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Preface

The rapid development of new network infrastructures and services has led to the
generation of huge amounts of data, and machine learning now appears to be the best
solution to process these data and make the right decisions for network management.
The International Conference on Machine Learning for Networking (MLN) aims to
provide a top forum for researchers and practitioners to present and discuss new trends
in deep and reinforcement learning; pattern recognition and classification for networks;
machine learning for network slicing optimization; 5G systems; user behavior pre-
diction; multimedia; IoT; security and protection; optimization and new innovative
machine learning methods; performance analysis of machine learning algorithms;
experimental evaluations of machine learning; data mining in heterogeneous networks;
distributed and decentralized machine learning algorithms; intelligent cloud-support
communications; resource allocation; energy-aware communications; software defined
networks; cooperative networks; positioning and navigation systems; as well as
wireless communications; wireless sensor networks, and underwater sensor networks.
In 2019, MLN was hosted by Inria Paris, a top-level research center in France.

The call for papers resulted in a total of 75 submissions from all around the world:
Algeria, Canada, Chile, China, Colombia, Ecuador, France, Honduras, India, Ireland,
Japan, Lebanon, Mauritius, Morocco, Norway, Peru, Portugal, Saudi Arabia, Senegal,
Serbia, Singapore, South Africa, South Korea, Spain, Sri Lanka, Tunisia, the UK, and
the USA. All submissions were assigned to at least three members of the Program
Committee for review. The Program Committee decided to accept 26 papers. There
were two intriguing keynotes by Jean-Claude Belfiore, Huawei, France, and Alberto
Conte, NOKIA Bell Labs, France; two tutorials: the first one by Franck Gaillard,
Microsoft, France, and the second one by Marie Line Alberi Morel, NOKIA Bell Lab,
France; and a talk by? Kamal Singh, Télécom Saint-Etienne/Jean Monnet University,
France, which completed the technical program.

We would like to thank all who contributed to the success of this conference, in
particular the members of the Program Committee and the reviewers for carefully
reviewing the contributions and selecting a high-quality program. Our special thanks
go to the members of the Organizing Committee for their great help.

Thursday morning was dedicated to the Second International Workshop on Net-
working for Smart Living (NSL 2019). The technical program of NSL included five
presentations and a keynote by Kevin Curran, Ulster University, UK.

We hope that all participants enjoyed this successful conference, made many new
contacts, engaged in fruitful discussions, and had a pleasant stay in Paris, France.

December 2019 Paul Mühlethaler
Éric Renault
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Network Anomaly Detection Using
Federated Deep Autoencoding Gaussian

Mixture Model

Yang Chen , Junzhe Zhang , and Chai Kiat Yeo(B)

School of Computer Science and Engineering, Nanyang Technological University,
50 Nanyang Avenue, Singapore 639798, Singapore

asckyeo@ntu.edu.sg

Abstract. Deep autoencoding Gaussian mixture model (DAGMM)
employs dimensionality reduction and density estimation and jointly
optimizes them for unsupervised anomaly detection tasks. However, the
absence of large amount of training data greatly compromises DAGMM’s
performance. Due to rising concerns for privacy, a worse situation can be
expected. By aggregating only parameters from local training on clients
for obtaining knowledge from more private data, federated learning is
proposed to enhance model performance. Meanwhile, privacy is prop-
erly protected. Inspired by the aforementioned, this paper presents a
federated deep autoencoding Gaussian mixture model (FDAGMM) to
improve the disappointing performance of DAGMM caused by limited
data amount. The superiority of our proposed FDAGMM is empirically
demonstrated with extensive experiments.

Keywords: Anomaly detection · Small dataset · Privacy-preserving ·
Federated learning · Deep autoencoding Gaussian mixture model ·
Network security

1 Introduction

Deep learning has been providing a lot of solutions which have previously posed
big challenges to the artificial intelligence. It has been deployed in numerous
applications such as computer vision, natural language processing and many
other domains [1] thanks to the great advancement in computing power and the
availability of vast amount of data. Much more complex and advanced algorithms
can now be trained [2].

In the cybersecurity domain, anomaly detection is a critical mechanism used
for threat detection and network behavior anomaly detection is a complementary
technology to systems that detect security threats based on packet signatures.
Network anomaly detection is the continuous monitoring of a network for unusual
events or trends which is an ideal platform to apply deep learning. Deep anomaly

This project is supported by Grant No. NTU M4082227.
c© IFIP International Federation for Information Processing 2020
Published by Springer Nature Switzerland AG 2020
S. Boumerdassi et al. (Eds.): MLN 2019, LNCS 12081, pp. 1–14, 2020.
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detection [3] has thus seen rapid development such as self-taught learning based
deep learning [4] and deep autoencoding Gaussian mixture model (DAGMM [5].
Deep learning significantly improves the model complexity resulting in substan-
tial improvement to the detection accuracy. However, deep learning requires the
availability of tremendous amount of data to be well trained and supervised
learning not only requires large amount of data but they must also be labelled.

The DAGMM proposed in [5] significantly improves the F1 score compared
to other state-of-the-art methods including deep learning methods. It employs
dimensionality reduction and feature embedding via the AutoEncoder, a com-
pression network, and then performs density estimation via an estimation net-
work. The entire process is unsupervised and hence no labelled data is needed
for training the networks. However, DAGMM still requires a huge amount of
data to train its models.

Data availability poses a huge challenge for deep learning system. Compound-
ing the problem is that not every one has amassed huge amount of data and even
if they have, the data may not be labelled or they are not to be shared collectively
due to privacy and security issues. Herein lies the interest in federated learning,
where model parameters instead of training data are exchanged through a cen-
tralized master model in a secured manner [6] thereby preserving the privacy of
individual datasets as well as alleviating the challenge of limited datasets.

This paper proposes the federated learning assisted deep autoencoding Gaus-
sian mixture model (FDAGMM) for network anomaly detection under the
scenario where there is insufficient data to train the deep learning models.
FDAGMM can thus improve the poor performance of DAGMM caused by limited
dataset and its superiority is empirically demonstrated with extensive exper-
iments. In industry scenarios, the presented solution is expected to solve the
problem of lacking training data that each organizations are not willing to share
in a centralized mode.

2 Related Work

2.1 Anomaly Detection

Network Anomaly Detection, also called Network Intrusion Detection, has been
studied for over 20 years [7]. Network intrusion detection systems are either
signature (rule)-based or anomaly-based. The former uses patterns of well-known
attacks or weak spots of the system to identify intrusions whereas the latter
uses machine learning methods to determine whether the deviation from the
established normal usage patterns can be flagged as intrusions [8].

Machine learning methods being applied for network anomaly detection,
include genetic algorithms, support vector LLmachines (SVM), Self-organizing
map (SOM), random forests, XGBoost, KNN, Naive Bayes networks, etc. How-
ever, many suffer low accuracy and high False Positive Rate (FPR). More
recently, there are research in deep anomaly detection such as [3] and [4]. The
use of deep learning significantly improves the model complexity and results in
substantial performance improvement in terms of the various metrics, such as
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F1 score, accuracy, precision, score and False Positive Rate (FPR). However,
the more complex the model, the more labelled training data it needs to be well
trained.

Deep Autoencoding Gaussian Mixture Model (DAGMM) is recently proposed
in [5] and it produces good results with no need to label the training data.
The model consists of a compression network and an estimation network which
are trained end-to-end instead of using decoupled two-stage training and the
standard Expectation-Maximization (EM) algorithm. The compression network
is an autoencoder that embeds the feature into a low-dimension representation
and meanwhile yields the reconstruction error for each input data point, which is
further fed into the estimation network which acts as a Gaussian Mixture Model
(GMM). It outperforms many state-of-the-art methods in terms of F1 score.
However, even though it does not require labelled training data, it demands
a large amount of unlabeled data in which normal users do not have or are
unwilling or unable to share.

KDDCUP 99 [9] has been the most widely used dataset for the evaluation of
anomaly detection methods since it was prepared by [10] in 1999. There are 5
million simulated tcpdump connection records, each of which contains 41 features
and is labelled as either normal or an attack, with exactly one specific attack
type. It covers attacks falling into the following 4 main categories:

– DoS attack: denial-of-service, e.g. smurf;
– R2L: unauthorized access from a remote machine, e.g. guessing password;
– U2R: unauthorized access to local superuser (root) privileges, e.g. various

“buffer overflow” attacks;
– Probing: surveillance and other probing, e.g. port scanning.

2.2 Federated Learning

Federated learning is proposed by Konečný et al. [11,12] to use the availability
of privacy sensitive data stored in mobile devices to boost the power of various
deep/machine learning models. In typical federated learning (FL), clients, e.g.
smart phones, suffer from unstable communication. In addition, their data are
unbalanced, Non-IID and massively distributed. These features distinguish FL
from conventional distributed machine learning [13,14].

As shown in Fig. 1, Federated Learning (FL) involves two components,
i.e. central and local training. K clients indexed by k. The whole process is
divided into communication rounds, in which clients are synchronously trained
with local stochastic gradient descent (SGD) on their datasets Pk. In the central
server, parameters ωk come from the local clients, where k ∈ S, and S refers
to the participating subset of m clients in each communication round. These
updated parameters are then aggregated. [11,12,15]

The setting of federated learning follows the principle of focused collection or
data minimization proposed in the White House report [16]. In this setting, local
models are trained upon data that are stored in the clients. The server does not
need training data which contains private information. Only client parameters
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Fig. 1. Overview of federated learning.

are sent to the server, and they are aggregated to obtain the central model. After
communication, clients receive the aggregated updates as initial parameters of
the subsequent training. Then, their models are retrained on privacy data with
local stochastic gradient descent (local SGD) [11,12,17,18].

In the typical FL that is executed on mobile devices, clients suffer from unsta-
ble communication. Hence it is reasonable to assume that only a subset of all
clients, i.e. the aforementioned participating subset, is ready to get involved in
each communication round. However, in our proposed federated deep autoencod-
ing Gaussian mixture model (FDAGMM) for anomaly detection, the assumption
does not hold anymore since the clients here commonly refer to companies or
organizations with cutting-edge equipment and facilities.

2.3 Deep Autoencoding Gaussian Mixture Model

Two-step approaches that sequentially conduct dimensionality reduction and
density estimation are widely used since they well address the curse of dimen-
sionality to some extent [19]. Although fruitful progress has been achieved, these
approaches suffer from a decoupled training process, together with inconsistent
optimization goals, and the loss of valuable information caused by step one, i.e.
the dimensionality reduction. Motivated by these, Zong et al. proposed a Deep
Autoencoding Gaussian Mixture Model (DAGMM) [5].

As shown in Fig. 2, a Compression Network and an Estimation Network con-
stitute DAGMM. It works as follows:

– Dimensionality Reduction: Given the raw features of a sample x, the com-
pression network which is also a deep autoencoder conducts dimensionality



Network Anomaly Detection Using FDAGMM 5

Fig. 2. Overview of deep autoencoding Gaussian mixture model.

reduction to output its low-dimensional representation z as follows:

zc = h (x; θe)
x′ = g (zc; θd)
zr = f (x,x′)
z = [zc, zr]

(1)

where θe and θd are the parameters of the decoder and encoder respec-
tively, x′ is the reconstruction of x generated by the autoencoder, zc is
the reduced/learned low-dimensional representation, zr. h(·), g(·), and f(·)
denote the encoding, decoding and reconstruction-error calculation function
respectively.

– Density Estimation: The subsequent estimation network takes z from the
compression network as its input. It performs density estimation with a
Gaussian Mixture Model (GMM). A multi-layer neural network, denoted as
MLN(·), is adopted to predict the mixture membership for each sample as
follows:

p = MLN (z; θm)
γ̂ = softmax(p)

(2)

where θm corresponds to parameters of MLN , K indicates the number of
mixture components, and γ̂ is a K-dimensional vector for the soft mixture-
component membership prediction. Given the batch size N , ∀1 ≤ k ≤ K,
parameter estimation of GMM is further conducted as follows:



6 Y. Chen et al.

φ̂k =
N∑

i=1

γ̂ik
N

μ̂k =
∑N

i=1 γ̂ikzi∑N
i=1 γ̂ik

Σ̂k =
∑N

i=1 γ̂ik (zi − μ̂k) (zi − μ̂k)
T

∑N
i=1 γ̂ik

(3)

where γ̂i is the membership prediction, and φ̂k, μ̂k, Σ̂k are the mixture prob-
ability, mean, and covariance for component k in GMM respectively. Further-
more, sample energy can be inferred as:

E(z) = − log

⎛

⎜⎜⎝
K∑

k=1

φ̂k

exp
(
− 1

2 (z − μ̂k)
T Σ̂−1

k (z − μ̂k)
)

√∣∣∣2πΣ̂k

∣∣∣

⎞

⎟⎟⎠ (4)

where | · | denotes the determinant of a matrix.

Based on the three components, i.e. reconstruction error of autoencoder
L (xi,x′

i), sample energy E (zi), and a penalty term P (Σ̂), the objective function
of DAGMM is then constructed as:

J (θe, θd, θm) =
1
N

N∑

i=1

L (xi,x′
i) +

λ1

N

N∑

i=1

E (zi) + λ2P (Σ̂) (5)

3 Federated Deep Autoencoding Gaussian Mixture
Model

As discussed in the previous sections, limited data samples lead to the perfor-
mance deterioration of DAGMM [5]. Therefore, the motivation of the proposed
FDAGMM is to address this issue by extending the data sources while preserv-
ing the data privacy of the individual clients. Under the framework of federated
learning (FL), not only can FDAGMM improve its performance with more data,
but privacy is appropriately protected.

The rest of Sect. 3 is divided into two subsections, namely, server execution
and client update. The two main components of FDAGMM are introduced in
the form of pseudo-codes.FDAGMM shares most of the notation as FL except
that ω is replaced with θ to be consistent with DAGMM as shown:

θ = {θ{e,d}, θm} (6)

where the parameters of the autoencoder include those of the encoder and the
decoder, i.e. θ{e,d} = {θe, θd}, and those of the estimation network is denoted as
θm. Moreover, superscripts and subscripts are adopted to specify client k and
communication round t that the parameters belong to, i.e. θkt .
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3.1 Server Execution

Algorithm 1 shows the Server Execution that is carried out on the central server.
It consists of an initialization operation followed by T communication rounds.
In initialization (Line 2), ω0 is initialized.

Under the FL framework, the training process consists of the communication
rounds that are indexed with t (Line 3). Lines 4–6 call sub-function Client Update
for K clients in parallel. Then in line 7, the aggregation is performed to update
θ, which is the parameter of the centre model. n and nk indicate the number
of instances belonging to client k and the total number of all involved samples,
respectively.

Algorithm 1. Server Component of FDAGMM
1: function ServerExecution(if two phase) � Run on the server
2: initialize θ0
3: for each round t = 1, 2, ..., T do
4: for each client k ∈ {1, ..., K} in parallel do
5: θk ← ClientUpdate(k, θt, f lag)
6: end for
7: θt+1 ← ∑K

k=1
nk
n

∗ θk

8: end for
9: end function

3.2 Client Update

Client Update (Algorithm 2) takes k and θ as its input. k indexes a specific
client and θ denotes the parameters of the central model in the current round. E
denotes the local epoch. Line 2 splits data into batches, whereas Lines 3–7 train
the local DAGMMs by batch with private data stored on each client. η denotes
the learning rate; J(·) is the loss function. Its definitions is detailed in Equation
(5). Line 8 returns the updated local parameters.

Algorithm 2. Client Component of FDAGMM
1: function ClientUpdate(k, θ, flag) � Run on client k
2: B ← (split Pk into batches of size N)
3: for each local epoch i from 1 to E do
4: for batch b ∈ B do
5: θ ← θ − η ∗ �J(θ; b)
6: end for
7: end for
8: return θ to server
9: end function



8 Y. Chen et al.

Fig. 3. Aggregation of federated deep autoencoding Gaussian mixture model.

Figure 3 shows an example illustrating the aggregation of FDAGMM. The
abscissa and ordinate denote the communication round and the local client
respectively. Two local devices, i.e. Client 0, Client 1, and a server are involved.
The cross located at (Clint 0 ; T ) indicates that Clint 0 is participating in updat-
ing the central model in round T .

4 Experimental Results and Analysis

4.1 Experimental Design

Due to the lack of public datasets for anomaly detection, especially the Intrusion
Detection Systems (IDSs), very few of them can be directly adopted in the
evaluation of the proposed FDAGMM.

We perform extensive experiments with a public dataset KDDCUP 99, which
is the most widely used in the evaluation of various anomaly detection approaches
and systems. Table 1 shows the statistics of KDDCUP 99.

Data Pre-processing. Constructing datasets to simulate the private data of
the individual clients which fulfill the associated requirements is thus needed for
this study. In the FL setting, private datasets stored in clients are Non-IID and
unbalanced. In the experiments, the whole KDDCUP 99 dataset is split into two
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Table 1. Statistics of KDDCUP 99

# Dimensions # Instances Anomaly ratio

120 4898431 19.86%

(a) Scenario 1: Client 0 with 1% common and 100% rare attacks.

(b) Scenario 2: Client 0 with
2% common and 100% rare
attacks.

(c) Scenario 3: Client 0 with
5% common and 100% rare
attacks.

(d) Scenario 4: Client 0 with
10% common and 100% rare
attacks.

Fig. 4. Stacked bar-charts of attack types belong to two clients.

sets belonging to Client 1 and Client 2 through selecting records in the complete
KDDCUP. These two clients play the roles of two companies in which Client 1
with limited data asks for help from Client 2 under the framework of FDAGMM.

Attack instances are separated according to their types. Training sets only
include half of the attack samples belonging to its client, while test sets consist
of both normal and the other half attack instances. The data belonging to Client
1 are similar in anomaly ratio as the other client. Since there is a very sharp
distinction between rare and common attacks, which is reflected in Fig. 4, smurf
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and neptune are included as Common Attacks and the rest comprises the
Rare Attacks. The details are shown in Table 2. The experiments are expected
to prove that Client 1 can improve its performance with the help of Client 2.

Table 2. Common and rare attacks

Types

Common Attacks smurf, neptune

Rare Attacks satan, ipsweep, portsweep, nmap, back,

warezclient, teardrop, pod, guess passwd,

buffer overflow, land, warezmaster, imap, rootkit,

loadmodule, ftp write, multihop, phf, perl, spy

As shown in Fig. 4(a), the scenario with Client 1 holding 1% common and
100% rare (bars in orange) attack instances and Client 2 holding the rest, i.e.
99% common attacks (bars in blue), is denoted as Scenario 1. Those corre-
sponding to the remaining three figures, (b) to (d) are denoted as Scenario 2,
Scenario 3 and Scenario 4 respectively.

Table 3. Default setting of DAGMM

Notion Parameter range

η� 0.0001

N∗ 1024

λ†
1 0.1

λ†
2 0.005

� Learning Rate
∗ Batch Size
† Involved in Eq. (5)

Parameter Setting on DAGMM. For the purpose of a fair comparison, all
these experiments adopt the default DAGMM setting as the hyper-parameters
of the local models in the proposed FDAGMM. The settings are summarized in
Table 3.

4.2 Experiments on KDDCUP 99

The experiments are designed to evaluate the effectiveness of the proposed
FDAGMM. According to their attack types, i.e. rare or common, instances mak-
ing up each training set belong to two clients. Four scenarios with distinct com-
binations of attacks are considered and illustrated in Fig. 4. Three metrics are
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adopted to measure the performance of the compared algorithms. They are Pre-
cision, Recall, and F1-Score.

All the experiments are run independently for five times; each time, the ran-
dom seed is fixed. The average (AVG) values of F1-Score are presented in Fig. 5.
Tables 4 and 5 show the AVG and standard deviation (STDEV) of precision
and recall values respectively. In the tables, the AVG value is listed before the
standard deviation in parentheses.

The names of the algorithms compared in Tables 4 and 5 indicate not only
the adopted technique but also the involved training set, i.e. Training set from
Client 0 or Client 1.

– DAGMM C0 employs DAGMM and trains the model with only data from
Client 0. Test set comprises half of the attack instances belonging to Client
0 and the corresponding proportion of normal samples.

– DAGMM C1 employs DAGMM and trains the model with only data from
Client 1. Test set comprises half of the attack instances belonging to Client
1 and the corresponding proportion of normal samples. DAGMM C1 thus
complements the training on the limited data of Client 0 to increase the
detection performance on Client 0 without comprising the privancy of its
data.

– DAGMM C0&C1 employs DAGMM and trains the model with a mixture
of the data from two clients. Test set comprises half of the attack instances
belonging to Client 0 and the corresponding proportion of normal sam-
ples. DAGMM C0&C1 (Ideal Bound) denotes where the performance limit
of FDAGMM is. This is under the ideal scenario where both clients are will-
ing to share their data so that DAGMM can be trained to achieve the best
performance.

– FDAGMM includes two clients, and each employs a DAGMM and trains
the model with only data from itself. Test set comprises half of the attack
instances belonging to Client 0 and the corresponding proportion of normal
samples. The performance of FDAGMM reflects how much help Client 0
can receive from Client 1 under the FL framework. In other words, how
close the presented FDAGMM can approach the ideal performance limit, i.e.
DAGMM C0&C1 (Ideal Bound) where there is an abundance of data for
training and clients are willing to contribute their data for collective training
of the DAGMM.

Table 4. Comparative studies on FDAGMM: precision.

Scenario DAGMM C0 FDAGMM Ideal Bound DAGMM C1

Scenario 1 0.397(0.1304) 0.4532(0.0317) 0.5366(0.0215) 0.9881(0.0024)

Scenario 2 0.4793(0.1712) 0.5116(0.0289) 0.6266(0.0444) 0.9787(0.0073)

Scenario 3 0.6069(0.0872) 0.6553(0.0403) 0.7261(0.0612) 0.9832(0.0129)

Scenario 4 0.6735(0.0883) 0.7447(0.0369) 0.7583(0.0302) 0.9813(0.0018)
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Table 5. Comparative studies on FDAGMM: recall.

Scenario DAGMM C0 FDAGMM Ideal Bound DAGMM C1

Scenario 1 0.9263(0.1434) 0.9769(0.0459) 0.9222(0.0422) 0.9952(0.0097)

Scenario 2 0.8166(0.127) 0.9927(0.0121) 0.9409(0.0488) 0.9978(0.0044)

Scenario 3 0.8777(0.0698) 0.9825(0.0284) 0.9341(0.0482) 0.9984(0.0016)

Scenario 4 0.9237(0.038) 0.9803(0.0264) 0.976(0.0334) 0.9987(0.0019)

(a) Scenario 1

(b) Scenario 2 (c) Scenario 3 (d) Scenario 4

Fig. 5. Comparative studies on FDAGMM on KDDCUP 99.

Based on the results shown in these tables and figures, the following obser-
vations can be made:

– The proposed FDAGMM outperforms DAGMM on all metrics, i.e. F1-Score,
Precision and Recall for all four scenarios.

– According to its lower STDEV values, FDAGMM’s performance is more sta-
ble than DAGMM.
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– The more Non-IID and unbalanced the data distribution is across clients,
the more challenging the scenario tends to be, which is reflected by the blue
dotted lines corresponding to DAGMM C0&C1 in Fig. 5.

5 Conclusion

With the help of other clients holding sufficient feature-similar records under the
FL framework, we show that the less than satisfactory performance of DAGMM
suffering from limited dataset can be addressed and improved using FDAGMM.
Empirical studies comparing the performance of the proposed FDAGMM and
DAGMM under four distinct scenarios demonstrate the superiority of the
FDAGMM in terms of all the associated performance metrics.

This study follows the assumption that all local models adopt the same neu-
ral networks architecture and share the same hyperparameters, which implies
all the involved data records share the same feature structure. This renders
FDAGMM to be less versatile to be deployed to other application domains. In
future research, we are going to develop new federated learning assisted DAGMM
address the weakness.
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Abstract. Nowadays, it is almost impossible to imagine our daily life
without Internet. This strong dependence requires an effective and rig-
orous consideration of all the risks related to computer attacks. However
traditional methods of protection are not always effective, and usually
very expensive in treatment resources. That is why this paper presents a
new hierarchical method based on deep learning algorithms to deal with
intrusion detection. This method has proven to be very effective across
traditional implementation on four public datasets, and meets all the
other requirements of an efficient intrusion detection system.

Keywords: Machine learning · Deep learning · Intrusion detection ·
Artificial intelligence · Cyber security

1 Introduction

Over the last two decades, many solutions have emerged to protect and secure
computer systems. They are complementary but not always sufficient. Thus,
antivirus software acts on a host computer and protects against viruses and
malicious programs. If this solution is effective for isolated machines and viruses
already known, it is not recommended to trust them, especially when connected
to the Internet.

To solve the problem of network intrusion, firewalls come to the rescue. A fire-
wall is used to control communications between a local network or host machine
and the Internet. It filters traffic in both directions and blocks suspicious traffic
according to a network security policy. It is therefore the tool that defines the
software and the users that have the permission to connect to the Internet or to
access the network [1]. With anti-virus, the firewall increases the security of data
in a network. However, this combination remains powerless in front of malicious
users with knowledge of all the requirements of security policy. Indeed, once a
software or user has the permission to connect to the Internet or a network, there
is no guarantee that they will not perform illegal operations. Moreover, many
studies have shown that 60% to 70% of attacks come from within systems [2].
c© IFIP International Federation for Information Processing 2020
Published by Springer Nature Switzerland AG 2020
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To handle this problem, in addition to antivirus and firewalls, intrusion detec-
tion systems (IDS) are used to monitor computer systems for a possible intrusion
considered as unauthorized use or misuse of a computer system [3].

IDSs are designed to track intrusions and protect system vulnerabilities. They
are very effective at recognizing intrusions for which they are programmed. How-
ever, they are less effective if the intruder changes the way he attacks. Whatever
the performance of the IDS, they are often limited by the amount of data that
the IDS can handle at a time. This limitation does not allow for permanent
monitoring and leaves violations for intruders.

This research explores a first implementation of classical machine learning
models for intrusion detection. These models take into account the historical
IDSs data with their corresponding classes. Then, through a comparative study,
we select the best method to use it for the inference in order to detect intru-
sions in real-time. In addition, we present in this study a hierarchical learning
method that is proving to be very effective in comparison with the traditional
classification method.

The rest of this paper is organised as follows: next section presents some
related works, followed by the proposed strategy in Sect. 3. In Sect. 4 we show
the experimental results and give some discussions. Finally, in Sect. 5 we conclude
with some perspectives.

2 Related Works

Many recent researches try to handle the intrusion detection problem with the
artificial intelligence and machine learning approaches.

The authors of [4] explore the issue of the game theory for modelling the prob-
lem of intrusion detection as a game between the intruder and the IDS according
to a probabilistic model, the objective of their study is to find a frequency for an
IDS verification activities that ensures the best net gain in the worst case. We
think that is a good idea, but if the attacker changes his behaviour, the proposed
approach will no more be able to intercept him effectively.

In [5] a new agent architecture is proposed. It combines case-based reasoning,
reactive behavior and learning. Through this combination, the proposed agent
can adapt itself to its environment and identify new intrusions not previously
specified in system design. Even if the authors showed that the hybrid agent
achieves good results compared to a reactive agent, their experimental study did
not include other learning approaches such as support vector machine, K nearest
neighbors... In addition, the learning set used in this study is very small, only
1000 records.

The authors in [6] proposed an intrusion detection framework based on an
augmented features technique and an SVM algorithm. They validated their
method on the NSL-KDD dataset, and stated that their method was superior
to other approaches. However, they did not mention which data are used for the
test. In addition, the application of features augmentations technique increases



Towards a Hierarchical Deep Learning Approach for Intrusion Detection 17

the risk of falling into an over fitting case, especially when processing large data,
so we believe this is not an ideal choice for analyzing large network traffic for
intrusion detection.

In [7], the authors applied a hybrid model of genetic algorithms with SVM
and KPCA to intrusion detection. They used the KDD CUP99 dataset to val-
idate their system. However, this dataset contains several redundancies, so the
classifier will probably be skewed in favor of more frequent records. With the
same way, the authors of [8] combined decision tree with genetic algorithms
and features selection for intrusion detection. They used also the KDD dataset
which is not really reliable for validating methods, it would have been more
interested to take other datasets to confirm the proposed approach. An inter-
esting multi-level hybrid intrusion detection model is presented in [9], it uses
support vector machine and extreme learning machine to improve the efficiency
of detecting known and unknown attacks. The authors apply this model on the
KDD99 dataset, which has the previously mentioned drawbacks. On the same
dataset, a new LSTM: long short term memory model is presented in [10] to deal
with four classes of attacks, and the results are satisfactory. In [11] the authors
present a text mining approach to detect intrusions, in which they present a
new distance measure. However, most of logs features are in numerical format,
and taking them as text data will considerably increase the complexity of the
calculation in terms of memory capacity and also in terms of learning time. This
is the biggest flaw in the last two papers mentioned.

A very interesting survey is presented in [12]. The paper describes the litera-
ture review of most of machine learning and data mining methods used for cyber
security. However, the methods that are the most effective for cyber applications
have not been established by this study, the authors affirm that given the richness
and complexity of the methods, it is impossible to make one recommendation
for each method, based on the type of attack the system is supposed to detect.
In our study we draw inspiration from the methods cited by this paper such as
decision trees, support vector machine, k nearest neighbors,... for a comparative
study established on the most popular datasets. In addition, we enrich our com-
parative study with several neural networks models, and with a new proposed
hierarchical classification method.

3 The Proposed Strategy

Contrary to the idea in [13], in which the authors present an hierarchical classi-
fication of the features for intrusion detection. In our study we propose a hierar-
chical method that starts by detecting malicious connexion with a binary classi-
fication, and then, in a second time, the algorithm tries to find the corresponding
attack class by a multi-label classification as shown in Fig. 1. The idea is to detect
an abnormal connection very quickly and launch a warning to the admin, then
try to classify this connection in the corresponding attack class.

For this, we will design a hierarchical approach to the machine learning
methods, and compare their performances with the classical algorithms of
classification.
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Fig. 1. The proposed hierarchical classification method

In the context of data mining and machine learning: classification is done
using a model that is built on historical data. The goal of predictive classi-
fication is to accurately predict the target class for each record in new data.
A classification task begins with build training data for which the target val-
ues (or class assignments) are known. Many classification algorithms use differ-
ent techniques for finding relations between the predictor attribute’s values and
the target attribute’s values in the build data [14,15]. In the following subsec-
tions, a summarised overview of the implemented machine learning algorithms
is reported.

3.1 Näıve Bayes Classifier

The näıve Bayes algorithm is based on Bayesian probability theory following
assumptions of naive independence [16]. It is one of the most basic classification
techniques with various applications, such as email spam detection, personal
email sorting, and document categorization.

Even though it is often outperformed by other techniques. The main advan-
tage of the näıve Bayes remains that it is less computationally intensive (in
both CPU and memory), and it requires a small amount of training data. More-
over, the training time with Naive Bayes is significantly smaller as opposed to
alternative methods [17].

3.2 K-Neighbors Approach

Nearest Neighbors is one of the simplest, and rather trivial classifiers is the rote
classifier, which memorizes all training data and performs classification only if
the attributes of the test object match one of the training examples exactly [18].
A more known variation, the k-nearest neighbor (kNN) classification [19], finds
a group of k objects in the training set that are closest to the test object and
bases the assignment of a label on the predominance of a particular class in this
neighborhood. There are three key elements of this approach: a set of labeled
objects, a distance or similarity metric to compute distance between objects,
and the value of parameter k, which represents the number of nearest neighbors.
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To classify an unlabeled object, the distance of this object to the labeled
objects is computed, its k-nearest neighbours are identified, and the class labels
of these nearest neighbours are then used to determine the class label of the
object.

Given a training set DR and a test object z = (x′, y′) the algorithm computes
the distance (or similarity) between z and all the training objects (x, y) ∈ DR to
determine its nearest-neighbor list: Dz. (xi is the training data of objecti, while
yi is its class. Likewise, x′ the data of the test object and y′ is its class.) Once
the nearest-neighbors list is obtained, the test object is classified based on the
majority class of its nearest neighbors:

Majority V oting y′ = argmaxv

∑

xi,yi∈Dz

I(v = yi).

where v is a class label, yi is the class label for the ith nearest neighbors, and
I() is an indicator function that returns the value 1 if its argument is true and
0 otherwise.

3.3 Support Vector Machine

Support vector machines (SVM) have exhibited superb performance in binary
classification tasks. Intuitively, SVM aims at searching for a hyperplane that
separates the two classes of data with the largest margin (the margin is the
distance between the hyperplane and the point closest to it) [20,21].

Most discriminative classifiers, including SVMs, are essentially two-class clas-
sifiers. A standard method of dealing with multi-class problems is to create an
ensemble of yes/no binary classifiers, one for each label. This method is called
“one-vs-others” [22].

3.4 Random Forests

Random Forests are a part of ensemble learning. Ensemble learning [23] deals
with methods which employ multiple learners to solve a problem. The capacity
of working with several learners in the same time achieve better results than
a single learner. Random forest works by creating various decision trees in the
training phase and output class labels those have the majority vote [24]. They
achieve high classification accuracy and can handle outliers and noise in the
data. Random Forest is implemented in this work because it is less susceptible
to over-fitting and it has previously shown good classification results.

3.5 Multilayer Perceptron Neural Networks

The basic unit in a neural network is called “neuron” or “unit”. Each neuron
receives a set of inputs, which are denoted by the vector Xi [25]. In addition,
each neuron is associated with a set of weights A, which are used for computing
a function f of its inputs. A typical function that is basically used in the neural
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network is the linear function, it is defined as follows: pi = A.Xi. We assume
that the class label is denoted by yi. The goal of this approach is to learn the
set of weights A with the use of the training set. The idea is to start off with
random weights, and gradually update them when a mistake is done by applying
the current function on the training example. The magnitude of the update
is regulated by a learning rate μ. This forms the core idea of the perceptron
algorithm.

Algorithm 1. Perceptron Algorithm [26]
inputs: Learning Rate: µ

Training rules (Xi, yi)∀i ∈ {1...n}.
Initialize weight vectors in A to 0 or small random numbers.
Repeat
– Apply each training rule to the neural network
– if ((A.Xi) does not matches yi) then

update weigts A based on learning rate µ.
until weights in A converge.

3.6 Convolutional Neural Network Classifier

A Convolutional Neural Network (CNN) is comprised of one or more convolu-
tional layers, and then followed by one or more fully connected layers as in a
standard multilayer neural network. The neurons of a convolutional layer are
grouped in feature maps sharing the same weights, so the entire procedure
becomes equivalent to convolution [27]. Convolutional layers are usually followed
by a non-linear activation-layer, in order to capture more complex properties of
the input data. The pooling layers are usually used for subsampling the preced-
ing layer, by aggregating small rectangular values subsets. Maximum or average
pooling is often applied by replacing the input values with the maximum or the
average value, respectively. Finally, one or more dense layers are put in place,
each followed by an activation-layer, which produce the classification result.

The training of CNNs is performed similarly to that of classical Multilayer
Perceptron Networks, by minimizing a loss function using gradient descent-based
methods and back-propagation of the error.

In this study, our best CNN model is reached after trying many architectures.
It is inspired by the contribution of [28] in sentiments detection. Since its model
demonstrated well performant results, we adapted it in our study for intrusion
detection. It is mainly composed of four hidden layers in addition to the input and
the output layer. In the following, we show a summarization of the architecture
of our best CNN model:

– The input layer is a convolution of one dimension with a number of neurones
equals to the number of the dataset features.
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– The second layer is a max pooling 1D with a pool size equals to 4.
– The third layer is a flatten with 512 neurones.
– The fourth is a dense layer with 512 neurones with ‘relu’ as activation func-

tion.
– The output layer is a dense layer with the ‘sigmoid’ function, and a number

of neurones equals to the number of classes.

4 Experimentation Results and Discussion

In this section, we implement various machine learning models to classify the
different sets of network traffic of the four well known benchmarks, which are
summarised in Table 1:

Table 1. The datasets characteristics

Dataset Rows Features Classes

KDD 99 4,898,430 42 23

NSL-KDD 125,973 42 23

UNSW-NB15 2,540,044 49 10

CIC-IDS 2017 2,832,678 79 14

4.1 Performance Evaluation

For the performance evaluation, we calculate the accuracy with the F-score of
each approach. The F-score also called F-measure is based on the two primary
metrics: precision and recall. Given a subject and a gold standard, precision is
the proportion of cases that the subject classified as positive that were positive
in the gold standard. It is equivalent to positive predictive value. Recall is the
proportion of positive cases in the gold standard that were classified as positive
by the subject. It is equivalent to sensitivity. The two metrics are often combined
as their harmonic mean, the formula can be formulated as follows:

F =
(1 + β2) × recall × precision

(β2 × precision) + recall

Precision =
TP

TP + FP
,Recall =

TP

TP + FN

Where TP is the number of true positives, TN is the number of true nega-
tives, FP is the number of false positives and FN is the number of false nega-
tives. The F-measure can be used to balance the contribution of false negatives
by weighting recall through a parameter β ≥ 0. In our case β is set to 1, F1-score
is than equal to:

F1 score =
2 × recall × precision

precision + recall
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4.2 Environment and Materials

We use in this implementation, Python language, Tensorflow tool, and Keras
library. All the algorithms are executed and compared using the NVIDIA
DGX-11. The DGX1 is an Nvidia server which specializes in using GPGPU
to accelerate deep learning applications. The server features 8 GPUs based on
the Volta daughter cards with HBM 2 memory, connected by an NVLink mesh
network.

4.3 Multi-class Classification Results

In this paper, first, we classify the datasets as they are labelled, without any
modification. The obtained results are shown in Table 2, columns of Multi-label
classification.

We notice from these results that most of the approaches succeed in obtaining
good training and test scores. However, the best of these models does not exceed
71% accuracy on the test benchmark.

Considering the delicacy of the domain, and the dangerousness that can
generate an IDS which classifies network traffic as normal when it is an attack.
We propose a hierarchical classification strategy to achieve greater accuracy.

4.4 Hierarchical Classification Strategy

Given the main objective of an intrusion detection system, which is to detect
potential attacks, we have decided in this strategy to adopt an hierarchical clas-
sification.

First, we start with a binary classification, merging all attack classes into one
large class and labelling it ‘attack’, and on the other hand keeping the ‘normal’
class without any modification.

Then, after separating normal network traffic to that which represents a
potential attack, a multi-class classification can be applied within the “attack”
class to know what type of attack it is.

Binary Classification (Level 1: Normal/Attack). We start the hierarchical
classification strategy by the detection of an abnormal connexion. This is reached
by the binary classification task. For this, we have merged all the connections
which have a different label from ‘normal’ into a single class that we have labelled
‘attack’. The obtained results are show in Table 2, columns of hierarchical (level
1).

1 https://www.nvidia.fr/data-center/dgx-1/.

https://www.nvidia.fr/data-center/dgx-1/
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Table 2. Classifications reports

Data set ML approach Multi-label
classification

Hierarchical
(level 1)

Hierarchical
(level 2)

TrainingTest
score

Training Test
score

Training Test score

KDD 99 Naive Bayes classifier 0.91 0.30 0.98 0.79 0.84 0.46

Decision tree classifier 0.99 0.53 0.99 0.69 0.99 0.58

K neighbors classifier 0.99 0.50 0.99 0.81 0.99 0.58

Logistic regression classifier0.99 0.31 0.99 0.83 0.99 0.55

Support vector classifier 0.99 0.43 0.99 0.84 0.99 0.58

Ada Boost classifier 0.66 0.34 0.92 0.83 0.92 0.40

Random forest classifier 0.99 0.53 0.99 0.83 0.99 0.56

Multilayer perceptron 0.99 0.33 0.99 0.83 0.99 0.61

Best NN model 0.99 0.35 0.99 0.84 0.99 0.61

NSL-KDD Naive Bayes classifier 0.87 0.56 0.90 0.77 0.83 0.44

Decision tree classifier 0.99 0.59 0.99 0.80 0.99 0.42

K neighbors classifier 0.99 0.69 0.99 0.78 0.99 0.75

Logistic regression classifier0.97 0.71 0.95 0.78 0.99 0.75

Support vector classifier 0.99 0.70 0.99 0.82 0.99 0.73

Ada Boost classifier 0.84 0.62 0.98 0.75 0.76 0.23

Random forest classifier 0.99 0.67 0.99 0.79 0.99 0.55

Multilayer perceptron 0.99 0.70 0.99 0.81 0.99 0.73

Best NN model 0.98 0.73 0.99 0.81 0.99 0.73

UNSW-NBNaive Bayes classifier 0.64 0.56 0.80 0.72 0.60 0.59

Decision tree classifier 0.80 0.32 0.94 0.70 0.78 0.22

K neighbors classifier 0.76 0.70 0.93 0.83 0.74 0.74

Logistic regression classifier0.75 0.62 0.93 0.78 0.73 0.53

Support vector classifier 0.78 0.53 0.93 0.80 0.77 0.73

Ada Boost classifier 0.59 0.50 0.94 0.77 0.59 0.12

Random forest classifier 0.81 0.43 0.95 0.76 0.79 0.22

Multilayer perceptron 0.79 0.71 0.94 0.81 0.78 0.67

Best NN model 0.74 0.71 0.94 0.86 0.78 0.79

CIC-IDS Naive Bayes classifier 0.69 0.63 0.65 0.64 0.81 0.43

Decision tree classifier 0.99 0.15 0.99 0.30 0.99 0.10

K neighbors classifier 0.99 0.73 0.99 0.73 0.99 0.91

Logistic regression classifier0.94 0.88 0.95 0.90 0.98 0.94

Support vector classifier 0.96 0.72 0.97 0.67 0.99 0.86

Ada Boost classifier 0.65 0.35 0.99 0.53 0.50 0.50

Random forest classifier 0.99 0.30 0.99 0.32 0.99 0.45

Multilayer perceptron 0.98 0.87 0.99 0.91 0.99 0.91

Best NN model 0.96 0.88 0.97 0.92 0.99 0.95

Classification of Attack Types (Level 2: Multi-class Classification).
After applying a binary classification to detect abnormal connections. We imple-
ment a multi-class classification approach on the ‘attack’ class, to obtain more
details on the type of attack. All the well known machine learning approaches
are implemented and compared in this way. The results are noted in Table 2,
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columns of hierarchical classification (level2). We can imagine a third level, if we
have subclasses in an attack class.

4.5 Discussion

From these results, we note that the proposed hierarchical approach has consid-
erably improved the effectiveness of the classical classification approach on all
the benchmarks studied.

Fig. 2. Classification methods comparison on KDD Dataset

For instance, on the KDD99 dataset, the proposed hierarchical classification
approach surpassed the traditional multi-class approach. Like demonstrated on
Fig. 2. While the best approach obtained an accuracy of 53% in a multi-class
classification, the proposed approach allows to detect an abnormal connection
with a rate of 84%, and to predict the attack type with a success rate of 61%.

Also on the NSLKDD dataset, the proposed hierarchical classification app-
roach surpassed the traditional multi-class approach. We can note on Fig. 3 that,
while the best approach obtained an accuracy of 73% in a multi-class classifi-
cation, the proposed approach allows to detect an abnormal connection with a
rate of 82%, and to predict the attack type with a success rate of 75%.

In Fig. 4, we note that the proposed approach of hierarchical classification
has increased the accuracy rate. While, the best approach obtained an accuracy
of 71% in a multi-class classification, the proposed approach allows to detect an
abnormal connection with a rate of 86%, and to predict the attack type with a
success rate of 79%.

We valid our hypothesis also on the CIC-IDS 2017 dataset. In Fig. 5, we note
that the proposed approach of hierarchical classification has increased the accu-
racy rate. While, the best approach obtained an accuracy of 88% in a multi-class
classification, the proposed approach allows to detect an abnormal connection
with a rate of 92%, and to predict the attack type with a success rate of 95%.



Towards a Hierarchical Deep Learning Approach for Intrusion Detection 25

Fig. 3. Classification methods comparison on NSLKDD Dataset

Fig. 4. Classification methods comparison on UNSW15 Dataset

Fig. 5. Classification methods comparison on CIC IDS 2017 Dataset
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According to the results of our comparative study, in general we can validate
the hypothesis that to achieve effective intrusion detection, we must start with
a binary classification (attack/normal) using our best neural network model,
followed by the application of the KNN algorithm or the best neural network
model to find out what type of attack is involved.

5 Conclusion

The study presented here leads us to make two conclusions. It appears first that
the learning model best suited to the intrusion detection problem is that based
on convolutional neural networks. Moreover, by comparing different learning
strategies, the approach based on a hierarchical detection of the attacks (start-
ing with a first level of binary classification discriminating only the compliant
traffic of the nonconforming traffic) presents the best performances, well in front
of the methods of multi-label classification. The system thus obtained has an
intrusion detection rate of 95%. These results allow us to consider the imple-
mentation of a real-time intrusion detection system based on our CNN model
and binary classification. This will require larger datasets and more powerful
training infrastructure solutions to further improve the detection rate. Finally,
one of the challenges of intrusion detection remains zero-day attack detection. It
turns out that the method used to train our neural network gives him the ability
to identify as invalid data he has never met during his training. The next task
will be to develop this capacity and especially to measure its effectiveness.
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Abstract. The recent development in industry automation and con-
nected devices made a huge demand for network resources. Traditional
networks are becoming less effective to handle this large number of traf-
fic generated by these technologies. At the same time, Software defined
networking (SDN) introduced a programmable and scalable networking
solution that enables Machine Learning (ML) applications to automate
networks. Issues with traditional methods to classify network traffic and
allocate resources can be solved by this SDN solution. Network data gath-
ered by the SDN controller will allow data analytics methods to analyze
and apply machine learning models to customize the network manage-
ment. This paper has focused on analyzing network data and implement
a network traffic classification solution using machine learning and inte-
grate the model in software-defined networking platform.

Keywords: Machine learning · Classification · Network traffic ·
Software defined networking

1 Introduction

Recent advances in software defined networking and machine learning techniques
have created a new era of network management. This new concept has com-
bined network intelligence and network programmability to create autonomous
high performing networking, which will expand 5G (5th Generation) capabil-
ities. With the recent improvements in Internet of Things (IoT), cloud com-
puting self-driving vehicles, etc., the demand for bandwidth consumption has
increased exponentially and pushed network operators the ability to search for
new concepts of network management.

Software defined networks provide a programmable, scalable and highly avail-
able network solution. This solution separates the control plane and the data
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plane from the network devices and logically centralized the controlling compo-
nent. The centralized controller has a global view of the network and enables the
network operator to program their policies rather than depending on network
equipment vendors.

For the past decades, Artificial Intelligence (AI) and Machine Learning (ML)
concepts were developed for different use cases with different approaches. The
latest concept of AI/ML technologies are developed based on statistics. Inte-
grating these tools into the networking industry will enable network operators
to implement self-configuring, self-healing, and self-optimizing networks. We can
name this type of network as Knowledge Defined Networks (KDN) as mentioned
in [1].

This new concept of intelligent and programmable network is an end-to-
end network management solution. It is important to manage existing network
resources efficiently. Even the number of users connected to the network is
increasing, not all users required the same amount of network resources. Identi-
fying each user’s demand and behavior on the network will enable the operator
to manage network resources much more efficiently.

In a network, there are two basic types of traffic flows: elephant flows and
mice flows. Elephant flows are referred to as heavy traffic flows and mice flows are
referred to as light traffic flows. And typically the resource allocation process for
these flows are standard. This approach of resource allocation is a waste of net-
work resources and allocating the same amount of resources for both flows is not
an optimum solution. There are currently few methods to identify network traffic
but the recent technological advancements made these concepts inefficient. Port-
based classification is one of the methods that classifies network traffic based on
port numbers extracted from packet header, which allow to understanding the
traffic behavior and the type of applications having been used. But nowadays,
modern applications use dynamic ports or tunneling, which makes this method
ineffective. In Payload-based classification method, network traffic is classifying
by inspecting packet payload. But this method requires a high level of computing
power and storage, which will increase the cost. Another issue with this method
is the privacy laws and data encryption.

When it comes to network traffic classification, ML algorithms depend on a
large number of network features. And software defined networking will enable
ML algorithms to control the network and can become automatic resource alloca-
tion process. Therefore, in this study, ML-based traffic classification solution was
introduced for SDN. The proposed architecture uses existing network statistics
and an offline process for understanding network traffic patterns with a cluster-
ing algorithm. For the online process, a classification model is used to classify
incoming network traffic in real-time.

The rest of the paper will be presented as follows: Sect. 2 discusses on related
work of similar researches on network traffic classification. Section 3 describes
the proposed system architecture. Section 4 presents the experimental result of
the system and Sect. 5 concludes this paper.
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2 Related Work

In the paper [2], the authors have used the ML algorithm for classifying network
traffic by application. They have trained few ML models using labeled data by
applications such as Post Office Protocol 3 (POP3), Skype, Torrent, Domain
Name System (DNS), Telnet were recognized by the classifier. For this experi-
ment, they have tested six different classification models and compared accuracy.
AdaBoost, C4.5, Random Forest, Multi-layer Perceptron (MLP), Radial Biased
Function (RBF), Support Vector Machine (SVM) are the classifiers used for this
research. They have concluded that Random Forest and C4.5 classifiers give
better accuracy than the other models.

Authors of [3] have experimented with mobile network traffic classifica-
tion ML models. In their project, there are three main objectives. Comparing
the accuracy of three classification models [SVM, Multi-Layer Perceptron with
Weight Decay (MLPWD), MLP]. Analyzing the effect on accuracy by varying
the size of the sliding window. Comparing the accuracy of predictions of the
models for unidimensional /multi-dimensional datasets. In their project, they
have selected 24 features and selected one of the feature as the target to predict.
In terms of accuracy, the paper has concluded that in multi-dimensional data
sets SVM performs better and in unidimensional data sets, the MLPWD model
performs better.

In the paper [4] they have experimented with the data collection and traf-
fic classification process in software defined networks. In their work, they have
developed a network application to collect OpenFlow data in a controlled envi-
ronment. Only Transmission Control Protocol (TCP) traffic was considered for
this project. Several packets of information were gathered using different meth-
ods. For example, Packet IN messages were used to extract source/destination
IP addresses and port addresses. First five packet sizes and timestamps were
collected from the controller since in this experiment the next five packets after
the initial handshake between server and client flow through the controller. Flow
duration was collected by subtracting the timestamp of the initial packet and
the time stamp of the message received by the controller regarding the removal
of the flow entry. To avoid the high variance of the data set, they have used
a scaling process named standard score. They have also mentioned that highly
correlated features are not contributing much to the algorithm but increase the
complexity in computation. They have used the Principle Component Analy-
sis (PCA) algorithm to remove these high correlated factors. Random Forest,
Stochastic Gradient Boost, Extreme Gradient Boost are the classifiers used in
their research. The results were compared by evaluating the accuracy of each
label.

In the paper [5] discussed ML-based network traffic classification. Their moti-
vation for this project is to optimize resource allocation and network manage-
ment using ML based solution. According to the paper, there are four levels of
resource allocation, which are spectrum level, network level, infrastructure level,
and flow level. In their paper, they have tested classifying network traffic by
applications and they have used support vector machine and Kmeans clustering
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algorithm. The data set contains 248 features and manually labeled. The traffic
labels were www, mail, bulk, service, p2p, database, multimedia, attack, inter-
active and games. In the SVM model, they have used four kernels namely linear,
polynomial, RBF and sigmoid. And evaluated its performance using the fol-
lowing parameters: accuracy, recall, precision. Considering overall accuracy, the
RBF kernel of SVM outperforms other kernels. They have also tested the clas-
sification accuracy by varying the number of features. And accuracy is higher
with a maximum 13 selected features. In the Kmeans clustering algorithm, they
have used the unlabeled data with a predetermined number of clusters. They
have compared results with supervised and unsupervised models and according
to the paper, SVM has the highest precision and overall accuracy.

