
Microservices Management
on Cloud/Edge Environments

André Carrusca, Maria Cećılia Gomes(B), and João Leitão

NOVA LINCS & DI/FCT/UNL, Costa da Caparica, Portugal
a.carrusca@campus.fct.unl.pt, {mcg,jcleitao}@fct.unl.pt

Abstract. The microservices architecture is a promising approach for
application development, deployment, and evolution, both on cloud
and emerging fog/edge platforms. Microservices’ single functionality,
small size, and independent development/deployment support faster and
cheaper scaling of pressing functionalities on cloud systems. They sup-
port applications’ evolution via service reuse and smooth service mod-
ification/inclusion. Individual or sets of inter-related services may also
be dynamically deployed onto resource-restricted nodes closer to end
devices and data sources, which are typical of fog/edge computational
platforms. The resulting system is very complex and impossible to be
adequately managed manually. This work presents an automatic solu-
tion for microservices’ deployment/replication in the fog/edge, adapting
the system according to the runtime evaluation of client accesses and
resource usage. The evaluation validates the adaptability and perfor-
mance gains.

Keywords: Microservices architecture · Cloud and fog/edge
computing · Self-adaptable applications

1 Introduction

The microservices architecture [7,10] presents several advantages for application
development, deployment and evolution, in the accelerating omnipresent and
omniscient digital world. Traditional monolithic architectures represent a single
large application composed of tightly interdependent and non reusable compo-
nents. In contrast, microservices applications combine small, single functional-
ity, loosely coupled services, to implement more complex functionalities. Each
microservice accesses its own private database, displays a well defined API, and
may communicate with others directly (e.g. via RPC/REST protocols) or indi-
rectly (e.g. via messaging/event systems). This allows their independent devel-
opment with diverse technologies and their individual scaling, simplifying appli-
cations’ reliability and continuous delivery responding to new requirements [1].

The constant need for evolving systems is intensified by the surge of both
mobile and Internet of Things (IoT)/terminal devices, e.g. in the domain of

c© Springer Nature Switzerland AG 2020
S. Yangui et al. (Eds.): ICSOC 2019 Workshops, LNCS 12019, pp. 95–108, 2020.
https://doi.org/10.1007/978-3-030-45989-5_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-45989-5_8&domain=pdf
https://doi.org/10.1007/978-3-030-45989-5_8

96 A. Carrusca et al.

Smart Cities/Health [27]. Traditionally, these types of applications are sup-
ported by services running on cloud platforms [20]. Yet such high number of
client devices produce a large number of requests towards the backend services
and generate huge amounts of data, requiring novel solutions adaptable to sys-
tems’ evolution. Many of these services correspond to bandwidth intensive and
increasingly popular applications like video-on-demand, streaming, or real time
TV [3]. Also, the predicted huge number of IoT devices [9] will collect data
needing to be mined and analysed (e.g. sensors dispersed over wide areas) and
often with time restrictions (e.g. drone applications). It is so necessary to avoid
latency degradation and guarantee the applications’ QoS.

Hybrid Cloud/Edge Computing. Emerging solutions capitalise on the micro-
services architecture both as cloud-native applications [17] and applications dis-
tributed on novel hybrid cloud/edge platforms [32]. Applications rely on ser-
vices in cloud computing [24] providing ubiquitous and on-demand access to
shared resources perceived as unlimited (e.g. computational, storage, and net-
work resources). Novel solutions capitalise on lighter, faster, and cheaper scal-
ing of microservices in the cloud to support applications’ variable geographical
accesses and incremental evolution. This is the case of interactive applications with
constant updates and performance/availability constraints [2,21]. Novel solutions
also may capitalise on cloud technologies’ expansion to the periphery of the net-
work. Namely, edge/fog computing [18,34,37] represent the usage of diverse het-
erogeneous computational resources on the continuum from the cloud datacen-
ters to end devices. The resources range from routers, base stations, to micro-
datacenters/cloudlets. The result is a computational platform of highly hetero-
geneous nodes, geographically dispersed at large numbers, closer to end users
and data sources, and that typically present reduce computational capabilities
in comparison to cloud datacenters [3,6,8]. The microservices architecture is also
adequate to exploit such capability restricted nodes since small services may be
migrated/replicated in a faster way, according to user/application needs. This
allows reducing the latency on accessing services, lowering the amount of data on
transit in the communication infra-structure (e.g. by filtering/pre-processing data
closer to data sources) and exploring an adequate usage of the computational infra-
structure.

