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Abstract. Batch Reinforcement Learning (Batch RL) consists in train-
ing a policy using trajectories collected with another policy, called the
behavioural policy. Safe policy improvement (SPI) provides guarantees
with high probability that the trained policy performs better than the
behavioural policy, also called baseline in this setting. Previous work
shows that the SPI objective improves mean performance as compared
to using the basic RL objective, which boils down to solving the MDP
with maximum likelihood (Laroche et al. 2019). Here, we build on that
work and improve more precisely the SPI with Baseline Bootstrapping
algorithm (SPIBB) by allowing the policy search over a wider set of poli-
cies. Instead of binarily classifying the state-action pairs into two sets
(the uncertain and the safe-to-train-on ones), we adopt a softer strategy
that controls the error in the value estimates by constraining the pol-
icy change according to the local model uncertainty. The method can
take more risks on uncertain actions all the while remaining provably-
safe, and is therefore less conservative than the state-of-the-art methods.
We propose two algorithms (one optimal and one approximate) to solve
this constrained optimization problem and empirically show a significant
improvement over existing SPI algorithms both on finite MDPS and on
infinite MDPs with a neural network function approximation.

1 Introduction

In sequential decision-making problems, a common goal is to find a good policy
using a limited number of trajectories generated by another policy, usually called
the behavioral policy. This approach, also known as Batch Reinforcement Learn-
ing (Lange et al. 2012), is motivated by the many real-world applications that
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naturally fit a setting where data collection and optimization are decoupled (con-
trary to online learning which integrates the two): e.g. dialogue systems (Singh
et al. 1999), technical process control (Ernst et al. 2005; Riedmiller 2005), med-
ical applications (Guez et al. 2008).

While most reinforcement learning techniques aim at finding a high-
performance policy (Sutton and Barto 1998), the final policy does not neces-
sarily perform well once it is deployed. In this paper, we focus on Safe Policy
Improvement (SPI, Thomas 2015; Petrik et al. 2016), where the goal is to train
a policy on a batch of data and guarantee with high probability that it performs
at least as well as the behavioural policy, called baseline in this SPI setting. The
safety guarantee is crucial in real-world applications where bad decisions may
lead to harmful consequences.

Among the existing SPI algorithms, a recent computationally efficient and
provably-safe methodology is SPI with Baseline Bootstrapping (SPIBB, Laroche
et al. 2019; Simão and Spaan 2019). Its principle consists in building the set of
state-action pairs that are only encountered a few times in the dataset. This
set is called the bootstrapped set. The algorithm then reproduces the base-
line policy for all pairs in that set and trains greedily on the rest. It therefore
assumes access to the baseline policy, which is a common assumption in the
SPI literature (Petrik et al. 2016). Other SPI algorithms use as reference the
baseline performance, which is assumed to be known instead (Thomas 2015;
Petrik et al. 2016). We believe that the known policy assumption is both more
informative and more common, since most Batch RL settings involve datasets
that were collected using a previous system based on a previous algorithm (e.g.
dialogue, robotics, pharmaceutical treatment). While the empirical results show
that SPIBB is safe and performs significantly better than the existing algo-
rithms, it remains limited by the binary classification of the bootstrapped set: a
pair either belongs to it, and the policy cannot be changed, or it does not, and
the policy can be changed entirely.

Our contribution is a reformulation of the SPIBB objective that allows slight
policy changes for uncertain state-action pairs while remaining safe. Instead of
binarily classifying the state-action pairs into two sets, the uncertain and the
safe-to-train-on ones, we adopt a strategy that extends the policy search to soft
policy changes,which are constrainedbyan error bound related to themodel uncer-
tainty. The method is allowed to take more risks than SPIBB on uncertain actions,
and still has theoretical safety guarantees under some assumptions. As a conse-
quence, the safety constraint is softer: we coin this new SPI methodology Safe Pol-
icy Improvement with Soft Baseline Bootstrapping (Soft-SPIBB). We develop two
algorithms to tackle the Soft-SPIBB problem. The first one solves it exactly, but
is computationally expensive. The second one provides an approximate solution
but is much more efficient computation-wise. We empirically evaluate the perfor-
mance and safety of our algorithms on a gridworld task and analyze the reasons
behind their significant advantages over the competing Batch RL algorithms. We
further demonstrate the tractability of the approachbydesigning aDQNalgorithm
enforcing the Soft-SPIBB constrained policy optimization. The empirical results,
obtained on a navigation task, show that Soft-SPIBB safely improves the baseline,
and again outperforms all competing algorithms.
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2 Background