Authors of [6] have discussed and concepts of SDN, Network Function Virtu-
alization(NFV), Machine learning, and big data driven network slicing for 5G.
In their work, they have proposed an architecture to classify network traffic and
used those decisions for network slicing. According to the paper, with the expo-
nentially increasing number of applications entering the network is impossible
to classify traffic by a single classification model. So they have used the Kmean
clustering algorithm to cop this issue. By using this unsupervised algorithm,
they have grouped the data set and labeled them. They have set the number
of clusters k=3 associating three bandwidths. With this grouping and labeling,
they have trained five classification models: Navie Bayes, SVM, Neural networks,
Tree ensemble, Random Forest. And compared its accuracies. The results show
that Tree ensemble and Random forest perform with the same accuracy. Depend
on the ML output, bandwidth was assigned in the SDN network applications.
They have ed this system by streaming YouTube a video before the classification
process and check the quality of the video. And compared it with the quality of
the video after the classification and bandwidth allocation.

In this study, the number of features was selected based on keeping the
compatibility with the implementation (SDN controller) and avoid complexity
and heavy computations in the network application. An unsupervised learning
algorithm was used to identify the optimum number of network traffic classes
rather than selecting a predefined number of network traffic classes, which makes
this method a more customized network traffic classification solution for network
operators.

3 Proposed Solution

This proposed solution was divided into two sections. One of the sections was to
train the machine learning algorithm and the other section was to create a net-
work experiment to run the trained ML model on an SDN platform as a proof of
concept. In the first section, a related dataset was selected, cleaned and prepared
for ML models. An unsupervised ML algorithm is applied to cluster and label
the dataset then we used that dataset to trained multiple classification models.
In the second section, the SDN bed was implemented, a network application
containing the trained ML model was created and deployed to the network for
real-time classification.
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3.1 ML Model Training

For this paper, “IP Network Traffic Flows, Labeled with 75 Apps” dataset from
Kaggle [7] database was used. This dataset was a perfect match for our objectives
and satisfy all the three main components of a good dataset, which are real-
world, substantial and diverse. This dataset was created by collecting network
data from Universidad Del Cauca, Popayán, Colombia using multiple packet
capturing tools and data extracting tools. This dataset is consisting of 3,577,296
instances and 87 features and originally designed for application classification.
But for this work, only a fraction of this dataset is needed. Each row represents
a traffic flow from a source to a destination and each column represents features
of the traffic data.

(1) Data Preparation. As mentioned above only a few features were used for
this research. The most important factors that concerned when selecting features
were relatability to the research objective and easily accessed by the controller
without using tools or other network applications to reduce high computations.
Selected features as follows: Source and destination MAC addresses and port
addresses, flow duration, flow byte count, flow packet count, and average packet
size. In the data cleaning process, several operations need to be done before it
is ready for machine learning model training. If there are duplicate instances in
the dataset, it will cause bias in the machine learning algorithm. So to avoid
the biasing, those duplicates need to be identified and remove from the dataset.
Moreover, some ML models cannot handle missing data entries. In that case,
rows with missing data have to remove from the dataset or fill them with the
values close to the mean of that feature. In this dataset, there are several features
contains different data types. But some ML models can only work with numeric
values. To use those data types for the ML model training, it is necessary to
convert or reassign numeric values to represent its correlations with other fea-
tures. Next, Min/Max normalization was used to normalize features with high
variance.

(2) Data Clustering. Even though the data was clean enough to train ML
models, data was not labeled. Classification process is a supervised learning
algorithm that need labeled data for the training process. Understanding the
traffic patterns in the dataset is a complicated and time-consuming task. Since
the dataset is very large, it is very hard to label traffic flows manually. To avoid
manual labeling, an unsupervised learning model can be used. By using an unsu-
pervised learning algorithm, network traffic data will be clustered based on all
the possible correlations of network traffic data. For this process, Kmeans unsu-
pervised learning model was used as shown in Fig. 1. It is a high accuracy, fast
learning model ideal for large datasets. The number of clusters will be selected
using the Davies-Bouldin algorithm [8]. This method is calculating distances
of clusters by using Euclidean distances and lower the score better the cluster
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in terms of similarity ratio of within-cluster and between cluster distances. By
selecting k value with the lowest Davies-Bouldin score, Dataset was clustered
and labeled.

Fig. 1. Labeling dataset using Kmeans clustering algorithm

(3) Classification. Next, labeled data was used to train classification models.
There are multiple classification models available and each and every model clas-
sify data with different mathematical models. Therefore, results of each model
could be different from each other. Some models could perform better and some
models perform poorly. In other word, it is better to train and test multiple clas-
sification models to find out which model fit better for the project. The tested
models are briefly described below.

– Support Vector Machine (SVM) algorithm is a supervised learning algo-
rithm that uses labeled data to train the model. SVM model will calculate
decision boundaries between labeled data also known as hyper planes. And
points near these hyper-planes are called extreme points. The algorithm will
optimize these decision boundaries by setting up margins that separate hyper-
planes. Several kernels that uses to optimize these decision boundaries. Lin-
ear, RBF, Polynomial and Sigmoid are the most commonly used kernels.
Real-world data can be one dimensional or multidimensional. And these data
sets are not always linear separable. The linear kernel can handle datasets
that can linear separable and for nonlinear datasets, can use other kernels
that can transform nonlinear datasets into linear datasets and classify. SVM
is effective in multi-dimensional datasets and it is a memory-efficient model.

– Decision Tree is another supervised learning model that classifies data based
on information gains by calculating the entropy of the dataset. It is a graphical
representation of all the conditions and decisions of the dataset. The root node
will be calculated using entropy with the highest information gain among the
dataset. This process will continue to split branches and complete the tree.
Each internal node is a test on attribute and branches represent the outcome.
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Leaf represents a class label. The decision tree can use numeric and categorical
data for the classification problems. It also supports nonlinear relationships
between features.

– Random Forest is one of the powerful supervised learning algorithm, which
can perform both regression and classification problems. This is a combination
of multiple decision tree algorithms and higher the number of trees, higher the
accuracy. It works as same as the decision tree, which based on information
gain. In classification, each decision tree will classify the same problem and
the overall decision will be calculated by considering the majority vote of the
results. The most important advantage of this model is that it can handle
missing values and able to handle large datasets.

– Kth Nearest Neighbor or KNN is an instance based supervised learning
algorithm. In the KNN model, the value k represents the number of neighbors
needs to consider for the classification. The model will check the labels of those
neighbors and select the label of the majority. The value k should be an odd
number to avoid drawing the decision. It is a robust model that can work with
noisy data and perform better if the training data set is large. However, it is
not performing well in multidimensional datasets and could reduce efficiency,
accuracy, etc.

3.2 Network Application Development

For the simulation testbed, a simple virtual network was created on Mininet [9]
network emulator with five hosts, one OpenFlow [10] enabled open vSwitch and
one SDN controller (RYU) [11]. For the simplicity of this research, tree topology
was used as shown in Fig. 2. There are two other network applications that need
to be installed, which are simple switch and ofctlrest. These applications will
allow the controller to switch packets within the network and enable REST API
calls. This switching application manages to install flow rules on the flow tables
based on source, destination and flow information. These flow tables are the
source of information for the classification application (Table 1).

Table 1. System configurations

System OS Ubuntu(18.10)

SDN controller RYU(4.30)

Switches Open vSwitch(2.11)

Network emulator Mininet(2.2.2)

This network traffic classification application is the program that contains the
trained machine learning model. It is a python based program and communicates
with the SDN controller via REST API calls. It is also responsible for extracting
data from the controller, cleans, normalize and feed the ML model. The model
will classify traffic flows each time when the program runs.
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Fig. 2. SDN testing platform

In this paper, traffic has to be generated artificially. To generate traffic, the
tool D-ITG [12] as been used. In this tool, various parameters can be modified to
mimic real-world network traffic. Bandwidth, window size, packet size are some
of them. There are also CBR (Constant Bit Rate) and VBR (Variable Bit Rate)
options available within this tool. For this experiment, multiple traffic flows were
generated between hosts to evaluate the machine learning output and compare
it with its traffic flow characteristics.

4 Performance Evaluation

4.1 Kmeans Clustering

In the Kmeans clustering results, the number of clusters (k value) will be varied
from 2 to 15 and calculate the Davies-Bouldin score for each k value. From
Fig. 3, k= 4 has the lowest Davies-Bouldin score, which reflects that there are
four types of traffic behaviors that can be identified from this dataset.

The four types of network traffic behaviors recognized by the Kmeans algo-
rithm were analyzed for understanding their characteristics. However, they are
not clearly specific to typical traffic classes that we encounter on the internet.
Therefore, in order to better define each cluster, more features need to be added
to refine the clusters. This needs to be done in the future work. Nevertheless,
for this research, ranges from features of each cluster are sufficient to continue
with the classification process.
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Fig. 3. k value vs Davies Bouldin Score

4.2 Network Traffic Classification

Using the labeled dataset from the above clustering algorithm, five supervised
learning models were trained and evaluated. The labeled dataset was divided
into two parts as training dataset and testing dataset with 70% to 30% ratio.
All the models were trained using the training dataset separately and as shown
in Table 2, model accuracies were calculated using the testing dataset. All the
classification models were further analyzed using confusion matrices to checking
the cluster accuracies and Fig. 4 shows the results for each model. From the
confusion matrices, it is clear that SVM linear model has the most accurate
clusters. Decision Tree and Random Forest models have failed to classify cluster
No.2 correctly even though those have classified other clusters correctly. With
the highest overall accuracies and high cluster accuracies, SVM linear model was
selected for the network application.

Table 2. Classification model accuracies

Model Accuracy

SVM (Linear ) 96.37%

SVM (RBF) 70.40%

Decition Tree 95.76%

Random Forest 94.92%

KNN 71.47%
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(a) Support vector machine (Linear) (b) Support vector machine (RBF)

(c) Decision tree (d) Random forest

(e) Kth nearest neighbor

Fig. 4. Confusion matrices of classification models

4.3 Network Performance

The trained classification model was integrated with the network application
and evaluated the real-time network traffic classification by generating network
traffic in the testbed using D-ITG tool. For this evaluation, 50 traffic flows
were generated considering cluster characteristics identified by the clustering
algorithm. Generated traffic were compared with its characteristics and classi-
fication outputs. Figure 5 shows the percentages of accurate classifications by
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cluster number. These results shows that even though the network application
can classify three clusters with high accuracy (100%), it has some confusions to
classify cluster No.2 (96.50%) as recognized before by the confusion matrix.

Fig. 5. Accuracy of clusters

5 Conclusion

This work has been carried out as a proof of concept while combining machine
learning with software defined networking, in particular, for network traffic clas-
sification. It can be seen that traffic classification using machine learning algo-
rithms provides good results within SDN environment. This is possible thanks
to the ability of collecting information in this type of architecture. It is clear
that this is a promising solution. In the near future, these high performing,
intelligence-based networking concepts will enhance or even replace conventional
networking management.

For the future work, several issues have to be addressed. First, the proposition
was tested only on a simple topology and mainly focused on ML model accuracy.
But in the real world, the networks are much more complicated and accuracy is
not enough. There are other factors such as scalability, availability, etc., which
directly effect the performance of a real-world network. Furthermore, the four
traffic pattern detected by the clustering algorithm needs to be refined while
keeping complexity reasonable when increasing number of features. This result is
also context-dependent because user behavior patterns are different from network
to another. For example, the number of clusters in a data center dataset would
be different from the number of clusters in a sensor network dataset. Finally, for
the classification, only five models were trained and compared. However, there
might be another classification model that can be a better fit for this type of
classification problem.
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Abstract. Intrusion and anomaly detection are particularly important in the
time of increased vulnerability in computer networks and communication.
Therefore, this research aims to detect network intrusion with the highest
accuracy and fastest time. To achieve this, nine supervised machine learning
algorithms were first applied to the UNSW-NB15 dataset for network anomaly
detection. In addition, different attacks are investigated with different mitigation
techniques that help determine the types of attacks. Once detection was done,
the feature set was reduced according to existing research work to increase the
speed of the model without compromising accuracy. Furthermore, seven
supervised machine learning algorithms were also applied to the newly released
BoT-IoT dataset with around three million network flows. The results show that
the Random Forest is the best in terms of accuracy (97.9121%) and Naïve Bayes
the fastest algorithm with 0.69 s for the UNSW-NB15 dataset. C4.5 is the most
accurate one (87.66%), with all the features considered to identify the types of
anomalies. For BoT-IoT, six of the seven algorithms have a close to 100%
detection rate, except Naïve Bayes.

Keywords: Network intrusion detection � Supervised learning � UNSW-NB15
dataset � BoT-IoT dataset

1 Introduction

Due to the massive growth of computer networks and its many applications, the
number of network flows has increased tremendously. The considerable large number
of traffic flows leads to a massive amount of data, which eventually leads to the
vulnerability of the data and network as a whole. One of the many challenges of
cybersecurity research is to identify intrusion/anomaly in the traffic flow. A network
Intrusion Detection System (IDS) is one of the solutions to detect such attacks before
they compromise the network. An IDS monitors the normal traffic flows and identifies
its characteristics or patterns. If a new flow does not follow the same characteristics, it
might be an anomaly. Hence, an IDS may help identify even detect unknown attacks.
Note that this paper uses intrusion and anomaly interchangeably.
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This research is an experimental investigation of nine machine learning algorithms
on the dataset UNSW-NB15 (released in November 2015) [1] and seven machine
algorithms on the recently released BoT-IoT dataset (released in November 2018) [2].
This research intends to discuss the following questions:

1. Network Intrusion Detection: How effective is it to detect network intrusion based
on the traffic flow features present in datasets using different machine learning
techniques?

2. Types of Intrusion Classification: Different cyberattacks can be stopped by different
mitigation techniques. Hence classification of attack is as important as the detection
of attacks. How effective can the classification of the types of attacks be from
different features of network traffic flows present in datasets?

3. Accuracy of models: Which machine learning model has the highest accuracy for
classifying the network anomalies for the selected datasets?

4. Efficiency of models: Which machine learning model is efficient for detecting net-
work intrusion without compromising on accuracy? The earlier an attack is
detected, the less harm it can generate on the network. Furthermore, by selecting a
fewer number of features from the complete dataset, we can reduce the computation
time a machine learning model takes to build.

The main contributions of the paper are: Firstly, comparing the accuracy and the
time to build in the evaluation of network intrusion detection of the UNSW-NB15
dataset using nine machine learning techniques. Secondly, using the same nine
machine learning techniques and nine different features selections, we compared and
evaluated the performance of the various methods to identify the types of network
intrusions in the UNSW-NB15 dataset. Thirdly, we analysed and evaluated the accu-
racy of and time to build seven machine learning techniques on the newly released
BoT-IoT dataset. The premise upon which this research is based is to synthesis the
previous research works on the UNSW-NB15 dataset [1–9]. Some (if not all) of related
research works only used one or two machine learning algorithms to analyse the
dataset, and in some cases do not even identify the different anomalies.

The rest of this paper is structured as follows. Section 2 presents background
information about different supervised learning algorithms. Section 3 gives a literature
review of previous research works and the different feature selection methods used in
this paper. Section 4 presents the two datasets used in this research. Section 5 describes
the methodology and the three sets of experiments. Section 6 provides the results and
discussion and the conclusion is given in Sect. 7.

2 Background

2.1 Supervised Learning Algorithms

Machine learning is the study of algorithms that can learn complex relationships or
patterns from empirical data and make accurate decisions [10]. Machine learning can
be classified into supervised learning, semi-supervised learning, and unsupervised
learning. Supervised learning deduces a functional relationship from training data that
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generalizes well to the whole dataset. In contrast, unsupervised learning has no training
dataset and the goal is to discover relationships between samples or reveal the latent
variables behind the observations [11]. Semi-supervised learning falls between
supervised and unsupervised learning by utilizing both labeled and unlabeled data
during the training phase [10]. Among the three categories of machine learning,
supervised learning is the best fit to solve the prediction problem in the auto-scaling
area [11]. Therefore, this research focuses on supervised learning.

After conducting an in-depth search and review of research papers that have pre-
viously used the UNSW NB15 dataset, we selected nine machine learning algorithms
that appear frequently in different papers [1, 3, 7], and [8].

Random Tree is an algorithm with a random number of features at each node, and it
is used for classification [12]. This algorithm is very fast, but it suffers from overfitting.
To overcome overfitting, Random Forest is used with this algorithm. We used the
WEKA [13] implementation of this algorithm in which the Random Tree classifier
constructs a tree that considers K random chosen attributes at each tree node. There is
no pruning and has an option to estimate classifier probabilities (or target mean in the
case of regression) based on a hold-out set (i.e. back fitting). We set the seed to be 1,
that is, the random number seed used for selecting attributes.

Random Forest is an ensemble learning algorithm which can be applied on clas-
sification as well as a regression problem [12]. In this technique, lots of decision trees
are produced at training time. For a regression problem, the mean is considered, and for
the classification problem, the mode is used. Random Forest was designed to combat
the overfitting problem in the random tree. Random Forest is a classifier for con-
structing a “forest” of random trees.

Bayesian Networks (WEKA Bayes Net) [13] - These networks show the proba-
bilistic relations between different features with the target attribute (one which is to be
classified) [12]. In this research, this algorithm is used to calculate the probability of
different features with an impact on the anomaly. The dual nature of a Bayesian
network makes learning a Bayesian network a two stage processes: first learn a network
structure, then learn the probability tables. All Bayes network algorithms implemented
in Weka assume that all variables are discrete finite and no instances have missing
value [14]. In general, Bayes Network learning uses various search algorithms and
quality measures [13]. In our case, we used the K2 search algorithm and the Sim-
pleEstimator for the estimate function [13].

Naive Bayes - These are traditional classifiers and they are based on the Bayes
theorem of independent relation between the features [12]. Although it is an old
technique, this algorithm is still highly scalable and it can be used to build the fastest
model for large dataset such as UNSW NB15. These classifiers are family of simple
probabilistic classifiers with strong (naïve) independence. The assumption here is that
the features of measurement are independent of each other.

k-Nearest Neighbours (k-NN) - k-NN is an algorithm which can be used for both
regression and classification [12]. The model consists of training k closest samples in
the feature space. In classification, the class having the maximum number of k nearest
neighbours is chosen. Weights are assigned to nearer neighbours that contribute more
to the result compared to the ones that are farther away. It is an instance-based learning
algorithm where all the calculations are deferred until the final regression/classification.
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Hence it is known as a lazy algorithm. This algorithm is called “IBk” in Weka [13]. It
selects an appropriate value of k based on cross-validation and can also do distance
weighting.

C4.5 - It is a decision tree-based classifier [12]. It is an extension of the classical
ID3 algorithm from the same author - Ross Quinlan [15]. It uses information entropy
and gain for decision making. On the Weka platform [13], it is called J.48, which is an
implementation of C4.5 in Java. J.48 generates a pruned (or unpruned) C4.5 decision
tree. The seed in this classifier is used for randomizing the data when reduced error
pruning is used.

REPT - Reduced Error Pruning Tree (REPT) is a fast decision tree based on the
C4.5 algorithm and it can produce classification (for discrete outcome) or regression
trees (for continuous outcome). It builds a regression/decision tree using information
gain/variance and prunes it using reduced-error pruning with back-fitting) [12, 13].
Missing values are replaced by breaking down the corresponding instances.

RIPPER - Repeated incremental pruning to produce error reduction (RIPPER) is an
inductive rule-based classifier which is the optimized version of incremental reduced
error pruning [12]. It uses incremental reduced-error pruning and a somewhat com-
plicated global optimization step. It makes rules for all features. Depending on the
satisfaction of those rules, a network flow is classified as normal or an anomaly. On the
Weka platform, it is called Jrip [13]. Generally, the Weka Jrip implements a propo-
sitional rule learner.

PART (Partial Decision Tree) - Here rules are made according to the features of the
past observations and classification of whether the data is an anomaly or normal is done
according to the rules [12]. The Weka [13] implementation builds a partial C4.5
decision tree in each iteration and makes the “best” leaf into a rule.

These nine algorithms are either tree-based or partial tree or forest (a collection of
trees) or networks (a form of tree). We have set the “seed” to 1 and the batch size to
100 where needed.

3 Literature Review

A number of research efforts [1–8, 12] have been conducted for network anomaly or
intrusion detection using the UNSW-NB15 dataset. These approaches have certain
limitations. Some research papers considered one or two machine learning algorithms.
For instance, only the research works in [4] and [12] use more than one machine
learning technique on the UNSW-NB15 dataset. Furthermore, the following research
works: [4–6] and [12] do not identify the types of attacks. They only detect if a flow is
normal or an anomaly. In addition, the research work in [12] does not adopt a feature
selection method. Research works in [1–3] and [7, 8] do classify the attack types, but
they only investigate a single machine learning technique.

In this paper, we investigate the detection, the types of attacks, and make a com-
parison between the effectiveness of nine different machine learning techniques as well
as the impact of different feature selection techniques on those machine learning
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algorithms. Our research, like [1] and [5], also does a benchmark of time taken for
various machine learning techniques when applied together with specific feature
selection methods.

The authors of [1] divided their network intrusion detectionmodel into 3 stages. In the
first stage, they applied Correlation-based feature selection on all the 45 features (as
shown in Table 1) along with the genetic search. They used a statistical filter-based
feature selection method on the complete dataset. Once they obtained the best features
from stage 1, they applied a wrapper-based filter on those selected features only. The
machine learning algorithm used in the wrapper-based filter was Random Forest. At the
end of stage 2, the authors identified five best features, namely, sbytes, tcprtt, synack,
dmean and response_body_len. In stage 3, they used the Random Forest classifier to
detect the anomaly. They were able to improve the accuracy of the model from 94.70% to
99.63%. One problem in this approach is that only 5 out of 45 features were finally
considered.

The authors of [2] were the original authors of UNSW-NB15. Their method for
feature selection has three parts: feature conversion, feature reduction and feature

Table 1. Features for UNSW-NB15

Feature number Feature name Feature number Feature name

1 id 23 dtcpb
2 dur 24 dwin
3 proto 25 tcprtt
4 service 26 synack
5 state 27 ackdat
6 spkts 28 Smean
7 dpkts 29 dmean
8 sbytes 30 trans_depth
9 dbytes 31 response_body_len
10 rate 32 ct_srv_src
11 sttl 33 ct_state_ttl
12 dttl 34 ct_dst_ltm
13 sload 35 ct_dst_dport_ltm
14 dload 36 ct_dst_sport_ltm
15 sloss 37 ct_dst_src_ltm
16 dloss 38 is_ftp_login
17 sinpkt 39 ct_ftp_cmd
18 dinpkt 40 ct_flw_http_mthd
19 sjit 41 ct_srv_ltm
20 djit 42 ct_srv_dst
21 swin 43 is_sms_ips_ports
22 stcpb 44 attack_cat

45 label
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normalization. After all the three steps, they selected the best features which are Dttl,
synack, swin, dwin, ct_state_ttl, ct_src_Itm, ct_srv_dst, Sttl, et_dst_sport_Itm, and Djit.
Association rule mining was also used to find features which are not correlated to each
other, but highly correlated to the target attribute that the authors wanted to predict.
They ranked all the 43 features (excluding id). From the ranking, they selected the top
25% (i.e., top 11 out of 43) features. Furthermore, Independent Component Analysis
(ICA) was used to find the best features in [7].

The authors of [3] used the Weka tool [14] to select the optimal features. They used
CfsSubsetEval (attribute evaluator) + GreedyStepwise method and InfoGainAttibuteE-
val (attribute evaluator) + Ranker method. The classifier Random Forest was used to
evaluate the accuracy. The combination of features which generated the highest accu-
racy was selected. The five selected features are service, sbytes, sttl, smean,
ct_dst_sport_ltm. Their test accuracy was around 83% for anomaly type classification.

The authors of [5] used a pure statistical filter-based subset evaluation (FBSE)
method of correlation-based feature selection to detect Denial of Services (DoS) at-
tacks. The final features selected are F7, F10, F11, F12, F18 and F32 (see Table 1).
They used Artificial Neural Network to detect the attacks and obtained an accuracy of
81.34%. Their false alarm rate was quite high with 21.13%.

The authors of [6] trained a deep learning model on the entire dataset for 10-fold
cross-validation. The most important features were then selected using the Gedeon
method [9]. Gedeon method selects features which are unique from one another even if
the information they provide is minor. They discarded the features which generate huge
amount of redundant information. The accuracy obtained from the proposed model was
98.99% with a low false alarm rate of 0.56%.

The authors of [8] used Genetic Algorithm to find the best features. They used
Support Vector Machine (SVM) to check the accuracy of the selected features.

4 Datasets

Two datasets have been selected for our experimental validation. They are UNSW-
NB15 and BoT-IoT, which are described in the following subsections.

4.1 UNSW-NB15

This dataset was created by Moustafa and Slay [10]. The UNSW-NB15 dataset is a
mixture of real normal traffic flow and synthetic attacks. The types of attacks and the
number of each attack in the testing dataset are shown in Fig. 1. The testing dataset has
82,332 records (37,000 normal and 45,332 anomalies) and 45 attributes or features (see
Table 1).
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4.2 The BoT-IoT Dataset

One of the original authors of UNSW-NB15 was also involved in creating the BoT-IoT
dataset [11], as depicted in Fig. 2, in the Cyber Range Lab of UNSW Canberra Cyber
Center. This dataset is a combination of standard and botnet traffic (hence the name).
Attack distribution in the training dataset is depicted in Fig. 2. The training dataset has
2,934,817 records. The features used for the experiments were the top 10 features [11]
selected by the creators of this dataset.

Fig. 1. Distribution of anomalies (attack types) in the UNSW-NB15 training dataset

Fig. 2. Distribution of anomalies (attack types) in BoT-IoT training dataset
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5 Methodology and Experiments

The specifications of the system environment for our experiments are shown in
Table 2. Weka [14] tool was used for detection (training and testing), and the RStudio
for data preprocessing with the R programming language. Microsoft Excel is used for
data visualization. Three different experiment sets were conducted, which are described
as follows.

Experiment set 1: This set of experiments is to detect if a network flow is normal or
an anomaly using supervised learning techniques. The nine machine learning
algorithms described above have been evaluated and compared for accuracy (%)
and the time taken to build the model (in seconds). The dataset used for this
experiment set is the UNSW-NB15 training dataset.
Experiment set 2: In this set of experiments, the type of network attacks is also
identified using the nine supervised learning algorithms for validation. Further,
eight different feature selection techniques and the complete dataset (making a total
of nine different feature sets) together with the nine different machine learning
algorithms making 81 different combinations of feature selection methods and
machine learning techniques to identify the types of attack. The dataset used is the
UNSW-NB15 training dataset.
Experiment set 3: The types of network attacks are identified using seven super-
vised machine learning algorithms on the ten best features pre-selected by the
authors of the BoT-IoT training dataset [11].

In addition, 10-fold cross-validation has been adopted [13] in our experiments. The
standard way of predicting the error rate of a learning technique given a single, fixed
sample of data is to use stratified 10-fold cross-validation. The dataset is divided
randomly into 10 parts in which the class is represented in approximately the same
proportions as the full dataset. Each part is held out in turn and the learning scheme
trained on the remaining nine-tenths; then its error rate is calculated on the holdout set.
In the end, the average of all the iterations is calculated. As all the values have been
tested at least once, this step helps in avoiding overfitting. Why 10? Previous extensive
works in the domain have shown that the number 10 is about the right number of folds
to get the best estimate of error.

Table 2. Hardware specifications

Processor Intel(R) Xeon(R) @ 2.50 GHz (2 processors)

RAM 32.0 GB
Operating System Windows 7 - 64 bit OS
Architecture Microarchitecture - Ivy Bridge, Multiprocessor (2 Processors)
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5.1 Experiment Set 1 - Supervised Learning on UNSW-NB15 to Detect
the Anomaly

Our first experiment-set used nine supervised learning algorithms on the UNSW-NB15
training dataset to detect the anomaly. The methodology in this experiment is that all
the attributes (i.e. features) are considered and all nine machine learning algorithms are
used to build anomaly detection models. The machine learning algorithms are Random
Forest, Random Tree, Bayes Network, Naive Bayes, k-NN, C4.5, Reduced Error
Pruning Tree, RIPPER and PART. The experimental results are presented in Table 3.

As presented in Table 3, in terms of accuracy, Random Forest is the most accurate
anomaly detection model with 97.91% closely followed by C4.5 (97.3194%), then
PART (97.3109). Naïve Bayes is the least accurate considering the nine algorithms.
Judging by the false positive rates and the precision (Table 3), there are little or no
significant statistical differences between the following algorithms in terms of accuracy
– Random Forest, Random Tree, C4.5, REPT, RIPPER, and PART. In terms of speed,
that is, time to build, Naive Bayes is the fastest model with 0.69 s although the least
accurate. Random Tree is equally fast with a build time of just 0.93 s and gives a high
accuracy of 96.10%. Table 4 shows the confusion matrix of the Random Forest.

Table 3. Experiment I results

Machine
learning
algorithms

Accuracy
(%)

False
positive rate
(%)

Precision
(%)

Recall
(%)

Time to build
the model (s)

Random Forest 97.9121 2 97.9 97.9 57.25
Random Tree 96.1036 4 96.1 96.1 0.93
Bayes Network 81.6961 17.2 82.7 81.7 4.93
Naive Bayes 76.1952 21.4 79.1 76.2 0.69
k-nearest
neighbours

93.4691 6.5 93.5 93.5 1.51

C4.5 97.3194 2.7 97.3 97.3 15.63
REPT 97.068 2.9 97.1 97.1 3.43
RIPPER 96.7582 3.2 96.8 96.8 185.36
PART 97.3109 2.7 97.3 97.3 53.69

Table 4. Confusion matrix of the Random Forest algorithm

Classified as
Normal Anomaly
36354 646 Normal
1073 44259 Anomaly
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The diagonal in green indicates the correct classification. There are total of 37,000
normal flows and 45,332 anomalies in the UNSW-NB15 training dataset. Out of
37,000 normal, 36,354 were classified normal (98.25%) correctly, but 646 observations
were classified anomaly incorrectly. Out of 45,332 anomalies, 1073 were classified
normal incorrectly, but 44,259 were classified anomaly (97.63%) correctly.

5.2 Experiment Set 2 - Supervised Learning on UNSW-NB15 to Detect
the Anomaly Type

Experiment set 2 was conducted to identify not only if a network traffic flow is normal
or an anomaly, but also the types of anomaly. The objective is to support an appropriate
action to mitigate it. The methodology for Experiment-set 2 is depicted in Fig. 3.

This experiment set 2 has nine sub-experiments with different feature sets. The
experiments are based on methods previously published in the literature [1–8]. The
features for the nine sub-experiments are described as follows

1. All the features of the UNSW-NB15 training dataset are considered.
2. FBSE+WBSE - Features selected by FBSE and wrapper WBSE. This experiment

uses features suggested in [1].
3. PCA + Feature Normalization - Features selected by principal component anal-

ysis (PCA) and feature normalization are considered. This experiment is based on
the features selected by [2].

4. Weka Feature Selection - Optimal features of UNSW-NB15 were selected using
the Weka tool. This method was proposed in [3].

5. Association Rule Mining - Feature selection based on association rule mining. This
experiment is based on work done in [4].

Fig. 3. Experiment 2 methodology
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6. Correlation based Feature Selection - Pure statistical feature selection method
based on correlation was used to select features. This experiment is based on [5],
[16].

7. Deep Learning with 10-fold CV - The authors of [6] selected the best features
which generated the highest accuracy for their deep learning model after 10-fold
cross-validation [17–19]. These features were used in this sub-experiment.

8. ICA - Features used in this experiment were based on ICA proposed in [7].
9. Genetic Algorithm with SVM - Feature selection was done using the genetic

algorithm. The classifier used in the genetic algorithm to check the highest accuracy
was SVM. This methodology was proposed in [8].

Table 5 shows the experimental results. C4.5 generates the best accuracy for All
Features (87.66%) followed by Random Forest (87.08%) then comes PART (87.05%)
and the rest are REPT (86.62%), Random Tree (84.18%), k-NN (80.62%), Bayes
Network (65.28%) and finally Naïve Bayes (46.16%)

Four algorithms (Random Forest, C4.5, REPT, and PART) are on par (roughly
83%) for FBSE + WBSE [2] and the rest are below 80% with Naïve Bayes as the worst
(17.955%).

In the case of PCA + Feature Normalization [2], Random Forest produces the best
accuracy (85.85%), followed by C4.5 (85.78%), PART (85.65%), REPT (85.13%),
then Random Tree, k-NN, RIPPER and finally Bayes Network.

For Weka Feature Selection [3], six algorithms have roughly the same accuracies of
around 83%. The maximum accuracy for Association Rule Mining [4] is 78.22% for
C4.5 and the minimum is 51.07% for Naive Bayes.

Table 5. Accuracies of different algorithms for different feature sets for UNSW-NB15

Feature sets Random
Forest

Random
Tree

Bayes
Network

Naive
Bayes

k-
NN

C4.5 REPT RIPPER PART

All Features 87.08 84.17 65.28 46.16 80.62 87.66 86.62 80.24 87.05
FBSE + WBSE 82.85 80.92 74.25 17.95 76.59 82.56 82.33 76.67 82.30
PCA + Feature
Normalization

85.85 83.48 71.55 41.87 81.27 85.78 85.13 79.58 85.65

Weka Feature
Selection

82.99 82.85 74.55 57.57 82.5 83 82.8 76.44 82.9

Association Rule
Mining

77.70 75.18 62.72 51.07 77.04 78.22 77.99 72.69 77.83

Correlation based
Feature Selection

74.31 71.93 60.32 43.05 73.59 74.58 74.28 71.15 74.3

Deep Learning with
10-fold CV

85.57 83.8 66.55 56.59 84.17 86.16 85.10 79.24 85.91

ICA 85.68 83.59 74.27 37.87 80.12 85.31 84.86 77.6 85.03
Genetic Algorithm
with SVM

77.35 74.18 69.68 35.83 71.67 76.05 76.80 71.86 75.78
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The accuracy results for Correlation based Feature Selection [5] ranges from
74.58% for C4.5 to 43.05% for Naïve Bayes. Random Forest has the best accuracy for
ICA [7].

All the accuracy measurements for the Genetic Algorithm with SVM [8] are below
80% with the highest as 77.35% for Random Forest and the minimum is 35.83% for
Naïve Bayes.

In general, Random Forest came out to be the top in terms of accuracy for the
feature sets for UNSW-NB15. This is closely followed by C4.5.

5.3 Experiment Set 3 - Supervised Learning on BoT-IoT to Detect
the Anomaly Type

Bot-IoT training dataset [11] was used for experiment-set 3. It has around 3 million
values. Only the top 10 features according to the original dataset authors were selected
for this experiment set. Unfortunately, the Weka tool crashed for k-NN and RIPPER
algorithms. It was unable to build models for these algorithms. This probably is due to
the size of the dataset. Table 6 shows the results for the seven remaining algorithms
and almost all the algorithms have around a 100% detection rate, except Naïve Bayes.
These results are like that of the authors of [10]. Random Tree has high accuracy with a
minimal build time of 96.98 s. Table 7 shows the confusion matrix of Random Tree for
the BoT-IoT training dataset with 10-fold Cross-Validation.

Table 6. Accuracies of different algorithms for different feature sets for BoT-IoT

Algorithms Accuracy
%

False positive
%

Precision
%

Recall
%

Time to build
(seconds)

Random
Forest

99.99 0 100 100 5628.96

Random
Tree

99.9937 0 100 100 96.98

Naïve Bayes 73.4121 2.8 73.4 71.1 11.46
C4.5 99.99 0 100 100 448.57
REPT 99.99 0 100 100 205.96
Bayes
Network

99.6 0.2 99.6 99.6 228.6

PART 99.99 0 100 100 1210.6

Table 7. Confusion matrix for Bot-IoT

Normal DDoS DoS Reconnaissance Theft
349 1 6 12 2 Normal
2 1541262 48 3 0 DDoS
4 54 1320083 6 1 DoS
14 13 12 72878 2 Reconnaissance
1 0 0 3 61 Theft

Classified as
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The green diagonal shows the correct classification. As illustrated in Fig. 2, there
are total of 370 normal flows, 1,541,315 DDoS, 1,320,148 DoS, 72,919 Reconnais-
sance, and 65 Theft in the BoT-IoT dataset. From the 370 normal flows, 349 (94.32%)
were classified correctly. Out of 1,541,315 DDoS, 1,541,262 (99.99%) were classified
correctly. For DoS 1,320,083 (99.9%) of 1,320,148 were classified correctly.
61 (93.85%) out of 65 theft were identified successfully.

6 Results and Discussions

In Experiment-set 1, nine machine learning algorithms have been evaluated and
compared on UNSW-NB15 for network intrusion detection. In addition, the types of
network intrusion are identified as well.

In Experiment-set 2, 81 (nine machine learning algorithms with eight different
feature selection methods and all features together) different techniques have been
compared. To the best of our knowledge, this is the first time all these nine methods are
compared for the same dataset.

Benchmarking has also been conducted on time taken to build each model [20–25].
Figure 4 displays the results of the comparison of different machine learning

algorithms for anomaly detection on all the UNSW-NB15 dataset features. Random
Forest provides the best accuracy (97.91%) but very costly in terms of computational
time (57.25 s).

According to Fig. 5, Naive Bayes is the fastest algorithm for all the features.
Random Tree is the most optimal algorithm with a high accuracy of 96.10% and
second fastest with a build time of only 0.93 s.

Figure 6 is the comparison of all the different feature selection methods used from
the existing literature that are applied to Random Forest to detect the anomaly.

Fig. 4. Comparison of accuracy for different machine learning algorithms
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When all features are used, Random Forest generates the best accuracy. For feature
selection, PCA + Feature Normalisation, Deep Learning + 10-fold cross-validation
and ICA all are valid regarding high accuracy.

According to Fig. 7, FBSE + WBSE, Weka feature selection is the fastest with
around 19 s to build using the Random Forest algorithm. PCA + Feature Normalisa-
tion is a balanced approach for feature selection. It has the second highest accuracy
with 85.85% and third fastest with 26.32 s.

According to Fig. 8, almost all the algorithms have around 100% detection accu-
racy for the BoT-IoT. The exception is Naïve Bayes with 73.4121%.

Fig. 5. Comparison of build time for different machine learning algorithms

Fig. 6. Comparison of accuracies for feature selection methods on the Random Forest algorithm
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Figure 9 shows that the time taken to build the model is very high for Random
Forest. Naïve Bayes has the shortest time.

Fig. 7. Comparison of build time for feature selection methods on the Random Forest algorithm

Fig. 8. Comparison of accuracies for different machine learning algorithms on BoT-IoT dataset

Fig. 9. Comparison of computational time for different machine learning algorithms on BoT-
IoT dataset
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7 Conclusion and Future Work

We asked four questions at the beginning of this paper. The answers or the explanation
to these questions are examined below.

Question 1 - How effective is it to detect network intrusion based on the traffic flow
features present in datasets using different machine learning techniques?

As shown in Table 3 and Fig. 4, different machine learning algorithms give dif-
ferent accuracies for the UNSW-NB15 dataset. Firstly, this shows that the choice of a
machine learning technique for anomaly detection is crucial based on the dataset.
Secondly, there is a set of machine learning algorithms that have similar “accuracies”
judging by the false positive rates and precisions which means that if speed is important
one can choose a machine learning technique among others based on time to build the
model.

Question 2 - How effective can the classification of the types of attacks be from
different features of network traffic flows present in datasets? Table 5 shows the results
of using the nine algorithms for nine different feature selection sets (81 different sub
experiments). From this table, we can see that the set “All Features” shows “better
accuracy” compared to other feature selections supposedly contains the best features.
These results are somewhat different from previous research works (for example in
papers [2] to [8]) that used feature selections. The only conclusion we can make here is
that if timing (i.e., speed) is not important, then it may be better to use all the features if
an efficient algorithm is used.

Question 3 - Which machine learning model has the highest accuracy for classi-
fying the network anomalies for the selected datasets? To answer this question, there is
no single machine learning algorithm that can be tagged as “the best” for classifying
anomalies. However, based on the “nature” of the data and, these two datasets (UNSW-
NB15 and BoT-IoT) the tree-based algorithms appear to perform better than non-tree
based. In Table 3, other than k-NN; Bayes Network and Naïve Bayes are less accurate
compared to the rest of the algorithms.

Question 4 - Which machine learning model is efficient for detecting network
intrusion without compromising on accuracy? So far as this research is concerned and
based on the dataset (i.e., UNSW-NB15), the best algorithm that does not compromise
on accuracy is Random Tree (Table 3) with 96.9121% accuracy and a time of 0.93 s.
The second is REPT with 97.3109% and 3.43 s. Other algorithms (Random Forest,
PART, RIPPER, etc.) have higher accuracies but not that efficient in terms of build
time.

In conclusion, in this research, supervised learning techniques were used to detect
anomaly in the UNSW-NB15 dataset. Although Random Forest has the best accuracy
(97.9121%) and Naïve Bayes is the fastest, Random Tree is the most optimal algorithm
with an accuracy of 96.10% and the second fastest with a build time of only 0.93 s.
Furthermore, supervised learning techniques were used to classify the types of attacks
as well. C4.5 is the most accurate one (87.66%) with all the features considered. Eight
different types of feature selection methods were used from existing literature to
investigate the accuracy and timing of each model. PCA + Feature Normalisation [2] is
a balanced approach for feature selection; it has the second highest accuracy with
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85.85% and the third fastest with 26.32 s. Supervised Learning techniques were used
on the BoT-IoT dataset to classify anomaly types. Random Tree is an optimal algo-
rithm with almost perfect accuracy, and it is the second fastest one with just 96.98 s
taken to build a model for 3 million network flows.

For future work, various feature selection methods can be applied to supervised
learning algorithms. Weka can also be used for more feature selection methods. GPUs
or distributed systems can be used to ease the computation burden. Unsupervised
Learning algorithms can be applied to the BoT-IoT datasets. Deep learning models like
Convolutional Neural Networks and Recurrent neural networks can be trained and
compared to traditional machine learning algorithms regarding accuracy and speed.
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Abstract. Routing is a complex task in computer network. This func-
tion is mainly devoted to the layer 3 in the Open Standard Interconnec-
tion (OSI) model. In the 90s, routing protocols assisted by reinforcement
learning were created. To illustrate the performance, most of the litera-
ture use centralized algorithms and “home-made” simulators that make
difficult (i) the transposition to real networks; (ii) the reproducibility.
The goal of this work is to address those 2 points. In this paper, we pro-
pose a complete distributed protocol implementation. We deployed the
routing algorithm proposed by Boyan and Littman in 1994 based on Q-
learning on the network simulator Qualnet. Twenty-five years later, we
conclude that a more realistic implementation in more realistic network
environment does not give always better Quality of Service than the his-
torical Bellman-Ford protocol. We provide all the materials to conduct
reproducible research.

Keywords: Routing protocol · Q-learning · Quality of Service ·
Qualnet · Reproducible research

1 Introduction

Routing is a complex task in computer networks. A common solution uses the
shortest path algorithm as the Bellman-Ford routing protocol [2]. But the short-
est path is not necessarily the one that maximizes the Quality of Service (QoS),
especially in wireless networks. In order to solve routing problem, two original
approaches appeared in the 90s: (i) bio-inspired algorithm and (ii) Q-routing.
In bio-inspired approaches, the idea is to model ant colonies as routing algo-
rithm [11]. In 1992, a new reinforcement learning algorithm was created by
Watkins and Dayan: Q-learning [12]. Two years later, Boyan and Littman [3]
experience Q-Learning in routing algorithm named Q-routing. On their personal
simulator, Q-routing offers a better average end-to-end delay than the Bellman-
Ford protocol in high load condition. In fact, in congestion state, the Q-routing

Supported by the COWIN project from the RFI Wize and Atlanstic 2020, Région Pays
de la Loire.

c© IFIP International Federation for Information Processing 2020
Published by Springer Nature Switzerland AG 2020
S. Boumerdassi et al. (Eds.): MLN 2019, LNCS 12081, pp. 58–69, 2020.
https://doi.org/10.1007/978-3-030-45778-5_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-45778-5_5&domain=pdf
https://doi.org/10.1007/978-3-030-45778-5_5


Q-routing: From the Algorithm to the Routing Protocol 59

proposes alternative route based on the end-to-end delay while Bellman-Ford
protocol is focused on the shortest path in terms of hops count. Those results
have many potential applications especially for mesh and mobile ad hoc net-
works (MANET). But the work of Boyan and Littman is not complete. First,
they do not supervise other QoS metric like the Packet Delivery Ratio (PDR).
Second, their implementation is not totally specified. Even if their algorithm
is distributable, we don’t know if their implementation is really distributed.
Third, their simulator is “home-made” and the simulation parameter is not
highly depicted that makes this work hard to reproduce.

In this paper, we propose to evaluate the performances of Q-routing in a
more realistic environment provided by a reference discrete event simulator like
Qualnet. All of our experiences are available in a public git repository that makes
this research reproducible and upgradable1. Furthermore, our implementation is
fully distributed that enables to consider deployments in MANET. In such real-
istic conditions, we highlight that our Q-routing implementation over Qualnet
simulator experiences routing message flooding and routing loops that leads to
high packet loss rate in the original grid used by Boyan and Littman. We propose
some counter-measures at the end of the paper.

The organisation of the paper is the following. In Sect. 2, we summarize some
previous works about reinforced routing. In Sect. 3, we detail the implementa-
tion of our distributed Q-routing protocol. Section 4 provides results in terms
of QoS and a discussion. The last section concludes the work and draws some
perspectives.

2 Related Works

In this section, we provide more details on Q-routing in the related works.

2.1 Q-routing

Watkins and Dayan [12] created Q-Learning, a reinforcement learning algorithm
in 1994. Two years later, Boyan and Littman proposed to integrate Q-Learning
in routing algorithm. They name their algorithm Q-routing in reference to Q-
Learning. In this algorithm, each node x looks for the lowest Q-value, defined
using the Q function. The estimated delivery time from node x to node d by
node y is noted: Qx(d, y). They define Q-value of function Q as:

Qx(d, y) = Qx(d, y) + η(q + s + t − Qx(d, y)) (1)

where η is the step size α in Q-Learning (usually 0.5 in [3]) q the unit of time
spent in node x’s queue, s the unit of time spent during the transmission between
x and y and t as t = min

z∈neighbour of y
Qy(d, z). In this case, the effective delivery

time is the reward R and defined as: R = q + s + t.
1 https://gitlab.univ-nantes.fr/ls2n-rio/qrouting-qualnet, it assume a valid Qualnet

license.

https://gitlab.univ-nantes.fr/ls2n-rio/qrouting-qualnet


60 A. Bitaillou et al.

The Q-value is initialized with 0. Q-routing is greedy. It always chooses the
lowest Q-value. Several networks topologies are tested in the work of [3]: 7-
hypercube, the 116-nodes LATA telephone network and a 6 × 6 irregular grid.
The authors argue that only local information is used to proceed. The pre-
sented results of [3] concern only the 6× 6 irregular grid. Q-routing is compared
to Bellman-Ford shortest path algorithm. The average latency is higher in the
exploration phase because the packets are randomly sent. Then, the latency is
similar to the shortest path in low load condition. Q-routing is not always able
to find the shortest path under low network load. But Q-routing clearly outper-
forms the shortest path in high load condition (even if the high load condition is
not clearly defined). When the traffic load decreases, Q-routing keeps the high
load policy. The original approach is thus not adapted to dynamic changes.

2.2 Predictive Q-routing

Choi and Yeung [4] proposed an improvement for Q-routing in 1996. Their
algorithm is Predictive Q-routing (PQ-routing). It corrects the problem of sub-
optimal policy after a high network load. Unlike Q-routing, PQ-routing is not
memory-less. It keeps track of the best Q-value. Under low network load, PQ-
routing uses the shortest path algorithm to get the optimal policy. Under high
network load, PQ-routing uses the latency as main metric. Thanks to its mem-
ory, it can come back to the optimal policy when the network load decreases.
PQ-routing is composed of 4 tables: Q (estimation), B (best Q-value), R (recov-
ery), U (last update). Q is defined like in [3] (cf. Eq. 1). Each table can be finely
tuned by parameters. These tables are updated at each packet reception.

PQ-routing is compared to Q-routing. Two network topologies are tested:
a 15-nodes network and the 6 × 6 irregular grid from [3]. PQ-routing performs
better than Q-routing independently of the network load. Under high network
load, PQ-routing is quite similar to Q-routing. These results are also obtained on
a “home-made” network simulator. The average delivery time is the only metric
provided. PQ-routing has higher memory requirements due to additional tables
and higher computational cost because the 4 tables need to be updated.

2.3 Dual Reinforcement Q-routing

In 1997, Kumar and Miikkulainen [8] proposed to add backward exploration to
Q-routing. As there is forward and backward, they name their algorithm Dual
Reinforcement Q-Routing (DRQ-Routing). The evaluated network is the 6 × 6
irregular grid from [3]. They use once again a “home-made” simulator. They
define low network load as 0.5 to 1.5 packets per simulation step, medium as
1.75 to 2.25 and high as 2.5 or more. DRQ-Routing is compared to Q-routing
and shortest path. The average delivery time is the unique metric of compar-
ison. According to their results, DRQ-Routing outperforms Q-routing in low
network load. It outperforms Q-routing and shortest path in medium and high
network load. Moreover, DRQ-Routing learns twice faster than Q-routing. They
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use unbounded FIFO queues. This means that a packet cannot be dropped by
queue overflow. This simplifies the simulation but it cannot be applied in realistic
network.

2.4 Other Related Works

There are several other related works about Q-routing. Many other extensions
of Q-routing have been proposed: Gradient Ascent Q-routing [9], Enhanced
Confidence-Based Q-routing [14], K-Shortest Paths Q-routing [7], Credence
based Q-routing [6]. There are also extensions for wireless networks for Q-
probabilistic routing [1] and for the Mobile Ad-hoc Networks (MANETs) [10].
Xia et al. [13] propose to use Q-routing in cognitive radio context. The average
delivery time is the only metric used for most of those papers. Arroyo-Valles et
al. do not use average delivery time. Instead, they prefer to use packet delivery
ratio. Except [13] on OMNET++, those related works use their own simulator.
Unfortunately [13] do not give any details about their implementation.

3 A Distributed Q-routing Implementation

In this section, we describe our implementation of Q-routing and the complete
experimentation set-up. Our experimental plan concerns two topologies: one
simple with two main paths and the 6 × 6 grid of [3].

3.1 Implementation

We have implemented Q-routing based on the Bellman-Ford implementation of
Qualnet. The routing table has been replaced by the function Q (see Eq. 1). We
reuse some parameters from Bellman-Ford implementation such as the maxi-
mum route length (16 hops), the timeout delay (120 s), the maximum number
of routes per packet (32 routes per packets), and the periodic update delay
(10 s). Our protocol is totally distributed. As Bellman-Ford protocol, nodes have
access to local information only. Every 10 s, nodes broadcast their routing to
their 1-hop neighbourhood. During a periodic updates, all routes are broadcast.
Additionally, there are aperiodic updates. Aperiodic updates help to broadcast
more quickly new route for example. There are also triggered to broadcast new
latency value. During aperiodic updates, only the new or modified routes are
sent.

The header of the routing packet contains a timestamp. Thanks to this infor-
mation, the receiver can know the delay thanks to this timestamp. This method
limits the network overhead but nodes have to use only one queue. The clock of
the nodes needs to be synchronized. The level of synchronization determines the
accuracy. The function Q is updated when the routes are updated, at least every
10 s. We define a route as a destination, a subnet mask, a next hop, a distance,
a latency, two timestamps (local and from the original node), the incoming and
outgoing interfaces. The first timestamp is defined when a node gets the latency
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from its 1-hop neighbour. This timestamp is not modified when the information
is broadcast. The second timestamp is local and is used for checking the time
out. This timestamp is updated when the node receives an update for this route.
Q-routing has an exploration phase during 2 s. During the exploration phase,
the Q-values are not updated.