Problem and Goals. Computing in heterogeneous platforms composed by
cloud nodes and a large number of highly heterogeneous edge resources presents
several challenges for application development and management [19,35]. Also,
microservices applications are composed of a large number of services (and
their replicas), each one with diverse functionalities, possibly a database, and
diverse hardware/software needs. Services may have different levels of interaction
(e.g. frequent/sporadic invocation of other services depending on the workload),
which aggravates the overall management and debugging [11]. The services may
have to be upscale and their databases replicated to improve the applications’
performance and energy efficiency. In this setting, examples of challenges are
adequate and flexible resource management solutions with service location/de-
ployment depending on the origin/volume of user accesses and on the computing

Microservices Management on Cloud/Edge Environments 97

nodes’ total/current resources and their cost; eventual dynamic migration/repli-
cation of microservices’ databases following services’ replicas; service coordina-
tion in a distributed context; the guarantee of security and privacy issues; etc.

Due to such management complexity, our long-term goal is to build an auto-
nomic solution [14,18,28] for these systems. We envision a self-management solu-
tion composed of three dimensions for decoupled functionality/management:

(a) a service management component, discussed here, to deploy and scale
individual and inter-related services (e.g. necessary for a particular
functionality);

(b) a database management component responsible for the dynamic replication
of microservices’ databases whose replica instances may be widely dispersed;

(c) a monitoring component responsible for observing services (e.g. load/
location of accesses) and infrastructure nodes (e.g. current consumed
resources) and timely providing the necessary information to the other two
components.

Each dimension is self-adaptable on fulfilling its objective and cooperates with
the other two towards establishing a global self-managing solution. The database
component guarantees the consistency model of (the existing/newer replicas of)
a particular microservice’s database. The monitoring component flexibly collects
and delivers a variable set of metricas with diverse time intervals and without
incurring unaffordable overheads over the infrastructure’s nodes and network.

Whereas we have already presented solutions advancing the database and
monitoring dimensions, this work presents an automatic solution for microservice
migration/replication contributing to a self-adaptable service management and,
in the future, to an autonomic solution able to learn from applications’ evolution
and previous decisions and to predict adaptation requirements.

Document Organisation. The following section describes the proposed solu-
tion and it is followed by Sect. 3 that discusses the implementation and evalua-
tion results. Section 4 presents the related work and Sect. 5 concludes the paper.

2 Proposed Solution

We present an automatic management approach for node allocation and service
migration/replication within the emergent cloud/edge platforms. The objective
is to improve the application’s performance and the clients’ perceived latency,
and to adequately operate the infra-structure’s resources. This in spite of the
system’s inherent complexity and dynamics both in terms of the infra-structure
volatility (with failing/new nodes) and the dynamic application requirements.
Namely, many cloud applications experience a high variability of accesses, and
other applications rely on the large volumes of data generated from end devices
at diverse locations, at variable times.

To respond to such variability, we propose a self-adaptable mechanism with
a decision process based on an modifiable set of user defined constraints and

98 A. Carrusca et al.

μService A
#1

μService B
#1

μService C
#1

Monitoring

μServices
Manag.

μService A
#2

μService C
#2

Monitoring

Cloud

Edge Node

μService B
#2

Monitoring

Edge Node

Fig. 1. A simplified view of the solution.

rules. The system’s state is continuously monitored within an evaluation/deci-
sion feed-back loop, typical of self-adaptable systems [30] and autonomic systems
[28]. At each iteration it evaluates (a) which services should be migrated or repli-
cated, when, and to where, or be otherwise eliminated; and (b) which nodes need
to be dynamically created/activated or eliminated, from a computational plat-
form providing virtual nodes. The decisions in the loop are tuned to improve
the applications’ performance while avoiding possible system’s destabilisations
caused by too frequent updates. This means that some evaluations have to be
confirmed in a few consecutive iterations before the corresponding decisions are
applied. Figure 1 presents a simplified version of the solution’s architecture with
microservices’ replicas deployed at the cloud and two edge nodes. A single (cen-
tralised) microservices management component, uServices Manag., is located at
the cloud and communicates with the monitoring components, one at each edge
node. These are responsible to collect the relevant services’ and nodes’ metrics.
In the continuous feedback loop, the uServices Manag. decides upon service scal-
ability level and location, and the number and location of computational nodes.

2.1 The Architecture Components and Their Operation

The main architecture components in Fig. 1 include microservices (uServices)
and their replicas, computational nodes in the cloud/edge, and the service man-
agement component and associated components e.g. a monitoring component.
The uServices (typed as frontend/backend) and their interactions comprise the
user application to be optimised. Each uService instance is placed in a container
for its faster/lighter deployment on the nodes [26,29]. Each node is a virtual
machine (VM), a basic resource management unit in cloud providers, where one
or more containers may be deployed to [20]. The monitoring component collects
the relevant service/node metrics as required by the service manager. The latter
needs also the pre-configuration of services’ and nodes’ execution requirements,
and the specification of the constraints/decision rules that guide the decision

Microservices Management on Cloud/Edge Environments 99

process. The manager allows pre-scheduled events and relies on the service reg-
istry and load balancing components/patterns [29]. All this is described next.

