l, for all unit i in layer l do
4: Sample ηl,i ∼ log-U(.; ηmin, ηmax). � Sample a learning rate for each unit
5: for all Classifiers j, 1 ≤ j ≤ Nout do
6: Define log ηj = log ηmin + j−1

Nout−1
log ηmax

ηmin
. � Set a learning rate for each

classifier
7: while Stopping criterion is False do
8: zt ← φθint(xt) � Store the output of the last internal layer
9: for all layers l, for all unit i in layer l do

10: θl,i ← θl,i − ηl,i · ∇θl,i�(Φ
Alrao
θ (xt), yt) � Update the repr. netw. weights

11: for all Classifier j do
12: θout

j ← θout
j − ηj · ∇θout

j
�(Cθout

j
(zt), yt) � Update the classifiers’ weights

13: a ← ModelAveraging(a, (Cθout
i

(zt))i, yt) � Update the model averaging
weights.

14: t ← t + 1 mod N

4.2 Alrao Architecture

Multiple Alrao Output Layers. A deep learning model Φθ for classification can
be decomposed into two parts: first, internal layers compute some function z =
φθint(x) of the inputs x, fed to a final output (classifier) layer Cθout , so that
the overall network output is Φθ(x) := Cθout(φθint(x)). For a classification task
with K categories, the output layer Cθout is defined by Cθout(z) := softmax ◦(
WT z + b

)
with θout := (W, b), and softmax(u1, ..., uK)k := euk/(

∑
i eui).
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In Alrao, we build multiple copies of the original output layer, with different
learning rates for each, and then use a model averaging method among them.
The averaged classifier and the overall Alrao model are:

CAlrao
θout (z) :=

Nout∑

j=1

aj Cθout
j

(z), ΦAlrao
θ (x) := CAlrao

θout (φθint(x)) (1)

where the Cθout
j

are copies of the original classifier layer, with non-tied parame-
ters, and θout := (θout1 , ..., θoutNout

). The aj are the parameters of the model aver-
aging, with 0 ≤ aj ≤ 1 and

∑
j aj = 1. The aj are not updated by gradient

descent, but via a model averaging method from the literature (see below).

Increasing the Width of Internal Layers. As explained in Sect. 3, we may com-
pensate the effective width reduction in Alrao by multiplying the width of the
network by a factor γ. This means multiplying the number of units (or filters for
a convolutional layer) of all internal layers by γ.

4.3 Alrao Update for the Internal Layers: A Random Learning
Rate for Each Unit

In the internal layers, for each unit i in each layer l, a learning rate ηl,i is sampled
from the probability distribution log − U(.; ηmin, ηmax), once and for all at the
beginning of training.1

The incoming parameters of each unit in the internal layers are updated in
the usual SGD way, only with per-unit learning rates (Eq. 2): for each unit i in
each layer l, its incoming parameters are updated as:

θl,i ← θl,i − ηl,i · ∇θl,i
�(ΦAlrao

θ (x), y) (2)

where ΦAlrao
θ is the Alrao loss (1) defined above.

What constitutes a unit depends on the type of layers in the model. In a
fully connected layer, each component of a layer is considered as a unit for
Alrao: all incoming weights of the same unit share the same Alrao learning rate.
On the other hand, in a convolutional layer we consider each convolution filter
as constituting a unit: there is one learning rate per filter (or channel), thus
preserving translation-invariance over the input image. In LSTMs, we apply the
same learning rate to all components in each LSTM cell (thus the vector of
learning rates is the same for input gates, for forget gates, etc.).

We set a learning rate per unit, rather than per parameter. Otherwise, every
unit would have some parameters with large learning rates, and we would expect
even a few large incoming weights to be able to derail a unit. Having diverging
parameters within every unit is hurtful, while having diverging units in a layer
is not necessarily hurtful since the next layer can learn to disregard them.
1 With learning rates resampled at each time, each step would be, in expectation,

an ordinary SGD step with learning rate Eηl,i, thus just yielding an ordinary SGD
trajectory with more variance.
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4.4 Alrao Update for the Output Layer: Model Averaging from
Output Layers Trained with Different Learning Rates

Learning the Output Layers. The j-th copy Cθout
j

of the classifier layer is

attributed a learning rate ηj defined by log ηj := log ηmin + j−1
Nout−1 log

(
ηmax
ηmin

)
,

so that the classifiers’ learning rates are log-uniformly spread on the interval
[ηmin; ηmax]. Then the parameters θoutj of each classifier j are updated as if this
classifier alone was the only output of the model:

θoutj ← θoutj − ηj · ∇θout
j

�(Cθout
j

(φθint(x)), y), (3)

(still sharing the same internal layers φθint). This ensures that classifiers with
low weights aj still learn, and is consistent with model averaging philosophy.
Algorithmically this requires differentiating the loss Nout times with respect to
the last layer, but no additional backpropagations through the internal layers.

Model Averaging. To set the weights aj , several model averaging techniques are
available, such as Bayesian Model Averaging [42]. We use the Switch model aver-
aging [43], a Bayesian method which is both simple, principled, and very respon-
sive to changes in performance of the various models. After each mini-batch, the
switch computes a modified posterior distribution (aj) over the classifiers. This
computation is directly taken from [43].

Additional experiments show that the model averaging method acts like a
smooth model selection procedure: after only a few hundreds gradient steps,
a single output layer is selected, with its parameter aj very close to 1. Actu-
ally, Alrao’s performance is unchanged if the extraneous output layer copies are
thrown away when the posterior weight aj of one of the copies gets close to 1.

5 Experimental Setup

We tested Alrao on various convolutional networks for image classification (Ima-
genet and CIFAR10), on LSTMs for text prediction, and on reinforcement learn-
ing problems. We always use the same learning rate interval [10−5; 10], corre-
sponding to the values we would have tested in a grid search, and 10 Alrao
output layer copies, for every task.

We compare Alrao to SGD with an optimal learning rate selected in the set
{10−5, 10−4, 10−3, 10−2, 10−1, 1., 10.}, and, as a tuning-free baseline, to Adam
with its default setting (η = 10−3, β1 = 0.9, β2 = 0.999), arguably the current
default method [24].

The results are presented in Table 1. Figure 2 presents learning curves for
AlexNet and Resnet50 on ImageNet.
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Table 1. Performance of Alrao, SGD with tuned learning rate, and Adam with its
default setting. Three convolutional models are reported for image classification on
CIFAR10, three others for ImageNet, one recurrent model for character prediction
(Penn Treebank), and two experiments on RL problems. Four of the image classification
architectures are further tested with a width multiplication factor γ = 3. Alrao learning
rates are taken in a wide, a priori reasonable interval [ηmin; ηmax] = [10−5; 10], and the
optimal learning rate for SGD is chosen in the set {10−5, 10−4, 10−3, 10−2, 10−1, 1., 10.}.
Each experiment is run 10 times (CIFAR10 and RL), 5 times (PTB) or 1 time (Ima-
geNet); the confidence intervals report the standard deviation over these runs. For RL
tasks, the return has to be maximized, not minimized.

Model SGD with optimal LR Adam - Default Alrao

LR Loss Top1 (%) Loss Top1 (%) Loss Top1 (%)

CIFAR10

MobileNet 0.1 0.37 ± .01 90.2 ± .3 1.01 ± .95 78 ± 11 0.42 ± .02 88.1 ± .6

MobileNet, γ = 3 0.1 0.33 ± .01 90.3 ± .5 0.32 ± .02 90.8 ± .4 0.35 ± .01 89.0 ± .6

GoogLeNet 0.01 0.45 ± .05 89.6 ± 1. 0.47 ± .04 89.8 ± .4 0.47 ± .03 88.9 ± .8

GoogLeNet, γ = 3 0.1 0.34 ± .02 90.5 ± .8 0.41 ± .02 88.6 ± .6 0.37 ± .01 89.8 ± .8

VGG19 0.1 0.42 ± .02 89.5 ± .2 0.43 ± .02 88.9 ± .4 0.45 ± .03 87.5 ± .4

VGG19, γ = 3 0.1 0.35 ± .01 90.0 ± .6 0.37 ± .01 89.5 ± .8 0.381 ± .004 88.4 ± .7

ImageNet

AlexNet 0.01 2.15 53.2 6.91 0.10 2.56 43.2

Densenet121 1 1.35 69.7 1.39 67.9 1.41 67.3

ResNet50 1 1.49 67.4 1.39 67.1 1.42 67.5

ResNet50, γ = 3 – – – 1.99 60.8 1.33 70.9

Penn Treebank

LSTM 1 1.566 ± .003 66.1 ± .1 1.587 ± .005 65.6 ± .1 1.706 ± .004 63.4 ± .1

RL Return Return Return

Pendulum 0.0001 −372 ± 24 −414 ± 64 −371 ± 36

LunarLander 0.1 188 ± 23 155 ± 23 186 ± 45

5.1 Image Classification on ImageNet and CIFAR10

For image classification, we used the ImageNet [44] and CIFAR10 [45] datasets.
The ImageNet dataset is made of 1,283,166 training and 60,000 testing data; we
split the training set into a smaller training set and a validation set with 60,000
samples. We do the same on CIFAR10: the 50,000 training samples are split into
40,000 training samples and 10,000 validation samples.

For each architecture, training was stopped when the validation loss had
not improved for 20 epochs. The epoch with best validation loss was selected
and the corresponding model tested on the test set. The inputs are normalized,
and training used data augmentation: random cropping and random horizontal
flipping. For CIFAR10, each setting was run 10 times: the confidence intervals
presented are the standard deviation over these runs. For ImageNet, because of
high computation time, we performed only a single run per experiment.

We tested Alrao on several standard architectures. On ImageNet, we tested
Resnet50 [46], Densenet121 [47], and Alexnet [48], using the default Pytorch
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implementation. On CIFAR10, we tested GoogLeNet [49], VGG19 [50], and
MobileNet [51], as implemented in [52]. We also tested wider architectures, with
a width multiplication factor γ = 3. On the largest model, Resnet50 on ImageNet
with triple width, systematic SGD learning rate grid search was not performed
due to the excessive computational burden, hence the omitted value in Table 1.

5.2 Other Tasks: Text Prediction, Reinforcement Learning

Text Prediction on Penn TreeBank. To test Alrao on other kinds of tasks, we
first used a recurrent neural network for text prediction on the Penn Treebank
(PTB) [53] dataset. The Alrao experimental procedure is the same as above.

The loss in Table 1 is given in bits per character and the accuracy is the pro-
portion of correct character predictions. The model is a two-layer LSTM [54] with
an embedding size of 100, and 100 hidden units. A dropout layer with rate 0.2 is

(a) Resnet50 trained on ImageNet.

(b) AlexNet trained on ImageNet

Fig. 2. Learning curves for Alrao, SGD with various learning rates, and Adam with its
default setting, on ImageNet. Left: training loss; right: test loss. Curves are interrupted
by the early stopping criterion. Alrao’s performance is comparable to the optimal SGD
learning rate.
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included before the decoder. The training set is divided into 20 minibatchs. Gradi-
ents are computed via truncated backprop through time [55] with truncation every
70 characters.

The model was trained for character prediction rather than word prediction.
This is technically easier for Alrao implementation: since Alrao uses copies of
the output layer, memory issues arise for models with most parameters on the
output layer. Word prediction (10,000 classes on PTB) requires many more out-
put parameters than character prediction; see Sect. 7.

Reinforcement Learning Tasks. Next, we tested Alrao on two standard rein-
forcement learning problems: the Pendulum and Lunar Lander environments
from OpenAI Gym [56]. We use standard deep Q-learning [57]. The Q-network
is a standard MLP with 2 hidden layers. The experimental setting is the same
as above, with regressors instead of classifiers on the output layer. For each envi-
ronment, we select the best epoch on validation runs, and then report the return
of the selected model on new test runs in that environment.

6 Performance and Robustness of Alrao

6.1 Alrao Compared to SGD with Optimal Learning Rate

First, Alrao does manage to learn; this was not obvious a priori.
Second, SGD with an optimally tuned learning rate usually performs better

than Alrao. This can be expected when comparing a tuning-free method with a
method that tunes the hyperparameter in hindsight.

Still, the difference between Alrao and optimally-tuned SGD is reasonably
small across every setup, even with wide intervals [ηmin; ηmax], with a somewhat
larger gap in one case (AlexNet on ImageNet). Notably, this occurs even though
SGD achieves good performance only for a few learning rates within the interval
[ηmin; ηmax]. With ηmin = 10−5 and ηmax = 10, among the 7 SGD learning rates
tested (10−5, 10−4, 10−3, 10−2, 10−1, 1, and 10), only three are able to learn with
AlexNet, and only one is better than Alrao (Fig. 2b); with ResNet50, only three
are able to learn well, and only two of them achieve performance similar to Alrao
(Fig. 2a); on the Pendulum environment, only two are able to learn well, only
one of which converges as fast as Alrao.

Thus, surprisingly, Alrao manages to learn at a nearly optimal rate, even
though most units in the network have learning rates unsuited for SGD.

6.2 Robustness of Alrao, and Comparison to Default Adam

Overall, Alrao learns reliably in every setup in Table 1. Moreover, this is quite
stable over the course of learning: Alrao curves shadow optimal SGD curves over
time (Fig. 2).

Often, Adam with its default parameters almost matches optimal SGD, but
this is not always the case. Over the 13 setups in Table 1, default Adam gives a
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significantly poor performance in three cases. One of those is a pure optimization
issue: with AlexNet on ImageNet, optimization does not start with the default
parameters (Fig. 2b). The other two cases are due to strong overfit despite good
train performance: MobileNet on CIFAR and ResNet with increased width on
ImageNet.

In two further cases, Adam achieves good validation performance in Table 1,
but actually overfits shortly after its peak score: ResNet (Fig. 2a) and DenseNet,
[24,58].

Overall, default Adam tends to give slightly better results than Alrao when
it works, but does not learn reliably with its default hyperparameters. It can
exhibit two kinds of lack of robustness: optimization failure, and overfit or non-
robustness over the course of learning. On the other hand, every single run
of Alrao reached reasonably close-to-optimal performance. Alrao also performs
steadily over the course of learning (Fig. 2).

6.3 Sensitivity Study to [ηmin; ηmax]

We claim to remove a hyperparameter, the learning rate, but replace it with two
hyperparameters ηmin and ηmax. Formally, this is true. But a systematic study
of the impact of these two hyperparameters (Fig. 3) shows that the sensitivity
to ηmin and ηmax is much lower than the original sensitivity to the learning rate.

To assess this, we tested every combination of ηmin and ηmax in a grid from
10−9 to 107 on GoogLeNet for CIFAR10 (left plot in Fig. 3, with SGD on the
diagonal). The largest satisfactory learning rate for SGD is 1 (diagonal on Fig. 3).
Unsurprisingly, if all the learning rates in Alrao are too large, or all too small,
then Alrao fails (rightmost and leftmost zones in Fig. 3). Extremely large learning
rates diverge numerically, both for SGD and Alrao.

On the other hand, Alrao converges as soon as [ηmin; ηmax] contains a rea-
sonable learning rate (central zone Fig. 3), even with values of ηmax for which
SGD fails. A wide range of choices for [ηmin; ηmax] will contain one good learn-
ing rate and achieve close-to-optimal performance. Thus, as a general rule, we
recommend to just use an interval containing all the learning rates that would
have been tested in a grid search, e.g., 10−5 to 10.

For a fixed network size, one might expect Alrao to perform worse with large
intervals [ηmin; ηmax], as most units would become useless. On the other hand,
in a larger network, many units would have extreme learning rates, which might
disturb learning. We tested how increasing or decreasing network width changes
Alrao’s sensitivity to [ηmin; ηmax] (right plot of Fig. 3 for Alrao). The sensitivity
of Alrao to [ηmin; ηmax] decreases markedly with network width. For instance,
a wide interval [ηmin; ηmax] = [10−12; 104] works reasonably well with an 8-fold
network, even though most units receive unsuitable learning rates.

So, even if the choice of ηmin and ηmax is important, the results are much
more stable to varying these two hyperparameters than to the original learning
rate, especially with large networks.
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Fig. 3. Influence of [ηmin; ηmax] and of network width on Alrao performance, with
GoogLeNet on CIFAR10. Results are reported after 15 epochs, and averaged on three
runs. Left plot: each point with coordinates [ηmin; ηmax] below the diagonal represents
the loss for Alrao with this interval. Points (η, η) on the diagonal represent standard
SGD with learning rate η. Grey squares represent numerical divergence (NaN). Alrao
works as soon as [ηmin; ηmax] contains at least one suitable learning rate. Right plot:
varying network width.

7 Discussion, Limitations, and Perspectives

Alrao specifically exploits redundancy between units in deep learning models,
relying on the overall network approach of combining a large number of units
built for diversity of behavior. Alrao would not make sense in a classical convex
optimization setting. That Alrao works at all is already informative about some
phenomena at play in deep neural networks.

Alrao can make lengthy SGD learning rate sweeps unnecessary on large mod-
els, such as the triple-width ResNet50 for ImageNet above. Incidentally, in our
experiments, wider networks provided increased performance both for SGD and
Alrao (Table 1 and Fig. 3): network size is still a limiting factor for the models
used, independently of the algorithm.

Increased Number of Parameters for the Classification Layer. Since Alrao mod-
ifies the output layer of the optimized model, the number of parameters in the
classification layer is multiplied by the number of classifier copies. (The number
of parameters in the internal layers is unchanged.) This is a limitation for models
with most parameters in the classifier layer.

On CIFAR10 (10 classes), the number of parameters increases by less than
5% for the models used. On ImageNet (1000 classes), it increases by 50–100%
depending on the architecture. On Penn Treebank, the number of parameters
increased by 26% in our setup (at character level); working at word level it would
have increased fivefold.

This can be mitigated by handling the copies of the classifiers on distinct com-
puting units: in Alrao these copies work in parallel given the internal layers. More-
over, the additional output layer copies may be thrown away early in training.
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Finally, models with a large number of output classes usually rely on other param-
eterizations than a direct softmax, such as a hierarchical softmax (see references
in [59]); Alrao can be used in conjunction with such methods.

Multiple Output Layer Copies and Expressiveness. Using several copies of the
output layer in Alrao formally provides more expressiveness to the model, as it
creates a larger architecture with more parameters. We performed two control
experiments to check that Alrao’s performance does not just stem from this.
First, we performed ablation of the output layer copies in Alrao after one epoch,
only keeping the copy with the highest model averaging weight ai: the learning
curves are identical. Second, we trained default Adam using copies of the output
layer (all with the same Adam default learning rate): the learning curves are
identical to Adam on the unmodified architecture. Thus, the copies of the output
layer do not bring any useful added expressiveness.

Learning Rate Schedules, Other Optimizers, Other Hyperparameters. Learning
rate schedules are often effective [60]. We did not use them here: this may par-
tially explain why the results in Table 1 are worse than the state-of-the-art. One
might have hoped that the diversity of learning rates in Alrao would effortlessly
bring it to par with step size schedules, but the results above do not support this.
Still, nothing prevents using a scheduler together with Alrao, e.g., by dividing
all Alrao learning rates by a time-dependent constant.

The Alrao idea can also be used with other optimizers than SGD, such as
Adam. We tested combining Alrao and Adam, and found the combination less
reliable than standard Alrao: curves on the training set mostly look good, but
the method quickly overfits.

The Alrao idea could be used on other hyperparameters as well, such as
momentum. However, with more hyperparameters initialized randomly for each
unit, the fraction of units having suitable values for all their hyperparameters
simultaneously will quickly decrease.

8 Conclusion

Applying stochastic gradient descent with multiple learning rates for different
units is surprisingly resilient in our experiments, and provides performance close
to SGD with an optimal learning rate, as soon as the range of random learning
rates is not excessive. Alrao could save time when testing deep learning models,
opening the door to more out-of-the-box uses of deep learning.
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Abstract. We propose FastPoint, a novel multivariate point process
that enables fast and accurate learning and inference. FastPoint uses deep
recurrent neural networks to capture complex temporal dependency pat-
terns among different marks, while self-excitation dynamics within each
mark are modeled with Hawkes processes. This results in substantially
more efficient learning and scales to millions of correlated marks with
superior predictive accuracy. Our construction also allows for efficient
and parallel sequential Monte Carlo sampling for fast predictive inference.
FastPoint outperforms baseline methods in prediction tasks on synthetic
and real-world high-dimensional event data at a small fraction of the
computational cost.

1 Introduction

Many applications produce large data sets that can be viewed as sets of events
with “timestamps”, occurring asynchronously. Examples abound, such as user
activity on social media, earthquakes, purchases in online retail, order arrivals
in a financial market, and “spiking” activity on a neuronal circuit. Modeling
complex co-occurrence patterns of such events and predicting future occurrences
are of practical interest in a wide range of use-cases.

Temporal point processes (TPP) are probabilistic models of such data, namely
discrete event sets in continuous time. They have been extended widely to describe
patterns through which events (points) interact, and to model side information
available in the form of features (marks). However, TPPs pose two key challenges:

– How does one design an expressive model that can capture complex depen-
dency patterns among events, while keeping the computational cost of learn-
ing manageable?

– How does one perform predictive inference, i.e., describe distributions of how
events will occur in the future, efficiently?
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Fig. 1. Typical draw from a bivariate point process on the unit interval. Events occur
in continuous time and belong to one of two types (marks) represented here as triangles
and discs.

The first question is often addressed by a class of TPPs defined in terms of
their conditional intensity function [3], i.e., the instantaneous rate of events given
previous points. A popular example is the Hawkes process [9], where the intensity
is a linear function of the effects of past events. These models and variants have
been explored in a range of application domains [1,7,8,24]. Recently, recurrent
neural networks (RNNs) have been used to approximate the conditional intensity
function [6,13,21]. By conditioning intensity on a vector embedding of the event
history, RNN-based models sidestep an important computational challenge in
likelihood-based parameter estimation for TPPs. However when the point pro-
cess is multivariate, i.e., when events are identified as members of a finite set
of processes such as purchases of a certain product or tweets of a certain user,
the model specification must be extended to account for how these event types
(or marks) interact [16,17]. In both Hawkes processes and RNN-based approx-
imations, computational difficulties associated with learning and inference are
greatly exacerbated by high dimensionality – a large number of marks.

The second problem requires characterizing distributions of event patterns in
a future interval, which leads to an intractable integral over all possible “point
configurations”. A popular alternative is Monte Carlo estimation, where forward
samples from the process are taken to evaluate estimates. However, forward sam-
pling from a point process is costly. When high-dimensionality is a concern, sam-
pling is further complicated by drawing from the mark distribution, recomputed
for each point.

In this paper, we propose a novel model, FastPoint, for efficient learning and
approximate inference in multivariate TPP. We combine the expressiveness of
RNNs to model mutual excitation (between marks), with well-studied Hawkes
processes to capture local (within marks) temporal relationships. This results in
significantly faster learning with better generalization in the high-dimensional
setting. Our contributions can be summarized as follows,

– We introduce a novel multivariate TPP that uses deep RNNs as the backbone
to capture mutual excitation relationships among different marks (e.g., among
different users on a network or different items in online retail) while using
Hawkes processes to capture local dynamics. By trading off the granularity
at which cross-mark dynamics are captured, FastPoint can scale to millions
of correlated point processes.

– Our construction leads to favorable computational properties including
reduced time complexity and enables parallel and distributed learning. Learn-
ing in high-dimensional point processes is accelerated by over an order of
magnitude.
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– Our model leads to a more parsimonious description of temporal dynamics
and better generalization in an array of real-world problems compared to
RNN-based models and Hawkes processes.

– FastPoint’s unique construction can be exploited for a sequential Monte Carlo
(SMC) routine that allows for substantially faster simulation and inference.
This results in predictive estimates of equivalent variance for less than a
percent of the computation time in comparable methods.

We introduce the required background on TPPs, neural TPP variants, and
concerns in sampling in Sect. 2. We introduce our model and algorithm in Sect. 3.
Section 4 presents related work, and Sect. 5 discusses empirical results attained
on datasets from social media, user behavior in music streaming, and earthquake
occurrences. Section 6 concludes the paper.

2 Background

TPPs are statistical models of discrete (instantaneous) events localized in contin-
uous time [3]. Concretely, just as a draw from a univariate continuous probability
distribution is a real number; a draw from a point process on a bounded set (0, T ]
is a set of points {ti}N

i=1, 0 < t1 < · · · < tN ≤ T .
Events (indexed here by i ∈ {1, . . . , N}) at times ti may be equipped with

marks, yi ∈ F . When F is a finite set, indexed by k ∈ {1, . . . , K}, an equivalent
formalism is multivariate (or multitype) TPPs – i.e., a set of K (correlated) point
processes. For example, letting k index users, multivariate TPPs can be used to
jointly model timestamps on their tweeting activity. Figure 1 represents a draw
from a bivariate (K = 2) point process.

The Poisson process is the “archetypal” point process [14], and it is char-
acterized by two main assumptions. First, one assumes that the point process
is simple, i.e., no two points coincide almost surely. Second is the assumption
of independence: point occurrences on disjoint subsets of R are independent.
While the first condition will underlie all point processes introduced here, it is
this second assumption of independence that limits a realistic understanding of
real-world phenomena. Many real-world events not only occur due to exogenous
factors but excite or inhibit each other. For example, earthquakes excite nearby
fault lines and increase the probability of “aftershocks”. Social media activity
elicits responses from other users. To capture such effects, one needs a richer
class of TPPs than Poisson processes.

A convenient way of writing a TPP in which events depend on each other
is through the conditional intensity function. We heuristically define the condi-
tional intensity λ∗ [3] as the probability of observing a point in the infinitesimal
interval after time t, given history Ht. Concretely,

λ∗(t) = lim
δ↓0

P{N(t, t + δ] > 0|Ht}
δ

,

where N(a, b] is the random variable corresponding to the number of points in
the interval (a, b].
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The conditional intensity uniquely determines a TPP. The log likelihood of
a set of parameters of the conditional intensity Θλ∗ , given realization {ti}, can
be written in terms of the conditional intensity,

�(Θλ∗) =
∑

i

log λ∗(ti) −
∫ T

0

λ∗(s)ds. (1)

A concrete example of conditional intensity TPPs is the Hawkes process [1,9,10]
which captures self-excitation behavior based on two assumptions: additivity
and linearity. The conditional intensity of a (univariate) Hawkes process is

λ∗(t) = μ +
∑

tj<t

ϕ(t − tj), (2)

where ϕ is a positive and causal kernel function. A common kernel is the expo-
nential decay ϕ(x) = αβ exp (−β(x)). The Hawkes process lends itself to inter-
pretation as a branching (immigration-birth) process in continuous time [11]. In
this sense, the branching ratio α corresponds to the long-run average number
of “child” events a given event causes (or “excites”). β exp (−β(x)), in turn, is
the delay density, the probability density of the delay between parent and child
events. For α < 1, the process satisfies the stationarity condition.

The fundamental difficulty in fitting Hawkes processes, or any general point
process defined via the conditional intensity, is that computing the likelihood
(1) takes time quadratic in the number of events. Note (Eqs. (1), (2)) that the
computation of λ∗(ti) is a sum over all {tj}j<i, and that the likelihood requires
computing intensities of all observed points. Computational issues are exacer-
bated by multivariate processes where one must account for relationships among
K marks. A notable exception to quadratic-time likelihood computations is the
exponential decay kernel which allows for likelihood computation in linear time
(see Appendix A (supplementary material)).

Scalability problems in parameter estimation were partially addressed by
“neural point processes”. Several recent contributions have proposed combining
neural networks with conditional intensity TPPs. In Recurrent Marked TPP
(RMTPP), Du et al. [6] propose to model a multivariate point process via an
approximation to the conditional intensity function. This is achieved by an RNN,
in their experiments an LSTM [12]. Effectively, the LSTM embeds the event
history Ht = {(ti, yi)|ti < t} to a vector, on which the conditional intensity
function and the conditional distribution of the mark of the next point are
calculated. Concretely, they take the conditional intensity

λ∗(t) = exp(v�hj + β(t − tj) + b), (3)

where β, b are scalar parameters, v is a vector parameter of appropriate
dimension. hj is the output of the LSTM for point tj . That is, hj =
LSTM(hj−1, tj , kj). j = sup{i ∈ N : ti < t}. Furthermore, they take,
yj+1 ∼ Categorical(softmax(Vhj + b)), where V, b are the weight and bias
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parameters of a dense neural network layer that maps LSTM outputs to the
categorical likelihood.

RMTPP allows bypassing expensive optimization routines in general condi-
tional intensity TPPs while leaving ample capacity for learning complex depen-
dencies across time. The key observation in neural point processes is that hj

serves as a vector embedding for Htj
, and the intensity computation can be

handled recursively. RMTPP is particularly convenient since it enables fast and
easy implementation. The integral in the likelihood (the compensator term) can
be computed exactly.

RMTPP was extended in [21], where the authors propose to parameterize
the intensity function via a continuous time LSTM where the memory cell of
the LSTM decays in time. This model, while more expressive as it captures
several decaying influences, results in an intractable integral for computing the
compensator.

Although TPP parameter estimation is greatly simplified by an approxima-
tion to the conditional intensity, performing predictive inference remains a signif-
icant challenge. Monte Carlo methods have emerged as the primary method for
inference in TPPs, seeing as exact inference involves an intractable integral in
all but the simplest models. Nevertheless, drawing exact samples from a TPP is
a computationally cumbersome task: the points have to be sampled in sequence
and the conditional intensity has to be re-evaluated at each point.

The traditional method for sampling from a TPP is Ogata’s thinning method
[22]. It is based on the observation that, conditioned on the history at a given
point, the process until the next point can be cast as a non-homogeneous Poisson
process. Then, if one can upper bound the intensity function, the next point can
be drawn via “thinning”, i.e., proposing the next point from a faster homoge-
neous Poisson process and accepting based on the ratio of intensities. However,
apart from the fact that the sampling routine has to be called in sequence,
this algorithm introduces the computational cost of rejected points. We give a
description of Ogata’s algorithm in Appendix B (see supplementary material).

3 FastPoint: Scalable Deep Point Process

3.1 Generative Model

Neural TPP models greatly simplify estimation in large-data (large N) regimes
under a reasonable number of marks K ≈ 103, while adding the ability to capture
complex co-occurrence patterns. However, many real-world events have marks
that are from a much larger set of possible values, e.g., in events associated
with millions of users or purchases from a catalog of several hundred thousand
products.

The main computational difficulty arises from accounting for interactions
between events from different marks in the same manner as one addresses inter-
actions between events of the same mark. In traditional point processes, such
as multivariate Hawkes processes – this leads to computing and bookkeeping
for O(K2) branching parameters. In neural TPPs, training complexity reduces
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Fig. 2. Above: RMTPP computes the conditional intensity for the next point through
an LSTM for each point in a sequence, Below: In FastPoint, the LSTM is conditioned
on an interval of points, and computes added intensity for the next interval. The self-
excitation in each mark, individually, is accounted for by a Hawkes process.

to O(NK) which can still be prohibitively high. Furthermore, RNNs are well
known to have difficulty in capturing long-range dependencies. This is especially
important in high-dimensional temporal point processes since a large number
of possibly unrelated marks are observed in a sequence before a relevant item
is observed – an effect that could have easily been captured by self-exciting
processes.

Our model, FastPoint, is built on a simple yet profound insight: mutual excita-
tion dynamics can be modeled at a lower frequency than with which one accounts
for self-excitation. More precisely, FastPoint addresses mutual-excitation on a
fixed grid along time and through a deep neural network, while local self-exciting
dynamics are captured with univariate Hawkes processes. We write the condi-
tional intensity

λ∗
k(t) = g(v�

k h(Hτ ) + bk) + μk +
∑

H(k)
t

ϕk(t − ti), (4)

where g denotes the softplus function, τ = sup{τ ′ ∈ G|τ ′ < t}, and G =
{0,Δ, 2Δ . . . } denotes some uniformly sampled “grid”. v, bk, μk are parameters,
h(.) is a function implemented by an LSTM, and ϕk is the exponential decay
kernel ϕk(x) = αkβk exp(−βkx).

FastPoint is composed of individual linearly self-exciting Hawkes processes to
capture local effects in each process, as given by the second and third summands
of (4). The first term is a non-negative added intensity contributed by an LSTM
that “clocks” at set coarse intervals and “synchronizes” the processes. The inputs
of the LSTM are the interarrival times and embeddings of past marks of previous
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Table 1. Comparison of training and sampling time complexities of multivariate tem-
poral point processes

Process Conditional intensity Training complexity Sampling complexity

Poisson λk(t) = λ̄pk where pk = λ̄k/λ̄ O(K) O(N + K)

Hawkes
λk(t) = μk +

∑

Ht

ϕk(t − ti, yi) O(N2 + NK) O(N2K)

RMTPP [6] λk(t) = p(k|h(Ht))f(t, h(Ht)) O(NK) O(NK)

Neural Hawkes

process [21]

λk(t) = fk(w
�
k h(t))

h(t) = oi � (2σ(2c(t)) − 1)
O(NK) O(NK)

FastPoint

g(v
�
k h(Hτ ) + bk) + μk +

∑
ϕ(t − ti)

τ = sup{τ
′

< t|τ ′ ∈ G}
G = {0, Δ, 2Δ, . . . }

O(N + K|G|) O(N + K|G|)

points, as in [6,21]. We give a stylized depiction comparing FastPoint to other
neural TPP models in Fig. 2.

FastPoint can be interpreted as a global-local time series model [20], where
the intensity processes are composed of a global component (given by the LSTM,
the first term of (4)), and local components that are each a Hawkes process.
While this greatly simplifies computation, it leads to a realistic-enough descrip-
tion of many real-world events. Our model encodes the assumption that mutual
excitation often takes place with longer delays than self-excitation. For example,
for limit order book analysis in finance, FastPoint models self-excitatory behav-
ior of individual event sets (i.e., assets) at ultra-high-frequency resolution, while
cross-asset effects are captured at lower resolutions. Finally, note that FastPoint
offers a general template for constructing multivariate TPPs. The global model
(LSTM) can be changed with other deep neural network architectures such as
the Transformer [25] or a simple multilayer perceptron. The local model can also
be switched, e.g., with a Poisson process.

FastPoint’s key computational advantage is that it eliminates the need to
compute K-many terms at each point for likelihood-based estimation. Intu-
itively, multivariate TPP likelihood computation requires a sequential pass over
all points in an observation. Furthermore, the compensator term in the likelihood
– i.e., the probability that no points are observed in between each point has to
be computed for all K marks, resulting in O(NK) cost. FastPoint yields signifi-
cant benefit in both respects. First, overall computational complexity decreases
to O(N + K|G|), invoking both the memoryless property of exponential decays
in the Hawkes process and favorable computational properties of RNN-based
conditional intensity approximation. Second, the likelihood computation of indi-
vidual marks can be parallelized over. In this manner, FastPoint is amenable
to both massively parallel and distributed implementations and solves a cru-
cial scalability problem in point process estimation and simulation. See Table 1
for a comparison of computational complexities associated with different point
processes. We give further details on FastPoint’s construction, implementation,
global and local model choices in Appendix A (see supplementary material).
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3.2 Sequential Monte Carlo Sampling

We turn to predictive inference, characterizing distributions of future event occur-
rences with FastPoint. Concretely, we seek to estimate expectations of the form,

EP

[
φ

({(ti, yi)}(t,t+T ]

) |Ht

]
, (5)

where {(ti, yi)}(t,t+T ] denotes (random) realizations of an arbitrary marked point
process P which we approximate with FastPoint, on the forecast horizon (t, t+T ].
φ denotes some function of the data, e.g., a summary statistic. For brevity, we
denote Π = {(ti, yi)}(t,t+T ], i.e., the random variate corresponding to possible
configurations of (a.s. finitely many) marked points on the given interval. Note
that

E [φ(Π)|Ht] =
∫

Π∈X
φ(Π)f(Π|H)dΠ, (6)

is a non-trivial integral over X , the point configuration space [19].
We will rely on Monte Carlo methods for approximating EP [φ(Π)|Ht]. Fast-

Point already alleviates part of the computational burden associated with sam-
pling from multivariate point processes. That is, it allows for simulating each
mark individually, in parallel, between each LSTM computation. For each such
interval, one could work with Ogata’s thinning algorithm in parallel. This still
results in the difficulty of sampling sequentially, with the added overhead of
rejecting some of the points drawn. These computational issues are further com-
plicated by the difficulty of implementing thinning in “batch” mode, in modern
deep learning frameworks such as Apache MXNet.

We suggest an alternative approach hinted by the global-local assumption of
FastPoint. We take sequential importance weighted samples to evaluate expec-
tations of the form (5), by proposing from a suitably parameterized Poisson
process. The sync points of the global model, on the grid G, are natural points
to serve as the epochs of a sequential Monte Carlo (SMC) algorithm [5]. Fur-
thermore, we find that the intensity at the beginning each interval doubles as a
good proposal intensity.

For short enough prediction horizons, the Poisson process constitutes an effec-
tive proposal in two regards. First, surprisingly, short enough intervals result in
low-variance samples or high effective sample sizes (ESS). Furthermore, invok-
ing homogeneity and the thinning property of Poisson processes [14], the times
and the marks of future points can be sampled independently and in parallel.
Concretely, for sampling from a multivariate homogeneous Poisson process with
intensities λk, we can instead sample from a global Poisson process with inten-
sity λ̄ =

∑
k λk. The marks can be drawn in parallel, each in constant time, with

p∗(k) = λk/
∑

k λk.
These observations result in a straightforward SMC algorithm. Namely, we

sample from Poisson processes in sequence, updating both the particle weights
and Poisson process parameters. We give a concrete description of FastPoint-
SMC in Algorithm1, where we use wj to denote the importance sampling parti-
cle weights, κ the resampling threshold and PP the Poisson process from which
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Algorithm 1: Sequential Monte Carlo sampling of FastPoint
Input: T , Δ, M , c
begin

wj ← 1, ∀j
τ ← t0
while τ < T do

for particles j = 1 to M do in parallel
Compute λ̄k = λ∗

k(τ), ∀k ∈ {1, 2, . . . , K}
Draw Nj ∼ Poisson(Δ × ∑

k λ̄k)

Draw {t
(j)
i }Nj

i=1 ∼ PP(
∑

k λ̄k)
for i = 1 to Nj do in parallel

Draw y
(j)
i s.t. p(y

(j)
i = k) ∝ λ̄k

endfor

wj ← wj × p({(t(j)
i ,y

(j)
i )}|Hτ )

q({(t(j)
i ,y

(j)
i )}|λ̄,p∗)

endfor
τ ← τ + Δ
ESS ← ‖w‖2

1/‖w‖2
2

if ESS < c then
Resample particles, s.t.

{(t
(j′)
i , y

(j′)
i )}t∈(t0,τ ] = {(t

(j)
i , y

(j)
i )}t∈(t0,τ ] with prob. ∝ wj , ∀j′

end

end

end

timestamps are drawn. Finally, p({(t(j)i , y
(j)
i )}|Hτ ), q({(t(j)i , y

(j)
i )}|λ̄, p∗) denote

the densities with respect to FastPoint and the Poisson process proposals respec-
tively.

Counterintuitively, FastPoint-SMC scales well with respect to the number of
marks K. To observe why, note that in practice, the number of points sampled in
each interval is much smaller than K. For marks that are not drawn, the Poisson
proposal density and FastPoint density are identical. In other words, marks for
which no points were drawn do not contribute to the sample variance. Therefore,
for short enough Δ, FastPoint effective sample sizes remain high for large K,
scaling favorably to high dimensions in sampling as well as training.

4 Related Work

In [26], the authors introduce a Wasserstein Generative Adversarial Network
for point processes, which leads to likelihood-free learning of generative models
for point processes. Recently, latent variable neural network models for marked
point process generation were explored in [23]. Both models use a generative deep
network as the backbone of their construction and are hence easy to sample from.
However, neither model is geared toward scalability in the number of marks.
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Linderman et al. [18] explore a Rao-Blackwellized particle filter for inference in
latent point processes, which could be used for predictive inference. However, the
algorithm is only explored in the context of multivariate Hawkes processes and not
extended to high-dimensional processes or neuralTPPs. Somewhat similarly to our
mix of discrete-time and continuous-time point process construction [27] explore a
twin RNN architecture. However, their model employs yet another RNN to model
continuous time effects, and is not amenable to high-dimensional modeling.

Scaling to high dimensions is a current and challenging problem in TPPs [1].
To our knowledge, FastPoint is the first model to consistently address very large
discrete mark spaces, as well as the first to combine self-exciting processes with the
neural TPP literature. Finally, ours is the first treatment of sequential Monte Carlo
simulation in neural TPP, and one of the first to explore it for TPP in general.

5 Experiments

We implement RMTPP and FastPoint on Apache MXNet [2] with operators for
Hawkes process likelihood and gradient computations in the MXNet backend1.
For learning, we use MXNet Gluon’s Adam optimizer. We run experiments on
AWS p3 instances equipped with NVIDIA Tesla V100 GPUs.

5.1 Model Performance

We evaluate FastPoint’s performance on large-scale, high-dimensional point
process data. First, we compare generalization performance based on the log-
likelihood of a held-out future time frame. We then compare computational
performance via standardized computation times for learning.

We compare FastPoint’s generalization performance to the following set of
baseline models,

– Self-exciting Hawkes process, i.e., a collection of univariate exponential-
decay Hawkes processes as given in (2). Note that this baseline amounts to
FastPoint with only the local model component.

– RMTPP [6], as given in Table 1.
– B-RMTPP, a modified version of RMTPP given by the conditional intensity

λk(t) = μ + p(k|h(Htj
)) exp(v�

λ h(Htj
) + bλ + β(t − tj)),

adding a background intensity. While a seemingly simple modification, this
makes RMTPP absolutely continuous with respect to the Poisson process.
That is, RMTPP is a terminating point process, making simulation schemes
such as Ogata’s algorithm invalid. Apart from correcting for this theoretical
issue, this formulation leads to better generalization.

1 The code is made available as part of MXNet. See https://github.com/apache/
incubator-mxnet/blob/master/src/operator/contrib/hawkes ll-inl.h.

https://github.com/apache/incubator-mxnet/blob/master/src/operator/contrib/hawkes_ll-inl.h
https://github.com/apache/incubator-mxnet/blob/master/src/operator/contrib/hawkes_ll-inl.h
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Table 2. Negative log-likelihood loss of different point processes on a held-out sample

HP-5K HP-10K NCEDC MemeTracker LastFM-1K

Events (millions) (N) 1 1 0.8 7.6 18

Marks (K) 5000 10000 1000 71566 105222

Hawkes 27009 30441 10346 42406 25087

RMTPP 27008 30491 14424 42507 30489

B-RMTPP 27008 30483 14393 42304 30474

FastPoint-5 26998 30412 10314 41007 25271

FastPoint-10 26997 30412 10287 41253 25024

FastPoint-20 26998 30412 10261 41398 24500

We compare the predictive performance of FastPoint to baselines on several
data sets,

– HP-5K, and HP-10K are synthetic data sets sampled from a multivariate
Hawkes process with the number of marks (K) set to 5000 and 10000 respec-
tively. We use hawkeslib2 to generate 1 million events from Hawkes models
parameterized by randomly drawn branching matrices.

– Earthquake events collected from the NCEDC earthquake catalog search
service [4]. We collect 800K earthquake events in the Northern California
area and cluster the events into marks based on their coordinates, associating
them to one of 1000 “locales”. The prediction task is to best represent the
time and locales of earthquake occurrences.

– A subset of the MemeTracker data set [15], that includes timestamped
records for 7.6 million social media sharing events of memes, belonging to
one of 71566 clusters.

– The LastFM-1K3 dataset, which includes 19 million records of listening
events, belonging to one of 105222 artists.

For RMTPP and FastPoint, we set the number of hidden units to 50 in
synthetic data experiments and 100 in real-data experiments respectively. We
use early stopping and weight decay for regularization. To mitigate the effect of
possible numerical issues on experimental outcomes, we normalize all data sets
to the same time scale to an average intensity of 50 events per unit of time.

We compare predictive accuracy in terms of the negative log-likelihood – i.e.,
average model loss on a held-out future interval of 5000 points. Note that a
more interpretable measure of accuracy is difficult to define in point processes,
and previous works have used a mix of predictive log-likelihood with other met-
rics such as squared error for timestamps or multiclass accuracy for marks [6].

2 http://github.com/canerturkmen/hawkeslib.
3 https://www.dtic.upf.edu/∼ocelma/MusicRecommendationDataset/lastfm-1K.

html.

http://github.com/canerturkmen/hawkeslib
https://www.dtic.upf.edu/~ocelma/ MusicRecommendationDataset/ lastfm-1K.html
https://www.dtic.upf.edu/~ocelma/ MusicRecommendationDataset/ lastfm-1K.html
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Fig. 3. (a) Training time on a single batch of 2500 events vs. the number of marks.
FastPoint-2 and FastPoint-5 refer to the FastPoint with interval lengths set to 2 and
5 respectively. Numbers are reported as multiples of time taken by FastPoint-2 on 104

marks. (b) FastPoint training time on a single batch of 25000 events as interval lengths
are increased. Different lines correspond to different numbers of marks. Numbers are
indexed to the time taken by for 106 marks with Δ = 0.01

However, we observe these metrics lead to little insight and high variance in
high-dimensional processes.

We present our results in Table 2. We give outcomes for three different Fast-
Point alternatives, varying the LSTM interval length Δ. That is, we denote the
Δ = 2 case as FastPoint-2. We report average loss over a long held-out interval
that includes at least half of the points in the full training set.

FastPoint categorically outperforms baselines in predictive accuracy. In syn-
thetic data experiments, we observe that FastPoint leads to better generalization
than both univariate Hawkes processes and neural TPP baselines. The margin
of improvement widens in real-world data sets with greater K. The benefit of
having a local model is especially notable in NCEDC and LastFM-1K. We
also find that in practice, FastPoint is less prone to overfitting and converges
reasonably quickly.

We contrast FastPoint’s computational performance to other deep TPP mod-
els under increasing dimensionality. In Fig. 3a, we compare computation times
for processing a batch of 2500 events during training. For 500 K marks, FastPoint
improves on the computation time by over a factor of 20. Beyond 500 K marks,
the memory footprints of RMTPP and B-RMTPP grow to an unmanageable size
making comparison impractical, though the trend is evident. Moreover, observe
in Fig. 3b that FastPoint allows trading off modeling accuracy by further decreas-
ing granularity (increasing the LSTM interval length Δ). For example, allowing
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K (×103) Improvement
10 89.1
20 109.1
30 115.1
40 169.9
50 186.3
60 240.7
70 267.2
80 292.0
90 284.7

Fig. 4. Left: Sampling times of RMTPP (Ogata’s sampler) vs. FastPoint-SMC,
indexed on FastPoint-SMC. Right: The factor of improvement in sampling times, i.e.,
the multiple of time taken by RMTPP-Ogata relative to FastPoint-SMC. FastPoint
results in gains of nearly 300x times.

a wider interval of 20 time units, one can learn a model of a million marks in
a reasonable amount of time. Combining the two effects, FastPoint can lead to
faster training of over two orders of magnitude, not accounting for other side ben-
efits such as the ability to work with larger batches of data, longer time intervals,
or performing inference in parallel such as on multi-GPU architectures.

5.2 Sampling

We now present empirical findings on FastPoint’s sampling performance, using
the SMC sampler introduced in Sect. 3.2. We compare the time taken by RMTPP
(using Ogata’s thinning method) and the FastPoint SMC sampler to generate
Ns = 100 samples from a learned point process, with a fixed forecast horizon of
10 time units. We present a comparison of standardized computation times in
Fig. 4, varying the number of marks K. FastPoint-SMC easily results in faster
sampling by a factor of nearly 300x and its sampling time scales favorably with
respect to the number of marks.

However, our analysis overlooks the fact that SMC generates samples that
lead to higher variance estimates. Indeed, it is not apparent whether sequentially
drawn importance-weighted samples from a Poisson process would lead to good
estimates for FastPoint, especially in the presence of a large number of marks.
Surprisingly, for small enough branching ratios α and short enough sampling
intervals, the Poisson proposal leads to low variance samples. To demonstrate
this, we compute the effective sample size (ESS, cf. Algorithm 1) for importance
weighted samples of FastPoint, which corresponds to the number of exact samples
that would result in equivalent variance.
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Fig. 5. (a) Effective sample sizes with increasing forecast horizon. (b) Effective sam-
ple sizes decay quickly with increasing branching ratio (c) Relative improvement in
sampling time, accounting for decreases in ESS, increase with respect to K.

In Figs. 5a and b we present the ESS for 100 importance-weighted samples
drawn on a single interval (without resampling or sequential sampling) of length
Δ and for fixed branching ratios (for all marks) of α. We set the number of
marks to 104, and the average intensity to 50 points per unit of time. We first
observe that SMC produces reasonably efficient samples as the forecast horizon
increases, resulting in an ESS of 60 for a horizon of 5 time units (roughly, 250
points). However, we also find that the ESS decays quickly as the branching ratio
α increases beyond 0.1. In practice, however, FastPoint accounts for part of the
self-excitation behavior through the global model, leading to smaller branching
rations for most marks.

We find that the SMC routine performs well in terms of sampling efficiency
as the dimensionsality increases. In Fig. 5c, we compute the Effective Sampling
Time Multiple (ESTM). Letting T

(s)
FP , T

(s)
O denote the time taken to sample from

FastPoint-SMC and RMTPP-Ogata respectively, we define ESTM = T
(s)
O

T
(s)
F P

×
ESS
NS

. This summary metric roughly corresponds to the factor by which FastPoint
accelerates sampling, accounting for the higher variance introduced by SMC.
Setting α = 0.05,Δ = 1, we vary the number of marks to find that FastPoint
results in greater speed by a factor of over two orders of magnitude, for estimates
of equivalent variance.

6 Conclusion

Multivariate point processes are natural models for many real-world data sets.
However, due to the computational complexity often associated with learning
and inference in TPPs, other simplified models (e.g., by discretizing time or
assuming independent marks) have been favored over them in many application
domains. Moreover, most existing approaches do not address high-dimensional
multivariate TPPs, a case that often arises in practice, with an expressive
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model that scales well in terms of generalization performance and computational
cost. Finally, performing simulation (sampling) efficiently in general multivariate
TPPs is an open problem.

FastPoint combines the interpretability and well-understood theory of
Hawkes models with recurrent neural networks, addressing these long-standing
challenges in point process modeling. First, it unlocks scalable estimation and
simulation in millions for correlated point processes via a parsimonious global-
local model. It can be used for accurate modeling of high-dimensional asyn-
chronous event data, such as item purchases in a very large catalog, activities on
a web-scale social graph, or limit order events in an order book with thousands
of assets. Second, our SMC algorithm allows efficient sampling, accelerating pre-
dictive inference by over two orders of magnitude.

FastPoint’s global-local point process construction is flexible. The global and
local model components can be changed to other models best suitable for the
task. Exploring other global-local multivariate point process constructions and
better understanding their properties for learning and sampling remain exciting
avenues for future research.
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Abstract. Can we automatically design a Convolutional Network (Con-
vNet) with the highest image classification accuracy under the latency
constraint of a mobile device? Neural architecture search (NAS) has rev-
olutionized the design of hardware-efficient ConvNets by automating this
process. However, the NAS problem remains challenging due to the com-
binatorially large design space, causing a significant searching time (at
least 200 GPU-hours). To alleviate this complexity, we propose Single-
Path NAS, a novel differentiable NAS method for designing hardware-
efficient ConvNets in less than 4 h. Our contributions are as follows:
1. Single-path search space: Compared to previous differentiable NAS
methods, Single-Path NAS uses one single-path over-parameterized Con-
vNet to encode all architectural decisions with shared convolutional ker-
nel parameters, hence drastically decreasing the number of trainable
parameters and the search cost down to few epochs. 2. Hardware-
efficient ImageNet classification: Single-Path NAS achieves 74.96%
top-1 accuracy on ImageNet with 79 ms latency on a Pixel 1 phone, which
is state-of-the-art accuracy compared to NAS methods with similar infer-
ence latency constraints (≤80 ms). 3. NAS efficiency: Single-Path NAS
search cost is only 8 epochs (30 TPU-hours), which is up to 5,000×
faster compared to prior work. 4. Reproducibility: Unlike all recent
mobile-efficient NAS methods which only release pretrained models,
we open-source our entire codebase at: https://github.com/dstamoulis/
single-path-nas.

Keywords: Neural Architecture Search · Hardware-aware ConvNets

1 Introduction

“Is it possible to reduce the considerable search cost of Neural Architecture Search
(NAS) down to only few hours?” NAS has revolutionized the design of Convolu-
tional Networks (ConvNets) [25], yielding state-of-the-art results in several deep
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learning applications [14]. NAS methods already have a profound impact on
the design of hardware-efficient ConvNets for computer vision tasks under the
constraints (e.g., inference latency) imposed by mobile devices [18].

Despite the recent breakthroughs, NAS remains an intrinsically costly opti-
mization problem. Searching for which convolution operation to use per Con-
vNet layer, gives rise to a combinatorially large search space: e.g., for a mobile-
efficient ConvNet with 22 layers, choosing among five candidate operations yields
522 ≈ 1015 possible ConvNet architectures. To traverse this design space, ear-
lier NAS methods guide the exploration via reinforcement learning (RL) [18].
Nonetheless, training the RL controller poses prohibitive computational chal-
lenges, and thousands of candidate ConvNets need to be trained [19].

Fig. 1. Single-Path NAS directly optimizes for the subset of convolution kernel weights
and searches over an over-parameterized “superkernel” in each ConvNet layer (right).
This novel view of the design space eliminates the need for maintaining separate
paths for each candidate operation, as in previous multi-path approaches (left). Our
key insight drastically reduces the NAS search cost by up to 5,000× with state-of-
the-art accuracy on ImageNet for the same mobile latency setting, compared to prior
work.

Inefficiencies of Multi-path NAS: Recent NAS literature has seen a shift
towards one-shot differentiable formulations [12,13,20] which search over a
supernet that encompasses all candidate architectures. Specifically, current NAS
methods relax the combinatorial optimization problem of finding the optimal
ConvNet architecture to an operation/path selection problem: first, an over-
parameterized, multi-path supernet is constructed, where, for each layer, every
candidate operation is added as a separate trainable path, as illustrated in Fig. 1
(left). Next, NAS formulations solve for the (distributions of) paths of the multi-
path supernet that yield the optimal architecture.

As expected, naively branching out all paths is inefficient due to an intrinsic
limitation: the number of trainable parameters that need to be maintained and
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updated during the search grows linearly with respect to the number of can-
didate operations per layer [1]. To tame the memory explosion introduced by
the multi-path supernet, current methods employ creative “workaround” solu-
tions: e.g., searching on a proxy dataset (subset of ImageNet [19]), or employing
a memory-wise scheme with only a subset of paths being updated during the
search [3]. Nevertheless, these techniques remain considerably costly, with an
overall computational demand of at least 200 GPU-hours.

In this paper, we propose Single-Path NAS, a novel NAS method for design-
ing hardware-efficient ConvNets in less than 4 h. Our key insight is illustrated
in Fig. 1 (right). We build upon the observation that different candidate convo-
lutional operations in NAS can be viewed as subsets of a single “superkernel”.
Without having to choose among different paths/operations as in multi-path
methods, we instead solve the NAS problem as finding which subset of ker-
nel weights to use in each ConvNet layer. By sharing the convolutional kernel
weights, we encode all candidate NAS operations into a single superkernel, i.e.,
with a single path, for each layer of the one-shot NAS supernet. This novel
encoding of the design space yields a drastic reduction to the number of train-
able parameters/gradients, allowing our NAS method to use batch sizes of 1024,
a four-fold increase compared to prior art’s search efficiency.

Our contributions are as follows:

1. Single-path NAS: We propose a novel view of the one-shot, supernet-based
design space, hence drastically decreasing the number of trainable parameters.
To the best of our knowledge, this is the first work to formulate the NAS
problem as finding the subset of kernel weights in each ConvNet layer.

2. State-of-the-art results: Single-Path NAS achieves 74.96% top-1 accuracy
on ImageNet with 79 ms latency on a Pixel 1, i.e., a +0.31% improvement
over the current best hardware-aware NAS [18] under 80 ms.

3. NAS efficiency: The overall search cost is only 8 epochs, i.e., 3.75 h on
TPUs (30 TPU-hours), up to 5,000× faster compared to prior work.

4. Reproducibility: Unlike recent hardware-efficient NAS methods which
release pretrained models only, we open-source and fully document our
method at: https://github.com/dstamoulis/single-path-nas.

2 Related Work

Hardware-Efficient ConvNets: While complex ConvNet designs have
unlocked unprecedented performance levels in computer vision tasks, the accu-
racy improvement has come at the cost of higher computational complexity,
making the deployment of state-of-the-art ConvNets to mobile devices challeng-
ing [17]. To this end, a significant body of prior work aims to co-optimize for
the inference latency of ConvNets. Earlier approaches focus on human expertise
to introduce hardware-efficient operations [9,15,22]. Pruning [4] and quantiza-
tion [7] methods share the same goal to improve the efficiency of ConvNets.

https://github.com/dstamoulis/single-path-nas
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Neural Architecture Search (NAS): NAS aims at automating the process
of designing ConvNets, giving rise to methods based on reinforcement learning
(RL), evolutionary algorithms, or gradient-based methods [12–14,24,25]. Earlier
approaches train an agent (e.g., RNN controller) by sampling candidate architec-
tures over a cell-based design space, where the same cell is repeated in all layers
and the focus is on searching the cell architecture [25]. Nonetheless, training the
controller over different architectures makes the search costly.

Hardware-aware NAS: Earlier NAS methods focused on maximizing accu-
racy under FLOPs constraints [20,23], but low FLOP count does not necessarily
translate to hardware efficiency [8,16]. More recent methods incorporate hard-
ware terms (e.g., runtime, power) into cell-based NAS formulations [8,10], but
cell-based implementations are not hardware friendly [19]. Breaking away from
cell-based assumptions in the search space encoding, recent work employs NAS
over a generalized MobileNetV2-based design space introduced in [18].

Hardware-aware Differentiable NAS: Recent NAS literature has seen a shift
towards one-shot NAS formulations [13,20]. Gradient-based NAS in particular
has gained increased popularity and has achieved state-of-the-art results [12].
One-shot-based methods use an over-parameterized super-model network, where,
for each layer, every candidate operation is added as a separate trainable path.
Nonetheless, multi-path search spaces have an intrinsic limitation: the number
of trainable parameters that need to be maintained and updated with gradi-
ents during the search grows linearly with respect to the number of different
convolutional operations per layer, resulting in memory explosion [1,3].

To this end, state-of-the-art approaches employ different novel “workaround”
solutions. FBNet [19] searches on a “proxy” dataset (i.e., subset of the ImageNet
dataset). Despite the decreased search cost thanks to the reduced number of
training images, these approaches do not address the fact that the entire super-
model needs to be maintained in memory during search, hence the efficiency
is limited due to inevitable use of smaller batch sizes. ProxylessNAS [3] has
employed a memory-wise one-shot model scheme, where only a set of paths is
updated during the search. However, such implementation-wise improvements do
not address a second key suboptimality of one-shot approaches, i.e., the fact that
separate gradient steps are needed to update the weights and the architectural
decisions interchangeably [12]. Although the number of trainable parameters,
with respect to the memory cost, is kept to the same level at any step, the way
that multi-path-based methods traverse the design space remains inefficient.

3 Proposed Method: Single-Path NAS

In this Section, we present our proposed method. First, we discuss our novel
single-path view (Subsect. 3.1) of the search space. Next, we encode the NAS
problem as finding the subset of convolution weights over the over-parameterized
superkernel (Subsect. 3.2), and we discuss how it compares to existing multi-path-
based NAS (Subsect. 3.3). Last, we formulate the hardware-aware NAS objective
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Fig. 2. Single-path search space: Our method builds upon hierarchical
MobileNetV2-like search spaces [15,18], where the goal is to identify the type of mobile
inverted bottleneck convolution (MBConv) [15] per layer. Our one-shot supernet encap-
sulates all possible NAS architectures in the search space, without the need for append-
ing each candidate operation as a separate path. Single-Path NAS directly searches over
the weights of a searchable superkernel that encodes all MBConv types.

function, where we incorporate an accurate inference latency model of ConvNets
executing on the Pixel 1 smartphone (Subsect. 3.4).

3.1 Mobile ConvNets Search Space: A Novel View

Background - Mobile ConvNets: State-of-the-art NAS builds upon a fixed
“backbone” ConvNet [3] inspired by the MobileNetV2 design [15], illustrated in
Fig. 2 (top). Specifically, in this fixed macro-architecture, except for the head
and stem layers, all ConvNet layers are grouped into blocks based on their filter
sizes. The filter numbers per block follow the values in [19], i.e., we use seven
blocks with up to four layers each. Each layer of these blocks follows a mobile
inverted bottleneck convolution MBConv [15] micro-architecture, which consists
of a point-wise (1 × 1) convolution, a k × k depthwise convolution, and a linear
1 × 1 convolution (Fig. 2, middle). Unless the layer has a stride value of two, a
skip path is introduced to provide a residual connection from input to output.

Each MBConv layer is parameterized by k, i.e., the kernel size of the depth-
wise convolution, and by expansion ratio e, i.e., the ratio between the output
and input of the first 1 × 1 convolution. Based on this parameterization, we
denote each MBConv as MBConv-k × k-e. Mobile-efficient NAS aims to choose
each MBConv-k × k-e layer, by selecting among different k and e values [3,19].
In particular, we consider MBConv layers with kernel sizes {3, 5} and expansion
ratios {3, 6}. NAS also considers a special skip-op “layer”, which “zeroes-out”
the kernel and feeds the input directly to the output, i.e., the entire layer is
dropped.
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Novel View of Design Space: Our key insight is illustrated in Fig. 2. We
build upon the observation that different candidate convolutional operations in
NAS can be viewed as subsets of the weights of an over-parameterized single
superkernel (Fig. 2, bottom). This observation allows us to view the NAS combi-
natorial problem as finding which subset of kernel weights to use in each MBConv
layer. This observation is important since it allows sharing the kernel parameters
across different MBConv architectural options. As shown in Fig. 2, we encode all
candidate NAS operations to this single superkernel, i.e., with a single path,
for each layer of the one-shot NAS supernet.

3.2 Proposed Methodology: Single-Path NAS Formulation

Key Idea - Relaxing NAS Decisions Over an Over-Parameterized Ker-
nel: To simplify notation and to illustrate the key idea, without loss of generality,
we show the case of choosing between a 3 × 3 or a 5 × 5 kernel for an MBConv
layer. Let us denote the weights of the two candidate kernels as w3×3 and w5×5,
respectively. As shown in Fig. 3 (left), we observe that the weights of the 3 × 3
kernel can be viewed as the inner core of the weights of the 5 × 5 kernel, while
“zeroing” out the weights of the “outer” shell. We denote this (outer) subset
of weights (that does not contribute to output of the 3 × 3 kernel but only to
the 5× 5 kernel), as w5×5\3×3. Hence, the NAS architectural choice of using the
5 × 5 convolution corresponds to using both the inner w3×3 weights and the
outer shell, i.e., w5×5 = w3×3 + w5×5\3×3 (Fig. 3, left).

Fig. 3. Encoding NAS decisions into the superkernel: We formulate all candidate con-
volution operations (i.e., different kernel size (left) and expansion ratio (right) values)
directly into the searchable superkernel.

We can therefore encode the NAS decision directly into the superkernel of
an MBConv layer as a function of kernel weights as follows:

wk = w3×3 + 1(use 5 × 5) · w5×5\3×3 (1)

where 1(·) is the indicator function that encodes the architectural NAS choice,
i.e., if 1(·) = 1 then wk = w3×3 + w5×5\3×3 = w5×5, else 1(·) = 0 then
wk = w3×3.
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Trainable Indicator/Condition Function: While the indicator function
encodes the NAS decision, a critical choice is how to formulate the condition
over which the 1(·) is evaluated. Our intuition is that, for an indicator function
that represents whether to use the subset of weights, its condition should be
directly a function of the subset’s weights. Thus, our goal is to define an “impor-
tance” signal of the subset weights that intrinsically captures their contribution
to the overall ConvNet loss. We draw inspiration from weight-based conditions
that have been successfully used for quantization-related decisions [6] and we
use the group Lasso term. Specifically, for the indicator related to the w5×5\3×3

“outer shell” decision, we write the following condition:

wk = w3×3 + 1(
∥
∥w5×5\3×3

∥
∥
2

> tk=5) · w5×5\3×3 (2)

where tk=5 is a latent variable that controls the decision (e.g., a threshold value)
of selecting kernel 5 × 5. The threshold will be compared to the Lasso term to
determine if the outer w5×5\3×3 weights are used to the overall convolution.
It is important to notice that, instead of picking the thresholds (e.g., tk=5)
by hand, we seamlessly treat them as trainable parameters to learn via gradient
descent. To compute the gradients for thresholds, we relax the indicator function
g(x, t) = 1(x > t) to a sigmoid function, σ(·), when computing gradients, i.e.,
ĝ(x, t) = σ(x > t).

Searching for Expansion Ratio and Skip-op: Since the result of the kernel-
based NAS decision wk (Eq. 2) is a convolution kernel itself, we can in turn apply
our formulation to also encode NAS decisions for the expansion ratio of the wk

kernel. As illustrated in Fig. 3 (right), the channels of the depthwise convolution
in an MBConv-k × k-3 layer with expansion ratio e = 3 can be viewed as using
one half of the channels of an MBConv-k ×k-6 layer with expansion ratio e = 6,
while “zeroing” out the second half of channels {wk,6\3}. Finally, by “zeroing”
out the first half of the output filters as well, the entire superkernel contributes
nothing if added to the residual connection of the MBConv layer: i.e., by deciding
if e = 3, we can encode the NAS decision of using, or not, only the “skip-op”
path. For both decisions over wk kernel, we write:

w = 1(‖wk,3‖2 > te=3) · (wk,3 + 1(
∥
∥wk,6\3

∥
∥
2

> te=6) · wk,6\3) (3)

Hence, for input x, the output of the i-th MBConv layer of the network is:

oi(x) = conv(x,wi|tik=5, t
i
e=6, t

i
e=3) (4)

Searchable MBConv Kernels: Each MBConv uses 1×1 convolutions for the
point-wise (first) and linear stages, while the kernel-size decisions affect only the
(middle) k×k depthwise convolution (Fig. 2). To this end, we use our searchable
k × k depthwise kernel at this middle stage. In terms of number of channels,
the depthwise kernel depends on the point-wise 1 × 1 output, which allows us
to directly encode the expansion ratio e at the middle stage as well: by setting
the point-wise 1 × 1 output to the maximum candidate expansion ratio, we can
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instead solve for which of them not to “zero” out at the depthwise (middle) state.
In other words, we directly use our searchable depthwise convolution superkernel
to effectively encode the NAS decision for the expansion ratio. Hence, our single-
path, convolution-based formulation can sufficiently capture any MBConv type
(e.g., MBConv-3× 3-6, MBConv-5× 5-3, etc.) in the MobileNetV2-based design
space (Fig. 2).