2.1 Markov Decision Processes

We consider problems in which the agent interacts with an environment mod-
eled as a Markov Decision Process (MDP): M∗ = 〈X ,A, P ∗, R∗, γ〉, where X is
the set of states, A the set of actions, P ∗ the unknown transition probability
function, R∗ the unknown stochastic reward function bounded by ±Rmax, and
γ ∈ [0, 1) the discount factor for future rewards. The goal is to find a policy
π : X → ΔA, with ΔA the set of probability distributions over the set of actions
A, that maximizes the expected return of trajectories ρ(π,M∗) = V π

M∗(x0) =

Eπ,M∗
[∑

t≥0 γtR∗(xt, at)
]
. x0 is the initial state of the environment and V π

M∗(x)
is the value of being in state x when following policy π in MDP M∗. We denote
by Π the set of stochastic policies. Similarly to V π

M∗(x), Qπ
M∗(x, a) denotes the

value of taking action a in state x. Aπ
M (x, a) = Qπ

M (x, a)− V π
M (x) quantifies the

advantage (or disadvantage) of action a in state x.
Given a dataset of transitions D = 〈xj , aj , rj , x

′
j〉j∈�1,|D|�, we denote the

state-action pair counts by ND(x, a), and its Maximum Likelihood Estimator
(MLE) MDP by M̂ = 〈X ,A, P̂ , R̂, γ〉, with:

P̂ (x′|x, a) =

∑
〈xj=x,aj=a,rj ,x′

j=x′〉∈D 1

ND(x, a)
and R̂(x, a) =

∑
〈xj=x,aj=a,rj ,x′

j〉∈D rj

ND(x, a)
.

The difference between an estimated parameter and the true one can be
bounded using classic concentration bounds applied to the state-action counts
in D (Petrik et al. 2016; Laroche et al. 2019): for all state-action pairs (x, a), we
know with probability at least 1 − δ that,

||P ∗(·|x, a) − P̂ (·|x, a)||1 ≤ eP (x, a), |R∗(x, a) − R̂(x, a)| ≤ eP (x, a)Rmax, (1)∣∣Qπb

M∗(x, a) − Qπb

̂M
(x, a)

∣∣ ≤ eQ(x, a)Vmax, (2)

where Vmax ≤ Rmax

1 − γ
is the maximum of the value function, and the two error

functions may be derived from Hoeffding’s inequality (see A.2) as

eP (x, a) :=

√
2

ND(x, a)
log

2|X ||A|2|X|

δ
and eQ(x, a) :=

√
2

ND(x, a)
log

2|X ||A|
δ

.

We will also use the following definition:

Definition 1. A policy π is said to be a policy improvement over a baseline
policy πb in an MDP M = 〈X ,A, P,R, γ〉 if the following inequality holds in
every state x ∈ X :

V π
M (x) ≥ V πb

M (x) (3)
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2.2 Safe Policy Improvement with Baseline Bootstrappping

Our objective is to maximize the expected return of the target policy under the
constraint of improving with high probability 1 − δ the baseline policy. This is
known to be an NP-hard problem (Petrik et al. 2016) and some approximations
are required to make it tractable. This paper builds on the Safe Policy Improve-
ment with Baseline Bootstrapping methodology (SPIBB, Laroche et al. 2019).
SPIBB finds an approximate solution to the problem by searching for a policy
maximizing the expected return in the MLE MDP M̂ , under the constraint that
the policy improvement is guaranteed in the set of plausible MDPs Ξ:

argmax
π

ρ(π, M̂), s.t. ∀M ∈ Ξ, ρ(π,M) ≥ ρ(πb,M) − ζ (4)

Ξ =

{
M = 〈X ,A, R, P, γ〉 s.t. ∀x, a,

||P (·|x, a) − P̂ (·|x, a)||1 ≤ eP (x, a),
|R(x, a) − R̂(x, a)| ≤ eP (x, a)Rmax

}
(5)