Specification of Execution Requirements for Microservices and Nodes.
Types of information specification for services:

– First execution: service type (frontend/backend, database); service image
repository; service access ports; start command (e.g. parameter’s initialization
values); services’ dependencies (e.g. service communication).

– Operational: running service’s lowest/highest number of replicas; parameters/
metrics limits for a replica’s correct operation (e.g. minimum RAM).

– Monitoring: service latency; service access (number and source of accesses);
bandwidth; service’s used resources (CPU, RAM, ...).

Information requirements for cloud/edge nodes:

– Operating data requirements: parameters/metrics constraints (e.g. RAM);
location information for edge nodes (from continent to city);

– Monitoring data:used resources (CPU, RAM, ...), and bandwidth.

Decision Process. To perform decisions, the microservices manager uses a rule
mechanism with Event Condition Action (ECA) rules [13,22]. Each rule encodes
the conditions and the consequent actions to be performed, accepts multiple
values (parameters) representing the current state of the system, and may have
a priority level. The rules express the set of constraints on services and nodes, and
the modification operations. A rules engine (see Sect. 3) performs their evaluation
in the analysis phase of the adaptation feedback loop based on the current system
state captured by the monitoring phase (Fig. 2b and Sect. 2.2).

Rules Related with Services and Their Replicas: The parameters may include
%CPU, %RAM, transferred bytes, etc., and the actions are replicate, migrate,
stop, nothing. Rules capture situations such as (i) if the argument values exceed
the ones expressed in the rules, a service needs to be replicated or migrated;
(ii) if the arguments are less than the defined minimum, a replica is marked
to be removed; (iii) nothing is done, otherwise. The priority level of the fired
rules define the final decision. For instance, the service replication/migration
rules may privilege a (closer) edge node than the cloud for placing a replica.
Nonetheless, the new replica is always located in the cloud in case no edge node
is available.

Rules Associated with Nodes: The parameters are %CPU, %RAM, and the
actions are add, stop, nothing. The rules encode (i) a node’s creation, if the
containers’ execution resources are scarce; (ii) a node’s removal, if its resources
are underutilised; (iii) nothing is done, otherwise. A node’s placement onto the
edge vs cloud may also have a priority. In case an edge node’s creation/acti-
vation is not possible, the node is allocated from the cloud’s resources seen as
unlimited.

100 A. Carrusca et al.

To allow a more precise tuning of the adaptation actions in response to the
current system state, both service and edge rules allow diverse parameter config-
urations: precise/effective parameter value, uses exactly the read value of a par-
ticular metric; average value, the evaluation process considers the average value
of a set of particular metrics; mean deviation percentage, considers the deviation
percentage of the current value in comparison to a given metric’s average; last
value deviation percentage, considers the current value’s deviation percentage in
relation to a specific metric’s last read value. Event Scheduling: The definition
of pre-scheduled events aims to improve the overall system performance by allo-
cating a set of resources at some particular places and times. E.g., increasing
the minimum number of replicas needed for a popular social network applica-
tion expected to have high access volumes, at the time and place of a particular
football game or pop music concert. Similarly, a pre-scheduled reduction of no
longer needed resources is also possible.

Service Manager’s Necessary Components and Functionalities. To
dynamically create/destroy nodes and migrate/replicate microservices, the ser-
vice manager relies on a few external components to support its operation:

– Container manager, to detect nodes’ and services’ failures and support the
creation of services and nodes whereto services may be deployed (see Sect. 3).

– Monitoring component, to collect fresh metrics from services/nodes defin-
ing the system state, allowing its evaluation and necessary adjustments (see
Sect. 3).

– Service registry, to record new services and replicas, including their location.
When a service is created, replicated/moved, it has to be reachable/com-
municate with other services. This demands a more general communication
process than a point-to-point one, which includes a Register and discover
services component to bridge individual microservices’ interaction.

– Load balancer, to adequately distribute service accesses to existing replicas
deployed at diverse locations, improving the system’s performance/efficiency.

Service Communication: The components Service Registry and Register and dis-
cover services, shown in Fig. 2a, support communication decoupling and some
level of inter-service load balancing. The communication from a uService A to
uService B is based on the target’s type/name (i.e. B) and not on a fixed commu-
nication endpoint. This is fundamental to carry out service migration or replica
selection, e.g. to access a uService B’s replica located on the same node as A.