3.3 Single-Path vs. Existing Multi-Path Assumptions

Comparison with Multi-path Over-Parameterized Networks: We briefly
illustrate how our single-path formulation compares to multi-path NAS
approaches. In existing methods [3,12,19], the output of each layer i is a
(weighted) sum defined over the output of N different paths, where each path j
corresponds to a different candidate kernel wi,j

k×k,e. The weight of each path αi,j

corresponds to the probability that this path is selected over the parallel paths:

oi
multi−path(x) =

N∑

j=1

αi,j ·oi,j(x) = αi,0 ·conv(x,wi,0
3×3)+· · ·+αi,N ·conv(x,wi,N

5×5)

(5)
It is easy to see how our novel single-path view is advantageous, since the output
of the convolution at layer i of our search space is directly a function of the
weights of our single over-parameterized kernel (Eq. 4):

oi
single−path(x) = oi(x) = conv(x,wi|tik=5, t

i
e=6, t

i
e=3) (6)

Comparison with Multi-path NAS Optimization: Multi-path NAS meth-
ods solve for the optimal architecture parameters α (path weights), such that
the weights wα of the corresponding α-architecture have minimal loss L(α,wα):

min
α

min
wα

L(α,wα) (7)

However, solving Eq. 7 gives rise to a challenging bi-level optimization prob-
lem [12]. Existing methods interchangeably update the α’s while freezing the
w’s and vice versa, leading to more gradient steps.

In contrast, with our single-path formulation, the overall network loss is
directly a function of the superkernel weights, where the learnable kernel- and
expansion ratio-related threshold variables, tk and te, are directly derived as a
function (norm) of the kernel weights w. Consequently, Single-Path NAS for-
mulates the NAS problem as solving directly over the weight kernels w of a
single-path, compact neural network. Formally, the NAS problem becomes:

min
w

L(w|tk, te) (8)
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Efficiency of Single-Path NAS: Unlike the bi-level optimization problem
in prior work, solving our NAS formulation in Eq. 8 is as expensive as training
the weights of a single-path, branchless, compact neural network with vanilla
gradient descent. Therefore, our formulation eliminates the need for separate
gradient steps between the ConvNet weights and the NAS parameters. Moreover,
the reduction of the trainable parameters w per se, further leads to a drastic
reduction of the search cost down to just a few epochs, as our experimental
results show later in Sect. 4. Our NAS problem formulation allows us to efficiently
solve Eq. 8 with batch sizes of 1024, a four-fold increase compared to prior art’s
search efficiency.

3.4 Hardware-Aware NAS with Differentiable Runtime Loss

To design hardware-efficient ConvNets, the differentiable objective in Eq. 8
should reflect both the accuracy of the searched ConvNet and its inference
latency on the target hardware. Hence, we use a latency-aware formulation [3,19]:

L(w|tk, te) = CE(w|tk, te) + λ · log(R(w|tk, te)) (9)

The first term CE corresponds to the cross-entropy loss of the single-path model.
The hardware-related term R is the runtime in milliseconds (ms) of the searched
NAS model on the target mobile platform. Finally, the coefficient λ modulates
the trade-off between cross-entropy and runtime.

Runtime Model Over the Single-Path Design Space: To preserve the
differentiability of the objective, another critical choice is the formulation of the
latency term R. Prior art has showed that the total network latency of a mobile
ConvNet can be modeled as the sum of each i-th layer’s runtime Ri, since the
runtime of each operator is independent of other operators [2,3,19]:

R(w|tk, te) =
∑

i

Ri(wi|ti
k, ti

e) (10)

For our approach, we adapt the per-layer runtime model as a function of the
NAS-related decisions t. We profile the target mobile platform (Pixel 1) and we
record the runtime for each candidate kernel operation per layer i, i.e., Ri

3×3,3,
Ri

3×3,6, Ri
5×5,3, and Ri

5×5,6. We denote the runtime of layer i by following the
notation in Eq. 3. Specifically, the runtime of layer i is defined first as a function
of the expansion ratio decision:

Ri
e = 1(‖wk,3‖2 > te=3)·(Ri

5×5,3+1(
∥
∥wk,6\3

∥
∥
2

> te=6)·(Ri
5×5,6−Ri

5×5,3)) (11)

Next, by incorporating the kernel size decision, the total runtime is:

Ri =
Ri

3×3,6

Ri
5×5,6

· Ri
e + Ri

e · (1 − Ri
3×3,6

Ri
5×5,6

) · 1(
∥
∥w5×5\3×3

∥
∥
2

> tk=5) (12)

As in Eq. 2, we relax the indicator function to a sigmoid function σ(·) when
computing gradients. By using this model, the runtime term in the loss function
remains differentiable with respect to layer-wise NAS choices. As we show in our
results, the model is accurate, with an average prediction error of 1.76%.
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4 Experiments

4.1 Experimental Setup

Dataset and Target Application: We use Single-Path NAS to design Con-
vNets for image classification on ImageNet. We use Pixel 1 as the target mobile
platform. The choice of this experimental setup is important, since it allows
for a representative comparison with prior hardware-efficient NAS methods that
optimize for the same Pixel 1 device around a target latency of 80 ms [3,18].

Implementation and Deployment: We implement our NAS framework in
TensorFlow (TF version 1.12). During both search and training stages, we use
TPUs (version 2) [11]. To this end, we build on top of the TPUEstimator classes
following the TPU-related documentation of the MnasNet repository1. Last, all
models (ours and prior work) are deployed with TensorFlow TFLite to the mobile
device. On the device, we profile runtime using the Facebook AI Performance
Evaluation Platform (FAI-PEP)2 that supports profiling for tflite models with
detailed per-layer runtime breakdown.

Implementing the Custom Superkernels: We use Keras to implement our
trainable superkernels. Specifically, we define a custom Keras-based depthwise
convolution kernel where the output is a function of both the weights and the
threshold-based decisions (Eqs. 2, 3). Our custom layer also returns the effec-
tive runtime of the layer (Eqs. 11, 12). We document our implementation in
our project GitHub repository: https://github.com/dstamoulis/single-path-nas,
with detailed steps on how to reproduce the results.

4.2 State-of-the-Art Runtime-Constrained ImageNet Classification

We apply our method to design ConvNets for the Pixel 1 phone with an overall
target latency of 80 ms. We train the derived Single-Path NAS model for 350
epochs, following the MnasNet training schedule [18]. We compare our method
with mobile ConvNets designed by human experts and state-of-the-art NAS
methods in Table 1, in terms of classification accuracy and search cost. In terms
of hardware efficiency, prior work has shown that low FLOP count does not
necessarily translate to high hardware efficiency [8], we therefore evaluate the
various NAS methods with respect to the inference runtime on Pixel 1 (≤80 ms).

Enabling a Representative Comparison: While we provide the original val-
ues from the respective papers, our goal is to ensure a fair comparison. To this
end, we retrain the baseline models following the same schedule (in fact, we find
that the MnasNet-based training schedule improves the top1 accuracy compared
to what is reported in several previous methods). Similarly, we profile the mod-
els on the same Pixel 1 device. For prior work that does not optimize for Pixel
1, we retrain and profile their model closest to the MnasNet baseline (e.g., the
1 https://github.com/tensorflow/tpu/tree/master/models/official/mnasnet.
2 https://github.com/facebook/FAI-PEP.

https://github.com/dstamoulis/single-path-nas
https://github.com/tensorflow/tpu/tree/master/models/official/mnasnet
https://github.com/facebook/FAI-PEP
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FBNet-B and ChamNet-B networks [5,19], since the authors use these ConvNets
to compare against the MnasNet model). Finally, to enable a representative com-
parison of the search cost per method, we directly report the number of epochs
reported per method, hence canceling out the effect of different hardware systems
(GPU vs TPU hours).

ImageNet Classification: Table 1 shows that our Single-Path NAS achieves
top-1 accuracy of 74.96%, which is the new state-of-the-art ImageNet accu-
racy among hardware-efficient NAS methods. More specifically, our method
achieves better top-1 accuracy than ProxylessNAS by +0.31%, while
maintaining on par target latency of ≤80 ms on the same target mobile phone.
Single-Path NAS outperforms methods in this mobile latency range, i.e., better
than MnasNet (+0.35%), FBNet-B (+0.86%), and MobileNetV2 (+1.37%).

Table 1. Single-Path NAS achieves state-of-the-art accuracy (%) on ImageNet for
similar mobile latency setting compared to previous NAS methods (≤80 ms on Pixel
1), with up to 5,000× reduced search cost in terms of number of epochs. *The search
cost in epochs is estimated based on the claim [3] that ProxylessNAS is 200× faster than
MnasNet. ‡ChamNet does not detail the model derived under runtime constraints [5]
so we cannot retrain or measure the latency.

Method Top-1
Acc (%)

Top-5
Acc (%)

Mobile
runtime (ms)

Search cost
(epochs)

MobileNetV1 [9] 70.60 89.50 113 –

MobileNetV2 1.0x [15] 72.00 91.00 75.00

MobileNetV2 1.0x (our impl.) 73.59 91.41 73.57

Random search 73.78 ± 0.85 91.42 ± 0.56 77.31 ± 0.9 ms –

MnasNet 1.0x [18] 74.00 91.80 76.00 40,000

MnasNet 1.0x (our impl.) 74.61 91.95 74.65

ChamNet-B [5] 73.80 – – 240‡
ProxylessNAS-R [3] 74.60 92.20 78.00 200*

ProxylessNAS-R (our impl.) 74.65 92.18 77.48

FBNet-B [19] 74.1 – – 90

FBNet-B (our impl.) 73.70 91.51 78.33

Single-Path NAS (proposed) 74.96 92.21 79.48 8 (3.75 h)

NAS Search Cost: Single-Path NAS has orders of magnitude reduced
search cost compared to all previous hardware-efficient NAS methods. Specifi-
cally, MnasNet reports that the controller uses 8k sampled models, each trained
for 5 epochs, for a total of 40k train epochs. In turn, ChamNet trains an accuracy
predictor on 240 samples, which assuming an aggressively fast training schedule
of five epochs per sample (same as in MnasNet), corresponds to a total search
cost of 1.2k epochs. ProxylessNAS reports 200× search cost improvement over
MnasNet, hence the overall cost is the TPU-equivalent of 200 epochs. Finally,
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FBNet reports 90 epochs of training on a proxy dataset (10% of ImageNet).
While the number of images per epoch is reduced, we found that a TPU can
accommodate a FBNet-like supermodel with maximum batch size of 128, hence
the number of steps per FBNet epoch are still 8× more compared to the steps
per epoch in our method.

Fig. 4. Single-Path NAS search progress: Progress of both objective terms, i.e., cross
entropy CE (left) and runtime R (right) during NAS search.

Fig. 5. Hardware-efficient ConvNet found by Single-Path NAS, with top-1 accuracy of
74.96% on ImageNet and inference time of 79.48 ms on Pixel 1 phone.

In comparison, Single-Path NAS has a total cost of eight epochs, which is
5,000× faster than MnasNet, 25× faster than ProxylessNAS, and 11× faster
than FBNet. In particular, we use an aggressive training schedule similar to
the few-epochs schedule used in MnasNet to train the individual ConvNet sam-
ples [18]. Due to space limitations, we provide implementation details (e.g., label
smoothing, learning rates, λ value, etc.) in our project repository. Overall, we
visualize the search efficiency of our method in Fig. 4, where we show the progress
of both CE and R terms of Eq. 8. Earlier during our search (first six epochs), we
employ dropout across the different subsets of the kernel weights (Fig. 4, right).
Dropout is a common technique in NAS methods to prevent the supernet from
learning as an ensemble. Unlike prior art that employs this technique over the
separate paths of the multi-path supernet, we directly drop randomly the subsets
of the superkernel in our single-path search space. We search for ∼ 10k steps (8
epochs with a batch size of 1024), which corresponds to total wall-clock time of
3.75 h on a TPUv2. In particular, given than a TPUv2 has 2 chips with 4 cores
each, this corresponds to a total of 30 TPU-hours.
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Visualization of Single-Path NAS ConvNet: Our derived ConvNet archi-
tecture is shown in Fig. 5. Moreover, to illustrate how the searchable superkernels
effectively capture NAS decisions across subsets of kernel weights, we plot the
standard deviation of weight values in Fig. 6 (shown in log-scale, with lighter
colors indicating smaller values). Specifically, we compute the standard devia-
tion of weights across the channel-dimension for all superkernels. For various
layers shown in Fig. 6 (per i-th ConvNet’s layer from Fig. 5), we observe that the
outer w5×5\3×3 “shells” reflect the NAS architectural choices: for layers where
the entire w5×5 is selected, the w5×5\3×3 values drastically vary across the chan-
nels. On the contrary, for all layers where 3×3 convolution is selected, the outer
shell values do not vary significantly.

Fig. 6. Visualization of kernel-based architectural contributions. The standard devi-
ation of superkernel values across the kernel channels is shown in log-scale, with
lighter colors indicating smaller values.

Fig. 7. The runtime model (Eq. 10) is
accurate, with an average prediction
error of 1.76%.

Fig. 8. Single-Path NAS outperforms
MobileNetV2 and MnasNet across var-
ious channel size scales.

Comparison with Random Search: We find surprising that mobile-efficient
NAS methods lack a comparison against random search. To this end, we ran-
domly sample ten ConvNets based on our design space; we employ sampling by
rejection, where we keep samples with predicted runtime from 75 ms to 80 ms.
The average accuracy and runtime of the random samples are reported in Table 1.
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We observe that, while random search does not outperform NAS methods, the
overall accuracy is comparable to MobileNetV2. This highlights that the effec-
tiveness of NAS methods heavily relies upon the properties of the MobileNetV2-
based design space. Nonetheless, the search cost of random search is not repre-
sentative: to avoid training all ten samples, we would follow a selection process
similar to MnasNet, by training each sample for few epochs and picking the
one with highest accuracy. Hence, the actual search cost for random search is
not negligible, and for ≥10 samples it is in fact comparable to automated NAS
methods.

Different Channel Size Scaling: Next, we follow a typical analysis [3,19],
by rescaling the networks using a width multiplier [15]. As shown in Fig. 8, we
observe that our model consistently outperforms prior methods under varying
runtime settings. For instance, Single-Path NAS with 79.48 ms is 1.56× faster
than the MobileNetV2 scaled model of similar accuracy.

Runtime Model: To train the runtime model, we record the runtime per layer
(MBConv operations breakdown) by profiling ConvNets with different MBConv
types, i.e., we obtain the Ri

3×3,3, Ri
3×3,6, Ri

5×5,3, and Ri
5×5,6 runtime values per

MBConv layer i (Eqs. 11, 12). To evaluate the runtime-prediction accuracy of
the model, we generate 100 randomly designed ConvNets and we measure their
runtime on the device. As illustrated in Fig. 7, our model can accurately predict
the actual runtimes: the Root Mean Squared Error (RMSE) is 1.32 ms, which
corresponds to an average 1.76% prediction error.

Table 2. Searching across subsets of kernel weights: ConvNets with weight values
trained over subsets of the kernels (3×3 as subset of 5×5) achieve performance (top-1
accuracy) similar to ConvNets with individually trained kernels.

Method Top-1
Acc (%)

Top-5
Acc (%)

Baseline ConvNet - w3×3 kernels 73.59 91.41

Baseline ConvNet - w5×5 kernels 74.10 91.67

Single-Path ConvNet - inference w/w3×3 kernels 73.43 91.42

Single-Path ConvNet - inference w/w3×3 + w5×5\3×3 kernels 73.86 91.72

4.3 Ablation Study: Kernel-Based Accuracy-Efficiency Trade-Off

Single-Path NAS searches over subsets of the convolutional kernel weights.
Hence, we conduct experiments to highlight how kernel-weight subsets can cap-
ture accuracy-efficiency trade-off effectively. To this end, we use the MobileNetV2
macro-architecture as a backbone (we maintain the location of stride-2 layers as
default). As two baseline networks, we consider the default MobileNetV2 with
MBConv-3 × 3-6 blocks (i.e., w3×3 kernels for all depthwise convolutions), and
a network with MBConv-5 × 5-6 blocks (i.e., w5×5 kernels).
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Next, to capture the subset-based training of weights during a Single-Path
NAS search, we consider a ConvNet with MBConv-5 × 5-6 blocks, where we
compute the loss of the model over two subsets, (i) the inner w3×3 weights,
and (ii) by also using the remaining w5×5\3×3 weights. For each loss computed
over these subsets, we accumulate back-propagated gradients and update the
respective weights, i.e., gradients are being applied separately to the inner and
to the entire kernel per layer. We follow training steps similar to the “switchable”
training across channels as in [21] (for the remaining training hyper-parameters
we use the same setup as the default MnasNet). As shown in Table 2, we observe
the final accuracy across the kernel granularity, i.e., with the inner w3×3 and
the entire w5×5 = w3×3 +w5×5\3×3 kernels, follows an accuracy change relative
to ConvNets with individually trained kernels.

Such finding is significant in the context of NAS, since choosing over sub-
sets of kernels can effectively capture the accuracy-runtime trade-offs similar to
their individually trained counterparts. We therefore conjecture that our efficient
superkernel-based design search can be flexibly adapted and benefit the guided
search space exploration in other RL-based NAS methods. Beyond the NAS lit-
erature, our finding is closely related to Slimmable networks [21]. SlimmableNets
limit however their analysis across the channel dimension, and our work is the
first to study trade-offs across the NAS kernel dimension.

5 Conclusion

In this paper, we proposed Single-Path NAS, a NAS method that reduces the
search cost for designing hardware-efficient ConvNets to less than 4 h. The
key idea is to revisit the one-shot supernet design space with a novel single-
path view, by formulating the NAS problem as finding which subset of kernel
weights to use in each ConvNet layer. Single-Path NAS achieved 74.96% top-1
accuracy on ImageNet with 79 ms latency on a Pixel 1 phone, which is state-
of-the-art accuracy with latency on-par with previous NAS methods (≤80 ms).
More importantly, we reduced the search cost of hardware-efficient NAS down to
only 8 epochs (30 TPU-hours), which is up to 5,000× faster compared to prior
work. Impact beyond differentiable NAS: While we used a differentiable
NAS formulation, our novel design space encoding can be flexibly incorporated
into other NAS methodologies. Hence, Single-Path NAS could enable future
work that builds upon the efficiency of our single-path, one-shot design space for
RL- or evolutionary-based NAS methods.
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23. Zhou, Y., Ebrahimi, S., Arık, S.Ö., Yu, H., Liu, H., Diamos, G.: Resource-efficient
neural architect. arXiv preprint arXiv:1806.07912 (2018)

24. Zoph, B., Le, Q.V.: Neural architecture search with reinforcement learning. In:
International Conference on Machine Learning (2017)

25. Zoph, B., Vasudevan, V., Shlens, J., Le, Q.V.: Learning transferable architectures
for scalable image recognition. In: Proceedings of the IEEE Conference on Com-
puter Vision and Pattern Recognition, pp. 8697–8710 (2018)

http://arxiv.org/abs/1806.07912


Probabilistic Models



Scalable Large Margin Gaussian Process
Classification

Martin Wistuba(B) and Ambrish Rawat

IBM Research, Dublin, Republic of Ireland
martin.wistuba@ibm.com, ambrish.rawat@ie.ibm.com

Abstract. We introduce a new Large Margin Gaussian Process
(LMGP) model by formulating a pseudo-likelihood for a generalised
multi-class hinge loss. We derive a highly scalable training objective
for the proposed model using variational-inference and inducing point
approximation. Additionally, we consider the joint learning of LMGP-
DNN which combines the proposed model with traditional Deep Learn-
ing methods to enable learning for unstructured data. We demonstrate
the effectiveness of the Large Margin GP with respect to both training
time and accuracy in an extensive classification experiment consisting of
68 structured and two unstructured data sets. Finally, we highlight the
key capability and usefulness of our model in yielding prediction uncer-
tainty for classification by demonstrating its effectiveness in the tasks of
large-scale active learning and detection of adversarial images.

1 Introduction

This work brings together the effectiveness of large margin classifiers with the
non-parametric expressiveness and principled handling of uncertainty offered by
Gaussian processes (GPs). Gaussian processes are highly expressive Bayesian
non-parametric models which have proven to be effective for prediction mod-
elling. One key aspect of Bayesian models which is often overlooked by traditional
approaches is the representation and propagation of uncertainty. In general, deci-
sion makers are not solely interested in predictions but also in the confidence
about the predictions. An action might only be taken in the case when the model
in consideration is certain about its prediction. This is crucial for critical applica-
tions like medical diagnosis, security, and autonomous cars. Bayesian formalism
provides a principled way to obtain these uncertainties. Bayesian methods han-
dle all kinds of uncertainties in a model, be it in inference of parameters or for
obtaining the predictions. These methods are known to be effective for online
classification [18], active learning [29], global optimization of expensive black-
box functions [11], automated machine learning [32], and as recently noted, even
in machine learning security [30].

Classical Gaussian process classification models [36] are generalised versions
of linear logistic regression. These classifiers directly use a function modelled
as a Gaussian process with a logit link or probit function [27] for obtaining

c© Springer Nature Switzerland AG 2020
U. Brefeld et al. (Eds.): ECML PKDD 2019, LNAI 11907, pp. 501–516, 2020.
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the desired probabilities. Alternatively, margin classifiers like Support Vector
Machines (SVMs) employ hinge loss for learning decision functions. Gaussian
process classifiers often perform similar to non-linear SVMs [16] but are preferred
by some practitioners due to added advantages like uncertainty representation
and automatic hyperparameter determination. Therefore, it is natural to look
for a probabilistic generalisation of the hinge loss that can benefit from the
numerous advantages of Bayesian modelling.

The contributions in this work are threefold. We derive a pseudo-likelihood
for a general multi-class hinge loss and propose a large margin Gaussian pro-
cess (LMPG). We provide a scalable learning scheme based on variational infer-
ence [2,10,34] to train this model. Additionally, we propose a hybrid model which
combines deep learning components such as convolutional layers with the LMGP
which we refer to as LMGP-DNN. This allows to jointly learn the feature extrac-
tors as well as the classifier design such that it can be applied both on structured
and unstructured data. We compare the proposed LMGP on 68 structured data
sets to a state-of-the-art binary Bayesian SVM with the one-vs-rest approach
and the scalable variational Gaussian process [10]. On average, LMGP provides
better prediction performance and needs up to an order of magnitude less train-
ing time in comparison to the competitor methods. The proposed LMGP-DNN is
compared on the image classification data sets MNIST [17] and CIFAR-10 [15] to
a standard (non-Bayesian) neural network. We show that we achieve similar per-
formance, however, require increased training time. Finally, we demonstrate the
effectiveness of uncertainties in experiments on active learning and adversarial
detection.

2 Related Work

Motivated by a probabilistic formulation of the generalised multi-class hinge
loss, this work derives and develops a scalable training paradigm for large mar-
gin Gaussian process based classification. In the vast related literature this is
an advancement on two fronts - first, a novel approach to Gaussian process
based classification and second, Bayesian formulation of margin classifiers, like
SVMs. We position our work with respect to both these directions of research.
With reference to Gaussian process based classifiers, our work closely relates
to scalable variational Gaussian processes (SVGP) [10]. Infamous for the cubic
dependency of learning schemes with respect to number of data samples has,
in the past, limited the applicability of Gaussian process based models. How-
ever recent developments in sparse-approximation schemes [31,34] have enabled
learning of GP-based models for large scale datasets. The two works, SVGP
and LMGP differ in their choice of objective functions. While SVGP utilises a
variational approximation of the cross-entropy between predicted probabilities
and the target probabilities for learning, LMGP seeks to maximise the margin
between GP predictions. In both works, this is achieved with the use of varia-
tional inference along with inducing point approximation which scales learning
to large data sets.
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The probabilistic formulation of Support Vector Machines has a long stand-
ing history. However, most work has been limited to the binary-classification
case with extensions to multi-class being enabled with the one-vs-rest scheme.
[33] interprets SVM training as learning a maximum a posteriori solution of a
model with Gaussian process priors. In addition, works like [28] have investigated
extensions that benefit SVMs with certain key aspects of Bayesian formalism like
model selection. For the task of binary classification, [24] make a key observation
and reformulate the hinge loss in the linear SVM training objective to a location-
scale mixture of Gaussians. They derive a pseudo-likelihood by introducing local
latent variables for each data point and subsequently marginalize them out for
predictions. A multi-class extension to this linear model has been considered in
[23] with learning enabled by an expectation-maximisation based algorithm. A
non-linear version of this setup is considered by [9] where the linear decision
function is modeled as a Gaussian process. They approximate the resulting joint
posterior using Markov chain Monte Carlo (MCMC) or expectation conditional
maximization (ECM). Furthermore, they scale the inference using the fully inde-
pendent training conditional approximation (FITC) [31]. The basic assumption
behind FITC is that the function values are conditionally independent given the
set of inducing points. Then, training the Gaussian process is no longer cubically
dependent on the number of training instances. Moreover, the number of induc-
ing points can be freely chosen. [20] extend the work of [24] by applying a mean
field variational approach to it. Most recently, [35] propose an alternate vari-
ational objective and use coordinate ascent to maximize it. They demonstrate
improved performance over a classical SVM, competitor Bayesian approaches,
and Gaussian process-based classifiers. In the scope of this work, we contrast
performance with the one-vs-rest extension of [35] and call it Bayesian SVM.

3 Large Margin Gaussian Process

This section details the proposed Large Margin Gaussian process (LMGP). We
begin with a discussion of the probabilistic formulation of the hinge loss for
the binary case and follow it by establishing a Bayesian interpretation of the
generalised non-linear multi-class case [5]. We then establish the complete model
formulation of LMGP and detail a variational-inference based scheme for scalable
learning. We conclude with a description of LMGP-DNN model that extends the
applicability of LMGP to image data.

3.1 Probabilistic Hinge Loss

For a binary classification task, a model trained with hinge loss seeks to learn
a decision boundary with maximum margin, i.e. the separation between the
decision boundary and the instances of the two classes. We represent the labeled
data for a binary classification task with N observations and M -dimensional
representation as D = {xn, yn}N

n=1, where xn ∈ R
M and yn ∈ {−1, 1} represent

predictors and labels, respectively. Training such a model, as in the case of the
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classical SVM, involves learning a decision function f : RM → R that minimizes
the regularized hinge loss,

L (D, f, γ) =
N∑

n=1

max {1 − ynf (xn) , 0} + γR (f) . (1)

The regularizer R punishes the choice of more complex functions for f , and γ is
a hyperparameter that controls the impact of this regularization. A linear SVM
uses a linear decision function f(xn) = θTxn. Non-linear decision functions are
traditionally obtained by applying the kernel trick.

For the linear case, [24] show that minimizing Eq. (1) is equivalent to esti-
mating the mode of a pseudo-posterior (maximum a posteriori estimate)

p (f |D) ∝ exp (−L (D, f, γ)) ∝
N∏

n=1

L (yn|xn, f) p (f) , (2)

derived for a particular choice of pseudo-likelihood factors L, defined by location-
scale mixtures of Gaussians. This is achieved by introducing local latent variables
λn such that for each instance,

L (yn|xn, f) =
∫ ∞

0

1√
2πλn

exp

(
−1

2
(1 + λn − ynf (xn))2

λn

)
dλn. (3)

In their formulations, [24] and [9] consider γ as a model parameter and accord-
ingly develop inference schemes. Similar to [35], we treat γ as a hyperparameter
and drop it from the expressions of prior and posterior for notational conve-
nience. [9] extend this framework to enable learning of a non-linear decision
function f . Both [9] and [35] consider models where f(x) is sampled from a zero-
mean Gaussian process i.e. f ∼ N (0,KNN ), where f = [f(x1), . . . , f(xn)] is a
vector of function evaluations and KNN is the covariance function evaluated at
data points.

3.2 Generalised Multi-class Hinge Loss

Modeling a multi-class task with SVM is typically achieved by decomposing
the task into multiple independent binary classification tasks. Although simple
and powerful, this framework cannot capture correlations between the different
classes since the modeled binary tasks are independent. As an alternate app-
roach, numerous extensions based on generalised notion of margins have been
proposed in the literature [6]. One can view these different multi-class SVM loss
functions as a combination of margin functions for the different classes, a large
margin loss for binary problems, and an aggregation operator, combining the
various target margin violations into a single loss value. We consider the pop-
ular formulation of [5] which corresponds to combining relative margins with
the max-over-others operator. A multi-class classification task involves N obser-
vations with integral labels Y = {1, . . . , C}. A classifier for this task can be
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modeled as a combination of a decision function f : RM → R
C and a decision

rule to compute the class labels,

ŷ (xn) = arg max
t∈Y

ft (xn) . (4)

[5] propose to minimize the following objective function for learning the decision
function f :

L (D, f, γ) =
N∑

n=1

max
{

1 + max
t�=yn,t∈Y

ft (xn) − fyn
(xn) , 0

}
+ γR (f) , (5)

where again γ is a hyperparameter controlling the impact of the regularizer R.
With the prior associated to γR (f), maximizing the log of Eq. (2) corre-

sponds to minimizing Eq. (5) with respect to the parameters of f . This corre-
spondence requires the following equation to hold true for the data-dependent
factors of the pseudo-likelihood,

N∏

n=1

L (yn | xn, f) = exp

(
−2

N∑

n=1

max
{

1 + max
t�=yn,t∈Y

ft (xn) − fyn
(xn) , 0

})
.

(6)
Analogously to [24], we show that L (yn | xn, f) admits a location-scale mixture
of Gaussians by introducing local latent variables λ = [λ1, . . . , λn]. This requires
the lemma established by [1].

Lemma 1. For any a, b > 0,
∫ ∞

0

a√
2πλ

e− 1
2 (a2λ+b2λ−1)dλ = e−|ab|. (7)

Now, we prove following theorem.

Theorem 1. The pseudo-likelihood contribution from an observation yn can be
expressed as

L (yn | xn, f) =
∫ ∞

0

1√
2πλn

e
−1
2λn

(1+λn+maxt�=yn,t∈Y ft(xn)−fyn (xn))2dλn (8)

Proof. Applying Lemma 1 while substituting a = 1 and b = 1 +
maxt�=yn,t∈Y ft (xn) − fyn

(xn), multiplying through by e−b, and using the iden-
tity max {b, 0} = 1

2 (|b| + b), we get,

∫ ∞

0

1√
2πλn

exp

(
−1

2
(b + λn)2

λn

)
dλn = e−2max{b,0}. (9)
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3.3 Scalable Variational Inference for LMGP

We complete the model formulation by assuming that fj(x) is drawn from a
Gaussian process for each class, j, i.e. fj ∼ N (0,KNN ) and λ ∼ 1[0,∞)(λ).
Inference in our model amounts to learning the joint posterior p(f ,λ|D), where
f = [f1, . . . , fC ]. However, computing the exact posterior is intractable. We use
variational inference (VI) combined with an inducing point approximation for
jointly learning the C GPs corresponding to each class. In VI, the exact posterior
over the set of model parameters θ is approximated by a variational distribution
q. The parameters of q are updated with the aim to reduce the dissimilarity
between the exact and approximate posteriors, as measured by the Kullback-
Leibler divergence. This is equivalent to maximizing the evidence lower bound
(ELBO) [12] with respect to parameters of q, where

ELBO = Eq(θ) [log p (y|θ)] − KL [q (θ) ||p (θ)] . (10)

Using this as objective function, we could potentially infer the posterior q(f ,λ).
However, inference and prediction using this full model involves inverting an
N × N matrix. An operation of complexity O(N3) is impractical. Therefore, we
employ the sparse approximation proposed by [10]. We augment the model with
P � N inducing points which are shared across all GPs. Similar to [10], we
consider a GP prior for the inducing points, p(uj) = N (0,KPP ) and consider
the marginal

q(fj) =
∫

p(fj |uj)q(uj)duj (11)

with
p(fj |uj) = N

(
κu, K̃

)
. (12)

The approximate posterior q(u,λ) factorizes as

∏

j∈Y

q(uj)
N∏

n=1

q(λn) (13)

with
q(λn) = GIG(1/2, 1, αn), q(uj) = N (μj , Σj). (14)

Here, κ = KNP K−1
PP , K̃ = KNN − KNP κT and GIG is the generalized inverse

Gaussian. KPP is the kernel matrix resulting from evaluating the kernel function
between all inducing points. Analogously, we denote the cross-covariance between
data points and inducing points, or between all data points by KNP or KNN ,
respectively. The choice of variational approximations is inspired from the exact
conditional posterior computed by [9]. Using Jensen’s inequality, we derive the
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Fig. 1. LMGP-DNN for image classification.

final training objective,

Eq(u,λ) [log p (y|u,λ)] − KL [q (u,λ) ||p (u,λ)] (15)

≥Eq(u,λ)

[
Ep(f |u) [log p (y,λ|f)]] + Eq(u)[log p (u)] − Eq(u,λ)[log q(u,λ)] (16)

=
N∑

n=1

(
− 1

2
√

αn

(
2K̃n,n +

(
1 + κn

(
μtn

− μyn

))2 + κnΣtn
κᵀ

n+κnΣyn
κᵀ

n − αn

)

−κn

(
μtn

− μyn

) − 1
4

log αn − log
(
B 1

2
(
√

αn)
))

− 1
2

∑

j∈Y

(− log |Σj | + trace
(
K−1

PP Σj

)
+ μᵀ

j K−1
PP μj

)
= O (17)

where B 1
2

is the modified Bessel function [13], and tn = arg maxt∈Y,t�=yn
ft (xn).

O is maximized using gradient-based optimization methods. We provide a
detailed derivation of the variational objective and its gradients in the appendix.

3.4 LMGP-DNN

Deep Neural Networks (DNNs) are well known for their end-to-end learning capa-
bilities for numerous tasks that involve unstructured data. Their effectiveness is
often attributed to their capacity to learn hierarchical representation of data.
In Sect. 3.3 we show that our proposed LMGP can be learned with gradient-
based optimization schemes. This enables us to combine it with various deep
learning components such as convolutional layers and extend its applicability to
unstructured data as shown in Fig. 1. The parameters of the LMGP-DNN model
which includes convolution and the variational parameters are jointly learned by
means of backpropagation. The ability to jointly learn features with the one-vs-
rest Bayesian SVMs has been previously explored in [26] and [25]. LMGP-DNN
explores the same for the multi-class case.

4 Experimental Evaluation

In this section we conduct an extensive study of the LMGP model and analyze its
classification performance on structured and unstructured data. Additionally, we
analyze the quality of its uncertainty prediction in a large-scale active learning
experiment and for the challenging problem of adversarial image detection.
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Fig. 2. Pairwise comparison of the LMGP versus the Bayesian SVM and SVGP. On
average, LMGP provides better results.

Table 1. Mean average rank across 68 data sets. The smaller, the better. Our proposed
LMGP is on average the most accurate prediction model.

Bayesian SVM LMGP SVGP

1.96 1.68 2.33

4.1 Classification

Our classification experiment is investigating two different types of data. In
the first part, we investigate the classification performance of the multi-class
Bayesian SVM on structured data against Bayesian state-of-the-art models. In
the second part, we compare the hybrid Bayesian SVM model against standard
convolutional neural networks for the task of image classification.
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4.2 Structured Data Classification

We evaluate the proposed LMGP with respect to classification accuracy on the
Penn Machine Learning Benchmarks [22]. From this benchmark, we select all
multi-class classification data sets consisting of at least 128 instances. This subset
consists of 68 data sets with up to roughly one million instances. We compare
the classification accuracy of our proposed LMGP with the scalable variational
Gaussian process (SVGP) [10] and the most recently proposed binary Bayesian
support vector machine (Bayesian SVM) [35] (one-vs-rest setup). We use the
implementation available in GPflow [21] for SVGP and implement the one-vs-
rest Bayesian SVM and LMGP as additional classifiers in GPflow by extending
its classifier interface. The shared back end of all three implementations allows a
fair training time comparison. For this experiment, all models are trained using
64 inducing points. Gradient-based optimization is performed using Adam [14]
with an initial learning rate of 5 · 10−4 for 1000 epochs.

Figure 2 contrasts the LMGP with SVGP and one-vs-rest Bayesian SVM. The
proposed LMGP clearly outperforms the other two models for most data sets.
While this is more pronounced against SVGP, the Bayesian SVM and LMGP
models exhibit similar performance. This claim is supported by the comparison
of mean ranks (Table 1). The rank per data set is computed by ranking the
methods for each data set according to classification accuracy. The most accurate
prediction model is assigned rank 1, second best rank 2 and so on. In case of
ties, an average rank is used, e.g. if the models exhibit classification accuracies
of 1.0, 1.0, and 0.8, they are assigned ranks of 1.5, 1.5, and 3, respectively.

One primary motivation for proposing LMGP is scalability. Classification
using the one-vs-rest Bayesian SVM requires training an independent model per
class which increases the training time by a factor equal to the number of classes.
Contrastingly, SVGP and LMGP enable multi-class classification with a single
model. This results in significant benefits in training time. As evident in Fig. 3,
the LMGP requires the least training time.

Fig. 3. Our proposed LMGP clearly needs less time than its competitors.
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Fig. 4. The jointly learned model of a convolutional network and an LMGP performs
as good as a standard network. The price of gaining a Bayesian neural network is a
longer training time.

In conclusion, LMGP is the most efficient model without compromising on
prediction accuracy. In fact, on average it has a higher accuracy.

4.3 Image Classification with LMGP-DNN

In Sect. 3.4 we describe how deep learning can be used to learn a feature rep-
resentation jointly with an LMGP. Image data serves as a typical example for
unstructured data. We compare the LMGP-DNN to a standard convolutional
neural network (CNN) with a softmax layer for classification. We evaluate these
models on two popular image classification benchmarks, MNIST [17] and CIFAR-
10 [15].

We observe same performance of the LMGP-DNN as a standard CNN with
softmax layer. The two different neural networks share the first set of lay-
ers, for MNIST: conv(32,5,5)-conv(64,3,3)-max pool-fc(1024)-fc(100),
and for CIFAR-10: conv(128,3,3)-conv(128,3,3)-max pool-conv(128,3,3)
-max pool-fc(256)-fc(100). As in our previous experiment, we use Adam to
perform the optimization.

Figure 4 shows that the LMGP-DNN achieves the same test accuracy as
the standard CNN. The additional training effort of a LMGP-DNN model pays
off in achieving probabilistic predictions with uncertainty estimates. While the
variational objective and the likelihood exhibits the expected behavior during
the training, we note an odd behavior during the initial epochs. We suspect that
this is due to initialization of parameters which could result in the KL-term of
the variational objective dominating the expected log-likelihood.

4.4 Uncertainty Analysis

Most statistical modelling approaches are concerned with minimizing a specific
loss-metric, e.g. classification error. However, practitioners have additional con-
cerns, like interpretability and certainty of the predictions. Bayesian methods
provide a distribution over predictions rather than just point-estimates, which
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Fig. 5. From top to bottom: 1. Data points belonging to three classes, 2. Predic-
tion probabilities from LMGP 3. Predictions from the three Gaussian processes of the
LMGP model along with their uncertainties, and 4. SVM probability predictions

is a significant advantage in practice as it allows for development of informed
decision-making systems. Figure 5 shows that LMGP exhibits a key artefact of
GPs where uncertainty in the predicted scores of GPs is higher (3rd row) in the
regions with few datapoints. This aspect of our model is central to its utility in
the tasks of active learning and adversarial detection and is often overlooked by
classical models like SVMs (4th row in Fig. 5). We want to emphasise that there
are scenarios where uncertainty as obtained from Bayesian models is beneficial
and that the prediction error by itself only plays a tangential role.

(a) Average rank across 68 data sets. (b) Representative results for the largest
data set.

Fig. 6. The Bayesian query policy (variation ratio) decreases the error of the model
faster and clearly outperforms the policy based on point-estimates only. For both fig-
ures, the smaller the better.
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Active Learning. Active learning is concerned with scenarios where the process
of labeling data is expensive. In such scenarios, a query policy is adopted to label
samples from a large pool of unlabeled instances with the aim to improve model
performance. We contrast between two policies to highlight the merits of using
prediction uncertainty obtained from the LMGP model. While the first policy
utilizes both mean and variance of the predictive distribution of the LMGP, the
second policy relies only on the mean. For this experiment we use the same data
sets as specified in Sect. 4.2.

We use the variation ratio (VR) as the basis of a Bayesian query policy. It is
defined by

Variation Ratio = 1 − F/S, (18)

where F is the frequency of the mode and S the number of samples. The VR
is the relative number of times the majority class is not predicted. Its minimum
zero is reached when all Monte Carlo samples agree on the same class. The
instance with highest VR is queried. We compare this to a policy which queries
the instance with maximum entropy of class probabilities. These are computed
using softmax over the mean predictions,

H (f (xn)) = −
∑

t∈Y

ft (xn) log (ft (xn)) . (19)

For a fair comparison, we use the same LMGP for both policies. Initially, one
instance per class, selected uniformly at random, is labeled. Then, one hundred
further instances are queried according to the two policies. As only few training
examples are available, we modify the training setup by reducing the number of
inducing points to four.

We report the mean average rank across 68 data sets for the two differ-
ent query policies in Fig. 6a. Since both policies start with the same set of
labeled instances, the performance is very similar at the beginning. However,
with increasing number of queried data points, the Bayesian policy quickly out-
performs the other policy. Of the 68 data sets, the poker data set, with more
than one million instances, is the largest and consequently the most challenging.
Within the first queries, we observe a large decrease in classification error as
shown in Fig. 6b. We note the same trend of mean ranks across the two policies.
The small number of labeled instances is obviously insufficient to reach the test
error of a model trained on all data points as shown by the dashed line.

Similarly, one could employ LMGP-DNN for active learning of unstructured
data [7].

Adversarial Image Detection. With the rise of Deep Learning, its security
and reliability is a major concern. A recent development in this direction is
the discovery of adversarial images [8]. These correspond to images obtained by
adding small imperceptible adversarial noise resulting in high confidence mis-
classification. While various successful attacks exist, most defense and detection
methods do not work [4]. However, [4] acknowledge that the uncertainty obtained
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Fig. 7. The accuracy on adversarial images decreases with increasing attack strength.
A significant increase of the average variation ratio indicates that it is a good feature
to detect adversarial images.

from Bayesian machine learning models is the most promising research direction.
Several studies show that Bayesian models behave differently for adversarial
examples compared to the original data [3,19,30]. We take a step further and
use the variation ratio (VR) determined by the LMGP, as defined in Eq. (18),
for building a detection model for adversarial images.

We attack the LMGP-DNN described in Sect. 4.3 with the popular Fast Gra-
dient Sign Method (FGSM) [8]. We generate one adversarial image per image in
the test set. We present the results for detection and classification under attack in
Fig. 7. LMGP-DNN is not robust to FGSM since its accuracy drops with increas-
ing attack strength ε. However, the attack does not remain unperceived. The VR
rapidly increases and enables the detection of adversarial images. The ranking
of original and adversarial examples with respect to VR yields an ROC-AUC of
almost 1 for MNIST. This means that the VR computed for any original example
is almost always smaller than the one computed for any adversarial example.

CIFAR-10 exhibits different results under the same setup. Here, the detection
is poor and it significantly worsens with increasing attack strength. Potentially,
this is an artifact of the poor classification model for CIFAR-10. In contrast to
the MNIST classifier, this model is under-confident on original examples. Thus,
a weaker attack succeeds in reducing the test accuracy to 1.16%. We believe a
better network architecture combined with techniques such as data augmentation
will lead to an improved performance in terms of test accuracy and subsequently
better detection. Nevertheless, the detection performance of our model is still
better than a random detector, even for the strongest attack.

5 Conclusions

We devise a pseudo-likelihood for the generalised multi-class hinge loss leading
to the large margin Gaussian process model. Additionally, we derive a varia-
tional training objective for the proposed model and develop a scalable infer-
ence algorithm to optimize it. We establish the efficacy of the model on multi-
class classification tasks with extensive experimentation on structured data and
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contrast its accuracy to two state-of-the-art competitor methods. We provide
empirical evidence that our proposed method is on average better and up to an
order of magnitude faster to train. Furthermore, we extend our formulation to a
LMGP-DNN and report comparable accuracy to standard models for image clas-
sification tasks. Finally, we investigate the key advantage of Bayesian modeling
in our approach by demonstrating the use of prediction uncertainty in solving
the challenging tasks of active learning and adversarial image detection. The
uncertainty-based policy outperforms its competitor in the active learning sce-
nario. Similarly, the uncertainty-enabled adversarial detection shows promising
results for image data sets with near-perfect performance on MNIST.
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Abstract. Deep learning is very effective at jointly learning feature rep-
resentations and classification models, especially when dealing with high
dimensional input patterns. Probabilistic logic reasoning, on the other
hand, is capable of take consistent and robust decisions in complex envi-
ronments. The integration of deep learning and logic reasoning is still
an open-research problem and it is considered to be the key for the
development of real intelligent agents. This paper presents Deep Logic
Models, which are deep graphical models integrating deep learning and
logic reasoning both for learning and inference. Deep Logic Models cre-
ate an end-to-end differentiable architecture, where deep learners are
embedded into a network implementing a continuous relaxation of the
logic knowledge. The learning process allows to jointly learn the weights
of the deep learners and the meta-parameters controlling the high-level
reasoning. The experimental results show that the proposed methodol-
ogy overcomes the limitations of the other approaches that have been
proposed to bridge deep learning and reasoning.
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1 Introduction

Artificial Intelligence (AI) approaches can be generally divided into symbolic and
sub-symbolic approaches. Sub-symbolic approaches like artificial neural networks
have attracted most attention of the AI community in the last few years. Indeed,
sub-symbolic approaches have got a large competitive advantage from the avail-
ability of a large amount of labeled data in some applications. In these contexts,
sub-symbolic approaches and, in particular, deep learning ones are effective in
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processing low-level perception inputs [3,18]. For instance, deep learning archi-
tectures have achieved state-of-the-art results in a wide range of tasks, e.g. speech
recognition, computer vision, natural language processing, where deep learning
can effectively develop feature representations and classification models at the
same time.

On the other hand, symbolic reasoning [7,16,23], which is typically based
on logical and probabilistic inference, allows to perform high-level reasoning
(possibly under uncertainty) without having to deal with thousands of learn-
ing hyper-parameters. Even though recent work has tried to gain insight on
how a deep model works [21], sub-symbolic approaches are still mostly seen as
black-boxes, whereas symbolic approaches are generally easier to interpret, as
the symbol manipulation or chain of reasoning can be unfolded to provide an
understandable explanation to a human operator.

In spite of the incredible success of deep learning, many researchers have
recently started to question the ability of deep learning to bring us real AI,
because the amount and quality of training data would explode in order to
jointly learn the high-level reasoning that is needed to perform complex tasks [2].
For example, forcing some structure to the output of a deep learner has been
shown to bring benefits in image segmentation tasks, even when simple output
correlations were added to the enforced contextual information [6].

Blending symbolic and sub-symbolic approaches is one of the most challeng-
ing open problem in AI and, recently, a lot of works, often referred as neuro-
symbolic approaches [10], have been proposed by several authors [6,14,22,27].
In this paper, we present Deep Logic Models (DLMs), a unified framework to
integrate logical reasoning and deep learning. DLMs bridge an input layer pro-
cessing the sensory input patterns, like images, video, text, from a higher level
which enforces some structure to the model output. Unlike in Semantic-based
Regularization [8] or Logic Tensor Networks [9], the sensory and reasoning layers
can be jointly trained, so that the high-level weights imposing the output struc-
ture are jointly learned together with the neural network weights, processing the
low-level input. The bonding is very general as any (set of) deep learners can be
integrated and any output structure can be expressed. This paper will mainly
focus on expressing the high-level structure using logic formalism like first–order
logic (FOL). In particular, a consistent and fully differentiable relaxation of FOL
is used to map the knowledge into a set of potentials that can be used in training
and inference.

The outline of the paper is the following. Section 2 presents the model and the
integration of logic and learning. Section 3 compares and connects the presented
work with previous work in the literature and Sect. 4 shows the experimental
evaluation of the proposed ideas on various datasets. Finally, Sect. 5 draws some
conclusions and highlights some planned future work.

2 Model

We indicate as θ the model parameters, and X the collection of input sensory
data. Deep Logic Models (DLMs) assume that the prediction of the system is
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Fig. 1. The DLM graphical model assumes that the output variables y depend on the
output of first stage f , processing the input X. This corresponds to the breakdown into
a lower sensory layer and a high level semantic one.

constrained by the available prior knowledge. Therefore, unlike standard Neu-
ral networks which compute the output via a single forward pass, the output
computation in a DLM can be decomposed into two stages: a low-level stage
processing the input patterns, and a subsequent semantic stage, expressing con-
straints over the output and performing higher level reasoning. We indicate by
y = {y1, . . . , yn} and by f = {f1, . . . , fn} the two multivariate random vari-
ables corresponding to the output of the model and to the output of the first
stage respectively, where n > 0 denotes the dimension of the model outcomes.
Assuming that the input data is processed using neural networks, the model
parameters can be split into two independent components θ = {w,λ}, where w
is the vector of weights of the networks fnn and λ is the vector of weights of
the second stage, controlling the semantic layer and the constraint enforcement.
Figure 1 shows the graphical dependencies among the stochastic variables that
are involved in our model. The first layer processes the inputs returning the val-
ues f using a model with parameters w. The higher layer takes as input f and
applies reasoning using a set of constraints, whose parameters are indicated as
λ, then it returns the set of output variables y.

The Bayes rule allows to link the probability of the parameters to the poste-
rior and prior distributions:

p(θ|y,X) ∝ p(y|θ,X)p(θ).

Assuming the breakdown into a sensory and a semantic level, the prior may
be decomposed as p(θ) = p(λ)p(w), while the posterior can be computed by
marginalizing over the assignments for f :

p(y|θ,X) =
∫

f

p(y|f ,λ) · p(f |w,X)df . (1)
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A typical choice is to link p(f |w,X) to the outputs of the neural architectures:

p(f |w,X) =
1

Zf
exp

(
− (f − fnn)2

2σ2

)
,

where the actual (deterministic) output of the networks fnn over the inputs
is indicated as fnn and Zf indicates the partition function with respect to f .
Please note that there is a one-to-one correspondence among each element of
y,f and fnn, such that |y| = |f | = |fnn|.

However, the integral in Eq. (1) is too expensive to compute and, as com-
monly done in the deep learning community, only the actual output of the net-
work is considered, namely:

p(f |w,X) ≈ δ(f − fnn),

resulting in the following approximation of the posterior:

p(y|θ,X) ≈ p(y|fnn,λ).

A Deep Logic Model assumes that p(y|fnn,λ) is modeled via an undirected
probabilistic graphical model in the exponential family, such that:

p(y|fnn,λ) � 1
Zy

exp

(
Φr(y,fnn) +

∑
c

λcΦc(y)

)
, (2)

where the Φc are potential functions expressing some constraints on the output
variables, λ = {λ1, λ2, . . . , λC} are parameters controlling the confidence for the
single constraints where a higher value corresponds to a stronger enforcement
of the corresponding constraint, Φr is a potential that favors solutions where
the output closely follows the predictions provided by the neural networks (for
instance Φr(y,fnn) = − 1

2 ||y −fnn||2) and Zy is a normalization factor (i.e. the
partition function with respect to the random variable y):

Zy =
∫

y

exp

(
Φr(y,fnn) +

∑
c

λcΦc(y)

)
dy.

2.1 MAP Inference

MAP inference assumes that the model parameters are known and it aims at
finding the assignment maximizing p(y|fnn,λ). MAP inference does not require
to compute the partition function Z which acts as a constant when the weights
are fixed. Therefore:

yM = argmax
y

log p(y|fnn,λ) = argmax
y

[
Φr(y,fnn) +

∑
c

λcΦc(y)

]
.

The above maximization problem can be optimized via gradient descent by com-
puting:

∇y log p(y|fnn,λ) = ∇yΦr(y,fnn) +
∑

c

λc∇yΦc(y).
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2.2 Learning

Training can be carried out by maximizing the likelihood of the training data:

argmax
θ

log p(θ|yt,X) = log p(λ) + log p(w) + log p(yt|θ,X).

In particular, assuming that p(yt|θ,X) follows the model defined in Eq. (2) and
the parameter priors follow Gaussian distributions, yields:

log p(θ|yt,X) = −α

2
||w||2 − β

2
||λ||2 − Φr(yt,fnn) +

∑
c

λcΦc(yt) − log Zy ,

where α, β are meta-parameters determined by the variance of the selected
Gaussian distributions. Also in this case the likelihood may be maximized
by gradient descent using the following derivatives with respect to the model
parameters:

∂ log p(θ|y t,X)
∂λc

= −βλc + Φc(yt) − Ep [Φc]

∂ log p(θ|y t,X)
∂wi

= −αwi + ∂Φr(y t,f nn)
∂wi

− Ep

[
∂Φr

∂wi

]

Unfortunately, the direct computation of the expected values in the above deriva-
tives is not feasible. A possible approximation [12,13] relies on replacing the
expected values with the corresponding value at the MAP solution, assuming
that most of the probability mass of the distribution is centered around it. This
can be done directly on the above expressions for the derivatives or in the log
likelihood:

log p(yt|fnn,X) ≈ Φr(yt,fnn) − Φr(yM ,fnn) +
∑

c

λc (Φc(yt) − Φc(yM )) .

From the above approximation, it emerges that the likelihood tends to be
maximized when the MAP solution is close to the training data, namely if
Φr(yt,fnn) � Φr(yM ,fnn) and Φc(yt) � Φc(yM ) ∀c. Furthermore, the proba-
bility distribution is more centered around the MAP solution when Φr(yM ,fnn)
is close to its maximum value. We assume that Φr is negative and have zero as
upper bound: Φr(y,fnn) ≤ 0 ∀y,fnn, like it holds for example for the already
mentioned negative quadratic potential Φr(y,fnn) = − 1

2 ||y−fnn||2. Therefore,
the constraint Φr(yt,fnn) � Φr(yM ,fnn) is transformed into the two separate
constraints Φr(yt,fnn) � 0 and Φr(yM ,fnn) � 0.

Therefore, given the current MAP solution, it is possible to increase the
log likelihood by locally maximizing (one gradient computation and weight
update) of the following cost functional: log p(w) + log p(λ) + Φr(yt,fnn) +
Φr(yM ,fnn) +

∑
c

λc [Φc(yt) − Φc(yM )]. In this paper, a quadratic form for the

priors and the potentials is selected, but other choices are possible. For example,
Φr(·) could instead be implemented as a negative cross entropy loss. Therefore,
replacing the selected forms for the potentials and changing the sign to transform
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Data: Input data X, output targets yt, function models with weights w
Result: Trained model parameters θ = {λ, w}
Initialize i = 0, λ = 0, random w;
while not converged ∧ i < max iterations do

Compute function outputs fnn on X using current function weights w;
Compute MAP solution yM = argmaxy log p(y|fnn, λ);
Compute gradient ∇θ Cθ (yt, yM , X);
Update θ via gradient descent: θi+1 = θi − λlr · ∇θ Cθ (yt, yM , X);
Set i = i + 1;

end
Algorithm 1. Iterative algorithm to train the function weights w and the
constraint weights λ.

a maximization into a minimization problem, yields the following cost function,
given the current MAP solution:

Cθ (yt,yM ,X) =
α

2
||w||2 +

β

2
||λ||2 +

1
2
||yt − fnn||2

+
1
2
||yM − fnn||2 +

∑
c

λc [Φc(yt) − Φc(yM )] .

Minimizing Cθ (yt,yM ,X) is a local approximation of the full likelihood max-
imization for the current MAP solution. Therefore, the training process alter-
nates the computation of the MAP solution, the computation of the gradient for
Cθ (yt,yM ,X) and one weight update step as summarized by Algorithm 1. For
any constraint c, the parameter λc admits also a negative value. This is in case
the c-th constraint turns out to be also satisfied by the actual MAP solution
with respect to the satisfaction degree on the training data.

2.3 Mapping Constraints into a Continuous Logic

The DLM model is absolutely general in terms of the constraints that can be
expressed on the outputs. However, this paper mainly focuses on constraints
expressed in the output space y by means of first–order logic formulas. There-
fore, this section focuses on defining a methodology to integrate prior knowledge
expressed via FOL into a continuous optimization process.

In this framework we only deal with closed FOL formulas, namely formu-
las where any variable occurring in predicates is quantified. In the following,
given an m-ary predicate p and a tuple (a1, . . . , am) ∈ Dom(p), we say that
p(a1, . . . , am) ∈ [0, 1] is a grounding of p. Given a grounding of the variables
occurring in a FOL formula (namely a grounding for all the predicates involved
in the formula), the truth degree of the formula for that grounding is computed
using the t-norm fuzzy logic theory as proposed in [24]. The overall degree of
satisfaction of a FOL formula is obtained by grounding all the variables in such
formula and aggregating the values with different operators depending on the
occurring quantifiers. The details of this process are explained in the following
section.
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Table 1. The operations performed by the single units of an expression tree depending
on the inputs a, b and the used t-norm.

Operation t-norm

Gödel Product �Lukasiewicz

a ∧ b min(a, b) a · b max(0, a + b − 1)

a ∨ b max(a, b) a + b − a · b min(1, a + b)

¬a 1 − a 1 − a 1 − a

a ⇒ b a ≤ b?1 : b min(1, b
a
) min(1, 1 − a + b)

Grounded Expressions. Any fully grounded FOL rule corresponds to an expres-
sion in propositional logic and we start showing how a propositional logic expres-
sion may be converted into a differentiable form. In particular, one expression
tree is built for each considered grounded FOL rule, where any occurrence of
the basic logic connectives (¬,∧,∨,⇒) is replaced by a unit computing its cor-
responding fuzzy logic operation according to a certain logic semantics. In this
regard, some recent work shows how to get convex (or even linear) functional
constraints exploiting the convex �Lukasiewicz fragment [11]. The expression tree
can take as input the output values of the grounded predicates and then recur-
sively compute the output values of all the nodes in the expression tree. The
value obtained on the root node is the result of the evaluation of the expression
given the input grounded predicates.

Table 1 shows the algebraic operations corresponding to the logic operators
for different selections of the t-norms. Please note that the logic operators are
always monotonic with respect of any single variable, but they are not always
differentiable (nor even continuous). However, the sub-space where the operators
are non-differentiable has null-Lebesgue measure, therefore they do not pose any
practical issue, when used as part of a gradient descent optimization schema as
detailed in the following.

We assume that the input data X can be divided into a set of sub-domains
X = {X1,X2, . . .}, such that each variable vi of a FOL formula ranges over the
data of one input domain, namely vi ∈ Xdi

, where di is the index of the domain
for the variable vi.

For example, let us consider the rule ∀v1∀v2 ¬A(v1, v2) ∧ B(v1). For any
assignment to v1 and v2, the expression tree returns the output value [1 −
A(v1, v2)] · B(v1), assuming to exploit the product t-norm to convert the con-
nectives.

Quantifiers. The truth degree of a formula containing an expression with a
universally quantified variable vi is computed as the average of the t-norm truth
degree of the expression, when grounding vi over its domain. The truth degree
of the existential quantifier is the maximum of the t-norm expression grounded
over the domain of the quantified variable. When multiple quantified variables
are present, the conversion is performed from the outer to the inner variable.
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y1 ≈ A(Mary,Munich)

f1 = fA(xMary, xMunich) w

y2 ≈ A(Mary, London)

f2 = fA(xMary, xLondon) w

y3 ≈ A(John,Munich)

f3 = fA(xJohn, xMunich) w

y4 ≈ A(John, London)

f4 = fA(xJohn, xLondon) w

y5 ≈ B(Mary)

f5 = fB(xMary)w

y6 ≈ B(John)

f6 = fB(xJohn)w

Fig. 2. The undirected graphical model built by a DLM for the rule ∀v1∀v2 ¬A(v1, v2)∧
B(v1) where v1 can assume values over the constants {Mary, John} and v2 over
{Munich, London}. Each stochastic node yi approximates one grounded predicate,
while the fi nodes are the actual output of a network getting the pattern representa-
tions of a grounding. Connections of all latent nodes yi to the parameters λ have been
omitted to keep the picture readable.

When only universal quantifiers are present the aggregation is equivalent to the
overall average over each grounding.

In the previous example, this yields the expression:

Φ(X,A,B)=
1

|Xd1 ||Xd2 |
∑

v1∈Xd1

∑
v2∈Xd2

[1 − A(v1, v2)] · B(v1). (3)

2.4 Potentials Expressing the Logic Knowledge

It is now possible to explain how to build the potentials from the prior knowl-
edge. In any learning task, each unknown grounded predicate corresponds to
one variable in the vector y. In the above example, the number of groundings
is |Xd1 | × |Xd2 | (i.e. the size of the Cartesian product of the domains of A) and
|Xd1 | (i.e. the size of the domain of B). Assuming that both predicates A,B are
unknown, |y| = |f | = |Xd1 |× |Xd2 |+ |Xd1 |. The vector fnn is built by replacing
each predicate with its NN implementation and then by considering the function
outputs for each grounding in the vector. For the example:

fnn = {fA(v11, v21), . . . , fA(v1|Xd1 |, v2|Xd2 |), fB(v11), . . . , fB(v1|d2|)},

where vij is the j-th grounding for the i-th variable and fA, fB are the learned
neural approximations of A and B, respectively. Finally, the differentiable poten-
tial for the example formula is obtained by replacing in Eq. (3) each grounded
predicate with the corresponding stochastic variable in y.
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Figure 2 shows the undirected graphical model corresponding to the DLM
for the running example rule used in this section, assuming that v1 can assume
values over the constants {Mary, John} and v2 over {Munich, London}. Each
stochastic node yi approximates one grounded predicate, while the fi nodes are
the actual output of a neural network getting as input the pattern representa-
tions of the corresponding grounding. The vertical connections between two yi

and fi nodes correspond to the cliques over the groundings for which the Φr

potential can be decomposed. The links between the yi nodes corresponds to the
cliques over the groundings of the rule for which the corresponding Φc poten-
tial can be decomposed. The structure of these latter cliques follows a template
determined by the rule, that is repeated for the single groundings. The graphical
model is similar to the ones built by Probabilistic Soft Logic [1] or Markov Logic
Networks [26], but enriched with the nodes corresponding to the output of the
neural networks.

3 Related Works

DLMs have their roots in Probabilistic Soft Logic (PSL) [1], a probabilistic logic
using an undirected graphical model to represent a grounded FOL knowledge
base, and employing a similar differentiable approximation of FOL and allows to
learn the weight of each formula in the KB by maximizing the log likelihood of
the training data like done in DLMs. PSL restricts the logic that can be processed
to a fragment of FOL corresponding to convex constraints. Furthermore, the rule
weights are restricted to only positive values denoting how far the rule is from
being satisfied. On the other hand, rule weights denote the needed constraint
reactions to match the degree satisfaction of the training data in DLMs, therefore
they can assume negative weights. In addition, unlike DLMs, PSL focuses on logic
reasoning without any integration with deep learners, beside a simple stacking
with no joint training.

The integration of learning from data and symbolic reasoning [10] has recently
attracted a lot of attention. Many works in this area have emerged like Hu
et al. [15], Semantic-based regularization (SBR) [8] applying these idea to kernel
machines and Logic Tensor Networks (LTN) [9] which work on neural networks.
All these works share the same basic idea of integrating logic reasoning and
learning using a similar continuous relaxation of logic to the one presented in
this paper. However, this class of approaches considers the reasoning layer as
frozen, without allowing to jointly train its parameters. This is a big limitation,
as these methods work better only with hard constraints, while they are less
suitable in presence of reasoning under uncertainty.

DeepProbLog [22] extends the popular ProbLog [7] probabilistic program-
ming framework with the integration of deep learners. DeepProbLog requires
the output from the neural networks to be probabilities and an independence
assumption among atoms in the logic is required to make inference tractable.
This is a strong restriction, since the sub-symbolic layer often consists of several
neural layers sharing weights.
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A Neural Theorem Prover (NTP) [27,28] is an end-to-end differentiable
prover based on the Prolog’s backward chaining algorithm. An NTP constructs
an end-to-end differentiable architecture capable of proving queries to a KB
using sub-symbolic vector representations. NTPs have been proven to be effec-
tive in tasks like entity linking and knowledge base completion. However, an
NTP encodes relations as vectors using a frozen pre-selected function (like cosine
similarity). This can be ineffective in modeling relations with a complex and mul-
tifaceted nature (for example a relation friend(A, B) can be triggered by differ-
ent relationships of the representations in the embedding space). On the other
hand, DLMs allow a relation to be encoded by any selected function (e.g. any
deep neural networks), which is co-trained during learning. Therefore, DLMs are
capable of a more powerful and flexible exploitation of the representation space.
However, DLMs require to fully ground a KB (like SBR, LTN, PSL and most of
other methods discussed here), while NTPs expands only the groundings on the
explored frontier, which can be more efficient in some cases.

The integration of deep learning with Conditional Random Fields (CRFs) [20]
is also an alternative approach to enforce some structure on the network output.
This approach has been proved to be quite successful on sequence labeling for
natural language processing tasks. This methodology can be seen as a special
case of the more general methodology presented in this paper, when the potential
functions are used to represent the correlations among consecutive outputs of a
recurrent deep network.

Deep Structured Models [6,19] use a similar graphical model to bridge the
sensory and semantic levels. However, they have mainly focused on imposing cor-
relations on the output layer, without any focus on logic reasoning. Furthermore,
DLMs transform the training process into an iterative constrained optimization
problem, which is very different from the approximation of the partition function
used in Deep Structured Models.

DLMs also open up the possibility to iteratively integrate rule induction
mechanisms like the ones proposed by the Inductive Logic Programming com-
munity [17,25].

4 Experimental Results

4.1 The PAIRS Artificial Dataset

Consider the following artificial task. We are provided with 1000 pairs of hand-
written digits images sampled from the MNIST dataset. The pairs are not con-
structed randomly but they are compiled according to the following structure:

1. pairs with mixed even-odd digits are not allowed;
2. the first image of a pair represents a digit randomly selected from a uniform

distribution;
3. if the first image is an even (resp. odd) digit, the second image of a pair

represents one of the five even (resp. odd) digits with probabilities p1 ≥
p2 ≥ p3 ≥ p4 ≥ p5, with p1 the probability of being an image of the same
digit, p2 the probability of being an image of the next even/odd digit, and
so on.
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For example, if the first image of a pair is selected to be a two, the second image
will be a two with probability p1, it will be a four with probability p2, a six with
probability p3 and so on, in a circular fashion. An example is shown in Fig. 3.
A correct classification happens when both digit in a pair are correctly predicted.

Fig. 3. A sample of the data used in the PAIRS experiment, where each column is a
pair of digits.

To model a task using DLMs there are some common design choices regard-
ing these two features that one needs to take. We use the current example to
show them. The first choice is to individuate the constants of the problem and
their sensory representation in the perceptual space. Depending on the problem,
the constants can live in a single or multiple separate domains. In the pairs
example, the images are constants and each one is represented as a vector of
pixel brightnesses like commonly done in deep learning.

The second choice is the selection of the predicates that should predict some
characteristic over the constants and their implementation. In the pairs experi-
ment, the predicates are the membership functions for single digits (e.g. one(x),
two(x), etc.). A single neural network with 1 hidden layer, 10 hidden neurons
and 10 outputs, each one mapped to a predicate, was used in this toy experi-
ment. The choice of a small neural network is due to the fact that the goal is not
to get the best possible results, but to show how the prior knowledge can help
a classifier to improve its decision. In more complex experiments, different net-
works can be used for different sets of predicates, or each use a separate network
for each predicate.

Finally, the prior knowledge is selected. In the pairs dataset, where the con-
stants are grouped in pairs, it is natural to express the correlations among two
images in a pair via the prior knowledge. Therefore, the knowledge consists of
100 rules in the form ∀(x, y) D1(x) → D2(y), where (x, y) is a generic pair of
images and (D1,D2) range over all the possible pairs of digit classes.

We performed the experiments with p1 = 0.9, p2 = 0.07, p3 = p4 = p5 = 0.01.
All the images are rotated with a random degree between 0 and 90 anti-clockwise
to increase the complexity of the task. There is a strong regularity in having two
images representing the same digit in a pair, even some rare deviations from
this rule are possible. Moreover, there are some inadmissible pairs, i.e. those
containing mixed even-odd digits. The train and test sets are built by sampling
90% and 10% image pairs.

