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Abstract This survey describes the method of approximation of operator semi-
groups, based on the Chernoff theorem. We outline recent results in this domain as
well as clarify relations between constructed approximations, stochastic processes,
numerical schemes for PDEs and SDEs, path integrals. We discuss Chernoff approx-
imations for operator semigroups and Schrödinger groups. In particular, we consider
Feller semigroups in R

d , (semi)groups obtained from some original (semi)groups
by different procedures: additive perturbations of generators, multiplicative per-
turbations of generators (which sometimes corresponds to a random time-change
of related stochastic processes), subordination of semigroups/processes, imposing
boundary/external conditions (e.g., Dirichlet or Robin conditions), averaging of
generators, “rotation” of semigroups. The developed techniques can be combined
to approximate (semi)groups obtained via several iterative procedures listed above.
Moreover, this method can be implemented to obtain approximations for solutions
of some time-fractional evolution equations, although these solutions do not possess
the semigroup property.
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1 Introduction

Let (X, ‖ · ‖X ) be a Banach space. A family (Tt )t≥0 of bounded linear operators on X
is called a strongly continuous semigroup (denoted as C0-semigroup) if T0 = Id, Tt ◦
Ts = Tt+s for all t, s ≥ 0, and limt→0 ‖Ttϕ − ϕ‖X = 0 for all ϕ ∈ X . The generator
of the semigroup (Tt )t≥0 is an operator (L ,Dom(L)) in X which is given by Lϕ :=
limt→0 t−1(Ttϕ − ϕ), Dom(L) := {ϕ ∈ X : limt→0 t−1(Ttϕ − ϕ) exists in X

}
. In

the sequel, we denote the semigroup with a given generator L both as (Tt )t≥0 and
as (et L)t≥0. The following fundamental result of the theory of operator semigroups
connects C0-semigroups and evolution equations: Let (L ,Dom(L)) be a densely
defined linear operator in X with a nonempty resolvent set. The Cauchy problem
∂ f
∂t = L f , f (0) = f0 in X for every f0 ∈ Dom(L) has a unique solution f (t) which
is continuously differentiable on [0,+∞) if and only if (L ,Dom(L)) is the generator
of a C0-semigroup (Tt )t≥0 on X . And the solution is given by f (t) := Tt f0.

Let now Q be a locally compact metric space. Let (ξt )t≥0 be a temporally
homogeneous Markov process with the state space Q and with transition proba-
bility P(t, x, dy). The family (Tt )t≥0, given by Ttϕ(x) := ∫Q ϕ(y)P(t, x, dy), is a
semigroup which, for several important classes of Markov processes, happens to be
strongly continuous on some suitable Banach spaces of functions on Q. Hence, in
this case, we have three equivalent problems:

(1) to construct the C0-semigroup (Tt )t≥0 with a given generator (L ,Dom(L)) on a
given Banach space X ;

(2) to solve the Cauchy problem ∂ f
∂t = L f , f (0) = f0 in X ;

(3) to determine the transition kernel P(t, x, dy) of an underlying Markov process
(ξt )t≥0.

The basic example is given by the operator (L ,Dom(L)) which is the closure of
( 12�, S(Rd)) in the Banach space1 X = C∞(Rd) or in X = L p(Rd), p ∈ [1,∞).
The operator (L ,Dom(L)) generates a C0-semigroup (Tt )t≥0 on X ; this semigroup
is given for each f0 ∈ X by

Tt f0(x) = (2π t)−d/2
∫

Rd

f0(y) exp

{
−|x − y|2

2t

}
dy; (1)

the function f (t, x) := Tt f0(x) solves the corresponding Cauchy problem for the
heat equation ∂ f

∂t = 1
2� f ; and

P(t, x, dy) := (2π t)−d/2 exp

{
−|x − y|2

2t

}
dy (2)

1We denote the space of continuous functions on R
d vanishing at infinity by C∞(Rd ) and the

Schwartz space by S(Rd ).
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is the transition probability of a d-dimensional Brownian motion. However, it is
usually not possible to determine a C0-semigroup in an explicit form, and one has
to approximate it. In this note, we demonstrate the method of approximation based
on the Chernoff theorem [28, 29]. In the sequel, we use the following (simplified)
version of the Chernoff theorem, assuming that the existence of the semigroup under
consideration is already established.

Theorem 1.1 Let (F(t))t≥0 be a family of bounded linear operators on a Banach
space X. Assume that

(i) F(0) = Id,
(ii) ‖F(t)‖ ≤ ewt for some w ∈ R and all t ≥ 0,

(iii) the limit Lϕ := lim
t→0

F(t)ϕ−ϕ

t exists for all ϕ ∈ D, where D is a dense subspace

in X such that (L , D) is closable and the closure (L ,Dom(L)) of (L , D)

generates a C0-semigroup (Tt )t≥0.

Then the semigroup (Tt )t≥0 is given by

Ttϕ = lim
n→∞[F(t/n)]nϕ (3)

for all ϕ ∈ X, and the convergence is locally uniform with respect to t ≥ 0.

Any family (F(t))t≥0 satisfying the assumptions of the Chernoff theorem 1.1 with
respect to a given C0-semigroup (Tt )t≥0 is called Chernoff equivalent, or Cher-
noff tangential to the semigroup (Tt )t≥0. And the formula (3) is called Chernoff
approximation of (Tt )t≥0. Evidently, in the case of a bounded generator L , the fam-
ily F(t) := Id+t L is Chernoff equivalent to the semigroup (et L)t≥0. And we get a
classical formula

et L = lim
n→∞

[
Id+ t

n
L

]n

. (4)

Moreover, for an arbitrary generator L , one considers F(t) := (Id−t L)−1 ≡
1
t RL(1/t) (if (0,∞) is in the resolvent set of L) and obtains the Post–Widder inver-
sion formula:

Ttϕ = lim
n→∞

(
Id− t

n
L

)−n

ϕ ≡ lim
n→∞

[n

t
RL(n/t)

]n
ϕ, ∀ϕ ∈ X.

A well-developed functional calculus approach to Chernoff approximation of C0-
semigroups by families (F(t))t≥0, which are given by (bounded completely mono-
tone) functions of the generators (as, e.g., in the case of the Post–Widder inversion
formula above), can be found in [36]. We use another approach. We are looking for
arbitrary families (F(t))t≥0 which are Chernoff equivalent to a given C0-semigroup
(i.e., the only connection of F(t) to the generator L is given via the assertion (iii) of the
Chernoff theorem). But we are especially interested in families (F(t))t≥0 which are
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given explicitly (e.g., as integral operators with explicit kernels or pseudo-differential
operators with explicit symbols). This is useful both for practical calculations and for
further interpretations of Chernoff approximations as path integrals (see, e.g., [12,
19, 25] and references therein). Moreover, we consider different operations on gen-
erators (what sometimes corresponds to operations on Markov processes) and find
out, how to construct Chernoff approximations for C0-semigroups with modified
generators on the base of Chernoff approximations for the original ones.

This approach allows to create a kind of a LEGO-constructor: we start with a
C0-semigroup which is already known2 or Chernoff approximated3; then, applying
different operations on its generator, we consider more and more complicated C0-
semigroups and construct their Chernoff approximations.

Chernoff approximations are available for the following operations:

• Operator splitting; additive perturbations of a generator (Sect. 2.1, [20, 21, 27]);
• Multiplicative perturbations of a generator/random time change of a process via
an additive functional (Sect. 2.3, [20, 21, 27]);

• killing of a process upon leaving a given domain/imposing Dirichlet boundary (or
external) conditions (Sect. 2.4, [21, 22, 24]);

• imposing Robin boundary conditions (Sect. 2.4, [52]);
• subordination of a semigroup/process (Sect. 2.5, [21, 23]);
• “rotation” of a semigroup (see Sect. 2.7, [62, 64]);
• averaging of semigroups (see Sect. 2.7, [9, 10, 57]);

Moreover, Chernoff approximations have been obtained for some stochastic Schrö-
dinger type equations in [37, 54–56]; for evolution equations with the Vladimirov
operator (this operator is a p-adic analogue of the Laplace operator) in [65–69];

2E.g., the semigroup generated by a Brownian motion on a star graph with Wentzell boundary
conditions at the vertex [42]; see also [11, 18, 30] for further examples.
3E.g., the semigroup generated by a Brownian motion on a compact Riemannian manifold (see [72]
and references therein) and (Feller) semigroups generated by Feller processes in R

d (see [27] and
Sect. 2.2).
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for evolution equations containing Lévy Laplacians in [1, 2]; for some nonlinear
equations in [58].

