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1  Introduction

Aluminum (in American English, aluminium in British English) is the third most 
abundant element following oxygen and silicon, while its oxide is the fourth among 
the most common compounds in the earth’s crust. Aluminum (Al) is also the most 
abundant metal on the planet. Al is dense in the outer 16 km of earth’s cortex con-
stituting about 8.1% by mass. Naturally, Al never occurs in the metallic form 
because of its chemical activity; it is found in chemical compounds with other ele-
ments like bauxite. To remove Al from natural ores, it must first be reduced. Al is 
considered as an active metal reacting with concentrated acids and alkalis (Sade 
et al. 2016; Li et al. 2016).

The trivalent Al has three oxidation states. The most common oxidation state of 
Al is +3 and it reacts rapidly with the oxygen in the moist air to form aluminum 
oxide (Al2O3-alumina). Al2O3 is the refractory oxide of Al existing in bauxite. 
Occasionally, the oxidation state of +2 and +1 exists as aluminum monoxide (AlO) 
and aluminum hydride (AlH3), respectively. The Al3+ ion can be stabilized by hydra-
tion, and the octahedral ion [Al(H2O)6]3+ occurs both in aqueous solution and in 
several salts (Roesky and Kumar 2005; Li et al. 2016).
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It has been known that Al is also the most widely used metal in the industrial 
world after iron (Table 1). The large-scale (28%) use of Al is in the transportation 
industry. Packaging follows it by 23%. Because Al can be melted and reused, or 
recycled, it is ideal for foil, beer and soft drink cans, paint tubes, and containers for 
home products such as aerosol sprays. 14% of Al goes into building and construc-
tion such as windows and door frames, screens, roofing, and siding, as well as the 
construction of mobile homes and structural parts. The remaining 35% of Al is used 
in electrical wires and appliances due to being an excellent conductor, automobile 
engines, heating and cooling systems, bridges, vacuum cleaners, kitchen utensils, 
garden furniture, heavy machinery, and specialized chemical equipment (http://
www.chemistryexplained.com/elements/A-C/Aluminum.html).

The widespread presence in earth crust and prevalent use of bioavailable Al may 
have immense and far-reaching implications for the health of humans and animals. 

Table 1 Aluminum complexes used in industries (http://www.chemistryexplained.com/elements/
A-C/Aluminum.html)

Al complex
Chemical 
formula Area of usage

Aluminum ammonium 
sulfate

Al(NH4)(SO4)2  • Mordant
 • Water purification and sewage treatment
 • Paper production
 • Food additive
 • Leather tanning

Aluminum borate Al2O3B2O3  • Production of glass and ceramics
Aluminum borohydride Al(BH4)3  • Additive in jet fuels
Aluminum chloride AlCl3  • Paint manufacture

 • Antiperspirant
 • Petroleum refining
 • Production of synthetic rubber

Aluminum fluorosilicate Al2(SiF6)3  • Production of synthetic gemstones, glass, and 
ceramics

Aluminum hydroxide Al(OH)3  • Antacid
 • Mordant
 • Water purification
 • Manufacture of glass and ceramics
 • Waterproofing of fabrics

Aluminum phosphate AlPO4  •  Manufacture of glass, ceramics, pulp and paper 
products

 • Cosmetics
 • Paints and varnishes
 • In making dental cement

Aluminum sulfate, or 
alum

Al2(SO4)3  • Manufacture of paper
 • Mordant
 • Fire extinguisher system
 • Water purification and sewage treatment
 • Food additive
 • Fireproofing and fire retardant
 • Leather tanning
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In fact, much evidence shows that Al seems to be toxic to all forms of life on earth, 
and where it also appears in terrestrial biochemistry, it is invariably deleterious 
(Exley 2009; Shaw and Tomljenovic 2013).

