
Sami Yangui · Athman Bouguettaya · 
Xiao Xue · Noura Faci · 
Walid Gaaloul · Qi Yu · 
Zhangbing Zhou · Nathalie Hernandez · 
Elisa Y. Nakagawa (Eds.)

WESOACS, ASOCA, ISYCC, TBCE, and STRAPS
Toulouse, France, October 28–31, 2019
Revised Selected Papers

Service-Oriented 
Computing – 
ICSOC 2019 WorkshopsLN

CS
 1

20
19

Se
rv

ice
s S

cie
nc

e



Lecture Notes in Computer Science 12019

Services Science
Subline of Lectures Notes in Computer Science

Subline Editors-in-Chief

Athman Bouguettaya, RMIT University, Melbourne, Australia

Michael P. Papazoglou, University of Tilburg, The Netherlands

Subline Editorial Board

Boualem Bentallah, Australia Paul Maglio, USA
Murthy Devarakonda, USA Klaus Pohl, Germany
Carlo Ghezzi, Italy Stefan Tai, Germany
Chi-Hung Chi, Tasmania Yuzuru Tanaka, Japan
Hani Jamjoom, USA Christopher Ward, USA
Ingolf Krueger, USA

Founding Editors

Gerhard Goos, Germany
Juris Hartmanis, USA

Editorial Board Members

Elisa Bertino, USA
Wen Gao, China
Bernhard Steffen , Germany

Gerhard Woeginger , Germany
Moti Yung, USA

https://orcid.org/0000-0001-9619-1558
https://orcid.org/0000-0001-8816-2693


More information about this series at http://www.springer.com/series/7408

http://www.springer.com/series/7408


Sami Yangui • Athman Bouguettaya •

Xiao Xue • Noura Faci •

Walid Gaaloul • Qi Yu •

Zhangbing Zhou • Nathalie Hernandez •

Elisa Y. Nakagawa (Eds.)

Service-Oriented
Computing –

ICSOC 2019 Workshops
WESOACS, ASOCA, ISYCC, TBCE, and STRAPS
Toulouse, France, October 28–31, 2019
Revised Selected Papers

123



Editors
Sami Yangui
LAAS-CNRS
Toulouse, France

Athman Bouguettaya
University of Sydney
Sydney, NSW, Australia

Xiao Xue
Tianjin University
Tianjin, China

Noura Faci
University of Lyon
Villeurbanne, France

Walid Gaaloul
Télécom SudParis
Évry, France

Qi Yu
Rochester Institute of Technology
Rochester, NY, USA

Zhangbing Zhou
University of Geosciences in Beijing
Beijing, China

Nathalie Hernandez
University of Toulouse 2
Toulouse, France

Elisa Y. Nakagawa
University of São Paulo
São Paulo, Brazil

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-030-45988-8 ISBN 978-3-030-45989-5 (eBook)
https://doi.org/10.1007/978-3-030-45989-5

LNCS Sublibrary: SL2 – Programming and Software Engineering

© Springer Nature Switzerland AG 2020
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, expressed or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://orcid.org/0000-0001-9756-642X
https://doi.org/10.1007/978-3-030-45989-5


Preface

This volume presents the proceedings of the scientific satellite events that were held in
conjunction with the 17th International Conference on Service-Oriented Computing
(ICSOC 2019), held in Toulouse, France, during October 28–31, 2019.

The satellite events provide venues for specialist groups to meet, generate focused
discussions on specific sub-areas within service-oriented computing, and engage in
community-building activities. These events significantly helped enrich the main
conference by both expanding the scope of research topics and attracting participants
from a wider community. As is customary, these satellite events were organized around
three main tracks, including a workshop track, a PhD symposium track, and a
demonstration track. The ICSOC 2019 workshop track consisted of five workshops
covering a wide range of topics that fall into the general area of service computing:

– The 15th International Workshop on Engineering Service-Oriented Applications
and Cloud Services (WESOACS 2019)

– The 4th International Workshop on Adaptive Service-Oriented and Cloud
Applications (ASOCA 2019)

– The 4th International IoT Systems Provisioning & Management for Context-Aware
Smart Cities (ISYCC 2019)

– The first edition of Towards Blockchain-Based Collaborative Enterprise (TBCE
2019)

– The first edition of Smart daTa integRation And Processing on Service based
environments (STRAPS 2019)

The workshops were held on October 28, 2019. ASOCA 2019 and ISYCC 2019
were held over a common one-day session. Similarly, WESOACS 2019 and STRAPS
2019 were held over a common one-day session. Finally, TBCE 2019 was held over a
half-day session.

The PhD symposium is an international forum for PhD students to present, share,
and discuss their research in a constructive and critical atmosphere. It also provides
students with fruitful feedback and advice on their research approach and thesis. The
PhD symposium track was held over a half-day session.

The demonstration track offers an exciting and highly interactive way to show
research prototypes/work in service-oriented computing and related areas. The
demonstration track was held over a two-hour session with all the demonstrations
running in parallel.

We would like to thank the workshop, PhD symposium, and demonstration authors,
as well as the Organizing Committees, who together contributed to these important
events of the conference. We hope that these proceedings will serve as a valuable
reference for researchers and practitioners working in the service-oriented computing
domain and its emerging applications.

November 2019 Sami Yangui



Submission and Review Information

Each published paper in this proceedings was reviewed by at least two anonymous
reviewers.

Concerning the workshops, 14 papers were accepted of the 32 received papers. In
addition, 6 selected papers were invited. ISYCC 2019 accepted 3 papers of the 5 received
submissions. Moreover, 3 invited papers were presented in this workshop. ASOCA 2019
accepted 2 papers of the 4 received submissions. Moreover, 2 invited papers were
presented in this workshop. WESOACS 2019 accepted 4 papers of the 6 received sub-
missions. STRAPS 2019 accepted 3 papers of the 7 received submissions. An additional
invited paper was presented in this workshop. Finally, TBCE 2019 accepted 2 papers
of the 3 received submissions.

Conerning the PhD symposium, the track co-chairs accepted the 4 received sub-
missions to give the PhD students the chance to present and discuss their work, and
benefit from audience feedback.

Finally, concerning the demonstration track, 12 proposals were received in total.
The demonstration co-chairs selected 5 demonstrations.



Organization

Workshop Chairs

Sami Yangui LAAS-CNRS, France
Athman Bouguettaya The University of Sydney, Australia
Xiao Xue Tianjin University, China

Demonstration Chairs

Noura Faci University of Lyon, France
Qi Yu Rochester Institute of Technology, USA
Walid Gaaloul Télécom SudParis, France

PhD Symposium Chairs

Zhangbing Zhou University of Geosciences in Beijing, China
Nathalie Hernandez University of Toulouse 2, France
Elisa Y. Nakagawa University of Sāo Paulo, Brazil

Finance Chair

Bernd Krämer Fern University, Germany

Publication Chair

Ismael Bouassida Rodriguez University of Sfax, Tunisia

Publicity Chairs

Nicolas Seydoux LAAS-CNRS, France
Ilhem Khlif University of Sfax, Tunisia
YiWen Zhang Anhui University in Hefei, China
Manel Abdellatif École Polytechnique de Montréal, Canada

Web Chairs

Nour El-Houda Nouar LAAS-CNRS, France
Fatma Raissi LAAS-CNRS, France
Josue Castañeda Cisneros LAAS-CNRS, France



Workshop on Engineering Service-Oriented Applications
and Cloud Services

Willem-Jan van den Heuvel Tilburg School of Economics and Management,
The Netherlands

Andreas S. Andreou Cyprus University of Technology, Cyprus
George Feuerlicht Prague University of Economics, Czech Republic
Winfried Lamersdorf University of Hamburg, Germany
Guadalupe Ortiz University of Cádiz, Spain
Christian Zirpins Karlsruhe University of Applied Sciences, Germany

Workshop on Adaptive Service-Oriented and Cloud Applications

Ismael Bouassida Rodriguez University of Sfax, Tunisia
Ghada Gharbi Sensinov, Toulouse, France

Workshop on IoT Systems Provisioning and Management
for Context-Aware Smart Cities

Mohamed Mohamed Cupertino, USA
Khouloud Bouakadi University of Sfax, Tunisia

Workshop on Towards Blockchain-Based Collaborative Enterprise

Layth Sliman EFREI, France

Workshop on Smart daTa integRation And Processing on Service
Based Environments

Chirine Ghedira Guegan IAE Lyon School of Management, University Lyon 3,
LIRIS Lab, France

Nadia Bennani INSA Lyon, LIRIS Lab, France
Genoveva Vargas-Solar CNRS, LIG-LAFMIA, France

x Organization



Contents

WESOACS: Engineering Service-Oriented Applications
and Cloud Services

Service-Oriented Pervasive Platform Supporting Machine Learning
Applications in Smart Buildings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

Philippe Lalanda, Dan Wang, German Vega, Humberto Cervantes,
and Moustapha A. Khalid

Freshening the Air in Microservices: Resolving Architectural Smells
via Refactoring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

Antonio Brogi, Davide Neri, and Jacopo Soldani

Specifying Web Interfaces for Command-Line Applications Based
on OpenAPI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

Dennis Wolters, Jonas Kirchhoff, and Gregor Engels

Towards Understanding Adaptation Latency in Self-adaptive Systems . . . . . . 42
Claas Keller and Zoltán Ádám Mann

ASOCA: Adaptive Service-Oriented and Cloud Applications

Representing Multicloud Security and Privacy Policies and Detecting
Potential Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

Anthony Opara, Youngsang Song, Seong-je Cho, and Lawrence Chung

Survey and Evaluation of Blue-Green Deployment Techniques in Cloud
Native Environments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

Bo Yang, Anca Sailer, and Ajay Mohindra

AutoCADep: An Approach for Automatic Cloud Application Deployment . . . 82
Saddam Hocine Hiba and Meriem Belguidoum

Microservices Management on Cloud/Edge Environments . . . . . . . . . . . . . . 95
André Carrusca, Maria Cecília Gomes, and João Leitão

ISYCC: IoT Systems Provisioning and Management
for Context-Aware Smart Cities

Towards Geo-Context Aware IoT Data Distribution. . . . . . . . . . . . . . . . . . . 111
Jonathan Hasenburg and David Bermbach



A Blockchain Based Solution for Securing Data of IoT Devices . . . . . . . . . . 122
Jaspreet Kaur, Vinayak Singla, and Sumit Kalra

Toward GDPR Compliance in IoT Systems . . . . . . . . . . . . . . . . . . . . . . . . 130
Sahar Allegue, Mouna Rhahla, and Takoua Abdellatif

A Reconfigurable Microservice-Based Migration Technique
for IoT Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

Chang-ai Sun, Jing Wang, Jing Guo, Zhen Wang, and Li Duan

Towards the Creation of Be In/Be Out Model for Smart City with the Use
of Internet of Things Concepts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156

Bartosz Wieczorek and Aneta Poniszewska-Marańda

Ontology for Smart Viticulture: Integrating Inference Rules Based
on Sensor Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168

Amira Mouakher, Aurélie Bertaux, Ouassila Labbani,
Clémentine Hugol-Gential, and Christophe Nicolle

TBCE: Towards Blockchain-Based Collaborative Enterprise

Model-Driven Engineering for Multi-party Interactions
on a Blockchain – An Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181

Gero Dittmann, Alessandro Sorniotti, and Hagen Völzer

Smart Contract Locator (SCL) and Smart Contract Description
Language (SCDL) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195

Andrea Lamparelli, Ghareeb Falazi, Uwe Breitenbücher,
Florian Daniel, and Frank Leymann

STRAPS: Smart daTa integRation And Processing on Service
Based Environments

Measuring the Quality of Life in “La Condesa”: Activating Mexico City
Neighbourhood Economy While Maximising Well-Being. . . . . . . . . . . . . . . 213

Ana-Sagrario Castillo-Camporro, José-Luis Zechinelli-Martini,
and Javier A. Espinosa-Oviedo

Adaptive Agent-Based Architecture for Health Data Integration . . . . . . . . . . 224
Ibtihel Selmi, Nadia Kabachi, Sana Ben Abdalah Ben Lamine,
and Hajer Baazaoui Zghal

Constructing a Secured, Reactive and Scalable Data Platform for a Better
Exploitation of Rich Data Assets in the Tourism Industry . . . . . . . . . . . . . . 236

Fanjuan Shi

xii Contents



Towards Multi-level Trust-Driven Data Integration
in Multi-cloud Environments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 245

Senda Romdhani

PhD Symposium

User-Oriented Description of Emerging Services in Ambient Systems . . . . . . 259
Maroun Koussaifi

A Web-Component-Based Cross-Platform Mobile Application
Development Environment for Ordinary Users . . . . . . . . . . . . . . . . . . . . . . 266

Zhaoning Wang

OSPAci: Online Sentiment-Preference Analysis of User Reviews
for Continues App Improvement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 273

Jianmao Xiao

ADS4all: Democratizing Authenticated Data Structures . . . . . . . . . . . . . . . . 280
Nasser Alzahrani, Ibrhaim Khalil, and Xun Yi

Demonstrations

ProMoEE - A Lightweight Web Editor Supporting Study Research
on Process Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 289

Michael Winter, Rüdiger Pryss, and Manfred Reichert

The EDMM Modeling and Transformation System . . . . . . . . . . . . . . . . . . . 294
Michael Wurster, Uwe Breitenbücher, Antonio Brogi, Ghareeb Falazi,
Lukas Harzenetter, Frank Leymann, Jacopo Soldani,
and Vladimir Yussupov

BlockMeds: A Blockchain-Based Online Prescription System
with Privacy Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 299

Minhua He, Xu Han, Frank Jiang, Rongbai Zhang, Xingzi Liu,
and Xiao Liu

Janus: A Tool to Modernize Legacy Applications to Containers . . . . . . . . . . 304
Hoang Ho, Daniel Gordon, Anup Kalia, Jin Xiao, and Maja Vukovic

A Programming Framework for People as a Service . . . . . . . . . . . . . . . . . . 308
David Bandera, Alejandro Pérez-Vereda, Carlos Canal,
and Ernesto Pimentel

Author Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 313

Contents xiii



WESOACS: Engineering
Service-Oriented Applications

and Cloud Services



Introduction to the 15th International
Workshop on Engineering Service-Oriented

Applications and Cloud Services
(WESOACS 2019)

The International Workshop on Engineering Services-Oriented Applications and Cloud
Services (WESOACS) is a long-established forum (formerly known as WESOA) for
innovative ideas from research and practice in the field of software engineering for
modern service-oriented application systems. This year, the 15th meeting took place on
October 28, 2019, in Toulouse, France.

Service-oriented systems play an important role in many areas, such as enterprise
computing, cloud/fog computing, and the Web. While there is agreement on the main
principles for designing and developing application systems based on distributed
software services, methods and tools that support the development of such applications
are still the subject of intense research. These research topics include software service
life cycle development methodologies, service-oriented enterprise architectures,
service-oriented analysis and design, and in particular service engineering technologies
for cloud computing environments in general, and more specifically for current trends
in cloud-based applications such as intelligent cyber-physical systems.

Currently, there is a shift in this area to so-called “DevOps” approaches of software
development in which software service development and operations are continuously
and inextricably linked to achieve faster application delivery with automated release
and deployment. Agile processes, microservices, continuous delivery, containers and
cluster management technologies are just some of the popular topics that contribute to
the current IT transformation in this context.

For the workshop event, WESOACS 2019 joined forces with the First Workshop
on Smart Data Integration and Processing on Service-based Environments (STRAPS
2019) to present an attractive workshop program including a keynote presentation
together with two technical sessions and discussion.

The keynote was presented by Finjan Shi from Groupe PVCP, and gave industry
insights into “Constructing a secured, reactive & scalable data platform for a better
exploitation of rich data assets in the tourism industry.”

The first technical session on smart data featured a WESOACS 2019 contribution
by Philippe Lalanda et al. on “Service-oriented pervasive platform supporting machine
learning applications in smart buildings.”

The second technical session on service engineering featured WESOACS 2019
contributions from Denis Wolters et al. on “Specifying Web Interfaces for Command-
line Applications Based on OpenAPI”, Claas Keller et al. “Towards understanding
adaptation latency in self-adaptive systems,” and Antonio Brogi et al. on “Freshening
the air in microservices: Resolving architectural smells via refactoring.”

In the course of the workshop, the participants had ample opportunity for profes-
sional exchange and networking, so that the 15th edition of the event can once again be
regarded as a complete success.



Organization

Workshop Organizers

Andreas S. Andreou Cyprus University of Technology, Cyprus
George Feuerlicht Prague University of Economics, Czech Republic
Winfried Lamersdorf University of Hamburg, Germany
Guadalupe Ortiz University of Cádiz, Spain
Willem-Jan van den Heuvel Tilburg School of Economics and Management,

The Netherlands
Christian Zirpins Karlsruhe University of Applied Sciences, Germany

Program Committee

Marco Aiello University of Stuttgart, Germany
Danilo Ardagna Politechnico Milano, Italy
David Bermbach TU Berlin, Germany
Juan Boubeta-Puig University of Cádiz, Spain
Alena Buchalcevova Prague University of Economics, Czech Republic
Sotirios P. Chatzis Cyprus University of Technology, Cyprus
Chi-Hung Chi CSIRO, Australia
Javier Cubo University of Malaga, Spain
Florian Daniel Politechnico Milano, Italy
Efstratios Georgopoulos TEI of Kalamata, Greece
Laura Gonzalez Universidad de la Republica, Uruguay
Paul Greenfield CSIRO, Australia
Patricia Lago University of Amsterdam, The Netherlands
Frank Leymann University of Stuttgart, Germany
Spyros Likothanassis University of Patras, Greece
Mark Little Red Hat, USA
Massimo Mecella University Roma La Sapienza, Italy
George Pallis University of Cyprus, Cyprus
Mike Papazoglou University of Tilburg, The Netherlands
Pierluigi Plebani Politechnico Milano, Italy
Wolfgang Reisig Humboldt-University Berlin, Germany
Ioannis Stamelos Aristotle University of Thessaloniki, Greece
Erik Wittern IBM Watson Research, USA

Acknowledgements

We wish to thank all authors for their contributions, the Program Committee members
for their expert input and the ICSOC 2019 workshop co-chairs for the organization.

Introduction to the 15th International Workshop on Engineering 3



Service-Oriented Pervasive Platform
Supporting Machine Learning Applications

in Smart Buildings

Philippe Lalanda1(&), Dan Wang2, German Vega1,
Humberto Cervantes3, and Moustapha A. Khalid1

1 Grenoble University (UGA), 38058 Grenoble, France
{philippe.lalanda,german.vega,

moustapha.khalid}@imag.fr
2 The Hong Kong Polytechnic University,

Hong Kong, Hong Kong
dan.wang@polyu.edu.hk

3 Universidad Autónoma Metropolitana Iztapalapa, Mexico City, Mexico
hcm@xanum.uam.mx

Abstract. Following the success of image recognition, machine learning
approaches have recently been proposed to improve the efficiency for such
systems as industry operation and maintenance, smart buildings, and smart
homes. These applications are beginning to be deployed in pervasive environ-
ments. This poses greater stress in maintaining the quality of the applications.
To date, there is no architecture and tools developed that can automatically
support application quality maintenance. Even worse, there is no clear definition
on the requirements. In this paper, we present initial experiments that we con-
ducted with real use cases pertaining to Industry 4.0 and discuss a set of
requirements that should be met by pervasive platforms to better support AI-
based applications running in the edge.

Keywords: Smart building � Machine learning � Service-oriented pervasive
platform � Industry 4.0

1 Introduction

Pervasive computing [1, 2] promotes the integration of connected electronic devices in
our living spaces in order to assist us in our daily activities, be they professional or
private. These devices can pick up a wide variety of signals in the environment and
transmit them to computers of various sizes and capacities in order to run services.
Devices can be blended in the environment, inserted into everyday objects, or inte-
grated into already existing electronic equipment like smartphones or embedded con-
trol systems. Clearly, pervasive computing is playing an increasingly important role in
civil and professional society. Several factors account for this strong enthusiasm like
the falling of device prices, the increased computing power and storage capabilities, the
widespread availability of the Internet and, of course, the strong demand for added-
value services. As a consequence, whether at home, in commute, or at work, we

© Springer Nature Switzerland AG 2020
S. Yangui et al. (Eds.): ICSOC 2019 Workshops, LNCS 12019, pp. 5–16, 2020.
https://doi.org/10.1007/978-3-030-45989-5_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-45989-5_1&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-45989-5_1&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-45989-5_1&amp;domain=pdf
https://doi.org/10.1007/978-3-030-45989-5_1


already enjoy a variety of simple, unobtrusive services that enhance our quality of life
or allow companies to optimize resource management.

Pervasive computing already has, and will continue to have, profound effects on
entire industries. This applies for instance to the manufacturing domain where the
notion of Industry 4.0, proposed in 2011 by a government-funded German project,
is gaining increasing attention. This initiative promotes the generalized adoption of
digital technologies [3, 35] to favor the emergence of smart, connected plants. Similar
ideas are also applied to the popular domains of smart buildings or smart cities.

The smart building domain is an interesting and highly symbolic example that
touches our daily lives. A smart building is filled with electronic devices collecting data
and managing major functions like heating, ventilation, air conditioning, lighting, or
security. It provides multiple, unobtrusive services to the building occupants, making
them more comfortable and productive. Smart buildings also help operators improve
asset reliability and performance, which reduces energy use, optimizes space usage and
minimizes the environmental impact. A number of services, in particular related to
energy management, are in place today. However, given the many bold visions of
pervasive computing applications, services available today are still limited and often
restricted to off-line analysis and reporting.

Two developments, which are likely to change the whole picture, have gained
significant momentum recently. The first one is the move from cloud computing to
edge, or fog, computing [4]. Most pervasive applications are currently based on cloud
infrastructures. This, unfortunately, limits the number and type of services that can be
implemented because of unpredictable delays, lack of security and privacy preserva-
tion, and sometimes insufficient bandwidth or excessive costs. The use of edge
resources will make it possible to envisage a greater variety and quality of services.
Another major change is the urge for AI-based services. Machine learning has been
very successful to solve complex problems where traditional algorithmic approaches
cannot be applied like, for instance, in computer vision or speech processing. It is then
not surprising that there is today an increasing demand to apply AI techniques in
pervasive domains, like smart buildings, where again traditional solutions cannot be
used for lack of modeling tools and excessive algorithmic complexity.

These two evolutions put together generate great expectations but also raise major
scientific and technical challenges.

The purpose of this paper is to present some first experiments we have conducted in
the smart building domain and a set of requirements that have been inferred, essentially
regarding fog-level platforms. The paper is structured as it follows. First, some
background about our driving use-case is provided. In Sect. 3, we discuss the limits of
the current solution and present a list of requirements that should be met by pervasive
platforms to effectively support AI-based applications running in the edge. We also
detail experiments based on a service-oriented pervasive platform called iCasa that has
been extended to that end. Section 5 discusses some related work and Sect. 6 deals
with conclusion and coming work.

6 P. Lalanda et al.



2 Use Case

2.1 Description and Early Results

As introduced, the concept of smart building has been in existence for some time and a
number of services, mainly related to energy and assets management, have been
implemented. Chillers are the most energy consuming components of buildings. Note
that the amount of electricity consumed by a chiller is not only determined by the total
cooling load but also by its energy-efficiency. Intuitively, if this efficiency is low (e.g.
due to poor maintenance), then more electricity will be consumed to support a required
cooling demand.

Chiller sequencing refers to operating the most efficient combination of chillers in a
building in real-time in order to meet time-varying cooling demands. For example,
sequencing a building with two chillers [0.5, 0.7] implies that chiller 1 and chiller 2 are
operating at 50% and 70% of their maximum rated capacity, respectively. The
sequencing problem is to allocate the cooling load at any given time to the chillers in
the most energy efficient manner so that the overall cooling demand of the building is
satisfied while at the same time the electricity consumed by the chillers is kept at a
minimum [5]. The efficacy of chiller sequencing control relies heavily on the run-time
performance profile of the chillers, namely the COP under different cooling load
regimes. COP is a measure of the energy efficiency of a chiller and captures the cooling
power that it can output for a certain input power consumption.

Recently, we have developed a data-driven approach, named Chiller AIOps, and
applied it successfully to Hong-Kong high rise buildings. Here, a machine learning
model is trained using data collected in the Hong-Kong buildings BMS during four
years and used for COP prediction [8]. Our approach is to develop individualized COP
for each chiller by applying machine learning techniques using historical chiller data.
A private cloud is established to store the historical data from the BMS. Plant-floor
gateways act as intermediaries between physical environments and the cloud. When a
cooling demand D arrives, the cloud can perform chiller sequencing assisted by our
data-driven COP prediction schemes. To do so, one needs to be wary of the following:
(1) The cooling demand changes over time, so chiller sequencing must be performed
repeatedly in order to continuously meet the varying cooling demand. The common
practice is to trigger chiller sequencing in a periodic manner [9]. (2) To ensure cooling
performance, chiller sequencing needs time for feedback control until the system
regains stability when switching from one sequence to another. There is also a mini-
mum start-stop-start time (called deadband) for every chiller. (3) The chiller sequencing
for each period must be completed before the start of the next sequencing period.
Otherwise, the system can be unstable and return inaccurate data which can be detri-
mental to subsequent COP prediction and sequencing operations, as well as for the
overall performance of the chillers.

The proposed solution has demonstrated its interest. Authors of [8] evaluated the
performance of the solution by applying it to BMS data, spanning 4 years, obtained
from multiple chillers across 3 large commercial buildings in Hong Kong. It has been
showed that the proposed solution can save over 30% of HVAC electricity con-
sumption compared to the current mode of chiller operation in the buildings.

Service-Oriented Pervasive Platform Supporting Machine Learning Applications 7



Deploying this solution and bringing it to production is however very challenging. In
fact, cloud-based architectures do not meet these requirements, essentially those related
to security, performance, and cost. First, cloud-based solutions are exposed to unpre-
dictable delays or insufficient bandwidth due to the Internet-based connection. Security
also seriously challenges current architectures for several reasons.

2.2 Approach

Generally speaking, it is admitted that an elastic use of a mixture of device-to-device,
fog, and cloud coordination is necessary to implement complex pervasive services that
integrate multiple data sources, must be responsive at human time scales, but may
demand significant computing and memory capacities in some situations [13]. Our
approach is then aiming for an optimal usage of the computing infrastructure, from
devices to cloud, and the meeting of fundamental requirements related to accuracy,
privacy, performance and cost.

Precisely, we advocate a solution where an initial training is performed in the cloud.
Then the computed model (also called application in our case) and some selected data
are sent to the pervasive gateways installed in buildings for additional training and
execution. Re-training is then an important and key issue. This approach is sometimes
called federated learning [32]. Prediction and retraining are performed on a client
machine, and this client sends local model updates to a server that performs a global
model update. This global model is then sent back to the clients. There are multiple
criteria for deciding where to perform predictions, an important one being privacy:
local predictions do not require sensitive information to be sent to a server. On the
contrary, remote prediction allows the model, which can be an important asset, to
remain protected from access. Local predictions do not require information to be sent
over the network, and thus can be performed with lower latency. Depending on the
serving environment, however, local predictions may be limited in terms of computing
or power resources, so complex models may need more powerful hardware on the
server side to make predictions.

A common approach is to introduce an execution platform that provides a devel-
opment model and a set of technical services. This can be done at the operating system
level, or at a higher level. In the latter case, the term middleware is generally intro-
duced. Making a distinction between the execution platform and the hosted services
lowers complexity in terms of code, debug, configuration, and administration opera-
tions. Decades of research in pervasive computing have led to many solutions for
individual components of such middleware [13].

3 Requirements for AI-Based Pervasive Platforms

Performances of current industrial gateways and networking capabilities are sufficient
to support the timely execution of many AI applications. However, developing and
administrating these applications is marked by a high degree of technical complexity.
Advanced, hard to find skills are necessary. It is known that streamlining the pro-
duction of such applications will require developers and system administrators to be

8 P. Lalanda et al.



equipped with new software engineering tools. Current pervasive platforms have been
designed to run “traditional” applications, not learning based applications. The domi-
nant paradigm today is to conceive pervasive devices as loci of simple services, e.g., a
service for uploading sensed data or one for executing a simple actuation command.
These services are managed and monitored as traditional components. As a conse-
quence, running AI based applications requires a lot of additional complex, tricky code.
In many domains, for instance pertaining to Industry 4.0, there is clearly a shortage of
skills in software engineering. It is then hard to develop and administrate too complex
solutions.

We then believe that current pervasive platforms have to be extended. In particular,
specific technical services supporting AI (machine learning) singularities have to be
provided. Requirements for such platforms must be carefully established. This means
that it is necessary today to determine the technical services that can be provided by a
supporting platform and then, as a second step, to implement them in a usable way for
application developers.

Let us detail here a set of requirements that have been identified based on our first
experiments:

1. Deployment support. Deployment is an essential step in software development,
which purpose is to transform passive code into an active entity. Code to be
deployed is more and more located in remote repositories and has to be transferred,
often with communication middleware, to execution platforms. In our case,
deployment is concerned with the installation, activation and update of learning
models in a potentially huge number of gateways. There is a clear need for
automation tools that continuously deploy models into execution, push updates or
adapt existing software regarding contextual and business changes [14].

2. Heterogeneity in the capabilities of fog devices. In a pervasive environment, the fog
devices, e.g., gateways, can have different capacities regarding processing speed,
storage, communication bandwidth, etc. Masking such differences in capability is
necessary so that developers do not need to put efforts on manually handling the
heterogeneity of fog devices and gateways.

3. Data collection support. Collecting data in pervasive computing is a major and
complex activity, which purpose is to build contextual information and feed running
pervasive applications with relevant data. Getting relevant data is especially
important for learning-based applications. To provide meaningful predictions, those
applications need the right data distribution, coherent with data used during the
learning phase. In pervasive environments, data generally come from heterogeneous
devices and platforms. Specific mechanisms to deal with interoperability are then
needed to access as much data as possible. In particular, mediation mechanisms are
needed to align business data, business services and communication protocols.

4. Model execution support. Machine learning models are coded in different lan-
guages, usually in Python, C++ or Java. This result in technical heterogeneities at
the platform level, especially when applications are developed by different parties,
and therefore in complex engineering work. Here again, there is a need to provide
automatic support to make adaptation to diverse languages as transparent as
possible.

Service-Oriented Pervasive Platform Supporting Machine Learning Applications 9



5. Model retraining support. Trained models are data dependent, making it necessary
to retrain them when data change. The key to retraining is to observe data distri-
bution changes, so as to determine the best timing to perform that operation. Once
again, there is here a clear need for automated tools integrated in a supporting
platform to facilitate the problem detection. Thus, the role of the applications
programmers is not anymore to track deviations but rather to specify how to react
when some kind of deviation is detected by the platform.

6. Model monitoring support. It is important to monitor the performance of a model,
which may degrade because of a changing environment or, in extreme case, of
evolving tasks. A usual approach is to use a set of prediction models, instead of a
single prediction model which might be over fitting. Using several models is likely
to be more robust since final results are based on the output of several models. Here
again, automatic support is highly relevant to realize those functions.

7. Incremental training support. In a distributed environment, the data are imbalanced
both spatially and temporally. Therefore, it is necessary to transfer knowledge, e.g.,
a partial of the model between different gateways. An automatic service support in
knowledge transfer due to spatial or temporal data imbalance will help developers to
emphasize on application requirements.

8. Human in the loop. It is of major importance to include human, essentially experts,
in the applicative loops. A simple solution is to monitor the applications behavior
and switch to a human mode when some tasks (data collection, model predictions,
and so on) are uncertain. Here, visualization tools are definitively needed to assist
the domain experts in reviewing the current tasks and in providing help. It is also
needed to define a global process making explicit the situations and moments where
human can be included.

In this paper, we focus on the first four points (deployment, heterogeneity, data
collection, model execution) through the extended iCasa platform. We also provide
architectural basis to deal with the remaining issues. Let us note here that dynamicity is
a cross-cutting issue that has to be considered for all the mentioned requirements.

4 Developments

4.1 The iCasa Pervasive Platform

The gateway is based on the iCasa pervasive middleware, an industrial strength fog-
level platform [16] supporting the development and management of dynamic, context-
aware applications. ICasa is based on a service-oriented component model called
iPOJO [17] that has been extended to support machine learning applications. The iCasa
platform has been entirely implemented and installed in a dedicated industrial gateway.
This gateway takes the form of an industrial box that is easily pluggable in existing
industrial environments, in particular with Modbus. Specifically, the gateway is based
on Schneider Electric Magelis G5U, a highly configurable and robust hardware using
an Intel X86 processor (1.3 GHz) with 16 Gigabytes of data storage (CF Card) and a
memory of 2 Gigabytes (RAM). It is equipped with network interfaces, including
Ethernet and the most common fieldbuses.

10 P. Lalanda et al.



In its first version, represented in “blue” in Fig. 1, iCasa focused on the integration
of heterogeneous and dynamic devices (data providers) as services. Precisely, as soon
as a device is detected by the communication layer, an iPOJO proxy is created and
published in the local registry. Applications could then use the devices as services,
opportunistically and transparently. Similarly, when a device disappears, its corre-
sponding proxy is destroyed. Applications using that service are automatically bound to
alternative services or frozen. This provides runtime flexibility with a fairly simple
code.

In its current version, iCasa includes new modules, represented in “orange” in
Fig. 1. Our purpose was to provide more advanced capabilities regarding data col-
lection and context building. In doing so, the platform relieves developers building
complex applications like those based on machine learning modules. The context
module here is a key element. It serves as an abstraction layer between physical
environment and applications. Its goal is to present contextual information captured in
the environment in a format usable by applications.

Precisely, iCasa has been extended in order to allow both real-time accesses to
devices (as services) and query-based accesses to stored temporal data. This typically
corresponds to the needs of machine-learning-based applications.

Precisely, iCasa has been enhanced with the following three complementary
modules (Fig. 2): a context module, a time-series database and an autonomic manager.
The purpose of the context module is to present a dynamic set of services providing
contextual information. It contains proxies providing transparent access to devices and
more elaborated services, generally built on top of other contextual services. If needed,
mediation operations are applied for syntactic or semantic alignment (or for monitoring
purposes). This context is implemented with iPOJO components and thus benefits from
dependency resolution mechanisms to deal with dynamism. Applications use contex-
tual services transparently as they would use any service.

A time-series database containing time-stamped data has also been integrated in
iCasa. These data actually come from data flows provided by devices. They are
numerous, and generally simple and unstructured. Time series databases are optimized

Fig. 1. iCasa overview. (Color figure online)

Service-Oriented Pervasive Platform Supporting Machine Learning Applications 11



for handling time-sensitive data and support applications requests about time varying
data. Specifically, iCasa integrates Influx DB which turned out to be very efficient to
store unstructured IoT-based data, indexed by time. It also provides very fast access
through an SQL-like language with built-in time-centric functions for querying data
structures composed of measurements Here, the database is presented to application as
a service thanks to a wrapper written in IPOJO which forwards SQL requests (for
storage or access).

Finally, an Autonomic Manager (AM) [18] managing these two modules depending
on the running applications demands. Precisely, its purpose is to present the applications
with the needed services and data. Depending on the sources availability and the
applications evolving needs, different services and data are computed and stored in the
context or in the time-series database. The AM then creates/deletes/updates components
in the context module and triggers the creation/deletion/update of database recordings.

4.2 Implementation of the Chiller Use Case

As stated before, initial training is performed in the cloud. It is based on data collected
in the BMS of Hong-Kong Pacific buildings. The total data collected from the BMS is
more than 1 TB. We configure a private cloud to process the data for our experiments,
with 16 cores of 2.6 GHz CPU and a total memory of 64 GB. We train the models with
three-year data and predict with one-year data, which is a common setting in time-
series data mining [19] and multi-task learning [20].

Technically speaking, we used scikit-learn, a library exposing concise and con-
sistent interfaces to the common machine learning algorithms. We have used several
algorithms, including linear regression, support Vector Regression, and AdaBoost. We
found that the ensemble approach like AdaBoost (1) can better capture the non-linearity
than linear regression, and (2) are less likely to become over-fitted other than support
vector regression on large datasets, due to the model combination nature of AdaBoost.

Then the computed models (also called application in our case) and some selected
data are sent to the iCasa gateways for additional training and execution. In order to run

Fig. 2. Contextual information in iCasa.

12 P. Lalanda et al.



AIOps on iCasa, we had to insert the Python code and the collected data in a Java
bundle and to integrate a Python interpreter. Precisely, a bundle is both a deployment
unit and a composition unit. Regarding deployment, bundles are used to package
classes and resources so that they can be deployed on one or more execution platforms.
Bundles are thus tangible artefacts that can be copied or transferred by software
administrators. Execution of the python code is performed using the Jep (Java
Embedded Python) library (see https://github.com/ninia/jep). Jep embeds a native
Cpython interpreter in the JVM using JNI (Java Native Interface). The main benefit of
this approach is that Python scripts packaged in bundles are run by a native Python
interpreter, which is faster than using existing Python implementations in Java (like
Jython for instance), and that they can access high quality optimized modules like
scikit-learn without restrictions.

Currently, the Python scripts packaged in iCasa work in isolation, with little
interaction with other Java services of the platform. The main limitation comes from
the different type systems of the JVM and the python interpreter, which restricts the
exchange of data to primitive types and simple data structures like maps. We are
working to improve the integration to allow the efficient exchange of the data structures
commonly used by the scikit-learn library.

Regarding performances, between 500 and 1000 measures can be collected every
second depending on the needs of the machine-learning applications. A similar number
of items is also written in the time series database every second. This range is con-
servative: we made sure that the architecture could support ten times more data. The
amount of data sent back to the cloud is of course way smaller. The performance of the
prediction model meets the requirements of the target application (calculating the COP
and updating the chillers sequencing). Let us remind here that the goal of pervasive
applications is not to replace existing control systems, often based on PLCs, but to
provide additional services based on secondary sensing, with relaxed demands in term
of real-time requirements.

5 Related Work and Discussion

As said, Industry 4.0 builds on generalized connectivity. However, its purpose is not to
replace existing PLCs (Programmable Logic Controllers) with new Internet-based
technology but rather to provide additional added-value services. In the industry, today,
these services mainly rely on cloud solutions. Plant floor gateways can be seen as
network bridges. Their main purpose is indeed to collect data, perform simple medi-
ation operations and send the great majority of the gathered data to a cloud. Gateways
need to get smarter to meet new requirements related to security, performance or cost.

As discussed above, most current middleware systems for pervasive computing and
the IoT assume a service-oriented perspective [21]. That is, their primary goal is to
coordinate and combine the execution of services and contextual events. Thus, the
question of what additional (and possibly different) features a middleware should
integrate to properly support learning-based applications arises. A number of platforms
have been built on top of the OSGi framework. Various extensions have been devel-
oped to simplify the OSGi development model and to deal with pervasive specific

Service-Oriented Pervasive Platform Supporting Machine Learning Applications 13

https://github.com/ninia/jep


features like context modeling. For instance, GatorTech [22] extends the OSGi
framework with context representation and heterogeneous device access services. It
also provides touch points required to build autonomic behavior. SOCAM [23] uses
ontologies to model the context and effectively simplifies the development of context-
aware applications. Other platforms introduced autonomic features [24, 25] and pro-
posed specific component models to build autonomic applications. PCOM proposes a
component model based on the BASE middleware [26].

But, to our knowledge, no support for machine learning applications has been
deployed so far in the pervasive world. Most efforts are today dedicated to the dis-
tribution of traditional machine learning applications like image or voice recognition in
the cloud, with Google TensorFlow for instance (see www.tensorflow.org).

Regarding data management, to the best of our knowledge, no previous work has
incorporated time-series principles on service-oriented pervasive platforms so far. Our
first approach was to use in-memory data [27] but it could not scale properly. An
alternative investigated in this paper is to use embedded databases. In the pervasive
domain, time series management systems (TSMS) are highly considered because they
can scale out through distributed computing and are able to cache the most recently
collected or queried data in-memory for efficient processing [28]. Williams et al. [29]
proposed a distributed system based on an in-memory data grid to deal with time series
from sensors monitoring industrial installations. TSDS [30] has a specific component of
its architecture used primarily for caching time series from disk, reducing query
response time. Gorilla [31] is a distributed in-memory TSMS built as a caching layer on
top of an existing system for monitoring the infrastructure at Facebook in particular.

6 Conclusion

Pervasive computing has invested a number of industrial domains, including smart
buildings where many applications are concerned with energy management. Most
current services however do not meet essential requirements related to security, privacy
and sometimes performance. New architectures reconsidering the cloud-to-fog con-
tinuum are expected in order to better balance computing and storage between devices,
fog and cloud resources. AI techniques are also awaited to deal with many situations
where classic algorithmic solutions are not possible.

A well-proven solution to run applications close to devices is to use supporting
pervasive platforms. This approach lowers the overall complexity of these solutions,
freeing developers and administrators from complicated, low-level technical code.
Current platforms, however, have not been thought for AI-based applications. In this
paper, we have listed a set of requirements that, if met by pervasive platforms, would
bring us back to lower level of complexity. We have also shown that service-oriented
platforms like iCasa can meet part of these requirements and be used to host machine
learning based applications. With some extensions, they can deal with issues like
deployment, heterogeneity, data collection, model execution, security [33, 34]. More
work, however, is needed to deal with data distribution, model monitoring, and model
retraining.

14 P. Lalanda et al.

http://www.tensorflow.org


References

1. Weiser, M.: The computer for the 21st century. In: Human-Computer Interaction, pp. 933–
940. Morgan Kaufmann Publishers Inc. (1995)

2. Satyanarayanan, M.: Fundamental challenges in mobile computing. In: Proceedings of the
Fifteenth Annual ACM Symposium on Principles of Distributed Computing, pp. 1–7. ACM,
New York (1996)

3. Acatech (ed.): Recommendations for implementing the strategic initiative INDUSTRIE 4.0.
Final report of the Industrie 4.0 Working Group (2013)

4. Shi, W., Cao, J., Zhang, Q., Li, Y., Xu, L.: Edge computing: vision and challenges. IEEE
Internet Things J. 3(5), 637–646 (2016)

5. Liu, Z., Tan, H., Luo, D., Yu, G., Li, J., Li, Z.: Optimal chiller sequencing control in an
office building considering the variation of chiller maximum cooling capacity. Energy Build.
140, 430–442 (2017)

6. Powell, K.M., Cole, W.J., et al.: Optimal chiller loading in a district cooling system with
thermal energy storage. Energy 50, 445–453 (2013)

7. Firdaus, N., et al.: Chiller: performance deterioration and maintenance. Energy Eng. 113(4),
55–80 (2016)

8. Zheng, Z., et al.: Data driven chiller sequencing for reducing HVAC electricity consumption
in commercial buildings. In: ACM e-Energy 2018, Karlsruhe, Germany, June 2018

9. Sun, Y., Wang, S., Xiao, F.: In situ performance comparison and evaluation of three chiller
sequencing control strategies in a super high-rise building. Energy Build. 61, 333–343
(2013)

10. Chen, Z., Liu, B.: Lifelong Machine Learning. Morgan & Claypool Publishers, San Rafael
(2018)

11. Hu, C., Bao, W., Wang, D., Qian, Y., Zheng, M., Wang, S.: sTube+: an IoT communication
sharing architecture for smart after-sales maintenance in buildings. In: Proceedings ACM
Buildsys 2017, Delft, The Netherland, November 2017

12. Zhang, M.C.T.: Fogandiot: an overview of research opportunities. IEEE Internet Things J. 3
(6), 854–864 (2016)

13. Becker, C., Julien, C., Lalanda, P., Zambonelli, F.: Pervasive computing middleware: current
trends and emerging challenges. CCF Trans. Pervasive Comput. Interact., 1–14 (2019)

14. Gunalp, O., Escoffier, C., Lalanda, P.: Rondo: a tool suite for continuous deployment in
dynamic environments. In: IEEE International Conference on Services Computing, pp. 720–
727 (2015)

15. Zheng, A., Casari, A.: Feature Engineering for Machine Learning. Principles and Techniques
for Data Scientists. O’Reill, Sebastopoly (2018)

16. Lalanda, P., Gerber-Gaillard, E., Chollet, S.: Self-aware context in smart home pervasive
platforms. In: IEEE ICAC 2016, Columbus (2017)

17. Escoffier, C., Hall, R.S., Lalanda, P.: iPOJO: an extensible service oriented component
framework. In: IEEE International Conference on Services Computing, SCC 2007, pp. 474–
481. IEEE (2007)

18. Lalanda, P., McCann, J.A., Diaconescu, A.: Autonomic Computing - Principles. Design and
Implementation. Undergraduate Topics in Computer Science. Springer, London (2013).
https://doi.org/10.1007/978-1-4471-5007-7

19. Tong, Y., et al.: The simpler the better: a unified approach to predicting original taxi
demands based on large-scale online platforms. In: Proceedings ACM SIGKDD 2017,
pp. 1653–1662 (2017)

Service-Oriented Pervasive Platform Supporting Machine Learning Applications 15

https://doi.org/10.1007/978-1-4471-5007-7


20. Carbonell, J., Murugesan, K.: Self-paced multitask learning with shared knowledge. In:
Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence,
IJCAI 2017, pp. 2522–2528 (2017)

21. Razzaque, M.A., Milojevic-Jevric, M., Palade, A., Clarke, S.: Middleware for internet of
things: a survey. IEEE Internet Things J. 3(1), 70–95 (2016)

22. Helal, S., Mann, W., El-Zabadani, H., King, J., Kaddoura, Y., Jansen, E.: The Gator Tech
Smart House: a programmable pervasive space. Computer 38(3), 50–60 (2005)

23. Gu, T., Pung, H.K., Zhang, D.Q.: Toward an OSGi-based infrastructure for context-aware
applications. IEEE Pervasive Comput. 3(4), 66–74 (2004)

24. Lupu, E., et al.: AMUSE: autonomic management of ubiquitous e-Health systems.
Concurrency Comput. Pract. Experience 20(3), 277–295 (2008)

25. Liu, H., Parashar, M., Hariri, S.: A component-based programming model for autonomic
applications. In: Autonomic Computing (2004)

26. Becker, C., Handte, M., Schiele, G., Rothermel, K.: PCOM - a component system for
pervasive computing. In: Proceedings International Conference on Pervasive Computing and
Communications, pp. 67–76. IEEE (2004)

27. Lalanda, P., Mertz, J., Nunes, I.: Autonomic caching management in industrial smart
gateways. In: IEEE Industrial Cyber-Physical Systems, pp. 26–31 (2018)

28. Jensen, S.K., Pedersen, T.B., Thomsen, C.: Time series management systems: a survey.
IEEE Trans. Knowl. Data Eng. 29(11), 2581–2600 (2017)

29. Williams, J.W., Aggour, K.S., Interrante, J., McHugh, J., Pool, E.: Bridging high velocity
and high volume industrial big data through distributed in-memory storage & analytics. In:
Proceedings International Conference Big Data, pp. 932–941 (2014)

30. Weigel, R.S., Lindholm, D.M., Wilson, A., Faden, J.: TSDS: high-performance merge
subset and filter software for time series-like data. Earth Sci. Inform. 3(1/2), 29–40 (2010)

31. Pelkonen, T., et al.: Gorilla: a fast scalable in-memory time series database. VLDB
Endowment 8(12), 1816–1827 (2015)

32. Konečný, J., Brendan McMahan, H., Yu, F.X., Richtárik, P., Suresh, A.T., Bacon, D.:
Federated learning: strategies for improving communication efficiency. arXiv:1610.05492
(2017)

33. Chollet, S., Lalanda, P.: Security at the process level. In: International Conference on
Service-Oriented Computing (SCC), pp. 165–172 (2008)

34. Chollet, S., Lalanda, P.: An extensible abstract service orchestration framework. In:
International Conference on Web Services (ICWS), pp. 831–838 (2009)

35. Morand, D., Garcia, I., Lalanda, P.: Autonomic enterprise service bus. In: IEEE 16th
Conference on Emerging Technologies & Factory Automation (2011)

16 P. Lalanda et al.

http://arxiv.org/abs/1610.05492


Freshening the Air in Microservices:
Resolving Architectural Smells

via Refactoring

Antonio Brogi, Davide Neri, and Jacopo Soldani(B)

University of Pisa, Pisa, Italy
{antonio.brogi,davide.neri,jacopo.soldani}@unipi.it

Abstract. The adoption of microservice-based architectures is becom-
ing common practice for enterprise applications. Checking whether an
application adheres to the main design principles of microservices,
and —if not— understanding how to refactor it, are two key issues in that
context. In this paper, we present a methodology to systematically iden-
tify the architectural smells that possibly violate the main design princi-
ples of microservices, and to select suitable architectural refactorings to
resolve them. We also present a prototype implementing the methodol-
ogy, based on a novel representation of microservices in TOSCA.

Keywords: Microservices · SOA · Architectural principles ·
Architectural smells · Architectural refactoring

1 Introduction

Microservice-based architectures are increasingly considered an enabling technol-
ogy to shorten the lead time in software development and to effectively scale soft-
ware application deployments [19,22]. The interest in microservice-based archi-
tectures is witnessed by their adoption by the major IT companies (like Amazon,
Facebook, Google, Netflix and Spotify, just to mention some).

Microservice-based architectures can be seen as service-oriented architectures
that satisfy some key principles [32]. These include shaping services around busi-
ness concepts, adopting a culture of automation, decentralising all aspects of
microservices (from governance to data management), ensuring their independent
deployability and high observability, and isolating failures [22]. As the adoption of
microservices is becoming common practice for enterprise applications, checking
whether an application adheres to the main design principles of microservices, and
—if not— understanding how to refactor it, are two key issues [3,27].

In this paper, we present a methodology to systematically identify archi-
tectural smells possibly violating key design principles of microservices, and to
select architectural refactorings allowing to resolve such smells. We take as start-
ing point the industry-driven review presented in [3], which singled out a set of
architectural smells possibly violating some main principles of microservices,
by also eliciting the architectural refactorings allowing to resolve each smell.
In particular, we consider four of the architectural smells in [3], each with the
architectural refactorings that permit resolving it.
c© Springer Nature Switzerland AG 2020
S. Yangui et al. (Eds.): ICSOC 2019 Workshops, LNCS 12019, pp. 17–29, 2020.
https://doi.org/10.1007/978-3-030-45989-5_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-45989-5_2&domain=pdf
https://doi.org/10.1007/978-3-030-45989-5_2


18 A. Brogi et al.

micro.nodes.Root

DataStoreService CommunicationPattern

micro.relationships.Root

InteractsWith

micro.groups.Root

Edge

MessageRouter MessageBrokerMessageRouter MessageBroker

Fig. 1. The node types, relationship types and group types defining µTOSCA.

Our proposal is to model the architecture of a microservice-based application
with the OASIS standard TOSCA [23]. We hence introduce µTOSCA, which
allows to specify service-based architectures as typed directed graphs. Based on
such representation, we formally define the conditions to identify the occurrence
the considered architectural smells in a microservice-based application, and we
illustrate how to refactor its architecture to resolve identified smells.

We also present µFreshener, a prototype showcasing our methodology. We
believe that our methodology and its prototype implementation can provide a
valuable decision support for designing microservice-based architectures.

The rest of the paper is organized as follows. Section 2 introduces µTOSCA.
Sections 3 and 4 illustrate our methodology to identify/resolve architectural
smells and its prototype implementation, respectively. Finally, Sect. 5 discusses
related work and Sect. 6 draws some concluding remarks.

2 Modelling Service-Based Architectures with µTOSCA

TOSCA [23] allows to represent service-based architectures as typed directed
graphs, where nodes represent software components, and arcs represent the inter-
actions occurring among such components. We hereby present the µTOSCA type
system1, providing building blocks for such a representation (Fig. 1).

Nodes can be services, communication patterns or data stores. A Service is
a component running some business logic, e.g., a service managing users’ orders
in an e-commerce application. A CommunicationPattern is a component imple-
menting a messaging pattern decoupling the communication among two or more
components. Figure 1 contains two communication patterns from [16]: Message-
Router (e.g., load balancers, API gateways) and MessageBroker (e.g., message
queues). Finally, a DataStore is a component storing the data pertaining to a
certain domain, e.g., a database of orders in an e-commerce application.

Nodes can be interconnected via InteractsWith relationships, to model that
a source node invokes functionalities offered by a target node. Such relationships
can be enriched by setting the boolean properties circuit breaker, timeout
and dynamic discovery. The first two properties allow to indicate whether the
source node is interacting with the target node via a circuit breaker or by setting
proper timeouts, to avoid that the source fails/gets stuck waiting for an answer
from the target when the latter is unresponsive (e.g., because it failed). Property
dynamic discovery allows to specify whether the endpoint of the target of the
interaction is dynamically discovered (e.g., by exploiting a discovery service).
1 https://di-unipi-socc.github.io/microTOSCA/microTOSCA.yml.

https://di-unipi-socc.github.io/microTOSCA/microTOSCA.yml


Freshening the Air in Microservices: Resolving Architectural Smells 19

Nodes can also be placed in an Edge group, to define the subset of application
components directly accessed from outside of the application.

Formally, the architectures represented with µTOSCA are triples, whose ele-
ments are (i) the typed nodes and (ii) the relationships forming the graph repre-
senting the architecture of an application, and (iii) the group of nodes defining
the edge of the architecture.

Definition 1 (Architecture). The architecture of an application is repre-
sented by a triple A = 〈N,R,E〉, where

(i) N is a finite set of typed nodes representing application components,
(ii) R is a finite multiset2 of pairs of nodes representing the relationships occur-

ring among application components, and
(iii) E ⊆ N is a non-empty set of nodes defining the edge of the architecture.

Definition 1 allows to describe an architecture where (a) a node interacts with
itself. It also allows to specify that (b) a data store is invoking functionalities
offered by another component or being accessed by something different from a
service internal to the application, Finally, Definition 1 allows to indicate that
(c) a message broker is invoking functionalities offered by other components or
that no component is placing messages in a broker, and that (d) a message router
is not routing messages towards other components or that it is never invoked.
To avoid such undesirable situations, we hereafter consider an architecture to be
well-formed when none of cases (a–d) is occurring.

Notation 1 (Types). We write x.type to denote the type of a node x, and we
write , , and to visually denote the µTOSCA types Service, Messa-
geBroker, MessageRouter and DataStore, respectively. Given two types t and
t′, we also write t ≥ t′ iff t extends or is equal to t′.

Definition 2 (Well-formedness). An architecture A = 〈N,R,E〉 is well-
formed iff

(a) ∀〈x, y〉 ∈ R : x �= y,

(b) ∀x ∈ N : x.type ≥ ⇒
((�〈x, y〉 ∈ R) ∧ x /∈ E ∧ (∀〈y, x〉 ∈ R : y.type ≥ )),

(c) ∀x ∈ N : x.type ≥ ⇒ ((�〈x, y〉 ∈ R) ∧ (∃〈y, x〉 ∈ R)), and

(d) ∀x ∈ N : x.type ≥ ⇒ ((∃〈x, y〉 ∈ R) ∧ (x ∈ E ∨ ∃〈y, x〉 ∈ R)).

We hereafter assume architectures to be well-formed.

2 Multiple relations from component x to component y indicate that x interacts with
y in different ways (e.g., directly in one case, via a circuit breaker in another case).



20 A. Brogi et al.

3 Discovering and Resolving Architectural Smells

The architectural smells violating the horizontal scalability, isolation of failures
and decentralisation of microservice-based applications, as well as the architec-
tural refactorings allowing to resolve them, have been classified in [3]. An excerpt
of the resulting taxonomy is reported in Fig. 2.

add API gateway
add service discovery
add message router
add message broker
add circuit breaker

use timeout
split data store

merge services
add data manager

no API gateway

endpoint-based  serv.  inter.
horizontal scalability

wobbly service interactionisolation of failures

shared persistencedecentralisation

)c()b()a(

Fig. 2. A taxonomy for (a) design principles of microservices, (b) architectural smells,
and (c) architectural refactorings [3].

Starting from such taxonomy, we hereby formalise the conditions allowing
to automatically determine the occurrence of smells in architectures modelled
with µTOSCA, and we illustrate how to refactor an architecture to resolve each
identified smell. In doing so, we exploit the graphical support provided by Fig. 3.

Architectural Smells Possibly Violating Horizontal Scalability. The pos-
sibility of adding/removing replicas of a microservice is a direct consequence of
the independent deployability of microservices. To ensure its horizontal scalabil-
ity, all the replicas of a microservice m should be reachable by the microservices
invoking m [17]. In [3], two architectural smells emerged as possibly violating the
horizontal scalability of microservices, i.e., no API gateway and endpoint-based
service interactions, which we discuss hereafter.

The no API gateway smell occurs whenever the external clients of an appli-
cation directly interact with some internal services. If one of such services is
scaled out, the horizontal scalability of microservices may get violated because
external clients may still keep invoking the same instance, without reaching any
replica.

To identify the occurrence of a no API gateway smell, we should hence check
whether some application components are accessed without passing through an
API gateway, i.e., whether the edge of the architecture contains something that
is not a message router.

Definition 3 (No API gateway). Let A = 〈N,R,E〉 be an architecture. A
node x ∈ N indicates a no API gateway smell iff

x ∈ E ∧ x.type  ≥



Freshening the Air in Microservices: Resolving Architectural Smells 21

x
edge

mR

edge

mR
x

mB

t c

yx

c

yx yx

t

y
mB

x
t c

x
mR
y

mR
y

c

x
mR
y

mR
y x

t mR
y

mR
y

x1

yx2
. . .

xn

x1
y1

y2n

x2
. . .

xn

xn

x1

y
xh

. . .xh+1

ym

. . .

xn

y

x1h

. . .
xh+1

d

yx

d

yx y
mR

x
mB

yx

no API gateway 

edge

mB
x

mB
x

x
edgeedge

endpoint-based serv. inter. add service discovery add message router add message broker

wobbly service interactionwobbly service interaction use timeoutadd circuit breaker  add message broker

shared persistenceshared persistence add data managersplit data store merge services

add API gateway

Fig. 3. Visual representation of the architectural smells (left column) and refactorings
(right column) in Fig. 2, with the Edge group denoted by a dotted line and interactions
depicted as arrows. Labels d, c and t represent that properties dynamic discovery,
circuit breaker and timeout are true, while �d, �c and � t represent that they are false.
Updates due to refactorings are in grey, with mandatory updates being dashed. Solid
grey lines indicate updates that may be implemented by reusing existing components.

Figure 3 illustrates the possible no API gateway smells, due to a component x
(either a service or a message broker) being placed at the edge of an architecture.
The figure also shows the architectural refactorings resolving the occurrence of
no API gateway smells. In both cases, the refactoring consists in introducing
a message router (e.g., a gateway or a load balancer), or reusing one already
available in the application. Such a message router will act as an API gateway,
hence avoiding x to get directly accessed from outside of the application.

The endpoint-based service interaction smell occurs in an application when
a service x directly invokes another service y (e.g., because the location of y is
hardcoded in the source code of x, or because no message router is used). If
this is the case, when scaling out service y by adding new replicas, these cannot
be reached by x, hence only resulting in a waste of resources [3]. Formally, this
happens whenever there is a direct interaction from x to y, where x is not using
any support for dynamically discovering the actual endpoint of y.



22 A. Brogi et al.

Notation 2 (Properties of relations). Given an architecture A = 〈N,R,E〉,
we write 〈x, y〉.p to denote the property p of a relationship 〈x, y〉 ∈ R.

Definition 4 (Endpoint-based service interaction). Let A = 〈N,R,E〉 be
an architecture. A relation 〈x, y〉 ∈ R indicates an endpoint-based service inter-
action smell iff

x.type ≥ ∧ y.type ≥ ∧ 〈x, y〉.dynamic discovery = false

A visual representation of an endpoint-based service interaction is in Fig. 3,
where a service x is directly invoking another service y. The figure also illustrates
the architectural refactorings allowing to resolve the occurrence of an endpoint-
based service interaction smell, all sharing the same goal, i.e., decoupling the
interaction between two services by introducing an intermediate integration pat-
tern. Such refactorings predicate only on the value of property dynamic disco-
very of the relationship outgoing from x.

The most common solution is to add a service discovery mechanism to
dynamically resolve the endpoint of the service targeted by the interaction [24].
The other possible solutions instead consist in decoupling the interaction between
two services by exploiting a message router or a message broker, respectively.
In all cases, the interaction outgoing from x must necessarily be updated, while
the message router/broker used to decouple the interaction may also be already
available and reused to implement the architectural refactoring.

Architectural Smell Possibly Violating Isolation of Failures.
Microservice-based architectures should be designed to isolate failures, mean-
ing that each microservice should tolerate the failure of any invocation to the
microservices it depends on [19]. In [3], the wobbly service interaction smell
emerged as possibly violating the isolation of failures in microservices.

The interaction between two microservices is “wobbly” when a failure in
the microservice targeted by the interaction can result in triggering a failure
also in the source, potentially starting a cascade of failures [18]. This typically
happens when a microservice x is consuming functionalities offered by another
microservice (directly or through a message router), and x is not provided with
any solution for handling the possibility of the target microservice to fail and be
unresponsive, such as a circuit breaker or a timeout.

Definition 5 (Wobbly service interaction). Let A = 〈N,R,E〉 be an archi-
tecture. A relation 〈x, y〉 ∈ R indicates a wobbly service interaction smell iff

x.type ≥ ∧ (y.type ≥ ∨ y.type ≥ )∧
〈x, y〉.circuit breaker = false ∧ 〈x, y〉.timeout = false.

The possible wobbly service interactions are illustrated in Fig. 3, which shows
that such a kind of interactions occurs when a service x is interacting with
another service or with a message router (dispatching the messages outgoing



Freshening the Air in Microservices: Resolving Architectural Smells 23

from x to other microservice), and such interaction are not equipped with a
support for tolerating failures, i.e., no circuit breaker or timeout is used.

Figure 3 also illustrates the architectural refactorings allowing to resolve wob-
bly service interaction smells. Such refactorings predicate only on the value of the
properties circuit breaker and timeout of the relationship outgoing from x.

The easiest solutions consist replacing the wobbly service interaction between
x and y with one exploiting a circuit breaker to wrap the invocations outgoing
from service x or using a timeout. Both solutions allow x not to get stuck waiting
for an answer from y. Another possible solution is to decouple the interactions
between x and y through a message broker, with the latter being a new one, or
one already available in the application. The usage of a broker allows x to send
its requests to the broker, with y processing such requests when it is available,
hence avoiding x to get stuck or fail when y fails.

It is worth noting that, when x and y are both services, applying the refactor-
ing based on the usage of a message broker allows to also resolve the occurrence
of an endpoint-based service interaction smell, if any. At the same time, when
x is a service and y is a message router, such a refactoring would not be local
to x and y, but rather it would involve acting on the rest of the architecture. It
would indeed require to apply a solution like the one for the situation where x
and y are both services to all services that can be reached through the message
router y, by exploiting a single message broker or multiple brokers depending on
the actual application needs.

Architectural Smell Possibly Violating Decentralisation. Decentralisa-
tion should occur in every aspect of microservice-based architectures, including
data management [22]. In this perspective, each data store should be directly
accessed by only one service [3]. The shared persistence smell hence occurs when-
ever multiple services interact with the same data store y.

Definition 6 (Shared persistence). Let A = 〈N,R,E〉 be an architecture.
A set of relations R(y) = {〈x, y〉 ∈ R} indicates a shared persistence smell iff

y.type ≥ ∧ (∃〈x1, y〉, 〈x2, y〉 ∈ R(y) : x1  = x2).

A visual representation of the shared persistence smell is in Fig. 3, where
x1 . . . xn are all the services accessing the data store y. The figure also shows the
three architectural refactorings for reducing the amount of services accessing
the same data store, hence ultimately allowing to resolve the occurrence of a
shared persistence smell. Although their goal is the same, such refactorings are
very diverse in spirit, and apply to different situations, highly depending on the
services accessing the same data store.

If a service x1 is the only service accessing a portion of the data stored in
the data store y, then y can be split in two different data stores y1 and y2n,
with y1 only storing the portion of data accessed by x1, and with y2n storing
the rest of the data. The service x1 then becomes the only accessing y1, while
y2n is accessed by the other services x2 . . . xn.



24 A. Brogi et al.

Other possible solutions to reduce the amount of services accessing the same
data store y are exploiting a data manager or merging some of the services
accessing the data store. Exploiting a data manager consists in adding a service
ym, or reusing one already available, to proxy the access of services x1 . . . xh (with
h ≤ n) to the data store y. The other refactoring instead consists in merging the
services x1 . . . xh (with h ≤ n) into a single service x1h. The rationale behind this
last refactoring is that, when multiple services access the same data store, this
may be indicating that the application has been split too much, by obtaining
too fine-grained services processing the same data [28].

Some Important Remarks. Our approach focuses on the architecture of an
application, by identifying smells based on the interactions among the compo-
nents forming an application, and by suggesting refactorings of the architec-
ture itself. The concrete implementation of an architectural refactoring (i.e., the
actual updates of the application sources) are left to the application owner, in a
similar way as the concrete implementation of a design pattern is left to devel-
opers. Hence, the application owner can decide which refactoring to apply also
based on the cost for actually implementing it.

Fig. 4. Snapshots of (a) the editing/analysis and (b) refactoring views of µFreshener.

Also, the architectural smells discussed in this section indicate potential vio-
lations of design principles of microservices. This means that the occurrence of
an architectural smell does not mean that a design principle is necessarily vio-
lated, hence not necessarily needing to be resolved by applying a corresponding
architectural refactoring. Even if an architectural smell is denoting an actual
violation of a design principle, the application owner may still decide to not
apply any refactoring as well, e.g., because updating the application sources in
accordance with an architectural refactoring is too expensive. Another possible
reason for choosing to not resolve an architectural smell can be that an applica-
tion architect intentionally structured the corresponding part of the application
as that, due to some contextual requirement. For instance, she may have decided



Freshening the Air in Microservices: Resolving Architectural Smells 25

to share a same data store among multiple services for overriding reasons. If this
is the case, she will ignore the corresponding shared persistence smell, otherwise
she would break her contextual requirements.

In any case, manually identifying architectural smells, deciding whether to
resolve them and which refactoring to apply is not easy. It would be helpful to
have a support system automatically identifying the smells affecting the archi-
tecture of an application and allowing to explore among multiple possible refac-
torings to resolve them. One such support system is presented in the following
section.

4 µFreshener: A Prototype Implementation

To illustrate the feasibility of our approach and support the design of microservice-
based applications, we implemented a prototype tool (called µFreshener) pub-
licly available on GitHub3. µFreshener provides a web-based graphical user
interface for (i) editing µTOSCA specifications, (ii) automatically identifying
architectural smells in specified applications and (iii) exploring/applying archi-
tectural refactorings for resolving the identified smells.

Figure 4 provides two snapshots of the GUI of µFreshener. Figure 4(a)
shows the editing and analysis view, where one can add/remove nodes and rela-
tionships from an architecture, and where automatically identified smells are
displayed with icons on top of corresponding nodes. By clicking on one of such
icons, one can open the view in Fig. 4(b), which permits selecting the archi-
tectural refactoring to apply to resolve the selected smell. Once selected, the
architecture modelling is updated in accordance with the architectural refactor-
ing. Note that the refactoring is only applied to the µTOSCA specification of an
application (and not on its sources), and that one can go back and forth in archi-
tectural refactorings, by undoing/redoing them by clicking on the corresponding
buttons.

5 Related Work

Even if there exists studies classifying various architectural smells for microser-
vices (e.g., [3,6,28]), to the best of our knowledge, ours is the first systematic
approach for identifying and resolving architectural smells possibly violating the
design principles of microservices in existing microservice-based applications.

[2,12] report on design patterns and decision models to design microservice-
based applications (from scratch, or by migrating from monoliths to microser-
vices). [2] also illustrates different possible solutions to resolve potential design
issues. In both cases, this is done by retrieving information from practitioners or
industry-scale projects, and by organising such information in informal guide-
lines, which can be used for driving the design of microservice-based application.
Our approach tries to further support the design of microservices, by providing

3 https://github.com/di-unipi-socc/microFreshener.

https://github.com/di-unipi-socc/microFreshener


26 A. Brogi et al.

a systematic solution to identify and resolve the architectural smells affecting an
already existing application, also providing a tool support.

Systematic solutions for modelling and analysing microservice-based archi-
tectures anyway exist, even if conceived for different purposes. For instance,
[29] presents MicroDSL, a domain-specific language for modelling microservice-
based architectures, where microservices interact through RESTish protocols,
and models are then used to generate an executable deployments of specified
applications. [4] instead proposes a Petri net-based solution for the runtime ver-
ification of the orchestration of microservice-based application on top of Netflix’s
Conductor. Even if conceived for different purposes, [4,29] share our baseline idea
of eliciting all interactions among microservices to analyse an architecture. They
however differ in the goals of the proposed approachs, due to which they focus
on modelling specific types of applications (microservices interacting with REST
in [29], Conductor-based applications in [4]).

[5,7] present two other existing tools for analysing of microservices, which
exploit a modelling closer to ours. Indeed, they both model a microservice-
based architecture as a graph, whose nodes represent components and whose
arcs represent interactions. They however do not support modelling the edge of
an architecture, nor distinguishing whether a component is a service, commu-
nication pattern or a data store. This, along with our willingness to exploit a
standard to model microservice-based architectures, is the reason why developed
µTOSCA instead of reusing the modelling in [5] or [7].

Another tool worth mentioning is [26], which provides an approach to auto-
mate the testing of microservice-based applications. [26] relates to our approach
as it allow to systematically check whether the interfaces of running microser-
vices adhere to a given specification. It however requires to run the microservice-
based application to be tested, while ours is a design-time support not needing
to actually run an application.

[9,25] instead present solutions for detecting smells in the design of a sin-
gle service (specified in UML and ARCHERY, respectively). [1,8,31] focus on
identifying smells in the structuring of the sources of a service, and propose
refactorings for resolving detected smells. All such approaches however differ
from ours, as they focus on the design of a single service, while our approach
focuses on the architectural smells due to the interactions among all components
forming a microservice-based application. In other words, such approaches and
ours can complement each other, to permit identifying both the architectural
smells affecting a single service and those due to the interactions among the
components in an application.

Similar considerations apply to [13,14]. Even if with different approaches
(self-adaptation in [13], aspect-oriented ambients in [14]), they both focus on
analysing a single microservice to determine whether the its granularity is opti-
mal, or whether it needs some adaptation to rightsize its granularity. We instead
focus on analysing the interactions among all microservices forming an applica-
tion to identify and resolve architectural smells.



Freshening the Air in Microservices: Resolving Architectural Smells 27

Finally, it is also worth relating our work with [10,11,20,21]. Starting from
the idea that service interactions are the main mechanism to program the
microservices forming an application, [11] proposes to develop microservice-
based applications with Jolie, a language for developing service compositions
by programming their interactions. Our approach follows the same idea, as we
consider service interactions as the basis for identifying architectural smells.

[10,20,21] instead propose different solutions for microservice-based archi-
tecture recovery, i.e., identifying the microservices forming an application and
the interactions among them. [10,20] also show how automatically recovered
architectures can be analysed for identifying issues (i.e., unnecessary service
interactions in [10], dependency cycles in [20]). [10,20,21] could then be used in
conjunction with our approach, to first derive the architecture of a microservice-
based application, and then identify and resolve the architectural smells affecting
such application.

6 Conclusions

We have presented a methodology to identify the architectural smells possibly
violating design principles of microservices, and to apply architectural refactor-
ings to resolve them. We have also presented the µFreshener, implementing
our methodology to support the design of microservice-based applications.

While our methodology and the µFreshener prototype can be actually
applied to analyse and improve existing microservice-based applications, users
must currently define (with the GUI of µFreshener) or provide a µTOSCA
description of the architecture of their applications. To increase the usability of
our prototype, we plan to develop plug-ins to automatedly extract the µTOSCA
description of the architecture of an application (from its code structure like in
[15,20,30] and/or from its runtime behaviour like in [10,21]).

We also plan to extend the architectural smells that can be identified and
resolved with our methodology (and with µFreshener), by starting from the
smells and refactoring classified in [3,6,28]. As a concrete example, we plan
to extend µTOSCA with a type for grouping nodes to represent team assign-
ment (i.e., which components are assigned to which team), to formalise the
team-related architectural smells available in [3], to correspondingly extend
µFreshener to identify and resolve such smells, and to feature team-wise usage
of µFreshener.

Finally, we plan to extend µFreshener to account for the container orches-
trator (e.g., Docker Compose, Kubernetes) used to deploy the application, as
the container orchestration layer can resolve some smells possibly present at the
architecture layer. We also intend to validate the effectiveness of our methodol-
ogy and the usability µFreshener against real-world microservice-based appli-
cations (possibly involving hundreds of interconnected services).

Acknowledgements. Work partly funded by the projects AMaCA (POR-FSE,
Regione Toscana) and DECLware (PRA 2018 66, University of Pisa).



28 A. Brogi et al.

References

1. Arcelli, D., Cortellessa, V., Pompeo, D.D.: Automating performance antipattern
detection and software refactoring in UML models. In: 2019 International Con-
ference on Software Analysis, Evolution and Reengineering, pp. 639–643. IEEE
(2019)

2. Balalaie, A., Heydarnoori, A., Jamshidi, P., Tamburri, D.A., Lynn, T.: Microser-
vices migration patterns. Softw. Pract. Exper. 48(11), 2019–2042 (2018)

3. Brogi, A., Neri, D., Soldani, J., Zimmermann, O.: Design principles, architectural
smells and refactorings for microservices: a multivocal review. Softw. Intensive
Cyber Phys. Syst. (2019). https://doi.org/10.1007/s00450-019-00407-8

4. Camilli, M., Bellettini, C., Capra, L., Monga, M.: A formal framework for specifying
and verifying microservices based process flows. In: Cerone, A., Roveri, M. (eds.)
SEFM 2017. LNCS, vol. 10729, pp. 187–202. Springer, Cham (2018). https://doi.
org/10.1007/978-3-319-74781-1 14

5. Cardarelli, M., Iovino, L., Di Francesco, P., Di Salle, A., Malavolta, I., Lago, P.: An
extensible data-driven approach for evaluating the quality of microservice archi-
tectures. In: 34th Symposium on Applied Computing, pp. 1225–1234. ACM (2019)

6. Carrasco, A., Bladel, B., Demeyer, S.: Migrating towards microservices: migration
and architecture smells. In: 2nd International Workshop on Refactoring, pp. 1–6.
ACM (2018)

7. Cockroft, A.: Spigo. https://github.com/adrianco/spigo
8. Fontana, F.A., Pigazzini, I., Roveda, R., Tamburri, D., Zanoni, M., Nitto, E.D.:

Arcan: a tool for architectural smells detection. In: 2017 International Conference
on Software Architecture Workshops, pp. 282–285. IEEE (2017)

9. Garcia, J., Popescu, D., Edwards, G., Medvidovic, N.: Identifying architectural bad
smells. In: 13th European Conference on Software Maintenance and Reengineering,
pp. 255–258. IEEE (2009)

10. Granchelli, G., Cardarelli, M., Di Francesco, P., Malavolta, I., Iovino, L.,
Salle, A.D.: MicroART: a software architecture recovery tool for maintaining
microservice-based systems. In: 2017 International Conference on Software Archi-
tecture Workshops, pp. 298–302. IEEE (2017)

11. Guidi, C., Lanese, I., Mazzara, M., Montesi, F.: Microservices: a language-based
approach. In: Mazzara, M., Meyer, B. (eds.) Present and Ulterior Software Engi-
neering, pp. 217–225. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-
67425-4 13

12. Haselböck, S., Weinreich, R., Buchgeher, G.: Decision models for microservices:
design areas, stakeholders, use cases, and requirements. In: Lopes, A., de Lemos,
R. (eds.) ECSA 2017. LNCS, vol. 10475, pp. 155–170. Springer, Cham (2017).
https://doi.org/10.1007/978-3-319-65831-5 11

13. Hassan, S., Bahsoon, R.: Microservices and their design trade-offs: a self-adaptive
roadmap. In: 2016 International Conference on Services Computing, pp. 813–818.
IEEE (2016)

14. Hassan, S., Ali, N., Bahsoon, R.: Microservice ambients: an architectural meta-
modelling approach for microservice granularity. In: 2017 International Conference
on Software Architecture, pp. 1–10. IEEE (2017)

15. Headway Software Technologies: Structure 101. https://structure101.com
16. Hohpe, G., Woolf, B.: Enterprise Integration Patterns: Designing, Building, and

Deploying Messaging Solutions. Addison-Wesley, Boston (2003)

https://doi.org/10.1007/s00450-019-00407-8
https://doi.org/10.1007/978-3-319-74781-1_14
https://doi.org/10.1007/978-3-319-74781-1_14
https://github.com/adrianco/spigo
https://doi.org/10.1007/978-3-319-67425-4_13
https://doi.org/10.1007/978-3-319-67425-4_13
https://doi.org/10.1007/978-3-319-65831-5_11
https://structure101.com


Freshening the Air in Microservices: Resolving Architectural Smells 29

17. Indrasiri, K.: Microservices in practice: from architecture to deployment. https://
dzone.com/articles/microservices-in-practice-1

18. Jamshidi, P., Pahl, C., Mendonca, N., Lewis, J., Tilkov, S.: Microservices: the
journey so far and challenges ahead. IEEE Softw. 35(3), 24–35 (2018)

19. Lewis, J., Fowler, M.: Microservices. https://www.martinfowler.com/articles/
microservices.html

20. Ma, S., Fan, C., Chuang, Y., Lee, W., Lee, S., Hsueh, N.: Using service dependency
graph to analyze and test microservices. In: 42nd Annual Computer Software and
Applications Conference, vol. 02, pp. 81–86. IEEE (2018)

21. Mahlen, P.: Modelling microservices at Spotify. In: jFokus Developer Conference
(2016)

22. Newman, S.: Building Microservices, 1st edn. O’Reilly Media Inc., Newton (2015)
23. OASIS: TOSCA Simple Profile in YAML Version 1.2 (2018)
24. Richardson, C.: Microservices Patterns, 1st edn. Manning Publications, New York

(2018)
25. Sanchez, A., Barbosa, L.S., Madeira, A.: Modelling and verifying smell-free archi-

tectures with the Archery language. In: Canal, C., Idani, A. (eds.) SEFM 2014.
LNCS, vol. 8938, pp. 147–163. Springer, Cham (2015). https://doi.org/10.1007/
978-3-319-15201-1 10

26. Savchenko, D., Radchenko, G., Taipale, O.: Microservices validation: mjolnirr plat-
form case study. In: 38th International Convention on Information and Communi-
cation Technology, Electronics and Microelectronics, pp. 235–240. IEEE (2015)

27. Soldani, J., Tamburri, D.A., Van Den Heuvel, W.J.: The pains and gains of
microservices: a systematic grey literature review. J. Syst. Softw. 146, 215–232
(2018)

28. Taibi, D., Lenarduzzi, V.: On the definition of microservice bad smells. IEEE Softw.
35(3), 56–62 (2018)

29. Terzić, B., Dimitrieski, V., Kordić, S., Milosavljević, G., Luković, I.: Development
and evaluation of microbuilder: a model-driven tool for the specification of rest
microservice software architectures. Enterp. Inf. Syst. 12(8–9), 1034–1057 (2018)

30. Tessier, J.: DependencyFinder. https://github.com/jeantessier/dependency-finder
31. Vidal, S., Vazquez, H., Diaz-Pace, J.A., Marcos, C., Garcia, A., Oizumi, W.:

JSpIRIT: a flexible tool for the analysis of code smells. In: 34th International
Conference of the Chilean Computer Science Society, pp. 1–6. IEEE (2015)

32. Zimmermann, O.: Microservices tenets. Comp. Sci. Res. Dev. 32(3–4), 301–310
(2017)

https://dzone.com/articles/microservices-in-practice-1
https://dzone.com/articles/microservices-in-practice-1
https://www.martinfowler.com/articles/microservices.html
https://www.martinfowler.com/articles/microservices.html
https://doi.org/10.1007/978-3-319-15201-1_10
https://doi.org/10.1007/978-3-319-15201-1_10
https://github.com/jeantessier/dependency-finder


Specifying Web Interfaces
for Command-Line Applications

Based on OpenAPI

Dennis Wolters(B), Jonas Kirchhoff, and Gregor Engels

Department of Computer Science, Paderborn University, Paderborn, Germany
{dennis.wolters,jonas.kirchhoff,engels}@uni-paderborn.de

Abstract. Command-line applications help to deal with various different tasks,
reaching from automation, text manipulation or document conversion to admin-
istrating databases or firewalls. Powerful orchestrations of those applications can
be created, e.g., to build Continuous Delivery or decision support pipelines. If the
functionality of those applications and their orchestrations shall be used within
a service-oriented architecture or as a backend of a web application, a web-
compatible interface is necessary, which is usually not provided. Thus, those
applications need to be retrofitted with a web interface. In this paper, we present
CL2HTTP, an approach to map command-line interfaces to HTTP interfaces
using an extended form of the OpenAPI service description format. The exten-
sions specify how HTTP requests are mapped to command-line invocations and
how the command-line responses are mapped back to HTTP responses. Our app-
roach does not require any programming to specify a web interface for command-
line applications, is available for public use and supports deployment as a con-
tainer or lambda function in cloud environments.

Keywords: Web services · Interface adaptation · Command-line · OpenAPI

1 Introduction

Command-line applications play an important role in modern computing. A large repos-
itory of powerful command-line applications exists, providing functionality that reaches
from automation, text manipulation or document conversion to administrating databases
or firewalls. The orchestration of command-line applications enables businesses to
quickly react to continuous and rapid changes in market needs. For instance, Continu-
ous Integration/Delivery principles embodied in DevOps [14] require the orchestration
of command-line applications to pipelines that automatically assemble, test and deploy
software [13,16]. Also, to support decision making processes, model management sys-
tems [1] can orchestrate decision making models provided as command-line applica-
tions [15] to gain new insights and transform them into recommendations for actions.

The increasing complexity in the environment and consequently in the products
themselves [3] requires orchestrations not only on individual machines but across multi-
ple distributed systems in a web-based service-oriented manner, as it can for instance be
seen in [2–4] for decision making. While such a web service-oriented approach enables
businesses to cope with the increasing complexity, it also comes with the downside that
c© Springer Nature Switzerland AG 2020
S. Yangui et al. (Eds.): ICSOC 2019 Workshops, LNCS 12019, pp. 30–41, 2020.
https://doi.org/10.1007/978-3-030-45989-5_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-45989-5_3&domain=pdf
https://doi.org/10.1007/978-3-030-45989-5_3


Specifying Web Interfaces for Command-Line Applications 31

the previously used and proven command-line applications can no longer be used due
to a lack of a web-compatible communication interface. We experienced this problem
when wanting to reuse command-line conversion tools in a web service orchestration
to enable the linkage of services to websites based on embedded semantic data [18].

While remote execution of command-line applications via SSH is possible, using
them within a service-oriented architecture or as a backend for web applications
requires a web-compatible interface like an HTTP interface or support of a WebSocket
connection. If this is not given, either the source code of those application needs to be
extended so that they also provide a web interface or adapters need to be developed
that adapt the command-line interface to a web interface. While this might work for
individual applications, doing this repetitively for multiple command-line applications
is cumbersome, especially since all of this new code needs testing and maintenance.

In this paper, we present CL2HTTP, an approach which enables the mapping of
command-line interfaces of applications to HTTP interfaces in a non-invasive, descrip-
tive and secure way. CL2HTTP consists of an extension of the OpenAPI specifica-
tion [8] to describe web interfaces for command-line applications as well as an inter-
preter for this extension that provides the actual interfaces and delegates between web
interface and command-line interface. Thereby, it circumvents the need for individual
web service implementations tailored to specific command-line applications. In fact,
no programming is necessary to provide the HTTP interface and since our approach is
defined as an extension to the OpenAPI specification, the resulting service is descriptive
enough to be used by service consumers. Furthermore, the web interface can be inde-
pendently maintained and is not limited to the evolution cycles of the used command-
line applications.

The usage scenarios for CL2HTTP include, but are not limited to, integrating
(legacy) command-line applications into web service orchestrations, aggregating mul-
tiple command-line applications into a single coherent web service offering and rapidly
prototyping backends for web applications by building up on command-line applica-
tions. CL2HTTP is implemented, open source and available for public use1.

Following the design science research method presented by Peffers et al. [10], the
remainder of this paper is structured as follows: In Sect. 2, we formulate concrete and
verifiable requirements for the CL2HTTP interface adapter motivated in this section. In
Sect. 3, we explain the solution in detail and demonstrates its technical feasibility by
showing how a web service for document conversion can be built using our adapter.
In Sect. 4, we discuss when to use our approach and what constraints apply. In Sect. 5,
we present related work, and in Sect. 6, we summarize the main insights and give an
outlook on future work.

2 Requirements

Before we explain CL2HTTP in detail in Sect. 3, we discuss the requirements for our
approach to define web interfaces for command-line applications in this section. The
rationale behind every requirement is given in its description.

1 http://cl2http.dwolt.de.

http://cl2http.dwolt.de


32 D. Wolters et al.

R1 Non-intrusive Approach: Access to the source code of a certain command-line
application is not always given. Hence, it is not feasible to add a web interface directly
to an application’s source code. Instead, providing a web interface for an existing
command-line application shall be done in a non-intrusive manner based on the pro-
vided command-line interface.
R2 Descriptive Interface: Creating web interfaces for command-line applications
is only helpful if service consumers know how to use the newly created interfaces.
Therefore, descriptions of the resulting web interface are needed. Various languages to
describe web interfaces exist, e.g., the Web Service Description Language (WSDL) or
the OpenAPI specification. If the resulting service shall be integrated into a service-
oriented architecture, this interface description must be machine-readable.
R3 Independent Interface Design: The web interface design shall be independent of
the command-line interface. Thereby, we can follow best practices for interface design,
hide interna of command-line interfaces, and create export interfaces that match import
interfaces of requestors. This requirement can be further split into two sub-requirements:

R3.1 Parameter Value Transformation: Parameter values of the web interface
and command-line interface might need transformation, e.g., if a command-line
application provides human-readable output but a JSON object is expected from
the web interface. Hence, parameter value transformation shall be supported.
R3.2 Input/Output Mapping: The input and output parameters of web inter-
faces are not the same as those of a command-line interface. For instance, the
structure of an HTTP request with header values in addition to the request body
is very different to a command-line call with parameters and referenced files.
Therefore, a mapping between the input and output parameters of web and
command-line interfaces is needed.