The error function eP is such that the true MDP M∗ has a high probability of
at least 1− δ to belong to Ξ (Iyengar 2005; Nilim and El Ghaoui 2005). In other
terms, the objective is to optimize the target performance in M̂ such that its
performance is ζ-approximately at least as good as πb in the admissible MDP
set, where ζ is a precision hyper-parameter. Expressed this way, the problem is
still intractable. SPIBB is able to find an approximate solution within a tractable
amount of time by applying a special processing to state-action pair transitions
that were not sampled enough in the batch of data. The methodology consists in
building a set of rare thus uncertain state-action pairs in the dataset D, called
the bootstrapped set and denoted by B: the bootstrapped set contains all the
state-action pairs (x, a) ∈ X × A whose counts in D are lower than a hyper-
parameter N∧. SPIBB algorithms then construct a space of allowed policies,
i.e policies that are constrained on the bootstrapped set B, and search for the
optimal policy in this set by performing policy iteration. For example, Πb-SPIBB
is a provably-safe algorithm that assigns the baseline πb to the state-action pairs
in B and trains the policy on the rest. Π≤b-SPIBB is a variant that does not
give more weight than πb to the uncertain transitions.

SPIBB’s principle amounts to search over a policy space constrained such
that the policy improvement may be precisely assessed in M∗. Because of the
hard definition of the bootstrapped set, SPIBB relies on a binary decision-making
and may be too conservative. Our novel method, called Soft-SPIBB, follows the
same principle, but relaxes this definition by allowing soft policy changes for
the uncertain state-action pairs, and offers more flexibility than SPIBB while
remaining safe.

This idea might seem similar to Conservative Policy Iteration (CPI), Trust
Region Policy Optimization (TRPO), or Proximal Policy Optimization (PPO)
in that it allows changes in the policy under a proximity regularization to the old
policy (Kakade and Langford 2002; Schulman et al. 2015, 2017). However, with
Soft-SPIBB, the proximity constraint is tightened or relaxed according to the
amount of samples supporting the policy change (see Definition 2). Additionally,
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CPI, TRPO, and PPO are designed for the online setting. In the batch setting
we consider, they would be either too conservative if the proximity regularization
is applied with respect to the fixed baseline, or would converge to the fixed point
obtained when solving the MLE MDP if the proximity regularization is moving
with the last policy update (Corollary 3 of Geist et al. 2019).

2.3 Linear Programming

Linear programming aims at optimizing a linear objective function under a set
of linear in-equality constraints. The most common methods for solving such
linear programs are the simplex algorithm and interior point methods (IPMs,
Dantzig 1963). Even though the worst-case computational complexity of the
simplex is exponential in the dimensions of the program being solved (Klee and
Minty 1972), this algorithm is efficient in practice: the number of iterations
seems polynomial, and sometimes linear in the problem size (Borgwardt 1987;
Dantzig and Thapa 2003). Nowadays, these two classes of methods continue to
compete with one another: it is hard to predict the winner on a particular class
of problems (Gondzio 2012). For instance, the hyper-sparsity of the problem
generally seems to favour the simplex algorithm, while IPMs can be much more
efficient for large-scale linear programming.

3 Safe Policy Improvement with Soft Baseline
Bootstrapping

SPIBB allows to make changes in state-action pairs where the model error does
not exceed some threshold ε, which may be expressed as a function of N∧. This
may be seen as a hard condition on the bootstrapping mechanism: a state-action
pair policy may either be changed totally, or not at all. In this paper, we propose
a softer mechanism where, for a given error function, a local error budget is
allocated for policy changes in each state x. Similarly to SPIBB, we search for
the optimal policy in the MDP model M̂ estimated from the dataset D, but we
reformulate the constraint by using Definitions 2 and 3.
Definition 2. A policy π is said to be (πb, e, ε)-constrained with respect to a
baseline policy πb, an error function e, and a hyper-parameter ε if, for all states
x ∈ X , the following inequality holds:

∑
a∈A

e(x, a)
∣∣π(a|x) − πb(a|x)∣∣ ≤ ε.