The results provided using a DLM have been compared against the following
baselines:

– the same neural network (NN) used by DLM but with no knowledge of the
structure of the problem;
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Table 2. Comparison of the accuracy metric on the PAIRS dataset using different
models.

Model NN SBR DLM-NN DLM

Accuracy 0.62 0.64 0.65 0.76

– Semantic Based Regularization/Logic Tensor Networks (SBR/LTN), which
are equivalent on this specific task. These frameworks employ the logical
rules to improve the learner but the rule weights are fixed parameters, which
are not jointly trained during learning. Since searching in the space of these
parameters via cross-validation is not feasible, a strong prior was provided to
make SBR/LTN prefers pairs with the same image using 10 rules of the form
∀(x, y) D(x) → D(y), for each digit class D. These rules hold true in most
cases and improve the baseline performance of the network.

Table 2 shows how the neural network output of a DLM (DLM-NN) already
beats both the same neural model trained without prior knowledge and SBR.
This happens because the neural network in DLM is indirectly adjusted to
respect the prior knowledge in the overall optimization problem. When read-
ing the DLM output from the MAP solution (DLM), the results are significantly
improved.

4.2 Link Prediction in Knowledge Graphs

Neural-symbolic approaches have been proved to be very powerful to perform
approximated logical reasoning [29]. A common approach is to assign to each
logical constant and relation a learned vectorial representation [4]. Approximate
reasoning is then carried out in this embedded space. Link Prediction in Knowl-
edge Graphs is a generic reasoning task where it is requested to establish the
links of the graph between semantic entities acting as constants. Rocktaschel
et al. [28] shows state-of-the-art performances on some link prediction bench-
marks by combining Prolog backward chain with a soft unification scheme.

This section shows how to model a link prediction task on the Countries
dataset using a Deep Logic Models, and compare this proposed solution to the
other state-of-the-art approaches.

Dataset. The Countries dataset [5] consists of 244 countries (e.g. germany),
5 regions (e.g. europe), 23 sub-regions (e.g. western europe, northern america,
etc.), which act as the constants of the KB. Two types of binary relations among
the constant are present in the dataset: locatedIn(c1, c2), expressing that c1 is
part of c2 and neighborOf(c1, c2), expressing that c1 neighbors with c2. The
knowledge base consists of 1158 facts about the countries, regions and sub-
regions, expressed in the form of Prolog facts (e.g. locatedIn(italy,europe)).
The training, validation and test sets are composed by 204, 20 and 20 countries,
respectively, such that each country in the validation and test sets has at least
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one neighbor in the training set. Three different tasks have been proposed for this
dataset with an increasing level of difficulty. For all tasks, the goal is to predict
the relation locatedIn(c, r) for every test country c and all five regions r, but
the access to training atoms in the KB varies, as explained in the following:

– Task S1: all ground atoms locatedIn(c, r), where c is a test country and r is
a region, are removed from the KB. Since information about the sub-region
of test countries is still contained in the KB, this task can be solved exactly
by learning the transitivity of the locatedIn relation.

– Task S2: like S1 but all grounded atoms locatedIn(c, s), where c is a test
country and s is a sub-region, are removed. The location of test countries
needs to be inferred from the location of its neighbors. This task is more
difficult than S1, as neighboring countries might not be in the same region.

– Task S3: like S2, but all ground atoms locatedIn(c, r), where r is a region and
c is a training country with either a test or validation country as a neighbor,
are removed. This task requires multiple reasoning steps to determine an
unknown link, and it strongly exploits the sub-symbolic reasoning capability
of the model to be effectively solved.

Model. Each country, region and sub-region corresponds to a constant. Since
the constants are just symbols, each one is assigned to an embedding, which is
learned together with the other parameters of the model. The predicates are the
binary relations locatedIn and neighborOf, which connect constants in the KB.
Each relation is learned via a separate neural network with a 50 neuron hidden
layer taking as input the concatenation of the embeddings of the constants.
In particular, similarly to [4], the constants are encoded into a one-hot vector,
which is processed by the first layer of the network, outputting an embedding
composed by 50 real number values. As commonly done in link prediction tasks,
the learning process is performed in a transductive mode. In particular, the
input X consists of all possible constants for the task, while the train examples
yt will cover only a subset of all the possible grounded predicates, leaving to
the joint train and inference process the generalization of the prediction to the
other unknown grounded relations. Indeed, the output of the train process in
this case is both the set of model parameters and the MAP solution predicting
the unknown grounded relations that hold true.

Multi-step dependencies among the constants are very important to predict
the existence of a link in this task. For example in task S1, the prediction of a
link among a country and a region can be established via the path passing by a
sub-region, once the model learns a rule stating the transitivity of the locatedIn
relation (i.e. locatedIn(x, y)∧ locatedIn(y, z) → locatedIn(x, z)). Exploiting
instead the rule neighborOf(x, y) ∧ locatedIn(y, z) → locatedIn(x, z), the
model should be capable of approximately solving task S2.



530 G. Marra et al.

Table 3. Comparison of the accuracy provided by different methods on link prediction
on the Countries dataset. Bold numbers are the best performers for each task.

Task ComplEx NTP NTPλ DLM

S1 99.37 90.83 100.00 100.00

S2 87.95 87.40 93.04 97.79

S3 48.44 56.68 77.26 91.93

All 8 rules ∀x ∀y ∀z A(x, y) ∧ B(y,z) → C(y, z), where A, B and C are either
neighborOf or locatedIn are added to the knowledge base for this experiment.
These rules represent all the 2-steps paths reasoning that can be encoded, and
the strength of each rule needs to be estimated as part of the learning process
for each task. The training process will iteratively minimize Eq. 3 by jointly
determining the embeddings and the network weights such that network outputs
and the MAP solution will correctly predict the training data, while respecting
the constraints on the MAP solution at the same level as on the train data.

Results. Table 3 compares DLM against the state-of-the-art methods used by
Rocktaschel et al. [28], namely ComplEx, NTP and NTPλ. Task S1 is the only
one that can be solved exactly when the transitive property of the locatedIn
relation has been learned to always hold true. Indeed, most methods are able
to perfectly solve this task, except for the plain NTP model. DLM is capable
perfectly solving this task by joining the logical reasoning capabilities with the
discriminative power of neural networks. DLMs perform better than the com-
petitors on tasks S2 and S3, thanks to additional flexibility obtained by jointly
training the relation functions using neural networks, unlike the simple vectorial
operations like the cosine similarity employed by the competitors.

5 Conclusions and Future Work

This paper presents Deep Logic Models that integrate (deep) learning and logic
reasoning into a single fully differentiable architecture. The logic can be expressed
with unrestricted FOL formalism, where each FOL rule is converted into a dif-
ferentiable potential function, which can be integrated into the learning process.
The main advantage of the presented framework is the ability to fully integrate
learning from low-level representations and semantic high-level reasoning over
the network outputs. Allowing to jointly learn the weights of the deep learn-
ers and the parameters controlling the reasoning enables a positive feedback
loop, which is shown to improve the accuracy of both layers. Future work will
try to bridge the gap between fully grounded methodologies like current Deep
Logic Models and Theorem Provers which expand only the groundings needed
to expand the frontier of the search space.
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Abstract. In statistics and machine learning, approximation of an
intractable integration is often achieved by using the unbiased Monte
Carlo estimator, but the variances of the estimation are generally high in
many applications. Control variates approaches are well-known to reduce
the variance of the estimation. These control variates are typically con-
structed by employing predefined parametric functions or polynomials,
determined by using those samples drawn from the relevant distribu-
tions. Instead, we propose to construct those control variates by learning
neural networks to handle the cases when test functions are complex.
In many applications, obtaining a large number of samples for Monte
Carlo estimation is expensive, the adoption of the original loss function
may result in severe overfitting when training a neural network. This
issue was not reported in those literature on control variates with neural
networks. We thus further introduce a constrained control variates with
neural networks to alleviate the overfitting issue. We apply the proposed
control variates to both toy and real data problems, including a syn-
thetic data problem, Bayesian model evidence evaluation and Bayesian
neural networks. Experimental results demonstrate that our method can
achieve significant variance reduction compared to other methods.

Keywords: Control variates · Neural networks · Variance reduction ·
Monte Carlo method

1 Introduction

Most of modern machine learning and statistical approaches focus on modelling
complex data, where manipulating high-dimensional and multi-modal proba-
bility distributions is of great importance for model inference and learning.
Under this circumstance, evaluating the expectation of certain function f(θ)
with respect to a probability distribution p(θ) is ubiquitous,
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μ = Eθ∼p(θ)[f(θ)] =
∫

f(θ)p(θ)dθ, (1)

where the random variable of interest θ ∈ R
D is typically high-dimensional.

However, in complex models, the integration is often analytically intractable.
This drives the development of sophisticated Monte Carlo methods to facilitate
efficient computation [15]. The Monte Carlo method is naturally employed to
approximate the expectation, i.e.,

μ ≈ 1
n

n∑
i=1

f(θi), (2)

where {θi}n
i=1 are samples drawn from the distribution p(θ). According to the

central limit theorem, this estimator converges to μ at the rate O(1/
√

n). For
high-dimensional and complex models, when p(θ) is difficult to sample from [11]
or the test function f is expensive to evaluate [5], a “large-n” estimation is
computationally prohibited. This directly leads to a high-variance estimator.
Therefore, with a limited number of samples, how to reduce the variance of
Monte Carlo estimations emerges as an essential issue for its practical use.

Along this line, various variance reduction methods have been introduced
in the literature of statistics and numerical analysis. One category aims to
develop appropriate samplers for variance reduction, including importance sam-
pling and its variants [2], stratified sampling techniques [16], multi-level Monte
Carlo [4] and other sophisticated methods based on Markov chain Monte Carlo
(MCMC) [15]. Another category of variance reduction methods is called control
variates [1,8,10,13,14,18]. These methods take advantage of random variables
with known expectation values, which are negatively correlated with the test
function under consideration. Control variates techniques can fully employ the
available samples to reduce the variance, which is popular due to its efficiency
and effectiveness.

However, existing control variates approaches have several limitations.
Firstly, most existing methods use a linear or quadratic form to represent the
control function [10,14]. Although these control functions have closed forms, the
representation power of them is very limited particularly when the test function
f(θ) is complex and non-linear. Control functionals were proposed recently to
tackle this problem [13]. However, these estimators may significantly suffer from
a curse of dimensionality [12]. Secondly, when the available samples are scarce,
optimizing the control variates only based on a small, number of samples might
overfit, which means that it is difficult to generalize on the samples obtained
later. These restrictions limit their practical performance.

In order to overcome the first issue, some works [8,18] employed neural net-
works to represent the control variates, utilizing the capability of a neural net-
work to represent a complex test function. We name these methods as “Neu-
ral Control Variates” (NCV). Unfortunately, in the scenario of learning neural
networks, applying the commonly used loss function to reduce variance causes
severe overfitting issue, particularly when available training sample size is small.



Neural Control Variates for Monte Carlo Variance Reduction 535

Therefore, we introduce “Constrained Neural Control Variates” (CNCV) which
makes constraints on the control variates for alleviating the over-fitting issue.
Our method is particularly suitable for the cases when the sample space is high-
dimensional or the samples from p(θ) is hard to obtain. We demonstrate the
effectiveness of our approach on both synthetic and real machine learning tasks,
including (1) expectation of a complex function under the mixture of Gaussian
distributions, (2) Bayesian model evidence evaluation and (3) Bayesian neural
networks. We show that CNCV achieved the best performance comparing to the
state-of-the-art methods in literature.

2 Control Variates

The generic control variates aims to estimate the expectation μ = Ep(θ)[f(θ)]
with reduced variance. The principle behind the control variates relies on con-
structing an auxiliary function f̃(θ) = f(θ) + g(θ) such that

Ep(θ)[g(θ)] = 0. (3)

Thus the desired expectation can be replaced by that of the auxiliary function

μ = Ep(θ)[f(θ)] = Ep(θ)[f̃(θ)]. (4)

It is possible to obtain a variance-reduced Monte Carlo estimator by selecting
or optimizing g(θ) so that the variance Vp(θ)[f̃(θ)] < Vp(θ)[f(θ)]. Intuitively,
variance reduction can be achieved when g(θ) is negatively correlated with f(θ)
under p(θ), since much of the randomness “cancels out” in the auxiliary function
f̃(θ).

The selection of an appropriate form of control function g(θ) is crucial for the
performance of variance reduction. A tractable class of so called zero-variance
control variates was proposed in [1,10]. Those control variates are expressed as
a function of the gradient of the log-density, ∇θ log p(θ), i.e. the score function
s(θ). Concretely, it has the following form

g(θ) = ΔθQ(θ) + ∇θQ(θ) · ∇θ log(p(θ)), (5)

where the gradient operator ∇θ = [∂/∂θ1, . . . , ∂/∂θD]T , the Laplace operator
Δθ =

∑D
i=1 ∂2/∂θ2i , and “·” denotes the inner product. The function Q(θ) is

often referred to as the trial function. The target is now to find a trial function
so that g(θ) and f(θ) are negatively correlated. This could thus reduce the
variance of the Monte Carlo estimation. As the trial function could be arbitrary
under those mild conditions given in [10], a parametric function could be used
for Q(θ). For example, when Q(θ) = aT θ, which is a first degree polynomial
function, the auxiliary function becomes

f̃(θ) = f(θ) + aT s(θ) (6)

as was proposed in [10]. The optimal choice of the parameter a that minimizes
the variance of f̃(θ) is a = −Σ−1

ss σ(s, f), where Σss = E[ssT ], σ(s, f) = E[sf ].
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Obviously, the representation power of these polynomials is limited, and there-
fore control functionals have been proposed recently where the trial function is
stochastic. For example, the trial function could be a kernel function [13]. In
order for using these control variates, we firstly estimate these required param-
eters in the trial function by using some training samples {θi}n

i=1. Then the
learned control variates can be used for test samples.

However, there are several drawbacks of the current zero-variance techniques:

– Dilemma between effectiveness and efficiency. Although increasing the order
of polynomial could potentially increase the representation power and reduce
more variance, the number the parameters needs to be learned would grow
exponentially. As pointed out by [10], when quadratic polynomials are used,
Q(θ) = aT θ+θT Bx/2, the number of parameters will be D(D+3)/2. Thus,
finding the optimal coefficients requires dealing with Σss which is a matrix
of dimension of order D2. Similar issue occurs when employing the control
functionals. This makes the use of high order polynomials computationally
expensive when faced with high-dimensional sampling spaces.

– Poor generalization with small sample size. With small sizes of training sam-
ples and complex p(θ), the learned control variates could potentially overfit
the training samples, i.e. generalize poorly over new samples. This is because
a small size of training samples might be insufficient for representing the full
distributional information of p(θ).

These limitations motivate the development of neural control variates and a
novel loss function to alleviate overfitting issue when learning the neural control
variates, which will be elaborated below.

3 Neural Control Variates

Firstly, we focus on alleviating the dilemma between effectiveness and efficiency
on designing control variates in high-dimensional sample space. To this end,
the trail function is designed as a neural network [8,18], we name this strategy
as neural control variates (NCV). Equipped with neural network, their excel-
lent capability of representing complex functions and overcoming the curse of
dimensionality can be fully employed in high-dimensional scenarios [6].

Instead of relying on the control variates (5) introduced in [10], we use the
following Stein control variates based on Stein identity [13,17],

g(θ) = ∇θ · Φ(θ) + Φ(θ) · ∇θ log(p(θ)), (7)

where Φ(θ) is the trial function. Note that in order for E[g(θ)] = 0, we assume
mild zero boundary conditions on Φ, such that p(θ)Φ(θ) = 0 at the boundary or
lim‖x‖→∞ p(θ)Φ(θ) = 0 [9,10,13]. Compared with Eq. (5), Stein control variates
is preferred due to its computational advantages since evaluating the second
order derivatives of the trial function is avoided. Note that when the trial function
Q(θ) is a linear or quadratic polynomial, the Stein trial function Φ(θ) is constant
or linear, respectively.
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We now represent the trial function Φ(θ) by a neural network Φ(θ;w)
parameterized by the weights w. The control function becomes g(θ;w) =
∇θ · Φ(θ;w) + Φ(θ;w) · ∇θ log p(θ). In order for variance reduction, we solve
the following optimization problem

min
w

Vp(θ)[f(θ) + g(θ;w)], (8)

which does not have a closed-form in general. Typically, it is assumed that the
variance could be approximated by using independent Monte Carlo samples and
so the optimization problem is given by

min
w

1
n

n∑
i=1

[f(θi) + g(θi;w)]2 − (μ0 + μg)2, (9)

where μ0 = E(f(θ)) and μg = E(g(θ;w)) = 0. Instead, the following optimiza-
tion problem will be solved

min
w

1
n

n∑
i=1

[f(θi) + g(θi;w)]2 (10)

where {θi}n
i=1 are samples drawn from p(θ). Standard back-propagation tech-

niques and stochastic gradient descent (SGD) can then be adopted to obtain the
optimal weights of the neural networks.

Unfortunately, when the distribution p(θ) is high-dimensional and multi-
modal, such as Bayesian neural networks, it would be very expensive to draw
many samples for training control variates. Given a limited computational bud-
get, it typically produces a rather small number of samples that are not sufficient
for learning the control variates. Consequently, the learned parameters for control
variates can easily overfit over the training samples, and thus could not general-
ize well on new samples drawn from p(θ). This overfitting phenomenon was not
noticed in [8,18], since the considered applications in their scenarios only involve
either a simple probability distribution p(θ) or simple target function f(θ).

Therefore, in the following, we propose a new objective function for learn-
ing the neural control variates to alleviate the overfitting; and demonstrate its
benefits in various applications.

4 Constrained Neural Control Variates

In this section, we propose constrained neural control variates (CNCV) for allevi-
ating overfitting. Now we take a closer look at why the original objective function
of NCV tends to bring a poor control variates if one optimizes the Eq. (10) in
the scenario that only a small number of samples from p(θ) are available.

Firstly we note that the objective functions in Eq. (9) and Eq. (10) are not
the same although μ0 is a constant, because the variance must be non-negative.
For example, if we have a small number of samples, the learned neural network
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for g could overfit the data so that the objective function in Eq. (10) could hit
the global minimum 0 due to the powerful capacity in approximation of the
neural networks. Therefore, we have to optimize Eq. (10) with a constraint such
that 1

n

∑n
i=1[f(θi) + g(θi;w)]2 ≥ μ2

0. With this constraint, the solution would
be g(θi;w) = −f(θi) + μ0 when using a small number of samples. Without
this constraint, we can easily observe that with a small n and a large-capacity
neural network for representing Φ(θ;w), optimizing Eq. (10) can easily result in
“point-wise” fitting, g(θi;w) = −f(θi), for each sample θi, thus achieving the
minimal value of the objective. So it violates the constraint that the population
mean of g(θ;w) is zero. Therefore, directly minimizing Eq. (10) can cause severe
overfitting. We thus propose two strategies for dealing with this issue.

1. Centering control variates. Based on our analysis on optimizing Eq. (10),
it introduces bias for the true g(θ;w). To compensate this bias, we center
the function g(θ;w) and set g(θ;w) = g̃(θ;w) − μ where μ should be close
to μ0. The parameter μ could also be learned during the training. Now if we
substitute g in Eq. (10), the optimal function would be g̃(θi;w) = −f(θi)+μ
which would assure the required constraint 1

n

∑n
i=1[f(θi) + g̃(θi;w)]2 ≥ μ2

0.
Note that in the following we assume g is a centered function, and so denote
g̃ by g for simplicity.

2. Regularization. We prefer a minimized variance of the function g. Thus the
other strategy is to control the variance of the function g, E[g2], to regularize
the complexity of the neural networks.

Combining the two strategies, the novel objective function can be formulated as
the following,

min
w ,μ

1
n

n∑
i=1

[
[f(θi) + g(θi;w) − μ]2 + λg(θi;w)2

]
, (11)

where λ is the regularization parameter, and the population variance V[g] is
estimated by its empirical samples as regularization term.

The random initialization of μ can slow down the training process and cause
overfitting. To obtain a better performance, two optional initializing strategies
could be used:

1. Simply using 1
n

∑n
i=1 f(θi) as the initializing value of μ;

2. Pre-train the model with larger λ till converged, then retain the value of μ,
randomly initializing other variables and re-train the model with smaller λ.

When the number of samples n is big enough, strategy 1 is recommended; when
n is small or V(f(θ)) is relatively large compared with Ef(θ), strategy 2 is
recommended.

5 Experiments

To evaluate our proposed method, we apply CNCV to a synthetic problem and
two real scenarios, which are thermodynamic integration for Bayesian model
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Fig. 1. Synthetic data. (Left) Variance reduction ratio v.s. number of training samples
with D = 10; (Right) Variance reduction ratio v.s. dimension with training sample
size n = 5000.

evidence evaluation, and Bayesian neural networks. For comparison purposes,
control functionals (CF) [13] and polynomial control variates [10,14] are also
applied to these problems. The performance of the trained control variates are
measured by the variance reduction ratio on the test data set, i.e.,

Vp(θ)[f(θ) + g(θ)]
Vp(θ)(f(θ))]

.

We used fully connected neural networks to represent the trial function in all
the experiments. We found that for the experiments presented in the following,
a medium-sized network is empirically sufficient to achieve good performance.
More details on network architectures are provided in Appendix.

5.1 Synthetic Data

To illustrate the advantage of NCV on dealing with high-dimensional prob-
lems over other methods, we consider to approximate the expectation of
f(θ) = sin(π/D

∑D
i=1 θi) where θ ∈ R

D which is a mixture of Gaussians, i.e.,
p(θ) = 0.5N (−1, I) + 0.5N (1, I).

Figure 1 shows the variance reduction ratio on test data (N = 500) with
respect to varying the number of training samples and the dimensions. In both
cases, we can observe that CNCV outperforms linear, quadratic control variates
and control functional. Particularly, when increasing the dimensions of θ, CNCV
can still achieve much lower variance reduction ratio compared with control
functional.

Furthermore, we evaluated the two constraints made on the control vari-
ates in the Sect. 4. To highlight the comparison, we consider the modified func-
tion f(θ) = 10 sin(π/D

∑D
i=1 θi) + μ0 where p(θ) = 0.5N (−1, I) + 0.5N (1, I),

θ ∈ R
10. Here μ0 ∈ [0, 9] represents the mean of f(θ), and

√
var(f(θ)) ≈ 7.5.

To evaluate our methods, we generated 1000 samples, where 500 samples were
used for training and the rest were used for testing. Four neural control vari-
ates schemes with and without the constraints were applied to these samples.
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Fig. 2. Variance reduction ratio of four types of NCV versus the oracle mean μ0. The
μ in the control variates was initialized to 0. Dashed and solid lines plot the results on
training and test data respectively.

Fig. 3. Boxplot of the samples for the function f on test data. The orange solid line
represents the median, the green dashed represents the sample mean, and the grey
dashed line represents the oracle mean μ0 = 7. (Color figure online)

These schemes are: (1) not regularized, and not centered (λ = 0, μ = 0);
(2) regularized, and not centered(λ �= 0, μ = 0); (3) not regularized, and
centered(λ = 0, μ �= 0); (4) regularized, and centered(λ �= 0, μ �= 0).

Figure 2 reports the variance reduction ratio values for training and test data
when varying μ0. It can be shown that NCV without constraints can easily be
over-fitted with the training data. As μ0 increases, NCV with λ = 0, μ = 0 and
NCV with λ �= 0, μ = 0 were not able to reduce the variance for the test data.
This shows that when μ0 is too large compared to the standard deviation, the
control variates without constraints tends to fit −f(θ) rather than −f(θ) + μ0

on the training data, which results in over-fitting.
Figure 3 suggests that CNCV (λ �= 0, μ �= 0) outperforms all the other meth-

ods. The NCV schemes with centered control variates (μ �= 0) were always better
than the ones without centered control variates (μ = 0). We can also see that
the regularized control variates (λ �= 0) can improve the performance.
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The μ was initialized to 0 in all experiments shown in Fig. 2. To better under-
stand the effect of the constraints on NCV, we reported the distribution of the
samples f(θ) from test sets in Fig. 3. It shows that although NCV, which was
not regularized but centered (λ = 0, μ �= 0), reduced the variance, the method
does introduced bias so that the sample mean was away from the true mean μ0.
The CNCV reduced the variance without introducing bias.

In the following, we apply our proposed CNCV to two difficult problems with
small number of samples. In these two cases, original NCV approach tends to
severely overfit the training samples, leading to extremely poor generalization
performance. Thus, we will not report the results of NCV.

5.2 Thermodynamic Integral for Bayesian Model Evidence
Evaluation

In Bayesian analysis, data y is assumed to have been generated under a collection
of putative models, {Mi}. To compare these candidate models, the Bayesian
model evidence is constructed as p(y|Mi) =

∫
p(y|θ,Mi)p(θ|Mi)dθ where θ are

the parameters associated with model Mi. Unfortunately, for most of the models
of interest, this integral is unavailable in closed form. Thus many techniques
were proposed to approximate the model evidence. Thermodynamic integration
(TI) [3] is among the most promising approach to estimate the evidence. This
approach is derived from the standard thermodynamic identity,

log p(y) =
∫ 1

0

Ep(θ |y ,t)[log p(y|θ)]dt, (12)

where p(θ|y, t) ∝ p(y|θ)tp(θ) (t ∈ [0, 1]) is called power posterior. Note that
we have dropped the model indicator Mi for simplicity. Here t is known as
an inverse temperature parameter. In many cases, the posterior expectation
Ep(θ |y ,t) log(p(y|θ)) can not be analytically computed, thus the Monte Carlo
integration is applied. However, Monte Carlo integration often suffer large vari-
ance when sample size is not large enough.

In [14], the zero-variance control variates (5) were used to reduce the variance
for TI, so that the posterior expectation is approximated by

1
N

N∑
i=1

log p(y|θt
i) + ΔQt(θt

i) + ∇Qt(θt
i) · ∇ log(p(θt

i |y, t) (13)

where {θt
i}N

i=1 are drawn from the posterior p(θ|y, t). In [14], the trial func-
tion Qt(θ) was assumed as a linear or quadratic function, which corresponds to
a constant or linear function for Φ(θ) in Stein control variates1. These meth-
ods achieved excellent performance for simple models [14]. However, they are
struggling in some scenarios, for example, a negative example which is Goodwin

1 We will call the trial function Q(θ) as the constant or linear type trial functions
Φ(θ) in the following.
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Oscillator given in [14]. Note that Goodwin Oscillator is a nonlinear dynamical
system,

dx

ds
= f(x, s;θ), x(0) = x0, (14)

where the form of f(·) is provided in Appendix. Assuming within only a subset of
time points {si}N

i=0, the solution of (14), i.e. x(si,θ), is observed under Gaussian
noise ε(s) ∼ N (0, σ2I), where σ2 denotes the variance of the noise. That means
the observation y(si) = x(si) + ε(si). Then we have the likelihood

p(y|θ,x0, σ) =
N∏

i=1

N (y(si)|x(si;θ;x0), σ2I). (15)

The expectation of log likelihood under the power posterior, i.e., Ep(θ |y ,t)

log p(y|θ), needs to be evaluated. In [14], the authors demonstrated the failure
of polynomial-type of control function since the log-likelihood surface is highly
multi-modal and there is much weaker canonical correlation between the scores
and the log posterior.

In practice, sampling from Goodwin Oscillator is difficult and computation-
ally expensive since simulating the underlying ordinary differential equation is
extremely time-consuming. This directly leads to the situation that the available
training samples for control variates are not sufficient. We show in the following
that the proposed CNCV can be employed to deal with this issue. To illustrate
the benefits of CNCV, we compared it to other methods with various sizes of
training samples and temperatures. For comparison purposes we evaluated the
variance reduction ratios on both training and test sets (500 samples for test).
The experiment settings are the same as those in [14].

Figure 4 shows the experimental results when applying different types of con-
trol variates. It can be easily observed that the linear and quadratic methods
could hardly reduce the variance of the Goodwin Oscillator model on testing
set, while CNCV obtained the lowest variance reduction ratio comparing to all
other methods. Control functional can significantly reduce the variance when
dimension is low, but CNCV still can get the lowest variance reduction ratio,
inspite of the problem dimensions or temperatures.

5.3 Uncertainty Quantification in Bayesian Neural Network

Standard neural network training via optimization is equivalent to maximum
likelihood estimation (MLE for short). Given the training samples, {(xi,yi)}N

i=1,
and denote X = {xi}N

i=1 and Y = {yi}N
i=1, the weight parameter θ of the neural

networks is estimated by

θ̂ = argmaxθ

N∑
i=1

log p(yi|xi;θ) (16)

However, the solution of MLE lacks theoretical justification from the proba-
bilistic perspective to deal with the parameter uncertainty as well as struc-
ture uncertainty. Moreover, standard neural networks are often susceptible
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(a) (b)

Fig. 4. Variance reduction ratio on test set of four different types of control variates
(linear, quadratic, CF and CNCV). 3000 samples were used for training and the other
3000 samples were used for testing. (a) The average variance reduction ratio on test
data versus the problem dimension; (b) The average variance reduction ratio on the
test data for different temperatures.

to producing over-confident predictions. Bayesian natural network [11] was
introduced for implementing uncertainty quantification. Firstly, one provides
a prior distribution over the weights, p0(θ) = N (0, σ2

0I), where σ2
0 is the vari-

ance magnitude. Assuming the likelihood function has the form, p(yi|xi;θ) =
N (

yi|NN(xi;θ), σ2I
)
, then the posterior of the weights θ,

p(θ|X,Y ) ∝
N∏

i=1

p(yi|xi,θ)p0(θ).

The uncertainty of the model, typically formulated as the expectation of a spe-
cific statistics f(θ,x,y) could be computed based on the posterior distribution
of the weights,

μf = E[f(θ;x,y)] =
∫

f(θ;x,y)p(θ|X,Y )dθ (17)

Due to the analytic intractability of the integral, the expectation of f(θ,x,y)
is estimated using Monte Carlo integration

μf ≈ 1
M

M∑
i=1

f(θi,x,y) (18)

where {θi}M
i=1 is drawn from the posterior p(θ|X,Y ).

However, the large number of parameters and complex structure of networks
make the sampling from the posterior extremely hard. Typically, only a small
number of samples could be obtained. Consequently, small sample size and the
complex structure of the posterior distribution will lead to a high variance of
the estimator (18). Thus, we consider reducing the variance of Monte Carlo
estimator by NCVA.
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Uncertainty quantification on predictions with out-of-distribution inputs. The
neural networks learned with the MLE principal could achieve a high-accuracy
performance, when the training data and test data come from the same data
distribution. But when an out-of-bag (OOB) sample, i.e., a sample whose label
is not included in the training set, is fed into the models, the MLE model is
very likely to identify the OOB sample as a certain in-bag class with very high
confidence, i.e. the prediction score is close to 1. We hope to construct a robust
classifier which won’t misclassify the OOB samples with very high confidence.
The Bayesian neural network is considered to be effective to handle this situation.
However, evaluating the expected prediction score under the posterior of w still
suffers large variance issues. Hence we considered to reduce the variance of BNN
prediction score and handle the over-confident issues of OOB samples.

We implemented a simple image classification task to evaluate the effective-
ness of CNCV. We selected all the images with label “6” and “9” from the
MNIST dataset and constructed a convolutional neural network for Bayesian
classifier with the output {f(x,θi)}M

i=1 as the probability of class assignment,
where θi ∼ p(θ|X,Y ) on the two categorizes and select the images with label
“8” as the out-of-distribution samples xout for test. We constructed the control
variates to reduce the variance of the estimator P̂ (y = “6”|xout) using NCV,

P̂ (y = “6”|xout) =
1
M

M∑
i=1

P̂ (y = “6”|xout,θi) + g(θi,xout) (19)

The parameters {θi} are sampled based on the training set, and hyperparam-
eters are tuned using the validation set. Both the training and validation data
are composed of the images with labels “6” or “9”. We evaluated the control
variates methods on the test set, consisting of the images with the label “8”. We
evaluate the control variates by computing the following variance ratio

1
N

N∑
i=1

Vp(θ |X ,Y )[p(yi = “6”|xi) + g(xi,θ)]
Vp(θ |X ,Y )[p(yi = “6”|xi)]

(20)

Due to the high dimensionality of this problem, quadratic control variates
and control functional failed to obtain satisfying variance reduction, and we thus
do not report their results.

Figure 5(a) shows that the overall distribution of BNN ensemble prediction
does not change significantly, where CNCV produces slightly better results. This
is expected since the classifier has not seen the OOB samples during training,
which makes it impossible to yield a stable prediction probability. On the other
hand, Fig. 5(b) depicts the the entropy of these OOB samples computed using
prediction score via BNN:

Entropy(xOOB) = −p̂ log(p̂) − (1 − p̂) log(1 − p̂), (21)

where p̂ is the BNN prediction score evaluated from Eq. (19). Entropy(xOOB)
is in the range [0, log 2]. Samples with low entropy close to 0 means they will
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(a) (b)

Fig. 5. Performance of CNCV on BNN with OOB samples (a) boxplot of the prediction
score of OOB samples defined in Eq. (19). The prediction scores were computed based
on BNN ensemble classifier for those variance reduction methods. (b) The accumulated
empirical distribution of the entropy computed by prediction scores using Eq. (21).

be classified as 6 or 9 with very high confidence. It could be seen from Fig. 5(b)
that BNN prediction with control variates has less over-confident scores over
OOB samples. That means that BNN prediction with CNCV yields the least
over-confident scores compared with vanilla BNN and that with linear control
variates.

6 Conclusion

We have proposed neural control variates for variance reduction. We have shown
that the neural control variates could have the over-fitting problem when using
a small number of samples. To alleviate this over-fitting problem, we proposed
constrained neural control variates, where the control variates is centered and
regularized. We demonstrated the effectiveness of the proposed methods on syn-
thetic data and two challenging Monte Carlo integration tasks. However, the
theoretical justification of the proposed method will be investigated in our future
research.

A Formulas for Goodwin Oscillator

The nonlinear dynamic system of the Goodwin Oscillator used in [14] is given
by:

dx1

ds
=

a1

1 + a2x
ρ
g

− αx1

dx2

ds
= k1x1 − αx2

...
dxg

ds
= kg−1xg−1 − αxg.

(22)
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The solution x(s; θ,x0) of this dynamical system depends on the uncer-
tain parameters α, a1, a2, k1, . . . , kg−1. Similar to the settings in [14], we assume
x0 = [0, . . . , 0] and σ = 0.1 are both known and take sampling times to be
s = 41, . . . , 80. Parameters were assigned independent Γ(2, 1) prior distribu-
tions. We generated data using a1 = 1, a2 = 3, k1 = 2, k2, . . . , kg−1 = 1, α = 0.5.
We generated the posterior samples of the weights using MCMC with parallel
tempering. In each dimension cases (g ∈ {3, 4, · · · , 8}) the Markorv Chain runs
100, 000 iterations to ensure converge, 6000 samples randomly drawn from the
last 50, 000 iterations were used in the final experiments.

The trial function φ used in Goodwin Oscillator is a two layers fully connected
neural network, where each layer has 40 neurons. The activation function is the
Sigmoid function.

B Uncertainty Quantification in Bayesian Neural
Network: Out-of-Bag Sample Detection

The basic model consists of two convolutional layers, two max-pooling layers and
a fully connected layers, with kernel size (5 × 5 × 2), (2 × 3 × 3 × 3), (147 × 2)
respectively. The prior distribution of the weight was set to standard normal
distribution N (0, 1). The samples of the weights were generated using precon-
ditioned Stochastic Gradient Langevin Dynamic [7]. 1000 samples were gener-
ated to construct the Bayesian neural network prediction. The trial function
φ(θ, x) : Θ × X −→ R was defined as:

φ(θ, x) = αT h(W0θ + ψ(x)) (23)

where ψ(x) consists of two convolutional layers with kernel size (5 × 5 × 2),
(2 × 3 × 3 × 3), two max-pooling layers and relu activation. W0 ∈ R

147×407, h
is the sigmoid function. and α ∈ R

147. Thus the neural control varaites of the
BNN prediction is:

g(θ, x) = ∇θ · φ(θ, x) + φ(θ, x)∇θ · log p(θ|X) (24)

where ∇ · f =
∑

i
∂f
∂xi

.
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Abstract. The data association problem is concerned with separating
data coming from different generating processes, for example when data
comes from different data sources, contain significant noise, or exhibit
multimodality. We present a fully Bayesian approach to this problem.
Our model is capable of simultaneously solving the data association
problem and the induced supervised learning problem. Underpinning our
approach is the use of Gaussian process priors to encode the structure of
both the data and the data associations. We present an efficient learning
scheme based on doubly stochastic variational inference and discuss how
it can be applied to deep Gaussian process priors.

1 Introduction

Real-world data often include multiple operational regimes of the considered
system, for example a wind turbine or gas turbine [12]. As an example, consider
a model describing the lift resulting from airflow around the wing profile of an
airplane as a function of the attack angle. At low values the lift increases linearly
with the attack angle until the wing stalls and the characteristic of the airflow
changes fundamentally. Building a truthful model of such data requires learning
two separate models and correctly associating the observed data to each of the
dynamical regimes. A similar example would be if our sensors that measure the
lift are faulty in a manner such that we either get an accurate reading or a noisy
one. Estimating a model in this scenario is often referred to as a data association
problem [2,8], where we consider the data to have been generated by a mixture
of processes and we are interested in factorising the data into these components.

Figure 1 shows an example of faulty sensor data, where sensor readings are
disturbed by uncorrelated and asymmetric noise. Applying standard machine
learning approaches to such data can lead to model pollution, where the expres-
sive power of the model is used to explain noise instead of the underlying signal.
Solving the data association problem by factorizing the data into signal and
noise gives rise to a principled approach to avoid this behavior.
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Fig. 1. A data association problem consisting of two generating processes, one of which
is a signal we wish to recover and one is an uncorrelated noise process.

Early approaches to explaining data using multiple generative processes are
based on separating the input space and training local expert models explaining
easier subtasks [15,21,25]. The assignment of data points to local experts is han-
dled by a gating network, which learns a function from the inputs to assignment
probabilities. However, it is still a central assumption of these models that at
every position in the input space exactly one expert should explain the data.
Another approach is presented in [4], where the multimodal regression tasks
are interpreted as a density estimation problem. A high number of candidate
distributions is reweighed to match the observed data without modeling the
underlying generative process.

In contrast, we are interested in a generative process, where data at the same
location in the input space could have been generated by a number of global
independent processes. Inherently, the data association problem is ill-posed and
requires assumptions on both the underlying functions and the association of
the observations. In [18] the authors place Gaussian process (GP) priors on the
different generative processes which are assumed to be relevant globally. The
associations are modelled via a latent association matrix and inference is carried
out using an expectation maximization algorithm. This approach takes both the
inputs and the outputs of the training data into account to solve the association
problem. A drawback is that the model cannot give a posterior estimate about
the relevance of the different generating processes at different locations in the
input space. This means that the model can be used for data exploration but
additional information is needed in order to perform predictive tasks. Another
approach in [5] expands this model by allowing interdependencies between the
different generative processes and formulating the association problem as an
inference problem on a latent space and a corresponding covariance function.
However, in this approach the number of components is a free parameter and is
prone to overfitting, as the model has no means of turning off components.

In this paper, we formulate a Bayesian model for the data association problem.
Underpinning our approach is the use of GP priors which encode structure both
on the functions and the associations themselves, allowing us to incorporate the
available prior knowledge about the proper factorization into the learning prob-
lem. The use of GP priors allows us to achieve principled regularization without
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Fig. 2. The graphical model of DAGP. The violet observations (xn ,yn ) are generated
by the latent process (green). Exactly one of the K latent functions f (k) and likelihood

y
(k)
n are evaluated to generate yn . We can place shallow or deep GP priors on these

latent function values f
(k)
n . The assignment an to a latent function is driven by input-

dependent weights α
(k)
n which encode the relevance of the different functions at xn .

The different parts of the model are determined by the hyperparameters θ,σ (yellow)
and variational parameters u (blue). (Color figure online)

reducing the solution space leading to a well-regularized learning problem. Impor-
tantly,we simultaneously solve the association problem for the training data taking
both inputs and outputs into account while also obtaining posterior belief about
the relevance of the different generating processes in the input space. Our model
can describe non-stationary processes in the sense that a different number of pro-
cesses can be activated in different locations in the input space. We describe this
non-stationary structure using additional GP priors which allows us to make full
use of problem specific knowledge. This leads to a flexible yet interpretable model
with a principled treatment of uncertainty.

The paper has the following contributions: In Sect. 2, we propose the data
association with Gaussian processes model (DAGP). In Sect. 3, we present an
efficient learning scheme via a variational approximation which allows us to
simultaneously train all parts of our model via stochastic optimization and show
how the same learning scheme can be applied to deep GP priors. We demonstrate
our model on a noise separation problem, an artificial multimodal data set, and
a multi-regime regression problem based on the cart-pole benchmark in Sect. 4.

2 Data Association with Gaussian Processes

The data association with Gaussian processes (DAGP) model assumes that there
exist K independent functions {f (k)}K

k=1, which generate pairs of observations
D = {(xn ,yn )}N

n=1. Each data point is generated by evaluating one of the K
latent functions and adding Gaussian noise from a corresponding likelihood.
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The assignment of the nth data point to one of the functions is specified by the
indicator vector an ∈ {0, 1}K , which has exactly one non-zero entry. Our goal
is to formulate simultaneous Bayesian inference on the functions f (k) and the
assignments an .

For notational conciseness, we follow the GP related notation in [14] and
collect all N inputs as X = (x1, . . . ,xN ) and all outputs as Y = (y1, . . . ,yN ).
We further denote the kth latent function value associated with the nth data
point as f

(k)
n = f (k)(xn ) and collect them as F (k) =

(
f
(k)
1 , . . . ,f

(k)
N

)
and

F =
(
F (1), . . . ,F (K )

)
. We refer to the kth entry in an as a

(k)
n and denote

A = (a1, . . . ,aN ).
Given this notation, the marginal likelihood of DAGP can be separated into

the likelihood, the latent function processes, and the assignment process and is
given by,

p(Y |X) =
∫

p(Y |F ,A)p(F |X)p(A |X) dA dF

p(Y |F ,A) =
N∏

n=1

K∏
k=1

N
(

yn

∣∣∣∣f (k)
n ,

(
σ(k)

)2
)I(a(k)

n =1)

,

(1)

where σ(k) is the noise of the kth Gaussian likelihood and I the indicator function.
Since we assume the K processes to be independent given the data and

assignments, we place independent GP priors on the latent functions p(F |X) =∏K
k=1 N (

F (k)
∣∣μ(k)(X),K(k)(X,X)

)
with mean function μ(k) and kernel K(k).

Our prior on the assignment process is composite. First, we assume that the an

are drawn independently from multinomial distributions with logit parameters
αn =

(
α
(1)
n , . . . , α

(K)
n

)
. One approach to specify αn is to assume them to be

known a priori and to be equal for all data points [18]. Instead, we want to infer
them from the data. Specifically, we assume that there is a relationship between
the location in the input space x and the associations. By placing independent
GP priors on α(k), we can encode our prior knowledge of the associations by the
choice of covariance function p(α |X) =

∏K
k=1 N

(
α(k)

∣∣∣0,K(k)
α (X,X)

)
. The

prior on the assignments A is given by marginalizing the α(k), which, when
normalized, parametrize a batch of multinomial distributions,

p(A |X) =
∫

M(A |softmax(α))p(α |X) dα. (2)

Modelling the relationship between the input and the associations allows us to
efficiently model data, which, for example, is unimodal in some parts of the input
space and bimodal in others. A simple smoothness prior will encode a belief for
how quickly the components switch across the input domain.

Since the GPs of the α(k) use a zero mean function, our prior assumption is a
uniform distribution of the different generative processes everywhere in the input
space. If inference on the an reveals that, say, all data points at similar positions



552 M. Kaiser et al.

in the input space can be explained by the same kth process, the belief about α
can be adjusted to make a non-uniform distribution favorable at this position,
thereby increasing the likelihood via p(A |X). This mechanism introduces an
incentive for the model to use as few functions as possible to explain the data
and importantly allows us to predict a relative importance of these functions
when calculating the posterior of the new observations x∗.

Figure 2 shows the resulting graphical model, which divides the generative
process for every data point in the application of the latent functions on the
left side and the assignment process on the right side. The interdependencies
between the data points are introduced through the GP priors on f

(k)
n and α

(k)
n

and depend on the hyperparameters θ = {θ(k),θ
(k)
α , σ(k)}K

k=1.
The priors for the f (k) can be chosen independently to encode different prior

assumptions about the underlying processes. In Sect. 4.1, we use different kernels
to separate a non-linear signal from a noise process. Going further, we can also
use deep GP as priors for the f (k) [9,23]. Since many real word systems are
inherently hierarchical, prior knowledge can often be formulated more easily
using composite functions [16].

3 Variational Approximation

Exact inference is intractable in this model. Instead, we formulate a variational
approximation following ideas from [13,23]. Because of the rich structure in
our model, finding a variational lower bound which is both faithful and can
be evaluated analytically is hard. To proceed, we formulate an approximation
which factorizes along both the K processes and N data points. This bound
can be sampled efficiently and allows us to optimize both the models for the
different processes {f (k)}K

k=1 and our belief about the data assignments {an}N
n=1

simultaneously using stochastic optimization.

3.1 Variational Lower Bound

As first introduced by Titsias [24], we augment all GP in our model using
sets of M inducing points Z(k) =

(
z
(k)
1 , . . . ,z

(k)
M

)
and their corresponding

function values u(k) = f (k)
(
Z(k)

)
, the inducing variables. We collect them as

Z = {Z(k),Z
(k)
α }K

k=1 and U = {u(k),u
(k)
α }K

k=1. Taking the function f (k) and its
corresponding GP as an example, the inducing variables u(k) are jointly Gaus-
sian with the latent function values F (k) of the observed data by the definition of
GPs. We follow [13] and choose the variational approximation q

(
F (k),u(k)

)
=

p
(
F (k)

∣∣u(k),X,Z(k)
)
q
(
u(k)

)
with q

(
u(k)

)
= N (

u(k)
∣∣m(k),S(k)

)
. This for-

mulation introduces the set {Z(k),m(k),S(k)} of variational parameters indi-
cated in Fig. 2. To simplify notation we drop the dependency on Z in the fol-
lowing.

A central assumption of this approximation is that given enough well-placed
inducing variables u(k), they are a sufficient statistic for the latent function
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values F (k). This implies conditional independence of the f
(k)
n given u(k) and

X. The variational posterior of a single GP can then be written as,

q
(
F (k)

∣∣∣X
)

=
∫

q
(
u(k)

)
p
(
F (k)

∣∣∣u(k),X
)

du(k)

=
∫

q
(
u(k)

) N∏
n=1

p
(
f (k)

n

∣∣∣u(k),xn

)
du(k),

(3)

which can be evaluated analytically, since it is a convolution of Gaussians. This
formulation simplifies inference within single GPs. Next, we discuss how to han-
dle the correlations between the different functions and the assignment processes.

Given a set of assignments A, this factorization along the data points is pre-
served in our model due to the assumed independence of the different functions
in (1). The independence is lost if the assignments are unknown. In this case,
both the (a priori independent) assignment processes and the functions influence
each other through data with unclear assignments. Following the ideas of doubly
stochastic variational inference (DSVI) presented by Salimbeni and Deisenroth
[23] in the context of deep GPs, we maintain these correlations between different
parts of the model while assuming factorization of the variational distribution.
That is, our variational posterior takes the factorized form,

q(F ,α,U) = q
(
α, {F (k),u(k),u(k)

α }K
k=1

)

=
K∏

k=1

N∏
n=1

p
(
α(k)

n

∣∣∣u(k)
α ,xn

)
q
(
u(k)

α

) K∏
k=1

N∏
n=1

p
(
f (k)

n

∣∣∣u(k),xn

)
q
(
u(k)

)
.

(4)

Our goal is to recover a posterior for both the generating functions and the
assignment of data. To achieve this, instead of marginalizing A, we consider the
variational joint of Y and A,

q(Y ,A) =
∫

p(Y |F ,A)p(A |α)q(F ,α) dF dα, (5)

which retains both the Gaussian likelihood of Y and the multinomial likelihood
of A in (2). A lower bound LDAGP for the log-joint log p(Y ,A |X) of DAGP is
given by,

LDAGP = Eq(F ,α ,U )

[
log

p(Y ,A,F ,α,U |X)
q(F ,α,U)

]

=
N∑

n=1

Eq(fn ) [log p(yn |fn ,an )] +
N∑

n=1

Eq(αn ) [log p(an |αn )]

−
K∑

k=1

KL(q(u(k))‖p(u(k)|Z(k))) −
K∑

k=1

KL(q(u(k)
α )‖p(u(k)

α |Z(k)
α )).

(6)
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Due to the structure of (4), the bound factorizes along the data enabling stochas-
tic optimization. This bound has complexity O(

NM2K
)

to evaluate.

3.2 Optimization of the Lower Bound

An important property of the variational bound for DSVI [23] is that taking sam-
ples for single data points is straightforward and can be implemented efficiently.
Specifically, for some k and n, samples f̂

(k)
n from q

(
f
(k)
n

)
are independent of all

other parts of the model and can be drawn using samples from univariate unit
Gaussians using reparametrizations [17,22].

Note that it would not be necessary to sample from the different processes,
since q

(
F (k)

)
can be computed analytically [13]. However, we apply the sam-

pling scheme to the optimization of both the assignment processes α and the
assignments A as for α, the analytical propagation of uncertainties through
the softmax renormalization and multinomial likelihoods is intractable but can
easily be evaluated using sampling.

We optimize LDAGP to simultaneously recover maximum likelihood estimates
of the hyperparameters θ, the variational parameters {Z,m,S}, and assign-
ments A. For every n, we represent the belief about an as a K-dimensional dis-
crete distribution q(an ). This distribution models the result of drawing a sample
from M(an |softmax(αn )) during the generation of the data point (xn ,yn ).

Since we want to optimize LDAGP using (stochastic) gradient descent, we need
to employ a continuous relaxation to gain informative gradients of the bound
with respect to the binary (and discrete) vectors an . One straightforward way to
relax the problem is to use the current belief about q(an ) as parameters for a con-
vex combination of the f

(k)
n , that is, to approximate fn ≈ ∑K

k=1 q
(
a
(k)
n

)
f̂
(k)
n .

Using this relaxation is problematic in practice. Explaining data points as mix-
tures of the different generating processes violates the modelling assumption that
every data point was generated using exactly one function but can substantially
simplify the learning problem. Because of this, special care must be taken during
optimization to enforce the sparsity of q(an ).

To avoid this problem, we propose using a different relaxation based on addi-
tional stochasticity. Instead of directly using q(an ) to combine the f

(k)
n , we first

draw a sample ân from a concrete random variable as suggested by Maddi-
son et al. [19], parameterized by q(an ). Based on a temperature parameter λ,
a concrete random variable enforces sparsity but is also continuous and yields
informative gradients using automatic differentiation. Samples from a concrete
random variable are unit vectors and for λ → 0 their distribution approaches a
discrete distribution.

Our approximate evaluation of the bound in (6) during optimization has
multiple sources of stochasticity, all of which are unbiased. First, we approximate
the expectations using Monte Carlo samples f̂

(k)
n , α̂

(k)
n , and ân . And second,

the factorization of the bound along the data allows us to use mini-batches for
optimization [13,23].
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3.3 Approximate Predictions

Predictions for a test location x∗ are mixtures of K independent Gaussians,
given by,

q(f∗ |x∗) =
∫ K∑

k=1

q
(
a
(k)
∗

∣∣∣x∗
)
q
(
f
(k)
∗

∣∣∣x∗
)

da
(k)
∗ ≈

K∑
k=1

â
(k)
∗ f̂

(k)
∗ . (7)

The predictive posteriors of the K functions q
(
f
(k)
∗

∣∣∣x∗
)

are given by K inde-
pendent shallow GPs and can be calculated analytically [13]. Samples from the
predictive density over q(a∗ |x∗) can be obtained by sampling from the GP
posteriors q

(
α

(k)
∗

∣∣∣x∗
)

and renormalizing the resulting vector α∗ using the
softmax-function. The distribution q(a∗ |x∗) reflects the model’s belief about
how many and which of the K generative processes are relevant at the test
location x∗ and their relative probability.

3.4 Deep Gaussian Processes

For clarity, we have described the variational bound in terms of a shallow GP.
However, as long as their variational bound can be efficiently sampled, any model
can be used in place of shallow GPs for the f (k). Since our approximation is based
on DSVI, an extension to deep GPs is straightforward. Analogously to [23], our
new prior assumption about the kth latent function values p

(
F ′(k) ∣∣X)

is given
by,

p
(
F ′(k)

∣∣∣X
)

=
L∏

l=1

p
(
F

′(k)
l

∣∣∣u′(k)
l F

′(k)
l−1 ,Z

′(k)
l

)
, (8)

for an L-layer deep GP and with F
′(k)
0 := X. Similar to the single-layer case, we

introduce sets of inducing points Z
′(k)
l and a variational distribution over their

corresponding function values q
(
u

′(k)
l

)
= N

(
u

′(k)
l

∣∣∣m′(k)
l ,S

′(k)
l

)
. We collect

the latent multi-layer function values as F ′ = {F
′(k)
l }K,L

k=1,l=1 and corresponding
U ′ and assume an extended variational distribution,

q
(
F ′,α,U ′) = q

(
α, {u(k)

α }Kk=1, {F ′(k)
l ,u

′(k)
l }K,L

k=1,l=1

)

=
K∏

k=1

N∏

n=1

p
(
α

(k)
n

∣
∣
∣u(k)

α ,xn

)
q
(
u
(k)
α

) K∏

k=1

L∏

l=1

N∏

n=1

p
(
f

′(k)
n ,l

∣
∣
∣u′(k)

l ,xn

)
q
(
u

′(k)
l

)
,

(9)
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where we identify f
′(k)
n = f

′(k)
n,L . As the nth marginal of the Lth layer depends

only on the nth marginal of all layers above sampling from them remains straight-
forward [23]. The marginal is given by,

q(f ′(k)
n,L ) =

∫
q(f ′(k)

n,L |f ′(k)
n,L−1)

L−1∏
l=1

q(f ′(k)
n,l |f ′(k)

n,l−1) df
′(k)
n,l . (10)

The complete bound is structurally similar to (6) and given by,

L′
DAGP =

N∑
n=1

Eq(f ′
n ) [log p(yn |f ′

n ,an )] +
N∑

n=1

Eq(αn ) [log p(an |αn )]

−
K∑

k=1

L∑
l=1

KLq(u(k)
l )p(u(k)

l |Z(k)
l ) −

K∑
k=1

KLq
(
u(k)

α

)
p
(
u(k)

α

∣∣∣Z(k)
α

)
.

(11)

To calculate the first term, samples have to be propagated through the deep GP
structures. This extended bound thus has complexity O(

NM2LK
)

to evaluate
in the general case and complexity O(

NM2 · max(L,K)
)

if the assignments an

take binary values.

Table 1. Comparison of qualitative model capabilities. A model has a capability if it
contains components which enable it to solve the respective task in principle.

Experiment Predictive

posterior

Multimodal

data

Scalable

inference

Interpretable

priors

Data

association

Predictive

associations

Separate

models

Table 2 Table 3 Fig. 4

DAGP (Ours) � � � � � � �
OMGP [18] � � – � � – �
RGPR [21] � � – � – – –

GPR � – � � – – –

BNN+LV [10] � � � – – – –

MDN [4] � � � – – – –

MLP � – � – – – –

4 Experiments

In this section, we investigate the behavior of the DAGP model. We use an imple-
mentation of DAGP in TensorFlow [1] based on GPflow [20] and the implementa-
tion of DSVI [23]. Table 1 compares qualitative properties of DAGP and related
work. All models can solve standard regression problems and yield unimodal pre-
dictive distributions or, in case of multi-layer perceptrons (MLP), a single point
estimate. Both standard Gaussian process regression (GPR) and MLP do not
impose structure which enables the models to handle multi-modal data. Mix-
ture density networks (MDN) [4] and the infinite mixtures of Gaussian processes
(RGPR) [21] model yield multi-modal posteriors through mixtures with many
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Table 2. Results on the ChoiceNet data set. The gray part of the table shows RMSE
results for baseline models from [7]. For our experiments using the same setup, we report
RMSE comparable to the previous results together with MLL. Both are calculated
based on a test set of 1000 equally spaced samples of the noiseless underlying function.

Outliers DAGP OMGP DAGP OMGP CN MDN MLP GPR RGPR
MLL MLL RMSE RMSE RMSE RMSE RMSE RMSE RMSE

0% 2.86 2.09 0.008 0.005 0.034 0.028 0.039 0.008 0.017
20% 2.71 1.83 0.008 0.005 0.022 0.087 0.413 0.280 0.013
40% 2.12 1.60 0.005 0.007 0.018 0.565 0.452 0.447 1.322
60% 0.874 1.23 0.031 0.006 0.023 0.645 0.636 0.602 0.738
80% 0.126 -1.35 0.128 0.896 0.084 0.778 0.829 0.779 1.523

0

2
y

−2 0 2

0

2

X

y

−2 0 2
X

−2 0 2
X

Fig. 3. DAGP on the ChoiceNet data set with 40% outliers (upper row) and 60 %
outliers (lower row). We show the raw data (left), joint posterior (center) and assign-
ments (right). The bimodal DAGP identifies the signal perfectly up to 40 % outliers.
For 60 % outliers, some of the noise is interpreted as signal, but the latent function is
still recovered.

components but do not solve an association problem. Similarly, Bayesian neu-
ral networks with added latent variables (BNN+LV) [10] represent such a mix-
ture through a continuous latent variable. Both the overlapping mixtures of Gaus-
sian processes (OMGP) [18] model and DAGP explicitly model the data associa-
tion problem and yield independent models for the different generating processes.
However, OMGP assumes global relevance of the different modes. In contrast,
DAGP infers a spacial posterior of this relevance. We evaluate our model on three
problems to highlight the following advantages of the explicit structure of DAGP:

Interpretable Priors give Structure to Ill-posed Data Association Problems. In
Sect. 4.1, we consider a noise separation problem, where a signal of interest is
disturbed with uniform noise. To solve this problem, assumptions about what
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constitutes a signal are needed. The hierarchical structure of DAGP allows us to
formulate independent and interpretable priors on the noise and signal processes.

Predictive Associations Represent Knowledge About the Relevance of Generative
Processes. In Sect. 4.2, we investigate the implicit incentive of DAGP to explain
data using as few processes as possible. Additional to a joint posterior explaining
the data, DAGP also gives insight into the relative importance of the different
processes in different parts of the input space. DAGP is able to explicitly recover
the changing number of modes in a data set.

Separate Models for Independent Generating Processes Avoid Model Pollution.
In Sect. 4.3, we simulate a system with multiple operational regimes via mixed
observations of two different cart-pole systems. DAGP successfully learns an
informative joint posterior by solving the underlying association problem. We
show that the DAGP posterior contains two separate models for the two original
operational regimes.

4.1 Noise Separation

We consider an experiment based on a noise separation problem. We apply
DAGP to a one-dimensional regression problem with uniformly distributed
asymmetric outliers in the training data. We use a task proposed by Choi
et al. [7] where we sample x ∈ [−3, 3] uniformly and apply the function
f(x) = (1− δ)(cos(π/2 ·x) exp(−(x/2)2)+ γ)+ δ · ε, where δ ∼ B(λ), ε ∼ U(−1, 3)
and γ ∼ N (0, 0.152). That is, a fraction λ of the training data, the outliers, are
replaced by asymmetric uniform noise. We sample a total of 1000 data points
and use 25 inducing points for every GP in our model.

Every generating process in our model can use a different kernel and therefore
encode different prior assumptions. For this setting, we use two processes, one
with a squared exponential kernel and one with a white noise kernel. This encodes
the problem statement that every data point is either part of the signal we wish
to recover or uncorrelated noise. To avoid pathological solutions for high outlier
ratios, we add a prior to the likelihood variance of the first process, which encodes
our assumption that there actually is a signal in the training data.

The model proposed in [7], called ChoiceNet (CN), is a specific neural network
structure and inference algorithm to deal with corrupted data. In their work, they
compare their approach to the MLP, MDN, GPR, and RGPR models. We add
experiments for both DAGP and OMGP. Table 2 shows results for outlier rates
varied from 0 % to 80 %. Besides the root mean squared error (RMSE) reported
in [7], we also report the mean test log likelihood (MLL).

Since we can encode the same prior knowledge about the signal and noise pro-
cesses in both OMGP and DAGP, the results of the two models are comparable:
For low outlier rates, they correctly identify the outliers and ignore them, result-
ing in a predictive posterior of the signal equivalent to standard GP regression
without outliers. In the special case of 0 % outliers, the models correctly iden-
tify that the process modelling the noise is not necessary, thereby simplifying to
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standard GP regression. For high outlier rates, stronger prior knowledge about
the signal is required to still identify it perfectly. Figure 3 shows the DAGP pos-
terior for an outlier rate of 60 %. While the function has still been identified well,
some of the noise is also explained using this process, thereby introducing slight
errors in the predictions.

4.2 Multimodal Data

Our second experiment applies DAGP to a multimodal data set. The data,
together with recovered posterior attributions, can be seen in Fig. 4. We uniformly
sample 350 data points in the interval x ∈ [−2π, 2π] and obtain y1 = sin(x) + ε,
y2 = sin(x) − 2 exp(−1/2 · (x − 2)2) + ε and y3 = −1 − 3/8π · x + 3/10 · sin(2x) + ε
with additive independent noise ε ∼ N (

0, 0.0052
)
. The resulting data set D =

{(x, y1) , (x, y2) , (x, y3)} is trimodal in the interval [0, 5] and is otherwise bimodal
with one mode containing double the amount of data than the other.

We use squared exponential kernels as priors for both the f (k) and α(k) and
25 inducing points in every GP. Figure 4 shows the posterior of a DAGP with
K = 4 modes applied to the data, which correctly identified the underlying
functions. The figure shows the posterior belief about the assignments A and
illustrates that DAGP recovered that it needs only three of the four available
modes to explain the data. One of the modes is only assigned points in the
interval [0, 5] where the data is actually trimodal.

This separation is explicitly represented in the model via the assignment pro-
cesses α (bottom panel in Fig. 4). Importantly, DAGP does not only cluster the
data with respect to the generating processes but also infers a factorization of the
input space with respect to the relative importance of the different processes. The
model has disabled the mode k = 2 in the complete input space and has learned
that the mode k = 1 is only relevant in the interval [0, 5] where the three enabled
modes each explain about a third of the data. Outside this interval, the model has
learned that one of the modes has about twice the assignment probability than the
other one, thus correctly reconstructing the true generative process. The DAGP is
implicitly incentivized to explain the data using as few modes as possible through
the likelihood term of the inferred an in (6). At x = −10 the inferred modes and
assignment processes start reverting to their respective priors away from the data.

4.3 Mixed Cart-Pole Systems

Our third experiment is based on the cart-pole benchmark for reinforcement
learning as described by Barto et al. [3] and implemented in OpenAI Gym [6]. In
this benchmark, the objective is to apply forces to a cart moving on a frictionless
track to keep a pole, which is attached to the cart via a joint, in an upright
position. We consider the regression problem of predicting the change of the
pole’s angle given the current state of the cart and the action applied. The
current state of the cart consists of the cart’s position and velocity and the pole’s
angular position and velocity. To simulate a dynamical system with changing
system characteristics our experimental setup is to sample trajectories from two
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Fig. 4. The DAGP posterior on an artificial data set with bimodal and trimodal parts.
The joint predictions (top) are mixtures of four Gaussians weighed by the assignment
probabilities α (bottom). The weights are represented via the opacity of the modes.
The model has learned that the mode k = 2 is irrelevant, that the mode k = 1 is only
relevant around the interval [0, 5]. Outside this interval, the mode k = 3 is twice as
likely as the mode k = 4. The concrete assignments a (middle) of the training data
show that the mode k = 1 is only used to explain observations where the training data
is trimodal. The mode k = 2 is never used.

different cart-pole systems and merging the resulting data into one training set.
The task is not only to learn a model which explains this data well, but to solve
the association problem introduced by the different system configurations. This
task is important in reinforcement learning settings where we study systems with
multiple operational regimes.

We sample trajectories from the system by initializing the pole in an almost
upright position and then applying 10 uniform random actions. We add Gaus-
sian noise ε ∼ N (

0, 0.012
)

to the observed angle changes. To increase the non-
linearity of the dynamics, we apply the action for five consecutive time steps
and allow the pole to swing freely instead of ending the trajectory after reaching
a specific angle. The data set consists of 500 points sampled from the default
cart-pole system and another 500 points sampled from a short-pole cart-pole
system in which we halve the mass of the pole to 0.05 and shorten the pole to
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Table 3. Results on the cart-pole data set. We report mean log likelihoods with their
standard error for ten runs. The upper results are obtained by training the model on the
mixed data set and evaluating it jointly (left) on multi-modal predictions. We evaluate
the two inferred sub-models for the default system (center) and short-pole system
(right). We provide gray baseline comparisons with BNN+LV and GPR models which
cannot solve the data assignment problem. BNN+LV yields joint predictions which
cannot be separated into sub-models. Specialized GPR models trained the individual
training sets give a measure of the possible performance if the data assignment problem
would be solved perfectly.

Mixed Default only Short-pole only

Train Test Test Test

DAGP 0.575 ± 0.013 0.521 ± 0.009 0.844± 0.002 0.602 ± 0.005
DAGP 2 0.548± 0.012 0.519 ± 0.008 0.859 ± 0.001 0.599± 0.011
DAGP 3 0.527± 0.004 0.491± 0.003 0.852± 0.002 0.545± 0.012

OMGP −1.04 ± 0.02 −1.11 ± 0.03 0.66 ± 0.02 −0.81 ± 0.12

BNN+LV 0.519± 0.005 0.524± 0.005 — —
GPR Mixed 0.452± 0.003 0.421± 0.003 — —
GPR Default — — 0.867± 0.001 −7.54 ± 0.14
GPR Short — — −5.14 ± 0.04 0.792± 0.003

0.1, a tenth of its default length. This short-pole system is more unstable and the
pole reaches higher speeds. Predictions in this system therefore have to take the
multimodality into account, as mean predictions between the more stable and
the more unstable system can never be observed. We consider three test sets,
one sampled from the default system, one sampled from the short-pole system,
and a mixture of the two. They are generated by sampling trajectories with an
aggregated size of 5000 points from each system for the first two sets and their
concatenation for the mixed set.

For this data set, we use squared exponential kernels for both the f (k) and
α(k) and 100 inducing points in every GP. We evaluate the performance of
deep GPs with up to three layers and squared exponential kernels as models
for the different functions. As described in [16,23], we use identity mean func-
tions for all but the last layers and initialize the variational distributions with low
covariances. We compare our models with OMGP and three-layer relu-activated
Bayesian neural networks with added latent variables (BNN+LV). The latent
variables can be used to effectively model multimodalities and stochasticity in
dynamical systems for model-based reinforcement learning [11]. We also compare
DAGP to three kinds of sparse GPs (GPR) [14]. They are trained on the mixed
data set, the default system and the short-pole system respectively and serve as
a baseline comparison as these models cannot handle multi-modal data.
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Table 3 shows results for ten runs of these models. The GPR model predicts
a unimodal posterior for the mixed data set which covers both systems. Its mean
prediction is approximately the mean of the two regimes and is physically implau-
sible. The DAGP and BNN+LV models yield informative multi-modal predictions
with comparable performance. In our setup, OMGP could not successfully solve
the data association problem and thus does not produce a useful joint posterior.
The OMGP’s inference scheme is tailored to ordered one-dimensional problems.
It does not trivially translate to the 4D cart-pole problem.