R4 Security: Since a web interface has a broader accessibility than a command-line
interface, it has additional security requirements. Communication shall be encrypted
and authentication means shall be supported for access restriction. Injection of custom
command-line calls must be prohibited.
R5 Flexible Deployment: Command-line applications can be bound to a specific
machine, i.e., because the used data resides with this machine, or they can be unbound
and independently deployed, e.g., to leverage load balancing. Hence, flexible deploy-
ment options are needed for both command-line applications as well as the web inter-
faces defined for the respective applications.

3 Adapting Command-Line to HTTP Interfaces

This section explains how CL2HTTP can be used to enrich command-line applications
with an HTTP interface. We start by giving a general overview over our approach.
Afterwards, we explain how the HTTP interface is described and how parameters are
being mapped between the web interface and the command-line interface. We illustrate
this mapping using an example, discuss security characteristics and deployment options.



Specifying Web Interfaces for Command-Line Applications 33

CL2HTTP

CL2HTTP Adapter

Console

> ...

Physical / Virtual Machine Container Function as a Service

RESTful
HTTP API

Extended
OpenAPI

Description
configuresconfigures

direct
or ssh

interprets

deployable asdeployable as

Command-line
Interface

Command-line
Application

Fig. 1. Structural overview of the CL2HTTP approach

3.1 Solution Overview

Various forms of web interfaces exist. CL2HTTP focuses on adding HTTP interfaces to
command-line applications. While SOAP-based interfaces described viaWSDL are still
relevant in some domains, HTTP interfaces are the de facto standard. Furthermore, the
advantages of describing interfaces with WSDL and having tools, e.g., for client stub
generation or testing, now also hold for HTTP interfaces since documentation standards
with comparable tool support exist. WebSockets are not taken into account, because
they just provide means of communication and a protocol has to be used on top.

A structural overview of CL2HTTP in relation to its environment is given in Fig. 1.
CL2HTTP consists of two main parts: The first part is an extension of the OpenAPI
specification [8], a widely-used documentation standard for describing HTTP inter-
faces. The standard specification is used to describe a new HTTP interface and our
CL2HTTP OpenAPI extension allows to map this HTTP interface to a command-
line application. Hence, the creation of the HTTP interface is documentation-driven,
which ensures a descriptive interface, thereby satisfying Requirement R2. Furthermore,
the CL2HTTP OpenAPI extension is defined using OpenAPI’s extension mechanism,
which requires that any custom properties added to the specification start with “x-”.
The standard defines that these properties are ignored by OpenAPI-based tools if they
are unknown. Thus, the created interface description is directly usable by existing Ope-
nAPI tools used for testing or creating interactive documentations and client stubs.

The second part, the CL2HTTP adapter, is the interpreter for our extended OpenAPI
specification. The adapter provides an HTTP interface as specified by a given OpenAPI
description and interacts with command-line applications as defined via our CL2HTTP
OpenAPI extension. By having an adapter as a separate entity instead of integrating it
into the command-line application, providing an HTTP interface can be done in a non-
intrusive manner (see Requirement R1) and does not require altering a command-line
application. Command-line applications can be called locally by the adapter or remotely
via SSH. This allows a joint or independent deployment of adapter and the command-line
application on a physical/virtual machine, as a container or as a function as a service.



34 D. Wolters et al.

Table 1. Available input and output parameters of HTTP and command-line interfaces. This table
only lists the parameters of the different interfaces and does not imply a correspondence.

HTTP interface Command-line interface

Input parameters Method Executable

Path Command-line options

Query Environment variables

Header fields Standard input (STDIN)

Cookies Input files

Request body

Output Parameters Status code Exit code

Header fields Standard output (STDOUT)

Response body Standard error (STDERR)

Output files

3.2 Describing the HTTP Interface Using OpenAPI

CL2HTTP is a documentation-driven approach, since the first step is to describe the
HTTP interface using OpenAPI. This includes the definition of all input and out-
put parameters. A listing of all available input and output parameters of HTTP and
command-line interfaces is given in Table 1. This subsection explains how to describe
input and output parameters of the new HTTP interface. The upcoming subsections
explain how to establish a mapping between the input and output parameters of both
interfaces.

To explain how input and output parameters are documented using OpenAPI and as
a running example for the remainder of this paper, we explain how to create an HTTP
interface for the command-line application pandoc2, a universal document converter. A
simplified example for an interface description using OpenAPI for pandoc is given in
Listing 1. Lines 2 to 5 give general information on the service, such as title, description
and version. Lines 6 to 7 define the server where the service can be reached and the
protocol that needs to be used.

The paths property in Line 20 marks the start of the definition of the HTTP end-
points. In this example, just the single path/pandocwith support for the HTTPmethod
POST is defined. The parameters for this method are declared in Lines 26 to 42. The
document to be converted by pandoc is given in the request body, the header field
Content-Type describes the type of document given in the body and the header field
Accept defines the target type. Unless stated otherwise, CL2HTTP assumes that body
consist of binary data,whereas for all other parameterswe assume the data typestring.
Thus, the schema defining the header field Content-Type in Lines 31 to 36 of List-
ing 1 is redundant and just given to indicate how data types can be defined. In this case,
the schema object just defines the data type string, however, more specific types like
date or email or elaborate type descriptions via JSON Schema can be used.

2 https://pandoc.org.

https://pandoc.org


Specifying Web Interfaces for Command-Line Applications 35

The OpenAPI specification also allows the definition of possible responses based
on different HTTP status code, like it can be seen in Lines 46 to 53. For the responses,
important header fields and a schema for the response’s body can be specified.



36 D. Wolters et al.

3.3 Parameter Value Transformation

The input parameters defined for HTTP interfaces are not necessarily directly usable
as input parameters for command-line applications. For instance, to be HTTP compli-
ant, the header field Content-Type should contain media types like text/html
or text/markdown. If the command-line application does not directly accept these
media types but instead expects html or markdown, these values have to be trans-
formed. Thus, in addition to the standard way of defining parameters using OpenAPI,
we added a property called x-transform, which can either refer to a key-value map
or a serialized JavaScript function which performs this transformation. This addresses
the data conversion and manipulation Requirement R3.1.

The transformation map or function can be specified in the x-transform prop-
erty or it can refer to a globally defined declaration. An example for the latter is given
in Listing 1, where the x-transform properties in Lines 36 and 42 both refer to
the transformation map toPandocType defined globally in the Lines 8 to 11. Even
though not shown in the example, x-transform can also be defined for responses
to transform the output of the command-line application as required for the HTTP
response.

3.4 Input/Output Mapping

For each HTTP method defined for a path, the x-cli object is required to declare
which command-line applications need to be called. This object contains various prop-
erties to specify the mapping between the HTTP and the command-line interface and
addresses Requirement R3.2. The property command defines which command is exe-
cuted on the command-line. This command can be parameterized using input parame-
ters of the HTTP interface (see Line 44 of Listing 1).

For all parameters, the original values are accessible using${=ParameterName},
whereas ${:ParameterName} gives you the transformed value (cf. the previous
Sect. 3.3). By default, we assume that the request body is used as standard input for
the command-line application. This behavior can be overridden is two ways: (1) If
bodyToFile is set to true, like in Line 45, then the request’s body is written to a file
which can be referred to using ${:inputFile}. (2) Alternatively, similar to defining
the command, a parameterized standard input for the command-line application can be
specified using the property input.

We also assume that the standard output of the executed command shall be
used as the response body. This can be overridden in a similar fashion, either
by setting fileToBody to true and then the response’s body is read from the
${:outputFile}, or defining a parameterized response’s body using property
x-value in OpenAPI’s response descriptions.

Treating parameter values as a whole hinders the independent design of the HTTP
interface (see Requirement R3). For instance, HTTP interface designers may want to
encode all relevant values for the input parameter of a command-line application as
a JSON object, as it is typical for HTTP-based APIs. However, if the command-line
application does not accept JSON object directly, but rather requires the values of the



Specifying Web Interfaces for Command-Line Applications 37

POST /pandoc HTTP/1.1
Host: example.com
Content-Type: text/html
Accept: text/markdown
Authoriza on: Basic YXZ...

HTTP/1.1 200 OK
Content-Type: text/markdown

<h3>My Headline</h3> ...

### My headline …

${:contentType}

referenced by

${:accept}

fileToBody: false

${=accept}

transform
copy
reference

> pandoc inpu ile -t "markdown" -f "html"
### My headline
Lorem ipsum dolor sit amet, consetetur 
sadipscing elitr, sed diam nonumy eirmod 
tempor invidunt ut labore et dolore ...

Fig. 2.Mapping example for the document conversion tool pandoc

individual properties, we need a more fine-grained access. To support this, we allow
that parameter values cannot only be mapped one-to-one but can also be queried.

For JSON objects, we support JSON Path queries3, e.g., ${:body.name} would
return the value of the property name or ${:body..item} would return a comma-
separated list all values of properties called item. A separator to join the values can
be defined after a pipe. For instance, ${:body..item| \n}, would provide a string
with each item in a new line. To get a JSON array instead, ${=body..item} can be
used. For text values, regular expressions can be used to extract specific information.
For instance, ${:body/[0-9]{5}/} would return the first 5 digit number in the
body. Standard regular expression flags for returning all occurrences or case insensitive
or multi-line search can be added. Multiple results are provided as a comma-separated
list or joined using an explicit separator as for multiple JSON Path results. Support for
further query language for other content types can be added, like XPath for XML.

Figure 2 shows an example translation between HTTP request and response and
input and output of the command-line application according to the example descrip-
tion provided in Listing 1. When a request is received, it is translated into the specified
command-line calls. For this, the values of parameters Content-Type and Accept
are transformed, i.e., to the values markdown and html, and inserted as arguments.
Since bodyToFile is set to true (see Line 45 of Listing 1), the body of the request is
stored in a file, which is then referenced in the command-line call. If not specified oth-
erwise using the properties inputFilename and outputFilename in the x-cli
object, random filenames are generated for the input and output files. These file names
are accessible using ${:inputFile} and ${:outputFile}. An example for this
can be seen in Line 44 of Listing 1. In the HTTP response, the body is filled directly
with the content of standard output, because no transformation has been defined for the
response and it has not been stated that the output should be read from a file. As defined
in Lines 46 to 53, the original value for the Accept header field in the request is taken
as the value for the Content-Type header field in the response.

3 https://github.com/s3u/JSONPath.

https://github.com/s3u/JSONPath


38 D. Wolters et al.

3.5 Security

As mentioned in Requirement R4, exposing command-line applications to the web
bares a security risk which needs to be addressed. The resulting service needs to support
secure communication, in our case HTTPS, and must be able to validate that service
consumers are authenticated. For using HTTPS, the extended OpenAPI specification
allows to specify the paths of certificate information. For authentication, the CL2HTTP
adapter supports all authentication methods definable in OpenAPI 3.0. These include
HTTP basic authentication (cf. Lines 13 to 19 of Listing 1), bearer tokens used by
OAuth as well as API keys. The credentials (user, password, token or keys) do not need
to be defined within the extended OpenAPI specification, instead we introduce con-
nector objects to check credentials (cf. Lines 17 to 19 of Listing 1). These connector
objects enable the validation of credentials against external data sources such as CSV
files or databases. Additionally, developing custom connector objects is supported to
tailor authentication capabilities to specific needs.

Since parameters given in HTTP requests are forwarded either in original or trans-
formed form, there is a risk of injecting custom commands, e.g., to manipulate the
executed command or execute additional commands. To circumvent this problem, data
types of parameters need to be specified and are checked by the CL2HTTP adapter.
Strings are by default enclosed in quotes and any quotes in the parameters values are
escaped. As mentioned in Subsection 3.2, more specialized type definitions can be spec-
ified. If a value in a request does not fit the specified data type, the request immediately
leads to a “400 Bad Request” HTTP error.

3.6 Deployment

To comply with Requirement R5, different deployment options exist for the CL2HTTP
adapter as well as the command-line application, as illustrated in Fig. 1. Both can be
deployed together on the same physical/virtual machine or container or as a Function
as a Service (FaaS). Alternatively, both can be deployed independently. In this case, the
CL2HTTP adapter can invoke the command-line application via SSH.

Whether a joint or independent deployment is feasible and/or more beneficial
depends on the command-line applications which are being used. In case of our exam-
ple, deploying pandoc alongside the adapter is feasible, since the application is stateless.
Stateful command-line applications, however, are often bound to specific (physical or
virtual) machines. The adapter could be deployed on these machines as well, or sep-
arately as a container or as a FaaS, e.g., if no additional software should be installed
on the machine or container offering a command-line application. Concrete support for
specifying Docker images and deploying on AWS Lambda is implemented.

4 Discussion

The previous section already explains how the requirements of Sect. 2 are addressed.
In this section, we discuss what kind of mappings of command-line interfaces to HTTP
interfaces are possible with our approach and which are not. Furthermore, we discuss
maintainability, runtime overhead and usage of OpenAPI alternatives.



Specifying Web Interfaces for Command-Line Applications 39

We decided to create a manual approach for creating HTTP interfaces for command-
line applications. While automated mappings could be created, deciding which
command-line options are relevant and need to be combined cannot properly be auto-
mated. Hence, an automatic approach exposes the full command-line interface over
HTTP, which leads to a tight coupling to the command-line interface. CL2HTTP allows
an interface design independent of the command-line interface’s structure. Since we
support mapping of input/output parameters as well as value transformation, we even
allow different data types than those supported by the command-line interface, e.g.,
JSON objects could be used by the HTTP interface and individual properties can be
passed to the command-line application.

The approach is limited to non-interactive applications that terminate. Hence,
command-line applications that require user input beyond initial input parameters or
do not terminate, e.g., because they continuously monitor changes, are not supported,
yet. Supporting interactive command-line applications does not align well with HTTP
interfaces because it would require maintaining a client state on the service side. If those
applications require a web interface, individual adapters need to be developed. Future
work gives an outlook on how non-terminating applications can be supported.

The maintenance of the new interface consists of two parts: the extended OpenAPI
description and the CL2HTTP adapter. The latter is just the interpreter for the former
and maintained globally for all services built with our approach. Unless there is a prob-
lem with the interpretation, only the maintenance of the extended OpenAPI description
is relevant for users of our approach. If a problem occurs with the interpreter, it can
be solved globally. Making the adapter available through package managers, allows the
distribution of updates and communication of potential (security) problems.

Implementing functionality directly can lead to a faster response time than reusing
command-line applications, because there is a runtime overhead for creating processes
and mapping inputs and outputs. The individual overhead depends of the complexity
of the mappings and transformations. For our test sets covering the different mappings
concepts, the overhead is roughly 100ms on a Intel Core i7. However, custom imple-
mentations can be costly and require testing and maintenance effort. Our approach can
be used to rapidly create backends for web applications if required functionality is
available through command-line applications. This shortens the time-to-market. Due
to the independent HTTP interface design, a more efficient implementation can later on
replace the command-line application without needing to change the HTTP interface.

Several alternatives to OpenAPI for describing HTTP interfaces are available, like
RAML or API Blueprint. CL2HTTP is based on OpenAPI because it is widely sup-
ported and a large tool base exists. We currently support OpenAPI specification v2 and
v3. If a service description in a different format is needed, tools for converting OpenAPI
descriptions to other formats can be used4.

5 Related Work

Related work for the paper is twofold: Approaches concerned with the adaptation of
command-line interfaces and approaches leveraging OpenAPI descriptions.

4 https://apimatic.io/transformer.

https://apimatic.io/transformer


40 D. Wolters et al.

The Common-Gateway Interface (CGI)5 enables web servers to delegate the
received requests to command-line applications and return the response of the applica-
tion back to the client. For this to work, the called applications need to understand HTTP
requests and must be able to provide HTTP responses. This, however, is not the case for
most command-line applications. Wohlstadter et al. [17] enable mapping command-line
applications to the CORBA interoperability standard and thereby offer them to external
requesters. The resulting external interfaces are, however, not usable by web applica-
tions and there is no description of the resulting interface. Soaplab [11] offers external
access to command-line applications via SOAP. The need for Soaplab originated in the
bioinformatics domain where most analysis programs only offer command-line inter-
faces. Soaplap requires more specification effort, the specification is far more technical
and not as flexible as CL2HTTP w.r.t. to mapping and transformation. Gannod et al. [6]
also developed an approach to convert command-line applications into services. Their
approach is based on the ACME architecture description language (ADL). In contrast to
our approach, they generate glue code instead of interpreting their ACME specification
and they do not create an HTTP interface but enable integration with Jini, a framework
for developing distributed applications. In [9], Pautasso and Alonso show how a ser-
vice composition tool can abstract from the service type and support various kinds of
services, including command-line applications. They also enable mapping of input and
output parameters, but their approach is limited enabling a specific composition tool to
use command-line applications as individual services.

Koren and Klamma [7] present an approach to use OpenAPI specification in combi-
nation with the Interaction Flow Model Language (IFML) to synthesize web frontends.
Instead, our approach focusses on defining an HTTP interface for command-line appli-
cations that could be used by frontends. Ed-douibi et al. [5] enable the translation of
OpenAPI specification into UML models. Their approach could also be used on our
extended OpenAPI specification to increase the comprehensibility of the defined HTTP
interface. In [12], a model-driven approach to build web services based on OpenAPI
specifications is presented. In contrast to our approach, they focus on developing new
services and not adapting interfaces of existing command-line applications.

6 Conclusion

In this paper, we present CL2HTTP, an approach to rapidly specify web interfaces
for command-line applications. For this approach, the OpenAPI specification has been
extended so that it can be defined which command-line application shall be executed
for a specific HTTP request and how the input and outputs are being mapped and
transformed. We explained the extended specification by providing an example defin-
ing a web interface for a command-line document conversion tool. Web interfaces are
added in a non-intrusive manner via the CL2HTTP adapter, a component separate from
the command-line application. It interprets the extended service description, calls the
command-line applications, and performs transformations and mappings as specified.
Using CL2HTTP, command-line applications can be used to build backends for web
applications or within web service orchestrations.

5 https://tools.ietf.org/html/rfc3875.

https://tools.ietf.org/html/rfc3875


Specifying Web Interfaces for Command-Line Applications 41

For the future, the approach shall be extended to support multipart bodies in both
requests and responses. Furthermore, dealing with command-line applications that do
not terminate but instead frequently output information, like file changes or log data,
shall be supported by allowing streams as a response. One option for this is the support
of server-sent events.

References

1. Blanning, R.W.: Model management systems: an overview. Decis. Support Syst. 9(1), 9–18
(1993)

2. Delen, D., Demirkan, H.: Data, information and analytics as services. Decis. Support Syst.
55(1), 359–363 (2013)

3. Demirkan, H., Delen, D.: Leveraging the capabilities of service-oriented decision support
systems: putting analytics and big data in cloud. Decis. Support Syst. 55(1), 412–421 (2013)

4. Deokar, A.V., El-Gayar, O.F., Aljafari, R.: Developing a semantic web-based distributed
model management system: experiences and lessons learned. HICSS 2010, 1–10 (2010)

5. Ed-douibi, H., Cánovas Izquierdo, J.L., Cabot, J.: OpenAPItoUML: a tool to generate UML
models fromOpenAPI definitions. In: Mikkonen, T., Klamma, R., Hernández, J. (eds.) ICWE
2018. LNCS, vol. 10845, pp. 487–491. Springer, Cham (2018). https://doi.org/10.1007/978-
3-319-91662-0_41

6. Gannod, G.C., Mudiam, S.V., Lindquist, T.E.: Automated support for service-based software
development and integration. J. Syst. Softw. 74(1), 65–71 (2005)

7. Koren, I., Klamma, R.: The exploitation of OpenAPI documentation for the generation of
web frontends. In: Companion Proceedings of WWW 2018, pp. 781–787 (2018)

8. OpenAPI Initiative: OpenAPI Specification (2018). http://spec.openapis.org/oas/v3.0.2
9. Pautasso, C., Alonso, G.: From web service composition to megaprogramming. In: Shan,

M.-C., Dayal, U., Hsu, M. (eds.) TES 2004. LNCS, vol. 3324, pp. 39–53. Springer, Heidel-
berg (2005). https://doi.org/10.1007/978-3-540-31811-8_4

10. Peffers, K., Tuunanen, T., Rothenberger, M.A., Chatterjee, S.: A design science research
methodology for information systems research. J. Manage. Inf. Syst. 24(3), 45–77 (2007)

11. Senger, M., Rice, P., Oinn, T.: Soaplab - a unified sesame door to analysis tools. In: In UK
e-Science All Hands Meeting, pp. 509–513 (2003)

12. Sferruzza, D., Rocheteau, J., Attiogbé, C., Lanoix, A.: A model-driven method for fast build-
ing consistent web services from OpenAPI-compatible models. In: Hammoudi, S., Pires,
L.F., Selic, B. (eds.) MODELSWARD 2018. CCIS, vol. 991, pp. 9–33. Springer, Cham
(2019). https://doi.org/10.1007/978-3-030-11030-7_2

13. Spinellis, D.: Being a DevOps developer. IEEE Softw. 33(3), 4–5 (2016)
14. Virmani, M.: Understanding DevOps & bridging the gap from continuous integration to con-

tinuous delivery. In: INTECH 2015, pp. 78–82. IEEE (2015)
15. Voss, A., Voss, J.: Fast-dm: a free program for efficient diffusion model analysis. Behav. Res.

Methods 39(4), 767–775 (2007)
16. Wettinger, J., Andrikopoulos, V., Leymann, F.: Automated Capturing and systematic usage

of DevOps knowledge for cloud applications. In: IC2E 2015, pp. 60–65 (2015)
17. Wohlstadter, E., Jackson, S., Devanbu, P.: Generating wrappers for command line programs:

the Cal-Aggie Wrap-O-Matic project. In: ICSE 2001, pp. 243–252 (2001)
18. Wolters, D., Heindorf, S., Kirchhoff, J., Engels, G.: Linking services to websites by leverag-

ing semantic data. In: ICWS 2017, pp. 668–675. IEEE (2017)

https://doi.org/10.1007/978-3-319-91662-0_41
https://doi.org/10.1007/978-3-319-91662-0_41
http://spec.openapis.org/oas/v3.0.2
https://doi.org/10.1007/978-3-540-31811-8_4
https://doi.org/10.1007/978-3-030-11030-7_2


Towards Understanding Adaptation
Latency in Self-adaptive Systems

Claas Keller and Zoltán Ádám Mann(B)

University of Duisburg-Essen, Essen, Germany

Abstract. An important feature of service-based and cloud-based sys-
tems is their ability to perform self-adaptation. Through self-adaptation,
such systems can automatically react to changes and thus ensure the con-
tinued satisfaction of their functional and non-functional requirements.
Self-adaptation may take non-negligible time (which we term adaptation
latency), and during this period the self-adaptive system may exhibit
degraded performance or other negative impact. Hence, it is important
to understand how long self-adaptations take and what influences the
adaptation latency. However, we are not aware of a systematic study of
this question in the literature. This paper is a first step in this direc-
tion. We present (i) a model of adaptation latency that breaks it down
into four components and (ii) a preliminary survey, limited to one con-
ference series and to service-based and cloud-based systems, to analyze
information about adaptation latency in the available literature on self-
adaptive systems. According to the findings from this preliminary survey,
although some components of the adaptation latency are studied in some
publications, the whole adaptation delay is seldom considered.

1 Introduction

Modern software systems must operate in highly dynamic environments. To effec-
tively cope with changes of the environment, the concept of self-adaptation has
been proposed [31]. A self-adaptive system reacts to changes in the environment
by adapting its own structure or behavior at run time, so that the system contin-
ues to satisfy its requirements [5]. For example, in a service-based application, if
one of the used services becomes unavailable, an alternative service can automati-
cally be involved instead to ensure that the service-based application remains func-
tional [14]. As another example, a cloud-based application can react to an increas-
ing workload by automatically scaling out to use more virtual machines [21].

From the moment the change in the environment happens, it takes some time
until the self-adaptive system resolves the issue. We call this time adaptation
latency. The amount of the adaptation latency can be very different, depending
on the type of change of the environment, the type of adaptation used by the
self-adaptive system etc. During the period of the adaptation latency, the self-
adaptive system may be in a transient state in which its performance may be

c© Springer Nature Switzerland AG 2020
S. Yangui et al. (Eds.): ICSOC 2019 Workshops, LNCS 12019, pp. 42–53, 2020.
https://doi.org/10.1007/978-3-030-45989-5_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-45989-5_4&domain=pdf
https://doi.org/10.1007/978-3-030-45989-5_4


Towards Understanding Adaptation Latency in Self-adaptive Systems 43

degraded and some requirements may be temporarily violated [23]. For example,
if a cloud-based application scales out to support an increased number of user
requests, it takes some time until this adaptation action takes effect, and in the
meantime, the application’s response time may be too high (e.g., higher than
stipulated in the service level agreement) [24].

The adaptation latency is important for multiple reasons. First, it is a funda-
mental goal of self-adaptation to reach a new system state in which the require-
ments are again satisfied as soon as possible, i.e., with minimum adaptation
latency, so as to minimize the negative impact of the transient state during
the adaptation process [12]. Second, if the new state is reached with a high
delay, this increases the likelihood that in the meantime the environment has
changed again, so that the ongoing adaptation will not be effective anymore. In
other words, the speed of adaptation should be commensurate with the speed
of change in the environment [23]. Third, the self-adaptive system may be able
to make better adaptation decisions if it is aware of the latency associated with
the possible adaptation actions. For example, knowing how long it takes to spin
up a new virtual machine, a cloud-based application can start the scale-out in a
proactive way, early enough [25,26].

Despite the importance of adaptation latency for self-adaptation, we are not
aware of a systematic study about adaptation latency, the factors influencing adap-
tation latency, or the implications of adaptation latency. In fact, there is not even
consensus about the name and the exact scope of adaptation latency. For example,
Tamura et al. call it “settling time” and include the time for making an adaptation
decision and executing it [35]. On the other hand, Gambi et al. consider what they
call “actuation delay”, which includes the time for executing an adaptation and the
time it takes for the adaptation to show its effect [13]. Cámara et al. use the terms
“adaptation latency”1 and synonymously “adaptation tactic latency” to refer to
the time it takes to execute an adaptation action [8].

Therefore, this paper makes two contributions towards a better understand-
ing of adaptation latency in self-adaptive systems. First, we present a simple
model of adaptation latency that breaks it down into four components. This
model makes it easier to compare different notions of adaptation latency used
by different authors. Second, we present preliminary results of a literature survey,
so far limited to one relevant conference series (Software Engineering for Adap-
tive and Self-Managing Systems, SEAMS2) and to the topics of service-based
and cloud-based systems. In the survey, we identified the papers that contain
specific information about adaptation latency and mapped them on our model of
adaptation latency. According to the preliminary findings, most of the relevant
papers address only some components of the adaptation latency.

1 It should be noted that this is different from the meaning of “adaptation latency” in
this paper. The adaptation latency considered by Cámara et al. is only a part of the
adaptation latency considered in this paper.

2 http://self-adaptive.org/seams/.

http://self-adaptive.org/seams/


44 C. Keller and Z. Á. Mann

The rest of the paper is organized as follows. Section 2 presents our model of
adaptation latency and the components of adaptation latency. Section 3 describes
the methodology and the results of our preliminary literature survey. Section 4
discusses the findings, and Sect. 5 concludes the paper.

2 A Model of Adaptation Latency

As already mentioned in Sect. 1, different authors consider different latencies
when evaluating the speed of adaptation. To make a meaningful comparison
between different approaches, we provide a simple model of adaptation latency
that we believe to be a good basis for capturing different temporal aspects of
adaptation.

Our model is related to the well-known MAPE model of self-adaptive systems
[19]. According to the MAPE model, a self-adaptive system monitors (M) its
environment to detect changes, analyzes (A) the changes to decide if adaptation
is necessary, plans (P) adaptations if necessary, and executes (E) the adaptations.

time

Need for 
adaptation 

arises

Need for 
adaptation 

resolved

Need for 
adaptation 
observed

Adaptation 
starts

Adaptation 
finishes

Fig. 1. Model of adaptation latency

The proposed model for adaptation latency is shown in Fig. 1. As can be
seen, there are five key points in time:

1. First, the need for adaptation arises, typically in the form of a change in the
environment. For example, the number of users of a cloud-based application
starts to increase.

2. After some time �M , which is related to the monitoring activity, the self-
adaptive system recognizes the change. For example, the cloud-based appli-
cation observes that the queue length of user requests grew over a threshold.

3. This is followed by the analysis and planning activities, taking altogether �AP

time, leading to the decision to perform a specific adaptation. For example,
the cloud-based application decides to turn on a new virtual machine for the
purpose of scale-out.

4. The execution of the adaptation takes �E time. In our example, this is the
time until the new virtual machine is turned on and registered with the load
balancer.



Towards Understanding Adaptation Latency in Self-adaptive Systems 45

5. Finally, it takes further �E2 time until the adaptation shows its effect. In our
example, this is the time until the queue length is normalized again as a result
of the increased processing power.

There are two main differences between our model and the MAPE model.
First, we do not differentiate between the analysis and planning activities. The
differentiation between analysis and planning is a purely internal concern of
the self-adaptive system; moreover, there are a number of approaches to self-
adaptation that do not have separate analysis and planning activities [3,31].
The other difference is that our model also includes �E2 which does not have an
equivalent in the MAPE model, but it is important for understanding the overall
temporal behavior of self-adaptive systems.

We define the adaptation latency as L = �M +�AP +�E +�E2. The individual
delays �M , �AP , �E , �E2 are called the components of the adaptation latency.

3 Preliminary Literature Study

Using the model introduced above, we performed a (limited) literature survey.
We first describe the methodology of this survey in Sect. 3.1, followed by the
main results in Sect. 3.2. Finally, in Sect. 3.3, we mention some further papers
excluded during the literature survey which could nevertheless provide interest-
ing impetuses to further research.

3.1 Methodology

In the long run, we plan to perform a comprehensive literature review on the
topic of adaptation latency in self-adaptive systems. As a first step, we system-
atically reviewed all papers published in the SEAMS (Software Engineering for
Adaptive and Self-Managing Systems) conference series from 2009 to 2019. We
filtered the papers according to the following criteria:

– We only included papers that contain some information about adaptation
latency. This also includes papers in which information about adaptation
latency is only present in diagrams about experiments.

– We only included papers that are related to the field of service-based or cloud-
based systems.

We performed this limited literature study manually, i.e., looking at each
paper published in SEAMS in the given period. Although it is more common
to perform a literature survey using a set of search strings applied to a set of
databases, we opted for the manual approach focused on one conference series
because of the difficulties associated with finding the appropriate search terms.
This way, we do not run the risk of missing whole classes of relevant papers
because of a poorly chosen search string. In fact, the papers found with the
help of the manual search can serve in the future as baseline for identifying
appropriate search terms, which can then be applied in a database search in the
future. For now, we manually went through all 225 papers published in SEAMS
between 2009 and 2019 and applied the above filter criteria.



46 C. Keller and Z. Á. Mann

Table 1. Relevant publications

Paper �M �AP �E �E2 Time Notion

[9] � � � � ≈300 s None explicitly mentioned

[34] � 118–389 ms Time to find a reconfiguration

[20] � ≥9 min Planning time

[32] � ≥1513 ms Time for generating a workflow

[1] � � 0.2–1.02 ms Performance of adaptation

[35] � � 1.85–2.34 ms Performance, settling time

[36] � � 12 s–15min Redeployment time

[29] � � 125–625 μs Transition time

[13] � � 115–420 s Actuation delay

[7] � ∅19.74 s Time to recovery

[38] � � Execution time

[8] � Adaptation (tactic) latency

[28] * � Tactic latency

3.2 Results

The papers identified as relevant according to the above criteria are summarized
in Table 1. For each of the relevant papers, the components of the adaptation
latency covered by the paper are indicated, as well as the name that the authors
of the paper used to call the considered part of the adaptation latency. In the first
half of the table, also the specific duration measured in the paper (corresponding
to the sum of the marked components of the adaptation latency) is given; the
papers in the second half of the table did not contain such values.

As can be seen from Table 1, only [9] considers the whole adaptation latency.
However, that paper does not make any specific statement about the adaptation
latency. The quoted information about adaptation latency can only be read off
from a diagram of an experiment within the paper. The experiment shows how
a self-adaptive web application can manage the slashdot effect by appropriate
adaptations, so that the response time of the web application goes after an initial
increase back to its normal values.

Several papers focus on the �AP component of the adaptation latency. This
may be attributed to the fact that analysis and planning exhibit the most inter-
esting challenges algorithmically, leading to high research attention. In particu-
lar, [34] proposes a sophisticated planning algorithm using Pseudo-Boolean con-
straints; the performance of the planning algorithm was also in the focus of the
evaluation using the Heroku platform-as-a-service environment. Similarly, [20]
proposes a planner using genetic programming, and makes statements about the
time it takes to create a plan by their planner and a baseline planner based on an
existing model checker. [32] considers the problem of generating a workflow for
dynamically changing the configuration of a self-adaptive system by integrating



Towards Understanding Adaptation Latency in Self-adaptive Systems 47

and testing new components at run time. This problem is a part of the general
planning activity of a self-adaptive system (e.g., it does not include the choice
of components to add), but the authors formulate it as a planning problem on
its own and evaluate the time needed for this planning.

Some papers take, beside �AP , also �E into account. [1] considers the proactive
adaptation of service compositions. In evaluating their approach, they measure
the time of determining the need for adaptation (analysis), the time to determine
the necessary changes to the service composition (planning) and the time to
actually change it (execution). An interesting finding is that problems occurring
early in the workflow of composed services lead to higher adaptation latency
than problems occurring later. This is because the space of possible solutions is
larger if the problem occurs early. [35] considers the adaptation of the monitoring
infrastructure for an adaptive web application. In their experimental evaluation
the authors measure the time from detecting a change until the adaptation is
finished. [36] addresses the problem of dynamically redeploying service-oriented
systems, also measuring latency from detecting a change until the adaptation is
finished.

[29] presents an approach for the dynamic change between pre-compiled vari-
ants of a software at run time. In the experimental evaluation, the time of tran-
sitioning from one variant to another is measured, corresponding to �E + �E2 in
our model. Similarly, also [13] considers the time �E + �E2 and calls it actuation
delay. In contrast to most other found papers which only make statements about
the adaptation latency in the context of their empirical evaluation, [13] focuses
explicitly on the problem of estimating the actuation delay.

We also found one paper that focuses specifically on the �E2 component of the
adaptation latency. [7] investigates to what extent and how quickly self-adaptive
systems can recover after changes. The authors define the metric Mean Time To
Recover and measure it for an adaptive web service.

The second part of Table 1 lists papers that do not contain specific duration
information, but still explicitly address (some components of) the adaptation
latency. [38] presents a simulator of a self-adaptive system in which different
adaptation engines can be evaluated, and the simulator measures the execution
time of the adaptation engine. [8] shows that taking into account the latency
associated with the execution of different adaptation tactics leads to better adap-
tation decisions. [28] also takes into account the latency of adaptation tactics
(�E); in addition, it aims to speed up decision-making (�AP , denoted by a * in
the table to make clear that this duration is not part of the tactic latency).

In addition to the papers in Table 1, also [16] should be mentioned. This
paper is not about the latency of specific adaptations, but about overall metrics
to quantify the performance of cloud elasticity solutions, thus aggregating the
effect of a series of adaptations.

3.3 Adaptation Latency in Other Papers

Although our present study was limited to papers about service-based and cloud-
based systems, we also found papers published in SEAMS that are unrelated to



48 C. Keller and Z. Á. Mann

these domains but contained interesting information about adaptation latency.
For example, [10] addresses the problem of reverting short-term remediation
actions. The suggested approach is evaluated using an example from the smart
homes domain, which is not relevant to the domains covered here. However, the
evaluation contains information about all four components of the adaptation
latency. [2] proposes an adaptive approach for the mitigation of Denial-of-Service
attacks; the experimental results also showcase the full adaptation latency with
all its four components. [39] addresses adaptations in networked embedded sys-
tems under real-time constraints, where the adaptation latency must remain
within given bounds even in the worst case. [6] improves the self-adaptation
behavior of an industrial data acquisition and control system using architecture-
based self-adaptation and shows that the re-engineered system can recover from
disturbances faster.

Other works contain information about specific components of the adaptation
latency. [30] investigates the application of genetic algorithms to find optimal
adaptations for mobile applications and is specifically concerned with the time
taken by the algorithm (�AP ). [33] devises an approach for the self-adaptation of
access control policies, and measures the execution time of the proposed approach
(�AP ). [4] proposes an approach which can adapt the requirements if the available
resources are not sufficient to satisfy the requirements, applies this approach in
meal planning to reduce food waste, and measures the processing time (�AP +
�E). [27] presents an exemplar for self-adaptation approaches for cyber-physical
systems, and emphasizes the importance of timing in this domain. In particular,
the exemplar explicitly supports tactic latencies (�E). Also in the domain of
cyber-physical systems, [17] investigates how offline machine learning can reduce
the time needed for online planning (�AP ).

[15] presents a systematic literature study about self-adaptation in mobile
apps. Regarding timing, the result of the study was that all found approaches
were best-effort, i.e., without any guarantees for the adaptation latency.

[18] is domain-independent and defines a large set of metrics for the evalua-
tion of self-adaptive systems. The metric that comes closest to our adaptation
latency is “Time for Adaptation” which is defined as the “time to return to a
nominal behavior after a perturbation”. Similarly, [37] defines a set of properties
and metrics for the evaluation of self-adaptive systems. That paper uses “set-
tling time”, defined as “the time required for the adaptive system to achieve
the desired state”, but it is mentioned that several other terms are used in the
literature (recovery time, reaction time, healing time).

[11] proposes a control-theoretic approach to self-adaptation, which allows to
derive an upper bound on the settling time. The resulting estimate is actually
the number of iterations of the control loop, after which the investigated system
property will be within given proximity of the goal.

4 Discussion

Regarding the model of adaptation latency proposed in Sect. 2, some details may
require further elaboration. For example, it is not always clear when exactly



Towards Understanding Adaptation Latency in Self-adaptive Systems 49

the “need for adaptation arises” (which is the point in time from which �M
is measured). Like any model, also our model of adaptation latency abstracts
from some details of reality and thus may leave some room for interpretation
when being applied to a specific scenario. We found this level of uncertainty
acceptable when analyzing the literature, and we could determine in each case
which components of the adaptation latency are involved. Also the question of
how appropriate the model is can be answered in this context: we found the
model very useful for structuring the literature relating to adaptation latency.
For other purposes, it may or may not be appropriate, depending on the required
level of detail.

Regarding the results of the survey presented in Sect. 3, several observations
can be made:

– In most of the found papers, information about adaptation latency was only
presented in the context of an experimental evaluation. In most cases, the
proposed approaches were not adaptation-latency-aware themselves, i.e., they
did not perform any reasoning on latency-related information. Such reasoning,
however, could be very useful [25]. Also those papers that did reasoning about
adaptation latency, were only concerned with the latency of the execution of
adaptation tactics. Hence we expect to see more research on adaptation-
latency-aware self-adaptation approaches in the future.

– Information about adaptation latency was limited in most papers to �AP

and/or �E , which are the parts of the adaptation latency that are mostly inter-
nal to the self-adaptive system. The other parts of the adaptation latency,
which are more strongly related to the environment (�M and �E2) are con-
sidered less frequently. On the one hand, this is understandable since we
can better control the system-related components (�AP and �E). However,
the effectiveness of self-adaptation is ultimately determined by the adapta-
tion latency as a whole, in which the environment-related components (�M
and �E2) can be just as important as the system-related components. Hence,
more research may be needed on the environment-related components of the
adaptation latency.

– The specific timing information collected in the penultimate column of Table 1
has huge variance. Obviously, timing measurements stemming from different
technical environments cannot be directly compared to each other, but there
could be some trends at least concerning the orders of magnitudes (especially
since the considered papers are all from similar domains). However, not even
such trends are observable: for each component of the adaptation latency
for which we have multiple measurements, these vary by several orders of
magnitude.

– As shown in the last column of Table 1, there is no generally accepted name
for adaptation latency. Rather, the authors usually resort to different, longer
expressions to describe adaptation latency. Naming is also challenging because
of the ambiguity with the base functionality of the self-adaptive system (e.g.,
latency for processing web page requests versus latency of an adaptation).



50 C. Keller and Z. Á. Mann

Unfortunately, the lack of a generally accepted term for adaptation latency
makes it difficult to search for relevant work using keyword search.

Of course, these observations are based on the limited literature survey pre-
sented in this paper, and should hence be seen as preliminary. It remains an
important task for future research to check whether the observations are sup-
ported also by a comprehensive survey of the relevant literature.

5 Conclusions and Future Work

This paper is a first step towards a better understanding of adaptation latency
in self-adaptive systems. In particular, we have presented a model of adapta-
tion latency that identifies its main components. Furthermore, we conducted a
literature survey on information about adaptation latency, for the time being
restricted to the SEAMS conference series and to service-based and cloud-based
systems, and used our model of adaptation latency to categorize the found
papers. The results of the literature survey show that there is some aware-
ness of the importance of adaptation latency in the research community, but
this awareness is limited. One of the identified limitations is that most of the
relevant papers only consider some components of the adaptation latency and
ignore other components that could also be important. Another limitation is
that most of the relevant papers deal with adaptation latency only in their
experimental evaluation, which means that most of the presented approaches
are not adaptation-latency-aware. On the other hand, adaptation-latency-aware
approaches can be very powerful, even if limited to awareness of a component
of the adaptation latency, like the latency of adaptation execution [25] or the
latency of planning [22]. Hence we expect to see more research in this direction
in the future.

The next step in our research is to extend the literature survey to other
publication venues and to other domains of self-adaptive systems. This way,
we expect to collect a larger body of related papers, allowing us to do a more
comprehensive qualitative and quantitative analysis, also comparing different
research communities in terms of their relation to adaptation latency. We are
particularly interested in (i) insights into the aspects influencing adaptation
latency, (ii) experience about the consequences of adaptation latency, and (iii)
approaches that explicitly take into account adaptation latency, either reactively
(e.g., taking into account ongoing adaptations while planning new ones) or proac-
tively (e.g., preferring quick planning algorithms or quick adaptation tactics in
cases of urgency). In the long run, we hope to contribute to building better self-
adaptive systems by raising the awareness of adaptation latency in the research
community, and incorporating such aspects in approaches to self-adaptation.

Acknowledgments. Research leading to these results received funding from the
European Union’s Horizon 2020 research and innovation programme under grant agree-
ment no. 731678 (RestAssured). Useful comments of Javier Cámara on an earlier ver-
sion of the paper are gratefully acknowledged.



Towards Understanding Adaptation Latency in Self-adaptive Systems 51

References

1. Aschoff, R.R., Zisman, A.: Proactive adaptation of service composition. In: Pro-
ceedings of the 7th International Symposium on Software Engineering for Adaptive
and Self-Managing Systems, pp. 1–10. IEEE Press (2012)

2. Barna, C., Shtern, M., Smit, M., Tzerpos, V., Litoiu, M.: Model-based adaptive
DoS attack mitigation. In: Proceedings of the 7th International Symposium on
Software Engineering for Adaptive and Self-Managing Systems, pp. 119–128. IEEE
Press (2012)

3. Bartók, D., Mann, Z.Á.: A branch-and-bound approach to virtual machine place-
ment. In: Proceedings of the 3rd HPI Cloud Symposium “Operating the Cloud”,
pp. 49–63 (2015)

4. Bennaceur, A., Zisman, A., McCormick, C., Barthaud, D., Nuseibeh, B.: Won’t
take no for an answer: resource-driven requirements adaptation. In: Proceedings
of the 14th International Symposium on Software Engineering for Adaptive and
Self-Managing Systems, pp. 77–88 (2019)

5. Calinescu, R., Ghezzi, C., Kwiatkowska, M., Mirandola, R.: Self-adaptive software
needs quantitative verification at runtime. Commun. ACM 55(9), 69–77 (2012)

6. Cámara, J., et al.: Evolving an adaptive industrial software system to use
architecture-based self-adaptation. In: Proceedings of the 8th International Sympo-
sium on Software Engineering for Adaptive and Self-Managing Systems, pp. 13–22.
IEEE Press (2013)

7. Cámara, J., de Lemos, R.: Evaluation of resilience in self-adaptive systems using
probabilistic model-checking. In: Proceedings of the 7th International Symposium
on Software Engineering for Adaptive and Self-Managing Systems, pp. 53–62. IEEE
Press (2012)

8. Cámara, J., Moreno, G.A., Garlan, D.: Stochastic game analysis and latency aware-
ness for proactive self-adaptation. In: Proceedings of the 9th International Sym-
posium on Software Engineering for Adaptive and Self-Managing Systems, pp.
155–164. ACM (2014)

9. Cheng, S.W., Garlan, D., Schmerl, B.: Evaluating the effectiveness of the Rainbow
self-adaptive system. In: ICSE Workshop on Software Engineering for Adaptive
and Self-Managing Systems, pp. 132–141. IEEE (2009)

10. Faccin, J., Nunes, I.: Cleaning up the mess: a formal framework for autonomously
reverting BDI agent actions. In: Proceedings of the 13th International Conference
on Software Engineering for Adaptive and Self-Managing Systems, pp. 108–118.
ACM (2018)

11. Filieri, A., et al.: Software engineering meets control theory. In: Proceedings of
the 10th International Symposium on Software Engineering for Adaptive and Self-
Managing Systems, pp. 71–82. IEEE Press (2015)

12. Filieri, A., et al.: Control strategies for self-adaptive software systems. ACM Trans-
actions on Auton. Adapt. Syst. (TAAS) 11(4), 24 (2017)

13. Gambi, A., Moldovan, D., Copil, G., Truong, H.L., Dustdar, S.: On estimating actu-
ation delays in elastic computing systems. In: Proceedings of the 8th International
Symposium on Software Engineering for Adaptive and Self-Managing Systems, pp.
33–42. IEEE Press (2013)

14. Ghezzi, C., Pinto, L.S., Spoletini, P., Tamburrelli, G.: Managing non-functional
uncertainty via model-driven adaptivity. In: 35th International Conference on Soft-
ware Engineering (ICSE), pp. 33–42. IEEE (2013)



52 C. Keller and Z. Á. Mann

15. Grua, E.M., Malavolta, I., Lago, P.: Self-adaptation in mobile apps: a systematic
literature study. In: Proceedings of the 14th International Symposium on Software
Engineering for Adaptive and Self-Managing Systems, pp. 51–62 (2019)

16. Herbst, N.R., Kounev, S., Weber, A., Groenda, H.: BUNGEE: an elasticity bench-
mark for self-adaptive IaaS cloud environments. In: Proceedings of the 10th Inter-
national Symposium on Software Engineering for Adaptive and Self-Managing Sys-
tems. pp. 46–56. IEEE Press (2015)

17. Jamshidi, P., Cámara, J., Schmerl, B., Kästner, C., Garlan, D.: Machine learning
meets quantitative planning: enabling self-adaptation in autonomous robots. In:
Proceedings of the 14th International Symposium on Software Engineering for
Adaptive and Self-Managing Systems, pp. 39–50 (2019)

18. Kaddoum, E., Raibulet, C., Georgé, J.P., Picard, G., Gleizes, M.P.: Criteria for
the evaluation of self-* systems. In: Proceedings of the 2010 ICSE Workshop on
Software Engineering for Adaptive and Self-Managing Systems, pp. 29–38. ACM
(2010)

19. Kephart, J.O., Chess, D.M.: The vision of autonomic computing. Computer 36(1),
41–50 (2003)

20. Kinneer, C., Coker, Z., Wang, J., Garlan, D., Goues, C.L.: Managing uncertainty
in self-adaptive systems with plan reuse and stochastic search. In: Proceedings
of the 13th International Conference on Software Engineering for Adaptive and
Self-Managing Systems, pp. 40–50. ACM (2018)

21. Mann, Z.Á.: Resource optimization across the cloud stack. IEEE Trans. Parallel
Distrib. Syst. 29(1), 169–182 (2017)

22. Mann, Z.Á.: Two are better than one: an algorithm portfolio approach to cloud
resource management. In: De Paoli, F., Schulte, S., Broch Johnsen, E. (eds.)
ESOCC 2017. LNCS, vol. 10465, pp. 93–108. Springer, Cham (2017). https://
doi.org/10.1007/978-3-319-67262-5 8

23. Mann, Z.Á., Metzger, A.: Auto-adjusting self-adaptive software systems. In: IEEE
International Conference on Autonomic Computing (ICAC), pp. 181–186. IEEE
(2018)

24. Mao, M., Li, J., Humphrey, M.: Cloud auto-scaling with deadline and budget
constraints. In: 11th IEEE/ACM International Conference on Grid Computing,
pp. 41–48. IEEE (2010)

25. Moreno, G.A., Cámara, J., Garlan, D., Schmerl, B.: Proactive self-adaptation under
uncertainty: a probabilistic model checking approach. In: Proceedings of the 10th
Joint Meeting on Foundations of Software Engineering, pp. 1–12. ACM (2015)

26. Moreno, G.A., Cámara, J., Garlan, D., Schmerl, B.: Efficient decision-making under
uncertainty for proactive self-adaptation. In: IEEE International Conference on
Autonomic Computing (ICAC), pp. 147–156. IEEE (2016)

27. Moreno, G.A., Kinneer, C., Pandey, A., Garlan, D.: DARTSim: an exemplar for
evaluation and comparison of self-adaptation approaches for smart cyber-physical
systems. In: Proceedings of the 14th International Symposium on Software Engi-
neering for Adaptive and Self-Managing Systems, pp. 181–187 (2019)

28. Moreno, G.A., Strichman, O., Chaki, S., Vaisman, R.: Decision-making with cross-
entropy for self-adaptation. In: Proceedings of the 12th International Symposium
on Software Engineering for Adaptive and Self-Managing Systems, pp. 90–101.
IEEE (2017)

29. Neamtiu, I.: Elastic executions from inelastic programs. In: Proceedings of the 6th
International Symposium on Software Engineering for Adaptive and Self-Managing
Systems, pp. 178–183. ACM (2011)

https://doi.org/10.1007/978-3-319-67262-5_8
https://doi.org/10.1007/978-3-319-67262-5_8


Towards Understanding Adaptation Latency in Self-adaptive Systems 53

30. Pascual, G.G., Pinto, M., Fuentes, L.: Run-time adaptation of mobile applications
using genetic algorithms. In: Proceedings of the 8th International Symposium on
Software Engineering for Adaptive and Self-Managing Systems, pp. 73–82. IEEE
Press (2013)

31. Salehie, M., Tahvildari, L.: Self-adaptive software: landscape and research chal-
lenges. ACM Trans. Auton. Adapt. Syst. 4(2), 14 (2009)

32. da Silva, C.E., de Lemos, R.: Dynamic plans for integration testing of self-adaptive
software systems. In: Proceedings of the 6th International Symposium on Software
Engineering for Adaptive and Self-Managing Systems, pp. 148–157. ACM (2011)

33. da Silva, C.E., da Silva, J.D.S., Paterson, C., Calinescu, R.: Self-adaptive role-based
access control for business processes. In: Proceedings of the 12th International
Symposium on Software Engineering for Adaptive and Self-Managing Systems,
pp. 193–203. IEEE Press (2017)

34. Sousa, G., Rudametkin, W., Duchien, L.: Extending dynamic software product
lines with temporal constraints. In: Proceedings of the 12th International Sym-
posium on Software Engineering for Adaptive and Self-Managing Systems, pp.
129–139. IEEE Press (2017)

35. Tamura, G., Villegas, N.M., Muller, H.A., Duchien, L., Seinturier, L.: Improv-
ing context-awareness in self-adaptation using the DYNAMICO reference model.
In: 8th International Symposium on Software Engineering for Adaptive and Self-
Managing Systems (SEAMS), pp. 153–162. IEEE (2013)

36. Van Der Burg, S., Dolstra, E.: A self-adaptive deployment framework for service-
oriented systems. In: Proceedings of the 6th International Symposium on Software
Engineering for Adaptive and Self-Managing Systems, pp. 208–217. ACM (2011)

37. Villegas, N.M., Müller, H.A., Tamura, G., Duchien, L., Casallas, R.: A frame-
work for evaluating quality-driven self-adaptive software systems. In: Proceedings
of the 6th International Symposium on Software Engineering for Adaptive and
Self-Managing Systems, pp. 80–89. ACM (2011)

38. Vogel, T.: mRUBiS: An exemplar for model-based architectural self-healing and
self-optimization. In: Proceedings of the 13th International Conference on Software
Engineering for Adaptive and Self-Managing Systems, pp. 101–107. ACM (2018)

39. Zeller, M., Prehofer, C.: Timing constraints for runtime adaptation in real-time,
networked embedded systems. In: Proceedings of the 7th International Symposium
on Software Engineering for Adaptive and Self-Managing Systems, pp. 73–82. IEEE
(2012)



ASOCA: Adaptive Service-Oriented
and Cloud Applications



Introduction to the 4th Edition
of the International Workshop on Adaptive
Service-Oriented and Cloud Applications

(ASOCA 2019)

The ASOCA 2019 workshop was held in conjunction with the 17th International
Conference on Service Oriented Computing (ICSOC 2019) on October 28, 2019, in
Toulouse, France.

The workshop addressed the adaptation and reconfiguration issues of the service-
oriented and cloud applications and architectures. ASOCA session gathered about 20
attendees. Discussions followed the presentations. We accepted 4 papers presented in
this edition. The ASOCA program was merged with the program of the 4th Workshop
on IoT Systems Provisioning & Management for Context-Aware Smart Cities (ISYCC
2019). The presentations of the two workshops were held during the same session.

We would like to thank the authors for their submissions, the Program Committee
for their reviewing work, and the organizers of the ICSOC 2019 conference for their
support which made this workshop possible.

Organization

Workshop Organizers

Ismael Bouassida Rodriguez ReDCAD, University of Sfax, Tunisia
Ghada Gharbi Sensinov, Toulouse, France



Representing Multicloud Security and
Privacy Policies and Detecting

Potential Problems

Anthony Opara1(B), Youngsang Song2, Seong-je Cho2, and Lawrence Chung1

1 University of Texas at Dallas, Richardson, TX 75080, USA
{anthony.opara,chung}@utdallas.edu

2 Dankook University, Yongin, South Korea
{yssong,sjcho}@dankook.ac.kr

Abstract. As more organizations adopt cloud computing, they are
increasingly moving towards a mixture of public, private, and hybrid
cloud services and infrastructure. These organizations turn to multi-
cloud, which involves the use of two or more public clouds, to avoid
vendor lock-in, overcome latency, mitigate risks, and control costs. The
use of multicloud does have some advantages, such as flexibility and
redundancy, but comes with some management, security, and privacy
challenges as well. To overcome some of the security challenges, orga-
nizations would have to capture and analyze security and privacy poli-
cies across multiple clouds to ensure the policies are free from errors
and enforce them at runtime independent of the cloud provider. In this
paper, we present CERBERUS, a framework for representing multicloud
security and privacy policies and detecting potential problems in the
policies. CERBERUS adopts an object-oriented approach and consists
of an ontology and notation, policies, guidelines and rules, and a tool for
capturing and detecting policy errors. Using CERBERUS, policies can
be analyzed for potential problems, including policy conflicts, inconsis-
tencies, ambiguities, and incompleteness. An application of CERBERUS
shows that it indeed helps discover policy errors, that would otherwise go
undetected, or in many cases would be detected a posteriori at runtime.

Keywords: Cloud security and privacy · Multicloud · Cloud security
policy

1 Introduction

Cloud computing presents unique privacy and security implications. Limited
visibility and control of data, the inability to maintain regulatory compliance,
theft of data stored in the cloud, and a lack of data isolation for multi-tenant
customers, all of these contributing to the new sources of security and privacy
risks associated with the cloud [1]. Cloud service providers (CSPs) treat security
and privacy in cloud computing as a shared responsibility between itself and the

c© Springer Nature Switzerland AG 2020
S. Yangui et al. (Eds.): ICSOC 2019 Workshops, LNCS 12019, pp. 57–68, 2020.
https://doi.org/10.1007/978-3-030-45989-5_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-45989-5_5&domain=pdf
https://doi.org/10.1007/978-3-030-45989-5_5


58 A. Opara et al.

customer. In the shared responsibility model, the CSP is responsible for securing
the underlying infrastructure that supports and powers the cloud, while the cloud
customer is responsible for anything it deploys in the cloud or connects to the
cloud [2].

Increasingly, organizations are finding that a single cloud deployment model
could lead to vendor lock-in, a lack of flexibility through choice, hidden costs,
latency issues, and a lack of options to overcome security and privacy chal-
lenges. Hence, they are beginning to adopt a multicloud strategy to enjoy best
of breed services across multiple cloud providers. A multicloud strategy involves
the use of various cloud services from more than one public cloud provider. For
instance, a health care provider may decide to use the AWS platform for its
application deployment, while leveraging on the infrastructure from Azure for
its disaster recovery and then performing its development and testing on the
IBM-backed PaaS platform. This shift in cloud strategy comes with its secu-
rity and management challenges, especially given the fact that different cloud
stakeholders may have different security and management requirements [3]. In
addition to the existing single cloud-related challenges, which are further exacer-
bated in a multicloud, there are new security and privacy challenges associated
with a multicloud strategy. One such new challenge is the management of het-
erogeneous policies across multiple cloud service providers consistently across
numerous CSPs, where heterogenous policies could lead to policy errors during
policy integration [4].

Management of security and privacy policies becomes a significant challenge
when multiple cloud providers are involved. A security (or privacy) policy is a set
of rules that guides the principles and procedures to enforce and manage secu-
rity (or privacy) on cloud computing services, where each rule consists of a set
of conditions with a corresponding set of actions. Security and privacy policies
are often defined at a high level of abstraction by policy administrators and then
later refined into fine-grained, implementable policies. In a multicloud environ-
ment, defining security and privacy policies in a vendor-agnostic manner is chal-
lenging, and is often done in an informal and ad-hoc manner leading to policy
errors.

In this paper, we propose CERBERUS, a framework for representing multi-
cloud security and privacy policies and detecting potential conflicts, inconsisten-
cies, and ambiguities in the policies. CERBERUS consists of the CERBERON
ontology and notation, with key ontological concepts for managing multicloud
security and privacy policies, CERBAC policies, CERBERUS guidelines and rules
and the CERBERUX prototype tool for capturing and detecting policy errors.

The rest of this paper is organized as follows. Section 2 presents the CER-
BERON ontology for modeling cloud security and privacy policies and notation
for representing the policies. Section 3 describes general rules and guidelines for
representing and detecting cloud security and privacy policy errors. Section 4
describes CERBERUX, a prototype tool for capturing and detecting cloud secu-
rity and privacy policy errors. Section 5 describes related work together with dis-
cussion. In the end, a summary of the paper is given with some future research
direction.



Representing Multicloud Security and Privacy Policies 59

2 Multicloud Security and Privacy Policy Ontology and
Notation

In this section, we introduce a running example, our ontology and notation for
modeling multicloud security and privacy policies.

2.1 Running Example

Fig. 1. Multicloud health care running example

To illustrate the problem and motivate our approach, we will use an example
of a health care service provider, which adopts a multicloud strategy to offer
services to its customers. Figure 1 shows a multicloud setting, involving multiple
cloud stakeholders. CSP1, a cloud service provider, provides software as a service
(SaaS), which enables patient’s remote consulting with doctors, home delivery
pharmacy prescription ordering service, and home laboratory services, to its
network of customers (doctors, hospitals, and pharmacies). To meet its latency
requirements, it leverages compute and storage services provided by CSP3 (IaaS
Provider), while relying on CSP4 (IaaS provider) for its development and test-
ing environment. CSP2 is another cloud service provider that offers a DevOps
platform backed by the infrastructure provided by CSP4. CC1 and CC2 are two
cloud customers that both subscribe to the services provided by CSP1. CC1 is
a community hospital with a pharmacy unit that provides telehealth services to
its users as well as a mobile service to request mail-to-home prescription service.
CC2 is a hospital-chain offering telehealth services as well as a mobile app-based
home laboratory service. CC2 also provides a development environment to its
developers through the service and platform provided by CSP2 (PaaS provider).



60 A. Opara et al.

Fig. 2. CERBERON: Cloud security and privacy ontology

2.2 Multicloud Security and Privacy Policy Ontology

In our model, subjects are either individual users or mapped to appropri-
ate roles (e.g., pharmacy technician) and roles are mapped to access rights or
actions (e.g., CREATE, USE). In this paper, we shall be concerned with two
categories of security policies [6,7]. Authorization policies are security policies,
which specify what actions a user or role is allowed (positive authorizations or
A+ policies) or not allowed (negative authorizations or A− policies) to perform
on a set of target objects or resources (e.g, VM, Data). Obligation policies spec-
ify what actions a role or user must (positive obligations or O+ policies) or must
not (negative obligations or O− policies) perform on a set of target objects or
resources. An obligation policy requires authorization policies to enable the roles
of the obligation policies to fulfill their obligations. A cloud customer or enter-
prise may adopt one of the following policy management strategies. (a) Closed
policy, which allows access if there exists a corresponding positive authoriza-
tion else access is denied. (b) Open policy, which denies access if there exists a
corresponding negative authorization else access is allowed. The use of negative
authorization is often associated with enterprises that adopt an open policy, but
we consider both positive and negative authorization policies important for cap-
turing security and privacy policies at a higher level of abstraction. We allow the
specification of both positive and negative authorization and obligation policies.
Figure 2 shows our ontology for multicloud security and privacy policies, which
illustrates the relationship between cloud stakeholders, cloud resources and cloud
security & privacy policies. Elements in green represent our contributions.



Representing Multicloud Security and Privacy Policies 61

CERBAC (Cloud Extended Role Based Access Control) policies are described
in terms of Cloud Stakeholder, Cloud Security & Privacy policy, and Cloud
Resource. A multicloud security and privacy policy consists of policy attributes
(Who, Where, How, When, Why and What) and is associated with one or more
Actions. A cloud stakeholder represents one of infrastructure provider, service
provider, cloud customer, cloud broker, or cloud user and is associated with a
subject (Who) in our ontology. We identify four classes of security and privacy
policy errors. Conflicts are errors, which may occur whenever there is an interac-
tion between positive and negative security policies of similar types (i.e., O+/O−
or A+/A− applying to the same subject (who) or target (what)). Inconsistencies
are errors, which may occur when there is a mix of positive and negative policies
of different types (i.e., A+/O− or A−/O+ applying to the same subject (who)
or target (what)). Incompleteness errors occur when there is a positive obliga-
tion (O+) policy without a corresponding positive authorization (A+) policy
to enable the execution of the obligation policy. Ambiguity errors occur when
two policies with the same modality signs contradict each other (i.e., A+/A+
or A−/A− or O+/O+ or O−/O−). CERBERUS framework is composed of
CERBAC Policy (Realization of RBAC framework), CERBERUX tool, and a
set of rules and guidelines for validating CERBAC policies. A CERBAC pol-
icy is the base class of Positive Authorization, Negative Authorization, Positive
Obligation and Negative Obligation. The CERBERON policy notation allows
the expression of cloud security and privacy policies in the JSON format with
the possibility of defining a policy document that includes multiple policies.

2.3 CERBERON Policy Notation

Fig. 3. CERBERON policy notation



62 A. Opara et al.

Figure 3 shows the general format of our security and privacy policy notation
[6–9]., which can be used to express both identity-based policies and resource-
based policies. Identity-based policies are policies attached to a user or role, while
resource-based policies are policies attached to a cloud resource, identified by a
resource name. A PolicyStatement consists of an array of one or more policies.
Each policy block is enclosed in braces, with comma used to separate multiple
policies. A question mark (?) next to an attribute (e.g., How?) indicates that the
attribute is optional, while a vertical line between attributes indicates options. The
Id attribute is a unique identifier for a policy and is used to refer to the policy. The
Type of the policy is one of positive authorization (A+), negative authorization
(A−), positive obligation (O+), or negative obligation (O−). Who is the subject
of a policy and represents the user or role for which a policy applies. A user is
an agent, user, role or process in the cloud. The attribute What is the target of
a policy and it represents the cloud service for which a set of actions are to be per-
formed or the platform provider, responsible for cloud infrastructure (e.g. Azure).
The Action attribute is used to specify what must be performed (obligations) and
what is permitted or allowed (authorizations). Multiple actions are separated with
a comma (e.g. [READ, WRITE]. The optional attributes When, Where, Why and
How represents CERBAC constraints, which limits the applicability of the policy.
The When attribute is used to specify the time in which the policy is applicable.
The attribute Where is used to specify a constraint on the origin for a request to
a cloud resource or the physical location(target) where data may be stored. The
attribute Why specifies the reason for the access to the cloud resource, while the
attribute How specifies the device used to access a cloud resource. The default
value for the constraints is ALL (*). The optional keyword trigger is used to spec-
ify an event trigger for positive obligations. Consider the following policies from
the running example described in Sect. 2.1:

Id: P1, Type: A−, Who: Pharmacy Technicians, Action: [CREATE], What:
Provider: CSP3, Data: PHI, Where: {Target: [Location/Europe]}

P1 is a negative authorization policy by cloud customer CC1, that forbids
pharmacy technicians from creating protected health information (PHI) in any
location in Europe provided by CSP3.

Id: P2, Type: A+, Who: Physicians, Action: [ACCESS], What: Provider:
CSP2, Service: Software Service/Telehealth

Id: P3, Type: A−, Who: Lab Technicians, Action: [ACCESS], What:
Provider: CSP2, Service: Software Service/Telehealth

P2 and P3 are two policies by cloud customer CC2. P2 (Positive Autho-
rization) allows Physicians access to the Telehealth software hosted by CSP2,
while P3 (Negative Authorization) denies Lab Technicians access to the Tele-
health application



Representing Multicloud Security and Privacy Policies 63

Id: P5, Type:: O−, Resource:: VM/DevOps, Action: [PROVISIONED],
What: {Provider: CSP2}

Id: P6, Type:: O+, Resource:: Storage/Prescription, Action: [ARCHIVED],
What: {Provider: CSP4}, Trigger: ArchiveEvent

p5 and p6 are two resource-based policies. P5 is a negative obligation policy,
which states that VMs with DevOps tag must not be provisioned on the CSP
platform. P6 is a positive obligation policy, which states that the Prescription
storage must be archived on CSP4 platform when the archive event trigger is
raised. This type of policy should have a corresponding authorization policy.

3 Multicloud Security and Privacy Policy Rules and
Error Detection

In this section, we explore a UML-based, visual mechanism for displaying and
reasoning about policy errors [8]. We also provide general rules for identifying
conflicts, inconsistencies and ambiguities in security and privacy policies.

Fig. 4. Base case of authorization and obligation conflict.

Fig. 5. Underprivileged subject and Least privileged violation.

Fig. 6. Base case of authorization and obligation ambiguities.

Figure 4(a) and (b) show base conflict cases between negative and positive
authorization and obligation policies. In Fig. 4(a), P2 states that a subject is
allowed to perform an action on a target with a specified device type (How),



64 A. Opara et al.

while P1 does not permit the subject to perform the same action on the target.
Figure 4(b) shows another obvious conflict scenario, in which a subject must
perform an action on a target using a specified device type (P2), while at the
same time, the subject must not perform the action on the target (P1).

Figure 5(a) shows a case of the underprivileged subject, who does not have
the required authorization to perform an action on the target but at the same
time must perform the action on the target. Figure 6(a) and (b) are two cases of
policy ambiguity, involving two policies with the same policy types. Figure 6(a)
states that a subject must perform an action on a target; while P2 states that
the subject must perform the action on the target with the use of the specified
device type (How). Similarly, Fig. 6(b) shows a scenario where a subject must
perform an action on the subject but must also perform the same action on
the target with a specified device type. The base cases of conflicts, inconsisten-
cies and ambiguities shown in Figs. 4, 5 and 6 can be extended to other policy
attributes by replacing How with Why, When and Where. Next, we take a look
at inheritance and aggregation cases.

Fig. 7. Inheritance relationship between policy attributes (How).

Fig. 8. Aggregation relationship between policy attributes (How).

Figures 7 (Inheritance relationship) and 8 (Aggregation relationship) illus-
trate relationships between subjects, targets and policy attributes, and the con-
flicts that may arise as a result of these relationships. Figure 7(a) shows that



Representing Multicloud Security and Privacy Policies 65

a subject (Who) is authorized to perform an action on a target (What) with
a child Howj but forbidden to perform the same action from the parent Howi

attribute. These two policies will be in conflict since the relationship between the
How attributes is an Is-a relationship. As indicated by the tick, Fig. 7(c) and (d)
are error-free scenarios. In Fig. 8, we examine aggregation relationships between
subjects, targets and policy attributes (Why, Where, How, and When). It shows
the different scenarios when two How attributes (Howi, Howj) are related by
composition. Figure 8(a) and (b) turn out to be error-free, while Fig. 8(c) and
(d) contains policy errors. Figure 9(a) and (b) illustrate concrete cases of inheri-
tance and aggregation conflicts among policy subjects, targets and attributes. In
Fig. 9(a), a nurse is allowed to update a patients health information record for
the purpose of writing a prescription (why), while at the same time not allowed
to update the patients health information record for the purpose of treatment.

Fig. 9. Concrete case of policy conflict.

Fig. 10. CERBAC rules



66 A. Opara et al.

Since policies are often specified in a hierarchical manner, prescription would
be defined as a treatment; thus, the concrete policy would lead to a conflict.
In Fig. 9(b), a Administrator (Who) is authorized to backup patients health
information record to a location in Europe (Where: Location) but forbidden
from backing up the same data to a region in Europe (region1).

Next, we describe general rules (Fig. 10) for identifying conflicts, inconsis-
tencies and ambiguities in cloud security policies. The scenarios provided above
result in some interesting generalization of rules for identifying conflicts and
inconsistencies in cloud security policies. We will use the ‘˜’ symbol to represent
a policy conflict, while the ! symbol will be used to represent a policy inconsis-
tency and the ? symbol to represent an ambiguity. The Is-a predicate will be
used to represent an inheritance relationship and the Has-a predicate will be
used to represent an aggregation association.

4 CERBERUX: A Prototype Tool

Our prototype tool for modeling and detecting errors in security and privacy
policies, known as CERBERUX is based on the Papyrus Eclipse Platform [10].
The Papyrus platform can be extended with (1) Profiles and stereotypes based
on standard UML profile extensibility (2) Symbol appearance controlled with
CSS and SVG (3) Customizable toolbars, menus, property views, etc. (4) Code
plugins/ program logic that adds new features and integrations and (5) Hiding
existing functionality. Figure 11 shows an example of a positive authorization
policy modeled using the CERBERUX tool.

Fig. 11. An Example of a positive authorization policy using the CERBERUX tool

The model validation window shows a policy violation between the two poli-
cies (P1 and P2). The CERBERUX tool is developed as an Eclipse plugin that
includes a wizard for creating a new project based on our UML profile and a
UML diagram for modelling CERBAC policies. In addition to the UML mod-
els been elaborated using OCL (Object constraint language) for validation of



Representing Multicloud Security and Privacy Policies 67

stereotypes, we add extra validations on the policy grammar. Our UML profile,
which can be found in [13]., extends the UML Meta model with stereotypes for
modeling cloud computing security and privacy policies. A Policy type requires
one or more action attributes, a Subject (Who) stereotype, a target (What)
stereotype and optional policy attributes of Why, When, When and How.

5 Related Work and Discussion

Our work focuses on the expression of single and multi-cloud security and pri-
vacy policies with the ability to detect policy errors. In contrast, existing work
mostly involves general on-premise security specification with limited support
for policy error detection and expression of privacy rules. Our policy notation
can be used to express policies in a vendor-neutral manner, which could avoid
errors during policy integration across multiple cloud providers. In general, logic-
based languages have a well-understood formalism, which makes them amenable
to analysis; however, they are challenging to use and to translate into efficient
implementations [11]. Rei [12] is an example of a policy language for a pervasive
computing environment, modeled on deontic concepts of rights, prohibitions,
obligations and dispensations. It allows the specification of role-based policies.
However, a separate rule must be specified for each action and there is no explicit
way to capture privacy rules. The Ponder Policy Specification Language [3] is a
declarative, strongly typed, object-oriented language for specifying security and
management policies for distributed object systems. We find the ponder lan-
guage both simple and effective at capturing both security and management
policies and also detecting some conflicts in security policies both statically
as well as at runtime. However, we believe the language is still limited in its
expressive power, especially for privacy rules as well as cloud-related security
policies. While the ponder policy language can detect some conflicts in security
and management policies, we believe it has some limitations with regards to
policy conflict detection (e.g., ambiguity errors with A+/A+ and O+/O+). Our
policy notation includes multicloud-specific extensions to handle cloud security
and privacy policy constraints. The addition of these policy attributes reveals
additional modality conflicts not considered by the ponder specification. Our
notation goes beyond the capability of major cloud vendors in their expressive
power as shown. However, our result should be considered as preliminary and our
framework will have to be applied to a real-world, large size multicloud software
system with advanced multi-tenancy policy requirements.

6 Conclusion and Future Work

In this paper, we propose a framework for modeling multicloud security and
privacy policies and detecting policy errors. The main contributions of this paper
include: (1) an ontology for modeling multicloud security and privacy policies;
(2) a notation for representing multicloud security and privacy policies; (3) a
set of guidelines and rules for detecting errors of incompleteness, inconsistencies,



68 A. Opara et al.

conflicts and ambiguities among cloud security and privacy policies, and (4) a
tool for visually modeling, and discovering problems with, multicloud security
and privacy policies. Using our framework, we were able to detect policy errors
in a multicloud-based health care system, which otherwise would have gone
undetected or more likely would have been detected later at execution time,
thereby offering the user little or no opportunity for determining the outcome
of the policy impact on the system. There are several lines of future research.
One involves extending the CERBERUS framework to include more rules and
generalize the rules for policy errors. Another line of future work will involve
adding dynamic policy error detection capabilities and traceability of policies.
Investigation of ways to automatically convert cloud provider policy statements
(e.g. AWS policies) into CERBAC policies and vice-versa will also be useful.
Future work will also focus on the use of the tool as a cloud-broker security
and privacy policy tool. To determine both the strengths and weaknesses of our
framework, we plan to apply it to a wide variety of applications.

References

1. Takabi, H., Joshi, J.B.D., Ahn, G.-J.: Security and privacy challenges in cloud
computing environments. IEEE Secur. Priv. 8(6), 24–31 (2010)

2. Baron, J., et al.: AWS Certified Solutions Architect Official Study Guide, 1st edn.
Wiley, Indianapolis (2017)

3. Tianfield, H.: Security issues in cloud computing. In: 2012 IEEE International
Conference on Systems, Man, and Cybernetics (SMC), COEX, Seoul, Korea, pp.
1082–1089 (2012)

4. Singhal, M., et al.: Collaboration in multicloud computing environments: frame-
work and security issues. Computer 46(2), 76–84 (2013)

5. Verma, D., Beigi, M., Jennings, R.: Policy based SLA management in enterprise
networks. In: Sloman, M., Lupu, E.C., Lobo, J. (eds.) POLICY 2001. LNCS, vol.
1995, pp. 137–152. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-
44569-2 9

6. Moffett, J., Sloman, M.: Policy conflict analysis in distributed systems manage-
ment. J. Organ. Comput. 4, 1–22 (1993)

7. Lupu, E.C., Sloman, M.: Conflicts in policy-based distributed systems manage-
ment. IEEE Trans. Software Eng. 25, 852–869 (1999)

8. Oladimeji, E.A., Chung, L.: Representing security goals, policies and objects. In:
Proceedings of the 5th IEEE/ACIS International Conference on Computer and
Information Science, Honolulu, Hawaii, pp. 160–167 (2006)

9. AWS. https://docs.aws.amazon.com/. Accessed 27 May 2019
10. Papyrus Modeling environment. https://www.eclipse.org/papyrus/. Accessed 27

May 2019
11. Damianou, N., Bandara, A., Sloman, M. and Lupu, E.: A survey of policy speci-

fication approaches, pp. 142–156. Department of Computing, Imperial College of
Science Technology and Medicine, London (2002)

12. Kagal, L., Finin, T., Joshi, A.: A policy language for pervasive systems. In: Fourth
IEEE International Workshop on Policies for Distributed Systems and Networks
(2003)

13. Opara, A., Song, Y., Cho, S. and Chung, L.: Representing multicloud security and
privacy policies and detecting potential problems (2019, in preparation)

https://doi.org/10.1007/3-540-44569-2_9
https://doi.org/10.1007/3-540-44569-2_9
https://docs.aws.amazon.com/
https://www.eclipse.org/papyrus/


Survey and Evaluation of Blue-Green
Deployment Techniques in Cloud Native

Environments

Bo Yang1(&), Anca Sailer2, and Ajay Mohindra3

1 IBM Research – China, IBM, Beijing, China
yangbbo@cn.ibm.com

2 IBM Research, IBM, New York, USA
ancas@us.ibm.com

3 IBM Watson Health, IBM, New York, USA
ajaym@us.ibm.com

Abstract. Today, the cloud computing customers assume that the services or
applications consumed from the cloud are always on, highly available for
uninterrupted utilization. The requirement then for the service providers
becomes to minimize the planned maintenance windows duration in order to
reduce their repercussions on the service availability for the consumers. We
evaluate in this paper the continuous deployment methodology called
Blue/Green deployment which aims to support zero maintenance windows, and
consequently to avoid any interruption to the end users. Our experiments ana-
lyze the most common Blue/Green deployment techniques in the industry,
measure and normalize their behavior, and aim to identify the approach with the
best performing continuous delivery as compared to the available technologies.

Keywords: Continuous delivery � Blue/Green deployment � High availability �
Service discovery

1 Introduction

The Blue/Green deployment technology provides support for DevOps continuous
delivery [1–3] with zero or near zero-downtime. This technology uses two different
environments hosting two different versions of the service. The goal is to shift the
incoming traffic from the environment hosting the current service version to the
environment hosting the new service version. In most implementations, only one of the
environments is live and thus serving all the production traffic. The live environment is
typically considered “Blue”, while the idle “to be” production environment is called
“Green”, as shown in Fig. 1. The key challenge of the Blue/Green deployment is the
cut-over phase, when taking the service from its Green final stage of testing to Blue to
handle the live production traffic. The zero or near-zero maintenance downtime comes
down to how efficient the Blue/Green switch is performed.

In this paper, we first evaluate the state-of-art and current practices, and report on
key performance results identified. We summarize in Sect. 2 the most prevalent
Blue/Green deployment techniques and detail in Sect. 3 two example implementations

© Springer Nature Switzerland AG 2020
S. Yangui et al. (Eds.): ICSOC 2019 Workshops, LNCS 12019, pp. 69–81, 2020.
https://doi.org/10.1007/978-3-030-45989-5_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-45989-5_6&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-45989-5_6&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-45989-5_6&amp;domain=pdf
https://doi.org/10.1007/978-3-030-45989-5_6


of Blue/Green based on service discovery framework which is the most advanced
technique. Section 4 presents the outline of our experiments for each implementation of
Blue/Green deployment described in Sect. 2 and detailed in Sect. 3. We describe in
Sect. 5 the experimental results and their analysis, pointing out the features and rele-
vant scenarios for each implementation of the Blue/Green deployment techniques
investigated. Finally, we summarize the paper and discuss the challenges and potential
future work in Sect. 6.

2 Blue/Green Deployment Related Work

The Blue/Green (BG) terminology was first introduces by Fowler [4] and it is just a
way to distinguish between the two separate environments hosting the current (Blue)
and new (Green) service releases. Other references call it A/B deployment [5], or
Red/Black [6] deployment. Although there are slight differences between their overall
goals of the upgrade, the common denominator is the key challenge of switching
efficiently between the two environments. The various techniques that implement the
switch from the service’s Blue current version to its Green new version, impact in
specific ways the performance of the B/G deployment. Before detailing the metrics we
considered for comparing the various existing implementations, we summarize below
the most prevalent implementations of B/G deployment.

2.1 Domain Name System (DNS)

These techniques rely on the DNS record update for the B/G switch and thus can be
implemented with any of the leading DNS service providers, such as Cloudflare [7],
DigitalOcean [8], Google Cloud DNS [9]. For example in Tutum and Cloudflare based
implementation [10], CloudFlare cli is used to edit DNS CNAME entry for the B/G
switch. The Amazon DNS based B/G technique is the DNS Routing Update with
Amazon Route 53 [11]. This technique applies to single instances switch, swapping the
environment of an Elastic Beanstalk application, cloning a stack in AWS OpsWorks
and updating DNS with alternative environment’s IP address [11].

Fig. 1. Overall architecture of migration system with compliance validation

70 B. Yang et al.



2.2 Software Reconfiguration

These techniques rely on software reconfiguration for the B/G switch. Cloud Foundry
(CF) leverages a CF Router [12]. Once a new service release is ready for production
traffic, the CF Router is updated to remap the route to the new release. Virtual IP based
solutions such as Floating IP [13] in Digital Ocean and Elastic IP [14] in AWS are used
for single node.

B/G switch, where in the association of the virtual IP is changed. The AWS
techniques which fall into this category are swapping the Auto Scaling group behind
Elastic Load Balancer and updating Auto Scaling Group launch configurations [14].
This technique is not as granular as the DNS technique, but the traffic switch is more
efficient.

2.3 Load Balancer

These techniques leverage a load balancer to trigger the change of routing configura-
tion. For example, IBM Urban Code Deploy [15] works with Blue and Green envi-
ronments hosted on the same machines, but different ports. The switching is achieved
by changing the port in the load balancer routing rules. Examples of load balancers
leveraged in this type of B/G deployments are HAProxy and nginx. The B/G
deployment technique for docker uses nginx [16, 17], where nginx runtime configu-
ration reload feature is used for the B/G switch. In the B/G deployment with HAProxy
[18], the HAProxy health check is used for the B/G switch.

2.4 Service Discovery

These implementations use a level 7 service discovery framework to switch to a new
service release. The service discovery is the automatic detection of services offered in
an environment. One such framework example is the Netflix Eureka service discovery
[19] which works together with the Zuul dynamic routing [20] to support zero-
downtime rolling deployments [21]. Another example is Kubernetes [22] and the
ISTIO intelligent router [23] which allows to configure service-level properties like
circuit breakers, timeouts, and retries, for B/G deployments as detailed in the next
section.

3 Blue/Green Deployment with Service Discovery

To route a request to its destination, we need to know the network location (IP address
and port) of the targeted service instance. In a traditional application the network
locations of the service instances are relatively static and could be retrieved from a
configuration file that is occasionally updated. In a cloud native environment, however,
this is a much more difficult problem to solve since the service instances have
dynamically assigned network locations and the instance itself changes dynamically
because of auto-scaling, migration, and upgrades. Thus, in most implementations of
B/G deployment there are two main challenges: (1) the routing rules update requires

Survey and Evaluation of Blue-Green Deployment Techniques 71



additional efforts to collect the new service instances IP hosts information, particularly
in a dynamic auto-scaling environment; (2) the routing rules update on the router/load
balancer service takes a significant amount of time to become effective because of
cache on each node in routing path, thus affecting the service’s version overlap or
availability. To address these challenges, solutions like Netflix and Kubernetes use
service discovery-based solutions (Zuul and Eureka [19, 20], ISTIO [23]) for VM and
container deployments, as illustrated in Fig. 2.

In this paper, we use a test service named hereafter “My-Service”, which registers
its release version 1 for Blue and version 2 for Green. It uses node 1 and node 2 for the
current, Blue service instance and node 3 and node 4 for the new, Green service
instance. The incoming traffic reaches our Blue environment via a secure gateway, e.g.,
IBM DataPower for VMs and Kubernetes Ingress for the Kube cluster, which validates
the applications calls credentials for My-Service and routes the calls to the dynamic
router. My-Service is deployed on a cluster with multiple nodes. In order to support the
automated service lifecycle management, and hence automatic deployment and
switching of release versions, we leverage automation pipelines such as IBM Urban
Code Deploy (UCD) [15] and IBM Cloud Delivery Pipeline [24]. In the pipeline, all
the deployment locations are managed through the cloud management API, e.g.,
SoftLayer API for VMs and Kubectl API for Kubernetes. We first deploy two service
instances in the target environments (Blue and Green), then we trigger the version
switching process by invoking the pipeline as detailed hereafter.

3.1 Blue/Green Deployment with Eureka and Zuul

We implemented this technique for VM based environments where a node in Fig. 2
indicates a VM hosting a service instance. Zuul, as the dynamic router, queries the
service registry, Eureka, by using the service name from each incoming call, to retrieve
the actual Blue IP hosts where to load balance the calls. To enable My-services’ nodes

Fig. 2. Implementation for service discovery based Blue/Green Deployment. (Color figure
online)

72 B. Yang et al.



to register with Eureka, Netflix uses a sidecar agent on each node to communicate with
the service registry server. Hence, we need to install the sidecar agent on each node and
manage the sidecar’s configuration file to detect the service registry server, register
itself and start sending the health check heartbeats necessary to preserve the
registration.

Zuul is continuing to route the traffic to those nodes tagged “My-Service-BLUE-
ENV” in Eureka, during the backend nodes being replaced with those installed with the
new service version. For the end user, this is a black box of traffic shifting from the old
service version to the new one. The traffic switch is controlled via a pipeline orches-
tration tool (e.g. UCD or Jenkins). This approach does not require load balancer rule
updates, nor DNS updates, nor router reboot, aiming for a real zero downtime switch.