Definition 3. A policy π is said to be πb-advantageous in an MDP M =
〈X ,A, P,R, γ〉 if the following inequality holds in every state x ∈ X :

∑
a∈A

Aπb

M (x, a)π(a|x) ≥ 0 (6)

Remark 1. By the policy improvement theorem, a πb-advantageous policy is a
policy improvement over πb. The converse is not guaranteed.



58 K. Nadjahi et al.

3.1 Theoretical Safe Policy Improvement Bounds

We show that constraining πb-advantageous policies appropriately allows safe
policy improvements. Due to space limitation, all proofs have been moved to the
appendix, Section A.
Theorem 1. Any (πb, eQ, ε)-constrained policy π that is πb-advantageous in M̂
satisfies the following inequality in every state x with probability at least 1 − δ:

V π
M∗(x) − V πb

M∗(x) ≥ −εVmax

1 − γ
. (7)

Constraining the target policy to be advantageous over the baseline is a
strong constraint that leads to conservative solutions. To the best of our findings,
it is not possible to prove a more general bound on (πb, eQ, ε)-constrained policy
improvements. However, the search over (πb, eP , ε)-constrained policies, where eP

is an error bound over the probability function P (Eq. 2), allows us to guarantee
safety bounds under Assumption 1, which states:

Assumption 1. There exists a constant κ < 1
γ such that, for all state-action

pairs (x, a) ∈ X × A, the following inequality holds:
∑
x′,a′

eP (x′, a′)πb(a′|x′)P ∗(x′|x, a) ≤ κeP (x, a). (8)

Lemma 1, which is essential to prove Theorem 2 below, relies on Assumption 1.

Lemma 1. Under Assumption 1, any (πb, eP , ε)-constrained policy π satisfies
the following inequality for every state-action pair (x, a) with probability at least
1 − δ:

∣∣Qπ
M∗(x, a) − Qπ

̂M
(x, a)

∣∣ ≤
(

eP (x, a)
1 − κγ

+
γε

(1 − γ) (1 − κγ)

)
Vmax.

Theorem 2. Under Assumption 1, any (πb, eP , ε)-constrained policy π satisfies
the following inequality in every state x with probability at least 1 − δ:

V π
M∗(x) − V πb

M∗(x) ≥ V π
̂M
(x) − V πb

̂M
(x) − 2

∥∥dπb

M∗( · |x) − dπb

̂M
( · |x)∥∥

1
Vmax

− 1 + γ

(1 − γ)2 (1 − κγ)
εVmax. (9)

Remark 2. The theorems hold for any error function eP verifying 2 w.p. 1 − δ.

Remark 3. Πb-SPIBB (Laroche et al. 2019) is a particular case of Soft-SPIBB
where the error function eP (x, a) equals ∞ if (x, a) ∈ B and ε

2 otherwise.

Remark 4. Theorem 2 has a cubic dependency in the horizon 1
1−γ , which is

weaker than SPIBB’s bounds, but allow us to safely search over more policies,
when using tighter error functions. We will observe in Sect. 4 that Soft-SPIBB
empirically outperforms SPIBB both in mean performance and in safety.



Safe Policy Improvement with Soft Baseline Bootstrapping 59

3.2 Algorithms

In this section, we design two safe policy improvement algorithms to tackle the
problem defined by the Soft-SPIBB approach. They both rely on the standard
policy iteration process described in Pseudo-code 1, where the policy improve-
ment step consists in solving in every state x ∈ X the locally constrained opti-
mization problem below:

π(i+1)(·|x) = argmax
π∈Π

∑
a∈A

Q
(i)
̂M
(x, a)π(a|x) (10)

subject to:

Constraint 1: π being a probability:
∑

a∈A π(a|x) = 1 and ∀a, π(a|x) ≥ 0.

Constraint 2: π being (πb, e, ε)-constrained.

Pseudo-code 1: Policy iteration process for Soft-SPIBB
Input: Baseline policy πb, MDP model precision level ε and dataset D.
Compute the model error concentration bounds e(x, a).
Initialize i = 0 and π(0)(·|x) = πb(·|x).
while policy iteration stopping criterion not met do

Policy evaluation: compute Q
(i)

̂M
with dynamic programming.