The Service Registry extends the service registry pattern [29] to support
migration and replication. It allows service registration and discovery by service
name/type via the organisation of running services’ endpoints according to ser-
vice type. It also stores the location of services and their replicas, and if they
are active. Whenever a microservice is migrated or replicated, the registry has
to be notified to update the service’s information. The registry is deployed in its
own container and can be replicated to enable faster queries.

The Register and discover services component is essential to microser-
vices’ migration/replication and supports basic load balancing towards backend

Microservices Management on Cloud/Edge Environments 101

e-μService A

e-μService B

Service
Registry

Register and
discover
services1

4

5

2

3

μService A

(a)

1 2

3 4 34

21

Monitoring:
Metrics scraping
of replicas.

Analysis:
Rules’ application and
decision per individual
replica of a service

Planning:
Per service
action definition

Execution:
Per service
action enactment
(API invocation)

(b)

Fig. 2. (a) Service communication via the Register and discover services subcomponent
and the Service Registry component. (b) Service reconfiguration; adapted from [14].

services. It has some contact points to the function of sidecars in the recent
service mesh pattern [29], since it is coupled to a particular microservice to
bridge its accesses. Namely, to support the use of the Service Registry features
described above, each microservice in the adaptability system has to exist within
an extended microservice wrapper container that also includes a Register and dis-
cover services component. For instance, in Fig. 2a, the e-uService A contains the
uService A and a Register and discover services component. This latter compo-
nent has the following functionalities: (a) registers its microservice creation/dele-
tion in the service registry and updates the registry periodically to inform that
the service is still active; (b) queries the endpoints of other services taking into
account the location of its service, and in case of several equal possibilities (e.g.
same edge node) chooses one endpoint at random, e.g. service A may access a
local replica of B. The numbers in Fig. 2a illustrates the process when uService
A wants to communicate with a service named B: to obtain an endpoint for B,
A contacts the Register and discover services (1); the latter requests the (all
possible) endpoint(s) from the Service Registry (2, 3), selects the best endpoint
and sends it microservice A (4) that uses it to communicate with B (5).

Load Balancing Service Requests: The Load Balancer component distributes
client requests towards a microservice’s replicas to adjust their load. Clients
access a load balancer preferably in their own region and only the calls to a
frontend microservice are balanced. Yet the load balancer can be replicated to
the same regions as the frontend replicas to level the load at each location. All
load balancers’ replicas have access to all service replicas regardless their loca-
tion, allowing them to redirect accesses when a region has no replicas or the
local ones are overloaded. Figure 3a represents an extended microservice e-uS A
with a single replica and a single load balancer in the cloud. Figure 3b shows a
scenario with the e-uS A and the load balancer replicated in two regions. The
Load Balancer #1 serves the clients in the USA and gives priority to the e-uS
A replicas #1 and #2 in the same region. However, it redirects the requests

102 A. Carrusca et al.

to the replica #3 located at an edge node, in case the first two microservices
become overloaded. The replica selection algorithm uses (i) the Least Connec-
tions method and (ii) a weight assigned to each replica to privilege replicas in
the same region/location as the load balancer. The choice was tuned based on
the number of each replica’s active connections and its weight, to access less
loaded replicas but also to reduce clients’ communication with remote replicas.
E.g. the closest replica may still be chosen if its connections’ number is just
slightly higher than a farther one.

2.2 Adaptation Process and Migration/Replication Scenarios

To respond to services’ and nodes’ overload and comply to the applications’ QoS
requirements, the adaptation process uses migration and horizontal scalability
of services/nodes for the system’s dynamic reconfiguration, instead of vertical
scalability (increase a VM’s capacity). The creation of multiple service/node
replicas allows a simpler and faster management process, e.g. replicating a pre-
existing service with the same resources, and, above all, supports large-scale
scalability via replica deployment onto geographically dispersed edges devices.

Clients (London)

Load
Balancer

#1

US, North Virginia

e-μS A
#1

(a)

Load
Balancer

#2

Clients (London)

e-μS A
#2

Load
Balancer

#1

Clients (US, Portland)

Edge (London)US, North Virginia

e-μS A
#3

e-μS A
#1

(b)

Fig. 3. Function of the load balancer: (a) cloud only, (b) replicas in cloud/edge.