3.2 Blue/Green Deployment with Kubernetes and ISTIO

We implemented this technique for the container based deployments. The container
cluster environment is set up using the IBM Cloud Kubernetes service. In this case, a
node in Fig. 2 indicates a pod which runs a service instance. ISTIO is the dynamic
router that parses the uri of each incoming call for the service name, queries based on
the service name to retrieve the hosts registered for the service and routes then the call
to the retrieved Blue hosts load balancing the calls. To enable My-Service’ pod to
register with ISTIO, an istio-sidecar is used on each pod to communicate with ISTIO.
Hence, we need to manage the pod deployment configuration to make it inject the istio-
sidecar with the service instance and register itself to ISTIO. All the requests to the
targeted service will be routed by ISTIO according to the predefined routing policies.

Similar to the automation for VM based environment, we leveraged the IBM Cloud
Delivery Pipeline to enable the automation for service instance deployment and traffic
routing configuration update.

4 Blue/Green Experimental Setup and Evaluation Metrics

4.1 Experimental Setup

We implement with Node.js for My-Service as test service API which returns when
called its version information, and deploy it in two identical environments as instances
of the service configured with different version information, i.e., “version1” for Blue
and “version2” for Green. Moreover, we use a Switcher to shift the request traffic from
one service instance (Blue) to the other (Green). In this paper, we implement the
Switcher using five B/G deployment techniques: (1) AWS R53 DNS [11], (2) AWS
Load Balancer-Auto Scaling Group (LB-ASG) [11], (3) Cloud Foundry Route
Remapping (CF-RR) [12], (4) Netflix Service Discovery (NSD) based solution, and
(5) Kubernetes Service Discovery (KSD) based solution. We also implement and
deploy a Tester which sends curl requests every second and records the response routed
from the Switcher. The response includes the request time, the response time, and the
replied version information for each request.

Survey and Evaluation of Blue-Green Deployment Techniques 73



To evaluate the selected Blue/Green deployment techniques performance, we setup
five experiment environments for My-Service deployments as described in following.

For the AWS R53 DNS based B/G deployment [11], we created two EC2 instances
on AWS for service deployment, one for Blue and another one for Green., and con-
figured a DNS (e.g., bgtest.res-lab.ibm.biz) with the public IP of the Blue EC2 instance.

For the AWS LB-ASG based B/G deployment [11], we created two AMI images
with two different versions of service. And we also created a Launch Template, an auto
scaling group (ASG) instance and a load balancer (LB) instance as required to work
with the ASG instance to route the request at the unique (LB) access endpoint when the
backend EC2 instance is changed.

For the CF-RR based B/G deployment [12] on a container-based architecture, we
published two Node.js applications (Blue and Green) on Cloud Foundry with two
different versions of the service, and developed a switch script on the client side using
the CF CLI to trigger the route remapping.

For the Eureka and Zuul based B/G deployment, we created two VMs on Soft-
Layer, one serving as Zuul server, and another one serving as Eureka server. We also
created two more VM, deployed the Eureka sidecar on each of them, and then deployed
the service with two different versions on each VM. We developed an UCD process to
manage the sidecar’s configuration and operation as described in Sect. 3.2, including
the “update registration” process.

For the Kube and ISTIO based B/G deployment, we deployed ISTIO (v1.0) within
istio namespace (it is used to isolate and manage a set of resource group in Kube) in
Kubernetes, and created another two namespaces “BlueBox” and “GreenBox” to
deploy container with different service version. In a routing rule of ISTIO, we pre-
defined two destination environment for BlueBox and GreenBox, and control the
request traffic routing with managing the workload weight in the destination rules.

In order to reduce the impact of noise data in our experiment environments, we run
the experiments ten times for each use case in each environment, and used the arith-
metic mean to get the average performance metrics as detailed in the next section.

4.2 Blue/Green Deployment Performance Metrics

Ideally, the switch from Blue to Green should be effective immediately, as shown in
Fig. 3(A), i.e., when the switch is activated, all incoming traffic requests are immediately
routed to the new service release (version 2) without delay or error. However, in reality,
the switch is always followed by a period of inconsistency as shown in Fig. 3 (B) when
some incoming traffic requests are routed to the current service release (version 1) while
other incoming traffic requests are routed to version 2. The reason for this inconsistency
dwells within the distributed nature of the information identifying a service instance
deployed in the environment. The propagation of the switch from the Blue service
version to the Green service version is specific to each implementation of the B/G
deployment techniques. To compare the performance of each B/G techniques, we define
four analysis metrics, illustrated in Fig. 3(C) and described here after.

74 B. Yang et al.



Let t0, called the Switch Point, be the activation time of switching the service
versions, i.e., the moment when the information related to the new service version, is
made available in the production environment. Let t1, called the Stable Point, be the
time corresponding to a consistent successful response to the incoming traffic from the
new service version without any response from the original service version. The time
difference between t1 and t0, called the Switch Time as Eq. (1), indicates the duration
of the B/G deployment and it is our first comparison metric.

Switch Time ¼ t1 � t0 ð1Þ

In the ideal case, the Switch Time is zero given that no delay or error occurred when
switching the releases. In the real case, we aim to minimize this value.

Let t2, called the Emerging Point, be the time when the new service version is
observed for the first time in reply to the incoming traffic. The time difference between
t2 and t0 indicates the Response Time as Eq. (2), to the activation of the switch to the
new service version. This is the second comparison metric.

Response Time ¼ t2 � t0 ð2Þ

Let t3, called the Unstable Point, indicate the time when the new service version
becomes unavailable resulting in an error reply to the incoming traffic. We call the
Unstable Duration as Eq. (3), the time interval when the new service version is
unavailable during the switch period. This is our third comparison metric.

Unstable Duration ¼ t1 � t3 ð3Þ

Fig. 3. Comparison between Ideal (A) and real (B) lifecycle of Blue/Green deployment traffic
switch; and (C) performance indexes definition for switching Traffic. (Color figure online)

Survey and Evaluation of Blue-Green Deployment Techniques 75



Finally, our forth comparison metric is the Overlap Duration as Eq. (4) which
indicates the time interval when the service’s two versions are both observed in reply to
the incoming traffic. This is the error free time between the Emerging Point t2 and the
Stable Point t1, as follows:

OverlapDuration ¼ t1 � t2 � Unstable Duration ð4Þ

The aim of all the B/G deployment techniques is to minimize the Switch Time:

Min Switch Timeð Þ ¼ Min ðResponse Time; OverlapDuration; Unstable DurationÞ ð5Þ

5 Experimental Results and Analysis

In the experiments for AWS R53 DNS based B/G deployment, we observed that the
Response Time is about 3 min (178 s), while the Overlap Duration is about 10 s, as
shown in Fig. 4. The root cause for such a large delay on the Response Time is due to
the DNS functionality, i.e., its caching mechanism used to speeds up the process by
storing information for periods of time and re-using it for future DNS queries.

Besides the cache on the nodes in the routing path towards the target service
instance, the client and the browser could also use local cache for the target domain
name. Thus, there is a long period to update all cache systems on the routing path when
the DNS configuration is updated to point to another service instance (i.e., version 2).

Additionally, if the original service instance is still up, the requests will observe an
overlap of service response as version 1 or version 2 randomly on different routing path
due to the cache.

The experimental results for AWS LB-ASG based B/G deployment are illustrated
in Fig. 5 and show a shorter Response Time than those in the previous DNS based
solution. This is due to the requests being routed to the same endpoint of the Load
Balancer (LB). The LB is configured with the internal routing rule to forward the
requests to a working node in the target group which is integrated with ASG [11].
However, there is delay for the scale-in/scale-out nodes in AWS ASG, which causes an

Fig. 4. Experiment result & analysis for AWS R53 DNS based Blue/Green Deployment. (Color
figure online)

76 B. Yang et al.



overlap when both version 1 node and version 2 node are present at the same time in
the group. This confuses the LB into sending requests to version 1 node which impacts
the Overlap Duration in this B/G deployment. Moreover, even when the version 1
node is removed from ASG, the LB could still send request to the removed service
instance due to health status update delay, which will lead to a response error (when the
service is unavailable). Therefore we observe an Unstable Duration in these
experiments.

In the experiments for CF-RR based B/G deployment, the Switch Time is smaller
than in the previous experiments (DNS based and LB-ASG based), as shown in Fig. 6.
The Response Time is only about 18 s when another version (version 2) in Green
environment is emerging in the request responses. As in the previous solutions, a
version overlap is again observed (*7 s) when we switch the traffic from version 1 to
version 2. After analyzing this technique [12], we found the root cause being the
sequence of the CF CLI execution for mapping and unmapping the route between the
Blue and Green service instances. The CLI execution takes time to make the
mapping/unmapping operational. If we change the sequence of the CF CLI execution,
to execute first “unmapping blue.example.com from blue”, and then “mapping green to
blue.example.com”, we could remove the overlap. However, the risks is to render the
service unavailable when the route of blue.example.com would be requested without an
instance mapping.

Fig. 5. Experiment result & analysis for AWS LB-ASG based Blue/Green Deployment. (Color
figure online)

Fig. 6. Experiment result & analysis for CF route remapping based Blue/Green Deployment

Survey and Evaluation of Blue-Green Deployment Techniques 77



In the experiments for our Eureka and Zuul based B/G deployment, we got similar
performance results on the Switch Time with those in the CF-RR based B/G deploy-
ment. Additionally, no overlap or unstable duration was observed, as illustrated in
Fig. 7. It is the service discovery direct configurations and its cache update mechanism
which are different from the methods used in the AWS EC2 services and CF tools. In
the Eureka and Zuul based B/G deployment implementation, there are multiple con-
figurations we can customize.

As presented in Sect. 4, we optimized the time for service registry and cache
update. Those optimizations are used to make sure the service instances in the Blue and
Green environments register and de-register from the service registration and discovery
server (Eureka) synchronously to minimize the switch time, while informing the router
(Zuul) of those registry service instances expediently. To minimize the Switch Time,
besides minimizing the Response Time (i.e., discover registry service update in time),
we are also trying to minimize the Overlap Duration and Unstable Duration. This is
achieved by controlling the cache content and the cache update interval for the Zuul
server, since Zuul manages all the requests routing to the backend service instances.
Given that we keep only one service instance (Blue or Green) in the service registry
server, the ambiguity for the response (the service version in our experiments) is
eliminated in this technique. Additionally, since the service instances are kept running
in both the Blue and the Green environments, the risk for service unavailability is
avoided even when we keep one service instance in the service cache of Zuul.

The experiments for Kube and ISTIO based B/G deployment, resulted in the best
performance results on the Switch Time comparing with other B/G deployment solu-
tions, with less than 1 s for switching as illustrated in Fig. 8. The traffic shifting is
achieved with updating ISTIO routing policy as described in Sect. 4. Similar to the
Netflix Eureka and Zuul solution, the Kube and ISTIO based B/G deployment shows
no overlap or unstable duration. The traffic switch takes place immediately within 1 s
which only causes a longer response time for the requests in transaction with from new
version.

Fig. 7. Experiment result & analysis for Eureka and Zuul based Blue/Green Deployment. (Color
figure online)

78 B. Yang et al.



Table 1 summarizes the performance metrics values of our comparison between the
five solutions of B/G deployment. It shows the average results of the performance
across 10 sets of experiments for each solution, and the standard deviation values for
those experiments in each solution.

The DNS based solution which is a simple and general solution for switching traffic
to a new service instance, takes the longest time to switch the traffic due to its usage of
cache, and introduces service version response ambiguity on the application/client side.
Moreover, this method exhibits the maximum standard deviation for its metrics, which
means its performance is the most unstable.

For the LB-ASG based solution, it is the service instance initialization from the
Launch Template which takes very long during the response time interval. The per-
formance could be improved if the Launch Template can support containers. Moreover,
the AMI images creation for each service instance in the template is an extra load for
the B/G deployment, which also limits the agility of the new version release.

Fig. 8. Experiment result & analysis for KUBE and ISTIO based Blue/Green deployment.
(Color figure online)

Table 1. Blue/Green switch performance comparison summary

Metric
(sec)

Switch traffic solutions
AWS R53-
DNS based

AWS LB-
ASG based

CF RR
based

Zuul &
Eureka

Kube &
ISTIO

Response time 178.4 116.6 17.7 22.9 0.087
Standard
deviation of RT

36.6 9.8 4.8 5.5 0.025

Overlap duration
(OD)

9.3 42.8 7.3 0 0

Standard
deviation of RT

6.1 8.6 6.3 0 0

Unstable
duration (UD)

– 35.8 – – –

Standard
Deviation of UD

– 9.8 – – –

Switch time (ST) 187.7 195.2 25 22.9 0.087
Standard
deviation of ST

32.3 18.5 3.8 5.5 0.025

Survey and Evaluation of Blue-Green Deployment Techniques 79



The Service Discovery based method shows the best performance for switching
traffic due to is minimal Overlap Duration time cost. This approach also solved the
issue of the service unavailability, although it requires customized configurations and
sidecar installation on the nodes of the B/G environments, which is an extra load that
we addressed via automation pipeline (e.g. UCD). All service instances are running via
Kube DNS while ISTIO provides traffic routing in the service mesh for our container
environment on the Kube special “VPN” (virtual private network) without outside
network routing path. This is key to eliminate the cache on the routing path shown in
other solutions and which impacts the overlap duration performance.

6 Conclusion

In this paper, we discussed a continuous delivery methodology, Blue/Green deploy-
ment. The most prevalent solutions for implementing Blue/Green deployments were
investigated and their performance compared and analyzed. The DNS based solution
provides a simple approach that can be used in environments equipped with DNS
servers. However, it performs very poor when it comes to switching over traffic
between service releases. AWS Load Balancer & Auto-Scaling-Group (ASG) based
solution can achieve cost efficiency continuous delivery by keeping only one envi-
ronment running. However, it takes a relatively long time to initialize a new service
instance update. CloudFoundry Remapping Router (CF-RR) is an approach to update a
service’s route mapping which showed a good response time. CF-RR switches traffic
from a service’s old version to the new version once the new version becomes avail-
able. However, an overlap was observed when using this approach because there is a
delay for client commands to take effect. CF-RR and AGS share the same weakness,
this is they both work only for services running in their respective platforms. Lastly, the
Service Discovery solution exhibited a better overall switch over performance by
removing the overlap and unstable periods. The Eureka and Zuul solution however
spends more time on the response phase than the CF-RR solution. Kube and ISTIO
solution shows the best performance for the switch time, with the caveat that it only
works for Kubernetes based environments. Eureka and Zuul approach provides a
general way to support any services.

Based on the analysis of the characteristics of each solution, it is important to
choose a suitable Blue/Green deployment for service continuous delivery according to
the run-time conditions. Getting services up and running quickly while achieving
upgradeability and easy to manage deployments with minimized risk, are key to
delivering fast and reliable deployments of new technology investments.

Our future work will focus on investigating the more complex scenario of upgrade
on hybrid cloud. In such case, the challenge will be the cache synchronization among
nodes on different clouds with different service discovery instances, while minimizing
the overlap duration and service instance conflict.

80 B. Yang et al.



References

1. Humble, J., Farley, D.: Continuous Delivery: Reliable Software Releases Through Build,
Test, and Deployment Automation (Adobe Reader). Pearson Education, London (2010)

2. Chen, L.: Continuous delivery: huge benefits, but challenges too. IEEE Softw. 32(2), 50–54
(2015)

3. Soni, M.: End to end automation on cloud with build pipeline: the case for DevOps in
insurance industry, continuous integration, continuous testing, and continuous delivery. In:
IEEE Cloud Computing in Emerging Markets (CCEM), pp. 85–89, 25 November 2015

4. Fowler, M.: Blue Green Deployment (2010). https://martinfowler.com/bliki/BlueGreen-
Deployment.html

5. https://searchitoperations.techtarget.com/definition/blue-green-deployment
6. https://medium.com/netflix-techblog/deploying-the-netflix-api-79b6176cc3f0
7. Cloudflare global managed DNS: https://www.cloudflare.com/dns
8. How to set up a host name with DigitalOcean. https://www.digitalocean.com/community/

tutorials/how-to-set-up-a-host-name-with-digitalocean
9. Google Cloud DNS. https://cloud.google.com/dns/docs/
10. Ellis, N.: An example Blue/Green deployment using Tutum and Cloudflare (for DNS)

(2016). https://gist.github.com/neilellis/2d25f0ade3d6cae6f7c9
11. Amazon: Blue/Green deployments on AWS. Whitepaper, August 2016. https://d0.awsstatic.

com/whitepapers/AWS_Blue_Green_Deployments.pdf
12. Cloud Foundry: Using Blue-Green deployment to reduce downtime and risk. https://docs.

cloudfoundry.org/devguide/deploy-apps/Blue/Green.html#map-green
13. Digital Ocean: How to use Blue-Green deployments to release software safely. https://www.

digitalocean.com/community/tutorials/how-to-use-Blue/Green-deployments-to-release-
software-safely

14. Danial S.: Thought Works, Implementing Blue-Green deployments with AWS (2013)
https://www.thoughtworks.com/insights/blog/implementing-Blue/Green-deployments-aws

15. IBM UrbanCode Deploy. https://developer.ibm.com/urbancode/products/urbancode-deploy/
16. Klusak, V.: Klokan Technologies, Blue-Green Deployment with Docker and Nginx (2016).

https://blog.klokantech.com/2016/08/Blue/Green-deployment-with-docker-and.html
17. Pérez, I.S.: Simple Blue/Green deployments with Docker and Nginx (2016). http://

dukebody.com/?p=511
18. Holý, J.: DZone/Devops Zone, WebApp Blue/Green Deployment Without Breaking

Sessions (2016). https://dzone.com/articles/webapp-bluegreen-deployment
19. Netflix Eureka. https://github.com/Netflix/eureka/wiki
20. Netflix Zuul. https://github.com/Netflix/zuul/wiki
21. Zero-Downtime Rolling Deployments With Netflix’s Eureka and Zuul, March 2019. https://

www.credera.com/blog/technology-solutions/zero-downtime-rolling-deployments-netflixs-
eureka-zuul/

22. Janakiram, M.S.V.: Blue/Green Deployments with Kubernetes and Istio, October
2018https://thenewstack.io/tutorial-blue-green-deployments-with-kubernetes-and-istio/

23. Istio. https://istio.io
24. IBM Cloud Toolchain. https://cloud.ibm.com/devops/create?bss_account=49f48a067ac-

4433a911740653049e83d&ims_account=167466

Survey and Evaluation of Blue-Green Deployment Techniques 81

https://martinfowler.com/bliki/BlueGreenDeployment.html
https://martinfowler.com/bliki/BlueGreenDeployment.html
https://searchitoperations.techtarget.com/definition/blue-green-deployment
https://medium.com/netflix-techblog/deploying-the-netflix-api-79b6176cc3f0
https://www.cloudflare.com/dns
https://www.digitalocean.com/community/tutorials/how-to-set-up-a-host-name-with-digitalocean
https://www.digitalocean.com/community/tutorials/how-to-set-up-a-host-name-with-digitalocean
https://cloud.google.com/dns/docs/
https://gist.github.com/neilellis/2d25f0ade3d6cae6f7c9
https://d0.awsstatic.com/whitepapers/AWS_Blue_Green_Deployments.pdf
https://d0.awsstatic.com/whitepapers/AWS_Blue_Green_Deployments.pdf
https://docs.cloudfoundry.org/devguide/deploy-apps/Blue/Green.html#map-green
https://docs.cloudfoundry.org/devguide/deploy-apps/Blue/Green.html#map-green
https://www.digitalocean.com/community/tutorials/how-to-use-Blue/Green-deployments-to-release-software-safely
https://www.digitalocean.com/community/tutorials/how-to-use-Blue/Green-deployments-to-release-software-safely
https://www.digitalocean.com/community/tutorials/how-to-use-Blue/Green-deployments-to-release-software-safely
https://www.thoughtworks.com/insights/blog/implementing-Blue/Green-deployments-aws
https://developer.ibm.com/urbancode/products/urbancode-deploy/
https://blog.klokantech.com/2016/08/Blue/Green-deployment-with-docker-and.html
http://dukebody.com/?p=511
http://dukebody.com/?p=511
https://dzone.com/articles/webapp-bluegreen-deployment
https://github.com/Netflix/eureka/wiki
https://github.com/Netflix/zuul/wiki
https://www.credera.com/blog/technology-solutions/zero-downtime-rolling-deployments-netflixs-eureka-zuul/
https://www.credera.com/blog/technology-solutions/zero-downtime-rolling-deployments-netflixs-eureka-zuul/
https://www.credera.com/blog/technology-solutions/zero-downtime-rolling-deployments-netflixs-eureka-zuul/
https://thenewstack.io/tutorial-blue-green-deployments-with-kubernetes-and-istio/
https://istio.io
https://cloud.ibm.com/devops/create%3fbss_account%3d49f48a067ac4433a911740653049e83d%26ims_account%3d167466
https://cloud.ibm.com/devops/create%3fbss_account%3d49f48a067ac4433a911740653049e83d%26ims_account%3d167466


AutoCADep: An Approach for Automatic
Cloud Application Deployment

Saddam Hocine Hiba(B) and Meriem Belguidoum

LIRE Laboratory, Constantine 2 University, Constantine, Algeria
{saddam.hiba,meriem.belguidoum}@univ-constantine2.dz

Abstract. One of the key aspects related to cloud application deploy-
ment is its automatic and flexible management. However, existing
solutions are ad-hoc and do not deal with dynamic reconfiguration and
scaling as well as is expected. In this work, we propose AutoCADep,
an approach to automatically manage the deployment, reconfiguration
and elasticity aspects of cloud applications. It provides a higher level of
abstraction from modelling to specify the deployment process. Therefore,
we use MDA approach, MAPE-K loop and ECA rules in order to auto-
mate the deployment process of parametrized component based applica-
tions. We introduce an external DSL based on an extended metamodel
gathering all relevant deployment concepts and architecture description
of applications. Finally, we illustrate the automatic deployment manage-
ment through a case study.

Keywords: Cloud computing · Automatic deployment · MDA · DSL ·
MAPE-K · ECA rules

1 Introduction

Cloud computing [16] is one of the emerging technology that attracted more
and more attention from the industry. However, its implementation remains very
complicated due to the diversity of providers, platforms, languages and standard
technologies. Moreover, the company’s strategies involve several requirements
concerning the reliability and flexibility of their provided services.

Therefore, in order to deliver all this variety of services, the cloud applica-
tion deployment should be automatic and flexible. The current way to deploy
an application is highly dependent on cloud providers, in which most of the
deployment process is done manually or based on specific company tools and
proprietary APIs. Moreover, the diversity of cloud providers requires learning
their deployment tools as well as reimplementing parts of the application in some
cases, and consequently, changing from one provider to another is too expensive
and time-consuming.

In this work, we aim to propose a generic, reusable and structured approach
to automatically manage cloud application deployment, on one hand by reduc-
ing the time and effort and having the freedom to choose services from different
c© Springer Nature Switzerland AG 2020
S. Yangui et al. (Eds.): ICSOC 2019 Workshops, LNCS 12019, pp. 82–94, 2020.
https://doi.org/10.1007/978-3-030-45989-5_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-45989-5_7&domain=pdf
https://doi.org/10.1007/978-3-030-45989-5_7


AutoCADep: An Approach for Automatic Cloud Application Deployment 83

vendors and organizations. On the other hand, to have a dynamic deployment
that can take into account the internal architecture of component-based appli-
cations. For this, we use the MDA approach [14], MAPE-K control loop [10]
and ECA rules [8] to propose an external Domain-Specific Language [19] allow-
ing automatic deployment of component-based applications including automatic
reconfigurations on demand according to the description of its internal archi-
tecture. The DSL has modelling capabilities to represent the structure of cloud
applications in terms of components and their deployment. The benefits of the
language are to take into account the diversity of features provided by cloud
environments and to support different application scenarios, such as migrating
existing applications to the cloud, developing, deploying, new cloud applica-
tions, or optimizing them. It allows automating the code generation following
the principle of the MDA approach which includes the CIM and PIM model
(representing the abstract and concrete DSL syntax) towards the PSM model
DSL code generation). Therefore, we apply the MDA approach together with
the DSL to provide high-level modelling capabilities for better representation of
the deployment and elasticity domain.

We intend to achieve the objectives mentioned above by defining an extended
metamodel for deployment management, offering a DSL for Automatic Cloud
Application Deployment (AutoCADep), and developing a platform that uses the
DSL to provide an execution runtime engine for the deployment process.

The rest of the paper is structured as follows. Section 2 reviews some related
work and gives a comparative study. In Sect. 3, we describe our proposed archi-
tecture and define a DSL for the AutoCADep approach. Section 4 illustrates the
proposal through a case study. In Sect. 5, we conclude the paper and outline our
future work.

2 Related Work

Several approaches have been proposed for modelling and managing automat-
ically cloud application deployment. Libraries and configuration management
tools are one of these deployment mechanisms, the liberties such as DeltaCloud
[7], jClouds [13], and LibCloud [15], they provide abstraction layers to facili-
tate the provisioning and the deployment of cloud application through a single
interface. The configuration management tools such as Chef [6], Puppet [20]
and CFEngine [24] are DevOps tools for automation of deployment, they share
the same idea of automating configuration tasks by providing their own DSL.
However, these tools are available at the code level and do not provide a gen-
eral abstraction layer or application architecture to be used by the deployment
designer to properly model and deploy the application.

The European projects such as Reservoir [21], mOSAIC [17], PaaSage [18],
MODAClouds [2] and others, they provide platforms, APIs, languages, and mod-
els for the development, description and deployment of application at IaaS or
PaaS levels, some of these projects support elasticity of applications through dif-
ferent techniques. MODAClouds is based on a model-driven approach to provide



84 S. H. Hiba and M. Belguidoum

methods, a decision support system (DDS), an Integrated Development Environ-
ment (IDE) and an execution environment for high-level design and automatic
deployment of applications in a multi-cloud with guaranteed QoS. In general,
European projects represent a middleware solution that intermediate between
cloud applications and cloud providers, covering all three phases of the cloud
application lifecycle: the development, the deployment, and the execution. This
projects lack a complete covering of the deployment phases and do not specify
the application architecture.

Some academic works have been proposed to address this area. For exam-
ple TOSCA, CloudML, Pim4Cloud-DSL, VAMP and CoMe4ACloud. TOSCA
[4]stands for Topology and Orchestration Specification for Cloud Applications,
it is an XML-based language used to describe cloud applications and their auto-
mated deployment and management. TOSCA conceptually consists of two dif-
ferent parts: (i) application topologies provide the structural description of the
applications, its components and their interdependency relationships. (ii) man-
agement plans are the standardized description of the application’s management
by plans. The plans combine these management capabilities to create manage-
ment tasks, which can be executed to deploy the application.

CloudML [5] is proposed as a cloud modelling language according to MDE
techniques and methods, to provide a DSML for modelling the provisioning,
deployment, monitoring, and adaptation of multi-cloud systems at design-time
and their enactment at runtime. Pim4Cloud-DSL [12] is a component-based
approach to model software deployment. This approach is provided as a DSL,
which is given to the software designer. The language is based on a reduced com-
ponent metamodel and supports the modelling of the deployment relationship
between components. VAMP (Virtual Applications Management Platform) [22]
ensures an autonomous and a generic deployment of any distributed application
in the cloud. VAMP offers a formalism based on Open Virtualization Format
(OVF) to describe the virtual machines and the distributed application using
an architecture description language (ADL). Also, it provides a protocol for self-
configuration and auto-activation of applications. CoMe4ACloud [1] Constraints
and Model Engineering for Autonomic Clouds, is a generic model-based archi-
tecture to provide autonomous runtime management of heterogeneous cloud sys-
tems. The approach uses constraint programming as a decision-making tool to
automatically obtain system configurations respecting specified SLA contracts.

2.1 Summary

The Table 1 compares the closest works to our proposal according to some criteria
related to the application deployment

– Mechanism: describes how the deployment is assured, it can be: manual,
language-based, script-based or model-based

– Deployment automation: represents the automation strategy used for the
deployment

– Deployment phases: represent the covered deployment phases



AutoCADep: An Approach for Automatic Cloud Application Deployment 85

T
ab

le
1.

C
om

pa
ri

so
n

w
it

h
so

m
e

re
la

te
d

w
or

k

W
or

k
M

ec
h
an

is
m

D
ep

lo
y
m

en
t

au
to

m
at

io
n

D
ep

lo
y
m

en
t

p
h
as

es
A
p
p
li
ca

ti
on

ar
ch

it
ec

tu
re

E
la
st
ic
it
y

m
an

ag
em

en
t

In
p
u
t

O
u
tp

u
t

R
u
n
ti
m

e
su

p
p
or

t

D
ev

O
p
s
to

ol
s

[6
,2

0,
24

]
L
an

gu
ag

e,
sc

ri
p
t
C
on

tr
ol

sy
st
em

In
st
al
la
ti
on

,
re

co
n
fi
gu

ra
ti
on

-
-

C
on

fi
gu

ra
ti
on

p
la
n
s

E
x
ec

u
ti
on

p
la
n
s

+

M
O
D
A
C
lo
u
d
s

[2
]

L
an

gu
ag

e,
m

o
d
el

-
In

st
al
la
ti
on

,
u
n
in

st
al
la
ti
on

,
u
p
d
at

e

-
-

M
o
d
el

re
p
re

se
n
ta

ti
on

C
o
d
e

re
p
re

se
n
ta

ti
on

+

T
O
S
C
A

[4
]

L
an

gu
ag

e,
sc

ri
p
t
M

an
ag

em
en

t
p
la
n
s
R
el
ea

se
,

in
st
al
la
ti
on

,
u
n
in

st
al
la
ti
on

T
op

ol
og

ie
s

-
G
ra

p
h

C
on

ta
in

er
of

T
O
S
C
A

+

C
lo
u
d
m

l
[5
]

L
an

gu
ag

e,
m

o
d
el

-
In

st
al
la
ti
on

,
ad

ap
ta

ti
on

-
-

M
et

am
o
d
el

E
n
v
ir
on

m
en

t
of

m
o
d
el
s@

ru
n
ti
m

e
+

V
A
M

P
[9
]

L
an

gu
ag

e,
m

o
d
el

P
ro

to
co

l
fo
r

au
to

-c
on

fi
gu

ra
ti
on

an
d

ac
ti
va

ti
on

R
el
ea

se
,

in
st
al
la
ti
on

,
ac

ti
va

ti
on

,
re

co
n
fi
gu

ra
ti
on

-
-

F
or

m
al
is
m

on
O
V
F

an
d

A
D
L

fo
r

th
e
ap

p
li
ca

ti
on

s
d
es

cr
ip

ti
on

V
ir
tu

al
im

ag
es

,
p
ro

to
co

l
fo
r

au
to

-c
on

fi
gu

ra
ti
on

an
d

ac
ti
va

ti
on

+

P
im

4C
lo
u
d

D
S
L

[1
2]

L
an

gu
ag

e
-

In
st
al
la
ti
on

,
u
p
d
at

e
-

-
M

et
am

o
d
el

D
ep

lo
y
m

en
t

d
es

cr
ip

to
rs

-

C
oM

e4
A
-

C
lo
u
d

[1
]

M
o
d
el
,
la
n
gu

ag
e

M
A
P
E
-K

R
ec

on
fi
gu

ra
ti
on

T
O
S
C
A

to
p
ol
og

ie
s
+

T
op

ol
og

y
m

et
am

o
d
el

C
on

fi
gu

ra
ti
on

m
o
d
el

+

A
u
to

C
A
D
ep

L
an

gu
ag

e,
m

o
d
el

M
A
P
E
-K

R
el
ea

se
,

in
st
al
la
ti
on

,
ac

ti
va

ti
on

,
re

co
n
fi
gu

ra
ti
on

,
d
ea

ct
iv
at

io
n
,

u
n
in

st
al
la
ti
on

B
as

ed
on

a
fo
rm

al
in
tr
a-

d
ep

en
d
en

y
la
n
gu

ag
e

+
M

et
am

o
d
el

Ja
va

co
d
e

ge
n
er

at
io
n
,
A
P
I

+



86 S. H. Hiba and M. Belguidoum

– Application architecture: represents the description of the application archi-
tecture

– Elasticity management: represents the management of elasticity strategies.
– Input: represents the input deployment solution
– Output: the result obtained after the deployment process
– Runtime support: represents a set of mechanisms that supports the runtime

aspect.

We noticed that the aforementioned works did not completely cover all the
deployment phases, doesn’t have a generic deployment model that includes
all relevant deployment aspects. These deployment solutions dealt with the
cloud application as a black box and do not provide a clear description of
the application architecture (intra-dependencies descriptions) and deployment
phases. Indeed, an automatic cloud application deployment approach should (i)
provides an abstract description level of deployment concepts; (ii) provides a
language that describes the application internal architecture and deployment
management; (iii) carries out cloud application deployment in an automatic
way. For this, the novelty of our approach to offer an automatic, parametrized,
and dynamic deployment depending on the intra-dependency architecture of the
application to provide high-level modelling capabilities for a better representa-
tion of the deployment domain.

3 AutoCADep Approach

To address the issues outlined in Sect. 2, we present our approach named Auto-
CADep for Automatic Cloud Application Deployment. AutoCADep provides a
higher level of abstraction for modelling and specifying the deployment process
of applications at the SaaS layer (design time), and a PaaS platform to man-
age the deployment and elasticity of cloud applications automatically (runtime).
AutoCADep includes an external DSL based on a generic metamodel gathering
all relevant application deployment and elasticity concepts, it is also based on a
formal intra-dependency language [3] used to describe the internal application
architecture. This section describes the AutoCADep approach and the proposed
DSL.

3.1 AutoCADep Architecture

Figure 1 presents the architecture of the proposed approach. In step (1), the
application producer creates the application and prepares its installable pack-
ages, then sends them to the deployment designer. In step (2), the deployment
designer creates the application description and its deployment constraints using
the proposed DSL. In step (3), the deployment operator uses the platform to
manage the deployment by adding new deployment entities or performing recon-
figurations using the deployment runtime engine. It groups the components
used to automate the deployment management such as MAPE-K components



AutoCADep: An Approach for Automatic Cloud Application Deployment 87

and ECA rules. These components (monitor, analyser, planner, executor) are
responsible for monitoring the system (using sensors), analyzing metrics, plan-
ning actions and executing them (using actuators). In the last step (4), the
administrator supervises the application resources, while the users have access
to the application, they can add requirements and preferences during the deploy-
ment process.

3.2 AutoCADep DSL

AutoCADep DSL is a textual language used to describe cloud application and
deployment concepts. It is developed with Xtext Framework [23], it is an Eclipse
framework for implementing programming languages and DSLs. Xtext covers
all aspects of a complete language infrastructure, starting from the parser, code
generator, or interpreter, up to a complete Eclipse IDE integration (with all the
typical IDE features).

Fig. 1. AutoCADep architecture overview



88 S. H. Hiba and M. Belguidoum

Abstract Syntax. the conceptual metamodel presented in this part describes
the proposed DSL abstract syntax which extends the model proposed in [11] to
cover the intra-dependency application architecture. So, in this paper we present
the cloud deployment models with the cloud application architecture (Fig. 2).

Fig. 2. (a) the deployment metamodel, (d) the application Intra-dependencies meta-
model

Deployment management metamodel is based on automatic rules to take
into account the dynamic aspect of the deployment, we have extended to the
metamodel with the ECA concept (i.e. Event, Condition and Action) to allow
the automatic management of cloud application deployment phases such as:
Installation, Activation, Reconfiguration, Deactivation, Uninstallation. The ECA
rules are based on the MAPE-K mechanism (Fig. 1) to specify deployment or
elasticity rules in a declarative way. When an event is triggered, a condition
(a logical expression) have to be checked and then an action will be performed.
There are two kinds of action: the first is related to the internal architecture of the
component based application (e.g. add, remove, substitute, etc.), the second one
is related to the elasticity management (e.g. replication, migration, resizing, etc.)
[11]. The internal actions are: add/remove a component or a service, substitute
(replace) a component or a service with another and execute a shell scripts inside
service VMs or containers.



AutoCADep: An Approach for Automatic Cloud Application Deployment 89

Concrete Syntax. based on the Ecore metamodel (Fig. 2), the concrete syn-
tax of our proposed language is generated. This grammar is expressed in Backus
Normal Form (BNF). Listing 1.1 presents the principal rule named CloudAppli-
cation, with its hierarchical subcomponents.

CloudApplication returns CloudApplication:
’CloudApplication ’ name=ID
(’components ’ ’{’ ContainsComponent+= Component
ContainsComponent+= Component)* ’}’ )
(’phases’ ’{’ hasDeploymentPhase += Phase
(hasDeploymentPhase += Phase)*’}’ )? ’}’;

Listing 1.1. The application rule grammar

The Semantic Rules. some aspects of the implementation of the language
have an impact on what is required for a semantic model to be validated. The
semantics gives meaning to the syntactic elements of the language. In the pro-
posed DSL, the semantics is verified through the following concepts:

– Scope: this term refers to the calculation of elements of the model that can be
referenced by a particular reference. For example, listing 1.2 shows the binding
rule grammar that contains two references: HasService, HasReference.

Binding returns Binding:
’bind’HasService=[ Service] ’to’HasReference =[ Reference ];

Listing 1.2. The binding rule grammar
– Validator: Xtext and Xtend automatically support these types of validations:

syntax, cross-reference, and concrete syntax validation. In addition, we specify
more constraints specific to our model.

4 Case Study

In this section, we illustrate our proposed approach through the E-learning cloud
deployment. E-learning is an online learning system based on formalised teach-
ing, it provides educational services and electronic resources. The end-users of
this application are students, teachers, and administrators. E-learning must be
installed on a web server, which is a cloud provider service. As shown in Fig. 3,
this application consists of the following components:

– Assembly is composed of four components: Database, WebServer, Extention,
Databasebackup.

– Database offers mysqls service that represents MySQL Server.
– WebServer provides ws service which is the application server, this service

requires the dbmysqls service of the Database component, and other con-
straints.



90 S. H. Hiba and M. Belguidoum

– Extension provides ssls service for establishing an encrypted link between the
WebServer and browsers of users.

– Databasebackup: refers to the process of having copies that are recoverable
when data is lost during an unfortunate event.

Fig. 3. E-learning components Fig. 4. E-learning reconfiguration

Based on the AutoCADep architecture, we have developed a platform that
includes a DSL web editor and execution/validation runtime engine. This is
used by the deployer to automatically develop, deploy and manage applications
(following the MAPE-k loop and ECA rules). The proposed DSL web editor is
an IDE with powerful features such as immediate feedback, auto-completion,
suggested corrections and syntax-aware editor (highlight DSL keywords). Fur-
thermore, it allows the analysis, code generation and semantic validation. A
DSL description of E-learning application is presented in Listing 1.3. Table 2
shows how do we apply the proposed DSL to describe the application internal
architecture and analyse automatic deployment. Therefore, we present four sce-
narios, install the E-learning application, perform reconfigurations to adapt to
the changes (increased on memory usage) and execute two reconfiguration rules
according to the application user requirements (add services). Figure 4 captures
new intra-dependencies added on the application architecture according to the
reconfigurations rules that added services.

The runtime engine component is responsible for deploying the applications
created by the web DSL editor on the AutoCADep platform (left side of Fig. 5).
First, once the creation of DSL description is completed, the runtime engine
will automatically generate the java code (right side of Fig. 5). Then, the engine
creates an instance of the application class from the java file generated to read
the application information: name, properties, components, and phases. Next,
it builds the dependency graph of the components to establish the order in
which they must be deployed and activated with their respective services. After
that, the services of components will be deployed at the corresponding cloud
provider (by the engine). Finally, it activates the applications in the following



AutoCADep: An Approach for Automatic Cloud Application Deployment 91

CloudApplication Elearning {
components
compositeComponent Assembly {
subComponents
optional component Extension {
interfaces
service ssls
intraDeps (true => ssls) },
component Database {
interfaces
service dbmysqls
intraDeps (true => dbmysqls) },
component Databasebuckup {
interfaces
service dbbmysqls
intraDeps (true => dbbmysqls) },
component WebServer {
interfaces
service ws ,
reference dbmysqlr , dbbmysqlr ,sslr
intraDeps (dbmysqls["version"]>="5.8" => ws)
AND optional(ssls => wssecure)}
bindings
bind dbmysqls to dbmysqlr ,
bind dbbmysqls to dbbmysqlr ,
bind ssls to sslr } }

Listing 1.3. Elearning DSL description

order: installation, configuration, activation, reconfiguration, deactivation, and
uninstallation. Each phase is run in a limited period of time, except for the
reconfiguration phase that takes longer (the elasticity rules will be executed in
this phase), start after the Activation phases, and end when the application is
uninstalled.

Fig. 5. AutoCADep platform



92 S. H. Hiba and M. Belguidoum

T
ab

le
2.

D
SL

ru
le

s
of

so
m

e
de

pl
oy

m
en

t
ph

as
es



AutoCADep: An Approach for Automatic Cloud Application Deployment 93

5 Conclusion and Future Work

In this paper, we have described our approach AutoCADep for the automatic
deployment of cloud applications. The proposed solution is based on MDA,
MAPE-k loop and the ECA rules. The deployment constraints and cloud appli-
cation architecture (intra-dependencies) are described using a DSL from an elab-
orated metamodel. The reconfiguration is based on the application description
which is represented by a parametrized couples of provided services and require-
ments. This reconfiguration can be represented by adding, removing or substi-
tuting components and/or services within an application). The external view of
reconfiguration is represented by cloud elasticity management (resizing, replica-
tion, migration, etc). As future work, we plan to verify formally the automatic
cloud application deployment, therefore, we have to use MDA transformation
tools from the proposed metamodel and DSL to a formal method for system
level modelling and analysis like event-B.

References

1. Al-Shara, Z., Alvares, F., Bruneliere, H., Lejeune, J., Prud’Homme, C., Ledoux,
T.: CoMe4ACloud: an end-to-end framework for autonomic cloud systems. Future
Gener. Comput. Syst. 86, 339–354 (2018). https://doi.org/10.1016/j.future.2018.
03.039. https://hal.archives-ouvertes.fr/hal-01762716

2. Ardagna, D., et al.: Modaclouds: a model-driven approach for the design and exe-
cution of applications on multiple clouds. In: Proceedings of the 4th International
Workshop on Modeling in Software Engineering, pp. 50–56. IEEE Press (2012)

3. Belguidoum, M., Dagnat, F.: Dependency management in software component
deployment. Electron. Notes Theor. Comput. Sci. 182, 17–32 (2007). https://doi.
org/10.1016/j.entcs.2006.09.029

4. Binz, T., Breitenbücher, U., Kopp, O., Leymann, F.: TOSCA: portable automated
deployment and management of cloud applications. In: Bouguettaya, A., Sheng,
Q., Daniel, F. (eds.) Advanced Web Services, pp. 527–549. Springer, New York
(2014)

5. Brandtzæg, E., Mosser, S., Mohagheghi, P.: Towards CloudML, a model-based
approach to provision resources in the clouds. In: 8th European Conference on
Modelling Foundations and Applications (ECMFA), pp. 18–27 (2012)

6. Chef - Automate Your Infrastructure, February 2019. https://www.chef.io/chef/
7. deltacloud, January 2018. http://deltacloud.apache.org
8. Dittrich, K.R., Gatziu, S., Geppert, A.: The active database management system

manifesto: a rulebase of ADBMS features. In: Sellis, T. (ed.) RIDS 1995. LNCS, vol.
985, pp. 1–17. Springer, Heidelberg (1995). https://doi.org/10.1007/3-540-60365-
4_116

9. Etchevers, X., Coupaye, T., Boyer, F., De Palma, N.: Self-configuration of dis-
tributed applications in the cloud. In: 2011 IEEE International Conference on
Cloud Computing (CLOUD), pp. 668–675. IEEE (2011)

10. Group, I., et al.: An Architectural Blueprint for Autonomic Computing. IBM White
paper, June 2006

https://doi.org/10.1016/j.future.2018.03.039
https://doi.org/10.1016/j.future.2018.03.039
https://hal.archives-ouvertes.fr/hal-01762716
https://doi.org/10.1016/j.entcs.2006.09.029
https://doi.org/10.1016/j.entcs.2006.09.029
https://www.chef.io/chef/
http://deltacloud.apache.org
https://doi.org/10.1007/3-540-60365-4_116
https://doi.org/10.1007/3-540-60365-4_116


94 S. H. Hiba and M. Belguidoum

11. Hiba, S.H., Belguidoum, M.: A DSL for elastic component-based cloud applica-
tion. Int. J. High Perform. Comput. Network. 15(1–2), 58–71 (2019). https://doi.
org/10.1504/IJHPCN.2019.103543. https://www.inderscienceonline.com/doi/abs/
10.1504/IJHPCN.2019.103543

12. IKT S.: Towards a domain-specific language to deploy applications in the clouds.
In: Cloud Computing 2012, p. 225 (2012)

13. jclouds: The Java Multi-Cloud Toolkit, February 2019. http://jclouds.apache.org/
14. Kleppe, A.G., Warmer, J.B., Bast, W.: MDA Explained: The Model Drivenarchi-

tecture: Practice and Promise. Addison-Wesley Professional, Boston (2003)
15. libcloud: One Interface To Rule Them All, February 2019. http://libcloud.apache.

org
16. Mell, P., Grance, T., et al.: The NIST definition of cloud computing (2011)
17. Moscato, F., Aversa, R., Di Martino, B., Fortiş, T.F., Munteanu, V.: An analysis of

mosaic ontology for cloud resources annotation. In: 2011 Federated Conference on
Computer Science and Information Systems (FedCSIS), pp. 973–980. IEEE (2011)

18. A Model-based cross cloud development and deployment platform, February 2019.
https://paasage.ercim.eu/

19. Pastor, O., Molina, J.C.: Model-Driven Architecture in Practice: A Software Pro-
duction Environment Based on Conceptual Modeling. Springer, Heidelberg (2007).
https://doi.org/10.1007/978-3-540-71868-0

20. Puppets: Deliver better software, faster Make software discovery, management, and
delivery automatic and pervasive with Puppet, February 2019. https://puppet.
com/

21. Rochwerger, B., et al.: The reservoir model and architecture for open federated
cloud computing. IBM J. Res. Dev. 53(4), 4:1–4:11 (2009)

22. Salaün, G., Etchevers, X., De Palma, N., Boyer, F., Coupaye, T.: Verification of a
self-configuration protocol for distributed applications in the cloud. In: Cámara, J.,
de Lemos, R., Ghezzi, C., Lopes, A. (eds.) Assurances for Self-Adaptive Systems.
LNCS, vol. 7740, pp. 60–79. Springer, Heidelberg (2013). https://doi.org/10.1007/
978-3-642-36249-1_3

23. Xtext: Xtext Home Page, February 2019. https://eclipse.org/Xtext
24. Zamboni, D.: Learning CFEngine 3: Automated System Administration for Sites

of Any Size. O’Reilly Media, Inc., Sebastopol (2012)

https://doi.org/10.1504/IJHPCN.2019.103543
https://doi.org/10.1504/IJHPCN.2019.103543
https://www.inderscienceonline.com/doi/abs/10.1504/IJHPCN.2019.103543
https://www.inderscienceonline.com/doi/abs/10.1504/IJHPCN.2019.103543
http://jclouds.apache.org/
http://libcloud.apache.org
http://libcloud.apache.org
https://paasage.ercim.eu/
https://doi.org/10.1007/978-3-540-71868-0
https://puppet.com/
https://puppet.com/
https://doi.org/10.1007/978-3-642-36249-1_3
https://doi.org/10.1007/978-3-642-36249-1_3
https://eclipse.org/Xtext


Microservices Management
on Cloud/Edge Environments

André Carrusca, Maria Cećılia Gomes(B), and João Leitão

NOVA LINCS & DI/FCT/UNL, Costa da Caparica, Portugal
a.carrusca@campus.fct.unl.pt, {mcg,jcleitao}@fct.unl.pt

Abstract. The microservices architecture is a promising approach for
application development, deployment, and evolution, both on cloud
and emerging fog/edge platforms. Microservices’ single functionality,
small size, and independent development/deployment support faster and
cheaper scaling of pressing functionalities on cloud systems. They sup-
port applications’ evolution via service reuse and smooth service mod-
ification/inclusion. Individual or sets of inter-related services may also
be dynamically deployed onto resource-restricted nodes closer to end
devices and data sources, which are typical of fog/edge computational
platforms. The resulting system is very complex and impossible to be
adequately managed manually. This work presents an automatic solu-
tion for microservices’ deployment/replication in the fog/edge, adapting
the system according to the runtime evaluation of client accesses and
resource usage. The evaluation validates the adaptability and perfor-
mance gains.

Keywords: Microservices architecture · Cloud and fog/edge
computing · Self-adaptable applications

1 Introduction

The microservices architecture [7,10] presents several advantages for application
development, deployment and evolution, in the accelerating omnipresent and
omniscient digital world. Traditional monolithic architectures represent a single
large application composed of tightly interdependent and non reusable compo-
nents. In contrast, microservices applications combine small, single functional-
ity, loosely coupled services, to implement more complex functionalities. Each
microservice accesses its own private database, displays a well defined API, and
may communicate with others directly (e.g. via RPC/REST protocols) or indi-
rectly (e.g. via messaging/event systems). This allows their independent devel-
opment with diverse technologies and their individual scaling, simplifying appli-
cations’ reliability and continuous delivery responding to new requirements [1].

The constant need for evolving systems is intensified by the surge of both
mobile and Internet of Things (IoT)/terminal devices, e.g. in the domain of

c© Springer Nature Switzerland AG 2020
S. Yangui et al. (Eds.): ICSOC 2019 Workshops, LNCS 12019, pp. 95–108, 2020.
https://doi.org/10.1007/978-3-030-45989-5_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-45989-5_8&domain=pdf
https://doi.org/10.1007/978-3-030-45989-5_8


96 A. Carrusca et al.

Smart Cities/Health [27]. Traditionally, these types of applications are sup-
ported by services running on cloud platforms [20]. Yet such high number of
client devices produce a large number of requests towards the backend services
and generate huge amounts of data, requiring novel solutions adaptable to sys-
tems’ evolution. Many of these services correspond to bandwidth intensive and
increasingly popular applications like video-on-demand, streaming, or real time
TV [3]. Also, the predicted huge number of IoT devices [9] will collect data
needing to be mined and analysed (e.g. sensors dispersed over wide areas) and
often with time restrictions (e.g. drone applications). It is so necessary to avoid
latency degradation and guarantee the applications’ QoS.

Hybrid Cloud/Edge Computing. Emerging solutions capitalise on the micro-
services architecture both as cloud-native applications [17] and applications dis-
tributed on novel hybrid cloud/edge platforms [32]. Applications rely on ser-
vices in cloud computing [24] providing ubiquitous and on-demand access to
shared resources perceived as unlimited (e.g. computational, storage, and net-
work resources). Novel solutions capitalise on lighter, faster, and cheaper scal-
ing of microservices in the cloud to support applications’ variable geographical
accesses and incremental evolution. This is the case of interactive applications with
constant updates and performance/availability constraints [2,21]. Novel solutions
also may capitalise on cloud technologies’ expansion to the periphery of the net-
work. Namely, edge/fog computing [18,34,37] represent the usage of diverse het-
erogeneous computational resources on the continuum from the cloud datacen-
ters to end devices. The resources range from routers, base stations, to micro-
datacenters/cloudlets. The result is a computational platform of highly hetero-
geneous nodes, geographically dispersed at large numbers, closer to end users
and data sources, and that typically present reduce computational capabilities
in comparison to cloud datacenters [3,6,8]. The microservices architecture is also
adequate to exploit such capability restricted nodes since small services may be
migrated/replicated in a faster way, according to user/application needs. This
allows reducing the latency on accessing services, lowering the amount of data on
transit in the communication infra-structure (e.g. by filtering/pre-processing data
closer to data sources) and exploring an adequate usage of the computational infra-
structure.

Problem and Goals. Computing in heterogeneous platforms composed by
cloud nodes and a large number of highly heterogeneous edge resources presents
several challenges for application development and management [19,35]. Also,
microservices applications are composed of a large number of services (and
their replicas), each one with diverse functionalities, possibly a database, and
diverse hardware/software needs. Services may have different levels of interaction
(e.g. frequent/sporadic invocation of other services depending on the workload),
which aggravates the overall management and debugging [11]. The services may
have to be upscale and their databases replicated to improve the applications’
performance and energy efficiency. In this setting, examples of challenges are
adequate and flexible resource management solutions with service location/de-
ployment depending on the origin/volume of user accesses and on the computing



Microservices Management on Cloud/Edge Environments 97

nodes’ total/current resources and their cost; eventual dynamic migration/repli-
cation of microservices’ databases following services’ replicas; service coordina-
tion in a distributed context; the guarantee of security and privacy issues; etc.

Due to such management complexity, our long-term goal is to build an auto-
nomic solution [14,18,28] for these systems. We envision a self-management solu-
tion composed of three dimensions for decoupled functionality/management:

(a) a service management component, discussed here, to deploy and scale
individual and inter-related services (e.g. necessary for a particular
functionality);

(b) a database management component responsible for the dynamic replication
of microservices’ databases whose replica instances may be widely dispersed;

(c) a monitoring component responsible for observing services (e.g. load/
location of accesses) and infrastructure nodes (e.g. current consumed
resources) and timely providing the necessary information to the other two
components.

Each dimension is self-adaptable on fulfilling its objective and cooperates with
the other two towards establishing a global self-managing solution. The database
component guarantees the consistency model of (the existing/newer replicas of)
a particular microservice’s database. The monitoring component flexibly collects
and delivers a variable set of metricas with diverse time intervals and without
incurring unaffordable overheads over the infrastructure’s nodes and network.

Whereas we have already presented solutions advancing the database and
monitoring dimensions, this work presents an automatic solution for microservice
migration/replication contributing to a self-adaptable service management and,
in the future, to an autonomic solution able to learn from applications’ evolution
and previous decisions and to predict adaptation requirements.

Document Organisation. The following section describes the proposed solu-
tion and it is followed by Sect. 3 that discusses the implementation and evalua-
tion results. Section 4 presents the related work and Sect. 5 concludes the paper.

2 Proposed Solution

We present an automatic management approach for node allocation and service
migration/replication within the emergent cloud/edge platforms. The objective
is to improve the application’s performance and the clients’ perceived latency,
and to adequately operate the infra-structure’s resources. This in spite of the
system’s inherent complexity and dynamics both in terms of the infra-structure
volatility (with failing/new nodes) and the dynamic application requirements.
Namely, many cloud applications experience a high variability of accesses, and
other applications rely on the large volumes of data generated from end devices
at diverse locations, at variable times.

To respond to such variability, we propose a self-adaptable mechanism with
a decision process based on an modifiable set of user defined constraints and



98 A. Carrusca et al.

μService A 
#1 

μService B 
#1 

μService C 
#1 

Monitoring

μServices 
Manag. 

μService A 
#2 

μService C 
#2 

Monitoring

Cloud

Edge Node

μService B 
#2 

Monitoring

Edge Node

Fig. 1. A simplified view of the solution.

rules. The system’s state is continuously monitored within an evaluation/deci-
sion feed-back loop, typical of self-adaptable systems [30] and autonomic systems
[28]. At each iteration it evaluates (a) which services should be migrated or repli-
cated, when, and to where, or be otherwise eliminated; and (b) which nodes need
to be dynamically created/activated or eliminated, from a computational plat-
form providing virtual nodes. The decisions in the loop are tuned to improve
the applications’ performance while avoiding possible system’s destabilisations
caused by too frequent updates. This means that some evaluations have to be
confirmed in a few consecutive iterations before the corresponding decisions are
applied. Figure 1 presents a simplified version of the solution’s architecture with
microservices’ replicas deployed at the cloud and two edge nodes. A single (cen-
tralised) microservices management component, uServices Manag., is located at
the cloud and communicates with the monitoring components, one at each edge
node. These are responsible to collect the relevant services’ and nodes’ metrics.
In the continuous feedback loop, the uServices Manag. decides upon service scal-
ability level and location, and the number and location of computational nodes.

2.1 The Architecture Components and Their Operation

The main architecture components in Fig. 1 include microservices (uServices)
and their replicas, computational nodes in the cloud/edge, and the service man-
agement component and associated components e.g. a monitoring component.
The uServices (typed as frontend/backend) and their interactions comprise the
user application to be optimised. Each uService instance is placed in a container
for its faster/lighter deployment on the nodes [26,29]. Each node is a virtual
machine (VM), a basic resource management unit in cloud providers, where one
or more containers may be deployed to [20]. The monitoring component collects
the relevant service/node metrics as required by the service manager. The latter
needs also the pre-configuration of services’ and nodes’ execution requirements,
and the specification of the constraints/decision rules that guide the decision



Microservices Management on Cloud/Edge Environments 99

process. The manager allows pre-scheduled events and relies on the service reg-
istry and load balancing components/patterns [29]. All this is described next.

Specification of Execution Requirements for Microservices and Nodes.
Types of information specification for services:

– First execution: service type (frontend/backend, database); service image
repository; service access ports; start command (e.g. parameter’s initialization
values); services’ dependencies (e.g. service communication).

– Operational: running service’s lowest/highest number of replicas; parameters/
metrics limits for a replica’s correct operation (e.g. minimum RAM).

– Monitoring: service latency; service access (number and source of accesses);
bandwidth; service’s used resources (CPU, RAM, ...).

Information requirements for cloud/edge nodes:

– Operating data requirements: parameters/metrics constraints (e.g. RAM);
location information for edge nodes (from continent to city);

– Monitoring data:used resources (CPU, RAM, ...), and bandwidth.

Decision Process. To perform decisions, the microservices manager uses a rule
mechanism with Event Condition Action (ECA) rules [13,22]. Each rule encodes
the conditions and the consequent actions to be performed, accepts multiple
values (parameters) representing the current state of the system, and may have
a priority level. The rules express the set of constraints on services and nodes, and
the modification operations. A rules engine (see Sect. 3) performs their evaluation
in the analysis phase of the adaptation feedback loop based on the current system
state captured by the monitoring phase (Fig. 2b and Sect. 2.2).

Rules Related with Services and Their Replicas: The parameters may include
%CPU, %RAM, transferred bytes, etc., and the actions are replicate, migrate,
stop, nothing. Rules capture situations such as (i) if the argument values exceed
the ones expressed in the rules, a service needs to be replicated or migrated;
(ii) if the arguments are less than the defined minimum, a replica is marked
to be removed; (iii) nothing is done, otherwise. The priority level of the fired
rules define the final decision. For instance, the service replication/migration
rules may privilege a (closer) edge node than the cloud for placing a replica.
Nonetheless, the new replica is always located in the cloud in case no edge node
is available.

Rules Associated with Nodes: The parameters are %CPU, %RAM, and the
actions are add, stop, nothing. The rules encode (i) a node’s creation, if the
containers’ execution resources are scarce; (ii) a node’s removal, if its resources
are underutilised; (iii) nothing is done, otherwise. A node’s placement onto the
edge vs cloud may also have a priority. In case an edge node’s creation/acti-
vation is not possible, the node is allocated from the cloud’s resources seen as
unlimited.



100 A. Carrusca et al.

To allow a more precise tuning of the adaptation actions in response to the
current system state, both service and edge rules allow diverse parameter config-
urations: precise/effective parameter value, uses exactly the read value of a par-
ticular metric; average value, the evaluation process considers the average value
of a set of particular metrics; mean deviation percentage, considers the deviation
percentage of the current value in comparison to a given metric’s average; last
value deviation percentage, considers the current value’s deviation percentage in
relation to a specific metric’s last read value. Event Scheduling: The definition
of pre-scheduled events aims to improve the overall system performance by allo-
cating a set of resources at some particular places and times. E.g., increasing
the minimum number of replicas needed for a popular social network applica-
tion expected to have high access volumes, at the time and place of a particular
football game or pop music concert. Similarly, a pre-scheduled reduction of no
longer needed resources is also possible.

Service Manager’s Necessary Components and Functionalities. To
dynamically create/destroy nodes and migrate/replicate microservices, the ser-
vice manager relies on a few external components to support its operation:

– Container manager, to detect nodes’ and services’ failures and support the
creation of services and nodes whereto services may be deployed (see Sect. 3).

– Monitoring component, to collect fresh metrics from services/nodes defin-
ing the system state, allowing its evaluation and necessary adjustments (see
Sect. 3).

– Service registry, to record new services and replicas, including their location.
When a service is created, replicated/moved, it has to be reachable/com-
municate with other services. This demands a more general communication
process than a point-to-point one, which includes a Register and discover
services component to bridge individual microservices’ interaction.

– Load balancer, to adequately distribute service accesses to existing replicas
deployed at diverse locations, improving the system’s performance/efficiency.

Service Communication: The components Service Registry and Register and dis-
cover services, shown in Fig. 2a, support communication decoupling and some
level of inter-service load balancing. The communication from a uService A to
uService B is based on the target’s type/name (i.e. B) and not on a fixed commu-
nication endpoint. This is fundamental to carry out service migration or replica
selection, e.g. to access a uService B’s replica located on the same node as A.

The Service Registry extends the service registry pattern [29] to support
migration and replication. It allows service registration and discovery by service
name/type via the organisation of running services’ endpoints according to ser-
vice type. It also stores the location of services and their replicas, and if they
are active. Whenever a microservice is migrated or replicated, the registry has
to be notified to update the service’s information. The registry is deployed in its
own container and can be replicated to enable faster queries.

The Register and discover services component is essential to microser-
vices’ migration/replication and supports basic load balancing towards backend



Microservices Management on Cloud/Edge Environments 101

e-μService A 

e-μService B 

Service
Registry

Register and
discover
services1

4

5

2

3

μService A 

(a)

1 2 

3 4 34

21

Monitoring: 
Metrics scraping 
of replicas. 

Analysis:
Rules’ application and
decision per individual 
replica of a service

Planning: 
Per service 
action definition

Execution: 
Per service 
action enactment 
(API invocation) 

(b)

Fig. 2. (a) Service communication via the Register and discover services subcomponent
and the Service Registry component. (b) Service reconfiguration; adapted from [14].

services. It has some contact points to the function of sidecars in the recent
service mesh pattern [29], since it is coupled to a particular microservice to
bridge its accesses. Namely, to support the use of the Service Registry features
described above, each microservice in the adaptability system has to exist within
an extended microservice wrapper container that also includes a Register and dis-
cover services component. For instance, in Fig. 2a, the e-uService A contains the
uService A and a Register and discover services component. This latter compo-
nent has the following functionalities: (a) registers its microservice creation/dele-
tion in the service registry and updates the registry periodically to inform that
the service is still active; (b) queries the endpoints of other services taking into
account the location of its service, and in case of several equal possibilities (e.g.
same edge node) chooses one endpoint at random, e.g. service A may access a
local replica of B. The numbers in Fig. 2a illustrates the process when uService
A wants to communicate with a service named B: to obtain an endpoint for B,
A contacts the Register and discover services (1); the latter requests the (all
possible) endpoint(s) from the Service Registry (2, 3), selects the best endpoint
and sends it microservice A (4) that uses it to communicate with B (5).

Load Balancing Service Requests: The Load Balancer component distributes
client requests towards a microservice’s replicas to adjust their load. Clients
access a load balancer preferably in their own region and only the calls to a
frontend microservice are balanced. Yet the load balancer can be replicated to
the same regions as the frontend replicas to level the load at each location. All
load balancers’ replicas have access to all service replicas regardless their loca-
tion, allowing them to redirect accesses when a region has no replicas or the
local ones are overloaded. Figure 3a represents an extended microservice e-uS A
with a single replica and a single load balancer in the cloud. Figure 3b shows a
scenario with the e-uS A and the load balancer replicated in two regions. The
Load Balancer #1 serves the clients in the USA and gives priority to the e-uS
A replicas #1 and #2 in the same region. However, it redirects the requests



102 A. Carrusca et al.

to the replica #3 located at an edge node, in case the first two microservices
become overloaded. The replica selection algorithm uses (i) the Least Connec-
tions method and (ii) a weight assigned to each replica to privilege replicas in
the same region/location as the load balancer. The choice was tuned based on
the number of each replica’s active connections and its weight, to access less
loaded replicas but also to reduce clients’ communication with remote replicas.
E.g. the closest replica may still be chosen if its connections’ number is just
slightly higher than a farther one.

2.2 Adaptation Process and Migration/Replication Scenarios

To respond to services’ and nodes’ overload and comply to the applications’ QoS
requirements, the adaptation process uses migration and horizontal scalability
of services/nodes for the system’s dynamic reconfiguration, instead of vertical
scalability (increase a VM’s capacity). The creation of multiple service/node
replicas allows a simpler and faster management process, e.g. replicating a pre-
existing service with the same resources, and, above all, supports large-scale
scalability via replica deployment onto geographically dispersed edges devices.

Clients (London)

Load
Balancer

#1

US, North Virginia

e-μS A 
#1 

(a)

Load
Balancer

#2

Clients (London)

e-μS A 
#2 

Load
Balancer

#1

Clients (US, Portland)

Edge (London)US, North Virginia

e-μS A 
#3 

e-μS A 
#1 

(b)

Fig. 3. Function of the load balancer: (a) cloud only, (b) replicas in cloud/edge.

The adaptation process consists of a four stage feedback loop inspired on
[14,30], as shown in Fig. 2b for service management (similar for nodes): (i) ser-
vice replicas’ monitoring, to collect relevant metrics (e.g. data transfer, CPU
usage); (ii) analysis per service replica, to evaluate the action to apply to each
particular service (e.g. migrate or replicate/eliminate if overloaded/underused);
(iii) planning for all services, considers the overall system state to decide the
action for each service; (iv) plan’s execution. The system follows a set of rules like
previously discussed and that may be configured by the application administra-
tor. To avoid a constant system reconfiguration causing its instability, a problem
well known in self-adaptability, there is a time gap between the first indication



Microservices Management on Cloud/Edge Environments 103

for reconfiguration and its effective execution. For instance, the indication to
remove a edge node has to be confirmed in three consecutive loop cycles before
the node is effectively deactivated. This allows that in case of sudden changes in
nearby client accesses meanwhile, the decision may be to keep the node active.

The migration of microservices to respond to local latency variations diverges
from the usual meaning within the cloud domain (e.g. migration of VMs). The
migration process is based on replication to keep the service available but also in
a way to promote further flexibility depending on the perceived ongoing changes
in the system state. Its steps may be: 1. create a local replica of an overloaded
service; 2. eventually move the replica to e.g. a edge node with higher service
accesses, in the next loop cycles; 3. eliminate the original service if underused in
the next cycles, e.g. all client requests are now better served by the replica at the
edge. Although taking a few (parametrisable) iteration cycles of the adaptation
loop, the service eventually migrates to a new location.

Discussion on the Adaptation Solution and Scenarios. Microservices applications
executing on Cloud/edge systems have to deal with [11] inter-service communica-
tions and dependencies that may cause network overheads and a cascade of QoS
violations; microservices’ diversity, with different bottlenecks that may change
as the load increases; or cloud applications’ latency variability. When considering
live migration/replication of microservices, an adequate decision on which ones
to migrate/replicate, when, and where to, becomes even more pressing to guar-
antee a good application QoS and efficient resource usage. Our solution, via its
self-adaptable management with a gradual replication/reduction of nodes/ser-
vices according to the ongoing system modification expressed via diverse met-
rics/conditions in rules, aims to address the concerns above. Our system detects
when services/nodes exceed some resources’ threshold and need to be replicated

API

UI

Database

Containers
Metrics

Docker connector

Nodes reconfiguration
process

Containers reconfiguration
process

Rules Service

Nodes Metrics

Nodes Management 

AWS Edge Nodes

Apps

Services

Service Events
Prediction

Rules

Nodes

Containers

depends on

(a) (b)

Fig. 4. (a) Detailed view of the uS management component. (b) Node architecture.



104 A. Carrusca et al.

and decides where to based on the collected metrics. A service may so move
to an edge node closer to a high number of clients to reduce their perceived
access time and the communication traffic. In case the service performs some
additional local data filtering, the data on transit volume may be reduced even
further, and if it has predictable peak loads its resources can be provisioned a
priori. The decision process also has to assess the type of metrics underlying
the decisions, if the service has a database which impacts transfer costs, or if
there are dependencies between services. For instance, the evaluation in section
Sect. 3 focus on a frontend service communicating frequently with a backend
catalog service upon clients’ accesses. When the clients view the full catalog the
whole database is transferred. The migration/replication of both services to a
nearby edge node reduces hence the communication traffic.

3 Prototype and Evaluation

The service management’s modules are detailed in Fig. 4a1: User Interface (UI),
APIs for e.g. container/node/service creation, rules definition, etc.; Docker con-
tainer manager, e.g. to start/stop containers and resource usage data; Rules
module, an engine for ECA rules’ management e.g. creation/deletion and anal-
yses i.e. which rules to trigger based on current nodes’ and services’ metrics;
the application administrator uses the UI to manage ECA rules, e.g. defining a
rule’s triggering conditions and affected entities (services or nodes); Node man-
agement, integrates the management for cloud (in AWS) and edge nodes, e.g
creates/suspends VMs, and uses the node metrics module (Prometheus) to get
each node’s resource usage; reconfiguration process, it is subdivided into contain-
ers and nodes, and periodically decides the actions to perform on services/nodes.

Figure 4b shows the necessary management components to support service
deployment in a node. A node is a VM that is created in the context of a cloud
platform or fog/edge device, and a set of nodes forms a cluster for service deploy-
ment. Docker manages the node’s containers, e.g. identifies a container’s resource
usage (CPU, RAM) and failures. The Node exporter (from Prometheus) collects
the node’s resource usage (CPU/RAM), e.g. to know if is possible to deploy
another service. The components that support microservices, i.e. the load bal-
ancers and the service registry, are only present in some nodes, which is decided
by the system. Finally, the uS are encapsulated into extended uS (Sect. 2.1).

Evaluation. To allocate VMs from data centers in different regions we used
the EC2 service from AWS. The evaluation setting for service deployment on
the cloud uses nodes in North Virginia, US, with clients in London (Fig. 3a).
The setting for cloud/edge execution uses the same cloud region with users in
Portland, and edge nodes and clients in London, UK (Fig. 3b). The load tests use

1 Sw used: uS management, Java/Spring Boot; UI, JavaScript library React; container
manager, https://www.docker.com; rules engine, https://www.drools.org/; moni-
toring, https://prometheus.io; AWS cloud, https://aws.amazon.com; Load tests,
https://docs.k6.io/docs & https://loadimpact.com/insights/; Sock shop https://
microservices-demo.github.io/.

https://www.docker.com
https://www.drools.org/
https://prometheus.io
https://aws.amazon.com
https://docs.k6.io/docs
https://loadimpact.com/insights/
https://microservices-demo.github.io/
https://microservices-demo.github.io/


Microservices Management on Cloud/Edge Environments 105

9.2 
2.6 

57.4 

27.9 31.7 

11.6 

120 

60.4 

0 

20 

40 

60 

80 

100 

120 

Without replication With replication (cloud) 

Ti
m

e 
(s

) Average response time 

Maximum response time 

Group duration (average) 

Group duration (maximum) 

Frontend: 5 replicas
Catalogue: 5 replicas

Frontend: 1 replica
Catalogue: 1 replica

(a)

2.6 0.5 

27.9 

9 
11.6 

4.5 

60.4 

31 

0 

10 

20 

30 

40 

50 

60 

With replication (cloud) With replication (cloud/edge) 

Ti
m

e 
(s

) 

(b)

Fig. 5. (a) Cloud execution results without (left) and with replication (right). (b)
Comparison of cloud only (left) and cloud/edge (right) replication; clients in London.

uS FE Catalog Cat DB 

Transf B  155 MB 66 MB 124 MB 

Disk B 260 MB 103 MB 371 MB 

Transf T 7 s 3 s 11 s 

Init T 15 s 7 s 16 s 

Total T 22 s 10 s 27 s 

(a)

12:32
Nov 3, 2018

12:34 12:36 12:38 12:40 12:42 12:44 12:46 12:48 12:50

0

1

2

3

4

5

6

Frontend replics (units) Catalogue replics (units)

time

re
pl

ic
s

Start replic
(London)

Start replic
 (London)

Start replic
 (US)

Start replic
 (London)

Stop replic
 (US)

Stop replic
 (US)

Stop replic
(London)

Stop replic
 (London)

First replic
 (US)

First replic
 (US)

Start replic
 (US)

Start replic
 (London)

Start replic
 (London)

Start replic
 (London)

Start replic
 (US)

Stop replic
 (London)

Stop replic
 (London)

Stop replic
 (US)

Stop replic
 (London)

Stop replic
 (London)

(b)

Fig. 6. (a) Microservices’ replication costs. (b) Catalog test cloud/edge replica
variation.

the Weaveworks’ Sock Shop demo composed of one front end (FE) microservice
that communicates with seven back end microservices. One is the Catalog service
managing the socks’ catalog data and images stored in its database. The test for
the Catalog access to retrieve the products’ data is an example of inter-service
dependency (the test targeting Login and Registration had similar results [4]).
When a user communicates with the FE service, it contacts the Catalog service
which responds with the required data (metadata or the full socks’ database).
The FE then resends this data to the user. The evaluation points were (a) the
application’s response times; (b) the replication mechanism, i.e. the replicas’
number per service, the replicas’ execution place, the replication cost; (c) the
replication removal mechanism. Figure 5 shows the evaluation results considering
the settings in Fig. 3 for obtaining the catalog’s metadata (response time) and
the full catalog (group duration), for an increasing number (until fifty) of virtual
users. Figure 5a shows the results for the Catalog in the Cloud only with/without



106 A. Carrusca et al.

replication. Figure 5b shows the reduction times when the FE and the Catalog
are replicated at both cloud and edge nodes. In this case, the applied rules use
the transmitted bytes per second rate: uS replication: replicate when the rate is
>= 2.5 MB/s for two consecutive loop iterations; uS removal : stop the uS when
its rate for three consecutive loop iterations is <0.5 MB/s. Figure 6a presents the
transfer bytes (Transf B) for the FE and the catalog metadata (Catalog) and
with its database (Cat DB), and their replication costs as transfer time (Transf
T ) and initialisation time (Init T ) at the target edge node. These seem adequate
for a fast replication towards the edge. Figure 5b shows the system’s evolution on
self-adapting the replicas’ number according to the execution conditions. First
the replicas are located in the cloud/US but due to client accesses in the London
edge node are replicated here and later removed.

4 Related Work

This work follows the concepts of computation offloading and Osmotic comput-
ing [33] on automatic deploy of microservices in containers into the cloud/edge,
for efficient resource usage and service access. This concept admits edge nodes’
highly diverse and restricted capacity, whereas existing container managers (e.g.
Kubernetes) include too heavy modules for those nodes and target cloud envi-
ronments. Our work implements microservice replication with the vision that
diverse microservices have different requirements and dependencies [4,11,18]
and, along with edge resource management needs, require an adaptable tripartite
solution on data, monitoring and service management. E.g. selecting a service to
migrate/replicate needs adaptable monitoring for evaluating the dynamic evo-
lution of its dependencies/communication and its dynamic database replication
[23]. Coexisting solutions like Caus and Enorm [16,36] offered single-parameter
configuration for microservices’ auto-scaling on the cloud. Caus has no auto-
matic node management nor dynamic uS placement on the edge. Enorm sup-
ports dynamic uS placement but on a single edge node. Other works offer inter-
esting multi-variable auto-scaling solutions but only in cloud environments or
FaaS [5,12,15]. Recent work [31] also uses a MAPE loop [14] for uS adaptive
scaling and nodes’ saving based on affinity. Another [25] uses an unsupervised
learning approach to automatically decompose an application into uS and select
the adequate resource type. Both do not consider fog/edge platforms.

5 Conclusions and Future Work

This work defends the autonomic management of microservices applications
deployed on hybrid cloud/edge infra-structures relying on three dimensions, ser-
vice, data, and monitoring self-management, to cope with these systems’ com-
plexity. It focuses on the service component based on an automatic microservice
migration and replication solution. The approach is evaluated in the context of
a demo application deployed in the Amazon AWS. The results show the adapt-
ability of the system in the presence of varied client access scenarios and present



Microservices Management on Cloud/Edge Environments 107

promising values in terms of lower latencies and the system’s efficiency. In future
the solution will be extended with a hierarchical service managing system and
integrated with the adaptable database and monitoring components in progress
and a novel security component. The autonomic service will also include machine
learning mechanisms to better analyse and predict access patterns.

References

1. Balalaie, A., Heydarnoori, A., Jamshidi, P.: Microservices architecture enables
devops: migration to a cloud-native architecture. IEEE Softw. 33(3), 42–52 (2016)

2. Bucchiarone, A., Dragoni, N., Dustdar, S., Larsen, S.T., Mazzara, M.: From mono-
lithic to microservices: experience from the banking domain. IEEE Softw. 35(3),
50–55 (2018)

3. Carlini, S.: The drivers and benefits of edge computing. APC white paper 226
4. Carrusca, A.: Gestão de micro-serviços na Cloud e Edge. Master’s thesis, UNL

(2018). http://hdl.handle.net/10362/59505
5. Danayi, A., Sharifian, S.: PESS-MinA: a proactive stochastic task allocation algo-

rithm for FaaS edge-cloud environments. In: ICSPIS, pp. 27–31 (2018)
6. Dastjerdi, A.V., Buyya, R.: Fog computing: helping the internet of things realize

its potential. IEEE Comput. 49(8), 112–116 (2016)
7. Dragoni, N., et al.: Microservices: yesterday, today, and tomorrow. Present and

Ulterior Software Engineering, pp. 195–216. Springer, Cham (2017). https://doi.
org/10.1007/978-3-319-67425-4 12

8. Edge, O.: Open edge computing. http://openedgecomputing.org/
9. Evans, D.: The internet of things. Technical report, cisco Systems (2011)

10. Fowler: Microservices. https://martinfowler.com/microservices/
11. Gan, Y. et al.: An open-source benchmark suite for microservices and their HW-

SW implications for cloud & edge systems. In: ASPLOS 2019. ACM (2019)
12. Guerrero, C., Lera, I., Juiz, C.: Resource optimization of container orchestration:

a case study in multi-cloud us-based applications. J. Supercomput. 74(7) (2018)
13. Huebscher, M.C., McCann, J.A.: A survey of autonomic computing: degrees, mod-

els, and applications. ACM Comput. Surv. 40(3), 7:1–7:28 (2008)
14. IBM: An architectural blueprint for autonomic computing. Technical report, IBM

(2005)
15. Jindal, A., Podolskiy, V., Gerndt, M.: Performance modeling for cloud microservice

applications. In: Proceedings of ICPE 2019. ACM, New York (2019)
16. Klinaku, F., Frank, M., Becker, S.: CAUS: an elasticity controller for a container-

ized microservice. In: Companion of ICPE 2018, pp. 93–98. ACM (2018)
17. Kratzke, N., Quint, P.: Understanding cloud-native applications after 10 years of

cloud computing. J. Syst. Softw. 126, 1–16 (2017)
18. Leitão, J., Costa, P.Á., Gomes, M.C., Preguiça, N.M.: Towards enabling novel

edge-enabled applications. CoRR abs/1805.06989 abs/1805.06989 (2018)
19. Mahmud, R., Kotagiri, R., Buyya, R.: Fog computing: a taxonomy, survey and

future directions. In: Di Martino, B., Li, K.-C., Yang, L.T., Esposito, A. (eds.)
Internet of Everything. IT, pp. 103–130. Springer, Singapore (2018). https://doi.
org/10.1007/978-981-10-5861-5 5

20. Marinescu, D.C.: Cloud Computing: Theory & Practice. Morgan Kaufmann,
Boston (2013)

21. Mauro, T.: Adopting microservices at netflix. NGiNX (2015)

http://hdl.handle.net/10362/59505
https://doi.org/10.1007/978-3-319-67425-4_12
https://doi.org/10.1007/978-3-319-67425-4_12
http://openedgecomputing.org/
https://martinfowler.com/microservices/
https://doi.org/10.1007/978-981-10-5861-5_5
https://doi.org/10.1007/978-981-10-5861-5_5


108 A. Carrusca et al.

22. McCarthy, D., Dayal, U.: The architecture of an active database management
system. SIGMOD Rec. 18(2), 215–224 (1989)

23. Mealha, D., Preguiça, N., Gomes, M.C., Leitão, J.A.: Data replication on the
cloud/edge. In: PaPoC 2019 Eurosys Workshop. ACM, New York (2019)

24. Mell, P.M., Grance, T.: The NIST definition of cloud computing. NIST (2011)
25. Abdullah, M., Iqbal, W., Erradi, A.: Unsupervised learning approach for web appli-

cation auto-decomposition into microservices. J. Syst. Softw. 151 (2019)
26. Newman, S.: Building Microservices, 1st edn. O’Reilly Media Inc., Sebastopol

(2015)
27. OpenFog: Size & impact of fog computing market. Technical report, OpenFog

(2017)
28. Parashar, M., Hariri, S.: Autonomic computing: an overview. In: Banâtre, J.-P.,

Fradet, P., Giavitto, J.-L., Michel, O. (eds.) UPP 2004. LNCS, vol. 3566, pp. 257–
269. Springer, Heidelberg (2005). https://doi.org/10.1007/11527800 20

29. Richardson, C.: Microservices patterns (2017). http://microservices.io/index.html
30. Salehie, M., Tahvildari, L.: Self-adaptive software: landscape and research chal-

lenges. ACM Trans. Auton. Adapt. Syst. 4(2), 14:1–14:42 (2009)
31. Sampaio, A.R., Rubin, J., Beschastnikh, I., Rosa, N.S.: Improving microservice-

based applications with runtime placement adaptation. J. Internet Serv. Appl.
10(1), 1–30 (2019). https://doi.org/10.1186/s13174-019-0104-0

32. Satyanarayanan, M.: The emergence of edge computing. Computer 50(1), 30–39
(2017)

33. Sharma, V., Srinivasan, K., Jayakody, D.N.K., Rana, O.F., Kumar, R.: Managing
service-heterogeneity using osmotic computing. CoRR abs/1704.04213 (2017)

34. Shi, W., Cao, J., Zhang, Q., Li, Y., Xu, L.: Edge computing: vision and challenges.
IEEE Internet Things J. 3(5), 637–646 (2016)

35. Varghese, B., Wang, N., Barbhuiya, S., Kilpatrick, P., Nikolopoulos, D.S.: Chal-
lenges and opportunities in edge computing. In: IEEE SmartCloud, NY (2016)

36. Wang, N., Varghese, B., Matthaiou, M., Nikolopoulos, D.S.: ENORM: a framework
for edge node resource management. IEEE Trans. Serv. Comput. (2017)

37. Yi, S., Li, C., Li, Q.: A survey of fog computing: concepts, applications and issues.
In: Mobidata 2015 Workshop Proceedings. ACM, New York (2015)

https://doi.org/10.1007/11527800_20
http://microservices.io/index.html
https://doi.org/10.1186/s13174-019-0104-0


ISYCC: IoT Systems Provisioning
and Management for Context-Aware

Smart Cities



Introduction to the 4th Workshop on IoT
Systems Provisioning and Management

for Context-Aware Smart Cities (ISYCC 2019)

The ISYCC 2019 workshop was held in conjunction with the 17th International
Conference on Service Oriented Computing (ICSOC 2019) on October 28, 2019, in
Toulouse, France.

ISYCC 2019 session gathered about 30 attendees. The discussions following the
presentations and the closing showed a big interest on the novel and emerging research
fields such as fog computing, data analytics, smart agriculture, and healthcare in IoT.

For this edition, we received 7 submissions, out of which 3 papers were accepted.
In addition, we invited 3 papers co-authored by experts in IoT and smart agriculture.
Similarly to ISYCC 2018, The ISYCC 2019 program was merged with the program of
the 4th edition of the International Workshop on Adaptive Service-oriented and Cloud
Applications (ASOCA 2019). The presentations of the two workshops were held
during the same session (full-day session).

We would like to thank the authors for their submissions, the Program Committee
for their reviewing work, and the organizers of the ICSOC 2019 conference for their
support which made this workshop possible.

Organization

Workshop Program Chairs

Khouloud Boukadi University of Sfax, Tunisia
Mohamed Mohamed Cupertino, USA

Workshop Committee

Mohamed Abu-Lebdeh Concordia University, Canada
Sami Bhiri University of Monsatir, Tunisia
Carla Mouradian Concordia University, Canada
Amira Mouakher University of Burgundy Franche-Comté, France
Sami Yangui LAAS-CNRS, France
Zhangbing Zhou China University of Geosciences in Beijing, China
Takoua Abdellatif University of Carthage, Tunisia



Towards Geo-Context Aware IoT
Data Distribution

Jonathan Hasenburg(B) and David Bermbach

TU Berlin & Einstein Center Digital Future, Mobile Cloud Computing Research
Group, Berlin, Germany

{jh,db}@mcc.tu-berlin.de

Abstract. In the Internet of Things, the relevance of data often depends
on the geographic context of data producers and consumers. Today’s data
distribution services, however, mostly focus on data content and not on
geo-context, which would benefit many scenarios greatly. In this paper,
we propose to use the geo-context information associated with devices to
control data distribution. We define what geo-context dimensions exist
and compare our definition with concepts from related work. By example,
we discuss how geo-contexts enable new scenarios and evaluate how they
also help to reduce unnecessary data distributions.

Keywords: Geo-context · IoT · Data distribution

1 Introduction

A long term vision of the Internet of Things (IoT) is to make sensor data avail-
able across applications and devices [13] to enable new and better services. For
instance, exchanging information between cars, bikes, and other road users could
improve road safety [15].

There are many data distribution services that are specifically tailored for
IoT devices, e.g., AWS IoT1 or Google Cloud IoT2. These services enable a
selective distribution of messages as clients can define criteria [2,13] so that
they only receive messages based on their respective interests. Compared to
distributing data to all possible clients, this reduces bandwidth consumption and
the amount of data processed by the clients which often operate in environments
with constrained computational resources or bandwidth limitations.