3.2 Simulation Parameters

We use Qualnet 8.2 (from Scalable Networks Technology) as network simula-
tor. The networks are composed of symmetric 10 Mb/s wired links. In order to
prevent side effect, we used an abstract link layer. All links propagation delays
are set to 1 ms that defines the latency of one hop. Unlike Kumar [8], each
node has a finite FIFO queue of 150k packets. With Qualnet (and other discrete
event simulators), the seed of the pseudo-random generator has a high impact
on the results. For the same seed, the number of trials doesn’t have a significant
importance. Both foreground traffic and background traffic are constant bit rate
(CBR) traffic flow. All CBR messages are 512 bytes long. CBR messages are sent
in UDP packets. The CBR receiver drops disordered messages. We compare Q-
routing to Bellman-Ford protocol because it uses the shortest path. The Table 1
sums up the simulation parameters.

Table 1. Simulation parameters

Element Parameter Value

Network Link Symmetric 10 Mb/s wired link

Link propagation 1ms

Link layer Abstract MAC

Node Number of queue 1 FIFO queue

Queue size 150k packets

CBR Message size 512 bytes

A Toy Example. Before evaluating Q-routing on the topology of [3], we test
it first on a simple topology as depicted on Fig. 1. Our test CBR is between
node 1 and node 4 which are the source and the destination respectively. In
this simple network, a large background traffic appears on the shortest path
between node 2 and node 3 as shown Fig. 2. The goal is simply to verify that
our Q-routing implementation prefers the longer path (through node 5) as soon
as congestion occurs. The CBR source starts sending at 1 s and stop at the end
of the simulation. The interval between two messages is 1 s. Background traffic
appears at 15 min. The simulation time is only 60 min for this toy example. We
test 10 different and arbitrary seeds.
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Fig. 1. Simple topology to test our
implementation. Numbers correspond
to the node ID.

Fig. 2. CBR traffic flow location on
the simple topology at 15min. Num-
bers correspond to the node ID. (Color
figure online)

Fig. 3. The 6×6 irregular grid used by
Boyan and Littman [3]

Fig. 4. CBR location on the 6×6 irreg-
ular grid (Color figure online)

The Irregular Grid. We evaluate then our implementation on the original
6 × 6 irregular grid from [3]. The Fig. 3 illustrates this particular grid and the
Fig. 4 shows the location of the CBR couples. The location of the CBR flow
is arbitrary because Boyan and Littman [3] don’t give so many details in their
works. However, we experience that the location of the couples has a great impact
on the results. As in [3], the CBR traffic flow will be alternatively “horizontal”
and “vertical” every 30 min. The “vertical” CBR traffic flow (in red) will be active
then it will be the “horizontal” CBR traffic flow (in blue). All CBR sources have
the same throughput for a given simulation as depicted on the 2nd column of
the Table 3. We used 36 different and arbitrary seeds in order to validate our
simulation. The simulation time is 180 min.
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4 Results and Discussion

In this section, we present the results of the experimentation. We focus on two
metrics: the average end-to-end delay (or average delivery time) and the packet
delivery rate (PDR). Both are measured at the application layer (layer 7).

Table 2. Comparison between Q-routing (Q-r) and Bellman-Ford protocol (B-F) with
background traffic on the toy example, 10 seeds.

Protocol Throughput of bg traffic Avg. EtE delay (ms) PDR (%)

Average SD Average SD

B-F 8.2 Mb/s 4.36 <0.01 100 0

B-F 10.2 Mb/s 82.9 <0.01 66.6 0.07

B-F 11.7 Mb/s 67.7 0.01 50.3 0.08

B-F 13.7 Mb/s 67.9 0.11 50.1 0.09

Q-r 8.2 Mb/s 4.37 <0.01 100 0

Q-r 10.2 Mb/s 6.57 0.02 100 0.04

Q-r 11.7 Mb/s 6.57 0.02 100 0.04

Q-r 13.7 Mb/s 6.58 0.05 100 0.07

Fig. 5. Average End-to-End delay over
the simulation, measured by the CBR
between node 1 and node 4.

Fig. 6. PDR over the simulation, mea-
sured by the CBR between node 1 and
node 4.

Results on the Toy Example. The Table 2 sums up the results with different
throughput of background traffic for the simple grid of Fig. 1. On average we
experience low delay and the highest PDR for Q-routing for the considered
traffic pattern. The singularity at 10.2 Mb/s for BF protocol means that we are
in a congested status with relative good PDR but a degraded end-to-end delay.
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Fig. 7. Average hop count over the simulation, measured by the CBR between node 1
and node 4.

Table 3. Comparison between Q-routing and Bellman-Ford on the irregular grid, 36
seeds.

Protocol Throughput Avg. EtE delay (ms) PDR (%) Avg. drop of IP packets

(number of packets)

Average Median SD Average Median SD No route

to host

Expired

TTL

Queue

overflow

B-F 4.1 kb/s 9.27 9.27 <0.01 100 100 <0.01 2 0 0

B-F 41 kb/s 9.27 9.27 <0.01 100 100 <0.01 3 0 0

B-F 410 kb/s 9.27 9.27 <0.01 100 100 <0.01 18 0 0

B-F 4.1Mb/s 9.27 9.27 <0.01 100 100 <0.01 164 0 0

B-F 8.2Mb/s 51.0 51.4 7.70 88.0 88.5 0.74 49.0 × 103 0 10.4 × 106

B-F 10.2Mb/s 242 242 12.9 75.3 75.4 1.17 295 × 103 14 26.8 × 106

B-F 13.7Mb/s 254 255 14.1 56.5 56.5 0.96 398 × 103 3 62.8 × 106

Q-r 4.1 kb/s 9.33 9.33 <0.01 99.9 99.9 <0.01 14 32 0

Q-r 41 kb/s 9.33 9.33 <0.01 99.9 99.9 <0.01 102 318 0

Q-r 410 kb/s 9.79 9.70 0.38 99.9 99.9 <0.01 980 2776 0

Q-r 4.1Mb/s 11.8 11.7 0.84 99.7 99.8 0.20 10 × 103 10 × 103 140 × 103

Q-r 8.2Mb/s 129 135 91.6 82.7 79.7 9.74 21 × 103 54 × 103 17 × 106

Q-r 10.2Mb/s 680 674 32.6 65.1 66.7 8.12 115 × 103 258 × 103 45 × 106

Q-r 13.7Mb/s 673 675 42.4 47.1 48.2 5.73 141 × 103 280 × 103 85 × 106

This singularity disappears for Q-routing. Figures 5, 6 and 7 give a temporal
representation of the simulation. The background traffic is 10.2 Mb/s. The dotted
line represents the appearing of the congestion. With Q-routing, the average
delivery time stays low compared to Bellman-Ford protocol (Fig. 5) when the
congestion occurs at 15 min (900 s). Moreover, Q-routing drops only few packets
as depicted on Fig. 6. Finally, the average hop count (Fig. 7) shows that Q-routing
bypass the congested path through a longer way. There is no more than 1 packet
lost. The throughput is 1 packet per second. The results do not show clearly the
convergence time. If we consider that dropped messages are due to congestion,
we estimate it no higher than 2 s. Q-routing performs pretty well on our simple
test. But Q-routing uses a greedy strategy. Even if the congestion disappears,
the packets will continue to pass by the longest route.
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Fig. 8. Policy summary: Bellman-Ford
under 4.1 Mb/s (medium load).

Fig. 9. Policy summary: Q-routing
under 4.1 Mb/s (medium load).

Results on the Irregular Grid. Boyan and Littman [3] expressed their results
in the unit of their “home-made” simulator. The time is in simulator time. The
network load and its unit are not defined. We express the duration in seconds
and the network load in bytes per second. Thus, we cannot compare directly
their results to ours. The Table 3 sums up the results for the irregular grid. We
experience many packet drops. We add to this table the origin of those drops: (1)
route starvation i.e. the “no route to host” message; (2) abnormal route length
(monitored by the Time-To-Leave parameter); (3) queue overflow. For Q-routing,
the number of packets dropped due to expired TTL is relatively high even at low
throughput. Routing loops can only explain the number of packets dropped due
to expired TTL. Performance under low network load is similar to Bellman-Ford
protocol. The behaviour of the Q-routing protocol changes between 410 kb/s and
4.1 Mb/s values. The average delivery time increases and the PDR decreases
up to reach 47.1% at 13.7 Mb/s. The number of dropped packets by queue over-
flow reaches 140×103 packets at 4.1 Mb/s. At 13.7 Mb/s, the number of dropping
by queue overflow is very high, around 85 × 106 dropped packets for 144 × 106

messages sent. From a topological point of view, the Figs. 8 and 9 resume the
routing policies by showing the average number of routes passing by each node
under medium load at the end of the simulation. For Bellman-Ford protocol, the
distribution of routes is very similar to [3]. However, the Fig. 9 gives a different
result compared to [3]. With Q-routing, nodes 16 and 22 are less solicitate but
the number of routes is not so balanced as in [3].

We extract the number of routing packets sent and received. With the
Bellman-Ford protocol, there are not so much aperiodic updates because the
minimal distance to a destination is constant in our scenario. For example, under
low network load, aperiodic updates represent 7 packets per hour and per node.
The situation is different with Q-routing. The average number of packets sent
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for periodic updates is around 15 × 103 packets over the simulation. The aver-
age number of packets sent for aperiodic updates is around 661 × 103 packets.
Aperiodic updates represent about 90% of routing packets. At 4.1 kb/s, on the
irregular grid, there are about 190 routing packets per seconds for 4 data packets
per seconds.

4.1 Discussion

Although the test over a simple topology is very encouraging, our test on the
irregular grid doesn’t give a similar result to [3]. As the authors of this work, we
expected Q-routing to outperform Bellman-Ford protocol under high network
load condition. The implementation of the Q-routing in a real packet simulator
in a distributed manner is the main reason from our point. Traffic that needs
to pass through those links will be penalized. The quantity of packets dropped
by queue overflow is really important. This is not considered in [3]. We made
some additional tests with a larger queue in order to give more chance to have
a higher latency but the results have not changed significantly.

Packets dropped by expired TTL are the main cause of dropping under low
network load. An additional mechanism is needed in order to prevent routing
loops. For example, source routing or tracking packet’s ID can be used period-
ically to check the route. Another possibility is to change the reward in the Q
function. Indeed, the distance (in hop count) could be considered in order to help
the choice of the best route. The reward can also take account of the number of
dropped packets.

Moreover, Q-routing has a higher memory requirement than Bellman-Ford
protocol. Indeed, Q-routing needs memory to store all destinations by all the
next hops whereas Bellman-Ford protocol stores also all destinations only once.
Furthermore, computational costs are higher with Q-routing due to data struc-
ture and the quantity of data. For example, on the grid, a node with 4 neighbours
like node 16 has to store 144 routes. When it broadcasts all routes, it needs 5
packets. With the Bellman-Ford protocol, nodes have 36 routes. They need to
send just 2 packets to broadcast all routes. The network overhead is also higher
with Q-routing. The value of the latency changes a lot so the number of aperiodic
updates can be very high. In order to limit the number of aperiodic updates,
several solutions are possible. For example, the aperiodic update can be schedule
only if the difference between the old and the new value is greater than a thresh-
old. Moreover, we can introduce partial flooding mechanism as it is proposed
in MANET protocol as OLSR [5]. In this protocol, Multi-Point Relays reduce
drastically routing message flooding.

5 Conclusion

In this paper, we presented a distributed implementation of the Q-routing algo-
rithm. We experienced it on the professional packet driven simulator Qualnet.
Q-routing works well on a simple topology composed of 8 nodes. However, the
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Quality of Service parameter as the end-to-end delay and the packet delivery
ratio are degraded as soon as Q-routing protocol is deployed on the irregular grid
proposed in [3]. High network overhead and routing loops are the main expla-
nation in real networks conditions. They also explain routing starvation. We
provide all the materials to conduct reproducible research. Auxiliary functions
to prevent flooding, the integration to existing MANET protocols (as OLSR)
and the extension of Q function are the perspective of this work.
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Abstract. As ubiquitous computer and sensor systems become abun-
dant, the potential for automatic identification and tracking of human
behaviours becomes all the more evident. Annotating complex human
behaviour datasets to achieve ground truth for supervised training can
however be extremely labour-intensive, and error prone. One possible
solution to this problem is activity discovery: the identification of activ-
ities in an unlabelled dataset by means of an unsupervised algorithm.
This paper presents a novel approach to activity discovery that utilises
deep learning based language production models to construct a hierar-
chical, tree-like structure over a sequential vector of sensor events. Our
approach differs from previous work in that it explicitly aims to deal with
interleaving (switching back and forth between activities) in a principled
manner, by utilising the long-term memory capabilities of a recurrent
neural network cell. We present our approach and test it on a realistic
dataset to evaluate its performance. Our results show the viability of the
approach and that it shows promise for further investigation. We believe
this is a useful direction to consider in accounting for the continually
changing nature of behaviours.

1 Introduction

Activity discovery (AD) refers to the automated and unsupervised extraction of
activities (recurrent patterns of behaviour) from a given dataset of sequential
sensor events [6]. These sensor events could come from any one of a wide range of
sensors installed in a real-world environment (such as a house or office), or could
be events logged by a server or other computer monitoring a virtual environment.
Activity discovery is part of the wider field of activity recognition, which refers to
the use of machine learning in the identification and classification of activities.
AD has a wide range of applications, from the automatic labelling of datasets for
more general activity recognition [17], to more complex end-to-end systems which
combine elements of activity discovery and recognition [9]. The wider problem of
identifying usable sub-sequences in larger sequences that have semantic meaning
also has wider applicability for areas like anomaly and crime detection [10,28]
and network intrusion detection [16].
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One issue that poses a challenge for many existing activity discovery systems
is interleaving, where two or more activities are being carried out by a single
actor at the same time. Usually, this appears on the dataset as if the actor is
switching back and forth between activities, much like how a compute processor
switches back and forth between processes when the operating system performs a
context switch. Equivalently, multiple individuals might be carrying out tasks in
parallel, which would register on the sensors in a manner that closely resembles
interleaving.

With the goal of improving the performance of such systems on interleaved
data, we present here a novel system for activity discovery which is explicitly
designed to account for the interleaved data of modern datasets. Like most activ-
ity discovery systems, we base our work on the intuition that activities appear
in datasets as sub-sequences that repeat multiple times throughout the dataset.
Unlike most other AD systems, however, we do not require that our activities
consist of contiguous substrings of the dataset, but rather can be interrupted
with sensor events which may be parts of other activities, or may not belong to
other activities. This allows activities to be interleaved, and allows the model to
explicitly model and disentangle the interleaving.

On top of this, we build activities that are hierarchical, tree-like structures.
Thus, discovered activities can contain other activities as a subset. This models
the hierarchical nature of real-world activities: a large, complex activity such
as washing could consist of smaller sub-activities such as using the shower or
brushing teeth. This allows our system to take sequential input data and convert
it into a rich, complex structure, much like how a language parser can convert a
sequential string of symbols into a parse tree, thus exposing non-obvious struc-
ture contained within the original sequence.

The remainder of this paper is structured as follows: in Sect. 2 we review
prior and related work in activity discovery and sequential pattern discovery
more generally, some of which has been an important influence on the work
presented here. In Sect. 3 we briefly introduce the formal notation that we use
in this paper, before introducing our activity discovery model in Sect. 4. We
present our evaluation study design and the results of that study in Sects. 5 and
6 respectively. Before concluding we provide a brief discussion in Sect. 7.

2 Prior Work

A number of techniques have been proposed to tackle the activity discovery
problem. A good general introduction to the field is Cook et al. [6], which intro-
duces an activity discovery system that applies a beam search algorithm using an
operator called ExtendSequence to discover activities in an unlabelled dataset.
Like a number of other systems in the field, this algorithm utilises the minimum
description length (MDL) principle [23,24], which proposes evaluating machine
learning models by measuring the degree to which they compress their input
dataset. This is an important principle, and is one that we shall return to later
in this paper.



72 E. Rogers et al.

Activity discovery can also be carried out by relatively simple systems that
utilise topic models [17]. Here, the latent Dirichlet allocation (LDA) topic model
[3] is used to model the relationship between sensor events and latent variables
which are presumed to represent activities. The model is shown to have good
performance, even on a complex dataset. More recently, other models based on
statistical models have been proposed: for example, Fang et al. [11] proposes
activity discovery by means of a hierarchical mixture model. [25] propose using
activity discovery to build a model of normal behaviour patterns of a person
in order to detect anomalous behaviours that may be of interest to medical
professionals.

Related fields also provide an important source of ideas. Grammar induc-
tion is a concept from computational linguistics which refers to the derivation
of grammar productions for a language given only a dataset. Some forms of
grammar induction require labelled input, distinguishing positive and negative
examples, but others require only positive examples. In the general case, gram-
mar induction is not a tractable problem, regardless of whether the dataset is
labelled or not [13,14], but tractable approximations have been demonstrated
which solve the problem to a degree [8]. While the problems are related, gram-
mar induction is by no means equivalent to activity discovery (and is in fact in
many ways harder), but it does involve the induction of structure from a one-
dimensional input vector. Adios [27] induces a grammar by loading a dataset
into memory as a graph, with words represented as vertexes and sentences rep-
resented as directed edges between these. This representation allows for the
identification of equivalence classes between words and phrases which share the
same input and output edges, which can then be added to the graph as nonter-
minals. A variant of the Adios approach, which supplements the basic grammar
induction algorithm with logical predicates to allow for more accurate induction
in a limited linguistic domain is presented by [12].

Remaining on the theme of grammar induction, the eGrids grammar induc-
tion algorithm [22] bears a resemblance to the beam search-based system men-
tioned previously from [6]. This approach also uses an MDL-based objective
function to guide the search. More recently, an interesting deep learning-based
grammar induction model using convolutional networks to determine syntactic
distance (the degree to which two neighbouring words or symbols belong to the
same POS phrase) has been proposed by [26]; this approach does have some
similarities to the approach we take later in this paper.

More generally, it should be noted that the activity discovery problem as
presented by us can also be understood as a non-local variant of the tree structure
induction algorithm Sequitur [21], which groups input symbols together even if
they do not appear contiguously.

However, none of the approaches discussed above were explicitly developed
with the goal of dealing with interleaving. Some solve the interleaving problem
better than others, but the system we propose in this paper has the advantage of
explicitly disentangling interleaved activities from each other, identifying where
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one activity switches to another and when it switches back. Thus, it solves a
problem not tackled by most existing activity discovery systems.

3 Activity Discovery Process Notation

In order to have a clean model description, it is necessary for us to briefly
introduce the terminology that we will use later. Formally, an activity discovery
system can be modelled as a 5-tuple (Σ,D,A, f, g), where:

– Σ is a set of event types;
– D is an ordered sequence of events, D = 〈d1, d2, . . . , dL〉 of length L, such

that each di ∈ D is drawn from the set Σ. We call this the dataset ;
– A is a set of activity types;
– f is a mapping f : D → X∗, which takes a sequence of events D as input,

and returns a set of (possibly non-contiguous) sub-sequences of D as output;
and

– g is a mapping g : X → A, where X ⊂ D∗, which takes a sub-sequence
produced by f as input, and returns an activity type a ∈ A as output.

This definition can be made clearer with a concrete example. Supposing we
have a dataset D = 〈d1, d2, . . . , dN 〉. Each di ∈ Σ is a sensor event drawn from
Σ, our full set of sensor events. In an environment where sensors have been set
up in a home, for instance, Σ could consist of events like open front door, turn
oven on, flush toilet and similar domestic events. An activity, then, is simply
a sub-sequence of D consisting of events that appear to the activity discovery
system to be semantically related. For instance, we would expect that events like
turn oven on, open kitchen cupboard, open refrigerator might occur in an activity
together, since they tend to occur together temporally. It should be noted that
D is not a set of sequences as might be the case in a supervised learning setting;
D is a single large dataset from which we extract activities.

Multiple similar activities can then be clustered or lifted into one type. The
activity discovery system might notice that an activity similar to the one men-
tioned in the previous paragraph seems to occur nightly, and may cluster them
all into a single making dinner activity type. The concrete sub-sequences of D
are referred to as the instances of the making dinner activity.

Note that we don’t generally expect an activity discovery system to operate
with human-like semantic knowledge or expectations in the basic case. Thus,
it would not be expected to be able to name the new activity type as making
dinner, only to identify that the instances involved can be sensibly clustered
together. A commercial activity discovery system might well be supplemented
with real-world knowledge, with the intention of biasing towards the sort of
activities we would expect to find in the environment in which it operates. For
instance, knowledge that events relating to a fridge or oven indicates activities
relating to food preparation such as making dinner are taking place. In many
ways this would stray over into being a form of activity recognition as well as
discovery. For this reason, we stick to a pure form of activity discovery without
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any real-world knowledge. We do still expect it to be able to discover making
dinner as an activity, just not to be able to give it a label (making dinner) that
would be semantically meaningful to a human observer.

4 Model

We now proceed to outline our approach to the activity discovery problem. At
a bird’s-eye view, one can conceptualise our model as being composed of the
following four elements:

– A neural language model to analyse the input dataset, and build probability
distributions over future events given past events;

– A linking component to link events into activity instances using the proba-
bility distributions;

– A clustering component to cluster activity instances into activity types in a
principled way;

– A hierarchy construction component to remove discovered activities and
replace them with new synthetic events, thus allowing the above steps to
be repeated, and a hierarchy to be iteratively built up.

In the following we take each of these components and describe them in
detail.

4.1 Association Estimation

All approaches to activity discovery depend upon the assumption that the activ-
ities present in a dataset will be composed of events, which are assumed to be
associated with each other in some predictable way. For example, if we want an
activity like cooking dinner to be found in a dataset, we would need to see that
a set of events such as turn on oven, open refrigerator, open cupboard and the
like occur close to one another in the dataset on a daily basis. Intuitively, our
approach is based on the insight that if observing the turn on oven event allows
me to predict that the open refrigerator event will soon follow, I can use this
fact to infer the existence of the cooking dinner activity.

To detect these associations, and to estimate how strong they are, we turn to
language modelling, a concept originating from the natural language processing
(NLP) community. Given a sentence of words W = 〈w1, w2, . . . wQ〉, a language
model estimates the probability of a word wi given the previous n words, which
can be written p(wi|wi−1, wi−2, wi−n). Equivalently, we can view this as assign-
ing a probability to a given sentence or sentence fragment, since the probability
of the entire sentence W must be:

p(W ) = p(w1)p(w2|w1) . . . p(wN |wN−1, wN−2, . . . wN−n) (1)

A typical language model attempts to predict the next word of the sequence,
but we need to take into account the possible presence of interleaving. In other
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words, open refrigerator may occur a number of events after the turn on oven
event. Keep in mind, therefore, that we build a probability distribution not over
the next event, but rather over the next m events.

Traditionally the training of language models entails the collection of statis-
tics from a dataset. Such systems have been used for many decades within the
NLP community.

Rather than relying on statistical language models, we apply a so-called neu-
ral language model (NLM) [2,20] to the association estimation task. In recent
years, neural language modelling systems have achieved parity with, and subse-
quently overtaken, their more classical (statistical) counterparts. These models
build on general trends in deep learning [19] by applying large artificial neural
network architectures and taking advantage of recent advances in hardware and
training algorithms. Yoshua Bengio [2] proposed the first NLM system in 2003,
with more recent systems adopting sophisticated additions such as recurrent
models, attention [4], internal memory [29] and levels of representation other
than individual words [20].

Our modelling approach builds on the LSTM network architecture [15]. This
architecture is a form of recurrent neural network that is particularly good at
encoding long range dependencies into a decision process. An LSTM unit consists
of a single memory unit called a cell. Computational units called gates determine
the contents of the cell and the behaviour of the unit by controlling the move-
ment of data in and out of the cell. Typically, three gates are used: an input gate,
which controls the extent to which the current input to the unit influences the
cell, an output gate, which controls the extent to which the current cell contents
influence the unit’s output, and a forget gate, which controls the extent to which
the current value of the cell will be retained for the next iteration of the LSTM
unit. A given LSTM can be trained using labelled data and the backpropogation
algorithm in the normal way. Moreover, rather than using a single LSTM net-
work, our approach makes use of a collection of LSTM estimators. Specifically,
we train m LSTM networks, one to predict the next event, one to predict the
event immediately after it, one to predict the event after that one and so on.
Each network netj thus predicts the distribution:

pj(di+j |di, di−1, . . . , di−n) (2)

For each j ∈ 〈1, 2, . . . m〉, where we refer to each j as a lookahead offset. This
builds distributions over the next m events, motivated above for allowing us to
detect interleaving. Since some events might be very common in the dataset, we
actually use the difference between the probability distribution in Eq. 2 and the
distribution already computed for the previous position of the sliding window
i− 1. In a slight abuse of notation, therefore, we actually use pj in Eq. 2 to refer
to relative probability, defined as the following:

pj(di+j |di, di−1, . . . , di−n) − pj(d(i−1)+j |di−1, di−2, . . . , d(i−1)−n)) (3)

The equation above gives us the relative probability distribution for the i+jth
slot in the dataset, where 1 ≤ j ≤ m. This process is illustrated in Fig. 1.
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In Fig. 1(a), we see a short dataset of events A,B,C,D,E, F,G,H. A sliding
window of length 2 (n = 2) is placed over events C and D of the dataset, and
a lookahead window of length 3 (m = 3) is placed over events E to G in the
dataset. The sliding window is fed as input into each of the m networks (there
would be three in this case, one for each element of the lookahead window).
Thus each network is trained to output a probability distribution over the event
it expects to observe at a particular offset into the lookahead window.

To illustrate the example further, the network net1 might predict a 20%
higher relative probability that event E would be observed at an offset of 1
compared to when the sliding window ends at event C instead of D. net2 might
predict an 80% higher relative probability that event F would be observed at an
offset of 2, and net3 might predict a 40% higher relative probability of event G
being observed at an offset of 3. Note that each network outputs a probability
distribution over the entire set of events Σ: we only show the probabilities of the
event types that actually occur in Fig. 1(b). Thus, the output from this stage can
be viewed as P , an n×m×|Σ| matrix, where each Pijk is the relative probability
that the i + jth event in the dataset is predicted to be the kth event type in the
set of events Σ.

4.2 Linking Events into Activities

Given a sliding window across the dataset, the association estimator will provide
likelihoods of particular events occurring at given offsets into the look-ahead win-
dow – these are encoded as the association matrix P . Based on that information
we next establish links between strongly associated events.

There are a number of ways in which the linking process could be achieved.
For the experiments presented in this paper, we begin by iterating over each
i ∈ 〈1, 2, . . . , n〉 and each j ∈ 〈1, 2, . . . ,m〉. For each (i, j) pair, we can view Pij

as the relative probability distribution that each d ∈ Σ will be the jth event
after the ith event. In the case of Fig. 1(b), we see that net2 has assigned a
high relative probability to the event type F occurring at an offset of two after
D. By contrast, net1 and net3 have assigned much lower probabilities to their
corresponding values. Thus, we would expect that this means that events D and
F are part of the activity, which would justify connecting them via a link, as
shown in Fig. 1(c).

This is essentially a greedy linking strategy as we are guaranteed that the
strongest links only for a given symbol are created. This has advantages over
alternatives such as a thresholding-based model in that no threshold parameter
needs to be derived from the dataset.

This is almost correct, but naive implementations of the above algorithm for
linking result in most links being made with the event of an offset of one into the
lookahead window, i.e. the first events in the lookahead window. This is obviously
not ideal from the perspective of identifying activities that are interleaved. If we
train a system like that described above with a window and lookahead length
of 20 (so n = m = 20), and evaluate the accuracy of the resulting twenty
networks, we observe something interesting. The first network, net1, is about
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(a) Activities A and B are contained within a sliding window; activities C, D and E are in
the lookahead window

(b) net1 assigns a 20% relative probability to offset (j) 1 being equal to event type E, net2
assigns an 80% relative probability of offset 2 being equal to event type F , and net3 a 40%
relative probability of offset 3 being equal to event type G

(c) A single link connecting activities D and F

(d) The new dataset after the link has been abstracted into one event

Fig. 1. Using probability distributions to construct links between events

98.8% accurate. The second network’s accuracy has dropped down to about
97.9%, which is a trend that continues throughout the lookahead window. By
net20, the accuracy is down to about 94%. This makes intuitive sense, since
predicting the next event will generally be easier than predicting the event that
will occur three events from now. Analogously, predicting the next word in a
sentence is easier than predicting the word that will come a number of words
after. We thus feel that we are justified in modifying the algorithm to explicitly
take distance into account, so longer offset networks get a small boost in their
probabilities to offset the inherent higher difficulties in what is expected in them.

Thus, we multiply each relative probability by a correcting factor that is equal
to 1 for an offset of 1, some value larger than one for offsets greater than 1, and
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which increases linearly. We call the parameter which controls the degree with
which the factor increases x. Since this value is no longer a valid probability
we refer to it as a score. Thus, for formula for computing the score for offset j
and window position i is as follows, which is a modification of the probability in
Eq. 2:

score(di, di+j) = pj(di+j |di, di−1, . . . , di−n) × (1 +
j

x
) (4)

This link will only be built if D and F do not link more strongly with some
other event in the dataset. For example, if D was predicted with a relative
probability of 90% when the sliding window ended at event B, we would have
built the link between B and D instead.

4.3 Clustering Activity Instances into Activity Types

We now need to match all the links we have found with links of the same type.
We call this step clustering. In the case of the example presented in Fig. 1, we
would need to cluster all other links between event types D and F (or equiva-
lently between F and D) together. Note that this differs from clustering in the
usual sense of the word, since we are trying to find exact matches between link
types, not semantic similarity as would be done in a clustering algorithm such
as k-means clustering.

At this point, we also apply a threshold factor, which we call y, to remove
spurious links. Link types that do not appear at least y times in the entire dataset
are removed.

4.4 Building a Hierarchy

The final step in a single iteration of the model is to build a new dataset, where
each discovered link of two activities is removed, and replaced with a new event,
with each activity type giving rise to a new event type. The outcome of this
process applied to the small dataset we have used as an example in this section
is shown as Fig. 1(d). From here, we can train a new set of m LSTM networks,
and repeat the process again. At the end, a tree-like structure will result, show-
ing a hierarchy of (possibly overlapping) activities contained within each other.
This is inspired from the way the Sequitur algorithm [21] constructs tree struc-
tures from sub-sequences that occur multiple times in a sequence, generalised to
allow for non-contiguous sub-sequences. Ideally, the process would be run until
a sufficiently high level of abstraction (where the tree-like structures correspond
to activities) has been reached. In practice, the process can be stopped early if
only a partial result is needed. The new event could be placed into the position
formerly occupied by either event D or event F . The choice shouldn’t affect the
evaluation metrics we are using, so the choice of which position is somewhat
arbitrary. In our case, we place the new event in event D’s position.
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5 Experiment Design

For our experiments, we utilised the Kyoto 3 dataset gathered by the CASAS
project [7]. This dataset consists of readings from a range of sensors installed in a
small apartment. The dataset was gathered by asking a number of participants to
perform activities of daily living (ADLs) in a natural manner in the apartment.
Most of the sensor readings are either binary (they have a simple on/off state), or
can only enter one of a handful of states. This means they can be easily converted
to the sequence of events format our system expects by creating event types of the
form SensorName SensorState. For example, one of the sensors are refered to
as M17 in the dataset, and can take the state ON , so M17 ON becomes an event
type in the dataset. For the few sensor types that did have continuous values, we
used the Jenks natural breaks algorithm [18] to discretise the data. Our system
does not take temporal distance into account, so it cannot, for instance, see large
gaps between events. This makes the systems task substantially harder, but it
allows us to put our system through much more challenging testing than most
AD practitioners settle for.

Evaluating activity discovery systems can be a challenge for a number of
reasons. Human annotators may not come to an agreement with each other
over the start and end points of activities, which makes working from a gold-
standard ground truth quite difficult. For example, when does the activity of
Making Dinner start? When a person enters the kitchen? When they turn on
the oven? In many cases, a ground truth may not even be available (although that
isn’t an issue for the Kyoto dataset). The output from an AD system may be on a
different level of abstraction from the ground truth: for example the system may
discover an activity that could be called something like chop vegetables, but the
ground truth instead has an activity called make dinner, which chop vegetables
would be a constituent of. A good overview of evaluation for activity discovery
can be found in [5].

Since we do have access to a ground truth in this experiment, it makes
sense to use it, although we must keep the above issues in mind. Because of
the abstraction issue mentioned before, we argue that both raw accuracy and
F-measures are inappropriate for evaluating this system. Instead, we compare
each new event type from the topmost (i.e. most abstract layer) of the hierarchy
using the precision metric, i.e. the true positives divided by the sum of the
true and false positives. Each event type is then matched with the ground truth
activity with which it achieves the highest associated precision.

Our system is implemented using Python/TensorFlow [1] running on an
Nvidia graphics card. We trained the hierarchy for 5 layers: each layer took
roughly an hour to train and cluster. Our LSTMs were two layers deep, with a
width of 150 LSTM cells per layer. We used a sliding window length n = 20,
a lookahead window length m = 10, a score factor x = 400 and an event type
threshold y = 3.

We have already mentioned minimum description length (MDL) in Sect. 2 of
this paper. This is the second metric that we propose for our system. MDL draws
a parallel between machine learning on the one hand, and data compression on
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the other. If person A wishes to transmit a dataset to person B while minimising
the bandwidth, they could do so by encoding the dataset directly according to
some optimal encoding scheme and send it. By contrast, person A could also
train a machine learning model and send this, since person B could use it to
re-create the dataset. Of course, no model will be perfect, so we must also send
data that would be required to correct the model’s mistakes. Since the mistakes
will hopefully be small, these corrective measures should not consume many bits
of bandwidth. In its purest form, MDL proposes computing a score for a machine
learning system, which is the length of the machine learning model (in bits), plus
the length of all the corrective values (also in bits). The smaller this value, the
better the model is taken to be.

However, a pure MDL approach won’t work in our case, since the output
from the system is actually a compressed form of the input (so the original
input can’t be recovered from it). For this reason, [5] suggest simply using the
compression ratio as a metric. In other words, since our model is compressing
the input directly, evaluate how well it carries out this compression.

6 Results

We now present the results of the experiment described in Sect. 5.

Table 1. Some event types discovered and associated precision values

Event name Precision

new event 10 0.2857142857142857

new event 11 0.6666666666666666

new event 12 0.6666666666666666

new event 13 0.3333333333333333

new event 14 0.42857142857142855

new event 160 0.75

new event 161 0.6666666666666666

new event 162 0.3333333333333333

new event 163 0.6666666666666666

new event 231 0.6666666666666666

new event 232 0.6666666666666666

new event 233 0.6666666666666666

new event 301 0.7142857142857143

new event 302 0.6666666666666666

new event 303 0.3333333333333333

new event 304 0.25

new event 305 0.3333333333333333
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Our system discovers in excess of 500 event types, reproducing the full result
of this evaluation here would not be possible. Nonetheless, we present an extract
from these results as Table 1. The results are reasonably good: a little over half
of the events discovered correlate to a precision of at least 50%, meaning that the
results show a correlation (but not a perfect overlap) between the ground truth
and the discovered output. Considering both the differing levels of abstraction,
and the large amount of interleaving present in the Kyoto 3 dataset, we feel that
this is an acceptable initial result. The large number of events suggests that in
the future, more needs to be done to combine the discovered event types; see
Sect. 7 for more details.

As mentioned earlier, another important evaluation metric is the compression
rate. Our system compresses the original input dataset to about 68% of its
original input size. This is a good result, albeit one that we hope to improve
upon in the future.

Finally, we have produced a visualisation of our system’s output to allow
us to see that a hierarchy is being built up, and visualising it as a tree-like
structure. Because of the length of the input dataset, this is again far too big
to show in this paper. However, we present some extracts from it as Fig. 2.
The bars at the bottom of the image are the original ground truth, each row
represents a certain activity type, and the bar will be present along the row
when the activity is active, but not otherwise. The triangles above it represent
the discovered events, with the wide bottoms at the bottom of the triangles
compressing into the narrower tops. In some places, the hierarchy is quite deep,
as visible in Fig. 2(a). Visually, it is noticeable that clusters tend to form around
activities. Our previous evaluation methods had no way of picking up on this
phenomenon, which we will discuss further in Sect. 7. The events sometimes cross
activity boundaries, but these incursions are small. This could be evidence that
the human annotator of this dataset and the system are seeing similar activities,
but can’t agree when they start or end as discussed above.

7 Discussion

Originally, we hypothesised building an NLM that would not predict a distribu-
tion over the next event, but rather over the next m events. In other words, for
each d ∈ Σ, it would output pi:i+m(d|di−1, di−2, . . . , di−n), the probability that
d would be one of the next m events observed.

The approach shows promise, as shown by our experiment results. Deep learn-
ing for activity discovery is in its infancy, so we do not claim that we can out-
perform other AD techniques, but this is a starting point.

There are a number of ways that we intend to build on this work in the
future. As noted in the previous section, visualising the output shows clusters
of new events forming around activities. This seems to suggest that the method
finds activities, but these aren’t being seen or enlarged by subsequent layers of
the hierarchy. This could be an artifact of the dataset, or could be evidence that
we need to change how we change the LSTM probability distributions into links.
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It could also turn out that we need to find some way to cluster the discovered
event types. This could be done based on temporal proximity, for instance. Clus-
tering rare event types into more common ones might also make learning higher
layers easier. We did attempt to use a more complex clustering method in the
past, but this turned out to perform poorly at discriminating between events
from different activities. We aim to investigate and correct this issue as future
work.

8 Conclusion and Future Work

This paper presented a novel approach to activity discovery (AD), and tested
it on a real-world dataset. We have shown that the approach is viable, and
appears to show promise for the task of activity discovery. The system has been
evaluated on a number of distinct evaluation metrics, which show it to be robust
and suggest that the measured performance is not merely a result of picking a
favourable evaluation metric. Finally, we have outlined a number of changes we
plan to make in the future to further improve the system, and make it capable
of discovering activities even in very complex activities.
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Abstract. We revisit in this paper proportional fair channel allocation
in IEEE 802.11 networks. Instead of following traditional approaches
based on explicit solution of the optimization problem or iterative solvers,
we investigate the use of a bandit convex optimization algorithm. We
propose an algorithm which is able to learn the optimal slot transmission
probability only by monitoring the throughput of the network. We have
evaluated this algorithm both using the true value of the function to
optimize, as well as adding estimation errors coming from a network
simulator. By means of the proposed algorithm, we provide extensive
experimental results which illustrate the sensitivity of the algorithm to
different learning parameters and noisy estimates. We believe this is a
practical solution to improve the performance of wireless networks that
does not require inferring network parameters.

Keywords: Bandit convex optimization · Proportional fairness · WiFi

1 Introduction

Bandit Convex Optimization (BCO) is a type of Online Convex Optimization
(OCO) in which we deal with partial information. In BCO, decisions are made
between a player and an adversary repeatedly. In each iteration, the player selects
a point from a fixed and known convex set. Then the adversary chooses a convex
cost function. At the end of the iteration, the only available feedback for the
player is the cost of the function at the selected point. In this framework, the
player does not have any knowledge about the specific function nor the gradient
[6]. The main emphasis of BCO in the machine learning community has been
on rigorous theoretical performance analysis of algorithms. However, practical
application of BCO algorithms still requires more attention.

We argue that since many wireless network optimization problems can be eas-
ily formulated as convex problems; BCO is appealing for the wireless networking
community. Some potential applications of the convex optimization formulation
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are pulse shaping filter design, transmit beamforming, network resource alloca-
tion, MMSE precoder design for multi-access communication, robust beamform-
ing and optimal linear decentralized estimation.

BCO has two important advantages in wireless network communication. The
first advantage is that the player only needs the cost function feedback of a given
action, which facilitates practical implementation. Second, in BCO, the adver-
sary is able to choose among a set of convex functions which can capture network
dynamics such as changes in the number of nodes and channel conditions.

The main contribution of this article is an investigation of how to apply a
bandit convex optimization algorithm to proportional fair resource allocation
in wireless networks. This approach can be implemented by the access point
allowing learning of the optimal slot transmission probability only by monitor-
ing the throughput of the network. This research can help academia as well as
practitioners to assess whether bandit convex optimization algorithms can be
a practical solution for commercial use. The ultimate goal is to bring optimal
channel allocation in WiFi to practice by addressing the limitations of tradi-
tional approaches that need to be fed with as well as track changes in network
parameters (such as packet size and data rate used by each node in the network).

This paper is organized as follows. Section 2 describes the main background:
the random back-off operation and proportional fair allocation analysis in WiFi
networks. Section 3 describes bandit convex optimization and the proposed algo-
rithm. Section 4 presents the evaluation setup and performance results. Section 5
summarizes the related work in the area of WiFi network proportional fair opti-
mization. Finally, in Sect. 6 some final remarks are given.

2 IEEE 802.11 Background

In this section first, we describe the random back-off operation, then summarize
the throughput optimization in WiFi networks based on proportional fairness.

2.1 Random Back-Off Operation

The IEEE 802.11 protocol employs the Distributed Coordination Function
(DCF) mechanism to access the channel, which is basically a Carrier Sense Mul-
tiple Access/Collision Avoidance (CSMA/CA) method with binary exponential
back-off. In DCF when a station wants to send a packet, it monitors the channel.
If it senses the channel idle for a distributed inter-frame space (DIFS), it will
start a back-off countdown timer. Each time the station starts the back-off pro-
cedure it initializes CW to CWmin and chooses a random number in (0,CW−1),
where CW is the contention window. As long as the channel is sensed idle for a
time slot the back-off timer counter decrements. When a transmission is detected
on the channel, this timer freezes and is reactivated when the channel is sensed
idle for more than DIFS again.
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2.2 Throughput Optimization in WiFi Networks

Throughput in the 802.11 standard depends on the number of active stations and
the contention window used by each station. In particular, in multi-rate IEEE
802.11 WLANs, stations that use DCF and transmit at lower transmission rates
make use of the channel for longer periods of time to transmit the same amount
of data compared to stations using higher transmission rates. This reduces the
throughput of high-rate stations in the WLAN, since less time is available for
transmission in the shared medium. This effect is known as performance anomaly.
One solution to approach this problem is proportional fair allocation [10].

As done in [5] we formulate proportional fairness as a convex optimization
problem whose objective is the sum of logs of throughput, which will intrinsically
capture fairness while trying to achieve maximum performance even in a multi-
rate scenario. We assume that all the stations (n) are saturated, (i.e. stations
always have a packet to send) and generate uplink traffic to the network. Note
that the slot transmission probability (τ) is the reciprocal of the value of CW.
Let Si(τ) be the throughput of the station i, then:

Si(τ) =
Psucc,iDi

σPidle + Tc(1 − Pidle)
. (1)

Here two kinds of time slots are considered. The first one is the PHY idle slot
duration without any transmission which is of duration σ. The second one is the
busy slot which relates to the duration of a packet transmission [7]. The packet
transmission duration is denoted by Tc, which is the mean duration of a successful
or collided transmission of node i or other stations’ packet transmissions. The
successful transmission, includes the MAC ACK which is specified by Tack, Tfra

which defines the duration of a data transmission, a short inter-frame space
(SIFS) which represents an amount of time that channel requires for sending
the response frame and a DIFS. Tc can be calculated as follows (for clarity
of illustration, we consider this duration equal for successful transmissions and
collisions but the analysis can be easily extended to consider both as done in
[8]):

Tc = Tfra + SIFS + Tack + DIFS. (2)

The average packet size of the ith station is defined by Di in bits. Psucc,i is
the probability of a successful packet transmission of ith station, i.e., that only
station i transmits a packet and is given by Psucc,i = τi

∏n
k=1,k �=i(1 − τk). The

term Pidle is the probability that the channel is idle. When none of the stations
attempt to transmit a packet, the probability is defined as Pidle =

∏n
k=1(1 − τk).

The term 1 − Pidle is the probability that the channel is busy due to the suc-
cessful, unsuccessful (collisions) or other stations’ packet transmissions and it is
defined by 1 − Pidle = 1 − ∏n

k=1(1 − τk). Therefore, Eq. 1 is the amount of data
transmitted per slot when that is successful over the average duration of a slot.

In the following it will be more useful to use the transformed variable
xi = τi

(1−τi)
rather than τi, xi ∈ [0,∞) for τi ∈ [0, 1). The optimization prob-

lem can then be formulated as [5]:
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max.

n∑

i=1

S̃i(x),

s.t. S̃i(x) ≤ log
xiDi

X(x)Tc
.

(3)

The constraint certifies that the sum of logs of throughputs is feasible and
sits in the rate region. Since the log-transformed rate region Z̃ is strictly convex,
there exists a unique solution that satisfies strong duality and Karush-Kuhn-
Tucker (KKT) conditions which implies a global maximum [5].

This problem can be solved explicitly but our aim here is to formulate this
problem in a bandit framework so that knowing the networks parameters in
Eq. 3 is no longer required. This facilitates practical implementation and can
help adoption of optimization approaches in commercial WiFi cards, where the
selection of the CW used by the stations is generally static.

3 Bandit Convex Optimization

In Bandit Convex Optimization (BCO) three steps are repeated between the
player and the adversary. These three steps can be written for iteration t as
follows:

• The player chooses a point xt ∈ K ⊆ Rd.
• The adversary chooses a cost function ft ∈ F ⊆ Rk.
• The player observes ft(xt).

Here, xt is a point from a fixed and known convex set. K represents a convex sub-
set of a d-dimensional Euclidean space (K ⊆ Rd). In addition, all the functions
in F are convex [4].

The aim of BCO algorithms is to achieve low regret:

RT =
T∑

t=1

ft(xt) − minx∈K

T∑

t=1

ft(x). (4)

This formulation is known as cumulative regret, which measures the differ-
ence between the cumulative loss that is revealed to the player and the best-fixed
decision in hindsight after T iterations [6]. To achieve low regret most of the BCO
algorithms use Online Gradient Descent (OGD) with estimations of the gradi-
ent. In fact, the main complication of BCO is to estimate the gradients of the
cost functions. Therefore many researchers in BCO have investigated methods
for estimating these gradients and used their results in BCO algorithms [6].

Flaxman et al. [2] proposed a scheme that combined the estimated gradients
with the OGD algorithm of Zinkevich [11], who showed that a simple gradient
descent strategy for the player incurs a O(

√
T ) regret bound [3]. The algorithm of

Flaxman et al. uses point evaluations of convex functions to approximately esti-
mate the gradient. The regret bound of this algorithm is shown to be O(T 3/4).
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Agarwal et al. showed that in each round knowing the value of each cost func-
tion at two points is almost as useful as knowing the value of each function
everywhere, therefore their algorithm has a regret bound of O(T 2/3) improving
the O(T 3/4) bounds achieved by Flaxman et al. However, Flaxman et al. and
Agarwal et al. approaches cannot be used in a practical implementation and
realistic setting in wireless networks. First, in many settings it is impossible to
query cost functions two times in one iteration. Second, the variance of the sin-
gle point estimators in the approach of Flaxman et al. [2] is large; consequently,
speed of convergence is not practical for wireless stations [4,9].

3.1 Sequential Multi-Point Gradient Estimates in WiFi

We use the multi-point BCO algorithm defined in [4] which considers a simpler
assumption than that of Agarwal [3]. This algorithm is called Online Gradient
Descent with Sequential Multi-Point Gradient Estimates (OGD-SEMP) and to
estimate the gradient queries are combined from two consecutive iterations. The
algorithm considers a sequence of auxiliary points y1, y2, . . . which are used to
keep track of the player’s movement by updating gradient descent as follows:

yk+1 =
∏

k

(yk − ηkg̃k). (5)

Here, g̃k is the gradient estimate which is used to update yk+1. The parameter
ηk is the gradient descent step size and η = {η1, η2, η3, . . .} is a sequence which
shrinks over time. This coefficient defines the speed of convergence of gradient
descent to the final value yk. Figure 1 shows a schematic of this algorithm for the
kth iteration. Let’s consider yk as the kth point in a one-dimensional convex set
with the interval [yk − εkδk, yk + εkδk]. Then, the distance between the beginning
and the end of the interval is 2εkδk. Here, εk is a random number that can
be either −1 or 1. δk is a parameter which shrinks over time and it captures
the distance between the selected point and yk. In the first step, we choose an
arbitrary point and obtain its cost function as:

x̄t = yk + εkδk,

gk
+ = ft(x̄t).

(6)

In the second step we choose another point in time (t + 1) and obtain its cost
function as:

x̄t+1 = yk − εkδk,

gk
− = ft+1(x̄t+1).

(7)

In the following step, the gradient can be estimated as follows:

g̃k =
gk

+ − gk
−

2εkδk
. (8)

Here, the numerator is the subtraction of two cost functions evaluations and
the denominator is the distance between the beginning and the end of the interval
(see Fig. 1), which corresponds to an unbiased estimator of the gradient.
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Fig. 1. Sketch of Online Gradient Descent with Sequential Multi-Point Gradient Esti-
mates.

This algorithm was used in [4] for wireless networking optimization. The
authors provided the theoretical analysis of this algorithm and evaluated its
performance in an unlicensed LTE/WiFi fair coexistence use case. Here we aim
to use this method for achieving proportional fair allocation of resources in a
IEEE 802.11. Using this method, we only need to know the throughput of each
station, regardless of other parameters of Eq. 3, to achieve proportional fairness.

Applied to the WiFi throughput proportional fairness case, the cost function
is equal to ft =

∑n
i=1 S̃i(xt). Therefore, the cost functions in Eqs. 6 and 7 (ft(x̄t),

ft+1(x̄t+1)) define the objective function of our optimization problem at time t
and time t + 1 respectively, with x̄t = {x1, x2, . . . , xi} a vector which defines xi

for all the stations at time t,1 and x̄t+1 = {x1, x2, . . . , xi} a vector which defines
point x for all the stations at time t + 1.

In more detail, consider a repeated game of T rounds. In each round t =
{1, 2, . . . , T} the WiFi network selects Eq. 3, which we now denote as ft with
some n, xi, Di and Tc. Then, in each round t:

• The WiFi access point chooses x̄t.
• The WiFi network (formed by all WiFi nodes) independently selects ft ∈ F .
• The WiFi access point observes ft(x̄t).

1 Recall that xi is a transformed variable xi = τi
(1−τi)

rather than τi, xi ∈ [0, ∞) for

τi ∈ [0, 1). (As seen in Sect. 2).



Achieving Proportional Fairness in WiFi Networks via BCO 91

4 Performance Evaluation

Here we present the evaluation of OGD-SEMP when applied to the WiFi use
case by executing an extensive set of simulations in Matlab and in a custom
simulator. According to the IEEE 802.11ac standard, we have considered:

Tfra = Tplcp +
⌈

Ls + nagg(Ldel + Lmac−h + D) + Lt

nsym

⌉

Tsym, (9)

Tack = Tplcp +
⌈

Ls + Lack + Lt

nsym

⌉

Tsym, (10)

with physical and channel access parameters as listed in Table 1.
This custom simulator consists of two main parts, the channel and the

node module. The node module includes a network model with physical, MAC,
network and application layers. It was previously used for evaluating OGD-
SEMP performance in an unlicensed LTE/WiFi fair coexistence use case. In
this research we extend the simulator to consider the particularities of the WiFi
proportional fair use case gradient descent implementation.

Table 1. Simulation parameters according to IEEE 802.11ac [1].

Parameter Value

Slot Duration (σ) 9µs

DIFS 34µs

SIFS 16µs

PLCP Preamble + Header Duration (Tplcp) 40µs

EIFS 364µs

TimerACK 314µs

Propagation Time 1µs

Tsymbol (Tsym) 4µs

PLCP Service Field (Ls) 16 bits

MAC Delimiter Field (Ldel) 32 bits

MAC Header (Lmac−h) 288 bits

Tail Bits (Lt) 6 bits

ACK Length (Lack) 256 bits

Payload (D) 12000 bits

nsymbol (nsym) 1040 bits

number of aggregated packets (nagg) 64

MIMO 4

Since the contention window values are discrete while the slot transmission
probabilities in our model are continuous, we need to convert discrete values of
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contention window to the desired continuous one in the simulator. To achieve
this we use CW1 for t1 seconds and CW2 for t2 seconds in a way that the
average contention window matches that of the model.2 Recall that τ = 1/CW.
The gradient descent algorithm is executed each T seconds, with T = c(t1 + t2),
with c a positive integer. The throughput used by the algorithm as feedback is
the average throughput during T seconds.