The adaptation process consists of a four stage feedback loop inspired on
[14,30], as shown in Fig. 2b for service management (similar for nodes): (i) ser-
vice replicas’ monitoring, to collect relevant metrics (e.g. data transfer, CPU
usage); (ii) analysis per service replica, to evaluate the action to apply to each
particular service (e.g. migrate or replicate/eliminate if overloaded/underused);
(iii) planning for all services, considers the overall system state to decide the
action for each service; (iv) plan’s execution. The system follows a set of rules like
previously discussed and that may be configured by the application administra-
tor. To avoid a constant system reconfiguration causing its instability, a problem
well known in self-adaptability, there is a time gap between the first indication

Microservices Management on Cloud/Edge Environments 103

for reconfiguration and its effective execution. For instance, the indication to
remove a edge node has to be confirmed in three consecutive loop cycles before
the node is effectively deactivated. This allows that in case of sudden changes in
nearby client accesses meanwhile, the decision may be to keep the node active.

The migration of microservices to respond to local latency variations diverges
from the usual meaning within the cloud domain (e.g. migration of VMs). The
migration process is based on replication to keep the service available but also in
a way to promote further flexibility depending on the perceived ongoing changes
in the system state. Its steps may be: 1. create a local replica of an overloaded
service; 2. eventually move the replica to e.g. a edge node with higher service
accesses, in the next loop cycles; 3. eliminate the original service if underused in
the next cycles, e.g. all client requests are now better served by the replica at the
edge. Although taking a few (parametrisable) iteration cycles of the adaptation
loop, the service eventually migrates to a new location.

Discussion on the Adaptation Solution and Scenarios. Microservices applications
executing on Cloud/edge systems have to deal with [11] inter-service communica-
tions and dependencies that may cause network overheads and a cascade of QoS
violations; microservices’ diversity, with different bottlenecks that may change
as the load increases; or cloud applications’ latency variability. When considering
live migration/replication of microservices, an adequate decision on which ones
to migrate/replicate, when, and where to, becomes even more pressing to guar-
antee a good application QoS and efficient resource usage. Our solution, via its
self-adaptable management with a gradual replication/reduction of nodes/ser-
vices according to the ongoing system modification expressed via diverse met-
rics/conditions in rules, aims to address the concerns above. Our system detects
when services/nodes exceed some resources’ threshold and need to be replicated

API

UI

Database

Containers
Metrics

Docker connector

Nodes reconfiguration
process

Containers reconfiguration
process

Rules Service

Nodes Metrics

Nodes Management

AWS Edge Nodes

Apps

Services

Service Events
Prediction

Rules

Nodes

Containers

depends on

(a) (b)

Fig. 4. (a) Detailed view of the uS management component. (b) Node architecture.

104 A. Carrusca et al.

and decides where to based on the collected metrics. A service may so move
to an edge node closer to a high number of clients to reduce their perceived
access time and the communication traffic. In case the service performs some
additional local data filtering, the data on transit volume may be reduced even
further, and if it has predictable peak loads its resources can be provisioned a
priori. The decision process also has to assess the type of metrics underlying
the decisions, if the service has a database which impacts transfer costs, or if
there are dependencies between services. For instance, the evaluation in section
Sect. 3 focus on a frontend service communicating frequently with a backend
catalog service upon clients’ accesses. When the clients view the full catalog the
whole database is transferred. The migration/replication of both services to a
nearby edge node reduces hence the communication traffic.

3 Prototype and Evaluation

The service management’s modules are detailed in Fig. 4a1: User Interface (UI),
APIs for e.g. container/node/service creation, rules definition, etc.; Docker con-
tainer manager, e.g. to start/stop containers and resource usage data; Rules
module, an engine for ECA rules’ management e.g. creation/deletion and anal-
yses i.e. which rules to trigger based on current nodes’ and services’ metrics;
the application administrator uses the UI to manage ECA rules, e.g. defining a
rule’s triggering conditions and affected entities (services or nodes); Node man-
agement, integrates the management for cloud (in AWS) and edge nodes, e.g
creates/suspends VMs, and uses the node metrics module (Prometheus) to get
each node’s resource usage; reconfiguration process, it is subdivided into contain-
ers and nodes, and periodically decides the actions to perform on services/nodes.

Figure 4b shows the necessary management components to support service
deployment in a node. A node is a VM that is created in the context of a cloud
platform or fog/edge device, and a set of nodes forms a cluster for service deploy-
ment. Docker manages the node’s containers, e.g. identifies a container’s resource
usage (CPU, RAM) and failures. The Node exporter (from Prometheus) collects
the node’s resource usage (CPU/RAM), e.g. to know if is possible to deploy
another service. The components that support microservices, i.e. the load bal-
ancers and the service registry, are only present in some nodes, which is decided
by the system. Finally, the uS are encapsulated into extended uS (Sect. 2.1).