Today’s data distribution services, however, mostly focus on data content
and not on the associated geo-context, which would benefit many IoT scenarios
greatly. For example, a car that aims to avoid red traffic lights needs to process
data from traffic lights within its current neighborhood only in order to determine
an optimal route and velocity. Therefore, from the perspective of data consumers,
it is often desirable not to receive data originating outside an area of interest

1 https://aws.amazon.com/iot/.
2 https://cloud.google.com/solutions/iot/.

c© Springer Nature Switzerland AG 2020
S. Yangui et al. (Eds.): ICSOC 2019 Workshops, LNCS 12019, pp. 111–121, 2020.
https://doi.org/10.1007/978-3-030-45989-5_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-45989-5_9&domain=pdf
https://aws.amazon.com/iot/
https://cloud.google.com/solutions/iot/
https://doi.org/10.1007/978-3-030-45989-5_9


112 J. Hasenburg and D. Bermbach

to reduce computational efforts and cope with bandwidth limitations. A data
producer, on the other hand, might already know that provided data is only
relevant for data consumers in a certain area, and thus prevent others from
receiving it. E.g., only drivers in the immediate vicinity of a particular car need
to know when it brakes. Furthermore, if a data producer trusts the location
provided by a data consumer, the geo-context can be used as an alternative to
credentials-based authentication for data access control in some scenarios.

In the past, other researchers have been successful in using spatial data for
various reasons (e.g., [5–7,10–12,14]). Every group of authors, however, has its
own interpretation of the term geo-context and corresponding use cases. Thus,
no standardized definition of geo-context exists, yet, and none of the related
works consider the entire geo-context of data producers and consumers for their
proposals. Therefore, we make the following contributions:

– We propose a definition of the geo-contexts associated with IoT devices.
– We compare our geo-context definition with concepts found in related work.
– We introduce three scenarios that benefit from using geo-context information

and discuss how this reduces unnecessary data transmissions.

The remainder of this paper is structured as follows. We first present our
motivation and three IoT scenarios that benefit from using geo-context infor-
mation (Sect. 2). We then discuss related work and present our definition for
the geo-context of IoT devices (Sect. 3). Next, we evaluate how using this addi-
tional information reduces unnecessary message transmissions (Sect. 4). Finally,
we draw a conclusion and present an outlook on future work (Sect. 5).

2 Motivation

To better understand our motivation for using geo-contexts, we first need to
highlight the difference between content and context. We do this by explaining
these terms with the help of a topic-based pub/sub system. In such a system,
publishers are the data producers and subscribers are the data consumers. Sub-
scribers define which content they are interested in by subscribing to topics,
e.g., when a subscriber creates a subscription to the topic sensor/temperature,
he will receive temperature sensor measurements published to the same topic.

Dey defines context as “any information that can be used to characterize
the situation of an entity” [8]. Thus, the context of IoT devices comprises many
things such as other nearby devices, the type of power source, etc. In this paper,
we only look at the geo-context which we consider to comprise (1) the location
of the device and (2) special areas that are of interest/relevance to the device.

So why is it necessary to distinguish between content and geo-context? Both
producers or consumers may have moved in between sending and receiving two
data items. This, however, is not reflected in the content-related interests (e.g.,
the subscription) but affects the context-related interests. Hence, location infor-
mation is not related to content.



Towards Geo-Context Aware IoT Data Distribution 113

Distinguishing content and geo-context information also has many practical
benefits. For example, while it is possible to encode some geo-context information
in topics, this requires clients to agree on such a structure and leads to very
complicated and bloated topic trees. E.g., one could agree that the first topic level
is always the country and the second topic level is always the city a given message
refers to. Then, the topic france/paris/sensor/temperature would refer to all
temperature sensors in Paris, while the topic germany/berlin/sensor/tempera-
ture would refer to all temperature sensors in Berlin. Besides the disadvantages
mentioned above, this approach is very coarse-grained and it is not possible to
distinguish between the location of a device and its area of interest.

We propose to consider the associated geo-context of IoT devices when dis-
tributing their messages for two reasons. First, with the geo-context additional
information can be used to control data distribution. This can significantly
reduce the amount of transmitted messages for scenarios where geo-context
matters, thus reducing the load on data distribution services, the bandwidth
consumption, and the amount of messages that need to be processed by clients.
Especially in the IoT, such scenarios are quite common as IoT devices operate in
a specific physical environment. Therefore, data collected by sensors such as tem-
perature measurements or actions provided by actuators like moving a robotic
arm are most relevant for other things in physical proximity. Such scenarios are
the reason why Bellavista et al. [2] argue that geographical co-location should
be taken into account. More domains with applications in which the value of
information depends on the location of data producers and recipients include
the Internet-of-Vehicle [10,20], Smart Cities [19] or Mobile Health [1].

Second, filtering data based on content and geo-context supports new (IoT)
scenarios. In the following, we present three such scenarios from which two will
also be used in our evaluation (Sect. 4).

2.1 Scenario 1: Local Messaging and Information Sharing

In this scenario, clients travel on individual routes and send data to other clients
in close proximity on a regular basis. Data can be of any kind, e.g., information
concerning a client’s current surroundings (e.g., the condition of the road), as well
as simple text messages. Data should not be sent to clients too far away so that
information is kept local; this prevents data from being mined by third parties.
Furthermore, clients consume data based on their content interests, but also
based on their individual geo-context. For example, a hiker might be interested
in text messages (content) from clients in close proximity (geo-context), while a
biker might be interested in road condition information (content) of a trapezoidal
area in front of him (geo-context).

Other examples for the use of such a data distribution service are the real-
time messaging service Jodel3 or the location-based chats of Telegram4.

3 https://jodel.com.
4 https://telegram.org/blog/contacts-local-groups.

https://jodel.com
https://telegram.org/blog/contacts-local-groups


114 J. Hasenburg and D. Bermbach

2.2 Scenario 2: Open Environmental Data

Today’s IoT sensor data is often not available directly to users, instead, it is
common to create data dumps that are released once per day5. Such a procedure
renders all IoT applications that require real time data impossible. Connecting
the IoT sensors directly to a data distribution service, however, could easily lead
to situations in which the service (and its potential clients) become overloaded,
e.g., if a client accidentally consumes all data produced by temperature sensors
at once by expressing interest for data labeled with temperature. While such a
situation could be prevented by having the sensors use more diverse labels such
as temperature/regionA, temperature/regionB, etc., considering the geo-context
of data producers and consumers is more effective.

Data producers, for example, could restrict access based on arbitrarily shaped
areas, e.g., only consumers in a certain geographic area can access data of said
producer. On the other hand, data consumers often only have an interest in
data of nearby sensors. For example, a tourist might want to receive weather
data (content) only from the city he is visiting (geo-context) or a smart home
application might only be interested in barometric pressure values (content) of
sensors that are at most 20 km away (geo-context) in order to identify approach-
ing storms so that windows can be closed. Besides these more advanced appli-
cation use cases, prohibiting the consumption of data from large areas at once
can prevent accidental overload of services and clients.

2.3 Scenario 3: Context-Based Data Distribution

Often, data needs to be distributed to clients in certain geographic areas. A
prominent example for this is the Wireless Emergency Alerts system that is
used to warn US citizens about dangerous weather or other critical situations6.
The current system is not very accurate; only after November 30, 2019 it will
reach an accuracy of below one-tenth of a mile overshoot [9] which is still rather
imprecise.

A more accurate approach, however, in which messages are delivered based
on the content interests of data consumers and the additional domain knowledge
of data producers enables additional and better kinds of services. E.g., citizens
interested in traffic information need to specify such a content interest only once
and are then able to travel between districts (and even cities or states) while still
receiving only relevant information as data producers know in which geographic
area their messages are of relevance.

Many similar scenarios are possible in which data producers use their domain
knowledge about the relevant geo-context to control the distribution of data, e.g.,
in the context of smart parking, advertisement, or smart buildings.

5 E.g., this is done by the open data initiative of the German Meteorological Office:
https://opendata.dwd.de/.

6 Wireless Emergency Alerts - https://www.fcc.gov/consumers/guides/wireless-
emergency-alerts-wea.

https://opendata.dwd.de/
https://www.fcc.gov/consumers/guides/wireless-emergency-alerts-wea
https://www.fcc.gov/consumers/guides/wireless-emergency-alerts-wea


Towards Geo-Context Aware IoT Data Distribution 115

3 Geo-Context Dimensions

Previous work has already proposed to use geo-context information for a more
advanced control of data distribution. Their focus, however, is not developing a
general view on IoT device geo-contexts. Instead, the authors typically design
a system for a very specific use case in which location-based data needs to be
processed.

Chen et al. [7] propose a spatial middleware service that delivers messages to
clients when they enter “zones” defined by data producers. While this allows data
producers to control data distribution based on areas they consider as relevant,
data consumers cannot control data distribution based on their own areas of
interest.

Guo et al. [11,12] also propose a location-aware pub/sub service that delivers
messages based on zones. In contrast to the service above, data consumers can
control data distribution based on their areas of interest. The data producers,
however, cannot use areas to control data distribution.

Frey and Roman [10] propose a protocol to bring context to a publish/sub-
scribe system. They allow publishers to define a “context of relevance”, and
subscribers to define a “context of interest”. When both contexts overlap, a
message is delivered to the subscriber. While their context definition is very
general, it can also be used for geo-context information, i.e., the (1) location of a
device and (2) areas that are of interest/relevance to the device. However, they
understand these two dimensions as one, so if a client moves he needs to update
his subscriptions even if his area of interest did not change.

Li et al. [16] propose to use an R-tree index structure to efficiently identify
which data producers are located in areas defined by data consumers. Again, this
group of authors only looks at geo-context from one perspective so their approach
does not work for areas defined by data producers and consumer locations.

Chapuis et al. [5,6] propose a horizontally scalable pub/sub architecture that
supports matching based on a circular area around publishers and around sub-
scribers. If the area of a publisher and subscriber overlap, messages are delivered.
As these areas are not independent of client locations, this setup does not allow
subscriptions to areas independently of the current location or subscriptions to
multiple areas for different topics, e.g., as needed for the scenario in Sect. 2.1.

Bryce et al. [3] propose MQTT-G, an extension of the MQTT protocol with
Geolocation. While subscribers can define an area of interest to control mes-
sage distribution, their area definitions are only created once per subscriber
rather than for individual subscriptions. In addition, publishers cannot control
the matching of messages based on areas defined by them.

Herle et al. [3] also propose to extend the MQTT protocol so that messages
can be matched based on spatial geometries appended to published messages
and subscriptions [14]. When both geometries overlap, messages are delivered.
Their spatial matching, however, does not consider client locations.

Obviously, there is no general understanding of geo-contexts in IoT. Com-
bining all these approaches allows us to identify four geo-context dimensions.



116 J. Hasenburg and D. Bermbach

Both data producers and data consumers have a geographic location (producer
location and consumer location), which consists of a latitude and a longi-
tude value. Beyond this, data producers and data consumers have an area of
interest, we propose to use geofences7 to describe these areas. For our purposes,
a geofence can have arbitrary shapes and may comprise non-adjacent subareas,
e.g., Germany and Italy. The consumer geofence ensures that received data
originates from an area of interest, i.e., producer locations are inside the con-
sumer geofence. The producer geofence, on the other hand, ensures that only
clients present in a certain area receive data, i.e., consumer locations are inside
the producer geofence. Table 1 summarizes which of the four dimensions are con-
sidered by related work. Note, that Frey and Roman [10] only partly consider
the location of consumers and producers as they mix it with the geofence.

Table 1. An overview of the geo-context dimensions in related work

Related Work Location Geofence

Consumer Producer Consumer Producer

Bryce et al. [3] ✗ ✓ ✓ ✗

Chapuis et al. [6] ✗ ✗ ✓ ✓

Chen et al. [7] ✓ ✗ ✗ ✓

Frey and Roman [10] O O ✓ ✓

Guo et al. [12] ✗ ✓ ✓ ✗

Herle et al. [14] ✗ ✗ ✓ ✓

Li et al. [16] ✗ ✓ ✓ ✗

As in the case of data content described above, producers and consumers
can have multiple geo-contexts. For example, in a topic-based pub/sub system,
a subscriber (consumer) can create individual subscriptions for different topics.
Thus, when also using geo-context, subscribers might specify a geofence per
subscription. Likewise, publishers might specify a geofence for every message.

Bringing geofences and locations together, two checks are necessary to decide
whether data from a given producer should be sent to a given consumer (Fig. 1).
First, from the consumer’s perspective with the help of the consumer geofence
and the producer location (Consumer GeoCheck) and, second, from the pro-
ducer’s perspective with the help of the producer geofence and the consumer
location (Producer GeoCheck).

Figure 2 shows these two concepts by example. Here, a data consumer wants
to receive all data from producers located in the northern part of a park (vertical
stripes) by using the appropriate consumer geofence. For example, there could be

7 A Geofence is a virtual fences surrounding a defined geographical area. As a usage
example, Reclus and Drouard describe a scenario in which such fences are used to
notify factory workers about approaching trucks [18].



Towards Geo-Context Aware IoT Data Distribution 117

Fig. 1. Consumer GeoCheck (Left) and Producer GeoCheck (Right)

a number of IoT sensors distributed across the park which collect and send infor-
mation on humidity and other environmental parameters. Each data producer,
however, wants to limit access to data consumers located inside an adjacent
building (horizontal stripes), e.g., so that sensors do not accidentally expose
information on botanical research experiments. Therefore, data producers use
the appropriate producer geofence when transmitting data. The data should only
be transmitted if the producer location is inside the consumer geofence (Con-
sumer GeoCheck) and if the consumer location is inside the producer geofence
(Producer GeoCheck). In the example, this is the case.

Fig. 2. All GeoChecks are Successful so the Data Consumer Receives Transmissions
from the Data Producer. Map data copyrighted by OpenStreetMap contributors and
available from https://www.openstreetmap.org

https://www.openstreetmap.org


118 J. Hasenburg and D. Bermbach

4 Evaluation

In this section, we evaluate the impact of using geo-contexts to control data
distribution. We describe a conceivable setup for two of the three scenarios that
we introduced in Sect. 2 and calculate the number of messages distributed to
consumers when geo-contexts are used (GEO) and not used (NoGEO).

4.1 Local Messaging and Information Sharing

For this scenario, we assume a local messaging service for Central Park in New
York City. The goal of this service is to provide a communication platform for
visitors of the park while also preventing people outside the park from receiving
messages. There is a multitude of different designs for such a service. We assume
the following design:

– Clients can connect to the service without having to create an account, only
their current location is required.

– Clients can act as data producers and send messages to the service (text,
images, videos, etc.).

– Clients can act as data consumers and receive messages from the service.

For our analysis, we distinguish between the two approaches NoGEO and
GEO. NoGEO does not consider the geo-context so messages are forwarded to
all connected clients. GEO on the other hand, allows producers and consumer
to specify geofences.

Central park spans an area of 3.4 km2 and had more than 42 million visi-
tors in 2018 [4]. When assuming an even distribution of visitors across hours,
there were about 5000 visitors per hour. Thus, we assume that our service is
used by 5000 clients for one hour to demonstrate the effect of using geo-context
information. All producer geofences span the whole park (as all visitors should
receive messages). We assume, however, that consumer geofences only span 1%
of the park each, as visitors are most interested in information that concerns
their immediate environment (see Fig. 3).

For the evaluation, we assume that visitors send one message every two min-
utes on average. This leads to a total of 150k messages per hour. As subscription
geofences only span 1% of the park, each visitor will on average receive only
1% of the messages with GEO, thus the total number of distributed messages is
7.5 m/h.

With NoGEO, every message is delivered to every visitor, so the total number
of distributed messages is 750 m/h.

While this shows quite well how geo-contexts help to reduce the number of
unnecessary message transmissions, it also shows how geo-context enable new
application scenarios. Without geo-contexts, the application would not be use-
able as each visitor receives 2500 messages a minute, compared to 25 with geo-
contexts. Furthermore, the requirement that only people inside the park are
allowed to send messages can only be fulfilled with GEO (as long as no one



Towards Geo-Context Aware IoT Data Distribution 119

Fig. 3. The Producer Location is inside the Consumer Geofence of Data Consumer 1, so
his Messages Get Delivered. All other Data Consumers do not Receive the Producer’s
Messages, even though their Locations are inside the Producer Geofence. Central Park
Map from https://biketourscentralpark.com/central-park-map

spoofs their location). With NoGEO, all users outside of the park would also
receive every single message, and every message sent by that user would also be
delivered to everyone else.

4.2 Context-Based Data Distribution

For this scenario, we assume a context-based data distribution service for traffic
information in the Netherlands. The goal of this service is to distribute mea-
surement data from road side equipment to vehicles (data consumers) based on
limitations put into place by the data producers.

In the Netherlands, more than 24 k measurement sites exist which collect data
every minute [17]. At the moment, the data is sent to a central database where
it is processed before being distributed to data consumers. For this scenario, we
propose a different architecture in which data is sent to cars directly so that they
can make informed and individual decisions. This would also drastically reduce
the latency which is 75 s with the current setup [17].

The Netherlands cover an area of about 42500 km2. For the GEO evaluation,
we assume that each car uses a consumer geofence of the shape and size of
the Netherlands. Producer geofences, however, only cover 1% of this area on
average and can have very distinct shapes as they are based on the surrounding
road network of each measurement site. This enables data producers to control
data distribution very accurately and in real-time as geofences can be varied for
different data transmissions, e.g., data on severe incidents needs to be send to
cars further away while less important information is broadcasted only in the
near vicinity.

With NoGEO, every car receives 24 k measurements per minute as the data
distribution is not limited. With GEO, every measurements will reach only 1% of
the cars on average. Thus, every car only receives 24 k∗0.01 = 240 measurements
a minute which greatly reduces resource consumption. Similarly, one can easily

https://biketourscentralpark.com/central-park-map


120 J. Hasenburg and D. Bermbach

imagine that even smaller geofence sizes (both consumer and producer) can help
to further reduce the number of messages.

5 Conclusion and Outlook

In this paper we proposed to use the geo-contexts associated with IoT devices to
control data distribution. We showed that this can help to significantly reduce the
amount of transmitted messages for scenarios where geo-context matters while
also enabling new (IoT) scenarios that were not possible before. Our definition
of geo-context comprises four dimensions: producer location, consumer location,
producer geofence, and consumer geofence. We discussed which of these four have
been considered by related work and explained why all dimensions are necessary
with the help of three scenarios.

In future work, we plan to design a data distribution service based on the
pub/sub paradigm that uses the geo-context of publishers and subscribers to
control message distribution. For that, we want to use geo-contexts as an addi-
tional information input for the matching process which controls the distribution
of published messages.

References

1. Nastic, S.: A serverless real-time data analytics platform for edge computing. IEEE
Internet Comput. 21(4), 64–71 (2017)

2. Bellavista, P., Corradi, A., Reale, A.: Quality of service in wide scale publish-
subscribe systems. IEEE Commun. Surv. Tutorials 16(3), 1591–1616 (2014)

3. Bryce, R., Shaw, T., Srivastava, G.: MQTT-g: a publish/subscribe protocol with
geolocation. In: 41st International Conference on Telecommunications and Signal
Processing. IEEE (2018)

4. Central Park Conservancy Inc.: Central park conservancy annual report 2018 (Rev.
5) (2019). http://www.centralparknyc.org/about/annual-reports.html. Accessed
09 Aug 2019

5. Chapuis, B., Garbinato, B.: Scaling and load testing location-based publish and
subscribe. In: IEEE 37th International Conference on Distributed Computing Sys-
tems. IEEE (2017)

6. Chapuis, B., Garbinato, B., Mourot, L.: A horizontally scalable and reliable archi-
tecture for location-based publish-subscribe. In: IEEE 36th Symposium on Reliable
Distributed Systems. IEEE (2017)

7. Chen, X., Chen, Y., Rao, F.: An efficient spatial publish/subscribe system for intel-
ligent location-based services. In: Proceedings of the 2nd International Workshop
on Distributed Event-Based Systems. ACM (2003)

8. Dey, A.K.: Understanding and using context. Personal Ubiquitous Comput. 5(1),
4–7 (2001)

9. Federal Communications Commission: FCC improves wireless emergency
alerts (2018). https://www.fcc.gov/document/fcc-improves-wireless-emergency-
alerts. Accessed 09 Aug 2019

http://www.centralparknyc.org/about/annual-reports.html
https://www.fcc.gov/document/fcc-improves-wireless-emergency-alerts
https://www.fcc.gov/document/fcc-improves-wireless-emergency-alerts


Towards Geo-Context Aware IoT Data Distribution 121

10. Frey, D., Roman, G.-C.: Context-aware publish subscribe in mobile ad hoc net-
works. In: Murphy, A.L., Vitek, J. (eds.) COORDINATION 2007. LNCS, vol. 4467,
pp. 37–55. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-72794-
1 3

11. Guo, L., Chen, L., Zhang, D., Li, G., Tan, K.L., Bao, Z.: Elaps: an efficient location-
aware pub/sub system. In: IEEE 31st International Conference on Data Engineer-
ing. IEEE (2015)

12. Guo, L., Zhang, D., Li, G., Tan, K.L., Bao, Z.: Location-aware pub/sub system:
when continuous moving queries meet dynamic event streams. In: Proceedings of
the 2015 ACM SIGMOD International Conference on Management of Data. ACM
(2015)

13. Happ, D., Karowski, N., Menzel, T., Handziski, V., Wolisz, A.: Meeting IoT plat-
form requirements with open pub/sub solutions. Ann. Telecommun. 72, 41–52
(2016). https://doi.org/10.1007/s12243-016-0537-4

14. Herle, S., Becker, R., Blankenbach, J.: Bridging GeoMQTT and REST. In: Pro-
ceedings of the Geospatial Sensor Webs Conference (2016)

15. Khelil, A., Soldani, D.: On the suitability of device-to-device communications for
road traffic safety. In: IEEE World Forum on Internet of Things. IEEE (2014)

16. Li, G., Wang, Y., Wang, T., Feng, J.: Location-aware publish/subscribe. In: Pro-
ceedings of the 19th ACM SIGKDD International Conference on Knowledge Dis-
covery and Data Mining. ACM (2013)

17. National Data Warehouse for Traffic Information: NDW real-time traffic data
(2019). https://www.ndw.nu/pagina/en/78/database/79/real-time traffic data/.
Accessed 09 Aug 2019

18. Reclus, F., Drouard, K.: Geofencing for fleet & freight management. In: 9th Inter-
national Conference on Intelligent Transport Systems Telecommunications. IEEE
(2009)

19. Sanchez, L., et al.: Smartsantander: IoT experimentation over a smart city testbed.
Comput. Netw. 61, 217–238 (2014)

20. Shun, S., Shin, S., Seo, S., Eom, S., Jung, J., Le, K.-H.: A pub/sub-based fog com-
puting architecture for internet-of-vehicles. In: 2016 IEEE International Conference
on Cloud Computing Technology and Science (CloudCom) (2016)

https://doi.org/10.1007/978-3-540-72794-1_3
https://doi.org/10.1007/978-3-540-72794-1_3
https://doi.org/10.1007/s12243-016-0537-4
https://www.ndw.nu/pagina/en/78/database/79/real-time_traffic_data/


A Blockchain Based Solution for Securing
Data of IoT Devices

Jaspreet Kaur(B), Vinayak Singla, and Sumit Kalra

Department of Computer Science and Engineering,
Indian Institute of Technology Jodhpur, Jodhpur, India

kaur.3@iitj.ac.in, singla.1@iitj.ac.in, sumitk@iitj.ac.in

Abstract. In today’s time, the number of IoT devices are increasing
rapidly. We everyday hear about Amazon echo, Google Mini, Smart
watches etc. These devices collect confidential data of a person and as
most of these systems follow centralized architecture approach, So most
of the data on internet is basically managed by some central authority
or organization. Though these organizations have strict policy regarding
data misuse or changing of data without consent but one can’t overlook
the fact that these organizations have the ability to do so. Blockchain
helps solve such problem as it is not managed by single party if some-
body tries to change data in his Blockchain then the hash of the par-
ticular block will no longer match and the particular Blockchain will
become invalid and other Blockchain will still be intact and therefore
users data won’t be compromised. But due to high resource require-
ment, it becomes problem to run complete Blockchain node on all IoT
devices mainly on low power or memory devices. In this paper, we have
developed decentralized architecture leveraged from Blockchain technol-
ogy coupled with an alternative centralized cloud architecture which is a
classic client/server architecture with an underlying Blockchain at back-
end support with smart contract application written in Solidity language
at Ethereum platform. We implement this framework and show how this
architecture prevent data misuse by using functionality of Blockchain
without requiring the all IoT devices to actually run a Blockchain node.
For an end-user experience, it will appear to be same as a normal web
app and from the developers perspective, the smart contract application
will have similar software design to current web apps thus allowing an
easy transition for both of centralized and decentralized methods while
still retaining the trust of decentralization.

Keywords: Smart contract · Blockchain node · Private Ethereum
blockchain · IoT (Internet of Things) devices · Resource constrained
devices · Central authority · Cloud blockchain · Edge blockchain
devices

1 Introduction

In today’s world, IoT devices have been very popularized in communication
domain. They are heterogeneous sensor devices, creates low power lossy networks
c© Springer Nature Switzerland AG 2020
S. Yangui et al. (Eds.): ICSOC 2019 Workshops, LNCS 12019, pp. 122–129, 2020.
https://doi.org/10.1007/978-3-030-45989-5_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-45989-5_10&domain=pdf
https://doi.org/10.1007/978-3-030-45989-5_10


A Blockchain Based Solution for Securing Data of IoT Devices 123

for information exchange. Some IoT devices (as smart watch, smart fan etc.) have
resource constrained features such as limited memory, limited storage etc. and
others are rich in resources as laptops, smart phones etc. Like in the traditional
network, these devices and their data also need security such as confidentiality,
authenticity, authorization etc. So that, central authorities or intruders cannot
disrupt, compromise or misuse any personal confidential data for their own profit.
The traditional security approaches as DTLS (Datagram Transport Layer Secu-
rity), IPSec (Internet Protocol security) and new protocol as Blockchain are the
excellent solutions to these problems. But due to high resource requirements and
complexities [1], the implementation of these are difficult at resource constrained
IoT devices.

Blockchain [7,8] is a new innovative methodology increasingly used by the
academia and industry due to their various advantageous features as distributed,
decentralized, immutable database or ledger maintained at peer-to-peer network.
It takes the concept of smart contract which is self-executing and self-enforcing
contract uses the cryptographic techniques that allow digital signing for valida-
tion of users data. Blockchain uses the majority voting method for resolving the
agreement issues with help of minor nodes and provide incentives or rewards to
miners against the resources usage of them. Blockchain has various use cases as
crypto-currencies, smart city, smart healthcare, banking etc.

Despite of various advantages, it has various limitations as need high compu-
tational resources, high storage space, scalability etc. which hinders the imple-
mentation of it in the real world scenario specifically at IoT devices in our
case. That’s why blockchain is combined with another technologies as cloud
computing, edge or fog computing, software defined networking, machine and
deep learning algorithms to overcome its limitations. In this paper, we provide
a blockchain based solution for securing data of IoT devices while reducing the
limitations of blockchain as low as possible.

Rest of the paper is organised as follows: In Sect. 2, we provide some moti-
vation through literature survey or related work. Then this paper is followed by
proposed approach along with some preliminary result analysis. Finally conclu-
sion is given followed by future work.

2 Motivation

In literature survey, we have seen that various IoT security issues and their pos-
sible solutions [1,12,16–18,20,22] using various technologies as cloud comput-
ing, edge or fog computing, machine learning or deep learning methods, SDN
(software defined networking) and using various cryptographic primitives. But
every solutions have their limits as single point of failure, high complexity and
need more resources. So, for reducing these challenges and also maintaining high
security to IoT devices, blockchain is prescribe by many of the researchers as
a possible solution. But due to the resources constrained nature of some IoT
devices or more complex and less scalable nature of blockchain, it is difficult
to implement blockchain of things [3,10,11,13–15,19]. Various solutions are also



124 J. Kaur et al.

available at web which solve these implementation problems for blockchain of
things. They use one or more existing technologies as cloud computing, edge or
fog computing etc. or use new framework such as IOTA or use multiple chains
for solving these issues. But all of the solutions suggested in the literature have
some common problems as:

1. All of the IoT + blockchain solutions those have to be done at cloud infras-
tructure [4] (centralized or decentralized), again tends to trust on the some
centralized authority or creates a single point of failure problem by user end.

2. Some of the researchers use combination of edge and cloud computing plat-
forms for reducing the accessing delay by cloud operations and perform the
complex operations of blockchain at cloud [6]. But they again create a more
complex system by assuring the security of cloud by adding some another
overlay networks and maintain access control list at local blockchain [3].
This solution consider all of the IoT devices are of same type not heteroge-
neous devices. In another EdgeChain framework [2], They take heterogeneous
devices and use edge cloud platform for providing resources to IoT devices
by logging IoT devices activities on blockchain. But again, they have not tell
about the data security at edge cloud platform and another issue in this paper
is key distribution for resource constrained devices.

3. IOTA [5] or other tree like databases have centralized coordinator and theo-
retical scalable but not fully implemented yet.

4. These solutions also need improvement in Multi-criteria scheduler use for load
balancing for incoming transactions of blockchain [6].

5. It also need for collaborative mechanisms or system between different kinds
of blockchain’s Platform and need to reduce high latency’s for cross over
multiple chains [6].

6. Key distribution approach for resource constrained IoT devices should be
improved [6].

7. Some of the these solutions are specific to the use cases or domain not gen-
eralised solution [3,14,19].

8. How accurately and appropriately complex machine and deep learning algo-
rithms are to be helpful for blockchain of things [21].

The above limitations or challenges motivate us for this work at which we choose
one common blockchain maintain at centralized cloud architecture with load bal-
ancer schedulers along with edge computing devices (high resource IoT devices)
to maintaining the decentralized property of blockchain. Low power IoT devices
can directly communicate to this blockchain for speed up computation and easier
data accessing, it makes proper use of cloud.

3 Proposed Architecture

For performing any data or asset transaction in a decentralized blockchain frame-
work, users or nodes always require a fully synced instance of blockchain node



A Blockchain Based Solution for Securing Data of IoT Devices 125

running on their device. But this is problematic to implement at resource con-
strained IoT devices. So, our proposed architecture constitutes of centralized or
third party or cloud blockchain architecture along with edge blockchain method-
ology for maintaining the decentralization feature of blockchain. We maintain
the 50–50% blockchain nodes at both end cloud as well as at edge (making
assumption for preventing 51% attack). At centralized cloud, we have X load
balanced blockchain nodes always running to divide the incoming request traffic
and execute transactions. Now we take 2 types of IoT devices for Blockchain IoT
interaction:

Case1: Resource Constrained devices use the web interface to make transactions
on Blockchain. Nodes don’t need to store blockchain data and run blockchain
operations as mining or data storage at that devices. These operations are to
be done at central authority blockchain + on edge computing devices. But key
generation process are to be done at their end itself.

Case2: High Resource edge IoT devices directly makes transaction on
Blockchain via web interface. Node has to run a blockchain process as min-
ing at their own devices and store that blockchain too.

In Both of the IoT devices cases, edge computing is useful for removing the
unnecessary data access delay produced by cloud or third party blockchain. The
proposed system framework is shown in Fig. 1.

4 Implementation

We create a smart contract application or simulation environment on private
Ethereum [9] blockchain network because it is a test network means only we
are making transactions on Blockchain, So that changing rate of the blockchain
is relatively very less otherwise due to the high read/write requirements of the
transactions on HDD storage occurring at public Blockchain becomes a problem
for synchronization of Blockchain.

Fig. 1. Proposed approach



126 J. Kaur et al.

Consider a environment, where users or IoT devices are making transactions
using both of the case1 and case2. Now central authority can’t change or delete
data on Blockchain as they can’t control all Blockchain nodes and if they change
something in their Blockchain out of band. Then, Blockchain will get out of sync
with the Blockchain nodes at users edge end and conflict would be identified.
Moreover every Blockchain Account has a public-private key pair for signing
transactions. These keys are generally stored where the blockchain node is run-
ning but we would store these keys on the IoT device for case1 and not on the
Blockchain node ran by some 3rd party authority managing servers or not on
the any other edge devices. It means every IoT device manages its key gener-
ation process by itself. So whenever any transaction has to occur it has to go
through IoT device and IoT device will sign the transaction using the private
key only then this encrypted transaction can occur in Blockchain and in the
case 2, IoT devices already act as a blockchain node. As the data on blockchain
is well encrypted and all transactions have to be signed by the account owner
for to occur. It ensures that even though data resides with some 3rd party or
device they actually don’t have the ability to read it or use it without the IoT
device holder’s permission. So even though, resource constrained IoT devices has
no blockchain node running on it still has the ability to completely manage it’s
blockchain account.

The steps are for Setting a private Ethereum blockchain network, firstly cre-
ate a genesis file that includes various configuration features such as Difficulty
level, Gas Limit and many more of your blockchain. It is used to create the
genesis block which is first block of the Blockchain. Smart Contract was devel-
oped using solidity language (contract oriented language) at truffle framework
(development and testing environment for blockchains using the Ethereum Vir-
tual Machine (EVM)). Finally, we deploy the contract on a private Ethereum
Blockchain node simulating third party server and edge server or IoT devices.
Then created an interface for its functions on NodeJS server using Web3JS fol-
lowing REST principles allowing to create multiple interfaces like an android
app, ios app, web interface all having the same backend with a SQL Database.
Note that way of constructing software is similar to what is currently web devel-
opers followed.

5 Results and Observations

Our proposed architecture is generalized, it can be applicable where heteroge-
neous IoT devices data security is challenged as attendance management system,
certificate maintenance, Smart home energy management, water supply manage-
ment etc. We discuss below results for a specific use case of leave application
management system. A web app and a smart contract blockchain were created
and then deployed. Here, To make transactions we provide each user with some
ethers (infinite for the transactions in our work) and for centralized blockchain,
we use a very naive load balancer algorithm that is doing mining on some of that
x nodes at sign up along with the minors of edge IoT devices (this is done for



A Blockchain Based Solution for Securing Data of IoT Devices 127

balancing the power of cloud and edge). In this use case, the ether calculations
as below:

Start Amount = 2.9499991e+20wei
Cost of per transaction = 9.9687e+14wei

Table 1. Transactions results for leave application

Request
types

Number of
requests

Concurrency Handled
Requests/
Second
(RPS)

Time taken(ms) for given
percentage of Requests to
Complete

50 90 95 99

Read 100 10 55 11 19 25 28

10000 100 1212 74 105 130 207

10000 500 1317 277 540 1223 1356

10000 1000 1134 469 1487 1559 3551

Write 100 10 3 3168 5184 5214 5241

10000 100 23 4114 7225 8520 12353

10000 500 32 14507 21499 22686 28017

10000 1000 28 33894 47334 49263 54390

All results are for single Blockchain node running

Above Table 1 shows load testing results for simulation of leave application sys-
tem on an i7 Intel Processor, 8 GB RAM running NodeJs server with sql database
and also maintaining two blockchain instances as centralized blockchain node and
edge blockchain Node with multiple blockchain accounts as IoT devices at truffle
framework. The results are satisfactory and explainable. Write operations have
less RPS as the write has to take place on hard disk storage only after propa-
gation and cryptographic validation of transaction in the network whereas read
requires neither of them. One solution to solve high time of write problem is to
notify the user immediately that his request has been received and then later on
completion of request giving a notification stating the same, this ensures user
doesn’t have to unnecessarily wait.

6 Conclusion and Future Work

In this paper, we provide a new secure reliable framework for IoT devices based
on Blockchain Smart Contract which is a combination of centralized and decen-
tralized architecture. Our architecture is easily scalable, do proper resource uti-
lization, time consuming, no 51% attack, easy to use and more secure. We also



128 J. Kaur et al.

simulate our structure and provide some preliminary results those are satisfac-
tory. In future work, we will do some extension to our work as:

1. Every user need some ether values for making transaction irrespective of
whether it has blockchain node running on it or not. In our case, we assume
that ether value is infinite which is to be given to the all users, but this is
not feasible in real practical scenario. So, we will work on with more suitable
mining resource distribution algorithm for providing ethers to every client.

2. We will use more suitable software-based load balancer algorithms (machine
learning methods) for handling transactions more appropriately.

3. Apply More secure public-private key management at client so that intruder
can never access to it.

4. Finally, we apply our framework on real time environment for seeing more
implementation challenges.

References

1. Khan, M.A., Salah, K.: IoT security: review, blockchain solutions, and open chal-
lenges. Future Gener. Comput. Syst. 82, 395–411 (2018)

2. Pan, J., et al.: EdgeChain: an edge-IoT framework and prototype based on
blockchain and smart contracts. IEEE Internet Things J. 6(3), 4719–4732 (2018)

3. Dorri, A., Kanhere, S.S., Jurdak, R.: Blockchain in Internet of Things: challenges
and solutions. arXiv preprint arXiv:1608.05187 (2016)

4. Fedak, G., Bendella, W., Alves, E.: Blockchain-based decentralized cloud com-
puting. iExec Corporation (2018). https://iex.ec/wp-content/uploads/pdf/iExec-
WPv3.0-English.pdf. Accessed 7 Mar 2019

5. Popov, S.: The tangle, 131 (2016)
6. Yang, R., et al.: Integrated blockchain and edge computing systems: a survey,

some research issues and challenges. IEEE Commun. Surv. Tutor. 21(2), 1508–
1532 (2019)

7. Nakamoto, S.: A peer-to-peer electronic cash system. Bitcoin (2008). https://
bitcoin.org/bitcoin.pdf

8. Zheng, Z., et al.: Blockchain challenges and opportunities: a survey. Work Paper
2016 (2016)

9. Wood, G.: Ethereum: a secure decentralised generalised transaction ledger.
Ethereum project yellow paper 151, pp. 1–32 (2014)

10. Ferrag, M.A., et al.: Blockchain technologies for the Internet of Things: research
issues and challenges. IEEE Internet Things J. 6(2), 2188–2204 (2018)

11. Banerjee, M., Lee, J., Choo, K.K.R.: A blockchain future for Internet of Things
security: a position paper. Digital Commun. Netw. 4(3), 149–160 (2018)

12. Raza, S., Wallgren, L., Voigt, T.: SVELTE: real-time intrusion detection in the
Internet of Things. Ad Hoc Netw. 11(8), 2661–2674 (2013)

13. Conoscenti, M., Vetro, A., De Martin, J.C.: Blockchain for the Internet of Things:
a systematic literature review. In: 2016 IEEE/ACS 13th International Conference
of Computer Systems and Applications (AICCSA). IEEE (2016)

14. Singla, V., et al.: Develop leave application using blockchain smart contract.
In: 2019 11th International Conference on Communication Systems & Networks
(COMSNETS). IEEE (2019)

http://arxiv.org/abs/1608.05187
https://iex.ec/wp-content/uploads/pdf/iExec-WPv3.0-English.pdf
https://iex.ec/wp-content/uploads/pdf/iExec-WPv3.0-English.pdf
https://bitcoin.org/bitcoin.pdf
https://bitcoin.org/bitcoin.pdf


A Blockchain Based Solution for Securing Data of IoT Devices 129

15. Samaniego, M., Deters, R.: Blockchain as a service for IoT. In: IEEE Interna-
tional Conference on Internet of Things (iThings) and IEEE GreenComputing and
Communications (GreenCom) and IEEE Cyber, Physical and Social Computing
(CPSCom) and IEEE Smart Data (SmartData). IEEE (2016)

16. Top IoT Vulnerabilities. In: OWASP, Top IoT Vulnerabilities, May 2016. https://
www.owasp.org/index.php/TopIoTVulnerabilities. Accessed 8 Sept 2018

17. Johansson, L., Olsson, O.: Improving intrusion detection for IoT networks-a snort
GPGPU modification using OpenCL. Master’s thesis 2018, Department of CSE,
Chalmers University of Technology and University of Gothenburg, June 2018.
https://pdfs.semanticscholar.org/045c/ed267e49cd32dbac61d9ec337e95df88eece.
pdf

18. Kaur, J.: A semi supervised hybrid protection for network and host based attacks.
J. Eng. Appl. Sci. 12, 3108–3112 (2017)

19. Qu, C., et al.: Blockchain based credibility verification method for IoT entities.
Secur. Commun. Netw 2018, 1–11 (2018)

20. Al-Garadi, M.A., et al.: A survey of machine and deep learning methods for Internet
of Things (IoT) security. arXiv preprint arXiv:1807.11023 (2018)

21. Mohanty, B.: Do we need only AI or IoT or ML or BlockChain or all of
them together? February 2019. http://www.bikashmohanty.com/topics/do-we-
need-only-ai-or-iot-or-ml-or-blockchain-or-all-of-them-together.html. Accessed 2
Mar 2019

22. Kaur, J.: Wired LAN and wireless LAN attack detection using signature based and
machine learning tools. In: Perez, G.M., Mishra, K.K., Tiwari, S., Trivedi, M.C.
(eds.) Networking Communication and Data Knowledge Engineering. LNDECT,
vol. 3, pp. 15–24. Springer, Singapore (2018). https://doi.org/10.1007/978-981-10-
4585-1 2

https://www.owasp.org/index.php/TopIoTVulnerabilities
https://www.owasp.org/index.php/TopIoTVulnerabilities
https://pdfs.semanticscholar.org/045c/ed267e49cd32dbac61d9ec337e95df88eece.pdf
https://pdfs.semanticscholar.org/045c/ed267e49cd32dbac61d9ec337e95df88eece.pdf
http://arxiv.org/abs/1807.11023
http://www.bikashmohanty.com/topics/do-we-need-only-ai-or-iot-or-ml-or-blockchain-or-all-of-them-together.html
http://www.bikashmohanty.com/topics/do-we-need-only-ai-or-iot-or-ml-or-blockchain-or-all-of-them-together.html
https://doi.org/10.1007/978-981-10-4585-1_2
https://doi.org/10.1007/978-981-10-4585-1_2


Toward GDPR Compliance in IoT
Systems

Sahar Allegue1,2(B), Mouna Rhahla1,2(B), and Takoua Abdellatif1(B)

1 Polytechnic School of Tunisia, SERCOM, University of Carthage, Carthage, Tunisia
{sahar.allegue,mouna.rhahla,takoua.abdellatif}@ept.rnu.tn

2 Proxym-Lab, Proxym-IT, Sousse, Tunisia
{sahar.allegue,mouna.rhahla}@proxym-it.com

http://www.proxym-group.com

Abstract. The General Data Protection Regulation (GDPR) allow cit-
izens to control their data. For that, they must define and update their
security data policies that are generally more sophisticated and more
dynamic than classical access control policies managed by system admin-
istrators. Consequently, GDPR implementation in modern scalable and
dynamic systems like IoT is still a challenge. We propose a security model
for data privacy and an original solution where a GDPR consent manager
is integrated using Complex Event Processing (CEP) system and follow-
ing the edge computing. We show, through a smart home IoT system,
the efficiency of our approach in terms of flexibility and scalability.

Keywords: CEP · GDPR and privacy · IoT · Edge computing

1 Introduction

Internet of Things, IoT, consists of several digital devices, individuals, services
and other physical objects which have the ability to reliably connect, interact and
trade data about themselves and their environment. This makes our lives more
straightforward through a digital environment that is sensitive, adaptive and
responsive to human needs. For example, smart home [4] sensors collect data
that is utilized to monitor users’ activities, status and environment to make
automated decisions for users’ well being. However, a great number of users
encounter critical challenges concerning the protection of their personal data. It
is crucial today for an individual to be sure that what he has shared is exactly
what he wants to be shared, to whom, for what purpose and when. Individuals
must have control over their data and can give or revoke permission to access
their data for a given service whenever they want. They also have to be notified
about illicit access to or unauthorized storage of their data.

These requirements are actually imposed by the recent General Data Protec-
tion Regulation (GDPR) [1], which defines the main principles for how organiza-
tions can share EU citizens’ personal data. Indeed, GDPR compliance imposes

This project is carried out under the MOBIDOC scheme, funded by the EU through
the EMORI program and managed by the ANPR.

c© Springer Nature Switzerland AG 2020
S. Yangui et al. (Eds.): ICSOC 2019 Workshops, LNCS 12019, pp. 130–141, 2020.
https://doi.org/10.1007/978-3-030-45989-5_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-45989-5_11&domain=pdf
https://doi.org/10.1007/978-3-030-45989-5_11


Toward GDPR Compliance in IoT 131

building solutions to answer 5W questions: where data is going to be stored?
what personal data is being transferred? who has the right to access to the data?
why those with access have access? and when does the transfer take place?

Compliance with GDPR requirements supposes consent managers’ imple-
mentation as legacy systems to get and oversee suitable user’s consent as long as
data flows. A data controller determines the purposes, conditions and means of
the processing of personal data. Implementing consent managers face the main
challenge that consists of shifting the role of data control and management to
the data subject. He becomes the administrator of his data in charge of setting
and updating his security policies and notified about any security leakage. Many
recent solutions to user-centric privacy problems in IoT have been suggested
[8–10]. Nevertheless, they fall short in covering GDPR security policies that are
more sophisticated than classical role-based access control. They additionally set
constraints about access delays and targets. Consequently, a consent manager
have to deal with rule-based access control and to continually involve the user
informed about his data usage. Furthermore, GDPR consent managers’ imple-
mentation that introduces data interception and analysis has to be performed
without a costly overhead of engineering and system performance.

In this paper, we are interested in providing a GDPR consent manager for
modern IoT smart home systems. These systems are based on event-driven pro-
cessing for event detection and notification [6]. For example, they are used to
remotely detect fire, flood, security attacks or health problems [16,18,19]. Cen-
tral to these systems is the use of Complex Event Processing (CEP) [2] which
deals with the detection of complex events based on rules and patterns defined
by domain experts. Furthermore, recent smart home systems rely on edge com-
puting to reduce data flow on the network and to be more reactive [20]. The
idea is to deploy processing as close as possible to data sources. The classical
architecture of a smart home that integrates a CEP engine is shown in Fig. 1.
Data flow respects the following steps. First, data is collected from sensors by
the GW component that can perform filtering and aggregation processing. Then,
the GW sends this data as primary events to a CEP engine that detects more
complex events based on a set of predefined CEP rules. Finally, complex events
are sent to remote services like Energy service or security service.

Combining CEP and edge computing is very interesting for IoT because it is
intended to manage real-time big data. In this context, we build a GDPR con-
sent manager that takes advantage of both these best of breed IoT technology
features. The idea is to use CEP as a component that centralizes and controls
data dissemination between sensors, services and people. Primary events and
user data are annotated at the edge (at the gateway level) following the 5W
GDPR policies defined by the data subject. Security policies are dynamically
calculated for complex events based on policies defined for primary events. Our
solution is original in that CEP is Commonly used for event processing while
we are using it for security data processing. System context and security user
preferences are accessed in real-time without performance overhead thanks to
the new generation of CEP that allows us to set up dynamic rules and to save



132 S. Allegue et al.

Fig. 1. A smart home use case

system context in dynamic tables [25,29]. To our knowledge, this is the first work
that provides a GDPR consent manager using a CEP engine for private data
management. We rely on CEP scalability and efficiency to reduce the consent
manager overhead on nominal system processing. In addition to the proposed
novel architecture, a main contribution of this work is the security model that
takes into account the dependencies and the dynamic state of streaming events.
This paper is structured as follows. Section 2 presents some background on CEP
and GDPR. In Sect. 3, we describe our security model and we describe our anno-
tation algorithms. The architecture of the GDPR consent manager is presented
in Sect. 4. Section 5 describes our first implementation and evaluation results.
Section 6 describes the related works. Finally, Sect. 7 gives a summary of the
main findings of this paper and highlights new opportunities for future work.

2 Background

In this section, we describe the fields in relation to our contribution, that is CEP
and GDPR.

2.1 Complex Event Processing

Complex Event Processing is the technology that interprets and combines
streams of primitive events to identify higher-level composite events [2]. CEP
has been used in many areas, such as sensor networks for environmental moni-
toring, continuous analyzing of stocks exchange to detect trends in the financial
domains such as stock markets and credit card fraud detection [2]. It relies on
several techniques, including Event-pattern detection, Event abstraction, Event
filtering, Event aggregation and transformation, modeling event hierarchies and
detecting relationships [3]. Nowadays, big data technologies provide a new gen-
eration of CEP engines (such as ESPER [21], Apache Flink [25], WSO2 CEP
[23]). They open new doors for highly scalable and distributed real-time analyt-
ics thanks to the convergence of batch and stream engines and the emergence of
state management and stateful stream processing. With the stateful nature of
stream processors, Stream SQL statements can be applied directly in the stream-
ing engine and dynamic tables can be created rather than the static tables that
represent batch data, dynamic tables which are changing over time.



Toward GDPR Compliance in IoT 133

2.2 General Data Protection Regulation

GDPR [7] sets new rules on security through 99 articles and 173 recitals and
aims to protect the rights and freedoms of natural persons. Every organization
that deals with data has to comply with GDPR, to protect these rights and
to be accountable while improving business models [5]. Accountability aims at
demonstrating how controllers comply with data protection principles. In a pre-
vious work [17], we defined a framework that allows testing GDPR compliance
in Big Data systems. We defined 10 components that need to be implemented
to fulfil the GDPR 7 principles: Lawfulness, fairness and transparency, Purpose
limitation, Data minimisation, Accuracy, Storage limitation, Integrity and con-
fidentiality and Accountability. This framework is a helpful tool that allows us
to evaluate the GDPR compliance of our solution.

3 Security Model

We suppose in our architecture that the communication channel between the GW
and the server is secured. We focus on the privacy issue that is the control of data
dissemination following the user preferences expressed following 5W format. In
this section, we describe the used 5W labels and then the annotation process.
Finally, we present the security checking algorithm.

3.1 5W Labels

A security label provides specific security metadata attached to a data. In our
case, events and user profiles represent the data. To express privacy policy, labels
are assigned to data to restrict access control to that data and control autho-
rization following the 5W constraints. A label general structure is as follows:
L = {O:data owner identifier, who: “principles having the right to access data”,
what : “data being transferred and processed”, when: “when the transfer takes
place”, where: “where data is to be stored”, why : “purpose for collecting data”}
where the value is a String and O is the data subject Id. The data subject Id in
our case is the concatenation of a unique user ID and the sensor ID. Every W
should have a default value. For example, if we take the example of user presence
then an example of a label is: L = {O:ID, who = {“doctor”, “security”}, what =
{“presence”} when = {“15h”}, where = {“security-DB”, “doctor-DB”}, why =
{“alert”, “diagnostic”}}. Labels are ordered using the no more restrictive than
relation, represented by ⊆ symbol. Given two annotation L1 and L2, we have
L1 ⊆ L2 if and only if owners of L1 are included in L2. The join L of L1 and L2
(written as L = L1 ∪L2) represents the least restrictive label that maintains all
the flow restrictions specified by L1 and L2. It is constructed so that L owner
tag is the union of L1 and L2 owners. We note it: L.O = L1.O∪L2.O. Similarly,
we have L.who = L1.who ∩ L2.who, L.why = L1.why ∩ L2.why and L.where
= L1.where ∩ L2.where . Except for when requirement, we have L.when =
Min(L1.when, L2.when) and the resulted complex event for the what require-
ment. We provide in the next sub-section an example using the join relation
between labels.



134 S. Allegue et al.

3.2 Security Annotation

The annotation process and annotation checking consist in attributing labels to
events and user preferences to express privacy constraints. They are formally
provided as follows. Let E be the set of events of concern that are stored in the
state database: E = {e1, e2, · · · , en}, L the set of security annotations (labels)
and P the list of user preferences expressed as 5W policies. Let S: P ∪ E → L
be a function assigning security annotation to the events and preferences [30].

Security annotation is executed in three cases: (1) at GW level, before sending
an event to take into account the user preferences, (2) when a new complex event
is calculated at CEP level and (3) when one of the user preferences changes.

We define a dependency relation between events that we denote by → sym-
bol. Given two events e1 and e2, we have e1 → e2 if e2 is calculated from e1.
More generally, for a complex event ce calculated from e1, e2, · · · , en, we have for
each i in [1..n], ei → ce. Actually, we generally have an event dependency graph
that is built from the → causality relationship between events [22]. In this work,
we restrict our work to one step relation between events. Indeed, it is sufficient
to cover the smart home use case. For a calculated ce from a set of events ei,
we have: S(ce) =

⋃n
i=0 S(ei). For example, if we consider the real case where

we have three events representing respectively temperature, smoke and presence
information, the notification about fire is a complex event that is annotated as
follows:

– S(e1 = temperature) = {O:id1, who = { “Security” }, what = { “temperature”
}, when = { “12h” }, where = { “security-DB” }, why = { “alert” } }.

– S(e2 = smoke) = {O:id1, who = { “Security” }, what = { “smoke” } when
= { “12h” }, where = { “security-DB” }, why = { “alert” } }.

– S(e3 = presence)= {O:id1, who = { “doctor”, “security” }, what = { “pres-
ence” } when = { “15h” }, where = { “security-DB”, “doctor-DB” }, why =
{ “alert”, “diagnostic” } }.

– S(ce = fire) = {O:id1, who = {“Security”}, what = {“Fire CE”}, when = {
“12h”}, where = { “security-DB”}, why = { “alert”}}.

The annotation of fire notification event authorizes the security service only to
access the event and the notification will not be sent to the doctor for instance.

When a user changes his preferences, not only the user events’ configuration
has to be updated but also the configuration of all the events that are calculated
from the user events. We consider the events that are stored in the state database
(state DB) that contains the history of streams for a given period and that can
be used to calculate future complex events. Algorithm 1 is executed to update
an event security configuration. For any event in the state database, the event
policies have to be restricted to the user preferences (line 2). In a recursive
way, all events depending on the event with updated policies, have their policy
updated (line 4–8).



Toward GDPR Compliance in IoT 135

Algorithm 1 Annotation Algorithm
Require: owner O, user preference P and state db D
Ensure: S update calculation
1: foreach ei ∈ D
2: if ei.what== P.what and ei.O==P.O then S(ei)= S(ei) ∪ S(p) endif end
3: e=ei
4: while (S changes) do
5: ∀ej ∈ D, e → ej
6: S(ej)= S(e) ∪ S(ej)
7: e = ej
8: End

This dynamic update is essential to maintain a coherent state of the state
database that takes into account the last user preferences.

3.3 Security Checking

The security checking aims at preserving users’ privacy and then checks that each
event (primary or complex) annotation takes into account the user preferences.
This task is accomplished each time the server receives an event or each time a
new complex event is calculated. Let E be the set of events E = {e1, e2,..,en}
and P the set of user preferences in the form of GDPR 5W stored in the policies
database. For an incoming event e which is annotated with the 5W (what, who,
when, where, why), the event security configuration is correct if it fulfills the user
preference P regarding the same event topic. More formally, the configuration is
accepted if we have e.what==P.what if S(e) ⊆ S(P). For example if we consider
e1 an incoming event that is annotated with the label S(e1 = Blood pressure)
= {O:id1, who = “doctor1”, what = “blood pressure”, when = “12h”, where
= “doctor1-DB”, why = {“diagnostic”} }. The user preferences for the what
=“blood pressure” are S(P.what = Blood pressure) = {O:id1, who= { “doctor1,
doctor2, doctor3, nurse1” }, when = “12h”, where = {“doctor1-DB, doctor2-
DB, doctor3-DB”}, why = {“diagnostic”}}. As we see here the S(e1) ⊆ S(P).
In the case S(e1) �⊆ S(P) a notification is sent to the owner to inform him of an
unauthorized access.

4 Architecture

GDPR consent manager architecture is represented in Fig. 2.
A friendly user interface provides the data subject DS with the ability to

express his 5W GDPR preferences and the ability to update them. The Access
Handler component translates and stores user preferences in the 5W policies DB
in JSON format. These 5W policies are used by the Primary event annotator
component to annotate events coming from the data source: the smart home
sensors. Note that, at GW level, to aggregate and filter data sources, lightweight
CEP [36] can be deployed. Like at server side, security annotator is then neces-
sary to calculate the labels of generated events. In this paper, we only consider
CEP at server side.



136 S. Allegue et al.

Fig. 2. CEP based smart home security architecture.

The user interface communicates with the server that stores user preferences
in the knowledge DB. The server-side software is composed of two main com-
ponents: the event manager and the security manager. The event manager is
responsible for complex event detection and stream processing of received pri-
mary events. After processing and detecting complex events, comes the role of the
security manager component. Security manager component is the central part
of the GDPR consent manager. Based on the proposed security model detailed
in Sect. 3, it is in charge of the security checking of complex event annotation.
Indeed, the checker component, which is a CEP-engine, executes the security
checking algorithm and implements as a rule.

When the security checker (CEP engine) receives an event it extracts the
what value. Then, it looks, in the knowledge DB, for the values of the other 4W
preferences of the owner and stores the values of each W in a list. Afterwards,
it verifies if the 4W of the event are less restrictive than the user preferences
using a CEP pattern.

At CE annotator component, the complex event annotation is calculated
as mentioned in Sect. 3.2. Finally, before delivering the ce to the set of ser-
vices, it has to be protected by the security enforcement service. In our solution
the administrator can act as the data protection officer DPO that evaluates
GDPR-Compliance and provides the accountability principle. The provided log
DB archives all event history and is used for visualization and data tracking for
both data subject and DPO. It keeps a detailed log of all requests and responses
of policy setting and updates as well as exchanged data history. The security
enforcement service provides a set of services such as cryptography, logs, right
to erasure and many other services. As explained in Sect. 5, we use a third
party service for security enforcement [35]. The main idea is to use a token that
stores the who and when policies. Tokens are attributed to data consumers (ser-
vices and persons in our case) to access the events sent by the server. Once the
authentication is successful, that is the consumer is the who list and the target of



Toward GDPR Compliance in IoT 137

processing data is the same as defined by what policy, the data consumer receives
a token that is unique. The token allows the access to decryption services for
the authorized period defined in when policy. If this period expires, the encryp-
tion keys are revoked and the user can no longer decrypt received events. If the
data subject modifies the who policy by removing an authorized consumer of his
data, the same revocation occurs. A user interface is provided to administrators
(DS and DPO) to interact with the consent manager and to receive notifica-
tions. Also, it gives the ability to fix or update rules in both event engine and
the checker (CEP-engine). In our architecture, we have three databases: policies
DB, log DB and state DB. The state can be a dynamic table that contains the
history of streams for a given period. This component can be queried to help the
CEP component in the annotation process, for example, it can give us the set of
events in a chosen window of time to check if event annotations are modified or
not. In addition, the state database is used to change the annotation of events if
a user updates his preferences which is mentioned in security annotation section.

5 Implementation and Evaluation

This section will describe briefly our first implementation, followed by the eval-
uation of our solution.

5.1 Implementation

At the GW level, data is annotated in JSON format. As CEP, we used Flink [25]
since we take advantage of its CEP engine and its Stream processing features
such as the Table API. Dynamic tables are the core concept of Flink Table API
and SQL support for streaming data. For the state database, we are essentially
building a table from an INSERT-only changelog stream to keep the history of
events and maintain a state so to be used and queried for a given window and
to check policies update at run time.

We used Hashicorp Vault [35] for the log and security enforcement compo-
nent. Vault is a tool for securely accessing secrets. A secret is anything that
you want to tightly control access to, such as API keys, passwords, certificates,
and more. Vault services are accessed through HTTP API. The enforcement
component is a particular Vault client that acts as a root asking for tokens in
behalf of data consumers (services and persons). Policies, in Vault, can gov-
ern what a client is able to do, and they are attached to the token. Tokens
also store a bunch of metadata in addition to the policies, so information like
the time to live and the duration of the token. In the enforcement component,
we translate for each user, the who, where and when policies to Vault token
metadata. Tokens are provided to data consumers with authorized what policy
only for the purpose defined by the user. The where policy is translated as a
particular data consumer (using data for storage). In addition, we used Vault
Encryption as a Service (EaaS) to fortify data during transit and at rest. In our
consent manager, we used a java implementation based on Vault Java Driver [31].



138 S. Allegue et al.

Vault encrypts the events so that they are delivered to the right destination and
with the constraints defined in the who and when policies. When, who value
changes or when value expires, the event token will be revoked automatically
and data consumers have no longer access to data. Also, the DPO can, dynami-
cally, track data (request and response coming into vault) and receive notification
using Kibana [24] visualization interface.

5.2 Evaluation

In a previous work [18], we defined a framework that allows evaluating GDPR
compliance in Big Data systems. We used this framework to evaluate GDPR
compliance with our solution. The result of the evaluation shows that our solu-
tion covers most of the GDPR framework components and principles mentioned
in Sect. 2.2. Transparency principle is provided by the user interface compo-
nent. Since it provides history notification and data tracking based on the logs
component. In the GW and security manager components, data minimisation is
ensured thanks to what policy and purpose limitation is ensured since events are
filtered with why policy. Encryption enforces the ownership and the who policy
by providing both integrity and confidentiality principles. Finally, we provided
a DPO user interface in which every detail of the system (request/response) is
illustrated. In addition to GDPR requirements, our solution provides the data
subject and the DPO the flexibility to update their policies dynamically. We
rely on Flink for scalability and fault tolerance since it is one of the most robust
and scalable big data frameworks. However, we still need to evaluate the overall
solution in a more scalable IoT system.

6 Related Works

Related works are classified into two sections: GDPR implementation in IoT
systems and CEP usage in smart homes and IoT systems. The review process
highlighted that, unlike our work, none of the related works address the all of
whole GDPR requirements mainly the 5W policies. Furthermore, to the best
of our knowledge, this is the first work that adopts CEP engines as a GDPR
consent manager.

6.1 GDPR Implementation in IoT Systems

In many IoT applications, GDPR implementation has a considerable impact
on protecting users’ privacy [8]. Nevertheless, current solutions address only
partially GDPR requirements. In [9], authors concentrate on profiling. In [10,11],
the focus is put on transparency. Like our work, IoT Databox [32] tool provides
data access mechanisms at the edge and different API are proposed to allow
users to track their data. Nevertheless, the solution is not flexible enough to
allow for implementing all GDPR 5W policies and to allow for dynamic changes.
In a previous work [33], we proposed a GDPR consent manager for IoT systems



Toward GDPR Compliance in IoT 139

where security, transparency and purpose limitation are implemented but we do
not cover all the 5W policies. In other works [6,34], block-chain technology was
adopted to implement users’ consent in a distributed environment. In our work,
CEP engines represent a centralized hub where all data streams go through but
our work can be extended to a distributed CEP.

To express advanced security policies, many standard and policy languages
such as XACML [28], SAML [27], P3P [26] and Vault policy [35] are proposed.
However, they express only 3 W policies (who, what and why). Also, our work
handles the dependencies between events. That is when the user changes his
preferences, so all stored events and the events depending on take into account
this change.

6.2 CEP in Smart Home and IoT Systems

Like our work, many recent solutions adopt both sCEP and edge computing
in smart home IoT systems [12,14,15]. At gateway-side, useful information is
extracted from raw data and server-side CEP manages semantic reasoning jobs
like correlating between warning messages. In our work, we adopt this approach
for privacy data processing in the GDPR context.

Chen et al. [13] use CEP on the server-side for intrusion detection. They
detect anomalies by filtering complex events. Policy checking with CEP is more
intricate since policies are complex and can be changed dynamically. For this
reason, we associate CEP policy checking with stream state queries to take into
account policy update at runtime.

7 Conclusion

This paper presents a security model for data privacy respect under GDPR. We
introduce a CEP-based architecture that provides GDPR consent manager for
modern IoT systems. We show the efficiency of our solution in the context of a
smart home. To the best of our knowledge, this is the first work that combines
CEP and edge computing features in GDPR context. As future work, we plan
to measure in more detail, performance overhead and different intricate cases of
policy update and event dependency graphs.

References

1. GDPR. https://gdpr-info.eu/. Acessed 22 Aug 2019
2. Luckham, D.: The power of events: an introduction to complex event processing

in distributed enterprise systems. In: Bassiliades, N., Governatori, G., Paschke, A.
(eds.) RuleML 2008. LNCS, vol. 5321, p. 3. Springer, Heidelberg (2008). https://
doi.org/10.1007/978-3-540-88808-6 2

3. Etzion, O., Niblett, P.: Event Processing in Action, 1st edn. Manning Publications,
Greenwich (2010)

https://gdpr-info.eu/
https://doi.org/10.1007/978-3-540-88808-6_2
https://doi.org/10.1007/978-3-540-88808-6_2


140 S. Allegue et al.

4. Verma, H., Jain, M., Goel, K., Vikram, A., Verma, G.: Smart home system based on
Internet of Things. In: 3rd International Conference on Computing for Sustainable
Global Development (INDIACom), pp. 2073–2075. IEEE, New Delhi (2016)

5. Pham, P.: The applicability of the GDPR to the Internet of Things. J. Data Prot.
Priv. 2(3), 254–263 (2019)

6. Vargas, J.C.: Blockchain-based consent manager for GDPR compliance. In: Open
Identity Summit 2019. Gesellschaft für Informatik, Bonn (2019)

7. Regulation (EU) 2016/679 of the European Parliament and of the Council of 27
April 2016 on the protection of natural persons with regard to the processing of
personal data and on the free movement of such data, and repealing Directive
95/46/EC (General Data Protection Regulation). Official Journal of the European
Union. L119, 1–88 (2016)

8. Seo, J., Kim, K., Park, M., Park, M., Lee, K.: An analysis of economic impact on
IoT under GDPR. In: 2017 International Conference on Information and Commu-
nication Technology Convergence (ICTC), pp. 879–881. IEEE, Jeju, South Korea
(2017)

9. Wachter, S.: Normative challenges of identification in the Internet of Things: pri-
vacy, profiling, discrimination, and the GDPR. Comput. Law Secur. Rev. 34(3),
436–449 (2018)

10. Wachter, S.: The GDPR and the Internet of Things: a three-step transparency
model. Law Innov. Technol. 10(2), 266–294 (2018)

11. Castelluccia, C., Cunche, M., Le Metayer, D., Morel, V.: Enhancing transparency
and consent in the IoT. In: 2018 IEEE European Symposium on Security and
Privacy Workshops (EuroS&PW), pp. 116–119. IEEE, London, UK (2018)

12. Chen, C., Fu, H., Sung, T., Wang, P., Jou, E., Feng, M.: Complex event processing
for the Internet of Things and its applications. In: 2014 IEEE International Con-
ference on Automation Science and Engineering (CASE), pp. 1144–1149. IEEE,
Taipei, Taiwan (2014)

13. Jun, C., Chi, C.: Design of complex event-processing IDS in Internet of Things. In:
2014 Sixth International Conference on Measuring Technology and Mechatronics
Automation, pp. 226–229. IEEE, Zhangjiajie, China (2014)

14. Kaya, M., Cetin-Kaya, Y.: Complex event processing using IOT devices based on
Arduino. Int. J. Cloud Comput. Serv. Architect. IJCCSA 7, 13–24 (2017)

15. Nocera, F., Di Noia, T., Mongiello, M., Di Sciascio, E.: Semantic IoT middleware-
enabled mobile complex event processing for integrated pest management. In: 7th
International Conference on Cloud Computing and Services Science (2017)

16. Strohbach, M., Ziekow, H., Gazis, V., Akiva, N.: Towards a big data analytics
framework for iot and smart city applications. In: Xhafa, F., Barolli, L., Barolli,
A., Papajorgji, P. (eds.) Modeling and Processing for Next-Generation Big-Data
Technologies. MOST, vol. 4, pp. 257–282. Springer, Cham (2015). https://doi.org/
10.1007/978-3-319-09177-8 11

17. Rhahla, M., Allegue, S., Abdellatif, T.: A framework for GDPR compliance in
big data systems. In: Kallel, S., Cuppens, F., Cuppens-Boulahia, N., Hadj Kacem,
A. (eds.) CRiSIS 2019. LNCS, vol. 12026, pp. 211–226. Springer, Cham (2020).
https://doi.org/10.1007/978-3-030-41568-6 14

18. Boubeta-Puig, J., Ortiz, G., Medina-Bulo, I.: Approaching the Internet of Things
through integrating SOA and complex event processing. In: Handbook of Research
on Demand-Driven Web Services: Theory, Technologies, and Applications, pp. 304–
323. IGI Global (2014)

https://doi.org/10.1007/978-3-319-09177-8_11
https://doi.org/10.1007/978-3-319-09177-8_11
https://doi.org/10.1007/978-3-030-41568-6_14


Toward GDPR Compliance in IoT 141

19. Lan, L., Wang, B., Zhang, L., Shi, R., Li, F.: An event-driven service-oriented
architecture for Internet of Things service execution. Int. J. Online Eng. (iJOE)
11, 4 (2015)

20. Corcoran, P., Datta, K.: Mobile-edge computing and the Internet of Things for
consumers: extending cloud computing and services to the edge of the network.
IEEE Consum. Electron. Mag. 5(4), 73–74 (2016)

21. Esper. http://www.espertech.com/. Accessed 19 Aug 2019
22. Flink Gelly API. https://flink.apache.org/news/2015/08/24/introducing-flink-

gelly.html. Accessed 29 Aug 2019
23. WSO2 CEP. https://wso2.com/products/complex-event-processor/. Accessed 19

Aug 2019
24. Kibana. https://www.elastic.co/fr/products/kibana. Accessed 19 Aug 2019
25. Apache Flink. https://ci.apache.org/projects/flink/flink-docs-release-1.8/.

Accessed 19 Aug 2019
26. Platform for Privacy Preferences (P3P). https://www.w3.org/P3P/. Accessed 26

Aug 2019
27. Security Assertion Markup Language (SAML). http://docs.oasis-open.org/

security/saml/Post2.0/sstc-saml-tech-overview-2.0.html. Accessed 26 Aug 2019
28. EXtensible Access Control Markup Language (XACML). http://docs.oasis-open.

org/xacml/3.0/xacml-3.0-core-spec-os-en.html. Accessed 26 Aug 2019
29. Dynamic Tables. https://ci.apache.org/projects/flink/flink-docs-stable/dev/

table/streaming/dynamic tables.html. Accessed 27 Aug 2019
30. Abdellatif, T., Bozga, M.: An end-to-end security model for adaptive service-

oriented applications. In: Braubach, L., Murillo, J.M., Kaviani, N., Lama, M.,
Burgueño, L., Moha, N., Oriol, M. (eds.) ICSOC 2017. LNCS, vol. 10797, pp.
43–54. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-91764-1 4

31. Java-vault-driver. https://bettercloud.github.io/vault-java-driver/. Accessed 26
Aug 2019

32. Crabtree, A., et al.: Building accountability into the Internet of Things: the IoT
databox model. J. Reliable Intell. Environ. 4(1), 39–55 (2018). https://doi.org/10.
1007/s40860-018-0054-5

33. Rhahla, M., Abdellatif, T., Attia, R., Berrayana, W.: A GDPR controller for IoT
systems: application to e-Health. In: 2019 IEEE 28th International Conference
on Enabling Technologies: Infrastructure for Collaborative Enterprises (WETICE)
(2019)

34. Rantos, K., Drosatos, G., Demertzis, K., Ilioudis, C., Papanikolaou, A., Kritsas,
A.: ADvoCATE: a consent management platform for personal data processing in
the IoT using blockchain technology. In: Lanet, J.-L., Toma, C. (eds.) SECITC
2018. LNCS, vol. 11359, pp. 300–313. Springer, Cham (2019). https://doi.org/10.
1007/978-3-030-12942-2 23

35. Vault. https://www.vaultproject.io. Accessed 01 Aug 2019
36. Dhillon, A., Majumdar, S., St-Hilaire, M., El-Haraki, A.: A mobile complex event

processing system for remote patient monitoring. In: IEEE International Congress
on Internet of Things (ICIOT) (2018)

http://www.espertech.com/
https://flink.apache.org/news/2015/08/24/introducing-flink-gelly.html
https://flink.apache.org/news/2015/08/24/introducing-flink-gelly.html
https://wso2.com/products/complex-event-processor/
https://www.elastic.co/fr/products/kibana
https://ci.apache.org/projects/flink/flink-docs-release-1.8/
https://www.w3.org/P3P/
http://docs.oasis-open.org/security/saml/Post2.0/sstc-saml-tech-overview-2.0.html
http://docs.oasis-open.org/security/saml/Post2.0/sstc-saml-tech-overview-2.0.html
http://docs.oasis-open.org/xacml/3.0/xacml-3.0-core-spec-os-en.html
http://docs.oasis-open.org/xacml/3.0/xacml-3.0-core-spec-os-en.html
https://ci.apache.org/projects/flink/flink-docs-stable/dev/table/streaming/dynamic_tables.html
https://ci.apache.org/projects/flink/flink-docs-stable/dev/table/streaming/dynamic_tables.html
https://doi.org/10.1007/978-3-319-91764-1_4
https://bettercloud.github.io/vault-java-driver/
https://doi.org/10.1007/s40860-018-0054-5
https://doi.org/10.1007/s40860-018-0054-5
https://doi.org/10.1007/978-3-030-12942-2_23
https://doi.org/10.1007/978-3-030-12942-2_23
https://www.vaultproject.io


A Reconfigurable Microservice-Based
Migration Technique for IoT Systems

Chang-ai Sun(B), Jing Wang, Jing Guo, Zhen Wang, and Li Duan

School of Computer and Communication Engineering, University of Science
and Technology Beijing, Beijing 100083, China

casun@ustb.edu.cn

Abstract. An Internet of Things (IoT) system is often an integration of
a large number of hardware and software modules, which are expected to
be easily replaced or reconfigured in order to cater for quickly-changing
environments and requirements. With the popularity of microservices,
people have attempted to introduce the microservice architecture to
IoT systems, while paid little attention to the connectivity between
the decomposed microservices, resulting in poor reconfigurability of the
resulting system. In this paper, we propose a reconfigurable microservice-
based migration technique for IoT systems, which first decomposes an
IoT system as a set of microservices and then introduces variation con-
texts to make the decomposed microservices reconfigurable. We have con-
ducted a case study on an open-source real-life unmanned aerial vehicle
(UAV) system. The results demonstrate that the migrated UAV system
can be dynamically reconfigured to handle various run-time changes.

Keywords: Internet of Things (IoT) · Microservices · Migration
techniques · Service compositions · Reconfigurable systems

1 Introduction

The Internet of Things (IoT) is the network of devices that contain electron-
ics, software, sensors, actuators, and connectivity which allows these things to
connect, interact and exchange data [17]. Due to the rapid development of intel-
ligent devices and mobile networks, IoT systems become pervasive in people’s
daily life. For instance, a driverless car is a typical IoT system that is capable
of sensing its environment and navigating without human intervention. The sys-
tem integrates a large number of distributed and heterogenous components for
data sensing, network communication, computing, and decision making. Con-
sidering the component that is responsible for detecting surroundings, it may
have different implementations based on radar, lidar, GPS, or more practically,
their combinations of all these technologies. Furthermore, the system is continu-
ously running in a dynamic environment which frequently suffers environmental
changes (e.g. traffic situations) or requirement changes (e.g. preferred paths). As
a result, such an IoT system is expected to be reconfigurable enough.
c© Springer Nature Switzerland AG 2020
S. Yangui et al. (Eds.): ICSOC 2019 Workshops, LNCS 12019, pp. 142–155, 2020.
https://doi.org/10.1007/978-3-030-45989-5_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-45989-5_12&domain=pdf
https://doi.org/10.1007/978-3-030-45989-5_12


A Reconfigurable Microservice-Based Migration Technique for IoT Systems 143

Recently, people have made efforts to introduce the microservice architecture
to IoT systems [11,13,16], or discuss the decomposition of microservices [3,8,12].
However, no efforts have been made to address the connectivity among the
decomposed microservices, which is assumed to be defined internally and implic-
itly. This poses difficulties for inevitable upgrades or extensions. The situations
become even worse in the context of continuously-changing environments. For
instance, a microservice may become unavailable for some reasons, thus the
involved process has to be interrupted and restarting such a process will take
a long time. Consequently, the resulting microservice-based IoT systems suffer
poor reconfigurability.

To address the reconfigurability of IoT systems, we propose a microservice-
based reconfigurable migration technique. Our approach not only introduces the
microservice architecture into the IoT systems, but also addresses the recon-
figurability of migrated IoT systems, aiming at enabling timely responses to
changes from environment or requirements.

1. A microservice-based migration framework for IoT systems was proposed to
address the challenges posed by reconfigurable migration of IoT systems.

2. A supporting tool was developed to enable and automate as much as possible
the proposed technique.

3. A case study was conducted to comprehensively evaluate the proposed tech-
nique using a large-scale open-source unmanned aerial vehicle.

The rest of the paper is organized as follows. Section 2 presents a
microservice-based reconfigurable migration technique for IoT systems. Section 3
describes a comprehensive case study which is used to validate the proposed
approach. Section 4 introduces related work. Section 5 concludes the paper with
future work.

2 Approach

We first give an overview and then discuss the key issues of the proposed app-
roach, followed by a supporting tool.

2.1 Overview of Approach

We propose a microservice-based variation-enabling reconfigurable migration
framework for IoT systems, as shown in Fig. 1. The proposed approach works as
follows.

First, for a legacy IoT system, our approach decomposes it into a set of
microservices with the guidance of various microservice decomposition tech-
niques. Each microservice has a simple structure and functionality that can
be independently developed, deployed, and maintained using different tech-
niques [18]. Practically, an IoT system involves a number of intelligent devices
which are responsible for sensing surroundings and manifest themselves as hard-
ware modules. Furthermore, these devices normally follow different formats and



144 C. Sun et al.

Migrate to 
Microservices

Legacy 
IoT System

Microservices

Business
Requirements

Configuration
Files

Key-value
Store

Environments or
Requirements Change

Service 
Composition

Dynamic 
Configuration

Variation 
Extensions

Reconfigurable Microservices Compositions

Reconfigurable
IoT System

Fig. 1. Reconfigurable microservice-based migration framework for IoT systems

protocols for data transmission. Inspired by the idea of Software Defined Every-
thing (SDX), we add an abstraction layer to mask the heterogeneity. Accordingly,
all software and hardware modules are uniformly treated as a set of microservices
with RESTful interfaces after the decomposition.

Second, our approach adopts microservices compositions to achieve recon-
figurable IoT systems. (i) The microservices are first extended with variability.
In this way, the extended microservices can be easily replaced at run-time by
modifying variants in the configuration. (ii) We adopt the variation configu-
ration file as a specification for microservices composition. When the system
starts, the process information is first loaded and the name of the microservice
provider to be invoked is derived according to the configuration. (iii) A dynamic
reconfiguration is proposed to support the reconfigurability of the service com-
position. Since the invocation information between microservices is maintained
during the execution, the microservice consumer will be unbound from the orig-
inal microservice provider and bound to a new microservice provider in case a
change occurs. This process corresponds to the variant selection of a variation
point in the context of variability management. Consequently, the replacement
of microservices in a business process becomes easy and efficient at run-time.

2.2 Details of Approach

(1) Migration to Microservices. The goal is to decompose a legacy IoT
system into a set of microservices through analyzing its structure, functional-
ity, business logic, or implementation. The decomposed microservices will be
independently deployed and executed, and communicate with each other by
lightweight mechanisms. Since the granularity of microservices affects the devel-
opment and management cost of the migration [15], a key issue is to decide the
boundary of microservices [9]. Accordingly, we present the following decomposi-
tion principles for the migration to microservices.

– Domain analysis (P1) is a widely used migration principle which determines
the granularity of microservices in a top-down manner via domain models [4].



A Reconfigurable Microservice-Based Migration Technique for IoT Systems 145

– Static analysis (P2) is a bottom-up migration principle through an analysis
of the implementation of a legacy system [7], which can be further classified
into technique analysis, source code analysis, metadata assisted analysis, and
data analysis.

– Hierarchy-aware (P3) emphasizes the hierarchy should be carefully consid-
ered during the migration to microservices. An IoT system is normally com-
posed of multiple layers. Naturally, the decomposition of microservices should
reserve this hierarchy as much as possible. This is particularly important for
the migration of the sensing layer to microservices. For those hardware mod-
ules, an abstraction layer is necessarily created to mask the heterogeneity of
multi-source, heterogeneous, and non-uniformly communicated devices. Fur-
thermore, the abstraction layer should also have a partner microservice in the
control layer.

– Embedded features-aware (P4) pays much attention to real-time and reactive
features of IoT systems. An IoT system often integrates embedded modules
for operation controlling or event triggering. For instance, a driverless car
needs to periodically sense its position and surroundings, which is commonly
implemented by embedded modules. Furthermore, relevant tasks should be
completed in a real-time manner. These features require the preservation of
periodical control structures and the abidance of the locality principle during
migration to microservices.

(2) Reconfigurable Microservices Compositions. Reconfigurable micro-
services compositions are shown in Fig. 2. (i) Variation extensions: To support
dynamic reconfiguration of migrated IoT systems, the decomposed microservices
are further extended with variation contexts and registered in the Registration
Center. Specially, a location where a microservice consumer (“MSN”) invokes an
external microservice is treated as a variation point, and the potential microser-
vice provider is treated as a variant (for example, “MSM1”). In this way, the
newly introduced variation contexts make the connectivity between the decom-
posed microservices explicit and reconfigurable.

Registration
Center

Key-value Store

Configuration Files
Load

Service Composition

MSN

Query

Register
Microservices with 

variation

MSM1 MSM2 MSM3

Variant1 Variant2 Variant3

VariationPoint

Dynamic 
Configurationvalue

Fig. 2. Reconfigurable microservice-based service compositions



146 C. Sun et al.

(ii) Service Composition: The decomposed microservices with variation contexts
are composed to meet various business requirements. In order to relax the cou-
pling between service consumers and service providers, we introduce a layer of
key-value store on top of traditional service discovery. Accordingly, the invoca-
tion relationships between microservices are no longer specified internally but
kept in a key-value store. In a key-value pair, the “key” corresponds to the
microservice consumer indicating the location of the calling external microser-
vices, while the “value” corresponding to the microservice provider indicating
the selected microservices. The representation of key-value pairs is shown in
Fig. 3.

Key ::= <MicroserviceName>“/VariationPoint”<Index>
Value ::= <MicroserviceName>
MicroserviceName ::= {a|...|z|A|...|Z|0|...|9| }

Fig. 3. Variation representation based on key-value pairs

(iii) Dynamic Configuration: When an involved microservice of the business pro-
cess become unavailable due to some reasons such as failures, updates, or network
traffic congestion. In our approach, all invocations between microservices have
been stored in the key-value store and the status of all involved microservices
are monitored in real time. When a microservice becomes unavailable, the value
of variant in the key-value pair is updated at run-time through HTTP APIs for
key-value updates. Accordingly, the microservice consumer is first unbound from
this microservice provider, and then bounded with a new microservice provider
candidate returned by the service discovery process. Consequently, the migrated
IoT system is able to respond to various run-time changes in an easy and efficient
manner.

2.3 Supporting Tool

We have further developed a supporting tool called CM4MS to enable and facili-
tate the proposed migration technique. Its main features include business process
representation, microservice management, and dynamic configuration.

As an illustration, Fig. 4 shows a snapshot of business process for the UAV
flight control system. The process is represented as a visual flowchart whose
nodes represent microservices, while links with directional arrows represent the
invocations between microservices. The user can further query the informa-
tion and status of all involved microservices. Microservices with exceptions are
marked pink (blue for normal).

Figure 5 shows a snapshot of dynamic configuration management for the
Copter main in the UAV flight control system. The tool lists all variation points
and their associated variants. To change the invocation between microservices,



A Reconfigurable Microservice-Based Migration Technique for IoT Systems 147

the user enters a variant name in the “invoke” box and then clicks “sub-
mit”. For instance, the VariationPoint6 indicates a variant (corresponding to
a microservice) is required for positioning. Currently, the involved microservice
is based on GPS (“Update GPS”), and the user just replaces “Update GPS”
with “Update BEIDOU” in order to switch to a BEIDOU-based microservice
(“Update BEIDOU”). In this way, variation-based business process reconfigura-
tion is supported at run-time.

3 Case Study

In this section, we report a case study to validate the proposed approach.

Fig. 4. Business process representation in CM4MS

Fig. 5. Run-time variation configuration in CM4MS



148 C. Sun et al.

3.1 Subject Program and Migration Requirements

We selected an open-source unmanned aerial vehicle (UAV) system (ArduPi-
lot) as subject program which consists about 700,000 lines of code, because
UAV has been popularly adopted in various large-scale IoT systems, such as
smart cities and intelligent logistics. The system is mainly composed of simu-
lation plug-ins (simulation of various sensors and their communications), flight
control (ArduPilot), and ground control station1. These modules correspond to
the sensing (and transportation), control, and application layer of a hierarchical
IoT system, respectively. ArduPilot UAV flight control system supports various
aircraft models, such as fixed-wing UAV, multi-rotor UAV, and helicopter.

Obviously, a UAV is expected to provide continuous services, and thus suffers
a long-term maintenance. For instance, the flight control system needs to be
updated for more stable flight, and some devices need to be replaced or upgraded
due to failures. Such extensions or updates are difficult to handle in a large-scale,
legacy system with embedded features. In addition, the UAV is running in a re-
active manner, the failure of a module may lead to the crash of the system. As
a consequence, the refactoring of such an IoT system not only faces a high risk
(due to the impact on a large scope), but also endures a long period.

We next demonstrate how the proposed approach can be used to address
the above challenges. Especially, we will focus on migration of the flight control
system to microservices (Sect. 3.2) and reconfiguration of microservices for var-
ious scenarios which are used to simulate potential changes of environment or
requirements (Sect. 3.3).

3.2 Migration to Microservices

Following the migration principles, we decompose the UAV flight control sys-
tem into ten microservices at different layers, as summarized in Table 1. The
“Principle” column indicates the principle used for the migration, while the
“Microservices” column lists the decomposed microservices of the migration.