We evaluate the performance of the algorithm using the individual through-
put metric (St). We use Matlab in order to feed the algorithm with the true
values of the individual throughput computed using Eq. 3 for each set of experi-
ments and use the simulator for evaluating the impact of having estimated values
instead of the true value of the throughput. Noise in the estimates is caused by
the random backoff, collision probabilities and discretization of the slot transmis-
sion probability as described above. By comparing the evolution of throughput
over time for different settings we evaluate the algorithm’s performance regard-
ing the time to convergence.

4.1 Simulation Results

In the simulations first, we have set the gradient descent step size as ηk =
η/k(3/4) and δk = ω/h(k), with ω as an input parameter and h(k) as some
increasing function. We will refer to ω as the exploration parameter and h as
the exploration schedule. We vary the number of stations in the network (n)
with n = {5, 20}. Then in order to evaluate the sensitivity of the algorithm to
two different exploration schedules, we have changed the exploration schedule
to ηk = η/k(1/2). Note that stations always have a packet to transmit (nodes
are saturated) and we consider homogeneous stations (same packet size and
transmission probability).

Sensitivity to the Learning Parameters. First, we evaluate the performance
of the algorithm by changing the exploration parameter ω -observe that this
parameter controls how far from yk we take the two cost function evaluations at
consecutive iterations- and gradient descent step size (ηk). We set h(k) equal to
k(3/4) which shrinks the exploration parameter as time goes by.

Figure 2 shows the results of the individual throughput for 5 nodes during 50
iterations. We repeat the same simulations for 30 runs in order to obtain more
accurate results. Therefore, in the figures each color represents one simulation
run. Optimal results from [5] are shown in Fig. 2 as straight lines. This results are
obtained from the implementation of the algorithm in Matlab with cost function
computed using Eq. 3 and IEEE 802.11ac parameters from [1]. We show results
with different exploration parameter ω = {0.01, 1} and gradient descent step
size η = {0.01, 1}.

2 In particular, we set CW1 and CW2 to the immediately lower/higher allowed value
in IEEE 802.11 and compute t1 and t2 accordingly.
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Figure 2 shows that by fixing η and increasing parameter ω the rate of con-
vergence increases. As we saw in Eq. 6 increasing the value of exploration param-
eter (ω), we take bigger steps towards the optimum. By fixing parameter ω and
increasing the parameter η for the range of values considered the rate of con-
vergence increases as well since we also make larger steps with bigger gradient
descent step sizes. We observe that the increasing trend in the second case is
faster than the first case. It can be seen that for exploration parameter equal
to {0.01, 1} and gradient descent step size equal to 1 the algorithm converges to
the optimum value after a few number of iterations (less than 20).
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(a) ω = 0.01, η = 0.01.
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(b) ω = 0.01, η = 1.
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(c) ω = 1, η = 0.01.
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(d) ω = 1, η = 1.

Fig. 2. Individual throughput for n = 5 using different ω, η and h(k) = k(3/4).

Here we keep the algorithm setup same as above and increase the number
of nodes. Figure 3 illustrates the individual throughput of a network 20 nodes.
By comparing Figs. 2 and 3, we observe that for the same value of ω and η by
increasing the number of nodes, the algorithm converges to the optimum faster.
The reason for this behavior is illustrated in Fig. 4. This figure shows the shape
of the objective function for the different number of nodes. As it is shown by
increasing the number of the nodes in the network the function becomes steeper,
thus the gradients are larger. This means that the algorithm makes larger steps
at each iteration and reaches the optimum value faster. Note that the difference
between the minimum value of the convex function and its maximum is increased
by increasing the number of nodes. For this case the algorithm converges in
around 10 iterations or less for ω = {0.01, 1} and η = 1.
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(a) ω = 0.01, η = 0.01.
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(b) ω = 0.01, η = 1.
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(c) ω = 1, η = 0.01.
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(d) ω = 1, η = 1.

Fig. 3. Individual throughput for n = 20 using different ω, η and h(k) = k(3/4).
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Fig. 4. Shape of the objective functions for n = 5 and n = 20.

Sensitivity to the Exploration Schedules. In this set of simulations we
use the same setup as in the previous subsection but we change the exploration
schedule to h(k) = k(1/2). Here we evaluate the sensitivity of the algorithm
to two different exploration schedules. Similarly to Figs. 2 and 3, Figs. 5 and 6
show the individual throughput for different values of ω, η and h(k) = k(1/2).
We can observe that with h(k) = k(1/2), the convergence speed is almost the
same as h(k) = k(3/4). Only for the case n = 5, ω = 1 and η = 1 (Figs. 2(d)
and 5(d)), we observe that the convergence speed in Fig. 2(d) with h(k) = k(3/4)

is slightly faster than in Fig. 5(d) with h(k) = k(1/2). These results show that
the sensitivity of the algorithm to the exploration schedule is negligible for the
exploration schedules considered.



Achieving Proportional Fairness in WiFi Networks via BCO 95

0 10 20 30 40 50
30

35

40

45

50
 Throughput for 5 nodes ω =0.01η =0.01

optimum value = 45.37(Mbps)

(a) ω = 0.01, η = 0.01.

0 10 20 30 40 50
30

35

40

45

50
 Throughput for 5 nodes ω =0.01η =1

optimum value = 45.37(Mbps)

(b) ω = 0.01, η = 1.

0 10 20 30 40 50
10

20

30

40

50
 Throughput for 5 nodes ω =1η =0.01

optimum value = 45.37(Mbps)

(c) ω = 1, η = 0.01.

0 10 20 30 40 50
10

20

30

40

50
 Throughput for 5 nodes ω =1η =1

optimum value = 45.37(Mbps)

(d) ω = 1, η = 1.

Fig. 5. Individual throughput for n = 5 using different ω, η and h(k) = k(1/2).
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Fig. 6. Individual throughput for n = 20 using different ω, η and h(k) = k(1/2).
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This means that the impact of h(k) compared to the gradient descent step
size η, exploration parameter ω and gradients is low. We also see, as before, that
by increasing the number of nodes in the network the individual throughput
value converges to its optimum value faster (See Fig. 6).

Sensitivity to Noisy Gradient Estimates. Here we evaluate the perfor-
mance of the algorithm by having noisy estimates of the individual throughput
instead of the true value. In order to achieve this goal we implement the algorithm
in the simulator. We set the exploration parameter to ω = {0.01, 1} and gradient
descent step size to η = {0.01, 1}. We set the gradient descent timer equal to
T = 100 s and the value of contention window timer equal to (t1 + t2) = 0.1 s.
Each simulation is again run 30 different times in order to achieve more accurate
results. Here the exploration schedule is set to k(3/4).

Figure 7 shows that the algorithm still converges in less than 10 iterations
for ω = 1 and η = 1. We see that for ω = 0.01 the evolution of throughput is not
following the desired convergence trend. We also see that convergence is worse
for smaller values of the exploration parameter. The reason for this behavior is,
we argue, the noise: with a small value of ω the gradient estimations are less
accurate making more probable for gradient descent to move in the opposite
direction of the optimum.
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Fig. 7. Individual throughput for n = 5 using different ω, η and h(k) = k(3/4) (noisy
estimates).
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5 Related Work

The most recent works on WiFi network throughput optimization are based
on a proportional fairness approach. The reader is referred to those which are
presented by Checco et al. [5] and Patras et al. [8], which are similar in nature.

Checco et al. [5] pioneered rigorous analysis of proportional fairness in IEEE
802.11 WLANs. They proved that a unique proportional fair rate allocation
exists as the flow total air-time. This algorithm corrects previous works on air-
time quantities and uses the IEEE 802.11 rate region as a log-convex. It satisfies
per station fairness and per flow fairness. In these approaches [5,8], throughput
optimization is achieved by inferring MAC parameters and network metrics such
as packet transmission duration, slot transmission probability and average packet
size of the stations. These metrics can be estimated but we need to handle
estimation errors and network dynamics.

We base our algorithm on these rigorous approaches but without the need
to know all parameters of the function to optimize. In this way proportional
fairness can be achieved without the need to infer and keep track of network
parameters and only by estimating the individual throughput at each station,
which can be achieved at the application layer in a commercial access point with
minimal changes.

6 Conclusion

The main focus of this article is on achieving proportional fairness in WiFi net-
works by applying bandit convex optimization. We have applied the OGD-SEMP
algorithm based on the BCO algorithm to the WiFi proportional fairness use
case. Our results show that, with the appropriate setting of parameters, the algo-
rithm converges to the optimum value in a few number of iterations. However,
the parameter of the algorithm that controls the degree of exploration has a
significant impact on the algorithm’s performance, especially when we are faced
with throughput estimation errors. This can be alleviated by increasing the dura-
tion of the estimation periods but at the cost of longer convergence times. Other
solutions involve using averages of the gradient estimates in different iterations.
The evaluation of these approaches to reduce the sensitivity of the algorithm
to noise are left as future work. We conclude that the algorithm is a practical
solution for wireless network optimization, but that care has to be taken when
configuring the algorithm parameters.
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Abstract. Traffic classification is key for managing both QoS and secu-
rity in the Internet of Things (IoT). However, new traffic obfuscation
techniques have been developed to thwart classification. Traffic muta-
tion is one such obfuscation technique, that consists of modifying the
flow’s statistical characteristics to mislead the traffic classifier. In fact,
this same technique can also be used to hide normal traffic characteris-
tics for the sake of privacy. However, the concern is its use by attackers
to bypass intrusion detection systems by modifying the attack traffic
characteristics. In this paper, we propose an unsupervised Deep Learn-
ing (DL)-based model to detect mutated traffic. This model is based on
generative DL architectures, namely Autoencoders (AE) and Generative
Adversarial Network (GAN). This model consists of a denoising AE to
de-anonymize the mutated traffic and a discriminator to detect it. The
implementation results show that the traffic can be denoised when dif-
ferent mutation techniques are applied with a reconstruction error less
than 10−1. In addition, the detection rate of fake traffic reaches 83.7%.

Keywords: Machine Learning · Network security · Traffic
classification · Obfuscation · Deep Learning · IoT · Autoencoder ·
Generative Adversarial Network

1 Introduction

In the IoT era, billions of things are being connected to the Internet. This
results in an unprecedented growth in the amount of generated traffic. This traf-
fic presents different QoS and security challenges. Traffic classification emerges
as a key enabling tool to meeting some of these challenges. For example, IoT
devices’ vulnerabilities have been exploited to perform critical network attacks
(e.g. Mirai) [34]. Tracking these devices and detecting abnormal traffic are key
to prevent harmful network attacks.

In this context, Machine Learning (ML) based methods were proposed for
traffic classification and intrusion detection. Many supervised and unsupervised
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methods have been employed accordingly. While supervised methods are devoted
to classifying the (attack) traffic based on known class labels, the unsupervised
ones allow the detection of unknown traffic. The traditional ML methods rely on
well-structured and hand-designed features. These features are extracted using
statistical traffic measures (e.g. maximum, minimum, standard deviation, etc. of
the packet sizes, and packets interarrival times).

However, mutation techniques alter the traffic statistical features, making
it very challenging to know the original traffic type. Moreover, the mutation
techniques might change the packets characteristics while maintaining the flow
statistical features unchanged. In this case, the detection of abnormal traffic can
be evaded.

Recently, Deep Learning (DL) has acquired a lot of attention due to its repre-
sentation learning capabilities. Using a new data representation in this paper, we
propose an unsupervised DL model to detect abnormal traffic and de-anonymize
the mutated one. Generative DL architectures, namely Autoencoders (AE) and
Generative Adversarial Networks (GAN), have been applied mainly in the com-
puter vision domain to detect abnormality and to denoise images. AE is a DL
architecture for extracting data representation, and GAN has the capability
to generate fake data samples to enhance the discrimination between real and
fake data. In this paper, we combine AE and GAN to detect abnormal traf-
fic and de-anonymize the mutated one. The proposed architecture consists of
an encoder, a decoder, and a discriminator. The encoder-decoder pair form a
denoising AE responsible for learning the original data representation and to
denoise the mutated one. In parallel, the discriminator is trained to differentiate
between the mutated traffic (abnormal) and the denoised traffic (normal). The
training of the proposed model relies on data collected from real IoT devices and
IoT attacks. The testing results show the robustness of the proposed method to
detect mutated traffic and to recover the original one. Note that the proposed
model is not limited to IoT traffic and can be applied to any type of network
traffic.

The rest of the paper is organized as follows: in Sect. 2, we present an overview
of related concepts. In Sect. 3, we present our proposed model. Section 4 details
the implementation and presents the evaluation results. In Sect. 5, we discuss
the results and present our future work. Finally, we conclude in Sect. 6.

2 Background and Related Work

In this section, we present the related work including a review of the generative
DL architectures, their application in detecting abnormality, traffic classification
and intrusion detection methods, along with the obfuscation techniques that can
affect their accuracy.
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2.1 Unsupervised Deep Learning

In this subsection, we explain the DL architectures that we based our work on.
These architectures can learn the input data representation and are therefore
called generative DL models.

Generative Adversarial Network: Introduced by Goodfellow et al. in [24],
GAN consists of two parts: the generator (G) and the discriminator (D). From
a game theoretic perspective, GAN can be interpreted as a zero-sum or min-
max game between the generator and the discriminator. The generator tries to
learn the input data representation to generate data samples very similar to the
real ones. The discriminator tries to maximize the probability of distinguishing
between fake and real input. The GAN objective function can be presented as
follows: V (G,D) = Ex∼pdata(x)(log(D(x)) + Ez∼pz(z)(log(1 − D(G(z))))) where
x is the input data, pdata(x) is the data distribution, D(x) is the discriminator
output, pz(z) is the fake data distribution, z is a sample from pz(z), and G(z)
is the generator output. The generator aims at minimizing the probability of
fake data detection by the discriminator, which means that the G objective is to
find min

G
(Ez∼p(z)(log(1−D(G(z))))). The discriminator aims at maximizing the

probability of detecting real data as real and fake data as fake, which means
that the D objective is to find max

D
(Ex∼pdata(x)(log(D(x))) + Ez∼p(z)(log(1 −

D(G(z))))). Thus, the GAN objective is to find min
G

max
D

(V (G,D)). Primarily,
GAN is applied for synthetic data generation. GAN has been applied also for
image anomaly detection [19,27,50]. In fact, the adversarial learning permits
the discriminator to detect abnormal input data. Furthermore, the generative
learning permits the generator to learn the real data representation, which makes
GAN suitable for image denoising [40,47].

Autoencoders: Being a generative model, AE is a type of DL networks that
is specialized in extracting the input data representation. The AE consists of
two parts: an encoder and a decoder. The encoder extracts a compressed data
code by estimating a function f , in such a way z = f(x), where x is the input
data, and z is the extracted representation or latent variable. The decoder aims
at reconstructing the input data by relying on the extracted representation. In
other terms, the decoder tries to infer the inverse function g, in such a way
that y = g(f(x)) = g(z). The AE objective function can be represented at the
minimization of the difference between g(f(x)) and x. In other terms, the AE
aims at minimizing the reconstruction error.

A type of AEs is the probabilistic autoencoder, which aims to infer the distri-
bution of x, pθ(x) by means of another distribution qφ(z/x) (probability of the
latent variable z knowing the input x). A well-known type of probabilistic AEs
is the Variational Autoencoder (VAE), which imposes a prior restriction on p(z)
to be a normal distribution. In this case, the problem reduces to maximizing the
Evidence Lower Bound (ELBO) or maximizing the Kullback–Leibler (KL) diver-
gence between qφ(z) and pθ(z/x), represented by KL(qφ(z/x)||p(z)). Having the
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ability to extract the real data distribution, VAEs have been applied for anomaly
detection. Indeed, when the reconstruction error is large, anomaly is detected in
the input data. Borrowing the adversarial concept from GAN, Adversarial AEs
(AAE) were introduced by Makhzani et al. in [30]. Similar to the GAN, AAE
includes a discriminator that tries to differentiate between the data sampled from
the latent variable prior p(z) and the real data. In this case, the discriminator
aims to minimize Ldis = −1/N

∑N−1
i=0 log(dx(zi)) +

∑2N
j=N log(1 − dx(zj)), and

the generator tries to minimize Lprior = 1/N
∑N−1

i=0 (log(1 − dx(zi)), where N
is the number of samples, and dx(zi) is the discriminator output of the latent
space variable. In this case, if the total loss function is optimized, qφ(z/x) will be
very similar to p(z), or in other terms, KL(qφ(z/x)||p(z)) will be minimized, and
thus the log likelihood of the original data distribution will be maximized. AAEs
were applied also for anomaly detection in images [5,23,44,46]. Furthermore, a
recent work has considered to add the denoising function to the AAEs for image
denoising [17]. In this case, the corrupted data x̃ is considered as input and two
methods were proposed for model representation. The first consists of matching
q̃φ(z/x) to p(z), and the second consists of matching qφ(z/x̃) to p(z). However,
in our work, we use a sparse AE that aims to minimize the Mean Square Error
(MSE) between the reconstructed data and original data. In addition, applying
the adversarial concept, we choose to train a discriminator to detect abnormal
traffic when the reconstruction error is high. Thus, unlike previous work, the
generator part of GAN is omitted [13].

2.2 ML Based Traffic Classification and Intrusion Detection

Traffic classification is an essential network function, which is necessary for traf-
fic engineering, QoS management, and security management. Different meth-
ods have been proposed for traffic classification using different sets of fea-
tures [8,9,18,22,32,33]. More recently, DL has been applied for traffic classi-
fication using new features and new data representations [14,21,36,39,45].

On the other hand, intrusion detection is an essential network security compo-
nent. Several approaches have been adopted to detect and prevent network attacks.
Traditional Intrusion Detection Systems (IDSes) are rule-based, where the attack
signature is known by identifying some patterns in the packet’s fields. However,
this method fails to detect unknown attacks (e.g. zero-day attacks) and requires
the inspection of the packet header. In addition, traffic anonymization can be used
to thwart detection by traditional IDS. ML methods have been proposed to detect
network attacks and traffic abnormality by means of statistical features [6]. How-
ever, the traditional methods require the extraction of the features by computing
statistical measures that might be data dependent. In addition, the detection of
abnormal traffic is not a straightforward task, given that the abnormal trafficmight
present similar statistical behavior to the normal one [4].

Recently, DL has been applied in the network domain for intrusion detec-
tion [3,43]. More specifically, IoT, which presents aggravated security challenges,
has acquired a special attention from the intrusion detection perspective [10,16].
Convolutional Neural Network (CNN) and Recurrent neural Network (RNN)
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have been applied for payload-based attack detection in [29]. While supervised
learning was mainly considered for identifying specific attacks [48], the detection
of unknown and zero-day attacks call for unsupervised-learning-based methods.
In fact, the proposed unsupervised [31] or semi-supervised [41] DL methods for
intrusion detection use statistical features. To the best of our knowledge, no
previous work considered the recovering (denoising) of the mutated traffic. In
addition, this is the first work to consider the question of detection of mutated
traffic, in addition to the (unknown) attack traffic.

2.3 Traffic Obfuscation Techniques

In the aim of protecting user privacy, a new research direction is considering
traffic obfuscation to thwart classification. In this context, many obfuscation
techniques have been proposed [15,25]. These methods can be classified in seven
categories: steganography, tunneling, anonymization, mutation, morphing, and
physical layer obfuscation. While steganography and physical layer obfuscation
techniques require specific protocols to recover the original data, the remaining
techniques can be applied without imposing changes to the current network pro-
tocols. Anonymization and tunneling hide some packet-related information by
encryption and establishment of virtual connections (port numbers and inter-
net addresses). However, statistical ML methods still have power to classify the
anonymized or tunneled traffic. Mutation and morphing are two techniques that
consider modifying the statistical traffic characteristics considering the modifi-
cation of the packet size and the packet Inter-Arrival Times (IAT) [11]. This has
great impact on the accuracy of ML-based classification and intrusion detection.
Even though the obfuscation techniques were intended to protect the user pri-
vacy, attackers might use them to perform their attacks without being detected.
In this context, padding and traffic shaping are proposed to modify the packet
size and IAT respectively [7,35].

Recently, the GAN DL architecture has been employed to adapt malware
traffic to the normal one [28,37,42,51]. On the contrary, in this paper, we will
consider a discriminative denoising DL model to detect abnormality by relying
on the trained discriminator and to de-anonymize mutated traffic by means of a
denoising AE.

Our contributions in this paper can thus be summarized by the following
points:

– The discriminative part of GAN with a denoising AE are combined to allow
mutated traffic detection and recovery.

– A new data representation is used to permit the de-anonymization of
mutated traffic by applying DL-based techniques.

3 Proposed Abnormal Traffic Detection

In this section, we detail our proposed DL model, the attack model, and the
traffic representation method.
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3.1 Attack Model

Our attack model consists of an attacker trying to modify the packet size
(padding) and IAT (shaping), in such a way to hide any information that serves
for attack detection or traffic classification. The mutations are therefore of two
types, padding and shaping [28, 29], as shown in Fig. 1. In the following, we
summarized the packet padding techniques listed in [7,12,35], with s being the
packet original size and m(s) being the packet size after mutation.

Fig. 1. Attack model

1. Padding to the Maximum Transmission Unit (MTU): this technique
consists of padding all the flow packets to the same size, which is the MTU.
In this case, the mutation can be expressed by m(s) = MTU .

2. Linear padding: this technique consists of linearly padding the flow pack-
ets sizes. In this case, the mutation equation can be expressed as follows:
m(s) = �s/c� ∗ c, where c is a parameter to choose, and �s/c� is the ceiling
of s/c.

3. Exponential padding: this technique consists of padding the packet size
in an exponential manner. The mutation can be expressed by the following
equation: m(s) = min(2log2(s),MTU).

4. Elephants and mice padding: this technique consists of padding the
packet to a certain size c (mice), if the original packet size if less than c. If
not, the packet size is padded to the MTU (elephant).

5. Random padding: this technique consists of padding the packet randomly
to a size chosen randomly from the interval ([s,MTU ]). In this case, the
mutation function can be expressed as following: m(s) = RAND([s,MTU ]).
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6. Probabilistic padding: this technique assumes that the packet sizes follow
a normal distribution. In this case, the mutated size is chosen randomly
based on a normal distribution, where the mean (μ) and standard deviation
(σ) are computed considering the original traffic packet sizes. In this case,
m(s) = GAUSS(μ, σ) [12].
For the IAT shaping techniques, we list in the following the ones included
in [49] in addition to a new technique proposed in [12]:

7. Constant IAT: this technique consists of sending the packets at a fixed
IAT.

8. Variable IAT: this technique consists of sending the packets at a variable
interval of time randomly chosen from the interval [I1, I2].

9. Probabilistic IAT shaping: this technique assumes that the IAT follows a
normal distribution. Thus, the packets are transmitted at an interval chosen
randomly based on a normal distribution, where the mean and standard
deviation are computed based on the original traffic packets IAT.

The last method, described in [20], combines shaping and padding.

10. Fixed size and fixed IAT: this method consists of padding the size of
all the flow packets to the MTU and sending all the packets at a fixed time
interval.

This model considers two types of adversaries, including:

– Malicious adversary: this type of attackers aims at mutating the attack
traffic to evade intrusion detection.

– Benign adversary: this type of attackers aims at hiding the traffic charac-
teristics to protect the user privacy.

Fig. 2. Proposed model
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3.2 Deep Learning Model

Our proposed model, illustrated in Fig. 2, consists of two parts: a denoising AE
and a discriminator. The denoising AE consists of an encoder and a decoder. The
encoder aims at estimating the function f , that maps the input space of X to
the latent space of the latent variable Z, where Z is a compressed representation
of X. The denoising AE is fed with a dataset containing the mutated version
x̃ of the initial data X. The AE aims at minimizing the reconstruction error
L(X, X̃). In our case, the loss function is the MSE function, L(X, X̃) = (X −
g(f(X̃)))2, where X is the original data and g(f(X̃)) is the reconstructed data by
considering the mutated data as input. The discriminator aims at differentiating
between normal and abnormal traffic. In fact, the discriminator will be trained
on classifying the mutated data (i.e. the mutated input data) as abnormal and
the reconstructed data (i.e. the decoder output) as normal. The output function
of the discriminator is a sigmoid function p(y = y(j)/x) = 1/(1 + e−y(j)

), where
y(j) is the output class that can take the two values: 0 for j = 0 and 1 for j = 1,
and the loss function is a cross entropy function LD = 1/m

∑1
j=0 y(j)log(y(j)) +

(1 − y(j))log(1 − y(j))).

3.3 Proposed Model Workflow

After training the model, the proposed scheme workflow, illustrated in Fig. 3,
consists of: (1) passing the traffic to the discriminator; (2) if the traffic is normal,
it is passed to the classifier of normal traffic; (3) If not, it is passed to the denoiser.
(4) After denoising, it is passed again to the discriminator. (5) If a normal traffic
is detected, it is passed to the classifier; (6) if not, the traffic is detected as
abnormal, so it might be obfuscated or attack traffic. The same workflow is
repeated for the abnormal traffic to know the attack type or detect an unknown
attack traffic.

In fact, two cases are considered. First, when training the model on normal
traffic, the aim is to detect attack traffic and the mutated one as abnormal. In
this case, the denoising aims at recovering the normal traffic for classification.
However, when training the model with attack traffic, at the testing phase the
aim is to detect unknown attacks and to denoise the mutated attack traffic to
know the exact attack type. Note that the classifier will be trained in a supervised
mode to classify the traffic based on the IoT device type in the normal traffic
case and based on the attack type in the attack traffic case.

3.4 Data Representation

In our case, the data consists of collected network traffic. This traffic is filtered
by flows, where a flow is defined as being the set of packets having the same:
source IP address, source port number, destination IP address, destination port
number, and protocol (TCP or UDP). For each packet, we extract three features:
size (s), IAT (t), and direction (d). For each flow, we consider the first 4 ∗ 4
packets in either direction. In fact, as shown in Fig. 3, the extracted features
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Fig. 3. Proposed scheme workflow

can be visualized in 4 ∗ 4 RGB images, where the ith pixel RGB coordinates are
represented by the ith packet features [s, t, d]. Thus, every feature represents a
color channel. In our case, R is given for the size, G is given for the interarrival
time, and B is given for the direction. This data representation is explained in
detail in [38] (Fig. 4).

Fig. 4. Data representation

4 Implementation

In this section, we detail the data collection and preprocessing, the model imple-
mentation, and the evaluation results.

4.1 Data Collection and Preprocessing

For collecting normal IoT traffic, we used a set of IoT devices, including Wi-Fi-
enabled devices and hub-connected devices. The Wi-Fi devices are: D-Link HD
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180-Degree Wi-Fi Camera DCS-8200LH, D-Link Wi-Fi Smart Plug DSP-W215,
D-Link Wi-Fi Siren DCH-S220, and D-Link Wi-Fi Water Sensor DCH-S160,
while the hub-connected devices are components of the Samsung SmartThings
Home Monitoring Kit, including a motion sensor, a multi-purpose sensor, and a
smart plug. These devices were installed in a home environment and were left
to function normally. The Wi-Fi enabled devices are routed through a laptop
to the Internet. A bridge is created at this laptop to forward the incoming
traffic to the Ethernet interface connected to the home gateway. For the hub-
connected devices, the hub is connected to the laptop by Ethernet and this laptop
is configured to forward the incoming traffic to the wireless interface connected
to the home gateway. In both cases, the traffic is collected at the laptop. One
day of traffic for each device was considered for training and one day of traffic
was used for testing.

For IoT attack traffic training data, we consider the dataset collected in [26],
this dataset consists of multiple PCAP files for each type of attack. We choose
one file for each type of attack for training and one file for testing.

To preprocess the data and extract the flows, the dpkt Python library was
used [1]. In total, for training, we have 10320 flows of normal traffic and 3308
flows of attack traffic. For testing, we have 258 flows of normal traffic, 350 flows
of attack traffic, and 2000 flows of (unknown) attack traffic. The normal traffic
is categorized into five classes based on the device model while the attack traffic
is categorized into three classes: data theft, denial of service and scanning.

4.2 Model Implementation and Training

The proposed model was implemented in Python using the tensorflow library [2].
The encoder, decoder and the discriminator consist of a 2-layer fully connected
neural network with 1000 neurons each. The output layer of the decoder and
the discriminator is a sigmoid layer, with the difference that the decoder output
is of the same dimension of the input; however, the discriminator output is of
dimension one. The model is trained with 100 epochs and a batch size of 100,
the learning rate is 10−3, and the momentum decay is 0.9 (beta1). The Rectified
Linear Unit (ReLU) was used as the activation function for all hidden layers, and
the weights are optimized using the Adam optimizer. For generating mutated
data, we implement the mutation techniques listed in section III-B ((1) →(10)).
The training data is randomly mutated, where each data sample is uniformly
mutated to one of the 10 mutation techniques.

For testing the effectiveness of the denoising process on the classification
accuracy, we implement a CNN classifier with three convolutional layers, two
max pooling layers, and two fully connected layers with one dropout layer with
50% dropout probability. Similarly, ReLU is applied for activation in the hidden
layers, and the Adam algorithm is used for optimization with a learning rate of
10−3. In addition, we apply cross validation for the classifier training with 4 folds.
The performance metric used to evaluate the classifier is the accuracy, which is
the ratio of the correctly classified samples to the total number of samples.
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4.3 Evaluation and Results

For each of the experiments (1) →(10), the corresponding mutation technique
is applied to the testing data. First, the traffic is passed to the discriminator.
Then, it is passed to the denoising AE. Furthermore, the mutated and denoised
traffic are passed to a classifier, that classifies the flow based on the device model
for normal traffic and based on the attack type for attack traffic.

Samples of the mutated traffic and resulted images after denoising are
included in Fig. 5. It is visually clear from the included images that the denoiser
succeeds in learning the original data representation disregarding the mutation
level. The difference between the denoised images and the original ones shows
that the model does not overfit the data, however it learns the representation
and the noise pattern.

For the normal traffic, the denoiser succeeds in recovering flows very similar
to the original ones for most of the mutation techniques, except for the mutations
(8) and (9). Similarly, for the attack traffic, the denoiser recovers the main flow
representation, except for the mutation (2). In Table 1, the MSE between the
original data and the mutated one (mutation degradation), the reconstruction
loss, and the abnormality detection rate are reported for the normal traffic and
the attack traffic.

Table 1. Testing evaluation results

Mutation
technique

Autoencoder loss Mutation loss Discrimination rate

Normal Attack Normal Attack Normal Attack

(1) 0.042 0.0357 0.2713 0.1698 100% 100%

(2) 0.03218 0.1569 0.0171 0.082 100% 100%

(3) 0.0149 0.1569 0.0009 0.0065 88.99% 83.13%

(4) 0.0543 0.0463 0.2704 0.1696 50% 49.94%

(5) 0.067 0.0519 0.0171 0.082 100% 100%

(6) 0.0621 0.0703 0.0129 0.0411 49% 49.88%

(7) 0.0378 0.1569 0.2974 0.3245 100% 100%

(8) 0.0595 0.0257 0.09878 0.1016 99.02% 100%

(9) 0.1728 0.0303 0.2825 0.0012 50% 41.59%

(10) 0.0369 0.0519 0.5687 0.4943 100% 100%

The results present a high detection rate for the different mutation tech-
niques, except for the mutation techniques (4), (6), and (9). This can be
explained by the fact that (6) and (9) are normal distribution based muta-
tions. In these cases, the main traffic characteristics will remain unchanged and
this will harden the differentiation between the original and mutated traffic. (4)
is a mice-elephant mutation of the packet sizes. However, in our case (i.e. IoT
traffic), most of the packets are of small size and therefore the mutation (4) will
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Fig. 5. Visualized images representing network traffic

have limited affect on the traffic characteristics. Moreover, it can be noticed that
the MSE between the recovered data and the original one (reconstruction loss)
is lower than the MSE between the mutated data and the original one (muta-
tion degradation) in most of the cases. This means that the denoising process
decreases the degradation effect by reconstructing a version of the data that is
closer to the original one.

Table 2 presents the accuracy of the classification based on the traffic label:
device model for normal traffic and attack type for attack traffic. The mutation
techniques (1), (4), (7), and (10) affect the accuracy and misleads the classifica-
tion noticeably in the normal traffic case; however, after denoising, the accuracy
increases. However, for the techniques (5), (6), (8), and (9), the denoiser fails to
reconstruct the original traffic. This is due to the fact that the randomness will
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create a denoised traffic of random type. Moreover, for the mutation technique
(2), the mutation is linear and this does not affect the CNN classifier accuracy,
being immune to the linear degradation of the image. However, for statisti-
cal based machine learning methods, the mutation techniques (2), (5), and (6)
affect noticeably the classification accuracy. To see the effect of the mutation
on the statistical based classification, we include the results of the mutated and
denoised traffic statistical based classification in Table 2. The statistical classi-
fication uses a subset of the Moore features (see Table 3) and Random Forest
(RF) as classifier. It can be noticed that overall our representation method with
CNN classifier outperforms the RF method before and after denoising in the
normal traffic case. However, in the attack traffic case, our method gives better
results after denoising.

Table 2. Classification results

Mutation technique

Before denoising After denoising

Normal Attack Normal Attack

CNN RF CNN RF CNN RF CNN RF

(1) 30.14% 54.47% 51.55% 80.84%65.19%38.78% 53.1% 37.05%

(2) 93.13% 25% 36.27% 36.24% 79.16% 68.68% 33.41% 33.41%

(3) 99.01% 87.19% 76.25% 90.33% 87.99% 78.79% 33.41% 33.41%

(4) 29.9% 55.2% 51.55% 80.1% 67.4% 40.68% 43.79% 42.57%

(5) 93.13% 25.06% 36.99% 36.21% 20.09% 20.09%63.12% 38.21%

(6) 95.09% 25.06% 56.55% 62.94% 56.12% 33.88% 36.99% 42.69%

(7) 75.49% 85.6% 33.17% 19.63% 77.69% 55.39%33.41%33.41%

(8) 78.18% 81.92% 33.15% 15.96% 62.99% 41.85%62.05% 38.48%

(9) 80.14% 82.35% 34.24% 39.64% 20.09% 20.09%62.76% 30.31%

(10) 19.6% 28.18% 33.17% 25.65% 78.43%49.14% 60.6% 43.22%

5 Discussion and Future Work

The results show that unsupervised DL architectures are very powerful in learn-
ing the data representation. AE is a well-known DL generative model, that is
highly effective in extracting compressed representation from image-type data.
Consequently, after representing network traffic as images, we applied AE to
extract the representation patterns from IoT traffic. Moreover, the capability of
AE to denoise images is used to overcome the mutation technique challenges.
The results show the effectiveness of the proposed method to recover the original
traffic representation for different levels of mutation, some of which are rather
severe (e.g. fixed packet size and IAT). In fact, the considered mutation tech-
niques cause any statistical classifier to fail. However, one limitation of this work
is that we assume that we know ahead of time the mutation technique used by
the attacker, so we can decide to choose to apply the classifier before or after
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Table 3. Feature set for statistical classification

Feature Description

total fwd pkt Total packets in the forward direction

total fwd bytes Total bytes in the forward direction

total bck pkt Total packets in the backward direction

total bck bytes Total bytes in the backward direction

min pckt size fwd The min packet size in the forward direction

mean pckt size fwdThe mean packet size in the forward direction

max pckt size fwd The max packet size in the forward direction

std pckt size fwd The standard deviation packet size in the forward direction

min pckt size bck The min packet size in the backward direction

mean pckt size bck The mean size of packets in the backward direction

max pckt size bck The max packet size in the backward direction

std pckt size bck The standard deviation packet size in the backward direction

total size The total flow size

min pckt size The min packet size in either direction

mean pckt size The mean size of packets in either direction

max pckt size The max packet size in either direction

std pckt size The standard deviation packet size in either direction

min iat fwd The minimum interarrival time in the forward direction

mean iat fwd The mean interarrival time in the forward direction

max iat fwd The maximum interarrival time in the forward direction

std iat fwd The standard deviation interarrival time in the forward direction

min iat bck The minimum interarrival time in the backward direction

mean iat bck The mean interarrival time in the backward direction

max iat bck The maximum interarrival time in the backward direction

std iat bck The standard deviation interarrival time in the backward direction

total time The duration of the flow

min iat The minimum interarrival time in either direction

mean iat The mean interarrival time in either direction

max iat The maximum interarrival time in either direction

std iat The standard deviation interarrival time in either direction

avg pckt fwd The average number of packets in the forward direction

avg bytes fwd The average number of bytes in the forward direction

avg pckt bck The average number of packets in the backward direction

avg bytes bck The average number of bytes in the backward direction

avg iat fwd The proportion of flow time in the forward direction to the total
flow time

avg iat bck The proportion of flow time in the backward direction to the total
flow time



Obfuscated Traffic Detection and Recovery 113

denoising. While we considered mutation techniques in this paper, we will study
as future work additional obfuscation techniques. In addition to the abnormal
traffic detection using the discriminative part of the GAN architecture, in the
morphing case for example, we need to consider the generative part also. The
generator will be trained to generate morphed traffic similar to the original one.
In this case, the model convergence will not be a straightforward task.

6 Conclusion

Applying ML for network management and network security has gained a lot of
interest in the last decade. However, new traffic obfuscation techniques have been
developed to thwart classification and avoid detection in the sake of user pri-
vacy. These techniques have been employed by attackers to mount their attacks
without being detected. While the obfuscation techniques might be detected by
behavioral or statistical ML techniques, the recovery of the initial traffic is unfea-
sible. In this paper, inspired from a promising DL application, which is image
denoising, we transform the traffic to images then combine two well-established
DL architectures (AE and GAN) to reconstruct the original traffic and detect
abnormal one. The test results show the effectiveness and robustness of the pro-
posed model to detect abnormal traffic in all its variants.
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Abstract. The increased programmability of communication networks
makes them more autonomous, and with the ability to actuate fast in
response to users and networks’ events. However, it is usually a diffi-
cult task to understand the root cause of the network problems, so that
autonomous actuation can be provided in advance.

This paper analyzes the probable root causes of reduced accessibility
in 4G networks, taking into account the information of important Key
Performance Indicators (KPIs), and considering their evolution in previ-
ous time-frames. This approach resorts to interpretable machine learning
models to measure the importance of each KPI in the decrease of the
network accessibility in a posterior time-frame.

The results show that the main root causes of reduced accessibility in
the network are related with the number of failure handovers, the number
of phone calls and text messages in the network, the overall download
volume and the availability of the cells. However, the main causes of
reduced accessibility in each cell are more related to the number of users
in each cell and its download volume produced. The results also show
the number of PCA components required for a good prediction, as well
as the best machine learning approach for this specific use case.

Keywords: Cellular networks · Root cause analysis · Machine learning

1 Introduction

In communication networks, root cause analysis of network problems or failures
is essential, so that a fast reaction to these failures, or even an anticipation and
prevention of these failures can take place. However, usually it is difficult to assess
the cause of reduced network accessibility, since it may happen due to a large
number of issues, and impacting in a large number of metrics simultaneously.
Knowing the causes that lead to such events can help to prematurely detect
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them. Besides, when such events do happen, it is easier to know where and how
to autonomously actuate in the network to mitigate the failure.

With the increased requirements proposed for the 5G networks, e.g. 1 000 000
devices per km2, 20 Gbit/s of download peak data rate [4], the new generation of
cellular networks promises to handle more traffic than ever before. The incorpo-
ration of network slicing, as well as Software-Defined Networking (SDN) and Net-
work Function Virtualization (NFVs) in the 5G architecture, overly increases the
management complexity of those networks. With so many metrics to monitor, it is
becoming harder to detect the cause of an event due to the complex combinations
of various Key Performance Indicators (KPIs). Traditional approaches to detect
the root cause of failures, with a knowledge base and a set of rules, is becoming
obsolete due to the flexibility of the network. With the advances in machine learn-
ing, it is easier to indirectly analyze dependent variables with reduced complexity,
but with increased uncertainty.

This work identifies the KPIs that may cause reduced accessibility in 4G
networks, using machine learning techniques. Knowing those KPIs helps to create
a proactive management of the network, detecting an eventual future drop in
network accessibility and having the possibility to avoid it by acting on the
network, adjusting the resources that have the most impact on those KPIs.
In this work, two different approaches for root cause analysis using machine
learning techniques are explained and discussed. The first approach measures
the feature importance using internal calculations in the model to determine the
importance of each KPI in a reduced accessibility event. However, due to the
high number of combinations of the KPIs, it is not feasible to test all possibilities.
It is then important to perform feature selection. The second approach proposes
a dimensionality reduction algorithm to reduce the number of features and apply
the machine learning algorithms. In the evaluation results we present the most
important KPIs that are able to predict if the number of E-UTRAN Radio Access
Bearer (E-RAB) setup failures is above a specific threshold. Then, we present
the most important KPIs that are able to predict if the number of E-RAB
establishment failures has high variations, and therefore, are highly correlated
to the reduction of the network accessibility.

The remaining of the paper is organized as follows. Section 2 addresses the
relevant related work. Section 3 discusses how KPIs impact the network accessi-
bility. Section 4 presents the proposed approaches for root cause analysis, while
Sect. 5 discusses the results of the approach to root cause detection. Finally,
Sect. 6 presents the conclusion and the future works.

2 Related Work

Understanding the root cause of an observed symptom in a complex system has
been a major problem for decades. The main question is how to find appropriate
real-time mechanisms to determine root causes [10]. Most root cause analysis
approaches for network operators is currently based on Bayesian Networks [7].
They have the capability of representing network metrics and events in nodes,
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and their relations represent the dependencies, along with a conditional proba-
bility. To obtain the most probable cause of an error, a probabilistic inference
can be done. In [1,2], the authors argue that a Bayesian network is not suit-
able for large-scale systems with a large number of components, because the
complexity of inference increases exponentially with the number of nodes and
dependencies between them. To solve that, they combine the Bayesian network
with case-based reasoning techniques to prune the nodes needed to analyze in
the network. The results show that the technique used reduces drastically the
inference time, as well as the need for human intervention.

In [11], a generic framework for root cause analysis in large IP networks
was proposed. To determine the root cause of events, two reasoning engines are
included: Bayesian inference and rule-based reasoning. The authors discuss that
rule-based logic is often preferred over Bayesian inference, because it is easier
to configure, it has an easier interpretation of results and it is effective in most
applications. However, Bayesian networks are preferred when the root cause is
unobservable (no direct evidence can be collected). In our work, the root cause
of reduced accessibility is mostly unobservable.

The proposed solution in [3] computes what are parameters that are most
relevant across all different types of failure modes, and use them to build a
Bayesian Network to model the cause-effect relationship between the degradation
parameters (cause) and failure modes (effect) that occur on the field. Two real
life field issues are used as examples to demonstrate the accuracy of the network
once it is modelled and built. This paper shows that accurately modelling the
hardware system as a Bayesian Network substantially accelerates the process of
root cause analysis.

A self-healing method based on network data analysis is proposed to diagnose
problems in future 5G radio access networks [8]. The proposed system analyzes
the temporal evolution of a plurality of metrics and searches for potential inter-
dependence under the presence of faults. The work in [6] is the only one, that
we are aware, that uses the concept of “variable importance” (“feature impor-
tance” in our work) to measure how much a feature contributes to predicting an
objective variable on a machine learning model. The influence of each variable
is then represented in an influence matrix, that represents the influence that
each variable has for each event. However, only the Random Forest algorithm
is used to create a model. The variable importance is then calculated using the
permutation feature importance approach.

3 Problem Statement

The objective of this work is to understand what are the most important KPIs to
anticipate reduced accessibility in a 4G network. A 4G network is chosen, since
it is a running network with real data. The data available from 5G networks,
because they are still not widely implemented, is scarce and can be unbiased by
the users (only users with newer phones with 5G available can use it).

In this work, a 31-day data set with 4G network KPIs was used. The interval
period between each measurement of a KPI is 1 h, which means that there are
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24 values for each KPI for each cell every day. A metric must be chosen to
represent reduced accessibility. After that, with time-series analysis, it is possible
to calculate the importance of each KPI to the reduced accessibility metric.

The metric used to indicate low accessibility in the network is the number of
E-UTRAN Radio Access Bearer (E-RAB) setup failures per hour in the network.
The E-RAB setup in a 4G network is a major KPI for accessibility. The E-RAB
is a bearer that the User Agents (UEs) need to establish communications in the
network. Figure 1 shows the E-RAB setup phase. After the UE has established
a connection with the E-UTRAN Node B (eNB), it is needed to setup a context
with the Mobility Management Entity (MME), to enable the UE to communicate
and send data to the network.

Fig. 1. Sequence diagram indicating the E-RAB setup phase.

When the MME sends a context setup request, it is called an E-RAB setup
attempt. After some configuration messages between the UE and the eNB, the
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context setup response from the eNB to the MME is called an E-RAB setup suc-
cess. There are more E-RAB setup attempts than E-RAB setup successes. When
the network is congested, the difference between the E-RAB setup attempts and
the E-RAB setup successes is higher, because some messages after the E-RAB
setup attempt are lost due to network problems, such as congestion.

A new accessibility metric is used to measure the accessibility of the network:
the number of E-RAB setup failures. If the number of E-RAB setup failures has
a high value, the network is congested. The E-RAB setup failure formula is
presented in Eq. 1, where esf is the number of E-RAB setup failures, esa is
the number of E-RAB setup attempts and ess is the number of E-RAB setup
successes.

esf(t) = esa(t) − ess(t) (1)

The E-RAB setup failure is depicted in Fig. 2. The biggest congestion hap-
pened on the 17th day. The objective of this paper is now to understand which
KPIs most contribute to the forecast of this metric.

Fig. 2. Number of E-RAB setup failures.

4 Methodology for Root Cause Detection

In this section we describe two different approaches for root cause analysis using
machine learning techniques. One approach, that measures feature importance
using internal calculations in the model, is used to determine the importance
of each KPI in a reduced accessibility event. Our second approach proposes a
dimensionality reduction algorithm to decrease the number of features (feature
selection).



122 D. Ferreira et al.

4.1 Approaches to Measure the Feature Importance

A simple test to check if any KPI can accurately forecast the number of E-
RAB setup failures is to calculate the Pearson correlation coefficient1 between
the number of E-RAB setup failures and all other KPIs. Since the goal is to
understand which KPIs can forecast low accessibility before the number of E-
RAB setup failures increases, the KPI values will be shifted (lagged) behind the
number of E-RAB setup failures by one hour (the values are sampled hourly;
one hour is the minimum time interval).

There are two disadvantages of analyzing the KPIs’ importance with the
Pearson correlation coefficient. For each KPI, it is only measured its linear con-
tribution to the number of E-RAB setup failures. Besides, combinations of KPIs
that can be important are not being taken into account, because it is assumed
that the KPIs are independent of each other.

There are other approaches to measure the importance of input features to
an output value that takes into account these considerations. These approaches
take advantage of machine learning techniques, and they can be divided into two
categories: some approaches take into account the error of the model in a test
set to calculate the importance of the input features; other approaches measure
the feature importance with an internal calculation (algorithm-specific) of the
coefficients associated with each input feature.

Approaches Considering the Model Error: One of the approaches that fall
into the first category is the drop column feature importance. In this approach,
the importance of a feature is measured by comparing the test error of a model
when all features are available as input, with the test error of a model when
one feature is dropped for training. The higher the error for the model with one
feature dropped, the more importance is given to that feature.

A big disadvantage of this approach is that, for each feature, it is needed to
train a new model with that feature dropped, which causes the approach to be
inefficient for many features, or for models that take a significant training time.
In the permutation feature importance approach [5], a similar approach is used
without the need to re-train the model for each feature. Instead of dropping the
feature, it is applied random shuffling to the test values of that feature among the
various examples, to preserve the distribution of that variable. If the model error
is almost unchanged, the feature is not much important for the forecast. However,
if the model error increases much, it is a sign that the feature is important for
the forecast.

Both previous approaches have some advantages. It is possible to apply them
to black-box models, given that the feature importance is measured by the model
error. They also take into account all interactions between features, which is an
advantage when compared with the correlation tests.

1 https://www.statisticssolutions.com/pearsons-correlation-coefficient/.

https://www.statisticssolutions.com/pearsons-correlation-coefficient/
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In the permutation feature importance approach, a disadvantage is that the
results are dependent on the shuffling of the features. If the tests are repeated,
the results may vary.

Approaches Considering Feature Importance Using Internal Calcula-
tions: The approaches that measure the feature importance by inspecting the
internals of the models are algorithm-dependent. For some algorithms, like neural
networks or Support Vector Machines (SVMs), it is impossible to calculate the
importance of each feature, due to the non-linear transformations applied. How-
ever, for other algorithms such as Logistic Regression2, Extra Trees, Random
Forest3, Gradient Boosting4 or AdaBoost5, it is possible to estimate the impor-
tance of each feature. For linear regression, the importance of each feature can
be measured by the absolute value of the coefficient associated with each input
(if all features are within the same scale). For the other four tree-based ensemble
algorithms (Extra Trees, Random Forest, Gradient Boosting and AdaBoost), the
feature importance can be calculated with resort to the mean decrease impurity
(or Gini impurity6). The importance of a node j in a decision tree is computed
as described in Eq. 2, where wj is the weighted number of samples in node j, Cj

is the impurity of this node, and left(j) and right(j) are the respective children
nodes.

nij = wjCj − wleft(j)Cleft(j) − wright(j)Cright(j) (2)

The feature importance of feature i across all nodes is computed as described
in Eq. 37.

Fii =

∑
j:node j splits on feature i nij∑

j∈all nodes nij
(3)

For this approach, it is important that the features are all normalized within
the same scale, and it is recommendable that they are from the same type
(continuous/categorical) for better importance estimation.

The advantage of the approaches that measure the feature importance by
inspecting the internals of the models is that they do not depend on the test
set, only on the model. If the model is accurate and it is not underfitting or
overfitting, the feature importance can be calculated more reliably than the
previous methods. Otherwise, the feature importance will be highly biased. The
biggest challenge is to create accurate models that do not overfit the train set.

2 https://www.statisticssolutions.com/what-is-logistic-regression/.
3 https://towardsdatascience.com/an-intuitive-explanation-of-random-forest-and-

extra-trees-classifiers-8507ac21d54b.
4 https://towardsdatascience.com/understanding-gradient-boosting-machines-

9be756fe76ab.
5 https://towardsdatascience.com/understanding-adaboost-2f94f22d5bfe.
6 https://victorzhou.com/blog/gini-impurity/.
7 https://stats.stackexchange.com/questions/311488/summing-feature-importance-

in-scikit-learn-for-a-set-of-features/.

https://www.statisticssolutions.com/what-is-logistic-regression/
https://towardsdatascience.com/an-intuitive-explanation-of-random-forest-and-extra-trees-classifiers-8507ac21d54b
https://towardsdatascience.com/an-intuitive-explanation-of-random-forest-and-extra-trees-classifiers-8507ac21d54b
https://towardsdatascience.com/understanding-gradient-boosting-machines-9be756fe76ab
https://towardsdatascience.com/understanding-gradient-boosting-machines-9be756fe76ab
https://towardsdatascience.com/understanding-adaboost-2f94f22d5bfe
https://victorzhou.com/blog/gini-impurity/
https://stats.stackexchange.com/questions/311488/summing-feature-importance-in-scikit-learn-for-a-set-of-features/
https://stats.stackexchange.com/questions/311488/summing-feature-importance-in-scikit-learn-for-a-set-of-features/
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This second category of approaches (measure feature importance with an internal
calculation algorithm-specific) will be used to measure the importance of the
KPIs.

4.2 Feature Selection

If all KPIs are included as features, the performance of the model will be
degraded, because some features are uncorrelated with the output and do not
contribute to the output classification. It is then important to perform feature
selection. The ideal scenario is to test all combinations of features in the input,
and determine the best features by the test error. However, it is not feasible to
test all combinations, due to their high number.