Policy improvement: set π(i+1)(·|x) as the (exact or approximate) solution
of the optimization problem defined in Equation 10.
i ← i + 1

return π(i)

Exact-Soft-SPIBB: The Exact-Soft-SPIBB algorithm computes the exact
solution of the local optimization problem in (10) during the policy improve-
ment step. For that, we express the problem as a Linear Program (LP) and
solve it by applying the simplex algorithm. Note that we chose the simplex over
IPMs as it turned out to be efficient enough for our experimental settings. For
tractability in large action spaces, we reformulate the non-linear Constraint 2
as follows: we introduce |A| auxiliary variables {z(x, a)}(x,a)∈X×A, which bound
from above each element of the sum. For a given x ∈ X , Constraint 2 is then
replaced by the following 2|A| + 1 linear constraints:

∀a ∈ A, π(a|x) − πb(a|x) ≤ z(x, a), (11)
∀a ∈ A, −π(a|x) + πb(a|x) ≤ z(x, a), (12)∑

a

e(x, a)z(x, a) ≤ ε. (13)
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Approx-Soft-SPIBB: We also propose a computationally-efficient algorithm,
which returns a sub-optimal target policy π�

∼ . It relies on the same policy iter-
ation, but computes an approximate solution to the optimization problem. The
approach still guarantees to improve the baseline in M̂ : ρ(π�

∼ , M̂) ≥ ρ(πb, M̂),
and falls under the Theorems 1 and 2 SPI bounds. Approx-Soft-SPIBB’s local
policy improvement step consists in removing, for each state x, the policy prob-
ability mass m− from the action a− with the lowest Q-value. Then, m− is
attributed to the action that offers the highest Q-value improvement by unit
of error ∂ε:

a+ = argmax
a∈A

∂π(a|x)
∂ε

(
Q

(i)
̂M
(x, a) − Q

(i)
̂M
(x, a−)

)
(14)

= argmax
a∈A

Q
(i)
̂M
(x, a) − Q

(i)
̂M
(x, a−)

e(x, a)
(15)

Once m− has been reassigned to another action with higher value, the budget
is updated accordingly to the error that has been spent, and the algorithm
continues with the next worst action until a stopping criteria is met: the budget
is fully spent, or a− = a∗, where a∗ is the action with maximal state-action
value. The policy improvement step of Approx-Soft-SPIBB is further formalized
in Pseudo-code 2, found in the appendix, Section A.8.

Theorem 3. The policy improvement step of Approx-Soft-SPIBB generates
policies that are guaranteed to be (πb, e, ε)-constrained.

Remark 5. The argmax operator in the result returned by Pseudo-code 2 is
a convergence condition. Indeed, the approximate algorithm does not guaran-
tee that the current iteration policy search space includes the previous itera-
tion policy, which can cause divergence: the algorithm may indefinitely cycle
between two or more policies. To ensure convergence, we update π(i) with π(i+1)

only if there is a local policy improvement, i.e. when Ea∼π(i+1)(·|x)[Q
(i)
̂M
(x, a)] ≥

Ea∼π(i)(·|x)[Q
(i)
̂M
(x, a)].

Both implementation of the Soft-SPIBB strategy comply to the requirements
of Theorem 1 if only one policy iteration is performed. In Sect. 4.1, we empirically
evaluate the 1-iteration versions, which are denoted by the ‘1-step’ suffix.

Complexity Analysis: We study the computational complexity of Exact-Soft-
SPIBB and Approx-Soft-SPIBB. The error bounds computation and the policy
evaluation step are common to both algorithms, and have a complexity of O(|D|)
and O(|X |3|A|3) respectively. The part that differs between them is the policy
improvement.

Exact-Soft-SPIBB solves the LP with the simplex algorithm, which, as
recalled in Sect. 2.3, is in practice polynomial in the dimensions of the program
being solved. In our case, the number of constraints is 3|A| + 1.

Theorem 4. Approx-Soft-SPIBB policy improvement has a complexity of
O(|X ||A|2).
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Model-Free Soft-SPIBB: The Soft-SPIBB fixed point may be found in a
model-free manner by fitting the Q-function to the target y(i+1) on the transition
samples D = 〈xj , aj , rj , x

′
j〉j∈�1,N�:

y
(i+1)
j = rj + γ

∑
a′∈A

π(i+1)(a′|x′
j)Q

(i)(x′
j , a

′), (16)

where π(i+1) is obtained either exactly or approximately with the policy improve-
ment steps described in Sect. 3.2. Then, the policy evaluation consists in fitting
Q(i+1)(x, a) to the set of y

(i+1)
j values computed using the samples from D.