Table 1. Migration result of UAV flight control system

Principle Microservices

P2 Copter main

P3 Sensor gyro, Update GPS, Camera, Mount

P1 Flight Mode, INS Sample

P4 Fast Looptimer, Logging Loop, Auto return

We take “Update GPS” as an example to illustrate how the above migra-
tion of microservices works. The left part in Fig. 6 shows the structure of

1 http://ardupilot.org/dev/docs/learning-ardupilot-introduction.html.

http://ardupilot.org/dev/docs/learning-ardupilot-introduction.html


A Reconfigurable Microservice-Based Migration Technique for IoT Systems 149

the “Copter::update GPS ()” module in the legacy system, and this module
accordingly calls three functions in the “AP GPS” module, namely “update
()”, “num sensors ()”, and “last message time ms ()”. The right part shows
the resulting microservice (i.e. “Update GPS”), including its RESTful APIs,
and their description and implementations. “Update GPS” has three RESTful
APIs, namely “GET http://127.0.0.1:8006/v1/gps/update”, “GET http://127.
0.0.1:8006/v1/gps/num sensors”, and “GET http://127.0.0.1:8006/v1/gps/last
message time ms/”, which corresponds to “update ()”, “num sensors ()”, and
“last message time ms ()” in “AP GPS”, respectively. In order to implement
these interfaces, an “AP GPS” object is first instantiated, and then the func-
tions in “AP GPS” are bound to specific URLs. At run-time, “Update GPS”
listens to all invocations on its port and deliver the expected services through
its relevant RESTful APIs.

Update all GPS instances

MS_object.port(8006).multithreaded().run();

CROW_ROUTE(MS_object, "v1/gps/update")([](){
gps.update();        
return "true";    
});   

AP_GPS gps=create();    
crow::SimpleApp MS_object;

ArduCopter

Legacy system

void Copter::update_GPS(void)

void AP_GPS::update(void)

int AP_GPS::num_sensors(void)

int AP_GPS::last_message
_time_ms(int instance)

CROW_ROUTE(MS_object, "v1/gps/num_sensors")([](){        
return crow::response(gps.num_sensors());    
});    
CROW_ROUTE(MS_object, "v1/gps/last_message_time_ms/<int>") 
([](int i){       
return crow::response(gps.last_message_time_ms(i));       
});

GET
http://127.0.0.1:8006/v1/gps/last_messag
e_time_ms/{instanceId}

GET http://127.0.0.1:8006/v1/gps/update

GET http://127.0.0.1:8006/v1/gps/num_sensors

Microservice
Implementations

Get number of active GPS sensors

Get the last time the message was processed

RESTful APIs
Migration

Fig. 6. An illustration of migration to microservices

3.3 Reconfigurability and Performance Evaluation

(1) Handling Environmental Changes. Assume the following scenario
(SC1): During the mission of UAV, GPS signal is suddenly missing due to an
environmental exception. Consequently, positioning information is not available,
which may lead to a crash of the system. In this regard, one may be interested in
evaluating whether the migrated system is able to respond to such an exception.
Accordingly, the research question is “Can the proposed technique effectively deal
with this change due to environmental exceptions?” (RQ1).

Recall the devices of the system are simulated by simulation plug-ins. The
GPS exception in SC1 can be simulated by setting a timed sleep for the
“Update GPS” microservice. When this exception happens, the status of the
“Update GPS” microservice will be detected timely since all microservices of
the system are monitored by CM4MS at run-time. In the meanwhile, a candi-
date microservice that provides the similar functionality will be provided through
a service discovery process. For instance, the “Update BEIDOU” microservice
is assumed to be an alternative (Note one of multiple service instances can
be the alternative in the context of DevOps). Accordingly, a dynamic config-
uration process is started which will update the value of “Update GPS” with

http://127.0.0.1:8006/v1/gps/update
http://127.0.0.1:8006/v1/gps/num_sensors
http://127.0.0.1:8006/v1/gps/num_sensors
http://127.0.0.1:8006/v1/gps/last_message_time_ms/
http://127.0.0.1:8006/v1/gps/last_message_time_ms/


150 C. Sun et al.

“Update BEIDOU” at the variation point of “Copter main”. As a result, the
“Update GPS” microservice is switched to the “Update BEIDOU” microservice
which hereby provides positioning information. The resulting configuration of
the system is shown in Fig. 7. Note that the “GCS” microservice (ground control
station) is beyond the flight control system.

Fig. 7. Switching from “Update GPS” to “Update BEIDOU”

Answer to RQ1: Our approach can effectively deal with run-time changes due
to the environmental exceptions by dynamically reconfiguring the microservices.
Furthermore, this reconfigurability is useful to avoid expansion of exceptions to
the entire system as does in a legacy system.

(2) Handling Requirement Changes. Assume the following scenario (SC2):
As mentioned before, UAV can be mounted with a variety of extra equipments
and be customized for the usage in various scenarios. For instance, the original
UAV is used for aerial photography, and a new requirement occurs that aerial
broadcasting is also supported. One may be interested in evaluating whether
the migrated system can be reconfigured to effectively realize this new require-
ment. Accordingly, the research question is “Could the proposed approach can be
reconfigured to implement new requirements?”(RQ2).

To support the new requirement in SC2, the following refactoring steps are
needed: (i) Equip the UAV with a megaphone device; (ii) Create and register
three microservices in the Service Registry, namely “Megaphone” (an abstrac-
tion of megaphone), “Mount 2” (partner microservice in the control layer),
“Flight mode 2” (for flight mode); (iii) Start a dynamic configuration process
which will replace “Camera” with “Megaphone”, “Mount” with “Mount 2”, and
“Flight mode” with “Flight mode 2”, respectively. After the refactoring, the
resulting configuration of microservices is shown in Fig. 8, and the refactored
system supports the requirement of aerial broadcasting.

Answer to RQ2: Our approach can quickly respond to the requirement changes
through the reconfiguration and extension of a microservice-based IoT system.

(3) Performance Evaluation. Our approach introduces microservice decom-
position and variation contexts in order to deal with run-time changes of envi-
ronment or requirements, one may be interested in the performance overhead to



A Reconfigurable Microservice-Based Migration Technique for IoT Systems 151

Fig. 8. Configuration of microservices in refactored system supporting aerial broad-
casting

achieve the reconfigurability of IoT systems. Accordingly, the research question
is “Does the proposed approach introduce significant performance overhead?”
(RQ3).

In order to answer RQ3, we evaluate the run-time performance overhead due
to variation configuration, and compare the compilation time and startup time
of the system before and after the migration. Note that the both experiments
are repeated 10 times and CM4MS is used. We define the following run-time
performance metrics: (i) TV C is defined as the time spent on the variation con-
figuration when a microservice is involved; (ii) TRes is defined as the response
time of a microservice when it is involved a business scenario. In particular, we
consider a real situation as illustrated in SC2: The flight mode change and the
mounted device replacement. Accordingly, SC2 will involve “Flight mode” and
“Mount” reconfigured.

The evaluation results of run-time performance overhead are summarized as
follows: (i) For both two microservices, their TV C are much lower than 1 ms; (ii)
TRes of “Flight mode” varies from 1 to 3 ms, with an average of 1.5 ms when the
frequency is 400 Hz; TRes of “Mount” varies from 1 to 19 ms, with an average
of 10 ms when the frequency is 50 Hz. We conclude that performance overhead
due to the variation configuration could be negligible compared with a relatively
long period of response.

The evaluation results of the compilation time and startup time of the sys-
tem before and after the migration are summarized as follows: (i) Before the
migration, the average compilation time is 8.6 s and the average startup time
is 3.38 s; (ii) After the migration, the compilation and startup time of each
microservice are shown in Table 2; (iii) Both compilation and startup time of
each microservice is less than that of the original system. If all the microservices
in the migrated system are compiled in a sequential manner, a total of com-
pilation time is about 18 s; Similarly, a total of startup time is about 10.56 s.
However, these microservices can be compiled and started in parallel since they
are independently deployed and run in a container. In this sense, the compilation
time of the migrated system should be up to the maximum of compilation time
of all microservices (i.e. 3.85 s); its startup time should be up to the maximum
of startup time of all microservices (i.e. 3.46 s).



152 C. Sun et al.

Table 2. Compilation and startup time of microservices

Microservice Compilation time (s) Startup time (s)

Min Max Avg Min Max Avg

Copter main 2.98 3.46 3.11 1.03 1.68 1.49

Fast LoopTimer 0.65 1.58 1.02 0.26 0.55 0.32

Ins sample 3.52 3.85 3.65 2.14 3.46 2.52

Flight mode 2.85 3.47 2.93 1.31 2.28 1.93

Logging Loop 1.57 2.56 1.98 0.61 0.88 0.73

Sensor gyro 0.48 0.98 0.87 0.19 0.62 0.36

Update GPS 0.85 1.52 0.96 0.17 0.93 0.51

Mount 0.32 1.64 0.86 0.53 1.26 1.12

Auto return 1.45 1.98 1.68 0.63 1.58 0.74

Camera 0.51 1.08 0.94 0.35 1.64 0.84

Answer to RQ3: Our approach only introduces very tiny performance overhead
due to the variation reconfiguration of microservices. Compared with the orig-
inal system, the migrated system has a shorter compilation and startup time,
indicating a shorter break for the recovery.

4 Related Work

We introduce closely related work in terms of migration to microservices and
reconfigurable IoT systems.

4.1 Migration to Microservices

Recently, research efforts have been made on the migration of a legacy system
to the microservices architecture due to the popularity of microservices. One
category of efforts focus on the automation and standardization of the system
migration process. Balalaie et al. [1] summarized the experiences and lessons
for the migration to the microservice architecture in the context of DevOps.
They further established a pattern repository made of fourteen migration and
rearchitecting design patterns, which are derived from industrial-scale software
migration projects aiming to improve the efficiency and effectiveness of system
migrations [2]. Similarly, Carrasco et al. [5] summarized nine bad smells with
their solutions to help identify and correct pitfalls in the migration process.

The other category of efforts focus on microservice decomposition techniques.
Baresi et al. [3] presented an automated decomposition approach to identify
microservices, which assume the OpenAPI (Swagger) specification of each oper-
ation is available and then maps specification into the concepts of a reference
vocabulary based on the semantic similarity. This approach relies heavily on



A Reconfigurable Microservice-Based Migration Technique for IoT Systems 153

well-defined and described interfaces, but this is not always the case. Gysel
et al. [8] proposed a structured approach to service decomposition based on 16
coupling criteria which are collected from the literature and industry experience.
Levcovitz et al. [12] proposed to extract microservices from a monolithic system
based on the dependency graph among facades, business functions, and database
tables.

The existing work focuses on microservices identification and decomposition
of general systems, while our work addresses the migration of a legacy IoT system
into microservices by providing a set of migration principles and further improves
the reconfigurability of microservices-based IoT systems.

4.2 Reconfigurable IoT Systems

Most existing work on reconfigurable IoT systems turns to service-oriented archi-
tecture (SOA). Issarny et al. [10] proposed a thing-based SOA which consists
service discovery, service composition, service access, and thing-based queries,
and presented a service-oriented middleware to address the heterogeneity and
dynamics of IoT systems. Tiwari et al. [14] proposed a generalized programmable
hardware node for all devices that are connected to IoT systems. As an illustra-
tion, their approach supports the reconfiguration of the wireless node architec-
ture and addition of devices. Dar et al. [6] proposed a conceptual architectural
model that can be used to develop large-scale IoT systems via adaptive service
compositions. However, no reference implementation or validation are reported.

Unlike the above work, our approach first decomposes an IoT systems into
microservices and then introduces variation contexts to the connectivity of
microservices to enable the configurability of IoT systems.

5 Conclusion

We have proposed a microservice-based reconfigurable migration technique for
IoT systems. An IoT system is often deployed in a dynamic environment and
expected to provide continuous services. Naturally, it is expected be reconfig-
urable enough to cater for various run-time changes. It is difficult for the legacy
architecture to meet such an expectation. The proposed technique overcomes
this limitation in two aspects: (i) a legacy IoT system is first migrated into
microservices with the guidance of a set of migration principles; (ii) variation con-
texts are then introduced to the connectivity between the decomposed microser-
vices, which enables the decomposed microservices reconfigurable at run-time.
We conducted a case study to comprehensively validate the proposed technique.
Experimental results confirmed the improvements on the reconfigurability of the
migrated IoT system using our approach.

For future work, we plan to validate our technique with more types of IoT
systems, and address the performance requirements during the migration at
different levels, such as decomposed microservices, variation points, and config-
uration patterns.



154 C. Sun et al.

Acknowledgment. This work is supported by the National Natural Science Founda-
tion of China under Grant No. 61872039 and the Fundamental Research Funds for the
Central Universities under Grant No. FRF-GF-19-019B.

References

1. Balalaie, A., Heydarnoori, A., Jamshidi, P.: Microservices architecture enables
devops: migration to a cloud-native architecture. IEEE Softw. 33(3), 42–52 (2016)

2. Balalaie, A., Heydarnoori, A., Jamshidi, P.: Microservices migration patterns.
Softw. Pract. Exp. 48(11), 2019–2042 (2018)

3. Baresi, L., Garriga, M., De Renzis, A.: Microservices identification through inter-
face analysis. In: De Paoli, F., Schulte, S., Broch Johnsen, E. (eds.) ESOCC 2017.
LNCS, vol. 10465, pp. 19–33. Springer, Cham (2017). https://doi.org/10.1007/978-
3-319-67262-5 2

4. Bucchiarone, A., Dragoni, N., Dustdar, S., et al.: From monolithic to microservices:
an experience report from the banking domain. IEEE Softw. 35(3), 50–55 (2018)

5. Carrasco, A., van Bladel, B., Demeyer, S.: Migrating towards microservices: migra-
tion and architecture smells. In: Proceedings of IWOR 2018, pp. 1–6 (2018)

6. Dar, K., Taherkordi, A., Rouvoy, R., et al.: Adaptable service composition for
very-large-scale internet of things systems. In: Proceedings of MDS 2011 (2011)

7. Fritzsch, J., Bogner, J., Zimmermann, A., Wagner, S.: From monolith to microser-
vices: a classification of refactoring approaches. In: Bruel, J.-M., Mazzara, M.,
Meyer, B. (eds.) DEVOPS 2018. LNCS, vol. 11350, pp. 128–141. Springer, Cham
(2019). https://doi.org/10.1007/978-3-030-06019-0 10

8. Gysel, M., Kölbener, L., Giersche, W., Zimmermann, O.: Service cutter: a system-
atic approach to service decomposition. In: Aiello, M., Johnsen, E.B., Dustdar, S.,
Georgievski, I. (eds.) ESOCC 2016. LNCS, vol. 9846, pp. 185–200. Springer, Cham
(2016). https://doi.org/10.1007/978-3-319-44482-6 12

9. Hassan, S., Bahsoon, R.: Microservices and their design trade-offs: a self-adaptive
roadmap. In: Proceedings of IEEE SCC 2016, pp. 813–818 (2016)

10. Issarny, V., Bouloukakis, G., Georgantas, N., Billet, B.: Revisiting service-oriented
architecture for the IoT: a middleware perspective. In: Sheng, Q.Z., Stroulia, E.,
Tata, S., Bhiri, S. (eds.) ICSOC 2016. LNCS, vol. 9936, pp. 3–17. Springer, Cham
(2016). https://doi.org/10.1007/978-3-319-46295-0 1

11. Krivic, P., Skocir, P., Kusek, M., Jezic, G.: Microservices as agents in iot systems.
In: Jezic, G., Kusek, M., Chen-Burger, Y.-H.J., Howlett, R.J., Jain, L.C. (eds.)
KES-AMSTA 2017. SIST, vol. 74, pp. 22–31. Springer, Cham (2018). https://doi.
org/10.1007/978-3-319-59394-4 3

12. Levcovitz, A., Terra, R., Valente, M.T.: Towards a technique for extracting
microservices from monolithic enterprise systems. In: Proceedings of VEM’15. pp.
97–104 (2015)

13. Sun, L., Li, Y., Memon, R.A.: An open IoT framework based on microservices
architecture. China Commun. 14(2), 154–162 (2017)

14. Tiwari, V., Keskar, A.G., Shivaprakash, N.C.: A reconfigurable IoT architecture
with energy efficient event-based data traffic reduction scheme. Int. J Online Eng.
13(2), 34–52 (2017)

15. Villamizar, M., Garces, O., Ochoa, L., et al.: Cost comparison of running web
applications in the cloud using monolithic, microservice, and AWS lambda archi-
tectures. Serv. Oriented Comput. Appl. 11(2), 233–247 (2017). https://doi.org/
10.1007/s11761-017-0208-y

https://doi.org/10.1007/978-3-319-67262-5_2
https://doi.org/10.1007/978-3-319-67262-5_2
https://doi.org/10.1007/978-3-030-06019-0_10
https://doi.org/10.1007/978-3-319-44482-6_12
https://doi.org/10.1007/978-3-319-46295-0_1
https://doi.org/10.1007/978-3-319-59394-4_3
https://doi.org/10.1007/978-3-319-59394-4_3
https://doi.org/10.1007/s11761-017-0208-y
https://doi.org/10.1007/s11761-017-0208-y


A Reconfigurable Microservice-Based Migration Technique for IoT Systems 155

16. Vresk, T., Cavrak, I.: Architecture of an interoperable IoT platform based on
microservices. In: Proceedings of MIPRO 2016, pp. 1196–1201 (2016)

17. Wikipedia: Internet of things. https://en.wikipedia.org/wiki/Internet of Things
(2019)

18. Yousif, M.: Microservices. IEEE Cloud Comput. 3(5), 4–5 (2016)

https://en.wikipedia.org/wiki/Internet_of_Things


Towards the Creation of Be In/Be Out
Model for Smart City with the Use

of Internet of Things Concepts

Bartosz Wieczorek and Aneta Poniszewska-Marańda(B)

Institute of Information Technology, Lodz University of Technology, Lodz, Poland
bartosz.wieczorek@edu.p.lodz.pl, aneta.poniszewska-maranda@p.lodz.pl

Abstract. Constantly technological development based on the paradigm
of the Internet of Things still gives rise to solutions to many complex prob-
lems. This article aims to present an initial concept of the solution to
the problem of creating an effective system for the Be-In/Be-Out (BIBO)
model. This system is based on technologies originating in the paradigm of
the Internet of Things. Most ticket systems use technologies that require
many manual interactions from passengers. However, with technological
development, the society expects more and more comfort, also in the con-
text of using municipal services. And the SmartCity concept gains in pop-
ularity year by year. This study proposes concepts of passenger detection
in vehicle based on Bluetooth Low Energy technology combined with the
user’s smartphone. The paper presents the smartphone- and BLE-based
IoT solution for public transportation ticket distribution and fare calcula-
tion in the architecture of Be-In/Be-Out model.

Keywords: Internet of Things · Smart city · Smartphone · Bluetooth
low energy · Mobile ticketing in public transport

1 Introduction

Since 19th century population of cities is constantly increasing. 55% of the
world’s population lives in urbanized areas in 2018 and this fraction is expected
to increase to 68% by 2050 [1]. Traditional methods of managing constantly
growing cities are becoming insufficient due to their inefficiency and costs. Fur-
thermore, increasing demand for fast and reliable urban services available to
everyone adds additional difficulties for modern cities. For this reasons, many
countries will face issues concerning housing, energy consumption and trans-
portation.

There is already ongoing research on how to ensure a sustainable development
of cities and optimizing city management and urban service delivery. In recent
years a concept of Smart Cities, which is utilisation of advanced Information and
Communication Technology (ICT) to support administration of cities, become

c© Springer Nature Switzerland AG 2020
S. Yangui et al. (Eds.): ICSOC 2019 Workshops, LNCS 12019, pp. 156–167, 2020.
https://doi.org/10.1007/978-3-030-45989-5_13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-45989-5_13&domain=pdf
http://orcid.org/0000-0001-7596-0813
https://doi.org/10.1007/978-3-030-45989-5_13


Towards the Creation of BIBO Model for Smart City 157

a leading idea for future development of cities. A key concept which enables
creation of smart cities is urban Internet of Things (IoT) that is a communication
infrastructure, which provides unified access to various public services through
deployed digital communication devices deployed within cities [2].

The idea of automating the distribution process in public transportation is
being constantly researched. One of the first publications concerning this topic
appeared in 2001 and it described EasyRide, a ticketing system utilizing Radio
Frequency Identification (RFID) tags to monitor passage access to public trans-
portation, which allowed to record information necessary to calculate and collect
fares [3]. Since then, many different RFID-based solutions were created, tested
and even used in practice in Germany and Switzerland [16].

In 2010 a new, alternative to RFID, technology was proposed. Bluetooth
Low Energy (BLE) is intended as a wireless personal area network with simi-
lar communication range as a traditional Bluetooth network but with reduced
power consumption and maintenance costs. The technology enables to equip
public transportation vehicles with necessary equipment with a minimal over-
head. Another advantage of the technology is that almost everyone caries a
smartphone and today most of them are able to handle BLE technology.

Ticketing machines confuse travellers with pricing models, force them to study
tariffs and require detailed route specifications in order to create a ticket. Be-
In/Be-Out (BIBO) systems try to simplify this process by following a basic inter-
action principle that enables people to seamlessly and implicitly interact with a
technical system. Passengers may continue their natural behaviour (i.e. they enter
and leave public means of transportation) and automatically execute a pretended
incidental but necessary action (i.e. they obtain their tickets and initiate invoic-
ing). There is no need to look at displays or to press buttons distracts them from
their focused task or go with a paper ticket or some card to the reader.

The goal of this paper is to describe a concept of smartphone- and BLE-based
IoT solution for public transportation ticket distribution and fare calculation.
The solution is intended to be Be-In/Be-Out, which means that users of the
system use it implicitly without any further activity besides utilizing public
transportation.

The remaining parts of the article are divided as follows: Sect. 2 provides
backgrounds of Bluetooth Low Energy technology. Section 3 presents the exam-
ples of related work in the given domain while Sect. 4 deals with the solution
prototype for Be-In/Be-Out model that uses the Internet of Things paradigm
and the availability of mobile devices.

2 Bluetooth Low Energy

Bluetooth is a wireless short-range communication solution which goal is to
replace cable connections between all kinds of electronic devices. In general,
there are two key types of Bluetooth technology [5]:

– Bluetooth Basic Rate,
– Bluetooth Low Energy.



158 B. Wieczorek and A. Poniszewska-Marańda

Bluetooth Basic Rate (BBR) operates in a spectrum band in the unlicensed
ISM band at 2.4 GHz and uses frequency hopping to counteract interference
and fading. BBR is able to transfer 1–3 megabits per second (Mb/s). Bluetooth
Low Energy (BLE) operates in the same spectrum as BBR, however, it uses
different channels. Furthermore, BLE also utilises frequency hopping, but with
different schema. BLE is able to transfer between 125 kilobits per second (kb/s)
and 2 megabits per second (Mb/s). It is important to note that both types
include device discovery, connection establishment and connection mechanisms.
Furthermore, both types are able communicate with each other as long as their
respective devices implement either one of them. The main difference is in trans-
mit protocol, which in case of BLE allows only transmission of small packets to
save energy [5,6].

BLE devices can be used to create ad-hoc and hands-free (unconscious) inter-
action between nearby ‘smart things’ and user, which is the main point of the
research about implicit ticket distribution. There exist three models of implicit
interactions due to technical alterations and limitations [4]: Be-In/Be-Out, Walk-
In/Walk-Out, Check-In/Check-Out.

Be-In/Be-Out (BIBO) interaction is conducted without any input from users,
who participate in the interaction just be being within its range. Walk-In/Walk-
Out (WIWO) is and interaction, which deploys virtual fences that detect users
entering and leaving its range [19]. Check-In/Check-Out (CICO) interaction
requires its participants to show their devices to some form of detectors at
entry- and exit points in order to be registered for the interaction. The pre-
sented interactions can be mixed to create different variations, for example a
Check-In/Be-Out interaction is possible [4]. The system presented in this paper
is intended to use Be-In/Be-Out interaction.

3 Related Works

The literature describes three main areas related to the considered problem
of creation a Be in/Be out model for intelligent transport. The first area is
the concept of IoT and related challenges and problems. We were looking for
practices to create the effective systems operating in the environment of IoT.
The second area is Bluetooth low energy technology and thus its development
as well as its use and potential in solving the contemporary problems. The last
area is related to solutions to create an effective system implementing the Be
in/Be out model.

Internet of Things is a topic undergoing intensive research. There are numer-
ous publications concerning various aspects of this vast subject. Authors of [7]
present an overview of different architectures, taxonomies, requirements and
future trends in the IoT field. Furthermore, the authors describe a selection
of existing IoT implementations and usages.

Another interesting publication is [9], in which another detailed overview
of IoT is presented. The authors focus on architectonic aspects and argue that



Towards the Creation of BIBO Model for Smart City 159

future development of IoT requires development of a dedicated SOA. The publi-
cation presents IoT system structure in great detail. Finally, the authors describe
research challenges and future trends of IoT.

In [6] presents Bluetooth Low Energy technology and its usage in IoT, The
authors argue that existing mesh topologies for this standard are inadequate and
to mitigate that issue, they propose their own improved mesh topology based
on CRS Mesh. Paper [10] provides a thorough presentation of the current state
of the art in a field of wireless technologies used in IoT. The authors describe
Near Field Communication, Visible Light Communication and Bluetooth Low
Energy in detail presenting their advantages, disadvantages and current status.
Furthermore, the authors argue that BLE allows great opportunities to create
indoor/outdoor localization applications, which is closely connected with ticket
distribution automation.

[5] is an official documentation provided by Bluetooth Special Interest Group
containing a technical description of all Bluetooth technologies and standards.
The authors of [4] present a topic of IoT in public transportation ticket distribu-
tion and propose their own solution. The described approach is a Be-In/Be-Out
system based on BLE technology. The authors present conducted experiments
and based on them present a positive conclusion concerning BLE applicability
in the context of ticket distribution.

A different approach is used in [11], where the author describes a BLE-
based system using a combination of Be-In/Be-Out and Check-In/Check-Out
approaches. The presented solution requires its users to conduct a “check-in”
procedure from the inside of a given vehicle, however, a “check-out” process
is conducted automatically. In [17] authors analyse the current fare collection
systems created for integrated transport systems and focus on the possibilities
of application of modern fare collection systems in public passenger transport,
their subsequent comparison and evaluation. The NFC technology was evaluated
as the most suitable variant of fare collection system in integrated transport
systems was evaluated.

4 Concept of the Effective Be In/Be Out System Solution

The proposed solution for development of effective Be-In/Be-Out model was
based on the paradigm of Internet of Things. According to the statistics, mobile
devices are owned by 2/3rds of the population and this market is still growing.
Thus, there are many devices in the surroundings generating data or offering
certain actions that may be subsequently linked to specific users, like the above-
mentioned Beacon used for object identification in space or for data provision
for short distances.

4.1 Be In/Be Out System Solution Description

In contrast to the project described in work “Bluetooth Low Energy as Enabling
Technology for Be-In/Be-Out Systems” [4], the proposed solution is to assume



160 B. Wieczorek and A. Poniszewska-Marańda

the existence of at least the beacon identifier of the vehicle in the environment. A
beacon is a small Bluetooth radio transmitter. It is like a lighthouse: it repeatedly
transmits a single signal that other devices can see. Instead of emitting visible
light, though, it broadcasts a radio signal that is made up of a combination of
letters and numbers transmitted in a regular interval of approximately 1/10th
of a second. A Bluetooth-equipped device like a smartphone can “see” a beacon
once it’s in range, so it is like sailors looking for a lighthouse to know where
they are. The Beacon device will transmit a unique ID number that tells the
listening device which beacon is next to. Really, it’s just a code name. The
beacon sends out its ID numbers about ten times every second (sometimes more,
sometimes less, depending on the configuration). A nearby Bluetooth-enabled
device (e.g. smartphone) can pick up that signal. When a dedicated mobile
application recognizes that signal, it links it to an action or piece of information
assigned to this beacon, stored on the server (e.g. located in the cloud) and
displays it to the user. A device can be taught how to react to a beacon signal.
This is possible due to the creation of appropriate software.

A Beacon, which in this specific case of BIBO system serves as an identifier
of an object of municipal infrastructure (e.g. a bus or other transport vehicle)
which can be interacted with in the space surrounding a SmartCity user.

Therefore, the solution concept is as follows. As presented in Fig. 1, user P1
remains within the scope of vehicle transmitter T1 and has appropriate software
on his mobile device, which enables him to detect intelligent things in the space.
The user can make his Sensitive Sensor Data available, thanks to which the
collection and analysis of data connected with user behaviour will be possible.
The collected data will be used to answer such questions as: when exactly did
the user enter and leave the vehicle? How long was he in it and how long did
it travel? To answer these questions, during the first stage of data analysis,
statistical algorithms will be used to determine the correlation between the data
and the attempt to link with an entry/exit vehicle. The next step will be to
use artificial neural network algorithms to check the possibility of classifying the
user into groups (in the vehicle and outside the vehicle). Because as literature
research has shown, relying only on the signal emitted by the vehicle transmitters
is insufficient to determine the exact or very close moment of entering and exiting
the vehicle.

Sensitive Sensor Data (SSD) is all data that can be gathered in the context
of a given user, starting with data originating from a mobile device of a specific
user. An example of such data selected as an initial group for analysis of user
behaviour is presented in Fig. 2.

Thus, we are dealing with a situation where there are many mobile devices
– the users with access to the Internet. What is more, also the use of appro-
priate software enabling detection and use of intelligent things (i.e. intelligent
vehicles, intelligent bus stops or intelligent homes) enables an access to services
connected with them. These intelligent things may, but not necessarily do, have
access to the Internet in order to transmit the contextual data. Sensor data both
from mobile devices and intelligent things is collected in a central or distributed



Towards the Creation of BIBO Model for Smart City 161

Fig. 1. Visualization of the Be in/Be out model in the context of transport

Fig. 2. Examples of user sensory data collected for analysis of user behaviour

database managed by a central system. The central system then provides an
access to services executed via specific components or system modules. In the
presented concept of the system, the service calculating the probability of user
still remaining in the object of SmartCity mobile infrastructure (i.e. intelligent
vehicle) is executed via the Machine learning module. Together with informa-
tion from the vehicle transmitter (Beacon), it unequivocally responds whether
the user remains in the vehicle or whether it has just left it, remaining for a
short while within the range of the transmitter (Fig. 3).

4.2 Be In/Be Out System Architecture

We propose the following schema to develop the BIBO system based on the Inter-
net of Things paradigm. Initially, it was assumed that the system implementation
should contain the elements indicated in Fig. 3. Therefore, the characteristic of
these elements is as follows:

1. Beacon is the identifier of the intelligent object (i.e. vehicle) with which the
user can interact.

2. Smartphone performs not only data presentation or system capabilities, for
example, information about the route and vehicle or making a complaint,
but also the most important source of sensory data in the context of the user.
This data is needed for the solution to work.

3. Single board computer – its implementation should assume the existence of
a vehicle’s on-board computer for many reasons: for example with the devel-
opment of the Internet of Things paradigm, more and more devices, sensors



162 B. Wieczorek and A. Poniszewska-Marańda

Fig. 3. Deployment concept for BIBO system implementation

that collect data are being created. Next this data can support the decision-
making process in the context of the problem of implementing an effective
BIBIO system as well as others
Therefore, during the development of the solution concept and building the
system prototype, the existence of a micro-computer was taken into account
(i.e. Raspberry Pi). The task of the microcomputer is to collect, process and
share data downloaded from the sensors connected to it. At the initial stage of
the prototype implementation Raspberry Pi will be used to collect location
data of the vehicle. These data will be broadcast by the micro-computer
operating in the Beacon mode.
So, it is possible to consider two scenarios here: the first one is a situation in
which there is a Beacon that serves only as a vehicle identifier; the second one,
which assumes the existence of a micro-computer that can work in Beacon
mode, that can broadcast not only own ID but also basic sensory data of the
vehicle.

4. Central System is responsible for providing the services for processing and
data collection and performing a key function which is the precise determi-
nation of the presence of user in the vehicle.

5. Database – as is presented later in the paper, it assumes the existence of
many databases (users, vehicles, sensory data), and thus the existence of a
component which is the date repository. It is designed to allow an access to
collected data.

6. Gateways and Routers allow an access to individual elements of the system
to the network.

The presented solution architecture assumes the existence of four logical lay-
ers (Fig. 4). The idea of four layers architecture results mainly from good prac-
tice consolidated during the recent years on designing the systems executing the
paradigm of Internet of Things. It was presented in Sect. 3.



Towards the Creation of BIBO Model for Smart City 163

Fig. 4. Architecture of proposed BIBO system with IoT concept

Thus, the first system layer is the perception layer, in other words – the sensor
layer. This layer defines the physical devices and components that generate an
identifiable signal via “intelligent” devices (e.g. NFC tags, BLE devices, sensors
or widely used minicomputers, such as Raspberry Pi, being specific Gateways
for many sensors). The main purpose of this layer is to connect the “intelligent
object” of infrastructure, i.e., the above-mentioned devices to the system, and
in consequence to download the appropriate data from devices collecting data
and/or to execute an appropriate action in the context of a given object. In
the discussed Be-In/Be-Out model and in the context of SmartCity, Beacon
devices serve as identifiers of smart vehicles. Thanks to the use of Beacon and
Bluetooth low energy technology, it is possible to identify the closest intelligent
thing (i.e. objects) in the context of which we can start to collect the necessary
data to execute a related service. In this specific case – detecting the presence of
a passenger in the vehicle will enable charging him for the use of transport and
monitoring the passenger flows.

The second layer (acquisition layer) is a place where signals emitted from
the previous layer are captured. This layer is responsible for downloading data



164 B. Wieczorek and A. Poniszewska-Marańda

from the lower layer and sending them to the upper layer (i.e. service layer)
but in an appropriate form. This layer also contains mobile devices that in the
context of the entire system are elements of the first, the second and the last (i.e.
application) layers. It is because mobile devices are responsible for downloading
the sensor data in the context of the user using integrated sensors. These devices
are also a link (Gateway) for data sent from the lower layer, i.e. data generated
from devices that can connect with a mobile device via nearby communication
networks, such as Beacon or the discussed minicomputer with the GPS module
on board the vehicle. Smartphones are also used for communication with the
user and for presenting the possible functionalities, such as route preview, travel
cost preview or messages related to a vehicle or other intelligent object nearby.

The third layer is the management layer, presented e.g. in JSON format.
Its main purpose is to store and process the collected data. It also ensures an
access to standardised data, other devices and system modules via established
interfaces. At this stage of the work, where the solution concept crystallizes
and the works are commenced on the construction of the system’s prototype,
the management layer is based mainly on the central server for simplification of
prototype architecture. However, further works on the development of the model
must assume a possible application in distributed environment. Therefore, the
main responsibility of this layer is:

– Collection of data sent by user of mobile devices and microcomputers in
intelligent objects of the infrastructure. Data will be collected in dedicated
databases. And access to them will be possible through a Data Repository.

– Making available a module for machine learning. It assumes the existence of a
machine learning component, which based on collected data has to determine
if the user made a trip. This module must also fulfil two assumptions. Firstly,
it must be able to learn constantly on the data incoming from the sensors.
Secondly, because of constantly evolving environment and because we assume
the possibility to add the new data types (coming from new sensors), this
component should implement a mechanism to consider new data types in the
learning process.

– Ensuring system security implemented through the Security Manager compo-
nent. This component will provide encryption of sensitive data, access control
to services and resources. During further work on the solution, it also will pro-
vide the detection of potentially unwanted behaviours or abuses.

– Providing contextual services. Every function of the system, whether it is
presenting data on the route of the vehicle, reporting complaints or purchasing
a ticket, or even most important in this context, determining the presence of
a passenger in the vehicle, will be implemented using a dedicated service that
employs other system components. To manage these services, a component
named Service Provider has been defined.

The last layer is the application layer. It uses data and services provided from
the lower layer, i.e. service layer, in order to supply the user all the operations
and information offered by the system. In other words, it is a layer of applications



Towards the Creation of BIBO Model for Smart City 165

used by the user, for example, an internet site where he can see his transactions
and travelled routes.

Figure 5 presents activity diagram of the system functioning at the level of
interaction of the mobile device with the transmitter and the central system.
However, before the actions presented in this activity diagram can be realized,
it is important to note that the user must have a mobile device using an ade-
quate software permitting detection of intelligent objects (i.e. things). In a given
context it will be a vehicle (Beacon). Firstly, this condition is met and the user
accepts that the application has access to his Sensitive Sensory Data (i.e. SSD
authorization) and can authorize the communication with intelligent things. In
this situation the Interface for Communication with Intelligent Things (i.e. ICIT
authorization) is used. It allows communication with intelligent objects in the
background, without user intervention.

Secondly, the transmitter is detected near the user. Then, at the initial stage
of beacon recognition process, the algorithm of intelligent object identification
will make sure that the currently detected Beacon is the nearest one within the
range of the user. Then, when appropriate authorizations have been given, the
user data is collected and subsequently sent to the central system.

Fig. 5. BIBO system functionality at interaction level of mobile devices with the trans-
mitter and central system

After that via a module based on an artificial neural network (Fig. 4, the
data will be used to answer the question whether the user still remains in the



166 B. Wieczorek and A. Poniszewska-Marańda

object of municipal infrastructure or not. For this purpose the use of model of
artificial neural network trained on the basis of this sensory data is proposed.
Indication of probability of user presence in a vehicle will permit to increase the
efficiency of the entire solution. It will help to eliminate the problem of too early
classification of the user as in the vehicle upon his entry within the range of the
Beacon while the user has not entered to the vehicle yet.

5 Conclusions

Systems based on the paradigm of Internet of Things seem to have a great poten-
tial in solution of many complex problems in different areas of our everyday life.
One of such areas is constantly evolving ITS (Intelligent Transport System) envi-
ronment. Such systems are required to provide an automatic price calculation
or a pay-as-you-go option for the passengers. In addition they need to serve the
more flexible demands depending on the price calculation. These requirements
arise from the main problem of using the public transport, such as time con-
suming tasks of tickets acquiring and checking-in/out tickets or ticket inspector
control. Being aware of that, we proposed the prototype of the solution that
allows to reduce these problems and simplify all the travel processes.

The presented paper provided the analysis of research on technical possi-
bilities to develop the Be-In/Be-Out model. This model is the basis for the
implementation of such concepts as hands free and pay-as-you-go, which are
applicable and required in the transport field and also in the SmartCity app-
roach. It may be used wherever intelligent municipal infrastructure adapts to the
user context, facilitates access to services and facilities and eliminates the obsta-
cles, thus ensuring a comfort. The architecture presented in the paper assumes
the existence of four logical layers, which include, among others, the elements
such as Beacon devices that are small Bluetooth radio transmitters. They can
serve as the identifiers of municipal infrastructure objects that the user can be
interacted with. Another element of the system is a Smartphone that performs
not only data presentation function but also works as source of sensory data
in the user’s context. The provided architecture also assumes the existence of a
machine learning component, which based on the collected data will be used to
ensure if the user still remains in the object of municipal infrastructure.

References

1. United Nations Department of Economic and Social Affairs.: 2018 Revi-
sion of World Urbanization Prospects. https://www.un.org/development/desa/
publications

2. Zanella, A., Bui, N., Castellani, A., Vangelista, L., Zorzi, M.: Internet of Things
for smart cities. EEE Internet Things J. 1(1), 22–32 (2014)

3. Gyger, T., Desjeux, O.: EasyRide: active transponders for a fare collection system.
IEEE Micro 22(6), 36–42 (2001)

https://www.un.org/development/desa/publications
https://www.un.org/development/desa/publications


Towards the Creation of BIBO Model for Smart City 167

4. Narzt, W., Mayerhofer, S., Weichselbaum, O., Haselböck, S., Höfler, N.: Bluetooth
low energy as enabling technology for Be-In/Be-out systems. In: Proceedings of
13th IEEE Annual Consumer Communications & Networking Conference (CCNC)
(2016)

5. Bluetooth SIG Inc.: The Bluetooth Core Specification, 17 February 2019. https://
www.bluetooth.com/specifications/bluetooth-core-specification

6. Hortelano, D., Olivares, T., Ruiz, M.C., Garrido-Hidalgo, C., López, V.: From
sensor networks to Internet of Things. Bluetooth low energy, a standard for this
evolution. Sensors J. 17, 372 (2017)

7. Yaqoob, I., et al.: Internet of Things architecture: recent advances, taxonomy,
requirements and open challenges. IEEE Wirel. Commun. 24(3), 10–16 (2017)

8. Palattella, M.R., et al.: Internet of Things in the 5G era: enablers, architecture,
and business models. IEEE J. Sel. Areas Commun. 34(3), 510–527 (2016)

9. Xu, L.D., He, W., Li, S.: Internet of Things in industries: a survey. IEEE Trans.
Ind. Inform. 10(4), 2233–2243 (2014)

10. Garćıa, G.C., Ruiz, I.L., Gómez-Nieto, M.Á.: State of the art, trends and future
of bluetooth low energy, near field communication and visible light communication
in the development of smart cities. Sens. J. 16(11), 1968 (2016)

11. Martins, J.G., Mobile ticketing system for public transport based on bluetooth low
energy. Master thesis, University of Lisoba, Portugal (2017)

12. Bertoni, G., Daemen, J., Peeters, M., Van Assche, G., Van Keer, R.: Keccak imple-
mentation overview (2012). https://keccak.team/files/Keccak-implementation-3.2.
pdf. Accessed 4 Mar 2018

13. ISO/IEC: Information technology – Security techniques – Information security
management systems – Requirements. In: ISO/IEC 2005 (2005)

14. Vimalachandran, P., Wang, H., Zhang, Y., Heyward, B., Whittaker, F.: Ensuring
data integrity in electronic health records: a quality health care implication. In:
Proceedings of International Conference on Orange Technologies (ICOT), Australia
(2016)

15. Drescher, D.: Blockchain Basics: A Non-Technical Introduction in 25 Steps. Apress,
Frankfurt a. M. (2017)

16. Narzt, W., Mayerhofer, S., Weichselbaum, O., Haselböck, S., Höfler, N.: Be-In/Be-
Out with bluetooth low energy: Implicit ticketing for public transportation systems.
In: Proceedings of IEEE 18th International Conference on Intelligent Transporta-
tion Systems, pp. 1551–1556 (2015)

17. Olivková, I.: Comparison and evaluation of fare collection technologies in the public
transport. Procedia Eng. 178, 515–525 (2017)

18. Lahti, J., Heino, I., Kostiainen, J., Siira, E.: Bluetooth beacon enabled mobility
services and opportunities in public transit. In: Proceedings of 23rd World Congress
on Intelligent Transport Systems, ITS, Australia (2016)

19. Lorenz, H.: Be-In-Be-Out payment systems for public transport. Final report,
GWT-TUD GmbH and Department of Transport, London (2009)

20. Atzori, L., Iera, A., Morabito, G.: The Internet of Things: a survey. Comput. Netw.
54(15), 2787–2805 (2010)

21. Miorandi, D., Sicari, S., De Pellegrini, F., Chlamtac, I.: Internet of Things: vision,
applications and research challenges. Ad Hoc Netw. 10(7), 1497–1516 (2012)

22. Udoh, I.S., Kotonya, G.: Developing IoT applications: challenges and frameworks.
IET Cyber-Phys. Syst. Theory Appl. 3(2), 65–72 (2017)

https://www.bluetooth.com/specifications/bluetooth-core-specification
https://www.bluetooth.com/specifications/bluetooth-core-specification
https://keccak.team/files/Keccak-implementation-3.2.pdf
https://keccak.team/files/Keccak-implementation-3.2.pdf


Ontology for Smart Viticulture:
Integrating Inference Rules

Based on Sensor Data

Amira Mouakher1(B), Aurélie Bertaux1(B), Ouassila Labbani1(B),
Clémentine Hugol-Gential2(B), and Christophe Nicolle1(B)

1 CIAD, EA 7533, Univ. Bourgogne Franche-Comté, UB, 21000 Dijon, France
{amira.mouakher,aurelie.bertaux,ouassila.narsis,

cnicolle}@u-bourgogne.fr
2 CIMEOS, EA 4177, Univ. Bourgogne Franche-Comté, UB, 21000 Dijon, France

clementine.hugol-gential@u-bourgogne.fr

Abstract. Smart farming is coming with a clear promise to mitigate the
myriad of threatens faced by vineyards. In this respect, relying on sen-
sor data, new challenges are rising in order to proactively warn farmers.
In this paper, we introduce the SmartVine approach, which extracts
knowledge from collected data, converts it into inference rules and inte-
grates them into the reasoning process of the system. In the sake of
efficiency, generic bases of association rules are extracted, mapped then
to SWRL rules and later used for the enrichment process of the ontology.

Keywords: Smart viticulture · Wireless sensor network · Sensor
data · Ontology · Association rule mining

1 Introduction

French viticulture is traditionally a significant economic sector. However, this
sector is often threatened by the appearance of numerous events, e.g., diseases,
pests, climatic risks, to name but a few. This loss is caused by insects, pathogens
and other infectious organisms causing serious damage, including loss of yield
and degradation of the quality of the wine. Indeed, humid weather accompanied
by high temperatures have factors favoring the development of several diseases.
According to the International Organization of Vine and Wine, the French pro-
duction has fallen by 19% in 2017 due to the vagaries of the vines, which particu-
larly affected strategic regions in the production of wine. Faced with this climate
change, the know-how and the expertise of the winemakers remain insufficient
to detect in advance all kinds of events that can affect the vines. In order to
address this problem, precise farming is emerging as a means to adopt climate-
smart farming practices. This new concept offers decision-support to winegrowers
through the use of sensors and the Internet of Things paradigm to increase the
quality and quantity of their production.

c© Springer Nature Switzerland AG 2020
S. Yangui et al. (Eds.): ICSOC 2019 Workshops, LNCS 12019, pp. 168–177, 2020.
https://doi.org/10.1007/978-3-030-45989-5_14

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-45989-5_14&domain=pdf
https://doi.org/10.1007/978-3-030-45989-5_14


Ontology for Smart Viticulture: Integrating Inference Rules 169

In [10], we proposed a solution that relies on multi-sensor decision support
system. The latter solution vehicles a valuable information to winegrowers for
real-time event detection and environmental monitoring. This solution mainly
focuses on the use of an ontology due to its availability to use a language under-
standable both by human and machine, to integrate human know-how, to infer
(using a reasoning engine based on this human know-how) and to allow to explain
its conclusions. In this paper, we drive a step further. Indeed, the knowledge used
for reasoning is based only on human know-how. However, this knowledge can
variate from an expert to another one. In addition, it closely depends on geo-
graphic and meteorologic conditions where his vineyard is located. Thus, this
know-how needs to be enriched by a knowledge extracted from data collected by
sensors. Indeed, often events such as diseases appear without knowing exactly
why. The use of data mining technique can unveil valuable correlations between
data to estimate why. Then, these correlations can be transformed into inference
rules and can be used for reasoning.

The remainder of the paper is organised as follows: Sect. 2 recalls the pio-
neering approaches that paid attention to the issue of coupling the ontology
with data mining techniques for ontology enrichment. In Sect. 3, we thoroughly
describe the architecture of the proposed system called SmartVine. Section 4,
provides snapshots of the developed prototype as well as a detailed discussion.
Section 5 concludes the paper and sketches avenues of future work.

2 Related Work

Among the most powerful tools for knowledge representation, we can cite the
ontology which is a formal and structural way of representing the concepts and
relations of a shared conceptualization [6]. It is often considered a fine source
of semantics and interoperability in all artificially smart systems. In parallel,
data mining techniques, in particular association rules introduced by Agrawal

et al. [1], can support the discovery of useful and hidden patterns in the data.
Recently, the area of coupling ontology and association rules has attracted the
interest of several research. However, most of them were focused on ontology
mining which is process for ontology learning [4]. Few researchers have addressed
the problem of enriching ontology through supporting the creation of semantic
relations between ontology concepts. In this section, we present a quick overview
of the most recent approaches.

Paiva et al. introduced an approach to enrich the ontological model with
relations between concepts with association rules [12]. The authors use the FP-
Growth [7] algorithm which build a tree-like compact structure to discover fre-
quent itemsets from text documents and then generate association rules. These
latter are used to learn useful relations in the ontology. In the same trend of
works, the author in [11] proposed a novel semi-automatic method for knowl-
edge extraction from unstructured data sources using association rule mining.
Relying on FP-Growth algorithm, the work focuses on improving the precision
of concept and its semantic relations present in an ontology. Later, Idoudi et al.



170 A. Mouakher et al.

introduced a new approach for evolving the content of an existing mammographic
ontology using novel knowledge coming from medical records [8]. For this pur-
pose, they used Apriori algorithm [2] to generate association rules which are then
evaluated and classified into three categories: known, unexpected and novel rules.
Both of the unexpected and novel rules are considered of great interest to domain
experts. The enrichment process of the knowledge base with association between
the existing concepts starts once these rules are validated by experts. Recently,
the authors in [5] proposed a method for discovering multi-relational association
rules from ontological knowledge bases. The discovered rules can be directly inte-
grated within the ontology since they are represented in SWRL. Furthermore,
the discovered rules may suggest new axioms.

The scrutiny of the related work unveils the wealthy number of researches
on this issue. Nevertheless, common weakness that can be addressed to the
above mentioned works stands on the use of traditional frequent pattern mining
algorithm such as A-priori or FP-Growth. According to [9], the applicability of
these algorithms is limited by the huge number of generated association rules
as well as the number of scans to the database. In addition of being a costly
process, the complexity of association rule mining increases exponentially with
the number of items. Unlike the studied approaches, we are dealing with large
volume of sensor data, which are continuously collected from WSNs. In our
approach, we rely on deriving a compact set of rules called generic bases of
association rules. This minimal set of rules is then mapped into SWRL rules
and used for the enrichment process of the ontology.

3 The Proposed Approach

The approach that we introduce in this paper relies on a multi-sensor decision-
support viticulture system. Thus, it enters within the scope of precise farming
since, the aim is to facilitate accurate and forward-looking decisions to ensure
better production, higher profits and a more rational use of chemicals. To do
so, the system is based on a network of heterogeneous sensors (on-farm optical
sensors or fixed stations in the vineyards, etc.) generating several heterogeneous
data streams. Nevertheless, it is of utmost importance to take into consideration
the complex nature of these devices, which requires a correct and reliable pro-
cessing strategy between the generation of information and the representation
of knowledge. In this respect, comes to play the main role of the ontology that
we use as a model of representation of knowledge to provide a unified terminol-
ogy. The goal of such knowledge formalization is twofold: (i) represent the tacit
knowledge of winegrowers; and (ii) provide an expression language to explain
analysis and identify causal relationships in the detected correlations within
the sensor lifts. The overall architecture of the system, called SmartVine, is
glanced by Fig. 1. The system proceeds into two main steps: The first one is the
OntoVine step which aims to build the ontology based on collecting knowledge
from experts. However, there is a lack of genericity in this drawn knowledge.
To overcome this downside we suggest to add another step, called VineMining,



Ontology for Smart Viticulture: Integrating Inference Rules 171

which extracts knowledge from collected data, converts it into inference rules
and integrates them into the reasoning process of the system. We thoroughly
describe the different stages of this approach in the remainder of this section.

3.1 The OntoVine Step: The Ontology-Based Engine

This step relies on an approach based on the aggregation of refined sensor data
into an ontology dedicated to viticulture1. Such knowledge modelling aims to
allow the system to detect and mitigate the impact of the event’s that may
occur in the vineyard such as diseases, pests, climate risks, etc.

Thus, the proposed ontology represents a new coupling between the ontolo-
gies of the sensors and those dedicated to the events applied to the agricultural
sensors. In particular, the ontology combines elements of the W3C SSN ontol-
ogy2 coupled with the Event ontology3 as well as the W3C Time ontology4.
Two main functions emerge from the construction of this ontology: (i) build
the links between the main concepts in the above reference ontologies; and (ii)
extend the ontology to agricultural classes and instantiate it with observational
data from agricultural sensors.

The approach starts by collecting knowledge from winegrowers gained
through face to face interviews. Then, a knowledge engineering builds the ontol-
ogy later by combining several ones. Each of them is dedicated to handle the
different knowledge collected: event and time. The knowledge is then converted
into inference rules aiming the combined ontology to reason.

In parallel data are collected from the vineyard by sensors collecting infor-
mation such as temperature, humidity, wind, etc. This data is integrated in the
system thanks to special SSN ontology for sensor. It allows, at first, to feed a
supervision system to give this data to the winegrowers. Furthermore, it allows
as well to detect the necessary firing criteria of the inference rules, e.g. tempera-
ture greater than 14 ◦C. Later, this rule is launched. The conclusion part of this
rule can be used to warn the winegrower of a the probability of a raising problem
and invites him to take the palliating actions.

3.2 The VineMining Step: Building Inference Rules from Data

In this second step, the focus is put on developing a method to enrich existing
ontology, through the identification of novel semantic relations between concepts
in order to have a better coverage of the domain knowledge. During this phase, a
process of raw data analysis is performed in order to extract exploitable knowl-
edge. First, the sensor data is collected in CSV files which are then cleaned and
transformed: the valueless records are removed and a multidimensional algo-
rithm Marm [3] is invoked. The latter allows to extract a minimal set of the

1 https://ontology.winecloud.checksem.fr/index-fr.html.
2 https://www.w3.org/ns/ssn/.
3 http://purl.org/NET/c4dm/event.owl/.
4 http://www.w3.org/2006/time/.

https://ontology.winecloud.checksem.fr/index-fr.html
https://www.w3.org/ns/ssn/
http://purl.org/NET/c4dm/event.owl/
http://www.w3.org/2006/time/


172 A. Mouakher et al.

Fig. 1. Overall SmartVine architecture at a glance.

most reliable multi-dimensional generic association rules, i.e. allowing to derive
all other association rules, from many sources. It is worth mentioning that these
rules convey hidden knowledge into the data. Nevertheless, the compelling chal-
lenge still lies in the proposal of a very scalable algorithm capable of processing
very large amount of data flow. This set of multi-dimensional association rules is
later transformed into SWRL (Semantic Web Rule Language) rules, which are
injected into the ontology. These SWRL rules can then be used by the inference
engine to manage new knowledge related to sensor data.

Extraction of Multidimensional Association Rules. The Marm algorithm
(Multidimensional Association Rules Mining) aims to identify a small set of
multi-dimensional association rules that allows the derivation of all the other
potentially interesting rules in a Boolean tensor. The basics of these association
rules are sketched in the following.

Let D = {D1, . . . ,Dn} be a set of n dimensions and R ⊆ D1 × · · · × Dn an
n-ary relation between them. “Association rules” from the tensor (D,R) involve
various dimensions.

Definition 1. Let D ⊆ D be a set of dimensions. Let Xd ⊆ Dd, Dd ∈ D, be a
non-empty set of elements of the dimension Dd. The set

∏
Dd∈D Xd is called an

association on D and D is called its domain.



Ontology for Smart Viticulture: Integrating Inference Rules 173

Definition 2. Let Di be a dimension and X =
∏

Dd∈Dom(X) Xd an association.
The projection πDi

(X) of X on Di is Xi if Di ∈ Dom(X) or ∅ otherwise.

Where Dom(X) denotes the domain of an association X.

Definition 3. A multidimensional association rule is a rule X → Y between
two associations X and Y . The domain of the rule is the domain of X � Y .

Definition 4. The support of an association X with regard to a domain
D ⊇ dom(X) is the set sD(X) = {t ∈

∏
Dd∈D Dd | ∃u ∈∏

Di∈D\dom(X) Di such that ∀x ∈ X,x.u.t ∈ R}

Definition 5. The natural confidence of the association rule X → Y is

conf(X → Y ) =
|s(X � Y )|

|sdom(X�Y )(X)|

Algorithm 1 computes the set of rules between closed n-sets that are neigh-
bours w.r.t. the inclusion relation on their last n − 1 components. It transforms
the input tensor T into T ↑ and then computes the closed n-sets. Rules are
then constructed either by using the closed n-sets as is or by computing their
neighbouring relation w.r.t. the inclusion on their n − 1 last components.

Association Rules to SWRL Mapping. It is worth mentioning that one
of the advantage of these multi-dimensional association rules stands in their
inherent similarity with SWRL rules. Indeed, the latter are also of the form
Antecedent → Consequent. Another advantage is the ability to control the num-
ber and the quality of the obtained rules through the confidence and the support

Fig. 2. The different stages of the vine life cycle.



174 A. Mouakher et al.

Fig. 3. Detection of vine diseases using SWRL rules.

Fig. 4. Example of a rule SWRL used for prediction of downy mildew disease.

metrics. However, generating association rules from data is not enough in their
raw form, we need to transform them into SWRL rules in order to integrate
them in the general context of the ontology. To accomplish the association rules
transformation we apply the following steps:

1. Generate semantic classes with bounds for consequents based on the confi-
dence such as: “unlikely” [0;0.30], “conceivable” [0.30;0.60] and “very proba-
ble” [0.60;1]



Ontology for Smart Viticulture: Integrating Inference Rules 175

Algorithm 1: ComputeRules(T )
Input: A tensor T
Output: A base for association rules which domain does not contain D1

1 R ← ∅
2 T ← T ↑

3 C ← ClosedNSets(T )
4 R ← BuildRules(C)
5 return R

2. Map the attributes of the antecedent and the consequent to classes in the
ontology, generating in the process SWRL rules of the form C0 → C1, where
C0 and C1 are ontology classes

3. Transform the rules by bringing the consequent to the antecedent side and
rely on the confidence metric to select the consequent. For instance, if the
confidence for the rules is 75%, then: C0 ∧ C1 → very probable.

4 Results and Discussion

The main goal of the SmartVine system is to provide winegrowers with a
reliable, flexible and “fresh” modular decision support tool that can help them
to make the best decisions to fight, reduce and manage diseases and pests while
reducing the use of pesticides. The developed prototype is accessible via the
following link: https://winecloud.checksem.fr/presentation. The system provides
a set of functionalities based on causal reasoning such as the detection of the
phases of the vine cycle or the collaborative supervision of events. Although
some functionalities are still under development, the system is able to give useful
information in the current release. Two main functionalities are identified which
are detailed in the following subsections.

4.1 Identifying the Different Stages of the Vine Life Cycle

In addition to the details about the location of the sensors in the vineyards,
the SmartVine system is able to provide an overview of the vine life cycle
including the corresponding dates and characteristics for each stage. Based only
on semantic knowledge collected from the carried interviews, the system proposes
visual information via the tab “Cycle of the vine”. Then, real sensor data are
added and the obtained results are more accurate. The tab “Vine life cycle
and weather”, of the system, illustrates the influence of weather conditions on
the stage duration as well the period (start and end date). These observations
are sketched by Fig. 2, which presents a snapshot of this tab. Furthermore, the
system is able to explain the reasoning process of the semantic model through the
tab “Explanation cycle of vine + Weather”. For a given date, the corresponding
state of the life cycle is displayed and by clicking on the “Explain reasoning”
button, the system provides the sequence of triples and SWRL rules allowing
the ontology to deduce relationship between them.

https://winecloud.checksem.fr/presentation


176 A. Mouakher et al.

4.2 Collaborative Event Monitoring

The main purpose of this functionality is the early proactive detection of diseases
and pests occurrence. Indeed, these occurrences are considered as events in our
predictive model and the SmartVine system is able to give an overview about
the most critical stages through the tab “Diseases, Pests”. This functionality
is designed based on the coupling of observations provided by winegrowers as
well as hidden knowledge in sensor data discovered from the association rule
mining process. Figure 4 illustrates an example of a SWRL rule for the detection
of downy mildew disease. Indeed, our predictive model considers precipitation,
temperature and humidity as the most relevant factors to disease emergence.
For example, the downy mildew which is probably the most dangerous disease
producing critical damages during the growing season of grapes, is enhanced
by wet weather and high temperature. The “Disease detection” tab, given by
Fig. 3, illustrates the reasoning process provided by our system to detect downy
mildew and powdery mildew. A detailed explanation of the SWRL rule is given
whenever one of the disease is detected.

5 Conclusion

This paper presented an upgrade of an ontology-based system aiming at super-
vising and controlling vineyard to increase the quality and quantity of grapes
and wine by detecting different types of risks. This ontology reasoning vehicles
a given human know-how, as well as the data collected by sensors placed in the
vineyard. However, human knowledge differs from one to another depending on
their own vineyard. In addition, in the context of climate change, rules known
by winegrowers are disturbed. Then, we propose an upgrade of this system by
adding reasoning rules based on data to complete human-based rules. To do so,
we focus on data collected by sensors and extract association rules from them.
They allow to highlight strong correlations into the data and then generating
knowledge. These rules are then automatically transformed into inference SWRL
rules and introduced into the reasoning engine.

As a future, we plan to take into consideration the feedback of the wine-
growers to validate or not the conclusions of the rules and then generating a
dynamic system capable to update itself. In addition, we are looking to miti-
gate the impact of climate change, which is no longer just an abstract problem.
Indeed, the wine culture is threatened by rising global temperatures.

Acknowledgement. This study was conducted as part of the FUI WineCloud

(https://winecloud.eurestools.eu/.) project. The authors would like to thank the
project partners for their valuable contribution, namely: Orange, R-Tech Solutions,
The Cave of Lugny and Photon Lines. The authors are also grateful to all the technical
team for their collaboration: Nicolas Gros, Marie Simon and Sébastien Gerin.

https://winecloud.eurestools.eu/


Ontology for Smart Viticulture: Integrating Inference Rules 177

References

1. Agrawal, R., Imieliński, T., Swami, A.: Mining association rules between sets of
items in large databases. SIGMOD Rec. 22(2), 207–216 (1993)

2. Agrawal, R., Srikant, R.: Fast algorithms for mining association rules in large
databases. In: Proceedings of the 20th International Conference on Very Large
Data Bases, VLDB 1994, San Francisco, CA, USA, pp. 487–499. Morgan Kaufmann
Publishers Inc. (1994)

3. Bazin, A., Gros, N., Bertaux, A., Nicolle, C.: Condensed representations of asso-
ciation rules in n-ary relations. IEEE Trans. Knowl. Data Eng. (TKDE) (2019, to
appear)

4. Ben Ahmed, E., Gargouri, F.: Enhanced association rules over ontology resources.
IJWA 7(1), 10–22 (2015)

5. d’Amato, C., Staab, S., Tettamanzi, A.G.B., Minh, T.D., Gandon, F.: Ontology
enrichment by discovering multi-relational association rules from ontological knowl-
edge bases. In: Proceedings of the 31st Annual ACM Symposium on Applied Com-
puting, SAC 2016, pp. 333–338. ACM (2016)

6. Gruber, T.R.: A translation approach to portable ontology specifications. Knowl.
Acquis. 5(2), 199–220 (1993)

7. Han, J., Pei, J., Yin, Y.: Mining frequent patterns without candidate generation.
SIGMOD Rec. 29(2), 1–12 (2000)

8. Idoudi, R., Saheb Ettabaâ, K., Solaiman, B., Hamrouni, K., Mnif, N.: Association
rules-based ontology enrichment. IJWA 8, 16–25 (2016)

9. Mahmood, A., Shi, K., Khatoon, S., Xiao, M.: Data mining techniques for wireless
sensor networks: a survey. Int. J. Distrib. Sens. Netw. 9(7), 406316 (2013)

10. Mouakher, A., Belkaroui, R., Bertaux, A., Labbani, O., Hugol-Gential, C., Nicolle,
C.: An ontology-based monitoring system in vineyards of the burgundy region. In:
Proceedings of the 28th IEEE International Conference on Enabling Technologies:
Infrastructure for Collaborative Enterprises, WETICE 2019, Naples, Italy, 12–14
June 2019, pp. 307–312 (2019)

11. Paiva, L.: Semantic relations extraction from unstructured information for domain
ontologies enrichment. Ph.D. thesis, Universidade NOVA de Lisboa (2015)

12. Paiva, L., Costa, R., Figueiras, P., Lima, C.: Discovering semantic relations from
unstructured data for ontology enrichment: asssociation rules based approach. In:
Proceedings of the 9th Iberian Conference on Information Systems and Technolo-
gies (CISTI), pp. 1–6 (2014)



TBCE: Towards Blockchain-Based
Collaborative Enterprise



Introduction to the First International
Workshop on Towards Blockchain-Based
Collaborative Enterprise (TBCE 2019)

One of the most promising technologies that can cope with trust and security issues in
dynamic collaboration, is distributed ledger technology. However, this technology is,
so far, not adapted to the development and the execution of collaborative business
processes necessary to meet business needs.

In this workshop, participants tried to answer the question: how to enable dis-
tributed ledger based infrastructures so that they can meet collaborative business needs?

Only two papers were accepted.

Layth Sliman



Model-Driven Engineering
for Multi-party Interactions

on a Blockchain – An Example

Gero Dittmann(B), Alessandro Sorniotti, and Hagen Völzer(B)

IBM Research – Zurich, Rüschlikon, Switzerland
{ged,hvo}@zurich.ibm.com

Abstract. Multi-party interactions can be a powerful modeling
paradigm for business processes that cross organizational boundaries, but
it is typically hard to implement in a distributed setting. Blockchains,
however, make such an implementation possible. In a small case study,
this paper demonstrates three related approaches how an example taxi
dispatcher application involving independent parties can be modeled for
implementation on a blockchain: BPMN with an extension for multi-
party interactions, synchronized state-machines, and high-level Petri
nets, respectively. The three models differ in how well they (a) align
with the code in order to support model-driven engineering and (b) sup-
port readability of the contractual aspects of the chaincode to business
stakeholders. We have implemented and tested the example application
as chaincode on Hyperledger Fabric. Our preliminary results suggest that
chaincode can be aligned with a high-level model of synchronized state
machines which, in turn, can be easily visualized, for example, by an
extended BPMN notation.

1 Introduction

A blockchain, or distributed-ledger technology (DLT), combines storage in an
immutable, distributed ledger with a smart contract defining the transactions
that can be invoked to update the ledger. The smart contract is agreed upon
beforehand by the partners in the blockchain network. Any update to the dis-
tributed ledger, i.e., any transaction must be approved by consensus among a
set of partners. The set is defined such that all partners trust the resulting state
of the ledger.

This combination of storage, transactions and trust makes a blockchain an
ideal platform for automating business processes across organizational bound-
aries. Business partners that don’t trust each others’ IT systems can trust a
blockchain to execute processes exactly as defined in the smart contract. The
ledger gives each partner perfect transparency of the process’ progress and
history—in some cases subject to privacy domains.

The blockchain concept was introduced by the Bitcoin cryptocurrency net-
work. Many business applications of blockchains, however, do not involve any
c© Springer Nature Switzerland AG 2020
S. Yangui et al. (Eds.): ICSOC 2019 Workshops, LNCS 12019, pp. 181–194, 2020.
https://doi.org/10.1007/978-3-030-45989-5_15

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-45989-5_15&domain=pdf
https://doi.org/10.1007/978-3-030-45989-5_15


182 G. Dittmann et al.

cryptocurrency. Some employ stable coins for on-chain payments that are backed
by fiat currency to inherit its stability and reliability. Other applications don’t
depend on on-chain payments at all. Instead, they focus on automating business
processes to improve operational efficiency while leaving the financial aspects to
established invoicing and funds-transfer infrastructures.

Smart contracts are commonly developed by business networks or consor-
tia of multiple parties who need to reach a consensus on the “contract terms”.
Negotiations of the exact functionality involve not just engineers but business
and legal professionals. Those stakeholders would be greatly helped by a graph-
ical representation of the implemented business process, giving parties a more
intuitive understanding than source code can.

Existing languages, such as the Business-Process Model and Notation
(BPMN) [5], have been successful within corporations but automation of pro-
cesses spanning multiple organizations has proven difficult and adoption slow.
A blockchain can be viewed as a platform on which business processes can run
and that is not controlled by an individual party but trusted by all, removing
some of the roadblocks to inter-organizational process automation.

In this paper, we report preliminary results from a study how to adapt exist-
ing process-modeling notations for business processes across independent orga-
nizations and show how to map this notation to a blockchain-based implemen-
tation. The approach links the negotiation of functionality in a consortium to
its implementation. We demonstrate our approach with the example of a taxi
dispatcher application that we have implemented on a permissioned blockchain,
Hyperledger Fabric.1

A recent book [8] surveys the existing work on model-driven engineering
of blockchain applications. For a comprehensive list of related work, we refer
to [8, Section 8.5]. In particular, Chap. 8 of that book points out the relevance
of models for communicating important aspects of chaincode between business
participants. Furthermore, the authors observe that a blockchain can serve as a
trusted monitoring facility of all business transactions specified in the chaincode.
The same chapter [8, Chapter 8], which extends an earlier paper [7], presents
an in-depth supply-chain case study based on traditional BPMN collaboration
and choreography diagrams. An implementation in Ethereum is presented, which
shows that the message-passing communication mechanism in BPMN collabo-
rations can be mapped to Ethereum chaincode.

We propose an extension of BPMN where participants may communicate
using atomic, symmetric multi-party interactions between participants, which is
a stronger communication primitive compared to message passing but still easily
maps to blockchain transactions.

The case study in [8, Chapter 8] considers also other important aspects of a
blockchain application such as privacy, off-chain data storage and non-functional
requirements that are out of scope for this paper. An alternative approach to mod-
eling smart contracts using artifact-centric models is presented by Hull et al. [3].

1 As a smart contract for Hyperledger Fabric is also called chaincode we use those
terms interchangeably.



Model-Driven Engineering for Multi-party Interactions on a Blockchain 183

They focus on conceptual modeling and reasoning over the business logic but
do not yet address implementation. Artifacts in artifact-centric models also have
an associated state machine, the artifact life cycle, but they use a more explicit
and asymmetric communication style between state machines in contrast to the
implicit and symmetric style in our approach.

The remainder of this paper is structured as follows. We first introduce an
example application in Sect. 2. In Sect. 3, we describe and discuss different pro-
cess models of our example application. After a brief introduction to Hyper-
ledger Fabric, our implementation platform, in Sect. 4, we describe our block-
chain implementation in Sect. 5. We conclude in Sect. 6.

2 An Example Application: A Taxi Dispatcher

To demonstrate our modeling approach, we introduce taxi dispatching as an
example application. Many cities are serviced by multiple taxi operators. When
a passenger calls a specific operator, an unoccupied taxi might have to be fetched
from a distance while another unoccupied taxi from another operator might be
much closer. Therefore, a common dispatching service that selects the closest
available taxi for a given passenger request, regardless of the operator it belongs
to, implements a more efficient allocation that potentially benefits both the taxi
operators and passengers.

For taxi operators to engage in such a common dispatching service, they must
agree on a dispatching rule, the way it is to be used, and trust its implemen-
tation. We believe this makes taxi dispatching a good example of a multi-party
application that can benefit from the distributed trust provided by a blockchain.

We consider two actors: taxi drivers and passengers. The blockchain imple-
ments the dispatcher. Drivers request a fare (passenger) with the dispatcher,
announcing their current location. Likewise, passengers request a ride with the
dispatcher, also announcing their location.

To keep the example simple, the dispatching rule matches a new ride request
with the closest driver, if any, and each new fare request with the closest pas-
senger, if any. If no match is found, the request is queued. If a match is found,
both passenger and driver are notified and the driver is expected to pick up the
passenger. When the ride is completed the driver can request the next fare.

3 Process Models for the Example Application

This section presents three alternative approaches to modeling taxi dispatch-
ing for a blockchain implementation. The first extends BPMN with multi-party
interactions, a powerful modeling paradigm that is also a better representation of
blockchain-mediated communication than the standard’s message-passing nota-
tion. This is followed by proposals based on synchronized state machines and
Petri nets, respectively, and a discussion of how the approaches compare.



184 G. Dittmann et al.

Ta
xi

Serve 
Ride

Cancel
Serve

[Waiting][Init]

[Init]

[Driving]

[Waiting]

P
as

se
n
g
er

Request 
Ride

Cancel 
Request

Start
Ride

[Waiting][Init]

[Init]

End
Ride

[Riding]

[Init]

Fig. 1. A process model in an extended BPMN notation

3.1 BPMN with Multi-party Interactions

Figure 1 shows a process model of our taxi dispatching application. This process
model represents the smart contract governing interactions between the partic-
ipants: taxis and passengers. Initially, we consider a single passenger, a single
taxi, and their interactions. We discuss later how multiple interacting passengers
and taxis can be mapped.

The passenger may request a ride by initiating a transaction Request Ride on
the blockchain. Such a transaction could be called, for example, from a client on
the smartphone of the passenger. We represent the passenger on the blockchain
as a state machine that is initially in some generic state Init and that moves
into the state Waiting, which is short for Passenger.Init and Passenger.Waiting,
respectively. This notation is similar to the object life-cycle notation for process
models, see for instance [4].

The Request Ride transaction registers the passenger ID and location in a
waiting list (not shown in this model). Similarly, a taxi can register its availability
using the Serve Ride transaction. A waiting passenger may cancel her request,
and a waiting taxi may withdraw its availability, moving them back to their
respective Init state.

If a passenger and a taxi are both waiting they can engage in a common taxi
ride, provided that they have a match which is specified in the business rule
(dispatching rule) associated with the Start Ride transaction. If the Start Ride
transaction succeeds the passenger state-machine moves to the Riding state and
the taxi state-machine proceeds to the Driving state. Note that BPMN would
require drawing an AND-join in front of both the Start Ride and End Ride
transactions, which we have omitted here by convention for tasks that cross the
boundary of pools. The end of a ride is manifested by executing an End Ride
transaction which moves the state machine of the passenger back to the Init
state and the taxi state-machine back to the Waiting state.



Model-Driven Engineering for Multi-party Interactions on a Blockchain 185

Passenger.Init Passenger.Waiting Passenger.Riding

Taxi.Init Taxi.Waiting Taxi.Driving

R
ul

e(
x,

y)

ServeRide

RequestRide

TransitionWaitingToRiding

x:

y:

CancelServe

CancelRequest

Fig. 2. A synchronized state-machine model

Note that Fig. 1 deviates from, or extends, BPMN in that the participants
Passenger and Taxi communicate not by means of message-passing but by means
of common transactions. Such transactions are also known as multi-party interac-
tions or multiway rendezvous and have been studied in various formal languages
such as CSP [2]. This interaction paradigm is powerful on a descriptive level in
that it can yield very concise system models, but it is typically hard to implement
in a distributed setting.

Second generation blockchains, however, make such an implementation pos-
sible. Both Request Ride and Serve Ride invoke the dispatching rule. If the rule
finds a match it invokes Start Ride on both the passenger and the taxi. End
Ride is similarly invoked on both.

3.2 Synchronized State Machine

Figure 2 shows a formal model of two synchronized state machines, one for the
passenger and one for the taxi. As usual, see for instance UML state charts, a
state machine is a connected directed graph that represents a sequential thread
of execution. However, the two state machines shown in Fig. 2 are synchronized
in two transitions. Each of these two transitions represents the synchronization
of their respective inbound transactions. For example, the one labeled Tran-
sitionWaitingToRiding synchronizes the Passenger transition from Waiting to
Riding with the Taxi transition from Waiting to Driving.

In comparison with Fig. 1, the state-machine model in Fig. 2 reflects more
explicitly that each of the two state machines has cycles: the passenger returns
to its Init state and the taxi returns to its Waiting state upon completion of
the taxi ride. However, the model in Fig. 2 still refers to two fixed instances of
state machines that are synchronized in the entire model, denoted x and y. Note
that we also refer to the business rule Rule(x, y), which requires that for the
transition TransitionWaitingToRiding to be successful the dispatching rule is
satisfied for x and y, e.g., x is the longest waiting passenger and y the waiting
taxi that is closest to x.



186 G. Dittmann et al.

3.3 High-Level Petri Net

A process as in Fig. 1 represents only a part of the entire system, namely the
interaction of a given pair (x, y) of a passenger x and a taxi y. In the entire
system, a taxi y may engage in multiple interactions with different or repeated
passengers. Although Figs. 1 and 2 indicate that such repeated interactions are
possible by referring to the states of the state machines, the semantics of how
multiple such processes may be instantiated and interact with each other is not
fully explicit.

To make that semantics explicit, Fig. 3 provides a Petri-net model of the
full system with a complete behavioral specification of the entire system. In
Fig. 3, P and T represent the set of passengers and taxis, respectively, that have
permission for the application. This high-level Petri net has a clear operational
semantics—see for instance [6] for a description. It can serve either as code on
an abstract machine implemented on the blockchain or as a complete functional
specification for blockchain code.

P
x

y

x x

y y

RequestRide

xx

T

ServeRide

CancelReq

x

CancelServe

y

Rule(x,y)

x

y

yy

Passenger.Init

Taxi.Waiting
Taxi.Init

Passenger.Waiting Passenger.Riding

Taxi.Driving

x

y

Fig. 3. A high-level Petri-net model of the system

Figure 3 looks similar to both Figs. 1 and 2 but, in contrast to those, Fig. 3
presents all processes simultaneously. Participant instances are now local to a
transaction, not fixed for the entire model any longer as in Figs. 1 and 2. This
is reflected by pools not being explicit anymore in the Petri-net model. Pools
are appealing from a business perspective and they might be useful to represent
identity management and authorization aspects of the blockchain application,
but they also represent a rigid communication structure—in our example: one
instance of a passenger interacts with one instance of a taxi. In more complex
applications the communication structure might be more complex and dynamic.
For example, multiple passengers could share a ride or passengers could dynam-
ically change from one taxi to another. In such scenarios it becomes difficult
to map all interaction details with a fixed set of pools. The Petri-net model
overcomes this limitation.



Model-Driven Engineering for Multi-party Interactions on a Blockchain 187

3.4 Discussion

The high-level Petri-net model provides a full specification of the system with
full operational semantics that can be directly translated into code. We sketch
how such code is structured in Sect. 5. The code structure will resemble most
the intermediate model in Fig. 2 of synchronized state machines. The formal
description of such a translation is subject of future work. Such a high-level
Petri net is not restricted to a fixed set of pools or pool types and can therefore
also be used for more complex communication structures.

However, high-level Petri nets do not come with the same tool support as
industrial process-modeling languages such as BPMN. Therefore, it is desirable
to provide a language that could benefit from existing industry adoption and
that is more appealing to business stakeholders. We have argued that BPMN
can be extended with multi-party interactions to provide a high-level model of
our example that corresponds to the formal high-level Petri net. Again, a formal
definition of the BPMN extension and an investigation which existing BPMN
constructs should be kept for a blockchain-tailored language are out of the scope
of this paper. A definition of such a language will be the subject of future work
for which the models in this section can serve as first steps. Such future work
should also study how to overcome the limitation of BPMN that result from a
fixed set of pools or pool types.

4 Introduction to Hyperledger Fabric

This section introduces a blockchain, Hyperledger Fabric, that we have used to
implement the example application. The implementation will be presented in
the next section.

Hyperledger Fabric [1], cf. also [8, Sect. 2.3], is a general-purpose distributed
operating system providing an execution environment for externally defined pro-
grams called chaincodes. Its design is based on a set of organisations forming
a consortium: the consortium as a whole defines common rules and policies,
e.g. the policy to onboard a new organisation, and defines the shared business
logic, i.e. the chaincodes. The Fabric network enforces these common rules and
policies and maintains the shared world state—comprising name, version, and
value of all the variables that have been created by all chaincodes—ensuring its
consistency.

In order to enforce access-control policies to the functions updating the world
state, Fabric is a permissioned blockchain, i.e. a network that only authorized
members can join. Each organisation in the consortium acts as an identity man-
agement domain and issues identity credentials to its own members.

A Hyperledger Fabric instance consists of two types of nodes: peers and order-
ers. The peers’ prime responsibility is to manage and execute chaincodes. Peers
are also responsible for maintaining the world state. Chaincodes are invoked by
fabric clients. An invocation, much like a function call, includes a set of argu-
ments; it may read and modify any variable in the system; and it may produce
a return value. Successful invocations produce messages called transactions that



188 G. Dittmann et al.

include invocation arguments, return values and world state changes recorded
in read-write sets. The world state exists in two forms: the ledger, which is an
append-only log of all transactions, and the state DB, which is a snapshot of the
current world state. The peer guarantees that the two are kept in sync: as new
transactions are appended to the ledger, the state DB is updated to reflect all
the variables that have been changed.

The principal role of orderers is to deliver the same set of transactions in the
same order to all peers in the system. This is designed to guarantee that ledger
and world state of all peers will be identical.

4.1 The Endorser Transaction Protocol

The Endorser Transaction Protocol is the protocol used in Fabric to invoke
the business logic defined in one ore more chaincodes. The protocol operates
between a client, one ore more endorsers and the ordering service to generate and
commit a transaction. The following steps are required to successfully commit a
transaction:

Propose Transaction. The application, implemented using a Fabric client
SDK, sends a transaction proposal to a selected number of nodes (peers). The
transaction proposal specifies the smart contract (chaincode) and the arguments
for the chaincode invocation.
Execute Transaction Proposal. The peers that receive the proposal execute
the chaincode with the arguments provided in the proposal. They add the outputs
of the execution, the return value and a read-write set to the proposal. The read-
write set captures the updates to, as well as dependencies on the world state.
Note that the world state does not change during the course of a chaincode
invocation; proposed changes are merely described in the read-write set. All peers
that execute the chaincode sign the output of the execution and send it back to
the application. These signatures are called endorsements. We sometimes also
refer to this step as simulation, since the chaincode is executed but state updates
are not immediately applied.
Assemble Transaction. The application bundles all endorsed transaction pro-
posals into a transaction and sends it to the ordering service.
Order Transaction. The ordering service collects incoming transactions and
assembles them into blocks based on a consensus algorithm between the orderers.
Once a block is complete, the ordering service sends it to the committing peers.
Transaction Validation. When the committing peers receive a new block, they
append it to the ledger and validate every transaction in that block. Validation
mainly ensures that the endorsements of a transaction satisfy the endorsement
policy for that chaincode, and that the read-write set does not conflict with
concurrent updates that were committed before. If a transaction is valid, the
world state is updated with the read-write set of the transaction.



Model-Driven Engineering for Multi-party Interactions on a Blockchain 189

4.2 State Machines in Fabric

Fabric lends itself very well to the implementation of state machines owing to
its programming model. The business logic may be conveniently split between
private logic on the application side and shared logic on the chaincode side.
The application side is represented by the client SDK initiating the endorser
transaction protocol and invoking chaincodes. The chaincode side is implemented
in the chaincode logic which is directly invoked by the peer in response to a
chaincode invocation.

A state machine can be implemented in Fabric as follows:

State. The current state of the state machine is stored in the ledger; this way the
network as a whole is in agreement about the current state and any node in the
network may handle the request for a state transition. If the state is confidential
it is possible to use either encryption or the private data feature to limit the set
of participants who may access the information.
State transitions may be implemented as chaincode functions. Each function
may inspect the ledger to determine the current state, use identity management
and access control capabilities to determine the identity and entitlement of a
requester. With this information, the chaincode determines whether the transi-
tion is allowed and performs the necessary updates to the ledger to reflect the
new state.
Atomicity. The atomic nature of fabric transactions ensures that state transi-
tions across multiple state machines happen atomically.
Access Control. Fabric is a permissioned network and so access control is a
built-in feature. It is possible to use Fabric access control together with chaincode-
level access control to identify clients and determine whether they are entitled
to perform the requested action.

While the chaincode implements the rules and persists the state, creating
network-wide enforcement for the state-machine logic, the input for state tran-
sitions necessarily comes from the end users. The client SDK receives a request
from end users to perform a certain action, translates it into a state change
request and submits that to peers by initiating the endorser transaction proto-
col. The client SDK may perform preliminary checks to ensure that the request
is legitimate and timely, e.g. that no two conflicting requests have been submit-
ted, or that the same request isn’t submitted twice. While this step is useful in
reducing unnecessary transactions that would be rejected by the network, it isn’t
strictly necessary to guarantee the overall correctness: conflicting or duplicate
requests would be automatically rejected by the system.

In a blockchain system, we have to account for adversarial behaviour. For
example, it may be advantageous for a malicious entity in the system to force a
state machine to transition to a specific state, or to violate the transition rules.
Fabric gives the implementer of the chaincode (the state machine in this case)
the security control of endorsement policies to capture the trust relationships in
the network. A Fabric network uses the endorsement policy to describe the set of
entities that are trusted to uphold the business logic of the associated chaincode.



190 G. Dittmann et al.

By defining the endorsement policy they ensure that state changes are allowed
only if they are endorsed by the selected peers. In turn, if the selected peers are
chosen to ensure the necessary checks and balances to force an honest behaviour,
ledger correctness is guaranteed and hence the correctness of the state machine
and its transitions.

Finally, the atomicity property ensures that multiple state machines are capa-
ble of jointly transitioning across states, ensuring that business processes that
affect multiple entities are supported by the platform.

4.3 The Chaincode Interface

A chaincode must implement a fixed interface comprised of two functions: an
Init function and an Invoke function. Init is called once when the chaincode
is instantiated, whereas Invoke is called in response to client transactions.
Either function is invoked by a peer and supplied with an implementation of a
shim interface through which the chaincode may interact with the ledger and
other chaincodes. Most notably, the shim gives access to the world state by
exposing basic Put and Get operations on key-value pairs.

5 An Implementation

This section describes our implementation of the sample use-case described in
Sects. 2 and 3. The implementation is structured in two layers:

State-Machine Management (SMM). This is the lowest layer in the imple-
mentation and makes direct use of the shim interface to implement the general-
purpose logic related to state-transition management.
State-Machine Logic (SML). This layer is built on top of the previous and
makes use of it to implement the logic of the actual state machine at hand—
in our case, the state machine related to our use case. The SML includes the
definition of the actual states and transitions as well as the transition logic and
access control. This layer defines functions to request state transitions that are
directly exposed to chaincode invokers.

5.1 Entities

We assume that the different entities in our system (drivers and passengers) are
transacting clients in the blockchain network. Since the network is a permissioned
one, each entity has an identity credential that they can use to identify and
transact. Credentials may also certify attributes of their owner, for instance
in our case we assume they certify the role of the entity—driver or passenger.
Finally, entities may either transact directly (thus running the client SDK) or
proxy their interaction via a browser or mobile app to an application server.
We assume each entity has a unique identifier, which we will refer to as the
entity’s ID.



Model-Driven Engineering for Multi-party Interactions on a Blockchain 191

5.2 State-Machine Persistence

In our use case, we instantiate multiple state machines, one per participant: each
state-machine instance identifies the current state of the participant it represents.