2  Aluminum Toxicity in Plants

Considering the plants, Al is one of the abiotic stress factors. It is definite that 
anthropogenically released and/or naturally existing Al can solubilize and be 
absorbed by plants at low pH (acid) soils constituting one of the major plant growth- 
limiting factors. It has been known that potential farmable lands (approx. 67%) have 
acid soil worldwide (Abate et  al. 2013; Ma et  al. 2014). Al exists as a nontoxic 
complex in neutral or weakly acidic soils; however, when the complex Al is solubi-
lized it turns to phytotoxic forms in acid soils. The most phytotoxic and dominant 
form is Al(H2O)6

3+ and dissolves to Al3+ which can be absorbed by plant roots 
(Matsumoto 2000; Vardar and Ünal 2007). It has been stated that solubilized Al 
presents in the range of 10–100 μM in acid soils affecting adversely the plant growth 
and development within a few minutes (Ciamporová 2002; Vitorello et  al. 2005; 
Abate et al. 2013). Absorbed Al interacts with apoplasmic (cell wall), plasma mem-
brane, and symplasmic (cytosol) targets. Al ions are penetrated from roots primarily 
and only a small proportion may be taken up through leaves (Kochian et al. 2005; 
Singh et al. 2017).

At the whole plant level, toxic Al affects adversely their anatomical and physio-
logical structure such as chlorosis, reduction in leaf number, reduced photosynthe-
sis, necrosis, and retardation of root growth. It has been widely known that roots are 
the first target of Al toxicity which have direct contact with rhizosphere. Al-induced 
root growth inhibition restrains the uptake of soil water and essential minerals lead-
ing to reduction in crop quality (Delhaize et al. 2004; Singh et al. 2017; Vardar et al. 
2018). Root apex is the foremost region with regard to Al toxicity. As a first target, 
root apex plays a critical role in Al penetration and accumulation. This region 
absorbs more Al than the upper parts of root resulting in morphological alterations 
of root apices such as swelling, cracking, and appearing to be stubby and stiff 
(Matsumoto 2000; Vardar et al. 2006). It has also been visible that branching and 
root hair occurrence reduce significantly (Ciamporová 2002; Vardar et al. 2011). 
Several researches revealed that Al has detrimental effects reacting with different 
subcellular regions performed in different species and also varieties.

2.1  Cell Wall

Considering the cell structure, cell wall is the primary target of Al ions. It has been 
identified that Al binds and accumulates in the apoplasm in the range of 30–90% in 
root cortex cells (Rengel and Reid 1997; Vardar et al. 2011). Pectin matrix which has 
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negatively charged carboxylic groups is the first Al-binding site in the cell wall (Chang 
et al. 1999; Singh et al. 2017). It has also been known that Al reacts with apoplasmic 
face of plasma membrane. After Al-cell wall interaction, Al translocates to plasma 
membrane and symplasm (Schmohl and Horst 2000). Researchers suggested that Al 
accumulation degree is in direct correlation with pectin content and dissociation of 
carboxylic and hydroxylic groups of the pectin (Godbold and Jentschke 1998; Ahn 
and Matsumoto 2006). Strong binding and accumulation of Al alter the structural and 
mechanical properties of cell wall causing reduction in mechanical extensibility caus-
ing cracked and unoriented root growth (Kochian et al. 2005).

Al accumulation in cell wall discomposes the stability of other cations such as 
Ca2+ which is responsible for the strength of cell wall. This disturbance causes cal-
lose (β-1,3-glucan) synthesis and accumulation between cell wall and plasma mem-
brane being one of the significant markers of Al toxicity (Tabuchi and Matsumoto 
2001; Vardar et al. 2011; Ünal et al. 2013). Although callose may collaborate root to 
cope with Al toxicity by blocking the plasmodesmata, it also blocks the movement 
of water and minerals causing reduction of nutrient uptake (Singh et al. 2017; Vardar 
et al. 2018).

Eventually, Al reaction in cell walls causes reduced extensibility, disrupted 
growth orientation, callose formation, and accordingly restriction of water and min-
eral nutrient uptake across the plasma membrane (Kochian et al. 2005).