Theorem 5. Considering an MDP with exact counts, the model-based policy
iteration of (Exact or Approx)-Soft-SPIBB is identical to the model-free policy
iteration of (resp. Exact or Approx)-Soft-SPIBB.

The model-free versions are less computationally efficient than their respec-
tive model-based versions, but are particularly useful since it makes func-
tion approximation easily applicable. In our infinite MDP experiment, we con-
sider Approx-Soft-SPIBB-DQN as the DQN algorithm fitted to the model-free
Approx-Soft-SPIBB targets. The Exact-Soft-SPIBB counterpart is not consid-
ered for tractability reasons. We recall that the computation of the policy
improvement step relies on the estimates of an error function eP , which may, for
instance, be indirectly inferred from pseudo-counts ÑD(x, a) (Bellemare et al.
2016; Fox et al. 2018; Burda et al. 2019).

4 Soft-SPIBB Empirical Evaluation

This section intends to empirically validate the advances granted by Soft-
SPIBB. We perform the study on two domains: on randomly generated finite
MDPs, where the Soft-SPIBB algorithms are compared to several Batch RL
competitors: basic RL, High Confidence Policy Improvement (Thomas 2015,
HCPI), Reward-Adjusted MDPs (Petrik et al. 2016, RaMDP), Robust MDPs
(Iyengar, 2005; Nilim and El Ghaoui 2005), and to Soft-SPIBB natural parents:
Πb-SPIBB and Π≤b-SPIBB (Laroche et al. 2019); and on a helicopter navigation
task requiring function approximation, where Soft-SPIBB-DQN is compared to
basic DQN, RaMDP-DQN, and SPIBB-DQN. All the benchmark algorithms had
their hyper-parameters optimized beforehand. Their descriptions and the results
of the hyper-parameter search is available in the appendix, Section B.2 for finite
MDPs algorithms and Section C.3 for DQN-based algorithms.

In order to assess the safety of an algorithm, we run a large number of times
the same experiment with a different random seed. Since the environments and
the baselines are stochastic, every experiment generates a different dataset, and
the algorithms are evaluated on their mean performance over the experiments,
and on their conditional value at risk performance (CVaR), sometimes also called
the expected shortfall: X%-CVaR corresponds to the mean performance over the
X% worst runs.
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4.1 Random MDPs

In the random MDPs experiment, the MDP and the baseline are themselves
randomly generated too. The full experimental process is formalized in Pseudo-
code 2 found in the appendix, Section B.1. Because every run involves different
MDP and baseline, there is the requirement for a normalized performance. This
is further defined as ρ:

ρ(π,M∗) =
ρ(π,M∗) − ρ(πb,M

∗)
ρ(π∗,M∗) − ρ(πb,M∗)

. (17)

In order to demonstrate that Soft-SPIBB algorithms are safely improving the
baselines on most MDPs in practice, we use a random generator of MDPs. All
the details may be found in the appendix, Section B.1. The number of states is
set to |X | = 50, the number of actions to |A| = 4 and the connectivity of the
transition function to 4, i.e., for a given state-action pair (x, a), its transition
function P (x′|x, a) is non-zero on four states x′ only. The reward function is 0
everywhere except when entering the goal state, which is terminal and where
the reward is equal to 1. The goal is chosen in such a way that the optimal value
function is minimal.

Random Baseline: For a randomly generated MDP M , baselines are generated
according to a predefined level of performance η ∈ {0.1, 0.2, 0.3, 0.4, 0.5, 0.6,
0.7, 0.8, 0.9}: ρ(πb,M) = ηρ(π∗,M) + (1 − η)ρ(π̃,M), where π∗ and π̃ are
respectively the optimal and the uniform policies. The generation of the baseline
consists in three steps: optimization, where the optimal Q-value is computed;
softening, where a softmax policy is generated; and randomization, where the
probability mass is randomly displaced in the baseline. The process is formally
and extensively detailed in the appendix, Section B.1.