The approach chosen was to use a dimensionality reduction algorithm to
reduce the number of features. Principal Component Analysis [9] will be used as
the algorithm to perform dimensionality reduction. The five algorithms chosen
to train the model and to calculate the feature importance were the follow-
ing: Logistic Regression, Extra Trees, Random Forest, Gradient Boosting and
AdaBoost. The feature importance of each model will calculate the importance
of each PCA component. Each component importance is then multiplied by the
PCA coefficients, to get the KPI importance for each component. Finally, all
the importances of the same KPI are added, as described in Eq. 4, where fij is
the feature importance of the j PCA component and pca coefficient(j, i) is the
PCA coefficient i for the component j, where i is the number of a KPI and j is
a PCA component.

kpi ii =
n pca components∑

j=0

fij ∗ pca coefficient(j, i) (4)

To get the best possible model, the number of PCA components cannot be
too small, because relevant features can be lost; however, the number cannot
be too big either, with the risk of creating overfitted models. The number of
PCA components tested will vary from 1 to the number of KPIs, for the five
algorithms. The model with a lower test error will be used to calculate the KPI
importance.

4.3 Defining the Input and the Output of the Algorithms

The input values will be based on the KPIs. There will be two types of input values:
normalized values and normalized variations. For each KPI, the normalized value
of the previous hour will be used as input. The number of lags could be increased
besides one hour, but in this test it is considered that the low accessibility indica-
tors appear at most one hour before the congestion. For each KPI, the normalized
variation will be calculated according to the Eq. 5. The normalized variations are
added as features because the network accessibility can depend, not only on the
previous values, but also on sudden variations of other KPIs.

normalized variation(t) =
value(t − 1) − value(t − 2)

value(t − 2)
(5)
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Two types of classification problems will be used to calculate the importance
of the KPIs. It is important to understand which KPIs are more important when
forecasting the possibility of a low accessibility event in a network. It is also
important to understand which KPIs are more important to forecast sudden
increases and decreases in the network accessibility. For each case, a different
output value will be calculated. For the first case, it will be set a threshold in
the 90th percentile of the data, with all the values above the threshold being
classified as one, and all other values as zero, turning the problem into a binary
classification problem. For the second case, the output will be classified as one
if the absolute difference between two consecutive values is higher than the 90th

percentile of the data, and zero otherwise. Doing that, it is possible to analyze
which KPIs are most important for classifying low accessibility events and also
for forecasting bigger increases and decreases in data, which can be important
for resource allocation.

The two classification problems will be applied in two different ways, accord-
ing to the data split. First, the tests will be done with aggregated data. The
network KPIs will be added and will be taken into account in the whole net-
work. In this way, it is possible to forecast low accessibility of the network.
Another way of performing the tests is to split the data per cell. In this app-
roach, the data will not be aggregated, and 75% of all cells in the network will
be used to train, with the other 25% cells to test. The threshold for the tasks
will be defined using the specific values of each cell (each cell will have a dif-
ferent threshold, based on its values). With this approach, it is built a model
that is capable of detecting low accessibility per cell. This case is expected to
perform worse than the aggregated network, because forecasting low accessibil-
ity per cell is harder than forecasting low accessibility in the network. However,
for a network operator it is very important to forecast low accessibility per cell
for various reasons. For a cell in a crowded region, it can be made management
adjustments to avoid the low accessibility of the cell, such as the installation of
another temporary cell, or the allocation of resources for that cell. Besides, it
can be made a time-series analysis about the future accessibility of the cells in
a region, for expansion purposes.

4.4 Performance Metric

For both classification problems, a performance metric must be used. Since in
the problems previously described the number of positive samples is lower than
the number of negative samples, the accuracy performance metric would give
similar cost to the false negative and false positive errors. The performance
metric used will be the F1-score (Eq. 6). The F1-score is the harmonic mean of
precision (Eq. 7) and recall (Eq. 8), and it encompasses the False Negative and
False Positive errors, weighted according to the number of samples of each class.

F1 = 2 ∗ precision ∗ recall

precision + recall
(6)
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precision =
true positives

true positives/false positives
(7)

recall =
true positives

true positives/false negatives
(8)

5 Root Cause Detection Results

Traffic monitoring is essential to provide a good quality do the services in com-
munication networks. Network conditions such as bandwidth, packet loss, delay
and jitter are important for traffic engineering to track the quality needs of appli-
cations. Therefore, it is important not only to measure the network conditions,
but also to analyze them to understand the causes of reduced accessibility in cel-
lular networks. In the following, we show how machine learning techniques can
help to understand which network KPIs can indicate a low accessibility event
that will happen in the future.

5.1 Aggregated Network Tests

In this subsection, the results for the aggregated network tests will be presented.
As explained before, two scenarios are proposed. First, it will be presented (i)
the most important KPIs for predicting if the number of E-RAB setup failures is
above a threshold. Second, it will be presented (ii) the most important KPIs for
predicting if the number of E-RAB establishment failures has high variations.

In Fig. 3 it is shown that the best model for scenario (i) is the Extra Trees
algorithm, achieving an F1-score of 86.6%, with 23 PCA components. With a
higher number of PCA components, the performance of most of the algorithms
starts to deteriorate.

Fig. 3. F1-score with different algorithms varying the number of PCA components for
the task (i) in the aggregated network.
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Table 1. Ten KPIs that were considered more important for the scenario (i) in the
aggregated network.

KPI Importance

Handover interfreq failure 0.194

Handover intrafreq failure 0.188

CSFB Prep Success 0.181

PDCP Download TX Time 0.169

Variation Handover interfreq failure 0.150

Cell availability 0.131

ERAB Normal Release 0.124

Handover intrafrequency success 0.121

Handover intrafrequency attempt 0.121

PDCP Upload Volume (Mb) 0.115

Table 1 shows the ten KPIs that are considered more important for predicting
if the number of E-RAB setup failures is above a threshold (i). The handover fail-
ure is considered to be the most important KPI, both inter- and intra-frequency.
The third KPI is the Circuit Switched FallBack (CSFB) preparation success. The
CSFB is a technology to create circuit-switched calls over a 4G network that does
not support LTE voice call standard (VoLTE), which has to fall back on the 3G
network. This indicates that the number of phone calls and SMS messages has
a high impact on the network accessibility. The Packet Data Convergence Pro-
tocol (PDCP) download transmission time, the variation of the inter-frequency
handovers and the cell available time are also important KPIs to predict varia-
tions in the number of E-RAB setup failures. Finally, the ERAB normal release,
handovers intrafrequency success and attempt, and upload traffic volume have
also a significant importance.

The best model for scenario (ii) is achieved with the AdaBoost algorithm,
achieving an F1-score of 40.0%, with 24 PCA components. The F1-score is lower
than in scenario (i) because the task of predicting variations is harder than
the one of predicting if the value is above a threshold. The number of PCA
components is almost the same as in scenario (i); however in Fig. 4 it can be
seen that the algorithms’ F1-score is very unstable, and that it is hard to build a
model to predict accurately the variations of the number of E-RAB establishment
failures in the aggregated network.

Table 2 shows the ten KPIs that are considered more important for predict-
ing if the number of E-RAB establishment failures has high variations (ii). The
handover failures are still important, but they are not the most important KPI.
In this case, the CSFB preparation success is the most important KPI to predict
the variations in the number of E-RAB setup failures. Similar to the task (i),
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Fig. 4. F1-score with different algorithms varying the number of PCA components for
the task (ii) in the aggregated network.

Table 2. Ten KPIs that were considered more important for the scenario (ii) in the
aggregated network.

KPI Importance

CSFB Prep Success 0.188

Handover intrafreq failure 0.170

PDCP Download TX Time 0.157

Handover interfreq failure 0.148

Variation Handover interfreq failure 0.141

Download Active Subscribers (Max) 0.138

Active subscribers (Max) 0.125

RRC Setup Failure 0.121

Cell availability 0.120

Upload active subscribers (Max) 0.119

PDCP download transmission time, the variation of the inter-frequency han-
dovers, the number of active subscribers, download and upload ones, and the
cell available time are also important KPIs.

5.2 Individual Cells Tests

In this subsection, the results for the individual cells will be presented. In this
case, 75% of the cells in the network will be used for training and the other
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Fig. 5. F1-score with different algorithms varying the number of PCA components for
the task (i) in the individual cells tests.

Table 3. Ten KPIs that were considered more important for the scenario (i) in the
individual cells tests.

KPI Importance

RRC Setup Success Rate 0.560

ERAB Setup Success Rate 0.547

Connected subscribers (Max) 0.069

Connected subscribers (Avg) 0.066

Connected active subscribers (Avg) 0.043

Variation Connected Subscribers (Max) 0.034

Variation Connected active Subscribers (Max) 0.032

ERAB normal release 0.031

Variation Radio Bearers (Avg) 0.031

Variation Connected subscribers (Avg) 0.031

25% for testing. Just like in the previous subsection, first it will be presented (i)
the most important KPIs for predicting if the number of E-RAB establishment
failures is above a threshold, and then it will be presented (ii) the most important
KPIs for predicting if the number of E-RAB setup failures has high variations.

The best model for scenario (i) achieved an F1-score of 30.79%, using the
Gradient Boosting algorithm, with 66 PCA components. For the cell prediction,
more information is needed to obtain the best model when compared with the
previous subsection. Figure 5 shows the F1-score varying with the number of
components and the different algorithms. In the PCA component 62 there is an
increase in the F1-score of all algorithms.
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Fig. 6. F1-score with different algorithms varying the number of PCA components for
the task (ii) in the individual cells tests.

Table 4. Ten KPIs that were considered more important for the scenario (ii) in the
individual cells tests.

KPI Importance

ERAB Setup Success Rate 0.147

RRC Setup Success Rate 0.147

Variation Cell availablility 0.138

Connected Subscribers (Avg) 0.102

Radio Bearers (Avg) 0.095

Variation RRC Setup Success Rate 0.093

Variation ERAB Setup Success Rate 0.092

ERAB Normal Release 0.088

Connected subscribers (Max) 0.087

Variation Radio Bearers (Avg) 0.081

Table 3 shows the ten KPIs that are considered more important for the task
(i). Two KPIs have much more importance than all others: Radio Resource
Control (RRC) setup success ratio ( RRC setup success

RRC setup attempt ) and E-RAB setup success
ratio ( ERAB setup success

ERAB setup attempt ), since they are directly correlated with the network
accessibility.

The best model for scenario (ii) has an F1-score of 20.39%, using the
AdaBoost algorithm with 68 PCA components. The F1-score for different PCA
components is similar to the scenario (i), where the F1-score improved its per-
formance significantly after 60 PCA components (Fig. 6).
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Table 4 shows the ten KPIs that are considered more important for the sce-
nario (ii). Like in the previous scenario, RRC setup success ratio and E-RAB
setup success rate are the most important KPIs for the output. In this task, other
KPIs have also similar importance, such as the variation of the cell availability,
the average connected subscribers and the average number of radio bearers. A
radio bearer is a connection between the eNB and the UE at layer 2, and defines
the communication configurations for upper layers.

5.3 Discussion

Aggregated Network Tests: From the results of both aggregated network
tests, it can be concluded that most KPIs that cause the number of E-RAB
setup failures in a network to be above a threshold are the same that cause it
to have high variations. Those KPIs are the number of failed handovers (intra-
and inter-frequency), the CSFB preparation success (number of phone calls and
SMSs in the network), the PDCP download volume and the cell availability. The
maximum number of active subscribers (downloading subscribers and overall
subscribers) also causes the number of E-RAB setup failures to vary.

Interpreting the KPIs, the results achieved are according to the intuition
about lower network accessibility. When the number of failure handovers is high,
the cells are crowded with user sessions and cannot accept any more sessions,
which leads to lower network accessibility in the next hour. The high number
of CSFB preparation success shows that there is a clear relationship between
the high number of phone calls and SMS messages in the network with its lower
accessibility. The KPIs of PDCP download volume and the maximum number
of active subscribers also show that the number of active subscribers and their
download volume influence the network accessibility (more than the number of
connected subscribers). Finally, the cell availability indicates that, if many cells
are unavailable in the current hour, it is likely that the network accessibility will
be lower in the next hour.

Individual Cells Tests: The results of the forecasts of low network accessibility
in individual cells had higher error than the results with the aggregated network.
In the tests done, the best models needed more data than the aggregated network
models to achieve the best result, because more features were needed to be able
to generalize the predictions for different cells.

The results show that, just like in the aggregated network tests, the most
important KPIs for forecasting the number of E-RAB setup failures in a cell
to be above a threshold are the same that cause it to have high variations.
However, the most important KPIs that cause lower accessibility in a network
are different from the KPIs that cause lower accessibility in a cell. The two
most important KPIs are the RRC and the E-RAB setup success rate. These
KPIs cannot be understood as the cause for lower network accessibility, but as a
consequence. Because they are intrinsically related to the E-RAB setup failure,
being themselves accessibility metrics, they can be understood as an indicator of
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the high autocorrelation between consecutive hours. These results show that the
network accessibility per cell is highly dependent on the network accessibility of
that cell in the previous hour. If a cell has lower network accessibility in an hour,
it is likely that the network accessibility in the next hour for that cell is still low,
and vice-versa. It is essential for a network operator to monitor the right KPIs
for the different tasks: forecast lower accessibility in a network or forecast lower
accessibility per cell.

As opposed to the results for the aggregated network, the important KPIs
for low network accessibility are not related with the CSFB preparation success,
or with any of the handover metrics. The results by cell show that, besides the
RRC and the E-RAB setup success ratio, the most important KPIs are counters
related to the number of users in a cell and its utilization: maximum num-
ber of connected subscribers, average number of connected subscribers, average
number of active subscribers download data, variation of the maximum number
connected subscribers, variation of the maximum number of active download
subscribers, average number of radio bearers or variation of the average num-
ber of radio bearers. It is expected that, as these KPIs have higher values, the
accessibility of a cell decreases.

6 Conclusion

Understanding the causes of events in a network, such as low accessibility, helps
the network operators to forecast and avoid them to happen, by adjusting net-
work resources that influence their causes. In this work, the goal was to determine
the causes of reduced network accessibility in 4G networks, using only historic
data.

Two different analysis were made. Besides analyzing the causes of reduced
accessibility in the whole network, it was also analyzed the causes of reduced
accessibility for each cell. The results showed that the causes of reduced acces-
sibility for each analysis are very different. While for the overall network, the
KPIs that most influence the accessibility are the number of failure handovers,
the number of phone calls and SMSs in the network, the overall download volume
and the availability of the cells, the KPIs that most influence the accessibility of
each cell are related with the number of users in a cell and its download volume.
For a network operator, it is important to know if it is important to monitor low
accessibility in a cell, in a network, or in both, to make the right measurements
in the network.

As future work, the next step will be to detect the patterns of those KPIs
that indicate future low accessibility, to be able to predict it and adapt the
network to prevent it to happen. For example, if the network operator knows
that the network accessibility will be lower in the next hour when the number of
handover failures intra-frequency and the maximum connected users both exceed
a threshold, he can take proactive measures to adapt the network and avoid the
low accessibility.
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8. Muñoz, P., de la Bandera, I., Khatib, E.J., Gómez-Andrades, A., Serrano, I.,
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Abstract. Increasing size and complexity of telecommunication net-
works make troubleshooting and network management more and more
critical. As analyzing a log is cumbersome and time consuming, experts
need tools helping them to quickly pinpoint the root cause when a prob-
lem arises. A structure called DIG-DAG able to store chain of alarms in
a compact manner according to an input log has recently been proposed.
Unfortunately, for large logs, this structure may be huge, and thus hardly
readable for experts. To circumvent this problem, this paper proposes a
framework allowing to query a DIG-DAG in order to extract patterns of
interest, and a full methodology for end-to-end analysis of a log.

Keywords: Fault diagnosis · Pattern matching · Online algorithm

1 Introduction

Telecommunication networks management becomes a more and more challeng-
ing problem for operators. Indeed, on one hand, their infrastructures involve more
and more devices, new technologies and possibly new manufacturers. On the other
hand, networkproviders aimat offeringaquality of service according to theService-
LevelAgreements (SLAs) establishedwith their clients.Thus, there is a strongneed
for fault management in order to save money, time, and human resources.

That is why network infrastructures are in general monitored. Monitoring
solutions evaluate network performances through measurements. They can also
collect alarms raised by the equipment involved in the infrastructure. The result-
ing file storing those messages is called a log.

Alarm logs are the raw material used by the expert to understand the cause
of outages. Unfortunately, logs are in practice often very verbose and may be
noisy. The large number of observed machines and alarm types in the log leads
to an important volume of alarms, which complicates the extraction of relevant
information, especially when multiple log files are involved. Log analysis is thus
a difficult, cumbersome and time-consuming task. Network operators need tools
helping them to pinpoint root causes of major incidents and understand the
erroneous processes leading to major failures.
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State of the Art on Root-Cause Analysis. Root cause analysis (RCA) in
telecommunication networks has been extensively studied as observed in [13].

Many solutions use neural networks (NN). For instance, [14] investigates
the performance of several types of NNs for fault diagnosis of a simulation
heat exchanger. In particular, the authors trained a multi-layer perceptron to
map symptoms onto causes. Regarding the application, it may be impossible to
obtain enough training with ground truth. In this case, supervised learning is
not possible. Therefore, the authors also trained self-organizing maps to clus-
ter the observed symptoms. The observation space is mapped onto a 2D grid
and clusters are derived a posteriori. However, the interpretation of those clus-
ters remains difficult. [17] considers several time-series and build the correlation
matrix of these signals at each instant. The idea is then to train a convolutional
and attention-based auto-encoder to predict sequences of correlation matrices.
Correlation can be drawn between faulty signals and other ones. Unsupervised,
the model takes into account temporal dependencies but is hardly interpretable.

Bayesian networks (BN) are also common in RCA. Thus, in [2], the authors
split latent causes and observed symptoms into a bipartite BN. Symptoms are
either described by some features or by checking some rules. If the probabilistic
framework favors interpretability of the results, BNs generally face scalability
issues. Indeed, increasing the complexity of the system dramatically increases
the amount of memory to store conditional probabilities. [16] proposes to build
BNs for root-cause analysis in an oriented-object fashion. This helps to design
proper BNs with regard to prior knowledge about the system structure (thanks
to the definition of BN functions), but automation of the model construction is
unclear especially when prior knowledge is unavailable.

In order to explain faulty requests in the eBay Internet Service System, [6]
trains a decision tree classifying faults and successes. Once trained, the path of a
given faulty request is then used as a description of its root cause. The simplicity
of decision trees makes them easy to interpret. Nevertheless, increasing the com-
plexity of the system induces instability in the training phase [3]. Interpretability
may be unclear in such a situation.

Some other solutions comes from pattern matching. [7] introduces a variation
of the Smith-Wasserman algorithm [12] which evaluates the similarity between
two sequences of events. Indeed, root cause may belong to alarm floods that
are similar to a faulty one. [10] splits events streams into chunks that are then
compared to a reference database. [15] uses Finite State Machines storing prior
faulty patterns. It is possible to update the stored patterns a posteriori.

An other approach, [4], proposes an RCA tool inspired from pattern match-
ing techniques. It builds online an automaton storing space-time causalities
between symbols observed in a log. Its construction is unsupervised without
losing in interpretability. Moreover, prior knowledge is optional though adding
such knowledge makes the resulting structure lighter by discarding irrelevant
causalities. Nonetheless, the size of the structure is usually too large for a direct
use. For now, we still lack a tool to exploit such a structure and this paper is a
first attempt to overcome that lack.
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Contributions. Most of works described above try to find the root cause of a
failure or to find correlation between alarms.

In this paper, we rather try to find chains of cascading alarms explaining why
a given incident has occurred. In our approach, we process an input log with some
optional prior knowledge (e.g., the network topology). This information is used
to train a data structure, called DIG-DAG [4], which is designed to store every
chain of alarm present in the input log.

Such a structure is usually too large to be directly interpretable by an expert.
That is why we require a convenient way to extract relevant faulty patterns.

The contributions of this paper are twofold:

1. First, we propose a new query system, allowing to extract small faulty pat-
terns stored in a DIG-DAG and matching the query issued by an expert.
Outputs not only contain the possible root causes of a failure, but also the
entire chain of alarms leading to the failure.

2. Second, we propose an end-to-end methodology for log analysis. It involves
the DIG-DAG and our new query system, but also additional techniques using
graph reductions and clustering techniques. We demonstrate the tractability
of our framework through the analysis of logs issued by real systems.

Outline of the Paper. The remaining of the paper is organized as follows.
Section 2 recalls the DIG-DAG construction from an input log of alarms (and
eventual prior knowledge). Section 3 presents the query system built on top of
DIG-DAG, which is the core of our contribution. In Sect. 4 details an end-to-
end methodology for log analysis and hints to cope with large logs of alarms.
Section 5 illustrates our proposal on real datasets. Finally, Sect. 6 concludes the
paper.

2 From Log to Space-Time Pattern Storage

In this section, we recall the necessary background related to DIG-DAG, a data
structure introduced in [4] able to store space-time patterns. To fix notations,
Sect. 2.1 formally defines our representation of an alarm log. Section 2.2 intro-
duces directed interval graph (DIG), a graphical representation of the log. Finally,
Sect. 2.3 presents the DIG-DAG.

2.1 Alarm Logs

Nowadays, network operators rely on monitoring solutions to manage their
infrastructures. Such solutions centralize alarms raised by the equipment into
dedicated files called logs.

More formally, an alarm log is a finite sequence of timestamped events. More
precisely, we consider that an event is a pair (σ, [s, t]), where σ is a symbol and
[s, t] is a non-empty interval of R

+ representing the time interval during which
this event is active. The symbol σ can contain any non-temporal information,
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e.g., the name of the corresponding alarm, its severity, the impacted machine,
etc. This constitutes the space aspect of the event. We denote by Σ the set of
all possible symbols and assume this set finite. For an event � = (σ, [s, t]), we
denote its symbol by λ(�).

A log is then denoted by L = ((σi, [si, ti])i∈{1,...,n}). We assume, without loss
of generality that:

– the values (si) and (ti) are all distinct. Indeed, tie-breaking rules can be used
if it is not the case;

– if σi = σj for some distinct i and j, then [si, ti]∩[sj , tj ] = ∅: the corresponding
events do not temporally overlap. If this is not the case, these two events can
be replaced by (σi, [si, ti] ∪ [sj , tj ]).

A log can be processed online. An event is said to be active at a time if it
corresponds to a pending alarm at this time. More formally, given log L and
time τ , an event (σ, [s, t]) of L is active at time τ if τ ∈ [s, t]. We note Aτ the
set of active events of log L at time τ . The observed log at time τ is defined as
Lτ

def= ((σ, [s, t]) ∈ L|s < τ).

Example 1. Consider alphabet Σ = {a, b, c, d} and log L = ((a, [1, 4]), (b, [2, 5]),
(c, [3, 6]), (a, [7, 10]), (c, [8, 11]), (d, [9, 12])). At time τ = 5.5, we have A5.5 =
{(c, [3, 6])} and L5.5 = ((a, [1, 4]), (b, [2, 5]), (c, [3, 6])).

2.2 DIG: A Graph-Based Representation of an Alarm Log

In this paragraph, our goal is to represent the log of alarms in a more structured
way. Indeed, fault management is based on finding correlation between alarms,
hence exhibiting some structure in the log. To do so, we first define the notion
of potential causality which enables to translate the log into a graph.

Two events share a potential causality if they are space-related and if they
share a potential time causality. Two events are space-related if their symbol
lies in C ∈ Σ2, which gathers all the relevant pairs of symbols. For example, C
can be tuned to consider the topology of the network (see Sect. 4). Two events
share a potential time causality if one of the events occurs before the other, and
if their activity period overlap. More formally, we say that event � = (σ, [s, t]) is
a potential cause of �′ = (σ′, [s′, t′]) if

– σσ′ ∈ C: � and �′ are space-related;
– s′ ∈ [s, t]: � and �′ are co-occurrent and � is active before �′.

This potential causality is denoted by � → �′.
The directed interval graph (DIG) of L with space relation C is a labeled

directed graph (L,→, λ) where:

– L is the set of vertices;
– → is the set of arcs;
– λ : L → Σ is the labeling function inherited form the event: each vertex/event

is labeled with its symbol.
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This directed graph is acyclic because of the time causality contained in →. As
shown in Fig. 1, a DIG can be disconnected.

Example 2. If C = {ab, ac, bc, cd}, then (a, [1, 4]) → (b, [2, 5]) holds, but
(b, [2, 5]) � (a, [1, 4]) and (a, [1, 4]) � (c, [8, 11]) as they break the time causality,
and (a, [7, 10]) � (d, [9, 12])) because ad /∈ C.

The DIG corresponding to the log L of Example 1 is represented on Fig. 1.

a

b

c

a

c

d

1 42 53 6 7 108 119 12
time

Σ

Fig. 1. DIG of L defined in Example 1.

We call space-time pattern or pattern of the log any word of Σ∗ any label of a
path of its DIG. The denomination space-time comes after potential causalities
that can be issued either from topological or from temporal reasons.

2.3 DIG-DAG: A Data Structure for Storing Space-Time Patterns

DIG-DAG is a deterministic automaton-like structure able to store and count
every space-time pattern of a log. It is the base of our root-case analysis approach.
We use the formal language notations. In particular, the empty word is denoted
by ε.

Definition 1 (DIG-DAG). Let L be an alarm log on alphabet Σ, with spatial
relation C and A ⊆ L a set of active events.

A DIG-DAG (V,E, λ,A) of (L,→, λ) is a quadruple satisfying:

– (V,E) is a directed acyclic graph with a unique vertex q0 with in-degree 0,
called the root;

– λ is a labeling function λ : V → Σ ∪ {ε} with λ(q0) = ε and ∀u ∈
V \{q0}, λ(u) ∈ Σ;

– for each vertex u ∈ V and for each σ ∈ Σ, vertex u has at most one successor
v ∈ V such that λ(v) = σ;

– each path �1, ..., �k of the DIG corresponds to a path q0, u1, ..., uk ∈ V k+1 such
that λ(�i) = λ(ui) for all i ∈ {1, . . . , k} and conversely;

– A ⊆ V is a subset such that u ∈ A if and only if for all paths from the root
to u there exists a path in (L,→, λ) ending in an active vertex with the same
label. In other words, for each path q0, u1, ..., u there exists a path �1, ..., �u in
(L,→, λ) such that λ(�i) = λ(ui) and �u is active.
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One can notice that, given a log L and a spatial relation C, the DIG is unique
but not the DIG-DAG. For example, the DIG-DAG can be minimized or not.
We assume in the rest of the paper that the DIG-DAG is built according to the
deterministic algorithm presented in [4]. This algorithm can be performed online
by processing events in their chronological order.

One of its advantages is its capability to count and store the number of
occurrences of each space-time pattern occurring in (L,→, λ). More precisely,
w : E → N is a weight function counting the number of occurrences of any
pattern ending with that arc: w((u, v)) = n if for any path q0, . . . , u, v, the
pattern λ(q0) · · · λ(u)λ(v) corresponds to n paths of (L,→, λ).

Finally, as already mentioned above, the DIG-DAG can be interpreted as a
special case of a deterministic automaton, where q0 is the initial state and the
labels are deported to the targets of the transitions.

Example 3. Figure 2 shows the DIG-DAG built from DIG (L,→, λ) (cf. Exam-
ple 1) at time 9.5: the last three events of the log are active. The weights are
depicted above the arcs. For example, a and ac occur twice, while abc occurs
only once. Active vertices are represented in bold.

ε a

b c

c d

2

1

2

1

1

2

1

1

Fig. 2. DIG-DAG built from log L of Example 1; bold vertices are the active states at
time τ = 9.5.

To sum up, a DIG-DAG is a graph structure able to store and count any
space-time pattern occurring is an alarm log. The size of this structure can grow
exponentially with the size of the log. For example, root’s out-degree is exactly
the size of the alphabet Σ and the depth of the structure is the size of a longest
path in the corresponding DIG. The rest of the paper is devoted to the extraction
of patterns of interest.

3 Pattern Extraction

In this section, we present a generic solution to extract patterns of interest by
queries.

This section presents a new framework able to isolate patterns matching
input queries. These patterns are represented as sub-DIG-DAGs:
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Definition 2 (sub-DIG-DAG). Let D = (V,E, λ,A) be a DIG-DAG. For
every subgraph (V ′, E′) of (V,E), the 4-tuple D′ = (V ′, E′, λ|V ′ ,A ∩ V ′) is a
sub-DIG-DAG of D.

Remark that a sub-DIG-DAG is not necessarily a DIG-DAG: it may have
several roots and be disconnected.

Sub-DIG-DAGs are stable with graph operations like intersection, union,
difference.

Definition 3 (query and its resulting sub-DIG-DAG). A query is a 5-
tuple Q = (D, S, T, Vi, Ei), where D = (V,E, λ,A) is a DIG-DAG, S, T, V ′ ⊆ V
and E′ ⊆ E. The result of the query is the largest sub-DIG-DAG (E′, V ′, λ′,A′)
of D such that:

– V ′ ⊆ Vi, ′ ⊆ Ei;
– the vertices with in-degree 0 are in S;
– the vertices with out-degree 0 are in T .

The result of the query is denoted by D(Q).

Intuitively, the sub-DIG-DAG of D resulting from a query Q = (D, S, T,
Vi, Ei) is the subgraph of D whose maximal paths all start in S and end in T .
These paths only traverse vertices of Vi and arcs of Ei.

3.1 Regular Queries

The definition of queries is very broad, and in this paragraph we restrict to
queries parametrized by a finite automaton, and local properties on the vertices
and arcs. Intuitively, the role of the finite automaton is to extract patterns
satisfying some relations between vertices, while local properties select vertices
and arcs. These properties do not only depend on the symbols of the nodes (which
could otherwise have been done with an automaton), but rely on information that
can be attached to the nodes. For example, this can be useful to extract nodes
that have been recently active or arcs satisfying some weight-based properties.

Definition 4 (Regular query). Let M be a finite automaton, and Pv and Pe

be two properties. The regular query R(S, T,M, Pv, Pe) = (S, T, Vi, Ei), where:

– for all v ∈ Vi, v satisfies Pv;
– for all e ∈ Ei, e satisfies Ev;
– D(R(S, T,M, Pv, Pe)) contains all the paths of D(Q) labeled by a word rec-

ognized by M. Consequently, Vi and Ei are respectively defined by the set of
vertices and arcs belonging to one of those paths;

– D(R(S, T,M, Pv, Pe)) is the minimal sub-DIG-DAG satisfying those proper-
ties.
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Algorithm 1. Input query based sub-DIG-DAG extraction
Input: D, M = (Q, Σ, δ, I, F ), S, T, Pv, Pe

Output: a sub-DIG-DAG D′

// Phase 1: Forward exploration

foreach u ∈ V do Q1(u) ← ∅;
foreach u ∈ V (in the topological order) do

if u ∈ S ∩ Pv then Q1(u) ← Q1(u) ∪ I;
foreach v ∈ V ∩ Pv such that (u, v) ∈ E ∩ Pe do

Q1(v) ← Q1(v) ∪ {q′ ∈ Q | ∃q ∈ Q1(u), δ(q, q′) = λ(v)}
// Phase 2: Backward exploration and decision

V ′ ← ∅; E′ ← ∅;
foreach u ∈ V do Q2(u) ← ∅;
foreach u ∈ V (in the reverse of the topological order) do

if u ∈ T ∩ Pv then Q2(u) ← Q2(u) ∪ (Q1(u) ∩ F );
if Q2(u) �= ∅ then

V ′ ← V ′ ∪ {u}
foreach v such that (v, u) ∈ E ∩ Pe do

if {q ∈ Q1(v) | ∃q′ ∈ Q2(u), δ(q, q′) = λ(v)}} �= ∅ then
E′ ← E′ ∪ {(v, u)};
Q2(v) ← Q2(v) ∪ {q ∈ Q1(v) | ∃q′ ∈ Q2(u), δ(q, q′) = λ(v)}

return D′ = (V ′, E′, λ|E′ , A ∩ V ′)

Algorithm 1 computes the sub-DIG-DAG corresponding to a regular query.
We assume that we know a topological order of the vertices. For this one can
either use a classical algorithm (see [8] for example), or the topological order can
be computed on-the-fly at the DIG-DAG construction.

Algorithm 1 has two phases: the first one identifies, by a forward traversal of
the DIG-DAG all the possible paths starting from S, having vertices and arcs
satisfying Pv and Pe and whose label are prefixes of words recognized of the
automaton. For this, a set Q1(u) is attached to each node, containing all the
states of the automaton that can be reached from a vertex in S.

The second phase performs a backward traversal and identifies the vertices
and arcs in the sub-DIG-DAG. For each vertex u, Q2(u) is the subset of states
in Q1(u) such that there is a path from u to T labeled similarly to a path from a
state of Q2(u) to a final state in the automaton. The vertices and arcs involved
in these paths constitute the sub-DIG-DAG.

More formally, let M = (Q,Σ, δ, I, F ) be a finite automaton where Σ denotes
its alphabet, Q the its set of states, I its initial states, F its final states and δ its
transition map. We use the automaton interpretation of a DIG-DAG: the label
of a transition is the label of the extremity of the arc. Thus, the label of a path
in the DIG-DAG does not take into account the label of the first node of the
path.

We show next that the result of Algorithm 1 is the sub-DIG-DAG corre-
sponding to the regular query as defined in Definition 4.

Let us first state some properties of Q2(u).
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Lemma 1. With the above notations,

– ∀u ∈ V ′, p ∈ Q2(u), ∃v ∈ V ′, q ∈ Q2(v) such that (u, v) ∈ E′ and λ(v) ∈
δ(p, q);

– ∀v ∈ V ′, q ∈ Q2(u), ∃u ∈ V ′, p ∈ Q2(v) such that (u, v) ∈ E′ and λ(v) ∈
δ(p, q);

– for all v ∈ V ′, for all q ∈ Q2(v), there exists a path from a vertex s ∈ S to v
corresponding to a path from i ∈ I to q in M;

– for all v ∈ V ′, for all q ∈ Q2(v), there exists a path from v to a vertex t ∈ T
corresponding to a path from q to f ∈ F in M.

Proof. The first two statements are deduced from lines 5 and 12 of the algorithm,
that is the construction of Q1 and Q2. The last two statements are obtained by
induction from the two firsts.

We prove that the resulting sub-DIG-DAG is indeed the smallest one containing
the intersection of D and M.

Theorem 1. Consider the regular query R(S, T,M, Pv, Pe), and let D′ be the
sub-DIG-DAG returned by Algorithm 1. We have D′ = D(R(S, T,M, Pv, Pe)).

Proof. We have to check the four properties of Definition 4. The two firsts are
straightforward, as all vertices and arcs added to V ′ and E′ respectively check
Pv and Pv (lines 9–13).

We now check the third property: let p = u1, . . . , uf be a path in D labeled by
a word accepted by M, with u1 ∈ S and uf ∈ T . Let q1, . . . , qf be a sequence of
states visited by M for accepting this word. For all i, by construction, qi ∈ Q1(ui)
(line 5). As qf ∈ F and uf ∈ T , qf ∈ Q2(uf ) (line 9), and then, qi ∈ Q2(ui) for
all i (line 14): all the arcs of the path are kept.

Finally, we have to check the minimality of the structure, that is that all
the arcs of the graph returned by the algorithm belong to a path labeled by
a word recognized by M. This is a consequence of Lemma 1: consider an arc
(u, v). One can build a path s ∈ S � u → v � t ∈ T corresponding to
qi ∈ I ∩ Q2(s) � p ∈ Q2(u) → q ∈ Q2(v) � qf ∈ F ∩ Q2(t) by applying items
3, 1, 4 of the Lemma 1.

Example 4. Let us extract the patterns satisfying the regular expression a(Σ \
{b})∗c from the DIG-DAG represented in Fig. 3a, that is all the paths starting by
a, ending c and not containing any b. We choose S = {q0}, T = V . Nodes of the
DIG-DAG are numbered according a topological order. The regular expression
is represented by the automaton shown in Fig. 3b. The sub-DIG-DAG extraction
steps of Algorithm 1 are depicted on Fig. 4. Phase 1 is displayed from Fig. 4a to
e and phase 2 from Fig. 4f to j. Sets Q1(.) are reported below each vertex for
phase 1, and Q2(.) are for phase 2. Arcs and vertices that are added to E′ and
V ′ are represented in bold, and those non selected are dashed.



Space-Time Pattern Extraction in Alarm Logs for Network Diagnosis 143

ε

q0

a

v1

b

v2

c

v3

c

v4

d

v5

(a) sub-DIG-DAG.

q0 q1 q2
a c

Σ\{b}

(b) Automaton.

Fig. 3. DIG-DAG and automaton used for Algorithm 1 in Example 4.

3.2 Sub-DIG-DAG Simplification

Queries and in particular regular queries allow to select patterns of interest. Ide-
ally, the extracted sub-DIG-DAG should be easily readable. As we will see in
Sect. 5, the number of vertices is often limited, but it happens that the average
degree of the sub-DIG-DAG is too high to get a readable graphical represen-
tation. In this paragraph, we present three methods to improve and simplify
the graph. Note that this simplification cannot be considered as sub-DIG-DAG
extraction, as they might change the structure, by merging nodes, erase paths
and are not compatible with weights. This is not a big issue since these operations
are just for graphical representations.

Transitive Reduction. The aim of the transitive reduction is to decrease the
number of arcs. Introduced in [1], this operation removes every arc e = (u, v)
whenever there exists another path between nodes u and v. The resulting graph
is the minimal subgraph (for the arc-inclusion order) that does not break the
connectivity of each connected component of the graph. The transitive reduction
removes some paths from the sub-DIG-DAG, but keeps the longest ones.

Minimization. As said above, a DIG-DAG can be seen as a deterministic
automaton. Moreover, it is acyclic. As a sub-DIG-DAG is a subgraph of the
DIG-DAG, it can also be seen as a deterministic automaton if it has a single
source node. Still, we can use Revuz algorithm [11] to minimize it. Dedicated to
acyclic deterministic automaton, this algorithm merges equivalent states from
the leaves to the root. The resulting sub-DIG-DAG is minimal and recognizes
exactly the same patterns. However, some states (resp. arcs) having different
weights may be merged in the process.

Source Simplification. As said at the end of Sect. 2, the size of the DIG-
DAG grows exponentially with the size of the log. This means that there can
be numerous vertices with the same label, especially corresponding to the same
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Fig. 4. Algorithm 1 applied to sub-DIG-DAG and automaton of Fig. 3.
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occurrence of an event. When querying a DIG-DAG, the set S might be described
by some property (a given symbol, and set of symbols), and many sources might
have the same label. We observe that many of them can have the same sets of
successors. Source simplification parses the source nodes and merges those with
the same set of successors. Here again, this operation might not be compliant
with the arc weights.

4 End-to-End Analysis of an Alarm Log

In this section, we explain how to apply the approach described in Sects. 2 and 3
for the end-to-end analysis of an alarm log in a root-cause analysis context. We
assume that the log is given and there is no constraint for performing it online
(even if some steps can be performed online). In Sect. 4.1, we explain the general
approach, and in Sect. 4.2, we give some solutions when the log is too large for
the analysis to be scalable.

4.1 General Approach of the Analysis

Log Parsing. The first step is to transform the raw log into a sequence of events.
This includes fixing the alphabet, fixing the activity period of each event, and
the time τ when the construction of the log stops.

Alphabet of the Log: The choice of the alphabet is decided based on the features
one wants to take into account during the analysis. The most relevant features
are:

– the name of the alarm: this is generally a short text or a number;
– the emitting machine, represented by its identifier. This can be a machine,

the port of a switch, a cell in a wireless network, etc.;
– the severity of the alarm, represented by a number or a color, that grows or

becomes darker with the severity.

Activity Period of an Event: Depending on whether the log has already been
pre-processed or not, whether an alarm has a cancel time or not, the activity
period of an event must be carefully defined.

The simple case is when an alarm has a emission time and a cancel time, as
they respectively define the star time and the end time of the activity period.

When only the emission time is available, this defines only the start time of
the activity period. Its end has to be defined.

In some alarm logs, emission times occur at precise dates. This is the case for
example for KPIs, when their emission is set a few times per hour. In this case
and in order to ensure time causality, a good choice would be to set an activity
period a little longer than the periodicity of the measurements.

If there is no such periodicity, then the time interval can be set up by studying
the average rate of the events. More details on the choice of the activity period
can be found in [4].



146 A. Salaün et al.

Fixing Time τ : Even if a log is given as a file and the analysis can be performed
for the whole log, it might be a better idea, sometimes, to stop the construction
before. For example, a peak of alarms detected at time τ indicates that a major
failure is arising in the network at that time. The origin of the problem occurs
before that peak. Moreover, queries of the DIG-DAG can make advantage the
active alarms at time τ .

DIG-DAG Construction. Once the log has been well defined, the poten-
tial space causality C is required to build the DIG-DAG. We give below some
examples:

– if no information is available, then C is simply Σ2;
– it the geographic location of the network equipment is known (antennas and

cells in a wireless network for example), then σσ′ ∈ C if and only if the symbols
σ and σ′ represent machines are distant of no more than a few kilometers.

– if some logical behavior is known, such as a certain type of element or appli-
cation only communication with some other types of machines, one can build
C based on these possible communications.

The DIG-DAG can then be built. Note that additional information can be
added to the structure, such as the weight of the arcs, defined in Sect. 2.3, or the
last date of activation of each vertex, mentioned in Sect. 3.

Query of the DIG-DAG. Once the DIG-DAG is built, it stores every space-
time pattern of the log and one can query it. For a regular query, parameters
are S, T,M, Pv, Pe (see Sect. 3.1). Let us give some examples.

Filtering the Arcs: this is done by defining property Pe. Assume that one wants
to extract parts of the DIG-DAG such that there are strong correlations between
the nodes. This is done by using the weights of the arcs, and more precisely, the
ratio r defined in [4], such that for each arc (u, v) of the DIG-DAG, r((u, v)) =
w((u, v))/|L|v, where |L|v is the number of occurrences of v in log L. This is
the ratio between the number of time patterns ending by arc (u, v) has been
observed in the log and the total number of occurrences of v in the log. If this
ratio approaches 1, this means that v is strongly and positively correlated to
these patterns. Property Pe will then select the arcs having a ratio above a given
threshold ρ.

Filtering the Nodes: this is done by defining property Pv. Assume that one might
want to discard alarms having the lowest severity to focus on the more important
messages. This is then equivalent to select a subset of Σ. Assume that one wants
to focus on recent alarms only. Then Pv can be set to select nodes that have
been recently active.

Sources: We now define S, the possible sources of the paths. By default, one can
choose S = {q0} to keep every patterns. On the contrary, one could decide to
focus on some types of alarms.
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Targets: For the definition of T , one may want to focus on critical events. A
good choice, especially if τ has been chosen in a peak of alarm, is to focus on
active alarms active at τ that have a high severity level.

More Specific Queries: for more specific queries, the automaton M can be
defined. This can for example be used to follow and check the propagation of
faults. For example, to check the propagation of a faulty behavior from a machine
m1 to another machine m2, one may define an automaton accepting words of
the form Σ∗

1Σ∗
2 , where Σi is the set of alarms emitted from machine mi.

Once the query has been defined, the DIG-DAG is queried according to
Algorithm 1. The readability of resulting sub-DIG-DAGs can be improved by
using the techniques described in Sect. 3.2.

4.2 Dealing with Huge Logs

It happens that logs are too huge so that the DIG-DAG can be built in a reason-
able time (or online). In this paragraph, we propose several solutions to overcome
this difficulty. The first one is based on selecting relevant parts of the log, and
the other ones rather modify the alphabet Σ to simplify the log.

Truncation of the Log. A first solution consists in selecting only the most
interesting parts of the log. Intuitively, a problem can be detected when the
behavior of the alarms emission process deviates from its normal behavior. For
this, we are interested in the rate on arrival of the alarms, or of a subset of
alarms. Detecting the deviation as soon as possible can help targeting the root
cause.

Several techniques have been proposed to detect automatically deviating
behaviors. They are all based on tracking the average arrival rate of messages:
one can cite the Moving-average model [9] or [5]. In the solution proposed in the
next section, we consider the latter solution, as it has been demonstrated to track
deviations more precisely. The arrival rate of messages can be computed online.
Detecting sudden deviations can then be done using Tchebychev inequality.

Simplification of the Alphabet. The size of the alphabet has a strong impact
on the size of the DIG-DAG. Indeed, the out-degree of each vertex is bounded
by the size of the alphabet.

Spamming Alarms. The easiest way to simplify a log is to remove some entries.
Spamming alarms are frequent alarms that do not provide information: they
appear in every log, regularly, whatever the state of the machine. Removing them
would not impact the retrieval of cascades of events for root-cause analysis. They
can also improve the analysis by discarding irrelevant causalities. Those alarms
can be learned through the observation of previous logs, or by pre-processing
the log under analysis.
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Clustering Co-occurrent Alarms. Another way to simplify the log is to cluster co-
occurrent symbols and merge the corresponding events of the log. More precisely,
we define a distance between two symbols σ and σ′ as the Jaccard distance of
their emission intervals: let Iσ = ∪{�∈L | λ(�)=σ}[s�, t�] be the union of all the
intervals of time where symbol σ is emitted. The Jaccard distance of σ and σ′ is

d(σ, σ′) = 1 − |Iσ ∩ Iσ′ |
|Iσ ∪ Iσ′ | ,

where | · | is the L1 norm.
This distance can be generalized to the distance between clusters the follow-

ing way: let C and C ′ be two sets of symbols. Let IC = ∪{�∈L | λ(�)∈σ}[s�, t�].
The Jaccard distance between C and C ′ is

d(C,C ′) = 1 − |IC ∩ IC′ |
|IC ∪ IC′ | .

From this distance one can build a clustering of alarms in a bottom-up app-
roach:

– fix a threshold α to merge clusters that have distance less than α;
– while the smallest distance between two any clusters is less than α, merge the

two nearest clusters.

When clusters have been computed, the log needs to be simplified. The new set
of symbols is the set of clusters obtained, and we replace each event (σ, [s, t])
by (C, [s, t]) is σ ∈ C, and merge all the co-occurring events having the same
cluster.

As in the previous paragraph, this can be done by pre-processing the log
under analysis, but could also be learned from previous logs, and the merging of
events be done on-the-fly.

Projection the Alphabet and Two-Step Analysis. A third solution to limit the size
of the alphabet, is to project the alphabet. For example, if the alphabet were
initially based on both the emitting machine and the name of the alarm, one can
build a DIG-DAG by projecting the alphabet on the machines only or the alarm
names only. By doing this, events will have to be merged as in the paragraph
above. Such a simplification of the log implies some loss of information, but
projecting on the machines can help locating the problem, and projecting on the
alarm name can help detecting the type of problem that occurred.

This partial information can be used for selecting a sub-set of events of the
original log, and perform a second construction of a DIG-DAG: let us assume
for example that we used only the information of the machines to build the first
DIG-DAG, and performed a query that isolated some parts of the log, hence
some machines of interest. Now, consider the original log and keep only the
events emitted by the machine of interest. The size of this sub-log and of the
alphabet is reduced, so the analysis can be performed by building the DIG-DAG
of the sub-log and querying it.
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5 Experimental Results

In this section, we apply our methodology (see Sect. 4) to three real datasets
using a computer with an Intel i7 microprocessor and 8 GB RAM.

5.1 Datasets

We use three private logs issued by three different GSM network elements. Each
line describes a specific event which contains the alarm identifier, the machine
name, the emission time of the alarm, and its severity. Note that each row
describes a punctual event, i.e. the activity of the event is only characterized
by its emission time. Severity is a score indicating the importance of the alarm,
equal to 0 for informative messages, 1 for warnings, 2 for mid severe alarms and
3 for major failures. Each triple (machine, alarm-id, severity) corresponds
to a symbol as introduced in Sect. 2.1.

Table 1. Experiments summary. First block describes the dimensions of the raw
datasets. Second block shows the dimensions of the logs after alphabet simplifica-
tion. Third block highlights the gains obtained by our query system. When relevant,
computation times are mentioned.

Log 1 Log 2 Log 3

Duration (h) 1042 48 330

Nb. of entries (total) 35,905 6,873 5,591

Nb. of network elements 115 142 41

Nb. of alarms 43 66 39

Size of the alphabet 242 429 113

Nb. of entries after clustering step 1,095 548 480

Nb. of entries after spamming filtering 635 537 226

Nb. of clusters 103 167 69

Clustering execution time 2.5 s 3.7 s 0.4 s

Nb. of DIG-DAG vertices/edges 20,540/443,496 4,364/177,973 190/643

Nb. of query (ρ = 0.7) vertices/edges 19/35 142/996 34/54

DIG-DAG construction time 25.1 s 8.9 s 38ms

Query construction time 0.7 s 1.0 s 42ms

First block of Table 1 gives for each log its size and its corresponding alphabet.
Networks topologies are unknown.

5.2 Simplification of the Alphabet and DIG-DAG Construction

First of all, a potential causality relationship is defined with regard to punctual
events. As logs may last several days, we consider that an event could cause
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another event if it occurred at most one hour earlier. This is enough to catch
relevant causalities.

To limit the size of the DIG-DAG, we cluster co-occurring alarms as described
in Sect. 4 with α = 0.3. Furthermore, we discard spamming clusters, that is
clusters whose total activity period is more than 24 h.

The activity in Log 1, before and after alphabet simplification, is represented
in Fig. 5. One can check that such simplifications did not alter the behavior
observed in the original log.
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Fig. 5. Number of active alarms over time (raw and simplified logs) in Log 1.

Log sizes after simplifications are shown in the second block of Table 1. Note
that skipping the alphabet simplification in the RCA process leads to larger
structures. For instance, Log 1 is too big to be built quick.

5.3 DIG-DAG Queries

Despite their quick computation, the DIG-DAGs are hardly human-readable (see
third block of Table 1). We now extract patterns leading to critical failures.

For each dataset, we query the DIG-DAG with the following parameters:

– S is restricted to relevant vertices that correspond to clusters containing at
least one event of severity greater or equal to 1;

– T is restricted to critical vertices that correspond to clusters containing at
least one event of severity 2 or 3;

– Pv is defined to only consider relevant vertices;
– Pe is defined to only consider arcs of ratio greater than ρ ∈ [0, 1];
– M accepts any pattern.
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As we have neither prior knowledge nor expertise about the logs we studied,
the described patterns are very generic. We will see however in the two next
sections that these naive queries still dramatically improve DIG-DAG readability
and contain relevant information about failures.

5.4 Results

Evaluating Filtering of Queries. This section presents results for different
values of ρ. The greater this parameter, the stricter the filtering.
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Fig. 6. Number of vertices |Vρ| (resp. edges |Eρ|) of queries in Log 1 regarding threshold
ρ (left axis). This number is divided by the number of vertices |V | (resp. edges |E|) in
the whole DIG-DAG (right axis).

In Fig. 6, for any ρ, queries select a small fraction of the DIG-DAG built
from Log 1. This highlights the efficiency of the queries to extract patterns from
the DIG-DAG. For ρ ≥ 0.7, the corresponding sub-DIG-DAG has less than 19
vertices and 35 arcs, and hence becomes small enough to be human-readable.
The choice of ρ is a compromise between readability and quantity of information.

Accuracy of the Queries. For each dataset, the root cause has been provided
by experts. These root causes have been highlighted by experts independently of
our work. When ρ = 0.7, the resulting sub-DIG-DAGs contains all the provided
root causes. Moreover, the sub-DIG-DAG provides richer information than just a
root cause. For example, Fig. 7 depicts the sub-DIG-DAG obtained for Log 1 and
contains the root cause (77397912,4004,2) provided by experts. Unfortunately,
we did not get further expert feedback regarding the quality of the sub-DIG-
DAGs.
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Fig. 7. Sub-DIG-DAG issued by the query of Log 1 (ρ = 0.7). Labels (machine,

alarm-id, severity) are indicated for each vertex. Colors depend on the severity of
the cluster representative. Ratios are indicated on edges.

6 Conclusion

In this article, we proposed a system of queries to extract meaningful and syn-
thetic explanations from causal graph structures. The tool provided is flexible
enough to allow experts to search for specific behaviors within the log. We also
demonstrated how to use this tool for an end-to-end analysis.