The current state of each state machine is persisted to the ledger. In the
implementation we make use of composite keys, a well-known feature of key-
value stores, that structures state keys as a lexicographically sorted tree with
the ability to efficiently retrieve groups of keys by prefix. The current state
of an entity is stored on a key which is formed as STATE.{ROLE}.{ID} where
{ROLE} is instantiated with the role of the entity (driver or passenger) and {ID}
is instantiated with the ID of each entity whose state the key refers to. The value
associated with the key stores the current state of that entity. Legal states for
entities with the passenger role are INIT, WAITING and RIDING, whereas legal
states for entities with the driver role are INIT, WAITING and DRIVING. The
SMM layer is responsible for creating and updating these keys, on instructions
from the SML layer that requests state transitions.

Each state has some state metadata attached to it which is created, mar-
shalled and consumed by the SML layer and only stored as an opaque byte blob
by the SMM layer.

5.3 State-Machine Transitions

The chaincode exposes four main functions: INIT, REQUESTRIDE, SERVERIDE
and ENDRIDE. When an entity requests a state transition, the chaincode retrieves
the entity’s ID from the request, retrieves the current state of the entity from
the ledger and uses information from the SML layer to determine whether the
transition is legal. If so, the SMM layer performs the necessary transition, pos-
sibly updating SML state in the ledger. We also expose a STATUS function to
permit entities to query the current status of their state machine. This may be
required for a web portal or a mobile app to display status information in the
user interface.

The main structure of the Invoke function of the chaincode is the following:

func (cc *C) Invoke(shim shim.ChaincodeStubInterface) Response {
fn, args := stub.GetFunctionAndParameters()
switch fn {
case INIT:

// INIT logic
case REQUESTRIDE:

// REQUESTRIDE logic
case SERVERIDE:

// SERVERIDE logic
case ENDRIDE:

// ENDRIDE logic
case STATUS:

// STATUS logic
default:



192 G. Dittmann et al.

// error
}

}

In the following we describe the implementation of these functions.

INIT. This function is invoked to handle the initial onboarding of each partic-
ipant and may thus be invoked by both drivers and passengers. The chaincode
logic extracts the ID of the entity from the request, checks that the entity doesn’t
exist in the system and then sets the entity’s status to the INIT state.

REQUESTRIDE and SERVERIDE. These two functions are the passenger and
driver version, respectively, of the logic required to pair up a driver with a passen-
ger. The function takes as argument a set of coordinates of the entity and the ID
of the requester. The implementation checks that the entity is in either the INIT
or WAITING state, performs any state-machine transition that may be required
(e.g. if the entity was previously in the INIT state) and sets (or updates) the
position of the entity. This information is stored in the WAITING.{ROLE}.{ID}
key, where {ID} is instantiated with the ID of the entity and {ROLE} with its
role.

The function also attempts to match supply with demand as follows: assume
REQUESTRIDE is invoked. The chaincode logic uses the shim to scan the range
of the world state rooted at WAITING.DRIVER, which will return the IDs of all
waiting drivers. The chaincode logic then reads out all positions and selects the
closest driver based on the current position of the passenger supplied as argument
to the invocation. If one is found, both entities transition from WAITING to
DRIVING and RIDING for a driver and a passenger, respectively.

When a match is found, an ID of the match is also generated and stored
in the RIDING.{ROLE}.{ID} key, where {ID} is instantiated with the ID of
the entity and {ROLE} with its role. This key also stores the identity of both
participants, so that by inspecting one key it is possible to retrieve the other
participant. The fact that a match was found is signalled by the fact that both
driver and passenger have the same ride ID stored in this key. The transition
to this state deletes the WAITING.{ROLE}.{ID} key from both the driver and
the passenger.

This PoC implementation has ample room for optimisations (which are out-
side of the scope of the paper): for instance, position keys may be further sorted
to avoid having to scan the entire range of keys. The matching function may
also be improved to avoid matching a driver–passenger pair if their locations are
not within an acceptable distance. Finally, the REQUESTRIDE function should
possibly alert drivers.

ENDRIDE. This function signals the end of a ride and may be invoked by either
participant to any given ride. The argument to this function is the position where
the ride ended, signalling the new position of the driver now in the WAITING
state to signal its willingness to pick up new passengers. The passenger goes
back to the INIT state instead because it may no longer need to make use of
the platform.



Model-Driven Engineering for Multi-party Interactions on a Blockchain 193

The implementation at first checks that the transition is allowed (i.e. that
the requester is in the DRIVING or RIDING state), determines the ride identifier
and the ID of the other party to the ride from the RIDING.{ROLE}.{ID} key
and transitions both participants to the new state, with the new information
attached to the state wherever appropriate.

5.4 Testing

We have developed the chaincode logic in golang and tested it against Hyper-
ledger Fabric version 2.0.0 alpha. Instead of deploying a full network we have
tested the chaincode using the unit test environment with the mock version of
the shim interface2. In our test runs we exercised the entire functionality of the
state machine with the following scenarios: (i) passenger requests a ride, no taxi
available; driver later concludes previous ride and now offers a ride to the passen-
ger; (ii) driver is ready to serve a ride at a location but no passenger requires it;
later a passenger requests a ride and gets one from the waiting driver; (iii) mul-
tiple drivers compete for a passenger, the nearest one serves the passenger; (iv)
after concluding a ride, the driver picks up a new passenger that was previously
waiting. Our implementation passes all tests.

6 Conclusion and Future Work

We have presented an implementation of a blockchain application whose code
is structured along a model of synchronized state machines. Each blockchain
transaction moves one or more state machines from one state to one of their
potential successor states. Such a set of synchronized state machines can be
fully specified by a high-level Petri net. Abstractions that are easier to read are
state-machine diagrams and an extended BPMN diagram. We have argued that
a useful extension to BPMN are multi-party interactions between participants
that can be mapped to blockchain transactions that synchronize multiple state
machines.

Note that equally important is an easily readable specification of the business
rules—in our example the one that defines how taxis are matched to passenger
requests. As with traditional BPMN implementations we propose to specify such
business rules in a dedicated rule language such as DMN and encapsulate the
corresponding code.

Future work should establish a tighter relationship between model and code
in general blockchain applications. This could be achieved either by formal code
generation from the process model or by implementing a process engine in chain-
code that executes the process model as high-level code. The Petri-net model can
serve as a guiding intermediate model between the code and the extended BPMN
model. Likewise, code could be generated from a business-rule description or a
dedicated rule engine could be implemented on the blockchain.
2 Available at https://github.com/hyperledger/fabric/blob/v2.0.0-alpha/core/

chaincode/shim/mockstub.go.

https://github.com/hyperledger/fabric/blob/v2.0.0-alpha/core/chaincode/shim/mockstub.go
https://github.com/hyperledger/fabric/blob/v2.0.0-alpha/core/chaincode/shim/mockstub.go


194 G. Dittmann et al.

Furthermore, it is worth studying how the extended BPMN model can be
generalized to express communication patterns between process participants that
are more complex than just two static pools. Model-driven engineering also needs
extensions, i.e., integrated high-level models, for additional aspects of a block-
chain application such as role-based access control and privacy domains.

References

1. Androulaki, E., et al.: Hyperledger Fabric: A distributed operating system for per-
missioned blockchains. In: Oliveira, R., Felber, P., Hu, Y.C. (eds.) Proceedings of
the Thirteenth EuroSys Conference, EuroSys 2018, Porto, Portugal, 23–26 April
2018, pp. 30:1–30:15. ACM (2018). https://doi.org/10.1145/3190508.3190538

2. Hoare, C.A.R.: Communicating Sequential Processes. Prentice-Hall, Upper Saddle
River (1985)

3. Hull, R., Batra, V.S., Chen, Y.-M., Deutsch, A., Heath III, F.F.T., Vianu, V.:
Towards a shared ledger business collaboration language based on data-aware pro-
cesses. In: Sheng, Q.Z., Stroulia, E., Tata, S., Bhiri, S. (eds.) ICSOC 2016. LNCS,
vol. 9936, pp. 18–36. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-
46295-0 2

4. Küster, J.M., Ryndina, K., Gall, H.: Generation of business process models for
object life cycle compliance. In: Alonso, G., Dadam, P., Rosemann, M. (eds.) BPM
2007. LNCS, vol. 4714, pp. 165–181. Springer, Heidelberg (2007). https://doi.org/
10.1007/978-3-540-75183-0 13

5. OMG: Business process model and notation (BPMN) version 2.0, OMG document
number dtc/2010-05-03. Technical report (2010)

6. Reisig, W.: Elements of Distributed Algorithms: Modeling and Analysis with Petri
Nets. Springer, Heidelberg (1998). https://doi.org/10.1007/978-3-662-03687-7

7. Weber, I., Xu, X., Riveret, R., Governatori, G., Ponomarev, A., Mendling, J.:
Untrusted business process monitoring and execution using blockchain. In: La Rosa,
M., Loos, P., Pastor, O. (eds.) BPM 2016. LNCS, vol. 9850, pp. 329–347. Springer,
Cham (2016). https://doi.org/10.1007/978-3-319-45348-4 19

8. Xu, X., Weber, I., Staples, M.: Architecture for Blockchain Applications. Springer,
Heidelberg (2019). https://doi.org/10.1007/978-3-030-03035-3

https://doi.org/10.1145/3190508.3190538
https://doi.org/10.1007/978-3-319-46295-0_2
https://doi.org/10.1007/978-3-319-46295-0_2
https://doi.org/10.1007/978-3-540-75183-0_13
https://doi.org/10.1007/978-3-540-75183-0_13
https://doi.org/10.1007/978-3-662-03687-7
https://doi.org/10.1007/978-3-319-45348-4_19
https://doi.org/10.1007/978-3-030-03035-3


Smart Contract Locator (SCL) and Smart
Contract Description Language (SCDL)

Andrea Lamparelli1(B), Ghareeb Falazi2 , Uwe Breitenbücher2 ,
Florian Daniel1 , and Frank Leymann2

1 Dipartimento di Elettronica Informazione e Bioingegneria, Politecnico di Milano,
Via Ponzio 34/5, 20133 Milano, Italy

andrea.lamparelli@mail.polimi.it, florian.daniel@polimi.it
2 Institute for Architecture of Application Systems, University of Stuttgart,

Universitätsstraße 38, 70569 Stuttgart, Germany
{falazi,breitenbuecher,leymann}@iaas.uni-stuttgart.de

Abstract. Today’s blockchain technologies focus mostly on isolated,
proprietary technologies, yet there are application scenarios that ask
for interoperability, e.g., among blockchains themselves or with external
applications. This paper proposes the Smart Contract Locator (SCL)
for the unambiguous identification of smart contracts over the Internet
and across blockchains, and the Smart Contract Description Language
(SCDL) for the abstract description of the external interface of smart
contracts. The paper derives a unified metamodel for blockchain smart
contract description and equips it with a concrete, JSON-based descrip-
tion language for smart contract search and discovery. The goal of the
proposal is to foster smart contract reuse both inside blockchains and
through the integration of smart contracts inside enterprise applications.
The idea is inspired by the Service-Oriented Architecture (SOA) and
aims to provide a high-level, cross-blockchain interoperability layer.

Keywords: Blockchain · Smart contracts · Description · SCDL · SCL

1 Introduction

A blockchain is a distributed ledger, that is, a log of transactions that provides
for their persistency and verifiability [13]. Transactions are cryptographically
signed instructions constructed by a user of the blockchain [15] and directed
toward other parties in the blockchain network, for example the transfer of cryp-
tocurrency from one account to another. A transaction typically contains a pre-
defined set of metadata and an optional payload. Transactions are grouped into
so-called blocks; blocks are concatenated chronologically. A new block is added
to the blockchain using a hash computed over the last block as a connection
link. A consensus protocol enables the nodes of the blockchain network to create
trust in the state of the log and makes blockchains inherently resistant to tam-
pering [9]. Smart contracts [14] extend a blockchain’s functionality from storing
c© Springer Nature Switzerland AG 2020
S. Yangui et al. (Eds.): ICSOC 2019 Workshops, LNCS 12019, pp. 195–210, 2020.
https://doi.org/10.1007/978-3-030-45989-5_16

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-45989-5_16&domain=pdf
http://orcid.org/0000-0002-8064-9293
http://orcid.org/0000-0002-8816-5541
http://orcid.org/0000-0003-3004-8702
http://orcid.org/0000-0002-9123-259X
https://doi.org/10.1007/978-3-030-45989-5_16


196 A. Lamparelli et al.

transactions to performing also computations, for example, to decide whether
to release a given amount of cryptocurrency upon the satisfaction of a condition
agreed on by multiple partners.

Blockchains can be broadly categorized into permissionless and permissioned.
Early blockchain platforms, such as Bitcoin [13] and Ethereum [15], were permis-
sionless in the sense that participating in the protocol with any role is open for
everyone. These platforms favor absolute decentralization at the cost of having
relatively weak privacy and performance capabilities. Therefore, permissioned
blockchains, such as Hyperledger Fabric [1], Hyperledger Sawtooth [10] and
Corda [3], were introduced as an alternative that guarantees data confidentiality
and ensures better performance. However, these desirable properties come with
the price of losing some degree of decentralization, since joining the network
becomes restricted and under the control of a single entity.

Both kinds of blockchains have their use-cases that can sometimes coincide.
For example, in a scenario that involves a consortium of enterprises partially
trusting each other, one or more permissioned blockchain networks can be used
to guarantee to all participants that the collaborative process itself is being
conducted exactly as designed, while ensuring good performance and privacy.
However, to provide a similar guarantee to external entities that do not trust
the consortium as a whole, such as auditing authorities, it is not enough to
use permissioned blockchains, since they favor privacy over transparency and
cannot prove that some transactions were not removed from the ledger history
due to a malicious agreement between the consortium members. In that case,
the additional involvement of permissionless blockchains can provide the desired
guarantees. Therefore, we see that there is no single blockchain technology that
is capable of solving all potential use-cases, which means that existing and new
variations of blockchains would continue to co-exist, and end-users would likely
become involved in a mixture of them in relatively complex scenarios [6].

To integrate blockchains into existing processes, using, e.g., business process
management systems [5,6], their smart contracts need to be used, since, from an
external viewpoint, the public functions of smart contracts are the access-points
at which blockchains can be utilized by other systems, i.e., they are the integra-
tion points of blockchains. However, as mentioned earlier, multiple permissioned
and permissionless blockchain platforms might need to be integrated in the same
use-case. The problem here is that smart contracts of different blockchains are
invoked using different mechanisms, protocols, and data formats, which signif-
icantly raises the integration barrier for systems wishing to utilize them, since
developers need to be aware of these variations making the integration process
time-consuming and error-prone. Furthermore, the specific smart contracts rele-
vant for a given use-case need to be identified, which is not a straightforward task,
because information regarding existing smart contracts of various blockchains is
not uniformly available for developers.

In this paper, we extend our previous approach [8], which introduced an
Ethereum-specific smart contract description format, to a wider set of blockchain
technologies. Here, we propose a Service-Oriented Architecture (SOA)-inspired



Smart Contract Locator (SCL) and Description Language (SCDL) 197

style of integration: We first analyze state-of-the-art blockchain platforms and
derive cross-blockchain addressing and description requirements (Sect. 2). Then,
we introduce a smart contract addressing format, the Smart Contract Locator
(SCL), as a specialization of the generic URL scheme that facilitates the unam-
biguous identification of smart contract functions, both externally over the Inter-
net and internally from within the blockchain network (Sect. 3). Then, we define
a unified metamodel capable of describing the public interface of smart con-
tracts of multiple permissioned and pemissionless blockchains; finally, we equip
the metamodel with a JSON-based language called the Smart Contract Descrip-
tion Language (SCDL) for uniform smart contract descriptors that can be stored
in a specialized registry to provide the functionality of smart contract search and
discovery (Sect. 4). We close the paper with related works in Sect. 5 and a dis-
cussion of our proposal and future works in Sect. 6.

2 Analysis of Smart Contracts

In [4], we analyzed contract types, interaction styles, interaction protocols, data
formats and blockchain-internal description formats of smart contracts, and
demonstrated the suitability of smart contracts for the implementation of a
smart contract-based, service-oriented architecture. Next, we study the specifics
of smart contract interfaces for contract description.

2.1 Fundamentals of Smart Contracts

Most blockchain platforms today support different programming languages for
the implementation of smart contracts, ranging from general-purpose languages
like Java, C++, Python, JavaScript, Golang to platform-specific languages like
Solidity for Ethereum or Bitcoin Script for Bitcoin [4]. Most of these languages
are object-oriented and, hence, a smart contract can be seen as an object that
has an identity, a behavior, a state, and events. Typically, smart contracts are
executed using a blockchain-specific virtual machine that replicates the same
“computer” on all nodes of the blockchain network. The most famous and used
virtual machine today is the Ethereum Virtual Machine (“EVM”, https://py-
evm.readthedocs.io) developed by Ethereum and used by several other plat-
forms for smart contract execution. For its execution, a smart contract must be
deployed on the blockchain and instantiated in the virtual machine. This process
creates an instance of the contract – along with a unique contract identifier – and
initializes its state. After this initialization, the contract becomes accessible to
possible clients who can invoke the contract according to its external interface
(the functions made available) by submitting suitable transactions that carry
the invocation in their body. Invocations may come from other smart contracts
inside the same blockchain or from the outside, e.g., from enterprise applications.
How exactly contracts are invoked is, again, platform dependent.

Bringing together the different models of smart contracts that have emerged
so far, the most important characteristics can be summarized as follows (we
analyze concrete technologies in the next subsection):

https://py-evm.readthedocs.io
https://py-evm.readthedocs.io


198 A. Lamparelli et al.

– Identity : This is typically defined by a specific address that corresponds to
the deployment location of the contract. Each platform has its own way to
compute this address. In some blockchains contracts are treated like any other
account, and the address is an account identifier ; in other platforms they
are considered immutable states (variables) identified by a virtual memory
address. The address does not only distinguish different contracts from each
other, but also different, independent instances of a same contract.

– State : This refers to the properties (variables) internal to the contract that
are persistent across multiple invocations. A contract can be immutable, where
the state cannot be changed after its initialization, or mutable, where the state
can be modified during the contract’s life. Immutable contracts are typically
used as transaction validators that check conditions only; mutable contracts
can implement any kind of business logic.

– Functions: These implement the operations a contract can perform and,
thus, its behavior. A function usually has a scope that tells the visibility
of the function (e.g., private vs. public or blockchain-internal vs. -external),
a name, a number of input parameters, and optional return parameters. A
function is called “pure” if return values depend only on input values and it
does not produce any side effects on the state; it is called “view” function
if it provides read-only access to state. Some blockchain platforms allow the
direct invocation of functions using their name, others advocate the use of a
single dispatcher function to forward input values to target functions.

– Events: An event occurs when a contract sends a signal that an action or state
change has taken place upon its invocation. Events allow external applications
to monitor the state of the contract, while the blockchain platform allows
applications to subscribe to or unsubscribe from events. Events usually have a
name and a set of parameters that represent the payload of the event. Some
platforms generate system events, others support developer-defined custom
events. Custom events may require an explicit declaration of the event and
its parameters (the event prototype) and can be launched programmatically;
system events are launched automatically. Depending on the platforms single
or multiple events may be launched at a time.

– Description : For developers to understand the exact model of a given smart
contract, since smart contracts are deployed on the blockchain, the developer
could inspect the deployed code, but such is typically a compiled version and,
hence, not useful to derive how to interact with it. Some platforms in addition
generate descriptive metadata at compilation time that may provide both the
actual source code and an abstract summary of the external interface of the
contract, often called Application Binary Interface (ABI).

Ideally, for a given smart contract, all these aspects are specified in a proper
descriptor and made accessible online (e.g., Ethereum proposes Swarm, https://
ethersphere.github.io/swarm-home/, to host such metadata), yet as of today,
there is no commonly used registry for storing and indexing metadata or descrip-
tors for smart contracts of various blockchain platforms, let alone a uniform
description language.

https://ethersphere.github.io/swarm-home/
https://ethersphere.github.io/swarm-home/


Smart Contract Locator (SCL) and Description Language (SCDL) 199

2.2 Comparison of Blockchain Platforms

In order to understand the state of the art of smart contract support by
blockchain platforms, we have selected platforms for comparison from the two
major blockchain families, permissionless and permissioned. As mentioned ear-
lier, permissionless blockchains allow anyone to participate and access informa-
tion stored in the network, whereas permissioned blockchains allow only invited
nodes to participate and access data. The selected platforms are:

– Bitcoin (https://bitcoin.org), the first permissionless blockchain platform
introduced with limited support for smart contracts. Contracts are used as
validators, have an immutable state and are used to lock/unlock values only.

– Ethereum (https://www.ethereum.org), the permissionless platform that first
introduced Turing-complete smart contracts that, in principle, allow the
implementation of arbitrary application logic.

– Hyperledger Fabric (https://www.hyperledger.org/projects/fabric), a permis-
sioned blockchain platform developed by The Linux Foundation that leverages
on container technology to host smart contracts called “chaincode”.

– Neo (https://neo.org), also known as the “Ethereum of China,” with support
for multiple digital assets and smart contracts; Neo is permissionless.

– EOSIO (https://eos.io), a more recent permissioned/permissionless platform
with a special focus on transaction throughput for businesses.

– Hyperledger Sawtooth (https://sawtooth.hyperledger.org), another permis-
sioned blockchain platform from the The Linux Foundation that is highly
modular and configurable. It introduces transaction families, which are pulug-
gable, user-defined components, as the way to define smart contracts.

Moreover, Ethereum is the “father” of many other blockchain platforms,
such as Qtum (https://qtum.org), Ubiq (https://ubiqsmart.com), Rootstock
(https://www.rsk.co) and others. We omit them from the comparison, as they
all comply with Ethereum’s smart contract model and use the EVM.

Table 1 summarizes how the chosen platforms implement smart contracts.
For the comparison, we use the smart contract characteristics described earlier;
we do not consider aspects like access policy, consensus protocol, performance or
similar, as these do not affect smart contracts’ external interfaces. The analysis
aims to provide a picture that abstracts away from implementation languages
and instead emphasizes the addressing and functional interface perspective.

Addressing: Looking at how smart contracts are identified (first dimension),
it is evident how contracts are referenced differently across different platforms.
While there may be platform-specific reasons for this (e.g., Bitcoin does not have
the concept of accounts), conceptually – from an external point of view – it must
be possible to do so in an abstract, uniform manner.

Interface: State, if not immutable, is manipulated through functions, which
are only visible to consumers if they are public; Ethereum and EOSIO fur-
ther distinguish between functions that are internal to the blockchain (invoca-
ble only by contracts of the same blockchain) and functions that are external

https://bitcoin.org
https://www.ethereum.org
https://www.hyperledger.org/projects/fabric
https://neo.org
https://eos.io
https://sawtooth.hyperledger.org
https://qtum.org
https://ubiqsmart.com
https://www.rsk.co


200 A. Lamparelli et al.

Table 1. Comparison of smart contract support by most representative blockchain
platforms from an external perspective.

Platform Identity State Functions Events Description

Bitcoin Contracts

specify how

unspent

transaction

outputs

(UTXO) can

be used;

identified by

UTXO address

Set when

instantiating

contract;

immutable

Public; can be

invoked directly

– –

Ethereum Contracts

implement

generic

application

logic; have

own accounts

Stored in

contracts;

modified using

functions

Public/private

and blockchain-

internal/

-external;

invoked directly

Multiple custom

events possible;

explicit

declaration of

event prototype

Contract

metadata and

Application Binary

Interface (ABI)

Hyperledger

Fabric

Contracts

(chaincode)

implement

generic

application

logic and are

addressed

using an ID

Stored in

contracts;

modified using

functions

Public/private;

invoked using

dispatcher

function

Max one custom

event per

invocation; no

explicit event

prototype needed

Chaincode

Interface (CCI) for

language-neutral

description

Neo Contracts

implement

generic

application

logic; have

own accounts

Stored in

contracts;

modified using

functions

Public/private;

invoked either

directly or via a

dispatcher

(recommended)

Multiple custom

events possible; no

declaration needed

Contract

metadata and Neo

ABI

EOSIO Generic;

hosted by

EOSIO

accounts (1-

to-1

relationship)

and identified

by human-

readable

unique string

Stored in the

contract, modified

using functions

(actions)

Public/private

and blockchain-

internal/

-external;

invoked using

dispatcher func

Multiple system

events possible; no

custom events

Contract

metadata and

EOSIO ABI

Hyperledge

Sawtooth

Contracts

(transaction

families)

implement

generic

application

logic;

addressed

using a

35-byte hex

hash of

transaction

family name

Stored in

transaction

families, modified

using functions

Public; invoked

only from

external apps

via a REST call

to custom

transaction

family processor

Multiple custom

events possible;

explicit

declaration of

event prototype

Public interface of

a transaction

family defined by

the developer via

a set of protobufa

message types

a https://developers.google.com/protocol-buffers/

(invocable also by agents outside the blockchain). Most of the platforms support
launching custom events to communicate with external agents; only Bitcoin and
EOSIO support either no events or only system events. From a description point
of view, it is interesting to note that most platforms are able to generate some

https://developers.google.com/protocol-buffers/


Smart Contract Locator (SCL) and Description Language (SCDL) 201

descriptive metadata at compile time, along with an ABI that provides a sum-
mary of function prototypes – both however providing different kinds of infor-
mation and focusing on blockchain-specific aspects. Yet, as the table also shows,
there are significant similarities across platforms, which hints at the possibility
to abstract external interfaces and uniformly describe them for uniform access.

3 Smart Contract Locator (SCL)

Internally, all platforms provide for smart contract addressing or identification;
so, there is no need for intervention. Instead, Fig. 1 (solid, black components
on the top) illustrates our minimal, architectural assumptions for the specifica-
tion of the Smart Contract Locator (SCL), which is our proposal for uniformly
addressing smart contracts from the outside of their blockchains: an external
consumer (e.g., an enterprise application) that wants to invoke a target smart
contract (e.g., a currency exchange app) deployed inside a blockchain network
(e.g., Ethereum) to which it does not have own access (it does not own any node
of the network) may have to cross the Internet to reach a so-called gateway, a
web-accessible agent that is able to mediate between the external consumer and
the target smart contract. SCL tells the external consumer how to reach that
gateway and how to identify the target smart contract.

Provider

Consumer

Registry

invokes smart contracts

publishes 
descriptors

searches and 
retrieves 
descriptors

Gateway Internet
     External 

consumer

Blockchain

Target smart
contract SCL

Blockchain address

Internal consumer

SCDL registry

a

b

Fig. 1. Conceptual components for smart contract addressing (solid lines) for (a)
blockchain-internal consumers and (b) blockchain-external consumers with service-
oriented architecture for smart contracts (thin, dashed lines).

We intentionally limit the use of SCL to smart contract addressing only; the
identification of the functions to be invoked and the passing of suitable param-
eter values will be done using the payload of the messages exchanged between
consumer and smart contract (e.g., using http POST messages). We assume that



202 A. Lamparelli et al.

the communication channel from the external consumer to the gateway is prop-
erly secured using state-of-the-art security mechanisms like https, access control,
and encryption.

Now, given the IETF specification of the generic URL format [2]:

URL = scheme:[userinfo@]host[:port]path[?query][#fragment]

and the preliminary proposal for smart contract addressing in [6] (see Sect. 5),
we define an SCL as a specialization of a URL composed of a standard URL
(up to the path element included), which identifies the gateway, and of an SCL
query, which identifies the target smart contract inside the blockchain network:

SCL = scheme:[userinfo@]host[:port]path"?"scl_query
scl_query = "blockchain="bc"&blockchain-id="id"&address="addr

bc = "ethereum" | "bitcoin" | "fabric" | "eosio" | ...

id = NetworkIdentifier // not further detailed here

addr = eth_addr | bit_addr | fab_addr | eos_addr | ...
eth_addr = 40ByteHexString // not further detailed here
bit_addr = Bech32Address // not further detailed here
fab_addr = PathString // not further detailed here
eos_addr = 12CharacterString // not further detailed here

The SCL extension of URLs thus specifies (i) which type of blockchain is
addressed, (ii) which exact blockchain network (there may be more networks
accessible through a given gateway), and (iii) the blockchain-internal smart con-
tract address or identifier.

In the following, we list example SCL addresses for a set of the supported
blockchains that are accessed using the https scheme via a hypothetical gateway
hosted at mygateway.com:

* Ethereum:
https://mygateway.com?blockchain=ethereum&blockchain-id=eth-mainnet

&address=0xa0b73e1ff0b80914ab6fe0444e65848c4c34450b
* Bitcoin:
https://mygateway.com?blockchain=bitcoin&blockchain-id=btc-mainnet

&address=1Mbk53DzVKCz6MHiBd8ZHkPhsZETo7PtZR
* Hyperledger Fabric:
https://mygateway.com?blockchain=fabric&blockchain-id=part-vendors

&address=channel1%2Fchaincode1%2Fsmartcontract1
* EOSIO:
https://mygateway.com?blockchain=eos&blockchain-id=eos-mainnet

&address=myfancyacc05

4 Smart Contract Description Language (SCDL)

Looking at the dashed annotations in Fig. 1, we can identify the typical roles of
the service-oriented architecture (SOA): a provider, a consumer and a registry
[11]. We assume that:



Smart Contract Locator (SCL) and Description Language (SCDL) 203

– The consumer is represented either by a blockchain-internal entity (a smart
contract) or a blockchain-external entity (a software application) – both of
them interested in reusing a given target smart contract, e.g., to inherit appli-
cation logic or to integrate blockchain capabilities into enterprise applications.
In order to do so, it is crucial that developers be able to find suitable smart
contract descriptions that tell them all they need to know in order to invoke
the contract from the inside/outside.

– The provider is represented by the operator of the blockchain, who is inter-
ested in opening its smart contracts to external entities. The practice is com-
monly known as Blockchain-as-a-Service (BCaaS [12]) and is pushed by ven-
dors like Amazon (https://aws.amazon.com/managed-blockchain), Upvest
(https://upvest.co) or Kaleido (https://kaleido.io). In order to allow external
consumers to connect to a hosted blockchain, the provider publishes suitable
descriptors and a gateway.

– The registry hosts smart contract descriptors and provides consumers with
search and retrieval capabilities. The design of this registry is out of the scope
of this paper and part of our future work.

Smart 
contract

Contract version

Function EventNameScope

Description

Parameter
Keeps 
order

Side-effect

URL latest version

Author

Creation date

Update date

SCL address

Blockchain-internal address

Blockchain type

Blockchain version

Metadata link

Code hash

0..n

1..n

0..n 0..n
0..n

0..1

produces
consumes

produces

0..1 0..1

0..1

0..1

0..n
generates

Index

0..1

Keeps 
order

Life cyle

dispatcher
0..1

Type
Only for event 
parameters

SCDL version

0..1

State

Fig. 2. Metamodel of Smart Contract Description Language (SCDL), version 1.0.

The goal of the Smart Contract Description Language (SCDL) is now to
enable the abstract, blockchain-independent description of the external inter-
faces of smart contracts and to cater to both internal and external consumers.
The language should further provide for the extensibility to allow developers to
include blockchain-, contract- or application-specific metadata if needed.

https://aws.amazon.com/managed-blockchain
https://upvest.co
https://kaleido.io


204 A. Lamparelli et al.

4.1 Language Metamodel

Given these requirements and the results of Sect. 2, which analyzed state-of-the-
art support for smart contracts, Fig. 2 illustrates the metamodel of SCDL; fur-
thermore, the left half of Table 2 explains each of the entities in the metamodel.
According to the metamodel, a smart contract can be seen as a blockchain-
or web-accessible entity that is characterized by a set of descriptive metadata
elements, a set of functions and a set of events.

Typical metadata are generic attributes like contract name, description,
author and version, but also access-oriented attributes like the SCL address
for external consumers and the blockchain type, version and internal address for
internal consumers. Where available (e.g., for Ethereum smart contracts) pub-
licly accessible metadata can be linked and a hash of the contract’s code can
be added to allow developers to check if a descriptor is up to date. Functions,
too, have a name and a description and are characterized by the set of input and
return parameters they consume/produce; parameter lists are ordered (the order
is needed for some platforms to be able to properly invoke functions). Functions
may further produce events, e.g., for the implementation of asynchronous com-
munication with consumers, have a scope (e.g., public vs. private), produce or
not side-effects (change or not the state), and specify a dispatcher function for
those platforms where functions are not invoked directly (e.g., Hyperledger Fab-
ric). Events have a name, a description and an ordered list of output parameters.
Parameters have a name, an abstract data type (external consumers) that allows
the derivation of a blockchain-specific, native data type (internal consumers) and
may be indexed to enable consumers to query events on the blockchain.

The metamodel does not explicitly provide any extensibility points. It repre-
sents the minimum set of properties that allow a provider to describe any of the
smart contracts studied in Sect. 2. For Bitcoin scripts, we can interpret clauses as
functions and describe how to trigger them by means of the parameters needed to
make them true. If additional properties are needed, these can simply be added
as properties to the composite objects of the language, i.e., smart contract, func-
tion, event, parameter. For instance, if a provider wants to explicitly mention
the programming language of a given smart contract, this could be achieved by
adding a language property to the smart contract object.

For simplicity, in this paper we assume that there exists a suitable agree-
ment between the provider and the consumer regarding the costs the provider
may incur when executing smart contracts on behalf of the external consumer
(internal consumers are charged directly by the blockchain platform).

4.2 SCDL JSON Syntax

We propose to equip the metamodel with a concrete syntax based on JSON,
which is supported by multiple blockchain platforms (e.g., Ethereum, Hyper-
ledger Fabric) and, hence, maintains consistency with existing conventions.

The translation of the metamodel to a concrete syntax follows few simple
rules: entities with associated properties produce JSON objects with properties;



Smart Contract Locator (SCL) and Description Language (SCDL) 205

Table 2. SCDL 1.0 constructs with concrete syntax and domains of values. Mandatory
elements are the minimum information needed to uniquely characterize smart contracts.



206 A. Lamparelli et al.

composition relationships are translated to JSON arrays; the order of parameters
of functions or events is expressed by their order inside their respective arrays;
abstract data types of parameters are expressed using JSON Schema (https://
json-schema.org)1. The right half of Table 2 defines each individual language
construct in detail and equips it with a respective domain of possible values.
The general structure of a SCDL descriptor is organized as shown in Fig. 3.

{"scdl_version" : "1.0.0", // generic smart contract properties
"name" : "TokenConversion", ...
"functions" : [

seitreporpnoitcnuf//...,"trevnoc":"eman"{
"inputs" : [

{ "name" : "amount",
"type" : "number"

sretemarapfotsil//...,}
],

sretemarapfotsil//,]...[:"stuptuo"
sretemarapfotsil//]...[:"stneve"
snoitcnuffotsil//...,}

],
"events" : [

seitreporptneve//...,"...":"eman"{
sretemarapfotsil//,]...[:"stuptuo"
stnevefotsil//...,}

]
}

Fig. 3. General structure of SCDL descriptor

Next to JSON, also formats like XML, YAML or similar are compatible
with the metamodel. We propose the use of JSON Schema to express abstract
data types in order to enable external consumers (e.g., a business process engine
connected to a blockchain via a gateway) to understand basic data types without
the need for blockchain-specific knowledge.

4.3 Example: ZilliqaToken Contract

As an example, let’s consider the ZilliqaToken contract deployed on Ethereum
by the Zilliqa Team; the deployed contract and its code can be inspected at
https://bit.ly/2GBajXC. The contract follows the ERC20 standard (https://
theethereum.wiki/w/index.php/ERC20 Token Standard) for the implementa-
tion of the ZIL token in Ethereum. The contract allows its users to check their
token balance, transfer tokens among accounts, approve others to spend tokens,
etc.

Figure 4 provides an excerpt from a possible SCDL descriptor of the contract
(core metadata, one function and one correlated event). Next to the name and

1 For mappings see https://github.com/floriandanielit/scdl#data-encoding.

https://json-schema.org
https://json-schema.org
https://bit.ly/2GBajXC
https://theethereum.wiki/w/index.php/ERC20_Token_Standard
https://theethereum.wiki/w/index.php/ERC20_Token_Standard
https://github.com/floriandanielit/scdl#data-encoding


Smart Contract Locator (SCL) and Description Language (SCDL) 207

a short description, the descriptor provides the external consumer with the SCL
address of the contract and the internal consumers with the internal address.
As we chose the latest version of the contract, there is no link to any newer version
of the contract, and the source code is linked using the metadata link. The
contract is stateful, as it tracks token balances. The function transfer allows
the user to transfer a given value to a receiver to. The function can be invoked
directly using its name and generates the event Transfer with parameters from,
to, value upon completion of the transfer. The parameters from and to are
indexed and can thus be used for fast search of token transfers among accounts.
The description of the complete contract is linked in the caption of Fig. 4.

5 Related Work

The problem of describing the external interface of software components is
not new and has gained particular attention with the advent of the service-
oriented architecture. Two core service models have emerged: SOAP web ser-
vices [11] and RESTful APIs [7], the former equipped with description lan-
guages like WSDL (https://www.w3.org/TR/2007/REC-wsdl20-20070626) and
WSDL-S (https://www.w3.org/Submission/WSDL-S), the latter with languages
like WADL (https://www.w3.org/Submission/wadl) and Swagger/OpenAPI
(https://swagger.io). WADL and Swagger/OpenAPI are oriented toward state-
less resources and are, hence, out of scope. The metamodels of WSDL and
WSDL-S are generic, that of SCDL is smart contract specific (e.g., it expresses
relationships between functions and events and identifies indexed parameters).

The first approach to describing smart contracts in a blockchain-familiar
fashion (JSON) is introduced in [8], where we suggested a SOA-based approach
that allows one to uniformly describe Ethereum smart contracts and to store
the resulting descriptions in a specialized registry that facilitates reuse. Com-
pared to that work, the SCDL we propose here goes beyond Ethereum to a
wider set of permissioned and permissionless blockchains. Furthermore, we also
target developers of external applications by differentiating between internal,
blockchain-specific smart contract addresses, and external, uniform addresses,
i.e., SCLs, which can be used over the Internet.

In previous work [6], we instead focused on the process-based composition
of heterogeneous smart contracts. The approach uses an extension of BPMN
that allows invocations to permissioned and permissionless smart contract func-
tions from standard business processes that can be executed by regular process
engines. To allow for technology-agnostic models, the process engine utilizes an
extensible middleware component called Blockchain Access Layer (BAL), which
translates the calls it receives from external applications, e.g., the process engine,
into blockchain-specific invocations. To identify the smart contract function that
needs to be invoked, the BAL used a non URL-compatible URI scheme.

The SCL addressing scheme presented in this paper allows external applica-
tions to address heterogeneous smart contract functions across the Internet by
utilizing the concept of a gateway that provides access to one or more blockchain

https://www.w3.org/TR/2007/REC-wsdl20-20070626
https://www.w3.org/Submission/WSDL-S
https://www.w3.org/Submission/wadl
https://swagger.io


208 A. Lamparelli et al.

   { "scdl_version" : "1.0",
"name" : "ZilliqaToken",
"version" : "^0.4.18",
"latest_url" : null,
"author" : "0xBfE4aA5c37D223EEBe0A1F7111556Ae49bE0dcD2",
"description" : "Contract token implementation following the ERC20 standard, the new created

      token is called ZIL",
"created_on" : "Jan-12-2018 09:44:42 AM +UTC",
"updated_on" : "Jan-12-2018 09:44:42 AM +UTC",

              mainnet&address=0x05f4a42e251f2d52b8ed15E9FEdAacFcEF1FAD27",
"internal_address" : "0x05f4a42e251f2d52b8ed15E9FEdAacFcEF1FAD27",
"blockchain_type" : "ethereum",
"blockchain_version" : "v0.4.18+commit.9cf6e910",
"metadata" : "https://etherscan.io/address/0x05f4a42e251f2d52b8ed15e9fedaacfcef1fad27#code",
"hash" : "b311edaec5a164050cede3219bf28cc6ce4c0ca43b8bf34d6fd309fb60c4d1d8  -",
"is_stateful" : true,
"lifecycle" : "ready",
"functions" : [

{ "name" : "transfer",
  "description" : "* @dev transfer

            token for a specified address.
            @param _to The address to transfer
            to. @param _value Amount to be transf."

  "scope" : "public",
  "has_side_effects" : true,
  "inputs" : [

{ "name" : "_to",
"type" : "string"
"pattern" : "^0x[a-fA-F0-9]{40}$"

{ "name" : "_value",
"type" : "number"
"minimum" : "0"
"maximum" : "2^256-1"

}
  ],
  "outputs" : [

{ "name" : null,
"type" : "boolean"

}
  ],
  "events" : ["Transfer"],
  "dispatcher" : null
}, ...

],

"events" : [
{ "name" : "Transfer",

"description" : "Triggered when
               tokens are transferred",

"outputs" : [
{ "name" : "from",

"type" : "string",
     "pattern" : 

                           "^0x[a-fA-F0-9]{40}$"
"is_indexed" : true

},
{ "name" : "to",

     "pattern" : 
                           "^0x[a-fA-F0-9]{40}$"

"is_indexed" : true
},
{ "name" : "value",
     "type" : "number"
     "minimum" : "0"
     "maximum" : "2^256-1"

"is_indexed" : false
}

]
}, ...

]

co
nt
in
ue

s

Fig. 4. JSON-based SCDL descriptor of ZilliqaToken smart contract with hypothetical
SCL address. For brevity, we report here only one function and one connected event;
the full descriptor can be inspected online via https://bit.ly/2LRy9Tb.

platforms. This decouples the external consumers from the middleware that facil-
itates the communication with blockchain platforms.

6 Discussion and Outlook

This paper advances the state of the art in blockchain technology with two pro-
posals of abstraction, i.e., the Smart Contract Locator (SCL) for cross-blockchain
addressing of smart contracts and the Smart Contract Description Language
(SCDL) for the abstract description of smart contracts. We consider both as
founding ingredients for the development of a service-oriented architecture that
is based on smart contracts and enables a service-like integration of blockchains
into generic software applications. Commercial Blockchain-as-a-Service providers
like Amazon, Upvest and Kaleido are evidence that the market is ready, yet this
paper claims that suitable abstractions and middleware support are still missing.

https://bit.ly/2LRy9Tb


Smart Contract Locator (SCL) and Description Language (SCDL) 209

In this respect, SCL and SCDL do not just want to advance that state of the
art but they also want to stimulate the discussion.

The proposal of SCL is compliant with standard URLs, which makes it
natively ready for the Internet. The examples in this paper use a scheme bind-
ing of "http" or "https", but nothing prohibits the use of SMTP or any other
transport protocol. Similarly, SCDL is proposed with a JSON binding for serial-
ization. This choice was driven by the observation that most blockchain platforms
analyzed already make large use of JSON, e.g., for the invocation of functions,
and hence aims to keep consistency. However, given the metadmodel of SCDL,
alternative bindings can be defined for XML, YAML, WSDL or others.

The next step of our work will concentrate on the specification of a smart con-
tract invocation protocol to rule the communication between external consumers
and gateways, as well as on the implementation of a reference architecture for
gateways able to provide access to different blockchain technologies. In terms
of SCDL, the next version of the language will provide for the description of
non-functional aspects like service-level agreements and payments – one feature
where smart contracts excel compared to SOAP/REST services. SCDL will also
be equipped with a suitable, open registry able to host descriptors and to provide
for search and retrieval of smart contracts.

We intend to use GitHub to evolve the proposals of SCL (https://
github.com/ghareeb-falazi/scl) and SCDL (https://github.com/floriandanielit/
scdl) with help from the community.

Acknowledgements. This work was supported by the European Union’s Horizon
2020 research and innovation programme, project DITAS, grant agreement RIA 731945.

References

1. Androulaki, E., et al.: Hyperledger fabric. In: EuroSys 2018, pp. 1–15. ACM Press
(2018). https://doi.org/10.1145/3190508.3190538

2. Berners-Lee, T., Masinter, L., McCahill, M.: Uniform Resource Locators (URL)
(1994). https://www.ietf.org/rfc/rfc1738.txt

3. Brown, R.G.: The Corda Platform: An Introduction. Corda Platform Whitepaper,
pp. 1–21 (2018). https://www.corda.net/content/corda-platform-whitepaper.pdf

4. Daniel, F., Guida, L.: A service-oriented perspective on blockchain smart contracts.
IEEE Internet Comput. 23(1), 46–53 (2019)

5. Falazi, G., Hahn, M., Breitenbücher, U., Leymann, F.: Modeling and execution
of blockchain-aware business processes. SICS Softw. Intensiv. Cyber Phys. Syst.
34(2), 105–116 (2019). https://doi.org/10.1007/s00450-019-00399-5

6. Falazi, G., Hahn, M., Breitenbücher, U., Leymann, F.: Process-based composition
of permissioned and permissionless blockchain smart contracts. In: EDOC 2019
(2019, to appear)

7. Fielding, R.: Representational state transfer. Architectural Styles and the Design
of Network-based Software Architecture, pp. 76–85 (2000)

8. Guida, L., Daniel, F.: Supporting reuse of smart contracts through service orien-
tation and assisted development. In: IEEE DappCon 2019, pp. 59–68 (2019)

https://github.com/ghareeb-falazi/scl
https://github.com/ghareeb-falazi/scl
https://github.com/floriandanielit/scdl
https://github.com/floriandanielit/scdl
https://doi.org/10.1145/3190508.3190538
https://www.ietf.org/rfc/rfc1738.txt
https://www.corda.net/content/corda-platform-whitepaper.pdf
https://doi.org/10.1007/s00450-019-00399-5


210 A. Lamparelli et al.

9. Mingxiao, D., Xiaofeng, M., Zhe, Z., Xiangwei, W., Qijun, C.: A review on con-
sensus algorithm of blockchain. In: SMC 2017, pp. 2567–2572. IEEE (2017)

10. Olson, K., Bowman, M., Mitchell, J., Amundson, S., Middleton, D., Montgomery,
C.: Sawtooth: An Introduction. Hyperledger Sawtooth Whitepaper, pp. 1–7
(2018). https://www.hyperledger.org/wp-content/uploads/2018/01/Hyperledger
Sawtooth WhitePaper.pdf

11. Papazoglou, M.P., Georgakopoulos, D.: Service-oriented computing. Commun.
ACM 46(10), 25–28 (2003)

12. Samaniego, M., Deters, R.: Blockchain as a service for IoT. In: 2016 IEEE
iThings/GreenCom/CPSCom/SmartData, pp. 433–436. IEEE (2016)

13. Satoshi, N.: Bitcoin: A Peer-to-Peer Electronic Cash System (2008). https://
bitcoin.org/bitcoin.pdf

14. Szabo, N.: Smart contracts: building blocks for digital markets. EXTROPY J.
Transhumanist Thought (16), 18, 2 (1996)

15. Wood, G.: Ethereum: a secure decentralised generalised transaction ledger.
Ethereum Proj. Yellow Pap. 151, 1–32 (2014)

https://www.hyperledger.org/wp-content/uploads/2018/01/Hyperledger_Sawtooth_WhitePaper.pdf
https://www.hyperledger.org/wp-content/uploads/2018/01/Hyperledger_Sawtooth_WhitePaper.pdf
https://bitcoin.org/bitcoin.pdf
https://bitcoin.org/bitcoin.pdf


STRAPS: Smart daTa integRation
And Processing on Service Based

Environments



Introduction to the First International
Workshop on Smart daTa integRation

And Processing on Service Based
Environments (STRAPS 2019)

Massive heterogeneous data integration is part of a continuum that starts with data,
goes through sources, and lands in knowledge extraction and decision making
processes. New applications require solving even more complex queries, including
millions of sources and data with high levels of volume and variety. Thus, reducing the
cost of data integration by efficiently evaluating queries is an important challenge,
given that today the economic cost in computing cycles (see your cloud invoice), in
energy consumption, and the performance required for some critical tasks have become
increasingly important. Despite the proposal of academic and industrial research and
consolidated results, data integration is still an important topic with open issues like
data quality, trusted data, data providers, and processing operations; trusted infras-
tructures deal with data which differs according to data consumer requirements and
different understandings of what are trust, quality, and acceptable levels of such
properties. These new challenges call for intelligent processes that can learn from
previous experiences, as well as be adaptable to changing requirements and dynamic
execution contexts.

STRAPS aims at promoting scientific discussion on the way data stemming from
different providers and produced under different conditions can be efficiently integrated
to answer simple, relational, analytical queries ensuring providers, algorithms, and data
trust.

The first edition of the workshop accepted three full research papers (an acceptance
rate 40%) focusing on important and timely research problems, and one invited paper
on “Constructing a secured, reactive & scalable data platform for a better exploitation
of rich data assets in the tourism industry.” Papers were evaluated under a blind
evaluation process by three experts in the domain: members of the workshop Program
Committee. Papers reported experience reports in real-life application settings
addressing large scale data integration issues guided by SLA, quality, trust, privacy,
and performed through services/microservices based systems on cloud and multi-cloud
architectures.

Genoveva Vargas-Solar
Chirine Ghedira Guegan

Nadia Bennani



Measuring the Quality of Life
in “La Condesa”

Activating Mexico City Neighbourhood Economy While
Maximising Well-Being

Ana-Sagrario Castillo-Camporro1, José-Luis Zechinelli-Martini2,3(B),
and Javier A. Espinosa-Oviedo3,4

1 Universidad Nacional Autónoma de México, Mexico City, Mexico
sagrariocastillo@hotmail.com

2 Fundación Universidad de las Américas, Puebla, Mexico
joseluis.zechinelli@udlap.mx

3 French-Mexican Laboratory of Informatics and Automatic Control,
Mexico City, Mexico

javier.espinosa@tudelft.nl
4 Delft University of Technology, Delft, The Netherlands

Abstract. Mexico City government has promoted central and historical
areas by applying public policies intended to activate their economy. This
is the case of the neighbourhood “La Condesa” located 4 km. from the
Historical Downtown Area of Mexico City. Yet, beyond activating the
economy, promoting massive tourism, leisure activities and business life,
these policies have had questionable social implications. For example,
valuing spaces for the benefit of the real estate investors that do not live
in the areas and that promote non-permanent lodging; franchises that
do not promote authentic services and products. Thus, it seems that the
growth in economy with this approach is not compatible with human
development, with the cultural benefit and the conservation of the green
areas of the territory.

This paper presents our approach for computing the index of qual-
ity of life considering quantitative and qualitative measures seeking to
maximise a holistic return of investment. Our notion of return of invest-
ment is holistic because it considers both quantitative and qualitative
variables calibrated to find and “optimum” of economic and well-being
benefit. Our proposal combines different data collections provided by the
Mexican National Institute of Statistics and Geography (INEGI) that
feed a novel mathematical model proposed for computing determining
the elasticity of the index of quality of life. Given the volume of data
sets about Mexico City and its inhabitants it has been necessary to use
adapted computational methods to model urban phenomena happening
in the area “La Condesa” in Mexico City. We have applied data analyt-
ics computational techniques based on mathematical methods, statistics
and knowledge discovery to find patterns within data sets that represent
the behaviour of quality of life as a social phenomenon measure.

c© Springer Nature Switzerland AG 2020
S. Yangui et al. (Eds.): ICSOC 2019 Workshops, LNCS 12019, pp. 213–223, 2020.
https://doi.org/10.1007/978-3-030-45989-5_17

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-45989-5_17&domain=pdf
https://doi.org/10.1007/978-3-030-45989-5_17


214 A.-S. Castillo-Camporro et al.

1 Context and Motivation

Contemporary urbanism addresses the relationship between qualities of urban
and regional environments with the social, economic and environmental per-
formance of societies, and the well-being of citizens. Yet, some regions have
proposed public policies that go against this vision. During the last decade,
the economic growth of the real estate market and tourism has been achieved
through the revaluation of historical downtown areas and towns. Revaluation is
the result of urban processes achieved through public policies aimed at bringing
about changes in the territory. In Mexico, for example, the ministry of tourism
has implemented public policies intended to activate the economy in small vil-
lages and historical downtown quarters.

Yet, beyond the activation of economy, promoting massive tourism, leisure
activities and business life, these policies have had questionable social implica-
tions. For example, valuing spaces for the benefit of the real estate investors that
do not live in the areas and that promote non-permanent lodging; franchises that
do not promote authentic services and products. Thus, it seems that the growth
in economy with this approach is not compatible with human development, with
the cultural benefit and the conservation of the green areas of the territory. For
example, in Europe, Barcelona is an example of a city that implemented public
policies applied in historical areas for the benefit of the tourism and real estate
sectors. Public authorities have promoted the city as a product. The consequence
has been the emergence of mobility conflicts, increased pollution, increased con-
sumption of water and energy, dispossession of public spaces and denial of the
basic right to housing.

The problem, in our opinion, is that public policies are often designed empir-
ically without defining quantitative and qualitative objectives and quantitative
measures to assess them. In the case of the strategies applied to activate the
economy of urban areas, the quality of life index can be an immediate and “nat-
ural” assessment strategy. Quality of life is defined as a “multidimensional index
that measures good living conditions and degree of well-being. It also includes
the collective satisfaction of needs obtain through social policies” [7]. Different
mathematical models have been proposed for measuring quality of life [1,3,8].
Some consider measurable variables often based on economic indices. Others
adopt an holistic approach and consider qualitative variables such as happiness,
quality of experience and stress. Other visions like the theory of utilitarianism by
Jeremy Bentham, define quality of life as the maximum well-being for the maxi-
mum number to act in a way that produces greater benefit to a greater number
of people. This goes beyond the measurement of an index but it seeks to define
a point within a spectrum where economic and well-being benefits searched by
public policies are optimised. In any case, the challenge is to choose the vari-
ables that determine quality of life and then collect meaningful and objective
data that can be used for computing them.

This paper presents our approach for computing the index of quality of life
considering quantitative and qualitative measures seeking to maximise an holis-
tic hybrid return of investment. Our notion of return of investment is hybrid



Measuring the Quality of Life in “La Condesa” 215

because considers both quantitative and qualitative variables calibrated to find
and optimum of economic and well-being benefit. Therefore our proposal com-
bines different data collections that feed a novel mathematical model proposed
for computing determining the elasticity of the index of quality of life. Given
the volume of data sets about the city and its inhabitants it has been neces-
sary to use adapted computational methods to model urban phenomena. We
have applied data analytics computational techniques that apply mathematical
methods, statistics and knowledge discovery to find patterns within data sets
that represent the behaviour of certain phenomena. Accordingly the remainder
of the paper is organised as follows. Section 2 introduces our proposal of data
based quality index, defines the measures that compose it and discusses the
analytics approach proposed for computing it. Section 2.3 describes our experi-
ment setting and results. Section 3 synthesises and compares different projects
and approaches based on collected data for computing quality of life indexes in
projects aiming to revitalise historical spaces in different regions of the world.
Section 4 concludes the paper and discusses future work.

2 Holistic Approach for Measuring Quality of Life
in La Condesa

Mexico City promotes central and historical spaces applying public policies
intended to activate the economy of these areas. Public policies implement
actions in urban areas that affect the daily life of people. This is the case of
the quarter “La Condesa” located 4 Km from the Historical Downtown Area of
Mexico City (cf. Fig. 1).

Fig. 1. Urban distribution of Mexico City boroughs and location of La Condesa
neighbourhood

“La Condesa” was founded in the early twentieth century. Today it has an
area of 450,320.02 square meters organised into 62 blocks [2] (cf. Figs. 1, 2 and 3),
and since its foundation, there are 40% of green areas.



216 A.-S. Castillo-Camporro et al.

Along the decades, “La Condesa” has had different transformations. Dur-
ing the 1970s, the country’s political and social effervescence led to first urban
changes seeking economic activation. The government built new urban areas
outside downtown for middle and upper classes. Thus, this policy caused the
migration of inhabitants from central spaces to the new areas. Later, the 1985
earthquake caused the decrease of the value of properties in central areas such
as “La Condesa”. This accelerated the decline of this area with problems such as
subsidence, depopulation and wide spread deterioration due to lack of mainte-
nance and investment. In the early 2000’s the governmental program “Bando 22”
activated again the area of “La Condesa”. The government promoted projects
to activate the real estate sector. As a result, the use of the land, the economic
activity and the so called vie de quartier changed dramatically. The occupation
of the buildings changed from housing to commercial and administrative activ-
ities. The socio-economical level of the inhabitants that could live in the area
changed too and with this started the desertification of the area. As shown in
[2], La Condesa hosted 688 commercial points in only 68 blocks. From 2000 to
2010 (INEGI) there was a decrease in the number of inhabitants from 15,916
to 11,792. The same happened in the number of inhabited houses, with 5,350
existing housing, 4,508 were classified as habitable and the remaining 842 are
classified under “other uses”. All these changes caused an increase in the price
of the land, which went from $21,960.00 in 2012 to $27,500.00 in 2015.

The question is to which extent have these public policies been adequate?
Did they result in an improvement in the quality if life of inhabitants? Are segre-
gation, exclusion, changes in land use, lack of water, over population, desertifica-
tion beneficial to economy and acceptable for the area? These changes transform
quality of life standards. Modern urbanism promotes the balance between eco-
nomic development and quality of life. The current characterisation of central
spaces in cities and particularly in “La Condesa” call for an analysis of quality
of life measures to study the way these changes have modified the daily life of
inhabitants and to which extent this balance is respected?

We propose the “Quality of Life Elasticity Index”. We define elasticity in
urban terms establishing a relationship between the quality of life of the inhabi-
tants in the territory with respect to the variables that effect welfare behaviour,
whether positive or negative. Elasticity is introduced in the qualitative and quan-
titative estimation of quality of life. The result is an index that uses a range of
every day living permissible in a territory.

2.1 Quality of Life Index

Quality of life is an index that can be mathematically modelled by combining
variables. The selection criteria for calculating and combining them are based
on economic and political trends.

We adopted the mathematical model proposed by Puskoruis [9] for measur-
ing quality of life, based on studies by [10]. We chose this model as basis for
introducing our urban elasticity notion because it considers economic variables



Measuring the Quality of Life in “La Condesa” 217

together with variables that reflect the quality of human life. Thus, quality of
life index is given by the following formula:

I =
10∑

i=1

aibi (1)

The index results of the summation of 10 pondered indicators. Weights used
to ponder indicators are represented by ai terms.

– b1 - health
– b2 - employment and occupation
– b3 - quality of time at work
– b4 - income status
– b5 - consumption
– b6 - environment and accommodation
– b7 - population’s education
– b8 - law, security, order and corruption levels of the population
– b9 - ethics-morality, spirituality, value of culture and leisure of the population
– b10 - population’s gender equality indicator

2.2 Elasticity in Quality of Life

We believe that together, qualitative and quantitative variables generate a more
inclusive assessments of quality of life. Existing mathematical models defining
the quality of life index do not consider the point of no return in quality of life.
That is, they do not measure to which extent it is possible to have a satisfactory
quality of life in a territory where specific public policies are applied.

The economic term “elasticity of demand” can be introduced into quality of
life index models. In Economy, elasticity is defined as the relationship between
the percentage change in the quality demanded or offered and the percentage
change in price.

Ep =
ΔQuantity

ΔPrice
=

(P1)+P2
2

(Q1)+Q2
I12

(2)

We define elasticity in urban terms we will see that there is a relationship
between the quality of life of the inhabitants in the territory with respect to the
variables that effect welfare behaviour.

2.3 Experimental Setting

The collection of information and the analysis of the data becomes essential
to obtain reliable and representative results. In Mexico, we used data from the
National Institute of Statistics and Geography (INEGI1) that provides statistics
from the national census of different years. Most of the indicators chosen for
computing the quality of life index were already computed for Mexico City so
we filtered them for computing the quality of life index for different years and
first results on elasticity. Next we describe the data collections.
1 http://www3.inegi.org.mx/sistemas/TabuladosBasicos/Default.aspx?c=27302.

http://www3.inegi.org.mx/sistemas/TabuladosBasicos/Default.aspx?c=27302


218 A.-S. Castillo-Camporro et al.

Data Collections. We used a twelve data sets for computing quality of life.
Each data set provides also aggregated data used by international organisations
for measuring different indicators. We filtered data for observing the indicators
in Mexico City and then in the area corresponding to “La Condesa”.

Table 1. Well being indicators provided by the INEGI database

Well being dimension Indicators

1 Accessibility to services (1.1) access to health services,

(1.2) houses with high speed Internet connection,

(1.3) houses with access to basic services

2 Community (2.1) quality of the support social network

3 Education (3.1) dropping out of school, (3.2) years in school

4 Balance life-work (4.1) satisfaction w.r.t leisure time,

(4.2) people working more than 48 hours

5 Income (5.1) gini family income per capita,

(5.2) family income,

(5.3) people in poverty,

(5.4) people in extreme poverty

6 Environment (6.1) air quality,

(6.2) waste products

7 Civic compromise and governance (7.1) civic and political participation,

(7.2) electoral participation,

(7.3) confidence in justice/law,

(7.4) perception of corruption in the juridic system,

(7.5) confidence on judges

8 Health (8.1) living newborns expectation,

(8.2) health control,

(8.3) obesity rate, (8.4) motherhood mortality

(8.5) children mortality,

(8.6) mother deaths/100 alive newborns

9 Life satisfaction (9.1) idem

10 Security (10.1) homicides rate,

(10.2) confidence in police,

(10.3) insecurity perception,

(10.4) criminal rate

11 Employment (11.1) occupation index,

(11.2) informal jobs rate,

(11.3) unemployment rate,

(11.4) economic contribution

12 Housing (12.1) rooms/person,

(12.2) solid construction rate



Measuring the Quality of Life in “La Condesa” 219

The well-being indicators database provides 35 indicators defined by the
OCDE. The indicators are used for computing the better life index based on the
notion of well-being and progress. The indicators are grouped into 12 dimen-
sions (see Table 1): accessibility to services, community (social relations), educa-
tion, balance life-work, income, environment, civic compromise and governance,
health, satisfaction, security, employment, housing. Data collected for computing
these indicators are a snapshot of the years 2010–2015. For our study, we did not
use the aggregated indicators but the full data regarding the indicator required
for computing the quality of life index introduced in the previous section.

Fig. 2. General overview of the distribution of the data of the indicators



220 A.-S. Castillo-Camporro et al.

Computing Quantitative and Qualitative Measures. Data sets regarding
quality of life indicators that have been exported by the INEGI correspond
to census done every two years since 2010. We remarked that not all indicators
were collected in every exported data set and those of 2018 are still not available.
Thus, for our experiment we first computed the quality of life index in Mexico for
three years 2012, 2014, 2016. After analysing the distribution of the indicators
values we saw that some were expressed as percentages of the population that
answered the census others as interval values and ad hoc measures like for the
quality of air. Since we did not have the raw data for the last ones, we decided
to exclude them from the computation. Therefore, we decided to use the most
homogeneous measures in order to ensure the precision of our computations
(see Fig. 2).

As shown in the figure our experiment considered six dimensions namely,
accessibility to services, balance life-work, income, civic compromise and gov-
ernance, security and employment. For every dimension we chose those sub-
dimensions that were expressed as percentages from the whole number of partic-
ipants of the census. Given that these census are promoted by the government
and are considered a civic commitment a representative amount of the popula-
tion participates in this task.

According to the quality of life formula that we adopted we pondered indi-
cators according to the knowledge of the domain of our colleagues experts in
urbanism. We privileged those concerning qualitative perceptions like security
and we gave less importance to those concerning economic measures. This is
because our study wants to have a picture of the perception of population about
their quality of life in La Condesa neighbourhood. The resulting revisited formula
is given as follows:

I =
12∑

i=1

aibi (3)

It considers 12 measures from the chosen groups of indicators shown in Fig. 2,
where accessibility to services and income (a1, a2, a4, a5) were pondered with
0,08; balance life-work (a3) and employment were pondered with 0,04 (a9–a12);
and civic compromise and governance and security with 0,16 (a6–a8).

As seen in Fig. 3, the quality of life index shows that quality of life as per-
ceived by citizens is not very high. This means that they consider that life is
acceptable but still services, security, income need public policies that can make
life better. As shown in the figure quality of life has become better comparing
2012 and 2016, but the increase between 2014 and 2016 was not very significant.
Our first perception through the evaluation of quality of life index, validates our
hypothesis that other strategies are required to measure it. Combining quanti-
tative and qualitative indicators is a first step to provide a more representative
view of quality of life. Yet it is not correlated with the type of policies applied
that have been applied and how they are related to indicators. Our current work
is devoted to study this aspect.

We also want to use information from a project started by the Mexican
INEGI willing to measure the mood of Twitter users in Mexico City. INEGI in



Measuring the Quality of Life in “La Condesa” 221

Fig. 3. Index of quality of life 2012–2016 in La Condesa

collaboration with Twitter is making roads into data base applications to solve
urban problems with technology applied to Big Data. Considering the mood of
privileged citizens having access to social networks for measuring quality of life
index considering socioeconomic aspects can give a more representative measure.

3 Related Work

Measuring the quality of life of inhabitants in urban or rural areas has been
discussed and studied by international forums and commissions (Beyond GDP
was held in November 2008. For example, the study “How is life?” [5] pro-
poses 11 quantitative and qualitative variables. The Human Development Index
(HID) proposed by [6] includes three main variables health, education and living
standards.

The European Parliament, the OECD and the WWF have been seeking to
develop indices based on accurate measurements that model daily life, poverty,
inequality and the needs of the inhabitants in specific areas. The Commission
on the Measurement of Economic Development and Social Progress (CMPEPS)
created in 2008 in France defined new measures to evaluate social progress.
The National Institute of Statistics (ISTAT) defined 12 variables for evaluat-
ing progress that included economic, social and environment aspects. The study
proposed by National Statistics Institute in Spain defined a quality of life index
based on different studies like Eurostat which includes qualitative measures. In
2016 the Stiglitz-Sen-Fitoussi report included a new section on multidimensional
analysis introducing welfare components. This measurement made by the Qual-
ity of Life Export Working Group includes 9 dimensions. Data are collected
through surveys answered by individuals. Other data are gathered from the Liv-
ing Conditions Survey (LCS) and the Economically Active Population Survey
(EAPS).

The Quality of Life (NPQV) research core (Mackenzie Presbyterian Univer-
sity, located in Sao Paolo, Brazil) proposed a quality index that includes variables



222 A.-S. Castillo-Camporro et al.

like transport, visual pollution and noise. These variables are pondered with dif-
ferent weights when they are combined to define the quality of like index. Data
used for computing these variables are collected by the Brazilian Institute of
Geography and Statistics and the national survey for housing sampling.

The project “Quality of life in Argentina”2 proposes a ranking approach of
well-being by department. It identifies different strategies for measuring poverty
and quality of life. Poverty is defined as a measure of deprivation including those
who do not reach and established minimum threshold. Quality of life is defined
as an optimum economic level. The measures are defined by socioeconomic and
environmental variables. The data used for computing these measures are gath-
ered in census information, statistical sources, satellite images and field surveys.
To measure the quality of life index, the study uses a quantitative and qualitative
variables to asses personal satisfaction.

In Mexico, the welfare index named National Index of Quality of life
(INCAVI) proposed by the University of Monterrey 2011 uses seven classes of
measures each divided into different qualitative and quantitative values vari-
ables. The National Institute of Statistics and Geography (INEGI) proposed the
BIARE index (self-report of well-being) used to measure the way people experi-
ence their own quality of life. It is based on measuring the subjective dimension
of well-being and conforms to the OECD guidelines. This index is associated
with the survey ENGASTE 2012, ENCO 2013, MCS 2014 and 2015.

Quality of life indexes proposed in Hong Kong include personal, social, polit-
ical, cultural, economic and environmental measures, along with 21 indicators
classified into three groups: social, economic and environmental. It introduces
variables such as degree of press freedom and stress.

The Paradise of Michalos [4] recognises that people living in the same area
can have different points of view concerning the conditions of life. He proposes
a matrix where he identifies (i) the paradise of the fools (ii) the real paradise
(iii) the real hell and (iv) the hell of the fools. In these spaces the perception
of life depends on the perception of the people who live there. He underlines
the importance of the conditions in which surveys are applied to gather the
perception of people about their quality of life. The sequence of the questions,
the working are factors that strongly influence the answers of to a survey.

According to existing approaches for measuring quality of life, must include
both quantitative and qualitative measures. We also underline the importance
of the quality of data used for computing the different variables. This quality
includes the provenance, the choice of the population interviewed for collecting
data (socio-economic level, education, age, gender), the reliability of the data,
the freshness, etc.

2 https://teleport.org/cities/buenos-aires/.

https://teleport.org/cities/buenos-aires/


Measuring the Quality of Life in “La Condesa” 223

4 Conclusions and Future Work

In this research we proposed a first approach for computing the elasticity of
quality of life index. In addition to quantitative measures, qualitative measures
are used, as representative indicators of the life experience of an individual in a
territory.

The study was based on the use of technology and computational tools (Big
Data Analytics) and data science (statistical methods and know ledge discov-
ery) to manipulate and combine different data collections. We used descriptive
statistical to compute quality of life. The interest of computing the quality of
life index is that it can help to design public policies that can revitalise urban
spaces for empowering economy without scarifying citizens well being. This can
be used for computing the elasticity of the quality of life but this corresponds
to our future work.

References

1. Garćıa, JdJ: Hacia un nuevo sistema de indicadores de bienestar. Revista interna-
cional de estad́ıstica y geograf́ıa 2(1), 78–95 (2011)

2. INEGI: Mexican census of poblacion y vivienda 2010 (2010). https://www.inegi.
org.mx/programas/ccpv/2010/. Accessed 26 Dec 2018

3. López Santillán, R.: Lo bonito, limpio y seguro: usos del espacio de la ciudad de
méxico por una fracción de clase media. Alteridades 17(34), 9–25 (2007)

4. Michalos, A.C.: Essays on the Quality of Life, vol. 19. Springer, Dordrecht (2013).
https://doi.org/10.1007/978-94-017-0389-5

5. The Organisation for Economic Co-operation and Development: How’s Life? 2015:
Measuring Well-being. OECD, Paris (2015)

6. ONU: Human development index. http://hdr.undp.org/en/content/human-
development-index-hdi. Accessed 26 Dec 2018

7. Palomba, R.: Calidad de vida: Conceptos y medidas concepto de calidad de vida.
Calidad de Vida: Conceptos Y Medidas, pp. 1–12 (2002)

8. Puskorius, S.: The methodology of calculation the quality of life index. Int. J. Inf.
Educ. Technol. 5(2), 156 (2015)

9. Puškorius, S.: Theoretical model of estimating the quality of life index (2015)
10. Stiglitz, J.E., Sen, A., Fitoussi, J.P.: Measurement of economic performance and

social progress. http://bit.ly/JTwmG. Accessed 26 June 2012 (2009)

https://www.inegi.org.mx/programas/ccpv/2010/
https://www.inegi.org.mx/programas/ccpv/2010/
https://doi.org/10.1007/978-94-017-0389-5
http://hdr.undp.org/en/content/human-development-index-hdi
http://hdr.undp.org/en/content/human-development-index-hdi
http://bit.ly/JTwmG


Adaptive Agent-Based Architecture
for Health Data Integration

Ibtihel Selmi1(B), Nadia Kabachi2, Sana Ben Abdalah Ben Lamine1,
and Hajer Baazaoui Zghal1

1 ENSI, Riadi Laboratory, University of Manouba, Manouba, Tunisia
selmiibtihel7@gmail.com

2 ERIC Laboratory, University of Lyon, University of Claude Bernard Lyon 1,
3083 Villeurbanne, EA, France

Abstract. The work presented in this paper is developed in the context
of the “PersoDiagMedi” project which is Franco-Tunisian cooperation
between laboratories’ multidisciplinary programs in the fields of com-
puter science and health-care. In the health-care domain, Artificial Intel-
ligence (AI) provides multiple technologies that allow machines to learn,
act and make decisions autonomously. In this sense, AI helps experts
and doctors in diseases’ diagnosis and the detection of emerging dis-
eases’ presence. However, the medical data come from multiple sources:
doctors, biologists, meteorological specialists, and environmental orga-
nizations. The difficulty of the epidemic state’s surveillance lies in the
conciliation between the search for the largest number of relevant sig-
nals and their treatments. In this paper, we propose the project’s general
architecture that facilitates medical data integration and data processing
to detect unusual facts and to prevent the presence of emergent diseases.
In this proposed data integration architecture, we present the different
functionalities, describe its layers and components as well as present an
adaptive multi-agent system for the unusual facts’ detection. To this end,
the feasibility of our proposal is first proven and later two use cases are
presented to cover users’ needs.

Keywords: Health-care · Multi-agent system · OLAP · Artificial
Intelligence · Unusual facts detection

1 Introduction

Modern medicine is one of the most sophisticated areas of scientific activities,
whose main challenge is to develop effective diagnostic systems for the various
health-care problems. On the other hand, this area is marked by its complex com-
munication and coordination between the different health-care actors. Usually,

Supported by the SCUSI (Coopérations scientifiques et académiques internationales)
program of the region Auvergne Rhône-Alpes in France for the project “PersoDi-
agMedi”, Number 1700938003.

c© Springer Nature Switzerland AG 2020
S. Yangui et al. (Eds.): ICSOC 2019 Workshops, LNCS 12019, pp. 224–235, 2020.
https://doi.org/10.1007/978-3-030-45989-5_18

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-45989-5_18&domain=pdf
https://doi.org/10.1007/978-3-030-45989-5_18


Adaptive Agent-Based Architecture for Health Data Integration 225

health data are obtained from different sources that are heterogeneous, multi-
spectral and incomplete observations. Indeed, large health data is essentially
complex data sets that are specified with unique characteristics that complicate
the process of extracting exploitable knowledge about any given phenomenon.
The intervention of AI has become a necessity since human capacities are becom-
ing more and more limited compared to the exponential data growth generat-
ing Big Data. The primary objective of the AI in the health-care domain is
to module intelligent computer systems that can process and reason efficiently
to improve the quality of distributed large scale data-provisioning services in
this field. Therefore, AI contributions in the healthcare domain have proven to
enhance the performance of the medical systems particularly in the context of
Big Data. Several studies have been carried out to show the contribution of AI
in the medical field by treating various problematics such as medical data pro-
cessing, diseases’ diagnostic and the effective detection of emergent diseases, it
is in this context that the PersoDiagMedi project fits. The aim of this project
is developing a framework that can provide numerous medical data integration
and processing services, to ensure early detection of emerging disease and to help
experts in the medical field monitoring the epidemic. In this paper, we present
the architecture of this framework and then prove its technical feasibility and
test its efficiency. The ambition of this work is not to focus on each part of the
proposed architecture but it aims to test the proper process of the whole system.
Since this is a first step of this project, the goal is simply to develop a coherent
system. The work presented in this paper is organized as follows: Sect. 2 presents
an overview of the researches that have been conducted around intelligent sys-
tems in the health-care domain. Section 3 introduces our proposed architecture
as well as describes functions of the various components of our approach. We
illustrate and discuss the experimental results obtained at this stage in Sect. 4.
Finally, we conclude and present our future work in Sect. 5.

2 Background and Related Work

2.1 Theoretical Basis

For a better understanding of our project and related works, we first describe
the main theoretical basis that is relevant to our work: OLAP cubes, multi-agent
systems, and adaptive agents.

OLAP Cubes: The data warehouse is designed to facilitate data analysis and
data querying. Users can exploit the data warehouse through the combination
of multiple dimensions and corresponding hierarchies. The execution of queries
on very large data is both expensive and requires a long response time [13]. To
remedy this problem, a new concept is introduced, which is data cubes (also
called OLAP cube). An OLAP cube is used to calculate and map all possible
combinations and to store them to facilitate their subsequent exploitation. So
with this tool, the users’ queries become easier since data is already calculated
and stored.



226 I. Selmi et al.

Multi-agent Systems: Multi-agent systems are computer systems composed
of several heterogeneous entities that communicate and cooperate for problem
resolution [15]. These entities are also called agents which is a real or virtual
entity that offers services, that are able to act in an environment, communicate
directly with other agents and that has skills [4]. These agents can then perform
the actions and perceive their environments and they are also able to make deci-
sions independently [15]. Agents are mainly classified in four classes: Cognitive
agent which is an intelligent agent who has a knowledge base with which he can
accomplish his task and manage his actions and intersections, BDI agent who
is based on three concepts: belief, desire, and intent, and reactive Agent which
is unlike the cognitive agent, he has no representation of the environment, and
requires no memory since it does not keep its past [4].

Adaptive Multi-agent Systems: The adaptation in multi-agent systems can
be implemented in two different ways, either an individual adaptation (of a
single agent) or The adaptation in multi-agent systems can be implemented
in two different ways, either an individual adaptation (of a single agent) or
a collective adaptation (of all the set of agents) [14]. The adaptive agent can
learn from the environment while adapting to the changes of the environment
and can communicate and cooperate with other agents. The contribution of
adaptation to multi-agent systems is that the system will be able to react to a
new situation and therefore to a changing environment, it can also decide what is
the most appropriate behavior on its own. With the machine learning, the agent
becomes able to learn without being explicitly programmed. There are three
classifications of learning techniques: supervised learning, unsupervised learning
and reinforcement learning [14]. The reinforcement learning is a learning method
that does not require knowledge of the system and is based on a satisfaction
criterion called “reinforcement”. This method allows the agent to perform actions
and reactions without specifying how the action should be performed. Among
the reinforcement learning algorithms, we quote the Q-learning algorithm that
we will present further in this paper [2].

2.2 Related Work

Extracting effective knowledge from a mass of medical data is one of the most
challenging areas of research. To explore this data, it is necessary to offer powerful
data processing and analysis systems and to propose approaches that will aim to
ameliorate the adaptive capacity of these systems with environmental changes.
In this context, several approaches have been proposed since 1970 [6].

One of the first diagnosis systems in this literature was Internist-I and
Internist-II [1], this system treated over 70% of possible diagnoses in internal
medicine. It operated on a single disease. Because of its long training, the inter-
action with users took up to 90 min. DXplain (87) is a decision-making system
that acts on a set of clinical data to produce a classified list of diagnoses that
can illustrate clinical manifestations. This system is similar to Internist but it
added hierarchical lexicon results [5].



Adaptive Agent-Based Architecture for Health Data Integration 227

Iliad (94) [3] is an expert diagnostic system, it adjoined the probability to
healthcare system reasoning, it can be useful as a healthcare provider and as
a personal consultant as well. This system provided diagnosis and advice on
balanced and effective cost strategies.

Isabel [8] is a web-based diagnostic decision support system, created in 2001
by physicians to provide diagnostic decision support in the field of healthcare.
Isabel has been widely proven to enhance the clinician’s cognitive skills and
thereby improve patients’ safety and the quality of their heath. The difficulty
of surveillance lies in the conciliation between the search for the largest number
of relevant signals on the one hand and their treatments on the other hand.
Researchers have continued to improve the medical systems and found new solu-
tions. Indeed, they had involved AI technologies to improve the adaptability
to environmental changes and systems learning [17]. Adaptive multi-agent sys-
tems represent one of the most important solutions of AI [16]; Indeed, they are
intelligent computer systems whose processing is assigned to several software or
physical entities, called adaptive agents that can adapt to environmental changes
[10,12]. Thanks to their problem-solving efficiency, adaptive multi-agent systems
are being used more and more in the health-care field [11,14]. The authors in [9]
designed an adaptive Agent module that consists of four main modules: Percep-
tion Unit, Decision Unit, Behavior Set and Effectors.

In [10], the purpose was to build processes, tools, and services for agent-
based software maintenance. To build and run the multi-agent environment,
the authors of the article used the Jade platform. The services provided by the
system proposed by the authors are Tele-medicine, Patient monitoring, Disas-
ter Management, Communication between patients and medical staff. The ulti-
mate goal of this system is to monitor and control the patients’ health through
verifying medical reports and providing a competent medical service with the
assistance of the medical personnel.

In [7], the authors proposed a multi-agent system architecture for
telemedicine that designed to simulate a module for the categorization of can-
cer. In this system, each different medical problem is provided with a distinct
agent and that what makes the autonomy increase, the communication and the
reaction ability possible. The communication between the agents is done via an
audio-video communication system. The different agents proposed in this article
are Initial agent: interacts with the system user, Coordinator Agent: Mediator
Agent, Agent assistant which is preceded by the problem detection, it, there-
fore, acts without being explicitly programmed. The implementation of machine
learning in multi-agent systems improves agent and system performance [19].
Concerning multi-agent systems, they illustrate the most efficient solution for
distributed data processing, for distributed computing and for finding a solution
for sophisticated problems as well. It is acknowledged that there is no existing
medical system in which we interrogate the data in the form of OLAP cubes
via adaptive agents. Compared to existing work, we aim to integrate all these
technologies and put them end to end and to test the interoperability of the
whole system in order to take advantage of all of its benefits at the same time.



228 I. Selmi et al.

On that account, the purpose of this work is to propound an approach that will
be applied in the medical field and that will aid experts to detect the emerging
diseases and explore the medical data more expeditiously and efficiently. Hence,
the need is to integrate the heterogeneous data stored in a NoSQL database
and processed with the notion of OLAP and to design and adaptive multi-agent
systems in a Big Data context.

3 PersoDiagMedi Architecture

3.1 General Architecture

We introduce in this paper a preliminary work in the context of the Franco-
Tunisian project entitled “PersoDiagMedi: Service-oriented collaborative plat-
form for the personalization of the medical service and the early detection of
emerging diseases”. The main objectives of this project are the integration of
structured and unstructured medical data into a repository, the design of a
medical ontology and the development of a reasoning and detection module. In
this section, we propose our global architecture of the PersoDiagMedi project
that is composed of four layers as depicted in Fig. 1:

(1) Data layer : this layer represents the different data sources. Data may be
pharmaceutical, medical, meteorological or social media data;

(2) Collection, organization and data storage layer : this layer is responsible for
the integration of the data which arises from the data layer, the construction
of a medical ontology, the storage of the data in a database and the mapping
between the data and the designed ontology;

(3) Reasoning, detection, and alert layer : this layer represents the intelligent
part of our proposition. It is in charge of the OLAP cubes building from the
Database built-in the precedent layer, the OLAP cubes interrogation and
the detection of emerging diseases through an adaptive multi-agent system);

(4) Graphical User Interface layer : this layer allows the user to pilot and inter-
rogate the architecture.

The architecture is composed of two main parts: A semantic-based data inte-
gration system which collects and stores heterogeneous and multi-source data
in a NoSQL database (layers 1 and 2) and an Agent-based Data Query system
which allows the interception of the NoSQL database in order to analyze the
data and trigger alerts if necessary (layers 3 and 4).

The semantic-based data integration system allows the storage of multi-
source and heterogeneous data on a domain ontology-based database. Indeed, the
medical data comes from multiple sources and in different forms structured (such
as excel, tables, structured DB), semi-structured (XML, CSV, ..) and unstruc-
tured (such as tweets, images) one of the main functionalities of this system is
to allow the database loading, which is the data integration system’s principal
phase, guaranteeing the data’s protection and the mapping between the data and
the medical ontology that we’d designed for this purpose, this ontology is based



Adaptive Agent-Based Architecture for Health Data Integration 229

Fig. 1. PersoDiagMedi: General architecture.

on medical expert’s knowledge. In [18], the system is detailed and evaluated and
its different components are described.

After integrating and storing the data in a NoSQL Database, we focus in
this paper on testing if the whole process can be functional and we detail the
agent-based data query system. The aim of the adaptive agent-based approach
for cubes interrogation is to enhance the medical system management and to
facilitate the data interrogation using OLAP queries. The approach is mainly
represented by the third and fourth layers (Fig. 1). There are several types of
users and that can manage our system such as the experts in the health domain
that can, interrogate the data and receive responses. Surveillance organizations
can monitor the epidemiological state and consult the analyzes and statistics.
The users can manage and interrogate the system through a graphical interface
that represents the user interface machine layer. The features offered to those
users are provided from reasoning detection and alert layer which represents the
functional part of our architecture. As discussed in [18], the third layer takes the
data stored in the NoSQL database as input. This layer is an adaptive multiagent
system that aims to promote access to stored data, minimize time responses,
and to handle users’ requests and also to provide responses and notifications
as results. The main challenge of this intelligent system is to perform analyzes
to detect unusual facts. This adaptive multiagent system has essentially two
main objectives: The first consists of building OLAP cubes based on the NoSQL
database (the output of the semantic-based data integration system). As for



230 I. Selmi et al.

the second, it consists of designing an adaptive agent that allows monitoring
the epidemiological state and detecting the presence of unusual facts to alert
stakeholders in case of emerging diseases. In the next section, we will itemize the
intelligent processing by focusing on adaptive agent-based architecture.

3.2 Adaptive Agent-Based Architecture

The adaptive agent is in charge of emergent disease detection and sending alerts
to users. This agent must adapt to environmental’ changes and must be able to
make decisions based on his knowledge and previous experiences.

As shown in Fig. 2, adaptive agent-based architecture is composed of four
modules:

(1) Communication module: this module is responsible for interpreting the mes-
sages between the adaptive agent and other agents;

(2) Cognitive module: this module contains facts, meta-rules, rules, and uncer-
tainties. It ensures the agent knowledge enrichment;

(3) Perception module: the instances of this module trigger the reasoning mod-
ule if they note the existence of a peak in the indicators states;

(4) Reasoning module: this module is in charge of processing. To program this
module, we used the reinforcement learning technique by adapting the Q-
Learning algorithm.

Fig. 2. PersoDiagMedi: Adaptive agent-based architecture



Adaptive Agent-Based Architecture for Health Data Integration 231

Adaptation of the ‘Q-Learning’ Algorithm
As this work is preliminary, we worked with the Q-learning algorithm. In future
work, we intend to use different algorithms and compare results.

The Q-Learning is an automatic control method that does not require an
initial knowledge of the model, but rather it depends on satisfaction criteria.
With this algorithm, the agent can learn the optimal policy from its history.
This method is one of the machine learning techniques that allow systems to
adapt to the environment’s changes that do not require any initial model of the
environment. To adapt this algorithm to our work, we included rules into a class
responsible for learning agents. In this class, we have defined facts as attributes
whose values are retrieved from the OLAP cube or entered by the user. The state
S is represented by a list of indicators In and attributes Attn; S = {I0, I1, .., Ii}∧
{Att0, Att1, .., Atti}; The actions A are in the form of textual notifications sent
to the final users; Reward is a function that returns the evaluation of the action
chosen by the algorithm. In this function, we check if the agent has chosen the
right action by comparing this action with the action we get when we process
the algorithm (Fig. 3).