Chernoff approximation can be interpreted as a numerical scheme for solving
evolution equations. Namely, for the Cauchy problem ∂ f

∂t = L f , f (0) = f0, we have:

u0 := f0, uk := F(t/n)uk−1, k = 1, . . . , n, f (t) ≈ un.

In some particular cases, Chernoff approximations are an abstract analogue of the
operator splitting method known in the numerics of PDEs (see Remark 2.1). And
the Chernoff theorem itself can be understood as a version of the “Meta-theorem of
numerics”: consistency and stability imply convergence. Indeed, conditions (i) and
(iii) of Theorem 1.1 are consistency conditions, whereas condition (ii) is a stabil-
ity condition. Moreover, in some cases, the families (F(t))t≥0 give rise to Markov
chain approximations for (ξt )t≥0 and provide Euler–Maruyama schemes for the cor-
responding SDEs (see Example 2.1).

If all operators F(t) are integral operators with elementary kernels or pseudo-
differential operators with elementary symbols, the identity (3) leads to representa-
tion of a given semigroup by n-folds iterated integrals of elementary functions when
n tends to infinity. This gives rise to Feynman formulae. A Feynman formula is a
representation of a solution of an initial (or initial-boundary) value problem for an
evolution equation (or, equivalently, a representation of the semigroup solving the
problem) by a limit of n-fold iterated integrals of some functions as n → ∞. One
should not confuse the notions of Chernoff approximation and Feynman formula.
On the one hand, not all Chernoff approximations can be directly interpreted as
Feynman formulae since, generally, the operators (F(t))t≥0 do not have to be neither
integral operators, nor pseudo-differential operators. On the other hand, represen-
tations of solutions of evolution equations in the form of Feynman formulae can
be obtained by different methods, not necessarily via the Chernoff Theorem. And
such Feynman formulae may have no relations to any Chernoff approximation, or
their relations may be quite indirect. Richard Feynman was the first who considered
representations of solutions of evolution equations by limits of iterated integrals [33,
34]. He has, namely, introduced a construction of a path integral (known nowadays
as Feynman path integral) for solving the Schrödinger equation. And this path inte-
gral was defined exactly as a limit of iterated finite dimensional integrals. Feynman
path integrals can be also understood as integrals with respect to Feynman type
pseudomeasures. Analogously, one can sometimes obtain representations of a solu-
tion of an initial (or initial-boundary) value problem for an evolution equation (or,
equivalently, a representation of an operator semigroup resolving the problem) by
functional (or, path) integrals with respect to probability measures. Such representa-
tions are usually called Feynman–Kac formulae. It is a usual situation that limits in
Feynman formulae coincide with (or in some cases define) certain path integrals with
respect to probability measures or Feynman type pseudomeasures on a set of paths
of a physical system. Hence the iterated integrals in Feynman formulae for some
problem give approximations to path integrals representing the solution of the same
problem. Therefore, representations of evolution semigroups by Feynman formulae,
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on the one hand, allow to establish new path-integral-representations and, on the
other hand, provide an additional tool to calculate path integrals numerically. Note
that different Feynman formulae for the same semigroup allow to establish relations
between different path integrals (see, e.g., [21]).

The result of Chernoff has diverse generalizations. Versions, using arbitrary par-
titions of the time interval [0, t] instead of the equipartition (tk)n

k=0 with tk − tk−1 =
t/n, are presented, e.g., in [60, 71]. Versions, providing stronger type of conver-
gence, can be found in [78]. The analogue of the Chernoff theorem for multivalued
generators can be found, e.g., in [32]. Analogues of Chernoff’s result for semigroups,
which are continuous in a weaker sense, are obtained, e.g., in [3, 43]. For analogues
of the Chernoff theorem in the case of nonlinear semigroups, see, e.g., [5, 16, 17].
The Chernoff Theorem for two-parameter families of operators can be found in [56,
61].

2 Chernoff Approximations for Operator Semigroups and
Further Applications

2.1 Chernoff Approximations for the Procedure of Operator
Splitting

Theorem 2.1 Let (Tt )t≥0 be a strongly continuous semigroup on a Banach space
X with generator (L ,Dom(L)). Let D be a core for L. Let L = L1 + · · · + Lm

hold on D for some linear operators Lk, k = 1, . . . , m, in X. Let (Fk(t))t≥0,
k = 1, . . . , m, be families of bounded linear operators on X such that for all
k ∈ {1, . . . , m} holds: Fk(0) = Id, ‖Fk(t)‖ ≤ eak t for some ak ≥ 0 and all t ≥ 0,
limt→0

∥∥ Fk (t)ϕ−ϕ

t − Lkϕ
∥∥

X = 0 for all ϕ ∈ D. Then the family (F(t))t≥0, with
F(t) := F1(t) ◦ · · · ◦ Fm(t), is Chernoff equivalent to the semigroup (T (t))t≥0. And
hence the Chernoff approximation

Ttϕ = lim
n→∞

[
F(t/n)

]n
ϕ ≡ lim

n→∞
[
F1(t/n) ◦ · · · ◦ Fm(t/n)

]n
ϕ (5)

holds for each ϕ ∈ X locally uniformly with respect to t ≥ 0.

Note that we do not require from summands Lk to be generators of C0-semigroups.
For example, L1 can be a leading term (which generates a C0-semigroup) and
L2, . . . , Lm can be L1-bounded additive perturbations such that L := L1 + L2 +
· · · + Lm again generates a strongly continuous semigroup. Or L may even be a sum
of operators Lk , none of which generates a strongly continuous semigroup itself.

Proof Obviously, the family (F(t))t≥0 satisfies the conditions F(0) = Id and ‖F(t)‖
≤ ‖F1(t)‖ · . . . · ‖Fm(t)‖ ≤ e(a1+···+am )t . Further, for each ϕ ∈ D, we have
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lim
t→0

∥∥∥∥
F(t)ϕ − ϕ

t
− Lϕ

∥∥∥∥
X

= lim
t→0

∥∥∥∥
F1(t) ◦ · · · ◦ Fm(t)ϕ − ϕ

t
− L1ϕ − · · · − Lmϕ

∥∥∥∥
X

= lim
t→0

∥∥∥∥F1(t) ◦ · · · ◦ Fm−1(t)

(
Fm(t)ϕ − ϕ

t
− Lmϕ

)

+ (F1(t) ◦ · · · ◦ Fm−1(t) − Id) Lmϕ + F1(t) ◦ · · · ◦ Fm−1(t)ϕ − ϕ

t
− L1ϕ − · · · − Lm−1ϕ

∥∥∥∥
X

≤ lim
t→0

∥∥∥∥
F1(t) ◦ · · · ◦ Fm−1(t)ϕ − ϕ

t
− L1ϕ − · · · − Lm−1ϕ

∥∥∥∥
X

≤ · · · ≤ lim
t→0

∥∥∥∥
F1(t)ϕ − ϕ

t
− L1ϕ

∥∥∥∥
X

= 0.

Therefore, all requirements of the Chernoff theorem 1.1 are fulfilled and hence
(F(t))t≥0 is Chernoff equivalent to (T (t))t≥0. �

Remark 2.1 Let all the assumptions of Theorem 2.1 be fulfilled. Consider for sim-
plicity the case m = 2. Let θ, τ ∈ [0, 1]. Similarly to the proof of Theorem 2.1, one
shows that the following families (H θ (t))t≥0 and (Gτ (t))t≥0 are Chernoff equivalent
to the semigroup (Tt )t≥0 generated by L = L1 + L2:

H θ (t) := F1(θ t) ◦ F2(t) ◦ F1((1 − θ)t),

Gτ (t) := τ F1(t) ◦ F2(t) + (1 − τ)F2(t) ◦ F1(t).

Note that we have H 0(t) = F2(t) ◦ F1(t), and H 1(t) = F1(t) ◦ F2(t). Hence the
parameter θ corresponds to different orderings of non-commuting terms F1(t) and
F2(t). Further, G1/2(t) = 1

2

(
H 1(t) + H 0(t)

)
. In the case when both L1 and L2 gen-

erate C0-semigroups and Fk(t) := et Lk , Chernoff approximation (5) with families
(H θ (t))t≥0, θ = 1 or θ = 0, reduces to the classical Daletsky–Lie–Trotter formula.
Moreover, Chernoff approximation (5) can be understood as an abstract analogue
of the operator splitting known in numerical methods of solving PDEs (see [48]
and references therein). If θ = 0 and θ = 1, the families (H θ (t))t≥0 correspond to
first order splitting schemes. Whereas the family (H 1/2(t))t≥0 corresponds to the
symmetric Strang splitting and, together with (G1/2(t))t≥0, represents second order
splitting schemes.