2.2  Plasma Membrane

Plasma membrane is the external barrier of the cell and it regulates the ion traffic. 
Negatively charged membrane displays strong interaction with A13+ (Kinraide et al. 
1998). Plasma membrane-Al reaction alters the structure and function of membrane 
causing disruption in the cellular homeostasis (Kochian et  al. 2005). It has been 
revealed that A13+ may interact with both phospholipids and proteins leading to lipid 
peroxidation in plasma membrane. Researchers revealed that the severity of Al tox-
icity causes to break the plasma membrane integrity (Vitorello et al. 2005; Panda 
et al. 2009; Singh et al. 2017). Lipid peroxidation also causes highly toxic free radi-
cal generation and accumulation (Panda et al. 2009).

Al has greater affinity than other cations such as Ca2+ and Mg2+ during competing 
for the choline head of phosphatidylcholine. This situation culminates in Al-induced 
positively charged bridges between head groups of the phospholipid layer and dis-
placement of other cations (Bhalerao and Prabhu 2013; Singh et al. 2017). The posi-
tively charged layer restricts cation motion, but increases anion movement altering 
membrane electrochemical potential (Nichol et al. 1993). As we have stated above 
Al-induced cation alteration, principally Ca2+ displacement, also triggers callose 
synthesis (Gupta et al. 2013). Callose also inhibits intercellular transport through 
plasmodesmatal plugs (Sivaguru et  al. 2000). Alterations in cation uptake of 
 essential ions such as Ca2+, K+, Mg2+, and NH4

+ also cause nutrient imbalances 
(Pineros and Kochian 2001; Singh et al. 2017).
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2.3  Cell Signaling and Cytoskeleton

Several researchers stated that Al stress affected signal transduction pathway 
adversely mediated by secondary messengers due to imbalance of Ca2+ and pH 
homeostasis (Jones and Kochian 1997; Ma et al. 2002; Singh et al. 2017). In plasma 
membrane Al prefers to react with specific lipids which are important signaling 
molecules such as G proteins (guanine nucleotide-binding proteins) and a 
phosphatidylinositol- 4,5-diphosphate (PIP2)-specific phospholipase C commonly 
(He et  al. 2015). Besides, Al stress decreases inositol-1,4,5-triphosphate (IP3) 
amount in the plasma membrane (Rengel and Elliott 1992). After Al reaction, sig-
naling pathways are interrupted in the cell.

Cell cytoskeleton including microtubules, microfilaments, and intermediate fila-
ments is also one of the potential targets of Al ions. Al causes disruption in cytoskel-
etal dynamics which has a critical importance during cell-wall biosynthesis, cell 
growth, and cell division. It has been revealed that Al-induced disruption of micro-
tubule and actin filament results in lateral cell swelling (Frantzios et  al. 2001; 
Sivaguru et al. 2003). It has been suggested that Al disruption in cytoskeleton occurs 
either through direct interaction with cytoskeletal elements or through alteration in 
signaling pathway (Sivaguru et al. 1999). Protein phosphorylation- dephosphorylation 
and mitogen-activated protein kinase (MAPK) cascade which take charge during 
signal transduction are also reorganized by Al ions (Matsumoto 2000; Osawa and 
Matsumoto 2001; Singh et al. 2017). This interaction impairs the signal transduc-
tion pathway causing chaos in the cell.