Fig. 3. Q-Learning algorithm [2]

4 Experimentation

To test the feasibility of our solution and the functionality of our proposed sys-
tem, we made some experimentation. First, we prepared the development envi-
ronment. To do so, we used an ASUS laptop (I5 processor, 8G Ram) configured
using UBUNTU 14.04 OS. Then, we installed the necessary software applications
and frameworks for Big Data processing including Apache Hadoop1; Apache
Hive; Apache Spark2. The reason we used this type of applications is because
we need to process large health data volumes. Hadoop is used to guarantee and
to improve the data security which is essential for management systems in the
medical field. As for spark, it provides a learning library MLLIB as well as guar-
antees fast processing in memory of large data. The integration of these two
frameworks is then the most suitable solution to develop our agents. As for the

1 https://hadoop.apache.org/.
2 https://spark.apache.org/.

https://hadoop.apache.org/
https://spark.apache.org/


232 I. Selmi et al.

Olap cubes’ construction, we have used Apache Kylin3 which is an open-source
software that supports extremely large datasets. The generated OLAP cubes are
stored in Hbase4 a system of storage and database management on Hadoop.

4.1 Data Description

The medical data comes from multiple sources: doctors, biologists, meteorologi-
cal specialists, and environmental organizations. The available data are initially
structured, semi-structured, and unstructured data. The structured data is pro-
vided from the ONMNE. This data has approximately 50,000 patient records. It
summarizes information on flu between the years 2009–2010 and the year 2016–
2017. This data is cleaned and stored in a NoSQL database because it provides
a simple and flexible structure when it comes to unstructured data and it is
easier to scale up. Then, this data is exported in JSON and CSV formats. The
data can be classified by Consultants age: Three classes ([0–5],[5–16],[16,+oo]);
Region: the region where the consultation has been done. A region represents
one of the twenty-four Tunisian governance; Period: represented by the year and
the month of the consultation.

As the adaptive agent needs to find quick results to make a quick decision and
as we are in a context of detection and alert system, we’ve built an OLAP cube
because the data multidimensional modeling (OLAP) facilitates the analytic.
With OLAP modeling, we can focus for example on all the consultations in
a specific region and year of infected patients. We can also simply present the
consultations of infected patients that have the same age and in a specific region.
With the use of OLAP cubes, we can manipulate aggregated data according to
multiple dimensions that make the data interrogation faster and more efficient.

Parameters and Alert Scenarios: To implement the adaptive agent, we have
to understand how epidemic diseases spread and what are the factors that we
have to consider. Therefore, we asked for the help of experts in the healthcare
domain to precise the parameters and to define the different scenarios that allow
us to efficiently detect unusual facts. In the following, we quote a list of parame-
ters that we have chosen so that we can simulate use cases that we will present,
and this is to detect unusual facts (the abnormal facts) and to trigger alerts.
The indicators are infection rate (by region, sex, age...), stocks of Medicines (by
region), number of patients with a contagious disease declared by the medical
profession and death mortality caused by an illness. An alert scenario is a use
case where the system detects an abnormal sign whose detection requires the
urgent intervention of experts in the field. Our partners in the health field pro-
pose these scenarios to allow us to validate our preliminary tests: The first alert
scenario is the nominal scenario in which all the indicators mentioned above
did not exceed the specified thresholds. In this case, the system has nothing to
trigger, the second alert scenario is that one of the indicators: Infection Rate or
Drugs’ stocks (or both) exceed the indicated threshold. In this case, the system
3 http://kylin.apache.org/.
4 https://hbase.apache.org/.

http://kylin.apache.org/
https://hbase.apache.org/


Adaptive Agent-Based Architecture for Health Data Integration 233

must send a notification to the specialists so that they can study the situation.
As for the third alert scenario, it is identified if all the indicators studied exceed
their thresholds. At this time, the system must urgently trigger an alert to those
responsible for reacting urgently.

4.2 Use Cases

In this section, we present two use cases of the proposed architecture. The first
use case is the OLAP cube queries’ use case and the second is the unusual fact
detection use case.

We must first clarify what an abnormal condition implies in the context of epi-
demics in order to better understand how our alert system operate. An unusual
fact, in fact, is a critical concept and hard to describe. To better understand
the first use case, we introduce some of the proposed OLAP requests. The
OLAP requests are organized according to the number of the used dimensions.
OLAP agent (Fig. 2) is in charge of handling the requests of two types: users’
requests or intelligent agents’ requests. The pursuit of this agent is to interro-
gate the OLAP cube and obtain responses that have already been aggregated
and calculated according to the users’ needs (Fig. 4).

Fig. 4. Use cases diagram

To test the second scenario, we have changed the threshold values defined
in the Q-Learning algorithm so that we can know if the agent can detect the
change and send the appropriate notification to the user. For example, if the
agent detects that the infection’s rate exceed the 0.15, it has to alert the end
users that there is an unusual fact. In fact, we injected erroneous data in order

5 This value was provided from the project partners (OMNE).



234 I. Selmi et al.

Fig. 5. Second use case results

to test the efficiency of the agent and prove that it is able to detect changes in
the data. As mentioned above, the indicators and thresholds we used to test our
approach were provided from the project partners in the healthcare domain; In
Fig. 5, we notice that our adaptive agent was able to detect the change in the
data and was able to alert the user of the different situations.

5 Conclusion and Future Work

In this paper, we have presented the PersoDiagMedi project as well as its archi-
tecture. In this context, we proposed a new approach for health-care decision-
making and unusual fact detection based on an adaptive multi-agent system.
Our proposed solution consists of integrating and storing both structured and
unstructured data in a NoSQL database, querying OLAP cubes to simplify access
to pre-calculated information and to improve the multi-agent system perfor-
mance to allow the early detection of emerging diseases while detecting the
unusual facts from the data. We have also detailed two use cases of this archi-
tecture and presented the results obtained after the experiment. Through the
implementation of the approach, we have been able to prove the feasibility of our
proposal and the possibility to query cubes of data using adaptive agents. We are
aware that the work presented in this paper requires many changes because it
is a preliminary work that has to be improved. Being reassured that our system
can be performing, we plan to formalize the proposed architecture and detail
each part and define the scientific locks for every architecture’s component. We
are currently working on further development of the approach on real-time data
processing and to improve the adaptive agent intelligent reasoning by implement-
ing it with deep learning. Subsequently, we plan to integrate pharmaceutical and
meteorological databases, to improve use case scenarios and include a module for
medical diagnosis, prediction and decisions’ recommendation. For the fault tol-
erance, we are planning to clone our most important agent “adaptive agent” and
put it in standby. If the first fails, the other is automatically activated following
a message from the system.



Adaptive Agent-Based Architecture for Health Data Integration 235

References

1. Miller, R.A., et al.: INTERNIST-1: an experimental computer-based diagnostic
consultant for general internal medicine. N. Engl. J. Med. 307(5), 468–476 (1982)

2. Watkins, C.J.C.H., Dayan, P.: Q-learning. Mach. Learn. 8, 279–292 (1992). https://
doi.org/10.1007/BF00992698

3. Warner Jr., H.R., et al.: Innovation review: Iliad-a medical diagnostic support
program. Top Health Inf. Manage. 14(4), 51–58 (1994)

4. Ferber, J.: Les systémes multi-agents: Vers une intelligence collective. InterEditions
(1995)

5. Barnett, G.O., Famiglietti, K.T., Kim, R.J., Hoffer, E.P., Feldman, M.J.: DXplain
on the Internet. In: Proceedings of the AMIA Symposium, pp. 607–611 (1998)

6. Chan, A.S., et al.: Evaluating provider adherence in a trial of a guideline-based
decision support system for hypertension. In: Medinfo, pp. 125–129 (1998)

7. Han, B.M., Song, S.J., Lee, K.M., Jang, K.S., Shin, D.R.: Multi agent system based
efficient healthcare service. In: 8th International Conference Advanced Communi-
cation Technology, pp. 89–551 (2006)

8. Ramnarayan, P., et al.: Assessment of the potential impact of a reminder system on
the reduction of diagnostic errors: a quasi-experimental study. BMC Med. Inform.
Decis. Mak. 6(1), 22 (2006)

9. Chaw, E.: Näıve Bayesian learning based multi agent architecture for telemedicine.
Int. J. Innov. Appl. Stud. 2, 412–422 (2013)

10. Zhang, M.-E.: Adaptive system construction of medical knowledge agent learning
technology. IEEE (2017)

11. Min, C., Yixue, H., Kai, H., Lu, W., Lin, W.: Disease prediction by machine learn-
ing over big data from healthcare communities. IEEE Access 8, 8869–8879 (2017)

12. Nicolas, R., Jeremy, B., Julien, N., Dorian, D., Marie-Pierre, G.: Lifelong machine
learning with adaptive multi-agent systems (2017)

13. El Malki, M., Ben Hamadou, H., Chevalier, M., Péninou, A., Teste, O.: Querying
heterogeneous data in graph-oriented noSQL systems. In: Ordonez, C., Bellatreche,
L. (eds.) DaWaK 2018. LNCS, vol. 11031, pp. 289–301. Springer, Cham (2018).
https://doi.org/10.1007/978-3-319-98539-8 22

14. Anju, A.: Machine learning based system health check analyzer for energy compo-
nents (2018).http://hdl.handle.net/11250/2564383. Accessed 3 Aug 2019

15. Julian, V., Botti, V.: Multi-agent systems. Appl. Sci. 9(7), 1402 (2019)
16. Becker, Colja A., Timm, Ingo J.: Planning and scheduling for cooperative con-

current agents with different qualifications in the domain of home health care
management. Association for the Advancement of Artificial Intelligence (2019)

17. Kuziemsky, C.E., Harris, A.: An agent based framework for healthcare teamwork.
Association for Computing Machinery (2019)

18. Raddaoui, M., Ben Abdallah Ben Lamine, S., Zghal Baazaoui, H., Ghédira Guegan,
CH., Kabachi, N.: Knowledge guided integration of structured and unstructured
data in health decision process. In: 28th International Conference On Information
Systems Development, vol. 28 (2019)

19. Amanda, R., et al.: A mobile-based deep learning model for cassava disease diag-
nosis. Front. Plant Sci. 10, 272 (2019)

https://doi.org/10.1007/BF00992698
https://doi.org/10.1007/BF00992698
https://doi.org/10.1007/978-3-319-98539-8_22
http://hdl.handle.net/11250/2564383


Constructing a Secured, Reactive and Scalable
Data Platform for a Better Exploitation of Rich

Data Assets in the Tourism Industry

Fanjuan Shi(&)

IAE Lyon, University of Jean Moulin Lyon 3, Lyon, France
shifanjun@gmail.com

Abstract. This paper presents our endeavor to construct a secured, reactive and
scalable data platform as a response to the increasing needs for reliable, real-
time, and actionable insights that are refined from data. The adventure starts with
the design and share of a business-driven data platform implementation strategy
by several business and IT teams. Based on that, we demonstrate the main
functions and features of this platform and justify the reason for which we had
selected a virtual private cloud solution. Then, we described the types of
ingested data and our data ingestion method. We further discussed several
business & engineering problems and our method to solve them. Finally, we
present our prospection of future efforts to improve our data platform at the end
of this paper.

Keywords: Data platform � Data ingestion � Universal dataset � Analytics �
Machine learning

1 Context

C-GROUP is the leader for constructing and operating hotel facilities and resorts in
Europe. The group has over 100 hotels and holiday villages in Europe. Each year, these
facilities accommodates more than 5 million visitors all over the world and provides
them with memorable holiday experience.

Over the past few years, a worldwide digitalization trend has fundamentally
changed the behaviors of both consumers and companies in the tourism industry [1].
To better understand, reach, serve, and interact with its prospects and customers, C-
GROUP needs to tackle a series of new challenges that are associated with the capa-
bility to produce reliable, real-time and actionable insights from data.

1.1 Omni-Channel Customer Knowledge and Marketing Actions

C-GROUP sells vacation products through its own sales channels (website, call center)
and those of its business partners (online travel agencies, tour operators, member clubs,
worker councils…). Meanwhile, consumers use different devices (mobile phones,
computers, tablets) and ways (phone call, e-booking) to interact with these sales
channels. As a result, C-GROUP has to deal with consumer information that is

© Springer Nature Switzerland AG 2020
S. Yangui et al. (Eds.): ICSOC 2019 Workshops, LNCS 12019, pp. 236–244, 2020.
https://doi.org/10.1007/978-3-030-45989-5_19

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-45989-5_19&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-45989-5_19&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-45989-5_19&amp;domain=pdf
https://doi.org/10.1007/978-3-030-45989-5_19


scattered in different touchpoints. To boost the chance of sales conversion, C-GROUP
has to find a way to rebuild a (somehow) complete customer journey using these
fragments so that it will be able to take into account all the recent changes of consumer
intents and behaviors.

1.2 Personalization

There is an increasing number of consumers expect a brand to propose the most
relevant tourism products (accommodations & nearby activities and services) to their
tastes & needs out of thousands of choices [2]. In order to maximize the chance of sales
conversion, C-GROUP should also consider using the most preferred communication
channels and moments of each consumer [3]. To perform such a task simultaneously
for thousands of consumers, C-GROUP not only needs to remember the taste of many
consumers but also to have the powerful computational capability so that recommender
systems based on collaborative filtering or deep learning algorithms can quickly find
relevant recommendations and their probability of acceptance.

1.3 Performance Reporting and Analysis

C-GROUP needs to keep track of all the ongoing sales initiatives using data. The firm
believes in the notion that all teams shall base their analysis on the same source of data
and the same business rules so as to avoid any divergence or misinterpretation of
conclusion due to the quality and consistency of data and its processing rules. The firm
calls for a centralized and shared platform to bridge data silos and share information.

1.4 Personal Data Protection

Due to the rapid growth of volume and variety of data generated by consumers and
collected by C-GROUP, it becomes increasingly important for the firm to establish
rules, processes and mechanisms to prevent such sensitive information from being
abused. This requires the capability to track the use of sensitive personal data
throughout its lifecycle and anonymize such data when necessary.

2 Data Platform: Challenging Business Objectives

The above-mentioned challenges bring to a decision of the C-GROUP top management
in late 2018 to forge a secured, reliable, and scalable data platform for both data storage
and computation use cases in the sales and marketing domain. Meanwhile, the top
management required the project task force to achieve two challenging business
objectives:

(1) 12 months after the project kick-off, the data platform must generate revenue
(2) 24 months after the project kick-off, the data platform must generate profit

Constructing a Secured, Reactive and Scalable Data Platform 237



3 Conquer the Challenges Using a Business-Driven Approach

Conventional approaches will not allow us to achieve these challenging business
objectives. This is due to the fact that these approaches usually require months of work
of design (functions, architecture, applications, hardware & software interfaces, and
policies security), solution evaluation and selection, development & implementation
(platform construction & configuration, interaction sockets & protocols with existing
information systems, security policies), functional test (capability, performance &
stability), and validation. After that, we have to spend months to map different data
sources, ingest them, and industrialize the update processes. Depending on the quality
of the data, we will also have to design and perform data pre-processing tasks so that
the raw data would be transformed into an exploitable status. All these tasks present
complicated dependencies and uncertainties, which can easily delay the project for
months. This is not to mention the time necessary for data analysts and machine
learning engineers to work on data, develop models that can create business value, test
& optimize them, and deploy them to the real production environment.

3.1 Creating More Value Within the Same Period of Time

Due to the above analysis, we decided to parallelize the development of IT capabilities
(data platform & infrastructure), exploitable resources (data), and business solutions
(analysis and models), illustrated in Fig. 1.

Before designing our data platform, we spent time analyzing our internal needs for
data analysis and machine learning use cases. By estimating their potential business
values and technical efforts, we prioritized the use cases and identified the indispens-
able data platform features and data assets in short, middle, and long term. Based on
this knowledge, we designed the data platform architecture and an implementation
roadmap that can accelerate value creation.

Fig. 1. Parallelization of developments reduces the time to market and allows for a faster
revenue generation using same project resources.

238 F. Shi



The first phase (V1) aimed at providing indispensable data ingestion, storage,
transformation and transmission capabilities for use cases that require batch data
processing capabilities (Fig. 2). We limited our needs for analysis and modeling to a
minimal level (i.e. to handle batch data analysis and Python script execution) to reduce
the complexity and development time of the first version of the data platform. Since the
first users of this data platforms were experienced machine learning engineers, such
limitations had not brought to them any inconvenience.

The second phase (V2) aimed at providing data processing capabilities for use cases
requiring real-time calculation (Fig. 2). The integration of advanced data analysis and
visualization features was also carried out during this phase. As the data platform was
made accessible to data analysts and business analysts, these more user friendly (code-
light or code-free) applications accelerated the user adoption of the new tool.

3.2 Solution Selection: Minimize Time to Market

We based our data platform selection criteria on the business needs to minimize time to
market while keeping the exigences for security, performance, and reliability.

On-premises development was the first to be excluded. This was due to our con-
cerns for the excessive time, human resources and budget spent on creating and
maintaining big data frameworks, services, data access, development environments and
libraries. The project team had only two data engineers for this project. We preferred to
allocate them to more important tasks (data ingestion, automation, and application
deployment).

Fig. 2. This chart illustrates how data moves through different functional modules of the data
platform. The development of these features was split into two phases (V1 and V2).

Constructing a Secured, Reactive and Scalable Data Platform 239



In-the-cloud solutions have quite a few obvious advantages. (1) We can save a lot
of time that would have been spent on technical details as the management and
maintenance of the infrastructure and platform are taken care of by a vendor. (2) We
can start with a small platform and scale it up easily when we need to. (3) The pay-by-
usage pricing strategy reduces the initial investment in the project. Meanwhile, users of
a cloud data solution need to pay attention to the brand new pricing scheme and have
frequent and profound discussions with the service vendor to apply best practices to the
platform setting up starting from day one.

Among all the virtual private cloud vendors, we have chosen Google Cloud Plat-
form (GCP) as the solution to our data platform. Whereas we recognized that solutions
like Amazon AWS and Microsoft Azure also offered competitive Infrastructure as a
Service (e.g. networking, storage, firewall services, virtualization technologies etc.) and
Platform as a Service (e.g. runtime, middleware, operating systems etc.), we had
chosen GCP because of its better compatibility to our existing infrastructures and data
assets.

3.3 Optimizing Data Ingestion Tasks for Quicker Value Delivery

As many large international firms, C-GROUP has a lot of data sources available for
ingestion. Thanks to the previous prioritization of use cases, the project team was able
to clearly define and follow a data ingestion roadmap that could ensure a fast delivery
of use cases. We present the data sources in Table 1 and their descriptions.

Table 1. Example of data sources.

Priority Category Type Update Ingestion strategy

1 Media reach log Semi-structured D + 1 Increment/batch
2 Web navigation

log
Semi-structured H + 4/real-

time
Incremental/batch + streaming

3 CRM data Structured W + 1 Replacement/batch
4 User opt-in Structured Real-time Replacement/streaming
5 Transaction log Semi-structured D + 1 Replacement/batch
6 Product catalog Structured D + 1 Replacement/batch
7 Call center log Semi-structured D + 1 Increment/batch
8 References Semi-structured D + 1 Replacement/batch
9 Email campaign

log
Semi-structured W + 1 Increment/batch

10 Search query logs Semi-structured D + 1 Increment/batch
11 Customer survey Semi-structured W + 1 Increment/batch
12 Social media

events
Semi-structured H + 4 Increment/batch

13 Call records Non-structured W + 1 Increment/batch
14 Customer

complaints
Non-structured D + 1 Increment/batch

15 Mobile App
events

Semi-structured H + 4/real-
time

Incremental/batch + streaming

16 Open data Structured Depends Depends

240 F. Shi



Media reach log records the type of contents that are exposed to each known and
unknown consumers and their feedback to the contents.
Web navigation log records consumers’ behaviors and their analytics on our e-
commerce websites.
CRM data records customers’ background information, their recent interactions
with C-Group their consumption history, and their value potential.
User opt-in records consumers’ decision to accept or refuse our proactive contacts
from different touchpoints.
Transaction log records all the detailed information of a confirmed, canceled or
pending customer order, including rich quantitative and qualitative information.
Product catalog records all information related to our hundreds of thousands of
vacation products and offers.
Call center log records the key information related to an inbound or outbound
consumer call.
References record various business rules and configurations.
Email campaign log records the contents of different campaigns, target consumer
audience, and their reaction to the email.
Search query log records keywords queried by consumers and their reactions to the
provided search results.
Customer survey provides quantitative and qualitative customer feedback to our
products and services.
Social media events record the interactions between consumers and social media
accounts of C-GROUP.
Call records provide original and complete information of an inbound or outbound
consumer call.
Customer complaints records the qualitative information of customer
dissatisfaction.
Mobile App events record the behaviors and their analytics of consumers who use
our mobile Apps.
Open data is information that could be useful for our analysis and modeling.
Examples include weather condition and social-economic data.

We split the data ingestion tasks into three waves. Each wave aimed at ingesting
indispensable data sources for the subsequent analysis or machine learning use cases.

The data ingestion task was composed of the following steps: (1) define and val-
idate the interface contract between the source and the destination datasets and data
fields; (2) set up SFTP in the data platform and define repositories in SFTP; (3) create
Talend workflow to extract data and send it to SFTP repositories; (4) set up configu-
ration table and test the ETL workflow; (5) create data catalog and dictionary with
descriptions and examples; (6) define repositories for arriving data cache, raw data
storage, and data archive; (7) develop and test scripts to move data files from arriving
data cache to raw data repository and to archive; (8) develop and test scripts to execute
pre-defined data processing rules; (9) develop and test scripts to pseudonymize and
depseudonymize data fields that contain recognizable personal data.

Constructing a Secured, Reactive and Scalable Data Platform 241



3.4 Enriching the Value of Data Through Blending and Connecting

In many data labs and data warehouse, the job of a data engineer is limited to the data
sources ingestion & automation, as is mentioned above. In our data platform project,
we encouraged data engineers to do more than that because we believed that connected
data were much more valuable than siloed data.

This additional task is to connect siloed datasets and automate the process. If
ingesting data can be regarded as mining iron ore, connecting data can be considered as
making “crude steel”, which is an intermediary product that can be used for many
manufacturing and construction purposes (Fig. 3).

In our project, data engineers who carried out the data connecting jobs performed
the following tasks. (1) discuss with data analysts and machine learning engineers to
identify the data sources that can be connected; (2) identify the data fields to be kept in
each dataset; (3) identify common data fields to connect data sources; (4) define rules to
connect datasets – for datasets that have different data granularity, define the rules of
aggregation; (5) develop and test the script to automate the data connecting job;
(6) create, name and move new data files to the raw data and archive repository;
(7) create data catalog and dictionary for new users.

To forge universal datasets for different analysis and machine learning purposes, we
organized data connecting workshops where data analysts, machine learning engineers,
and other key data users sat together to analyze, consolidate, and validate business
needs. Knowledge obtained in these workshops allowed us to identify datasets to be
connected (based on the frequency of usage), the data fields to be kept, and the
types/rules of data aggregation to be applied.

There are five benefits to create universal datasets by data engineers. (1) Universal
datasets significantly reduced recurrent & unnecessary data connecting efforts of data
analysts and machine learning engineers, enabling them to focus on their analytics and
machine learning use cases; (2) a centralized production and maintenance of universal
datasets assured the consistency of raw data processing and avoided data quality and

Fig. 3. “Connecting siloed datasets” aims at creating universal datasets (“crude steel”) that can
be used for various types of data analysis and machine learning projects.

242 F. Shi



reliability issues resulting from misinterpretation of data processing rules; (3) a cen-
tralized production of universal datasets minimized the waste of computing resources &
budget resulting from repeated data connecting by downstream users. (4) universal
datasets enabled data engineers to participate in business analysis or machine learning
projects in an earlier stage, facilitating the subsequent industrialization tasks; (5) uni-
versal datasets and their data catalog/dictionary are much more user-friendly to new
users who have few analytical backgrounds.

3.5 Governance of the Data Platform

A data platform is a complex research, development and production environment that
involves stakeholders from many business and IT teams. In order to assure well-
functioning and governance of this community, we defined clear roles, access per-
missions, and responsibilities for platform administrators and users.

Based on the RACI model, we defined four data platform roles: (1) “responsible”
refers to persons who carry out actual tasks to solve a problem; (2) “accountable”
refers to persons who approve/authorize the execution of tasks; (3) “consulted” refers
to persons who provide information useful or necessary to execute tasks; (4) “in-
formed” refers to persons who should only be informed of the results of tasks.

We further clarified 10 categories of responsibilities. (1) network: assure good and
sustainable functioning of connection between the data platform and existing infor-
mation systems; (2) infrastructure: assure good and sustainable functioning of such
infrastructures as servers, operating systems, database, and middleware; (3) applica-
tions: installation and maintenance of applications for job management (Airflow), code
maintenance and integration (Gitlab, Jenkins), applications monitoring (InfluxDb),
information visualization (Grafana), and so on; (4) service continuity: define and assure
service continuity and restore services when there is an incident; (5) security: supervise
system vulnerability and attacks (e.g. DDoS), manage certificates; (6) access and
administration: manage service accounts and access to data platform console, create,
modify and delete accounts, manage the usage of the data platform in terms of storage
and computing resources, manage the billing; (7) data ingestion: create, monitor and
maintain data ingestion jobs, create and update data catalog, and perform data
pseudonymization and depseudonymization jobs; (8) data connecting: create and
maintain universal datasets and their data catalogs, create and maintain references;
(9) data analysis: create and maintain project-level datasets, produce analytical prod-
ucts, manage the consumption of storage and computing resources; (10) modeling:
create and maintain project-level datasets, create, maintain and deploy machine
learning models, manage the consumption of storage and computing resources.

By crossing the roles and the responsibilities, we created a responsibility assign-
ment matrix to specify the requirements for each user. Relevant KPIs and dashboards
were also created for the data platform manager to keep track of the good governance
of the community.

Constructing a Secured, Reactive and Scalable Data Platform 243



4 Discussion and Prospection

Since the project kick off in Feb 2019, we succeeded in delivering the first version of
the data platform features and datasets in 5 months. We industrialized the first use case
in 6 months (personalized activation email based on recent consumer intent) and obtain
incremental revenue. Meanwhile, the second use case (recommender system of services
to consumers) has passed the offline blind test in June and was scheduled for a sub-
sequent online AB test.

For the next step, we want to put our efforts on the following subjects.

(1) The first priority is to keep the momentum of data ingestion and data connecting
tasks as they are the fundamental of our subsequent analytics and machine
learning tasks. For the moment, we have had ingested and connected media, web,
CRM, transaction, user opt-in, and product data, it enable us to perform use cases
like personalized emailing and recommender systems. The subsequent focus is to
ingest call center data so as to better orchestrate call center staffing with an aim to
maximize revenue creation.

(2) The second priority is to integrate more user-friendly analytics features for citizen
business analysts. Intuitive and code-light analytics solutions like BigQuery and
Dataiku makes sophisticated statistical analysis more intuitive to users. By inte-
grating these features, we will be able to increase the adoption rate of the data
platform within our organization.

(3) The third priority is to plan for the integration of real-time data processing and
dispatching capability. As more and more consumers require for personalized
tourism product shopping experience, we need to create user scoring and interaction
applications that take into account consumers’ intents and behaviors in real time.

(4) Finally, we should start exploring the capability to process and exploit non-
structured data such as voice record and images because these data sources
usually contain richer consumer information that structured and semi-structured
data cannot provide. Use cases such as conversation pain point analysis and user
intent/interest analysis rely on such capability. Nowadays, cloud solution provi-
ders have made available various computer vision and voice recognition solutions
(e.g. deep learning frameworks, pretrained models, and packaged APIs). We need
to evaluate them and chose the ones that cater to our needs and context.

References

1. Gretzel, U., Sigala, M., Xiang, Z., Koo, C.: Smart tourism: foundations and developments.
Electron. Mark. 25(3), 179–188 (2015). https://doi.org/10.1007/s12525-015-0196-8. Author,
F., Author, S.: Title of a proceedings paper. In: Editor, F., Editor, S. (eds.) CON-
FERENCE 2016, LNCS, vol. 9999, pp. 1–13. Springer, Heidelberg (2016)

2. Lu, J., et al.: Recommender system application developments: a survey. Decis. Support Syst.
74, 12–32 (2015)

3. Melero, I., Sese, F.J., Verhoef, P.C.: Recasting the customer experience in today’s omni-
channel environment. Univ. Bus. Rev. 50, 18–37 (2016)

244 F. Shi

https://doi.org/10.1007/s12525-015-0196-8


Towards Multi-level Trust-Driven Data
Integration in Multi-cloud Environments

Senda Romdhani(B)

University of Lyon, CNRS, University of Lyon 3, LIRIS, Lyon, France
senda.romdhani@univ-lyon3.fr

Abstract. The service composition process in multi-cloud environments
is emerging as a promising approach to integrate data made available
through different sources w.r.t user’s requirements and quality condi-
tions. In this approach, individual cloud services with different offers
and quality aspects are federated into composite data-provisioning cloud
services with few fine control about the conditions in which they are
implemented and provided. In this work, we aim to guide the data inte-
gration process in multi-cloud by adding a trust dimension as quality
warranty taking into account user’s preferences and Service Level Agree-
ment. Accordingly, our contribution consists in defining a data integra-
tion trust-aware workflow in multi-cloud by computing trust scores of all
entities implied in the integration process.

Keywords: Trust · Multi-cloud · Data integration · Composite
service · Service level agreement

1 Introduction

Nowadays, with the advances of the cloud computing, individual people and
organizations can obtain and process data from different sources. Putting in
place an accurate and reliable data integration process to ensure that the most
trustworthy data are made available and delivered to end users is becoming
of paramount importance. A key step in the integration process is to select
participating data-provisioning cloud services. However, reliance on services for
data provisioning requires them to be trustworthy and of good quality.

Since the offered QoS specified in SLAs is unreliable and generally fluctuates
due to the dynamics of the cloud and due to the possible presence of malicious
data sources and cloud resources, we deem necessary evaluating the trustworthi-
ness of cloud data-provisioning services participating in the integration process.
Our work aims at guiding data integration process in multi-cloud environments
by adding a trust dimension. The objective being to select the most suitable data
composite services for clients with respect to their requirements using multiple

This work has been done in the context of the project SUMMIT (http://summit.imag.
fr) funded by the Auvergne Rhone Alpes region.

c© Springer Nature Switzerland AG 2020
S. Yangui et al. (Eds.): ICSOC 2019 Workshops, LNCS 12019, pp. 245–256, 2020.
https://doi.org/10.1007/978-3-030-45989-5_20

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-45989-5_20&domain=pdf
http://summit.imag.fr
http://summit.imag.fr
https://doi.org/10.1007/978-3-030-45989-5_20


246 S. Romdhani

cloud services and data with different provenance. To build such trust model,
we take into account various aspects that may affect the trustworthiness of the
data. Usually, the trustworthiness of the data depends on the trustworthiness of
the data sources and on the parties that process the data. In this context, data is
likely to be true if it is provided by trustworthy data sources, cloud and services.
Due to such inter-dependency between them, we deem necessary developing a
procedure to compute the trust scores of those entities so we can identify them
and avoid any untrustworthy or misleading data.

To illustrate this need, let us suppose that for a surgery preparation, a doc-
tor requires some important and sensitive information about his patient’s health
record. This information includes but not limited to blood pressure history, DNA
information and pills subscriptions over the years that can be provided by dif-
ferent actors involved in the patient’s medical control (e.g. cardiologist, personal
smart devices, hospitals. etc.). Assume that these actors can store and give access
to their data using different clouds (private cloud used by hospitals/cardiologist
and public cloud used by smart devices.). Besides, assume that the doctor has
several preferences regarding data (e.g. he requires data timeliness and availabil-
ity, he wants good security measures etc.) and also has requirements regarding
the integration process (e.g. integration with minimal cost and fast response
time) expressed through SLA. In this case, several data-provisioning cloud ser-
vices with different QoS can be composed to participate to integrate data for the
doctor. Differentiating those services using a trust score may help selecting the
most trustworthy composite service that best cope with doctor’s requirements.

While there have been some efforts to evaluate the trustworthiness of cloud
resources, the problem of trusted data integration in multi-cloud has not been
widely investigated [15]. Previous solutions have either evaluated the trustwor-
thiness of cloud resources individually or presented some guidelines for quality
dimensions and standardization efforts. However, even though those solutions
are important, they do not address the question on whether one can truly trust
a composite multi-cloud data-provisioning service [14].

To this end, this paper aims to formulate the problem of data integration
in multi-cloud environments, to revisit previous trust evaluation solutions in
cloud environments in order to adapt them to our context, and finally this
paper proposes a trust-aware data integration workflow. The remainder of this
paper is organized as follows: Sect. 2 presents trusted data integration challenges
and defines the quality criteria used for data-provisioning service selection and
explains how values of these criteria can be computed for each integration entity.
Section 3 presents our trust-aware data integration workflow. Section 4 concludes
the paper and presents future work.

2 Trusted Data Integration on Multi-cloud Environments

Evaluating the trustworthiness of composite cloud services requires a mathemat-
ical model in which all aspects, parameters and user requirements are investi-
gated. In this section, we shed light on (multi)-cloud computing and trust by
discussing their definitions as well as formulating data integration trust compu-
tation challenges. Afterwards, we present the trust assessment criteria for the



Towards Multi-level Trust-Driven Data Integration 247

different data integration entities namely data, service and cloud according to
standards and those presented in research works.

2.1 Preliminary Definitions

Commonly agreed definitions for trust and (multi)-cloud does not exist. Thus,
we present hereafter those that are deemed relevant for our work.

Cloud Computing : also the pay-as-you-go model, is a model for enabling on-
demand network access to a shared pool of configurable computing resources
that can be rapidly provisioned and released with minimal management effort
[24].

Multi-Cloud : This term denotes the usage of multiple cloud service providers
by a client. This strategy is adopted to take advantage of the best offered services
of each service provider with minimal cost in order to develop a solution that
is perfectly tailored to the client’s needs. Multi-Cloud allows end users to avoid
vendor lock-in and offers better flexibility. It also offer the possibility to benefit
from the advantageous prices and from the unlimited scalability of the cloud.

Trust : The concept of trust has first showed in sociological environment. It is
a relationship built over time between two individuals which is affected positively
or negatively by their previous experiences and memories. In the information
technology area, trust is a complex notion and its definition is not unique, it
may vary depending on the where and what context it is going to be employed.
For cloud computing we provide the following trust definition: trust is the belief
that a cloud resource is going to perform as the client’s expectations, preferences
and quality requirements presented in their SLAs. Trust can be regarded from
multiple aspects- based on multiple sources and perspectives [1,6]. Considering
data integration context in multi-cloud environment, the notion of trust becomes
even more and more fuzzier.

For example, in Fig. 1, a user asks for some information that is composed
of data d1, data d2 and data d3 using the composite service cs. The user has
also asked for this data to be fresh (up to date), complete and there are security
measures. The user’s trust in composite service cs, implies his trust in d1, d2
and d3. Data d1 can be provided by service s1 which is deployed on cloud c1
and cloud c2, d2 can be provided either by service s2 deployed on cloud c1
or service s4 deployed on cloud c3. For data d3, we only have the service s3
deployed on c2. As a result, to be able to trust the output data delivered by cs,
we also need to establish trust with the other participating entities in the data
integration (cloud, service) with the trust score TLei (e denotes the entity and i
denotes the entity’s number). An association of entities form a path with a trust
value TLj resulting from the aggregation of the entities trust levels (j denotes
the path number). In this case, the data integration process needs to compute
individual TLri then TLj , and selects a path for each desired data by comparing
the different obtained TLj . Later, we need to compose those services’ paths and
evaluate their composite trust in the aim to find the best data-provisioning
service composition for the end user. These goals can be achieved using a multi-
level trust solution.



248 S. Romdhani

Fig. 1. An example to illustrate data integration trust computation challenges

To evaluate the trustworthiness of the participating services, we need to answer
questions concerning data like “Where did the data come from? How trustworthy is
the original data source?”, questions concerning the cloud and services that deliver
the data like “Who is authorized to modify the data? Is data protected from mali-
cious access?” and finally questions concerning the composition process like “how
to ensure that the process considers trust requirements? Which technique to use
to evaluate composite trust? Do we start by evaluating the cloud or the services
they host? Is data trust more important than the service trust? Are we going to
find the information we need for this evaluation?” etc.

During the trust computation phase, multiple attributes need to be taken
into account to ensure reliable decision making in the cloud computing [20]. We
believe that it is vital to identify trust assessment criteria for the different cloud
resources in order have insights on the best way to evaluate them. Nevertheless,
such process generally lacks comprehensiveness and guidance. In the next section,
we are going to discuss the different trust assessment criteria.

2.2 Criteria for Trust Assessments in Cloud Computing

In this section, we present the state of the art of trust assessment criteria used for
each entity implied in the data integration process namely data trust assessment
criteria and cloud service trust assessment criteria.

Data Trust Assessment Criteria
In order to identify the relevant criteria for data trustworthiness assessment, we
referred to papers that discuss data quality dimensions and considered influen-
tial by the scientific community [2,7,8]. We summarize below in Table 1 these
dimensions, their quality indicators and some possible assessment methods.

Cloud Service Trust Assessment Criteria
QoS has been discussed a lot in the literature and seen as a major criteria for
evaluating the trustworthiness of cloud services. QoS is defined in various ways



Towards Multi-level Trust-Driven Data Integration 249

Table 1. Data quality dimensions

Dimensions Definition Indicators Assessment

Accessibility The extent to which data

is available reflecting ease

of data attainability

Whether a data access

interface is provided

Min or Max operation:

This metric trades off the

time interval over which

the user needs data

against the time it takes

to deliver data. It is

defined as the maximum

value of two terms: 0 or

one minus the time

interval from request by

user to delivery to user

divided by the time

interval from request by

user to the point at which

data is no longer useful

Timeliness The extent to which data

is sufficiently up to date.

It reflects how up-to-date

the data is with respect

to the task it’s used for

Whether data are

regularly updated

Min or Max operation[2]:

Measured as the

maximum of one of two

terms: 0 and one minus

the ratio of currency to

volatility. Here, currency

is defined as the age plus

the delivery time minus

the input time. Volatility

refers to the length of

time data remains valid;

delivery time refers to

when data is delivered to

the user; input time refers

to when data is received

by the system; and age

refers to the age of the

data when first received

by the system.

Completeness The extent to which data

is not missing and is of

sufficient for the task at

hand

Whether the deficiency of

a component will impact

data accuracy and

integrity

At the data level, one can

define column

completeness as a

function of the missing

values in a column of a

table. This measurement

corresponds to Codd’s

column integrity [25]

Interpretability The extent to which data

is in appropriate

languages, symbols, and

units and the definition

are clear

Data description,

classification, and coding

content satisfy

specification and are easy

to understand

Verifying its meta-data

Free-of-Error The extent to which data

is correct and reliable

Data provided are

accurate OR Data and

the data from other data

sources are consistent or

verifiable

Simple ratio: the number

of data units in error

divided by the total

number of data units

subtracted from 1

Security The extent to which

access to data is

restricted appropriately

to maintain its security

Authentication and

Authorization type

AND/OR certifications

The better the

authentication and

authorization type, the

better the data quality

AND/OR Verifying

certifications validity and

provenance



250 S. Romdhani

Table 2. Cloud service trust quality dimensions

Dimensions Definition Factors & Metrics Assessment

Capability Specific functionality

relating to the cloud

service

Mean time to

recovery/Mean time

to failure/Failure

handling (backup

frequency)

Can be obtained

directly from the

service provider or

from SLA

Capacity Maximum amount of

some property of a

cloud service

Maximum resource

capacity: e.g. CPU

capacity, Memory

size, Network

bandwidth, Service

throughput, Storage

capacity, number of

parallel sessions

Can be obtained

directly from the

service provider or

from SLA

Performance Information is

obtained through

resource auditing and

monitoring

(i) Availability:

being accessible and

usable upon demand

by an authorized

entity

(i) Current (CPU-

memory-bandwidth)

utilization rate,

Percentage of

successful requests,

Percentage of

downtime/uptime

(ii) Time efficiency (ii) Ratio of the

number of times the

cloud provider is time

effective to the

number of service

requests successfully

completed

(iii) Data integrity (iii) Ratio of the

number of times the

data integrity is

preserved to the

number of service

requests successfully

completed)

(iv) Response time (iv) Average

(v) Task success

ratio or Cost

(v) Average

Security & Privacy Information about

employed security and

privacy measures can

be fixed and obtained

through SLAs,

through Standards

such as NIST [3],

ISO/IEC [4], and SMI

[17], and through

Certifications which

are generally provided

by cloud service

providers. A certified

resource should have

a more chance to give

a better quality of

service

(i)Authentication

type (Simple

password, X.509,

Kerbeos),

(ii)Authorization

type (Simple

password,

Identity-based

authorization,

Role-based

authorization),

(iii)Self Security

competence

(Malware/Firewall

protection, Intrusion

detection system, the

number of malicious

access), (iv) Mean

time required to

revoke user access

(v)service

reliability (property

to function correctly

without failure)

Comparison to the

security and privacy

terms fixed through

policies or performing

security controls: e.g.

continuity

management and

disaster recovery etc.

(vi) Frequency of

scanning of important

ports



Towards Multi-level Trust-Driven Data Integration 251

and measured by different metrics, which causes confusion sometimes. After
examining existing trust solutions research efforts in the area of cloud computing,
we identify three trust assessment approaches for cloud services including:

Capacities/Capabilities Assessment : In this approach, user’s preferences and
requirements are mapped to different capabilities of the offered cloud resources.
In this sense, the offer that best suits the user is the most trustworthy.

Performance Monitoring and Auditing : It is performed through SLA of cloud
resources before or during service usage. In the first case, data collected from
previous experiences are used to measure the degree of SLA fulfilment. If the SLA
is satisfied, then the cloud resource is considered as trustworthy and vise versa.
In the second case, SLA is monitored during service usage to detect violations.
In case of violation, the service is either penalized or abandoned and replaced
by another one.

Security & Privacy Assessment : This approach consists of verifying security
and/or privacy measures of cloud resources.

The different trust evaluation dimensions are presented in details in Table 2
hereafter. We assign trust factors and metrics for each dimension as well as
presenting guidelines for their assessment.

In Table 3, we present the studied research work and their adopted trust
assessment dimensions.

3 Trust-Aware Data Integration Workflow in Multi-cloud

Selecting and optimizing data-provisioning composite services in multi-cloud
environments are some of the most interesting challenges at present. The opti-
mization challenge has been partially addressed previously in the work [16].
Their main objective was to compose data services in multi-cloud according to
user’s requirements and quality aspects using SLAs. In our present work, we are
developing a solution that focuses on the selection’s challenge by extending the
solution in [16] adding a multi-level trust dimension.

In this section, we present the proposed multi-level trust-aware data integra-
tion workflow. We are using the e-health scenario presented in Sect. 1 to describe
it. We suppose that, when the process starts, the trust levels of data, cloud and
service are already evaluated and that they remain constant during the integra-
tion. Please note that the trust evaluation approach as well as the algorithm
that allows to produce selection plans guided by dimensions presented in Sect. 2
are not addressed in this paper and are among our future work.

As illustrated in Fig. 2, the main entities in our workflow are: the user (doc-
tor), the profile extractor, the service selection and composition manager (devel-
oped in [16]), the service directory manager, and finally the trust manager.

Profile Extractor: Parameters extraction involves careful analysis of user’s
request to learn his integration requirements and quality preference. This entity
supplies the extracted requirements and preferences as input parameters required
for rewriting queries in the data integration process.



252 S. Romdhani

Service Selection and Composition Manager: Data integration is gen-
erally realized in two steps including service selection and service composition.
The first step is about matching user’s request to existing services to extract
those capable of executing it or part of it. Service Composition is about find-
ing the best composition for selected services in the previous step to deliver
requested information to the end user.

Service Directory Manager: This entity has access to the list of the avail-
able cloud services across the multi-cloud environment. If the Service selection
and composition manager launches a service discovery request, the service direc-
tory manager is able to provide him with the list of the available and suitable
ones. Any new service in the environment is added to the list of available ser-
vices and their related documents and SLAs are extracted. We suppose that
these documents contain information about the delivered data, about the cloud
that hosts the service and information about the service itself.

Trust Manager: This is the module that has control over the trust com-
putation of cloud resources implied in the integration process. It uses the infor-

Table 3. Cloud service trust assessment works

Paper Applicability SLA Trust dimensions

Manuel (2009)

[5]

All services No Security: Authentication

type, Authorization type, Self

security competence,

Performance: Processor

speed, Free ram size, Network

Parameters (bandwidth,

latency)

Chakraborty et

al. [21] (2012)

All services Yes Capacity/Capability: CPU

capacity, Memory size, Storage

capacity, Number of parallel

sessions, Failure handling

(backup frequency, mean time

to recovery), Average

throughput

Lu et al. (2015)

[22]

All services No Security/Performance:

Passing delay, Passing packets

quantity

Xiaoyong et al.

(2015) [9]

IaaS Yes Capacity/Capability: CPU

frequency, memory size, hard

disk capacity and network

bandwidth/Performance:

Availability, Average response

time, average task success

ratio, and the number of

malicious access.

Mrabet et al.

(2016) [18]

All services Yes Performance: Availability (%

accepted requests), Reliability

(% requests successfully

completed), Time efficiency,

Data integrity



Towards Multi-level Trust-Driven Data Integration 253

Table 3. (continued)

Paper Applicability SLA Trust dimensions

Liao et al. (2016)

[19]

All services No Performance:

Generic/Certifications

Chiregi et al.

(2016) [11]

All services No Capability: Processor speed,

Memory speed, and Network

(latency and

bandwidth)/Performance:

Availability, Reliability (task

success ratio), data integrity

(includes privacy and data

accuracy)/Security identity (it

is the weighted sum of

Authorization level, Security

level, Entity Protection level and

Recovery level)

Singh et al. (2017)

[12]

All services Yes Performance: Data processing

accuracy, Data privacy, Data

storage success, data

transmission (% of success), and

data security. Availability,

Reliability, Turnaround time and

service use factor of the service

(related to the number of users

that uses the service)

Saxena et al.

(2018) [23]

IaaS Yes Security: standards, Guidelines

and Certifications

Bao et al. (2018)

[13]

All services Yes Security: Prevention of

unauthorized

access/Performance: Reliability

(average response time, average

task success ratio), Availability

Xiaoyong et al.

(2018) [10]

All services Yes Security: Authentication type,

Authorization type, Self-security

competence/Performance:

Availability, Average response

time, Average task success ratio

mation provided by the service directory manager to extract trust scores of all
data, service and cloud and then compute the path’s overall trustworthiness.

Working principle of our trusted data integration workflow works as follows:

– Step 1. The doctor logs into the data integration interface and submits his
request along with his requirements and quality preferences.

– Step 2. The profile extractor analyze the request in order to extract these
requirements and preferences. Requirements are stored in a vector RQ =
{RQkl} and quality preferences are also stored in QP = {QPql} (k denotes
the kth requirement, q denotes the qth preference and l identify the user’s
request).

– Step 3. These vectors are used by the service selection and composition man-
ager to rewrite the query and determine services needed for the composition.
To do so, the manager runs the vectors and try to match them with services
that can contribute to produce the final result. Therefore, he sends a request
to the service directory manager to screen for available services.



254 S. Romdhani

Fig. 2. Trusted data integration workflow: E-health scenario

– Step 4. The service directory manager uses SLAs and other available doc-
uments to find available cloud services that best cope to the request. The
resulted list is then sent to the trust manager for computation of trust scores
that will help identify the most trustworthy services.

– Step 5. The list of trustworthy services is sent back to the service selection
and composition manager which will use it to compose services.

– Step 6. Finally, to find the best service composition, the service selection
and composition manager sends a request to the trust manager to compute
trust scores of composite services. The most trustworthy composite service is
chosen and then concerned services are notified.

4 Conclusion and Future Work

The issue of trusting data-provisioning services in multi-cloud environments
when integrating data has become of paramount concern. Multiple entities from
different levels participate into the integration process including data with differ-
ent provenance and quality conditions (freshness, timeliness..), cloud providers
with different deployment models (private, public..) and data-provisioning ser-
vices with different quality of services (security, availability..).

To this end, to avoid malicious data manipulations as well as to select the
most suitable provisioning services for a given service composition, we believe it is
important to put in place a mechanism to compute trust scores of data, cloud and
service. Therefore, the aim of this work is to develop a multi-level trust model



Towards Multi-level Trust-Driven Data Integration 255

for data integration in multi-cloud environments. In this paper, we propose a
trust-aware data integration workflow adapted to multi-cloud environments. In
order to move towards a multi-level trust evaluation model, we reviewed some
trust assessment criteria for the different entities implied in the data integration
process namely cloud, service and data. This is a work in progress. Currently
we are formalizing ways to compute the trust scores of each integration entity
and the multi-cloud composite services. After the multi-level trust computation
model being formalized, the next step would be to formalize an SLA for data
integration taking into account our multi-level trust model.

References

1. Mohannad, A., Bertok, P., Tari, Z.: Trusting cloud service providers: trust phases
and a taxonomy of trust factors. IEEE Cloud Comput. 4(1), 44–54 (2017)

2. Ballou, D.P., Pazer, H.L.: Modeling data and process quality in multi-input, multi-
output information systems. Manage. Sci. 31(2), 150–162 (1985)

3. Wayne, J., Grance, T.: Draft NIST special publication guidelines on security and
privacy in public Cloud computing. Computer Security (2011)

4. Saint-Germain, R.: Information security management best practice based on
ISO/IEC 17799. Inf. Manag. J. Prairie Village 39(4), 60 (2005)

5. Manuel, P.: A trust model of cloud computing based on Quality of Service. Ann.
Oper. Res. 233(1), 281–292 (2013). https://doi.org/10.1007/s10479-013-1380-x

6. Jin-Hee, C., Chan, K., Adali, S.: A survey on trust modeling. ACM Comput. Surv.
48(2), 28 (2015)

7. Pipino, L.L., Yang, W.L., Richard, Y.W.: Data quality assessment. Commun. ACM
45(4), 211–218 (2002)

8. Cai, L., Zhu, Y.: The challenges of data quality and data quality assessment in the
big data era. Data sci. J. 14, 1–10 (2015)

9. Li, X., Ma, H., Yao, W., Xiaolin, G.: Data-driven and feedback-enhanced trust
computing pattern for large-scale multi-cloud collaborative services. IEEE Trans.
Serv. Comput. 11(4), 671–684 (2018)

10. Li, X., Yuan, J., Ma, H., Yao, W.: Fast and parallel trust computing scheme based
on big data analysis for collaboration cloud service. IEEE Trans. Inf. Forensics
Secur. 13(8), 1917–1931 (2018)

11. Chiregi, M., Navimipour, N.J.: A new method for trust and reputation evaluation
in the cloud environments using the recommendations of opinion leaders’ entities
and removing the effect of troll entities. Comput. Hum. Behav. 60, 280–292 (2016)

12. Singh, S., Sidhu, J.: Compliance-based multi-dimensional trust evaluation system
for determining trustworthiness of cloud service providers. Future Gener. Comput.
Syst. 67, 109–132 (2017)

13. Bao, L.: QoS-based trust computing scheme for SLA guarantee in cloud computing
system. In: 2017 International Conference on Computing Intelligence and Informa-
tion System (CIIS), Nanjing, pp. 236–240 (2017)

14. Carvalho, D.A.S., Neto, P.A.S., Vargas-Solar, G., Bennani, N., Ghedira, C.: Can
data integration quality be enhanced on multi-cloud using SLA? In: Chen, Q.,
Hameurlain, A., Toumani, F., Wagner, R., Decker, H. (eds.) DEXA 2015. LNCS,
vol. 9262, pp. 145–152. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-
22852-5 13

https://doi.org/10.1007/s10479-013-1380-x
https://doi.org/10.1007/978-3-319-22852-5_13
https://doi.org/10.1007/978-3-319-22852-5_13


256 S. Romdhani

15. Romdhani, S., Bennani, N., Ghedira-Guegan, C., Vargas-Solar, G.: Trusted data
integration in service environments: a systematic mapping. In: Yangui, S., Bouas-
sida Rodriguez, I., Drira, K., Tari, Z. (eds.) ICSOC 2019. LNCS, vol. 11895, pp.
237–242. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-33702-5 18

16. Carvalho, D.A.S., Souza Neto, P.A., Ghedira-Guegan, C., Bennani, N., Vargas-
Solar, G.: Rhone: a quality-based query rewriting algorithm for data integration.
In: Ivanović, M., et al. (eds.) ADBIS 2016. CCIS, vol. 637, pp. 80–87. Springer,
Cham (2016). https://doi.org/10.1007/978-3-319-44066-8 9

17. Jane, S., Jeff, P.: Cloud services measures for global use: the service measurement
index (SMI). In: Annual SRII Global Conference, USA, pp. 411–415. IEEE (2012)

18. Mrabet, M., ben Saied, Y., Saidane, L.: Modeling correlation between QoS
attributes for trust computation in cloud computing environments. In: 17th
IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing,
Spain, pp. 488–497. IEEE Press (2017)

19. Liao, L., Bixin, L., Chao, L.: A model to evaluate the credibility of service in
cloud computing environment. In: 14th International Conference on Dependable,
Autonomic and Secure Computing, 14th International Conference on Pervasive
Intelligence and Computing, 2nd International Conference on Big Data Intelligence
and Computing and Cyber Science and Technology Congress, Auckland, pp. 294–
301. IEEE (2016)

20. Habib, S.M., Sebastian, R., Max, M.: Towards a trust management system for
cloud computing. In: 10th International Conference on Trust, Security and Privacy
in Computing and Communications, Changsha, pp. 933–939. IEEE (2011)

21. Sudip, C., Roy, K.: An SLA-based framework for estimating trustworthiness of a
cloud. In: 11th International Conference on Trust, Security and Privacy in Com-
puting and Communications, Liverpool, pp. 937–942. IEEE (2012)

22. Lu, K., Jiang, H., Li, M., Zhao, S., Ma, J.: Resources collaborative scheduling
model based on trust mechanism in cloud. In: 11th International Conference on
Trust, Security and Privacy in Computing and Communications, Liverpool, pp.
863–868. IEEE (2012)

23. Saxena, A.B., Meenu, D.: IAAS trust in public domain: evaluative framework for
service provider. In: 18th International Conference on Advanced Learning Tech-
nologies, India, pp. 458–460. IEEE (2018)

24. Peter, M., Tim G.: The NIST definition of cloud computing (2011)
25. Codd, E.F.: The 1981 ACM Turing Award Lecture. Communications (1982)

https://doi.org/10.1007/978-3-030-33702-5_18
https://doi.org/10.1007/978-3-319-44066-8_9


PhD Symposium



User-Oriented Description of Emerging
Services in Ambient Systems

Maroun Koussaifi(B)

University of Toulouse/IRIT, Toulouse, France
maroun.koussaifi@irit.fr

Abstract. Ambient intelligence aims at providing users the right ser-
vices at the right time. Our solution composes software components and
their services, automatically and on the fly, and makes composite services
emerge from the environment. An important question is their intelligible
presentation to an average user (not a service composition expert). Our
approach consists in the automatic generation of user-oriented descrip-
tions from unit descriptions of components and services. For that, we
propose a domain-specific language for component and service descrip-
tions and a combining method.

1 Introduction

Applications of the Internet of Things, ambient and cyber-physical systems con-
sist of fixed or mobile connected devices. Devices host independently developed
and managed software components that provide services specified by interfaces
and, in turn, may require other services [8]. Components are building blocks that
can be assembled by binding required and provided services to build composite
applications. Due to mobility and separate management, devices and software
components may appear and disappear without this dynamics being foreseen.

Humans are at the core of these dynamic and open systems. Ambient intelli-
gence aims at offering them a personalized environment adapted to the current
situation, anticipating their needs and providing them the right applications at
the right time with the least effort possible.

We are currently exploring and designing a solution in which components are
dynamically and automatically assembled to build new composite applications
and so customize the environment at runtime. Our approach is quite disruptive:
unlike the traditional goal-directed top-down mode, applications are built on the
fly in bottom-up mode from the components that are present and available at the
time, without user needs being made explicit, and without relying on predefined
plans. That way, composite applications continuously emerge from the environ-
ment, taking advantage of opportunities as they arise: for example, a slider on
a smartphone, a software adapter, and a connected lamp can opportunely be
composed to provide the user with a lighting service when entering a room.

Supervisors—J.-P. Arcangeli, J.-M. Bruel and S. Trouilhet.

c© Springer Nature Switzerland AG 2020
S. Yangui et al. (Eds.): ICSOC 2019 Workshops, LNCS 12019, pp. 259–265, 2020.
https://doi.org/10.1007/978-3-030-45989-5_21

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-45989-5_21&domain=pdf
https://doi.org/10.1007/978-3-030-45989-5_21


260 M. Koussaifi

Composition is automated by an opportunistic composition engine (OCE),
in line with the principles of autonomic computing [4]. OCE senses the existing
components and proactively makes the connections. The heart of OCE is a multi-
agent system where agents manage the services and their connections [10]. To
make the right decisions and build relevant applications, the agents learn online
and by reinforcement.

OCE behavior and decisions are out of the scope of this paper, which focuses
on placing the user in control of the deployment of emerging applications [6].
First of all, she/he must be informed of an emerging, possibly unexpected, appli-
cation. Then, depending on its interest, she/he must be able to accept or reject it,
or possibly modify it (provided that she/he has the required skills). For that, an
editor displays the component-based architecture of the application, and allows
modification [6]. However, such representation is only accessible to experts in
component-based programming. Moreover, it does not explain the service that
is offered. It is then essential to assist the user in the appropriation of the appli-
cations pushed by the engine. For that, they must be described in a useful and
understandable way. This is especially important since the user’s reactions are
the sources of feedback for learning: based on them, OCE builds and updates a
model of the user’s preferences and habits.

This paper focuses on a solution to provide the user with an intelligible
description of emerging composite applications. Section 2 states the problem
and the requirements; Sect. 3 analyzes the state of the art; Sect. 4 describes
the solution and preliminary results; Sect. 5 concludes and outlines the main
perspectives.

2 Problem Statement and Requirements

In the absence of prior specification, emerging applications may be unknown and
possibly surprising for the user. Thus, the way new applications are presented
is critical. The purpose of the application must be explicit [R1-Semantics]
(e.g. “The application allows to light up the lamp”), and how to use the applica-
tion must be explicit too [R2-Usage] (e.g. “Press the switch to turn ON/OFF
the light”). The description must also be understandable [R3-Intelligibility]:
here, we target average users that are not familiar with programming or com-
puter science (e.g. the inhabitant of a smart house or a public transport traveller
in a smart city). Moreover, the description should remain intelligible even if the
application consists of one to a few dozen components [R4-Scalability].

Henceforth, the problem is to build and display user-oriented understandable
descriptions. As applications are automatically assembled, the descriptions of the
services they provide must be computed automatically from the descriptions of
their components and services [R5-Automation]. Besides, the language that
supports the description of components and services should be expressive and
easy-to-use for engineers that provide them [R6-Expressiveness].



User-Oriented Description of Emerging Services in Ambient Systems 261

3 Related Work

There exists many solutions for functional and extrafunctional service descrip-
tion. They are mainly used to support automated service discovery and selection
in a top-down composition approach, that tends to build a complex service from
unit ones. However, there exists no solution which aims at combining descrip-
tions to build the description of a composite service to be presented to the user.
To the best of our knowledge, there is no work that meets our requirements,
mainly those concerning usage, intelligibility, and automated processing, in the
context of bottom-up and goal-free application construction. In the following,
we synthesize the related work.

For Whom and Why Describing a Service? Basically, service description is
used as documentation for developers. It allows services to be located and used,
as it is the case with WSDL. In Web service composition, the required services
are specified explicitly. Then, in a more or less automatic approach [7], they are
discovered and selected, based on their similarity with the expected ones, then
assembled together. Hence, this consists in a top-down mode approach where
the service description are no longer necessary in the composition phase. In [9],
authors propose a user-centric composition platform: end-users first specify their
goals using keywords, then the editor present the possible services that answer
his/her needs, and suggest possible and user-changeable processes.

How to Describe a Service? In automated service composition approaches,
the description of services varies according to the requirements of the discov-
ery and selection steps. The different solutions for service description have been
classified [3]. Descriptions may be limited to a syntactic way. For example, in
object-oriented middleware (e.g. Java RMI), services are located only through
a name. Otherwise, descriptions may be functional. It can have the form of sig-
nature with inputs and outputs, likely completed by preconditions and effects
[5]. However, signature is not enough because their might be different functions
with the same signature or even two services with the same function but with
different quality levels. Therefore, a service description should include extrafunc-
tional characteristics that is QoS-related properties. According to [3], OWL-S
has become a standard for industrial service composition. OWL-S is an ontology-
based language for describing semantic Web services that enables their auto-
mated discovery, composition and use. Ontology-driven description of services
have proved to be efficient for selection and composition [9].

4 Proposition

Building the description of a composite application consists in combining unit
descriptions of the components and their services. For that, we propose (i) a
domain-specific description language and (ii) a combination method. Due to
space limitation, we do not detail our solution here (see [1]). The idea is to
describe both the services and the components with their services and possibly



262 M. Koussaifi

their states. Descriptions mainly rely on logical rules which state how services
interact and transform data, and how the user can use the interactive com-
ponents. Engineers that develop components provide component and service
descriptions. In addition, the latter are completed by the engine with the emerg-
ing bindings. Then, the rules are combined to produce application-level rules.

In order to validate our approach, we have developed a prototype solution
and tested it on several use cases, with different component assembly topologies.
In the following, we present two of them.

Fig. 1. Structural representation of the lighting service

Lighting Service. The application (see Fig. 1) consists of three components
assembled in pipeline mode: a slider, a converter and a lamp. The slider acts
as a switch. It requires the ProcessValue service. The converter provides the
Transform service (that subsumes the ProcessValue service): it receives a value
and, if greater than 50, transforms it into an command for the lamp through the
Order required service. The lamp provides the OnOff service (that subsumes
the Order service). Fig. 2 shows the rules resulting from the combination of
the service rules highlighted in Fig. 1. Rules are then translated into a more
intelligible version of the supplied service (see Fig. 3).

Fig. 2. Description rules of the lighting service

Fig. 3. User-oriented textual description of the lighting service



User-Oriented Description of Emerging Services in Ambient Systems 263

Fig. 4. Structural representation of the multiple lighting service

Fig. 5. Description rules of the multiple lighting service

Fig. 6. User-oriented textual description of the multiple lighting service

Multiple Lighting Service. The application (see Fig. 4) uses a wall switch and
a component responsible of controlling two lamps at the same time, assembled
in a star topology. Figure 5 shows the rules resulting from the combination of the
rules highlighted in Fig. 4. Figure 6 shows the same rules but in a user-oriented
intelligible version.

In this example, the lamps are commanded in parallel. Note that our solution
supports other types of composition operators, e.g. a sequence operator.

5 Conclusion and Perspectives

In this paper, we have exposed an approach that aims to answer most of the
identified requirements (see Sect. 2): [R5-Automation] by automatically gen-
erating user-oriented descriptions; [R1-Semantics] by the description of the



264 M. Koussaifi

behaviour of the assembly by explicit rules; [R2-Usage] by integrating dedi-
cated operators in the language description; and [R3-Intelligibility] by mak-
ing the descriptions intelligible thanks to functions combination algorithms and
generation of descriptions in natural language. We have experimented several
use cases with standard topologies that show that our approach can meet those
requirements.

At this point of our work, through user-oriented textual descriptions, aver-
age users can be informed and understand the service that is offered by emerg-
ing composite applications. Further experiments must now be carried out on
more complex applications and topologies to address the missing requirement:
[R4-Scalability]. In addition, real users should be involved in the experiments
to improve and validate intelligibility and scalability of the presentation.

Our description language being a domain-specific language, and the input
assembly being a model, Model-Driven Engineering (MDE) which has been
proved useful in this particular case [2] will allow us to define transformation
between assemblies and their descriptions. In order to easily upgrade and extend
our description language, we intend to fully use the power of MDE approaches
and tools to support the automatic generation of combination algorithms from
the description language definition itself. In addition, using MDE to manipulate
(e.g. fold/unfold) the descriptions should help to address the scalability issue
[R4-Scalability].

Finally, we plan to investigate the use of ontologies to help in the combination
process, in order to provide more intelligible descriptions (e.g. by aligning het-
erogeneous but related service concepts). This should limit the risk of rejection
of the service by the end-user due to misdescription of emerging applications.

References

1. Component and service description language for automated description of compos-
ite applications. https://www.researchgate.net/publication/333675107 Compon
ent and service description language for automated description of composite appl
ications. Accessed 10 June 2019

2. Bruneliere, H., et al.: Model-driven engineering for design-runtime interaction in
complex systems: scientific challenges and roadmap. In: Mazzara, M., Ober, I.,
Salaün, G. (eds.) STAF 2018. LNCS, vol. 11176, pp. 536–543. Springer, Cham
(2018). https://doi.org/10.1007/978-3-030-04771-9 40

3. Fanjiang, Y., Syu, Y., Ma, S., Kuo, J.: An overview and classification of service
description approaches in automated service composition research. IEEE Trans.
Serv. Comput. 10(2), 176–189 (2017). https://doi.org/10.1109/TSC.2015.2461538

4. Kephart, J.O., Chess, D.M.: The vision of autonomic computing. Computer 36(1),
41–50 (2003). https://doi.org/10.1109/MC.2003.1160055

5. Klusch, M.: Semantic web service description. In: CASCOM: Intelligent Service
Coordination in the Semantic Web, pp. 31–57. Birkhäuser Basel, Basel (2008)

6. Koussaifi, M., Trouilhet, S., Arcangeli, J.-P., Bruel, J.-M.: Ambient intelligence
users in the loop: towards a model-driven approach. In: Mazzara, M., Ober, I.,
Salaün, G. (eds.) STAF 2018. LNCS, vol. 11176, pp. 558–572. Springer, Cham
(2018). https://doi.org/10.1007/978-3-030-04771-9 42

https://www.researchgate.net/publication/333675107_Component_and_service_description_language_for_automated_description_of_composite_applications
https://www.researchgate.net/publication/333675107_Component_and_service_description_language_for_automated_description_of_composite_applications
https://www.researchgate.net/publication/333675107_Component_and_service_description_language_for_automated_description_of_composite_applications
https://doi.org/10.1007/978-3-030-04771-9_40
https://doi.org/10.1109/TSC.2015.2461538
https://doi.org/10.1109/MC.2003.1160055
https://doi.org/10.1007/978-3-030-04771-9_42


User-Oriented Description of Emerging Services in Ambient Systems 265

7. Sheng, Q.Z., Qiao, X., Vasilakos, A.V., Szabo, C., Bourne, S., Xu, X.: Web services
composition: a Decade’s overview. Inf. Sci. 280, 218–238 (2014). https://doi.org/
10.1016/j.ins.2014.04.054

8. Sommerville, I.: Component-based software engineering. In: Software Engineering,
10 edn., pp. 464–489. Pearson Education (2016). Chap. 16

9. Xiao, H., Zou, Y., Tang, R., Ng, J., Nigul, L.: Ontology-driven service composition
for end-users. SOCA 5(3), 159 (2011). https://doi.org/10.1007/s11761-011-0081-z

10. Younes, W., Trouilhet, S., Adreit, F., Arcangeli, J.P.: Towards an intelligent user-
oriented middleware for opportunistic composition of services in ambient spaces. In:
Proceedings of the 5th Workshop on Middleware and Applications for the Internet
of Things, pp. 25–30. ACM, New York (2018). https://doi.org/10.1145/3286719.
3286725

https://doi.org/10.1016/j.ins.2014.04.054
https://doi.org/10.1016/j.ins.2014.04.054
https://doi.org/10.1007/s11761-011-0081-z
https://doi.org/10.1145/3286719.3286725
https://doi.org/10.1145/3286719.3286725


A Web-Component-Based Cross-Platform
Mobile Application Development
Environment for Ordinary Users

Zhaoning Wang(B)

State Key Laboratory of Networking and Switching Technology,
Beijing University of Posts and Telecommunications, Beijing, China

asimoo@bupt.edu.cn

Abstract. The rapid progress of the mobile internet has been promot-
ing the popularity of mobile devices, and mobile application develop-
ment is getting more pervasive. However, state of the art development
environments have a high learning barrier for ordinary users. In this
paper, we take consideration of ordinary users’ requirements and pro-
pose a WYSIWYG cross-platform web-component-based mobile appli-
cations creation environment for ordinary users. This environment has
a WYSIWYG visual editor with drag-and-drop web component. A web
component library model is proposed to standardize customized libraries.
A cross-platform application model based on composite web components
is imported to implement a rapid application build approach with one-
click buttons, which helps ordinary users generate installing packages
within simple operations for multiple platforms. A native plugin model
is proposed to assist web components to invoke native functionalities.
The experiment result shows that ordinary users could easily start to
create mobile applications in our environment.

Keywords: Web component · Cross-platform · Mobile application ·
Mobile service

1 Introduction

The rapid evolution of mobile technologies has made mobile devices become
an irreplaceable part of daily lives, therefore mobile application development
is becoming familiar to ordinary users who do not have programming skills.
Historically, traditional development environments are designed following pro-
grammers’ habits lack of features supporting ordinary users, which has become
an invisible obstacle for ordinary users to realize their innovative ideas. Another
crucial challenge for ordinary users in mobile development is cross-platform.
Mainstream mobile platforms, iOS, Android and Windows Phone, correspond to
completely different frameworks incompatible for each other requiring specified

Supervised by Bo Cheng.

c© Springer Nature Switzerland AG 2020
S. Yangui et al. (Eds.): ICSOC 2019 Workshops, LNCS 12019, pp. 266–272, 2020.
https://doi.org/10.1007/978-3-030-45989-5_22

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-45989-5_22&domain=pdf
https://doi.org/10.1007/978-3-030-45989-5_22


A Web-Component-Based Cross-Platform Mobile Application 267

software and hardware. However, most traditional development environments
only support single frameworks. What ordinary users need is an environment
isolating the heterogeneous frameworks and adapting to any platforms freely as
their wills.

2 Related Work

2.1 Graphical Development Environment

Several solutions have been proposed to improve traditional development envi-
ronments. A visual designer is a graphical drag-and-drop tool or plugin which
has been widely used in multiple mobile development environments to facili-
tate the GUI designing process. Current graphical development products use a
visual component as a basic designing unit to make up an application. Plenty of
practical research achievements have been proposed around graphical develop-
ment environments. [1] implements MashMaker, a graphical service orchestration
tools. [2] proposed a semantic-based composition platform of heterogeneous ser-
vices and applications. [3] implements a service creation environment on mobile
devices named MicroApp. MIT App Inventor [4] is a visual programming envi-
ronment that allows everyone to build fully functional applications for Android
smartphones. These products have common problems unsolved. Firstly, only
single specific platforms are supported. Secondly, functionalities of visual com-
ponents are limited in GUI designing.

2.2 Cross-Platform

Web components are custom, reusable, encapsulated HTML tags to use in
web pages and web applications. Custom components will work across mod-
ern browsers, and can be used with any JavaScript library or framework that
works with HTML. A web application is a kind of mobile application based
on pure web technologies running in a browser to simulate native application
known as Native developed following the traditional framework. The web appli-
cation is a popular solution to cross-platform. AppGyver Composer [5] is an
online web application development tool which combines graphical programming
and web application development. Web components and applications have weak-
nesses in the native functionality invocation since the inherent limitation of web
technologies.

3 Motivation Scenarios

A representative scenario we have considered is designers who could participate
in the designing procedure in the traditional development process. Designers or
product managers are responsible for designing work lack of concerning imple-
mentation. They use image tools like PhotoShop and deliver prototypes to devel-
opers. As a consequence, these prototypes may include inenarrable functionali-
ties leading to difficulties in the implementation phase, namely the final products



268 Z. Wang

are worse than expectations. This gap between designing and implementing has
prevented innovative ideas transforming to actual applications. Another typical
scenario is beginners in development education. Learning is a smoothly growing
process from easy to difficult, especially when people first get to know a field as
complicated as application development. Traditional development environments
directly bring programming knowledge to beginners lack of a reasonable learning
curve, which persuades beginners before further understanding. Our proposed
environment solve these problems in multiple perspectives. Graphical integrated
development tools and drag-n-drop operation pattern lower learning obstacles for
ordinary users like designers and beginners. Visually native functionality invo-
cation, multi-platform support, and automatic application creation help users
generate executable mobile applications isolating platform differences.

4 Contributions

In this paper, we propose a WYSIWYG web-component-based cross-platform
mobile application development environment. The main contributions of us are:

(1) We identify the present problems of mobile development for ordinary users
and specify requirements which are graphical development, automatic tools,
and cross-platform.

(2) We propose the cross-platform mobile development environment based on
web component assemble and relative models to address these issues. The
visual editor helps users assemble and configure web components visually.
A novel web component library model is included. The native plugin model
supports invoking native functionalities of operating systems. The appli-
cation creation approach supports users rapidly building applications for
multiple platforms.

(3) We conduct preliminary experiments in a group of ordinary users and the
results show the outperformingusability and convenience of our environments.

5 Proposed Environment and Models

5.1 Architecture Overview

The proposed environment is developed as a web application that could be
accessed on any devices with browsers. Figure 1 shows the architecture divided
into three functional components: library repository, visual IDE layer, and server
module based on the OSGi framework which is a dynamic module system for
Java.



A Web-Component-Based Cross-Platform Mobile Application 269

5.2 Visual Editor

The visual IDE component provides a drag-and-drop development environment
where web components assemble. The visual editor provides a WYSIWYG work-
ing area. Each time users create a new project, the visual editor generates an app
container to establish an execution environment for a user’s application parsing
web components composition result to runtime images. Users could drag chosen
web components to the app container and visually modify their position and
size to design their appearances. The app container provides an event engine
with a set of pub/sub interface for web components to send or monitor events
The palette provides a toolkit that allows ordinary users to visually configure
native plugins. The file operation provides a series of visual tools to operate
users’ project files including native plugin uploading, and application build.

Visual IDE
Visual editor

Palette

Component 
palette

Property 
palette

Event 
palette

App container

DOM Node

Event engine

Native 
plugin

Subscriber/
publisher

Drag-n-drop

Modify

Configure

File operation

X
M

LH
ttpR

equestNative plugin 
upload

Resource 
upoad

Application 
build

Library repository

Web component library bundlesAPI library bundle
Web component 

model

Life cycle

RequireJS

DOM operations

Component discovery

OSGi Framework

Resources
Bundle manifest

Component list

Library package

Web Components
Openajax metadata

Implementation

icon

image
font

lib HTML template

Customized library 
bundles

Server module

R
eq

ue
st

 ro
ut

er

Create project

Upload files

Create package

Resource managerApplication 
template data Native plugin data

User data

Package scripts

iOS project

Android project

Plugin list

iOS plugins

Android plugins

User projects

Login data

Library 
configuration

Server 
configuration

Library 
manager User managerServer manager

Query plugins

Download files

Service 
registry

Life 
cycle

Module

Web 
container

R
eg

is
te

r t
o 

th
e 

se
rv

ic
e 

re
gi

st
ry

Appearance theme AJAX

Fig. 1. The architecture of the environment

5.3 Web Component Library Model

A web component is implemented via web technologies instantiated as a cus-
tomized reusable DOM node, namely an HTML tag, running in the web browser
environment standardized by W3C through all platforms, from desktops to
mobile devices, therefore it is the foundation of cross-platform development.
A typical web component in our environment consists of an openajax metadata
(OAM) file, an implementation file, and HTML templates. The OAM repre-
sents a set of industry-standard metadata defined by the OpenAjax Alliance
that enhances interoperability across AJAX toolkits and Ajax products. The
OAM file describes the essential information of a web component, including a
unique ID, library name, requiring files, context, and other optional properties.
The implementation file is a JavaScript AMD (Asynchronous Module Definition)



270 Z. Wang

module inherited the web component model in the API library. A web compo-
nent library is characterized as a container of web components encapsulated in a
OSGi bundle, an independent component of the OSGi framework, maintaining
the essential data and resources that define a web component collection. Figure 1
shows a standard web component library model. All available library bundles are
dynamically loaded by the OSGi framework and register library interfaces to the
service registry.

5.4 Native Plugin Model

A native plugin is an extension helping web components communicate with
mobile operating system. Native plugins provide interfaces to web components,
while have a channel accessing OS service interfaces, which set up a bridge
between web components and native functionalities.

PaletteFile 
opeartion App container

Fig. 2. The main page of our proposed environment

5.5 Application Creation Approach

The application build service is encapsulated in the server side transparent for
users. We define a application template as a collection of essential files to assist
application creation. Resource manager in the server side maintains application
templates and corresponding package scripts for different platforms. Users send
requests via GUI controls in the file operation area. When a request is received,
the create package handler in the server side resolve parameters and the app con-
tainer is copied from the user’s directory to the corresponding application tem-
plate. Meanwhile, a native plugin list maintained by the app container recording
applied native plugins in the project is read and the corresponding resources of
native plugins are copied to the native plugin library maintained by the tem-
plate. Configuration file and dependencies of the app container are imported
into the application template. The corresponding package script is executed to
generate the apk or ipa file that is responded to the client.



A Web-Component-Based Cross-Platform Mobile Application 271

6 Demonstration and Evaluation

Figure 2 shows the main page of the environment. We create an application
as an example in the video on YouTube (https://youtu.be/hYSrv EWEtg). To
evaluate the usability, we have an experiment compared with MIT App Inventor.
We organized 20 users without programming expertise from Beijing University
of Posts and Telecommunications. We show them tutorials and let them try two
environments. A questionnaire about three aspects shown in the note of Fig. 3
is asked to filled after trials. The result shown in Fig. 3 indicate our proposed
environment obtain more scores in users’ reviews.

Fig. 3. The comparison result of questionnaire (Note: OI represents the overall impres-
sion. GUII represents GUI operation impression. QoC represents quality of compo-
nents.)

7 Conclusion

This paper proposes a WYSIWYG cross-platform mobile applications develop-
ment environment for ordinary users. We describe the architecture and models
in detail. It provides users an easy-operating visual editor, abundant web compo-
nent libraries, native plugins, and an application creation approach. Summariz-
ing above, our proposed environment has learned from traditional development
environments and improved the functionalities to be more friendly to ordinary
users. In the future we are looking forwarding to optimizing application perfor-
mance in mobile cloud environment.

References

1. Ennals, R.J., Garofalakis, M.N.: MashMaker: mashups for the masses. In: Proceed-
ings of the 2007 ACM SIGMOD International Conference on Management of Data,
SIGMOD 2007, pp. 1116–1118. ACM, New York (2007)

2. Ngu, A.H.H., Carlson, M.P., Sheng, Q.Z., Paik, H.: Semantic-based mashup of com-
posite applications. IEEE Trans. Serv. Comput. 3(1), 2–15 (2010)

https://youtu.be/hYSrv_EWEtg


272 Z. Wang

3. Francese, R., Risi, M., Tortora, G., Tucci, M.: Visual mobile computing for mobile
end-users. IEEE Trans. Mob. Comput. 15, 1033–1046 (2016)

4. Pokress, S.C., Veiga, J.J.D.: MIT app inventor: enabling personal mobile computing
(2013)

5. AppGyver composer. Apparchitect.com (2019). http://www.apparchitect.com/

http://www.apparchitect.com/


OSPAci: Online Sentiment-Preference
Analysis of User Reviews for Continues

App Improvement

Jianmao Xiao(B)

College of Intelligence and Computing, Tianjin University, Tianjin, China
zt xjm@tju.edu.cn

Abstract. Detecting user’s sentiment and preference (e.g., complain or
new feature wanted) timely and precisely is crucial for developers to
improve their apps correspondingly to win the competitive mobile-app
market. In this paper, we propose a novel and automated framework
OSPAci, which aims to identify user’s sentiment and preference effec-
tively based on online user reviews. OSPAci uses sentiment analysis and
natural language processing techniques to obtain sentence-level senti-
ment scores and fine-grained user preference from mobile app reviews.
Then, it analysis the evolution of user’s sentiment trend and preference.
Finally, the user sentiment trend and preference correlation is analyzed
along the time dimension, thus this model can be used to monitor user’s
sentiment tendency and preference almost in time. We evaluate the fea-
sibility and performance of OSPAci by using real Google play’s user
reviews. The experimental results show that OSPAci can effectively and
efficiently identify the user’s sentiment tendency and detect user prefer-
ence timely and precisely.

Keywords: User review · Sentiment trend · Preference feature · Time
series · Evolution

1 Introduction

App stores are digital distribution platforms that allow users submit feedback on
downloaded apps by rating or text review, which explicitly or implicitly expresses
the user’s potential sentiment and preferences for the app. Sentiment can repre-
sents the user’s attitude towards the app and the preference express the user’s
intention of the app. User’s preference can be expressed by the user’s review
feature (referred as preference feature). To keep track of the user’s sentiment
and preference features of the app timely and precisely can greatly improve and
help the app provider to improve subsequent versions of the app, such as bug
fixes, feature refining, or adding new features.

Supervised by Shizhan Chen, College of Intelligence and Computing, Tianjin Uni-
versity, China, shizhan@tju.edu.cn, Shiping Chen, CSIRO Data61, Australia, Ship-
ing.Chen@csiro.au, Xiao Xue, College of Intelligence and Computing, Tianjin Univer-
sity, China, Zhiyong Feng, College of Intelligence and Computing, Tianjin University,
China, zyfeng@tju.edu.cn

c© Springer Nature Switzerland AG 2020
S. Yangui et al. (Eds.): ICSOC 2019 Workshops, LNCS 12019, pp. 273–279, 2020.
https://doi.org/10.1007/978-3-030-45989-5_23

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-45989-5_23&domain=pdf
https://doi.org/10.1007/978-3-030-45989-5_23


274 J. Xiao et al.

User reviews are direct feedback from the users who have experienced the
apps, and reflect the instant user experience [1]. Recent empirical studies [2] are
focused on mining features in app reviews and classify them into different cate-
gory, analyze user interest features in apps, identify emerging app issues [3], etc.
However, these studies did not consider the changes in the user’s sentiment and
preference features of the app over time. In fact, due to the internal factors (e.g.,
new bugs) or external environment (e.g, new competitors) of the app change
over time, the user’s sentiment and preference will change dynamically. There-
fore, detecting and understanding of the user’s possible sentiment and preference
features timely and precisely is of great significance to app providers.

We propose a novel framework named OSPAci to detect the sentiment and
preference of the app from user reviews timely. OSPAci takes user reviews as
input. Then, it use NLP and collocation finding techniques [4] mining the fine-
grained preference features from user reviews. Finally, it realize the mapping
relationship between user sentiment and preference features over time.

The remainder of the paper is structured as follows. Section 2 outlines
the overall picture and details each step involved in the framework. Section 3
describes the experiments and results. Section 4 is the conclusions and future
work.

2 Methodology

2.1 Overview

Our main purpose is to analyze the correlations of user’s sentiment and prefer-
ence over a continuous time slice based on user review information, it including
data mining and sentiment analysis techniques in the process. Figure 1 shows an
overview of the OSPAci. First, OSPAci extract the review sentiment and review
preference from user reviews based on the NLP technology and the sentiment
analysis respectively. Then, the review sentiment and the preference evolution
are analyzed based on time series. Finally we establish a mapping relationship
between sentiment tendency and preference features along the time dimension
and analysis their correlations, which can help the app provider to keep track
of the user’s sentiment and preference in time and realize app improvement
continuously.

Fig. 1. Overview of the OSPAci



OSPAci: Online Sentiment-Preference Analysis 275

2.2 Sentiment and Preference Extraction

Review Text Processing. Reviews submitted by users through mobile termi-
nals generally contain a lot of noise data, such as repeated words, misspelled
words and non-English words, etc., which will seriously affect the fine-grained
preference feature extraction from the user review. Therefore, we have do four
additional steps to processing the review data first. Include filter non-English
review, part of speech extraction, noise word (include stop words) removal and
lemmatization. Through these processes, the obtained review information has
basically eliminated most of the noise interference.

Review Sentiment Extraction. Sentiment analysis is the process of assign-
ing a quantitative value of each positive or negative for each review [5]. To
analyze the sentiment in user reviews, we use SentiStrength [4], a lexical senti-
ment extraction tool to implement sentiment for user review sentiment analysis.
SentiStrength can divide the review information into sentence levels and assign
corresponding positive or negative values. The value range is [−5, 5], where +5
indicates very positive sentiment, and −5 indicates very negative sentiment.

Review Preference Extraction. To obtain a fine-grained user preference fea-
ture, we further use the sentiment dictionary provided by HowNet1 to remove
the interference of emotional words in this process and manually filter such as
“app”, “please”, “android”, “google” and other effects words according to the
characteristics of the app. Finally, we use the collocation search algorithm of
NLTK to extract the fine-grained features in the user review.

Meanwhile, to implement preference feature weight analysis, we also calculate
the scores of the fine-grained preference features according to the principles: if
the preference feature appears in the review, its sentiment score is equal to the
positive or negative score of the sentence in which it is located.

2.3 Sentiment and Preference Evolution Analysis

Time Series Sentiment Evolution. We take the average sentiment score
ARS(score) as the users sentiment score, and the calculation formula is as
follows:

ARS(score) =
1
n

n∑

j=1
i∈T (t1,t2,...,tm)

RSi,j (1)

T (t1, t2, . . . , tm) represents m consecutive but non-overlapping time slice
with equal lengths, RSi,j is expressed as the jth review sentiment score of the
app in the Ti, n represents the number of reviews within Ti time slice.