2.2 Chernoff Approximations for Feller Semigroups

We consider the Banach space X = C∞(Rd) of continuous functions on R
d , vanish-

ing at infinity. A semigroup of bounded linear operators (Tt )t≥0 on the Banach space
X is called Feller semigroup if it is a strongly continuous semigroup, it is positiv-
ity preserving (i.e. Ttϕ ≥ 0 for all ϕ ∈ X with ϕ ≥ 0) and it is sub-Markovian (i.e.
Ttϕ ≤ 1 for all ϕ ∈ X with ϕ ≤ 1). A Markov process, whose semigroup is Feller,
is called Feller process. Let (L ,Dom(L)) be the generator of a Feller semigroup
(Tt )t≥0. Assume that C∞

c (Rd) ⊂ Dom(L) (this assumption is quite standard and
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holds in many cases, see, e.g., [13]). Then we have also4 C2∞(Rd) ⊂ Dom(L). And
Lϕ(x) is given for each ϕ ∈ C2∞(Rd) and each x ∈ R

d by the following formula:

Lϕ(x) = −C(x)ϕ(x) − B(x) · ∇ϕ(x) + tr(A(x)Hessϕ(x))

+
∫

y �=0

(
ϕ(x + y) − ϕ(x) − y · ∇ϕ(x)

1 + |y|2
)

N (x, dy),
(6)

where Hessϕ is the Hessian matrix of second order partial derivatives of ϕ; as well as
C(x) ≥ 0, B(x) ∈ R

d , A(x) ∈ R
d×d is a symmetric positive semidefinite matrix and

N (x, ·) is a Radon measure on R
d \ {0} with ∫y �=0 |y|2(1 + |y|2)−1 N (x, dy) < ∞

for each x ∈ R
d . Therefore, L is an integro-differential operator on C2∞(Rd) which

is non-local if N �= 0. This class of generators L includes, in particular, fractional
Laplacians L = −(−�)α/2 and relativistic Hamiltonians α

√
(−�)α/2 + m(x), α ∈

(0, 2), m > 0. Note that the restriction of L onto C∞
c (Rd) is given by a pseudo-

differential operator (PDO)

Lϕ(x) := −(2π)−d
∫

Rd

∫

Rd

eip·(x−q) H(x, p)ϕ(q) dq dp, x ∈ R
d , (7)

with the symbol −H such that

H(x, p) = C(x) + i B(x) · p + p · A(x)p +
∫

y �=0

(
1 − eiy·p + iy · p

1 + |y|2
)

N (x, dy).

(8)

If the symbol H does not depend on x , i.e. H = H(p), then the semigroup (Tt )t≥0

generated by (L ,Dom(L)) is given by (extensions of) PDOs with symbols e−t H(p):

Ttϕ(x) = (2π)−d
∫

Rd

∫

Rd

eip·(x−q)e−t H(p)ϕ(q) dq dp, x ∈ R
d , ϕ ∈ C∞

c (Rd).

If the symbol H depends on both variables x and p then (Tt )t≥0 are again PDOs.
However their symbols do not coincide with e−t H(x,p) and are not known explicitly.
The family (F(t))t≥0 of PDOs with symbols e−t H(x,p) is not a semigroup any more.
However, this family isChernoff equivalent to (Tt )t≥0.Namely, the following theorem
holds (see [26, 27]):

Theorem 2.2 Let H : R
d × R

d → C be measurable, locally bounded in both vari-
ables (x, p), satisfy for each fixed x ∈ R

d the representation (8) and the following
assumptions:

4Cm∞(Rd ) := {ϕ ∈ Cm(Rd ) : ∂αϕ ∈ C∞(Rd ), |α| ≤ m}.
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(i) sup
q∈Rd

|H(q, p)| ≤ κ(1 + |p|2) for all p ∈ R
d and some κ > 0,

(i i) p �→ H(q, p) is uniformly (w.r.t. q ∈ R
d ) continuous at p = 0,

(i i i) q �→ H(q, p) is continuous for all p ∈ R
d .

Assume that the function H(x, p) is such that the PDO with symbol −H defined on
C∞

c (Rd) is closable and the closure (denoted by (L ,Dom(L))) generates a strongly
continuous semigroup (Tt )t≥0 on X = C∞(Rd). Consider now for each t ≥ 0 the
PDO F(t) with the symbol e−t H(x,p), i.e. for ϕ ∈ C∞

c (Rd)

F(t)ϕ(x) = (2π)−d
∫

Rd

∫

Rd

eip·(x−q)e−t H(x,p)ϕ(q)dqdp. (9)

Then the family (F(t))t≥0 extends to a strongly continuous family on X and is Cher-
noff equivalent to the semigroup (Tt )t≥0.

Note that the extensions of F(t) are given (via integration with respect to p in (9))
by integral operators:

F(t)ϕ(x) =
∫

Rd

ϕ(y)νx
t (dy), (10)

where, for each x ∈ R
d and each t ≥ 0, the sub-probability measure νx

t is given via
its Fourier transform F

[
νx

t

]
(p) = (2π)−d/2e−t H(x,−p)−i p·x .

Example 2.1 Let in formula (6) additionally N (x, dy) ≡ 0, the coefficients A, B,
C be bounded and continuous, and

there exist a0, A0 ∈ R with 0 < a0 ≤ A0 < ∞ such that

a0|z|2 ≤ z · A(x)z ≤ A0|z|2 for all x, z ∈ R
d . (11)

Then L is a second order uniformly elliptic operator and the family (F(t))t≥0 in (10)
has the following view: F(0) := Id and for all t > 0 and all ϕ ∈ X

F(t)ϕ(x) := e−tC(x)

√
(4π t)d det A(x)

∫

Rd

e− A−1(x)(x−t B(x)−y)·(x−t B(x)−y)

4t ϕ(y)dy. (12)

Moreover, it has been shown in [24] that F ′(0) = L on a bigger core C2,α
c (Rd) what

is important for further applications (e.g., in Sect. 2.4).
Let now C ≡ 0. The evolution equation

∂ f

∂t
(t, x) = −B(x) · ∇ f (t, x) + tr(A(x)Hess f (t, x))
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is the backwardKolmogorov equation for a d-dimesional Itô diffusion process (ξt )t≥0

satisfying the SDE

dξt = −B(ξt )dt +√2A(ξt )dWt , (13)

with ad-dimensionalWiener process (Wt )t≥0.Consider theEuler–Maruyama scheme
for the SDE (13) on [0, t] with time step t/n:

X0 := ξ0, Xk+1 := Xk − B(Xk)
t

n
+
√
2t

n
A(Xk)Zk, k = 0, . . . , n − 1, (14)

where (Zk)k=0,...,n−1 are i.i.d. d-dimensional N (0, Id) Gaussian random variables
such that Xk and Zk are independent for all k = 0, . . . , n − 1. Then, for all k =
0, . . . , n − 1 holds:

E[ f0(Xk+1) | Xk] = E

[

f0

(

x − B(x)
t

n
+
√
2t

n
A(x)Zk

)]∣∣∣∣∣
x :=Xk

= F(t/n) f0(Xk).

By the tower property of conditional expectation, one has

E[ f0(Xn) | X0 = x] = E[E[ f0(Xn) | Xn−1] | X0 = x] = . . . =
= E[. . . E[E[ f0(Xn) | Xn−1] | Xn−2] . . . | X0 = x] = Fn(t/n) f0(x).

Hence, by Theorem 2.2, it holds for all x ∈ R
d

E[ f0(ξt) | ξ0 = x] = Tt f0(x) = lim
n→∞ Fn(t/n) f0(x) = lim

n→∞ E[ f0(Xn) | X0 = x].

And, therefore, the Euler–Maruyama scheme (14) converges weakly.5 The same
holds in the general case of Feller processes satisfying assumptions of Theorem 2.2
(see [15]). And the corresponding Markov chain approximation (Xk)k=0,...,n−1 of ξt

consists of increments of Lévy processes, obtained form the original Feller process
by “freezing the coefficients” in the generator in a suitable way (see [14]).

Let us investigate the family (F(t))t≥0 in (12) more carefully. We have actually

F(t)ϕ(x) = e−tC(x)

∫

Rd

e
A−1(x)B(x)·(x−y)

2 e−t |A−1/2(x)B(x)|2
4 ϕ(y)pA(t, x, y)dy, (15)

where pA(t, x, y) := ((4π t)d det A(x)
)−1/2

exp

(
− A−1(x)(x−y)·(x−y)

4t

)
. Therefore,

Theorem2.2 yields the following Feynman formula for all t > 0,ϕ ∈ X and x0 ∈ R
d :

5The weak convergence of this Euler–Maruyama scheme is, of course, a classical result, cf. [41].
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Ttϕ(x0) = lim
n→∞

∫

Rdn

e
− t

n

n∑

k=1
C(xk−1)

e
1
2

n∑

k=1
A−1(xk−1)B(xk−1)·(xk−1−xk )× (16)

× e
− t

4n

n∑

k=1
|A−1/2(xk−1)B(xk−1)|2

ϕ(xn)pA(t/n, x0, x1) . . . pA(t/n, xn−1, xn) dx1 · · · dxn .