2.4  Genotoxicity

Several researches reveal that Al has genotoxic impact and long-term Al exposure 
causes adverse effects on DNA composition and replication due to more rigid 
double- helix and chromatin structure (Vitorello et al. 2005; Panda et al. 2009; Gupta 
et al. 2013). It has been observed that Al ions decrease cell viability and mitotic 
index and increases chromosomal aberrations which are associated with Al-induced 
disturbance in tubulin polymerization-depolymerization. Tubulin disturbance limits 
the movement of chromosome on mitotic spindle causing chromosome laggards, 
bridges, micronuclei, and c-mitosis under Al stress (Frantzios et al. 2000; Vardar 
et al. 2011). It can also be considered that Al exposure may decrease the frequency 
of S-phase cells inducing delay in M phase (mitotic division) (Jaskowiak et  al. 
2018). Grabski and Schindler (1995) showed that Al has greater affinity to nucleo-
side triphosphates much more than Mg2+. Hence, Al prefers to interact with DNA 
than histone proteins at first. Besides, several researches revealed that Al exposure 
may cause double-strand DNA breaks even at 15 min (Vardar et al. 2015, 2016). 
Recent studies also revealed that Al ions cause DNA methylation and polymor-
phism of LTR retrotransposons (Guo et al. 2018; Taspinar et al. 2018).
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2.5  Oxidative Stress and Programmed Cell Death

Al toxicity stimulates generation of reactive oxygen species (ROS) leading to 
 oxidative stress in plants. Lower concentrations of ROS have a role as signaling 
molecules; however, higher concentrations regress the balance between antioxidant 
machinery and ROS detoxification. Overproduction of ROS (⋅O2

−, .OH, HO−, H2O2) 
is generated in mitochondria, chloroplast, and peroxisomes causing imbalance of 
antioxidant enzyme, lipid peroxidation, protein denaturation, carbohydrate oxida-
tion, pigment breakdown, and DNA damage (Sharma and Dubey 2007; Gupta et al. 
2013; Vardar et al. 2018).

Phytotoxic levels of ROS also trigger programmed cell death (PCD) in plants. It 
has been suggested that ROS weakens the binding strength of cytochrome c (cyt c) 
through oxidation of cardiolipins in the inner mitochondrial membrane and reduces 
mitochondrial membrane potential (ΔΨm) inducing cytochrome c release to the 
cytoplasm (Williams et  al. 2014). Besides cytochrome c release amplifies more 
ROS generation and triggers vacuolar processing enzyme (VPE) activity. Although 
there are some studies concerning Al toxicity and PCD (Table 2), more detailed 
studies are needed to clarify the Al-induced PCD mechanism.

3  Al Tolerance Mechanisms

Al has the ability to make stable complexes with oxygen donor ligands; thus Al 
chelating with root exudates plays a critical role in the prevention of phytotoxic Al 
uptake by roots (Barceló and Poschenrieder 2002). It has been evidenced that Al 
chelating mechanism is performed by mucilage formation, organic anion efflux, 
phosphate secretion, and secondary metabolite production from tolerant root apices 
(Miyasaka and Hawes 2001; Ma et  al. 2001; Ofei-Manu et  al. 2001; Vardar and 
Ünal 2007; Singh et al. 2017). Whereas tolerant plants may use different types of Al 
exclusion strategies, organic anion efflux plays a central role in the exclusion of Al. 
Several genetic and molecular approaches concerning organic acid release were 
reported in different plant species (Ma et al. 2001). Al chelation by organic acids 
decreases or prevents its uptake through apoplasm and symplasm. Type of organic 
acids secreted by roots varies depending on Al-tolerant plant species. It has been 
reported that malate, citrate, and oxalate are the most commonly encountered 
organic secretions (Magalhães et al. 2007; Ryan et al. 2009). Researches revealed 
that organic acid exudation is activated by Al exposure rapidly suggesting a trans-
porter located in the plasma membrane of tolerant roots (Kochian et al. 2005).

Whereas organic acid exclusion from roots and Al chelation in the rhizosphere 
appear to be the most common, several species tolerate Al toxicity by internal or sym-
plastic detoxification after Al uptake into the root or shoot cells. This situation was first 
attained in Al-accumulating plant root, shoot, and leaf such as tea (Camelia sinensis), 
buckwheat (Fagopyrum esculentum), and Hydrangea (Hydrangea macrophylla). 
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Table 2 Recent studies concerning Al-induced PCD

Plant material
Al 
concentration PCD signs References

Hordeum vulgare 0.1–50 mM DNA fragmentation (0.1–1 mM)
Necrotic DNA smear (10–50 mM)

Pan et al. (2001)