Dataset Generation: Given a fixed size number of trajectories, a dataset is gen-
erated on the following modification of the original MDPs: addition of another
goal state (reward is set to 1). Since the original goal state was selected so as to
be the hardest to reach, the new one, which is selected uniformly, is necessarily
a better goal.

Fig. 1. Average time to convergence.

Complexity Empirical Analysis: In
Fig. 1, we show an empirical confirma-
tion of the complexity results on the
gridworld task. Exact-Soft-SPIBB has
a linear dependency in the number of
actions. We also notice that Approx-
Soft-SPIBB runs much faster: even
faster than Πb-SPIBB, and 2 times
slower than basic RL. Note that the
policy improvement step is by design
exactly linearly dependent on the number of states |X |. This is the reason why
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we do not report experiments on the dependency on |X |. We do not report com-
plexity empirical analysis of the other competitors because we do not pretend
to have optimal implementations of them, and the purpose of this analysis is
to show that Approx-Soft-SPIBB solves the tractability issues of Exact-Soft-
SPIBB. In Theory, Robust MDPs and HCPI are more complex by at least an
order of magnitude.

Benchmark Results: Figures 2a and b respectively report the mean and 1%-
CVAR performances with a strong baseline (η = 0.9). Robust MDPs and
HCPI perform poorly and are not further discussed. Basic RL and RaMDP
win the benchmark in mean, but fail to do it safely, contrary to Soft-SPIBB
and SPIBB algorithms. Exact-Soft-SPIBB is slightly better than Approx-Soft-
SPIBB in mean, but also slightly worse in safety. Still in comparison to Approx-
Soft-SPIBB, Exact-Soft-SPIBB’s performance does not justify the computa-
tional complexity increase and will not be further discussed. Approx-Soft-SPIBB
demonstrates a significant improvement over SPIBB methods, both in mean
and in safety. Finally, the comparison of Approx-Soft-SPIBB with Approx-Soft-
SPIBB 1-step shows that the safety is not improved in practice, and that the
asymptotic optimality is compromised when the dataset becomes larger.

Sensitivity to the Baseline: We continue the analysis with a heatmap repre-
sentation as a function of the strength of the baseline: Figs. 3a and b display
heatmaps of the 0.1%-CVaR performance for RaMDP and Approx-Soft-SPIBB
(ε = 2) respectively. The colour of a cell indicates the improvement over the
baseline normalized with respect to the optimal performance: red, yellow, and
green respectively mean below, equal to, and above baseline performance. We
observe that RaMDP is unsafe for strong baselines (high η values) and small
datasets, while Soft-SPIBB methods become slightly unsafe only with η = 0.9
and less than 20 trajectories, but are safe everywhere else.

Sensitivity to Hyper-Parameters: We carry on with 1%-CVaR performance
heatmaps as a function of the hyper-parameters for RaMDP (Fig. 4a) and
Approx-Soft-SPIBB (Fig. 4b) in the hardest scenario (η = 0.9). The choice of 1%-
CVaR instead of 0.1%-CVaR is justified by the fact that the 0.1%-CVaR RaMDP
heatmap is almost completely red, which would not allow us to notice the
interesting thresholding behaviour: when κadj ≥ 0.0035, RaMDP becomes over-
conservative to the point of not trying to reach the goal anymore. In contrast,
Approx-Soft-SPIBB behaves more smoothly with respect to its hyper-parameter,
its optimal value being in interval [0.5, 2], depending on the safety/performance
trade-off one wants to achieve. In the appendix, Section B.3, the interested reader
may find the corresponding heatmaps for all Soft-SPIBB algorithms for mean
and 1%-CVaR performances. In particular, we may observe that, despite not
having as strong theoretical guarantees as their 1-step versions, the Soft-SPIBB
algorithms demonstrate similar CVaR performances.
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Fig. 2. Benchmark on Random MDPs domain: mean and 1%-CVAR performances for
a hard scenario (η = 0.9) and Soft-SPIBB with ε = 2
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(b) 0.1%-CVaR: Approx-Soft-SPIBB, ε = 2

Fig. 3. Influence of η on Random MDPs domain: 0.1%-CVaR heatmaps as a function
of η