And the convergence is uniformwith respect to x0 ∈ R
d and t ∈ (0, t∗] for all t∗ > 0.

The limit in the right hand side of formula (16) coincides with the following path
integral (compare with the formula (34) in [47] and formula (3) in [44]):

Ttϕ(x0) =E
x0

[
exp

(
−

t∫

0

C(Xs)ds

)
exp

(
− 1

2

t∫

0

A−1(Xs)B(Xs) · d Xs)

)
×

× exp

(
− 1

4

t∫

0

A−1(Xs)B(Xs) · B(Xs)ds

)
ϕ(Xt )

]
.

Here the stochastic integral
∫ t
0 A−1(Xs)B(Xs) · d Xs is an Itô integral. And E

x0 is the
expectation of a (starting at x0) diffusion process (Xt )t≥0 with the variable diffusion
matrix A and without any drift, i.e (Xt )t≥0 solves the stochastic differential equation

d Xt = √2A(Xt )dWt .

Remark 2.2 Let now N (x, dy) := N (dy) in formula (6), i.e. N does not depend
on x . Let the coefficients A, B, C be bounded and continuous, and the property (11)
hold. Then L = L1 + L2, where L1 is the local part of L , given in the first line of (6)
and L2 is the non-local part of L , given in the second line of (6). And, respectively,
H(x, p) = H1(x, p) + H2(p) in (8), where H1(x, p) is a quadratic polynomial with
respect to p with variable coefficients and H2 does not depend on x . Then the closure
of (L2, C∞

c (Rd)) in X generates a C0−semigroup (et L2)t≥0 and operators et L2 are
PDOswith symbols e−t H2 onC∞

c (Rd). Let the family of probabilitymeasures (ηt )t≥0

be such thatF[ηt ] = (2π)−d/2e−t H2 . Thenwehave et L2ϕ = ϕ ∗ ηt on X .Assume that
H2 ∈ C∞(Rd). Then the family (F(t))t≥0 in (9) canbe represented (forϕ ∈ C∞

c (Rd))
in the following way (cf. with formula (10)):

F(t)ϕ(x) =
[
F−1 ◦ e−t H(x,·) ◦ Fϕ

]
(x) =

[
F−1 ◦ e−t H1(x,·) ◦ F ◦ F−1 ◦ e−t H2 ◦ Fϕ

]
(x)

= (ϕ ∗ ηt ∗ ρx
t

)
(x),

where ρx
t (z) := e−tC(x)

(
(4π t)d det A(x)

)−1/2
exp
{
− A−1(x)(z−t B(x))·(z−t B(x))

4t

}
, i.e.

the family (F1(t))t≥0, F1(t)ϕ(x) := (ϕ ∗ ρx
t )(x), is actually given by formula (12).

The representation

F(t)ϕ(x) = (ϕ ∗ ηt ∗ ρx
t

)
(x) (17)
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holds even for all ϕ ∈ X , x ∈ R
d and without the assumption that H2 ∈ C∞(Rd).

Denoting et L2 as F2(t), we obtain that F(t) = F1(t) ◦ F2(t). Due to Theorem 2.2,
F ′(0) = L on a core D := C∞

c (Rd). Using Theorem 2.1 and Example 2.1, one shows
that F ′(0) = L even on D = C2,α

c (Rd) as soon as C2,α
c (Rd) ⊂ Dom(L2) (without

the assumption H2 ∈ C∞(Rd)). The bigger core D is more suitable for further appli-
cations of the family (F(t))t≥0 in the form of (17) in Sect. 2.4.

Example 2.2 Consider the symbol H(x, p) := a(x)|p|, where a ∈ C∞(Rd) is a
strictly positive bounded function. The closure of the PDO (L , C∞

c (Rd))with symbol
−H acts as Lϕ(x) := a(x)

(−(−�)1/2
)
ϕ(x), generates a Feller semigroup (Tt )t≥0

and, byTheorem2.2, the following family (F(t))t≥0 isChernoff equivalent to (Tt )t≥0:

F(t)ϕ(x) : = (2π)−d
∫

Rd

∫

Rd

eip·(x−q)e−ta(x)|p|ϕ(q)dqdp

= �

(
d + 1

2

)∫

Rd

ϕ(q)
a(x)t

(
π |x − q|2 + a2(x)t2

) d+1
2

dq,

where� is theEuler gamma-function.We see that themultiplicative perturbationa(x)

of the fractional Laplacian contributes actually to the time parameter in the definition
of the family (F(t))t≥0. This motivates the result of the following subsection.

2.3 Chernoff Approximations for Multiplicative
Perturbations of a Generator

Let Q be ametric space. Consider the Banach space X = Cb(Q) of bounded continu-
ous functions on Q with supremum-norm ‖ · ‖∞. Let (Tt )t≥0 be a strongly continuous
semigroup on X with generator (L ,Dom(L)). Consider a function a ∈ Cb(Q) such
that a(q) > 0 for all q ∈ Q. Then the space X is invariant under the multiplication
operator a, i.e. a(X) ⊂ X . Consider the operator �L , defined for all ϕ ∈ Dom(�L) and
all q ∈ Q by

�Lϕ(q) := a(q)(Lϕ)(q), where Dom(�L) := Dom(L). (18)

Assumption 2.1 We assume that (�L,Dom(�L)) generates a strongly continuous
semigroup (which is denoted by (�Tt )t≥0) on the Banach space X .

Some conditions assuring the existence and strong continuity of the semigroup
(�Tt )t≥0 can be found, e.g., in [31, 45]. The operator �L is called a multiplicative
perturbation of the generator L and the semigroup (�Tt )t≥0, generated by �L , is called
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a semigroup with the multiplicatively perturbed with the function a generator. The
following result has been shown in [21] (cf. [20, 27]).

Theorem 2.3 Let Assumption 2.1 hold. Let (F(t))t≥0 be a strongly continuous fam-
ily6 of bounded linear operators on the Banach space X, which is Chernoff equivalent
to the semigroup (Tt )t≥0. Consider the family of operators (�F(t))t≥0 defined on X
by

�F(t)ϕ(q) := (F(a(q)t)ϕ)(q) for all ϕ ∈ X, q ∈ Q. (19)

The operators �F(t) act on the space X, the family (�F(t))t≥0 is again strongly con-
tinuous and is Chernoff equivalent to the semigroup (�Tt )t≥0 with multiplicatively
perturbed with the function a generator, i.e. the Chernoff approximation

�Ttϕ = lim
n→∞

[
�F(t/n)

]n
ϕ

is valid for all ϕ ∈ X locally uniformly with respect to t ≥ 0.

Remark 2.3 (i) The statement of Theorem2.3 remains true for the followingBanach
spaces (cf. [21]):
(a) X = C∞(Q) := {ϕ ∈ Cb(Q) : limρ(q,q0)→∞ ϕ(q) = 0

}
, where q0 is an arbi-

trary fixed point of Q and the metric space Q is unbounded with respect to its
metric ρ;
(b) X = C0(Q) := {ϕ ∈ Cb(Q) : ∀ ε > 0 ∃ a compact K ε

ϕ ⊂ Q such that |ϕ(q)|
< ε for all q /∈ K ε

ϕ

}
, where the metric space Q is assumed to be locally compact.

(ii) As it follows from the proof of Theorem 2.3, if limt→0

∥∥ F(t)ϕ−ϕ

t − Lϕ
∥∥

X = 0 for

all ϕ ∈ D then also limt→0

∥∥ �F(t)ϕ−ϕ

t − �Lϕ
∥∥

X = 0 for all ϕ ∈ D.