Evaluation. To allocate VMs from data centers in different regions we used
the EC2 service from AWS. The evaluation setting for service deployment on
the cloud uses nodes in North Virginia, US, with clients in London (Fig. 3a).
The setting for cloud/edge execution uses the same cloud region with users in
Portland, and edge nodes and clients in London, UK (Fig. 3b). The load tests use

1 Sw used: uS management, Java/Spring Boot; UI, JavaScript library React; container
manager, https://www.docker.com; rules engine, https://www.drools.org/; moni-
toring, https://prometheus.io; AWS cloud, https://aws.amazon.com; Load tests,
https://docs.k6.io/docs & https://loadimpact.com/insights/; Sock shop https://
microservices-demo.github.io/.

https://www.docker.com
https://www.drools.org/
https://prometheus.io
https://aws.amazon.com
https://docs.k6.io/docs
https://loadimpact.com/insights/
https://microservices-demo.github.io/
https://microservices-demo.github.io/

Microservices Management on Cloud/Edge Environments 105

9.2
2.6

57.4

27.9 31.7

11.6

120

60.4

0

20

40

60

80

100

120

Without replication With replication (cloud)

Ti
m

e
(s

) Average response time

Maximum response time

Group duration (average)

Group duration (maximum)

Frontend: 5 replicas
Catalogue: 5 replicas

Frontend: 1 replica
Catalogue: 1 replica

(a)

2.6 0.5

27.9

9
11.6

4.5

60.4

31

0

10

20

30

40

50

60

With replication (cloud) With replication (cloud/edge)

Ti
m

e
(s

)

(b)

Fig. 5. (a) Cloud execution results without (left) and with replication (right). (b)
Comparison of cloud only (left) and cloud/edge (right) replication; clients in London.

uS FE Catalog Cat DB

Transf B 155 MB 66 MB 124 MB

Disk B 260 MB 103 MB 371 MB

Transf T 7 s 3 s 11 s

Init T 15 s 7 s 16 s

Total T 22 s 10 s 27 s

(a)

12:32
Nov 3, 2018

12:34 12:36 12:38 12:40 12:42 12:44 12:46 12:48 12:50

0

1

2

3

4

5

6

Frontend replics (units) Catalogue replics (units)

time

re
pl

ic
s

Start replic
(London)

Start replic
 (London)

Start replic
 (US)

Start replic
 (London)

Stop replic
 (US)

Stop replic
 (US)

Stop replic
(London)

Stop replic
 (London)

First replic
 (US)

First replic
 (US)

Start replic
 (US)

Start replic
 (London)

Start replic
 (London)

Start replic
 (London)

Start replic
 (US)

Stop replic
 (London)

Stop replic
 (London)

Stop replic
 (US)

Stop replic
 (London)

Stop replic
 (London)

(b)

Fig. 6. (a) Microservices’ replication costs. (b) Catalog test cloud/edge replica
variation.

the Weaveworks’ Sock Shop demo composed of one front end (FE) microservice
that communicates with seven back end microservices. One is the Catalog service
managing the socks’ catalog data and images stored in its database. The test for
the Catalog access to retrieve the products’ data is an example of inter-service
dependency (the test targeting Login and Registration had similar results [4]).
When a user communicates with the FE service, it contacts the Catalog service
which responds with the required data (metadata or the full socks’ database).
The FE then resends this data to the user. The evaluation points were (a) the
application’s response times; (b) the replication mechanism, i.e. the replicas’
number per service, the replicas’ execution place, the replication cost; (c) the
replication removal mechanism. Figure 5 shows the evaluation results considering
the settings in Fig. 3 for obtaining the catalog’s metadata (response time) and
the full catalog (group duration), for an increasing number (until fifty) of virtual
users. Figure 5a shows the results for the Catalog in the Cloud only with/without

106 A. Carrusca et al.

replication. Figure 5b shows the reduction times when the FE and the Catalog
are replicated at both cloud and edge nodes. In this case, the applied rules use
the transmitted bytes per second rate: uS replication: replicate when the rate is
>= 2.5 MB/s for two consecutive loop iterations; uS removal : stop the uS when
its rate for three consecutive loop iterations is <0.5 MB/s. Figure 6a presents the
transfer bytes (Transf B) for the FE and the catalog metadata (Catalog) and
with its database (Cat DB), and their replication costs as transfer time (Transf
T) and initialisation time (Init T) at the target edge node. These seem adequate
for a fast replication towards the edge. Figure 5b shows the system’s evolution on
self-adapting the replicas’ number according to the execution conditions. First
the replicas are located in the cloud/US but due to client accesses in the London
edge node are replicated here and later removed.