4.2 Helicopter Domain

To assess our algorithms on tasks with more complex state spaces, making the use
of function approximation inevitable, we apply them to a helicopter navigation
task (Fig. 5(c)). The helicopter’s start point is randomly picked in the teal region,
its initial velocity is random as well. The agent can choose to apply or not a fixed
amount of thrust forward and backward in the two dimensions, resulting in 9
actions total. An episode ends when the agent reaches the boundary of the blue
box or has a speed larger than some maximal value. In the first case, it receives
a reward based on its position with respect to the top right corner of the box
(the exact reward value is chromatically indicated in the figure). In the second,
it gets a reward of −1. The dynamics of the helicopter obey Newton’s second law
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Fig. 4. Sensitivity to hyperparameter on Random MDPs: 1%-CVaR heatmaps for
η = 0.9
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Fig. 5. Helicopter: mean and 10%-CVaR as a function of the hyper-parameter value

with an additive centered Gaussian noise applied to its position and velocity. We
refer the reader to the appendix, Section C.1 for the detailed specifications. We
generated a baseline by training online a DQN (Mnih et al. 2015) and applying
a softmax on the learnt Q-network. During training, a discount factor of 0.9 is
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used, but the reported results show the undiscounted return obtained by the
agent.

The experiments consist in 300 training runs (necessary to obtain reasonable
estimates of algorithms’ safety, the full training procedure is described in the
appendix, Section C.3) of RaMDP-DQN, SPIBB-DQN and Approx-Soft-SPIBB-
DQN, for different values of their hyper-parameters (resp. κ, N∧ and ε). We note
that for κ = 0, N∧ = 0 or ε = +∞, those three algorithms become standard
DQN, and that for N∧ = ∞ or ε = 0, the SPIBB and Soft-SPIBB algorithms
produce a copy of the baseline. The three algorithms rely on some estimates of
the state-action counts. In this work, we used a pseudo-count estimate heuristic
based on Euclidean distance, also detailed in Section C.3. For scalability, we may
consider several pseudo-count methodologies from the literature Bellemare et al.
(2016); Fox et al. (2018). This is left for future work.

The results of our evaluation can be found in Fig. 5, where we plot the
mean and 10%-CVaR performances of the different algorithms for two sizes of
datasets (more results may be found in the appendix, Section C.4). In order
to provide meaningful comparisons, the abscissa represents the different hyper-
parameters transformed to account for their dimensional homogeneity (except
for a scaling factor). Both Approx-Soft-SPIBB-DQN and SPIBB-DQN outper-
form RaMDP-DQN by a large margin on the datasets of size 10,000. On the
smaller datasets, RaMDP-DQN performs very poorly and does not even appear
on the graph. For the same reason, vanilla DQN (mean: 0.22 and 10%-CVaR: −1
with |D| = 10, 000) does not appear on any of the graphs. The two SPIBB algo-
rithms significantly outperform the baseline both in mean and 10%-CVaR. At
their best hyper-parameter value, their 10%-CVaR is actually better than the
mean performance of the baseline. Approx-Soft-SPIBB-DQN performs better
than SPIBB-DQN both in mean and 10%-CVaR performances. Finally, it is less
sensitive than SPIBB-DQN with respect to their respective hyperparameters,
and demonstrates a better stability over different dataset sizes. That stability is
a useful property as it reduces the requirement for hyper-parameter optimiza-
tion, which is crucial for Batch RL.

5 Conclusion

We study the problem of safe policy improvement in a Batch RL setting. Building
on the SPIBB methodology, we relax the constraints of the policy search to pro-
pose a family of algorithms coined Soft-SPIBB. We provide proofs of safety and
of computational efficiency for an algorithm called Approx-Soft-SPIBB based
on the search of an approximate solution that does not compromise the safety
guarantees. We support the theoretical work with an extensive empirical analysis
where Approx-Soft-SPIBB shines as the best compromise average performance
vs. safety. We further develop Soft-SPIBB in a model-free manner which helps
its application to function approximation. Despite the lack of theoretical safety
guarantees with function approximation, we observe in our experiments where
the function approximation is modelled as a neural network, that Soft-SPIBB
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allows safe policy improvement in practice and significantly outperforms the
competing algorithms both in safety and in performance.
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