However, human expertise is still a necessary component in the RCA process,
and our goal is oriented towards self-diagnosing and self-repairing networks.

Therefore, our future works aim at automatizing the exploitation of the DIG-
DAG structure. Additionally, being able to combine knowledge learnt from sim-
ilar networks would help us to design a fully automatic RCA solution.
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Abstract. Scientific computations are expected to be increasingly dis-
tributed across wide-area networks, and Message Passing Interface (MPI)
has been shown to scale to support their communications over long dis-
tances. Application-level measurements of MPI operations reflect the
connection Round-Trip Time (RTT) and loss rate, and machine learning
methods have been previously developed to estimate them under deter-
ministic periodic losses. In this paper, we consider more complex, ran-
dom losses with uniform, Poisson and Gaussian distributions. We study
five disparate machine leaning methods, with linear and non-linear, and
smooth and non-smooth properties, to estimate RTT and loss rate over
10 Gbps connections with 0–366 ms RTT. The diversity and complexity
of these estimators combined with the randomness of losses and TCP’s
non-linear response together rule out the selection of a single best among
them; instead, we fuse them to retain their design diversity. Overall, the
results show that accurate estimates can be generated at low loss rates
but become inaccurate at loss rates 10% and higher, thereby illustrating
both their strengths and limitations.
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Fig. 1. RTT estimates with lowest RMS error of individual and fuser methods.

interest in science applications. Their execution times are effected by network
latencies and loss processes, often in a complex way, due to the close coupling
between computations and communications in these applications. Recently, Mes-
sage Passing Interface (MPI) has been shown to be effective in supporting com-
munications over wide-area connections, including ones long enough to span the
globe, under external packet loss rates up to 20% [14]. In contrast with execu-
tions at a single facility, these distributed computations need to account for the
longer and more varied executions times of MPI operations to avoid inefficien-
cies due to unbalanced computing and networking operations; for example, MPI
join operation over connections with wide ranging latencies will be delayed by
the longest. Motivated by such considerations, Round Trip Times (RTT) and
loss rates of wide-area connections are estimated using execution time measure-
ments of MPI primitives in distributed computations [15]. A main contributor
to these execution times is the Transmission Control Protocol (TCP) which is a
dominant underlying transport mechanism of MPI for wide-area connections. In
particular, at increased loss rates and randomness, the execution time variations
are dominated by TCP’s highly non-linear response dynamics [7,9].

Machine Learning (ML) methods have been developed for a number of net-
working tasks for science data flows, for example, detecting flow anomalies [6] and
classifying elephant and mice flows [4]. In particular, ML methods are developed
to estimate the connection RTT and loss rate under deterministic periodic losses
in [15] for 10 Gbps emulated connections with 0–366 ms RTT; these connections
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Table 1. RMS errors of RTT estimation by individual and fuser methods.

Loss type EOT GPR LR RT SVM LR-F GPR-F Δ̃LR-F Δ̃GPR-F

Periodic 109.20 87.78 102.27 95.31 103.49 92.94 85.50 −1.63 2.28

Poisson 101.89 91.90 104.32 104.31 120.35 89.85 85.69 2.05 6.21

Gaussian 84.33 73.13 2020.55 73.28 137.29 88.22 87.06 −15.06 −13.92

Uniform 109.11 99.59 106.47 107.62 121.81 90.12 84.90 9.46 14.69

represent local, cross country, continental and round the earth distances. In this
paper, we consider more realistic, complex scenarios with random losses, in par-
ticular under unform, Poisson and Gaussian distributions up to 20% loss rates, to
study the strengths and limitations of ML methods. We study five disparate ML
methods, with linear and non-linear, and smooth and non-smooth properties, to
estimate connection RTT and loss rate. They include four non-linear estimators,
namely, smooth Support Vector Machine (SVM) and Gaussian Process Regres-
sion (GPR), and non-smooth Ensemble of Trees (EOT) and Regression Trees
(RT), in addition to the baseline Linear Regression (LR) method. The diversity
and complexity of these estimators combined with the randomness of losses and
TCP’s non-linear response rule out the identification of a single best among the
estimators. Analytical results establish the finite-sample limits in asserting the
performance superiority of any such method based on samples [5]. In particular,
the training error is an insufficient indicator of estimator’s performance due to
potential over-fitting that leads to poor generalization performance on future
datasets.

Fig. 2. Index representing increase of loss
rate and RTT from left to right.

Over-fitting is often specific to an
estimator method and is less likely
to occur across estimators of radically
different designs. In several cases, by
fusing diverse estimators both the
performance and diversity of design
are preserved [10]. However, the fused
estimators are also subject to finite
sample limits since they are also esti-
mators. We study linear regression
fusion (LR-F) and GPR fusion (GPR-
F) methods, and our results show
that the latter achieves lowest Root
Mean Square Error (RMSE) among
all estimators for RTT in three out
of four scenarios. We develop ana-
lytical characterization of the perfor-
mance improvements of fused esti-
mates over individual RTT estimates
under finite sample, distribution-free
framework [17].
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By using MPI execution times as the independent variable, we formulate the
problem of estimating RTT and loss rate as a regression estimation problem. The
overall results are illustrated using RTT estimates with smallest RMSE among
individual methods and fusers in Fig. 1 for four loss rates. In each plot, datasets
are concatenated at four loss rates in increasing order and at each loss rate RTT
is increased left to right, and measurements are repeated 10 times at each RTT
value as shown in Fig. 2. Among individual RTT estimates, GPR has the lowest
RMSE in all four scenarios, and GPR-F fuser achieved even lower RMSE in three
out of four loss scenarios, as shown in Table 1 while encompassing the design
diversity of individual methods. Overall, our results show that accurate estimates
can be generated at low loss rates but become inaccurate at loss rates 10% and
higher, wherein the datasets appear much too complex for these methods (as in
the case of deterministic periodic losses [15]). In addition, they reveal some subtle
performance effects including over-smoothing by some estimators in achieving
lower RMSE, and bleeding effects of RTT in loss rate estimates.

The organization of this paper is as follows. The testbed used in collecting
MPI execution time measurements is described in Sect. 2. An analytical for-
mulation of the underlying regression problem is presented in Sect. 3. Various
datasets of execution time measurements are qualitatively described in Sect. 4.
RTT estimators are described in Sect. 5, wherein five different ML methods are
described in Sect. 5.1 and two fusers are described in Sect. 5.2. Generalization
equations of the fusers for RTT estimation are described in Sect. 6. Loss rate
estimators are described in Sect. 7. The performance of the estimators is quali-
tatively interpreted in the context of datasets at lower and higher loss rates in
Sect. 8. A summary of results and directions for future work are described in
Sect. 9.

2 Test Configuration

A computing cluster with InifiniBand (IB) interconnect is expanded to consti-
tute a testbed to run MPI codes across the wide-area Ethernet connections.
Additional Ethernet Network Interface Cards (NIC) are installed in two cluster
computing nodes (tait1 and tait2), which are connected to Ethernet switches and
a hardware-based Ethernet emulator in the configuration shown in Fig. 3. The
IB connections of the cluster are subject to 2.5 ms latency limit, and hence MPI
measurements over IB are not indicative of the performance over long distance
connections. Specifically, the shorter distances combined with credit-based IB
protocol flow control do not adequately reflect the complex variations of TCP
over wide-area connections, particularly under packet losses. Furthermore, due
to their latencies, wide-area networks are more prone to more losses compared
to IB networks.
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Fig. 3. Configuration for long Ethernet
connection between compute nodes of IB
cluster.

Typical wide-area connections con-
sist of a number of switches and
routers whereas IB connections have
fewer IB switches. This testbed con-
nection consists of two Ethernet
switches between the source comput-
ing node and a port of the emu-
lator, which reflects a site connec-
tion. Similarly at the other end, the
connection consists of two Ethernet
switches between the second port of
the emulator and destination com-
puting node. Thus, this symmetric
end-to-end connection consists of four
Ethernet internal cross-connections,
six short Ethernet segments and one
emulated long distance Ethernet con-
nection with variable latency, loss rate
and type of loss distribution.

ANUE/Ixia hardware-based emulator is used to collect MPI measurements
over Ethernet connections with 11 Round Trip Times (RTT) in 0–366 ms range.
These RTT values are strategically chosen to represent three ranges: (a) smaller
values represent cross-country connections, for example, computing facilities dis-
tributed across the US, (b) 93–183 ms represent inter-continental connections,
and (c) 366 ms represents a connection spanning the globe, which is mainly used
as a limiting case. External periodic and random packets losses are introduced
using ANUE/Ixia devices at four different loss rates. These emulators delay the
packets as per the specified RTT value, and thus closely emulate the physical long
distance path. Equally importantly, these emulations closely match TCP dynam-
ics of physical connections with corresponding RTTs, which is a critical factor in
assessing MPI performance over long distance connections. In particular, these
emulations lead to different TCP dynamics and responses under deterministic
(periodic) and random losses of Ethernet segments [14], which result in a wider
spread of the execution times at high loss rates under random losses (Sect. 8).

3 Analytical Formulation

We now provide a formal description of the underlying estimation problems
to support subsequent analytical treatment of RTT and loss rate estimation
methods. Let E be a random variable representing the execution time of MPI
Send Receive primitive; it is distributed according to the joint probability dis-
tribution PE,R,L, where R and L are the random variables representing RTT
and loss rate, respectively. In general, the distribution PE,R,L is quite complex
since it depends on the properties of the network connection and host systems,
and also the software stack consisting of the operating system, networking and
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MPI modules. Given an execution time measurement E = e, the conditional
distribution PR,L|e = PR,L|E=e, characterizes the distribution of RTT and loss
rate at this value e. Then, RTT-regression function fR is defined as the expected
value of RTT at E = e given by

fR(e) =
∫

RdPR,L|e,

which is averaged over both R and L at each e. The loss-regression function fL

is the expected value of the loss rate at E = e, which is similarly given by

fL(e) =
∫

LdPR,L|e.

In general, these regressions cannot be obtained even in theory since the underly-
ing distribution PE,R,L is unknown. In stead, ML methods are employed to esti-
mate their approximations using a training sample (Ei, Ri, Li), i = 1, 2, . . . , l,
wherein Ei is the execution time measured over a connection with RTT Ri

and loss rate Li. The distributions of the connection parameters R and L are
determined by the design of connection configurations, and are fixed while the
measurements of E are repeated. Thus, the distribution of E encompasses fac-
tors due to the properties of physical connection parameters as well as operating
system, TCP and MPI modules.

Then, RTT and loss rate estimation problems can be cast as estimating
the regression functions fR and fL, respectively, using measurements. We con-
sider that RTT-regression estimate f̂R

A is obtained by method A ∈ A =
{EOT,GPR,LR,RT,SVM,LR−F,GPR−F} using the measurement pairs (Ei, Ri), i =
1, 2, . . . , l. Similarly, the loss-regression estimate f̂L

A is obtained by method
A ∈ A using the measurement pairs (Ei, Li), i = 1, 2, . . . , l. At a given exe-
cution time E = e, f̂R

A (e) and f̂L
A(e) are the estimates of RTT and loss rate,

respectively, provided by method A.

4 Execution Time Measurements

The execution times of MPI Send Receive operations collected at the application-
level are shown as a function of RTT in Fig. 4 for loss rates, 0.1, 1, 10 and 20%, of
externally induced losses under four loss scenarios, one deterministic periodic and
three random, namely uniform, Poisson and Gaussian. Their increasing trend as
a function of RTT is evident at lower loss rates, 0.1% and 1%, but it becomes
less prominent at 10% loss rate, and essentially disappears at 20% loss rate as
outliers dominate. Overall, the execution times as well as their variations increase
as loss rate is increased, which is an indication of the increased complexity of
their estimation at higher loss rates.

In terms of losses, the execution times are shown as function of loss rates
0.1, 1, 10 and 20% in Fig. 5 under the four loss scenarios. The measurements
at any loss rate encompass all 11 RTT values, and 10 repeated measurements
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Fig. 4. Execution times of MPI Sendrecv operations as function of RTT under four
external loss scenarios, namely, periodic, uniform, Poisson and Gaussian.

Fig. 5. Execution times of MPI Sendrecv operations as function of loss rate under four
external loss scenarios, namely, periodic, uniform, Poisson and Gaussian.
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at each RTT value. Their increasing trend as a function of loss rate is evident
overall but is sharper for periodic losses and is more diffused with overlaps across
loss rates in all three random loss scenarios. The ranges of execution times are
much wider for random losses compared to periodic losses. Also, the execution
times as well as their variations increase overall as loss rate is increased for
deterministic periodic loss scenario. But, in random loss scenarios the variations
are more subtle: their spread is similar at all loss rates except at 20%, wherein
a few measurements are very large, which indicate the complexity of loss rate
estimation in these scenarios.

Fig. 6. Traces of execution times in seconds of MPI Sendrecv operations under four
external loss cases.

5 RTT Estimators

We present RTT estimates in the form of traces that are indexed by groups of 440
measurements that correspond to increasing loss rates, and within each group we
have 11 sub-groups that correspond to increasing RTT values as shown in Fig. 2;
each sub-group corresponds to 10 repeated measurements at a fixed pair of loss
rate and RTT. The 440 measurements for each loss scenario shown in Fig. 6 will
be used to compare qualitatively with the corresponding RTT estimate traces.
We utilize the regression estimation codes from matlab statistics toolbox.

5.1 Five Estimators

The five estimation methods are chosen to reflect different characteristics of the
underlying regressions, namely, smooth and non-smooth functions, respectively.
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Fig. 7. Periodic losses.

Fig. 8. Uniform losses.
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GPR and SVM with Gaussian kernels [16] are based on non-linearly transform-
ing the feature space X into regression space of Y . They both provide smooth
regression functions fGPR and fSVM, and their respective function classes FGPR

and FSVM consist of smooth functions as a result of Gaussian kernels. EOT [2,8]
method is based on boosting of a collection of classification trees that are cus-
tomized to fit the training data using the AdaBoost method. RT [3] methods is
also based on trees that are customized to fit the training data. They both lead
to a highly non-smooth regression functions fEOT and fRT, and their function
classes FEOT and FRT consists of a collection of decision tree. LR is a smooth
and linear method and leads to fLR from the function classes FLR, which is
effective in RTT estimation under no losses [15] but is quite limited under losses
as indicated by its RMSE in Tables 1 and 2.

The estimators under periodic, uniform, Poisson and Gaussian loss scenarios
are shown in Figs. 7, 8, 9 and 10, respectively. Under periodic and Gaussian
losses, all estimates are more accurate at 0.1% and 1% loss rate but are inaccurate
at higher loss rates; in particular, they capture the increasing trends in RTT at
low loss rate but exhibit high variation at 10% and 20% loss rate. Under unform
and Poisson losses, GPR method does not capture the increasing RTT trend at
any loss rate, while other non-linear estimates captured it. Interestingly, GPR
achieved lowest RMSE among individual estimators which is due to the inclusion
of measurements at higher loss rate that resulted in “averaging” across all loss
rates. This undesirable artifact of low RMSE but less accurate estimate at low
loss rates is illustrated in Figs. 8 and 9. LR and SVM methods have highest and
second highest RMSE among the twenty cases in Table 1.

Fig. 9. Poisson losses.
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Fig. 10. Gaussian losses.

5.2 Estimator Fusers

The estimators from five individual methods are used as 5-dimensional input to
a fuser which produces RTT as its output. The linear regression fuser (LR-F) is
a linear combination of the individual estimators, and the GPR fuser (GPR-F) is
obtained using GPR method based on the outputs of five estimators correspond-
ing to the training sample. GPR-F achieved lower RMSE than best individual
estimator GPR in all except under Gaussian losses, whereas LR-F has lower
RMSE for Poisson and uniform losses. As shown in Fig. 1, the fused estimates
were able to capture the increasing RTT trend at lower loss rates while achiev-
ing lower RMSE error than GPR under uniform and Poisson losses, unlike GPR
estimator with lowest RMSE among individual estimators.

6 Generalization Equations for Fused Estimates

We consider five individual estimates, indexed by A ∈ AI =
{EOT,GPR,LR,RT,SVM}, such that the fuser input vector X consists of five real-
valued components, XA, A ∈ AI , and output Y is a real-valued estimate of
RTT. RMSE values in Table 1 have been used to compare the performance of
fusers and individual estimators in previous sections, which are subject to sta-
tistical variations since they are computed based on a sample. We now derive
confidence bounds for these RMSE values which provide analytical justification
for their use. For simplicity of presentation of analytical results, we use MSE in
place of RMSE following the common practice in finite sample theory [17].
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6.1 Regression Problem: Finite Sample Generalization

In a generic regression estimation problem the feature vector X ∈ �d and the
output vector Y ∈ � are distributed jointly accordingly to an unknown distri-
bution PX,Y . The expected error of a regression function f is

I(f) =
∫

(f(X) − Y )2 dPX,Y .

The expected best regression estimator f∗ minimizes I(.) over F , i.e., I(f∗) =
min
f∈F

I(f). The empirical error Î(f) based on training data (Xi, Yi), i = 1, 2, . . . , l,

is defined as

Î(f) =
1
l

l∑
i=1

(f(Xi) − Yi)2

It is an approximation of I(f) computed based on the training data. The empir-
ical best regression estimator f̃ minimizes Î(.) over F , i.e., Î(f̃) = min

f∈F
Î(f).

The joint distribution PX,Y of data is complex, domain specific, and is only
partially known. In our context, it depends on the finer details of the underlying
software and hardware components, which may manifest as additional random
variables. For an individual estimator A ∈ AI , X and Y correspond to execution
time E and RTT R, respectively, and PX,Y corresponds to PE,R,L which involves
additional random variable of the loss rate L. For fusers, X and Y correspond
to 5-dimensional vector consisting of outputs of estimators and RTT R, respec-
tively. In general, an optimal f∗ cannot be computed precisely with probability
one even in principle, since PX,Y is either unknown or not computationally con-
ducive. Under certain conditions, Vapnik’s generalization theory [17] establishes
that there exists a confidence function δ(.) such that for a “suitable” estimator
f̂ obtained from training data we have

P
l
X,Y

[
I(f̂) − I(f∗) > ε

]
< δ(ε, ε̂, l) (1)

where ε, ε̂ > 0, 0 < δ < 1, and Î(f̂) = min
f∈F

Î(f)+ ε̂. This condition ensures that

“error” of f̂ is within ε of optimal error (of f∗) with probability 1−δ, irrespective
of the underlying measured or computed data distribution P

l
X,Y . Furthermore,

under these conditions, the confidence parameter δ(ε, ε̂, l) approaches 1 as the
sample size l approaches infinity.

Consider the fuser class FF used in fusing the estimators fA ∈ FA, A ∈ AI .
Let fF denote the regression function obtained by composing fA’s with the fuser
function from FF . The error reduction ΔF of the fused estimate over the best
individual classifier is defined as

ΔF = min
A∈AI

I(fA) − I(fF ).

Then, if FF has the isolation property [11], then ΔF ≥ 0. The best error reduc-
tion is given by

Δ∗
F = min

A∈AI

I(f∗
A) − I(f∗

F ).
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and its estimate based on a sample is given by

Δ̃F = min
A∈AI

Î(fA) − Î(fF ).

The error reduction values ΔF based on measurements are shown in Table 1
for the two fusers LR-F and GPR-F. GPR-F has positive Δ̃F values in three
scenarios indicating that the fused estimate has lower RMSE than the lowest
of its constituent estimators (namely, GPR). LR-F has positive Δ̃F values in
two scenarios, which might be attributed to the lack of the required statistical
independence in estimator outputs. We show in the next section that the estimate
Δ̃F reflects the optimal improvement Δ∗

F achievable by the fuser within a formal
framework.

6.2 Estimator Fusers: Generalization Equations

The generalization bound δ(ε, ε̂, l) applicable to five individual estimators can be
derived using various properties of the corresponding estimator classes [12]. In
particular, these bounds for GPR and SVM with Gaussian kernels could be based
on fat-shattering index [16], and for EOT and RT they may be based on bounded
total variation [1]. In Theorem 1, we assume that these generalization bounds
are available from existing works, and their detailed derivations are beyond the
scope of this paper.

We now show that the estimate Δ̃F is within ε of the optimal Δ∗
F with

a probability that improves with the training data size l independent of the
underlying distribution PY,X .

Theorem 1. Consider that there exists δB(ε, ε̂B , l) such that based on i.i.d. l-
sample, we have

P
l
X,Y

[
I(f̂B) − I(f∗

B) > ε
]

< δB (ε, ε̂B , l) . (2)

for all individual estimators B ∈ AI , NAI
= |AI |, and both fusers B =

LR−F,GPR−F such that δB(ε, ε̂B , l) → 0 as l → ∞. Then, the probability that
the closeness between Δ̃F and Δ∗

F is within ε is bounded as

P
l
X,Y

[
|Δ̃F − Δ∗

F | < ε
]

> 1 − δD (ε/2, ε̂D, l) −
∑

A∈AI

δA (ε/(2NAI
), ε̂A, l) ,

for both fusers D = LR−F,GPR−F.

Proof. We first note that for D = LR−F,GPR−F

|Δ̃F − Δ∗
F | ≤ |Î(f̂D) − I(f∗

D)| +
∣∣∣∣ min
A∈AI

Î(f̂A) − min
A∈AI

I(f∗
A)

∣∣∣∣ ,
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which establishes that the condition |Δ̃F − Δ∗
F | > ε implies that at least one

term on the right hand side is greater than ε/2. We now have

|Î(f̂D) − I(f∗
D)| ≤ |Î(f̂D) − I(f̂D)| + |I(f̂D) − I(f∗

D)|,

which in turn establishes that the condition |Î(f̂D) − I(f∗
D)| > ε/2 implies that

at least one term on the right hand side is greater than ε/4. Then, by hypothesis
in Eq. (2), both conditions are simultaneously satisfied with probability at most
δD (ε/4, ε̂d, l). Similarly, we have

∣∣∣∣ min
A∈AI

Î(f̂A) − min
A∈AI

I(f∗
A)

∣∣∣∣ ≤
∣∣∣∣ min
A∈AI

Î(f̂A) − min
A∈AI

I(f̂A)
∣∣∣∣

+
∣∣∣∣ min
A∈AI

I(f̂A) − min
A∈A

I(f∗
A)

∣∣∣∣ ,

which in turn establishes that the condition
∣∣∣∣ min
A∈AI

Î(f̂A) − min
A∈AI

I(f∗
A)

∣∣∣∣ > ε/2

implies that at least one term on the right hand side is greater than ε/4. Then,
we consider the two upper bounds

∣∣∣∣ min
A∈AI

Î(f̂A) − min
A∈A

I(f̂A)
∣∣∣∣ ≤

∑
A∈AI

∣∣∣Î(f̂A) − I(f̂A)
∣∣∣

∣∣∣∣ min
A∈AI

I(f̂A) − min
A∈AI

I(f∗
A)

∣∣∣∣ ≤
∑

A∈AI

∣∣∣I(f̂A) − I(f∗
A)

∣∣∣ .

In each case, the condition that left hand side is larger than ε/2 implies at least
one of the terms under the summation is greater ε/(2NAI

). Under the hypothesis
of this theorem in Eq. (2), both conditions are satisfied with probability at most

∑
A∈AI

δA(ε/(2NAI
), ε̂a, l).

By combining the above terms together, we have

P
l
X,Y

[
|Δ̃F − Δ∗

F | > ε
]

< δD (ε/2, ε̂D, l) +
∑

A∈AI

δA (ε/(2NAI
), ε̂A, l) ,

which proves the theorem. �

The confidence bound in this theorem is distribution-free in that it does
not depend on PX,Y . It is expressed in terms of the precision parameter ε

and the confidence parameter

[
1 − δD (ε/2, ε̂D, l) − ∑

A∈AI

δA (ε/(2NAI
), ε̂A, l)

]
,

which approaches 1 with increasing number of measurements l.
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Table 2. Loss rate estimates RMSE of five estimators and linear fuser.

Loss type EOT GPR LR RT SVM LR-F

Gaussian 5.19 6.39 5.34 6.82 7.17 6.42

Periodic 7.26 6.62 6.82 7.00 6.91 6.81

Poisson 6.99 6.61 7.42 6.93 6.72 6.74

Uniform 7.26 6.62 6.82 7.00 6.91 6.81

Fig. 11. Loss rate estimates with lowest RMSE of individual methods.

7 Loss Rate Estimators

The loss estimates of four non-linear estimators are shown in top left plot of
Fig. 11 for periodic losses. For random losses, SVM estimates have extreme vari-
ations and hence are omitted in the plots. Also, LR estimator is omitted in all
plots due to its extremely large variation under all loss scenarios. Qualitatively,
smooth SVM and non-smooth RT methods both exhibit large variations, which
indicate the underlying properties of the data rather than these methods; indeed
GPR is the only method that did not produce large variations. RMSE of five
estimators and linear fuser LR-F are shown in Table 2. Methods with lowest
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RMSE for loss rate estimation are shown in Fig. 12, which are EOT for periodic
losses and GPR for all others. Both of them exhibited lower variations at low
loss rate and an increasing trend as RTT is increased at a fixed loss rate. As in
the case of RTT estimation, the “averaging” by GPR resulted in lower RMSE
but less accurate estimates at low loss rates; but, interestingly, this effect is more
dominant for Gaussian errors unlike for RTT estimation. In almost all cases, at
fixed loss rate, the estimators showed an increasing trend as RTT is increased.

Fig. 12. Loss rate estimates with lowest RMSE of individual methods.

The large variations shown in the scatter plots in Fig. 5 indicate high RMSE
by any estimate since its output is a function and data dispersed around it
contributes to RMSE. In particular, a smooth estimate will not be able to cap-
ture these variations as applicable to GPR and SVM methods. While tree-based
methods in principles can capture such variations, they require a large num-
ber of leaf nodes, and those with smaller number will result in large RMSE. In
summary, the results indicate the challenging nature of the underlying datasets,
which in some sense expose the limitations of the conventional ML approaches
for loss rate estimation.

8 Execution Time Measurements: Data Regressions

Qualitative insights into the performance of regression estimators can be gained
by examining the scatter plots of measurements separately at low and high loss
rates. Overall increasing trend of RTT when plotted as a function of execution
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Fig. 13. Data regressions under periodic and uniform losses.

Fig. 14. Data regressions under Poisson and Gaussian losses.
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time is evident under 0.1% and 1% loss rates, but not under and 10% and 20%
loss rates in all four scenarios, as shown in Fig. 13 for periodic and unform losses,
and in Fig. 14 for Poisson and Gaussian losses. Even GPR-F estimate with the
lowest overall RMSE captures the increasing trend only in the former case but
not in the latter case. Qualitatively, the wide spread of measurements at high loss
rates indicates the lack of information needed to estimate RTT by any method
that uses regression function, smooth or non-smooth.

Fig. 15. Data regressions of loss estimators with lowest RMSE.

For loss rates, the scatter plots are shown in Fig. 15, which have significant
variations in execution times at fixed values of loss rate. The non-smooth EOT
method with lowest RMSE under periodic losses captures several loss rates at
10 and 20% loss rates as shown in top left plot. The smooth GPR estimator
is plotted along with data in all three random loss scenarios in which it has
lowest RMSE; several estimated points are in between the loss rate values, and
the estimator shows a continuous trend in the mapping from measurements
to loss rate. Similar to RTT estimates, an overall increasing trend of loss rate
when plotted as a function of execution time is evident under 0.1% and 1% loss
rate; but, the loss rate is fixed at two values 0.1 and 1% as shown in Fig. 16
for periodic and unform losses, and in Fig. 17 for Poisson and Gaussian losses.
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Fig. 16. Loss regression at low and high loss rates for periodic and uniform losses.

Fig. 17. Loss regression at low and high loss rates for Poisson and Gaussian losses.



Machine Learning Methods for Connection RTT and Loss Rate Estimation 173

This is a “bleed over” artifact due to increasing RTT at both 0.1 and 1%loss
rates. Under 10% and 20% loss rates in all four scenarios there is a signifi-
cant scatter in loss estimates, indicating the underlying complexity of regression
estimation.

9 Conclusions

Rich datasets of MPI measurements are becoming increasingly available as more
and more computations are distributed over wide-area networks. These measure-
ments exhibit certain characteristics, such as longer executions times and large
variations, that are atypical of conventional MPI applications executed on single
computing systems with Inifiniband or custom interconnects. Losses are integral
to wide-area networks as TCP that supports MPI utilizes self-induced losses
to pace its flows. Consequently, these distributed computations need to mitigate
the inefficiencies due to network delays and their variations. These computations
may be distributed across geographically dispersed nodes that are dynamically
identified; consequently, the RTTs and loss rates of the underlying connections
may not be a priori known. The MPI measurements collected at the application-
level reflect the connection length and losses, and have been shown to be useful
in estimating RTT and loss rate using ML methods, albeit accurately only at
low loss rates.

Complementing previous works under deterministic periodic loss scenarios,
we studied five ML methods to estimate the connection RTT and loss rates under
random losses, which are more reflective of practical scenarios. As in previous
works [15], the results show that accurate estimates can be generated at low
loss rates but they become inaccurate at loss rates 10% and higher. However,
this randomness manifests in subtle ways, resulting in different performances of
non-linear estimators; in particular, GPR that achieves low RMSE does not pro-
vide accurate RTT estimates at low loss levels, unlike others with higher RMSE.
These effects are mainly due to the highly non-linear response of the underly-
ing TCP dynamics that “amplify” the randomness of losses. Furthermore, it is
equally complex to assess the performance of ML methods due to their non-linear
nature, and their fusers are only effective in some scenarios for RTT estima-
tion. In another direction, these results highlight the strengths and limitations
of ML methods for network-level estimation problems using application-level
measurements.

This work constitutes only initial steps in understanding the complexity of
estimating network-level parameters using application-level measurements, and
the performance of various ML solutions, including individual and fused esti-
mates. Future work may involve studying the random losses due to external
traffic in production networks, which may not follow known random processes.
Since there is no universal way to choose among various ML methods from sam-
ple performance only, it would be of future interest to investigate into domain
specific customizations, hyper-parameter tuning, fusers and other approaches to
RTT and loss rate estimation [12,13].
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Abstract. AI has turned into a focal piece of our life – as buyers, clients, and,
ideally, as scientists and professionals! Regardless of whether we are applying
prescient displaying systems to our examination or business issues, accept we
make them thing in like manner: We need to make “great” forecasts! Fitting a
model to our preparation information would one say one is a thing, however
how would we realize that it sums up well to concealed information? How
would we realize that it does not only retain the information we sustained it and
neglects to make high forecasts on future examples, tests that it has not seen
previously? Additionally, how would we select an appropriate model in any
case? Perhaps an alternate learning calculation could be more qualified for the
current issue? The right utilization of model assessment, model choice, and
calculation choice systems is indispensable in scholarly AI examine just as in
numerous mechanical settings. This article audits various systems that can be
utilized for every one of these three subtasks and talks about the primary focal
points and drawbacks of every method with references to theoretical and
observational investigations. Further, suggestions are given to empower best yet
plausible practices in research and uses of AI. In this article, we have used
applications like Drowsiness detection, Oil price prediction, Election result
evaluation as examples to explain algorithm selection and model evaluation.

Keywords: Algorithms � Machine learning � Performance evaluation

1 Introduction

Computer vision [1] is the changing of data from a still or camcorder into either a
depiction or another decision. Every such change is associated with achieving a par-
ticular target. PC obtains a system of numbers from a camera or the plate, and it is
straightforward as that. Ordinarily, there is no worked in model affirmation or modified
control of focus and hole, no cross-association with significant lots of inclusion. For the
most part, vision structures are still really unsuspecting.
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PC based insight/Machine Learning [2] is the predictable assessment of calcula-
tions and exact models that PC structures use to play out a particular errand without
utilizing express appropriately manages, dependent upon models and thinking. It
viewed as a subset of false information. Mimicked insight calculations [3] produce a
numerical model of test information, known as “arranging information,” to pick wants
or choices without being unequivocally adjusted to playing out the undertaking.
Human-made insight estimations utilized in a comprehensive gathering of employ-
ments, for example, email confining and PC vision, where it is infeasible to build up a
figuring of express precludes for playing the assignment. Computerized reasoning
unflinchingly identifies with computational bits of learning, which spotlights on
making wants utilizing PCs. The assessment of numerical improvement passes on
techniques, theory, and application domains to the field of AI. Information mining is a
field of concentrate inside AI and spotlights on exploratory information assessment
through execution learning. In its application, crosswise over business issues, AI is also
induced as a quick assessment.

Analytics [4] is the disclosure and correspondence of significant models in data.
The immense thing to note presently is that examination is a methodology. It is an
interdisciplinary methodology that regularly joins number juggling, bits of statistics [5],
programming designing, perceptive techniques, data visualization [6], and various
fields of study.

1.1 Estimating the Performance of Machine Learning Model

In any case, we feed the availability information to our learning estimation to get
capability with a model. Second, we anticipate the names of our test set. Third, we tally
the measure of wrong wants on the test dataset to enroll the model’s check accuracy.
Subordinate upon our objective, looking over the presentation of a model is not that
unimportant, shockingly. Enable us to assemble the primary concerns why we over-
view the insightful introduction of a model:

• We need to evaluate the hypothesis execution, the intelligent presentation of our
model on the future (unpretentious) information.

• We need to produce the farsighted showcase by tweaking the learning calculation
and picking the best performing model from a given theory space.

• We need to see the AI check that is most fitting for the present issue; along these
lines, we need to consider indisputable figuring’s, picking the best-performing one
in like way as the best performing model from the tally’s hypothesis space.

Dismissing the way where these three sub-assignments recorded the above idea for all
plans and reason that we need to audit the presentation of a model, they all require
various structures. We will talk about a touch of the various systems for managing
these sub-tries in this article. Unquestionably, we need to check the future execution of
a model as certainly as could be customary pondering the current condition.
Notwithstanding, if there is one key to remove a message from this article, it is that
uneven execution evaluations are extraordinarily all right in model choice and check
choice if the partiality impacts all models reasonably. If we rank various models or
mean something negative for one another to pick the best-performing one, we
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essentially need to know the “relative” execution. For instance, if all our introduction
examinations are suspiciously uneven, and we junk their grandstands by 10%, it would
not impact the arranging request. Amazingly more solidly, if we have three models
with need exactness measures, for example,

L2: 70% > L1: 65% > L3: 60%,
We would look at present position them a comparable path if we incorporate a 10%

pessimistic inclination:
L2: 60% > L1: 55% > L3: half.
Startlingly, on the off chance that we report the future want exactness of the best-

arranged model (L2) to be 60%, this would be very mistaken. Looking over the total
execution of a model is likely one of the most testing assignments in AI.

Let us understand with the following example, how we design and evaluate a
model.

1.2 Driver Drowsiness Detection Application Design and Its Issues

In this application, we watch the Driver Drowsiness [7, 17] ID, which is a vehicle
prosperity development which foresees setbacks when the driver is getting worn out.
Various assessments have prescribed that around 20% of all road incidents are
exhaustion related, up to half on explicit boulevards. Driver fatigue is an essential
factor in a large number of vehicle incidents. Driver carelessness might be the eventual
outcome of nonattendance of sharpness when driving in light of driver drowsiness and
redirection. In perspective on the getting of video from the camera, that is before the
driver performs ceaseless planning of a moving toward video stream to deduce the
driver’s level of shortcoming in case the drowsiness is evaluated, by then it will give
the alert by identifying the eyes.

The main explanation behind this concept was to use the retinal reflection as an
approach to managing to find the eyes on the face, and starting their forward, using the
nonattendance of this reflection as a framework for perceiving when the eyes closed.
Applying the computation on the consecutive video housings may help in the figuring
of the eye end period. The eye end period for sluggish drivers is more extended than
standard flashing. So we will alert the driver when the eye closed distinguished.
Nowadays, a consistently expanding number of reasons for a living require a whole
deal obsession. Drivers must watch out for the road so that they can react to unforeseen
events right away. Driver exhaustion, much of the time, transforms into a quick pur-
pose behind some vehicle crashes. Therefore, there is a need to develop the structures
that will perceive and tell a driver of her/him horrendous psycho-physical condition,
which could inside and out reduce the amount of exhaustion related minor collision.

Nevertheless, the progression of such structures experiences various difficulties
related to brisk and suitable affirmation of a driver’s exhaustion symptoms. One of the
specific possible results to complete driver laziness area structures is to use the vision-
based system. This article presents the at present used driver drowsiness area structures.
The particular pieces of using the vision structure to perceive driver lethargy discussed.
A couple of assessments have conveyed various evaluations of the level of absence of
rest as it relates to road incidents. Moreover, driver preoccupation or carelessness is
another fundamental issue for safe driving.
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The algorithm selection and performance evaluation was discussed in the coming
chapter in related to machine learning.

1.3 Prediction of Election Results Application Design and Its Issues

Sentiment Analysis [9, 24] seen as a grouping of AI and ordinary language getting
ready. It is used to evacuate, see, or portray evaluations from different substance
structures, including news, surveys, and articles, and sorts them as positive, fair, and
harmful. Estimation assessment has overwhelmingly used in data science for the
examination of customer reactions on things and reviews. They are used to appreciate
customer assessments on different kinds of things, friendliness organizations like travel,
motel arrangements. It has, in like manner, ended up being not able to research cus-
tomer tweets – positive, negative, or fair-minded by crawling twitter through APIs.

In this application, we will separate examples in the Indian General Election 2019
by utilizing idea examination of Twitter data. The accumulated tweets are analyzed
using a word reference-based approach to managing to choose the estimations of the
all-inclusive community. We choose the furthest point and subjectivity measures for
the accumulated tweets that help in understanding the customer supposition for a
particular candidate.

The algorithm selection and performance evaluation was discussed in the coming
chapter in related to machine learning.

1.4 Crude Oil Price Detection Application Design and Its Issues

Crude oil is the world’s driving fuel, and its expenses bigly influence the overall
condition, economy similarly as oil examination and abuse works out. Oil Price [10,
26] guesses are especially useful to ventures, governments, and individuals. Al-anyway
various procedures have been delivered at predicting oil costs, and it remains one of the
most testing assessing issues on account of the high shakiness of oil costs gauging
models that foresee future events used in different fields, for instance, budgetary angles
and science since they are essential gadgets in essential administration. A perfect guess
gives understanding into the implications of an action or inaction and fills in as an
estimation to condemn one’s ability to affect future events. Appropriately, buyers are in
all regards at risk to use more oil and like this increase the carbon spread.

On the other hand, bolstered low oil expenses could incite a drop in overall oil and
gas examination, and abuse works out. Fluctuating oil costs furthermore accept a
critical activity in the overall economy. The fall in oil expenses would achieve an
unassuming lift to worldwide money related development, disregarding the way that
the owners of oil parts suffer pay hardships. Progressing assessment from the World
Bank exhibits that for each 30% rot of oil costs, the overall GDP (Gross Domestic
Product) would extend by 0.5%. At the same time, the drop in oil expenses would
lessen the reasonable expense for fundamental things, and in this manner, the devel-
opment rate would fall.

The algorithm selection and performance evaluation was discussed in the coming
chapter in related to machine learning.
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2 Literature Survey

Model assessment is a tricky subject. To ensure that we do not wander a lot from within
the message, let us make certain suppositions and turn out a touch of the particular
terms that we use throughout this article. We shall expect our models are (free and
vaguely passed on), which recommends that the total of what tests have been drawn
from a relative likelihood of different countries and are autonomous from one another.
A situation where tests are not free would work with regular information or time-game-
plan information. The issues to be considered for model evaluation are given as
Learning and Classification, Prediction accuracy and Loss range 0–1, Variance, Bias.,
etc.

2.1 Learning and Classification

Here we will concentrate on supervised learning, one of the categories of AI and
Machine learning where our objective characteristics known in our open dataset. Even
though different considerations in like way apply to fall away from the faith assess-
ment, we will concentrate on depiction, the endeavor of prominent target names to the
models.

2.2 Prediction Accuracy and Loss Range 0–1 [12]

In the going with the article, we will concentrate on the longing accuracy, which
portrayed as the measure of every single right gauge confined by the measure of tests.
We register the longing exactness as to the measure of accurate figures detached by the
measure of tests n. Or on the other hand in logically formal terms, we depict the
longing exactness ACC as

ACC ¼ 1� ERR

Where the check blunders ERR is figured as the run of the mill estimation of the 0–
1 hardship over n tests in a dataset S:

ERRS ¼ 1
N

Xn

i¼1

L cY1 ; Yi
� �

We will most likely get settled with a model h that has a decent speculation
execution. Such a model lifts the figure exactness or, the alternate way, likelihood, C
(h) of making an off-center want desire

C hð Þ ¼ Pr x;yð Þ�D h xð Þ 6¼ y½ �

Where D is the making course our information has drawn from, x is the part vector
of a model with class name y.
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2.3 Bias

When we utilize the term propensity in this article, we infer the quantifiable tendency
(rather than the inclination in an AI structure). Guideline talking terms, the inclination
of an estimator b^ is the capability between its collective worth E[b^]E[b^] and the
veritable estimation of a parameter b surveyed.

Bias ¼ E b�½ � � bBias ¼ E b�½ � � b

In like manner, if E[b^] − b = 0E[b^] − b = 0, by then b^ is a reasonable esti-
mator of b. Significantly more solidly, we register the longing inclination as the sep-
aration between the commonplace check exactness of our model and the authentic
figure accuracy. For instance, on the off chance that we procedure the gauge exactness
on the arranging set, this would be an in a perfect world uneven look at of the all
accuracy of our model since it would overestimate the absolute precision.

2.4 Variance [14]

The thing that matters is the quantifiable difference in the estimator b^ and its ordinary
worth E[b^]

Variance ¼ E b� � E½ ½b�ð �Þ2

The change is a degree of the abnormality of our model’s figures on the off chance
that we emphasize the learning system on different occasions with little dangers in the
course of action set. The touchier the model-building strategy is towards these changes,
the higher the capacity. Finally, let us disambiguate the terms model, theory, classifier,
learning figuring, and parameters:

• Target work: In sagacious appearing, we are ordinarily amped okay with demon-
strating a particular method; we have to learn or surveyed a specific, unknown
purpose of imprisonment. Beyond what many would consider possible f(x) = y is
quite far f(�) that we have to appear.

• Hypothesis: A theory is a specific work that we perceive (or trust) resembles beyond
what many would consider possible; the target farthest arrives at that we have to
store neatly. In the setting of spam gathering, it would be a portrayal pick we
thought of that enables us to separate spam from non-spam messages.

• Model: In the AI field, the terms theory and model are a critical piece of the time
used comparatively. In various sciences, they can have different implications: A
hypothesis could be the “educated supposition” by the inspector, and the model
would be the closeness of this theory to test this hypothesis.

• Learning figuring [9]: Again, we will probably find or assessed quite far, and the
learning estimation is an enormous measure of heading that attempts to show
beyond what many would consider possible using our game-plan dataste. A learn-
ing count goes with a theory space; the methodology of potential speculations it
examines to show the dull target purpose of control by portraying the last theory.
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• Classifier [15]: A classifier is an outstanding occasion of a theory (nowadays,
usually learned by an AI computation). A classifier is a hypothesis or discrete-
regarded limit that used to dole out (prominent) class names to standard particular
data centers. In an email portrayal model, this classifier could be a hypothesis for
checking messages as spam or non-spam. Be that as it may, a theory must not so
much be synonymous with the term classifier. In another application, our hypothesis
could be a limit with regards to mapping concentrate time and informational
establishments of understudies to their future, relentless regarded, SAT scores – a
steady target variable, proper for backsliding examination.

• Hyperparameters [16]: Hyperparameters are the tuning parameters of an AI figuring
—for instance, the regularization idea of an L2 discipline in the mean squared
blunder cost utmost of straight fall away from the faith, or inspiration for setting the
best noteworthiness of a choice tree. Strikingly, model parameters are the param-
eters that a learning estimation fits the arranging information – the parameters of the
model itself. For instance, the weight coefficients (or tendency) of a straight fall
away from the faith line and its tendency (or y-focus get) term are model
parameters.

Let us understand with the mentioned applications in the previous chapter, knowing
and understanding about how evaluation of a model and algorithm selection was done.

2.5 Related Work on Driver Drowsiness Detection Application

In June 2010, Bin Yang et al. [17] depicted ‘Camera-based Drowsiness Reference for
Driver State Classification under Real Driving Conditions’. They proposed that degrees
of the driver’s eyes can see aloofness under test structure or underlying conditions. The
display of the most recent eye following composed in-vehicle consumption figure
measures assessed. These measures are surveyed indeed and by a get-together method
subject to a massive dataset of 90 h of confirmed street drives. The outcomes show that
eye-following tiredness unmistakable affirmation limit tolerably for express drivers as
long as the squints presentation works fittingly. Purpose of reality, even with some
proposed upgrades, regardless, there so far issues with repulsive light conditions and
for people wearing glasses. As an arrangement, the camera-based languor evaluations
give a significant responsibility to an absence of consideration reference, at any rate,
are not satisfactorily prepared to be the standard reference.

In 2013, Kong et al. [28] portrayed ‘Visual Analysis of Eye State and Head Pose
for Driver Alertness Monitoring’. They demonstrated visual appraisal of eye state and
head present (HP) for stable seeing of sharpness of a vehicle driver. Most existing
approaches to manage admin visual presentation of non-planned driving models
depend either on eye end or head motioning edges to pick the driver’s tiredness or
redirection level. The proposed course of action utilizes visual highlights, for example,
eye list (EI), understudy progress (PA), and HP to confine necessary data on the
sharpness of a vehicle driver. A help vector machine (SVM) orders a get-together of
video portions into alarm or non-sorted out driving occasions. Exploratory outcomes
demonstrate that the virtuoso showed that blueprint offers high demand accuracy with
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acceptably low astounds and false cautions with individuals of different ethnicity and
sexual bearing in generous street driving conditions.

In June 2014, Eyosiyas et al. [19] spread out ‘Driver Drowsiness Detection through
\HMM based Dynamic Modeling’. They proposed another procedure for confining the
outward appearance of the driver through the Hidden Markov Model (HMM) based
outstanding appearing to see laziness. They have executed the check utilizing a kept
driving course of action. Exploratory outcomes checked the sensibility of the proposed
technique.

From the above survey, we have understood that the methods that were proposed
by the researchers are not enough to produce accurate results and needs to be proposed
more advanced models. The model evaluation and algorithm selection validated based
on the accuracy parameters like bias and variance. And also, from the above obser-
vations, we found that SVM algorithm is not enough to generate more results in
different occasions. So, we have proposed new models to solve this problem and it is
discussed in next chapter.

2.6 Related Work on Crude Oil Price Detection Application

Since the oil worth time approach is a nonlinear long-memory strategy, it is a
respectable likelihood for utilization of near to estimation structures. Notwithstanding,
no assessment in this subject has found in the oil worth choosing the structure.
Researchers utilize particular strategies to discover near to neighborhoods in these
frameworks, yet k-means and SOM are the most usually utilized packaging techniques
around there. In some way, we will pack imitated state space of oil worth time game-
plan utilizing the k-induces gathering technique.

In sorting out neural structure plans, there are two or three components, for
example, number of layers, number of neurons in each layer, and move limits, which
impact shrewd impact the presentation of neural systems. These parts are generally
picked utilizing the awkward and troubling method of experimentation with no legit-
imize. Hereditary estimation (GA) [25] is an astonishing methodology in this setting
because of its capacity to look into a large area of plan space and experience promising
zones through acquired endeavors. GA was explicitly not utilized in the oil regard
measuring with ANN (to the degree we could know).

From the above survey, we have understood that the methods that were proposed
by the researchers are K-means and SOM are not enough to produce accurate results
and needs to be proposed more advanced models. So, we have proposed new models to
solve this problem and it is discussed in next chapter.

3 Algorithm Selection and Model Evaluation

In this chapter, we have discussed the pitfalls of the existing methods and procedures
that were used to improve accuracy in the previous chapter are highlighted. From the
previous chapter, the model evaluation and algorithm selection validated based on the
accuracy parameters like Learning and Classification, Prediction accuracy and Loss
range 0–1, Variance, Bias., etc. are not enough to generate accurate results, so here we
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have separately discussed and proposed new parameters in improvement of algorithm
selection and model evaluation. And also, the existing algorithms are not enough and
needs to be improved, so here we also highlighted how algorithm selection is chosen
for the discussed applications.

Model Selection concerning AI can have different ramifications, contrasting with
different degrees of reflection. Hyperparameters are the parameters of the learning
procedure, which we have to decide from the prior, i.e., before model fitting. Alter-
nately, model parameters cannot avoid being parameters that rise in light of the fit. In a
determined backslide model, for example, the regularization quality (similarly as the
regularization type, accepting any) is a hyperparameter that must be resolved before the
fitting, while the coefficients of the fitted model cannot avoid being model parameters.
Finding the hyper benefit parameters for a model can be necessary for the model
execution on the given data. For something different, we ought to pick the best learning
procedure (and their corresponding “perfect” hyperparameters) from a great deal of
qualified AI systems. In going with, we will insinuate this as a computation decision.
With a gathering issue near to, we may contemplate, for instance, paying little respect
to whether a determined backslide model or a random forest classifier yields the best
course of action execution on the given task.

Model appraisal targets assessing the theory slip-up of the picked model, i.e., how
well they picked model performs on unnoticeable data. An incredible AI model is a
model that not performs merely well on data seen during getting ready (else an AI
model could recall the readiness data), yet furthermore, on unnoticeable data.
Accordingly, before conveyance a model to age, we should be genuinely sure that the
model’s introduction will not degenerate when it looked with new data.

A last articulation of alarm: when overseeing time plan data where the endeavor is
to make gauges, train, endorsement, and test sets must pick by separating the data along
with the transient turn. That is, the “most prepared” data used for setting up, the later
one for endorsement, and the most recent one for testing. Unpredictable examining
does not look right for this circumstance.

Starting at now, the holdout system and various sorts of the bootstrap contemplated
checking the speculation execution of our watchful models. We split the dataset into
two zones: preparing and a test dataset. After the AI calculation fit a model to the
organizing set, we investigated it on oneself decision test set that we hold from the AI
figuring during model fitting. While we were talking about issues, for example, the
inclination change exchange off, we utilized fixed hyperparameter settings in our
learning checks, the extent of k in the k-closest neighbors’ estimation [26]. We depicted
hyperparameters as the parameters of the getting figuring itself, which we need to show
up from the earlier – before model fitting. Remarkably, we inferred the parameters of
our following model as the model parameters.

Over the long haul, the k-closest neighbors’ estimation may not be a perfect
decision for advancement dressing the capability between hyperparameters and model
parameters, since it is a sleepy understudy and a nonparametric structure. In this stand-
separated condition, disengaged learning (or case-based getting) amasses that there is
no blueprint or model fitting stage: A k-closest neighbor’s model genuinely stores or
holds the engineering information and utilizations it precisely at need time. Everything
considered every course of action occasion watches out for a parameter in the k-closest
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neighbors’ model. Primarily, nonparametric models cannot avoid being models that
cannot be depicted by a fixed number of parameters that changed according to the game
plan set. The strategy information doesn’t pick the structure of parametric models as
opposed to being set from the as of now; non parametric models don’t expect that the
information looks for after certain likelihood transports not in the humblest degree like
parametric techniques (exceptional cases of nonparametric frameworks that make such
suppositions are Bayesian nonparametric systems). In like manner, we may express
those nonparametric systems to make fewer questions about the information than
parametric structures.

Instead of k-closest neighbors, a reasonable occasion of a parametric framework is
settled fall away from the certainty, a summed up direct model with a fixed number of
model parameters: a weight coefficient for each part factor in the dataset despite an
inclination unit. These weight coefficients in decided fall away from the faith, the
model parameters, are fortified by extending a log-probability work or confining the
critical expense. For fitting a model to the preparation information, a hyperparameter of
a decided apostatize calculation could be the measure of cycles or rejects the course of
action set (ages) in propensity based streamlining. Another cause of a hyperparameter
would be the estimation of a regularization parameter; for example, the lambda-term in
L2-regularized decided to lose the faith. Changing the hyperparameter respects when
running learning analyze over a game-plan set may appreciate various models. The way
toward finding the best-performing model from many models that were made by
various hyperparameter settings is called model attestation. The going with a zone
changes a progression with the holdout structure that is helpful when completing this
attestation method.