As BNN+LV does not explicitly solve the data association problem, the
model does not yield sub-models for the two different systems. Similar results
would be obtained with the MDN and RGPR models, which also cannot be
separated into sub-models. OMGP and DAGP yield such sub-models which can
independently be used for predictions in the default or short-pole systems. Sam-
ples drawn from these models can be used to generate physically plausible trajec-
tories in the respective system. OMGP fails to model the short-pole system but
does yield a viable model for the default system which evolves more slowly due
to higher torque and is therefore easier to learn. In contrast, the two sub-models
inferred by DAGP perform well on their respective systems, showing that DAGP
reliably solves the data association problem and successfully avoids model pollu-
tion by separating the two systems well. Given this separation, shallow and deep
models for the two modes show comparable performance. The more expressive
deep GPs model the default system slightly better while sacrificing performance
on the more difficult short-pole system.

5 Conclusion

We have presented a fully Bayesian model for the data association pronem.
Our model factorises the observed data into a set of independent processes and
provides a model over both the processes and their association to the observed
data. The data association problem is inherently ill-constrained and requires
significant assumptions to recover a solution. In this paper, we make use of
interpretable GP priors allowing global a priori information to be included into
the model. Importantly, our model is able to exploit information both about the
underlying functions and the association structure. We have derived a principled
approximation to the marginal likelihood which allows us to perform inference for
flexible hierarchical processes. In future work, we would like to incorporate the
proposed model in a reinforcement learning scenario where we study a dynamical
system with different operational regimes.
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Abstract. Gaussian processes (GPs) are an elegant Bayesian approach
to model an unknown function. The choice of the kernel characterizes
one’s assumption on how the unknown function autocovaries. It is a core
aspect of a GP design, since the posterior distribution can significantly
vary for different kernels. The spectral mixture (SM) kernel is derived by
modelling a spectral density - the Fourier transform of a kernel - with a
linear mixture of Gaussian components. As such, the SM kernel cannot
model dependencies between components. In this paper we use cross con-
volution to model dependencies between components and derive a new
kernel called Generalized Convolution Spectral Mixture (GCSM). Exper-
imental analysis of GCSM on synthetic and real-life datasets indicates
the benefit of modeling dependencies between components for reducing
uncertainty and for improving performance in extrapolation tasks.

Keywords: Gaussian processes · Spectral mixture · Convolution ·
Dependency · Uncertainty

1 Introduction

Gaussian processes (GPs) provide regression models where a posterior distri-
bution over the unknown function is maintained as evidence is accumulated.
Electronic supplementary material The online version of this chapter (https://
doi.org/10.1007/978-3-030-46147-8 34) contains supplementary material, which is
available to authorized users.

c© The Author(s) 2020
U. Brefeld et al. (Eds.): ECML PKDD 2019, LNAI 11907, pp. 565–581, 2020.
https://doi.org/10.1007/978-3-030-46147-8_34

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-46147-8_34&domain=pdf
https://doi.org/10.1007/978-3-030-46147-8_34
https://doi.org/10.1007/978-3-030-46147-8_34
https://doi.org/10.1007/978-3-030-46147-8_34


566 K. Chen et al.

This allows GPs to learn complex functions when a large amount of evidence is
available, and it makes them robust against overfitting in the presence of little
evidence. GPs can model a large class of phenomena through the choice of the
kernel, which characterizes one’s assumption on how the unknown function auto-
covaries [17,18]. The choice of the kernel is a core aspect of a GP design, since the
posterior distribution can significantly vary for different kernels. In particular,
in [24] a flexible kernel called Spectral Mixture (SM) was defined, by modelings
the kernel’s spectrum with a mixture of Gaussians. An SM kernel can be rep-
resented by a sum of components, and can be derived from Bochner’s theorem
as the inverse Fourier Transform (FT) of its corresponding spectral density. SM
kernels assume mutually independence of its components [24–26].

Here we propose a generalization of SM kernels that explicitly incorporates
dependencies between components. We use cross convolution to model dependen-
cies between components, and derive a new kernel called Generalized Convolu-
tion Spectral Mixture (GCSM) kernel. The number of hyper-parameters remains
equal to that of SM, and there is no increase in computational complexity.
A stochastic variational inference technique is used to perform scalable infer-
ence. In the proposed framework, GCSM without cross components (that is, by
only considering auto-convolution of base components) reduces to the SM kernel.

We assess the performance of GCSM kernels through extensive experiments
on real-life datasets. The results show that GCSM is able to capture depen-
dence structure in time series and multi-dimensional data containing correlated
patterns. Furthermore, we show the benefits of the proposed kernel for reduc-
ing uncertainty, overestimation and underestimation in extrapolation tasks. Our
main contributions can be summarized as follows:

– a new spectral mixture kernel that captures dependencies between compo-
nents;

– two metrics, posterior correlation (see Eq. 10) and learned dependency (see
Eq. 19) to analyze intrinsic dependencies between components in the SM ker-
nel and dependencies captured by our kernel, respectively;

– an extensive comparison between the proposed GCSM and other SM ker-
nels in terms of spectral density, covariance, posterior predictive density and
sampling, as well as in terms of performance gain.

The remainder of this paper is organized as follows. We start by giving a
background on GPs, SM kernels, and we briefly describe related work. Next,
we introduce the GCSM kernel, and discuss the differences between the GCSM
and SM kernels. Then we describe the experimental setting and show results on
synthetic and real-world datasets. We conclude with a summary and discussion
on future work.

2 Background

A GP is any distribution over functions such that any finite set of function
values has a joint Gaussian distribution. A GP model, before conditioning on
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the data, is completely specified by its mean function m(x) = E(f(x)) and
its covariance function (also called kernel) k(x,x′) = cov(f(x), f(x′)) for input
vectors x,x′ ∈ R

P . It is common practice to assume that the mean function is
simply zero everywhere, since uncertainty about the mean function can be taken
into account by adding an extra term to the kernel (cf. e.g. [18]).

The kernel induces a positive definite covariance matrix K = k(X,X) of the
training locations set X. For a regression task [18], by choosing a kernel and
inferring its hyper-parameters Θ, we can predict the unknown function value ỹ∗

and its variance V[ỹ∗] (the uncertainty) for a test point x∗ as follows:

ỹ∗ = k∗�(K + σ2
nI)−1y (1)

V[ỹ∗] = k∗∗ − k∗�(K + σ2
nI)−1k∗ (2)

where k∗∗ = k(x∗,x∗), k∗� is the vector of covariances between x∗ and X,
and y are the observed values at training locations in X. The hyper-parameters
can be optimized by minimizing the Negative Log Marginal Likelihood (NLML)
− log p(y|x, Θ). Smoothness and generalization properties of GPs depend on the
kernel function and its hyper-parameters Θ [18]. In particular, the SM kernel [26],
here denoted by kSM, is derived by modeling the empirical spectral density as
a Gaussian mixture, using Bochner’s Theorem [2,22], resulting in the following
kernel:

kSM(τ) =
Q∑

i=1

wikSMi(τ), (3)

kSMi(τ) = cos
(
2πτ�µi

) P∏

p=1

exp
(−2π2τ2Σi,p

)
, (4)

where τ = x − x′, Q denotes the number of components, kSMi is the i-th
component, P denotes the input dimension, and wi, µi = [μi,1, ..., μi,P ], and
Σi = diag

([
σ2

i,1, ..., σ
2
i,P

])
are the weight, mean, and variance of the i-th compo-

nent in the frequency domain, respectively. The variance σ2
i can be thought of

as an inverse length-scale, μi as a frequency, and wi as a contribution. For SM
kernel, we have k̂SMi(s) = [ϕSMi(s)+ϕSMi(−s)]/2 where ϕSMi(s) = N (s;µi, Σi)
is a symmetrized scale-location Gaussian in the frequency domain.

The SM kernel does not consider dependencies between components, because
it is a linear combination of {kSMi}Q

i=1 (see Eq. 3). Therefore its underlying
assumption is that such components are mutually independent. One should not
confuse the spectral mixture components that make up the spectral density of
the SM kernel with the base components of the Fourier Transform (FT): (1)
FT components are periodic trigonometric functions, such as sine and cosine
functions, while SM kernel components are quasi-periodic Gaussian functions;
(2) FT components are orthogonal (i.e. the product of an arbitrary pair of Fourier
series components is zero) while the product of two arbitrary SM components is
not necessarily equal to zero; (3) the SM component in the frequency domain is a
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Gaussian function covering wide frequency range while an FT component is just
a sharp peak at a single frequency, which is covered by multiple SM components.

3 Related Work

Various kernel functions have been proposed [18], such as Squared Exponential
(SE), Periodic (PER), and general Matérn (MA). Recently, Spectral Mixture
(SM) kernels have been proposed in [24]. Additive GPs have been proposed
in [4], a GP model whose kernel implicitly sums over all possible products of
one-dimensional base kernels. Extensions of these kernels include the spectral
mixture product kernel (SMP) [25] kSMP(τ |Θ) =

∏P
p=1 kSM(τp|Θp), which uses

multi-dimensional SM kernels, and extends the application scope of SM kernels
to image data and spatial time data. Other interesting families of kernels include
non-stationary kernels [7,10,19,21], which are capable to learn input-dependent
covariances between inputs. All these mentioned kernels do not consider depen-
dencies between components. To the best of our knowledge, our proposed kernel
is the first attempt to explicitly model dependencies between components.

The problem of expressing structure present in the data being modeled with
kernels has been investigated also in the context of kernel composition. For
instance, in [3] a framework was introduced for composing kernel structures. A
space of kernel structures is defined compositionally in terms of sums and prod-
ucts of a small number of base kernel structures. Then an automatic search over
this space of kernel structures is performed using marginal likelihood as search
criterion. Although composing kernels allows one to produce kernels combining
several high-level properties, they depend on the choice of base kernel families,
composition operators, and search strategy. Instead, here we directly enhance
SM kernels by incorporating dependency between components.

4 Dependencies Between SM Components

Since the SM kernel is additive, any f ∼ GP(0, kSM) can be expressed as

f =
Q∑

i=1

fi, (5)

where each fi ∼ GP(0, wikSMi) is drawn from a GP with kernel wikSMi. With a
slight abuse of notation we denote by f i the function values at training locations
X, and by f∗

i the function values at some set of query locations X∗.
From the additivity of the SM kernel it follows that the fi’s are a priori

independent. Then, by using the formula for Gaussian conditionals we can give
the conditional distribution of a GP-distributed function f∗

i conditioned on its
sum with another GP-distributed function f j :

f∗
i

∣∣f i+j ∼ N
(
K∗

i
�K−1

i+jf i+j , K∗∗
i − K∗

i
�K−1

i+jK
∗
i

)
(6)



Incorporating Dependencies in Spectral Kernels for Gaussian Processes 569

where f i+j = f i + f j and Ki+j = Ki + Kj . The reader is referred to [3]
(Sect. 2.4.5) for the derivation of these results. The Gaussian conditionals express
the model’s posterior uncertainty about the different components of the signal,
integrating over the possible configurations of the other components.

In particular, we have:

V(f∗
i |f i) = K∗∗

i − K∗
i

�K−1
i K∗

i , (7)

V(f∗
i |f i,f j) = K∗∗

i − K∗
i

�K−1
i+jK

∗
i . (8)

In general V(f∗
i |f i) �= V(f∗

i |f i,f j) when dependencies between components
are present. We can also compute the posterior covariance between the height
of any two functions, conditioned on their sum [3]:

Cov
(
f∗

i ,f
∗
j |f i,f j

)
= −K∗

i
�K−1

i+jK
∗
j . (9)

We define posterior correlation ρ∗
ij as normalized posterior covariance:

ρ∗
ij =

Cov
(
f∗

i ,f
∗
j |f i,f j

)

(
V

(
f∗

i |f i,f j

)
V

(
f∗

j |f i,f j

))1/2
. (10)

We can use ρ∗
ij �= 0 as indicator of statistical dependence between components

i and j. In our experiments, we will use the normalized posterior covariance to
illustrate the presence of dependencies between components in SM kernels for
GPs.

5 Generalized Convolution SM Kernels

We propose to generalize SM kernels by incorporating cross component terms. To
this aim we use versions of the seminal Convolution theorem, which states that
under suitable conditions the Fourier transform of a convolution of two signals is
the pointwise product of their Fourier transforms. In particular, convolution in
the time domain equals point-wise multiplication in the frequency domain. The
construction of our kernel relies on the fact that any stationary kernel k(x,x′)
can be represented as a convolution form on R

P (see e.g. [5,6,13])

k(x,x′) =
∫

RP

g(u) g(τ − u) du = (g ∗ g)(τ). (11)

By applying a Fourier transformation to the above general convolution form of
the kernel we obtain k̂(s) = (ĝ(s))2 in the frequency domain. For each weighted
component wikSMi(τ) in the SM kernel, we can define the function ĝSMi(s) as

ĝSMi(s) =
(
wik̂SMi(s)

)1/2

= wi
1
2
exp

(− 1
4 (s − µi)�Σ−1

i (s − µi)
)

((2π)P |Σi|)1/4
, (12)

which is the basis function of the i-th weighted spectral density. We use cross-
correlation, which is similar in nature to the convolution of two functions.
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The cross-correlation of functions f(τ) and g(τ) is equivalent to the convo-
lution of f(−τ) and g(τ) [1]. we have that the cross-correlation between two
components fi ∼ GP(0, wikSMi) and fj ∼ GP(0, wjkSMj) is as

ki×j
GCSM(τ) = wikSMi(τ) 	 wjkSMj(τ) = F−1

s→τ [wiϕSMi(s) · wjϕSMj(s)] (τ) (13)

where F−1
s→τ , 	, and (−) denote the inverse FT, the cross-correlation operator,

and the complex conjugate operator, respectively. Here ϕSMi(s) = N (s;µi, Σi)
is a symmetrized scale-location Gaussian in the frequency domain (ϕSMi(s) =
ϕSMi(s)). The product of Gaussians ϕSMi(s) and ϕSMj(s) is also a Gaussian.
Therefore, the cross-correlation term in the frequency domain has also a Gaus-
sian form and must be greater than zero, which implies the presence of depen-
dencies between fi and fj .

The cross-correlation term ki×j
GCSM(τ) of our new kernel, obtained as cross-

correlation of the i-th and j-th base components in SM, corresponds to the cross
spectral density term

k̂i×j
GCSM(s) = ĝSMi(s) · ĝSMj(s) (14)

in the frequency domain. From (12) and (14) we obtain

k̂i×j
GCSM(s) = wijaij

exp
(− 1

2 (s − µij)�Σij
−1(s − µij)

)
√

(2π)P |Σij |
. (15)

The parameters for the cross spectral density term k̂i×j
GCSM(s) corresponding to

the cross convolution component ki×j
GCSM(τ) are:

– cross weight: wij = √
wiwj

– cross amplitude: aij =
∣∣∣∣
√

4ΣiΣj

Σi+Σj

∣∣∣∣

1
2

exp
(
− (µi−µj)

�(Σi+Σj)
−1(µi−µj)

4

)

– cross mean: µij = Σiµj+Σjµi

Σi+Σj
;

– cross covariance: Σij = 2ΣiΣj

Σi+Σj

Parameters µij and Σij can be interpreted as frequency and inverse length-
scale of the cross component ki×j

GCSM(τ), respectively. Cross amplitude aij is a
normalization constant which does not depend on s.

Observe that when ĝSMi(s) is equal to ĝSMj(s), wij aij , µij , and Σij reduce to
wi, 1, µi, and Σi, respectively. In this case, the cross spectral density k̂i×j

GCSM(s)
is equal to k̂SMi(s). We can observe that the closer the frequencies µi and µj

are and as closer the scales Σi and Σj between components i and j in the SM
kernel are, the higher the cross convolution components contribution in GCSM
will be.

Using the inverse FT, by the distributivity of the convolution operator and
by the symmetry of the spectral density, we can obtain the GCSM kernel with
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Q (auto-convolution) components as:

kGCSM(τ) =
Q∑

i=1

Q∑

j=1

cij exp
(−2π2τ�Σijτ

)
cos

(
2πτ�µij

)
(16)

where cij = wijaij is the cross contribution incorporating cross weight and cross
amplitude to quantify the dependency between components in the GCSM kernel.
The proof that GCSM is positive semi-definite is given in the Appendix. The
auto-convolution cross-terms in GCSM correspond to the components in SM
since ki×i

GCSM(τ) = kSMi(τ). It is a mixture of periodic cosine kernels and their
dependencies, weighted by exponential weights.

6 Comparisons Between GCSM and SM

Fig. 1. SM and GCSM with Q components. (a) SM models only auto-convolution
between base components. (b) GCSM models both auto- and cross-convolution between
base components.

Figure 1 illustrates the difference between SM and GCSM, where each connec-
tion represents a convolution component of the kernel. SM is an auto-convolution
spectral mixture kernel that ignores the cross-correlation between base compo-
nents. The figure also shows that SM is a special case of GCSM since the latter
involves both cross convolution and auto-convolution of base components. In
GCSM, dependencies are explicitly modeled and quantified. In the experiment
illustrated in Fig. 2, SM and GCSM have the same initial parameters the same
noise term. The observations are sampled from a GP(0,KSM + KGCSM). From
Fig. 2 we can observe clear differences (in terms of amplitude, peak, and trend
from SM) for the kernel functions (SM: top, in dashed red; GCSM: bottom,
in dashed blue). For the corresponding spectral densities, the dependence (in
magenta) modeled by GCSM is also a Gaussian in the frequency domain, which
yields a spectral mixture with different magnitude. The posterior distribution
and sampling are obtained from GCSM and SM conditioned on six observations
(black crosses). One can observe that the predictive distribution of GCSM has
a tighter confidence interval (in blue shadow) than SM (in red shadow).
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Fig. 2. Covariance, spectral density, and posterior functions drawn from GPs with
SM and GCSM kernels conditioning on six samples. In the first row two SM compo-
nents (w1kSM1(τ) and w2kSM2(τ)) correspond to two solid lines (in cyan and black).
In the second row two GCSM components with dependent structures (k1×2

GCSM(τ)) (in
magenta). SM and GCSM plots have the same axes. (Color figure online)

7 Scalable Inference

Exact inference for GPs is prohibitively slow for more than a few thousand
datapoints, as it involves inverting the covariance matrix (K +σ2

nI)−1 and com-
puting the determinant of the covariance |K +σ2

nI|. This issues are addressed by
covariance matrix approximation [16,20,23] and inference approximation [8,9].

Here we employ stochastic variational inference (SVI) which provides a gener-
alized framework for combining inducing points u and variational inference yield-
ing impressive efficiency and precision. Specifically, SVI approximates the true
GP posterior with a GP conditioned on a small set of inducing points u, which as
a set of global variables summarise the training data and are used to perform vari-
ational inference. The variational distribution P (u) = N (u;µu, Σu) gives a vari-
ational lower bound L3(u;µu, Σu), also called Evidence Lower Bound (ELBO)
of the quantity p(y|X). From [9], the variational distribution N (u;µu, Σu) con-
tains all the information in the posterior approximation, which represents the
distribution on function values at the inducing points u. From ∂L3

∂µu
= 0 and

∂L3
∂Σu

= 0, we can obtain an optimal solution of the variational distribution. The
posterior distribution of testing data can be written as

p(f∗|X,y) = N (k∗
uK−1

uuµu, k∗∗ + k∗
u

�(K−1
uuΣuK−1

uu − K−1
uu )k∗

u) (17)

where k∗
u is the GCSM covariance vector between u and test point x∗. The

complexity of SVI is O(m3) where m is the number of inducing points.
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7.1 Hyper-parameter Initialization

In our experiments, we use the empirical spectral densities to initialize the hyper-
parameters, as recommend in [10,24]. Different from these works, we apply a
Blackman window function to the training data to improve the quality of empir-
ical spectral densities, e.g. the signal to noise ratio (SNR), and to more easily
discover certain characteristics of the signal, e.g. magnitude and frequency. We
consider the windowed empirical spectral densities p(Θ|s) as derived from the
data, and then apply a Bayesian Gaussian mixture model (GMM) in order to
get the Q cluster centers of the Gaussian spectral densities [10].

p(Θ|s) =
Q∑

i=1

w̃iN (µ̃i, Σ̃i) (18)

We use the Expectation Maximization algorithm [15] to estimate the parame-
ters w̃i, µ̃i, and Σ̃i. The results are used as initial values of wi, µi, and Σi,
respectively.

8 Experiments

We comparatively assess the performance of GCSM on real-world datasets. Three
of these datasets have been used in the literature of GP methods. The other is
a relative new dataset which we use to illustrate the capability of GPs with
the considered kernels to model irregular long term increasing trends. We use
Mean Squared Error (MSE = 1

n

∑n
i=1

(
yi − ỹi

)2) as the performance metric for
all tasks. We used the 95% confidence interval (instead of, e.g., error bar) to
quantify uncertainty (see Eq. (2)). In addition to these performance metrics, we
also consider the posterior correlation ρ∗

ij (see Eq. (10)) to illustrate the underly-
ing dependency between SM components. Moreover, to illustrate the dependency
between components captured by the cross-components in our GCSM kernel, we
use the normalized cross-correlation term:

γij(τ) =
ki×j
GCSM(τ)√

kSMi(τ)kSMj(τ)
(19)

We call γij learned dependency between component i and j. Note that γij = 1
when i = j. In our experiments we will analyze dependency between components
in SM kernel for GPs as expressed by the posterior covariance, and dependency
modeled by GCSM kernels for GPs as expressed by γij ’s. We compare GCSM
with ordinary SM for prediction tasks on four real-life datasets: monthly aver-
age atmospheric CO2 concentrations [12,18], monthly ozone concentrations, air
revenue passenger miles, and the larger multidimensional alabone dataset.

As baselines for comparison we consider the popular kernels implemented in
the GPML toolbox [18]: linear with bias (LIN), SE, polynomial (Poly), PER,
rational quadratic (RQ), MA, Gabor, fractional Brownian motion covariance
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(FBM), underdamped linear Langevin process covariance (ULL), neural net-
work (NN) and SM kernels. For the considered multidimensional dataset, we use
automatic relevance determination (ARD) for other kernels to remove irrelevant
input. FBM and ULL kernels are only available for time series type of data, thus
they are not applied to this dataset. We use the GPML toolbox [17] and GPflow
[14] for ordinary and scalable inference, respectively. For GCSM, we calculate
the gradient of the parameters using an analytical derivative technique. In all
experiments we use the hyper-parameter initialization previously described for
SM and GCSM kenels.

8.1 Compact Long Term Extrapolation

Fig. 3. Performance of SM (left) and GCSM (right) on the CO2 concentration dataset.
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Fig. 4. Left: posterior correlations ρ∗
ij in SM; Right: learned dependencies γij in GCSM.

The monthly average atmospheric CO2 concentration dataset (cf. e.g. [18])
is a popular experiment which shows the advantage and flexibility of GPs due to
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multiple patterns with different scales in the data, such as long-term, seasonal
and short-term trends. The dataset was collected at the Mauna Loa Observatory,
Hawaii, between 1958 and 2003. We use 40% of the location points as training
data and the rest 60% as testing data. For both GCSM and SM we consider
Q = 10 components. The Gaussian mixture of the empirical spectral densities is
considered to initialize the hyper-parameters.

Figure 3(a) shows that GCSM (in dashed blue) is better than ordinary SM
(in red) in terms of predictive mean and variance. Moreover, GCSM yields a
smaller confidence interval than SM. Unlike SM, GCSM does not overestimate
the long-term trend. As for the analysis of the posterior correlation and learned
dependency, evidence of posterior positive and negative correlations ρ∗

ij can be
observed for SM components (3, 4, 7) (left subplot in Fig. 4). These posterior
correlations have been used for prediction (see Supplementary material). The
right plot in Fig. 4 shows clear evidence of learned dependency γij for GCSM
components (2, 3, 4). GCSM and SM are optimized independently, so component
identifiers in the figures do not necessarily correspond to each other. Observe that
plots for GCSM kernel with i = j (right subplot) show stripes because of the
normalization term in Eq. (19).

8.2 Modeling Irregular Long Term Decreasing Trends

Fig. 5. Performance of SM (left) and GCSM (right) on the ozone concentration dataset.

We consider the monthly ozone concentration dataset (216 values) collected
at Downtown L. A. from time range Jan 1955–Dec 1972. This dataset has dif-
ferent characteristics than the CO2 concentration one, namely a gradual long
term downtrend and irregular peak values in the training data which are much
higher than those in the testing data. These characteristics make extrapolation a
challenging task. Here we use the first 60% of observations for training, and the
rest (40%) for testing (shown in black and green in Fig. 5, respectively). Again
we consider Q = 10 components for both kernels.
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Fig. 6. Left: posterior correlations ρ∗

ij in SM; Right: learned dependencies γij in GCSM.

Figure 5 shows that the ozone concentration signal has a long term decreasing
tendency while the training part has a relatively stable evolution. Here SM fails
to discover such long term decreasing tendency and overestimates the future
trend with low confidence. Instead, GCSM is able to confidently capture the
long term decreasing tendency. These results substantiate the beneficial effect of
using cross-components for correcting overestimation and for reducing predictive
uncertainty.

Results in Table 1 show that on this dataset GCSM consistently achieves a
lower MSE compared with SM and other baselines.

Figure 6 shows posterior correlation (left plot) and learned dependency (right
plot), The texture of the posterior correlation ρ∗

ij among SM components (2, 6,
7) demonstrates a more complicated posterior correlation between these com-
ponents than that of the previous experiment. The learned dependency γij is
clearly visible between components (2, 3, 7).

8.3 Modeling Irregular Long Term Increasing Trends

In this experiment we consider another challenging extrapolation task, using the
air revenue passenger miles1 with time range Jan 2000–Apr 2018, monthly col-
lected by the U.S. Bureau of Transportation Statistics. Given 60% recordings
at the beginning of the time series, we wish to extrapolate the remaining obser-
vations (40%). In this setting we can observe an apparent long term oscillation
tendency in the training observations which is not present in the testing data. As
shown in Fig. 7, even if at the beginning (in 2001) there seems to be a decreasing
trend due to 9/11 attack and since 2010 was known as a disappointing year for
safety, there is a positive trend as a result of a boosting of the airline market
and extensive globalization.

1 https://fred.stlouisfed.org/series/AIRRPMTSI.

https://fred.stlouisfed.org/series/AIRRPMTSI
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Fig. 7. Performance of SM (left) and GCSM (right) on air revenue passenger miles.
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Fig. 8. Left: posterior correlations ρ∗
ij in SM; Right: learned dependencies γij in GCSM.

In order to show the need for GCSM in a real-life scenarios, we consider the
air revenue passenger miles dataset that contains a fake long term oscillation
tendency happened in the training data but not in the testing data. The air rev-
enue passenger miles2 with time range Jan 2000–Apr 2018 was monthly collected
by U.S. Bureau of Transportation Statistics.

Results in Table 1 show that on this dataset GCSM consistently achieves a
lower MSE compared with SM and other baselines. In particular, kernels such
as SE, Periodic and Matérn 5/2 have a poor performance on this extrapolation
task.

In Fig. 8, the left plot shows the posterior correlation ρ∗
ij among SM com-

ponents (2, 5, 10), and the right subplot the learned dependency γij between
components (1, 3, 9).

2 https://fred.stlouisfed.org/series/AIRRPMTSI.

https://fred.stlouisfed.org/series/AIRRPMTSI


578 K. Chen et al.

8.4 Prediction with Large Scale Multidimensional Data

After comparing GCSM and SM on extrapolation tasks on time series with
diverse characteristics, we investigate comparatively its performance on a pre-
diction task using a large multidimensional dataset, the abalone dataset. The
dataset consists of 4177 instances with 8 attributes: Sex, Length, Diameter,
Height, Whole weight, Shucked weight, Viscera weight, and Shell weight. The
goal is to predict the age of an abalone from physical measurements. Abalone’s
age is measured by cutting the shell through the cone, staining it, and counting
the number of rings through a microscope. Thus the task is to predict the number
of rings from the above mentioned attributes. We use the first 3377 instances as
training data and the remaining 800 as testing data. For both GCSM and SM we
used Q = 5 components. We use the windowed empirical density to initialize the
hyper-parameters, as described in Sect. 7.1. Here components are multivariate
Gaussian distributions in the frequency domain.

Results in Table 1 show that also on this type of task GCSM achieves lower
MSE than SM.

Table 1. Performances between GCSM and other kernels. Left: MSE, right: NLML.

Kernel CO2 Ozon Air Abalone Kernel CO2 Ozon Air Abalone

LIN 39.09 1.86 57.64 10.93 LIN 451.38 235.68 462.01 24261.35

SE 128502.50 10.40 4967.18 8.14 SE 399.90 208.53 456.68 21246.86

Poly 132369.70 11.36 5535.81 6.30 Poly 1444.80 375.86 735.39 17964.17

PER 53.37 3.87 276.07 7.98 PER 459.53 236.71 456.38 18775.23

RQ 985.39 1.86 168.33 5.38 RQ 222.17 196.96 430.86 15988.48

MA 110735.30 9.83 4711.33 7.52 MA 278.33 208.17 451.03 20288.56

Gabor 131931.30 2.09 5535.84 4.80 Gabor 1444.62 240.55 735.41 15400.84

FBM 193.18 2.56 172.01 –.– FBM 910.61 202.42 457.792 –.–

ULL 117500.40 9.34 405.07 –.– ULL 819.09 206.85 441.31 –.–

NN 326.81 1.69 116.66 5.60 NN 460.73 225.46 449.31 17695.80

SM 9.36 0.97 36.28 3.59 SM 62.09 160.75 328.56 8607.99

GCSM 1.19 0.59 10.02 3.29 GCSM 64.34 160.48 300.69 8566.35

SM and GCSM kernels achieve comparable performance in terms of NLML
(see right part of Table 1). This seems surprising, given the smaller uncertainty
and MSE results obtained by GCSM. However, note that NLML is the sum of
two terms (and a constant term that is ignored): a model fit and a complexity
penalty term. The first term is the data fit term which is maximized when the
data fits the model very well. The second term is a penalty on the complexity of
the model, i.e. the smoother the better. When Optimizing NLML finds a balance
between the two and this changes with the data observed.

Overall, results indicate the beneficial effect of modeling directly dependen-
cies between components, as done in our kernel.
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9 Conclusion

We proposed the generalized convolution spectral mixture (GCSM) kernel, a
generalization of SM kernels with an expressive closed form to modeling depen-
dencies between components using cross convolution in the frequency domain.

Experiments on real-life datasets indicate that the proposed kernel, when
used in GPs, can identify and model the complex structure of the data and be
used to perform long-term trends forecasting. Although here we do not focus on
non-stationary kernels, GCSM can be transformed into a non-stationary GCSM,
through parameterizing weights wi(x), means μi(x), and σi(x) as kernel matrices
by means of a Gaussian function. Future work includes the investigation of more
generalized non-stationary GCSM.

An issue that remains to be investigated is efficient inference. This is a core
issue in GP methods which needs to be addressed also for GPs with GCSM
kernels. Lev́y process priors as proposed in [11] present a promising approach
for tackling this problem, by regularizing spectral mixture for automatic selection
of the number of components and pruning of unnecessary components.

Acknowledgements. Part of this work was supported by the Strategic Priority
Research Program of the Chinese Academy of Sciences, Grant No. XDA19030301 and
Shenzhen Discipline Construction Project for Urban Computing and Data Intelligence.
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Abstract. We propose deep convolutional Gaussian processes, a deep
Gaussian process architecture with convolutional structure. The model
is a principled Bayesian framework for detecting hierarchical combina-
tions of local features for image classification. We demonstrate greatly
improved image classification performance compared to current convo-
lutional Gaussian process approaches on the MNIST and CIFAR-10
datasets. In particular, we improve state-of-the-art CIFAR-10 accuracy
by over 10% points.

Keywords: Gaussian processes · Convolutions · Variational inference

1 Introduction

Gaussian processes (GPs) are a family of flexible function distributions defined
by a kernel function [25]. The modeling capacity is determined by the chosen
kernel. Standard stationary kernels lead to models that underperform in prac-
tice. Shallow – or single layer – Gaussian processes are often sub-optimal since
flexible kernels that would account for non-stationary patterns and long-range
interactions in the data are difficult to design and infer [26,35]. Deep Gaus-
sian processes boost performance by modelling networks of GP nodes [8,30]
or by mapping inputs through multiple Gaussian process ‘layers’ [5,27]. While
more flexible and powerful than shallow GPs, deep Gaussian processes result in
degenerate models if the individual GP layers are not invertible, which limits
their potential [7].

Convolutional neural networks (CNN) are a celebrated approach for image
recognition tasks with outstanding performance [21]. These models encode a
hierarchical translation-invariance assumption into the structure of the model
by applying convolutions to extract increasingly complex patterns through the
layers.

While neural networks have achieved unparalleled results on many tasks,
they have their shortcomings. Effective neural networks require large number
of parameters that require careful optimisation to prevent overfitting. Neural
networks can often leverage a large number of training data to counteract this
problem. Developing methods that are better regularized and can incorporate
prior knowledge would allow us to deploy machine learning methods in domains
c© Springer Nature Switzerland AG 2020
U. Brefeld et al. (Eds.): ECML PKDD 2019, LNAI 11907, pp. 582–597, 2020.
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where massive amounts of data is not available. Conventional neural networks do
not provide reliable uncertainty estimates on predictions, which are important
in many real world applications.

The deterministic CNN’s have been extended into the probabilistic domain
with weight uncertainties [3], while combinations of CNN’s and Gaussian pro-
cesses have been shown to improve calibration of the prediction uncertainty
[31]. In deep kernel learning (DKL) a feature-extracting deep neural network is
stacked with a Gaussian process predictor layer [38], learning the neural network
weights by variational inference [37]. Neural networks are known to converge to
Gaussian processes at the limit of infinite layer width [19,20,34], and similar
correspondence have been shown between CNN’s and Gaussian processes as well
[10].

Recently van der Wilk et al. proposed the first convolution-based Gaussian
process for images with promising performance [33]. They proposed a shallow
weighted additive model where Gaussian process responses over image sub-
patches are aggregated for image classification. The convolutional Gaussian pro-
cess is unable to model pattern combinations due to its restriction to a single
layer. Very recently convolutional kernels have been applied in a deep Gaus-
sian process, however with little improvement upon the shallow convolutional
GP model [18]. The translation insensitive convolutional kernel adds increased
flexibility by location-dependent convolutions for both shallow and deep models
[6]1.

In this paper we propose a deep convolutional Gaussian process, which itera-
tively convolves several GP functions over an image. We learn multimodal prob-
abilistic representations that encode combinations of increasingly complex pat-
tern combinations as a function of depth. Our model is a fully Bayesian kernel
method with no neural network component. On the CIFAR-10 dataset, deep
convolutions increase the current state-of-the-art GP predictive accuracy from
65% to 76%. We show that our GP-based model performs better than a CNN
model with similar depth, and provides better calibrated and more consistent
uncertainty estimates on predictions.

2 Background

In this section we provide an overview of the main methods our work relies upon.
We consider supervised image classification problems with N examples X =
{xi}N

i=1 each associated with a label yi ∈ Z. We assume images x ∈ R
W×H×C

as 3D tensors of size W ×H ×C over C channels, where RGB color images have
C = 3 color channels.

1 We note that after placing our current manuscript in arXiv in October 2018, a
subsequent arXiv manuscript has already extended the proposed deep convolution
model by introducing location-dependent kernel [6].
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2.1 Discrete Convolutions

A convolution as used in convolutional neural networks takes a signal, two dimen-
sional in the case of an image, and a tensor valued filter to produce a new signal
[11]. The filter is moved across the signal and at each step taking a dot product
with the corresponding section in the signal. The resulting signal will have a
high value where the signal is similar to the filter, zero where it’s orthogonal to
the filter and a low value where it’s very different from the filter. A convolution
of a two dimensional image x and a convolutional filter g is defined:

(x ∗ g)[i, j] =
W−1∑

w=0

H−1∑

h=0

x[i + w, j + h]g[w, h] (1)

x[i, j] ∈ R
3 and g is in R

H×W×3. Here H and W define the size of the convo-
lutional filter. Typical values could be H = W = 5 or H = W = 3. Typically
multiple convolutional filters are used, each convolved over the input to produce
several output signals which are stacked together.

By default the convolution is defined over every location of the image. Some-
times one might use only every other location. This is referred to as the stride.
A stride of 2 means only every other location i, j is taken in the output.

2.2 Primer on Gaussian Processes

Gaussian processes are a family of Bayesian models that characterize distribu-
tions of functions [24]. A zero-mean Gaussian process prior on latent function
f(x) ∈ R,

f(x) ∼ GP(0,K(x,x′)) (2)

defines a prior distribution over function values f(x) with mean and covariance:

E[f(x)] = 0 (3)
cov[f(x), f(x′)] = K(x,x′) (4)

A GP prior defines that for any collection of n inputs X = (x1, . . . ,xn)T , the
corresponding function values

f = (f(x1), . . . , f(xn))T ∈ R
n

follow a multivariate Normal distribution

f ∼ N (0,K) (5)

K = (K(xi,xj))n
i,j=1 ∈ R

n×n is the kernel matrix encoding the function covari-
ances. A key property of GPs is that output predictions f(x) and f(x′) corre-
late according to the similarity of the inputs x and x′ as defined by the kernel
K(x,x′) ∈ R.
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Low-rank Gaussian process functions are constructed by augmenting the
Gaussian process with a small number M of inducing variables uj = f(zj),
uj ∈ R and zj = R

d to obtain the Gaussian function posterior

f |u,Z ∼ N ( KXZK−1
ZZu︸ ︷︷ ︸

predictive mean

,KXX − KXZK−1
ZZKZX︸ ︷︷ ︸

predictive covariance

) (6)

where KXX ∈ R
n×n is the kernel between observed image pairs X, the kernel

KXZ ∈ R
n×M is between observed images X and inducing images Z, and kernel

KZZ ∈ R
m×m is between inducing images Z [28].

2.3 Variational Inference

Exact inference in a GP entails optimizing the evidence p(y) = Ep(f)[p(y|f)]
which has a limiting cubic complexity O(n3) and is in general intractable. We
tackle this restriction by applying stochastic variational inference (SVI) [13].

We define a variational approximation

q(u) = N (u|m,S) (7)

q(f) =
∫

p(f |u)q(u)du

= N (f |Am,Kff + A(S − Kzz)AT )

A = KfzK−1
zz (8)

with free variational parameters m ∈ R
m and a matrix S � 0 ∈ R

m×m to
be optimised. It can be shown that minimizing the Kullback-Leibler divergence
KL[q(u)||p(u|y)] between the approximative posterior q(u) and the true poste-
rior p(u|y) is equivalent to maximizing the evidence lower bound (ELBO) [2]

L =
n∑

i=1

Eq(fi)[log p(yi|fi)] − KL[q(u)||p(u)] (9)

The variational expected likelihood in L can be computed using numerical
quadrature approaches [13].

3 Deep Convolutional Gaussian Process

In this section we introduce the deep convolution Gaussian process. We stack
multiple convolutional GP layers followed by a GP classifier with a convolutional
kernel.
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3.1 Convolutional GP Layers

We assume an image representation f �
c ∈ R

W�×H� of width W� and height H�

pixels at layer �. We collect C� channels into a 3D tensor f � = (f �
1 , . . . , f

�
C) ∈

R
H�×W�×C� , where the channels are along the depth axis. The input image f0 = x

is the W0 × H0 × C0 sized representation of the original image with C color
channels. For instance MNIST images are of size W = H = 28 pixels and have
a single C = 1 grayscale channel.

We decompose the 3D tensor f � into patches f �[p] ∈ R
w�×h�×C� containing

all depth channel. h� and w� are the height and width of the image patch at
layer �. We index patches by p ∈ Z < H�W�. H� and W� denotes the height and
width of the output of layer �. We compose a sequence of layers f � that map the
input image xi to the label yi:

xi = f0︸ ︷︷ ︸
W0×H0×3

g1

−→ f1︸︷︷︸
W1×H1×C1

· · · gL

−−→ fL
︸︷︷︸
Cy

≈ yi︸︷︷︸
{0,1}Cy

. (10)

Layers f � with � ≥ 1 are random variables with probability densities p(f �).

Fig. 1. A three layer deep convolutional gaussian process. First we construct an inter-
mediate probabilistic representation of size W1 ×H1 × C1. We map this probabilistic
representation through another convolutional GP layer yielding a representation of size
W2 ×H2 ×C2. Finally, we classify using a GP with a convolutional kernel by summing
over patches of the intermediate representation.

We construct the layers by applying convolutions of patch response functions
g�

c : Rw�−1×h�−1×C�−1 → R over the input one patch at a time producing the
next layer representation:

f �[p] =

⎡

⎢⎣
g�
1(f

�−1[p])
...

g�
C(f �−1[p])

⎤

⎥⎦ ∈ R
C (11)
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Each individual patch response g�(f �−1[p]) is a 1×1×C pixel stack. By repeating
the patch responses over the P�−1 = W�×H� patches we form a new W�×H�×C�

representation f � = (f �[1], . . . , f �[P�−1]) (See Fig. 1).
We model the C patch responses at each of the first L − 1 layers as indepen-

dent GPs with shared prior

g�
c(f

�−1[p]) ∼ GP(
0, k(f �−1[p], f ′�−1[p′])

)
(12)

for c = 1, . . . , C. The kernel k(·, ·) measures the similarity of two image patches.
The standard property of Gaussian processes implies that the functions g�

c output
similar responses for similar patches.

Fig. 2. UMAP embeddings [23] of the CIFAR-10 images and representations after each
layer of the deep convolutional GP model. The colors correspond to different classes in
the classification problem.

Fig. 3. UMAP embeddings of randomly selected patches of the input to the layer and
learned inducing points of the fitted three layer model on CIFAR-10.

For example, on MNIST where images have size 28 × 28 × 1 using patches
of size 5 × 5 × 1, a stride of 1 and C = 10 patch response functions, we obtain
a representation of size 24 × 24 × 10 after the first layer (height and width
W1 = H1 = (28 − 5)/1 + 1). This is passed on to the next layer which produces
an output of size 20 × 20 × 10.

We follow the sparse GP approach of [13] and augment each patch response
function by a set of M inducing patches z� in the patch space R

h�−1×w�−1×C�−1
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with corresponding responses u�
c. Each layer contains M� inducing patches Z� =

(z�
1, . . . , z

�
M ) which are shared among the C patch response functions within

that layer. Each patch response function has separate inducing responses u�
c =

(u�
c1, . . . , u

�
cM ) which associate outputs to each inducing patch. We collect these

into a matrix U�.
The conditional patch responses are

g�
c|f �−1,u�

c,Z
� ∼ N (µ, Σ)

µ = Kf�−1Z�K−1
Z�Z�u�

c

Σ = Kf�−1f�−1 − Kf�−1Z�K−1
Z�Z�KZ�f�−1 , (13)

where the covariance between the input and the inducing variables are

K(f �−1,Z�) =

⎡

⎢⎣
k(f �−1[1], z�

1) · · · k(f �−1[1], z�
M )

...
. . .

...
k(f �−1[P ], z�

1) · · · k(f �−1[P ], z�
M )

⎤

⎥⎦

a matrix of size P� × M� that measures the similarity of all patches against all
filters z�. We set the base kernel k to be the RBF kernel. For each of the C patch
response functions we obtain one output image channel.

(a) Layer 1 (b) Layer 2 (c) Layer 3

Fig. 4. Example inducing points Z pictured from all three layers from the CIFAR-10
experiment. The first layer inducing points channels correspond to color channels and
are thus in color. For layers 2 and 3 only a single channel is visualized.

The conditional for each layer can be evaluated in O(P � · N · (M �)2), where
N is the data points being evaluated, P � the amount of patches � and M � the
amount of inducing points at layer �.

In contrast to neural networks, the Gaussian process convolutions induce
probabilistic layer representations. The first layer p(f1|f0,U1,Z1) is a Gaussian
directly from (13), while the following layers follow non-Gaussian distributions
p(f �+1|U�+1,Z�+1) since we map all realisations of the random input f � into
Gaussian outputs f �+1.
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3.2 Final Classification Layer

As the last layer of our model we aggregate the output of the convolutional layers
using a GP with a weighted convolutional kernel as presented by [33]. We set a
GP prior on the last layer patch response function

gL
(
fL−1[p]

) ∼ GP(0,K(fL−1[p], f ′L−1[p′])). (14)

with weights for each patch response. We get an additive GP

fL = gL(fL−1) =
P∑

p=1

wpg
L(fL−1[p])

∼ GP
(

0,
P∑

p=1

P∑

p′=1

wpwp′k(fL−1[p], f ′L−1[p′])

︸ ︷︷ ︸
K(x,x′)

)
,

where the kernel K(fL−1, f ′L−1) = wTKw is the weighted average patch simi-
larity of the final tensor representation fL−1. w ∈ R

P . The matrix K collects all
patch similarities K(fL−1[p], f ′L−1[p′]). The last layer has one response GP per
output class c.

As with the convolutional layers the inducing points live in the patch space
of instead of in the image space. The inter-domain kernel is

K(fL−1, zL) =
P∑

p=1

wpK(x[p], zL) (15)

= wTk(fL−1, zL). (16)

The kernel k(fL−1, zL) ∈ R
P collects all patch similarities of a single image fL−1

compared against inducing points zL. The covariance between inducing points
is simply K(zL, z′L). We have now defined all kernels necessary to evaluate and
optimize the variational bound (9).

3.3 Doubly Stochastic Variational Inference

The deep convolutional Gaussian process is an instance of a deep Gaussian pro-
cess with the convolutional kernels and patch filter inducing points. We follow
the doubly stochastic variational inference approach [27] for model learning. The
key idea of doubly stochastic inference is to draw samples from the Gaussian

f̃ �
i ∼ p(f �

i |f̃ �−1
i ,U�,Z�) (17)

through the deep system for a single input image xi.
The inducing points of each layer are independent. We assume a factorised

likelihood

p(Y|FL) =
N∏

i=1

p(yi|fL
i ) (18)
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and a true joint density

p({f �,U�}�) =
L∏

�=1

p(f �|f �−1,U�,Z�)p(U�) (19)

p(U�) =
C∏

c=1

N (u�
c|0,KZ�Z�). (20)

The evidence framework [20] considers optimizing the evidence,

p(Y) = Ep(F)p(Y|F). (21)

Following the variational approach we assume a variational joint model

q(U�) =
C∏

c=1

N (u�
c|m�

c,S
�
c) (22)

q
({f �,U�}�

)
=

L∏

�=1

p(f �|f �−1,U�,Z�)q(U�). (23)

The distribution of the layer predictions f � depends on current layer inducing
points U�,Z� and representation f �−1 at the previous layer. By marginalising the
variational approximation q(U�) we arrive at the factorized variational posterior
of the last layer for individual data point xi,

q(fL
i ; {m�,S�,Z�}�) =

L−1∏

�=1

∫
q(f �

i |f �−1
i ,ml,S�,Z�)df �

i , (24)

where we integrate all paths (f1i , . . . , fL
i ) through the layers defined by the filters

Z�, and the parameters m�,S�. Finally, the doubly stochastic evidence lower
bound (ELBO) is

log p(Y) ≥
N∑

i=1

Eq(fL
i ;{m�,S�,Z�}�)[log p(yi|fL

i )] (25)

−
L∑

�=1

KL[q(U�)||p(U�)].

The variational expected likelihood is computed using a Monte Carlo approxima-
tion yielding the first source of stochasticity. The whole lower bound is optimized
using stochastic gradient descent yielding the second source of stochasticity.

The Fig. 2 visualises representations of CIFAR-10 images over the deep con-
volutional GP model. Figure 3 visualises the patch and filter spaces of the three
layers, indicating high overlap. Finally, Fig. 4 shows example filters z learned on
the CIFAR-10 dataset, which extract image features.
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Optimization. All parameters {m�}L
�=1, {S�}L

�=1, {Zl}L
�=1, the base kernel RBF

lengthscales and variances and the patch weights for the last layer are learned
using stochastic gradient Adam optimizer [15] by maximizing the likelihood lower
bound. We use one shared base kernel for each layer.

3.4 Stochastic Gradient Hamiltonian Monte Carlo

An alternative to the variational posterior approximations q(u) is to use Markov
Chain Monte Carlo (MCMC) sampling of the true posterior p(u|y), where we
denote with u = {U�}L

�=1 all inducing values of all layers. We use the Stochastic
Gradient Hamiltonian Monte Carlo (SG-HMC) to produce samples from the true
posterior [4]. The SG-HMC can reveal the possibly multimodal and non-Gaussian
inducing distributions, while the variational approximation is usually limited to
Gaussian approximations. We follow the SG-HMC approach introduced for deep
Gaussian processes [12].

In Hamiltonian Monte Carlo an auxiliary variable v is introduced and we
sample from the augmented posterior

p(u,v|y) ∝ exp
(

−U(u) − 1
2
vM−1v

)
(26)

U(u) = − log p(u|y), (27)

which corresponds to a Hamiltonian with U representing potential energy and v
representing kinetic energy. HMC requires computation of the gradient ∇U(u),
which is prohibitive for large datasets. In Stochastic Gradient HMC the gradients
can be computed over minibatches of data, resulting in update equations

Δu = εM−1v (28)

Δv = −ε∇U(u) − εCM−1v + N (0, 2ε(C − B̂)), (29)

where C is the friction term, ε is the stepsize, M is the mass matrix, and B̂ is
the Fisher information matrix. We use an auto-tuning approach of [29] to select
these parameters, following [12]. To compute ∇U(u) we use stochastic samples
fL
(s) ∼ p(fL) to approximate the final layer predictive distribution p(fL). Finally,

to also optimize the hyperparameters, we use the Monte Carlo Expectation Max-
imization (MCEM) technique [32], following [12].

4 Experiments

We compare our approach on the standard image classification benchmarks of
MNIST and CIFAR-10 [17], which have standard training and test folds to facil-
itate direct performance comparisons. MNIST contains 60,000 training exam-
ples of 28 × 28 sized grayscale images of 10 hand-drawn digits, with a sepa-
rate 10,000 validation set. CIFAR-10 contains 50,000 training examples of RGB
colour images of size 32 × 32 from 10 classes, with 5,000 images per class. The
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Table 1. Performance on MNIST and CIFAR-10. Our method, the deep convolutional
Gaussian process, is denoted DeepCGP. Asterisk (∗) indicates results taken from the
respective publications, which are directly comparable due to standard data folds.
Other results are run using our implementation. The neural network based results are
listed for completeness. The four layer CNN has two 5 × 5 convolutional layers (64
filters, strides 2 and 1), two fully connected layers and ReLu activations.

Gaussian process models Layers Inducing points Test accuracy Reference

MNIST CIFAR-10

RBF AutoGP 1 200 98.29(∗) 55.05(∗) [16]

Multi-channel conv GP 1 1000 98.83(∗) 64.6(∗) [33]

DeepCGP 1 384 98.38 58.65 Current work

DeepCGP 2 2× 384 99.24 73.85 ”

DeepCGP 3 3× 384 99.44 75.89 ”

Neural network models Layers # params

Four layer CNN 4 1.7M 98.53 63.54

Deep kernel learning 5 2.3M .. 4.6M 99.2(∗) 77.0(∗) [37]

DenseNet 250 15.3M N/A 94.81(∗) [14]

images represents objects such as airplanes, cats or horses. There is a separate
validation set of 10,000 images. We preprocess the images for zero mean and
unit variance along the color channel.

We compare our model primarily against the original shallow convolutional
Gaussian process [33], which is currently the only convolutional Gaussian process
based image classifier. We also consider the performance of the hybrid neural
network GP approach [37]. For completeness we report the performance of a
state-of-the-art CNN method DenseNet [14].

Implementation. Our TensorFlow [1] implementation is compatible with the
GPflow framework [22] and freely available online2. We leverage GPU accelerated
computation, 64bit floating point precision, and employ a minibatch size of 32.
We start the Adam learning rate at 0.01 and multiply it by 0.1 every 100,000
optimization steps until the learning rate reaches 1e-5. We use M = 384 inducing
points at each layer. We set a stride of 2 for the first layer and 1 for all other
layers. The convolutional filter size is 5× 5 on all layers except for the first layer
on CIFAR-10 where it is 4 × 4. This is to make use of all the image pixels using
a stride of 2.

Parameter Initialization. Inducing points Z are initialized by running k-means
with M clusters on image patches from the training set. The variational means m
are initialised to zero. S are initialised to a tiny variance kernel prior 10−5 ·KZZ

following [27], except for the last layer where we use KZZ. For models deeper
than two layers, we employ iterative optimisation where the first L − 2 layers

2 https://github.com/kekeblom/DeepCGP.

https://github.com/kekeblom/DeepCGP
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Fig. 5. Reliability curves with 5 bins for the 3 layer DeepCGP model and the 4 layer
CNN on the CIFAR-10 test set. For the DeepCGP model, we average the probabilities
over 25 samples of the output. We cast the classification problem as a binary one-vs-rest
classification problem by summing the probabilities of the negative classes obtaining
one calibration curve for each image class.

and layer L are initialised to the learned values of an L − 1 model, while the
one additional layer added before the classification layer is initialised to default
values.

4.1 MNIST and CIFAR-10 Results

Table 1 shows the classification accuracy on MNIST and CIFAR-10. Adding
a convolutional layer to the weighted convolutional kernel GP improves perfor-
mance on CIFAR-10 from 58.65% to 73.85%. Adding another convolutional layer
further improves the accuracy to 75.9%. On MNIST the performance increases
from 1.42% error to 0.56% error with the three-layer deep convolutional GP.

The deep kernel learning method uses a fully connected five-layer DNN
instead of a CNN, and performs similarly to our model, but with much more
parameters.

Figure 6 shows a single sample for 10 image class examples (rows) over the
10 patch response channels (columns) for the first layer (panel a) and second
layer (panel b). The first layer indicates various edge detectors, while the second
layer samples show the complexity of pattern extraction. The row object classes
map to different kinds of representations, as expected.

Figure 2 shows UMAP embedding [23] visualisations of the image space of
CIFAR-10 along with the structure of the layer representations f �

i for three
layers. The original images do not naturally cluster into the 10 classes (a). The
DeepCGP model projects the images to circle shape with some class coherence in
the intermediate layers, while the last layer shows the classification boundaries.
An accompanying Fig. 4 shows the learned inducing filters and layer patches on
CIFAR-10. Some regions of the patch space are not covered by filters, indicating
uninformative representations.

Figure 7 shows the effect of different channel numbers on a two layer model.
The ELBO increases up to C = 16 response channels, while starts to decrease
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(a) Samples from the first layer. (b) Samples from the second layer.

Fig. 6. (a) and (b) show samples the first two layers of the three layer model. Rows
corresponds to different test inputs and columns correspond to different patch response
functions, which are realisations of the layer GPs. The first column shows the input
image. The first layer seems to learn to detect edges, while the second layer appears to
learn more abstract correlations of features and the representation produced no longer
resembles the input image, indicating high-level feature extraction.

Fig. 7. Expected evidence lower bound computed on the training set using a two layer
model for different amounts of patch response functions. The models with 10 and
16 patch response functions seem to perform the best. Models with one or two patch
response functions struggle to explain the data even though they have the same amount
of inducing points.

with C = 32 channels. A model with approximately C = 10 channels indicates
best performance.

Figure 5 shows that the deep convolutional GP model has better calibra-
tion than a neural CNN model. CNN model results in badly calibrated class
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probabilities especially between 0.2 and 0.8 prediction probability. The GP based
model has more consistent calibration over the probability range.

5 Conclusions

We present a new type of deep Gaussian process with convolutional structure.
The convolutional GP layers gradually linearize the data using multiple filters
with nonlinear kernel functions. Our model greatly improves test results on the
compared classification benchmarks compared to other GP-based approaches,
and approaches the performance of hybrid neural-GP methods. The performance
of our model seems to improve as more layers are added. We leave experimenting
with deeper models for future work.

Convolutional neural networks have been shown to provide unreliable uncer-
tainty estimates [31]. We showed that our model provides more accurate class
probability estimates than an equivalent deep convolutional neural network.

Deep Gaussian process models lead to degenerate covariances, where each
layer in the composition reduces the rank or degrees of freedom of the system
[7]. In practice the rank reduces via successive layers mapping inputs to iden-
tical values, effectively merging inputs and resulting in rank-reducing covari-
ance matrix with repeated rows and columns. To counter this pathology rank-
preserving deep model was proposed by pseudo-monotonic layer mappings with
GP priors f(x) ∼ GP(x, k) with identity means E[f(x)] = x [27]. In contrast
we employ zero-mean patch response functions. Remarkably we do not experi-
ence rank degeneracy, possibly due to the multiple channel mappings and the
convolution structure.

The convolutional Gaussian process is still limited by the computationally
expensive inference. The SG-HMC improves over variational inference, while an
another avenue for improvement lies in kernel interpolation techniques [9,36],
which would make inference and prediction faster. We leave further exploration
of these directions as future work.

Acknowledgements. We thank Michael Riis Andersen for his invaluable comments
and helpful suggestions.
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Abstract. Bayesian global-local shrinkage estimation with the general-
ized horseshoe prior represents the state-of-the-art for Gaussian regres-
sion models. The extension to non-Gaussian data, such as binary or
Student-t regression, is usually done by exploiting a scale-mixture-of-
normals approach. However, many standard distributions, such as the
gamma and the Poisson, do not admit such a representation. We con-
tribute two extensions to global-local shrinkage methodology. The first
is an adaption of recent auxiliary gradient based-sampling schemes to
the global-local shrinkage framework, which yields simple algorithms for
sampling from generalized linear models. We also introduce two new sam-
plers for the hyperparameters in the generalized horseshoe model, one
based on an inverse-gamma mixture of inverse-gamma distributions, and
the second a rejection sampler. Results show that these new samplers
are highly competitive with the no U-turn sampler for small numbers of
predictors, and potentially perform better for larger numbers of predic-
tors. Results for hyperparameter sampling show our new inverse-gamma
inverse-gamma based sampling scheme outperforms the standard sam-
pler based on a gamma mixture of gamma distributions.

Keywords: Bayesian regression · Markov Chain Monte Carlo
sampling · Horseshoe regression · Shrinkage

1 Introduction

The introduction of the horseshoe prior [5], and more generally the idea of
global-local shrinkage hierarchies [16], has sparked a period of interest in heavy
tailed prior distributions for coefficients in linear regression models. The Bayesian
global-local shrinkage priors represent the current state-of-the-art for Gaussian
linear regression models and encompass a large number of well known Bayesian
shrinkage techniques, including the Bayesian ridge, the Bayesian lasso [13], the
horseshoe prior, the horseshoe+ [2] and the Dirichlet-Laplace [4] prior. Let
y = (y1, . . . , yn) denote the vector of n measurements of a target (depen-
dent) variable of interest, x̄i = (xi,1, . . . , xi,p) denote the vector of of predic-
tors (explanatory variables, covariates) associated with each target yi, and let
c© Springer Nature Switzerland AG 2020
U. Brefeld et al. (Eds.): ECML PKDD 2019, LNAI 11907, pp. 598–613, 2020.
https://doi.org/10.1007/978-3-030-46147-8_36

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-46147-8_36&domain=pdf
https://doi.org/10.1007/978-3-030-46147-8_36


Bayesian Generalized Linear Models 599

X = (x̄1, . . . , x̄n)T denote the n×p matrix of explanatory variables. The global-
local shrinkage (GLS) hierarchy for Gaussian linear models is given by:

y |β, β0, σ
2 ∼ N(Xβ + β01n, σ2)

β0 ∼ (1)dβ0

σ2 ∼ σ−2dσ2

βj |λj , σ, τ ∼ N(0, λ2
jτ

2σ2),
λj ∼ π(λj)dλj ,

τ ∼ C+(0, 1) (1)

where j = 1, . . . , p, β = (β1, . . . , βp) is the vector of model coefficients, β0 is
the intercept, σ2 is the noise variance, N(a, b) is the normal distribution with
mean a and variance b and C+(0, c) denotes a half-Cauchy distribution with
scale c. In hierarchy (1), the hyperparameters λ1, . . . , λp are the local shrinkage
parameters that induce shrinkage only on their corresponding coefficients; by
selecting a specific prior distribution π(λj) one can represent most standard
Bayesian shrinkage procedures within this framework. The hyperparameter τ is
the global shrinkage parameter that controls the overall level of shrinkage and
ties the p regression coefficients together; conditioning on σ2 ensures that the
shrinkage induced on the coefficients is not affected by scale changes of our data.

The joint posterior distribution of a GLS hierarchy is in general intractable,
so it usual to instead explore the posterior distribution by sampling. A standard
approach is a Gibbs sampling procedure [9] which repeatedly iterates:

1. sample the coefficients from p(β |β0, σ
2,λ, τ,y);

2. sample the remaining model parameters from p(β0, σ
2 |β,λ, τ,y);

3. sample the shrinkage hyperparameters from p(λ, τ |β, σ2,y).

A strength of the GLS hierarchy is that in this Gibbs sampling framework the
sampling algorithms for the hyperparameters are independent from the sampling
algorithm for the coefficients. This means that as long as we have algorithms for
sampling the coefficients given a normal prior distribution, and an algorithm
for sampling the hyperparameters, we can mix and match choices of shrinkage
priors with choices for likelihoods with no additional implementation details.

Building on this idea, the aim of this article is to explore two extensions
to global-local shrinkage methodology: (i) we propose to adapt recent gradient-
based sampling algorithms [20] to provide simple sampling procedures for a
wide-range of non-Gaussian data, and (ii) we propose two new samplers for the
local shrinkage hyperparameters λj under the generalized horseshoe estimator.

1.1 Bayesian Generalized Linear Models

One of the great successes of linear models is the ease in which they may be
extended to handle data that is not typically modelled using a normal distri-
bution (e.g., categorical or count data) via the framework of generalised linear



600 D. F. Schmidt and E. Makalic

models (GLMs) introduced by Nelder and Wedderburn [11]. The GLM frame-
work begins by defining

ηi = x̄T
i β + β0

as the linear predictor; a GLM then models the conditional mean and variance
of the target yi by a suitable transformation of this linear predictor, i.e.,

E [yi | x̄i] = f−1(ηi) ≡ μi,

Var [yi | x̄i] = σ2 v(ηi),

where σ2 is now a dispersion parameter, and f(μi) = ηi is referred to as the
link function, as it links the linear predictor ηi to the conditional mean μi.
This approach allows yi to follow many standard distributions, and with careful
choice of f(·) the resulting GLM retains much of the computational efficiency
and statistical interpretability that characterises Gaussian linear models.

The usual fashion in which the global-local hierarchy (1) is extended to non-
Gaussian data is through a scale mixture of normals (SMN) representation of
the desired distribution. In particular, we rewrite the data model as

yi |β, β0, ωj , σ
2 ∼ N(x̄T

i β + β0, σ
2ω2

j ),
ωj ∼ π(ωj)dωj .

In this approach, the data are modelled as arising from n heteroskedastic nor-
mal distributions, with an additional latent scale variable ωi associated with
each data point yi. The choice of the mixing density π(ωj) determines the final
distribution of yj . The particular advantage of this data augmentation approach
is that it preserves the conditional conjugacy between the likelihood and the
normal prior distribution for βj . Therefore, efficient sampling algorithms such as
those of Rue [18] (for p < n) and Bhattarcharya [3] (for p > n) can be employed
in a Gibbs framework to generate posterior samples for the coefficients. The
SMN approach has successfully been used to represent the Laplace, Student-t,
logistic and negative binomial distribution [10,17].

However, not all distributions utilised in standard generalized linear mod-
elling have known or convenient SMN representations; examples include the Pois-
son, gamma, Weibull and inverse-Gaussian distributions. In such cases, one must
usually resort to alternative sampling techniques. One of the earliest approaches
was utilisation of adaptive rejection sampling to implement one-at-a-time sam-
pling of the coefficients. Such an approach is potentially slow and can result in
a chain that mixes poorly, particularly if the predictors are correlated. More
recent sampling techniques that can be utilised to handle Bayesian general-
ized linear models include the Hamiltonian MCMC no U-turn sampler (NUTS)
[8] implemented in the Stan tool; generalized elliptical slice sampling [12]; and
the Metropolis adjusted preconditioned Crank-Nicolson (pCNL) Langevin-based
approach [6].

1.2 Generalized Horseshoe Priors

A particular important prior is the so-called generalized horseshoe (GHS, also
known as the generalized beta mixture of Gaussians and the inverse-gamma-
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gamma prior). The generalized horseshoe [1] places a beta prior distribution
over the coefficient of shrinkage, i.e., λ2

j (1+λ2
j )

−1 ∼ Beta(a, b). This induces the
following distribution over λj :

π(λj | a, b) =
2λ2a−1

j (1 + λ2
j )

−a−b

B(a, b)
. (2)

The well known horseshoe arises if we set a = b = 1/2; in this case the beta
distribution has a ‘U’-shape from which the horseshoe prior obtains its distinctive
name, and (2) reduces to the unit half-Cauchy. To gain an understanding of the
effect that the hyperparameters a and b have on inference we can examine the
corresponding marginal prior distribution over βj :

π(βj | a, b) =
∫ ∞

0

φ(β/λj)/λjπ(λj | a, b)dλj

where φ(·) denotes the standard normal density function. Appealing to Propo-
sition 1 and Theorems 2 and 3 from [19], we have for a < 1/2

π(βj | a, b) = O(|β|−1+2a)

as |β| → 0, and for all b > 0

π(βj | a, b) = O
(|β|−1−2b

)
as |β| → ∞. Therefore, the hyperparameter a controls the degree to which prior
probability is concentrated around β = 0; smaller values indicate an a priori
belief in great underlying sparsity of the coefficients vector. The hyperparameter
b controls the rate at which the tail of the marginal prior decays; smaller values
result in a slower decay, which indicates an a priori belief that some of the
coefficients may be substantially greater in magnitude than others.

Sampling Generalized Horseshoe Hyperparameters. Most MCMC imple-
mentations of (a variant of) the generalized horseshoe are based on Gibbs sam-
pling. For the particular case of the horseshoe (i.e., a = b = 1/2) there exist
a number of approaches to sampling the conditional posterior p(λj |βj , τ, σ

2).
These include slice sampling [15], an inverse-gamma inverse-gamma scale mix-
ture representation [10] and a gamma-gamma scale mixture representation [1].
Of these methods, only the gamma-gamma mixture currently handles the gen-
eralized horseshoe; it utilises the fact that if

x2 | c ∼ Ga(a, 1/c), and c ∼ Ga(b, 1)

then x follows the distribution (2), where Ga(a, c) denotes a gamma distribution
with shape a and scale c. Introducing a set of latent variables ν1, . . . , νp, this
augmentation leads to the full conditionals

λ2
j | · · · ∼ GIG(a − 1/2, 2νj , 2mj) and νj | · · · ∼ Ga

(
a + b, (1 + λ2

j )
−1

)
, (3)
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where mj = β2
j /(2σ2τ2) and GIG denotes a generalized inverse Gaussian distri-

bution. Implementation within a Gibbs framework therefore requires sampling
from the GIG distribution, which is potentially troublesome. Algorithms for
generating GIG random variates are not distributed by default in packages such
as MATLAB and R, and the best implementations are slower than generating
random variates from standard distributions such as the gamma.