4 Related Work

This work follows the concepts of computation offloading and Osmotic comput-
ing [33] on automatic deploy of microservices in containers into the cloud/edge,
for efficient resource usage and service access. This concept admits edge nodes’
highly diverse and restricted capacity, whereas existing container managers (e.g.
Kubernetes) include too heavy modules for those nodes and target cloud envi-
ronments. Our work implements microservice replication with the vision that
diverse microservices have different requirements and dependencies [4,11,18]
and, along with edge resource management needs, require an adaptable tripartite
solution on data, monitoring and service management. E.g. selecting a service to
migrate/replicate needs adaptable monitoring for evaluating the dynamic evo-
lution of its dependencies/communication and its dynamic database replication
[23]. Coexisting solutions like Caus and Enorm [16,36] offered single-parameter
configuration for microservices’ auto-scaling on the cloud. Caus has no auto-
matic node management nor dynamic uS placement on the edge. Enorm sup-
ports dynamic uS placement but on a single edge node. Other works offer inter-
esting multi-variable auto-scaling solutions but only in cloud environments or
FaaS [5,12,15]. Recent work [31] also uses a MAPE loop [14] for uS adaptive
scaling and nodes’ saving based on affinity. Another [25] uses an unsupervised
learning approach to automatically decompose an application into uS and select
the adequate resource type. Both do not consider fog/edge platforms.

5 Conclusions and Future Work

This work defends the autonomic management of microservices applications
deployed on hybrid cloud/edge infra-structures relying on three dimensions, ser-
vice, data, and monitoring self-management, to cope with these systems’ com-
plexity. It focuses on the service component based on an automatic microservice
migration and replication solution. The approach is evaluated in the context of
a demo application deployed in the Amazon AWS. The results show the adapt-
ability of the system in the presence of varied client access scenarios and present

Microservices Management on Cloud/Edge Environments 107

promising values in terms of lower latencies and the system’s efficiency. In future
the solution will be extended with a hierarchical service managing system and
integrated with the adaptable database and monitoring components in progress
and a novel security component. The autonomic service will also include machine
learning mechanisms to better analyse and predict access patterns.

References

1. Balalaie, A., Heydarnoori, A., Jamshidi, P.: Microservices architecture enables
devops: migration to a cloud-native architecture. IEEE Softw. 33(3), 42–52 (2016)

2. Bucchiarone, A., Dragoni, N., Dustdar, S., Larsen, S.T., Mazzara, M.: From mono-
lithic to microservices: experience from the banking domain. IEEE Softw. 35(3),
50–55 (2018)

3. Carlini, S.: The drivers and benefits of edge computing. APC white paper 226
4. Carrusca, A.: Gestão de micro-serviços na Cloud e Edge. Master’s thesis, UNL

(2018). http://hdl.handle.net/10362/59505
5. Danayi, A., Sharifian, S.: PESS-MinA: a proactive stochastic task allocation algo-

rithm for FaaS edge-cloud environments. In: ICSPIS, pp. 27–31 (2018)
6. Dastjerdi, A.V., Buyya, R.: Fog computing: helping the internet of things realize

its potential. IEEE Comput. 49(8), 112–116 (2016)
7. Dragoni, N., et al.: Microservices: yesterday, today, and tomorrow. Present and

Ulterior Software Engineering, pp. 195–216. Springer, Cham (2017). https://doi.
org/10.1007/978-3-319-67425-4 12

8. Edge, O.: Open edge computing. http://openedgecomputing.org/
9. Evans, D.: The internet of things. Technical report, cisco Systems (2011)

10. Fowler: Microservices. https://martinfowler.com/microservices/
11. Gan, Y. et al.: An open-source benchmark suite for microservices and their HW-

SW implications for cloud & edge systems. In: ASPLOS 2019. ACM (2019)
12. Guerrero, C., Lera, I., Juiz, C.: Resource optimization of container orchestration:

a case study in multi-cloud us-based applications. J. Supercomput. 74(7) (2018)
13. Huebscher, M.C., McCann, J.A.: A survey of autonomic computing: degrees, mod-

els, and applications. ACM Comput. Surv. 40(3), 7:1–7:28 (2008)
14. IBM: An architectural blueprint for autonomic computing. Technical report, IBM