Corollary 2.1 Let (Xt )t≥0 be a Markov process with the state space Q and transition
probability P(t, q, dy). Let the corresponding semigroup (Tt )t≥0,

Ttϕ(q) = E
q [ϕ(Xt )] ≡

∫

Q

ϕ(y)P(t, q, dy),

be strongly continuous on the Banach space X, where X = Cb(Q), X = C∞(Q) or
X = C0(Q), and Assumption 2.1 hold. Then by Theorem 2.3 and Remark 2.3 the
family (�F(t))t≥0 defined by

�Ftϕ(q) :=
∫

Q

ϕ(y)P(a(q)t, q, dy),

6The family (F(t))t≥0 of bounded linear operators on aBanach space X is called strongly continuous
if limt→t0 ‖F(t)ϕ − F(t0)ϕ‖X = 0 for all t, t0 ≥ 0 and all ϕ ∈ X .
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is strongly continuous and is Chernoff equivalent to the semigroup (�Tt )t≥0 with
multiplicatively perturbed (with the function a) generator. Therefore, the following
Chernoff approximation is true for all t > 0 and all q0 ∈ Q:

�Ttϕ(q0) = lim
n→∞

∫

Q

· · ·
∫

Q

ϕ(qn)P(a(q0)t/n,q0, dq1)P(a(q1)t/n, q1, dq2) × · · ·

× P(a(qn−1)t/n, qn−1, dqn),

(20)
where the order of integration is from qn to q1 and the convergence is uniform with
respect to q0 ∈ Q and locally uniform with respect to t ≥ 0.

Remark 2.4 A multiplicative perturbation of the generator of a Markov process is
equivalent to some randome time change of the process (see [32, 76, 77]). Note
that �P(t, q, dy) := P(a(q)t, q, dy) is not a transition probability any more. Nev-
ertheless, if the transition probability P(t, q, dy) of the original process is known,
formula (20) allows to approximate the unknown transition probability of the mod-
ified process.

2.4 Chernoff Approximations for Semigroups Generated by
Processes in a Domain with Prescribed Behaviour at the
Boundary of/Outside the Domain

Let (ξt )t≥0 be a (sub-) Markov process in R
d . Assume that the corresponding

semigroup (Tt )t≥0 is strongly continuous on some Banach space X of functions
on R

d , e.g. X = C∞(Rd) or X = L p(Rd), p ∈ [1,∞). Let (L ,Dom(L)) be the
generator of (Tt )t≥0 in X . Assume that a Chernoff approximation of (Tt )t≥0 via a
family (F(t))t≥0 is already known (and hence we have a core D for L such that
limt→0

∥∥ F(t)ϕ−ϕ

t − Lϕ
∥∥

X = 0 for all ϕ ∈ D). Consider now a domain � ⊂ R
d . Let

(ξt )t≥0 start in � and impose some reasonable “Boundary Conditions” (BC), i.e.
conditions on the behaviour of (ξt )t≥0 at the boundary ∂�, or (if the generator L
is non-local) outside �. This procedure gives rise to a (sub-) Markov process in �

which we denote by (ξ ∗
t )t≥0. In some cases, the corresponding semigroup (T ∗

t )t≥0

is strongly continuous on some Banach space Y of functions on � (e.g. Y = C(�),
Y = C0(�) or Y = L p(�), p ∈ [1,∞)). The question arises: how to construct a
Chernoff approximation of (T ∗

t )t≥0 on the base of the family (F(t))t≥0, i.e. how to
incorporate BC into a Chernoff approximation? A possible strategy to answer this
question is to construct a proper extension E∗ of functions from � to R

d such that,
first, E∗ : Y → X is a linear contraction and, second, there exists a core D∗ for the
generator (L∗,Dom(L∗)) of (T ∗

t )t≥0 with E∗(D∗) ⊂ D. Then it is easy to see that
the family (F∗(t))t≥0 with

F∗(t) := Rt ◦ F(t) ◦ E∗ (21)
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is Chernoff equivalent to the semigroup (T ∗
t )t≥0. Here Rt is, in most cases, just

the restriction of functions from R
d to �, and, for the case of Dirichlet BC, it is

a multiplication with a proper cut-off function ψt having support in � such that
ψt → 1� as t → 0 (see [22, 24]). This strategy has been successfully realized in the
following cases (note that extensions E∗ are obtained in a constructive way and can
be implemented in numerical schemes):

Case 1: X = C∞(Rd), (ξt)t≥0 is a Feller processwhose generator L is given by (6)
with A, B, C of the class C2,α , A satisfies (11), and either N ≡ 0 or N �= 0 and the
non-local term of L is a relatively bounded perturbation of the local part of L with
some extra assumption on jumps of the process (see details in [22, 24]). The family
(F(t))t≥0 is given by (10) (see also (17), or (12) in the corresponding particular cases)
and D = C2,α

c (Rd). Further, � is a bounded C4,α−smooth domain, Y = C0(�),
BC are the homogeneous Dirichlet boundary/external conditions corresponding to
killing of the process upon leaving the domain �. A proper extension E∗ has been
constructed in [6], and it maps Dom(L∗) ∩ C2,α(�) into D.

One can further simplify the Chernoff approximation constructed via the family
(F∗(t))t≥0 of (21) and show that the following Feynman formula solves the consid-
ered Cauchy–Dirichlet problem (see [22]):

T ∗
t ϕ(x0) = lim

n→∞

∫

�

. . .

∫

�

∫

�

ϕ(xn) ν
xn−1
t/n (dxn)ν

xn−2
t/n (dxn−1) · · · νx0

t/n(dx1). (22)

The convergence in this formula is however only locally uniform with respect to
x0 ∈ � (and locally uniform with respect to t ≥ 0). Similar results hold also for non-
degenerate diffusions in domains of a compact Riemannian manifold M with homo-
geneous Dirichlet BC (see, e.g. [19]), what can be shown by combining approaches
described in Sects. 2.1, 2.3, 2.4 and using families (F(t))t≥0 of [72] which are Cher-
noff equivalent to the heat semigroup on C(M).

Case 2: X = C∞(Rd), (ξt )t≥0 is a Brownian motion, the family (F(t))t≥0 is
the heat semigroup (1) (hence D = Dom(L)), � is a bounded C∞-smooth domain,
Y = C(�), BC are the Robin boundary conditions

∂ϕ

∂ν
+ βϕ = 0 on ∂�, (23)

where ν is the outer unit normal, β is a smooth bounded nonnegative function on ∂�.
A proper extension E∗ (and the corresponding Chernoff approximation itself) has
been constructed in [52], and it maps D∗ := Dom(L∗) ∩ C∞(�) into the Dom(L).

This result can be further generalized for the case of diffusions, using the tech-
niques of Sects. 2.1 and2.3. Thiswill be demonstrated inExample 2.3.Note, however,
that the extension E∗ of [52] maps D∗ into the set of functions which do not belong
to C2(Rd). Hence it is not possible to use the family (12) (and D = C2,α

c (Rd)) in a
straightforward manner for approximation of diffusions with Robin BC.
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Example 2.3 Let X = C∞(Rd). Consider (L1,Dom(L1)) being the closure of(
1
2�, S(Rd)

)
in X . Then Dom(L1) is continuously embedded in C1,α(Rd) for every

α ∈ (0, 1) by Theorem 3.1.7 and Corollary 3.1.9 (iii) of [46], and (L1,Dom(L1))

generates a C0-semigroup (T1(t))t≥ on X , this is the heat semigroup given by (1).
Let a ∈ Cb(R

d) be such that a(x) ≥ a0 for some a0 > 0 and all x ∈ R
d . Then

(�L1,Dom(L1)), �L1ϕ(x) := a(x)L1ϕ(x), generates a C0-semigroup (�T1(t))t≥0 on
X by [31]. Therefore, the family (�F(t))t≥0 with

�F(t)ϕ(x) :=
∫

Rd

ϕ(y)P(a(x)t, x, dy),

where P(t, x, dy) is given by (2), is Chernoff equivalent to (�T1(t))t≥0 by Corol-

lary 2.1. And
∥∥∥
�F(t)ϕ−ϕ

t −�L1ϕ

∥∥∥
X

→ 0 as t → 0 for each ϕ ∈ Dom(L1). Let now

C ∈ Cb(R
d) and B ∈ Cb(R

d; R
d). Then the operator (L ,Dom(L)),

Lϕ(x) := a(x)

2
�ϕ(x) − B(x) · ∇ϕ(x) − C(x)ϕ(x), Dom(L) := Dom(L1),

(obtained by a relatively bounded additive perturbation of (�L1,Dom(L1))) generates
aC0-semigroup (Tt )t≥0 on X (e.g., by Theorem 4.4.3 of [40]). Motivated by Sect. 2.3
and the view of the translation semigroup, consider the family (F2(t))t≥0 of con-
tractions on X given by F2(t)ϕ(x) := ϕ(x − t B(x)). Then, for all ϕ ∈ Dom(L1) ⊂
C1,α(Rd), holds

∥∥∥ F2(t)ϕ−ϕ

t + B · ∇ϕ

∥∥∥
X

≤ const · tα|B|α+1 → 0, t → 0, and

‖F2(t)‖ ≤ 1 for all t ≥ 0. Therefore, by Theorem 2.1, the family (F(t))t≥0 with

F(t)ϕ(x) : = [e−tC ◦ F2(t) ◦ �F(t)
]
ϕ(x)

≡ e−tC(x)

∫

Rd

ϕ(y)P(a(x − t B(x))t, x − t B(x), dy)

is Chernoff equivalent to the semigroup (Tt )t≥0. Let now� be a boundedC∞-smooth
domain, Y = C(�). Consider (L∗,Dom(L∗)) in Y with7

Dom(L∗) :=
{
ϕ ∈ Y ∩ H 1(�) : Lϕ ∈ Y,

∫

�

�ϕudx +
∫

�

∇ϕ∇udx +
∫

∂�

βϕudσ = 0 ∀ u ∈ H 1(�)

}
,

L∗ϕ := Lϕ, ∀ϕ ∈ Dom(L∗).