Allium cepa 1–200 μM Breaks in DNA Achary et al. (2008)
A. cepa 200–800 μM DNA damage Achary and Panda 

(2009)
Arabidopsis 
thaliana

0.5 mM Caspase-3-like activity
Loss of MTP
Swelling of mitochondria
ROS generation

Li and Xing (2011)

H. vulgare 2.5, 5, 10 mM DNA damage Achary et al. (2012)
Nicotiana 
tabacum

0–150 μM VPE activity
Alterations in vacuole

Kariya et al. (2013)

Arachis hypogaea 100 μM ROS burst
Upregulation of Rboh and COX 
expression
MPTP opening
Decreased ΔΨm
Cyt c release
Caspase-3-like protease activity
DNA fragmentation

Huang et al. (2014)

A. hypogaea 20, 100, 
400 μM

ROS production
MDA increase
Reduction of mitochondrial Ca 
concentration
Opening of MPTP
Collapse of ΔΨm
Cyt c release

Zhan et al. (2014)

H. vulgare
Secale cereale
Triticosecale 
wittmack
Avena sativa

100 μM Caspase-3, -8, and -9-like activities Aytürk and Vardar 
(2015)

Triticum aestivum
S. cereale
T. wittmack

100 μM DNA damage Vardar et al. (2015)

H. vulgare
S. cereale
T. wittmack
A. sativa

100 μM DNA fragmentation Vardar et al. (2016)

A. hypogaea 100 μM AlCl3 Caspase-1, -2, -3, -4, -5, -6, -8, and -9 
activities

Yao et al. (2016)

Nicotiana 
tabacum

50 μM Increase in gene expression of 
VPE1a and VPE1b

Kariya et al. (2018)

H. vulgare 5–60 μM DNA fragmentation Jaskowiak et al. 
(2018)

MTP mitochondrial transmembrane potential, MPTP mitochondrial permeability transition pore
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Internal detoxification consists of Al chelation with organic ligands in cytosol and 
their transfer to the vacuole for deposition (Kochian et al. 2004; Delhaize et al. 2012). 
Although most of the plants prefer only organic acid exudation or internal detoxifica-
tion, some species such as Pinus taeda make use of both of the mechanisms to protect 
itself from Al toxicity (Nguyen et al. 2003; Nowak and Friend 2005).

4  Aluminum Tolerance Genes in Plants

Many plant species vary considerably in their ability to tolerate the toxic Al concen-
trations via efflux of organic anions such as malate, citrate, and oxalate from roots. 
Al tolerance has a strong correlation with genotype-dependent efflux capacity of 
organic anion and exclusion of Al once it enters cytosol (Kochian et  al. 2004; 
Hiradate et al. 2007; Delhaize et al. 2012). Sasaki et al. (2004) isolated a gene con-
trolling the Al-dependent efflux of malate from Triticum aestivum (wheat) named 
TaALMT1 (Triticum aestivum aluminum-activated malate transporter 1). TaALMT1 
(formerly named ALMT1) encodes a hydrophobic protein (anion channel) localiz-
ing in the plasma membrane of root cells (Yamaguchi et  al. 2005; Ligaba et  al. 
2006). ALMT protein family has 5–7 membrane-spanning regions in the N-terminal 
half of the protein and a long C-terminal tail (Delhaize et al. 2004, 2012). Researchers 
revealed that TaALMT1 expression in Al-tolerant genotypes of wheat is 5- to 10-fold 
higher than in Al-sensitive genotypes (Sasaki et  al. 2004; Raman et  al. 2005). 
Subsequent analyses revealed that specific variations in diverse bread wheat geno-
types could be classified into seven patterns, type I to type VII (Sasaki et al. 2006; 
Garcia-Oliveira et al. 2014). After the discovery of ALMT1 in wheat, Arabidopsis 
ALMT1 members were identified as AtALMT1, and similarly their homologs char-
acterized in rape (BnALMT1 and BnALMT2), soybean (GmALMT1), and rye 
(ScALMT1). All of them share similar functional characteristics that induce malate 
exudation in Al tolerance (Hoekenga et al. 2006; Ligaba et al. 2006).