1.3 Our Contributions

In Sect. 2 of this paper, we adapt the recently proposed class of auxiliary
gradient-based sampling algorithms [20] to the hierarchy (1). While these algo-
rithms were designed for Gaussian process regression, they are perfectly posi-
tioned for application to GLMs and global-local shrinkage hierarchies. In Sect. 3
of this paper we present two new samplers for λj in the case of the GHS. One
is a generalization of the inverse-gamma inverse-gamma approach proposed in
[10]; the other is a new rejection sampler that exploits the log-concavity of the
conditional distribution of log λj .

Results in Sect. 4 demonstrate that despite their simplicity, the new gradient
based sampling algorithms are competitive with alternative non-specialized sam-
pling algorithms in terms of effective samples per second, and can potentially
outperform them. Experimental results also show that the new inverse-gamma
inverse-gamma sampler for the generalized horseshoe leads to a Gibbs simpler
that is frequently more efficient in terms of effective samples per second than
(3), while remaining substantially simpler in terms of implementation.

2 Gradient-Based Samplers for Bayesian GLMs

We propose to utilise the recently developed auxiliary gradient-based sampling
algorithms [20]. These algorithms work by first augmenting the target density
with auxiliary random variables, and using this in conjunction with a first-order
Taylor series expansion of the likelihood and a marginalisation step to build a
Metropolis-Hastings proposal density that is both likelihood and prior informed.
Specifically, they were designed to target densities of the form

p(β) ∝ exp(f(β);β0, σ
2)N(β |0,C)

where f(β, β0, σ
2) denotes the log-likelihood and C denotes the prior covariance

matrix for the coefficients β. The posterior distribution for the coefficients β of
a generalized linear model with global-local shrinkage priors, conditional on the
shrinkage hyperparameters λ and τ , directly matches this class of problems. This
facilitates application of these auxilary gradient-based samplers within the usual
Gibbs sampling framework. Furthermore, in the case of a GLM with a standard
link function, the log-likelihood f(β) is a convex function of the coefficients β.
As our starting point we consider the general pre-conditioned marginal gradient
sampler (eq. (8) in [20]), which uses as a proposal

β̄ |β ∼ N

(
A

(
�f(β) +

(
2
δ

)
S−1βT

)
,

(
2
δ

)
AS−1A + A

)
(4)
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where δ > 0 is the MH step-size, S is the pre-conditioning matrix, �f(β) =
(∂f(β, β0, σ

2)/∂β) denotes the gradient, and

A =
(
C−1 +

(
2
δ

)
S−1

)−1

.

The step-size δ should be chosen such that 50%−60% of samplers are accepted.
We discuss a robust fully automatic method for doing this in Sect. 2.4.

2.1 Algorithm 1: mGrad-1

The first variant of the algorithm we will consider uses S = Ip. In the case of
the global-local shrinkage hierarchy (1) the prior covariance matrix C is simply
a diagonal matrix with entries

Cj,j = τ2σ2λ2
j , j = 1, . . . , p.

Combined with the choice S = Ip, the proposal (4) and the Metropolis-Hastings
acceptance step dramatically simplify. We call this algorithm ‘mGrad-1’, as it
uses only first order information. The mGrad-1 algorithm works as follows:

1. Generate proposals for coefficients using

β̄j ∼ N

(
Cj,j(δ [�f(β)]j + 2βj)

2Cj,j + δ
,

δ Cj,j(4Cj,j + δ)
(2Cj,j + δ)2

)

2. Generate u ∼ U(0, 1), and accept the new proposal if

u < exp
(
f(β̄, β0, σ

2) − f(β, β0, σ
2) + h1(β, β̄) − h1(β̄,β)

)
,

h1(β, β̄) =
p∑

j=1

(
βj − Cj,j(4β̄j + δ [�f(β̄)]j)

2(2Cj,j + δ)

)(
2Cj,j + δ

4Cj,j + δ

)
[�f(β̄)]j

Due to the nature of the global-local shrinkage hierarchy, the mGrad-1 algorithm
has a total computational complexity of only order O(pn) for a GLM. This gives
it potential for application to large p regression problems.

2.2 Algorithm 2: mGrad-2

A potential problem with the mGrad-1 algorithm is that it only utilises first
order likelihood information when generating the proposal; therefore, potential
exists to improve mixing in the face of correlation between predictors by util-
ising second-order information. A second-order Taylor series expansion method
is proposed in the supplementary material of [20], but was found to perform
poorly, and is slow to implement as the proposal distribution depends on state-
dependent second-order information. Given the nature of GLMs, we instead
propose to set S = XTX, i.e., to use the correlation matrix of the predictors
as the preconditioner. This keeps the covariance of the proposal independent
of the state and allows for pre-computation of S−1. We call this the ‘mGrad-2’
algorithm, as it utilises second-order information. The computational effort of
mGrad-2 is O(p3), which can be substantially higher than the computational
complexity of mGrad-1.
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2.3 Sampling the Intercept

The mGrad-1 and mGrad-2 algorithms provide us with a way to sample the
coefficients β. We observed that using a single MH step for both β0 and β led
to reduced mixing, so we instead sample the intercept separately, using a simple
proposal that does not depend on a step size parameter. To sample β0 for a
GLM we use the following procedure:

1. Generate a proposal from

β̄0 |β0 ∼ N

(
β0,

2.5
H(β0)

)

where H(β0) is the second-derivative of the negative log-likelihood with
respect to β0.

2. Generate u ∼ U(0, 1) and accept β̄0 if u < exp(f(β, β̄0, σ
2) − f(β, β0), σ2).

We find this choice leads to acceptance rates in the range 50%–60% for all
experiments we considered.

2.4 Tuning the Step Size δ

Both the mGrad-1 and mGrad-2 algorithms are Metropolis-Hastings based
approaches and require the selection of an appropriate step-size. For the base
algorithm from which these methods are derived it is recommended that the
optimal step-size δ should yield an acceptance rate in the range of 50%–60%.
The step-size that achieves this rate will depend crucially on the particular prob-
lem, so it must be chosen adaptively. During the initial burn-in period we use
the following procedure to estimate an appropriate value for δ.

We divide the burn-in period into windows of size w; then, every w iterations
we record the step-size δ used in window j as δj , and the observed acceptance
rate for the window as pj . We first find values of δ such that our algorithm never
accepts samples, and accepts all samples; call our initial guesses at these two
quantities δmax and δmin, respectively. We continually increase δ by a factor of
k > 0 every window, starting from δ = δmax, until we observe an acceptance rate
of zero and update our value of δmax. We then continually decrease δ by a factor
of k every window, starting from δ = δmin, until we observe an acceptance rate
of one and update our value of δmin.

Once this is done we set δ ← (δminδmax)1/2, and begin ‘probing’ to learn
the relationship between δ and the acceptance probability. For every window
j thereafter, we fit a logistic regression of (log δ1, . . . , log δj) to the acceptance
probabilities (p1, . . . , pj); call the fitted slope α̂1 and intercept α̂0. We then
update the step-size for the next window by first generating u ∼ U(0.45, 0.65),
and then setting δ = d(u, α̂0, α̂1) where

d(u, α0, α1) = exp
[
− 1

α1

(
− log

(
1

1/u − 1

)
+ α0

)]
.
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solves the equation

log
(

u

1 − u

)
= α1 log δ + α0

for δ. Once the burn-in phase is complete, we choose the final step-size as δ =
d(0.55, α̂0, α̂1). In this way we are using the estimated relationship between the
step-size and acceptance probability to select an appropriate value for δ. In
our implementation we took w = 75, δmax = 100, δmin = 10−7 and k = 10,
though our experiments show the algorithm is almost completely insensitive to
the particular values chosen. In all cases we observed that a burn-in period of
5, 000 samples usually provided an estimate of δ that achieved an acceptance
rate between 0.5 and 0.6 for the remaining samples.

2.5 Implementation Details

Implementation of the mGrad-1 and mGrad-2 algorithms require only knowledge
of the log-likelihood and the gradient of the log-likelihood. For convenience,
these quantities are presented in Table 1 for a number of distributions frequently
used in GLMs. Both algorithms require computation of the likelihood for the
acceptance step. By careful implementation the number of computations can be
reduced to one additional computation per sample being simulated.

While the computation of the likelihood is not required by the SMN tech-
nique, it is common to compute a diagnostic statistic such as the widely applica-
ble information criterion (WAIC) from MCMC output, for which computation of

Table 1. Log-likelihoods (up to constants independent of β) and gradients for com-
monly used target distributions. The quantity ηi = x̄T

i β + β0 denotes the linear pre-
dictor for sample yi, and ei = yi − μi. The normal distribution uses the identity link
μi = ηi; the binomial uses the logit link μi = (1 + exp(−ηi))

−1; the remaining dis-
tributions use the log-link μi = exp(ηi). All distributions are parameterised so that
E [yi] = μi. The final column identifies the dispersion parameter.

Log-likelihood, f(β , β0, σ2) [�f(β)]j σ2v(μi)

Normal − 1

2σ2

n∑

i=1

e
2
i

1

σ2

n∑

i=1

eiXi,j σ2

Binomial
n∑

i=1

yi log μi + (1 − yi) log(1 − μi)
n∑

i=1

eiXi,j μi(1 − μi)

Poisson

[
n∑

i=1

yiηi − μi

]
n∑

i=1

eiXi,j μi

Geometric

[
n∑

i=1

ηiyi − (yi + 1) log(μi + 1)

]
n∑

i=1

(
yi − μi(yi + 1)

μi + 1

)
Xi,j μ(μi + 1)

Gamma − 1

κ

n∑

i=1

[
log μi +

yi

μi

]
1

κ

n∑

i=1

(
yi

μi

− 1

)
Xi,j κμ2

i

Inverse-Gaussian − 1

2ξ

n∑

i=1

e2
i

μ2
i yi

1

ξ

n∑

i=1

(
ei

μ2
i yi

)
Xi,j ξμ3

i
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the likelihood is required for every sample. In this case, our samplers effectively
provide the likelihood information ‘for free’ which improves their competitiveness
in comparison to SMN approaches.

3 Two New Samplers for the Generalized Horseshoe

In this section we discuss two new sampling schemes for the shrinkage hyperpa-
rameters in the generalized horseshoe hierarchy (1). More specifically, we develop
two samplers to target the density

p(z |m, p, a, b) ∝ z2a−p−1(1 + z2)−a−be−m/z2
(5)

This density generalizes the conditional distributions for the shrinkage hyper-
parameters λj and τ in the GHS hierarchy (1); for example, the conditional
distribution for a local shrinkage hyperparameter λj is

p(z = λj |β2
j /(2τ2σ2), 1, a, b)

and for the global shrinkage hyperparameter τ is

p

⎛
⎝z = τ |

(
1

2σ2

) p∑
j=1

β2
j

λ2
j

, p, a, b

⎞
⎠ .

We develop two approaches to sample from (5). We provide an inverse gamma
mixture of inverse gamma (IGIG) distributions as an alternative to the gamma-
gamma (GG) sampler. We also detail a reasonable straightforward rejection
sampler that exploits the log-concavity of the density (5) under the transfor-
mation ξ = log z. In contrast to the the GG and IGIG samplers, the rejection
sampler simulates uncorrelated random draws. It is also easily adapted to sample
from a truncated form of (5), which is of potential interest in light of the results
presented in [14].

3.1 Inverse Gamma-Inverse Gamma Sampler

The following proposition generalizes the inverse gamma-inverse gamma repre-
sentation of the half-Cauchy density utilised in [10]. This allows us to build a
Gibbs sampler for the generalized horseshoe estimator.

Proposition 1. Let x2 | ν, b ∼ IG(b, 1/ν) and ν | a ∼ IG(a, 1). Then

p(x) ∝ x2a−1(1 + x2)−a−b.

The proof is a straightforward application of integration by substitution. Using
Proposition 1, we can build a sampler for the density (5) in the case that a > 0,
b > 0. Introduce the auxiliary variable ν; the Gibbs sampler then iterates:
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1. First sample

z2 ∼ IG
(

p

2
+ b,m +

1
ν

)
.

2. Then sample the auxilliary variable

ν ∼ IG
(

a + b, 1 +
1
z2

)
.

Marginally, the random variable z will follow the distribution (5). In contrast
to the gamma-gamma sampler discussed in Sect. 1.2, the inverse gamma-inverse
gamma sampler only requires samples from inverse gamma distributions, rather
than the substantially more complex generalised inverse Gaussian distribution
needed by the gamma-gamma hierarchy. This makes implementation substan-
tially more straightforward.

3.2 Rejection Sampling

The GG and IGIG samplers all have a one-hundred percent acceptance rate,
but suffer from autocorrelation due to their reliance on auxiliary variables. An
alternative to this approach is rejection sampling, in which we trade a reduced
acceptance rate for the removal of autocorrelation in the samples. As a quick
refresher, a rejection sampler for a target density p(x) works by first drawing
a sample from a proposal distribution q(x), and then accepting this sample
if p(x)/q(x) > u, where u ∼ U(0, 1). The proposal distribution must satisfy
q(x) ≥ p(x) for all x (i.e., the proposal must upper-bound the target density),
and ideally, must be straightforward to generate samples from. The closer q(x)
is to p(x), the higher the rate of acceptance.

An efficient rejection sampler for λ can be devised by noting that if λ follows
the conditional distribution (5), then the probability density for the transformed
variable ξ = log λ (i.e., we are sampling the logarithm of the hyperparameters)
is

p(ξ |m, p, a, b) ∝ e−e−2ξme−ξ(p−2a)(1 + e2ξ)−a−b. (6)

It is straightforward to verify that the density (6) is log-concave, and that
− log p(ξ |m, p, a, b) 
 ξ as ξ → ∞. We therefore use a proposal density built
by sandwiching a uniform density between two appropriately chosen exponential
distributions, as this is guaranteed to bound the density (6) from above [7]. The
mode of the density (6) is given by

ξ′ =
1
2

[
log

(
2(a + m) − p +

√
8m(2b + p) + (p − 2a − 2m)2

)
− log(4b + 2p)

]
.

We place the uniform density on the interval (L,R) which is chosen such that
L < ξ′ < R, and then place the two exponential distributions on either side
of the mode; to find the break-points L and R for the three components, first
define

l(ξ) = − log p(ξ |m, p, a, b)
= e−2ξm + (p − 2a)ξ + (a + b) log

(
1 + e2ξ

)
(7)
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and

g(ξ) = −2a +
2(a + b)e2ξ

1 + e2ξ
− 2e−2ξm + p (8)

as the derivative of l(ξ). We then set

ξL = ξ′ − 0.85√
p

, ξR = ξ′ +
1.3√

p
.

These are the points that will be used to build the two exponential components
of our proposal density; the break-points for our proposal density are then given
by

L = ξL − l(ξL) − l(ξ′)
g(ξL)

, R = ξR − l(ξR) − l(ξ′)
g(ξR)

The proposal density is then given by

q(ξ) ∝
⎧⎨
⎩

e−g(ξL)(ξ−L) for − ∞ < ξ < L
1 for L < ξ < R

e−g(ξR)(ξ−R) for R < ξ < ∞
.

Sampling from q(ξ) is straightforward, as the normalizing constants for each of
the components is straightforward: KL = −1/g(ξL), KC = R − L, and KR =
1/g(ξR), where KL, KC and KR denote the normalizing terms for the left, central
and right hand pieces respectively, and set K = KL + KC + KR. The algorithm
is as follows.

1. First, sample
u1 ∼ U(0, 1), u2 ∼ U(0, 1), u3 ∼ U(0, 1).

2. Next, check u1:
(a) If u1 ∈ (0, KL/K) then

x ← − log(1 − u2)
g(ξL)

+ L, q ← l(ξL) + g(ξL)(x − ξL)

(b) If u1 ∈ (KL/K, (KL + KC)/K) then

x ← (R − L)u2 + L, q ← l(ξ′)

(c) If u1 ∈ ((KL + KC)/K, 1) then

x ← − log(1 − u2)
g(ξR)

+ R, q ← l(ξR) + g(ξR)(x − ξR)

3. Determine if we accept x; check if

log u3 < q − l(x).

If so accept x; otherwise, reject x and return to Step 1.

The accepted sample x can be transformed back to the original space using
z = ex.
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Table 2. (minimum, median, maximum) effective samples per second for three gen-
eralized horseshoe local shrinkage hyperparameter samplers: a rejection sampler, the
inverse-gamma inverse-gamma (IGIG) sampler and the gamma-gamma (GG) sampler.
The quantities a and b are the concentration and tail hyperparameters for the gener-
alized horseshoe prior.

Prior Sampler p = 50 p = 250 p = 500

(a = 1/2, b = 1/2) Rejection (2147, 7329, 11933) (48, 661, 1302) (5.2, 286, 540)

IGIG (2044, 8028, 14111) (49, 664, 1397) (5.3, 299, 586)

GG (1558, 6098, 11016) (29, 500, 1207) (3.1, 221, 538)

(a = 1/4, b = 1/2) Rejection (1766, 6709, 11700) (45, 617, 1314) (5.1, 283, 554)

IGIG (966, 4399, 10526) (31, 525, 1277) (4.7, 270, 572)

GG (1245, 4995, 9063) (29, 483, 1121) (3.4, 224, 509)

4 Experimental Results

We undertook several simulation experiments to assess the comparative perfor-
mance of the new sampler algorithms: mGrad-1, mGrad-2 and the new hyper-
parameter samplers. In all experiments we used the effective sample size per
second (ESS/s) as a measure of performance of the samples. The ESS measures
how much correlation is present in a chain of MCMC samples; the higher the
correlation, the less information is contributed by each sample.

In all simulated examples we used the following experimental procedure.
For a given sample size n and number of predictors p, we generated a design
matrix from a multivariate normal distribution with covariance between predic-
tors given by Cov(Xi,Xj) = ρ|i−j|. Then, we randomly selected 15 predictors
to be associated, and generated their coefficients from a Student-t distribution
with a degrees-of-freedom equal to ten. We then rescaled the coefficients so
that the signal-to-noise ratio of the regression model was equal to three for
the Poisson models and 1.5 for the binomial models; the intercept was fixed at
β0 = 1 for Poisson models and β0 = 0 for binomial models. Finally, we gener-
ated n = 200 data points from this model. These choices produced models with
a realistic, sparse mix of stronger and weaker effects, and which were not (near)
linearly seperable in the case of binomial regression. All tests were conducted
on a Microsoft Surface Pro 2016 laptop. Additional experiments were performed
but are not included in this article due to space constraints.1

4.1 Comparison of GHS Hyperparameter Samplers

We tested the performance of the three GHS local hyperparameter samplers: the
gamma-gamma (GG) sampler (Sect. 1.2, [1]), the inverse gamma-inverse gamma
(IGIG) sampler (Sect. 3.1) and the rejection sampler (Sect. 3.2). We tested their

1 Available at https://dschmidt.org.

https://dschmidt.org
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performance on a Gaussian linear model with p = 50, p = 250 and p = 500 pre-
dictors generated as per the procedure in Sect. 4, using a correlation of ρ = 0.9.
The samplers for the coefficients was the usual conditionally conjugate multi-
variate Gaussian. We tested two prior settings: (a = 1/2, b = 1/2), i.e., the
regular horseshoe prior, and (a = 1/4, b = 1/2), which concentrates more prior
probability mass around the origin. For a fair comparison, we implemented the
generalized inverse Gaussian sampler and the rejection sampler in C. The IGIG
sampler was implemented in pure MATLAB.

For each experiment we ran the chains for 104 burnin iterations, and then
collected 2×104 samples. The results are shown in Table 1. Overall, the rejection
sampler performed the best, but the IGIG sampler was competitive with, or
superior to, the rejection sampler for all but the case of p = 50 and a = 1/4,
with both being largely superior to the GG sampler. The performance of the
IGIG sampler, coupled with its simple implementation, recommend it as an
excellent choice of sampler for generalized horseshoe hierarchies.

Table 3. (minimum, median, maximum) effective samples per second for various sam-
pling algorithms. mGrad-1 and mGrad-2 refer to the two gradient-based sampling algo-
rithms developed in this article, pCNL is the pre-conditioned Crank Nicholson sampler,
NUTS is the no U-turn sampler and GESS is the generalized elliptical slice sampler.

Distribution Correlation Sampler p = 50 p = 100 p = 250

Poisson

ρ = 0.5

mGrad-1 (108, 270, 615) (42, 398, 776) (55, 358, 777)

mGrad-2 (127, 351, 673) (18, 136, 235) (4.8, 27, 49)

pCNL (14, 36, 108) (3.8, 18, 69) (3.7, 17, 75)

NUTS (26, 35, 36) (16, 23, 24) (9.5, 14, 14)

GESS (4.3, 13, 25) (0.6, 3.3, 7.8) (0.1, 0.7, 1.9)

ρ = 0.9

mGrad-1 (12, 56, 165) (7.1, 69, 223) (2.8, 103, 339)

mGrad-2 (157, 489, 806) (25, 157, 305) (1.6, 30, 59)

pCNL (6.0, 18, 56) (3.3, 14, 39) (1.9, 12, 39)

NUTS (29, 40, 41) (20, 28, 28) (7.8, 12, 12)

GESS (4.0, 11, 21) (0.6, 3.3, 7.9) (0.1, 0.8, 2.2)

Binomial

ρ = 0.5

mGrad-1 (46, 315, 694) (12, 165, 425) (8.0, 269, 656)

mGrad-2 (52, 352, 747) (4.6, 91, 208) (0.6, 24, 54)

SMN (179, 772, 1936) (15, 260, 894) (3.1, 201, 486)

NUTS (56, 73, 76) (39, 54, 56) (17, 26, 27)

ρ = 0.9

mGrad-1 (4.6, 33, 99) (3.3, 49, 161) (4.1, 76, 312)

mGrad-2 (25, 317, 705) (11, 135, 298) (1.2, 25, 61)

SMN (96, 721, 1775) (49, 483, 1159) (5.1, 161, 478)

NUTS (32, 42, 44) (34, 47, 48) (17, 26, 27)
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4.2 Comparison of Samplers for Coefficients

We tested the performance of our samplers for two distributions: the Poisson,
for which a scale mixture of normals (SMN) sampler is not known, and logistic
(binomial) regression for which an SMN sampler exists [17]. For both models we
compared the mGrad-1 and mGrad-2 sampling algorithms presented in Sect. 2
against the NUTS sampler (using the RStan stan glm() function). For Poisson
regression we also tested against the generalized elliptical slice sampler (GESS)
and pCNL algorithm; however, as both of these were dominated by mGrad-1
we did not test them for binomial regression. For logistic regression we also
compared against the optimised scale mixture of normals (SMN) sampler imple-
mented in the bayesreg package for MATLAB. We used the IGIG sampler for
the horseshoe hierarchy for mGrad-1, mGrad-2, GESS, SMN and pCNL.

We tested the samplers for two settings of correlation ρ = {0.5, 0.9}, and
generated a different model for each combination of p = {50, 100, 250} and ρ. To
make the comparisons as favourable for NUTS as possible we compute ESS/s
based only on the sampling times, and ignore warmup. We note that the mGrad
algorithms require substantially less warmup time for tuning than NUTS. For
NUTS we ran the chains for 103 warmup samples and then collected the following
103 samples. There were no convergence issues. For the other samplers we ran
the chains for 104 burnin iterations and the collected 2 × 104 samples. For each
test and each sampler we produced 10 chains and averaged the ESS/s scores
across the chains. The results are shown in Table 3.

In all cases the NUTS sampler exhibited an interesting property: the spread
of ESS/s values was small, with the minimum ESS/s being close to the maximum
ESS/s. For Poisson regression the NUTS sampler had higher minimum ESS/s
than mGrad-1 when ρ = 0.9. In the case of Poisson regression, the mGrad-1
algorithm is highly competitive with the NUTS sampler, even for smaller p,
and is uniformly superior for ρ = 0.5. The mGrad-2 algorithm exhibits supe-
rior performance to mGrad-1 for smaller p and higher correlation ρ, but has
poorer performance for p = 250 as the expensive matrix inversions outweigh the
improvement in mixing. The pCNL and GESS algorithms performed uniformly
worse than mGrad-1.

For logistic regression, the NUTS algorithm performed substantially bet-
ter than for Poisson regression. The SMN sampler generally achieved the high-
est median and maximum ESS/s scores, while the NUTS sampler uniformly
achieved the higher minimum ESS/s than mGrad-1. The mGrad-1 algorithm is
largely inferior to the SMN sampler, but generally achieved higher median and
maximum ESS/s than the NUTS sampler. The mGrad-2 algorithm is uniformly
worse than SMN in the setting of logistic regression, which is unsurprising as
its base time complexity is similar to the SMN approach. We note that due to
a different model being used for each combination of p and ρ, the ESS/s scores
do not necessarily decrease as p increases as the performance of all the samplers
can vary depending on the structure of the underlying model.

Additional Test for p = 1, 000. We performed an additional experiment for
a much larger design matrix of p = 1, 000 predictors with ρ = 0.9 and 50 non-
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zero coefficients for Poisson regression. We considered only the mGrad-1 and
NUTS sampler; the NUTS sampler achieved a maximum ESS/s of 7.8, while the
mGrad-1 algorithm achieved a minimum/median/maximum of ≈(0.8, 30, 143),
which suggests that the simplicity of the algorithm potentially allows it to remain
competitive with NUTS even for large p.

Sensitivity to Model Structure. We also performed an additional experi-
ment to examine the sensitivity of mGrad-1 and NUTS to model structure. We
generated the same design matrix and coefficients as used in the experiments for
Poisson regression with ρ = 0.5, p = 100 but rescaled the coefficients to have a
signal-to-noise ratio (SNR) of 9. The NUTS sampler achieved a maximum ESS
of ≈8 while the mGrad-1 sampler achieved a minimum/median/maximum of
≈(20, 120, 245). In both cases this is roughly a three-fold reduction in compari-
son to the results obtained when the SNR was 3 (from Table 3). The sensitivity
of NUTS is primarily driven by increased sampling time rather than changes in
raw ESS, while for mGrad-1 the sampling time is unaffected but the increased
correlation in the chains reduces the overall ESS/s.

5 Summary

In comparison to NUTS and SMN, the mGrad-1 algorithm is substantially easier
to implement, requiring only knowledge of likelihood and gradient information.
The entire algorithm, including the tuning can be implemented in around 50 lines
of MATLAB code. This simplicity, coupled with the competitive performance of
the mGrad-1 algorithm, demonstrates that it is a very useful addition to the suite
of sampling procedures available for Bayesian regression. A similar conclusion
can be drawn regarding the new inverse gamma-inverse gamma sampler for the
generalized horseshoe hyperparameters: in terms of performance it is roughly
equivalent to the rejection sampler, and largely superior to the standard gamma-
gamma sampler, while being substantially simple to implement than both. We
therefore recommend this sampler to researchers looking to implement horseshoe
and generalized horseshoe hierarchies for new models. The mGrad-1 sampler and
SMN sampler for generalized linear generalized horseshoe regression models are
both implemented in the bayesreg2 Bayesian regression package.
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Abstract. Explaining the results of Machine learning algorithms is cru-
cial given the rapid growth and potential applicability of these meth-
ods in critical domains including healthcare, defense, autonomous driv-
ing, etc. In this paper, we address this problem in the context of Markov
Logic Networks (MLNs) which are highly expressive statistical relational
models that combine first-order logic with probabilistic graphical mod-
els. MLNs in general are known to be interpretable models, i.e., MLNs
can be understood more easily by humans as compared to models learned
by approaches such as deep learning. However, at the same time, it is not
straightforward to obtain human-understandable explanations specific to
an observed inference result (e.g. marginal probability estimate). This is
because, the MLN provides a lifted interpretation, one that generalizes to
all possible worlds/instantiations, which are not query/evidence specific.
In this paper, we extract grounded-explanations, i.e., explanations defined
w.r.t specific inference queries and observed evidence. We extract these
explanations from importance weights defined over the MLN formulas that
encode the contribution of formulas towards the final inference results. We
validate our approach in real world problems related to analyzing reviews
from Yelp, and show through user-studies that our explanations are richer
than state-of-the-art non-relational explainers such as LIME.

1 Introduction

Markov Logic Networks (MLNs) [1] are popular Statistical Relational Models
that combine first-order logic with probabilistic graphical models [10]. The power
of MLNs comes from the fact that they can represent relational structure as well
as uncertainty in a highly compact manner. Specifically, an MLN represents
real-world knowledge in the form of weighted first-order logic formulas. Unlike
traditional first-order logic based representations, MLNs allow uncertainty in
the represented knowledge, where weights attached to the formulas encode this
uncertainty. Larger weights indicate more belief in a formula as compared to
c© Springer Nature Switzerland AG 2020
U. Brefeld et al. (Eds.): ECML PKDD 2019, LNAI 11907, pp. 614–629, 2020.
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smaller weights. The MLN defines a template that can be grounded with real-
world constants, to obtain a probability distribution over possible worlds - an
assignment to all ground variables - of the MLN. Due to its generality, MLNs
have found applications in varied practical problems such as coreference resolu-
tion [13], information extraction [12,23], question answering [8], event-detection
in videos [22], etc.

One of the key advantages of MLNs is their interpetability. Specifically, since
MLN models are first-order logic based models, it is quite easy for a human user
to understand and interpret what the learned model represents. In contrast,
methods such as deep learning can achieve state-of-the-art results in language
processing, computer vision, etc., but their lack of interpretability is problematic
in many domains. However, interpretability of learned models is not the same
as explainability of results generated by a Machine learning method. Guidotti
et al. [5] provide a detailed survey of explanations in ML methods in which they
categorize explanations as model explanations and outcome explanations. The
former provides explanations for the model (interpretability of the model) while
the latter provides explanations for predictions. Of late, there has been a lot of
interest in outcome explanations [6]. For instance, in healthcare applications, a
doctor would require a system that explains why it is recommending a particular
action, rather than just provide results as a “black-box”. Some ML methods such
as decision trees are both interpretable and explainable, while some are neither
(e.g. deep networks). It turns out that MLNs though interpretable are not easily
explainable. Recently proposed approaches such as LIME [15] try to explain the
results of a classifier whose results are typically hard-to-understand. However,
these approaches are specific to non-relational data, and do not provide rich,
relational explanations (for e.g. LIME explains non-linear classifiers as linear
models). Our focus in this paper is to explain relational inference in MLNs in a
human-understandable form.

Our main idea is to generate explanations for queries in terms of a ranking
of formulas based on their importance. Specifically, MLN formulas have weights
attached to them that intuitively signify their importance, i.e., for a formula f
with weight w, a world where f is true is ew more likely than a world in which it
is false [1]. Note that the formula weights do not have a well-defined probabilistic
interpretation if they are dependent on each other, i.e., if atoms in one formula
also occur in other formulas [1]. More importantly, the weights are tied, which
means that any instantiation of a formula has the same weight. Thus, a naive
explanation for a query that can be obtained by ranking formulas purely on their
weights is not likely to be useful since it is generic across all possible worlds. That
is, the explanation will remain unchanged even when the query or evidence vari-
ables change. For example, consider the task of classifying if an email is spam
or not. An MLN could encode a formula such as Word(e,+w) ⇒ Spam(e). The
+ symbol preceding a variable is a short-hand representation to denote that the
MLN stores a different weight for every distinct grounding of the w variable
(which represents the domain of words). Suppose the query predicate is Spam,
we would want different explanations for different groundings of the query pred-
icate based on the specific evidence on the Word predicate. Further, suppose the
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evidence is incomplete, meaning that there are some atoms that are not query
atoms and whose truth value is not known. For formulas containing such atoms,
it becomes even harder to determine their influence on a query since we need
to consider all possible worlds where the unknown atoms are true as well as
the cases where the atoms may be false. We propose a systematic approach for
explanations where we learn importance weights for formulas based on samples
generated from the MLN. Specifically, we perform inference using Gibbs sam-
pling, and learn the importance of formulas for a specific query based on their
influence in computing the Gibbs transition probability. Thus, as the sampler
samples possible worlds consistent with the observed evidence, the importance
weights capture the influence of formulas on the query variable in these worlds.

We evaluate our approach using two MLN applications we designed for per-
forming inference in real-world review data from Yelp. In the first application,
we predict if a review is a spam review and provide explanations for this pre-
diction. In the second application, we predict the sentiment of a review that has
missing words. For both cases, we develop MLNs that encode common knowl-
edge and use our approach to extract explanations from the MLNs. We set up a
comprehensive user-study consisting of around 60 participants and compare our
explanations with explanations given by LIME for the same tasks. We clearly
demonstrate through these studies that our explanations are richer and more
human-understandable than the explanations given by LIME.

2 Background

2.1 Markov Logic Networks

Markov logic networks (MLNs) are template models that define uncertain, rela-
tional knowledge as first-order formulas with weights. Larger the weight of a
formula, more likely is that formula to be true. ∞ weight formulas are treated
as hard constraints which should always be true. Similarly formulas with −∞
weights are always false. Thus, MLNs offer a flexible framework to mix hard
and soft rules. Given a set of constants that represent the domains of variables
in the MLN, an MLN represents a factored probability distribution over the
possible worlds, in the form of a Markov network. A world in an MLN is an
assignment of 0/1 to all ground atoms of the MLN (first order predicates in the
MLN whose variables have been substituted with a constant). Specifically, the
MLN distribution is given by,

P (ω) =
1
Z

exp

(∑
i

wiNi(ω)

)
(1)

where wi is the weight of formula fi, Ni(ω) is the number of groundings of formula
fi that evaluate to True given a world ω, and Z is the normalization constant.

As a simple example of an MLN, suppose we want to encode the fact that
smokers and asthmatics are not friends. We would design an MLN with a for-
mula such as Smokes(x) ∧ Friends(x, y) ⇒ ¬Asthma(y). Given constants cor-
responding to the variables, x and y, the MLN represents a joint distribution
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over all ground atoms of Smokes, Friends, and Asthma. The two key tasks in
MLNs are weight learning, which is the task of learning the weights attached
to the formulas from a training relational database, and inference (prediction).
Learning the weights of an MLN is typically based on Max-likelihood estima-
tion methods. The marginal estimation inference task involves computing the
marginal probability distribution of a ground atom in the MLN given an evi-
dence database of observed variables. For example computing the probability
that Smokes(Ana) is true given that Smokes(Bob) is true, Friends(Ana,Bob) is
true and Asthma(Bob) is false. Since computing this probability exactly is hard,
one of the most popular approaches is to use Gibbs sampling [4] to approximate
the marginal probability.

2.2 Related Work

Explaining the results of Machine learning models has been recognized as a
critical area. Guidotti et al. [5] provide a detailed survey of explanations in
ML. Specifically, they categorize them (among others categories) into model
explanations and outcome explanations. The former provides explanations for
the model while the latter provides explanations for predictions. In this paper,
we are primarily concerned with outcome explanations. Recently, there have
been a few significant attempts to develop model-agnostic outcome explanations.
Notable among these are LIME developed by Ribeiro et al. [15] which can provide
an explanation of any classifier, by approximating it locally with an interpretable
model. More recently, they developed “Anchors” [16], a model-agnostic explainer
with if-then rules. Ross et al. [17] developed a regularizer to obtain simpler
explanations of a classifier’s decision boundary. Koh and Liang [9] addressed the
explainability problem by perturbing the importance of training examples and
observing their influence on prediction. Similarly, Fong and Veladi [3] also use
perturbations to explain predictions. Teso and Kersting [21] recently developed
explanations for interactive learners. Though neural networks suffer from lack
of interpretability in general, there have been attempts to explain the model
through visual analytics, such as Grad-CAM [18] and the more recent work
by Zhang and Zhu [24]. However, none of these techniques are applicable to
relational data which is the focus of this paper. Specifically, in relational data
there is a single example that is interconnected, and is therefore fundamentally
different from the type of data addressed in the aforementioned methods. Related
to propositional probabilistic graphical models, more recently, Shih et al. [20]
compiled Bayesian networks into a more interpretable decision tree model.

3 Query Explanation

Our approach is to extract explanations for a query as a ranked list of MLN
formulas, where the ranking encodes the influence of the formula on that query.
Before we formally describe our approach, we motivate it with an illustrative
example. Consider a simple MLN with 2 formulas, f1 = R(x)∧S1(x) with weight
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Fig. 1. Illustrating the influence of a formula w.r.t a query atom for varying evidences.
The x-axis shows Query [evidence-set] and the y-axis shows the exponentiated sum
of weights for satisfied groundings of the first-order formulas (denoted by f1, f2, f3)
which signifies the formula’s importance for the query.

equal to 0.5 and f2 = R(x) ∧ S2(x) with weight equal to 0.6. Let R be the query
predicate, and let the domain of x,Δx = {X1,X2,X3}. Let us assume that we
want to explain the results of marginal inference, meaning that we compute the
marginal probabilities of R(X1) . . . R(X3). Given no evidence, in every possible
world, f2 has a larger influence than f1 in computing the probability of that
world. Therefore, the marginal probabilities of the atoms R(X1) . . . R(X3), are
influenced more by f2 as compared to f1. We illustrate this in Fig. 1. Here, we
show the exponentiated sum of weights for all satisfied groundings in the first-
order formula summed over all possible worlds where the query is satisfied. The
values obtained for the formulas f1 and f2 are normalized and shown in Fig. 1(a).

However, now consider a second case, where we add evidence S1(X1) and set
all other atoms of S1 and S2 to false (we refer to this evidence as E1 in Fig. 1).
We now analyze the influence of the formulas in a subset of possible worlds that
are consistent with the observed evidence. Here, f1 now has greater significance
than f2 for the query R(X1), since the observed evidence makes the formula f1
grounded with X1 true and the formula f2 grounded with X1 false. However,
when we consider a different query R(X2), the influence of f1 and f2 changes.
Specifically, the influence of f1 and f2 on R(X2) is equivalent to the case where
we had no evidence. This is because case f1 and f2 grounded with X2 have the
same truth assignment due to the evidence. Thus, the same set of formulas can
have different influences on different queries.

Now, suppose, we add a third formula, f3 = S1(x) ∧ S2(x) with weight 0.7.
Since, f3 has the highest weight, we may be tempted to say that f3 has max-
imum influence on the probabilities. However, if we quantify the influence of
the formulas as before, we get the results shown in Fig. 1(b). Note that adding
the formula changes the influence that the other formulas have on the marginal
probability. Further, even though f3 has a higher weight, its influence on the
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query R(X1) is in fact smaller than that of f2, even in the case where we have no
evidence. Thus, we cannot analyze weights of the formulas independently of each
other when the atoms are shared among different formulas, since the weights on
one formulas can affect the other formulas.

On adding evidence as specified before, the influence of all three formulas
are modified as shown. Further, if we assume a different evidence (specified
as E2 in Fig. 1) where S1(X1) is true and the other atoms of S1 and S2 are
unknown (they can be either true or false), then f3 has a larger influence than
the other formulas. Thus, depending upon the evidence as well as the specific
query we are looking at, each formula has a different influence on the overall
marginal probability. For small examples such as the aforementioned one, we
can go over each possible world that is consistent with the evidence and the
query, and compute the influence of each formula on the marginal probability of
the query. However, this is not practically feasible for large problems. Therefore,
we develop a practically feasible solution where we compute the importance
based on samples drawn from the distribution over the possible worlds.

To formalize the above example, we first start with some notation. Let
f1 . . . fk be the k formulas in the input MLN M. Let w1 . . . wk be weights
associated with each of these formulas respectively. Let Q represent the query
predicate, and let E represent the set of evidence atoms (atoms whose truth
assignment is known). Let q1 . . . qm denote the instantiations or ground atoms
corresponding to the query predicate. Note that, for the sake of clarity, we assume
that we have a single query predicate, however, it is straightforward to include
multiple query predicates.

3.1 Sampling

In standard Gibbs sampling for MLNs, we start with a random assignment to all
atoms ω(0) in the MLN except the evidence atoms whose assignments are fixed
as given in E. In each iteration of Gibbs sampling, we choose a non-evidence
atom based on a proposal distribution α, and compute an assignment to this
atom by sampling the assignment based on its conditional distribution. In our
case, we assume that α is a uniform distribution, which means that we sample
non-evidence atoms randomly in each iteration. From the generated samples, we
estimate the marginal probabilities of P (q1) . . . P (qm) as,

P (q̄i) =
1
T

T∑
t=1

I(ω(t) ∼ q̄i) (2)

where T is the total number of samples, ω(t) ∼ q̄i denotes that the assignment
to atom qi in ω(t) is consistent with q̄i. Without loss of generality, we assume
that q̄i refers to the true (or 1) assignment to qi. Thus, to compute the marginal
probability for qi, we need to compute the ratio of the number of samples where
the qi was equal to true (or 1) and the total number of samples collected.
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Suppose we choose to sample a query atom, qi in an iteration of Gibbs sampling,
the main task is to compute the conditional distribution P (qi|ω(t−1) \ qi), where
ω(t−1) \ qi is the set of assignments to all atoms except qi in the sample at iteration
t−1. Once we compute the conditional distribution, we sample the assignment for
qi, say qi from the distribution, and the subsequent sample ω(t) = ω(t−1) ∪ qi. The
conditional distribution to be computed in an iteration is given by,

P (q̄i|ω(t−1) \ qi) = exp
∑

j

wjNj(ω(t−1) \ qi ∪ q̄i) (3)

where Nj(ω(t−1)\qi∪q̄i) is the number of satisfied groundings in the j-th formula
given the assignment ω(t−1) \ qi ∪ q̄i.

We now define the importance distribution for a query atom qi, Q(qi) as
follows. In each step of Gibbs sampling, where qi is satisfied, we measure the
contribution of each formula to the Gibbs transition probability. Specifically,
for a formula fk, its contribution to the transition probability is proportional
to exp(wjNj(ω(t−1) \ qi ∪ q̄i), if qi is the atom being sampled in iteration t.
However, since we consider both cases in the conditional probability, namely,
the assignment 1 (or true) to q̄i as well as the assignment 0 (or false) to q̄i, we
would like to encode both these into our importance function. To do this, we
compute the log odds of a query atom, and score the influence of a formula on
the query based on its contribution in computing its log-odds.

Formally, let ω(t−1) be the Gibbs sample in iteration t − 1. Suppose we are
sampling the query atom qi, we compute the log-odds ratio between the Gibbs
transition probability for qi = 0 and qi = 1. This is given by the following
equation,

log
P (qi = 1|ω(t−1) \ qi)
P (qi = 0|ω(t−1) \ qi)

=∑
j

wjNj(ω(t−1) \ qi ∪ {qi = 1})

−
∑

j

wjNj(ω(t−1) \ qi ∪ {qi = 0}) (4)

log
P (qi = 1|ω(t−1) \ qi)
P (qi = 0|ω(t−1) \ qi)

=∑
j

wj(Nj(ω(t−1) \ qi ∪ {qi = 1})

− Nj(ω(t−1) \ qi ∪ {qi = 0}) (5)

We then update the importance weight of the j-th formula w.r.t query qi as

Q(t)
j (qi) ∝ wjNj(ω(t−1) \ qi ∪ {qi = 1}) − wjNj(ω(t−1) \ qi ∪ {qi = 0}) (6)
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We update all the importance weights for qi denoted by Q(t)(qi) = Q(t)
1 (qi),

. . . Q(t)
k (qi) corresponding to the formulas 1 through k in every iteration where

qi is sampled. The importance weight for Q(t)
j (qi) after sampling qiT times is

given by,

Qj(qi) =
1
T

T∑
t=1

Q(t)
j (qi) (7)

Theorem 1. As T → ∞,

log
P (qi = 1)
P (qi = 0)

∝
∑

j

Qj(qi) (8)

Proof.

log
P (qi = 1)
P (qi = 0)

=

∑
ω

log
P (ω ∼ qi = 1)
P (ω ∼ qi = 0)

∝
∑
ω

∑
j

wj(Nj(ω ∼ qi = 1)

− Nj(ω ∼ qi = 0))

∝
∑
ω

∑
j

wj(Nj(ω ∼ qi = 1)

−
∑

j

Nj(ω ∼ qi = 0)) (9)

where ω ∼ qi = 1 are worlds consistent with the known evidence as well as
qi = 1, and ω ∼ qi = 0 are worlds consistent with the known evidence qi = 0.
Further

E[Qj(qi)] =
∑
ω

wj(Nj(ω ∼ qi = 1) − wjNj(ω ∼ qi = 0)) (10)

as T → ∞,Q(t)
j (qi) → E[Qj(qi)], since we are estimating the expecta-

tion from worlds consistent with the MLN distribution. Therefore, as T →
∞,

∑
j Q(t)

j (qi)
∑

j E[Qj(qi)] which is equal to the log-odds ratio log P (qi=1)
P (qi=0) .

Interestingly, it turns out that in some cases, the importance weights can be
obtained without sampling multiple worlds. Specifically, we can show that,

Proposition 2. If the evidence is complete, i.e., every non-query atom is known
to be either true or false, and if every ground formula in the MLN contains
exactly one query atom, then E[Qj(qi)] = wjNj(ω ∼ qi = 1)−wjNj(ω ∼ qi = 0),
where ω is any world consistent with the known evidence.
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Algorithm 1. Explaining Inference
Input: MLN M, Evidence E, Query atoms Q
Output: Ranking of formulas in M for each qi ∈ Q

1 Initialize the non-evidence atoms in ω(0) randomly
2 for t = 1 to T do

3 X = Choose a non-evidence atom in ω(t) uniformly at random

4 Flip X in ω(t) to compute the conditional distribution P (X|ω(t) \ X)

5 Sample X from P (X|ω(t) \ X)
6 if X ∈ Q then
7 for each fj in M do

8 Update the importance weight Q(t)
j (X)

9 for each qi ∈ Q do
10 Explain qi as a ranked list of formulas f1 . . . fk based on importance

weights in Q(qi)

The above proposition implies that, in MLNs where the evidence is fully
specified over the non-query atoms, and every query atom occurs in an inde-
pendent subset of ground formulas in the MLN, we can derive the importance
weights directly from the specified evidence. However, in cases where the evi-
dence does not cover all the ground atoms, or more than one query atom occurs
in a ground formula, we cannot infer its importance without sampling the possi-
ble worlds. Note that in general, instead of using Gibbs sampling to generate the
possible worlds, we can use Marginal-MAP inference to sum-out the unknown
atoms, and then derive the explanations using the evidence. However, marginal-
MAP is considerably more expensive [19]. Another strategy is to use the MAP
assignment for the unknown atoms. However, this is problematic when we have
a significant number of unknown atoms, and if the distribution is multi-modal
since, we are essentially considering a single world. A third strategy is to use
belief propagation. However, the unknown atoms is again problematic in this
case since we need to sum out those atoms to derive the belief propagation mes-
sages, and for large number of unknown atoms, this can be extremely expensive.
Thus, our sampling strategy allows us to estimate the importance weights in a
computationally feasible manner.

Algorithm 1 summarizes our approach. First, we initialize all non-evidence
atoms in the MLN randomly. In each iteration, we select a non-evidence atom
uniformly at random, and compute the conditional distribution for that atom
given the state of all other atoms. Based on this conditional probability, we
sample a new assignment for the sampled atom. If the sampled atom is a query
atom, for each formula, we compute its importance weight for that query in the
current word using Eq. (6). We update the importance weight using Eq. (6). Once
the marginal probabilities in the Gibbs sampler converge, we finally compute a
explanation for the marginal probability obtained for each query atom by ranking
the formulas in descending order of the importance weights specific to that query.
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4 Experiments

Our main goal is to evaluate if the explanations output by our approach helps
a user understand the “black-box” that is giving this particular explanation. To
do this, we designed a comprehensive user study consisting of around 60 partic-
ipants. We compared our approach with the explanations given by LIME [15],
an open-source state-of-the-art explanation system. We perform our evaluation
using two real-world tasks on a Yelp dataset [14]. We sampled 1000 reviews
from this dataset for our experiments. In the first task, we design an MLN that
performs joint inference to predict if a review is filtered as a spam review or
not by Yelp. In the second task, we predict if a review has positive or negative
sentiment based on the review content. We first describe our user study setup
and then present the details of our applications along with the results.

(a) Spam (b) Sentiment

Fig. 2. Explanations generated by our approach. (a) shows the explanations for the
spam prediction application and (b) shows the explanation for the sentiment prediction
where the red-colored words are considered as hidden/missing words. (Color figure
online)

4.1 User Study Setup

Our user study group consisted of students who have varying backgrounds in
Machine learning. The participants were either enrolled in the Machine learning
course at University of Memphis or part of the Machine learning club. The partic-
ipants included undergraduate students, Master’s students as well as Ph.D. stu-
dents. All of them understand classification algorithms and the basics of Machine
learning. A few participants were advanced researchers in related areas including
Natural Language Processing, computer vision, etc. We divided the participants
into two groups, and sent the survey that had the explanations generated by
LIME to one group and the explanations generated using our approach to the
other group. To ensure that there was no bias in the results, the users did not
know whether they were evaluating LIME or our approach. There were 10 ques-
tions in each survey. The first 5 questions asked the participants to rank the
explanations on a scale of 1–5. The next three questions were used to measure
three dimensions of the explanation as follows.
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1. Q6: Did the explanations increase your understanding of how the classifier is
detecting ratings of reviews?

2. Q7: Did the explanations increase your trust in the classifier?
3. Q8: Based on the above explanations, will you be able to apply this knowledge

to predict spam (or sentiment) given a set of new reviews?

Each of the above questions had a response scale of 1–5, with 5 being the
best score. Finally, we summarized the overall explanation quality by asking par-
ticipants if they would have liked the classifier to give them more explanations,
less explanations or if they felt the explanations provided by the classifier was
just right. We also allowed users to enter other comments in free text format.

Fig. 3. Comparison of LIME and our approach using explanation scores as rated by
the users. (a) shows this for the spam prediction application and (b) for the sentiment
prediction. In each case, we show the % of users who have given a specific score for an
explanation, averaged across all the explanations.

4.2 Application 1: Review Spam Filter

Detecting filtered reviews is a challenging problem. Specifically, unlike say email
spam, spam reviews look a lot more authentic since it is designed to influence
a user for/against a product/service in an open forum. This task more gener-
ally called opinion spam has a large body of prior work starting with work by
Jindal and Liu [7]. In this case, we develop an MLN that encodes knowledge for
detecting spam, and then perform inference on the MLN while generating the
explanations.

Our MLN contains formulas that connect words to predicate that indicates
whether they are spam Word(+w, r) ⇒ Spam(r). We then add relational infor-
mation into the MLN. Specifically, given two reviews about the same restaurant,
the spammer and non-spammer provide ratings that are opposite of each other.
For e.g., a spammer provides a positive or high rating, while a non-spammer
provides a negative or low rating. Naturally, this is not always true and is there-
fore a soft formula in the MLN. Finally, we add knowledge that if given two
reviews by the same person, if one of them is predicted spam, the other one is
likely to be spam as well. In this MLN, note that the evidence variables are the
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words, we consider the ratings as unknown variables and the query variables are
the atoms of predicate Spam. Since ratings are unknown, this is a joint inference
problem where we infer the rating of a review jointly with inferring if the review
is spam or not. We therefore add formulas connecting words with the rating. We
learn the MLN by initializing it with weights that we obtain from an SVM [2].
Specifically, we learn an SVM for predicting ratings from the review text, as
well as one for predicting if a review is spam/not. Using the coefficients of the
MLN, we set initial weights to formulas [2] such as Word(+w, r) ⇒ Spam(r), and
then use Tuffy [11] to learn the weights of the MLN. The five fold cross valida-
tion F1-score using MLNs for this task was around 0.7. We perform inference
and generate explanations for the queries. We picked a small sample of query
explanations to conduct the user survey.

Once we perform inference and obtain the importance weights of the for-
mulas, we ranked them, and converted the formula into English to generate the
human-readable explanation. We presented the user with this explanation as well
as the importance weights (normalized) for the 5 most important formulas. An
example of the explanation generated is shown in Fig. 2(a). The users could look
at the original review and rate the explanation for that review. For LIME, we
provided the input which is the review content and since LIME does not explain
relational information, it uses the non-relational features (words/phrases) to
come up with its explanation using SVMs as the base classifier.

The comparison of the user response scores for the explanations is shown in
Fig. 3. As seen here, on average, across the reviews in the survey, a larger percent-
age of users gave our explanations higher scores as compared to the explanation
generated by LIME. On the other hand, a large percentage of users rated LIME
explanations around the halfway mark (score 3). Further, when we analyze the
responses over the three explanation dimensions as shown in Fig. 4(a), we see
that our approach was favored by participants in all three dimensions. Partic-
ularly, the dimensions of understanding the classifier and being able to use the
knowledge in the explanation scored much higher. This shows that including
higher-level relational knowledge in the explanations makes the explanations
richer and more appealing to humans.

4.3 Application 2: Review Sentiment Prediction

In this application, we predict if a review has a positive or negative sentiment
based on the words in that review. Specifically, we have MLN formulas that
connect words in the review to the sentiment. However, we assume incomplete
evidence. That is, we remove a small set of words from the review and therefore,
their state is unknown. The inference task is to jointly infer the state of the
hidden words along with predicting if it is a positive or negative sentiment review.
To do this, we add relational knowledge to the MLN. Specifically, we encode MLN
formulas that a user is likely to use the same words to describe a positive or
negative rating. Thus, we can use words from other reviews written by the same
user to predict the sentiment of a review. We learn the MLN using a similar
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Fig. 4. Comparison for the average scores given by users for 3 key dimensions related to
the explanations. Q6 measures understanding of the classifier, Q7 the trust in the clas-
sifier and Q8 if they can replicate the classifier based on the explanation. Higher scores
are better. (a) shows results for spam prediction and (b) shows results for sentiment
prediction

procedure as described in the previous section. Our five-fold cross validation
accuracy here was around 0.9.

In this case, we generate explanations in terms of word formulas only. Specif-
ically, for each review, we explain its predicted sentiment as a set of words (and
their corresponding importance weights). Note that these words can contain
missing words (inferred to be true) as well as words known to be true (due to
evidence). Thus, LIME and our approach generates the same form of explana-
tions (words and weights) as shown in Fig. 2(b). However, since we can infer the
states of hidden words, our explanation is richer than that generated by LIME.
Figure 3(b) shows the comparison of the explanation scores for LIME and our
approach. Here, we see a very similar trend to the results for the spam predic-
tion application. Specifically, most users thought that our approach yields very
good explanations, while LIME explanations was considered average. Further,
Fig. 4(b) illustrates that our approach was significantly better in terms of help-
ing users understand, trust and apply the prediction method. This shows that
using relational knowledge can yield a more comprehensive explanation (in the
presence of noisy/unknown variables).

4.4 T-Test

We use the T-Test to compare the means of the two user groups (those who
evaluated LIME and our approach respectively). The null hypothesis for the
t-test is that there is no difference between the means of the two groups. In
our case, it will mean that our explanation is no better or worse than the lime
explanation. The alternate hypothesis is that the means of the two groups are
not the same, in which case it will mean that our explanation is either better
or worse than the lime explanation. We performed the t-test on the responses
to the summary question regarding the quality of the explanations. We coded
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(a) Our Approach (Spam) (b) Our Approach (Sentiment)

(c) LIME (Spam) (d) LIME (Sentiment)

Fig. 5. Comparison of user responses for the question that summarizes the effectiveness
of explanations. (a) and (b) show this for spam prediction and sentiment prediction
using our approach, and (c), (d) show the responses for LIME.

these as follows. (i) rating for lime explanation (coded as group 1) (ii) rating for
our explanation (coded as group 2). The response options are, (i) would like to
see more explanation (coded as 1) (ii) would like to see less explanation (coded
as 2) and (iii) Right amount of explanation (coded as 3). The coding is based on
the desirability of the response. We assumed the best case is the right amount
of explanation and therefore coded this as the highest. Then, we assumed that
requiring less amount of information is worse than right amount of information,
and is therefore coded as 2. Finally, we assumed that a user requiring more
amount of information is the worst case (coded as 1) because our main motivation
is to make the explanation human-interpretable. Thus, according to our coding,
the higher mean will be considered better because we coded the right amount
of information as the highest. We obtained p = 0.03(< 0.05). Therefore, the
difference in explanations provided by our approach is statistically significant.
Thus, we can reject the null hypothesis and our explanation is at least better
or worse than LIME explanation. The mean and standard deviations of the
two approaches (based on the coding) is as follows. LIME explanation has a
mean of 1.63 and a standard deviation of 0.95. The explanations based on our
approach has a mean of 2.22 and a standard deviation of 0.87. Therefore, our
explanations are clearly preferred by the users as compared to the explanations
given by LIME. The full breakdown of the responses is shown in Fig. 5. As
seen here, in each of the two tasks, users considered our explanations to be
better than LIME. Interestingly, even in the case where the type of explanations
was identical (words explaining the sentiment), LIME produced worse results
than our approach (see Fig. 5(b) and (d)) because our relational method takes
advantage of dependencies across different reviews to generate more complete
explanations.
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5 Conclusion

Explanations of predictions made by machine learning algorithms is critical in
several application domains. In general, MLNs are interpretable models but it is
challenging to explain results obtained from inference over MLNs. In this paper,
we presented an approach where we explain the results of relational inference in
MLNs as a ranked list of formulas that encode their influence on the inference
results. Specifically, we compute the importance weights of the MLN formulas
based on how much they influence the transition probabilities of a Gibbs sampler
that performs marginal inference in the MLN. On two real-world problems, we
conducted a comprehensive user study and showed that our explanations are
more human-interpretable as compared to explanations derived from LIME, a
state-of-the-art approach for explaining classifiers.

In future, we plan to apply our approach to explain complex queries in
multi-modal problems, derive alternate forms of explanation that improve inter-
pretability, etc.
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Abstract. We present a new unsupervised method for learning general-
purpose sentence embeddings. Unlike existing methods which rely on
local contexts, such as words inside the sentence or immediately neigh-
boring sentences, our method selects, for each target sentence, influential
sentences from the entire document based on the document structure.
We identify a dependency structure of sentences using metadata and
text styles. Additionally, we propose an out-of-vocabulary word handling
technique for the neural network outputs to model many domain-specific
terms which were mostly discarded by existing sentence embedding train-
ing methods. We empirically show that the model relies on the proposed
dependencies more than the sequential dependency in many cases. We
also validate our model on several NLP tasks showing 23% F1-score
improvement in coreference resolution in a technical domain and 5%
accuracy increase in paraphrase detection compared to baselines.

Keywords: Sentence embedding · Document structure ·
Out-of-vocabulary

1 Introduction

Distributed representations of words and sentences are ever more leveraged to
understand text [2,8,11,15,16,19,23]. These methods embed a word or sentence
by training a neural network to predict the next word or sentence without super-
vision. However, unlike human reading with broader context and structure in
mind, the existing approaches focus on a small continuous context of neighbor-
ing sentences. These approaches work well on continuous but less structured
text like movie transcripts, but do not work well on structured documents like
encylopedic articles and technical reports.

To better support semantic understanding of such technical documents, we
propose a new sentence embedding framework to learn general-purpose sentence
representations by leveraging long-distance dependencies between sentences in a
document. We observe that understanding a sentence often requires understand-
ing of more comprehensive context as well as the immediate context, including
the document title, previous paragraphs, or even related articles as shown in
Fig. 1. For instance, all the sentences in the document can be related to the
c© Springer Nature Switzerland AG 2020
U. Brefeld et al. (Eds.): ECML PKDD 2019, LNAI 11907, pp. 633–647, 2020.
https://doi.org/10.1007/978-3-030-46147-8_38

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-46147-8_38&domain=pdf
https://doi.org/10.1007/978-3-030-46147-8_38


634 T. Lee and Y. Park

document title (Fig. 1(a)). The items in a list structure can be influenced by
the sentence introducing the list, and, HTML documents can contain hyper-
links to provide more information on certain terms (Fig. 1(b)). Using these doc-
ument structure-based contexts, we can connect ‘ransomware’ with ‘payment’
(Fig. 1(a)).

Locky ransomware on aggressive hunt for victims

(a) Document Title and Footnote (b) Section, List and Hyperlink

Fig. 1. Examples of long distance dependencies between sentences

Our approach, leveraging such structural elements, has several advantages.
First, to provide enough context to understand a sentence, instead of using a
global context of all sentences in the document, we leverage a concise set of
context sentences to be considered using the structural dependencies. A larger
context can produce more accurate representations of sentences. However, it
is infeasible to train neural network models with a large number of context
sentences. Second, we further prioritize the selected sentences based on their
semantics and the dependency types. In this way, our model can better handle
documents containing several subtopics that may cause sudden local context
changes. Some sentences have dependencies to distant ones when a different
perspective of the topic is introduced. Using only small neighboring sentences
results in insufficient input to the neural network to understand such a sudden
change. Using long distance dependencies, we can provide a broader context.

Additionally, we can leverage the structural information to better handle
out-of-vocabulary (OOV) words. The vocabulary in a neural network is always
limited due to costly training time and memory use. Existing methods discard
low frequency words and map all OOV words to one or a few variables. This
method can loose important keywords in a technical domain that continuously
creates new terms. We introduce more fine-grained OOV variables using infor-
mation extracted from the structural context.

We empirically show that the model actually learns to rely more on some of
the dependencies. We validate our model on several NLP tasks using a Wikipedia
corpus which shows that our model consistently outperforms the existing meth-
ods. Our model produces much lower loss for the target sentence prediction task
and 5% increase in accuracy for paraphrase identification than Skip-Thought.
The results confirm that training with only local context does not work well
for such documents. We also compare the performance of the learned embed-
ding for coreference resolution. For coreference resolution, our model shows 23%
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Table 1. Categorization of sentence embedding methods. ∗ denotes methods not requir-
ing labeled data.

Range Continuity

Continuous Discontinuous

Intra-sentence [2,6,7,9,18,24]; [10]∗ [13,22,23]

Inter-sentence [8]∗ Our work∗

improvement in F1 over DeepCoref [1], a state-of-the-art deep learning-based
approach.

The main contributions of the paper include:

– A general-purpose sentence embedding method which leverages long distance
sentence dependencies extracted from the document structure.

– A rule-based dependency annotator to automatically determine the document
structure and extract all governing sentences for each sentence.

– A new OOV handling technique based on the document structure.

2 Related Work

Distributed representation of sentences, or sentence embedding, has gained much
attention recently, as word-level representations [11,15,16,19] are not sufficient
for many sentence-level or document-level tasks, such as machine translation,
sentiment analysis and coreference resolution. Recent approaches using neural
networks consider some form of dependencies to train the network. Dependen-
cies can be continuous (relating two adjacent words or sentences) or discontin-
uous (relating two distant words or sentences), and intra-sentence (dependency
of words within a sentence) or inter-sentence (dependency between sentences).
Many sentence embedding approaches leverage these dependencies of words to
combine word embeddings as shown in Table 1.

One direct extension of word embedding to sentences is combining words
vectors in a continuous context window. [9] uses a weighted average of the con-
stituent word vectors. [2,24], and [18] use supervised approaches to train a LSTM
network that merges word vectors. [6] and [7] use convolutional neural networks
(CNN) over continuous context window to generate sentence representations.
[10] includes a paragraph vector in the bag of word vectors and apply a word
embedding approaches [15,16].

Recently, several researchers have proposed dependency-based embedding
methods using a dependency parser to consider discontinuous intra-sentence
relationships [13,22,23]. [22] uses recursive neural network to consider discontin-
uous dependencies. [13] proposes a dependency-based CNN which concatenate a
word with its ancestors and siblings based on the dependency tree structure. [23]
proposes tree structured LSTM networks. These studies show that dependency-
based (discontinuous) networks outperform their sequential (continuous) coun-
terparts.
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Unlike these approaches considering only intra-sentence dependencies, Kiros
et al. propose a new architecture Skip-Thought [8] joining two recurrent neural
networks, encoder and decoder. The encoder combines the words in a sentence
into a sentence vector, and the decoder generates the words in the next sentence.
Our approach is similar to Skip-Thought since both approaches are unsuper-
vised and use inter-sentential dependencies. However, Skip-Thought considers
only continuous dependency.

Unlike our approach considering OOV in the output using the document
structure, there are approaches that build an embedding of an OOV word on
the fly that can be used as input to our system [20,21], and [5]. Our OOV
handling focuses more on mechanism to produce OOV words as the output of
the network and leverage them in training, which is out of the scope of these
previous papers. [12] proposes a word position-based approach to address the
OOV problem for neural machine translation (NMT) systems. Their methods
allow a neural machine translation (NMT) system to emit, for each unknown
word in the target sentence, the position of the corresponding word in the source
sentence. However, their methods are not applicable to sentence embedding, as
they rely on an aligned corpus. Also, our approach considers not only word
positions but also the dependency types to define OOV words.

3 Document Structured-Based Context

Previous sentence embedding methods use intra-sentence dependencies such as
a dependency tree, or immediately neighboring sentences for sentence embed-
ding. However, we identify more semantically related content to define sentence
dependencies based on the document structure as shown in Fig. 1. In this section,
we describe a range of such inter-sentence dependencies that can be utilized for
sentence embedding and the techniques to automatically identify them.

We use the following notations to describe the extraction of document
structure-based context for a given sentence. Suppose we have a document
D = {S1, . . . , S|D|}, which is a sequence of sentences. Each sentence Si is
a sequence of words, represented as si,1, . . . , si,|Si|. For each target sentence
St ∈ D, St depends on a subset G ⊂ D1. We call such a sentence Gi in G
a governing sentence of St, and say Gi governs St, or St depends on Gi, defined
by one of the dependency types in D described below.

3.1 Titles

The title of a document, especially a technical document, contains the topic
entity, the key claim, and/or the summary of the document, and all other sen-
tences describe and elaborate the title. For instance, the title of the document
(e.g., WannaCry) can clarify the meaning of a definite noun phrase (e.g., the
ransomware) in the sentence. Section titles play a similar role, but, mostly to

1 For simplicity, we use G to denote a St specific set.
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the sentences within the section. We detect different levels of titles, starting from
the document title to chapter, section and subsection titles. Then, we identify
the region in the document which each title governs and incorporate the title in
the embedding of all sentences in the region. To identify titles in a document,
we use the various information from the metadata and the document content as
follows.

Document Metadata (DTM): We extract a document title from the <title>
tag in a HTML document or from the title field in Word or PDF document
metadata. Since the document title influences all sentences in a document, we
consider this title governs every sentence in D.

Heading Tag (DTHn): The heading tags <h1> to <h6> in HTML documents
are often used to show document or section titles. We consider all sentences
between a heading tag and the next occurrence of the same level tag are consid-
ered under the influence of the title.

Table Of Contents (DTC): Many documents contain a table of contents (TOC)
providing the overall structure of the document. To detect the titles based on
the table of contents, we first recognize a phrase indicating TOC, such as “table
of contents”, “contents” or “index”. Then, we parse the content following the
cue phrase and check if it contains a typical TOC pattern such as “Chapter 1
– Introduction” or “Introduction · · · · · · · · · 8”. The range of each section can be
easily identified from the TOC. If the document is an HTML file, each line in
the TOC tends to have a hyperlink to the section. For non-HTML documents,
we can extract the page number from the TOC (e.g., page 8) and locate the
corresponding pages.

Header and Footer (DTR): Technical documents often contain the document
or section titles in the headers or footers. Thus, if the same text is repeated in
the headers or footers in many pages, we take the text as a title and consider all
sentences appearing in these pages belong to the title.

Text Styles (DTS): Titles often have a distinctive text style. They tend to have
no period at the end and use a larger font size, a higher number of italic or bold
text, and a higher ratio of capitalized words compared to non-title sentences. We
first build a text style model for sentences in the document body, capturing the
three style attributes. If a sentence ends without a period and any dimension of
its style model has higher value than that of the text style model, we consider
the sentence as a title. Then, we split the document based on the detected titles
and treat each slice as a section.