(2005)
15. Jindal, A., Podolskiy, V., Gerndt, M.: Performance modeling for cloud microservice

applications. In: Proceedings of ICPE 2019. ACM, New York (2019)
16. Klinaku, F., Frank, M., Becker, S.: CAUS: an elasticity controller for a container-

ized microservice. In: Companion of ICPE 2018, pp. 93–98. ACM (2018)
17. Kratzke, N., Quint, P.: Understanding cloud-native applications after 10 years of

cloud computing. J. Syst. Softw. 126, 1–16 (2017)
18. Leitão, J., Costa, P.Á., Gomes, M.C., Preguiça, N.M.: Towards enabling novel

edge-enabled applications. CoRR abs/1805.06989 abs/1805.06989 (2018)
19. Mahmud, R., Kotagiri, R., Buyya, R.: Fog computing: a taxonomy, survey and

future directions. In: Di Martino, B., Li, K.-C., Yang, L.T., Esposito, A. (eds.)
Internet of Everything. IT, pp. 103–130. Springer, Singapore (2018). https://doi.
org/10.1007/978-981-10-5861-5 5

20. Marinescu, D.C.: Cloud Computing: Theory & Practice. Morgan Kaufmann,
Boston (2013)

21. Mauro, T.: Adopting microservices at netflix. NGiNX (2015)

http://hdl.handle.net/10362/59505
https://doi.org/10.1007/978-3-319-67425-4_12
https://doi.org/10.1007/978-3-319-67425-4_12
http://openedgecomputing.org/
https://martinfowler.com/microservices/
https://doi.org/10.1007/978-981-10-5861-5_5
https://doi.org/10.1007/978-981-10-5861-5_5

108 A. Carrusca et al.

22. McCarthy, D., Dayal, U.: The architecture of an active database management
system. SIGMOD Rec. 18(2), 215–224 (1989)

23. Mealha, D., Preguiça, N., Gomes, M.C., Leitão, J.A.: Data replication on the
cloud/edge. In: PaPoC 2019 Eurosys Workshop. ACM, New York (2019)

24. Mell, P.M., Grance, T.: The NIST definition of cloud computing. NIST (2011)
25. Abdullah, M., Iqbal, W., Erradi, A.: Unsupervised learning approach for web appli-

cation auto-decomposition into microservices. J. Syst. Softw. 151 (2019)
26. Newman, S.: Building Microservices, 1st edn. O’Reilly Media Inc., Sebastopol

(2015)
27. OpenFog: Size & impact of fog computing market. Technical report, OpenFog

(2017)
28. Parashar, M., Hariri, S.: Autonomic computing: an overview. In: Banâtre, J.-P.,

Fradet, P., Giavitto, J.-L., Michel, O. (eds.) UPP 2004. LNCS, vol. 3566, pp. 257–
269. Springer, Heidelberg (2005). https://doi.org/10.1007/11527800 20

29. Richardson, C.: Microservices patterns (2017). http://microservices.io/index.html
30. Salehie, M., Tahvildari, L.: Self-adaptive software: landscape and research chal-

lenges. ACM Trans. Auton. Adapt. Syst. 4(2), 14:1–14:42 (2009)
31. Sampaio, A.R., Rubin, J., Beschastnikh, I., Rosa, N.S.: Improving microservice-

based applications with runtime placement adaptation. J. Internet Serv. Appl.
10(1), 1–30 (2019). https://doi.org/10.1186/s13174-019-0104-0

32. Satyanarayanan, M.: The emergence of edge computing. Computer 50(1), 30–39
(2017)

33. Sharma, V., Srinivasan, K., Jayakody, D.N.K., Rana, O.F., Kumar, R.: Managing
service-heterogeneity using osmotic computing. CoRR abs/1704.04213 (2017)

34. Shi, W., Cao, J., Zhang, Q., Li, Y., Xu, L.: Edge computing: vision and challenges.
IEEE Internet Things J. 3(5), 637–646 (2016)

35. Varghese, B., Wang, N., Barbhuiya, S., Kilpatrick, P., Nikolopoulos, D.S.: Chal-
lenges and opportunities in edge computing. In: IEEE SmartCloud, NY (2016)

36. Wang, N., Varghese, B., Matthaiou, M., Nikolopoulos, D.S.: ENORM: a framework
for edge node resource management. IEEE Trans. Serv. Comput. (2017)

37. Yi, S., Li, C., Li, Q.: A survey of fog computing: concepts, applications and issues.
In: Mobidata 2015 Workshop Proceedings. ACM, New York (2015)

https://doi.org/10.1007/11527800_20
http://microservices.io/index.html
https://doi.org/10.1186/s13174-019-0104-0

	Microservices Management on Cloud/Edge Environments
	1 Introduction
	2 Proposed Solution
	2.1 The Architecture Components and Their Operation
	2.2 Adaptation Process and Migration/Replication Scenarios

	3 Prototype and Evaluation
	4 Related Work
	5 Conclusions and Future Work
	References