Time Series Preference Evolution. In order to figure out the fine-grained
preference feature score during different time slices. For each app, we construct
a matrix to represent the distribution of fine-grained preference feature score by
1 http://www.keenage.com/html/c bulletin 2007.htm.

http://www.keenage.com/html/c_bulletin_2007.htm


276 J. Xiao et al.

all users on each feature over a time slice. It is called Time-Series Preference
Feature Score Matrix TSPFS.

Table 1. Time-series preference feature score matrix (TSPFS)

T1 T2 . . . Tm

PF−1 PFS1,1 PFS1,2 . . . PFS1,m

PF−2 PFS2,1 PFS2,2 . . . PFS2,m

. . . . . . . . . . . . . . .

PF−n PFSn,1 PFSn,2 . . . PFSn,m

Table 1 shows the visual form of TSPFS. The row of the matrix indicates
that n fine-grained preference features, and columns are m consecutive but non-
overlapping time slice with equal lengths (i.e., T1, T2, . . . , Tm), Ti represents the
ith time slice. PFSi,j is expressed as the overall score of the preference feature
j of the app during the ith time slice, and the calculated formula as (2):

PFSi,j =
n∑

k=1
i∈T (T1,T2,...,Tm)

FRSi,j,k (2)

where n indicates the number of times that feature j appears during the ith time
slice, FRSi,j,k is the score of feature j in review k in the slice Ti.

2.4 Sentiment-Preference Correlations Analysis

User’s sentiment would continues change dynamically over time due to the app
version updates, unpredictable security issues in apps, etc., and it will resulting
in the user’s sentiment trend would appear crest and trough. So in our work, we
establish the mapping relationship between sentiment and preference features
along the time dimension. i.e., at different time slices, when the user sentiment
changes, the preferences we mining from user reviews also change in real time.
During our work, we mainly focus on the user’s sentiment in crest and troughs,
which are more likely to express the user’s preference features.

3 Experiments

3.1 DataSet

To ensure that the app has enough review data, we crawled the review data with
more popular and include different types of apps from Googleplay. Overall, we
obtain 82,595 reviews from November 9th, 2018 to January 24, 2019 under four
apps (Facebook, Uber, ManFIT and YouTube Music). With multiple categories,
the generalization of OSPAci can ensured to some extent.



OSPAci: Online Sentiment-Preference Analysis 277

3.2 Results

In order to reflect OSPAci timely, we set the time period for user review of
each app under different categories to span 1–2 months due to the app reviews
number is different under different categories. We divide the time into 20 time
slice, i.e., each time slice include 1 to 3 days since the number of reviews and the
user review time is different under different app.

Sentiment Evolution Analysis. Figure 2 shows the evolution trends of single
app Facebook and Uber. The history of user’s sentiment score changes from Nov.
2018 to Jan.2019 is visualized by line charts. We can see that the user express
a quit diversified changing trends for different category app. In addition, apart
from a stable sentiment trend, the user’s sentiment will rise or fall rapidly during
different time slice, resulting in trends such as crests and troughs, e.g., Uber.

Fig. 2. ARS (score) evolution under a single app

Preference Evolution Analysis. During different time slices, the user’s prefer-
ence are dynamically changed, the evolution of preference reflects the user intent
changes directly. As we see in Fig. 3, the user’s preference feature are “customer
service” and “waiting time”, their score is −19, −6 respectively under the time
slice of December 16, 2018. However, at January 3, 2019, the user’s preference
feature are “payment method” and “credit card”, and the similar for other time
slices. Here we mainly focus on the new appearance features and low sentiment
score since it is more likely to express the user’s significant intention.

Sentiment-Preference Correlation Analysis. Figure 3 visualizes the
dynamic mapping of Uber in terms of sentiment tendency and preference fea-
tures. For example, on December 16, 2018, the sentiment trend is in the trough.
The user’s overall sentiment score is −2.08. The preference features are “cus-
tomer service” and “waiting time”, their sentiment scores are −19, and −6.
However, the sentiment trend reaches a Crest by December 18, 2018, and the
preference feature is “waiting time” and “customer service”, their sentiment
scores become −9, and −12. At this time, the order of preference features and
the sentiment score changes, which indicates that the importance of the prefer-
ence features to the user changes.



278 J. Xiao et al.

Fig. 3. Sentiment-preference features mapping along time dimension of Uber

Furthermore, OSPAci also can dynamically locate the specific review sen-
tences in which these preference features are located. As show in Fig. 3, in the
trough, the sentence in which the user’s preference feature is located can be dis-
played in real time by clicking on the feature on the page. This can ensure that
the developer can track the user’s true intention timely and precisely.

4 Conclusion and Future Work

Timely and effectively detecting user’s sentiment tendency and preference is
crucial for app providers in terms of mobile app’s maintenance and evolution and
make it competitive. We propose OSPAci, a novel framework for automatically
detect user’s sentiment and preference from user reviews timely and precisely.
In the future, we will refine OSPAci such as considering topic clustering model
to achieve higher-dimensional feature topic and make OSPAci to be a real useful
tool applied to the industry field.

Acknowledgements. This work is supported by the National Key R&D Pro-
gram of China grant No. 2017YFB1401201, the National Natural Science Founda-
tion of China grant No. 61572350, the National Natural Science Key Foundation of
China grant No. 61832014 and the Shenzhen Science and Technology Foundation
(JCYJ20170816093943197).

References

1. Nguyen, T.-S., Lauw, H.W., Tsaparas, P.: Review synthesis for micro-review sum-
marization. In: Proceedings of the Eighth ACM International Conference on Web
Search and Data Mining, pp. 169–178. ACM (2015)

2. Di Sorbo, A., et al.: What would users change in my app? Summarizing app reviews
for recommending software changes. In: Proceedings of the 2016 24th ACM SIG-
SOFT International Symposium on Foundations of Software Engineering, pp. 499–
510. ACM (2016)



OSPAci: Online Sentiment-Preference Analysis 279

3. Gao, C., Zeng, J., Lyu, M.R., King, I.: Online app review analysis for identifying
emerging issues. In: 2018 IEEE/ACM 40th International Conference on Software
Engineering (ICSE), pp. 48–58. IEEE (2018)

4. Manning, C.D., Schütze, H.: Foundations of Statistical Natural Language Process-
ing. MIT Press, Cambridge (1999)

5. Kucuktunc, O., Barla Cambazoglu, B., Weber, I., Ferhatosmanoglu, H.: A large-
scale sentiment analysis for Yahoo! answers. In: Proceedings of the Fifth ACM Inter-
national Conference on Web Search and Data Mining, pp. 633–642. ACM (2012)



ADS4all : Democratizing Authenticated
Data Structures

Nasser Alzahrani(B), Ibrhaim Khalil, and Xun Yi

RMIT University, Melbourne, Australia
s3297335@student.rmit.edu.au, {ibrahim.khalil,xun.yi}@rmit.edu.au

Abstract. Bitcoin and Merkle trees are instances of Authenticated
data structures (ADS). Unfortunately, such ADS’s are not widely used
although they provide enormous security benefits for many distributed
systems. This is because current tools and methods are not easy to use
for system engineers. We present our ongoing work to create ADS4all, a
framework that allows for the design and implementation of ADS’s that
are tailored to specific domains.

1 Introduction

ADS are data structures that allow an untrusted prover to provide the opera-
tions of these data structures which can be verified by some verifier to check
its authenticity. For instance, ADS can be used to improve the security of some
distributed systems such as the cloud. The client asks for an answer and the
server provides the answer together with a proof that the client may be able to
verify. If the proof doesn’t verify, then the client has the evidence that the result
is not authentic. Another example of ADS is that of a blockchain. It is helpful
to think of blockchain as linked lists where the pointers are authenticated. Such
linked lists are known as Merkle list.

It has always been the case that designing new ADS is not a straight for-
ward procedure. The steps needed in order to design and implement a new ADS
include inventing new authentication mechanism, then proving the correctness
of the authentication, and finally, prove the correctness of the implementation.
On the other hand, Bitcoin ADS can be modeled with our proposed framework
ADS4all using Haskell programming language [21] as easily as:

type Ledger = Set
data Block = Genesis | Block (Auth Block) (Auth Transaction)

That is, a block in a blockchain is either Genesis (the first block) or it is recursive
block of another block together with a transaction object. The ledger is repre-
sented by the Set data type. Furthermore, if for some reason the performance
of Set turned out to be suboptimal, we can easily change the underlying data
structure such as Red-black trees.

To mitigate the problems associated with inventing new ADS, Miller [15]
introduced LambdaAuth, a programming language which includes a special syn-
tax for creating ADS. This allows for easier development of new ADS’s. However,
c© Springer Nature Switzerland AG 2020
S. Yangui et al. (Eds.): ICSOC 2019 Workshops, LNCS 12019, pp. 280–286, 2020.
https://doi.org/10.1007/978-3-030-45989-5_24

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-45989-5_24&domain=pdf
https://doi.org/10.1007/978-3-030-45989-5_24


ADS4all: Democratizing Authenticated Data Structures 281

one still has to create a new programming language and then try to convince
people to use it which makes it difficult to have an impact. Therefore, we develop
ADS4all based on the semantics of LambdaAuth using the Haskell programming
language. ADS4all can also be developed for other programming languages pro-
vided that these languages have powerful type systems. The core of ADS4all
is category-theoretic interfaces that allowed the interpretation of LambdaAuth
denotational semantics.

The Haskell programming language [21] is used to implement ADS4all for
the following reasons. First, Haskell is a functional language which is based on
λ−calculus. This helps in the interpretation of LambdaAuth which is also based
on λ − calculus. Secondly, Haskell has higher-kinded types which consequently
makes the translation from category-theoretic interfaces to Haskell proceeds in a
straightforward manner. Thirdly, Haskell is mainstream language and it has been
widely used in many industrial and research applications. Haskell allows for equa-
tional reasoning which is crucial in proving the correctness of the implemented
framework. The main contribution of this paper is that we present category-
theoretic interfaces to interpret the semantics of LambdaAuth making it easy to
use in main-stream langauges such as Haskell.

2 Authenticated Data Structures

ADS’s are used in many applications. For instance, trustworthy duplication of
data, GPG keyservers, Tor relay directories, Tahoe-LAFS mutable files, and
many more other applications. Figure 1 shows one application of using ADS.
The data can be mirrored across different servers reducing contention on the
data. The client can communicate securely with untrusted servers since it has
the root hash from the trusted server which can be used to verify responses from
the untrusted servers.

One very well known example of ADS is that of Merkle trees [14]. Merkle trees
are the bases for many distributed systems such as peer to peer networks and
the Blockchain [18]. Other examples of ADS include: skip lists [9], authenticated
graphs [10], Binary trees [17]. All of these versions of ADS had to be designed and
implemented then proved to be correct from scratch for every single one of them.
That is, there is no common framework that encompasses all of them under well
defined interfaces. This shortcoming is due to the lack of a general model that
can abstract the differences. This shortcoming was mitigated by LambdaAuth
[15] based our work on to create ADS4all.

3 Framework: ADS4all

Category theory formalizes mathematical structures in terms of a labelled
directed graph called a category, whose nodes are called objects, and whose
labelled directed edges are called morphisms. In our work, we utilize Category-
theoretic [4] interfaces to design our framework. More precisely, in our work, we
design authenticated data structures generically using Monads and Kleisley cate-
gory [4]. Monads are algebras that are equipped with certain operations obeying



282 N. Alzahrani et al.

Trusted 
Server

Untrusted 
Server

Untrusted 
Server

Client

publish root hash only

publish hash & data publish hash & data

secure communication secure communication

Fig. 1. A typical application of ADS: secure computation is distributed across the
network. The trusted server can only be contacted when data has changed to get
the updated root hash. This reduces the load on the central trusted server which
consequently improves the performance of the network

some laws (the Monad laws). We assume some familiarity with the Monadic
representation in programming languages such as Haskell. For more background
material regarding monads and category theory in general, please refer to [4].
As a refresher, a Monad M is an endofunctor together with a unit operator,
return : a → Ma and the bind operator, (>>=) : Ma → (a → Mb) → Mb. In
our framework we utilize two Monads, the Writer and the Reader Monads.

In ADS4all, the Writer Monad implements the Prover functionality. In
Haskell Writer Monad is given by:

class (Monoid w, Monad m) => MonadWriter w m | m -> w

And the state monad implements the Verifier which verifies the proof pro-
duced by the server:

class Monad m => MonadState s m | m -> s

The Writer monad represents the computation at the server and state monad
represents the computation at the client. This allows a system engineer codes up
any supported data structure and tag where he/she wants the authentication to
take place. The framework will then have two versions of the same code: one for
the server and one for the client. Although they look exactly the same, the code
is interpreted differently depending on the mode being either Prover (server) or
Verifier (client). For instance, the following computation:

unauth (auth (auth 9)) >>= unauth

Authenticates the number 9, then authenticate the authentication itself. After
that, one level of un-authentication takes place followed by another un-
authentication. The use of auth and unauth vocabulary is to be consistent with



ADS4all: Democratizing Authenticated Data Structures 283

the language of the semantics given by LambdaAuth. This code produces the
following output at the server (prover):

(9, [String "0ade7c2cf97f75d009975f4d720d1fa6c19f4897",Number 9.0])

That is, it produces the number 9 together with the evidence that it has
accumulated while traversing the tree structure. It is worth noting that the
authentication of an authenticated value is only the hash. The code, however,
has different interpretation and therefore different output at the client (verifier):

Just 9

That is, the client successfully was able to compute the result (9 in this
case) based on the evidence-list that was returned by the server (Just is a type
constructor for the Maybe type in Haskell). Had the evidence failed to verify, the
computation would have returned Nothing value instead. ADS4all can be used
to implement authenticated versions of skip-lists, binary search trees, red-black
trees and others.

3.1 Examples of ADS Using ADS4all

Now we present some examples of increasing complexity. Example 1 also serve
as a vehicle to understand how the same computation is interpreted differently
depending on the mode.

Example 1. Authenticated one cell database The Maybe type in Haskell has two
values constructors, Nothing and Just a. Therefore, it can be thought of as a
one-element list where Nothing denotes empty list and Just a is the singleton
list. The Maybe type in Haskell without the use of authentication is as follows:

data Maybe a = Nothing | Just a

The data declaration is how one introduces new algebraic data types in
Haskell. The vertical bar is read ‘or’. A value of type Maybe a either contains a
value of type a (represented as Just a), or it is empty (represented as Nothing).
Using Maybe is the default way to deal with failures or exceptions in Haskell.
Modeling the Maybe type to be authenticated using ADS4all can be achieved
using the following code:

data AuthMaybe a = Nothing | Just (Auth a)

Example 2. Merkle tree This ADS can be modeled in one line of code using
ADS4all :

data Merkle a = Root | Bin (Auth Merkle a) a (Auth Merkle a)

This code states that a Merkle tree is either a root or binary of two authenticated
Merkle sub-trees. One advantage of designing ADS’s using ADS4all is that we
can tag where we want the authentication to happen. For instance, we could
have another authenticated version of Merkle trees simply by:



284 N. Alzahrani et al.

Block3

Transactions

Block2

Transactions

Block1

Transactions

Genesis 
Block

Transactions

head

Fig. 2. Bitcoin ADS: every block holds on to a set of transactions

data Merkle a = Root | Bin (Merkle a) (Auth a) (Merkle a)

In this case, only the trees in Bin value are authenticated and not the sub-trees.

Example 3. Bitcoin in ADS4all Bitcoin is peer to peer system which uses a form
of ADS to confirm authenticity of transaction over global ledger that contains
the bitcoin transactions as shown in Fig. 2. Transactions remove or add coins and
they are only valid if they spend existing coins and create new ones. Coins are
associated with a quantity and a public key. Bitcoin can be written as follows:

type CoinsToRemove = Int
type CoinsToAdd = Int
type Ledger = Set

data Transaction = Tx [CoinsToRemove] [CoinsToAdd]
data Block = Genesis | Block (Auth Block) (Auth Transaction)

The first three lines are just type-synonyms. The first one models the spent coins
in a transaction while the second one models coins to be added to the blockchain.
The ledger is just a built-in Set type. A transaction is a data type that wraps the
lists of CoinsToRemove and CoinsToAdd. Finally, a block is either Genesis (root
block) or a recursive block containing authenticated blocks and authenticated
transactions.

4 Related Work

One proposed solution for easily creating ADS is [15] which provides semantics
for a programming language that supports ADS called LambdaAuth. However, as
mentioned in this paper, one still has to create a new programming language and
convince people to use it which is less likely to be widely spread among engineers
and is difficult to have an impact. Our main contribution is Category-theoretic
interfaces for ADS and therefore, creating a new language is not needed in any
language that has a powerful type system. And even for languages that lack such
powerful systems, we are investigating a solution to this problem (see Sect. 5).

Category theory has been used both to design and implement algorithms
and frameworks in various domains. For example, [8] realises backprop algo-
rithm (used to train Neural networks) as a Functor which leads to a generaliza-
tion of the algorithm and as a consequence allows for applying Backpropagation



ADS4all: Democratizing Authenticated Data Structures 285

algorithm in different settings. Another example where category theory inspired
the design of a novel library is in [7] where the author describes the essence
of automatic differentiation. His work involves creating correct by construction
learning algorithms. He also showed that Backpropagation algorithm is just an
instance of the general idea of AD which facilitates creating parallel learning
algorithms. In [11], the author presents a category-theoretic (string diagrams)
way to compose monads in programming. In [3], the author uses similar meth-
ods to compose electrical circuits. In previous work [2] and [1], we used CT as
a formal specification for our proposed framework which was about combining
some formal methods with property-based testing in software engineering.

5 Future Work

To reach a larger user base, we plan to implement ADS4all in main stream used
languages that lack the needed expressiveness in their type systems. For example
languages such as java, swift, kotlin and many others can implement ADS4all
using [23]. ADS deals mainly with the issue of integrity and they have little to
say about the issue of privacy. Zero-Knowledge Proofs can be used to help in
the privacy of ADS. We plan to extend ADS4all to research private ADS’s. In
addition, for privacy-preserving smart contracts, ADS4all can be extended to
implement frameworks similar to [12], [6] and [19].

6 Conclusions

In this paper, we presented our ongoing work on ADS4all, a framework that
allows system engineers to easily create authenticated data structures such as
Merkel trees, Bitcoin and other custom ones. Our work is based on LambdaAuth
for which we provide monadic interfaces. We believe that such tools are impor-
tant to the security of many systems that require them.

References

1. Alzahrani, N., Spichkova, M., Blech, J.O.: Spatio-temporal models for formal anal-
ysis and property-based testing. In: Milazzo, P., Varró, D., Wimmer, M. (eds.)
STAF 2016. LNCS, vol. 9946, pp. 196–206. Springer, Cham (2016). https://doi.
org/10.1007/978-3-319-50230-4 14

2. Alzahrani, N., Spichkova, M., Blech, J.O.: From temporal models to property-based
testing. arXiv preprint arXiv:1705.10032 (2017)

3. Baez, J.C., Fong, B.: A compositional framework for passive linear networks. arXiv
preprint arXiv:1504.05625 (2015)

4. Barr, M., Wells, C.: Category Theory for Computing Science, vol. 49. Prentice
Hall, New York (1990)

5. Bove, A., Dybjer, P., Norell, U.: A brief overview of Agda – a functional language
with dependent types. In: Berghofer, S., Nipkow, T., Urban, C., Wenzel, M. (eds.)
TPHOLs 2009. LNCS, vol. 5674, pp. 73–78. Springer, Heidelberg (2009). https://
doi.org/10.1007/978-3-642-03359-9 6

https://doi.org/10.1007/978-3-319-50230-4_14
https://doi.org/10.1007/978-3-319-50230-4_14
http://arxiv.org/abs/1705.10032
http://arxiv.org/abs/1504.05625
https://doi.org/10.1007/978-3-642-03359-9_6
https://doi.org/10.1007/978-3-642-03359-9_6


286 N. Alzahrani et al.

6. Bowe, S., Chiesa, A., Green, M., Miers, I., Mishra, P., Wu, H.: ZEXE: enabling
decentralized private computation. IACR ePrint 962 (2018)

7. Elliott, C.: The simple essence of automatic differentiation. In: Proceedings of the
ACM on Programming Languages 2(ICFP), 70 (2018)

8. Fong, B., Spivak, D.I., Tuyéras, R.: Backprop as functor: a compositional perspec-
tive on supervised learning. arXiv preprint arXiv:1711.10455 (2017)

9. Goodrich, M.T., Papamanthou, C., Tamassia, R.: On the cost of persistence and
authentication in skip lists. In: Demetrescu, C. (ed.) WEA 2007. LNCS, vol.
4525, pp. 94–107. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-
72845-0 8

10. Goodrich, M.T., Tamassia, R., Triandopoulos, N.: Efficient authenticated data
structures for graph connectivity and geometric search problems. Algorithmica
60(3), 505–552 (2011)

11. Hinze, R., Marsden, D.: Equational reasoning with lollipops, forks, cups, caps,
snakes, and speedometers. J. Log. Algebr. Methods Program. 85(5), 931–951
(2016)

12. Kosba, A., Miller, A., Shi, E., Wen, Z., Papamanthou, C.: Hawk: the blockchain
model of cryptography and privacy-preserving smart contracts. In: 2016 IEEE
Symposium on Security and Privacy (SP), pp. 839–858. IEEE (2016)

13. Leroy, X., Doligez, D., Frisch, A., Garrigue, J., Rémy, D., Vouillon, J.: The OCaml
system release 4.02. Institut National de Recherche en Informatique et en Automa-
tique 54 (2014)

14. Merkle, R.C.: A digital signature based on a conventional encryption function.
In: Pomerance, C. (ed.) CRYPTO 1987. LNCS, vol. 293, pp. 369–378. Springer,
Heidelberg (1988). https://doi.org/10.1007/3-540-48184-2 32

15. Miller, A., Hicks, M., Katz, J., Shi, E.: Authenticated data structures, generically.
ACM SIGPLAN Notices 49(1), 411–423 (2014)

16. Moggi, E.: Notions of computation and monads. Inf. Comput. 93(1), 55–92 (1991)
17. Mykletun, E., Narasimha, M., Tsudik, G.: Authentication and integrity in out-

sourced databases. ACM Trans. Storage (TOS) 2(2), 107–138 (2006)
18. Nakamoto, S., et al.: Bitcoin: A Peer-to-Peer Electronic Cash System (2008)
19. Sasson, E.B., et al.: Zerocash: decentralized anonymous payments from bitcoin. In:

2014 IEEE Symposium on Security and Privacy, pp. 459–474. IEEE (2014)
20. Sørensen, M.H., Urzyczyn, P.: Lectures on the Curry-Howard Isomorphism, vol.

149. Elsevier, Amsterdam (2006)
21. Thompson, S.: Haskell: The Craft of Functional Programming, vol. 2. Addison-

Wesley, Boston (2011)
22. Wadler, P.: Monads for functional programming. In: Jeuring, J., Meijer, E. (eds.)

AFP 1995. LNCS, vol. 925, pp. 24–52. Springer, Heidelberg (1995). https://doi.
org/10.1007/3-540-59451-5 2

23. Yallop, J., White, L.: Lightweight higher-kinded polymorphism. In: Codish, M.,
Sumii, E. (eds.) FLOPS 2014. LNCS, vol. 8475, pp. 119–135. Springer, Cham
(2014). https://doi.org/10.1007/978-3-319-07151-0 8

http://arxiv.org/abs/1711.10455
https://doi.org/10.1007/978-3-540-72845-0_8
https://doi.org/10.1007/978-3-540-72845-0_8
https://doi.org/10.1007/3-540-48184-2_32
https://doi.org/10.1007/3-540-59451-5_2
https://doi.org/10.1007/3-540-59451-5_2
https://doi.org/10.1007/978-3-319-07151-0_8


Demonstrations



ProMoEE - A Lightweight Web Editor
Supporting Study Research on Process

Models

Michael Winter(B) , Rüdiger Pryss , and Manfred Reichert

Institute of Databases and Information Systems, Ulm University, Ulm, Germany
{michael.winter,ruediger.pryss,manfred.reichert}@uni-ulm.de

Abstract. Process models are not only used for the sole documentation
of the numerous processes in an organization. Among others, they are
essential artifacts in the context of service-oriented computing. Hence,
high quality process models are the enabler for streamlining, prediction,
and automation in many fields (e.g., industrial production). Therefore,
a proper and effective comprehension of process models and knowledge
about factors influencing the creation of such models constitutes a key
criterion for this endeavor. The collection and analysis of data in scientific
studies help to understand the objective and subjective factors influenc-
ing process model creation and comprehension. This work presents an
editor for the definition, execution, and analysis of studies in the context
of process model creation and comprehension. The editor features a clean
design and allows for a fast implementation for conducting and reporting
study research, while ensuring the collection of high-quality data.

Keywords: Study research · Experimental web editor · Process
models

1 Introduction

Graphical workflows (i.e., process models) are key artifacts for the descriptive
representation of business tasks, logistical steps, or sophisticated algorithms. For
instance, as a centerpiece of the Business Process Management (BPM) domain
[7], it must be ensured that business process models are created and compre-
hended in such a way that practitioners can apply them correctly for their
purposes. Moreover, in the context of service-orientation, process models inte-
grate a multitude of essential functions, such as the definition of service mecha-
nisms, allocation of responsibilities, and the formulation of effective routines [2].
Research on process models has unraveled numerous factors that influence the
creation of process models as well as factors fostering model comprehension [3].
However, there are still many not known or not adequately known factors (e.g.,
especially from a cognitive point of view) influencing the process model creation
as well as the comprehension. Consequently, it poses a challenge to bring those
factors into the light. One promising approach for coping with this challenge is
c© Springer Nature Switzerland AG 2020
S. Yangui et al. (Eds.): ICSOC 2019 Workshops, LNCS 12019, pp. 289–293, 2020.
https://doi.org/10.1007/978-3-030-45989-5_25

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-45989-5_25&domain=pdf
http://orcid.org/0000-0003-2561-7923
http://orcid.org/0000-0003-1522-785X
http://orcid.org/0000-0003-2536-4153
https://doi.org/10.1007/978-3-030-45989-5_25


290 M. Winter et al.

to conduct studies in order to develop a deeper understanding of the essential
factors in this context [9]. Following this, the work at hand presents the Process
Modeling Experimental Editor (ProMoEE)1. ProMoEE is a lightweight web edi-
tor enabling academics as well as professionals to get a swift, intuitive, and clean
way to conduct studies aiming at process model creation and comprehension. In
the long term, ProMoEE shall improve our general understanding of working
with process models in different domains (e.g., service-orientation).

The structure of this paper is as follows: Sect. 2 introduces ProMoEE. In
Sect. 3, related work is discussed and, finally, Sect. 4 summarizes the paper.

2 Process Modeling Experimental Editor

The emphasis of the Process Modeling Experimental Editor (ProMoEE) is to
foster study research on the creation as well as comprehension of process mod-
els. Thereby, the editor supports the following three mandatory stages in study
research, i.e., Definition 1©, Execution 2©, and Analysis 3©.

Regarding Definition 1©, Fig. 1 presents the graphical user interface for the
definition of a study in ProMoEE. Thereby, the editor relies on the concept
of questionnaires. More specifically, a study and its progression are defined in a
structure known from questionnaires (see Fig. 1(A)). Thereby, each questionnaire
contains an unique key to identify the correct study. A questionnaire has at
least one page (see Fig. 1(B)) and a page can be defined with the following
types: Question, Comprehension, and Creation. In the Question section (see
Fig. 1(C)), questions (e.g., demographics) can be created with different response
options (e.g., text field, single-/multi-choice). In the Comprehension section (see
Fig. 1(D)), a predefined process model expressed in terms of the Business Process
Model and Notation (BPMN) 2.0 is provided in order to evaluate the aspects
of process model comprehension [5]. Therefore, specific questions emphasizing
model comprehension can be created to the user’s need. Finally, in the Creation
section, an environment is provided that allows for the creation of process models
in BPMN 2.0. In addition, a predefined process model can be specified in the
environment as well, which can be then adapted.

Regarding Execution 2©, to participate in a study, the unique key defined in
Definition 1© must be entered in the start screen. Here, as a major advantage,
ProMoEE can be accessed via web browser from anywhere with any computer
device (e.g., laptop, tablet). After entering the unique key, study participants
complete the study based on the defined questionnaire structure in Definition 1©.
Thereby, questions types like mandatory or restricted (e.g., integers only) ensure
that there are no missing or inconsistent values. Moreover, participants are able
to scroll (e.g., back) between the pages and, in case the study is canceled very
early, no data will be stored. At the end, participants are able to leave feedback.

In Analysis 3©, the originator of a study is able to analyze the obtained
data with a set of empirical and statistical methods. Therefore, all types of

1 Demonstration video of ProMoEE: https://tinyurl.com/y2hbvm99.

https://tinyurl.com/y2hbvm99


Process Modeling Experimental Editor (ProMoEE) 291

Fig. 1. Definition of a study in ProMoEE

different data (e.g., timestamps) are stored in a database during the execu-
tion of a study. In a specific analysis view, ProMoEE allows for a fine-grained
analysis; the obtained answers can be aggregated as well as visualized with dif-
ferent techniques (e.g., pie chart). Moreover, on the created or comprehended
process models, numerous quantitative metrics as well as customized process
model inspectors (e.g., syntactical compliance, semantic completeness) can be
applied. In addition, ProMoEE offers an export of data in an Excel file. There-
fore, the editor generates an adapted file (e.g., colored separation) for further
usage in other applications (e.g., SPSS). Finally, ProMoEE includes an identity
and access management, in which three different account types can be utilized
(i.e., Admin A©, User B©, and Participant C©).

Altogether, ProMoEE supports research in the definition, execution, and
analysis of studies in the context of process model creation as well as compre-
hension. The editor provides a standardized and intuitive procedure for study
research to support academics or professionals in this context. For example,
ProMoEE mitigates threats towards data validity and pursues the collection of
high-quality data. Further, ProMoEE can be accessed with any computer device
(e.g., smartphone), only by the use of a web browser. Due to the use of latest
technologies (i.e., backend is implemented with PHP, frontend is implemented
using current web technologies), ProMoEE can be enriched with additional fea-
tures. Finally, the lightweight characteristics of ProMoEE allow for a fast and
clean implementation as well as execution of studies. Generally, ProMoEE might
be applied in various studies to gain a better understanding of working with pro-
cess models.



292 M. Winter et al.

3 Related Work

Various tools exist for the implementation of studies that can be employed for
research on the creation and comprehension of process models. The Cheetah
Experimental Platform provides an experimental workflow for research investi-
gating of the process of process modeling [6]. The authors in [8] demonstrate
a powerful configurator for designing studies, which, in turn, may also be used
for similar settings as ProMoEE. [1] presents a highly configurable smart mobile
device assessment tool that can be used for different visual tasks in the context
of process model comprehension. The application in [4] offers similar features for
collecting and sharing data from surveys. Summarizing, ProMoEE was developed
for empirical research in the domain of BPM to study especially cognitive aspects
(e.g., decision-making) and, hence, none of the discussed approaches combines
such functionality with lightweight characteristics like ProMoEE does.

4 Summary and Outlook

This paper presented the Process Modeling Experimental Editor (ProMoEE)
empowering researchers to define, execute, and analyze studies in the context
of process model creation as well as comprehension in an intuitive, clean, and
fast manner. Thus, the insights obtained with ProMoEE may be used, inter
alia, to improve the business processes of an organization. Currently, ProMoEE
is used in different studies in order to evaluate user acceptance, usability, and
performance, especially in large-scale studies. Furthermore, ProMoEE is used in
various studies in the context of a conceptual framework to foster process model
comprehension from a cognitive viewpoint [10]. In future, ProMoEE will be
enriched with additional features (e.g., multi-process notation support), metrics,
and statistical methods (e.g., significance tests) to increase its applicability.

References

1. Andrews, K., et al.: A smart mobile assessment tool for collecting data in large-
scale educational studies. In: 15th International Conference on MobiSPC 2018, pp.
67–74 (2018)

2. Deng, S., et al.: Computation offloading for service workflow in mobile cloud com-
puting. IEEE Trans. Parallel Distrib. Syst. 26(12), 3317–3329 (2014)

3. Figl, K.: Comprehension of procedural visual business process models - a literature
review. Bus. Inf. Syst. Eng. 59(1), 41–67 (2017)

4. Google: Google Forms (2019). https://www.google.com/forms/about. Accessed 27
Sept 2019

5. OMG: Object Management Group Specification. Business Process Model & Nota-
tion 2.0 (2019). https://www.bpmn.org. Accessed 20 Sept 2019

6. Pinggera, J., et al.: Investigating the process of process modeling with cheetah
experimental platform. In: 1st International Workshop on ER-POIS 2010, pp. 13–
18 (2010)

https://www.google.com/forms/about
https://www.bpmn.org


Process Modeling Experimental Editor (ProMoEE) 293

7. Rosemann, M., vom Brocke, J.: The six core elements of business process man-
agement. In: vom Brocke, J., Rosemann, M. (eds.) Handbook on Business Process
Management 1. IHIS, pp. 105–122. Springer, Heidelberg (2015). https://doi.org/
10.1007/978-3-642-45100-3 5

8. Schobel, J., et al.: A configurator component for end-user defined mobile data
collection processes. In: 14th International Conference on ICSOC 2016, pp. 216–
219 (2016)

9. Tallon, M., et al.: Comprehension of business process models: insight into cognitive
strategies via eye tracking. Expert Syst. Appl. 136, 145–158 (2019)

10. Zimoch, M., Pryss, R., Probst, T., Schlee, W., Reichert, M.: Cognitive insights
into business process model comprehension: preliminary results for experienced
and inexperienced individuals. In: Reinhartz-Berger, I., Gulden, J., Nurcan, S.,
Guédria, W., Bera, P. (eds.) BPMDS/EMMSAD -2017. LNBIP, vol. 287, pp. 137–
152. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-59466-8 9

https://doi.org/10.1007/978-3-642-45100-3_5
https://doi.org/10.1007/978-3-642-45100-3_5
https://doi.org/10.1007/978-3-319-59466-8_9


The EDMM Modeling
and Transformation System

Michael Wurster1(B), Uwe Breitenbücher1, Antonio Brogi2, Ghareeb Falazi1,
Lukas Harzenetter1, Frank Leymann1, Jacopo Soldani2,

and Vladimir Yussupov1

1 Institute of Architecture of Application Systems,
University of Stuttgart, Stuttgart, Germany

{wurster,breitenbuecher,falazi,harzenetter,leymann,
yussupov}@iaas.uni-stuttgart.de

2 Department of Computer Science, University of Pisa, Pisa, Italy
{brogi,soldani}@di.unipi.it

Abstract. Since deployment automation technologies are heteroge-
neous regarding their supported features and modeling languages, select-
ing a concrete technology is difficult and can result in a lock-in. Therefore,
we presented the Essential Deployment Metamodel (EDMM) in previous
work that abstracts from concrete technologies and provides a normal-
ized metamodel for creating technology-independent deployment models.
In this demonstration, we present tool support for EDMM in the form
of the EDMM Modeling and Transformation System, which enables (i)
creating EDMM models graphically and (ii) automatically transforming
them into models supported by concrete deployment automation tech-
nologies.

Keywords: Deployment modeling · Automation · Transformation ·
Tool

1 Motivation: The Deployment Technology Lock-In

An integral aspect of efficient application deployment processes is that they
must be highly automated: Manually deploying applications consisting of multi-
ple components is complex, time-consuming, error-prone, and, moreover, requires
immense technical expertise to execute the technical deployment tasks. There-
fore, several deployment automation technologies have been developed in the past
years that are actively used by industry and research. Deployment technologies
are usually offered as a software system or service that can deploy applications
fully automatically by processing so-called deployment models. Deployment mod-
els can be categorized into two types: (i) imperative models and (ii) declarative
models [1]. The main idea of imperative models is to describe a detailed, exe-
cutable process specifying all necessary technical tasks to be executed, their
implementations, and their order. In contrast, declarative models only describe
c© Springer Nature Switzerland AG 2020
S. Yangui et al. (Eds.): ICSOC 2019 Workshops, LNCS 12019, pp. 294–298, 2020.
https://doi.org/10.1007/978-3-030-45989-5_26

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-45989-5_26&domain=pdf
https://doi.org/10.1007/978-3-030-45989-5_26


The EDMM Modeling and Transformation System 295

the components to be deployed, their configurations, and the relations between
them, but hardly provide technical execution details. Declarative models, hence,
need to be interpreted by a deployment automation technology that derives the
technical deployment instructions while an imperative model can be directly exe-
cuted as-is. Since our previous work [3] has shown that 13 of the most important
deployment technologies are either declarative by nature or support declarative
deployment modeling, we focus on declarative deployment models in this work.

However, the available deployment technologies are heterogeneous regarding
their features and supported modeling languages. Thus, deciding for a specific
technology quickly results in a Deployment Technology Lock-In, which means
that it is hard to exchange the technology later. The main reasons for this lock-
in result from (i) the deep technical expertise that needs to be acquired to work
with such a technology and (ii) the need to rewrite all deployment models that
are currently in use. Therefore, we introduced the Essential Deployment Meta-
model (EDMM) in previous work [3], which abstracts from concrete technolo-
gies and provides a normalized metamodel that only supports commonalities
of the 13 most important technologies. Thereby, it enables to create deploy-
ment technology-agnostic EDMM models that can be translated into each of
the 13 technologies following the translation guidelines we presented in Wurster
et al. [3]. However, this translation is currently a manual, time-consuming, and
error-prone approach.

EDMM
Modelling Tool

EDMM Transformator

W i n e r y

...

Transforma on Logic
Model 

Importer

Chef Plugin

Terraform Plugin…YAML Plugin

EDMM
Model

Fig. 1. EDMM modeling and transformation system architecture.

2 The EDMM Modeling and Transformation System

To tackle this issue, in this demonstration, we present the EDMM Modeling and
Transformation System shown in Fig. 1, which consists of (i) the EDMM Mod-
eling Tool and (ii) the EDMM Transformation Framework. Using the EDMM
Modeling Tool, a user is able to graphically model the deployment of an appli-
cation in the form of an EDMM model that describes the components to be
deployed, their configurations, their implementations, and their relations. The



296 M. Wurster et al.

resulting EDMM model is independent of concrete deployment technologies and
can be exported as a file. This EDMM model file can be fed into the EDMM
Transformation Framework, which offers a command-line interface (CLI) that
can be either used directly by the user or integrated into any automation work-
flow. Using the CLI, the desired target deployment technology in which the
EDMM model should be transformed can be selected. The output is an exe-
cutable, technology-specific deployment model, which can be executed using the
selected technology. Our prototype1, as well as a video demonstrating the sys-
tem, are available on GitHub.

EDMM Modeling Tool

The EDMM Modeling Tool has been developed by extending Eclipse Winery [2],
which is a web-based environment to graphically model TOSCA-based applica-
tion topologies. It includes (i) a back-end to manage component and relation
types, their properties, and artifacts and (ii) a Topology Modeler that enables to
graphically compose application components and specify configuration proper-
ties. Since EDMM can be mapped to TOSCA [3], Winery has been extended
by providing an export plugin to transform its internal TOSCA-based data
model to the YAML format defined by EDMM. The EDMM export functionality
was developed for the Java back-end and is merged to Winery’s official master
branch. Further, an administration component in the Angular user-interface has
been added to specify custom type mappings between the maintained TOSCA
node types and the built-in EDMM types. The Topology Modeler itself did
not need an extension as we fully rely on Winery’s internal data model during
modeling.

EDMM Transformation Framework

The EDMM Transformation Framework provides a CLI for transforming EDMM
models into technology-specific deployment models. At this stage, the framework
supports YAML files as input according to the published EDMM YAML spec-
ification2. All components, as well as their component types, must be provided
in a single EDMM model file at the time of writing.

We designed the framework to employ a plugin architecture that supports
integrating various deployment technologies in an extensible and pluggable way.
Each plugin defines an identifier and a corresponding display name, e.g., the
“kubernetes” plugin is implemented to transform EDMM-based models into
“Kubernetes” resource files. The transformation can be started by using the
transform command of the CLI: The user has to specify the EDMM model
file and the identifier of the target deployment technology. For the framework,
we use Java with Spring and Spring Boot to build the CLI as well as to load
the plugins dynamically once they are registered in a configuration file. Each

1 https://github.com/UST-EDMM/transformation-framework.
2 https://github.com/UST-EDMM/spec-yaml.

https://github.com/UST-EDMM/transformation-framework
https://github.com/UST-EDMM/spec-yaml


The EDMM Modeling and Transformation System 297

plugin must implement a transform() method to execute the required trans-
formation logic. Further, a plugin may implement different lifecycle methods: (i)
checkModel() to indicate whether a model can be transformed by a plugin, (ii)
prepare() to execute preparation activities prior to the transformation, e.g.,
download external files, and (iii) cleanup() to execute clean up activities after
the transformation.

The internal data model of the EDMM Transformation Framework is based
on and represented as a graph using the Java library JGraphT. By employing
a graph, also for the reason that the component structure in an EDMM-based
model naturally forms a graph, the plugins are able to efficiently traverse the data
model to apply the respective transformation logic. Plugins may apply arbitrary
graph algorithms, e.g., topological sorting of components to traverse the graph
in a certain way. Further, this also enables to make use of the visitor pattern to
add or extend new plugin logic without modifying the graph structure.

Developed Plugins and Supported Component Types

Currently, the framework supports all 13 deployment technologies which were
systematically selected and reviewed by Wurster et al. [3]. Details of the plugins’
implementations and the transformation rules can be found in the documenta-
tion. Please note: In this demonstration, we only focus on deployments that are
based on virtual compute resources, i.e., operating systems, virtual machines,
or containers, and on the software that needs to be deployed on them includ-
ing their configuration and orchestration3. Therefore, we introduce a couple of
built-in EDMM component types as modeling baseline. The base of all supported
deployments is represented by the Compute component type that permits mod-
eling a virtual compute resource, which can be then transformed by a plugin
into a virtual machine or container, respectively, depending on the target tech-
nology’s capabilities. For example, a Compute component gets transformed into
a virtual machine for OpenStack Heat, while it is transformed into a container
for Kubernetes. We also defined several software component types that can be
installed on Compute components, e.g., a MySQL database. To install such com-
ponents, either the plugin (i) contains built-in logic to translate a certain com-
ponent type into the corresponding modeling element in the target model or (ii)
it uses EDMM Operations, which provide generic plug-points in EDMM models
to specify installation scripts for components that can be injected into the target
model by the plugin. Also, the orchestration of components is supported, e.g.,
to connect an application to its database (possibly hosted on different Com-
pute components), plugins inject the properties of the target component, e.g.,
IP address, as environment variable into the source component, which enables
using them, for example, in installation scripts. In future work, we plan to extend
the plugins for other types of components, e.g., PaaS, FaaS, and other Cloud
services.

3 An example that is supported by all developed plugins can be found here:
https://github.com/UST-EDMM/getting-started.

https://github.com/UST-EDMM/getting-started


298 M. Wurster et al.

Acknowledgments. This work is partially funded by the European Union’s Horizon
2020 research and innovation project RADON (825040), the DFG project SustainLife
(379522012), and the projects AMaCA (POR-FSE) and DECLware (University of Pisa,
PRA 2018 66).

References

1. Endres, C., et al.: Declarative vs. imperative: two modeling patterns for the auto-
mated deployment of applications. In: Proceedings of the 9th International Confer-
ence on Pervasive Patterns and Applications. Xpert Publishing Services (2017)

2. Kopp, O., Binz, T., Breitenbücher, U., Leymann, F.: Winery – a modeling tool
for TOSCA-based cloud applications. In: Basu, S., Pautasso, C., Zhang, L., Fu,
X. (eds.) ICSOC 2013. LNCS, vol. 8274, pp. 700–704. Springer, Heidelberg (2013).
https://doi.org/10.1007/978-3-642-45005-1 64

3. Wurster, M., et al.: The essential deployment metamodel: a systematic review
of deployment automation technologies. SICS Softw.-Inensiv. Cyber-Phys (2019).
https://doi.org/10.1007/s00450-019-00412-x

https://doi.org/10.1007/978-3-642-45005-1_64
https://doi.org/10.1007/s00450-019-00412-x


BlockMeds: A Blockchain-Based Online
Prescription System with Privacy Protection

Minhua He, Xu Han, Frank Jiang(&), Rongbai Zhang, Xingzi Liu,
and Xiao Liu

School of Information Technology, Centre for Cyber Security Research and
Innovation (CSRI), Deakin University, Geelong, Australia
{frank.jiang,xiao.liu}@deakin.edu.au

Abstract. Since the authentication of digital prescription is a lengthy and error-
prone process by pharmacy employees, nowadays in many countries around the
world, the paper-based prescription is still the only valid document for patients
to purchase their prescribed medication from a pharmacy. Moreover, as a pre-
scription can contain a lot of private information about the patients and their
illness, the security and privacy issues in using digital prescription also raise big
concerns. Recently, Blockchain has been widely regarded as a promising
technology to secure online business data and transactions. In this paper, we
present BlockMeds, a Blockchain based online prescription system which
enables the authentication of digital prescriptions. Meanwhile, to address the
privacy issue during the authentication and transaction for buying the medica-
tion, a privacy protection strategy is also implemented in the system. BlockMeds
provides the proof of concept for a Blockchain based online prescription system.
It also demonstrates the need for privacy protection which is often overlooked in
a Blockchain-based system. BlockMeds can be used as a prototype system by
both researchers and industrial practitioners who are interested in Blockchain-
based medical service systems.

Keywords: Blockchain � Online prescription system � Privacy protection �
Medical service

1 Introduction

Nowadays, despite the wide popularity of online shopping, paper-based prescriptions
are still required to buy prescribed medication from a pharmacy. Digital prescriptions
(namely prescriptions in an electronic file format such as jpg, pdf and html) cannot be
used directly. For example, Chemist Warehouse1 offers online shopping for prescribed
medication. However, customers will still need to send their original prescriptions in
the mail after purchase. In some places, digital prescriptions can be used in emergency

1 https://www.chemistwarehouse.com.au/prescriptions.

© Springer Nature Switzerland AG 2020
S. Yangui et al. (Eds.): ICSOC 2019 Workshops, LNCS 12019, pp. 299–303, 2020.
https://doi.org/10.1007/978-3-030-45989-5_27

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-45989-5_27&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-45989-5_27&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-45989-5_27&amp;domain=pdf
https://www.chemistwarehouse.com.au/prescriptions
https://doi.org/10.1007/978-3-030-45989-5_27


supply of medicines, but a pharmacist may provide only up to three days’ emergency
supply under government regulations2. Clearly, digital prescriptions can only be used
in very limited occasions. One of the critical challenges for replacing paper-based
prescriptions is that the authentication of digital prescriptions is very difficult by
pharmacy employees. In addition, it is difficult to change the remaining amount of
medications on a digital prescription for repeated prescriptions if there is no online
system to manage these digital documents.

Blockchain is an emerging technology that suits the decentralized application
environment with the need of the distributed consensus [1]. Blockchains have been
adopted or considered by various industries. The main driving force of using Block-
chains in these applications is the introduction of digital identification, distributed
security, intelligent contracts and micro metrology through the distributed Blockchain
ledger [2, 3]. Under the protection of Blockchain technology, data cannot be easily
tampered by attackers. Such an encryption feature can enable multiple service provi-
ders to jointly maintain the same user account information. A user only needs to
maintain the account information on the ledger to complete all the identity authenti-
cation on different services, which can bring more efficiency.

Even though a Blockchain based system can theoretically ensure the security of the
online business data and transactions, there still exists the risk for privacy information
leakage. For example, during the process for authentication of digital descriptions and
the purchase of medications in the pharmacy, information about the patients and their
illness can be breached if no privacy protection strategy is in place. Therefore, it is very
important to enhance the Blockchain based systems with privacy protection.

In this paper, we present BlockMeds which is a Blockchain based online pre-
scription system with the privacy protection. BlockMeds provides the proof of concept
for a Blockchain based online prescription system which can provide the secured
storage, authentication and access of online prescriptions. In addition, to ensure the
privacy protection during the transactions for purchasing prescribed medications, a data
anonymisation algorithm is implemented and running on the servers of participating
pharmacies. BlockMeds can be used as a prototype system by both researchers and
practitioners who have the endeavour in Blockchain based medical service systems.

2 BlockMeds

In this section, we introduce the detailed business process for BlockMeds3, its
Blockchain architecture and key services. In our work, we assume BlockMeds is used
by a hospital of a medium size city and hundreds of participating pharmacies. The
business process for a typical blockchain based online prescription system is depicted
in Fig. 1, specifically it consists of three major stakeholders - hospitals, pharmacy
stores and online pharmacies.

2 https://ww2.health.wa.gov.au/Articles/A_E/Emergency-supply-of-medicines.
3 https://youtu.be/jtCS33S6pQA .

300 M. He et al.

https://ww2.health.wa.gov.au/Articles/A_E/Emergency-supply-of-medicines
https://youtu.be/jtCS33S6pQA


In the Hospital: all EHRs (Electronic Health Records) are stored in the
Blockchain EHR centre. Firstly, a doctor creates or edits an EHR with the prescription
details and then send it to a pharmacist for approval. Once the request is received, the
pharmacist approves or rejects the prescriptions and save the results back to the
Blockchain EHR centre. Once it is approved, the patient will obtain the EHR id with a
link to the digital prescription via a mobile message which will be used later to buy
their prescribed medications in store or online.

In a Pharmacy Store: a staff of a participating pharmacy enters the EHR id provided
by the patient. To authenticate the prescription and his/her identity, push codes will be
sent to both the pharmacy information system and the patient’s mobile phone. If these
two push codes match, the details of the digital prescription will be shown in the
pharmacy information system. The patient can buy the medications within the valid
dosage listed on the prescription. Once the payment is confirmed, the amount of
available dosage will be updated in the prescription and save back to the Blockchain.

In the Online Pharmacy: the patient enters the EHR id. For authentication, a push
code will be sent to the patient’s mobile phone. Once the push code is verified, the
details of the digital prescription will be shown in the online shopping cart. After the
valid amount of dosage is selected and the payment is confirmed, the digital pre-
scription will be updated and saved back to the Blockchain.

It should be noted that as a common business requirement, for every successful
purchase using the digital prescription, the transaction information including the

Fig. 1. The business process of a blockchain based online prescription system

BlockMeds 301



patient’s personal information and the purchased medications will be stored in the
database of the participating pharmacies. Therefore, there is a serious risk for privacy
breaches. To address this problem, we enforce all participating pharmacies to run a
privacy protection algorithm in their database server. For proof-of-concept purpose, we
employ Datafly which is a greedy heuristic algorithm providing anonymity to medical
data that satisfies k-anonymity [5, 6]. We assume that in the pharmacy database, for
each transaction record, there are 8 attributes including 2 key attributes named EHR ID,
NAME, 2 quasi identifiers which are AGE, GENDER and 4 sensitive attributes which
are PRODUCT_NAME, PRICE, QUANTITY and TRANSACTION_DATE. For each key
attribute and Quasi Identifier attribute, they are specified by a corresponding Domain
Generalization Hierarchy (DGH), which is used to generalize the attribute values. With
Datafly, the values of the key attributes and the GENDER attribute are replaced by ‘*’.
The values of the quasi identifier attribute are replaced by a broader category while the
sensitive attributes remain public.

The architecture of BlockMeds is depicted in Fig. 2. BlockMeds is implemented
using the IBM hyperledger fabric framework [4] and we use the embedded functions of
channel controls to manage the information confidentiality within different organiza-
tions. Figure 2 depicts the architecture of the Blockchain system with three parts (i.e.,
part1, part2 and part3) and the details about the peers in the public and private channel
(part4 and part5). The Blockchain EHR centre subsystem consists of three types of
peers: (1) the order peers which are responsible for the distribution of messages to other
nodes; (2) the private peers of the hospital which can only be accessed internally. These
peers contain private patient and medical information which can only be accessed by
doctors and pharmacists in the hospital; (3) the public peers of the hospital which can
be accessed by external pharmacies. These peers facilitate the authentication of digital
prescriptions and update the amount of dosage after purchase.

Fig. 2. The architecture of a blockchain based online prescription system.

302 M. He et al.



The management of digital prescriptions in the hospital is implemented by the
smart contracts of the private peers. The smart contract is an agreement within the
different stakeholders. Specifically, the public peers of the hospital conduct the
authentication of digital prescriptions and update the amount of purchased dosage for
each transaction. The smart contract can verify the EHR id and send the push code to
both pharmacies and patients for the identity verification. The smart contract will check
for the valid amount of dosage before transaction and update the remained amount of
dosage on the digital prescriptions after each successful transaction.

3 Discussion

BlockMeds provides an extensible platform for the research of Blockchain based
e-health systems. Two of the immediate research directions which we are planning to
investigate based on BlockMeds include:

(1) The scalability issue of the blockchain based e-health system. In the current demo,
we only include one hospital with two roles (doctor and pharmacist) and some
participating pharmacies. However, the target for BlockMeds is to serve as a city-
level online prescription system. In the future, we are planning to include more
hospitals and their specific departments, and much more participating pharmacies.
In such a case, the scalability of BlockMeds will become a challenging issue. To
address this issue, we are investigating the hyperledger fabric’s capabilities in
handling large volumes of requests.

(2) The privacy preserved medical data sharing and mining. Prescription is one of the
most important type of EHRs. Participating hospitals of BlockMeds can share the
prescriptions and other associated EHRs for medical data mining purpose. In such a
case, the ability of privacy preservation will become a challenging issue. To address
this issue, we are investigating and implementing more advanced privacy preser-
vation strategies in BlockMeds such as Differential Privacy and Federated Learning.

References

1. Panarello, A., Tapas, N., Merlino, G., Longo, F., Puliafito, A.J.S.: Blockchain and IoT
integration: a systematic survey. Sensors (Basel) 18(8), 2575 (2018). https://doi.org/10.3390/
s18082575

2. Singh, R., Singh, J., Singh, R.: TBSD: a defend against sybil attack in wireless sensor
networks. Int. J. Comput. Sci. Netw. Secur. 16(11), 90–99 (2016)

3. Casadei, R., Fortino, G., Pianini, D., Russo, W., Savaglio, C., Viroli, M.: A development
approach for collective opportunistic edge-of-things services. Inf. Sci. 498, 154–169 (2019)

4. IBM Hyperledger. https://www.ibm.com/blockchain/hyperledger. Accessed 3 Mar 2019
5. Gao, Y., Luo, T., Li, J., Wang, C.: Research on K anonymity algorithm based on association

analysis of data utility. In: 2017 IEEE 2nd Advanced Information Technology, Electronic
Automation Control Conference (IAEAC) (2017). https://doi.org/10.1109/IAEAC.2017.
8054050

6. Vierti, A.: Python Datafly. https://github.com/alessiovierti/python-datafly. Accessed 21 Mar
2019

BlockMeds 303

https://doi.org/10.3390/s18082575
https://doi.org/10.3390/s18082575
https://www.ibm.com/blockchain/hyperledger
https://doi.org/10.1109/IAEAC.2017.8054050
https://doi.org/10.1109/IAEAC.2017.8054050
https://github.com/alessiovierti/python-datafly


Janus: A Tool to Modernize Legacy
Applications to Containers

Hoang Ho1, Daniel Gordon2, Anup Kalia3(B), Jin Xiao3, and Maja Vukovic3

1 University of Massachusetts, Amherst, MA, USA
2 University of the West Indies, St. Augustine, Trinidad and Tobago

3 IBM T.J. Watson, Yorktown Heights, New York, USA
anup.kalia@ibm.com

Abstract. Modernizing a legacy application to a set of containers is
highly desirable as containers are agile, scalable, and can be easily tested
and deployed on any cloud environment. In this paper, we propose Janus,
a modernization tool that helps architects and developers to transform a
legacy application into a set of containers. Janus realizes two capabilities:
one, it automatically discovers configurations and dependencies needed
to create docker artifacts, with prior rules and knowledge mined from
similar legacy applications; two, it provides a dynamic web interface to
interact with architect/developer to verify the discovered configurations
and dependencies and guide users in acquiring missing information. We
provide a demonstration of Janus on a legacy application.

1 Introduction

Containers offer a logical packaging mechanism with which applications can be
abstracted from the running environment. This decoupling allows container-
based applications to be deployed more easily and consistently, on top of many
hosting environment including on the Cloud infrastructure. This degree of agility
and scalability is much sought after by today’s enterprise IT who have signifi-
cant portions of their applications running on J2EE, .NET, and COBOL. There
is an ongoing effort in the industry to modernize these legacy applications to
containers such that they can be deployed onto the Cloud. However, much of
the existing effort relies on manual work. Often times, the lack of prior updated
business or implementation documents about the applications makes the task
even more difficult.

To help scale up the modernization activities, we propose Janus. Janus pro-
vides a process that has three phases: discovery, validation, and generation.

In the discovery phase, Janus discovers an application’s configurations and
dependencies and extracts them based on an existing knowledge base and rules.
Manually, this task is quite difficult and time consuming, taking days to weeks
depending on the size of the application. In the validation phase, Janus val-
idates discovered configurations and dependencies toward container artifacts
generation. Current manual efforts at times generate incomplete or inconsis-
tent configuration information, that need to be evaluated and reviewed by hand
c© Springer Nature Switzerland AG 2020
S. Yangui et al. (Eds.): ICSOC 2019 Workshops, LNCS 12019, pp. 304–307, 2020.
https://doi.org/10.1007/978-3-030-45989-5_28

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-45989-5_28&domain=pdf
https://doi.org/10.1007/978-3-030-45989-5_28


Janus: A Tool to Modernize Legacy Applications to Containers 305

post-discovery and it is difficult to obtain completeness and correctness with
complex applications. In the generation phase, Janus generates container arti-
facts such as Dockerfiles, docker-compose.yml, and an application bundle ready
for deployment.

Among all the phases, the discovery phase is the most important and chal-
lenging phase considering the complexity and diversity of legacy applications.
For example consider the examples of the database configurations such as the
database URL specification from two J2EE applications as shown in Fig. 1.

Fig. 1. The database configurations for two J2EE applications, respectively.

In the configuration file jdbc.properties, the pattern for extracting the
database URL significantly differs from that in web.xml file. Based on nature
of such specifications, it gets extremely difficult to generalize such rules. Thus,
Janus applies a meta-model driven approach that has a set of meta-concepts, a
set of concepts within a meta-concept, and attributes within a concept. Under
each attribute, Janus provides a list of predefined rules. In addition to predefined
rules, Janus creates a dynamic web interface based on meta-concepts, concepts,
and attributes to obtain feedback from users thereby learning the ground truth
directly from users and creating additional rules. Janus further enhances the
meta-model based on new types of applications and their configurations and
dependencies.

Janus is similar to Meng et al.’s [1] approach of discovering configurations
using an ontology, however, the ontology they consider is predefined and may
not be flexible to accommodate changes. Further, their approach requires users
to manually annotate configurations rather than providing guidance to obtain
appropriate configurations. Also their approach does not generate target code
such as container artifacts.

2 The Janus Architecture

We provide the underlying details of Janus in its architecture as shown in Fig. 2.
Janus is developed using Python. In the architecture Janus has four components:
configurations and dependencies extractor, dynamic web interface (GUI) for user
feedback, docker setup configurations validator, and application bundle generator.

At the center of Janus is a universal meta-model that learns from represen-
tative legacy applications what configurations and dependencies are required for



306 H. Ho et al.

Fig. 2. The Janus tool process flow

container artifacts generation and the various forms and contexts of how they
are specified in legacy applications. The meta-model has three components: one,
the meta-concepts that capture different key components within an application
such as application server, database, and middleware; two, the concepts that are
within a meta-concept and capture specific instances of a meta-concepts e.g.,
DB2, MySQL, SQL SERVER, ORACLE instances under the concept ‘database’;
three, the attributes that are within a concept and capture different properties of
a concept e.g., hostname, username, password, port number, and URL properties
under the instance MySQL. Under each attribute, Janus has a set of predefined
rules that are primarily written using regex pattern-matching rules as shown in
Listing 1.1.

Listing 1.1. A snippet of Janus’ metamodel.

1 "database": [{
2 "instance": "mysql",
3 "attributes": {
4 "DBNAME": [{
5 "type": "regex",
6 "pattern":"jdbc:mysql://.+/([a-zA -Z]+)"
7 }}

A modernization request is triggered from end user with an application archive
e.g., WARs or EARs, a choice of deployment, and an application server archive
e.g., Apache Tomcat or IBM Websphere-Liberty. In discovery phase, Janus decom-
presses the application and application server archives, scans through all uncom-
pressed files, and then applies regex based pattern-matching rules from the uni-
versal meta-model to extract relevant data. From the data, Janus generates an
instance-level meta-model, that maps the configurations and dependencies of the



Janus: A Tool to Modernize Legacy Applications to Containers 307

uploaded application to their corresponding specifications and values. For exam-
ple, as shown inListing 1.1, Janus can extract the requiredMySQLdatabase names
based on the pattern ‘jdbc:mysql://.+/([a-zA-Z]+)’. Because the universal Meta-
model may not have complete knowledge of all representation forms and contexts
of configurations, Janus’ dynamic web interface (GUI) guides user to make changes
to the instance Meta-model: add new or delete existing configurations & dependen-
cies, or change the values or specifications

Then, in the validation phase, Janus utilizes docker setup configuration
validator to scan through the instance-level meta-model to make sure all the
required specifications for container artifacts are valid. If the specifications are
invalid, Janus requests valid input from user via the dynamic web interface
(GUI). Once the user provides feedback either by editing the exiting attributes
or by uploading required files, Janus re-validates until all validations are passed.

The final version of instance-level meta-model is passed to application bun-
dle generator. Finally, in the generation phase, using data from instance-level
meta-model, the generator repackages input application and application server
archives, and generates Dockerfiles, docker-compose.yml and an application bun-
dle that is ready to deploy to a target cloud environment.

3 Demonstration

We demonstrate Janus on Jpetstore, a well-known e-commerce based J2EE appli-
cation. To trigger a modernization request, we provide a Jpetstore application
WAR file and an appserver archieve i.e., Tomcat.

4 How to Watch the Video?

The demo file is titled “Janus DEMO ICSOC 2019.mp4”. It is a MP4 video
format, no sound, any MP4 viewer should be able to play this video. It
can be found in the following link: https://ibm.box.com/s/k28mdcxa7z2gu0dr-
ymh9nk6dahse8d5n

Reference

1. Meng, F.J., et al.: A generic framework for application configuration discovery with
pluggable knowledge. In: IEEE Sixth International Conference on Cloud Computing,
pp. 236–243. IEEE, June 2013

https://ibm.box.com/s/k28mdcxa7z2gu0dr-ymh9nk6dahse8d5n
https://ibm.box.com/s/k28mdcxa7z2gu0dr-ymh9nk6dahse8d5n


A Programming Framework for People
as a Service

David Bandera(B) , Alejandro Pérez-Vereda(B) , Carlos Canal(B) ,
and Ernesto Pimentel(B)

Department of Computer Science, University of Malaga, Málaga, Spain
{dbandera,apvereda,canal}@lcc.uma.es, epimentel@uma.es

http://scenic.uma.es/

Abstract. The number of devices connected to the internet is con-
stantly growing, which implies an increased complexity when interacting
with so many heterogeneous devices. Automating this process is key to
keep up with this growth. This People as a Service model works towards
developing virtual profiles for every user in their own mobile devices and
under their full control. These profiles allow to establish user preferences
and predefined parameters, which are then applied by the devices they
connect to. By integrating both the information in the virtual profiles
and these devices, we can create a context in which to make smart deci-
sions and apply them automatically, all of this in a decentralised way.
In order to show our proposal in action, we have developed a treasure
hunting game as a proof of concept to bring to the spotlight the utility
of an environment with programmatically adapted devices.

Keywords: People as a Service · PeaaS · Beacons · Virtual profile ·
IoT

1 Introduction

The increase in the capabilities of smart devices has brought a growth in the
amount of embedded systems and devices we can find everywhere. However,
these devices are highly heterogeneous, which causes an increase in difficulty
and complexity of intercommunication between them, and an increase in security
threats [1]. To help alleviate this issue, we need to work towards automating the
task of configuring multiple devices and interacting with them in an easy and
personalised way for each user.

For this purpose we have adopted the People as a Service (PeaaS) model [2].
The idea behind PeaaS is to give the users a way to offer as a service a virtual
profile with personal-related information. The virtual profile can be accessed by
the devices the user interacts with, but at the same time giving the user full
control over their data. Not only that, smart devices must be able to adapt to

This work has been funded by the Spanish Government under grant PGC2018-094905-
B-100.

c© Springer Nature Switzerland AG 2020
S. Yangui et al. (Eds.): ICSOC 2019 Workshops, LNCS 12019, pp. 308–312, 2020.
https://doi.org/10.1007/978-3-030-45989-5_29

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-45989-5_29&domain=pdf
http://orcid.org/0000-0002-8548-7940
http://orcid.org/0000-0002-0195-0062
http://orcid.org/0000-0002-8002-0372
http://orcid.org/0000-0002-7125-8434
https://doi.org/10.1007/978-3-030-45989-5_29


A Programming Framework for People as a Service 309

the user’s situation. This would be achieved by modifying the virtual profiles in
a programmatic way.

As a proof of concept, in this work we have developed a treasure hunting
game. Treasures will be represented by Eddystone beacons. These simple devices
can be easily deployed, require very little maintenance and can be programmat-
ically adjusted. The same approach can then be extrapolated to other areas of
application, such as smart cities. For example, for informing the users of how
long the bus will take to arrive, to detect how many people are waiting at the
bus stop, and from that inferring if an extra bus would be needed.

This paper is structured as follows. Section 2 explains how the system was
implemented and the technologies involved. Section 3 presents the treasure hunt
game as a proof of concept of the proposal. Finally, Sect. 4 summarises the
conclusions and possible utilities of this work, along with future work. A more
detailed description of the proposal can be found in [3].

2 Overview of the Proposal

Our goal is to develop a framework that implements the PeaaS model. PeaaS
implies a shift from a server-centric structure to a distributed environment, where
the smartphones are the focus of the system and becomes an interface through
which the virtual profile is accessed, via an specific API.

The framework allows to develop generic mobile and server applications that
download and run the scripts provided by the devices and interact with the pro-
file. This allows dynamically updating the user’s virtual profiles and modifying
the behaviour of the devices, building this way a context of the situation the
user is currently in.

In this scenario, the functionality of the system can be updated by modifying
the script, without the need to deploy new applications on the server and mobile
layers, or to change the settings of the deployed IoT devices. Scripts can be also
modified by user’s interaction. Depending on their virtual profile and context,
some variables of the script can be updated to change how the device behaves.
This way, devices automatically adapt to suit the users’ needs in a seamless way.

In this work we present a treasure hunt game to show a working example of
our proposal, and highlight the advantages and disadvantages we found.

3 Motivating Scenario: A Treasure Hunt

The framework is composed of three elements, the mobile application, the server,
and the beacons (Fig. 1). In the treasure hunt, the players look for treasures
hidden around the city by following a set of hints, and each treasure found gives a
new hint to figure out the location of the next one. The treasures are represented
by Eddystone beacons, small devices that broadcast Bluetooth packets, allowing
nearby devices to connect to them.



310 D. Bandera et al.

To find the treasures, players employ a mobile application which acts both
as the platform where the game is played, detecting and interacting with the
beacons, and as an entrance point to their virtual profile for the elements involved
in the game, via an API.

Fig. 1. Dynamic programming framework

Beanshell (http://www.beanshell.org) is a simple Java interpreter capable of
uploading and executing code during runtime. It allows us to write simple scripts
for querying and updating the virtual profile, as well as to display notifications
and messages.

The server is a Node.js server written in JavaScript, using Express as the
framework for the server API. It hosts the scripts and the information needed
to keep all the players synchronised, and it is accessed by the mobile devices.

The information about the treasures and the available hints is kept in a
MongoDB database. We keep track of which player has visited each treasure
in order to inform others users of how many players have already visited the
treasure they just found.

Each beacon holds the shortened URL linking to the location of a script on
the server. When a player accesses it, the server sends the Beanshell script to the
mobile device. The script is interpreted and run locally on the player’s device.

We have developed one single script that works the same for all the treasures,
but it could be possible to have specific scripts for different types of beacons, so
they behave in a different way. The variables of the script are set up each time it
is downloaded with the relevant values, based on the current user and context.

The mobile application has been developed for Android. It’s purpose is to
hold the player’s virtual profile, to communicate with the beacons and the server
as well as provide access to the virtual profile to other devices, and to execute
the Beanshell scripts holding the logic of the game.

http://www.beanshell.org


A Programming Framework for People as a Service 311

The application downloads and execute the scripts in a controlled fashion,
accessing the user profile through the API, updating the information contained
to add the treasure and the new hint just found. Once one player finds the last
treasure, she will be informed of being the winner, and the rest of the players
will receive a notification of the game ending and the name of the winner the
next time they find a treasure.

The functionality of the script is as follows. First, it will check if the treasure
was already found by the user to avoid giving more than one hint per treasure.
This is done by looking for treasure ID in the player’s virtual profile, in which
case it will inform the user that they already obtained this particular treasure.
If the treasure is a new one, the script connects to the server and informs that
the player has found this treasure, in order to update the database. The server
will then send a response with the current state of the game. If the game had
already finished, the player will receive a notification informing them about it
and the name of the winner. Otherwise, the script will try to give the user a new
hint. If the user already has all the hints, a message will appear congratulating
them for having won the game, while at the same time connecting to the server
to declare them as the winner to set the game as finished.

In the case where the player still hasn’t finished the game, the script displays
the new hint.

4 Conclusions

The ability to infer virtual profiles of people according to their daily routines and
activities is a key element to create a world where technology adapts to the people
in a seamlessly way [4]. In this work we have presented a working example of a
system able to adapt to the user based on their virtual profile in an automated
way. Using Bluetooth devices give us a high degree of flexibility when developing
these systems. There are many types of devices with different characteristics
available on the market, allowing for a more complex behaviour. By replacing
the beacons we used in our system by devices with more capabilities, we can
extend the functionality of the system, taking advantage of the extra processing
and qualities they offer. This would also allow to have a more interactive system
where the different devices share information to work towards a common goal,
improving the quality of the solutions obtained.

References

1. Covington, M.J., Carskadden, R.: Threat implications of the Internet of Things.
In: 2013 5th International Conference on Cyber Conflict (CYCON 2013), pp. 1–12.
IEEE (2013)

2. Guillen, J., Miranda, J., Berrocal, J., Garcia-Alonso, J., Murillo, J.M., Canal, C.:
People as a Service: a mobile-centric model for providing collective sociological pro-
files. IEEE Softw. 31(2), 48–53 (2014)



312 D. Bandera et al.

3. Pérez-Vereda, A., Flores-Mart́ın, D., Canal, C., Murillo, J.M.: Towards dynami-
cally programmable devices using beacons. In: Pautasso, C., Sánchez-Figueroa, F.,
Systä, K., Murillo Rodŕıguez, J.M. (eds.) ICWE 2018. LNCS, vol. 11153, pp. 49–58.
Springer, Cham (2018). https://doi.org/10.1007/978-3-030-03056-8 5

4. Sadeeq, M.A., Zeebaree, S.R., Qashi, R., Ahmed, S.H., Jacksi, K.: Internet of Things
security: a survey. In: 2018 International Conference on Advanced Science and Engi-
neering (ICOASE), pp. 162–166. IEEE (2018)

https://doi.org/10.1007/978-3-030-03056-8_5


Author Index

Abdellatif, Takoua 130
Allegue, Sahar 130
Alzahrani, Nasser 280

Baazaoui Zghal, Hajer 224
Bandera, David 308
Belguidoum, Meriem 82
Ben Abdalah Ben Lamine, Sana 224
Bermbach, David 111
Bertaux, Aurélie 168
Breitenbücher, Uwe 195, 294
Brogi, Antonio 17, 294

Canal, Carlos 308
Carrusca, André 95
Castillo-Camporro, Ana-Sagrario 213
Cervantes, Humberto 5
Cho, Seong-je 57
Chung, Lawrence 57

Daniel, Florian 195
Dittmann, Gero 181
Duan, Li 142

Engels, Gregor 30
Espinosa-Oviedo, Javier A. 213

Falazi, Ghareeb 195, 294

Gomes, Maria Cecília 95
Gordon, Daniel 304
Guo, Jing 142

Han, Xu 299
Harzenetter, Lukas 294
Hasenburg, Jonathan 111
He, Minhua 299
Hiba, Saddam Hocine 82
Ho, Hoang 304
Hugol-Gential, Clémentine 168

Jiang, Frank 299

Kabachi, Nadia 224
Kalia, Anup 304
Kalra, Sumit 122
Kaur, Jaspreet 122
Keller, Claas 42
Khalid, Moustapha A. 5
Khalil, Ibrhaim 280
Kirchhoff, Jonas 30
Koussaifi, Maroun 259

Labbani, Ouassila 168
Lalanda, Philippe 5
Lamparelli, Andrea 195
Leitão, João 95
Leymann, Frank 195, 294
Liu, Xiao 299
Liu, Xingzi 299

Mann, Zoltán Ádám 42
Mohindra, Ajay 69
Mouakher, Amira 168

Neri, Davide 17
Nicolle, Christophe 168

Opara, Anthony 57

Pérez-Vereda, Alejandro 308
Pimentel, Ernesto 308
Poniszewska-Marańda, Aneta 156
Pryss, Rüdiger 289

Reichert, Manfred 289
Rhahla, Mouna 130
Romdhani, Senda 245

Sailer, Anca 69
Selmi, Ibtihel 224
Shi, Fanjuan 236



Singla, Vinayak 122
Soldani, Jacopo 17, 294
Song, Youngsang 57
Sorniotti, Alessandro 181
Sun, Chang-ai 142

Vega, German 5
Völzer, Hagen 181
Vukovic, Maja 304

Wang, Dan 5
Wang, Jing 142
Wang, Zhaoning 266
Wang, Zhen 142

Wieczorek, Bartosz 156
Winter, Michael 289
Wolters, Dennis 30
Wurster, Michael 294

Xiao, Jianmao 273
Xiao, Jin 304

Yang, Bo 69
Yi, Xun 280
Yussupov, Vladimir 294

Zechinelli-Martini, José-Luis 213
Zhang, Rongbai 299

314 Author Index


	Preface
	Submission and Review Information
	Organization
	Contents
	WESOACS: Engineering Service-Oriented Applications and Cloud Services
	Introduction to the 15th International Workshop on Engineering Service-Oriented Applications and Cloud Services (WESOACS 2019)
	Organization
	Workshop Organizers
	Program Committee
	Acknowledgements

	Service-Oriented Pervasive Platform Supporting Machine Learning Applications in Smart Buildings
	Abstract
	1 Introduction
	2 Use Case
	2.1 Description and Early Results
	2.2 Approach

	3 Requirements for AI-Based Pervasive Platforms
	4 Developments
	4.1 The iCasa Pervasive Platform
	4.2 Implementation of the Chiller Use Case

	5 Related Work and Discussion
	6 Conclusion
	References

	Freshening the Air in Microservices: Resolving Architectural Smells via Refactoring
	1 Introduction
	2 Modelling Service-Based Architectures with TOSCA
	3 Discovering and Resolving Architectural Smells
	4 Freshener: A Prototype Implementation
	5 Related Work
	6 Conclusions
	References

	Specifying Web Interfaces for Command-Line Applications Based on OpenAPI
	1 Introduction
	2 Requirements
	3 Adapting Command-Line to HTTP Interfaces
	3.1 Solution Overview
	3.2 Describing the HTTP Interface Using OpenAPI
	3.3 Parameter Value Transformation
	3.4 Input/Output Mapping
	3.5 Security
	3.6 Deployment

	4 Discussion
	5 Related Work
	6 Conclusion
	References

	Towards Understanding Adaptation Latency in Self-adaptive Systems
	1 Introduction
	2 A Model of Adaptation Latency
	3 Preliminary Literature Study
	3.1 Methodology
	3.2 Results
	3.3 Adaptation Latency in Other Papers

	4 Discussion
	5 Conclusions and Future Work
	References

	ASOCA: Adaptive Service-Oriented and Cloud Applications
	Introduction to the 4th Edition of the International Workshop on Adaptive Service-Oriented and Cloud Applications (ASOCA 2019)
	Organization
	Workshop Organizers

	Representing Multicloud Security and Privacy Policies and Detecting Potential Problems
	1 Introduction
	2 Multicloud Security and Privacy Policy Ontology and Notation
	2.1 Running Example
	2.2 Multicloud Security and Privacy Policy Ontology
	2.3 CERBERON Policy Notation

	3 Multicloud Security and Privacy Policy Rules and Error Detection
	4 CERBERUX: A Prototype Tool
	5 Related Work and Discussion
	6 Conclusion and Future Work
	References

	Survey and Evaluation of Blue-Green Deployment Techniques in Cloud Native Environments
	Abstract
	1 Introduction
	2 Blue/Green Deployment Related Work
	2.1 Domain Name System (DNS)
	2.2 Software Reconfiguration
	2.3 Load Balancer
	2.4 Service Discovery

	3 Blue/Green Deployment with Service Discovery
	3.1 Blue/Green Deployment with Eureka and Zuul
	3.2 Blue/Green Deployment with Kubernetes and ISTIO

	4 Blue/Green Experimental Setup and Evaluation Metrics
	4.1 Experimental Setup
	4.2 Blue/Green Deployment Performance Metrics

	5 Experimental Results and Analysis
	6 Conclusion
	References

	AutoCADep: An Approach for Automatic Cloud Application Deployment
	1 Introduction
	2 Related Work
	2.1 Summary

	3 AutoCADep Approach
	3.1 AutoCADep Architecture
	3.2 AutoCADep DSL

	4 Case Study
	5 Conclusion and Future Work
	References

	Microservices Management on Cloud/Edge Environments
	1 Introduction
	2 Proposed Solution
	2.1 The Architecture Components and Their Operation
	2.2 Adaptation Process and Migration/Replication Scenarios

	3 Prototype and Evaluation
	4 Related Work
	5 Conclusions and Future Work
	References

	ISYCC: IoT Systems Provisioning and Management for Context-Aware Smart Cities
	Introduction to the 4th Workshop on IoT Systems Provisioning and Management for Context-Aware Smart Cities (ISYCC 2019)
	Organization
	Workshop Program Chairs
	Workshop Committee

	Towards Geo-Context Aware IoT Data Distribution
	1 Introduction
	2 Motivation
	2.1 Scenario 1: Local Messaging and Information Sharing
	2.2 Scenario 2: Open Environmental Data
	2.3 Scenario 3: Context-Based Data Distribution

	3 Geo-Context Dimensions
	4 Evaluation
	4.1 Local Messaging and Information Sharing
	4.2 Context-Based Data Distribution

	5 Conclusion and Outlook
	References

	A Blockchain Based Solution for Securing Data of IoT Devices
	1 Introduction
	2 Motivation
	3 Proposed Architecture
	4 Implementation
	5 Results and Observations
	6 Conclusion and Future Work
	References

	Toward GDPR Compliance in IoT Systems
	1 Introduction
	2 Background
	2.1 Complex Event Processing
	2.2 General Data Protection Regulation

	3 Security Model
	3.1 5W Labels
	3.2 Security Annotation
	3.3 Security Checking

	4 Architecture
	5 Implementation and Evaluation
	5.1 Implementation
	5.2 Evaluation

	6 Related Works
	6.1 GDPR Implementation in IoT Systems
	6.2 CEP in Smart Home and IoT Systems

	7 Conclusion
	References

	A Reconfigurable Microservice-Based Migration Technique for IoT Systems
	1 Introduction
	2 Approach
	2.1 Overview of Approach
	2.2 Details of Approach
	2.3 Supporting Tool

	3 Case Study
	3.1 Subject Program and Migration Requirements
	3.2 Migration to Microservices
	3.3 Reconfigurability and Performance Evaluation

	4 Related Work
	4.1 Migration to Microservices
	4.2 Reconfigurable IoT Systems

	5 Conclusion
	References

	Towards the Creation of Be In/Be Out Model for Smart City with the Use of Internet of Things Concepts
	1 Introduction
	2 Bluetooth Low Energy
	3 Related Works
	4 Concept of the Effective Be In/Be Out System Solution
	4.1 Be In/Be Out System Solution Description
	4.2 Be In/Be Out System Architecture

	5 Conclusions
	References

	Ontology for Smart Viticulture: Integrating Inference Rules Based on Sensor Data
	1 Introduction
	2 Related Work
	3 The Proposed Approach
	3.1 The OntoVine Step: The Ontology-Based Engine
	3.2 The VineMining Step: Building Inference Rules from Data

	4 Results and Discussion
	4.1 Identifying the Different Stages of the Vine Life Cycle
	4.2 Collaborative Event Monitoring

	5 Conclusion
	References

	TBCE: Towards Blockchain-Based Collaborative Enterprise
	En
	Model-Driven Engineering for Multi-party Interactions on a Blockchain – An Example
	1 Introduction
	2 An Example Application: A Taxi Dispatcher
	3 Process Models for the Example Application
	3.1 BPMN with Multi-party Interactions
	3.2 Synchronized State Machine
	3.3 High-Level Petri Net
	3.4 Discussion

	4 Introduction to Hyperledger Fabric
	4.1 The Endorser Transaction Protocol
	4.2 State Machines in Fabric
	4.3 The Chaincode Interface

	5 An Implementation
	5.1 Entities
	5.2 State-Machine Persistence
	5.3 State-Machine Transitions
	5.4 Testing

	6 Conclusion and Future Work
	References

	Smart Contract Locator (SCL) and Smart Contract Description Language (SCDL)
	1 Introduction
	2 Analysis of Smart Contracts
	2.1 Fundamentals of Smart Contracts
	2.2 Comparison of Blockchain Platforms

	3 Smart Contract Locator (SCL)
	4 Smart Contract Description Language (SCDL)
	4.1 Language Metamodel
	4.2 SCDL JSON Syntax
	4.3 Example: ZilliqaToken Contract

	5 Related Work
	6 Discussion and Outlook
	References

	STRAPS: Smart daTa integRation And Processing on Service Based Environments
	En
	Measuring the Quality of Life in ``La Condesa''
	1 Context and Motivation
	2 Holistic Approach for Measuring Quality of Life in La Condesa
	2.1 Quality of Life Index
	2.2 Elasticity in Quality of Life
	2.3 Experimental Setting

	3 Related Work
	4 Conclusions and Future Work
	References

	Adaptive Agent-Based Architecture for Health Data Integration
	1 Introduction
	2 Background and Related Work
	2.1 Theoretical Basis
	2.2 Related Work

	3 PersoDiagMedi Architecture
	3.1 General Architecture
	3.2 Adaptive Agent-Based Architecture

	4 Experimentation
	4.1 Data Description
	4.2 Use Cases

	5 Conclusion and Future Work
	References

	Constructing a Secured, Reactive and Scalable Data Platform for a Better Exploitation of Rich Data Assets in the Tourism Industry
	Abstract
	1 Context
	1.1 Omni-Channel Customer Knowledge and Marketing Actions
	1.2 Personalization
	1.3 Performance Reporting and Analysis
	1.4 Personal Data Protection

	2 Data Platform: Challenging Business Objectives
	3 Conquer the Challenges Using a Business-Driven Approach
	3.1 Creating More Value Within the Same Period of Time
	3.2 Solution Selection: Minimize Time to Market
	3.3 Optimizing Data Ingestion Tasks for Quicker Value Delivery
	3.4 Enriching the Value of Data Through Blending and Connecting
	3.5 Governance of the Data Platform

	4 Discussion and Prospection
	References

	Towards Multi-level Trust-Driven Data Integration in Multi-cloud Environments
	1 Introduction
	2 Trusted Data Integration on Multi-cloud Environments
	2.1 Preliminary Definitions
	2.2 Criteria for Trust Assessments in Cloud Computing

	3 Trust-Aware Data Integration Workflow in Multi-cloud
	4 Conclusion and Future Work
	References

	PhD Symposium
	User-Oriented Description of Emerging Services in Ambient Systems
	1 Introduction
	2 Problem Statement and Requirements
	3 Related Work
	4 Proposition
	5 Conclusion and Perspectives
	References

	A Web-Component-Based Cross-Platform Mobile Application Development Environment for Ordinary Users
	1 Introduction
	2 Related Work
	2.1 Graphical Development Environment
	2.2 Cross-Platform

	3 Motivation Scenarios
	4 Contributions
	5 Proposed Environment and Models
	5.1 Architecture Overview
	5.2 Visual Editor
	5.3 Web Component Library Model
	5.4 Native Plugin Model
	5.5 Application Creation Approach

	6 Demonstration and Evaluation
	7 Conclusion
	References

	OSPAci: Online Sentiment-Preference Analysis of User Reviews for Continues App Improvement
	1 Introduction
	2 Methodology
	2.1 Overview
	2.2 Sentiment and Preference Extraction
	2.3 Sentiment and Preference Evolution Analysis
	2.4 Sentiment-Preference Correlations Analysis

	3 Experiments
	3.1 DataSet
	3.2 Results

	4 Conclusion and Future Work
	References

	ADS4all: Democratizing Authenticated Data Structures
	1 Introduction
	2 Authenticated Data Structures
	3 Framework: ADS4all
	3.1 Examples of ADS Using ADS4all

	4 Related Work
	5 Future Work
	6 Conclusions
	References

	Demonstrations
	ProMoEE - A Lightweight Web Editor Supporting Study Research on Process Models
	1 Introduction
	2 Process Modeling Experimental Editor
	3 Related Work
	4 Summary and Outlook
	References

	The EDMM Modeling and Transformation System
	1 Motivation: The Deployment Technology Lock-In
	2 The EDMM Modeling and Transformation System
	References

	BlockMeds: A Blockchain-Based Online Prescription System with Privacy Protection
	Abstract
	1 Introduction
	2 BlockMeds
	3 Discussion
	References

	Janus: A Tool to Modernize Legacy Applications to Containers
	1 Introduction
	2 The Janus Architecture
	3 Demonstration
	4 How to Watch the Video?
	Reference

	A Programming Framework for People as a Service
	1 Introduction
	2 Overview of the Proposal
	3 Motivating Scenario: A Treasure Hunt
	4 Conclusions
	References

	Author Index