3.2 Lists

Authors often employ a list structure to describe several elements of a subject.
This list structure typically has an introductory sentence stating the main con-
cept followed by a bulleted, numbered or in-text list of items supporting the
main concept as illustrated in Fig. 1(b). An item in the list is conceptually more
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Fig. 2. Our model architecture.

related to the introductory sentence than the other items in the list, but the
distance can be long because of other items. We use the following methods to
identify list items, consider the sentence appearing prior to the list items as the
introductory sentence and assume that it governs all items in the list.

Formatted List (DLF ): To extract numbered or bulleted lists, we use the list
tags (e.g., <ul>, <ol>, <li>) for HTML documents. For non-HTML documents,
we detect a number sequence (i.e., 1, 2, ...) or bullet symbols (e.g., -, ·) repeating
in multiple lines.

In-text List (DLT ): We also identify in-text lists such as “First(ly), . . .. Sec-
ond(ly), . . .. Last(ly), . . .” by identifying these cue words.

3.3 Links

Hyperlinks (DH): Some sentences contain hyperlinks or references to provide
additional information or clarify the meaning of the sentence. We can enrich the
representation of the sentence using the linked document. In this work, we use
the title of the linked document to govern the target sentence. Alternatively, we
can use the embedding of the linked document.

Footnotes and In-document Links (DF ): Footnotes also provide additional
information for the target sentence. In an HTML document, such information
is usually expressed with in-document hyperlinks, which ends with “#dest”. In
this case, we identify a sentence marked with “#dest” and add a dependency
between the two sentences.

3.4 Window-Based Context (DWn)

We also consider the traditional sequential dependency used in previous meth-
ods [4,8]. Given a document D = {S1, . . . , S|D|}, the target sentence St is con-
sidered to be governed by n sentences prior to (n < 0) or following (n > 0) St.
In our implementation, we use only one prior sentence (DW−1).



Unsupervised Sentence Embedding 639

4 Neural Network Models

In this section, we describe our model architecture (Fig. 2) in detail. Based on the
dependencies extracted in Sect. 3, we build a sentence embedding model. Sim-
ilarly to Skip-Thought [8], we train our model to generate a target sentence
St using a set of governing sentences G. However, Skip-Thought takes into
account only the window-based context (DWn), while our model considers diverse
long distance context and their dependency types as described in Sect. 4.1. Addi-
tionally, unlike existing sentence embedding methods, which include only a small
fraction of words (typically high frequency words) in the vocabulary and map all
other words to one OOV word, we introduce a new OOV handler in our model
in Sect. 4.2.

4.1 Inter-sentential Dependency-Based Encoder-Decoder

Our model has several encoders (one encoder for each governing sentence Gi ∈
G), a decoder and an OOV handler as shown in Fig. 2. The input to each cell
is a word, represented as a dense vector. We use the pre-trained vectors from
the CBOW model [16], and the word vectors can be optionally updated during
training.

We now formally describe the model given a target sentence St and a set
G of its governing sentences. We first describe the encoders that digest each
Gi ∈ G. Given the i-th governing sentence Gi = (gi,1, . . . , gi,|Gi|), let w(gi,t) be
the word representation (pre-trained or randomly initialized) of word gi,t. Then,
the following equations define the encoder for Gi.

hi,t = RC(w(gi,t), hi,t−1; θE),
λi = sigmoid(Udi + g), hi = hi,|Gi|,

h̄0 =
∑

i

Wdep(i)

{
λi(udep(i)hi + adep(i))

+ (1 − λi)hi + b}

(1)

where RC is a recurrent neural network cell (e.g., LSTM or GRU) that updates
the memory hi,t; θE is the parameters for the encoder RC; λi is an OOV weight
that decides how much we rely on out-of-vocabulary words; di denotes the OOV
features for Gi; U and g are linear regression parameters; sigmoid(·) is the sigmoid
function; udep and adep are an OOV weight transformation; W and b are a
transformation matrix and a bias; and h̄0 is the aggregated information of G
and is passed to the decoder for target sentence generation.

Now, we define the decoder as follows:

ot, h̄t = RC(ot−1, h̄t−1; θD),
yt = softmax(V ot + c)

(2)

where RC is a recurrent neural network cell that updates the memory h̄t and
generates the output ot; θD is a set of parameters for the decoder RC; softmax(·)
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is the softmax function; and V ot + c transforms the output into the vocabulary
space. That is, V ot + c generates logits for words in the vocabulary set and is
used to predict the words in the target sentence.

To strike a balance between the model accuracy and the training time, we
use K randomly chosen governing sentences from G for all target sentence. We
use the cross entropy between yt and ot as the optimization function and update
θE ,Wdep(i), b, V, c, θD and optionally w(·).

4.2 Out-Of-Vocabulary (OOV) Mapping

Incorporating all the words from a large text collection in deep learning mod-
els is infeasible, since the amount of memory use and training time will be
too costly. Especially, in technical domains, new jargons are constantly added,
and, their character level information is often not very useful (e.g., WannaCry,
129.42.56.189).

Thus, we propose an OOV word handling method based on the diverse sen-
tence relationships from Sect. 3. OOV word handling is desired in the following
three places: (1) input embeddings to encode the governing sentences (G); (2)
input embeddings to decode the target sentence (St); and (3) output logits to
compute the loss with respect to St. For the first two cases, i.e., generating
the input embeddings of G and St for the encoder and the decoder, we use the
average vector of all words in the vocabulary to represent all OOV words.

While there are several approaches to generate input embeddings for OOV
words (Case 1 & 2), such as average of all word embeddings, character-based
embedding, context-based embedding [5,20,21], there has been little work for
building a model generating OOV words in the output and use them in the
training loss (Case 3). Existing sentence embedding techniques reduce the vocab-
ulary size mainly by using only high frequency words and by collapsing all other
words to one special word (e.g., <unk>). However, this single OOV symbol
for all OOV words treats both very important OOV word (e.g., topic entities,
domain-specific words and proper nouns) and other words alike, resulting in
unsatisfactory results for technical documents.

Instead of replacing all OOV words by a single variable, we consider the
dependency and the position of OOV words to build a set of OOV variables.
Given the training corpus with the entire vocabulary VM with size M , we first
select N most frequent words in the training corpus as an initial vocabulary VN

(typically, N � M , i.e., tens of thousands vs. millions or billions). Then, we build
an OOV map that reduces the OOV words (VM −VN ) into a smaller vocabulary
VOOV of OOV variables, {Oi(j)}, where Oi(j) represents j-th OOV word given
a governing sentence Gi (e.g., an OOV variable may indicate the actor in the
previous sentence). In particular, we use OOV variables to represent the first
and the last η OOV words in sentences with each dependency, observing that
many semantically important words tend to appear at the beginning or the end
of the governing sentences. We denote the j-th last OOV word by Oi(−j). This
idea of encoding OOV words based on their positions in a sentence is similar to



Unsupervised Sentence Embedding 641

the machine translation approach by [12]. However, we encode OOV words using
the dependency type of the sentence as well as their position in the sentence.

After we replace OOV words using the OOV mapping, we have the aug-
mented vocabulary VN ∪ VOOV with a manageable size. The optimization goal
of each RNN cell without OOV words is to predict the next word with one cor-
rect answer. In contrast, our model allows multiple correct answers, since an
OOV word can be mapped to multiple OOV variables. We use the cross entropy
with soft labels as the optimization loss function. The weight of each label is
determined by the inverse-square law, i.e., the weight is inversely proportional
to the square of the number of words associated with the label. This weighting
scheme gives a higher weight to less ambiguous dependency.

One additional component we add related to OOV words is a weight function
for the governing sentences based on occurrences of proper nouns (λi in Eq. 1).
Instead of equally weighing all governing sentences, we can give a higher weight
to sentences with proper nouns, which are more likely to have OOV words, to
leverage the contextual information of such OOV words in other sentences to
understand the OOV words in the target sentence. Thus, we introduce a feature
vector representing the number of OOV proper nouns in the i-th governing
sentence (di in Eq. 1). Currently, the features include the number of OOV words
whose initials are uppercased, the number of OOV words that are uppercased,
and the number of OOV words with at least one upper-case letter. Together
with the linear regression parameters, U and g, the model learns the weights for
different dependency types.

5 Experiments

We empirically evaluate our approach on various NLP tasks and compare the
results with other existing methods. We trained the proposed model (Ours) and
the baseline systems on 807,647 randomly selected documents from the 2009
Wikipedia dump, which is the last Wikipedia dump released in HTML format.
Since our approach leverages HTML tags to identify document structures, our
model use the raw HTML files. For the baseline systems, we provide plain text
version of the same articles. All models were trained for 300K steps with 64-
sized batches and the Adagrad optimizer [3]. For the evaluation, we use GRU
cells for RC in Eq. 2. For each target sentence, if there are more than 8 governing
sentences, we randomly choose 8 of them as the context (K = 8). We set the
maximum number of words in a sentence to be 30 and pad each sentence with
special start and end of sentence symbols. We set η to 4, resulting in |VOOV | = 80.

5.1 Dependency Importance

In this experiment, we show the relative importance of long distance sentence
relations compared to sequential relations. Note that Wdep in Eq. 1 implies the
importance level of a dependency dep. In Table 2, we show the relative impor-
tance of the different dependencies compared to the sequential dependency
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(DW−1), which is used in other methods. As we can see, all levels of document
and section titles, except the fourth level subsection title, play a more signif-
icant role than the sequential dependency. The reason that the title from the
metadata, (DTM ), does not have a high weight as the title from the heading 1
tag (DTH1) is that the metadata contains extra text, “- Wikipedia”, in the title
for Wikipedia articles (e.g., “George W. Bush - Wikipedia” instead of “George
W. Bush”). Further, hyperlinks (DH), in-document links (DF ) and formatted
lists (DLF ) are all shown to have a similar influence as the sequence dependency.
The remaining dependencies, DTC , DTR, DTS , and DLT are scarcely found in
the Wikipedia corpus, and thus, did not converge or were not updated.

Table 2. Weights ‖Wdep‖2/‖WDW,−1‖2 of dependencies.

DTH1 DTH2 DTH3 DLF DTM DF DTH4 DTH5 DH

2.30 2.30 2.30 1.00 1.00 1.00 0.24 1.40 1.00

5.2 Target Sentence Prediction

Unlike most other approaches, our model and Skip-Thought [8] can learn
application-independent sentence representations without task-specific labels.
Both models are trained to predict a target sentence given a context. The pre-
diction is a sequence of vectors representing probabilities of words in the target
sentence. For a quantitative evaluation between the two models, we compare
their prediction losses by using cross entropy loss. We randomly chose 640,000
target sentences for evaluation and computed the average loss over the 640K
sentences.

We compare Skip-Thought with two versions of our model. Ours denotes
our model using the document structure-based dependencies and the OOV han-
dler. Ours-DEP denotes our model with the OOV handler but using only local
context like Skip-Thought to show the impact of the OOV handler. Table 3
shows the comparison of the three models. The values in the table are the aver-
age loss per sentence. We measure the average loss value excluding OOV words
for Skip-Thought, as it cannot handle OOV words. However, for our models,
we measure the loss values with (All Words) and without OOV words (Voc.
Words). As we can see, both Ours−DEP and Ours significantly outperform
Skip-Thought resulting in 25.8% and 26.9% reduction in the loss values respec-
tively.

5.3 Paraphrase Detection

Further, we compare our model with Skip-Thought on a paraphrase detection
task using the Microsoft Research Paraphrase corpus [14]. The data set consists
of 5,801 sentence pairs extracted from news data and their boolean assessments
(if a sentence pair is paraphrase or not), which were determined by three assessors



Unsupervised Sentence Embedding 643

Table 3. Comparison of our models and Skip-Thought for target sentence prediction

Method All words Voc. words

Ours 0.1456 0.1394

Ours-DEP 0.1467 0.1415

Skip-Thought N/A 0.1907

Table 4. Comparison of paraphrase detection accuracy

Method Accuracy

Ours 0.72

Skip-Thought 0.67

using majority voting. The goal is correctly classifying the boolean assessments,
and the accuracy (# correct pairs/# all pairs) is measured. We used 4,076 pairs
for training and 1,725 pairs for testing. Since the data sets contain sentence pairs
only and no structural context, we evaluate only the effectiveness of the trained
encoder. To compare the quality of sentence embeddings by the two models,
we use the same logistic regression classifier with features based on embedded
sentences as in [8]. Given a pair of sentences S1 and S2, the features are the
two embeddings of S1 and S2, their entry-wise absolute difference, and their
entry-wise products. Our model shows a 5% points higher accuracy than Skip-
Thought in paraphrase detection (Table 4), demonstrating the effectiveness of
our encoder trained with the structural dependencies. Note that Skip-Thought
trained with Wikipedia corpus performs worse than a model trained on books
or movie scripts due to more complex and less sequential structure in Wikipedia
documents.

5.4 Coreference Resolution

While our system is not designed for coreference resolution, the rich sentence
embedding can be used for unsupervised coreference resolution, unlike the meth-
ods relying on annotated corpus [1]. Although building a dedicated coreference
resolution method for a given domain can produce better results, we claim that
our embedding approach can extract a good starting set of features. We first
detect entity mentions, and, for a pronoun or a generic entity mentions (e.g.,
a definite noun phrase), we select a list of candidate referents that conform to
the mention type of the entity reference. Then, we replace the entity reference
with each of the candidate referents and compute the loss of the new sentence.
Finally, we choose the referent with the lowest loss value as the result, if the loss
is less than the original sentence loss value. We extend our model to use sequen-
tial dependencies of DW−3 , . . . ,DW1 (Sect. 3.4), and further train it with a 700K
unlabeled cybersecurity corpus collected from security blogs and websites.
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Table 5. Overall performance on coreference resolution

Method Prec Recall F1

Ours+SER 0.77 0.20 0.32

DeepCoref+NER 0.13 0.10 0.11

DeepCoref+SER 0.66 0.05 0.09

Petya (malware)
…

Operation
The "NotPetya" variant utilized in the 2017 attack uses EternalBlue, …
…

EternalBlue is generally believed to have been developed by the U.S. 
National Security Agency (NSA);[19] it was leaked in April 2017 and 
was also used by WannaCry.

DEEPCOREF
Ours

Fig. 3. Example coreference resolution

We compare our approach with the Stanford Deep Coreference Resolution
tool (DeepCoref) [1] on a set of cybersecurity-related documents. The evalua-
tion data consists of 628 entity coreferences extracted from 38 Wikipedia articles
about malware programs which were not included in the training document set.
We conducted experiments for several cybersecurity related entity types such
as ‘Malware’ and ‘Vulnerability’ and general entity types such as ‘Person’ and
‘Organization’.

Since DeepCoref was designed mostly for general entity types and may not
be able to identify security entity types, we apply the system both with its own
named entity recognizer as the candidate generator (DeepCoref+NER) and
with our candidate generator designed for security entities (DeepCoref+SER).
Table 5 shows MUC precision, recall, and F1-score [17]. Our model achieves
higher precision and recall than both versions of DeepCoref. Note that
DeepCoref+NER produces very low precision compared to the other models.
While DeepCoref+SER shows higher precision, it still performs worse than
Ours+SER due to the lack of features for security terms. Figure 4 shows the
performance for different entity types. As we can see, while DeepCoref+SER
shows higher F1 score than DeepCoref+NER for the security entity types,
it still shows lower F1 score than Ours+SER due to semantics unseen during
the training. That is, for person and organization, syntactic features used by
DeepCoref are important. However, when there is no such features available
(i.e., malware and vulnerability), the semantic relationship among sentences is
more important. Figure 3 shows an example case where DeepCoref identifies
the closer candidate as coreferent rather than examining semantics.
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Fig. 4. F1-score per entity types

6 Conclusion and Future Work

In this paper, we presented a novel sentence embedding technique exploiting
diverse types of structural contexts and domain-specific OOV words. Our method
is unsupervised and application-independent, and it can be applied to various
NLP applications. We evaluated the method on several NLP tasks including
coreference resolution, paraphrase detection and sentence prediction. The results
show that our model consistently outperforms the existing approaches confirm-
ing that considering the structural context generates better quality sentence
representations.

There are a few possible directions of future work. The proposed approach
relies on rule-based dependency annotation. Devising a supervised dependency
annotator can be an interesting direction to adapt to other domains with slightly
different rules or document format (e.g., XLS). There are also unsupervised
neural dependency parsers for intra-sentence dependencies. Studying an inter-
sentence counterpart would be very useful for our framework. In our implemen-
tation, we used only document titles of the hyperlinked documents. But, linking
documents to understand a new document and better exploiting related or pre-
requisite documents can be an important research direction.
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Abstract. In the last few years, many different methods have been
focusing on using deep recurrent neural networks for natural language
generation. The most widely used sequence-to-sequence neural methods
are word-based: as such, they need a pre-processing step called delexical-
ization (conversely, relexicalization) to deal with uncommon or unknown
words. These forms of processing, however, give rise to models that
depend on the vocabulary used and are not completely neural.

In this work, we present an end-to-end sequence-to-sequence model
with attention mechanism which reads and generates at a character level,
no longer requiring delexicalization, tokenization, nor even lowercasing.
Moreover, since characters constitute the common “building blocks” of
every text, it also allows a more general approach to text generation,
enabling the possibility to exploit transfer learning for training. These
skills are obtained thanks to two major features: (i) the possibility to
alternate between the standard generation mechanism and a copy one,
which allows to directly copy input facts to produce outputs, and (ii) the
use of an original training pipeline that further improves the quality of
the generated texts.

We also introduce a new dataset called E2E+, designed to highlight
the copying capabilities of character-based models, that is a modified
version of the well-known E2E dataset used in the E2E Challenge. We
tested our model according to five broadly accepted metrics (including
the widely used bleu), showing that it yields competitive performance
with respect to both character-based and word-based approaches.
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1 Introduction

The ability of recurrent neural networks (RNNs) to model sequential data stim-
ulated interest towards deep learning models which face data-to-text generation.
An interesting application is the generation of descriptions for factual tables that
consist of a set of field-value pairs; an example is shown in Table 4. We present
in this paper an effective end-to-end approach to this task.

Sequence-to-sequence frameworks [2,6,23] have proved to be very effective in
natural language generation (NLG) tasks [11,17,26], as well as in machine trans-
lation [4,6,22,23] and in language modeling [3]. Usually, data are represented
word-by-word both in input and output sequences; anyways, such schemes can’t
be effective without a special, non-neural delexicalization phase that handles
unknown words, such as proper names or foreign words (see [26]). The delexical-
ization step has the benefit of reducing the dictionary size and, consequently, the
data sparsity, but it is affected by various shortcomings. In particular, according
to [9] - it needs some reliable mechanism for entity identification, i.e. the recog-
nition of named entities inside text; - it requires a subsequent “re-lexicalization”
phase, where the original named entities take back placeholders’ place; - it can-
not account for lexical or morphological variations due to the specific entity,
such as gender and number agreements, that can’t be achieved without a clear
context awareness.

Recently, some strategies have been proposed to solve these issues: [10]
and [21] face this problem using a special neural copying mechanism that is quite
effective in alleviating the out-of-vocabulary words problem, while [16] tries to
extend neural networks with a post-processing phase that copies words as indi-
cated by the model’s output sequence. Some character-level aspects appear as a
solution of the issue as well, either as a fallback for rare words [15], or as subword
units [22].

A significantly different approach consists in employing characters instead of
words, for input slot-value pairs tokenization as well as for the generation of the
final utterances, as done for instance in [1,3].

In order to give an original contribution to the field, in this paper we present
a character-level sequence-to-sequence model with attention mechanism that
results in a completely neural end-to-end architecture. In contrast to traditional
word-based ones, it does not require delexicalization, tokenization nor lower-
casing; besides, according to our experiments it never hallucinates words, nor
duplicates them. As we will see, such an approach achieves rather interesting
performance results and produces a vocabulary-free model that is inherently
more general, as it does not depend on a specific domain’s set of terms, but
rather on a general alphabet. Because of this, it opens up the possibility, not
viable when using words, to adapt already trained networks to deal with different
datasets.

More specifically, our model shows two important features, with respect to
the state-of-art architecture proposed by [4]: (i) a character-wise copy mecha-
nism, consisting in a soft switch between generation and copy mode, that dis-
engages the model to learn rare and unhelpful self-correspondences, and (ii) a
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Fig. 1. Encoder-decoder with attention model

peculiar training procedure, which improves the internal representation capabil-
ities, enhancing recall; it consists in the exchange of encoder and decoder RNNs,
(GRUs [6] in our specific case), depending on whether the input is a tabular
Meaning Representation (MR) or a natural language sentence.

As a further original contribution, we also introduce a new dataset, described
in Sect. 3.1, whose particular structure allows to better highlight improve-
ments in copying/recalling abilities with respect to character-based state-of-art
approaches.

In Sect. 2, after resuming the main ideas on encoder-decoder methods with
attention, we detail our model: Sect. 2.2 is devoted to explaining the copy
mechanism while in Sect. 2.3 our peculiar training procedure is presented.
Section 3 includes the datasets descriptions, some implementation specifications,
the experimental framework and the analysis and evaluation of the achieved
results. Finally, in Sect. 4 some conclusions are drawn, outlining future work.

2 Model Description

2.1 Summary on Encoder-Decoder Architectures with Attention

The sequence-to-sequence encoder-decoder architecture with attention [4] is rep-
resented in Fig. 1: on the left, the encoder, a bi-directional RNN, outputs one
annotation hj for each input token xj . Each vector hj corresponds to the con-
catenation of the hidden states produced by the backward and forward RNNs.
On the right side of the figure, we find the decoder, which produces one state si
for each time step; on the center of the figure the attention mechanism is shown.
The main components of the attention mechanism are:

(i) the alignment model eij

eij = att(si−1, hj), 1 ≤ j ≤ Tx, 1 ≤ i ≤ Ty (1)

which is parameterized as a feedforward neural network and scores how well
input in position j-th and output observed in the i-th time instant match;
Tx and Ty are the length of the input and output sequences, respectively.
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(ii) the attention probability distribution αij

αij =
exp(eij)

∑Tx

k=1 exp(eik)
≡ [softmax(ei)]j , 1 ≤ j ≤ Tx, 1 ≤ i ≤ Ty (2)

(ei is the vector whose j-th element is eij)
(iii) the context vector Ci

Ci =
Tx∑

j=1

αijhj , 1 ≤ i ≤ Ty, (3)

weighted sum of the encoder annotations hj .

According to [4], the context vector Ci is the key element for evaluating the
conditional probability P (yi|y1, . . . , yi−1,x) to output a target token yi, given the
previously outputted tokens y1, . . . , yi−1 and the input x. They in fact express
this probability as:

P (yi|y1, . . . , yi−1,x) = g(yi−1, si, Ci), (4)

where g is a non-linear, potentially multi-layered, function. So doing, the explicit
information about y1, . . . , yi−1 and x is replaced with the knowledge of the con-
text Ci and the decoder state si.

The model we present in this paper incorporates two additional mechanisms,
detailed in the next sections: a character-wise copy mechanism and a peculiar
training procedure based on GRUs switch.

2.2 Learning to Copy

On top of the just recalled model, we build a character-based copy mecha-
nism inspired by the Pointer-Generator Network [21], a word-based model that
hybridizes the Bahdanau traditional model and a Pointer Network [25]. Basing
on these ideas, in our model we identify two probability distributions that, dif-
ferently from what done by [21] and [28], act now on characters rather than on
words: the alphabet distribution Palph and the attention distribution Patt.

The former is the network’s generative probability of sampling a given char-
acter at time i, recalled in Eq. (4):

P i
alph = softmax(V [si;Ci] + b), (5)

where V and b are trainable parameters.
The latter is the distribution reminded in Eq. (2), created by the attention

mechanism over the input tokens, i.e. in our case, over input characters:

P ij
att ≡ αij (6)

In our method this distribution is used for directly copying characters from the
input to the output, pointing their input positions, while in [4] Patt is used only
internally to weigh the input annotations and create the context vector Ci.
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The final probability of outputting a specific character c is obtained combin-
ing Palph and Patt through the quantity pgen, defined later, which acts as a soft
switch between generating c or copying it:

P i(c) = pigen · P i
alph[c] + (1 − pigen)

∑

j|xi=c

P ij
att(c), (7)

where P i
alph[c] is the component of P i

alph corresponding to that character c.
The backpropagation training algorithm, therefore, brings pgen close to 1

when it is necessary to generate the output as in a standard encoder-decoder
with attention (P i(c) � P i

alph[c]); conversely, pgen will be close to 0 (i.e. P i(c) �
∑

j|xi=c P j
att(c)) when a copying step is needed.

The model we propose therefore learns when to sample from Palph for select-
ing the character to be generated, and when to sample from Patt for selecting
the character that has to be copied directly from the input.

This copy mechanism is fundamental to output all the unknown words
present in the input, i.e. words which never occur in the training set. In fact, gen-
erating characters in the right order to reproduce unknown words is a sub-task
not “solvable” by a naive sequence-to-sequence model, which learns to output
only known words.

The generation probability pgen ∈ [0, 1] is computed as follows:

pigen = σ(Wy · ỹi−1 + Ws · si + Wp · pi−1
gen + Wc · Ci) (8)

where σ is the sigmoid function, ỹi−1 is the last output character’s embedding, si
is the current decoder’s cell state and Ci is the current context vector. Wy, Ws,
Wc and Wp are the parameters whose training allows pgen to have the convenient
value.

We highlight that in our formulation pi−1
gen, i.e. the value of pgen at time i−1,

contributes to the determination of pigen. In fact, in a character-based model it is
desirable that this probability remains unchanged for a fair number of time steps,
and knowing its last value helps this behavior. This never happens in word-based
models (such as [21]), in which copying for a single time step is usually enough.

2.3 Switching GRUs

Aiming at improving performance, we enrich our model’ training pipeline with an
additional phase, which forces an appropriate language representation inside the
recurrent components of the model. In order to achieve this goal, the encoder and
the decoder do not own a fixed GRU, differently from what happens in classical
end-to-end approaches. The recurrent module is passed each time as a parameter,
depending on which one of the two training phases is actually performed.

In the first phase, similar to the usual one, the GRU assigned to the encoder
deals with a tabular representation x as input, the GRU assigned to the decoder
has to cope with natural language, and the model generates an output utterance
ỹ = F (x). Conversely, in the second phase GRUs are switched and we use as
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Table 1. Descriptive statistics: on the left, sizes of training, validation and test sets
are shown. On the right, the average number of characters, respectively for Meaning
Representations and natural language sentences, are presented

Dataset Number of instances Avg. number of characters

Training Validation Test MRs NL sentences

E2E 42061 4672 4693 112.11 115.07

E2E+ 42061 4672 4693 112.91 115.65

Hotel 2210 275 275 52.74 61.31

Restaurant 2874 358 358 53.89 63.22

input the just obtained natural language utterance ỹ to generate a new table
x̃ = G(ỹ) = G(F (x)). Therefore, the same model can build both F and G,
thanks to the switch of GRUs.

In other words, the learning iteration is performed as follows.

– A dataset example (x, y) is given. x is a tabular meaning representation and
y is the corresponding reference sentence.

– We generate an output utterance ỹ = F (x)
– We perform an optimization step on the model’s parameters, aiming at min-

imizing Lforward = loss(ỹ, y)
– We reconstruct the meaning representation x̃ back from the previously gen-

erated output: x̃ = G(ỹ) = G(F (x))
– We perform a further optimization step on the model’s parameters, this time

aiming at minimizing Lbackward = loss(x̃, x)

The higher training time, direct consequence of the just described tech-
nique, is a convenient investment, as it brings an appreciable improvement of
the model’s performance (see Sect. 3.3).

3 Experiments

3.1 Datasets

We tested our model on four datasets, whose main descriptive statistics are
given in Table 1: among them, the most known and frequently used in literature
is the E2E dataset [18], used as benchmark for the E2E Challenge organized by
the Heriot-Watt University in 2017. It is a crowdsourced collection of roughly
50,000 instances, in which every input is a list of slot-value pairs and every
expected output is the corresponding natural language sentence. The dataset has
been partitioned by the challenge organizers in predefined training, validation
and test sets, conceived for training data-driven, end-to-end Natural Language
Generation models in the restaurant domain.

However, during our experiments, we noticed that the values contained in
the E2E dataset are a little naive in terms of variability. In other words, a slot
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like name, that could virtually contain a very broad range of different values, is
filled alternating between 19 fixed possibilities. Moreover, values are partitioned
among training, validation and test set, in such a way that test set always con-
tains values that are also present in the training set. Consequently, we created
a modified version of the E2E dataset, called E2E+, as follows: we selected
the slots that represent more copy-susceptible attributes, i.e. name, near and
food, and conveniently replaced their values, in both meaning representations
and reference sentences. New values for food are picked from Wikipedia’s list of
adjectival forms of countries and nations1, while both name and near are filled
with New York restaurants’ names contained in the Entree dataset presented
in [5]. It is worth noting that none of the values of name are found in near ;
likewise, values that belong to the training set are not found in the validation
set nor in the test one, and vice versa. This value partitioning shall ensure the
absence of generation bias in the copy mechanism, stimulating the models to
copy attribute values, regardless of their presence in the training set. The MR
and 1st reference fields in Table 4 are instances of this new dataset.

Finally, we decided to test our model also on two datasets, Hotel and Restau-
rant, frequently used in literature (for instance in [26] and [9]). They are built
on a 12 attributes ontology: some attributes are common to both domains, while
others are domain specific. Every MR is a list of key-value pairs enclosed in a
dialogue act type, such as inform, used to present information about restaurants,
confirm, to check that a slot value has been recognized correctly, and reject, to
advise that the user’s constraints cannot be met. For the sake of compatibility,
we filtered out from Hotel and Restaurant all inputs whose dialogue act type
was not inform, and removed the dialogue act type. Besides, we changed the
format of the key-value pairs to E2E-like ones.

Tables are encoded simply converting all characters to ASCII and feeding
every corresponding index to the encoder, sequentially. The resulting model’s
vocabulary is independent of the input, allowing the application of the transfer
learning procedure.

3.2 Implementation Details

We developed our system using the PyTorch framework2, release 0.4.13. The
training has been carried out as described in Subsect. 2.3: this training procedure
needs the two GRUs to have the same dimensions, in terms of input size, hidden
size, number of layers and presence of a bias term. Moreover, they both have
to be bidirectional, even if the decoder ignores the backward part of its current
GRU.

We minimize the negative log-likelihood loss using teacher forcing [27] and
Adam [12], the latter being an optimizer that computes individual adaptive
1 https://en.wikipedia.org/wiki/List of adjectival and demonymic forms for

countries and nations, consulted on August 30, 2018.
2 Code and datasets are publicly available at https://github.com/marco-roberti/char-

data-to-text-gen.
3 https://pytorch.org/.

https://en.wikipedia.org/wiki/List_of_adjectival_and_demonymic_forms_for_countries_and_nations
https://en.wikipedia.org/wiki/List_of_adjectival_and_demonymic_forms_for_countries_and_nations
https://github.com/marco-roberti/char-data-to-text-gen
https://github.com/marco-roberti/char-data-to-text-gen
https://pytorch.org/
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learning rates. As a consequence of the length of the input sequences, a character-
based model is often subject to the exploding gradient problem, that we solved
via the well-known technique of gradient norm clipping [20].

We also propose a new formulation of P (c) that helps the model to learn
when it is necessary to start a copying phase:

P i(c) = pigen · P i
alph(c) + (1 − pigen)

∑

j|xi=c

P i,j−1
att (c) (9)

Sometimes, our model has difficulty in focusing on the first letter it has to
copy. This may be caused by the variety of characters it could be attending on;
instead, it seems easier to learn to focus on the most largely seen characters, as
for instance ‘’ and ‘[’. As these special characters are very often the prefix of the
words we need to copy, when this focus is achieved, we would like the attention
distribution to be translated one step to the right, over the first letter that must
be copied. Therefore, the final probability of outputting a specific character c,
introduced in Eq. (7), is modified to P i,j−1

att , i.e. the attention distribution shifted
one step to the right and normalized.

Notice that P i,j−1
att is the only shifted probability, while P i

alph remains
unchanged. Therefore, if the network is generating the next token (i.e. pigen � 1),
the shift trick does not involve P i(c) and the network samples the next character
from P i

alph, as usual. This means that the shift operation is not degrading the
generation ability of the model, whilst improving the copying one.

3.3 Results and Discussion

In order to show that our model represents an effective and relevant improve-
ment, we carry out two different experimentations: an ablation study and a
comparison with two well-known models. The first model is the encoder-decoder
architecture with attention mechanism by [4] (hereafter “EDA”), used character-
by-character. The second one is TGen [8], a word-based model, still derived
from [4], but integrating a beam search mechanism and a reranker over the top
k outputs, in order to disadvantage utterances that do not verbalize all the infor-
mation contained in the MR. We chose it because it has been adopted as baseline
in the E2E NLG Challenge4.

We used the official code provided in the E2E NLG Challenge website for
TGen, and we developed our models and EDA in PyTorch, training them on
NVIDIA GPUs. Hyperparameter tuning is done through 10-fold cross-validation,
using the bleu metric [19] for evaluating each model. The training stopping cri-
terion was based on the absence of models’ performance improvements (see [8]).

We evaluated the models’ performance on test sets’ output utterances using
the Evaluation metrics script5 provided by the E2E NLG Challenge organizers. It
rates quality according to five different metrics: bleu [19], nist [7], meteor [13],
rouge l [14] and cider [24].
4 www.macs.hw.ac.uk/InteractionLab/E2E/.
5 https://github.com/tuetschek/E2E-metrics.

www.macs.hw.ac.uk/InteractionLab/E2E/
https://github.com/tuetschek/E2E-metrics
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Table 2. The ablation study on the E2E dataset evidences the final performance
improvement reached by our model. Best values for each metric are highlighted (the
higher the better)

EDA bleu 0.4999 EDA S bleu 0.6538

nist 7.1146 nist 8.4601

meteor 0.3369 meteor 0.4337

rouge l 0.5634 rouge l 0.6646

cider 1.3176 cider 1.9944

EDA C bleu 0.6255 EDA CS bleu 0.6705

nist 7.7934 nist 8.5150

meteor 0.4401 meteor 0.4449

rouge l 0.6582 rouge l 0.6894

cider 1.7286 cider 2.2355

Table 3. Performance comparison. Note the absence of transfer learning on dataset
E2E+ because in this case the training and fine-tuning datasets are the same. Best
values for each metric are highlighted (the higher the better)

E2E+ E2E Hotel Restaurant

EDA bleu 0.3773 0.4999 0.4316 0.3599

nist 5.7835 7.1146 5.9708 5.5104

meteor 0.2672 0.3369 0.3552 0.3367

rouge l 0.4638 0.5634 0.6609 0.5892

cider 0.2689 1.3176 3.9213 3.3792

TGen bleu 0.6292 0.6593 0.5059 0.4074

nist 9.4070 8.6094 7.0913 6.4304

meteor 0.4367 0.4483 0.4246 0.3760

rouge l 0.6724 0.6850 0.7277 0.6395

cider 2.8004 2.2338 5.0404 4.1650

EDA CS bleu 0.6197 0.6705 0.5515 0.4925

nist 9.2103 8.5150 7.4447 6.9813

meteor 0.4428 0.4449 0.4379 0.4191

rouge l 0.6610 0.6894 0.7499 0.7002

cider 2.8118 2.2355 5.1376 4.7821

EDA CSTL bleu − 0.6580 0.5769 0.5099

nist − 8.5615 7.4286 7.3359

meteor − 0.4516 0.4439 0.4340

rouge l − 0.6740 0.7616 0.7131

cider − 2.1803 5.3456 4.9915
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Our first experimentation, the ablation study, refers to the E2E dataset
because of its wide diffusion, and is shown in Table 2; “EDA CS” identifies our
model, and ‘C’ and ‘S’ stand for “Copy” and “Switch”, the two major improve-
ments presented in this work. It is evident that the partially-improved networks
are able to provide independent benefits to the performance. Those components
cooperate positively, as EDA CS further enhances those results. Furthermore,
the obtained bleu metric value on the E2E test set would allow our model to be
ranked fourth in the E2E NLG Challenge, while its baseline TGen was ranked
tenth.

Our second experimentation, the comparison study, is shown in Table 3.
The character-based design of EDA CS led us to explore in this context also
a possible behavior as a transfer learning capable model: in order to test this
hypothesis, we used the weights learned during training on the E2E+ dataset
as the starting point for a fine-tuning phase on all the other datasets. We chose
E2E+ because it reduces the generation bias, as discussed in Subsect. 3.1. We
named this approach EDA CSTL.

A first interesting result is that our model EDA CS always obtains higher
metric values with respect to TGen on the Hotel and Restaurant datasets, and
three out of five higher metrics values on the E2E dataset. However, in the case
of E2E+, TGen achieves three out of five higher metrics values. These results
suggest that EDA CS and TGen are comparable, at least from the point of view
of automatic metrics’ evaluation.

A more surprising result is that the approach EDA CSTL allows to obtain
better performance with respect to training EDA CS in the standard way on the
Hotel and Restaurant datasets (for the majority of metrics); on E2E, EDA CSTL

outperforms EDA CS only in one case (i.e. meteor metric).
Moreover, EDA CSTL shows a bleu increment of at least 14% with respect

to TGen’s score when compared to both Hotel and Restaurant datasets.
Finally, the baseline model, EDA, is largely outperformed by all other exam-

ined methods.
Therefore, we can claim that our model exploits its transfer learning capabil-

ities effectively, showing very good performances in a context like data-to-text
generation in which the portability of features learned from different datasets,
in the extent of our knowledge, has not yet been explored.

We highlight that EDA CS’s model’s good results are achieved even if it con-
sists in a fully end-to-end model which does not benefit from the delexicalization-
relexicalization procedure, differently from TGen. Most importantly, the latter
represents a word-based system: as such, it is bound to a specific, limited vocab-
ulary, in contrast to the general-purpose character one used in our work.

Table 4 reports the output of the analyzed models for a couple of MR, taken
from the E2E+ test set. The EDA’s inability to copy is clear, as it tends, in its
output, to substitute those values of name, food and near that do not appear in
the training set with known ones, guided by the first few characters of the input
slot’s content. Besides, it shows serious coverage issues, frequently ’forgetting’
to report information, and/or repeating more times the same ones.
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(a) On an E2E instance.

(b) On an E2E+ instance.

Fig. 2. Attention distribution (white means more attention) and pgen (white: generat-
ing, black: copying), as calculated by the model
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Table 4. A comparison of the three models’ output on some MR of the E2E+ test
set. The first reference utterance is reported for convenience

MR name[New Viet Huong], eatType[pub], customer rating[1

out of 5], near[Ecco]

1st reference The New Viet Huong is a pub near Ecco that has a customer

rating of 1 out of 5

EDA CS New Viet Huong is a pub near Ecco with a customer rating of 1
out of 5

TGen New Viet Huong is a pub near Ecco with a customer rating of 1
out of 5

EDA Near the riverside near the ERNick Restaurant is a pub near the
ERNicker’s

MR name[La Mirabelle], eatType[restaurant], food[Iraqi],

priceRange[high], area[riverside], familyFriendly[yes],

near[Mi Cocina]

1st reference La Mirabelle is a children friendly restaurant located in the
Riverside area near to the Mi Cocina. It serves Iraqi food and is
in the high price range

EDA CS La Mirabelle is a high priced Iraqi restaurant located in the
riverside area near Mi Cocina. It is children friendly

TGen La Mirabelle is a high priced Iraqi restaurant in the riverside
area near Mi Cocina. It is child friendly

EDA La Memaini is a high priced restaurant that serves Iranian food
in the high price range. It is located in the riverside area near
Manganaro’s Restaurant

These troubles are not present in EDA CS output utterances: the model
nearly always renders all of the input slots, still without duplicating any of them.
This goal is achieved even in absence of explicit coverage techniques thanks to
our peculiar training procedure, detailed in Sect. 2.3, that for each input sample
minimizes also the loss on the reconstructed tabular input. It is worth noting
that the performance of TGen and EDA CS are overall comparable, especially
when they deal with names or other expressions not present in training.

The joint analysis of the matrix of the attention distribution P ij
att and the

vector pgen allows a deeper understanding of how our model works.
In Fig. 2 every row shows the attention probability distribution “seen”

when an output character is produced at the i-th time instant (i.e. the vector
P ij
att, 1 ≤ j ≤ Tx), while every column shows values of the attention distribution

corresponding to a specific input position j (i.e. the vector P ij
att, 1 ≤ i ≤ Ty). We

can therefore follow the white spots, corresponding to higher values of attention,
to understand the flow of the model’s attention during the generation of the
output utterance.

Moreover, pgen values, which lie in the numeric interval [0, 1], help us in the
interpretation of the attention: they are represented as a grayscale vector from
zero (black) to one (white) under the matrices. Values close to 0 mean copying
and those near 1 mean generating.
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Fig. 3. Copying common words leads the model to “uncertain” values of pgen

We can note that our model’s behavior varies significantly depending on
the dataset it has been trained on. Figure 2a shows the attention probability
distribution matrix of EDA CS (together with pgen vector) trained on the E2E
dataset: as observed before, attribute values in this dataset have a very low
variability (and are already present in the training set), so that they can be
individually represented and easily generated by the decoder. In this case, a
typical pattern is the copy of only the first, discriminating character, clearly
noticeable in the graphical representation of the pgen vector, and the subsequent
generation of the others. Notice that the attention tends to remain improperly
focused on the same character for more than one output time step, as in the first
letter of “high”.

On the other hand, the copy mechanism shows its full potential when the
system must learn to copy attribute values, as in the E2E+ dataset. In Fig. 2b
the diagonal attention pattern is pervasive: (i) it occurs when the model actually
copies, as in “Harley Davidson” and “Coco Pazzo”, and (ii) as a soft track for the
generation, as in “customer rating”, where the copy-first-generate-rest behavior
emerges again.

A surprising effect is shown in Fig. 3, when the model is expected to copy
words that, instead, are usually generated: an initial difficulty in copying the
word “The”, that is usually a substring of a slot value, is ingeniously overcome
as follows. The first character is purely generated, as shown by the white color in
the underlying vector, and the sequence of the following characters, “he ”, is half-
generated and half-copied. Then, the value of pgen gets suddenly but correctly
close to 0 (black) until the closing square bracket is met. The network’s output
is not affected negatively by this confusion and the attention matrix remains
quite well-formed.

As a final remark, the metrics used, while being useful, well-known and
broadly accepted, do not reflect the ability to directly copy input facts to produce
outputs, so settling the rare word problem.
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4 Conclusion

We showed in this paper an effective character-based end-to-end model that
faces data-to-text generation tasks. It takes advantage of a copy mechanism,
that deals successfully with the rare word problem, and of a specific training
procedure, characterized by the switching GRUs mechanism. These innovative
contributions to state-of-art further improve the quality of the generated texts.

We highlight that our formulation of the copy mechanism is an original
character-based adaptation of [21], because of the use of pi−1

gen to determine
the value of pigen, at the following time step. This helps the model in choos-
ing whether to maintain the same value for a fair number of time steps or not.

Besides, the use of characters allows the creation of more general models,
which do not depend on a specific vocabulary; it also enables a very effective
straightforward transfer learning procedure, which in addition eases training
on small datasets. Moreover, outputs are obtained in a completely end-to-end
fashion, in contrast to what happens for the chosen baseline word-based model,
whose performances are comparable or even worse.

One future improvement of our model could be the “reinforcement” of the
learning iteration described in Sect. 2.3: for each dataset example (x, y), we
could consider, as an ulterior example, the reverse instance (y, x). The network
obtained this way should be completely reversible, and the interchangeability of
input and output languages could open up new opportunities in neural machine
translation, such as two-way neural translators.

New metrics that give greater importance to rare words might be needed in
the future, with the purpose of better assess performances of able-to-copy NLG
models on datasets such as the E2E+ one.
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the Visiting Professor Program of the Italian Istituto Nazionale di Alta Matematica
(INdAM).
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Abstract. Much of human knowledge is encoded in text, available in sci-
entific publications, books, and the web. Given the rapid growth of these
resources, we need automated methods to extract such knowledge into
machine-processable structures, such as knowledge graphs. An important
task in this process is entity normalization, which consists of mapping
noisy entity mentions in text to canonical entities in well-known refer-
ence sets. However, entity normalization is a challenging problem; there
often are many textual forms for a canonical entity that may not be
captured in the reference set, and entities mentioned in text may include
many syntactic variations, or errors. The problem is particularly acute
in scientific domains, such as biology. To address this problem, we have
developed a general, scalable solution based on a deep Siamese neural
network model to embed the semantic information about the entities,
as well as their syntactic variations. We use these embeddings for fast
mapping of new entities to large reference sets, and empirically show the
effectiveness of our framework in challenging bio-entity normalization
datasets.

Keywords: Semantic embedding · Deep learning · Siamese networks ·
Entity grounding · Entity normalization · Entity resolution · Entity
disambiguation · Entity matching · Data integration · Similarity
search · Similarity learning

1 Introduction

Digital publishing has accelerated the rate of textual content generation to
beyond human consumption capabilities. Taking the scientific literature as an
example, Google Scholar has indexed about four and a half million articles and
books in 2017 in a 50% increase from the previous year. Automatically organizing
this information into a proper knowledge representation is an important way to
make this information accessible. This process includes identification of entities
in the text, often referred to as Names Entity Recognition (NER) [25,38], and
mapping of the identified entities to existing reference sets, called Entity Nor-
malization, or Grounding. In this paper we propose a text embedding solution
for entity normalization to a reference set.
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Entity normalization to a reference set is a challenging problem. Even though
in some cases normalization can be as simple as a database look-up, often there
is no exact match between the recognized entity in the text and the reference
entity set. There are two main sources for this variation. The first is syntactic
variations, where the identified entity contains relatively small character dif-
ferences with the canonical form present in the reference set, such as different
capitalization, reordering of words, typos, or errors introduced in the NER pro-
cess (e.g., ‘FOXP2’ and ‘FOX-P2’). The second and more challenging problem,
which we call semantic variations, is when the identified entity does not exist in
the reference set, even when considering significant syntactic variations, but a
human reader can recognize the non-standard entity name. For example, entities
often have multiple canonical names in the reference set and the identified entity
name is a combination of parts of different canonical names (e.g., ‘P70 S6KA’
and ‘52 kDa ribosomal protein S6 kinase’).

A further challenge is how to perform normalization at scale. Exhaustive pair-
wise comparison of the identified entity to the reference entities grows quadrat-
ically and is unfeasible for large datasets. Blocking [31] techniques speed up the
process by selecting small subsets of entities for pairwise comparisons. Unfor-
tunately, blocking methods applied directly to the textual representation of the
entity names are often limited to simple techniques that can only address syntac-
tic variations of the entity names. So, traditional blocking may eliminate matches
that are semantically relevant but syntactically different.

To address these issues, we develop a text embedding solution for entity nor-
malization. Our contributions include: (1) A general, scalable deep neural-based
model to embed entity information in a numeric vector space that captures both
syntactic and semantic variations. (2) An approach to incorporate syntactic
variations of entity names into the embeddings based on domain knowledge by
extending the use of contrastive loss function with soft labels. (3) A method
for dynamic hard negative mining to refine the embedding for improved perfor-
mance. (4) Using an approximate k-nearest neighbors algorithm over the embed-
dings to provide a scalable solution without the need for traditional blocking.

2 Related Work

Data Normalization, linking entities to their canonical forms, is one of the most
fundamental tasks in information retrieval and automatic knowledge extrac-
tion [9]. Many related tasks share components with entity normalization, but
also have subtle differences. Record linkage [21], aims to find records from dif-
ferent tables corresponding to the same entity. Records often contain multiple
fields and one of the challenges in this task is reasoning on different fields, and
their combinations. Deduplication [13] is similar to record linkage, but focuses
on the records of the same table, so it does not have to consider the heterogene-
ity of fields across different tables. Entity resolution [14], is a more general term
that deals with findings entity mentions that refer to the same entity and often
inferring a canonical form from them.
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A critical feature in our setting is the presence of a canonical reference set,
so that we ask “which canonical entity a mention is mapped to?” in contrast to
“which records are the same?” for settings were the canonical entity is latent.
Reference sets are specially important in bio-medical domains [23]. Unlike record
linkage, we do not have multiple fields and only reason on a single string.

Feature-engineered string similarities [7] form the core of most traditional
entity resolution methods. In contrast, Our approach learns a similarity metric
for entity normalization based on syntactic and semantic information. We com-
pute these similarities via embedding the entity mentions into a vector space.
Text embeddings, such as word2vec [27], GloVe [32], or more recently ELMo [33],
and BERT [12] have been very successful in language processing and understand-
ing applications, in great measure because they have been computed over very
large corpora. However, these methods are not task specific and provide general
embeddings based on the text context. Our approach is based on computing
direct similarities rather than analyzing the surrounding text. Hence, for Entity
Normalization, we use a deep Siamese neural network that has been shown to
be effective in learning similarities in text [30] and images [37]. Both of these
approaches define a contrastive loss functions [15] to learn similarities. Recently,
Ebraheem et al. [17] and Mudgal et al. [28] proposed deep neural network meth-
ods for record linkage (with multiple fields) in a database. A major focus of
their work was on combining data in different fields. Our setting differs since we
operate on entity name strings, and match them to canonical references.

To avoid exhaustive pairwise computation of similarities between entities
often blocking [26] or indexing [10] techniques are used to reduce the search
space. These methods are often based on approximate string matching. The
most effective methods in this area is based on hashing the string with the
main purpose of blocking the entities as a pre-processing step, followed by the
matching part that is performed after blocking. In our method, we combine both
steps by mapping the entity mentions to a numerical space to capture similarities.
The blocking in our case conceptually follows the matching process via applying
approximate nearest neighbors approaches on our semantic embedding space.

In the biomedical domain, Kang et al. [19] propose a rule-based method and
Leaman et al. [22] propose a learning-to-rank-based approach for disease nor-
malization. Leaman and Lu [23] further perform joint name entity recognition
and normalization. We provide an embedding-based approach for entity normal-
ization. We perform our experimental validation on two biomedical datasets of
protein and chemical entities.

3 Approach

Problem Definition: Given a query entity mention (nq), and a reference set of
entities R ≡ {e1, . . . , em}, where each entity ei ≡ <λi, {n1

i , . . . , n
k
i }> is identified

via an ID (λi) and an associated set of names (nk
i ) that refer to the entity, our

goal is to return the ID (λq) of the corresponding entity in our reference set R.
The exact textual name of the query entity may not exist in the reference set.
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Fig. 1. Learning embedding function based on semantics in reference set and syntactic
variations defined by domain knowledge and hard negative mining.

We map this normalization task to an approximate nearest-neighbors search
in a n-dimensional space where each name nm

l in the reference set is encoded into
a numerical vector representation vm

l . Our objective in this embedding space is
that names of the same entity (even syntactically very different) be closer to
each other compared to names of other entities. That is, nm

l → vm
l such that

δ(vm
l , vp

l ) < δ(vm
l , v∗

o), where el and eo are entities (el �= eo), n∗
∗ their correspond-

ing names, v∗
∗ embedding vectors of these names, and δ is a distance function.

We use a Siamese neural network architecture to embed the semantic infor-
mation about the entities as well as their syntactic similarities. We further refine
the similarities via dynamic hard negative sampling and incorporating domain
knowledge about the entities using additional generated training data. We then
encode and store the embeddings in a numeric representation that enables fast
retrieval of the results without the need for traditional character-based blocking.
Our approach consist of three steps:

Similarity Learning. We first learn an embedding function (M : n → v)
that maps the entity names to a numeric vector space where names of the same
entities are close to each other.

Embedding and Hashing. Then, we embed all the names in the reference set
R to the numerical vector space and hash and store the reference set embeddings
for fast retrieval.

Retrieval. Finally, we embed the query name (i.e., nq → vq) using the learned
model M and find the closest samples to it in the embedding space to retrieve
the corresponding ID (λq) of the query name in the reference set.
The following sections describe each step in detail.

3.1 Similarity Learning

We first learn a function (M) that maps the textual representation of entity
names (n) to a numerical vector representation (v) that preserves the proximity
of names that belong to the same entity, using a Siamese recurrent neural network
model. Figure 1(a) shows the overall approach and Algorithm 1 describes the
similarity learning process.
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Algorithm 1. NSEEN: Similarity Learning
1: procedure TrainSim(R, Pd)
2: Input: R reference set
3: Input: Pd pairs based on knowledge of syntactic variation in the domain
4: Generate pairs based on reference set R and add them to training data D
5: Add Pd pairs to the training data D
6: for k times do
7: Train the model M (Siamese network) on D
8: Embed all the names in R: n → v
9: for all vi

l do � Hard negative mining
10: find the k closest vj

k to vi
l

11: if k �= l then
12: add < nj

k, ni
l, 0 > to training data D

13: return M � The trained embedding function

Siamese Recurrent Neural Network. The Siamese neural network archi-
tecture of two towers with shared weights and a distance function at the last
layer has been effective in learning similarities in domains such as text [30] and
images [37]. Figure 1(b) depicts an overview of the network used in our frame-
work.

We feed pairs of names and a score indicating the similarity of the pairs
(i.e., <ni, nj , y>) to the Siamese network. As shown in Fig. 1(b), ni and nj

are entity names represented as a sequences of characters <xi
1, . . . , x

i
n> and

<xj
1, . . . , x

j
m>, and y ∈ [0, 1] represents the similarity between the names. To

read the character sequence of the names, we feed the character embedding to
four layers of Bidirectional-LSTM, followed by a single densely connected feed-
forward layer, which generate the embeddings v.

Contrastive Loss Function. While we can use several distance functions (δ)
to compare the learned vectors of the names, we use cosine distance between
the embeddings vi and vj , due to its better performance in higher dimensional
spaces. We then define a contrastive loss [15] based on the distance function δ
to train the model, as shown in Eq. 1. The intuition behind this loss function is
to pull the similar pairs closer to each other, and push the dissimilar pairs up to
a margin m apart (m = 1 in our experiments).

L =
1
2
yδ(vi, vj)2 +

1
2
(1 − y)max(0,m − δ(vi, vj))2 (1)

The contrastive loss has been originally proposed for binary labels where we
either fully pull two points towards each other or push them apart. In this paper,
we propose to extend this loss via using soft real-valued labels when we introduce
syntactic variations of the names described in Sect. 3.1 to indicate uncertainties
about the similarities of two vectors. For the margin of 1 (i.e., m = 1), the
distance that minimizes the loss function L for the real-valued label y is:1

1 For brevity of notation we denote δ(vi, vj) with δv.
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∂L
∂δv

= yδv − (1 − y)(1 − δv)

arg min
δv

L = {δv | y + δv − 1 = 0} = 1 − y
(2)

For example, in our setting the optimal distance between the embeddings of
two names with 0.7 similarity (i.e., y = 0.7) is 0.3. Figure 2 depicts the changes
in loss when altering the distance corresponding to different y values, and the
points that minimize the loss (i.e., arg minδv L) are marked on each line.

Fig. 2. Contrastive loss (L) based on dis-
tance values (δv) for different real-value
labels y. (Best viewed in color) (Color
figure online)

Pair Selection and Generation.
In order to train the model we need
labeled pairs of names (<ni, nj , y>).
We generate three sets of pairs using
different approaches: (1) the initial set
based on the names in the reference
set, (2) the syntactic variations set
based on domain knowledge, and (3)
the hard negative set. The initial and
the hard negative pairs capture the
semantic relationships between names
in the reference set, and the syntactic
variations capture the syntactic noise
that may be present in referring to
these names in reality.

Initial Semantic Set. We generate an initial training set of similar and dissim-
ilar pairs based the entities in the reference set R. We generate positive pairs by
the cross product of all the names that belong to the same entity, and initialize
the negative set of dissimilar pairs by randomly sampling names that belong to
different entities. Formally:

P+ = {< ni, nj , 1 > | (∀ni
l, n

j
l ∈ el) ∧ (∀el ∈ R)}

P− = {< ni, nj , 0 > | (ni
l, n

j
m ∈ el, em) ∧ (el, em ∈ R) ∧ (el �= em)}

Syntactic Variations and Entity Families. In order to train the model with
the syntactic variations that could be introduced in the real-world textual repre-
sentation of the names, we add pairs of names to the training set and label them
with their real-value string similarities. The argument behind using real-valued
labels is provided in Eq. 2, with the intuition that using a label of 0 will com-
pletely repel two vectors and using a label of 1 will bring two vectors as close
as possible, but using a label between 0 and 1 will aim to keep the two vectors
somewhere inside the margin.

We use Trigram-Jaccard, Levenshtein Edit Distance, and Jaro–Winkler to
compute string similarity scores [11] between the pairs of names and include
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sets of pairs with labels based on each similarity score in the training set. The
intuition is that the model will learn a combination of all these string similarity
measures. To select the name pairs to include in this process, we consider two
sets of variations based on the same name, and different names.

Same name variations are the noise that can be introduced to an extracted
name in real-world settings. To capture the most common forms of noise occur-
ring on the same name, we make the following three modifications based on our
observation of the most frequent variations in the query names:

– Removing the spaces, e.g., <FOX P2, FOXP2, y>
– Removing all but alphanumerical characters, e.g., <FOX-P2, FOXP2, y>
– Converting to upper and lower cases, e.g., <Ras, RAS, y>, <Ras, ras, y>

Different name variations introduce a higher level of similarity concept to
the model. We make the second set of pairs by selecting the names of entities
that are somehow related and computing their string similarities. For example,
in our experiments with proteins we select two entities that belong to the same
protein family and generate pairs of names consisting of one name from each.
The labels are assigned to these pairs based on their string similarities. This set
of pairs not only introduces more diverse variations of textual string similarities,
it also captures a higher-level relationship by bringing the embeddings of the
names that belong to a group closer to each other. Encoding such hierarchical
relations in the entity representations has been effective in various domains [8].

Hard Negative Mining. Given the large space of possible negative name pairs
(i.e., the cross product of the names of different entities) we can only sample a
subset to train our model. As stated earlier we start with an initial random neg-
ative sample set for our training. However, these random samples may often be
trivial choices for the model and after a few epochs may not contain enough use-
ful signal. The use of contrastive loss makes this issue more problematic as the
probability of the distance between randomly selected negative samples being
less than the margin (m) is low. Sampling techniques, often called hard-negative
mining, have been introduces in domains such as knowledge graph construc-
tion [20] and computer vision [36] to deal with similar issues.

The idea behind hard negative mining is finding negative examples that are
most informative for the model. These examples are the ones closest to the deci-
sion boundary and the model will most likely assign a wrong label to them. As
shown in Fig. 1a and Algorithm 1, we find the hard negatives by first embed-
ding all the names in the reference set R using the latest learned model M.
We then find the closest names to each name in the embedding space using an
approximate k-nearest neighbors algorithm for fast iterations. We then add the
name pairs found using this process that do not belong to the same entity with
a 0 label to our training set and retrain the model M. We repeat this process
multiple times to refine the model with several sets of hard negative samples.
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3.2 Reference Set Embedding and Storage

The model M that we trained in the previous step is basically a function that
maps a name string to a numerical vector. Since both towers of the Siamese
network share all their weights, the final embedding is independent of the tower
the original string is provided to as input. Considering the goal of our framework,
which is to perform entity normalization of query names (nq) to the entities in
the reference set R, we embed all the names in the reference set using the final
trained model M, and store the embeddings for comparison with future queries.

Our task becomes assigning an entity in our reference set to the query name
nq by finding the closest entity to it in the embedding space. This assignment
is basically a nearest neighbor search in the embedding space. The most naive
solution to this search would entail a practically infeasible task of exhaustive
pairwise comparisons of query embedding with all embeddings in a potentially
large reference set. Moreover, since we iteratively repeat the nearest neighbor
look-up in our training process for hard-negative mining, we need a faster way
to retrieve the results.

This challenge is prevalent in many research and industry applications of
machine learning such as recommender systems, computer vision, and in gen-
eral any similarity-based search, and has resulted in development of several
fast approximate nearest neighbors approaches [34,35]. We speed-up our nearest
neighbors retrieval process by transforming and storing our reference set embed-
dings in an approximate nearest neighbors data structure. Algorithm2 describes
the overall process of this stage.

Algorithm 2. Embedding R
1: procedure Embed(R, M)

2: for all ni ∈ R do

3: ni
M−−→ vi

4: for all vi do

5: Hash vi and store in Hvi

6: return Hv � Hashed embeddings

Algorithm 3. Retrieval
1: procedure Retrieve(Hv , M, nq)

2: Embed the query name: nq
M−−→ vq

3: Find the closest v
j
k

to vq using

approximate nearest neighbor search

(Annoy) on Hv

4: return λk as the ID (i.e., λq)

We leverage a highly optimized solution that is extensively used in applied
settings, such as Spotify, to deal with large scale approximate nearest neighbor
search, called Annoy (Approximate Nearest Neighbors Oh Yeah!) [2]. Annoy, uses
a combination of random projections and a tree structure where intermediate
nodes in the tree contain random hyper-planes dividing the search space. It sup-
ports several distance functions including Hamming and cosine distances based
on the work of Bachrach et al. [5].

Since we have already transformed the textual representation of an entity
name to a numerical vector space, and the entity look-up to a nearest neighbor
search problem, we can always use competing approximate nearest neighbors
search methods [29], and the new state-of-the-art approaches that will be dis-
covered in the future. Furthermore, using such scalable data structures for our
embeddings at this stage preserves semantic similarities learned by our model,
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in contrast to traditional blocking approaches applied as a pre-processing step
that could break the semantic relationship in favor of textual similarities.

3.3 Retrieval

During the retrieval step, depicted in Algorithm 3 we first compute an embedding
for the query name based on the same model M that we used to embed the
reference set. We then perform an approximate nearest neighbor search in the
embedding space for the query name, and return the ID of retrieved neighbor as
the most probable entity ID for the query name. Note that in our setup we do
not need to perform a separate direct look up for the query names that exactly
match one of canonical names in the reference set. If the query name is one of
the canonical names in the reference set, it will have exactly the same embedding
and zero distance with one of the reference set names.

4 Experimental Validation

We conduct two set of experiments mapping query names to their canonical
names to empirically validate the effectiveness of our framework. The two ref-
erences sets are UniProt for proteins and ChEBI for chemical entities, and the
query set is from PubMed extracts provided by the BioCreative initiative [4], as
detailed in the following sections.

4.1 Reference Sets

The reference sets we use in our experiments are publicly available on the inter-
net, and are the authority of canonical entity representations in their domains.

UniProt. The Universal Protein Resource (UniProt) is a large database of pro-
tein sequences and associated annotations [3]. For our experiments, we use the
different names associated with each human protein in the UniProt dataset
and their corresponding IDs. Hence, the task here is mapping a human protein
name to a canonical UniProt ID.

ChEBI. We used the chemical entity names indexed in the Chemical Entities of
Biological Interest (ChEBI) ontology. ChEBI is a dataset of molecular entities
focused on small chemical compounds, including any constitutionally or iso-
topically distinct atom, molecule, ion, ion pair, radical, radical ion, complex,
conformer, identifiable as a separately distinguishable entity [16]. The task
here is mapping a small molecule name to a canoncal ChEBI ID.

Table 1 depicts the total number of entities (ei) and their corresponding ID–
name pairs (<λi, n

j
i>) in the reference sets, showing UniProt having less number

of entities, but more names per entity comparing to ChEBI. Moreover, Fig. 3
depicts the histogram that shows the distribution of the number of names per
each entity in the reference sets. Note that there are no entities in the UniProt
reference set with only one name, but there are many proteins with several
names. In contrast, the ChEBI dataset contains many entities with only one
name.
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Table 1. Statistics of the entities in the reference sets

Datasets Entities <entity, name> pairs

UniProt (Human) 20,375 123,590

ChEBI 72,241 277,210

4.2 Query Set

We use the datasets provided by the BioCreative VI Interactive Bio-ID Assign-
ment Track [4] as our query data. These datasets provide several types of bio-
medical entity annotations generated by SourceData curators that map pub-
lished article texts to their corresponding database IDs. The main interesting
point about the BioCreative corpus for entity normalization is that the extracted
entity names come from published scientific articles, and contain the entity-name
variations and deviations forms that are present in the real world.

The Bio-ID datasets include a separate train and test sets. We use both of
these datasets as query sets with gold standard labels to evaluate our method.
The training set (we name it BioC1) consists of 13,573 annotated figure panel
captions corresponding to 3,658 figures from 570 full length articles from 22
journals, for a total of 102,717 annotations. The test data set (we name it BioC2)
consisted of 4,310 annotated figure panel captions from 1,154 figures taken from
196 full length journal articles, with 30,286 annotations in total [4].

Table 2 shows the number of UniProt and ChEBI entities in the annotated
corpus. In our experiments we keep the original training (BioC1) and test
(BioC2) splits of the data for reproducibility and ease of future comparisons, but
we should note that for our purposes both BioC1 and BioC2 are just a source
of correct normalizations with gold standards, and test sets in our experiments.
Our algorithm is not trained on any of these datasets.

(a) UniProt (b) ChEBI

Fig. 3. Distribution of names per entity in the reference datasets.
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Table 2. Statistics of the annotations in the BioCreative VI Bio-ID corpus

Dataset UniProt ChEBI

Mentions Entities Mentions Entities

BioC1 30,211 2,833 9,869 786

BioC2 1,592 1,321 829 543

4.3 Baselines

USC–ISI. As a representative of traditional record linkage techniques, we use
the current production system for Named Entity Grounding at USC Informa-
tion Science Institute, developed for the DARPA Big Mechanism program, as
one of the baselines. The system is an optimized solution that employs a tuned
combination of several string similarities including Jaccard, Levenshtein, and
JaroWinkler distances with a prefix-based blocking system. It also includes a
post re-ranking of the results based on the domain knowledge, such as the cura-
tion level of the entity (e.g., if the protein entry in UniProt has been reviewed
by a human or not), the matching between the ID components and the query
name, and popularity of the entities in each domain. This system provides entity
grounding for several bio-medical entities including Proteins and Chemicals, and
is publicly available at [1]. The system can produce results based on the FRIL [18]
record linkage program and Apache Lucene [6], and we use the overall best results
of both settings as the baseline for our experiments. We chose this baseline as
a representative of the traditional entity normalization methods that provides
competitive results based on an ensemble of such models.

BioBERT. To compare our method with a representative of text embed-
ding approaches, we used the embedding generated by the recently released
BioBERT [24] (Bidirectional Encoder Representations from Transformers for
Biomedical Text Mining) model which extends the BERT [12] approach.
BioBERT is a domain specific language representation model pre-trained on
large-scale biomedical corpora that can effectively capture knowledge from a
large amount of biomedical texts with minimal task-specific architecture modi-
fications. BioBERT outperforms traditional models in biomedical named entity
recognition, biomedical relation extraction, and biomedical question answering.
We used the BioBERT framework with pre-trained weights released by the orig-
inal authors of the paper, in a similar process to our approach; we first embed
all the entity names of the reference set and then find the closest embedding to
the query name in that embedding space.

DeepMatcher. Mudgal et al. [28] recently studied the application of deep learn-
ing architectures on entity matching in a general setting where the task is match-
ing tuples (potentially having multiple fields) in different tables. DeepMatcher
outperforms traditional entity matching frameworks in textual and noisy set-
tings. We use DeepMatcher as a representative baseline for deep learning meth-
ods specific to entity normalization.
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Table 3. Hits@k on BioCreative train dataset (BioC1) and test dataset (BioC2)
datasets mapped to Uniprot and ChEBI reference sets.