Then (L∗,Dom(L∗)) generates a C0-semigroup (T ∗
t )t≥0 on Y (cf. [53]). Consider

R : X → Y being the restriction of a function fromR
d to�. Consider the extension

7Here we consider the Robin BC (23) given in a weaker form via the first Green’s formula; dσ is
the surface measure on ∂�.
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E∗ : Y → X constructed in [52]. This extension is a linear contraction, obtained
via an orthogonal reflection at the boundary and multiplication with a suitable cut-
off function, whose behaviour at ∂� is prescribed (depending on β) in such a way
that the weak Laplacian of the extension E∗(ϕ) is continuous for each ϕ ∈ D∗ :=
Dom(L∗) ∩ C∞(�) and E∗(D∗) ⊂ Dom(L1). We omit the explicit description of
E∗, in order to avoid corresponding technicalities.We consider the family (F∗(t))t≥0

on Y given by F∗(t) := R ◦ F(t) ◦ E∗, i.e.

F∗(t)ϕ(x) := e−tC(x)

∫

Rd

E∗[ϕ](y)P(a(x − t B(x))t, x − t B(x), dy), x ∈ �.

Then F∗(0) = Id, ‖F∗(t)‖ ≤ et‖C‖∞ , and we have for all ϕ ∈ D∗

lim
t→0

∥∥∥∥
F∗(t)ϕ − ϕ

t
− L∗ϕ

∥∥∥∥
Y

= lim
t→0

∥∥∥∥R ◦
(

F(t)E∗[ϕ] − E∗[ϕ]
t

− L E∗[ϕ]
)∥∥∥∥

Y

≤ lim
t→0

∥∥∥∥
F(t)E∗[ϕ] − E∗[ϕ]

t
− L E∗[ϕ]

∥∥∥∥
X

= 0.

Therefore, the family (F∗(t))t≥0 is Chernoff equivalent to the semigroup (T ∗
t )t≥0 by

Theorem 1.1, i.e. T ∗
t ϕ = lim

n→∞[F∗(t/n)]nϕ for each ϕ ∈ Y locally uniformly with

respect to t ≥ 0.

2.5 Chernoff Approximations for Subordinate Semigroups

One of the ways to construct strongly continuous semigroups is given by the proce-
dure of subordination. From two ingredients: an original C0 contraction semigroup
(Tt )t≥0 on a Banach space X and a convolution semigroup8 (ηt )t≥0 supported by
[0,∞), this procedure produces the C0 contraction semigroup (T f

t )t≥0 on X with

T f
t ϕ :=

∫ ∞

0
Tsϕ ηt (ds), ∀ ϕ ∈ X.

If the semigroup (Tt )t≥0 corresponds to a stochastic process (Xt )t≥0, then subordina-
tion is a random time-change of (Xt )t≥0 by an independent increasing Lévy process
(subordinator)with distributions (ηt )t≥0. If (Tt )t≥0 and (ηt )t≥0 both are known explic-
itly, so is (T f

t )t≥0. But if, e.g., (Tt)t≥0 is not known, neither (T
f

t )t≥0 itself, nor even the
generator of (T f

t )t≥0 are known explicitly anymore. This impedes the construction of
a family (F(t))t≥0 with a prescribed (but unknownexplicitly) derivative at t = 0. This

8A family (ηt )t≥0 of bounded Borel measures on R is called a convolution semigroup if
ηt (R) ≤ 1 for all t ≥ 0, ηt ∗ ηs = ηt+s for all t, s ≥ 0, η0 = δ0, and ηt → δ0 vaguely as t → 0,
i.e. limt→0

∫
R

ϕ(x)ηt (dx) = ∫
R

ϕ(x)δ0(dx) ≡ ϕ(0) for all ϕ ∈ Cc(R). A convolution semigroup
(ηt )t≥0 is supported by [0,∞) if supp ηt ⊂ [0,∞) for all t ≥ 0.
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difficulty is overwhelmed belowby construction of families (F(t))t≥0 and (Fμ(t))t≥0

which incorporate approximations of the generator of (T f
t )t≥0 itself. Recall that

each convolution semigroup (ηt )t≥0 supported by [0,∞) corresponds to a Bernstein
function f via the Laplace transform L: L[ηt ] = e−t f for all t > 0. Each Bernstein
function f is uniquely defined by a triplet (σ, λ, μ) with constants σ, λ ≥ 0 and a
Radon measure μ on (0,∞), such that

∫∞
0+

s
1+s μ(ds) < ∞, through the represen-

tation f (z) = σ + λz + ∫∞
0+(1 − e−sz)μ(ds), ∀ z : Re z ≥ 0. Let (L ,Dom(L))

be the generator of (Tt )t≥0 and (L f ,Dom(L f )) be the generator of (T f
t )t≥0. Then

each core for L is also a core for L f and, for ϕ ∈ Dom(L), the operator L f has the
representation

L f ϕ = −σϕ + λLϕ +
∞∫

0+
(Tsϕ − ϕ)μ(ds).

Let (F(t))t≥0 be a family of contractions on (X, ‖ · ‖X )which is Chernoff equivalent
to (Tt )t≥0, i.e. F(0) = Id, ‖F(t)‖ ≤ 1 for all t ≥ 0 and there is a set D ⊂ Dom(L),
which is a core for L , such that limt→0

∥∥ F(t)ϕ−ϕ

t − Lϕ
∥∥

X = 0 for each ϕ ∈ D. The

first candidate for being Chernoff equivalent to (T f
t )t≥0 could be the family of oper-

ators (F∗(t))t≥0 given by F∗(t)ϕ := ∫∞
0 F(s)ϕ ηt (ds) for all ϕ ∈ X . However, its

derivative at zero does not coincide with L f on D. Nevertheless, with suitable mod-
ification of (F∗(t))t≥0, Theorem 2.1 and the discussion below Theorem 1.1, the
following has been proved in [23].

Theorem 2.4 Let m : (0,∞) → N0 be a monotone function9 such that m(t) →
+∞ as t → 0. Let the mapping [F(·/m(t))]m(t)ϕ : [0,∞) → X be Bochner mea-
surable as the mapping from ([0,∞),B([0,∞)), η0

t ) to (X,B(X)) for each t > 0
and each ϕ ∈ X.

Case 1: Let (η0
t )t≥0 be the convolution semigroup (supported by [0,∞)) asso-

ciated to the Bernstein function f0 defined by the triplet (0, 0, μ). Assume that the
corresponding operator semigroup (St )t≥0, Stϕ := ϕ ∗ η0

t , is strong Feller.10 Con-
sider the family (F(t))t≥0 of operators on (X, ‖ · ‖X ) defined by F(0) := Id and

F(t)ϕ := e−σ t ◦ F(λt) ◦ F0(t)ϕ, t > 0, ϕ ∈ X, (24)

with F0(0) = Id and11

F0(t)ϕ :=
∞∫

0+
[F(s/m(t))]m(t) ϕ η0

t (ds), t > 0, ϕ ∈ X. (25)

9 One can take, e.g., m(t) := �1/t� = the largest integer n ≤ 1/t . Recall that N0 := N ∪ {0}.
10The semigroup (St )t≥0 is strong Feller iff all the measures η0t admit densities of the class
L1([0,∞)) with respect to the Lebesgue measure (cf. Example 4.8.21 of [40]).
11For any bounded operator B, its zero degree B0 is considered to be the identity operator. For each
t > 0, a non-negative integerm(t) and a bounded Bochner measurablemapping [F(·/m(t))]m(t)ϕ :
[0,∞) → X , the integral in the right hand side of formula (25) is well defined.
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The family (F(t))t≥0 is Chernoff equivalent to the semigroup (T f
t )t≥0, and hence

T f
t ϕ = lim

n→∞
[
F(t/n)

]n
ϕ

for all ϕ ∈ X locally uniformly with respect to t ≥ 0.
Case 2: Assume that the measure μ is bounded. Consider a family (Fμ(t))t≥0 of

operators on (X, ‖ · ‖X ) defined for all ϕ ∈ X and all t ≥ 0 by

Fμ(t)ϕ := e−σ t F(λt)

⎛

⎝ϕ + t

∞∫

0+
(Fm(t)(s/m(t))ϕ − ϕ)μ(ds)

⎞

⎠ .