Further studies revealed that another gene responsible for citrate exudation in 
response to Al toxicity exists in barley (HvAACT1-Hordeum vulgare aluminum- 
activated citrate transporter 1) which belongs to MATE (multidrug and toxic com-
pound extrusion) gene family (Furukawa et al. 2007). Besides, SbMATE gene was 
also identified in Sorghum bicolor responsible for citrate transporter in response to 
Al toxicity (Magalhães et al. 2007).

It has been known that tolerant genotypes within species have significantly much 
more organic acid expression than sensitive genotypes. The extra expression is due 
to a series of cis mutations in the promoter of TaALMT1 in wheat (Sasaki et  al. 
2006; Ryan et al. 2010). Raman et al. (2008) revealed that the promoter region is 
more polymorphic than coding region in TaALMT1 and several alleles have accurate 
tandem repeats (Ryan et al. 2010). Besides, several examples indicated that trans-
posable elements are able to alter the level and localization of gene expression dur-
ing enhancing Al tolerance (Morgante et al. 2007; Delhaize et al. 2012).
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In wheat the major Al tolerance locus was identified on chromosome 4DL (Luo 
and Dvořák 1996; Raman et  al. 2008) and subsequently on chromosome 4BL 
responsible for phenotypic variation in citrate efflux (Ryan et al. 2009) suggesting 
that citrate is the secondary organic acid after malate in Al tolerance. Following 
molecular studies in different cultivars of wheat revealed that multiple genetic loci 
on the chromosome arms of 2DL, 3DL, 4BL, 4DL, 5AS, 6AL, 7AS, and 7D are 
very critical in Al tolerance mechanism (Aniol and Gustafson 1984; Aniol 1990; 
Papernik et al. 2001). However, it is still not clear that whether all of these loci are 
included in Al tolerance. Recently Al tolerance-related loci have been identified on 
different chromosomes in different plant species (Ryan et al. 2009; Boff et al. 2019).

Early studies suggested that Al resistance in wheat is driven by a single major 
genetic locus with different alleles inducing different degrees of Al tolerance 
(Campbell and Lafever 1981). Monogenic inheritance with multiple alleles was also 
identified in barley, maize, sorghum, pea, chickpea, and oat (Singh and Choudhary 
2010; Singh and Raje 2011; Castilhos et al. 2011; Delhaize et al. 2012). However, 
subsequent microarray studies revealed the complexity of the genetic control of Al 
tolerance. Besides, most of the identified genes probably express response to Al 
stress rather than Al tolerance (Goodwin and Sutter 2009; Delhaize et al. 2012). 
According to the several researches in wheat root tips different genes expressed 
high amounts correlating with Al tolerance such as ALMT1, ent-kaurenoic, 
β-glucosidase, lectin, histidine kinase, pyruvate dehydrogenase, alternative oxidase, 
galactonolactone oxidase, and phosphoenolpyruvate carboxylate. These results sug-
gest that Al tolerance can be co-regulated by multiple genes with diverse functions 
in plants in addition to ALMT1 (Guo et al. 2007; Houde and Oury 2008).

In conclusion, Al toxicity is a widespread problem in industrial regions and 
acidic soils limiting crop productivity in the world. It has been known that the sever-
ity of Al toxicity is due to plant genotype, cell/tissue type, types of chelators, con-
centrations of other cations, and pH (Kinraide and Parker 1987). Since Al toxicity 
and tolerance mechanism and also Al-detoxifying mechanisms need to be clarified 
with more detailed studies, in this chapter, we reviewed recent information concern-
ing physiological and molecular effects of Al toxicity and Al tolerance mechanism. 
The intensive researches on gene-based mechanisms of Al toxicity and tolerance 
may help to develop Al-tolerant varieties or transgenic to enhance the crop quality 
under Al toxicity.
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