Reference(R) Dataset Method H@1 H@3 H@5 H@10

UniProt BioC1 DeepMatcher 0.697 0.728 0.739 0.744

BioBERT 0.729 0.761 0.779 0.808

USC–ISI 0.814 0.864 0.875 0.885

NSEEN 0.833 0.869 0.886 0.894

BioC2 DeepMatcher 0.767 0.792 0.803 0.814

BioBERT 0.801 0.827 0.827 0.840

USC–ISI 0.841 0.888 0.904 0.919

NSEEN 0.861 0.888 0.904 0.930

ChEBI BioC1 DeepMatcher 0.288 0.363 0.397 0.419

BioBERT 0.360 0.473 0.499 0.524

USC–ISI 0.418 0.451 0.460 0.468

NSEEN 0.505 0.537 0.554 0.574

BioC2 DeepMatcher 0.373 0.463 0.491 0.517

BioBERT 0.422 0.558 0.577 0.596

USC–ISI 0.444 0.472 0.480 0.491

NSEEN 0.578 0.608 0.624 0.641

We used the implementation published by the authors to perform our exper-
iments. We used DeepMatcher with tuples containing only one field; the entity
mention. We train DeepMatcher with the same initial pairs we use to train our
model, and follow a common-word-based blocking technique recommended in
their implementation to pre-process our data. DeepMatcher does not perform
hard negative mining during its training, and the blocking is performed prior to
the matching process in contrast to our framework.

4.4 Results

Table 3 shows the comparative results of our method (i.e., NSEEN) with other
methods. We submit every query name in the BioCreative datasets to all systems,
and retrieve the top k most probable IDs from each of them. We then find out
if the correct ID (provided in the BioCreative dataset as labels) is present in
the top k retrieved results (i.e., Hits@k) for several values of k. Our method
outperforms the baselines in almost all settings. Chemical names are generally
harder to normalize due to more sensitivity to parenthesis, commas, and dashes,
but our method produces significantly better results.

Furthermore, Table 4 and the corresponding Fig. 4 show example protein
name queries mapped to the UniProt reference set and the retrieved canonical
names. Note that none of the query names exist in the UniProt reference set in
the form provided as the query. Table 4 shows not only the syntactic variations
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Table 4. UniProt sample queries and top-10 responses. The correct entities are indi-
cated with a bold font and an asterisk. None of the queries have an exact string match
in UniProt, and the lists include syntactically far correct responses.

S6K PLCγ2 IKKε H3

- p70-S6K 1* - PLC-gamma-2* - IKK-epsilon* - Histone H3/a*

- p90-RSK 6 - PLC-gamma-1 - IKKE* - Histone H3/o*

- S6K1* - PLCG2* - I-kappa-B kinase
epsilon*

- Histone H3/m*

- p70 S6KA* - Phospholipase
C-gamma-2*

- IkBKE* - Histone H3/b*

- S6K-beta - Phospholipase
C-gamma-1

- IKBKE* - Histone H3/f*

- p70 S6KB - PLC - IKBE - HIST1H3C*

- 90 kDa ribosomal
protein S6 kinase 6

- PLCG1 - IK1 - Histone H3/k*

- 90 kDa ribosomal
protein S6 kinase 5

- Phosphoinositide
phospholipase
C-gamma-2*

- IK1 - Histone H3/i*

- 52 kDa ribosomal
protein S6 kinase*

- PLC-IV* - IKKG - HIST1H3G*

- RPS6KA6 - PLCB - INKA1 - Histone H3/d*

being captured by our method in the Top 10 responses, but the semantically
equivalent names are included as well. These responses can have a significantly
large string distance with the query name. e.g., (S6K−→52 kDa ribosomal pro-
tein S6 kinase), (PLCγ2−→Phospholipase C-gamma-2 ), (IKK ε−→I-kappa-B
kinase epsilon), and (H3−→Histone H3/a).

Figure 4 sheds more light to the embedding space and highlights the same
four query names and the names corresponding to the correct entities in the
UniProt reference set. As shown in this figure most of the correct responses (in
blue) are clustered around the query name (in red).

The retrieval time of the baseline methods are in the order of a few minutes.
NSEEN relies on the approximate nearest neighbors architecture and provides
highly competitive retrieval performance in the order of seconds. The study
reported on [2] for approximate nearest neighbors architectures applies to our
method as well.

5 Discussion

In this paper, we proposed a general deep neural network based framework for
entity normalization. We showed how to encode semantic information hidden
in a reference set, and how to incorporate potential syntactic variations in the
numeric embedding space via training-pair generation. In this process we showed
how contrastive loss can be used with non-binary labels to capture uncertainty.
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(a) S6K (b) PLCγ2 (c) IKKε (d) H3

Fig. 4. tSNE representation of the example UniPort query entities shown in Table 4.
Queries are red triangle and correct responses are blue. A sample of a thousand names
from the reference set is shown with light grey dots to represent the embedding space.
The bottom right insets show a zoomed version of the correct names clustered around
the query name. (Best viewed in color) (Color figure online)

We further introduced a dynamic hard negative sampling method to refine the
embeddings. Finally, by transforming the traditional task of entity normalization
to a standard k-nearest neighbors problem in a numerical space, we showed
how to employ a scalable representation for fast retrievals that is applicable in
real-world scenarios without the need of traditional entity blocking methods.
By eliminating the need for blocking as a pre-processing step, we can consider
matches that are syntactically different but semantically relevant, which is not
easily achievable via traditional entity normalization methods.

In our preliminary analysis, we experimented with different selection methods
in the k-nearest neighbors retrieval process such as a top-k majority vote schema,
but did not find them significantly effective in our setting. We also experimented
with different soft labeling methods to dynamically re-rank the results such as
soft re-labeling the k-nearest neighbors, but did not see much improvements to the
overall performance. While currently highly effective, our method could benefit
from improving some of its components in future research. We are also consid-
ering combining our approach with other embedding and collective reasoning
methods to gain further potential performance improvements.
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Abstract. Bag-of-Concepts, a model that counts the frequency of clus-
tered word embeddings (i.e., concepts) in a document, has demonstrated
the feasibility of leveraging clustered word embeddings to create features
for document representation. However, information is lost as the word
embeddings themselves are not used in the resulting feature vector. This
paper presents a novel text representation method, Vectors of Locally
Aggregated Concepts (VLAC). Like Bag-of-Concepts, it clusters word
embeddings for its feature generation. However, instead of counting the
frequency of clustered word embeddings, VLAC takes each cluster’s sum
of residuals with respect to its centroid and concatenates those to create
a feature vector. The resulting feature vectors contain more discrimina-
tive information than Bag-of-Concepts due to the additional inclusion of
these first order statistics. The proposed method is tested on four differ-
ent data sets for single-label classification and compared with several base-
lines, including TF-IDF and Bag-of-Concepts. Results indicate that when
combining features of VLAC with TF-IDF significant improvements in
performance were found regardless of which word embeddings were used.

Keywords: Bag of Concepts · Vector of Locally Aggregated
Descriptors · Vectors of Locally Aggregated Concepts

1 Introduction

Methods for creating structure out of unstructured data have many applica-
tions, ranging from classifying images to creating spam-filters. As a typical form
of unstructured data, textual documents benefit greatly from these methods as
words can have multiple meanings, grammatical errors may occur and the way
text is constructed differs from language to language. Arguably, one of the most
popular methods for representing documents is Bag-of-Words, which scores the
frequency of words in a document based on its corpus [28]. This results in a struc-
tured document representation despite the inherently messy nature of textual
data. However, as corpora grow bigger and exceed tens of thousands of words,
Bag-of-Words representations lose their interpretability.

Bag-of-Concepts was proposed as a solution to this problem [14]. Based on
the corpus of a collection of documents, Bag-of-Concepts generates word clusters
c© Springer Nature Switzerland AG 2020
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(i.e., concepts) from vector representations of words (i.e., word embeddings) and,
similar to Bag-of-Words, counts the number of words in a document associated
with each concept, hence the name Bag-of-Concepts.

Interestingly, Bag-of-Concepts shares many similarities with Bag-of-Visual-
Words, a feature generation method used for image classification [27]. Much
like Bag-of-Concepts, Bag-of-Visual-Words represents images by the occurrence
count of its clustered features (i.e., descriptors). The main difference between
these methods is that Bag-of-Concepts leverages word clusters whereas Bag-of-
Visual-Words leverages image feature clusters.

Although Bag-of-Visual-Words shows promising results in image classifica-
tion, it typically generates sparse features with high dimensionality [21]. Vector
of Locally Aggregated Descriptors (VLAD) extends upon Bag-of-Visual-Words
by including first order statistics into its feature vectors [7]. Compared to Bag-
of-Visual-Words, VLAD allows for compact visual representations with high dis-
criminative ability due to the inclusion of descriptors’ locations in each cluster.

As the main difference between Bag-of-Visual-Words and Bag-of-Concepts
is the type of clustered features that are used, it follows that VLAD could be
generalized to the generation of textual features by leveraging word embeddings
instead of image descriptors. This would result in a document representation with
more discriminative ability than Bag-of-Concepts as it contains additional first
order statistics in its feature vectors. The resulting method was named Vectors of
Locally Aggregated Concepts (VLAC) after both VLAD and Bag-of-Concepts.

To the best of my knowledge, no research seems to exist concerning the appli-
cation of VLAD for representing textual documents. Although creating structure
out of unstructured has many applications, document classification, due to its
popularity, was chosen as a proxy for measuring the quality of document rep-
resentation. This study shows that VLAD offers a novel way to create features
for document representation, resulting in better predictions for document clas-
sification.

2 Related Work

2.1 Bag-of-Words

Bag-of-Words counts the occurrences of words within a document in which each
word count is considered a feature. A disadvantage of this method is that highly
frequent words may dominate the feature space while rarer and more specific
words may contain more information. In order to lessen the impact of those words
and evaluate the importance of words in a document, one can use a weighting
scheme named TF-IDF. It combines two statistics, namely term frequency (TF)
multiplied by its inverse document frequency (IDF). Term frequency is the count
of word t in a document d. Then, for each term t, inverse document frequency
calculates how common t is across all documents D by taking the logarithm of
the number of documents in a corpus N divided by the number of documents
that contain t.
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IDF (t,D) = log
N

|{d ∈ D : t ∈ d}| (1)

Together, it takes the frequency of words in a document and calculates the
inverse proportion of those words to the corpus [11,24].

2.2 Word Embeddings

Although TF-IDF succeeds in representing the occurrence and importance of
words in a document, the context of these words is lost. Instead, in order to
retain semantic similarity among words, one can map words to vectors of real
numbers, named word embeddings [15].

Word2Vec is a popular tool for mapping words in a document to a vector rep-
resentation. It combines multiple two-layer neural networks to construct embed-
dings, namely the Continuous Bag-of-Words (CBOW) and Skip-gram architec-
tures [17]. In the CBOW architecture, the model predicts a target word given a
set of surrounding context words. In contrast, the Skip-gram architecture tries
to predict a set of context words given a target word. The hidden layer then
represents the word vectors as the relationships between words and context are
learned. See Fig. 1 for an overview of the architecture of Word2Vec.

The disadvantage of Word2Vec is that word embeddings are created locally
within documents while disregarding the global representation of words across
all documents. Models such as GloVe (Global Vectors for Word Representation),
construct large co-occurrence counts (word × context) in order to learn the
global representation of a word [20].

Typically, 300-dimensional word vectors are created as they have been
shown to balance representational ability and the density of the resulting
vectors [17,20].

Fig. 1. CBOW architecture (left) versus Skip-gram architecture (right).
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2.3 Bag-of-Concepts

When we want to represent documents instead of individual words, word embed-
dings can be averaged across all words in a document [3]. However, the resulting
document vectors are difficult to interpret intuitively as they merely represent
a point in a 300-dimensional space. In order to deal with this problem, Kim
et al. [14] developed a model named Bag-of-Concepts. Based on a collection
of documents, Bag-of-Concepts generates word clusters by applying spherical
k-means to word embeddings. The resulting clusters typically contain words
with similar meaning and are therefore referred to as concepts. Then, similar to
Bag-of-Words, a document is represented as a bag of its concepts by counting
the number of words in a document associated with each concept [14].

In order to lessen the impact of concepts that appear in most documents,
a TF-IDF-like weighting scheme is applied in which all terms t are replaced
by concept c, which is appropriately named CF-IDF. This allows the model to
create document vectors that are interpretable, as each feature of a document
represents the importance of a concept.

Bag-of-Concepts was found to be largely dependent on the number of con-
cepts that were generated [14]. The authors showed that the classification accu-
racy of Bag-of-Concepts consistently increases with the number of concepts, but
that this increase stabilizes around 200 concepts at which near-maximum per-
formance is reached.

This method has shown to provide better document representation than Bag-
of-Words and TF-IDF in a classification task to find the two most similar doc-
uments among triplets of documents [14]. However, in a classification task to
predict the correct label for each document Bag-of-Concepts failed to outper-
form TF-IDF on two out of three data sets.

2.4 Vector of Locally Aggregated Descriptors (VLAD)

Before deep learning achieved state-of-the-art results in image classification, an
approach called Bag-of-Visual-Words was often used for image classification [18].
This method is similar to Bag-of-Concepts as both cluster a collection of fea-
tures of which the occurrence of these clusters is counted in each sample, thereby
creating a vector for each sample containing the prevalence of clustered features.
Specifically, Bag-of-Visual-Words clusters image features which are typically gen-
erated using feature extractor algorithms like SIFT or KAZE [18]. Then, it counts
the occurrence of the clusters resulting in a vector of occurrence counts of local
image features.

To further increase the representative ability of Bag-of-Visual-Words, first
order statistics were additionally included in the resulting vectors thereby pro-
viding more information about the images. This method was named Vector of
Locally Aggregated Descriptors (VLAD) and was shown to have superior per-
formance compared to Bag-of-Visual-Words [2,9].

As illustrated in Fig. 2, VLAD extends Bag-of-Visual-Words by taking the
residual of each image feature with respect to its assigned cluster center. Using
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k-means each image feature xi is assigned to a cluster with cluster center cj ,
both having the same dimensionality D. Nj is equal to the number of image
features in j and j ranges from 1 to k. Then, the sum of residuals of each image
feature in a cluster is accumulated, resulting in k vectors for each image:

vj =
Nj∑

i=1

xi − cj (2)

k vectors are created containing the sum of residuals of each cluster and are
then concatenated to create a single vector for each image:

v =

⎡

⎢⎢⎣

...
vj
...

⎤

⎥⎥⎦ (3)

The resulting image vector is of size k × D. Next, the concatenated vectors
are typically first power normalized and then l2 normalized to reduce bursty
visual elements [10]:

v = sign(v)
√

|v| (4)

v =
v

‖v‖ (5)

Several extensions to this model have been proposed to further improve
its representative ability and classification performance. For example, intra-
normalization has been suggested as a way to further reduce bursty image fea-
tures. Instead of applying l2 normalization to the concatenated vector of the
sum of residuals, it is suggested to l2 normalize the sum of residuals within each
VLAD block, followed by l2 normalization of the entire vector. The effect of
bursty features would then be localized to each cluster [2]. Other improvements
have been suggested such as directly l2 normalizing each feature’s residuals [7],
adding aggregations of tensor products of the descriptors [23], and using VLAD
as a layer in a convolutional neural network [1].

3 Vectors of Locally Aggregated Concepts (VLAC)

Interestingly, VLAD and Bag-of-Concepts both use clustered feature vectors as
their basis for the generation of summarized features in the task of classification.
This similarity suggests that VLAD could be extended to be used in the domain
of natural language processing as words could be clustered instead of image fea-
tures. Thus, instead of clustering descriptors, one can cluster word embeddings
into concepts for the generation of features. The result is a feature generation
model for textual documents inspired by VLAD and Bag-of-Concepts, namely
Vectors of Locally Aggregated Concepts (VLAC).
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Fig. 2. Procedure of VLAD

As illustrated in Fig. 3, VLAC clusters word embeddings to create k concepts.
Due to the typically high dimensionality of word embeddings (i.e., 300) spherical
k-means is used to perform the clustering as applying euclidean distance will
result in little difference in the distances between samples. Similar to the original
VLAD approach, let wi be a word embedding of size D assigned to cluster center
ck. Then, for each word in a document, VLAC computes the element-wise sum
of residuals of each word embedding to its assigned cluster center.

This results in k feature vectors, one for each concept, and all of size D. All
feature vectors are then concatenated, power normalized, and finally, l2 normal-
ization is applied as with the original VLAD approach. If 10 concepts were to be
created out of word embeddings of size 300 then the resulting document vector
would contain 10 × 300 values.

The resulting feature vectors contain more discriminative information than
Bag-of-Concepts since the sum of residuals gives information with regard to the
relative location of the word embeddings in the clusters. Therefore, it is expected
that VLAC will outperform Bag-of-Concepts (with CF-IDF).

4 Experiments

In order to test the quality of the generated features by VLAC, two single-
label classification experiments were performed using several baselines. VLAC
is dependent on the quality of word embeddings and the number of concepts
generated. Therefore, in the first experiment, several implementations of VLAC
were tested against each other at different numbers of concepts. This experiment
served as a way to explore how VLAC is affected by the number of concepts
generated and the word embeddings that were used.

Then, to validate VLAC across different discriminative thresholds a second
experiment was executed in which VLAC was compared against several baselines
using Receiver Operating Characteristic (ROC) curves and compared on their
Area Under the Curve (AUC) scores. ROC curves were not used in experiment
1 since they cannot show the effect of generated concepts on performance.
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Fig. 3. Procedure of VLAC

Finally, in all experiments, features generated by VLAC were added to TF-
IDF features. Since TF-IDF cannot generate more features, adding VLAC fea-
tures to TF-IDF will help in understanding if VLAC adds additional information
not already contained within features of TF-IDF. Although more interaction is
possible by creating a larger feature matrix, any improvement in performance
could only be attributed to this higher dimensionality containing information
not previously seen in TF-IDF.

4.1 Experimental Setup

Data. Four data sets were chosen on which the effectiveness of the proposed
method was tested. Three of these (20 Newsgroups, Reuters R8, and WebKB)
were included because they are typically used in document classification research
and therefore allow for comparisons to be made with prior work (e.g. [6,16,
26]). As these three data sets are all written in English, an additional data set
containing Portuguese documents was included as a way to further generalize
the evaluation. Stemming and stop word removal were applied to all data sets.
All data sets were retrieved from [5]. See Tables 1 and 2 for more information.

Table 1. An overview of the data sets used in this study.

Reuters R8 20 Newsgroups WebKB Cade12

Number of documents 7674 18821 4199 40983

Number of classes 8 20 4 12

Average number of words per document 64.5 141.1 133.4 117.4

Vocabulary size 17387 70213 7770 193997

Total number of words 495226 2654770 560015 4813116
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Table 2. Number of samples in each class per data set.

Reuters R8 20 Newsgroups WebKB Cade12

Classes Samples Classes Samples Classes Samples Classes Samples

earn 3923 rec.sport.hockey 999 student 1641 01–servicos 8473

acq 2292 soc.religion.christian 996 faculty 1124 02–sociedade 7363

crude 374 rec.motorcycles 996 course 930 03–lazer 5590

trade 326 rec.sport.baseball 994 project 504 04–informatica 4519

money-fx 293 sci.crypt 991 05–saude 3171

interest 271 sci.med 990 06–educacao 2856

ship 144 rec.autos 989 07–internet 2381

grain 51 sci.space 987 08–cultura 2137

comp.windows.x 985 09–esportes 1907

sci.electronics 984 10–noticias 1082

comp.sys.ibm.pc.hardware 982 11–ciencias 879

misc.forsale 975 12–compras-online 625

comp.graphics 973

comp.os.ms-windows.misc 966

comp.sys.mac.hardware 963

talk.politics.mideast 940

talk.politics.guns 909

alt.atheism 799

talk.politics.misc 775

talk.religion.misc 628

Balanced Accuracy. Although the quality of classification is typically mea-
sured by the accuracy of the prediction model, it suffers from over representing
the performance on larger classes [25]. Due to the imbalance of the data sets
(see Table 2) a different measure for validation was used, namely balanced accu-
racy [4]:

BalancedAccuracy =

∑n
i=1

tpi

tpi+fpi

n
(6)

With n classes, where tpi is the true positive for class i in n, and fpi is the
false positive for class i in n. For multi-class classification, balanced accuracy can
be interpreted as the macro-average of recall scores per class [13,19] which has
the property of allowing the performance of all classes to be weighted equally.

Baselines. Bag-of-Words, TF-IDF, Bag-of-Concepts (with CF-IDF), and aver-
aged word embeddings (with Word2Vec embeddings) served as baselines in this
study. Bag-of-Words, TF-IDF, and averaged word embeddings are typically used
to test novel techniques against, whereas Bag-of-Concepts was chosen due to the
methodological similarities it shares with VLAC. For the implementation of Bag-
of-Concepts, initial experiments were performed to find a balance between the
number of concepts and computational efficiency. At 500 concepts the perfor-
mance of Bag-of-Concepts typically stabilizes. Moreover, previous research has
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found the classification accuracy of Bag-of-Concepts to stabilize around 200 con-
cepts and that the classification accuracy consistently increases with the number
of concepts generated [14]. Ultimately, Bag-of-Concepts was set at 500 concepts
in order to maximize its performance.

4.2 Experiment 1

The performance of VLAC, based on balanced accuracy, was analyzed for each
data set with the number of concepts systematically increasing from 1 to 30.
The maximum number of concepts was set at 30 as computing more concepts
would be computationally too demanding for this experiment.

Bag-of-Words, TF-IDF and averaged word embeddings were used as base-
lines. Kim et al. [14] demonstrated that Bag-of-Concepts, compared to TF-IDF,
would need at least 100 concepts for it to reach a competitive performance.
Therefore, Bag-of-Concepts was excluded from this experiment as it would not
be fair to compare Bag-of-Concepts to VLAC at merely 30 concepts.

Four different types of word embeddings were used for VLAC on each data
set. Word2Vec and GloVe embeddings were generated by training the model
on the data sets themselves, henceforth referred to as self-trained embeddings.
Moreover, pre-trained embeddings for Word2Vec and GloVe were additionally
used as they had been trained on larger data sets and therefore might have
better representative ability. Word2Vec pre-trained embeddings were trained on
the Google News data set and contain vectors for 3 million English words.1 GloVe
pre-trained embeddings were trained on the Common Crawl data set and contain
vectors for 1.9 million English words.2 Pre-trained embeddings for Cade12 were
trained on 17 different Portuguese corpora.3 To make a comparison across VLAC
implementations possible, all word embeddings were of size 300.

Linear Support Vector Machines (Linear SVM) have been shown to do well
on single-label text classification tasks [12] and are used in this experiment as
classifiers on top of the feature generation methods. Moreover, 10-fold cross-
validation was applied in each prediction instance in order to decrease the chance
of overfitting on the data and creating biased results.

Results. Several one-sided, one-sample Wilcoxon signed rank tests were applied
to observe which VLAC versions, on average across all 30 concepts, may outper-
form TF-IDF. The results are shown in Table 3 and indicate that VLAC typically
does not outperform TF-IDF. However, looking at the best scores of each model
in Table 3 and the accuracy curves in Fig. 4, the results suggest that, around 30
concepts, VLAC can outperform TF-IDF on Reuters R8, WebKB and Cade12
depending on the word embeddings that were used.

In contrast, the combined features of TF-IDF and VLAC generally outper-
formed TF-IDF on Reuters R8, WebKB and Cade12 (see Table 3). This suggests
1 Retrieved from https://code.google.com/archive/p/word2vec/.
2 Retrieved from https://nlp.stanford.edu/projects/glove/.
3 Retrieved from http://nilc.icmc.usp.br/embeddings.

https://code.google.com/archive/p/word2vec/
https://nlp.stanford.edu/projects/glove/
http://nilc.icmc.usp.br/embeddings
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that VLAC features contain information not seen in TF-IDF features. Inter-
estingly, Fig. 5 shows that the number of concepts seem to have little influence
on performance, thereby indicating that a few concepts would be sufficient in
generating additional features when combining VLAC with TF-IDF.

From Fig. 4 one can observe that VLAC’s balanced accuracy scores are high-
est at 30 concepts and are likely to improve at a higher number of concepts. To
evaluate VLAC at its highest performance (i.e., 30 concepts), several one-sided,
two-samples Wilcoxon signed rank tests were used to compare VLAC against
TF-IDF. For this, 20-fold cross-validation was applied to TF-IDF and all VLAC
versions to generate 20 accuracy scores for each model. The same folds for each
algorithm were created. Folds were then paired across algorithms to test for the
possible difference in performance.

Although 10 folds are typically used in cross-validation, a choice was made
for 20 folds in order to create a sufficiently sized sample size to increase the
statistical power. The results of each fold were averaged across all data sets for
each method. Thus, 20 averaged balanced accuracy scores were created for each
model and allowed for the one-sided, two-samples Wilcoxon signed rank tests.

VLAC did not significantly outperform TF-IDF across all four data sets
(V = 6, p = .821). However, combining features of VLAC with TF-IDF led
to a significant improvement over TF-IDF (V = 207, p < .001), which was
found for both self-trained embeddings (V = 198, p < .001) and for pre-trained
embeddings (V = 199, p < .001). This confirms the idea that VLAC features
contain information not seen in TF-IDF features.

Table 3. Average and best performance in experiment 1 across different implemen-
tations of VLAC, where self relates to embeddings trained on the data itself and pre
relates to pre-trained embeddings. Underlined values are the highest results in each
block, whereas bold values are the best results compared to all other methods for
a single data set. One-sided, one-sample Wilcoxon signed rank tests were executed to
compare all VLAC versions against TF-IDF based on their average scores. ** p < 0.001;
* p < 0.05

Reuters R8 20 Newsgroups WebKB Cade12

Average Best Average Best Average Best Average Best

VLAC (Self: W2V) 91.48 92.57 81.95 84.20 89.92∗∗ 90.83∗∗ 41.69 44.85

VLAC (Pre: W2V) 92.01* 92.95 82.42 84.44 88.13 89.39 46.67 48.13

VLAC (Self: GloVe) 91.74 92.53 83.08 87.43 87.99 89.58 42.19 45.65

VLAC (Pre: GloVe) 92.10 93.11 85.27 87.50 88.40 89.97 45.10 46.36

Averaged W2V - 89.81 - 75.21 - 87.23 - 36.02

Bag-of-Words - 90.96 - 88.11 - 85.41 - 43.22

TF-IDF - 91.97 - 90.44 - 89.37 - 47.02

TF-IDF + VLAC (Self: W2V) 93.22∗∗ 93.80 90.00 90.20 90.41∗∗ 90.74 48.36∗∗ 48.65

TF-IDF + VLAC (Pre: W2V) 93.71∗∗ 94.39 89.57 89.81 89.96∗∗ 90.43 49.08∗∗ 49.37

TF-IDF + VLAC (Self: GloVe) 92.96∗∗ 93.33 89.60 89.88 89.71∗∗ 90.24 46.56 47.07

TF-IDF + VLAC (Pre: GloVe) 93.30∗∗ 93.83 90.04 90.38 90.01∗∗ 90.47 48.11∗∗ 48.80



Beyond Bag-of-Concepts: Vectors of Locally Aggregated Concepts 691

Fig. 4. Results of different word embeddings used with VLAC compared to TF-IDF,
Bag-of-Words, and averaged Word2Vec embeddings.

Finally, the results indicate that pre-trained word embeddings used for VLAC
performed significantly better than self-trained word embeddings (V = 159,
p = .022). However, no differences were found between the performance of pre-
trained and self-trained word embeddings when combining features of VLAC
with TF-IDF (V = 113, p = .392).
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Fig. 5. Results of different word embeddings used when combining features of VLAC
with those of TF-IDF compared to TF-IDF, Bag-of-Words, and averaged Word2Vec
embeddings.

4.3 Experiment 2

In this experiment, the performance of all models in this study was analyzed
across different discriminative thresholds to further validate VLAC. ROC curves
were used to analyze the performance of VLAC across different discriminative
thresholds. Since balanced accuracy adopts a macro-averaging approach, the
scores in this experiment were also macro-averaged.
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Fig. 6. ROC with macro-averaged AUC scores of eight different models across four
data sets.

For the implementation of VLAC, pre-trained word embeddings were used
as they typically outperformed self-trained word embeddings. Bag-of-Words,
TF-IDF, averaged Word2Vec embeddings, and Bag-of-Concepts (with CF-IDF
and at 500 concepts) were included as baselines. Since the features of averaged
word embeddings, Bag-of-Words, and TF-IDF are out-of-the-box maximized,
all VLAC versions were set at 30 concepts to similarly maximize its number of
features.

Results. From Fig. 6 one can observe that pre-trained VLAC versions outper-
formed Bag-of-Words, Bag-of-Concepts, and averaged Word2Vec embeddings on
all data sets based on their respective AUC scores. Seeing as the curves in Fig. 6
behave similarly across models, one can safely assume that the AUC scores are
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representative of the models performance. Furthermore, the results indicate that
VLAC by itself can outperform TF-IDF but requires experimentation to find the
optimum set of parameters (number of concepts versus the type of word embed-
dings). However, when combining features from VLAC with those of TF-IDF,
the resulting AUC scores are similar to TF-IDF and higher on the Cade12 and
WebKB datasets.

It is interesting to note that Bag-of-Concepts consistently, across all data
sets, performs worst out of all methods. Although Kim et al. [14] demonstrated
that Bag-of-Concepts might be able to outperform TF-IDF using a Support Vec-
tor Machine, they did not specify which kernel was used in their implementation.
In this study a linear kernel was adopted. The differences between results might
be due to the kernel that was used in the implementation of the Support Vec-
tor Machines. Although it was expected that VLAC would outperform Bag-of-
Concepts, such a large difference between Bag-of-Concepts and all other models
was not anticipated. Since Kim et al. [14] demonstrated that Bag-of-Concepts’
classification accuracy increases with the number of concepts generated, one can
conclude that Bag-of-Concepts is not suited for single-label classification up to
500 concepts.

For VLAC, it is not clear why there is such a large gap in performance
between 20 Newsgroups and all other data sets. It could be attributed to many
differences between data sets such as vocabulary size, document size, number
of sentences per document, and even writing style. With so many differences
between data sets it is hard to pin point the exact reason for the differences in
performance. Thus, it is hard to pin point the exact reason for these differences.

However, for both 20 Newsgroups and Cade12, which are relatively large
data sets compared to the others, the performances do not seem to stabilize at
30 concepts (see Fig. 4). This suggests that larger documents typically require
larger number of concepts in order to maximize its performance. Future research
could focus on studying the effects of document size on classification accuracy.

5 Conclusion

This study presents a novel algorithm for the generation of textual features,
namely Vectors of Locally Aggregated Concepts (VLAC). In two experiments
the performance of VLAC was tested against several baselines including averaged
Word2Vec word embeddings, Bag-of-Words, TF-IDF and Bag-of-Concepts (with
CF-IDF). On average, VLAC was shown to outperform all baselines when its fea-
tures were combined with those of TF-IDF regardless of which word embeddings
were used.

Future work may focus on two main disadvantages of using word embed-
dings generated by Word2Vec and GloVe. First, these models cannot handle
out-of-vocabulary words. Instead, one can use word embeddings models, such as
FastText, to additionally create character-level n-gram word embeddings which
can be combined to construct out-of-vocabulary words. Second, word embed-
dings generated by Word2Vec and GloVe are the same for each word regardless
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of its context. Tools such as Embeddings from Language Models (ELMo) [22]
and Bidirectional Encoder Representations from Transformers (BERT) [8] cre-
ate, for a single word, different word embeddings if that word can be used in
different contexts. Using contextual word embeddings will allow clusters to be
made with better representational ability.

This study has made a first step in demonstrating the feasibility of a novel
method for single-label document classification. Although several improvements
to this model have been suggested, the results demonstrate that VLAC can
reach superior performance in document classification tasks compared to several
strong baselines. While this paper has focused on classification, many other tasks,
such as information retrieval and document clustering tasks, could potentially
be solved by VLAC.4
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Abstract. This paper aims at identifying sequences of words related to
specific product components in online product reviews. A reliable base-
line performance for this topic classification problem is given by a Max
Entropy classifier which assumes independence over subsequent topics.
However, the reviews exhibit an inherent structure on the document level
allowing to frame the task as sequence classification problem. Since more
flexible models from the class of Conditional Random Fields were not
competitive because of the limited amount of training data available, we
propose using a Hidden Markov Model instead and decouple the training
of transition and emission probabilities. The discriminating power of the
Max Entropy approach is used for the latter. Besides outperforming both
standalone methods as well as more generic models such as linear-chain
Conditional Random Fields, the combined classifier is able to assign top-
ics on sub-sentence level although labeling in the training data is only
available on sentence level.

Keywords: Small data · Topic classification · Hidden Markov Model

1 Introduction

Product comparison websites provide detailed product reviews (further on
referred to as “expert” reviews) that usually differ from popular webshops’ user
reviews in length, quality and focus. A more concise representation of such expert
reviews can be obtained for instance by automated text summarization or aspect-
based sentiment analysis. A required subtask is to identify topics discussed in
the reviews. The specific task is to assign a set of predefined topics to the sec-
tions of laptop reviews, where topics might be product components (e.g. display,
keyboard, performance) or review sections (e.g. introduction, verdict).

A common approach to solve this task is to use a Max Entropy (MaxEnt)
classifier which has been proven useful in a series of language classification tasks
such as sentiment analysis [12]. However, the expert reviews exhibit some high-
level structure on document level such as treating each topic one after another,
without changing back and forth, or starting with an introduction and ending
with a verdict. In order to exploit the reviews’ structure, the task of assigning
c© Springer Nature Switzerland AG 2020
U. Brefeld et al. (Eds.): ECML PKDD 2019, LNAI 11907, pp. 697–710, 2020.
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topics is defined as sequence classification task in this paper. This differs from
what is known as document classification, as more than one topic per document
is assigned. It also differs from unsupervised topic modeling, as the topics of
interest are predefined in a labeled dataset with a label assigned to each sentence.

As the MaxEnt is trained to assign one label per sentence, it has no “memory”
to recall decisions on previous sentences in the review. Thus, a sequence model
such as the Hidden Markov Model (HMM) would be beneficial. An HMM can
capture the reviews’ inherent topic patterns by assigning labels at the word-level
where topic changes are infrequent. This allows for a more fine-grained labeling
even at sub-sentence-level.

The drawback of the HMM is its generative nature. A generative classifier
maximizes the joint probabilities P (w, s) = P (s) P (w | s) over the observed
input words w and the state labels s. Given label s, the probabilities over the
input features P (w | s) need to be generated. Discriminative models such as
MaxEnt directly train the conditional probability P (s | w) without the need for
modeling P (w) which is considered given in the classification task. The question
now arises if it is possible to have a sequence model where the relation between
states and observations are modeled by a MaxEnt classifier.

We show that the proposed method of combining the benefits of the HMM
with the discriminative power of a MaxEnt classifier successfully solves the
sequence classification problem: After a trained MaxEnt classifier has learned to
maximally separate the topics’ probability distributions, we transform the Max-
Ent based weights into HMM emission probabilities. Applying this method to
the laptop review dataset yields superior performance to the standalone models
and a more general discriminative sequence model. The combination of MaxEnt
and HMM has the additional advantage of assigning topics at word-level, thus
allowing for topic changes within sentence boundaries, although the classifier was
trained on sentence-level only. For simplicity, we refer to this combined method
as ME+HMM in the following.

2 Related Work

The idea of having a discriminative estimator in a sequence model is not new.
McCallum et al. [9] proposed the Maximum Entropy Markov Model (MEMM)
and eventually the more general Conditional Random Field (CRF) [5]. HMM
and the linear-chain CRF form a so called discriminative-generative pair, as do
Naive Bayes and logistic regression (MaxEnt) [22]. While, in principle, each clas-
sifier of a discriminative-generative pair can be used to solve the same problem,
their training procedures differ concerning the optimality criteria. The genera-
tive model estimates probabilities based on the feature frequency in the training
data. The discriminative model directly optimizes the conditional probabilities.
For sufficiently large datasets, Ng et al. [11] provide evidence that the discrim-
inative model produces a lower asymptotic error in classification tasks. The
superiority of MaxEnt over Naive Bayes for text classification tasks is already
well established [4] and CRFs have been shown to outperform HMMs in tasks
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such as chunking [20], table extraction [16] or information extraction [14]. Both
shared tasks of the 2015 [1] and 2016 [21] workshop on noisy user-generated
text were focused on Named Entity Recognition (NER) and featured successful
submissions based on CRFs. Why bother returning to HMMs?

The differences between HMM, MEMM, CRF and our ME+HMM are subtle.
Given the review document as a sequence of observed words W = (w1, . . . , wn)
and a sequence of hidden states S = (s1, . . . , sn), all models aim at finding the
optimal sequence S∗ by maximizing one of the following probabilities:

HMM: P (S,W ) =
n∏

t=1

P (st | st−1) P (wt | st) (1)

MEMM: P (S | W ) =
n∏

t=1

P (st | st−1, wt) =

n∏

t=1

1
Zst−1,wt

exp

(
∑

i

λifi (st, st−1, wt)

) (2)

CRF: P (S | W ) =

1
ZW

n∏

t=1

exp

(
∑

i

λifi (st, st−1,W )

)
(3)

In (2) and (3), λi represent learned weights for features fi that are computed
from a combination of words and states. While the HMM in (1) estimates the
joint probabilities of hidden states and input words, the MEMM in (2) estimates
S conditioned on the input W . Instead of modeling transition and emission prob-
ability distributions as in (1), a MEMM models the probability of the current
state st based on the previous state st−1 and the current observation wt. The
normalization is done per state, distributing the probability “mass” at each state
among the succeeding states. This causes the label bias problem, a bias towards
states with fewer successors [5]. Linear-chain CRFs as in (3), in contrast, model
the joint probability of the entire state sequence given the observed sequence.
The normalization term is then a sum over all possible state sequences [22].

The proposed ME+HMM is still a generative model, with the frequency
based estimation of emissions replaced by a conditional estimate provided by
the MaxEnt classifier. Thus, the task-related superiority of the discriminative
MaxEnt can be transferred to the HMM1. Even if the MaxEnt classifier is
trained on sentence-level, the ME+HMM can assign labels on word-level which
allows for a higher granularity.

The CRF is the most general of the presented approaches and is usually
applied for tasks where many features are needed. Manual feature engineering is
1 This is why we call it a “semi-discriminative approach”.
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required, leading to highly complex models and requiring large datasets. Induc-
ing the most meaningful features is then an additional computational effort with
CRFs [8]. The comparison with CRFs using a standard set of features similar to
ME+HMM thus stands to reason. Word emission and state transition probabil-
ities in a CRF are optimized simultaneously, but separately in our ME+HMM
model. Alternative approaches such as windowed neural networks, recurrent neu-
ral networks or attention models have not been considered due to the limited
size of the training data in terms of numbers of full review documents. Besides,
neural network models such as seq2seq have only been applied on much shorter
sequences of text (e.g. 20 newsgroups articles) and assign one topic per review [2].

3 Data

(a) (Initial) Topic Distribution

(b) Percent Vocabulary Overlap

Fig. 1. Dataset analysis. (a) The relative distribution on sentence-level of the seventeen
review topics and the topics’ likeliness to be the first in a review. (b) The vocabulary
overlap between all topics measured in per cent. The diagonal (topic-topic) comparison
is 100%. The average PVO is 33.22%.

The performance of the ME+HMM model is assessed on a dataset of expert
reviews on laptops collected from several product testing websites2. The full
dataset contains 3076 reviews manually annotated on sentence-level with one
out of 17 predefined target topics. Not all topics are laptop related, some refer
to specific review sections. Figure 1a lists the 17 topics and provides a detailed
overview of the topics’ (initial) distribution. The smallest topic set is review info
(review metadata) with 887 sentences and the largest is performance/hw with
57819 sentences, which accounts for almost 25% of available data. Topics vital
for a laptop rating are discussed regularly throughout the reviews (e.g. perfor-
mance/hw), while topic webcam for instance only occurs if a laptop possesses this
2 The dataset is available at https://github.com/factai/corpus-laptop-topic.

https://github.com/factai/corpus-laptop-topic
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component. Nonetheless, these minor topics are interesting aspects to analyze.
Note that some topics never start a review at all, while about 80% of reviews
either start with an introduction or a summary. This suggests that the label
summary might be ambiguous and not easily separable from the introduction.

The laptop dataset is different from well-known benchmarking datasets. Each
review is available as one file to exploit the sequence information of the top-
ics. Moreover, the expert reviews are much longer and more detailed than user
reviews: The average review length in the laptop dataset is 78 sentences. Con-
cerning the granularity, classical benchmarking datasets for topic classification
provide only one topic per document. Topics for each sentence are provided in
datasets designed for aspect-based sentiment analysis. However, Pontiki et al.
[18], for instance, do not provide full documents, meaning that the sentence
sequence is not reproducible3. While full documents are available in [17], the
reviews in this dataset consist of typically up to fifteen sentences only and do
not exhibit a latent topic structure.

3.1 Topic Separability

As classification accuracy correlates with class separability, percent vocabulary
overlap (PVO) is used to measure the amount of vocabulary terms shared by
two topics [10]. Ti denotes the set of terms occurring in topic Si:

PV O (S1, S2) =
| T1 ∩ T2 |
| T1 ∪ T2 | · 100 (4)

Figure 1b suggests that the topics webcam, warranty and review info use a more
distinct vocabulary, whereas the non-laptop topics (e.g. summary) are not as well
separable. Given the considerable overlap between topics, the frequency-based
estimation of emission probabilities in a standard HMM is not a good choice.

The ability of the MaxEnt classifier to optimize the discrimination between
classes can be exploited for the HMM. Table 1 gives an overview of the ten
highest weighted words in four exemplary topics as learned from a MaxEnt
classifier. Even for the seemingly similar topics sound and noise, these high
scoring words do not overlap. The same is true for a linear-chain CRF. The
discriminative models MaxEnt and CRF learn to select significant features to
separate the topics. Some variance between the two models is only observed
with the topic summary, as the CRF also ranks two specific product names
(“ideapad”, “aspire”) high. This analysis suggests that the MaxEnt weights could
improve the performance of a standard HMM.

3 The sentence IDs provided in [18] are neither consecutive nor contiguous.
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Table 1. Ten highest scoring terms in four exemplary topics when based on MaxEnt
or CRF weights. (∗) BOS denotes the beginning of the sequence in the CRF.

MaxEnt

Sound Noise Temperature Summary

sound db cool verdict

speech quiet heat quietly

bass noise hot lasts

volume fan lap drawbacks

speaker silent temperatures flaws

audio hear thighs compromises

speakers audible warm recommend

headphones noisy heats price

sounded noiseless warmer money

equalizer fans warmth conclusion

CRF

Sound Noise Temperature Summary

speakers fan degrees BOS(∗)

sound noise cool $

audio db temperatures price

bass quiet ◦C comparison

volume silent heat verdict

music fans warm db

stereo load temperature life

headphones audible cooling performance

speaker idle Hot ideapad

loud loud lap aspire

4 Methods

At first, the MaxEnt classifier is trained on the labelled sentences. Let C =
{1, . . . , c} be the set of topics and D = {1, . . . , d} the dictionary. As topic labels
are available for each sentence W = (w1, . . . , wn), the input to the MaxEnt clas-
sifier are bag-of-word (BoW) vectors V = (v1, . . . , vd) based on absolute word
counts in the sentence: vi =

∑n
t=1 1 (wt = i). The MaxEnt classifier assigns

topic j ∈ C given the input sentence with the probability

P (S1 = j, . . . , Sn = j | V1 = v1, . . . , Vd = vd) =
1
Z1

exp

(
d∑

i=1

λijvi + nμj

)
(5)

where Z1 = Z1(v1, . . . , vd) is a normalization constant. In (5), the bias term μj

has been scaled for the length of the input n to account for the simple counting
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strategy. Note that in most standard settings, MaxEnt is applied to tf-idf values
such that the adjustment related to sequence length is not necessary.

Since the BoW vector are very sparse, it is more efficient to iterate over the
words in the sentence instead of the dictionary:

P (S1 = j, . . . , Sn = j | W1 = w1, . . . , Wn = wn) =
1
Z1

n∏

t=1

exp (λwtj + μj) (6)

Next, the HMM is initialized. M = (A,B,C,D, π) defines an HMM over
the set of hidden states C and the set of observations D. An HMM starts in
some state s1 with the probability πs1 and emits an observation w1 following
the emission probability distribution of state s1. Then, the model transitions
to a new state and again emits an observation. By this, the random sequence
of topics S generates the sequence of observations W , the words in the review
document.

The probability of a transition from state st−1 to st is given by the transi-
tion probability matrix A ∈ R

c×c. The emission probability matrix B ∈ R
c×d

denotes the probability of observing wt in topic st. π ∈ R
c determines the initial

distribution of states:

aij = P (St = j | St−1 = i) (7)
bjk = P (Wt = k | St = j) (8)
πi = P (S1 = i) (9)

4.1 Emission Probabilities

A straightforward estimate of emission probabilities is counting the word occur-
rences within each topic or using their tf-idf values. We propose to rely on the
discriminative power of the MaxEnt classifier instead and transform the condi-
tional probability distribution of the previously trained classifier into emission
probabilities.

Using a stationary HMM for generating the words, we have

P
(
W̄ = W , S̄ = S

)
=

n∏

t=1

P (Wt = wt | St = st)︸ ︷︷ ︸
bwtst

·P (St = st | St−1 = st−1)︸ ︷︷ ︸
ast−1st

(10)
The MaxEnt assumes that words are independent (by relying on frequen-

cies vi and ignoring word order). Assuming this for the HMM, too, gives
ast−1st = ast = P (St = st) which is independent of step t − 1 and (because
of the stationarity) independent of t, too. Thus, (10) becomes

∏n
t=1 bwtst · ast .

Dividing by the probability P
(
W̄ = W

)
= Z2 of the given sequence w1, . . . , wn

yields

P
(
S̄ = S | W̄ = W

)
=

1
Z2

n∏

t=1

bwtst · ast (11)
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We want equivalence for the HMM and MaxEnt models for s1 = s2 = . . . =
sn. Now, let st = j ∀t ∈ {1, . . . , n} so that equaling (6) and (11)

1
Z1

n∏

t=1

exp (λwtj + μj) =
an
j

Z2

n∏

t=1

bwtj (12)

is, for instance, solved by applying Bayes’ theorem to the emission frequencies
bi,j

bjk = exp (λkj + μj) · Z2

Z1pj
= exp (λkj + μj) · P

(
W̄ = W

)

Z1aj
(13)

In practice, the HMM emissions are thus computed by

1. training a MaxEnt on the labeled sequences assuming independence between
words yielding the λkj

2. estimating the overall word frequency in the training corpus p̂w by counting
3. translate MaxEnt weights into emission probabilities by substituting p̂w for

Z2 in (13) and normalizing with respect to
∑d

i=1 bjk = 1 instead of dividing
by Z1pj

4.2 Transition Probabilities

The initial distribution πi and the transition probabilities aij are estimated from
the training data using the smoothed relative frequencies of word-wise topic
changes (additive smoothing). A pseudo-count α > 0 serves as regularization
term to prevent zero probabilities for unseen transitions in the training data [6]:

âi· =
ai· + α∑c

j=1 (aij + α)
for i = 1, . . . , c (14)

Tuning the smoothing parameter α also allows for more or less conservative
topic changes, even within sentence limits.

4.3 Decoding

The model M is used to decode the sequence W by assigning the most likely
sequence of hidden states w.r.t. the joint distribution. Two different dynamic
programming algorithms are used to solve this decoding problem [15]: On
the one hand, the Viterbi algorithm computes the globally optimal solution
S∗ = arg maxS P (W,S). The posterior decoding algorithm, on the other hand,
generates locally optimal solutions S∗ = {si | si = arg maxk

∑
S P (si = k | W )}.

The performance of the algorithms is evaluated in the following experiments.
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5 Experiments and Results

The laptop review dataset is used for several experiments: At first, the perfor-
mance of the MaxEnt classifier is reported as baseline. Next, the differences of
the HMM decoding algorithms are investigated on the laptop review dataset by
applying a standard, frequency based HMM. The results are compared to those
of the combined algorithm ME+HMM and a linear-chain CRF with comparable
features.

The MaxEnt is trained using count-based BoW features for each sentence.
The HMM and the CRF decode on word-level. For better comparison, the results
of HMM, CRF and ME+HMM are reported on sentence-level by assigning to
each sentence its most frequent topic. All classifiers are implemented in Python3.
Table 2 reports weighted accuracy, precision, recall and F1 scores as defined in
the documentation of the Python package scikit-learn [13] for all classifiers. Most
algorithms are also taken from the scikit-learn package. If not stated otherwise,
default parameter settings are applied. Except for lowercasing, the data is not
preprocessed for the experiments. Especially, stopwords are not removed, as it
would corrupt the text sequence for the HMM.

5.1 MaxEnt as Baseline

The implementation of the MaxEnt classifier is the SGDClassifier from scikit-
learn with loss=’log’ and tf-idf vectors as input. alpha is set to 0.00001, the
class weight is auto and the number of iterations is 1000. The MaxEnt achieves
an overall accuracy of 70%. A closer look at the individual topic results (see
sparkline in Table 2) reveals that some topics are harder to classify while others
reach accuracy scores of more than 80%. Low performance is mostly related
to either poor vocabulary separability (e.g. introduction and summary) or little
evidence in the dataset (e.g. review info). Topics related to laptop specific content
yield the best performance.

5.2 Standard HMM

For comparison, a standard HMM using word counts per topic as emission prob-
abilities has been implemented4. Transition probabilities and initial distribution
are estimated as well. The smoothing parameter α = 0.0001. Implementation
details for the Viterbi and the posterior decoding algorithm such as log space
and scaling as provided in [7] are considered. The experiment serves to deter-
mine the performance difference of the algorithms. The overall accuracy for the
Viterbi algorithm reaches 60.16%, thus outperforming the 53.6% of the posterior
algorithm (see Table 2).

As expected, the standard HMM cannot compete with the performance of the
MaxEnt classifier, irrespective of the decoding algorithm. The additional infor-
mation about topic transitions is not enough to compensate for the less compet-
itive emission probabilities. A performance loss is observed for both algorithms.
4 The HMM algorithm is no longer supported in the sklearn library.
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Table 2. Results for all classifiers on the given laptop review dataset using 5-fold cross
validation. Accuracy, precision, recall and F1 score are weighted by the number of
sentences in each topic. The sparklines indicate the accuracy results for each topic in
the same order as in Fig. 1. Each horizontal line denotes the baseline MaxEnt accuracy
of 70%.

Algorithm Accuracy per Class Accuracy Precision Recall F1 score

MaxEnt 70.00% 71.46% 70.00% 70.13%

HMM (Viterbi) 60.16% 68.92% 60.16% 61.89%

HMM (posterior) 53.60% 68.59% 53.60% 56.95%

CRF 39.86% 49.63% 39.86% 40.08%

ME+HMM (Viterbi) 75.41% 77.40% 75.41% 74.30%

ME+HMM (posterior) 76.84% 78.74% 76.84% 75.62%

The only exception is topic build/case which is due to the HMM assigning the
first topic as default when topics have equal probability. The precision scores do
not differ considerably from the MaxEnt.

5.3 MaxEnt Emissions for HMM (ME+HMM)

For combining the MaxEnt probability distributions with a HMM, the weights
λwtj , μj are extracted from the trained MaxEnt classifier to calculate the con-
ditional probabilities per word and topic following (13). During training, the
normalized word frequencies p̂w are stored. Transition probabilities and initial
distribution remain the same as for the standard HMM in Sect. 5.2.

These more distinctive emission probabilities raise the performance of the
classifier (see Table 2). ME+HMM performs not only better than the standard
HMM, but also outperforms the MaxEnt classifier by approximately 7% on aver-
age. Except for ports/specifications, all laptop-related topics achieve over 80%
accuracy. A performance drop when compared to the MaxEnt is only noticeable
for the topics review info and summary/verdict. The low performance of review
info is due to the topic being under-represented in the training data. The per-
formance of the topic summary might be caused by issues in the training data,
as will be discussed in Sect. 6.
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5.4 Comparison of ME+HMM and CRF

For compatibility with sklearn, the sklearn-crfsuite5 is chosen as implemen-
tation for the linear-chain CRF. The training algorithm is set to lbfgs (gradi-
ent descent) and the L2 regularization coefficient to 100. Although way below
the capabilities of a general CRF, only the current and previous word identi-
ties and the beginning of a sequence (BOS) are used as features to allow for a
fair comparison. Being a standard method for tasks like NER with a restricted
set of states, the CRF cannot handle topics that overlap as much as in the
given laptop dataset. With estimating both emission and transition probabili-
ties simultaneously, the CRF has too many degrees of freedom to capture the
less frequent topics, thus the overall accuracy reaches only 40%. The combined
model ME+HMM has its strengths with longer, subsequent sequences of topics.
For the transition probabilities, a discriminative estimation is not necessary.

6 Discussion

A CRF with basic features was implemented for a fair comparison to the other
models. In this setting, the CRF does not perform well. With a larger set of hand-
crafted features, the CRF will eventually perform comparably to the proposed
model. The current trend towards deep learning models is supposed to mitigate
the feature engineering requirement. Those models should implicitly learn input
representations, but require a careful architecture design and an abundance of
training data, especially for modeling long input sequences. For the given prob-
lem setting, ME+HMM fills the gap by performing with standard features: no
manual effort is required and the size of the given dataset is sufficient.

Concerning the decoding algorithm, the results suggest that for ME+HMM
the posterior algorithm is slightly superior to the Viterbi algorithm, as opposed
to the standard HMM. Schwartz [19] noted that the Viterbi algorithm most
likely does not find the optimal path in case its probability is low and many
other paths have almost equal probability. In this case, the posterior decoding
may outperform the Viterbi algorithm.

The experiments have shown that the model ME+HMM is superior to other
classifiers in assigning topics on sentence-level. Although the dataset is designed
as a sentence classification task, the document structure of the expert reviews
can be exploited. This allows to assign more than one label per sentence which is
convenient for contrasting or comparison sentences (e.g. “on the one hand, on the
other hand”), for concessive clauses (e.g. “although”, “despite”) or enumerations.
Table 3 is an illustrative example taken from a review, where the ME+HMM
classification (bottom) differs from the gold annotation (top). In the gold anno-
tation, only the topic keyboard is assigned to the second sentence, although also
the touchpad is discussed, as accurately captured by ME+HMM. Although the
advantage of intra-sentence topic changes cannot be captured directly due to

5 https://sklearn-crfsuite.readthedocs.io/en/latest/index.html.

https://sklearn-crfsuite.readthedocs.io/en/latest/index.html
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the lack of granularity in the dataset, the example suggests that word-level topic
assignments could be promising and reveal additional insight on the product, as
in the example case.

Table 3. A sample sequence taken randomly from a review. The gold labeling suggests
three different topics (top), the ME+HMM model assigns four topics (bottom).

(Gold labels)

Otherwise, the approx. 3.3 kg heavy case didn’t actually knock our socks off: design,
workmanship and materials are only second rate. The input devices could also be a
lot better (small touchpad, clattery keyboard, single-rowed enter, etc.).The
main point of complaint is the enormous noise development, typical for a gamer: the fan
is clearly audible during load

(ME+HMM)

Otherwise, the approx. 3.3 kg heavy case didn’t actually knock our socks off: design,
workmanship and materials are only second rate. The input devices could also be a

lot better (small touchpad, clattery keyboard, single-rowed enter, etc.). The
main point of complaint is the enormous noise development, typical for a gamer: the
fan is clearly audible during load

Build/Case Noise Keyboard Touchpad

Another interesting insight from the experiments is the low performance of
the topic summary. A closer investigation reveals that summary is often mis-
classified as introduction. The topic distribution in Fig. 1a illustrates an unbal-
ance between introduction and summary, although it can be assumed that most
of the reviews consist of both an introduction and a summary. However, the
dataset consists of more than three times as many summary sentences. It could
still be argued that summaries in this dataset are simply longer, i.e. consist of
more sentences, but also the distribution of initial topics suggests that some
sentences might misleadingly be labeled as summary. Thus, the label quality of
the sequence models is probably even higher as the numbers suggest.

7 Conclusion and Future Work

Faced with a new dataset for sentence-level topic classification on laptop reviews,
we introduce the model ME+HMM, a combination of MaxEnt-based weights
and an HMM. The expert laptop reviews are detailed articles with an inherent
topic structure. The MaxEnt classifier in general performs well on language
classification tasks, but can profit from a sequence model that also captures
the transitions between topics within one review. On the given dataset, the
new model ME+HMM improves the performance of the standalone MaxEnt
classifier and also outperforms more general models such as a linear-chain CRF
with comparable features. Although the ME+HMM is trained on sentence-level,
labels are assigned at word-level, which allows for detecting intra-sentence topic
changes. The ME+HMM relies on well established concepts and incorporates



A Semi-discriminative Approach for Sub-sentence Level Topic Classification 709

preliminary knowledge: A frequency-based estimation of transitions is reasonable
for the infrequent topic changes on word-level. Concerning the emissions, the
conditional estimation performs best. The combination of MaxEnt and HMM
eliminates the excessive degrees of freedom of a generalized model leading to an
approach with less complexity for comparable tasks.

The results from the topic classification task can be included in tasks such
as aspect-based sentiment analysis. For automated text summarization or gen-
eration, it would be interesting to see the ME+HMM model generate topic
sequences as outlines.

Acknowlegedments. We would like to thank our colleagues at fact.ai for the inspiring
discussions and the collection and provision of their dataset [3].
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Using a Deep Reinforced Model
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Abstract. Recently, generating adversarial examples has become an
important means of measuring robustness of a deep learning model.
Adversarial examples help us identify the susceptibilities of the model
and further counter those vulnerabilities by applying adversarial training
techniques. In natural language domain, small perturbations in the form
of misspellings or paraphrases can drastically change the semantics of
the text. We propose a reinforcement learning based approach towards
generating adversarial examples in black-box settings. We demonstrate
that our method is able to fool well-trained models for (a) IMDB sen-
timent classification task and (b) AG’s news corpus news categorization
task with significantly high success rates. We find that the adversarial
examples generated are semantics-preserving perturbations to the origi-
nal text.

Keywords: Natural language processing · Adversarial examples ·
Black-box models · Reinforcement learning

1 Introduction

Adversarial examples are generally minimal perturbations applied to the input
data in an effort to expose the regions of the input space where a trained model
performs poorly. Prior works [5,36] have demonstrated the ability of an adversary
to evade state-of-the-art classifiers by carefully crafting attack examples which
can be even imperceptible to humans. Following such approaches, there has
been a number of techniques aimed at generating adversarial examples [29,41].
Depending on the degree of access to the target model, an adversary may operate
in one of the two different settings: (a) black-box setting, where an adversary
doesn’t have access to target model’s internal architecture or its parameters,
(b) white-box setting, where an adversary has access to the target model, its
parameters, and input feature representations. In both these settings, the adver-
sary cannot alter the training data or the target model itself. Depending on the
purpose of the adversary, adversarial attacks can be categorized as (a) targeted
attack and (b) non-targeted attack. In a targeted attack, the output category of

c© Springer Nature Switzerland AG 2020
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a generated example is intentionally controlled to a specific target category with
limited change in semantic information. While a non-targeted attack doesn’t
care about the category of misclassified results.

Most of the prior work has focused on image classification models where
adversarial examples are obtained by introducing imperceptible changes to pixel
values through optimization techniques [15,22]. However, generating natural lan-
guage adversarial examples can be challenging mainly due to the discrete nature
of text samples. Continuous data like image or speech is much more tolerant
to perturbations compared to text [13]. In textual domain, even a small per-
turbation is clearly perceptible and can completely change the semantics of the
text. Another challenge for generating adversarial examples relates to identifying
salient areas of the text where a perturbation can be applied successfully to fool
the target classifier. In addition to fooling the target classifier, the adversary is
designed with different constraints depending on the task and its motivations
[11]. In our work, we focus on constraining our adversary to craft examples with
semantic preservation and minimum perturbations to the input text.

Given different settings of the adversary, there are other works that have
designed attacks in “gray-box” settings [6,14,30]. However, the definitions of
“gray-box” attacks are quite different in each of these approaches. In this paper,
we focus on “black-box” setting where we assume that the adversary possesses a
limited set of labeled data, which is different from the target’s training data, and
also has an oracle access to the system, i.e., one can query the target classifier
with any input and get its corresponding predictions. We propose an effective
technique to generate adversarial examples in a black-box setting. We develop an
Adversarial Example Generator (AEG) model that uses a reinforcement learn-
ing framing to generate adversarial examples. We evaluate our models using
a word-based [20] and character-based [42] text classification model on bench-
mark classification tasks: sentiment classification and news categorization. The
adversarial sequences generated are able to effectively fool the classifiers without
changing the semantics of the text. Our contributions are as follows:

– We propose a black-box non-targeted attack strategy by combining ideas of
substitute network and adversarial example generation. We formulate it as a
reinforcement learning task.

– We introduce an encoder-decoder that operates over words and characters of
an input text and empowers the model to introduce word and character-level
perturbations.

– We adopt a self-critical sequence training technique to train our model to
generate examples that can fool or increase the probability of misclassification
in text classifiers.

– We evaluate our models on two different datasets associated with two different
tasks: IMDB sentiment classification and AG’s news categorization task. We
run ablation studies on various components of the model and provide insights
into decisions of our model.
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2 Related Work

Generating adversarial examples to bypass deep learning classification models
have been widely studied. In a white-box setting, some of the approaches include
gradient-based [13,19], decision function-based [29] and spatial transformation
based perturbation techniques [41]. In a black-box setting, several attack strate-
gies have been proposed based on the property of transferability [36]. Papernot
et al. [31,32] relied on this transferability property where adversarial examples,
generated on one classifier, are likely to cause another classifier to make the same
mistake, irrespective of their architecture and training dataset. In order to gener-
ate adversarial samples, a local substitute model was trained with queries to the
target model. Many learning systems allow query accesses to the model. How-
ever, there is little work that can leverage query-based access to target models
to construct adversarial samples and move beyond transferability. These studies
have primarily focused on image-based classifiers and cannot be directly applied
to text-based classifiers.

While there is limited literature for such approaches in NLP systems, there
have been some studies that have exposed the vulnerabilities of neural networks
in text-based tasks like machine translations and question answering. Belinkov
and Bisk [4] investigated the sensitivity of neural machine translation (NMT) to
synthetic and natural noise containing common misspellings. They demonstrate
that state-of-the-art models are vulnerable to adversarial attacks even after a
spell-checker is deployed. Jia et al. [17] showed that networks trained for more
difficult tasks, such as question answering, can be easily fooled by introducing
distracting sentences into text, but these results do not transfer obviously to
simpler text classification tasks. Following such works, different methods with the
primary purpose of crafting adversarial example have been explored. Recently,
a work by Ebrahimi et al. [9] developed a gradient-based optimization method
that manipulates discrete text structure at its one-hot representation to generate
adversarial examples in a white-box setting. In another white-box based attack,
Gong et al. [12] perturbed the word embedding of given text examples and
projected them to the nearest neighbour in the embedding space. This approach
is an adaptation of perturbation algorithms for images. Though the size and
quality of embedding play a critical role, this targeted attack technique ensured
that the generated text sequence is intelligible.

Alzantot et al. [1] proposed a black-box targeted attack using a population-
based optimization via genetic algorithm [2]. The perturbation procedure con-
sists of random selection of words, finding their nearest neighbours, ranking and
substitution to maximize the probability of target category. In this method,
random word selection in the sequence to substitute were full of uncertainties
and might be meaningless for the target label when changed. Since our model
focuses on black-box non-targeted attack using an encoder-decoder approach,
our work is closely related to the following techniques in the literature: Wong
(2017) [39], Iyyer et al. [16] and Gao et al. [10]. Wong (2017) [39] proposed
a GAN-inspired method to generate adversarial text examples targeting black-
box classifiers. However, this approach was restricted to binary text classifiers.
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Iyyer et al. [16] crafted adversarial examples using their proposed Syntactically
Controlled Paraphrase Networks (SCPNs). They designed this model for gen-
erating syntactically adversarial examples without compromising on the quality
of the input semantics. The general process is based on the encoder-decoder
architecture of SCPN. Gao et al. [10] implemented an algorithm called Deep-
WordBug that generates small text perturbations in a black box setting forcing
the deep learning model to make mistakes. DeepWordBug used a scoring function
to determine important tokens and then applied character-level transformations
to those tokens. Though the algorithm successfully generates adversarial exam-
ples by introducing character-level attacks, most of the introduced perturbations
are constricted to misspellings. The semantics of the text may be irreversibly
changed if excessive misspellings are introduced to fool the target classifier.
While SCPNs and DeepWordBug primary rely only on paraphrases and char-
acter transformations respectively to fool the classifier, our model uses a hybrid
word-character encoder-decoder approach to introduce both paraphrases and
character-level perturbations as a part of our attack strategy. Our attacks can
be a test of how robust the text classification models are to word and character-
level perturbations.

3 Proposed Attack Strategy

Let us consider a target model T and (x, l) refers to the samples from the dataset.
Given an instance x, the goal of the adversary is to generate adversarial examples
x′ such that T (x′) �= l, where l denotes the true label i.e take one of the K classes
of the target classification model. The changes made to x to get x′ are called
perturbations. We would like to have x′ close to the original instance x. In a
black box setting, we do not have knowledge about the internals of the target
model or its training data. Previous work by Papernot et al. [32] train a separate
substitute classifier such that it can mimic the decision boundaries of the target
classifier. The substitute classifier is then used to craft adversarial examples.
While these techniques have been applied for image classification models, such
methods have not been explored extensively for text.

We implement both the substitute network training and adversarial example
generation using an encoder-decoder architecture called Adversarial Examples
Generator (AEG). The encoder extracts the character and word information
from the input text and produces hidden representations of words considering
its sequence context information. A substitute network is not implemented sep-
arately but applied using an attention mechanism to weigh the encoded hidden
states based on their relevance to making predictions closer to target model out-
puts. The attention scores provide certain level of interpretability to the model
as the regions of text that need to perturbed can be identified and visualized.
The decoder uses the attention scores obtained from the substitute network,
combines it with decoder state information to decide if perturbation is required
at this state or not and finally emits the text unit (a text unit may refer to a
word or character). Inspired by a work by Luong et al. [26], the decoder is a word
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and character-level recurrent network employed to generate adversarial exam-
ples. Before the substitute network is trained, we pretrain our encoder-decoder
model on common misspellings and paraphrase datasets to empower the model
to produce character and word perturbations in the form of misspellings or para-
phrases. For training substitute network and generation of adversarial examples,
we randomly draw data that is disjoint from the training data of the black-
box model since we assume the adversaries have no prior knowledge about the
training data or the model. Specifically, we consider attacking a target classi-
fier by generating adversarial examples based on unseen input examples. This
is done by dividing the dataset into training, validation and test using 60-30-10
ratio. The training data is used by the target model, while the unseen validation
samples are used with necessary data augmentation for our AEG model. We
further improve our model by using a self-critical approach to finally generate
better adversarial examples. The rewards are formulated based on the following
goals: (a) fool the target classifier, (b) minimize the number of perturbations
and (c) preserve the semantics of the text. In the following sections, we explain
the encoder-decoder model and then describe the reinforcement learning framing
towards generation of adversarial examples.

3.1 Background and Notations

Most of the sequence generation models follow an encoder-decoder framework
[8,18,35] where encoder and decoder are modelled by separate recurrent neural
networks. Usually these models are trained using a pair of text (x, y) where
x = [x1, x2.., xn] is the input text and the y = [y1, y2.., ym] is the target text to
be generated. The encoder transforms an input text sequence into an abstract
representation h. While the decoder is employed to generate the target sequence
using the encoded representation h. However, there are several studies that have
incorporated several modifications to the standard encoder-decoder framework
[3,26,27].