The open portal has gotten together to demonstrate the most traditional procedure
for model assessment and model attestation in AI practice: k-overlay cross-ensuring.
The term cross-support is utilized uninhibitedly recorded as a printed copy, where
specialists and examiners a part of the time understanding the train/test holdout
structure as a cross-ensuring strategy. Regardless, it may look unbelievable to consider
the cross of organizing and support shapes in new rounds. Here, the central thought
behind cross-support is that each model in our dataset finds the chance of being
endeavored. K-overlay cross-support is an unusual case of research a dataset set k
times. In each round, we split the dataset into k parts: one piece utilized for under-
structure, and the rest of the k − 1 piece is joined into a sorting out subset for model
examination.

For hyperparameter assurance, we can use K-cover cross-endorsement (CV) [14].
Cross-endorsement fills in as seeks after:

• We split the arrangement set into K humbler sets. Note that the cautions as for
imbalanced data in like manner apply here.

• We set aside all of the K overlays one time. We train the equal number of models
from there are different mixes of hyper model parameters on the remainder of the
K − 1 cover and figure the endorsement score on the hold-out overlay.

• For every game plan of hyperparameters, we process the mean endorsement score
and select the hyperparameter set with the best execution on the holdout endorse-
ment sets. Then again, we can apply the “one-standard-screw up guideline” [2],
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which suggests that we pick the most miserly model (the model with least multi-
faceted nature) whose show is not more than a standard misstep underneath the best
performing model.

For count assurance, we need an undeniable, unpredictable method. Here, settled
cross-endorsement [15] acts the legend and fills in as seeks after:

• We split the data into K more diminutive sets (outer cover).
• Each of the K folds we set aside one time. For each learning strategy, we by then

perform K′ - overlay CV (following the framework above) on the K − 1 remaining
folds, in which we do we do hyperparameter assurance. For terseness, one denotes
settled CV with K outer folds and K′ inner overlays as K � K′s settled CV. Typical
characteristics of K � K′ are 5 � 2 or 5 � 3.

• We use the best hyperparameter set for each estimation to evaluate its endorsement
score on the holdout cover.

• Then we figure the mean endorsement score (similarly as standard deviation) over
the K cover and select the best performing count.

Sub sequent, we pick the best hyperparameter set reliant on CV using the full
planning set and check the hypothesis mix-up using the test set. At last, we retrain the
model using the united data of getting ready and test set.

4 Implementation of Application Design

In this chapter we have discussed about how the model evaluation is designed for any
application using machine learning algorithms, and how algorithm selection has done.
Here we also suggested proposed models based on the evaluation factors of any
algorithm.

4.1 Driver Drowsiness Detection Application

Face Tracking Searching for Face in each edge in each scale grows the multifaceted
computational nature. The persistent presentation of the count can realize if we use the
transient information. If the position and size of the Face are known accurately at an
edge, then we can pick ROI around that position where we can find the Face in coming
about the diagram. The multifaceted computational nature is less since the chase zone
lessened. The utilization of SVM computation [19] is used for Face following. Track
the Face of the driver. Make a copy of the concentrations used for handling and
discovering the ROI of the geometric. Change between the concentrations before and
the present housings separately to customer advancement. Get the accompanying
Frame in the video gathering. Track the concentrations in the ROI. Check the geometric
change between the old concentrations and the new concentrations and shed individual
cases using direct translation. (Least Four Frames are required to figure). Show pursued
core interests. Reset the concentrations and demonstrate the clarified edge using an
android application.
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At the point when the Face is restricted, the ensuing stage is to recognize the
circumstance of the eye. Henceforth the eye distinguished is orchestrated to open or
close. The recognizable proof of eye in the face territory modeled as a thing
acknowledgment issue. This classifier set up together eye disclosure as for interesting
gained camera plot. One customer described classifiers for the open eye, and shut-eye
used in this recognizable proof technique. The classifier for open and close is set up
with a database of positive and negative pictures are considered. The ROI decision
made, and the area of the eye performed in the restricted region. Picking the territory of
interest reduces the computational requirements of the issue. This ROI contains eyes. In
the occasion that the eye is distinguished, and no squint occurs, by then the counter is
set to 0. If the gleam is perceived, then the counter is expanded, and it demonstrates the
prepared driver perceiving languid, and an alarm gets sounded. As opposed to using
any computation to perceive yawning, the here essential basis used. At the point when
Face distinguishing proof has done, mouth district picture altered from Face perceived
picture. After that, one cloak picture prepared, and it covers the mouth zone of altered
pictures. A shroud picture is just a white picture containing all of the ones and having
the same size of mouth and area cut picture. After that, the farthest point of pixel spots
of mouth zone in the cover picture found. By then, apply edge framework (for Male set
the edge a motivating force as 250 and Females set the motivator as 10). Finally, count
the hard and fast no of the square pixel if the check is more conspicuous than breaking
point means yawn perceived.

The above Fig. 1 shows the proposed architecture of driver drowsiness application.
Here, the architecture shows the model evaluation and algorithm selection using
machine learning concepts. The procedure used to design application is termed as a
model evaluation and calculation of results is termed as a algorithm selection.

Fig. 1. Driver drowsiness detection proposed architecture.
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4.2 Crude Oil Price Prediction Application

In the above Fig. 2, we have shown how the algorithm selection and model evaluation
are done using machine learning. The architecture of the crude oil price prediction also
shows the proposed procedure to gain accurate results using machine learning. Here
K-means algorithm used as a selection algorithm.

The proposed model fuses four rule stages: information arrangement, crushing,
structure engineering, and ANN plan, and checking. The rule stage readies the time
plan of the particular oil cost to be utilized in different stages. It wires information
division, accreditation of jeans, and state-space redirection of each piece as per saw
several pairs of jeans. Each point in the train/test state space is a train/test plan. The
ensuing stage sees arranging structures as information, orthogonalizes the space, and
after that packs it. Each pack is a social gathering of close to models. The third stage
makes each test manual for the closest assembling. At long last in the fourth master-
mind, an ANN for every party is made, and the test models made to each pack are
endeavored the varying ANNs to figure checks. The going with subparts clarifies these
phases in detail.

Information arranging done as in the significant stage, foul oil worth time -approach
is considered. A touch of this time strategy is spared something for testing purposes
while the rest will be utilizing as a planning set. After the division of the dataset, the
Partial Autocorrelation Function (PACF) of the arranging time procedure is desperate
down with a 5% criticalness level to locate the most senseless number of jeans (L) to be

Forecast For 
That Test Point

Simulate The 
Neural Network

K-means
Clustering

Clus

N
Principal 

Component
Analysis

Orthogonalized
State Space

Find and Train 
The Best Network

By GA

Clus

Reconstructed 
State Space

O

Sliding Window 
Technique

Most Similar 
Cluster

Find the most 
Similar cluster

For Each Re-Devide
Train / Test

Partial 
Auto-

correlation 

Train
Time-series

Reconstructed 
State Space

Sliding Window 
Technique

Test
Time-series

Crude Oil Price

Time-series Stage 

1

Sta

Fig. 2. Crude oil price prediction proposed architecture.
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joined as a guarantee to ANN model. Right, when L depicted as a sliding window of
size, L + 1 is utilized to mirror the state space from sorting out (and later simultane-
ously, testing) time strategy of foul oil cost. Imitated state space of the engineering time
methodology focuses taking after clear worth patterns (on an exceptionally essential
level, preparing structures) while changed state space of the test time procedure focuses
looking like test worth structures (which their first L estimations will be utilized in
ANN to predict their targets – future costs).

4.3 Election Results Prediction Application

The above Fig. 3 shows the proposed architecture of Election results application using
sentimental analysis process. The classification models are suggested to predict the
results, and also evaluation procedure is given by connecting with each other.

The precision of an estimation examination system is, on an intermediate level, how
well it agrees with human choices. It is by and large evaluated by variety gauges
subject to precision and survey over the two target classes of negative and positive
compositions. In any case, as demonstrated by human research, raters usually agree
about 80% of the time (see Inter-rater unflinching quality). Along these lines, a pro-
gram which achieves 70% precision in orchestrating supposition is doing practically
similarly as individuals, regardless of the way that such accuracy may not sound
incredible. If a program were “right” 100% of the time, individuals would regardless
not resist repudiating it about 20% of the time, since they vary that much about any
answer.

On the other hand, PC structures will make through and through unexpected
bungles in comparison to human assessors, and like this, the figures are less indistin-
guishable. For instance, a computer structure will encounter trouble with refutations,
distortions, jokes, or jokes, which customarily is not hard to manage for a human
pursuer: a couple of goofs a PC system makes will seem, by all accounts, to be
unnecessarily blameless to a human. The utility for practical business tasks of end

Fig. 3. Election results prediction proposed architecture.
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assessment as it described in academic research has been raised uncertainty about,
generally since the essential one-dimensional model of an idea from contrary to pos-
itive yields rather negligible noteworthy information for a client worrying over the
effect of open chat on for instance brand or corporate reputation.

5 Results and Discussion

In this chapter we have discussed about results generation using the machine learning
methods. The data set is taken from koggle.com and applied on our experimental setup
using OpenCV and Phython. All the data sets are tested using the proposed architec-
tures of each application to test the machine learning algorithms. The algorithms are
proposed based on the pitfalls that were discussed in Literature Survey chapter.

The above Fig. 4 shows the EAR and MAR values. When the person’s eyes are
closed, EAR value counted, and when the person yawns, MAR value is counted. The
above figure also shows EAR and MARS values when the eyes and mouth of a person
are closed. In the above figure, we can also observe the alert message is generated when
eyes are closed. Use of tiredness territory with SVM was done, which breakers the
going with advances: Successful runtime getting of video with the camera. The gotten

Fig. 4. Extraction of EAR and MAR values using ANN
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video was divided edges, and each edge was inspected. The fruitful revelation of the
face looked for after by conspicuous confirmation of eye. On the off chance that
completion of an eye for dynamic edges was perceived, by then it is assigned tired
condition else it is viewed as a normal glimmer, and the drift of getting a picture and
dissecting the condition of the driver is done over and over. In this utilization, during
the drowsy express, the eye is not wrapped by a circle, or it is not recognized, and a
relating message appears. If the driver is not torpid, by then, the eye is perceived by a
circle, and it prints 1 for each convincing zone of the open eye.

This way, we have arranged a model apathy disclosure system using OpenCV
programming and arranged classifiers. The structure so made was viably attempted, its
hindrances perceived, and a future approach made. Driver Drowsiness Detection was
attempted to empower a driver to stay attentive while driving in order to diminish car
accidents realized by the languor. This paper was stressed by overtired drivers and their
capacity to cause car crashes. The driver exhaustion [23] recognizable proof system
registers drowsiness level from the driver using a mix of OpenCV and Camera.
OpenCV is an item to figure whether a driver is drowsy. At the same time, it recoups
pictures from the camera, which is fast enough to perceive a driver’s features logically.
The system uses open source programming called an OpenCV picture getting ready
libraries; the gets pictures are dealt with in this. Raspberry pi and open cv make the
overall system to a simplicity drowsiness disclosure structure.

Fig. 5. Oil price prediction graph
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From the above Fig. 5. The costs, when foreseen using Linear Regression [24],
predicted characteristics are differentiated and actual costs, it is found that 79%
exactness results. Right when expenses are foreseen using Random Forest Regression
and differentiated and genuine expenses in the dataset, the accuracy was 98.8% results
are showed up with the help of r squared worth.

The above Fig. 6 shows the arrangement of two national parties votes using sen-
timental analysis. The data is taken from koggle.com and implemented using OpenCV.

From the underneath Fig. 6. All tweets [25] vary in power from −1 to +1. As the
underneath figures show strong definite suspicions like “Fulfillment” and “Certainty”
incline progressively 0 to +1 for both BJP and Congress, while negative emotions like
“Shock” and “Issue” incline more between −1 to 0. “Fair-minded” incline is focused on
zero. Evaluations like “Fervor” and “Quality” are appropriated correspondingly
between −1 to +1, which indicates they can be either tweeted in a constructive or
adverse character. They seek after ing above figure outlines tweet that has a spot with
both BJP and Congress. “Dominance” is as seen as the overwhelming perspective.

Fig. 6. Arranging of two national parties votes using sentimental analysis

Algorithm Selection and Model Evaluation in Application Design 191



From the below Fig. 7, we have observed that Decision Tree classifiers are used to
generate winning prediction graph, and each sentiment is calculated to decide the
favorable party at particular location. Based on the every sentiment prediction score the
winner is declared. The same theory is applied in recent elections also that are held
during in the month of March in India, and tasted good results.

Fig. 7. Winning prediction graph generation using Decision Tree algorithm
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From the above Fig. 7. A test tweet including the two get-togethers: “close fight in.
The differentiation among BJP and Congress, not many seats,” clearly shows close and
firm challenge between the two. Decision tree classifier is settled on out of decision
centers and leaf center points, where the decision of endorsing part regards and settling
on branches are allotted to decision center points, while imprints named to leaf center
points. Decision trees [26] create by picking the best decision stumps of most aston-
ishing precision during the request process. Leaf center points with screw up under-
neath palatable edge are re-put by new decision stumps on a subset of getting ready
data that stays away from the route from the establishment of the subtree to the leaf.
The best decision stump can be picked by enlisting the information increment or the
entropy of the structure. Deductively, entropy is described as the total of the probability
[28] of each imprint times the log probability of that identical name. As the perspec-
tives contain imbalanced classes, the model execution is plotted using a precision
survey twist. Separating the gauge models [29] of BJP and Congress, it is seen that
model precision (exactness, audit, and F-Score) of Congress out-performs BJP by an
enormous edge (over 45%).

So, using the application design, we can clearly understand that model evaluation
and algorithm selection will be varied based on the proposed methodology. In this
article we have observed all the pitfalls from the Literature survey and searched the
most accurate algorithms. We have applied machine learning concepts to predict good
results. Finally we found Decision Tree Classifier, Random Forest and Regression
algorithms are having more accuracy than the existing algorithms like SVM, K-Means
and KNN which are discussed in previous chapter. Finally we suggest these machine
learning algorithms to predict more results for any type of applications.

6 Conclusion

In every practical sense, regardless, I would in a perfect world prescribe repeating the
arrangement test split on different occasions to enlist the confirmation interim on the
mean measure (i.e., averaging the individual runs). Regardless, one fascinating clear for
the present is that having fewer models in the test set develops the qualification and
consequently builds up the conviction between times.

Past assessments have proposed different strategies to recognize drowsiness. In the
wake of doing composing study, different frameworks have been found for perceiving
driver tiredness, and they use different sorts of data as a commitment for their com-
putation. After the outline of different sorts of strategies, it is found that using a camera
is the best system that can be adequately associated and reasonable in all conditions.
We researched this procedure for PC vision and proposed an excellent technique to
distinguish driver laziness reliant on perceiving eyelid closing and opening using
counterfeit neural frameworks as gathering figuring. In this paper, First of all, the video
housings are picked up from the camera, which could be fixed with the goal that it
should not ruin the road - point of view on the driver.

From the Experiment results, we found that the data requires logically real cleaning
and mix (emojis). An inexorably definite classifier is furthermore well inside the space
of credibility, to the extent neural frameworks which could amass the attitudes fittingly.
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A sensible and fitting desire was beyond the realm of imagination as the data is
exceptionally rough, and we required a whole managed dataset with stamped data. As
the data is taken mostly from twitter so it could not get the commonplace section of the
masses, which is noteworthy. Regardless of the way that evaluations look positive for
BJP, we cannot wrap up only reliant on Twitter assessment.

Given up the making examined until this point, various issues can be perceived. In
any case, the information utilized in the wants are generally drawn from the WTI cost
of Brent cost, and they do not consider different data sources adjusted to the market.
The capricious of the foul oil worth market is a result of the dependence of the market
on different parts. Ousting these parts in foreseeing the market can restrain the
authenticity of a guess instrument, protecting it from being cautious. A model with
exceptional figure results shows staggering interconnections among data sources and
the yield, which recommends the condition of reliance. Expansion partner examines
that weight the insecurity some segment of the market areas of not long ago con-
strained. The mind-boggling part has concentrated on the value side of the measure as
opposed to the sections that caused the upgrades. Among other standard effect seg-
ments utilized in the raw petroleum, want models are sales and supply. Despite the way
that oil solicitation and supply expect essential employments in the precariousness of
the worth, the use of these recognitions obliges the ability of various elements, for
instance, input data, achieving a model not being thorough.

By including and partner the key segments included, an inexorably sweeping figure
of the market can be cultivated. Third, most of the investigation thought about has
utilized the time-course of action data. Data preprocessing and data depiction
methodology were absent in most by far of the assessment. These two strategies help to
clean and decrease bustles in instructive collections and organize them in the party the
arrangement of want, and, later, this assistance to convey cautious outcomes. Without
these techniques, the craving instrument will be less reliable. Fourth, breaks down have
shown that anticipating the costs’ models is more celebrated than imagining the dis-
crete worth itself. The discrete worth will make research logically captivating and wise
for specialists despite how the reasonableness of the assessments drove, starting quite
recently, is up to this point broken—this framework the models discussed in this part
with the data used for the figures.
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Abstract. This paper proposes a general-purpose anomaly detection
mechanism for Internet backbone traffic named GAMPAL (General-
purpose Anomaly detection Mechanism using Path Aggregate without
Labeled data). GAMPAL does not require labeled data to achieve a
general-purpose anomaly detection. For scalability to the number of
entries in the BGP RIB (Routing Information Base), GAMPAL intro-
duces path aggregates. The BGP RIB entries are classified into the path
aggregates, each of which is identified with the first three AS numbers
in the AS PATH attribute. GAMPAL establishes a prediction model of
traffic throughput based on past traffic throughput. It adopts the LSTM-
RNN (Long Short-Term Memory Recurrent Neural Network) model
focusing on periodicity in weekly scale of the Internet traffic pattern.
The validity of GAMPAL is evaluated using the real traffic information
and the BGP RIB exported from the WIDE backbone network (AS2500),
a nation-wide backbone network for research and educational organiza-
tions in Japan. As a result, GAMPAL successfully detects traffic increases
due to events and DDoS attacks targeted to a stub organization.

Keywords: Network Traffic Analysis · General-Purpose Anomaly
Detection · Internet Backbone · LSTM-RNN

1 Introduction

The Internet backbone network contains large amount of traffic originated from
various kinds of users and services. The traffic pattern is peaky and jaggy, which
changes every moment even in ordinary times. On the other hand, the Inter-
net backbone network might encounter anomalies caused by not only failures
of network facilities but also disturbances such as flash crowds from social phe-
nomenon and cyber attacks. Because the disturbances are basically observed
only in traffic pattern, it is difficult to find each anomaly from the operators’
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viewpoints. In order to operate the Internet backbone network stably, it is neces-
sary to establish a general-purpose mechanism for finding these anomalies from
traffic information.

Anomaly detection mechanism are categorized into two approaches:
signature-based approach and behavior-based approach. The signature-based
approach can detect known anomalies. It is suitable for real-time detection [1–
3]. However, it fails to detect unknown anomalies such as new attacks. The
behavior-based approach can detect unknown anomalies. Most of existing mech-
anisms use labeled data composed of anomaly and non-anomaly traffic informa-
tion [4]. However, it is difficult to collect such traffic information. In addition, the
labeled data causes overfitting to the target network. Therefore, the behavior-
based approach is not suitable for general-purposed anomaly detection. Also,
Most of existing anomaly detection mechanisms are specialized for a particu-
lar environment such as a DC (Data Center) for Internet Services [5] and SDN
(Software-Defined Networking) [4] or they focus on a particular anomaly such as
DDoS (Distributed Denial of Service) [6]. This paper proposes a general-purpose
anomaly detection mechanism for Internet backbone traffic named GAMPAL
(General-purpose Anomaly detection Mechanism using Path Aggregate without
Labeled data). GAMPAL establishes a prediction model of traffic throughput
based on the past traffic throughput and utilizes the LSTM-RNN (Long Short-
Term Memory Recurrent Neural Network) model focusing on periodicity in daily
or weekly scale of the Internet traffic pattern. For scalability to the number of
entries in the BGP RIB (Routing Information Base), GAMPAL introduces path
aggregates. The BGP RIB entries are classified into the path aggregates, each of
which is identified with the first three AS numbers in the AS PATH attribute.
GAMPAL generates predicted throughput for each path aggregate. In GAMPAL,
an indicator named NSD (Normalized Summation of Differences) is introduced,
which reflects the difference between the predicted throughput and the observed
throughput. Anomaly is detected if the NSD value is larger than the threshold.

This paper implements a parser of traffic information produced by NetFlow
version 9 and the BGP RIB in the MRT format [7] and a learning mechanism for a
prediction model of traffic throughput based on LSTM-RNN model. The learning
mechanism utilizes the cuDNN (CUDA Deep Neural Network) [8] library and
Chainer library [9] in order to support a GPU computing environment. The
evaluation utilizes the real traffic and the BGP RIBs exported from the WIDE
backbone network (AS2500) [10], a nation-wide backbone network for research
and educational organizations in Japan.

2 Related Work

Anomaly detection mechanisms are categorized into two approaches: signature-
based approach and behavior-based approach. The signature-based approach [1]
defines some rules to detect anomalies and applies these rules to logging outputs
of servers and network facilities. The behavior-based approach monitors activi-
ties of end hosts or communication sessions in a networked system and detects
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some changes compared with the past ones. Because it is almost impossible to
define rules to detect any kinds of anomalies in the Internet traffic [2,3], this
paper discusses the existing work based on the latter approach.

For enterprise/DC (Data Center) scale network, [5] proposes a performance
anomaly detection mechanism for cloud and Internet services. This mecha-
nism is based on statistical behavior analysis which includes two techniques:
a behavior-based technique with adaptive learning and a prediction-based tech-
nique with statistically robust control charts. [11] proposes a general-purpose
anomaly detection mechanism for an enterprise network. This mechanism is
based on CNN-based classification of visualization of traffic information. The
traffic information is categorized with the MCODT (Micro-Cluster Outlier
Detection in Time series) cluster algorithm and visualized by the SOM (Self
Organization Map) dimentionality reduction algorithm. [4] is an intrusion detec-
tion mechanism for SDN (Software-Defined Networking). This mechanism uti-
lizes GRU (Gated Recurrent Unit) RNN based classification which is learned by
the NSL-KDD[12] labeled data set.

For Internet scale network, [6] proposes a botnet traffic detection mecha-
nism based on traffic information in P2P networks. This mechanism includes
CNN-based classification and a decision tree method for enhancing anomaly
detection rate. [13] proposes a framework for real-time anomaly detection of
cyber-attacks focusing on the Internet traffic. This framework combines unsu-
pervised and supervised classification mechanisms. The former is based on an
auto-encoder neural network while the latter is based on a nearest neighbor
classifier model in which the manual operation is required.

Table 1 shows the comparison between GAMPAL and the existing mecha-
nisms [4–6,11,13]. There are four metrics as follows: (i) scalability to the Inter-
net, (ii) versatility to any kinds of anomalies, (iii) consideration on periodicity
of the traffic pattern especially for Internet-scale network, and (iv) necessity of
labeled learning data. In terms of scalability, [4] proposes an anomaly detection
for small scale network. The SOM used in [11] does not have an aggregation
mechanism because it focuses only on an enterprise network, not an Internet-
scale network, and does not consider scaling. In terms of versatility, [4–6] are
not versatile to anomaly types. [4] proposes an intrusion detection for SDN. [5]
focuses on anomalies in cloud and Internet services. [6] is a mechanism spe-
cialized for botnet detection. [11] proposes a general-propose anomaly detection
mechanism for an enterprise network. [13] proposes a general-purpose anomaly
detection mechanism. In terms of consideration on periodicity, [4,11] focus on
periodicity of traffic. [4] uses GRU RNN which can learn data for a longer period
than simple RNN. [11] uses MCODT, a clustering algorithm for time-series data.
[6,13] do not focus on periodicity of traffic. In terms of necessity of labeled data,
most of existing mechanisms use labeled data. [5] uses real-world datasets of
Web services and evaluates the validity of anomaly detection by comparing with
that of an open source package. [11] does not use labeled data. The detection
validity is evaluated by comparing the time when the proposed method detects
behavior changes and the time when an event occurs in the real-world. [13] uses
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Table 1. Comparison of related work.

Fig. 1. Overview of GAMPAL methodology.

labeled data in supervised classification and un-labeled data in unsupervised
classification. In contrast to existing mechanisms, GAMPAL satisfies the four
metrics.

3 Methodology

3.1 Overview of GAMPAL Methodology

Figure 1 shows the overview of the GAMPAL methodology. GAMPAL is an
anomaly detection mechanism using a prediction model based on the LSTM-
RNN model. First, the flow information and the BGP RIB used in flow informa-
tion aggregation are exported from an Internet backbone network (Fig. 1-(i)).
The observed matrix of aggregated flow size is generated from the flow infor-
mation and the AS PATH attribute of the BGP RIB (Fig. 1-(ii), (iii)). Next,
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Fig. 2. Histogram of AS PATH length.

the matrix of aggregated flow size is inputted to the LSTM-RNN (Fig. 1-(iv)).
As a result, the predicted matrix of aggregated flow size is outputted. GAM-
PAL detects anomalies with a metric which measures the difference between the
predicted flow size and the observed flow size (Fig. 1-(vi)).

3.2 Flow Data Aggregation with AS PATH

GAMPAL adopts throughput of each flow as a general-purpose metric of traf-
fic pattern in the Internet backbone network. A flow can be identified with the
five tuples, i.e., source/destination IP addresses, source/destination ports, and
protocol number. In a backbone network in which the BGP full routes are main-
tained, the order of the number of flows will be the square of the number of the
BGP full routes. To make GAMPAL scalable to the Internet, the observed flows
are mapped into groups named the path aggregates.

GAMPAL utilizes the AS PATH attribute of the BGP RIB to define the
path aggregates. At a traffic measurement node in a backbone network, a large
number of destination addresses close to the IP address of the measurement node
will be observed while a small number of destination addresses distant from the
IP address of the measurement node will be observed. Therefore, the observed
flows that have destination addresses close to the IP address of the measure-
ment node should be classified in more detail to effectively detect anomalies. In
contrast, it is sufficient to roughly classify the observed flows that have destina-
tion addresses distant from the IP address of the measurement node to detect
anomalies. Figure 2 shows the distribution of the AS PATH length of the IPv4
BGP full routes observed in AS2500 on June 17, 2018. The minimum value, the
maximum value, the mode value, and the median value are 0 (iGP routes), 44,
3, and 4, respectively. Since the distribution of the AS PATH length is heavily
biased to small values and has a long and thin tail, it is sufficient to define path
aggregates with a short AS PATH length.
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Fig. 3. Example of AS PATH aggregation.

GAMPAL adopts the mode value of the AS PATH length, i.e., 3, to define the
path aggregates. That is, the first three AS numbers of the AS PATH attribute
defines a single path aggregate and they are used as the path aggregate identifier.
Consequently, 727,261 IPv4 BGP full routes (as of in January 2019) can be
classified into 31,258 path aggregates.

Each observed flow is mapped to a single path aggregate to which the BGP
route for the destination address prefix of the observed flow is classified. Thus,
a path aggregate is composed of the path aggregate identifier and IP address
prefixes that are mapped to the path aggregate. As a result, the number of
observed flows can be aggregated to the number of the path aggregates at the
most.

3.3 Training Approach: The Day of the Week

An Internet backbone network, such as a nation-wid backbone network usually
consists of several branch NOCs (Network Operation Centers). As the Internet
traffic pattern per NOC typically has periodicity in a daily or weekly scale, there
are two approaches for training the prediction model: the weekly training model
and the day of the week training model. The former uses continuous data of a
week, e.g., from Sunday to Saturday, as the training data and predicts the traf-
fic of the next week. The latter uses past data on the same day of the week,
e.g., every Monday of the past two months, as training data. In a preliminary
measurement, we made prediction models based on both approaches and com-
pared them. As a result, the latter approach showed more valid prediction than
the former one. Furthermore, the traffic pattern of the commodity Internet in
Japan shows a weekly periodicity [14]. Therefore, GAMPAL adopts the latter
approach, i.e., the day of the week training approach.

3.4 Overview of Prediction Procedures

Figure 3 shows an example of AS PATH aggregation. First, GAMPAL creates the
path aggregate list with the flow aggregation method described in Sect. 3.2. As
shown in Fig. 3, the entries in the BGP RIB are classified into the path aggregates
with the first three AS numbers of the AS PATH attribute. For example, the
two entries of the prefix 1.0.4.0/24 and the prefix 1.0.6.0/24 in the BGP
RIB are classified to a single path aggregate (the Path aggregate 2 in the table
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Fig. 4. Example of flow data aggregation by AS PATH.

of the path aggregate list), because the first three AS numbers of the AS PATH
attribute are the same.

After creating the path aggregate list, the observed matrix of aggregated flow
size are created with the path aggregate list. As shown in Fig. 4, the observed
matrix of aggregated flow size has time-series entries, each of which contains the
sum of the flow size during the time period. The data size of an observed flow
is aggregated into an entry of the observed matrix of aggregated flow size. For
example, as shown in Fig. 4, the entries whose destination address matches the
prefix 1.0.4.0/24 and the prefix 1.0.6.0/24 in the Flow information table are
mapped to the Path aggregate 2 in the observed matrix of aggregated flow
size. Each entry of the observed matrix of aggregated flow size contains the sum
of the bytes for 5 min.

Finally, GAMPAL generates the predicted matrix of aggregate flow size per
path aggregate with the LSTM-RNN model.

4 Implementation

Figure 5 shows overall procedures of GAMPAL. This section describes the imple-
mentation of GAMPAL.

4.1 Implementation Environment

GAMPAL is implemented in Python 3.7.0 on a server running Ubuntu Server
18.04.1. Chainer 5.1.0 is used to implement LSTM for training and pre-
diction. nfdump version 1.6.17 [15] is used to convert the flow information.
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Fig. 5. Overall procedures of traffic prediction

bgpdump version 1.4.99.13 [16] is used to convert the BGP RIBs. GPU
(Graphics Processing Unit) is used for calculations of LSTM-RNN. The GPU
platform is CUDA 9.0.

4.2 Data Pre-processing

First, binary flow information and binary BGP RIB exported from the Internet
backbone network are converted to human readable flow information and human
readable BGP RIB (Fig. 5-(1),(2a),(2b)).

Processing of NetFlow. The NetFlow, which is used as the flow information
format in this paper, is recorded in a binary file format. The binary flow infor-
mation contains time stamp, five tuples, and data size of the flow. It is converted
to a text file, the human readable flow information, using nfdump (Fig. 5-(2a)).
Because the binary file is recorded per hour, the text file also contains flow
information for an hour.

Processing of BGP RIB. The BGP RIB is recorded in the MRT format. This
binary BGP RIB is converted to the human readable BGP RIB using bgpdump
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Fig. 6. Examples of BGP RIB, Prefix file, and AS PATH file.

(Fig. 5-(2b)). Next, the AS PATHs are extracted from the human readable BGP
RIB and saved in the AS PATH file per day (Fig. 5-(3a)). Prefixes are extracted
from the human readable BGP RIB and saved in the Prefix file per day (Fig. 5-
(3b)). Figure 6 shows a part of the human readable BGP RIB, a part of the
AS PATH file per day, and a part of the Prefix file per day. The procedure
numbers in Fig. 6 correspond to those in Fig. 5. From each BGP RIB entry, the
AS PATH is extracted and saved in the AS PATH file per day while the prefix
is extracted and saved in the Prefix file per day. Thus, an entry in the AS PATH
file per day corresponds to the entry in the Prefix file per day at the same line
number. For example, as shown in Fig. 6, the first line of the AS PATH file per
day (4713 2914 13335 13336) corresponds to the first line of the Prefix file per
day (1.0.0.0/24).

4.3 Generating Path Aggregate Identifier List and Matrix of
Aggregate Flow Size

The blue area in Fig. 5 shows the procedure after the pre-processing of the flow
information. This section describes the definition and generation of a path aggre-
gate identifier list, generation of a matrix of aggregate flow size (Fig. 5-(4)–(7)).

Generating Path Aggregate Identifier List. The AS PATH file per day
created from the human readable BGP RIB of the latest date in the training
data is used to define the path aggregate identifier and create the path aggregate
identifier list. The path aggregate identifier list includes all of the aggregated
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AS PATH in the BGP RIB without duplication (Fig. 5-(4a)). As described in
Sect. 3.2, the combination of the first three AS numbers is defined as the path
aggregate identifier. Figure 7 shows a part of the path aggregate identifier list
created from the AS PATH file on May 19, 2018. For example, the line 1 of the
Path aggregate identifier list in Fig. 7 shows a path aggregate identifier defined
with AS4713, AS2914, and AS13335.

Fig. 7. Example of the path aggregate identifier list.

Generating Observed Matrix of Aggregated Flow Size. Figure 8 shows
the structure of the observed matrix of aggregated flow size. It has a two dimen-
sional structure. Each row of the matrix corresponds to a specific time period
(e.g., 5 min). Each column of the matrix corresponds to a path aggregate. Each
element of the matrix contains the sum of bytes of the corresponding flow for
the time period.

Fig. 8. The structure of observed matrix of aggregated flow size.

Figure 8 shows that the number of the path aggregates in the observed matrix
of aggregated flow size is N . GAMPAL adopts 5 min as the time period of each
row. In case that the observed matrix of aggregated flow size are divided per
day, the number of rows is 288 as shown in Fig. 8.
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Fig. 9. Overview of path aggregate index generation.

Figure 9 shows a detailed diagram for generating the path aggregate index,
which is the index in the AS PATH file per day and the Prefix file per day. The
procedure numbers in Fig. 9 correspond to those in Fig. 5. The RB-tree RIB file is
converted from the corresponding Prefix file and the AS PATH file (Fig. 9-(4a),
(4b)). The RB-Tree RIB file adopts a self-balancing binary search tree (Red-
Black-Tree [17]) in which the prefixes are the main values. Since the number of
prefixes in the BGP RIB will be in the order of the number of the BGP full routes,
it is necessary to reduce the search time for the destination IP addresses in the
human readable flow information. The observed matrix of aggregated flow size
is generated from the human readable flow file and the RB-tree RIB file of the
same date. The destination IP address of each flow in the human readable flow
file is queried with the prefix in the RB-tree RIB (Fig. 9-(5)). When the prefix
is found, the AS PATH corresponding to the prefix is outputted (Fig. 9-(6)) and
the path aggregate identifier list (Fig. 9-(7a)). Finally, as shown in Fig. 10, the
observed matrix of aggregated flow size is generated from the path aggregate
identifier list and the human readable flow information. The path aggregate
index in the path aggregate identifier list and the time stamp in the human
readable flow information are used to select the element in the observed matrix
of aggregated flow size (Fig. 5-(7a), (7b)). The sum of bytes of the flow is added
to the corresponding element of the observed matrix of aggregated flow size.

4.4 Training of Traffic Prediction Model

The LSTM-RNN model for traffic prediction is implemented with Chainer [9],
an open source deep learning framework and the NstepLSTM class, a class for
supporting LSTM-based learning in Chainer. The implementation is optimized
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Fig. 10. The matrix of aggregated flow size generation.

Fig. 11. Input data to LSTM-RNN and training.

to use cuDNN (CUDA Deep Neural Network) [8] library for a GPU computing
environment.

In the LSTM-RNN model, the time period of the learning data must be
longer than that of expected periodicity. As described in Sect. 3.3, since the
traffic pattern of the commodity Internet in Japan shows weekly periodicity, it
is sufficient to focus on daily periodicity in GAMPAL. Because Sect. 4.3 describes
that each element in the observed matrix of aggregated flow size is the sum of
the bytes per path aggregate within 5 min, the number of rows of the observed
matrix of aggregated flow size is 288. Therefore, the time period of expected
periodicity is 288 in GAMPAL.

Figure 11 shows the way to input the elements of a path aggregate in the
observed matrix of aggregated flow size. Suppose that the value of L is larger
than the expected periodicity (i.e., 288 elements in the matrix of aggregated flow
size) of the traffic pattern. The learning window specifies L−1 out of L elements.
The specified elements can be inputted and the remaining element is compared
with the output. The parameters for LSTM-RNN are adjusted according to the
result of this comparison. The learning window slides forward one by one.
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5 Evaluation

5.1 Datasets

In the evaluation, the flow data (NetFlow) and the BGP RIB exported from
WIDE backbone Network (AS2500) [10] are used. The backbone network is
a nation-wide Layer-2 and Layer-3 network and includes branch NOCs, some
of which provide connectivity to stub organizations such as universities. The
backbone network is not only used as an external connection network for each
organization, but also frequently used as a testbed for experimentation of new
technologies. NetFlow is observed at a branch NOC accommodated in a univer-
sity and the BGP RIB is observed at a route server in the backbone network.

5.2 Evaluation Indicator

GAMPAL predicts throughput, i.e., the number of bytes per unit time, for each
of approximately 30,000 path aggregates. The number of bytes per unit time
varies for each path aggregate. Some path aggregates have zero to several bytes
while some path aggregates record hundred thousands or millions bytes. It is
necessary to define an indicator that can evaluate these path aggregates in the
same scale. Therefore, indicators with different scales depending on the data
such as MSE (Mean Square Error) are not suitable. In addition, the measured
and predicted values may include zero, which means there was no flow for 5 min.
Therefore, indicators that cannot be calculated with data containing zero such
as RMSPE (Root Mean Square Percentage Error) are not suitable. Thus, this
paper defines an indicator named NSD (Normalized Summation of Differences)
where mi denotes the i th observed value, pi denotes the i th predicted value,
and T denotes the number of input values.

NSD =
∑T

i=1 |mi − pi|
∑T

i=1 max(mi, pi)
(1)

NSD is the ratio of the sum of the differences between the observed and pre-
dicted values to the sum of the larger value of the observed and predicted values.
NSD takes a value between 0 and 1 regardless of the scale of value. Also, NSD
is the indicator that can be calculated even if the observed or predicted value
is zero. NSD shows how much the predicted value is different from the observed
value, that is, it shows the validity of prediction. If the difference between the
observed value and the predicted value is small, the NSD value is small.

5.3 Validity of General-Purpose Anomaly Detection

In the evaluation, the NSD value is calculated for normal and abnormal days. On
normal days, there seems to be no incident affecting the network. On abnormal
days, an incident may have occurred. In the evaluation, June 24–25, 2018, and
June 22–24, 2019 are selected as normal days, while October 17, 2018, November
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Table 2. Dates of event traffic and normal traffic.

Attribute Target date of evaluation Training data

Normal Jun. 24, 2018 May 6, 13, 20, 27, Jun. 3, 10, 17, 2018

Normal Jun. 25, 2018 May 5, 14, 21, 28, Jun. 4, 11, 18, 2018

Event Oct. 17, 2018 Sep. 5, 12, 19, 26, Oct. 3, 10, 2018

Event Nov. 22, 2018 Oct. 11, 18, 25, Nov. 1, 8, 15, 2018

Table 3. Dates of DDoS traffic and normal traffic.

Attribute Target date of evaluation Training data

Normal Jun. 22, 2019 Jun. 1, 8, 15, 2019

Normal Jun. 23, 2019 Jun. 2, 9, 16, 2019

Normal Jun. 24, 2019 Jun. 3, 10, 17, 2019

DDoS Jul. 6, 2019 Jun. 8, 15, 22, 2019

DDoS Jul. 7, 2019 Jun. 2, 9, 16, 23, 2019

DDoS Jul. 8, 2019 Jun. 3, 10, 17, 24, 2019

22, 2018, and July 6–8, 2019 are selected as abnormal days. Using the data
on those days, this paper tries to detect event traffic and DDoS attacks. On
October 17, 2018, connection failure to YouTube [18] occurred. On November
22, 2018, there was a campus festival of the university that accommodates the
measurement NOC. At the end of June 2019, a UDP reflection/amplification
attack using ARMS (Apple Remote Management Service) was observed around
the world [19]. This attack was also observed at the university. The university
blocked communications for ARMS on July 9, 2019. Therefore, it is assumed
that an abnormal state due to the attack was observed just before July 9, 2019.
Tables 2 and 3 show the normal and abnormal dates and their training data. If
the prediction model created with the data of the normal days is used to predict
the data of the abnormal days, the difference between the measured data and
the predicted data should be large.

Figure 12 shows the result of the evaluation. The value on top of a bar is
the average NSD value of all “path aggregates” on each day. The NSD values
on the days marked as “Event” (October 17 and November 22, 2018) are larger
than those of the normal days. The NSD values on the days marked as DDoS
attack are larger than those of the normal days. The NSD values on June 22–25
are all below 0.40, but those on July 6–8 are all above 0.43. Furthermore, the
maximum NSD value for the six days is observed on July 8 (0.443), the day
before the university settled the DDoS attacks. This indicates that the flows on
the abnormal days cannot accurately be predicted. In other words, the behavior
on the abnormal days was different from that of the normal days. This result
shows that GAMPAL can detect anomalies caused by the event traffic and the
DDoS attack.
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Fig. 12. Result of evaluation.

6 Conclusion

This paper proposed a general-purpose anomaly detection mechanism for Inter-
net backbone traffic based on a LSTM-RNN-based prediction model. To make
GAMPAL scalable to the number of the Internet full routes, each flow is mapped
to a single path aggregates identified with the first three AS numbers of the
AS PATH attribute of the BGP RIB. This paper evaluated the validity of GAM-
PAL using the observed flow data and the BGP RIBs exported from the WIDE
backbone network (AS2500), a nation-wide backbone network for research and
educational organizations in Japan. The evaluation showed that when a stub
organization of the backbone network suffers from DDoS attacks, the difference
between the predicted and observed values is significantly different. Therefore,
GAMPAL properly reflected the state of the Internet backbone with only the
traffic throughput.

References

1. Liao, H., Lin, C.R., Lin, Y., Tung, K.: Intrusion detection system: a comprehensive
review. J. Netw. Comput. Appl. 36(1), 16–24 (2016)

2. Kumar, R., Sharma, D.: HyINT: signature-anomaly intrusion detection system. In:
Proceedings of ICCCNT 2018, pp. 1–7 (2018)

3. Kwon, J., Leea, J., Lee, H., Perrig, A.: PsyBoG: a scalable botnet detection method
for large-scale DNS traffic. Comput. Netw. 97, 48–73 (2016)

4. Tang, T.A., Mhamdi, L., McLernon, D., Zaidi, S., Ghogho, M.: Deep recurrent
neural network for intrusion detection in SDN-based networks. In: Proceedings of
IEEE NetSoft 2018, pp. 202–206 (2018)



GAMPAL 211

5. Ibidunmoye, O., Rezaie, A., Elmroth, E.: Adaptive anomaly detection in perfor-
mance metric streams. IEEE Trans. Netw. Serv. Manag. 15(1), 217–231 (2018)

6. Chen, S., Chen, Y., Tzeng, W.: Effective botnet detection through neural networks
on convolutional features. In: Proceedings of IEEE TrustCom/BigDataSE 2018, pp.
372–378 (2018)

7. Petrie, C., King, T.: Multi-Threaded Routing Toolkit (MRT) routing information
export format with BGP additional path extensions. RFC 8050, sl IETF (2017)

8. NAVIDIA cuDNN. https://developer.nvidia.com/cudnn. Accessed 20 Aug 2019
9. Chainer: A flexible framework for neural networks. https://chainer.org/

10. WIDE backbone. http://two.wide.ad.jp/
11. Flanagan, K., Fallon, E., Jacob, P., Awad, A., Connolly, P.: 2D2N: a dynamic

degenerative neural network for classification of images of live network data. In:
Proceeding of IEEE CCNC 2019, pp. 1–7 (2019)

12. NSL-KDD dataset. https://www.unb.ca/cic/datasets/nsl.html. Accessed 20 Aug
2019

13. Kathareios, G., Anghel, A., Mate, A., Clauberg, R., Gusat, M.: Catch it if you can:
real-time network anomaly detection with low false alarm rates. In: Proceedings of
IEEE (ICMLA 2017), pp. 924–929 (2017)

14. Cho, K., Fukuda, K., Esaki, H., Kato, A.: The impact and implications of the
growth in residential user-to-user traffic. In: Proceedings of ACM SIGCOMM 2006,
pp. 207–218 (2006)

15. nfdump. http://nfdump.sourceforge.net. Accessed 20 Aug 2019
16. bgpdump. https://bitbucket.org/ripencc/bgpdump/wiki/Home. Accessed 20 Aug

2019
17. Red-Black-Tree. https://developer.nvidia.com/cudnn. Accessed 20 Aug 2019
18. TeamYoutube. https://twitter.com/TeamYouTube/status/1052393799815589889?

ref src=twsrc
19. NETSCOUT. https://www.netscout.com/blog/asert/call-arms-apple-remote-

management-service-udp

https://developer.nvidia.com/cudnn
https://chainer.org/
http://two.wide.ad.jp/
https://www.unb.ca/cic/datasets/nsl.html
http://nfdump.sourceforge.net
https://bitbucket.org/ripencc/bgpdump/wiki/Home
https://developer.nvidia.com/cudnn
https://twitter.com/TeamYouTube/status/1052393799815589889?ref_src=twsrc
https://twitter.com/TeamYouTube/status/1052393799815589889?ref_src=twsrc
https://www.netscout.com/blog/asert/call-arms-apple-remote-management-service-udp
https://www.netscout.com/blog/asert/call-arms-apple-remote-management-service-udp


Revealing User Behavior by Analyzing
DNS Traffic

Mart́ın Panza(B), Diego Madariaga, and Javier Bustos-Jiménez
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Abstract. The Domain Name System (DNS) is today a fundamental
part of Internet’s working. Considering that Internet has grown in the
last decades as part of human’s culture, user patterns regarding their
behavior are present in the network data. As a consequence, some of
these human behavior patterns are present as well in DNS data. With
real data from the ‘.cl’ ccTLD, this work seeks to detect those human pat-
terns by using Machine Learning techniques. As DNS traffic is described
by a time series, particular and complex techniques have to be used in
order to process the data and extract this information. The procedure
that we apply in order to achieve this goal is divided in two stages.
The first one consists of using clustering to group DNS domains basing
on the similarity between their users’ activity. The second stage estab-
lishes a comparison between the obtained groups by using Association
Rules. Finding human patterns in the data could be of high interest to
researchers that analyze the human behavior regarding Internet’s usage.
The procedure was able to detect some trends and patterns in the data
that are discussed along with proper evaluation measures for further
comparison.

Keywords: DNS · Clustering · Association rules · Human behavior

1 Introduction

As a critical component in Internet’s infrastructure, the Domain Name System
(DNS) plays a vital role in Internet’s working. As the system that translates the
domain names to IP addresses, every web service relies on it to operate. For its
part, with the continuous growth of users, Internet is nowadays an important
element that affects humans’ life and culture in an undeniable way. Taking this
into consideration, human behavior patterns can be recognized in the Internet‘s
data flow; and as a consequence, in the DNS traffic. These patterns make this
source of data highly valuable for the analysis and understanding of the human
conduct over the usage activity on Internet.

As an example of this statement, one can identify a strong periodic behavior
when simply visualizing the amount of queries in DNS traffic. The periodicity
showed in Fig. 1 is caused by the high traffic that people generate during the
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day, and the low traffic at night when the majority of people rest. Likewise,
human activity is higher during weekdays rather than during the weekend, as
can also be seen in Fig. 1, where Saturday and Sunday correspond to the two
lower peaks of the time series. This data corresponds to the Chilean country
code top-level domain (ccTLD): ‘.cl’, and it is the data that we will use later for
experimentation in this work, with a further description in Sect. 3.
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Fig. 1. DNS traffic time series

Moreover, given the purpose of DNS as a way of using IP addresses in a
human-understandable way, it contains even more information regarding these
behavior patterns. Many times one can easily speculate on the content of a
webpage by looking at its domain name.

Recognizing and studying these patterns could be of high relevance for
researchers interested in analyzing the human behavior on Internet usage. As
well as for resources managing, that DNS operators might be interested in using
to improve the service provided by their systems.

This work seeks to use Machine Learning techniques on real DNS traffic from
authoritative servers in order to discover and analyze human patterns, showing a
useful process for this purpose based on methods and evaluation measures from
relevant related work.

Considering that DNS traffic could be described by time series, we apply
methods and distance measures specifically designed for this purpose; as time
series analysis is a topic of research itself that has acquired huge relevance in the
literature in recent years. Mainly due to its applicability on several and diverse
topics, for example, financial markets, brain activity, and astronomy.
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2 Related Work

The study of human behavior has always been of great interest to researchers,
mainly in the field of sociology [2]. However, understanding human behavior in
computer science is an emergent research field that has significantly benefited
from the rapid proliferation of wireless devices that frequently report status, and
location updates [3].

Most of state of the art works that address the study of human behavior
through the analysis of networking-related data exploit the high periodicity
present in network data. This high periodicity and, consequently, low entropy,
is mostly attributed to the impact of the regularity of human patterns [7,13] on
the network state [16].

Recently, the temporal and spatial analysis of data traffic on the mobile
network [16] has shown how different human patterns have different effects over
the network state, generating distinct patterns of the data traffic in diverse
locations. Also, as researches have shown how this periodicity is also present in
DNS data [12], important conclusions about user behavior can be deduced at
analyzing this portion of the network, in order to optimize the performance of
this critical component of the Internet.

Time series analysis has become a very popular topic of research lately. Spe-
cially because of its usage on popular topics, such as financial markets; and
because concepts like similarity and summarization have many different visions
depending on the problem [4]. On top of it, data mining on time series stud-
ies have developed various adaptations of the common techniques [6] since, in
general, each problem is addressed with an original procedure depending on its
conditions.

3 Data-Set Overview

The data-set used in this work consists of a week of normal operation traffic of
one of the authoritative DNS servers of the ‘.cl’. It starts on 7 November, 2018,
until 14 November of the same year. ‘.cl’ is the country code top-level domain
(ccTLD) of Chile, administrated by NIC Chile. Every DNS packet from queries
to the server and responses to users is present in the data-set. The server studied
belongs to an anycast configuration along with other servers.

A time series of DNS traffic was built by aggregating all the successful server
responses into 10-min intervals. Therefore, each point of the time series corre-
sponds to the number of DNS packets from server responses with record types
1, 2, 15, or 28 (A, NS, AAAA, MX) obtained in ten minutes of data. For the
purpose of this work, only the most important domains on ‘.cl’ were consid-
ered; in view of the vast number of domains that this ccTLD is responsible for,
most of which contain low activity. We based on Amazon Alexa’s top sites [1] to
determine the most relevant domains for our study. We made a further selection
based on the number of queries received for those domains, resulting in 82 high
activity domains of the Amazon Alexa’s top sites. All the time series together
manifest a total of 2,854,260 DNS packets.
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The Fig. 1 in Sect. 1 shows an aggregation of the whole time series used in
this work, showing the total number of DNS queries every 10 min during the
studied week.

Since the data comes from a normal working of the system, it takes on great
importance in the analysis of this work and gives relevance to the results obtained
as users patterns are captured in the traffic.

4 Methodology

Considering the domains that were taken into account basing on the criteria
described in Sect. 3, an experimental procedure was made consisting of two stages
that are further described in the following sections.

The first stage corresponds to a clustering analysis on all the time series,
in order to find groups of domains according to their traffic activity from the
number of queries received from the users. Each domain’s time series was pre-
processed by applying a Simple Moving Average (SMA) method and a Z-Score
normalization to them, with the purpose of reducing noise and capturing the
regular shape of the time series, as well as reducing the scale, which was conve-
nient for the distance measures that were used. In this way, giving the clustering
algorithm a smoother and consistent input. The time series clustering algorithm
used in the experiments was the Partitioning Around Medoids (PAM) [10] for
multiples values of k. The selected value of k used for further analysis was deter-
mined by the internal clustering validation measure: Davies-Bouldin Index [5].
With regard to the time series distance metric used by the algorithm, the Shape-
Based Distance proposed by Paparrizos and Gravano [14] was established in a
sliding window of 12 h, i.e. half-a-day. Before the execution of the experiment,
different tags were assigned to each domain as a way of both give a description
about the domain’s content type, and to evaluate the results using an external
clustering validation measure: Rand Index. Lastly, after obtaining the results
and selecting k, we display the groups given by the algorithm and discuss the
nature of their domain members.