The family (Fμ(t))t≥0 is Chernoff equivalent to the semigroup (T f
t )t≥0, and hence

T f
t ϕ = lim

n→∞
[
Fμ(t/n)

]n
ϕ

for all ϕ ∈ X locally uniformly with respect to t ≥ 0.

The constructed families (F(t))t≥0 and (Fμ(t))t≥0 can be used (in combination with
the techniques of Sects. 2.1, 2.3, 2.4 and results of [42, 72]), e.g., to approximate
semigroups generated by subordinateFeller diffusions on star graphs andRiemannian
manifolds. Note that the family (24) can be used when the convolution semigroup
(η0

t )t≥0 is known explicitly. This is the case of inverse Gaussian (including 1/2-
stable) subordinator, Gamma subordinator and some others (see, e.g., [11, 18, 30]
for examples).

2.6 Approximation of Solutions of Time-Fractional
Evolution Equations

We are interested now in distributed order time-fractional evolution equations of the
form

Dμ f (t) = L f (t), (26)

where (L ,Dom(L)) is the generator of a C0− contraction semigroup (Tt )t≥0 on
some Banach space (X, ‖ · ‖X ) and Dμ is the distributed order fractional derivative
with respect to the time variable t :

Dμu(t) :=
∫ 1

0

∂β

∂tβ
u(t)μ(dβ), where

∂β

∂tβ
u(t) := 1

�(1 − β)

∫ t

0

u′(r)

(t − r)β
dr,
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μ is a finite Borel measure with suppμ ∈ (0, 1). Equations of such type are called
time-fractional Fokker–Planck–Kolmogorov equations (tfFPK-equations) and arise
in the framework of continuous time random walks and fractional kinetic theory
[35, 49, 51, 73, 79]. As it is shown in papers [38, 39, 50], such tfFPK-equations
are governing equations for stochastic processes which are time-changed Markov
processes, where the time-change (Eμ

t )t≥0 arises as the first hitting time of level
t > 0 (or, equivalently, as the inverse process) for a mixture (Dμ

t )t≥0 of independent
stable subordinators with the mixing measure μ.12 Existence and uniqueness of
solutions of initial and initial-boundary value problems for such tfFPK-equations
are considered, e.g., in [74, 75]. The process (Eμ

t )t≥0 is sometimes called inverse
subordinator. However, note that it is not a Markov process. Nevertheless, (Eμ

t )t≥0

possesses a nice marginal density function pμ(t, x) (with respect to the Lebesgue
measure dx). It has been shown in [38, 50] that the family of linear operators (Tt )t≥0

from X into X given by

Ttϕ :=
∫ ∞

0
Tτ ϕ pμ(t, τ ) dτ, ∀ϕ ∈ X, (27)

is uniformly bounded, strongly continuous, and the function f (t) := Tt f0 is a solu-
tion of the Cauchy problem

Dμ f (t) = L f (t), t > 0,

f (0) = f0. (28)

This result shows that solutions of tfFPK-equations are a kind of subordination of
solutions of the corresponding time-non-fractional evolution equations with respect
to “subordinators” (Eμ

t )t≥0. The non-Markovity of (Eμ
t )t≥0 implies that the family

(Tt )t≥0 is not a semigroup anymore. Hencewe have no chances to construct Chernoff
approximations for (Tt )t≥0. Nevertheless, the following is true (see [22]).

Theorem 2.5 Let the family (F(t))t≥0 of contractions on X be Chernoff equivalent
to (Tt )t≥0. Let f0 ∈ Dom(L). Let the mapping F(·) f0 : [0,∞) → X be Bochner
measurable as a mapping from ([0,∞),B([0,∞)), dx) to (X,B(X)). Let μ be a
finite Borel measure with suppμ ∈ (0, 1) and the family (Tt )t≥0 be given by for-
mula (27). Let f : [0,∞) → X be defined via f (t) := Tt f0. For each n ∈ N define
the mappings fn : [0,∞) → X by

fn(t) :=
∫ ∞

0
Fn(τ/n) f0 pμ(t, τ ) dτ. (29)

Then it holds locally uniformly with respect to t ≥ 0 that

‖ fn(t) − f (t)‖X → 0, n → ∞.

12Hence (Dμ
t )t≥0 is a subordinator corresponding to the Bernstein function f μ(s) := ∫ 10 sβμ(dβ),

s > 0, and Eμ
t := inf

{
τ ≥ 0 : Dμ

τ > t
}
.
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Of course, similar approximations are valid also in the case of “ordinary subordi-
nation” (by a Lévy subordinator) considered in Sect. 2.5. Note also that there exist
different Feynman-Kac formulae for the Cauchy problem (28). In particular, the
function

f (t, x) := E
[

f0
(
ξ
(
Eμ

t

)) | ξ(Eμ
0 ) = x

]
, (30)

where (ξt )t≥0 is a Markov process with generator L , solves the Cauchy problem (28)
(cf. Theorem 3.6 in [38], see also [75]). Furthermore, the considered equations (with
μ = δβ0 , β0 ∈ (0, 1)) are related to some time-non-fractional evolution equations of
higher order (see, e.g., [4, 59]). Therefore, the approximations fn constructed in
Theorem 2.5 can be used simultaneously to approximate path integrals appearing in
different stochastic representations of the same function f (t, x) and to approximate
solutions of corresponding time-non-fractional evolution equations of higher order.

Example 2.4 Let μ = δ1/2, i.e. Dμ is the Caputo derivative of 1/2-th order and
(E1/2

t )t≥0 is a 1/2-stable inverse subordinator whose marginal probability density is

known explicitly: p1/2(t, τ ) = 1√
π t

e− τ2

4t . Let X = C∞(Rd) and (L ,Dom(L)) be the
Feller generator given by (6). Let all the assumptions of Theorem 2.2 be fulfilled.
Hencewe can use the family (F(t))t≥0 given by (10) (or by (12) if N ≡ 0). Therefore,
by Theorem 2.2 and Theorem 2.5, the following Feynman formula solves the Cauchy
problem (28):

f (t, x0) = lim
n→∞

∞∫

0

∫

Rd

. . .

∫

Rd

1√
π t

e− τ2

4t ϕ(xn) ν
xn−1
τ/n (dxn) · · · νx0

τ/n(dx1)dτ.

2.7 Chernoff Approximations for Schrödinger Groups

Case 1: PDOs. In Sect. 2.2, we have used the technique of pseudo-differential oper-
ators (PDOs). Namely, (with a slight modification of notations) we have considered
operator semigroups (e−t Ĥ )t≥0 generated by PDOs −Ĥ with symbols −H (see for-
mula (7)). We have approximated semigroups via families of PDOs (F(t))t≥0 with

symbols e−t H , i.e. F(t) = ê−t H . Note again that e−t Ĥ �= ê−t H in general. It was
established in Theorem 2.2 that

e−t Ĥ = lim
n→∞

[
ê−t H/n

]n
(31)

for a class of symbols H given by (8). The same approach can be used to construct
Chernoff approximations for Schrödinger groups (e−i t Ĥ )t∈R describing quantum
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evolution of systems obtained by a quantization of classical systems with Hamilton
functions H . Namely, it holds under certain conditions

e−i t Ĥ = lim
n→∞

[
ê−i t H/n

]n
. (32)

On a heuristic level, such approximations have been considered already in works [7,
8]. A rigorous mathematical treatment and some conditions, when (32) holds, can
be found in [70]. Note that right hand sides of both (31) and (32) can be interpreted
as phase space Feynman path integrals [7, 8, 12, 25, 70].