Encoder. Based on Bahdanau et al. [3], we encode the input text sequence using
bidirectional gated recurrent units (GRUs) to encode the input text sequence x.
Formally, we obtain an encoded representation given by:

←→
ht =

←−
ht +

−→
ht .

Decoder. The decoder is a forward GRU implementing an attention mechanism
to recognize the units of input text sequence relevant for the generation of the
next target work. The decoder GRU generates the next text unit at time step
j by conditioning on the current decoder state sj , context vector cj computed
using attention mechanism and previously generated text units. The probability
of decoding each target unit is given by:

p(yj |y<j , h) = softmax(s̃j) (1)
s̃j = fd([cj ; sj ]) (2)
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where fd is used to compute a new attentional hidden state s̃j . Given the encoded
input representations

←→
H = {←→h1 , ...,

←→
hn} and the previous decoder GRU state

sj−1, the context vector at time step j is computed as: cj = Attn(
←→
H , sj−1).

Attn(·, ·) computes a weight αjt indicating the degree of relevance of an input
text unit xt for predicting the target unit yj using a feed-forward network fattn.
Given a parallel corpus D, we train our model by minimizing the cross-entropy
loss: J =

∑
(x,y)∈D −logp(y|x).

4 Adversarial Examples Generator (AEG) Architecture

In this task of adversarial example generation, we have black-box access to the
target model; the generator is not aware of the target model architecture or
parameters and is only capable of querying the target model with supplied inputs
and obtaining the output predictions. To enable the model to have capabilities
to generate word and character perturbations, we develop a hybrid encoder-
decoder model, Adversarial Examples Generator (AEG), that operates at both
word and character level to generate adversarial examples. Below, we explain
the components of this model which have been improved to handle both word
and character information from the text sequence.

4.1 Encoder

The encoder maps the input text sequence into a sequence of representations
using word and character-level information. Our encoder (Fig. 1) is a slight
variant of Chen et al. [7]. This approach providing multiple levels of granu-
larity can be useful in order to handle rare or noisy words in the text. Given
character embeddings E(c) = [e(c)1 , e

(c)
2 , ...e

(c)
n′ ] and word embeddings E(w) =

[e(w)
1 , e

(w)
2 , ...e

(w)
n ] of the input, starting (pt) and ending (qt) character positions

at time step t, we define inside character embeddings as: E
(c)
I = [e(c)pt , ...., e

(c)
qt ]

and outside embeddings as: E
(c)
O = [e(c)1 , ...., e

(c)
pt−1; e

(c)
qt+1, ..., e

(c)
n′ ]. First, we obtain

the character-enhanced word representation
←→
ht by combining the word informa-

tion from E(w) with the character context vectors. Character context vectors
are obtained by attending over inside and outside character embeddings. Next,
we compute a summary vector S over the hidden states

←→
ht using an attention

layer expressed as Attn(
←→
H ). To generate adversarial examples, it is important to

identify the most relevant text units that contribute towards the target model’s
prediction and then use this information during the decoding step to introduce
perturbation on those units. Hence, the summary vector is optimized using tar-
get model predictions without back propagating through the entire encoder. This
acts as a substitute network that learns to mimic the predictions of the target
classifier.
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Fig. 1. Illustration of encoder.

4.2 Decoder

Our AEG should be able to generate both character and word level perturbations
as necessary. We achieve this by modifying the standard decoder [3,27] to have
two-level decoder GRUs: word-GRU and character-GRU (see Fig. 2). Such hybrid
approaches have been studied to achieve open vocabulary NMT in some of the
previous work like Wu et al. [40] and Luong et al. [26]. Given the challenge that all
different word misspellings cannot fit in a fixed vocabulary, we leverage the power
of both words and characters in our generation procedure. The word-GRU uses
word context vector c

(w)
j by attending over the encoder hidden states

←→
ht . Once

the word context vector c
(w)
j is computed, we introduce a perturbation vector vp

to impart information about the need for any word or character perturbations at
this decoding step. We construct this vector using the word-GRU decoder state
s
(w)
j , context vector c

(w)
j and summary vector S from the encoder as:

vp = fp(s
(w)
j , c

(w)
j , S) (3)

We modify the the Eq. (2) as: s̃
(w)
j = f

(w)
d ([c(w)

j ; s(w)
j ; vp]). The character-

GRU will decide if the word is emitted with or without misspellings. We don’t
apply step-wise attention for character-GRU, instead we initialize it with the cor-
rect context. The ideal candidate representing the context must combine infor-
mation about: (a) the word obtained from c

(w)
j , s

(w)
j , (b) its character alignment

with the input characters derived from character context vector c
(c)
j with respect

to the word-GRU’s state and (c) perturbation embedded in vp. This yields,

c
(c)
j = Attn(E(c), s

(w)
j ) (4)

s̃
(c)
j = f

(c)
d ([c(w)

j ; s(w)
j ; vp; c

(c)
j ]) (5)
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Thus, s̃
(c)
j is initialized to the character-GRU only for the first hidden state.

With this mechanism, both word and character level information can be used to
introduce necessary perturbations.

cj
(c)s1

(w) sj-1
(w)

H S

Attention

ej-1
(w)ej-2

(w)

sj
(w)

fp

fd
(w) fd

(c)

s1
(c)

en'
(c)e1

(c)

Attention

E(w) E(c)

cj
(w)

Word-GRU 

Character-GRU 

yj
(w)

yj1
(c)

Fig. 2. Illustration of the word and character decoder.

5 Training

5.1 Supervised Pretraining with Teacher Forcing

The primary purpose of pretraining AEG is to enable our hybrid encoder-decoder
to encode both character and word information from the input example and pro-
duce both word and character-level transformations in the form of paraphrases
or misspellings. Though the pretraining helps us mitigate the cold-start issue, it
does not guarantee that these perturbed texts will fool the target model. There
are large number of valid perturbations that can be applied due to multiple ways
of arranging text units to produce paraphrases or different misspellings. Thus,
minimizing Jmle is not sufficient to generate adversarial examples.

Dataset Collection. In this paper, we use paraphrase datasets like
PARANMT-50M corpus [37], Quora Question Pair dataset1 and Twitter URL
paraphrasing corpus [23]. These paraphrase datasets together contains text from
various sources: Common Crawl, CzEng1.6, Europarl, News Commentary, Quora
questions, and Twitter trending topic tweets. We do not use all the data for
our pretraining. We randomly sample 5 million parallel texts and augment
them using simple character-transformations (eg. random insertion, deletion or
replacement) to words in the text. The number of words that undergo transfor-
mation is capped at 10% of the total number of words in the text. We further
include examples which contain only character-transformations without para-
phrasing the original input.

1 https://www.kaggle.com/c/quora-question-pairs/data.

https://www.kaggle.com/c/quora-question-pairs/data
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Training Objective. AEG is pre-trained using teacher-forcing algorithm [38]
on the dataset explained in Sect. 3. Consider an input text: “movie was good”
that needs to be decoded into the following target perturbed text: “film is gud”.
The word “gud” might be out-of-vocabulary indicated by < oov >. Hence, we
compute the loss incurred by word-GRU decoder, J (w), when predicting {“film”,
“is”, “< oov >”} and loss incurred by character-GRU decoder, J (c), when
predicting {‘f’, ‘i’,‘l’, ‘m’, ‘ ’},{‘i’,‘s’,’ ’},{‘g’, ‘u’,‘d’,‘ ’}. Therefore, the training
objective in Sect. 3.1 is modified into:

Jmle = J (w) + J (c) (6)

5.2 Training with Reinforcement Learning

We fine-tune our model to fool a target classifier by learning a policy that max-
imizes a specific discrete metric formulated based on the constraints required to
generate adversarial examples. In our work, we use the self-critical approach of
Rennie et al. [34] as our policy gradient training algorithm.

Self-Critical Sequence Training (SCST). In SCST approach, the model
learns to gather more rewards from its sampled sequences that bring higher
rewards than its best greedy counterparts. First, we compute two sequences:
(a) y′ sampled from the model’s distribution p(y′

j |y′
<j , h) and (b) ŷ obtained

by greedily decoding (argmax predictions) from the distribution p(ŷj |ŷ<j , h).
Next, rewards r(y′

j), r(ŷj) are computed for both the sequences using a reward
function r(·), explained in Sect. 5.2. We train the model by minimizing:

Jrl = −
∑

j

(r(y′) − r(ŷ))logp(ŷj |ŷ<j , h) (7)

Here r(ŷ) can be viewed as the baseline reward. This approach, therefore,
explores different sequences that produce higher reward compared to the current
best policy.

Rewards. The reward r(ŷ) for the sequence generated is a weighted sum of dif-
ferent constraints required for generating adversarial examples. Since our model
operates at word and character levels, we therefore compute three rewards:
adversarial reward, semantic similarity and lexical similarity reward. The reward
should be high when: (a) the generated sequence causes the target model to pro-
duce a low classification prediction probability for its ground truth category, (b)
semantic similarity is preserved and (c) the changes made to the original text
are minimal.

Adversarial Reward. Given a target model T , it takes a text sequence y and
outputs prediction probabilities P across various categories of the target model.
Given an input sample (x, l), we compute a perturbation using our AEG model
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and produce a sequence y. We compute the adversarial reward as RA = (1−Pl),
where the ground truth l is an index to the list of categories and Pl is the
probability that the perturbed generated sequence y belongs to target ground
truth l. Since we want the target classifier to make mistakes, we promote it by
rewarding higher when the sequences produce low target probabilities.

Semantic Similarity. Inspired by the work of Li et al. [24], we train a deep
matching model that can represent the degree of match between two texts. We
use character based biLSTM models with attention [25] to handle word and
character level perturbations. The matching model will help us compute the
semantic similarity RS between the text generated and the original input text.

Lexical Similarity. Since our model functions at both character and word level,
we compute the lexical similarity. The purpose of this reward is to keep the
changes as minimal as possible to just fool the target classifier. Motivated by the
recent work of Moon et al. [28], we pretrain a deep neural network to compute
approximate Levenshtein distance RL composed of character based bi-LSTM
model. We replicate that model by generating a large number of text with per-
turbations in the form of insertions, deletions or replacements. We also include
words which are prominent nicknames, abbreviations or inconsistent notations
to have more lexical similarity. This is generally not possible using direct Lev-
enshtein distance computation. Once trained, it can produce a purely lexical
embedding of the text without semantic allusion. This can be used to compute
the lexical similarity between the generated text y and the original input text x
for our purpose.

Finally, we combine all these three rewards using:

r(y) = γARA + γSRS + γLRL (8)

where γA, γS , γL are hyperparameters that can be modified depending upon the
kind of textual generations expected from the model. The changes inflicted by
different reward coefficients can be seen in Sect. 6.5.

5.3 Training Details

We trained our models on 4 GPUs. The parameters of our hybrid encoder-
decoder were uniformly initialized to [−0.1, 0.1]. The optimization algorithm
used is Adam [21]. The encoder word embedding matrices were initialized with
300-dimensional Glove vectors [33]. During reinforcement training, we used
plain stochastic gradient descent with a learning rate of 0.01. Using a held-
out validation set, the hyper-parameters for our experiments are set as follows:
γA = 1, γS = 0.5, γL = 0.25.

6 Experiments

In this section, we describe the evaluation setup used to measure the effectiveness
of our model in generating adversarial examples. The success of our model lies
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in its ability to fool the target classifier. We pretrain our models with dataset
that generates a number of character and word perturbations. We elaborate on
the experimental setup and the results below.

Table 1. Summary of data and models used in our experiments.

Datasets Details Model Accuracy

IMDB Review Classes: 2; #Train: 25k; CNN-Word [20] 89.95%

AG’s News Classes: 4; #Train: 120k; CNN-Char [42] 89.11%

6.1 Setup

We conduct experiments on different datasets to verify if the accuracy of the deep
learning models decrease when fed with the adversarial examples generated by
our model. We use benchmark sentiment classification and news categorization
datasets and the details are as follows:

– Sentiment classification: We trained a word-based convolutional model (CNN-
Word) [20] on IMDB sentiment dataset2. The dataset contains 50k movie
reviews in total which are labeled as positive or negative. The trained model
achieves a test accuracy of 89.95% which is relatively close to the state-of-
the-art results on this dataset.

– News categorization: We perform our experiments on AG’s news corpus3

with a character-based convolutional model (CNN-Char) [42]. The news cor-
pus contains titles and descriptions of various news articles along with their
respective categories. There are four categories: World, Sports, Business and
Sci/Tech. The trained CNN-Char model achieves a test accuracy of 89.11%.

Table 1 summarizes the data and models used in our experiments. We com-
pare our proposed model with the following black-box non-targeted attacks:

– Random: We randomly select a word in the text and introduce some per-
turbation to that word in the form of a character replacement or synonymous
word replacement. No specific strategy to identify importance of words.

– NMT-BT: We generate paraphrases of the sentences of the text using a back-
translation approach [16]. We used pretrained English↔German translation
models to obtain back-translations of input examples.

– DeepWordBug [10]: A scoring function is used to determine the important
tokens to change. The tokens are then modified to evade a target model.

– No-RL: We use our pretrained model without the reinforcement learning
objective.

The performance of these methods are measured by the percentage fall in accu-
racy of these models on the generated adversarial texts. Higher the percentage
dip in the accuracy of the target classifier, more effective is our model.
2 http://ai.stanford.edu/∼amaas/data/sentiment/.
3 https://github.com/mhjabreel/CharCNN/tree/master/data/ag news csv.

http://ai.stanford.edu/~amaas/data/sentiment/
https://github.com/mhjabreel/CharCNN/tree/master/data/ag_news_csv
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6.2 Quantitative Analysis

We analyze the effectiveness of our approach by comparing the results from
using two different baselines against character and word-based models trained
on different datasets. Table 2 demonstrates the capability of our model. Without
the reinforcement learning objective, the No-RL model performs better than the
back-translation approach(NMT-BT). The improvement can be attributed to
the word and character perturbations introduced by our hybrid encoder-decoder
model as opposed to only paraphrases in the former model. Our complete AEG
model outperforms all the other models with significant drop in accuracy. For
the CNN-Word, DeepWordBug decreases the accuracy from 89.95% to 28.13%
while AEG model further reduces it to 18.5%.

Table 2. Left: Performance of our AEG model on IMDB and AG’s News dataset using
word and character based CNN models respectively. Results indicate the percentage dip
in the accuracy by using the corresponding attacking model over the original accuracy.
Right: Performance of different variants of our model.

Models IMDB AG’s News
(CNN-Word) (CNN-Char)

Random 2.46% 9.64%
NMT-BT 25.38% 22.45%

DeepWordBug 68.73% 65.80%
No-RL (Ours) 38.05% 33.58%
AEG (Ours) 79.43% 72.16%

Model Variants IMDB News Corpus
Char-dec 73.5 68.64%
No pert 71.45% 65.91%

It is important to note that our model is able to expose the weaknesses of the
target model irrespective of the nature of the model (either word or character
level). It is interesting that even simple lexical substitutions and paraphrases
can break such models on both datasets we tested. Across different models, the
character-based models are less susceptible to adversarial attacks compared to
word-based models as they are able to handle misspellings and provide better
generalizations.

6.3 Human Evaluation

We also evaluated our model based on human judgments. We conducted an
experiment where the workers were presented with randomly sampled 100 adver-
sarial examples generated by our model which were successful in fooling the tar-
get classifier. The examples were shuffled to mitigate ordering bias, and every
example was annotated by three workers. The workers were asked to label the
sentiment of the sampled adversarial example. For every adversarial example
shown, we also showed the original text and asked them to rate their similar-
ity on a scale from 0 (Very Different) to 3 (Very Similar). We found that the
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perturbations produced by our model do not affect the human judgments signif-
icantly as 94.6% of the human annotations matched with the ground-truth label
of the original text. The average similarity rating of 1.916 also indicated that
the generated adversarial sequences are semantics-preserving.

6.4 Ablation Studies

In this section, we make different modifications to our encoder and decoder
to weigh the importance of these techniques: (a) No perturbation vector (No
Pert) and finally (b) a simple character based decoder (Char-dec) but involves
perturbation vector. Table 2 shows that the absence of hybrid decoder leads to
a significant drop in the performance of our model. The main reason we believe
is that hybrid decoder is able to make targeted attacks on specific words which
otherwise is lost while generating text using a pure-character based decoder. In
the second case, the most important words associated with the prediction of
the target model are identified by the summary vector. When the perturbation
vector is used, it carries forward this knowledge and decides if a perturbation
should be performed at this step or not. This can be verified even in Fig. 3, where
the regions of high attention get perturbed in the text generated.

Fig. 3. Left: Examples from IMDB reviews dataset, where the model introduces mis-
spellings or paraphrases that are sufficient to fool the target classifier. Right: Effect
of coefficients of the reward function. The first line is the text from the AG’s news
corpus. The second line is the generated by the model given specific constraints on the
reward coefficients. The examples do not necessarily lead to misclassification. The text
in green are attention scores indicating relevance of classification. The text in red are
the perturbations introduced by our model.

6.5 Qualitative Analysis

We qualitatively analyze the results by visualizing the attention scores and the
perturbations introduces by our model. We further evaluate the importance of
hyperparameters γ(.) in the reward function. We set only one of the hyperparam-
eters closer to 1 and set the remaining closer to zero to see how it affects the text
generation. The results can be seen in Fig. 3. Based on a subjective qualitative
evaluation, we make the following observations:
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– Promisingly, it identifies the most important words that contribute to partic-
ular categorization. The model introduces misspellings or word replacements
without significant change in semantics of the text.

– When the coefficient associated only with adversarial reward goes to 1, it
begins to slowly deviate though not completely. This is motivated by the
initial pretraining step on paraphrases and perturbations.

7 Conclusion

In this work, we have introduced a AEG, a model capable of generating adver-
sarial text examples to fool the black-box text classification models. Since we do
not have access to gradients or parameters of the target model, we modelled our
problem using a reinforcement learning based approach. In order to effectively
baseline the REINFORCE algorithm for policy-gradients, we implemented a self-
critical approach that normalizes the rewards obtained by sampled sentences
with the rewards obtained by the model under test-time inference algorithm.
By generating adversarial examples for target word and character-based models
trained on IMDB reviews and AG’s news dataset, we find that our model is capa-
ble of generating semantics-preserving perturbations that leads to steep decrease
in accuracy of those target models. We conducted ablation studies to find the
importance of individual components of our system. Extremely low values of the
certain reward coefficient constricts the quantitative performance of the model
can also lead to semantic divergence. Therefore, the choice of a particular value
for this model should be motivated by the demands of the context in which it
is applied. One of the main challenges of such approaches lies in the ability to
produce more synthetic data to train the generator model in the distribution of
the target model’s training data. This can significantly improve the performance
of our model. We hope that our method motivates a more nuanced exploration
into generating adversarial examples and adversarial training for building robust
classification models.
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keel, H., Kersting, K., Nijssen, S., Železný, F. (eds.) ECML PKDD 2013, Part III.
LNCS (LNAI), vol. 8190, pp. 387–402. Springer, Heidelberg (2013). https://doi.
org/10.1007/978-3-642-40994-3 25

http://arxiv.org/abs/1804.07998
http://arxiv.org/abs/1409.0473
http://arxiv.org/abs/1711.02173
https://doi.org/10.1007/978-3-642-40994-3_25
https://doi.org/10.1007/978-3-642-40994-3_25


Black-Box Adversarial Examples for Text Classifiers 725

6. Biggio, B., Roli, F.: Wild patterns: ten years after the rise of adversarial machine
learning. Pattern Recogn. 84, 317–331 (2018)

7. Chen, H., Huang, S., Chiang, D., Dai, X., Chen, J.: Combining character and word
information in neural machine translation using a multi-level attention. In: Pro-
ceedings of the 2018 Conference of the North American Chapter of the Association
for Computational Linguistics: Human Language Technologies, Volume 1 (Long
Papers), vol. 1, pp. 1284–1293 (2018)

8. Chung, J., Gulcehre, C., Cho, K., Bengio, Y.: Empirical evaluation of gated recur-
rent neural networks on sequence modeling. arXiv preprint arXiv:1412.3555 (2014)

9. Ebrahimi, J., Rao, A., Lowd, D., Dou, D.: Hotflip: White-box adversarial examples
for NLP. arXiv preprint arXiv:1712.06751 (2017)

10. Gao, J., Lanchantin, J., Soffa, M.L., Qi, Y.: Black-box generation of adversarial
text sequences to evade deep learning classifiers. arXiv preprint arXiv:1801.04354
(2018)

11. Gilmer, J., Adams, R.P., Goodfellow, I., Andersen, D., Dahl, G.E.: Motivating the
rules of the game for adversarial example research. arXiv preprint arXiv:1807.06732
(2018)

12. Gong, Z., Wang, W., Li, B., Song, D., Ku, W.S.: Adversarial texts with gradient
methods. arXiv preprint arXiv:1801.07175 (2018)

13. Goodfellow, I.J., Shlens, J., Szegedy, C.: Explaining and harnessing adversarial
examples. stat 1050, 20 (2015)

14. Guo, C., Rana, M., Cisse, M., van der Maaten, L.: Countering adversarial images
using input transformations. arXiv preprint arXiv:1711.00117 (2017)

15. Iter, D., Huang, J., Jermann, M.: Generating adversarial examples for speech recog-
nition. Stanford Technical Report (2017)

16. Iyyer, M., Wieting, J., Gimpel, K., Zettlemoyer, L.: Adversarial example generation
with syntactically controlled paraphrase networks. arXiv preprint arXiv:1804.06059
(2018)

17. Jia, R., Liang, P.: Adversarial examples for evaluating reading comprehension sys-
tems. arXiv preprint arXiv:1707.07328 (2017)

18. Kalchbrenner, N., Blunsom, P.: Recurrent continuous translation models. In: Pro-
ceedings of the 2013 Conference on Empirical Methods in Natural Language Pro-
cessing, pp. 1700–1709 (2013)

19. Kereliuk, C., Sturm, B.L., Larsen, J.: Deep learning and music adversaries. IEEE
Trans. Multimedia 17(11), 2059–2071 (2015)

20. Kim, Y.: Convolutional neural networks for sentence classification. arXiv preprint
arXiv:1408.5882 (2014)

21. Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980 (2014)

22. Kurakin, A., Goodfellow, I., Bengio, S.: Adversarial examples in the physical world.
arXiv preprint arXiv:1607.02533 (2016)

23. Lan, W., Qiu, S., He, H., Xu, W.: A continuously growing dataset of sentential
paraphrases. In: Proceedings of The 2017 Conference on Empirical Methods on
Natural Language Processing (EMNLP), pp. 1235–1245. Association for Compu-
tational Linguistics (2017). http://aclweb.org/anthology/D17-1127

24. Li, Z., Jiang, X., Shang, L., Li, H.: Paraphrase generation with deep reinforcement
learning. arXiv preprint arXiv:1711.00279 (2017)

25. Lin, Z., et al.: A structured self-attentive sentence embedding. arXiv preprint
arXiv:1703.03130 (2017)

26. Luong, M.T., Manning, C.D.: Achieving open vocabulary neural machine transla-
tion with hybrid word-character models. arXiv preprint arXiv:1604.00788 (2016)

http://arxiv.org/abs/1412.3555
http://arxiv.org/abs/1712.06751
http://arxiv.org/abs/1801.04354
http://arxiv.org/abs/1807.06732
http://arxiv.org/abs/1801.07175
http://arxiv.org/abs/1711.00117
http://arxiv.org/abs/1804.06059
http://arxiv.org/abs/1707.07328
http://arxiv.org/abs/1408.5882
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1607.02533
http://aclweb.org/anthology/D17-1127
http://arxiv.org/abs/1711.00279
http://arxiv.org/abs/1703.03130
http://arxiv.org/abs/1604.00788


726 P. Vijayaraghavan and D. Roy

27. Luong, M.T., Sutskever, I., Le, Q.V., Vinyals, O., Zaremba, W.: Addressing the
rare word problem in neural machine translation. arXiv preprint arXiv:1410.8206
(2014)

28. Moon, S., Neves, L., Carvalho, V.: Multimodal named entity disambiguation for
noisy social media posts. In: Proceedings of the 56th Annual Meeting of the Associ-
ation for Computational Linguistics (Volume 1: Long Papers), vol. 1, pp. 2000–2008
(2018)

29. Moosavi-Dezfooli, S.M., Fawzi, A., Frossard, P.: Deepfool: a simple and accurate
method to fool deep neural networks. In: Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pp. 2574–2582 (2016)

30. Mopuri, K.R., Babu, R.V., et al.: Gray-box adversarial training. arXiv preprint
arXiv:1808.01753 (2018)

31. Papernot, N., McDaniel, P., Goodfellow, I.: Transferability in machine learning:
from phenomena to black-box attacks using adversarial samples. arXiv preprint
arXiv:1605.07277 (2016)

32. Papernot, N., McDaniel, P., Goodfellow, I., Jha, S., Celik, Z.B., Swami, A.: Prac-
tical black-box attacks against deep learning systems using adversarial examples.
arXiv preprint (2016)

33. Pennington, J., Socher, R., Manning, C.: Glove: global vectors for word represen-
tation. In: Proceedings of the 2014 Conference on Empirical Methods in Natural
Language Processing (EMNLP), pp. 1532–1543 (2014)

34. Rennie, S.J., Marcheret, E., Mroueh, Y., Ross, J., Goel, V.: Self-critical sequence
training for image captioning. In: Proceedings of the IEEE Conference on Com-
puter Vision and Pattern Recognition, pp. 7008–7024 (2017)

35. Sutskever, I., Vinyals, O., Le, Q.V.: Sequence to sequence learning with neural
networks. In: Advances in Neural Information Processing Systems, pp. 3104–3112
(2014)

36. Szegedy, C., et al.: Intriguing properties of neural networks. arXiv preprint
arXiv:1312.6199 (2013)

37. Wieting, J., Gimpel, K.: Paranmt-50m: Pushing the limits of paraphrastic sentence
embeddings with millions of machine translations. arXiv preprint arXiv:1711.05732
(2017)

38. Williams, R.J., Zipser, D.: A learning algorithm for continually running fully recur-
rent neural networks. Neural Comput. 1(2), 270–280 (1989)

39. Wong, C.: Dancin seq2seq: Fooling text classifiers with adversarial text example
generation. arXiv preprint arXiv:1712.05419 (2017)

40. Wu, Y., et al.: Google’s neural machine translation system: Bridging the gap
between human and machine translation. arXiv preprint arXiv:1609.08144 (2016)

41. Xiao, C., Zhu, J.Y., Li, B., He, W., Liu, M., Song, D.: Spatially transformed adver-
sarial examples. arXiv preprint arXiv:1801.02612 (2018)

42. Zhang, X., Zhao, J., LeCun, Y.: Character-level convolutional networks for text
classification. In: Advances in Neural Information Processing Systems, pp. 649–657
(2015)

http://arxiv.org/abs/1410.8206
http://arxiv.org/abs/1808.01753
http://arxiv.org/abs/1605.07277
http://arxiv.org/abs/1312.6199
http://arxiv.org/abs/1711.05732
http://arxiv.org/abs/1712.05419
http://arxiv.org/abs/1609.08144
http://arxiv.org/abs/1801.02612


Author Index

Abdelgawad, Louay III-688
Abdelwahab, Ahmed II-332
Aboulnaga, Ashraf I-412
Abuoda, Ghadeer I-412
Aida, Masaki I-447
Akbarinia, Reza III-781
Akcay, Alp III-719
Akiyama, Mitsuaki I-447
Akoglu, Leman II-20
Akuzawa, Kei II-315
Al Farabi, Khan Mohammad II-614
Al Hasan, Mohammad I-541
Alam, Nebula III-773
Allikivi, Mari-Liis II-55, II-103
Ambite, José Luis II-665
Amini, Massih-Reza III-253
Amon, Peter III-777
Anand, Avishek I-395
Andres, Josh III-773
Archer, Matthew III-322
Asai, Hideki I-743
Aslam, Javed III-220
Avinesh, P. V. S. III-339

Bai, Lu I-464
Bao, Zhifeng III-339
Basu, Debabrota III-167
Basu, Sugato I-57
Beggel, Laura I-206
Bekker, Jessa II-71
Belfodil, Adnene I-3
Bellet, Aurélien II-229
Berens, Philipp I-124
Berger, Victor I-274
Bernardini, Giulia I-627
Beydoun, Ghassan III-483
Bezdek, James C. I-90
Bhalla, Sushrut III-602
Biller, Beth III-322
Bischl, Bernd I-206, III-400
Blier, Léonard II-449
Blomqvist, Kenneth II-582
Bondi, Elizabeth I-725
Bonetta, Giovanni II-648

Borrison, Reuben III-794
Bosch, Jessica I-524
Boudjeloud-Assala, Lydia III-638
Bräm, Timo III-134
Bressan, Stéphane III-167
Brinker, Klaus III-204
Brown, Gavin I-327
Brunner, Gino III-134
Burashnikova, Aleksandra III-253
Burgess, Mark A. III-86

Cancelliere, Rossella II-648
Canu, Stéphane III-35
Cazalens, Sylvie I-3
Chan, Jeffrey III-339
Changeat, Quentin III-322
Chapman, Archie C. III-86
Chen, Huiping I-627
Chen, Jinsong II-565
Chen, Kai II-565
Chen, Sue Ann III-773
Chen, Tianyi I-378
Chen, Wei III-150
Cheng, Xueqi I-156
Choquet, Elodie III-322
Clémençon, Stephan II-229
Cole, Guy W. II-249
Conte, Alessio I-627
Contreras-Ochando, Lidia III-735, III-755
Cooney, Sarah I-725
Coronica, Piero III-322
Coutinho, José Carlos III-786
Cranford, Edward A. I-725
Crochepierre, Laure III-638
Crowley, Mark III-602
Cui, Lixin I-464
Cule, Boris I-240

Dave, Vachik S. I-541
Davidson, Ian I-57
Davis, Jesse I-590, II-71, III-569
De Francisci Morales, Gianmarco I-412
de Oliveira da Costa, Paulo Roberto III-719
de Sá, Cláudio Rebelo III-786



Debard, Quentin III-35
Decroos, Tom III-569
Derval, Guillaume III-672
Detyniecki, Marcin II-37
Devos, Laurens I-590
Dey, Sanorita II-614
Dibangoye, Jilles Steeve III-35
Diepold, Klaus II-399
Diesendruck, Maurice II-249
Diligenti, Michelangelo II-283, II-517
Ding, Ruizhou II-481
Docquier, Frédéric III-672
Donnot, Benjamin III-638
Doquet, Guillaume I-343
Dras, Mark III-273
Duff, Iain S. I-140
Duivesteijn, Wouter I-3, I-257

Edwards, Billy III-322
Ehlert, Jens III-764
Ek, Carl Henrik II-548
Elenberg, Ethan R. II-249
Ertugrul, Ali Mert III-432

Fakhraei, Shobeir II-665
Falkner, Stefan III-688
Farahat, Ahmed III-621
Farruque, Nawshad III-359
Feng, Wenjie I-156
Feremans, Len I-240
Ferner, Cornelia II-697
Ferri, César III-735, III-755
Févotte, Cédric III-187
Fietzek, Urban III-400
Filstroff, Louis III-187
Fischer, Jonas I-38
Frasca, Marco II-349
Frey, Stephan III-764
Fröning, Holger II-382
Fürnkranz, Johannes III-3
Furutani, Satoshi I-447

Gabel, Moshe I-645
Gallinari, Patrick II-648
Ganansia, Fabrice III-535
Gaudet, Briand III-290
Genc, Erdan III-688
Ghafoori, Zahra I-90
Ghosh, Aritra III-451

Giannini, Francesco II-283, II-517
Giesen, Joachim III-769
Goebel, Randy III-359
Goebel, Vera III-376
Goethals, Bart I-240
Gonzalez, Cleotilde I-725
Gori, Marco II-283, II-517
Goschenhofer, Jann III-400
Grabocka, Josif III-467
Grootendorst, Maarten II-681
Grossi, Giuliano II-349
Grossi, Roberto I-627
Guan, Charles III-483
Guidotti, Riccardo I-189
Gül, Serhan III-777
Guo, Yi II-164
Gupta, Chetan III-621, III-655
Gupta, Indranil II-213

Hamey, Len III-273
Hammer, Barbara I-310
Han, Eui-Hong (Sam) III-552
Han, Jiawei I-361
Hancock, Edwin R. I-464
Hato, Kunio I-447
He, Xinwei I-361
Heimann, Mark I-483
Heinonen, Markus II-582
Heiser, Theodore James Thibault II-55
Hellge, Cornelius III-777
Hernández-Orallo, José III-735, III-755
Hess, Sibylle I-257
Hickey, Jean-Pierre III-602
Hinkley, Sasha III-322
Hintsches, Andre III-467
Höppner, Frank I-223
Horváth, Tamás I-21
Hossein Zadeh Bazargani, Mehran I-107
Hosseini, Babak I-310
Huáng, Wěipéng I-507
Hüllermeier, Eyke III-204
Hurley, Neil J. I-507
Hutter, Frank III-688

Im, Sungjin I-173
Indrapriyadarsini, S. I-743
Iwasawa, Yusuke II-315
Izbicki, Mike II-3, II-197

728 Author Index



Jäger, Lena A. II-299
Jahnke, Maximilian I-223
Jaroszewicz, Szymon I-607
Jawed, Shayan III-467
Jelassi, Ons II-229
Ji, Shihao II-432
Jia, Siyu I-293
Jiao, Yuhang I-464
Jin, Beihong III-499
Jin, Di I-483
Jin, Xin I-293
Joppen, Tobias III-3

Kaiser, Markus II-548
Kakimura, Naonori I-378
Kankanhalli, Mohan III-376
Karunasekera, Shanika I-90
Karwath, Andreas III-237
Kaski, Samuel II-582
Katayama, Susumu III-735, III-755
Katsas, Panagiotis III-516
Kaymak, Uzay III-719
Khosla, Megha I-395
Khouadjia, Mostepha III-535
Kissel, Matthias II-399
Klöpper, Benjamin III-794
Kluegl, Peter III-688
Kluger, Yuval I-124
Knight, Philip A. I-140
Kobak, Dmitry I-124
Kolev, Boyan III-781
Köppel, Marius III-237
Koutra, Danai I-483
Kowarski, Katie III-290
Koyejo, Oluwasanmi II-213
Kozodoi, Nikita III-516
Kramer, Stefan III-237
Kristiansen, Stein III-376
Kull, Meelis II-55, II-103
Kutsuna, Takuro II-266
Kwok, James T. III-118

Laitonjam, Nishma I-507
Lamarre, Philippe I-3
Lanchantin, Jack II-138
Landwehr, Niels II-332
Laroche, Romain III-53
Lattanzi, Silvio I-73
Laue, Sören III-769

Laugel, Thibault II-37
Lavastida, Thomas I-73
Law, Ho Chung Leon I-697
le Gorrec, Luce I-140
Lebiere, Christian I-725
Leckie, Christopher I-90
Lee, Dongwon III-552
Lee, Jongwuk III-552
Lee, Taesung II-633
Lee, Wan-Jui III-719
Leonhardt, Jurek I-395
Lesot, Marie-Jeanne II-37
Lessmann, Stefan III-516
Leurent, Edouard III-69
Levchenko, Oleksandra III-781
Li, Beibei III-499
Li, Cheng III-220
Li, Yang II-432
Liao, Yiming III-552
Liehr, Sascha II-299
Liestøl, Knut III-376
Lin, Yu-Ru III-432
Linderman, George I-124
Liu, Bin II-180
Liu, Jie II-481
Liu, Kunchi III-499
Liu, Shenghua I-156
Loukides, Grigorios I-627
Lu, Kefu I-73
Lymberopoulos, Dimitrios II-481

Mac Namee, Brian I-107
Mahboubi, Shahrzad I-743
Maillard, Odalric-Ambrym III-69
Makalic, Enes II-598
Makowski, Silvia II-299
Malhotra, Pankaj II-366
Marchiori, Elena II-565
Marculescu, Diana II-481
Marinč, Talmaj III-777
Marot, Antoine III-638
Marra, Giuseppe II-283, II-517
Marsala, Christophe II-37
Martin, Bruce III-290
Martínez-Plumed, Fernando III-735, III-755
Masseglia, Florent III-781
Mathew, Joel II-665
Matsuo, Yutaka II-315
Matwin, Stan I-189, III-290

Author Index 729



Maximov, Yury III-253
Meert, Wannes I-240, I-590
Mercado, Pedro I-524
Mercorio, Fabio III-760
Meyer, Christian M. III-339
Mezzanzanica, Mario III-760
Min, Zijian II-123
Mitra, Saayan III-451
Mitterreiter, Matthias III-769
Mohamad Nezami, Omid III-273
Mohania, Mukesh III-773
Monreale, Anna I-189
Montazer Qaem, Mahshid I-173
Moreira, João Mendes III-786
Moreira-Matias, Luis III-516
Morik, Katharina I-678, III-704
Morvan, Mario III-322
Moscato, Vincenzo III-760
Moseley, Benjamin I-73
Mouysset, Sandrine I-140
Murty, M. N. I-430

Nadjahi, Kimia III-53
Nakamura, Atsuyoshi I-578
Narwariya, Jyoti II-366
Nejdl, Wolfgang I-395
Nguyen, Hung II-20
Nguyen, Thanh I-725
Nikolaidis, Konstantinos III-376
Nikolaou, Nikolaos III-322
Ninomiya, Hiroshi I-743
Nogueira, Sarah I-327
Nowé, Ann III-19

Ollivier, Yann II-449
Ortner, Mathias III-306
Otte, Clemens II-548
Oukhellou, Latifa III-535

Pachocki, Jakub I-378
Palpanas, Themis III-781
Papa, Guillaume II-229
Papagiannopoulou, Christina III-416
Papakonstantinou, Konstantinos III-516
Papalexakis, Evangelos E. II-3
Papangelou, Konstantinos I-327
Parchen, René III-416
Paris, Cécile III-273
Park, Laurence A. F. II-164

Park, Mijung I-697
Park, Youngja II-633
Pasini, Kevin III-535
Pavlu, Virgil III-220
Pedreschi, Dino I-189
Pensel, Lukas III-237
Pernkopf, Franz II-382
Pfahler, Lukas III-704
Pfeiffer, Michael I-206
Pfister, Franz M. J. III-400
Piatkowski, Nico II-415
Picariello, Antonio III-760
Pinson, Pierre III-638
Pisanti, Nadia I-627
Pissis, Solon P. I-627
Plagemann, Thomas III-376
Plantevit, Marc I-3
Plisnier, Hélène III-19
Prasse, Paul II-299
Priebe, Florian I-678
Priyantha, Bodhi II-481
Prudêncio, Ricardo B. C. II-86
Pueyo, Laurent III-322

Qi, Yanjun II-138
Qin, Kechen III-220

Raj, Anant I-697
Ramírez-Quintana, María José III-735,

III-755
Rashed, Ahmed III-467
Rawat, Ambrish II-501
Read, Jesse II-164
Rehberg, Jens III-467
Ren, Yongli III-339
Renard, Xavier II-37
Rhuggenaath, Jason III-719
Richards, Deborah III-273
Richter, Oliver III-134
Riegel, Thomas III-777
Robberechts, Pieter II-71
Roberti, Marco II-648
Roijers, Diederik M. III-19
Rosin, Antoine III-638
Rosone, Giovanna I-627
Rossi, Ryan A. I-483
Roth, Wolfgang II-382
Roy, Deb II-711
Rudaś, Krzysztof I-607

730 Author Index



Ruiz, Daniel I-140
Runkler, Thomas A. II-548

Saadallah, Amal I-678
Saadati, Mojdeh I-561
Saini, Sunil III-794
Sakurada, Kento I-578
Salem, Hajer III-585
Salmond, Jeffrey III-322
Samé, Allou III-535
Sanchez, Eduardo H. III-306
Sanderson, Mark III-339
Sarkhel, Somdeb II-614, III-451
Sayed-Mouchaweh, Moamar III-585
Schaus, Pierre III-672
Scheffer, Tobias II-299
Schill, Jonathan III-704
Schindler, Günther II-382
Schmidt, Daniel F. II-598
Schmidt-Thieme, Lars III-467
Schüßler, Peter III-777
Schuster, Assaf I-645
Scott, Paul III-86
Sebag, Michèle I-274, I-343
Sechidis, Konstantinos I-327
Segner, Alexander III-237
Seidler, Maximilian II-299
Seiffarth, Florian I-21
Sejdinovic, Dino I-697
Sekhon, Arshdeep II-138
Sen, Rajat II-249
Senellart, Pierre III-167
Serita, Susumu III-655
Serrurier, Mathieu III-306
Shakkottai, Sanjay II-249
Shang, Wenling III-103
Shasha, Dennis III-781
Shelton, Christian R. II-197
Shevade, Shirish I-430
Shi, Yu I-361
Shibahara, Toshiki I-447
Shroff, Gautam II-366
Sivan, Hadar I-645
Smola, Alexander J. II-465
Soummer, Remi III-322
Sperlì, Giancarlo III-760
Stamoulis, Dimitrios II-481
Steckelmacher, Denis III-19
Steinerberger, Stefan I-124
Stoll, Martin I-524

Sumption, Paul III-322
Sun, Kaiwei II-123
Suryanto, Hendra III-483
Swaminathan, Viswanathan III-451

Tachet des Combes, Rémi III-53
Taher, Yehia III-790
Tambe, Milind I-725
Tan, Vincent Y. F. III-187
Taskaya-Temizel, Tugba III-432
Tatti, Nikolaj I-662
Theissler, Andreas III-764
Thomas, Janek III-400
Thomas, Mark III-290
Tian, Jin I-561
Tian, Sihua III-499
Tran, Khoi-Nguyen III-773
Tsiaras, Angelos III-322
Tsotras, Vassilis J. II-3
Tsoumakas, Grigorios II-180
Tsourakakis, Charalampos E. I-378
Türkmen, Ali Caner II-465
TV, Vishnu II-366

Valduriez, Patrick III-781
Valentini, Giorgio II-349
van der Wal, Douwe III-103
van Hoof, Herke III-103
van Laarhoven, Twan II-565
Vanschoren, Joaquin II-681
Vayanos, Phebe I-725
Venugopal, Deepak II-614
Vercruyssen, Vincent I-240
Vig, Lovekesh II-366
Vijaikumar, M. I-430
Vijayaraghavan, Prashanth II-711
Vogel, Robin II-229
Voumard, Andrew III-483
Vreeken, Jilles I-38

Waegeman, Willem III-416
Wagener, Martin III-237
Wagner, John III-773
Waldmann, Ingo P. III-322
Wan, Ruosi II-533
Wan, Stephen III-273
Wang, Bingyu III-220
Wang, Di II-481
Wang, Jin II-123

Author Index 731



Wang, Kai I-725
Wang, Shuguang III-552
Wang, Shupeng I-293
Wang, Xuejian II-20
Wang, Yuyang II-465
Wattenhofer, Roger III-134
Weatherall, James I-327
Wegenkittl, Stefan II-697
Welling, Max III-103
Wellmer, Zac III-118
Williamson, Sinead A. II-249
Winetrobe, Hailey I-725
Wistuba, Martin II-501
Wolf, Christian III-35
Wolinski, Pierre II-449
Wrobel, Stefan I-21
Wu, Gang III-451

Xia, Rui III-187
Xie, Cong II-213
Xie, Jason III-451

Xiong, Haoyi II-533
Xue, Taofeng III-499

Yagoubi, Djamel-Edine III-781
Yang, Carl I-361
Yao, Matthew III-602
Yip, Kai Hou III-322
Yuksel, Kamer Ali III-400

Zaiane, Osmar III-359
Zap, Alexander III-3
Zeitouni, Karine III-790
Zhang, Hongjing I-57
Zhang, Lei I-293
Zhang, Naijing I-361
Zhang, Qi III-499
Zhang, Yingqian III-719
Zhao, Haoyu III-150
Zheng, Shuai III-621, III-655
Zhong, Mingjun II-533
Zhu, Zhanxing II-533
Zuo, Jingwei III-790

732 Author Index


	Preface
	Organization
	Contents – Part II
	Supervised Learning
	Exploiting the Earth's Spherical Geometry to Geolocate Images
	1 Introduction
	2 Prior Work
	2.1 Image Retrieval
	2.2 Classification

	3 Geolocation via the MvMF
	3.1 The Probabilistic Interpretation
	3.2 Interpretation as a Classifier
	3.3 Interpretation as an Image Retrieval Method
	3.4 Analysis

	4 Experiments
	4.1 Procedure
	4.2 Results

	5 Conclusion
	References

	Continual Rare-Class Recognition with Emerging Novel Subclasses
	1 Introduction
	2 Problem Setup and Preliminary Data Analysis
	3 Continual Rare-Class Recognition
	3.1 Model Formulation
	3.2 Convexity and Optimization
	3.3 Time and Space-Complexity Analysis

	4 Evaluation
	4.1 Experiment Setup
	4.2 Experiment Results

	5 Related Work
	6 Conclusion
	References

	Unjustified Classification Regions and Counterfactual Explanations in Machine Learning
	1 Introduction
	2 Background
	2.1 Post-hoc Interpretability
	2.2 Studies of Post-hoc Interpretability Approaches
	2.3 Adversarial Examples

	3 Justification Using Ground-Truth Data
	3.1 Intuition and Definitions
	3.2 Implementation

	4 Procedures for Assessing the Risk of Unconnectedness
	4.1 LRA Procedure
	4.2 VE Procedure

	5 Experimental Study: Assessing the Risk of Unjustified Regions
	5.1 Experimental Protocol
	5.2 Defining the Problem Granularity: Choosing n and 
	5.3 Detecting Unjustified Regions
	5.4 Vulnerability of Post-hoc Counterfactual Approaches

	6 Conclusion
	References

	Shift Happens: Adjusting Classifiers
	1 Introduction
	2 Background and Related Work
	2.1 Dataset Shift and Prior Probability Adjustment
	2.2 Proper Scoring Rules and Bregman Divergences
	2.3 Adjusted Predictions and Adjustment Procedures

	3 General Adjustment
	3.1 Unbounded General Adjustment (UGA)
	3.2 Bounded General Adjustment
	3.3 Implementation

	4 Experiments
	4.1 Experimental Setup
	4.2 Results

	5 Conclusion
	References

	Beyond the Selected Completely at Random Assumption for Learning from Positive and Unlabeled Data
	1 Introduction
	2 Preliminaries
	3 Labeling Mechanisms for PU Learning
	4 Learning with SAR Labeling Mechanisms
	4.1 Case 1: True Propensity Scores Known
	4.2 Case 2: Propensity Scores Estimated from Data

	5 Learning Under the SAR Assumption
	5.1 Reducing SAR to SCAR
	5.2 EM for Propensity Estimation

	6 Empirical Evaluation
	6.1 Data
	6.2 Methodology and Approaches
	6.3 Results

	7 Related Work
	8 Conclusions
	References

	Cost Sensitive Evaluation of Instance Hardness in Machine Learning
	1 Introduction
	2 Notation and Basic Definitions
	3 Instance Hardness and Cost Curves
	3.1 Score-Fixed Instance Hardness
	3.2 Score-Driven Instance Hardness
	3.3 Rate-Driven Instance Hardness
	3.4 Score-Uniform Instance Hardness
	3.5 Rate-Uniform Instance Hardness

	4 Experiments
	5 Conclusion
	References

	Non-parametric Bayesian Isotonic Calibration: Fighting Over-Confidence in Binary Classification
	1 Introduction
	2 Evaluation of Calibration
	3 Simple Improvement of Existing Methods
	4 Proposed Method
	4.1 Non-parametric Bayesian Isotonic Calibration
	4.2 Selecting the Prior over Isotonic Maps
	4.3 Practically Efficient Sampling from Prior

	5 Experiments
	5.1 Experiments on Synthetic Data
	5.2 Experimental Setup on Real Data
	5.3 Experiment Results on Real Data

	6 Conclusions
	References

	Multi-label Learning
	PP-PLL: Probability Propagation for Partial Label Learning
	1 Introduction
	2 Related Work
	3 The PP-PLL Method
	4 Optimization
	4.1 Updating F
	4.2 Updating 

	5 Experiments
	5.1 Experimental Setup
	5.2 Experimental Results
	5.3 Sensitivity Analysis

	6 Conclusion
	References

	Neural Message Passing for Multi-label Classification
	1 Introduction
	2 Method: LaMP Networks
	2.1 Background: Message Passing Neural Networks
	2.2 LaMP: Label Message Passing 
	2.3 Readout Layer (MLC Predictions from the Label Embeddings)
	2.4 Model Details
	2.5 Loss Function
	2.6 LaMP Variation: Input Encoding with Feature Message Passing (FMP)
	2.7 Advantages of LaMP Models
	2.8 Connecting to Related Topics

	3 Experiments
	3.1 LaMP Variations
	3.2 Performance Evaluation
	3.3 Interpretability Evaluation

	4 Conclusion
	A  Appendix: MLC Background
	A.1  Background of Multi-label Classification
	A.2  Seq2Seq Models
	A.3  Drawbacks of Autoregressive Models

	B  Appendix: Dataset Details
	C  Appendix: Extra Metrics
	D  Appendix: More About Experiments
	D.1  Datasets
	D.2  Evaluation Metrics
	D.3  Model Hyperparameter Tuning
	D.4  Baseline Comparisons

	References

	Assessing the Multi-labelness of Multi-label Data
	1 Introduction
	2 Background: Multi-label Data and Multicollinearity
	3 Analytical Models for Measuring Multi-labelness
	3.1 Regularisation of Analytical Models
	3.2 Split Analytical Model

	4 Analysis of Full and Split Analytical Models
	4.1 Measuring Multi-labelness
	4.2 Generating Multi-label Data
	4.3 Investigation: Full Model with l1 and l2 Regularisation
	4.4 Investigation: Split Model with l1 and l2 Regularisation
	4.5 Comparing Full and Split Regression

	5 Full and Split Analytical Models on Real Data
	5.1 Label Interdependence
	5.2 Effect of Label-Interdependence Reduction on Accuracy

	6 Conclusion
	References

	Synthetic Oversampling of Multi-label Data Based on Local Label Distribution
	1 Introduction
	2 Related Work
	3 Our Approach
	3.1 Selection of Seed Instances
	3.2 Synthetic Instance Generation
	3.3 Ensemble of Multi-Label Sampling (EMLS)
	3.4 Complexity Analysis

	4 Empirical Analysis
	4.1 Setup
	4.2 Results and Analysis

	5 Conclusion
	References

	Large-Scale Learning
	Distributed Learning of Non-convex Linear Models with One Round of Communication
	1 Introduction
	2 Problem Setting
	3 The OWA Estimator
	3.1 Warmup: The Full OWA
	3.2 The OWA Estimator
	3.3 Implementing OWA with Existing Optimizers
	3.4 Fast Cross Validation for OWA

	4 Analysis
	4.1 The Sub-Gaussian Tail (SGT) Condition
	4.2 The Main Idea: owa Contains Good Solutions
	4.3 Bounding the Generalization Error
	4.4 Bounding the Estimation Error

	5 Other Non-interactive Estimators
	6 Experiments
	6.1 Synthetic Data
	6.2 Real World Advertising Data

	7 Conclusion
	References

	SLSGD: Secure and Efficient Distributed On-device Machine Learning
	1 Introduction
	2 Related Work
	3 Problem Formulation
	3.1 Non-IID Local Datasets
	3.2 Data Poisoning

	4 Methodology
	4.1 Threat Model and Defense Technique

	5 Convergence Analysis
	5.1 Assumptions
	5.2 Convergence Without Data Poisoning
	5.3 Convergence with Data Poisoning

	6 Experiments
	6.1 Datasets and Evaluation Metrics
	6.2 SLSGD Without Attack
	6.3 SLSGD Under Data Poisoning Attack
	6.4 Acceleration by Local Updates
	6.5 Discussion

	7 Conclusion
	References

	Trade-Offs in Large-Scale Distributed Tuplewise Estimation And Learning
	1 Introduction
	2 Background
	2.1 U-Statistics: Definition and Applications
	2.2 Large-Scale Tuplewise Inference with Incomplete U-Statistics
	2.3 Practices in Distributed Data Processing

	3 Distributed Tuplewise Statistical Estimation
	3.1 Naive Strategies
	3.2 Proposed Approach
	3.3 Analysis
	3.4 Practical Considerations and Other Repartitioning Schemes

	4 Extensions to Stochastic Gradient Descent for ERM
	4.1 Gradient-Based Empirical Minimization of U-statistics
	4.2 Repartitioning for Stochastic Gradient Descent

	5 Numerical Results
	6 Future Work
	References

	Deep Learning
	Importance Weighted Generative Networks
	1 Introduction
	1.1 Related Work

	2 Problem Formulation and Technical Approach
	2.1 Maximum Mean Discrepancy Between Two Distributions
	2.2 Importance Weighted Estimator for Known M
	2.3 Robust Importance Weighted Estimator for Known M
	2.4 Self-normalized Importance Weights for Unknown M
	2.5 Approximate Importance Weighting by Data Duplication

	3 Evaluation
	3.1 Can GANs with Importance Weighted Estimators Recover Target Distributions, Given M?
	3.2 In a High-Dimensional Image Setting, How Does Importance Weighting Compare with Conditional Generation?
	3.3 When M Is Unknown, But Can Be Estimated Up to a Normalizing Constant on a Subset of Data, Are We Able to Sample from Our Target Distribution?

	4 Conclusions and Future Work
	References

	Linearly Constrained Weights: Reducing Activation Shift for Faster Training of Neural Networks
	1 Introduction
	2 Activation Shift
	3 Linearly Constrained Weights
	3.1 Learning LCW via Reparameterization
	3.2 LCW for Convolutional Layers

	4 Variance Analysis
	4.1 Variance Analysis of a Fully Connected Layer
	4.2 Variance Analysis of a Nonlinear Activation Layer
	4.3 Relationship to the Vanishing Gradient Problem
	4.4 Example

	5 Related Work
	6 Experiments
	6.1 Deep MLP with Sigmoid Activation Functions
	6.2 Deep Convolutional Networks with ReLU Activation Functions

	7 Conclusion
	References

	LYRICS: A General Interface Layer to Integrate Logic Inference and Deep Learning
	1 Introduction
	1.1 Previous Work

	2 The Declarative Language
	3 From Logic to Learning
	4 Learning and Reasoning with Lyrics
	5 Conclusions
	References

	Deep Eyedentification: Biometric Identification Using Micro-movements of the Eye
	1 Introduction
	2 Related Work
	3 Problem Setting
	4 Network Architecture
	5 Experiments
	5.1 Data Collection
	5.2 Reference Methods
	5.3 Hyperparameter Tuning
	5.4 Hardware and Framework
	5.5 Multi-class Classification
	5.6 Identification and Verification
	5.7 Assessing Session Bias
	5.8 Additional Exploratory Experiments

	6 Discussion
	7 Conclusion
	References

	Adversarial Invariant Feature Learning with Accuracy Constraint for Domain Generalization
	1 Introduction
	2 Preliminary and Related Work
	2.1 Problem Statement of Domain Generalization
	2.2 Related Work

	3 Our Approach
	3.1 Domain Adversarial Networks
	3.2 Trade-Off Caused by Domain-Class Dependency
	3.3 Accuracy-Constrained Domain Invariance
	3.4 Proposed Method

	4 Experiments
	4.1 Datasets
	4.2 Baselines
	4.3 Experimental Settings
	4.4 Results

	5 Conclusion
	References

	Quantile Layers: Statistical Aggregation in Deep Neural Networks for Eye Movement Biometrics
	1 Introduction
	2 Related Work
	3 The Quantile Layer
	4 Model Architectures
	5 Empirical Study
	5.1 Experimental Setup
	5.2 Results

	6 Conclusions
	References

	Multitask Hopfield Networks
	1 Introduction
	2 Methods
	2.1 Problem Definition
	2.2 Previous Singletask Model
	2.3 Multitask Hopfield Networks
	2.4 Model Complexity

	3 Preliminary Results and Discussion
	3.1 Benchmark Data
	3.2 Evaluation Setting
	3.3 Model Configuration
	3.4 Model Performance

	4 Conclusions
	References

	Meta-Learning for Black-Box Optimization
	1 Introduction
	2 Related Work
	3 Problem Overview
	4 RNN-Opt 
	4.1 RNN-Opt Without Domain Constraints
	4.2 RNN-Opt with Domain Constraints (RNN-Opt-DC)

	5 Experimental Evaluation
	5.1 Observations
	5.2 RNN-Opt with Domain Constraints

	6 Conclusion and Future Work
	A  Generating Diverse Non-convex Synthetic Functions
	References

	Training Discrete-Valued Neural Networks with Sign Activations Using Weight Distributions
	1 Introduction
	2 Related Work
	3 Neural Networks and Weight Distributions
	3.1 Discrete Neural Networks
	3.2 Relation to Variational Inference

	4 Approximation of the Expected Loss
	4.1 Approximation of the Maximum Function

	5 Model Details
	5.1 Batch Normalization
	5.2 Parameterization and Initialization of q

	6 Experiments
	6.1 Datasets
	6.2 Classification Results
	6.3 Ablation Study

	7 Conclusion
	References

	Sobolev Training with Approximated Derivatives for Black-Box Function Regression with Neural Networks
	1 Introduction
	2 Sobolev Training with Approximated Target Derivatives
	2.1 Target Derivative Approximation
	2.2 Data Transformation
	2.3 Error Functions
	2.4 Derivative Approximation Using Finite-Differences

	3 Results
	3.1 Sobolev Training with Approximated Target Derivatives versus Value Training
	3.2 Sobolev Training with Approximated Derivatives Based on Finite-Differences
	3.3 Real-World Regression Problems

	4 Conclusion
	References

	Hyper-Parameter-Free Generative Modelling with Deep Boltzmann Trees
	1 Introduction
	2 Notation and Background
	2.1 Graphical Models
	2.2 Deep Boltzmann Machines

	3 Deep Boltzmann Trees
	3.1 Learning the DBT Weights

	4 Experiments
	5 Conclusion
	References

	L0-ARM: Network Sparsification via Stochastic Binary Optimization
	1 Introduction
	2 Formulation
	3 L0-ARM: Stochastic Binary Optimization
	3.1 Choice of g()
	3.2 Sparsifying Network Architectures for Inference
	3.3 Imposing Shrinkage on Model Parameters theta
	3.4 Group Sparsity Under L0 and L2 Norms

	4 Related Work
	5 Experimental Results
	5.1 Implementation Details
	5.2 MNIST Experiments
	5.3 CIFAR Experiments

	6 Conclusion
	References

	Learning with Random Learning Rates
	1 Introduction
	2 Related Work
	3 Motivation and Outline
	4 All Learning Rates at Once: Description
	4.1 Notation
	4.2 Alrao Architecture
	4.3 Alrao Update for the Internal Layers: A Random Learning Rate for Each Unit
	4.4 Alrao Update for the Output Layer: Model Averaging from Output Layers Trained with Different Learning Rates

	5 Experimental Setup
	5.1 Image Classification on ImageNet and CIFAR10
	5.2 Other Tasks: Text Prediction, Reinforcement Learning

	6 Performance and Robustness of Alrao
	6.1 Alrao Compared to SGD with Optimal Learning Rate
	6.2 Robustness of Alrao, and Comparison to Default Adam
	6.3 Sensitivity Study to [_min;_max]

	7 Discussion, Limitations, and Perspectives
	8 Conclusion
	References

	FastPoint: Scalable Deep Point Processes
	1 Introduction
	2 Background
	3 FastPoint: Scalable Deep Point Process
	3.1 Generative Model
	3.2 Sequential Monte Carlo Sampling

	4 Related Work
	5 Experiments
	5.1 Model Performance
	5.2 Sampling

	6 Conclusion
	References

	Single-Path NAS: Designing Hardware-Efficient ConvNets in Less Than 4 Hours
	1 Introduction
	2 Related Work
	3 Proposed Method: Single-Path NAS
	3.1 Mobile ConvNets Search Space: A Novel View
	3.2 Proposed Methodology: Single-Path NAS Formulation
	3.3 Single-Path vs. Existing Multi-Path Assumptions
	3.4 Hardware-Aware NAS with Differentiable Runtime Loss

	4 Experiments
	4.1 Experimental Setup
	4.2 State-of-the-Art Runtime-Constrained ImageNet Classification
	4.3 Ablation Study: Kernel-Based Accuracy-Efficiency Trade-Off

	5 Conclusion
	References

	Probabilistic Models
	Scalable Large Margin Gaussian Process Classification
	1 Introduction
	2 Related Work
	3 Large Margin Gaussian Process
	3.1 Probabilistic Hinge Loss
	3.2 Generalised Multi-class Hinge Loss
	3.3 Scalable Variational Inference for LMGP
	3.4 LMGP-DNN

	4 Experimental Evaluation
	4.1 Classification
	4.2 Structured Data Classification
	4.3 Image Classification with LMGP-DNN
	4.4 Uncertainty Analysis

	5 Conclusions
	References

	Integrating Learning and Reasoning with Deep Logic Models
	1 Introduction
	2 Model
	2.1 MAP Inference
	2.2 Learning
	2.3 Mapping Constraints into a Continuous Logic
	2.4 Potentials Expressing the Logic Knowledge

	3 Related Works
	4 Experimental Results
	4.1 The PAIRS Artificial Dataset
	4.2 Link Prediction in Knowledge Graphs

	5 Conclusions and Future Work
	References

	Neural Control Variates for Monte Carlo Variance Reduction
	1 Introduction
	2 Control Variates
	3 Neural Control Variates
	4 Constrained Neural Control Variates
	5 Experiments
	5.1 Synthetic Data
	5.2 Thermodynamic Integral for Bayesian Model Evidence Evaluation
	5.3 Uncertainty Quantification in Bayesian Neural Network

	6 Conclusion
	A  Formulas for Goodwin Oscillator
	B Uncertainty Quantification in Bayesian Neural Network: Out-of-Bag Sample Detection
	References

	Data Association with Gaussian Processes
	1 Introduction
	2 Data Association with Gaussian Processes
	3 Variational Approximation
	3.1 Variational Lower Bound
	3.2 Optimization of the Lower Bound
	3.3 Approximate Predictions
	3.4 Deep Gaussian Processes

	4 Experiments
	4.1 Noise Separation
	4.2 Multimodal Data
	4.3 Mixed Cart-Pole Systems

	5 Conclusion
	References

	Incorporating Dependencies in Spectral Kernels for Gaussian Processes
	1 Introduction
	2 Background
	3 Related Work
	4 Dependencies Between SM Components
	5 Generalized Convolution SM Kernels
	6 Comparisons Between GCSM and SM
	7 Scalable Inference
	7.1 Hyper-parameter Initialization

	8 Experiments
	8.1 Compact Long Term Extrapolation
	8.2 Modeling Irregular Long Term Decreasing Trends
	8.3 Modeling Irregular Long Term Increasing Trends
	8.4 Prediction with Large Scale Multidimensional Data

	9 Conclusion
	References

	Deep Convolutional Gaussian Processes
	1 Introduction
	2 Background
	2.1 Discrete Convolutions
	2.2 Primer on Gaussian Processes
	2.3 Variational Inference

	3 Deep Convolutional Gaussian Process
	3.1 Convolutional GP Layers
	3.2 Final Classification Layer
	3.3 Doubly Stochastic Variational Inference
	3.4 Stochastic Gradient Hamiltonian Monte Carlo

	4 Experiments
	4.1 MNIST and CIFAR-10 Results

	5 Conclusions
	References

	Bayesian Generalized Horseshoe Estimation of Generalized Linear Models
	1 Introduction
	1.1 Bayesian Generalized Linear Models
	1.2 Generalized Horseshoe Priors
	1.3 Our Contributions

	2 Gradient-Based Samplers for Bayesian GLMs
	2.1 Algorithm 1: mGrad-1
	2.2 Algorithm 2: mGrad-2
	2.3 Sampling the Intercept
	2.4 Tuning the Step Size 
	2.5 Implementation Details

	3 Two New Samplers for the Generalized Horseshoe
	3.1 Inverse Gamma-Inverse Gamma Sampler
	3.2 Rejection Sampling

	4 Experimental Results
	4.1 Comparison of GHS Hyperparameter Samplers
	4.2 Comparison of Samplers for Coefficients

	5 Summary
	References

	Fine-Grained Explanations Using Markov Logic
	1 Introduction
	2 Background
	2.1 Markov Logic Networks
	2.2 Related Work

	3 Query Explanation
	3.1 Sampling

	4 Experiments
	4.1 User Study Setup
	4.2 Application 1: Review Spam Filter
	4.3 Application 2: Review Sentiment Prediction
	4.4 T-Test

	5 Conclusion
	References

	Natural Language Processing
	Unsupervised Sentence Embedding Using Document Structure-Based Context
	1 Introduction
	2 Related Work
	3 Document Structured-Based Context
	3.1 Titles
	3.2 Lists
	3.3 Links
	3.4 Window-Based Context (DWn)

	4 Neural Network Models
	4.1 Inter-sentential Dependency-Based Encoder-Decoder
	4.2 Out-Of-Vocabulary (OOV) Mapping

	5 Experiments
	5.1 Dependency Importance
	5.2 Target Sentence Prediction
	5.3 Paraphrase Detection
	5.4 Coreference Resolution

	6 Conclusion and Future Work
	References

	Copy Mechanism and Tailored Training for Character-Based Data-to-Text Generation
	1 Introduction
	2 Model Description
	2.1 Summary on Encoder-Decoder Architectures with Attention
	2.2 Learning to Copy
	2.3 Switching GRUs

	3 Experiments
	3.1 Datasets
	3.2 Implementation Details
	3.3 Results and Discussion

	4 Conclusion
	References

	NSEEN: Neural Semantic Embedding for Entity Normalization
	1 Introduction
	2 Related Work
	3 Approach
	3.1 Similarity Learning
	3.2 Reference Set Embedding and Storage
	3.3 Retrieval

	4 Experimental Validation
	4.1 Reference Sets
	4.2 Query Set
	4.3 Baselines
	4.4 Results

	5 Discussion
	References

	Beyond Bag-of-Concepts: Vectors of Locally Aggregated Concepts
	1 Introduction
	2 Related Work
	2.1 Bag-of-Words
	2.2 Word Embeddings
	2.3 Bag-of-Concepts
	2.4 Vector of Locally Aggregated Descriptors (VLAD)

	3 Vectors of Locally Aggregated Concepts (VLAC)
	4 Experiments
	4.1 Experimental Setup
	4.2 Experiment 1
	4.3 Experiment 2

	5 Conclusion
	References

	A Semi-discriminative Approach for Sub-sentence Level Topic Classification on a Small Dataset
	1 Introduction
	2 Related Work
	3 Data
	3.1 Topic Separability

	4 Methods
	4.1 Emission Probabilities
	4.2 Transition Probabilities
	4.3 Decoding

	5 Experiments and Results
	5.1 MaxEnt as Baseline
	5.2 Standard HMM
	5.3 MaxEnt Emissions for HMM (ME+HMM)
	5.4 Comparison of ME+HMM and CRF

	6 Discussion
	7 Conclusion and Future Work
	References

	Generating Black-Box Adversarial Examples for Text Classifiers Using a Deep Reinforced Model
	1 Introduction
	2 Related Work
	3 Proposed Attack Strategy
	3.1 Background and Notations

	4 Adversarial Examples Generator (AEG) Architecture
	4.1 Encoder
	4.2 Decoder

	5 Training
	5.1 Supervised Pretraining with Teacher Forcing
	5.2 Training with Reinforcement Learning
	5.3 Training Details

	6 Experiments
	6.1 Setup
	6.2 Quantitative Analysis
	6.3 Human Evaluation
	6.4 Ablation Studies
	6.5 Qualitative Analysis

	7 Conclusion
	References

	Author Index