Case 2: “rotation”. Another approach to construct Chernoff approximations
for Schrödinger groups (eit L)t∈R is based on a kind of “rotation” of families
(F(t))t≥0 which are Chernoff equivalent to semigroups (et L)t≥0 (see [62]). Namely,
let (L ,Dom(L)) be a self-adjoint operator in a Hilbert space X which generates
a C0−semigroup (et L)t≥0 on X . Let a family (F(t))t≥0 be Chernoff equivalent13

to (et L)t≥0. Let the operators F(t) be self-adjoint for all t ≥ 0. Then the family
(F∗(t))t≥0,

F∗(t) := ei(F(t)−Id),

is Chernoff equivalent to the Schrödinger (semi)group (eit L)t≥0. Indeed, F∗(0) = Id,
‖F∗(t)‖ ≤ 1 since all F∗(t) are unitary operators, and (F∗)′(0) = i F ′(0). Hence the
following Chernoff approximation holds

eit Lϕ = lim
n→∞ ein(F(t/n)−Id)ϕ, ∀ ϕ ∈ X. (33)

Since all F(t) are bounded operators, one can calculate ein(F(t/n)−Id) via Taylor
expansion or via formula (4). Let us illustrate this approach with the following
example.

Example 2.5 Consider the function H given by (8), Assume that H does not depend
on x , i.e. H = H(p), and H is real-valued (hence B ≡ 0 and N (dy) is symmetric).
Such symbols H correspond to symmetric Lévy processes. It is well-known14 that
the closure (L ,Dom(L)) of (−Ĥ , C∞

c (Rd)) generates a C0− semigroup (Tt )t≥0 on
L2(Rd); operators Tt are self-adjoint and coincide with operators F(t) given in (9),

i.e. Tt = ê−t H on C∞
c (Rd). Therefore, the Chernoff approximation (33) holds for the

Schrödinger (semi)group (eit L)t≥0 resolving the Cauchy problem

−i
∂ f

∂t
(t, x) = L f (t, x), f (0, x) = f0(x)

13Actually, (F(t))t≥0 does not need to fulfill the condition (ii) of the Chernoff Theorem 1.1 in this
construction.
14See, e.g., Example 4.7.28 in [40].
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in L2(Rd) with L being the generator of a symmetric Lévy process. Note that this
class of generators contains symmetric differential operators with constant coef-
ficients (with H(p) = C + i B · p + p · Ap), fractional Laplacians (with H(p) :=
|p|α , α ∈ (0, 2)) and relativistic Hamiltonians (with H(p) := α

√|p|α + m, m > 0,
α ∈ (0, 2]). Assume additionally that H ∈ C∞(Rd). Then F(t) : S(Rd) → S(Rd)
and it holds on S(Rd) (withF andF−1 being Fourier and inverse Fourier transforms
respectively):

F(t) = F−1 ◦ e−t H ◦ F; in(F(t/n) − Id) = F−1 ◦
(

in
(

e−t H/n − 1
))

◦ F;
[
F∗(t/n)

]n = ein(F(t/n)−Id) =
∞∑

k=0

1

k!
(
F−1 ◦

(
in
(

e−t H/n − 1
))

◦ F
)k

= F−1 ◦
[ ∞∑

k=0

1

k!
(

in
(

e−t H/n − 1
)k
)]

◦ F = F−1 ◦ exp
{

in
(

e−t H/n − 1
)}

◦ F .

Therefore, [F∗(t/n)]n is a PDOwith symbol exp
{
in
(
e−t H/n − 1

)}
on S(Rd). Hence

we have obtained the following representation for the Schrödinger (semi)group
(eit L)t≥0:

eit Lϕ(x) = lim
n→∞(2π)−d

∫

Rd

∫

Rd

eip·(x−q) exp
{
in
(
e−t H(p)/n − 1

)}
ϕ(q) dqdp, (34)

for all ϕ ∈ S(Rd) and all x ∈ R
d . The convergence in (34) is in L2(Rd) and is locally

uniform with respect to t ≥ 0.

Case 3: shifts and averaging. One more approach to construct Chernoff approx-
imations for semigroups and Schrödinger groups generated by differential and
pseudo-differential operators is based on shift operators (see [63, 64]), averaging
(see [10, 57]) and their combination (see [9, 10]). Let us demonstrate this method by
means of simplest examples. So, consider X = C∞(R) or X = L p(R), p ∈ [1,∞).
Consider (L ,Dom(L)) in X being the closure of (�, S(R)). Let (Tt )t≥0 be the cor-
responding C0-semigroup on X . Consider the family of shift operators (St )t≥0,

Stϕ(x) := 1

2

(
ϕ(x + √

t) + ϕ(x − √
t)
)
, ∀ ϕ ∈ X, x ∈ R. (35)

Then all St are bounded linear operators on X , ‖St‖ ≤ 1 and for all ϕ ∈ S(R) holds
(via Taylor expansion):

Stϕ(x) − ϕ(x) = 1

2

(
ϕ(x + √

t) − ϕ(x)
)+ 1

2

(
ϕ(x − √

t) − ϕ(x)
)

= 1

2

(√
tϕ′(x) + 1

2
tϕ′′(x) + o(t)

)
+ 1

2

(
−√

tϕ′(x) + 1

2
tϕ′′(x) + o(t)

)

= tϕ′′(x) + o(t) = Lϕ(x) + o(t).
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Moreover, it holds that limt→0 ‖t−1(Stϕ − ϕ) − Lϕ‖X = 0 for all ϕ ∈ S(Rd). Hence
the family (St )t≥0 is Chernoff equivalent to the heat semigroup (1) on X . Extending
(St )t≥0 to the d−dimensional case and applying the “rotation” techniques in X =
L2(Rd), one obtains Chernoff approximation for the Schrödinger group (eit�)t≥0

[64]. Further, one can apply the techniques of Sects. 2.1–2.5, to construct Chernoff
approximations for Schrödinger groups generated by more complicated differential
and pseudo-differential operators.

Let us now combine this techniques with averaging. Averaging is an extension
of the classical Daletsky-Lie-Trotter formula (see Sect. 2.1) for the case when the
generator (L ,Dom(L)) in a Banach space X is not just a finite sumof linear operators
Lk , but an integral:

L :=
∫

E
Lεdμ(ε), (36)

where E is a set and μ is a suitable probability measure on (a σ -algebra of subsets
of) E , and Lε are linear operators in X for all ε ∈ E . It turns out that (under suitable
assumptions, see [10, 57]) the family (F(t))t≥0,

F(t)ϕ :=
∫

E
et Lεϕ dμ(ε), ϕ ∈ X,

is Chernoff equivalent to the semigroup (et L)t≥0 on X . Moreover, it is easy to see
that the following generalization of Theorem 2.1 holds.

Theorem 2.6 Let (Tt )t≥0 be a strongly continuous semigroup on a Banach space
X with generator (L ,Dom(L)). Let D be a core for L. Let μ be a probability
measure on a (measurable) space E . Let the representation (36) holds on D with
some linear operators (Lε)ε∈E in X. Let (Fε(t))t≥0, ε ∈ E , be families of bounded
linear operators on X such that Fε(0) = Id for each ε ∈ E; ‖Fε(t)‖ ≤ eat for some
a ≥ 0, all t ≥ 0 and all ε ∈ E; and for each ϕ ∈ D holds

lim
t→0

sup
ε∈E

∥∥∥∥
Fε(t)ϕ − ϕ

t
− Lεϕ

∥∥∥∥
X

= 0.

Then the family (F(t))t≥0 of bounded linear operators F(t) on X, with

F(t)ϕ :=
∫

E
Fε(t)ϕ dμ(ε), ϕ ∈ X,

is Chernoff equivalent to the semigroup (T (t))t≥0.

Let us now combine the techniques of shifts and averaging in the following
way. Consider X = C∞(Rd) or X = L p(Rd), p ∈ [1,∞). We generalize the family
(St )t≥0 of (35) to the following family (Uμ(t))t≥0: consider the family (Sε(t))t≥0,
Sε(t)ϕ(x) := ϕ(x + √

tε) for all ϕ ∈ X and for a fixed ε ∈ R
d ; define the family

(Uμ(t))t≥0 by
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Uμ(t)ϕ(x) :=
∫

Rd

Sε(t)ϕ(x) dμ(ε) ≡
∫

Rd

ϕ(x + ε
√

t) dμ(ε).

Assume that μ is a symmetric measure with finite (mixed) moments up to the third
order and positive second moments a j := ∫

Rd ε2jμ(dε) > 0, j = 1, . . . , d. Then
one can show that the family (Uμ(t))t≥0 is Chernoff equivalent to the heat semi-
group (et�A)t≥0, where �A := 1

2

∑d
j=1 a j

∂2

∂x2
j
. Substituting (Sε(t))t≥0 by the family

(Sσ
ε (t))t≥0, Sσ

ε (t)ϕ(x) := ϕ(x + εtσ ), for some suitable σ > 0, and choosing proper
measures μ, one can construct analogous Chernoff approximations for semigroups
generated by fractional Laplacians and relativistic Hamiltonians. This approach can
be further generalized by considering pseudomeasures μ, what leads to Chernoff
approximations for Schrödinger groups.
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