The objective in the second stage was to establish a comparison between the
groups obtained in the clustering analysis. To achieve this goal, an association
rules analysis was made on a representative of each of the groups, corresponding
to the centroid from each cluster obtained in the previous stage. The algorithm
used in this phase was the Apriori algorithm [9]. However, to properly feed this
algorithm with the time series, a previous procedure to transform time series to
a set transactions was done. The most relevant rules were showed in the Results
section, and later discussed in the Discussion section.

Some important aspects of this process were implemented using the R pack-
ages dtwclust [15], containing time series clustering tools, and apriori [8] for
association rules analysis.

Finally, some conclusions and future work are proposed in the final section.
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5 Clustering Analysis

5.1 Algorithm and Configuration

The clustering algorithm used for the experiments is the Partitioning Around
Medoids, using the distance measure Shape-Based Distance.

Partitioning Around Medoids. Partitioning Around Medoids (PAM) is dif-
ferent from k-means algorithm since it uses elements from the data-set as cen-
troids. The advantage is that it is less sensitive to outliers as it minimizes dissim-
ilarities between the clustering members, and not squared euclidean distances as
k-means does. It does require a similarity measure.

The algorithm proceeds as follows:

1. Select k domains as medoid-domain.
2. Link all the other domains to their closest medoid-domain.
3. Calculate the total cost (sum of dissimilarities).
4. While (total cost decreases) do:

– For each medoid-domain do:
• For each non-medoid-domain do:

∗ Use the non-medoid-domain as medoid-domain instead of the cur-
rent medoid-domain.

∗ Link all the other domains to their closest medoid-domain.
∗ Recalculate the total cost.
∗ If the total cost increased, then undo the substitution between

the medoid-domain and the non-medoid-domains.

A specific advantage of this algorithm to the benefit of this work is that,
due to its nature, the final centroids are members from one of each cluster. In
Sect. 6 we use this aspect to directly choose candidates for the Association Rules
analysis.

Shape-Based Distance. The Shape-Based Distance (SBD) is a similarity mea-
sure for time series. It is less costly than the popular Dynamic Time Warping
(DTW). It is described by the following equation:

SBD(x,y) = 1 − max
w

(
CCw(x,y)
√‖x‖ · ‖y‖ ) (1)

where CC(x, y) is the cross-correlation and w is a value that maximizes
CCw(x, y) based on the convenient shift of the time series with regard to the
other one.

This measure reaches values between 0 to 2, and it is highly sensitive to
scale. That is why a normalization is required. We used Z-Score normalization
as suggested by the distance’s authors. In addition, we used a half-a-day window
size for the calculations of the similarity.



Revealing User Behavior by Analyzing DNS Traffic 217

5.2 Evaluation

Clustering validation measures are divided in two types regarding the informa-
tion that they require: internal and external. Both have the objective of deter-
mining how good the clusters obtained by a clustering algorithm are.

While internal validation measures only require spatial information of the
clusters themselves, external validation measures use information that instructs
how the result is expected to be, such as what cluster members should or should
not be together.

Since we are not interested in adjusting the algorithm to obtain a particular
result, an internal validation measure was used for the evaluation of the clustering
algorithm: Davies-Bouldin measure. More specifically, it was used to compare the
quality of the clusters obtained for different values of k (number of clusters).

Nonetheless, tags were still given to each domain as a way of providing a
description of what the domains are related to, allowing further discussion, and
also allowing an additional external evaluation.

The tags assigned to each domain are showed in Table 1.

Table 1. Descriptive tags assigned to the domains

Tag Description

BA Banking

BS Big Stores

EC E-Commerce

ED Educational

GO Governmental

JS Job Sites

OS Online shopping

NP Newspaper

PD Postal Delivery

RS Radio Station

SE Search Engine

SU Supermarket

TC Telecommunication

TO Tourism

TV Television

Davies-Bouldin Index. Davies-Bouldin Index (D-B) is given by the following
equation:

DB =
1
N

N∑

i=1

Di (2)
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where N is the number of clusters, and:

Di = max
i�=j

(Ri,j) (3)

Ri,j =
Si + Sj

Mi,j
(4)

Si =
1
Ti

Ti∑

j=1

d(x, ci) (5)

Mi,j = d(ci, cj) (6)

where ci is the centroid of the cluster i, Ti is the size of the cluster i, and d(ci, cj)
is the distance between the two clusters.

This index measures the average distance between each cluster and its most
similar one. Thus, a lower score means that the quality of the clusters is better.

Rand Index. The Rand Index (RI) is a similarity measure between two clus-
tering solutions. It is given by the following equation:

RI =
TP + TN

TP + TN + FP + FN
(7)

where TP corresponds to the True Positives, i.e. the number of elements that
are grouped together in both clustering results. TN are the True Negatives,
elements that are separated in different clusters in both clustering results. FP
and FN are False Positives and False Negatives. They represent the elements
that belong to the same cluster only in one of the two clustering solutions, but
don’t belong to the same cluster in the other clustering solution. In which one of
the clustering solutions this happens determines what would be a FP or a FN .

In this case, our tags compose a clustering solution that will be compared
to the corresponding clustering solution after selecting the k value, in order to
obtain the Rand Index.

5.3 Data Pre-processing

With the purpose of reducing the noise in the time series and capturing the
essence of their shape to facilitate the establishment of comparisons between the
clustering algorithm, a smoothing and normalization process was made on every
time series. First, a Simple Moving Average (SMA) was performed with five as
the number of periods, in order to reduce noise. Secondly, a Z-Score normaliza-
tion was applied to modify the scale of the data, as the distance measure to be
used is sensitive to scale.
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5.4 Experimental Results

The clustering algorithm was performed for different values of k (number of
clusters) in the range from 2 to 10. Davies-Bouldin Index was obtained for each
execution. Table 2 shows the score for each value of k. As denoted on it, the
minimum score was obtained by k = 6, which corresponds to the best number of
clusters according to the evaluation measure. Therefore, the clustering results
for k = 6 were considered for the following experiments in this work.

Table 2. Davies-Bouldin Index for number of clusters k.

k D-B Index

2 0.483

3 0.448

4 0.348

5 0.333

6 0.292

7 0.462

8 0.493

9 0.403

10 0.397

Table 3 displays the groups obtained by the clustering algorithm for six dif-
ferent groups, listing all their members by their domain names. It also presents
the Rand Index described in Sect. 5.2.

As way of visualizing what is contained inside the clusters, Fig. 2 shows plots
for each cluster with all the time series of the domains that belong to that
particular cluster together.

Fig. 2. Clusters members plot
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Table 3. Domains and tags by clusters

Cluster Domain Tag Cluster Domain Tag Cluster Domain Tag

aiep ED bancochile BA abcdin BS

bancoedwards BA bancoestado BA bsale OS

bancosantiago BA bancofalabella BA buscalibre OS

bci BA bancoripley BA chileautos EC

bluex PD claveunica.gob GO chiletrabajos JS

chileatiende.gob GO cmr BS chilevision TV

chilexpress PD dafiti OS comunidadescolar ED

correos PD despegar TO conicyt ED

dt.gob GO emisora RS cooperativa RS

entel TC lider SU curriculumnacional ED

mercadopublico GO mercadolibre EC duoc ED

officebanking BA pjud GO easy BS

scotiabankazul BA publimetro NP extranjeria.gob GO

scotiabankchile BA registrocivil GO inacap ED

scotiabank BA ripley BS laborum JS

sii GO santander BA mercadopago BA

1

sistemadeadmision GO sodimac BS mineduc GO

13 TV trabajando JS mitarjetacencosud BA

24horas TV transbank BA movistar TC

adnradio RS

4

yapo EC santotomas ED

biobiochile RS airbnb TO uc ED

elmostrador NP google SE uchile ED

mega TV redgol NP udec ED

paris BS

3

tripadvisor TO

6

webescuela ED

pcfactory BS clarochile TC

soychile NP df NP

t13 TV groupon TO

tvn TV itau BA

2

wom TC

5

linio OS

Rand Index
0.772

5.5 Discussion

As observed in Fig. 2, the process successfully made groups of domains depending
on the attributes of each time series. Still in such a straightforward visualization,
differences between the arrangements of the time series can be seen between
distinct clusters. One clear aspect is on the weekend, that can be easily identified
as the lower peaks in the middle zone of the time series in Cluster 1. These



Revealing User Behavior by Analyzing DNS Traffic 221

peaks indeed correspond to Saturday and Sunday in the data. Meaning that
users of those domains reduce their activity on weekends. On the other hand,
members from others clusters, such as Cluster 6 do not clearly demonstrate these
distinctions between weekdays and weekends, as users of those domains maintain
a uniform usage throughout the whole week. Moreover, members from Cluster 3
show a completely opposite behavior, with peaks on weekends. Nevertheless, all
the domains seem to share in common a decrease of activity during nighttime.

The clusters listed in Table 3 also demonstrate a valuable outcome as patterns
can be observed when taking into account the content type of the domains, spe-
cially when considering our initial descriptive tags. For instance, every domain
originally tagged as Educational [ED] was grouped together in Cluster 6, just
for aiep who was assigned to Cluster 1. This tag considers many of the most
important universities and institutes in Chile. Such as Universidad de Chile
(uchile), Universidad Católica de Chile (uc), Universidad de Concepción (udec),
and Departamento Universitario Obrero y Campesino (duoc). As well as some
government educational-related domains, such as conycit (National Commis-
sion for Scientific and Technological Research), and also mineduc (Ministry of
Education) and curriculumnacional (National Curriculum) that were originally
tagged as Governmental [GO]. Logically, this kind of domains should present
similar traffic, and this is successfully recognized by the algorithm. However,
some other not-related domains are also included in the cluster, such as chilevi-
sion [TV] or chileautos [EC].

Another estimable result is the group formed on Cluster 2. As it contains all
the domains tagged as Television [TV], except for one. It also incorporates two
Radio-Station [RS], and two Newspaper [NP] tagged domains. If we consider
that all these tags fit as part of mass media, then we distinguish an interesting
pattern captured by our procedure.

We can also observe that the three domains that we manually tagged as
Postal-Delivery [PD] were grouped together in the Cluster 1. In this cluster there
are also five Governmental [GO] domains and seven Banking [BA] domains.

Additionally, two of the four domains previously tagged as Tourism [TO] were
grouped in the smallest cluster along two other domains. One of them is google
that has a unique tag Search-Engine [SE], expected by us to be distinguished
from the rest, assumption that was partially fulfilled.

Given all the above, it is possible to assure that human behavior patterns
influence the DNS traffic of the domains, establishing important differences
between them, that can be detected by the used time series distance measure.
Moreover, these patterns can be detected by the clustering algorithm to success-
fully create groups whose members show similar behavior and are very likely to
share content meaningful to humans. Thus, detecting human patterns in DNS
is feasible by employing clustering techniques.

6 Association Rules

In order to establish comparisons between the clusters obtained from the proce-
dure of Sect. 5, association rules are expected to highlight the trends and patterns
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within the time series. The resulting centroid from every cluster, which corre-
sponds to a domain’s time series, was considered as the representative for the
experiments and analysis performed in this section. In this way, the association
rules procedure was applied on six time series representing the members of each
cluster.

The association rules algorithm used is the popular Apriori algorithm. In
order to feed it with our data, some transformations were required as a pre-
processing stage. That is why an SAX was used to convert the time series to
symbols, in addition to a rule for feature extraction.

6.1 Apriori Algorithm

Apriori algorithm was designed to generate association rules that indicate pat-
terns and trends inside a data-set composed by multiple collections of items,
commonly associated with transactions. It focuses on the frequency with which
the items appear in the transactions, and with what other items they are usually
present.

The algorithm receives a minimum support as input, as well as the transac-
tions, and generates candidate itemsets whose appearances in the transactions
are filtered by the minimum support given. Finally, it outputs all the association
rules that remain. Selecting the relevant rules after this process falls completely
to the user criteria, depending on some common evaluation indicators for these
rules:

1. Support:

Supp(X) =
|{t ε T ;X ⊆ t}|

T
(8)

2. Confidence:

Conf(X → Y ) =
Supp(X ∪ Y )

X
(9)

3. Lift:

Lift(X → Y ) =
Supp(X ∪ Y )

Supp(X) × Supp(Y )
(10)

where T is the total number of transactions and t is a single transaction.

6.2 Data Pre-processing

Given that Apriori algorithm receives a list of transactions as input, a trans-
formation is needed to be previously made to the time series. A direct solution
is transforming the time series to symbols and pass collections of symbols to
the algorithm. This is taken care of by the Symbolic Aggregate approXimation
(SAX) [11].

However, SAX uses Piecewise Aggregate Approximation (PAA) to obtain the
symbolic values. This procedure reduced the time series length from 1008 points



Revealing User Behavior by Analyzing DNS Traffic 223

to 168. Five symbols were used in the transformation, resulting in the following
time series:

S = { st : t ε T, s ε {a, b, c, d, e} } (11)

where e corresponds to the highest values of the previous time series, and a to
lowest ones. Also, |T | = 168.

Additionally, one last feature was added to the time series to maintain
some relevant information. Using the remaining time series 12, each symbol was
assigned an integer in the following way:

a = 0

b = 1

c = 2

d = 3

e = 4

This with the purpose of obtaining the difference every two points in the
time series as a way to establish a measure of flow change in the traffic to not
only know its position at a given time, but also its direction.

For example, if a time series has the symbol b at a given point, and in the
next point it changes to d, we will note this change as d − b = 4 − 2 = 2, and we
will say that it increased by 2.

Adding this feature and grouping by every two points leaves our final DNS
traffic time series as:

S = { (s, n)t : t ε T ; s ε {a, b, c, d, e} ; n ε N; n ε [−4, 4] } (12)

With |T | = 84.
This is the final form of the time series that the Apriori algorithm received

as a transactions array.

6.3 Results

Table 4 shows what we consider as the most relevant rules after mining the
association rules resulting from the Apriori algorithm. The table is subdivided
by rules that contain only numeric values, only alphabetic values, and both of
them.

6.4 Discussion

The rules showed in Table 4 indicate some patterns in the comparison between
the members of each cluster obtained in Sect. 5.

For example, rule number 3 tells us that every time there was a big increase
(magnitude 2) experienced in the Clusters 2 and 4, there was also the same
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Table 4. Relevant Association Rules obtained from the Apriori algorithm

Number Body Head Support Confidence Lift

1 C3=0, C4=−1 C5=−1 0.11 0.818 2.864

2 C4=−1, C5=−1, C6=−1 C2=−1 0.06 1 5.600

3 C2=2, C4=2 C1=2 0.04 1 28

4 C2=1 C3=0 0.13 0.917 1.510

5 C3=0, C5=0, C6=0 C4=0 0.18 1 1.615

6 C2=0, C3=−1 C5=0 0.13 0.917 1.878

7 C1=0, C2=0, C3=0, C5=0, C6=0 C4=0 0.10 1 1.615

8 C5=−1, C6=−1 C2=−1 0.07 0.857 4.800

9 C2=−1, C3=0, C5=−1 C6=−1 0.06 0.833 4.118

10 C1=0, C2=−1 C4=−1 0.07 1 4

11 C2=−1, C5=−1 C4=−1 0.10 0.889 3.556

12 C2=−1, C4=−1 C5=−1 0.010 0.800 2.800

13 C2=0, C3=−1, C6=0 C5=0 0.11 1 2.049

14 C1=1, C2=0 C6=0 0.08 1 1.474

15 C1=0, C2=0, C4=1 C6=1 0.036 1 12

16 C1=a, C2=a C6=a 0.18 1 5.600

17 C1=a, C4=a, C5=a, C6=a C2=a 0.12 1 5.250

18 C2= c, C3= e C6=c 0.08 1 4.941

19 C2=b, C3=a, C6=b C4=b 0.07 1 4.667

20 C1= e, C4= e C6=e 0.14 0.800 4.200

21 C5= e, C6= e C1=e 0.13 0.917 4.053

22 C6= e C4=e 0.18 0.938 3.938

23 C1= e, C4= e, C6= e C5=e 0.12 0.833 3.684

24 C4=b, C6=b C2=b 0.13 0.917 3.667

25 C1= c, C6=b C2=b 0.07 0.857 3.429

26 C1=b, C6= c C5=b 0.07 0.857 3.130

27 C1= c, C6=b C2=b 0.07 0.857 3.429

28 C3= c, C6= c C4=b 0.06 0.833 3.889

29 C1=d, C4= c C1=−1 0.06 1 3.652

30 C2= c, C5=b C5=1 0.06 0.833 5

31 C2=0, C5=0, C1= e, C5= e C3=−1 0.07 0.857 4.500

32 C4=0, C3=a C3=0 0.08 1 1.647

increase in Cluster 1 with a tremendously high value of lift. However, not with
a big value of support.

Number 4 tells with high support that an increase in Cluster 2 will be likely
to be accompanied with no change in Cluster number 3. This sets up some dif-
ferences between the clusters’ behavior that would not be easy to see otherwise.

Rule number 2 states, with a high lift value, that if Clusters 4, 5, and 6
experience a decrease, you can safely expect that Cluster 2 will decrease too.
With higher support but lower lift, rule number 8 states that if only Clusters
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5 and 6 decrease, Cluster 2 will decrease likewise. Rules number 11 and 12
indicate that this behavior will also occur in the other way. That is, if Cluster
2 experiences a decrease along with 4 or 5, the remaining one will be very likely
to decrease as well.

Rule number 3 says that if Cluster 3, 5 and 6 maintain their value, Cluster
4 will maintain its value too. However, rule number 13 says that Cluster 5 will
maintain its value when both Cluster 2 and 6 do not change, and Cluster 3 is
experiencing a decrease.

As for the rules containing symbols, some rules like 16, 17, 21, and 22 tell us
what clusters tend to stay in their peaks or valleys when other clusters experience
the same. However, other rules such as number 18 tell us that when some clusters
are currently in their top or bottom values, others can be found in their middle
values; in this case Cluster 6 always obtained c value when Cluster 2 was in c,
but Cluster 3 was in his peak e.

Rule number 28 tells us that when Clusters 3 and 6 stay in their middle
values, Cluster 4 is very likely to be lower on activity than them.

Finally, some more complex rules regarding both symbols and numeric
changes were obtained in the last rows. For example, they tell us that when
Cluster 2 has value c and Cluster 5 has value b, Cluster 5 tends to increase with
very high lift index. (Rule number 30).

Another case is in rule number 32, saying that when Cluster 4 is not changing
its activity and Cluster 3 is at its lowest activity, Cluster 3 tends to maintain its
behavior as well. This corresponds to information that is tremendously hard to
obtain by other means.

7 Conclusions and Future Work

The procedure proposed in this work was able to identify some patterns in the
used time series data. The first stage of our experimentation was able to group
domains that have similar content meaningful for humans, obtaining an accept-
able external evaluation index as a way for further comparison, but most impor-
tantly demonstrating semantic coherence in the domains that were grouped
together. As for the second stage, association rules showed interesting trends
when comparing the centroids from each cluster that could be useful for per-
forming further analysis and pattern mining.

Taking these results into account, we conclude that human patterns are
present in the DNS data, and that these techniques were able to find some
of them. This demonstrates that they could be mined and recognized using the
appropriate methods and data processing.

Every step from our procedure was associated with an evaluation index as
a way of comparison. We suggest as future work the use of other methods that
could both find different patterns in the data, and improve the quality of their
extraction. Moreover, we claim an achievement of our goal of finding human
patterns present in DNS data, however we encourage a more in-depth analysis
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of the patterns singularly, with the purpose of recognizing more detailed infor-
mation about them. We strongly believe that these patterns could be of interest
for researchers that analyze the human behavior, in this case over activity on
the Internet.
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Abstract. Data clustering is one of the most important unsupervised classifi-
cation method. It aims at organizing objects into groups (or clusters), in such a
way that members in the same cluster are similar in some way and members
belonging to different cluster are distinctive. Among other general clustering
method, k-means is arguably the most popular one. However, it still has some
inherent weaknesses. One of the biggest challenges when using k-means is to
determine the optimal number of clusters, k. Although many approaches have
been suggested in the literature, this is still considered as an unsolved problem.
In this study, we propose a new technique to improve the gap statistic approach
for selecting k. It has been tested on different datasets, on which it yields
superior results compared to the original gap statistic. We expect our new
method to also work well on other clustering algorithms where the number k is
required. This is because our new approach, like the gap statistic, can work with
any clustering method.

Keywords: Clustering � Number of clusters � Data mining

1 Introduction

There are still many open challenges in the clustering task. Those challenges are getting
even worse in the current big data era, where data is collected from many sources at
high speed. This paper focuses on answering the question: how to decide on the
number of clusters k? Being one of the oldest question in the clustering literature, the
question has been tackled by hundreds of researchers with many solutions that have
been proposed. Among these solutions, the gap statistic is one of the most modern
approaches. It is backed by the rigorous theoretical foundation and has been shown to
outperform many other heuristic-based approaches such as elbow or silhouette.
However, there are still several drawbacks to the original design of the gap statistic,
which limits its applicability in real applications. This paper introduces a new technique
to mitigate those limitations. The technique can improve the effectiveness of the gap
statistic in multiple dimensions. The gap statistic that uses the newly proposed
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technique is called the “new gap” for short. The following few subsections describe
literature reviews.

The Elbow Approach
The oldest method called ‘elbow’ has been proposed to determine the number of
clusters for k-mean clustering algorithm [6]. This is a visual method. The idea of the
elbow method is to run clustering method on the dataset for a range of values of k (for
example from 1 to 10), and for each value of k calculate clusters and internal index (it
could be the sum of squared error (SSE), the percentage of variance, etc.). Then plot a
line chart of the internal index for each value of k. At some value of k the value of
internal index drops dramatically, and after that, it reaches a plateau when k is
increased further. This is the best k value we can expect. Figure 1 illustrates how the
elbow method work. In Fig. 1, the line chart goes down rapidly with k increasing from
1 to 2, and from 2 to 3, and reaches an elbow at k = 3. After that, it decreases very
slowly. Looking at the chart, it looks like maybe the right number of cluster is three
because that is the elbow of this curve.

However, the elbow method does not always work well. Sometimes, there are more
than one elbow, or no elbow at all.

Average Silhouette Approach
Average silhouette method computes the average silhouette of observations for dif-
ferent values of k [2, 3]. The optimal number of clusters k is the one that maximizes the
average silhouette over a range of possible values for k [7]. Given a clustering result
with k clusters (k > 1), we can estimate how well an observation i is clustered by
calculating its silhouette statistic sk ið Þ. Let a(i) be the average distance from obser-
vation i to other points in its cluster, and b(i) be the average distance from observation
i to points in its the nearest cluster, then the silhouette statistic sk ið Þ is calculated by:

k (the number of clusters)
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Fig. 1. Identification of Elbow point
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sk ið Þ ¼ b ið Þ � a ið Þ
max a ið Þ; b ið Þf g

A point is well clustered if sk ið Þ is large. The average silhouette score avgS kð Þ gives
an estimation of the overall clustering quality when clustering the dataset into
k clusters:

avgS kð Þ ¼ 1
n

Xn
i¼1

sk ið Þ;

where n is the number of data points.
Therefore, we select k so that it maximizes the average silhouette score. However,

this average silhouette is only a heuristic metric, which can be shown to perform poorly
in many cases. Note that avgS(k) is not defined at k = 1.

Hartigan Statistic
Hartigan proposed the statistic [1]:

H kð Þ ¼
Wk

Wkþ 1
� 1

n� k � 1
;

where Wk is the average within-cluster sum of squares around the cluster means. The
formula to calculate Wk is given in the next section about the gap statistic.

The idea is to start with k = 1 and keep adding a cluster until H(k) is sufficiently
large. Hartigan suggested the “sufficiently large” cut-off is 10. Hence the estimated
number of clusters is the smallest k� 1 such that H kð Þ� 10.

Gap Statistic
Gap statistic was introduced in 2001 by Tibshirani et al. [4] and is still a state-of-the-art
method for estimating k. It has been shown to outperform the elbow, average silhouette,
and Hartigan methods in both synthesized and real datasets [4, 5]. The method works
by assuming a null reference distribution. It then compares the change in within-cluster
dispersion with the expected change if the null distribution is true. If when k = K and
the within-cluster dispersion starts decreasing slower than the expected rate of the
reference distribution, the gap statistic returns k as the expected number of clusters. The
formal definition of the gap statistic is given as follows:

Let dij ¼ xi � xj
�� ��2 denotes the Euclidean distance between observation i and j, Dr

is the sum of the pairwise distance for all points in a given cluster Cr containing nr
points.

Dr ¼
X
i2Cr

X
j2Cr

dij

Then measure of compactness of clusters Wk is the average within – cluster sum of
squares around the cluster means:
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Wk ¼
Xk
r¼1

1
2nr

Dr

The purpose of clustering is with a given K finding the optimal Wk, when k in-
creases, Wk decreases. But the speed reduction of Wk also decreases. The idea of elbow
method is to choose the k corresponding to the “elbow” (finding k that point has the
most significant increase in goodness-of-fit). The problems when using elbow method
is no reference clustering to compare, and the differences Wk �Wk�1’s are not nor-
malized for comparison.

The main idea of the gap statistic is to standardize the graph of log Wkð Þ by com-
paring it with its expectation under an appropriate null reference distribution of the
data. Estimate of the optimal number of clusters is then the value of k for which
log Wdata

k

� �
falls the farthest below this reference curve log Wnull

k

� �
:

Gapn kð Þ ¼ E�
n log Wnull

k

� �� log Wdata
k

� �� �

With E�
n is the expectation under a sample size of n from reference distribution, we

estimate E�
n log Wnull

k

� �� �
by an average of B copies log Wnull

k

� �
, each of which is

computed from a Monte Carlo sample from reference distribution. Cluster the Monte
Carlo samples into k groups and compute logWkb, b = 1, 2 …, B, k = 1, 2 …,
K. Compute the (estimated) gap statistic:

Gap kð Þ ¼ 1
B

XB
b¼1

logWnull
kb � log Wdata

k

� �

Those logWnull
kb from the B Monte Carlo replicates exhibit a standard error sd kð Þ

which, accounting for the simulation error, is turned into the quantity

sk ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
1þ 1

B

r
:sd kð Þ

Finally, the optimal number of cluster K is the smallest k such that

Gap kð Þ�Gap kþ 1ð Þ � skþ 1

The above rule to select k is presented in the original gap statistic paper and called
the “Tibs2001SEmax” rule in the R clustering implementation of the gap statistic.
Since 2001, several other alternatives to this rule have been proposed, such as the
“firstSEmax” rule [8] or the “globalSEmax” rule [9]. In this study, the Tibs2001SEmax
rule in all experiments was used as the baseline approach. In this paper, the term “gap
statistic” refers to the function Gap(k) with the Tibs2001SEmax is used as the k-
selecting rule.

Figure 2 provides an example of how the gap statistic works. Figure 2a plots the
example dataset with two well-separated clusters. Figure 2b shows the line
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Fig. 2. How the gap statistic works on a dataset with two well-separated clusters
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representing the within sum of squares Wdata
k , which is a downward trend in number of

cluster k. Figure 2c shows the log of the expected rate log(Wnull
kb Þ using an assumed null

distribution (uniform distribution in this case). Figure 2d shows the gap statistic, which
is calculated by subtracting the log expected rate log(Wnull

k Þ for the log(Wdata
kb Þ. The

optimal number of k is the smallest k such that there is a significant chance that Gap
(k) is higher than Gap(k + 1), which is k = 2 in this case. Tibshirani used one standard
deviation skþ 1 to determine when the chance is significant.

2 Methodology

Although being backed by a rigorous theoretical foundation (unlike other heuristic-
based methods like elbow or silhouette), the Gap statistic still has several drawbacks
that limit its applicability to practical applications. In this section, we conduct several
experiments with synthesized datasets to demonstrate those limitations. Based on the
insights learned from those experiments, we then introduced a new technique to
improve the gap statistic.

2.1 The Gap Statistic Limitations

By design, the gap statistics can only work well when all the clusters in the dataset are
well-separated from each other. However, this is rarely the case in practice, where
clusters usually overlap up to a certain degree. This “non-overlapping” assumption is
one of the main reason that limits the gap statistics effectiveness in real applications.
Figure 3 shows how the gap statistics fail to identify the correct K in simple synthe-
sized datasets, that the clusters only barely overlap each other.

(a) the ovl2Gauss dataset: 400 data points in 2 dimensions that sampled equally from

the two 2D Gaussian distributions: N 0
0

� 	
;

1 0:7
0:7 1

� 	
 �
and N 4

0

� 	
;




1 �0:7
�0:7 1

� 	
Þ.

(b) gap statistic with Tibs2001SE rule suggests k = 3 instead of 2 for the ovl2Gauss.
(c) the ovl3Gauss dataset: 600 data points in 2 dimensions that sampled equally

from the three Gaussian distributions: N 0
0

� 	
;

1 0:7
0:7 1

� 	
 �
, N 0

8

� 	
;




1 0:7
0:7 1

� 	
Þ, and N 0

4

� 	
;

1 �0:7
�0:7 1

� 	
 �
.

(d) gap statistic with Tibs2001Se rule suggests k = 4 instead of 3 for the ovl3Gauss.

However, clusters should not overlap with each other too much. Otherwise, the
notion of “cluster” will become very fuzzy. This is because the data density in the
overlapping area is the sum of the data density of the two clusters in that area. This can
potentially make the overlapping area become another cluster. In some applications, we
indeed want to recognize that overlapping space as a cluster, while that behavior is
unexpected in other applications. Figure 4 illustrates this confusion in the case of two
strongly overlapping clusters.
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Besides the non-overlapping assumption, the gap statistic also assumes that there is
no hierarchical clustering structure in the dataset. This means in the dataset; there is no
cluster that consists of many smaller clusters. In addition, the gap statistics require a lot
of computing power to compute the expected Wk under the null reference distribution

Fig. 3. Overlapping clusters problem with gap statistic

Fig. 4. Two strongly overlapping clusters can be correctly seen as one, two, or 3 clusters.
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E�
n log Wkð Þf g. It has to sample the null reference distribution B times B� 50ð Þ, for each

sample b, we run the clustering algorithm. In this case, the clustering algorithm is
PAM, which takes O n2ð Þ with n is the number of data points. In total, the complexity of
the algorithm to estimate the E�

n log Wkð Þf g is O Bn2ð Þ. This would make it impossible to
apply gap statistic on dataset with more than several thousands of data points.

2.2 The New Gap

As described in the previous section, the gap statistic method has largely three limi-
tations. However, we only focus on the overlapping issue to produce a new gap. The
other limitation issues will be covered in the further research.

The 1stDaccSEmax Rule for Overlapping Clusters. The Tibs2001SEmax rule
returns the smallest k such that the gap at that point has a significant chance (one
standard error) to be higher than the next gap. As shown in the previous section, this
rule is very sensitive to overlapped clusters. In fact, when there are overlapping clusters
in the dataset, the gap does not decrease but slightly increase after k ¼ K (where K is
the real number of clusters in the dataset). This results in over-estimation of K.

Therefore, instead of using the gap statistic directly, we propose to use the
deceleration of the gap statistic (Dacc statistic for short). The Dacc is calculated as
follows:

Dacc kð Þ ¼ Gap kð Þ � Gap k � 1ð Þ½ � � Gap kþ 1ð Þ � Gap kð Þ½ �
¼ 2Gap kð Þ � Gap k � 1ð Þ � Gap kþ 1ð Þ

Figure 5 shows how the Dacc(k) statistic can be computed from the Gap
(k) statistic.

kk-1 k+1

G
ap

( + 1) − ( )
( ) − ( − 1)

( ) [ ( ) − ( − 1)] [ ( + 1) − ( )]

Fig. 5. How to compute Dacc(k) from Gap(k)
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We designed this statistic based on the insight that when k is going from 1 to K, the
Gap(k) increases with constant or accelerated speed, up to the point where k = K. At that
point, the Gap(k) will suddenly slow down its speed of increasing or start to decreasing
(negative speed). Figure 6 illustrates how the Dacc(k) looks like in different scenarios.

Figure 6(a–c) Different cases where Dacc kð Þ\0; Dacc kð Þ ¼ 0 and Dacc kð Þ[ 0.
Figure 6(d) In dataset with K non-overlapping clusters: Gap(k) increases when

k\K, reaches its first local maxima at k ¼ K, and starts decreasing when k ¼ Kþ 1.
Therefore, k ¼ K is also the first local maxima of Dacc(k).

Figure 6(c) In dataset with K clusters where some clusters slightly overlap each
other: Gap(k) still increases from k = K to k = K + 1, making Gap(k = K) no longer
the first local maxima. However, since the overlapping area is small (slightly-
overlapping assumption), the increasing speed from Gap(K) to Gap(K + 1) is signifi-
cantly smaller than the increasing speed from Gap(K - 1) to Gap(K), making the Dacc
statistic still maximize at k = K. Therefore, the Dacc(k) is more robust than the Gap
(k) in a dataset with slightly-overlapping clusters.

Fig. 6. The Dacc kð Þ value in different scenarios;
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Figure 6(f) In dataset with K clusters where some clusters strongly overlap each
other: the definition between clusters becomes very fuzzy. Two strongly overlapping
clusters can be correctly considered as one, two, or three clusters. Therefore, both Dacc
and Gap statistic behave unpredictably in this case.

To take into account the sampling error occurring when estimating the expected Wk

under the null distribution, I incorporate the standard error sk to the Dacc kð Þ to get the
DaccSE kð Þ as follows:

DaccSE kð Þ ¼ Gap kð Þ � 0:5skð Þ � Gap k � 1ð Þþ 0:5sk�1ð Þ½ �
� Gap kþ 1ð Þþ 0:5skþ 1ð Þ � Gap kð Þ � 0:5skð Þ½ �

DaccSE kð Þ ¼ 2Gap kð Þ � Gap k � 1ð Þ � Gap kþ 1ð Þ � 0:5sk�1 � 0:5skþ 1 � sk

As we can see, the higher the sampling errors at k - 1, k, or k + 1, the more DaccSE
penalizes the Dacc estimation. Note that I used half standard error in the DaccSE
(k) formula. We can choose to use different factor for the standard error based on how
“aggressive” or “conservative” you want the DaccSE to behave. Figure 7 illustrates
how the DaccSE(k) is calculated. While the Dacc is calculated based on the green line,
the DaccSE is calculated based on the dashed orange line. The DaccSE penalizes the
Gap(k − 1), Gap(k) and Gap(k + 1) estimation according to how big the sk�1, sk, and
skþ 1 are.

The Gap(k) chart can have multiple peaks, especially when the dataset has a
hierarchical clustering structure. Therefore, instead of selecting k where the DaccSE
(k) reaches its global maxima, we select the k where DaccSE(k) reaches its first local
maxima. This is similar to the idea of searching for the first local maxima of the
Tibs2001SEmax rule introduced in the original gap paper. This new rule is called the
1stDaccSEmax rule. Generally, the 1stDaccSEmax rule keeps looking for k with the

Fig. 7. How the DaccSE(k) is derived from Gap(k) and sk.
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highest positive DaccSE, with k sequentially running from k = 2 to k = kmax and stop
at the point where Gap kð Þ higher than Gap kð Þ � skþ 1: Figure 8 shows how the
1stDaccSEmax rule works in different situations.

Note that although the DaccSE(k) statistic does not define when k = 1, the
1stDaccSEmax rule can still detect if there is no cluster in the dataset. This can happen
in two situations, which are illustrated in Fig. 8. In Fig. 8b, Gap(1) > Gap(2) by a
margin bigger than s2. Therefore, we stop looking for k right from the beginning and
return k = 1 right away. In Fig. 8c, all the DaccSE is negative (there is no k at which
the gap decreases). Therefore, we also return k = 1 in this case.

Figure 9 shows the effectiveness of the 1stDaccSEmax rule on synthesized datasets
with overlapping clusters.

Figure 9(a) The ovl2Gauss dataset.
Figure 9(b) Tibs2001SEmax suggests k = 3 because Gap(k) still increases from

Gap(2) to Gap(3) due to the overlapping. The 1stDaccSEmax predicts correctly that
k = 2, because the decrease at k = 3 is smaller than the decrease at k = 2.

Figure 9(c) The ovl3Gauss dataset.

Fig. 8. How the 1stDaccSEmax works in different kinds of Gap charts
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Figure 9(d) The Tibs2001SEmax predicts wrongly that k = 4 due to the overlap-
ping issue. The 1stDaccSEmax rule correctly predicts that k = 3.

3 Conclusion

This study focuses on improving the gap statistic for the task of predicting the number
of clusters k of a dataset. It identifies and demonstrates three main limitations of the gap
statistic, including the overlapping clusters problem, the hierarchical clustering struc-
ture problem, and the big dataset problem. Based on these insights, we proposed the
new technique to tackle the overlapping problem: the 1stDaccSEmax rule. The per-
formance of the new method is evaluated with several synthetic datasets. It is believed
that the performance of the new gap method would be shown to be better than all other
traditional approaches. The further numerical experiments will be done on several real
datasets with some other new techniques to overcome the other gap limitations.
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Fig. 9. Apply the 1stDaccSEmax rule on synthesized overlapping clusters datasets.
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Abstract. More and more embedded devices are connected to the inter-
net and therefore are potential victims of intrusion. While machine learn-
ing algorithms have proven to be robust techniques, it is mainly achieved
with traditional processing, neural network giving worse results. In this
paper, we propose usage of a multi-layer perceptron neural network for
intrusion detection and provide a detailed description of our methodol-
ogy. We detail all steps to achieve better performances than traditional
machine learning techniques with a detection of intrusion accuracy above
99% and a low false positive rate kept below 0.7%. Results of previous
works are analyzed and compared with the performances of the proposed
solution.

Keywords: Machine Learning · Multi-Layer Perceptron · Network
intrusion detection · CICIDS2017 dataset

1 Introduction

In recent years, IoT is growing in all areas. This is typically the case for smart
agents (IoT-a) that proliferates to provide complex functionalities. Such smart
agents rely on communication to cooperate [1]. This is also true for cars that shall
embed a cellular connection for emergency call. This is mandatory in Europe
from April 1st, 2018 for all passengers cars and light commercial vehicles [12]
and also in Russia from January 2017. The presence of a modem enables the
emergence of new services requiring data transfer through this cellular connec-
tion. In such a context, attacks against IoT-a may lead to loss of functionality or
even worse open access to other elements of the network potentially compromis-
ing privacy. Cars become potential victims of hackers able to run remote attacks
on entire fleet of vehicles. In response to these risks, a first approach is to use
network intrusion detection system (IDS) tools such as Snort (open source IDS
tool) to analyze network traffic and extract signatures that can be compared
c© IFIP International Federation for Information Processing 2020
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to known attack signatures. This type of approach has two limitations: on the
one hand, the signature of an attack must already be known and on the other
hand, it generates a high false positive rate [4]. An alternative approach is to use
Machine Learning (ML) techniques. These techniques include supervised learn-
ing to classify network flows into different categories and unsupervised learning
to detect anomalies.

Supervised learning is only possible by having a dataset available, in this case
the recording of network frames containing normal traffic and attacks. Cellular
or WLAN connectivity are quite common in IoT and connected cars and we can
consider that the intrusion is similar to the attack that would be carried out on a
conventional computer network. Common network intrusion detection datasets
like KDD-Cup99 [9], NSL-KDD [17] or CICIDS2017 [14] containing different
types of attacks against computers or servers can be used for IoT and connected
cars.

Traditional machine learning algorithms and neural network-based tech-
niques (also called deep learning) can be used as supervised learning methods.
The former group contains algorithms like Decision Tree, Random Forest, or
SVM. Multi-Layer Perceptron (MLP), Convolutional Neural Network (CNN)
or Recurrent Neural Network (RNN) are examples of the latter group. In IDS
researches, many papers cover deeply the traditional approaches while a smaller
amount of papers concentrate on neural network techniques.

Our main contributions consist in two parts. Firstly, we propose an approach
based on multi-layer perceptron exercised on recent dataset. CICIDS2017 con-
tains intrusion attacks and traffics that are representative of current network
usage. All steps are detailed from dataset analysis to tuning of neural network.
Secondly, we analyse previous works on the same dataset and compare their
performances with our experimental results.

This paper presents in Sect. 2 the related work. Our proposed methodology is
described in Sect. 3. Section 4 provides the results of our approach using several
metrics and compares it to previous works. A link to the source code is provided
so that it can be used to reproduce results and for further improvements. Finally,
Sect. 5 concludes this paper and identifies ideas for future work.

2 Related Work

Several studies have been conducted on multiple network intrusion detection
datasets using various methods. Dhanabal and Shantharajah [3] analyzed the
NSL-KDD dataset content and studied several classifiers from the traditional
machine learning techniques. They obtained pretty good intrusion detection with
accuracy around 99% with SVM and J48 (C4.5) decision tree. Tang et al. [16]
used a deep learning approach on the same dataset. They proposed a small
neural network with a very limited number of features in input and reached an
accuracy of almost 76%.

With the release of CICIDS2017, Sharafaldin et al. [14] provided perfor-
mances of intrusion detection on their dataset. A significant gap is observed
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on precision, recall and f1-measure between all traditional ML algorithms and
multi-layer perceptron. K-Nearest Neighbors and Quadratic Discriminant Anal-
ysis outperformed MLP by almost 20%. Feature selection, data pre-processing
and details about the classifiers are not described and therefore results can-
not be reproduced. In their paper, Jiang et al. [6] focused only on denial of
service, 4 classes among the 14 of CICIDS2017 dataset. They proposed new fea-
tures and compared the results of a neural network with features provided in
original CICIDS2017 CSV files. A two-level model was proposed by Ullah et
Mahmoud [18]. The first level classes traffic either as normal or attack with a
decision tree and the second one identifies the attack type with a random for-
est after data augmentation based on synthetic minority oversampling technique
[2] and edited nearest neighbors. The method has been tested on CICIDS2017
and UNSW-NB15 datasets. Ustebay et al. [19] proposed a two-step approach for
CICIDS2017 dataset. Recursive Feature Elimination (RFE) based on Random
Forest is used to identify the most useful features that are then injected in a
neural network.

Those works either obtain lower performances with neural network or when
achieving good results do not consider all types of attacks. We propose a detailed
methodology to achieve high performance with neural network without removing
any type of attacks.

3 Our Methodology and MLP Solution

After selecting a dataset, we propose an approach consisting in training a multi-
layer perceptron neural network in order to quantify the benefits and potential
limitations of using deep learning in IDS. Figure 1 give the overall framework.

Fig. 1. Overview of the proposed approach.
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3.1 Choice of Dataset

KDD-Cup99 is a dataset for IDS publicly released in 1999. It is derived from
DARPA-98 dataset that contains raw data corresponding to captured network
frames with TCPDUMP. The training set is composed of 24 types of attacks.
Raw data have been processed to produce 41 features in KDD-cup99. A first
critique of this dataset has been carried out by McHugh [10]. Tavallaee et al. [17]
provided a detailed analysis and proposed a derived dataset referred to as NSL-
KDD with the goal to solve some of the shortcomings of KDD-Cup99 described
McHugh. NSL-KDD dataset has been widely used for IDS since 2009. Despite
that attacks has evolved over the time, KDD-Cup99 and NSL-KDD remains a
subject of study [13,15,20]. We can consider that most of current attacks are
not present in a dataset relying on traffic recorded 20 years ago.

In 2015, Moustafa et Slay proposed a new dataset called UNSW-NB15 [11]
that has been generated by simulation and representing 31 h of traffic. As a
major difference with NSL-KDD, it contains low footprint and modern attacks
retrieved from CVE site1 that are grouped in nine different families of attacks.
UNSW-NB15 is composed of 49 features. A part has been extracted from packet
headers while some others have been generated specifically.

Gharib et al. [5] reviewed different datasets and evaluated them with respects
to 11 criteria: complete network configuration, complete traffic, labeled dataset,
complete interaction, complete capture, available protocols, attack diversity,
anonymity, heterogeneity, feature set, metadata. On top of elements already
identified in [17], KDD-Cup99 and therefore its NSL-KDD derivative suffer from
the lack of some important protocols like HTTPS.

The University of New Brunswick’s Canadian Institute for Cybersecurity
released the CICIDS2017 dataset based on the framework defined in [14] intend-
ing to solve shortcomings of previous datasets. Raw data in the form of PCAP
files are provided together with a set of 84 features in CSV files. Network traffic
has been recorded over 5 days. The first one only contains normal traffic while
14 types of attack appear for the other days.

Due to the shortcomings of KDD-cup99 and NSL-KDD, we restricted the
choice to either UNSW-NB15 or CICIDS2017. Table 1 presents 7 parameters.
The first one is year of creation of each dataset. Then the number of features
gives us the quantity of input data and labels characterizing each record. The
number of records and the distribution between normal traffic and data are
important information for dataset selection.

We observe that CICIDS2017 is more recent, include more features and con-
tains more instances than UNSW-NB15. Date of creation and quantity of data
are key elements. Firstly, old dataset are no longer representative of current net-
work traffic. As example NSL-KDD does not contain HTTPS exchanges while it
represents more than 70% of traffic today. Secondly, more data leads to better
learning. For these reasons, CICIDS2017 dataset is selected for the evaluation of
our intrusion detection solution.

1 http://cve.mitre.org/.

http://cve.mitre.org/
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Table 1. Comparison of UNSW-NB15 and CICIDS2017.

Parameters UNSW-NB15 CICIDS2017

Year of creation 2015 2017

Features 49 (+2 labels) 84 (+1 label)

Attack families 9 14

Duration 31 h 5 days

# of instances 2,540,044 2,830,743

# of normal instances 2,218,764 2,273,097

# of attack instances 321,283 (12.65%) 557,646 (19.70%)

3.2 Data Preparation

Original Dataset Clean-Up. A series of operations has been carried out to
detect the presence of empty lines, redundant features and non numeric values
in numeric fields. This systematic verification allowed to drop more than 280,000
instances whose all features were empty. One column corresponding to forward
header length appearing twice, one instance has been removed. Most of features
are numeric but some values are not a number. Such cases appear in 6 different
traffic types: BENIGN, FTP-PATATOR, DoS Hulk, Bot, PortScan and DDoS.
As the number of instances containing ‘NaN’ or ‘Infinity’ is negligible in each
traffic type, these instances have simply been removed. Table 2 provides the
number of records for each traffic type and the number of ‘NaN’/‘Infinity’.

Table 2. CICIDS2017 traffic instances.

Traffic Original instances NaN/Infinity After clean-up

BENIGN 2,273,097 1,777 2,271,320

Bot 1,966 10 1,956

DDoS 128,027 2 128,025

DoS GoldenEye 10,293 0 10,293

DoS Hulk 231,073 949 230,124

DoS Slowhttptest 5,499 0 5,499

DoS Slowloris 5,796 0 5,796

FTP-PATATOR 7,938 3 7,935

Heartbleed 11 0 11

Infiltration 36 0 36

PortScan 158,930 126 158,804

SSH-PATATOR 2,897 0 2,897

WebAttack BruteForce 1,507 0 1,507

WebAttack SQL Injection 21 0 21

WebAttack XSS 652 0 652
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Training Set, Cross-Validation Set and Test Set Creation. As shown in
Table 2, the dataset is highly imbalanced at two different levels. First, the normal
traffic (BENIGN) accounts for 80% and second, some attacks (Heartbleed, Infil-
tration, WebAttack SQL injection) are represented by a very limited number of
instances. This is known to be a challenge for supervised learning. The proposal
to create dataset for MLP training and testing consists in choosing randomly
50% of each attacks for the training set, 25% for the cross-validation set and
25% for the test set, ensuring that each instance is used only once. Then each
set is completed by adding randomly selected instances of normal traffic. This
results in a dataset that is balanced in term of normal traffic versus attacks but
still imbalanced in term of attack types. The exact composition of the training,
cross-validation and test set is provided in Table 3.

Table 3. Dataset split.

Traffic Training set Cross-validation set Test set

BENIGN 278,274 139,135 139,135

Bot 978 489 489

DDoS 64,012 32,006 32,006

DoS GoldenEye 5,146 2,573 2,573

DoS Hulk 115,062 57,531 57,531

DoS Slowhttptest 2,749 1,374 1,374

DoS Slowloris 2,898 1,449 1,449

FTP-PATATOR 3,967 1,983 1,983

Heartbleed 5 2 2

Infiltration 18 9 9

PortScan 79,402 39,701 39,701

SSH-PATATOR 2,948 1,474 1,474

WebAttack BruteForce 753 376 376

WebAttack SQL Injection 10 5 5

WebAttack XSS 326 163 163

Total 556,548 278,270 278,270

Feature Selection. Feature selection is one of the fundamental concepts of
machine learning that greatly influences the model performance. Irrelevant or
partially relevant features can have a negative impact and lead to a decrease in
accuracy. An analysis of the dataset revealed 8 features that are not informative
as their value is constant whatever the traffic types. Consequently, features ‘Bwd
PSH Flags’, ‘Bwd URG Flags’, ‘Fwd Avg Bytes/Bulk’, ‘Fwd Avg Packets/Bulk’,
‘Fwd Avg Bulk Rate’, ‘Bwd Avg Bytes/Bulk’, ‘Bwd Avg Packets/Bulk’, ‘Bwd
Avg Bulk Rate’ have been dropped. As we don’t want the model to learn when
attack occurs, the ‘Timestamp’ feature cannot be considered as informative.
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Each instance is characterized by its source and destination port and IP
address, its protocol and a flow identifier containing the same information. As
‘FlowID’ feature is redundant with other features, it has been removed from the
dataset.

Our model will be trained with 2 feature sets in order to ease comparison
with previous works on the same dataset. Variant-1 contains 73 characteristics:
all features except those listed above. In variant-2, source/destination IP address
and source port have be dropped, resulting in 70 features.

Standardization. Data pre-processing is essential to prepare the dataset for
an efficient training. In particular, the neural network can better learn when
all features are scaled within the same range. This is especially useful when
the inputs are on very different scales. Several normalization techniques exist.
In our implementation, Z-score normalization (also called standardization) has
been selected as it presents better results than other techniques on the selected
dataset. For each feature Fj , the transformation of each value xi is given by
Eq. 1 where μ(Fj) and σ(Fj) are respectively the mean and standard deviation
values of feature Fj .

x
(Fj)
i =

x
(Fj)
i − μ(Fj)

σ(Fj)
(1)

3.3 Model Creation

Model Description. Multi-layer perceptron is a fully connected, feed-forward
neural network classifier. Figure 2 shows the architectural design of our model.
Inputs correspond to the normalized values of the selected features of the origi-
nal dataset. Both hidden layers contain 256 nodes. The classifier has 15 outputs
for the 14 types of attacks and the benign traffic. Dropout is used as regulariza-
tion technique for hidden layers to prevent over-adjustment on training data by
dropping units randomly in the MLP with a probability keep prob.

Neural network output h(3) is calculated by chaining outputs of the different
layers according to Eqs. 2, 3 and 4 in which x, W (i) and b(i) are respectively the
input vector containing selected features, the matrix of weights and the vector
of biases for layer i.

h(1) = g1

(
W (1)T .x + b(1)

)
(2)

h(2) = g1

(
W (2)T .h(1) + b(2)

)
(3)

h(3) = g2

(
W (3)T .h(2) + b(3)

)′
(4)

Activation functions g1 and g2 bring non linearity to neural network. As MLP
does not provide an intrinsic normalization of its outputs, scaled exponential
linear unit given in Eq. 5 is used as activation function for hidden layers with
values λ = 1.0507 and α = 1.6733 as defined in [8] to take advantage of self
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Fig. 2. MLP architectural design.

normalization. Output layer is a softmax activation function g2 as defined in
Eq. 6 so that each output can be interpreted as the probability of predicting a
given class. The predicted label ŷ is given by ŷ = argmaxh(3).

g1(z) = λ.

{
α.(ez − 1) for z < 0
z for z ≥ 0

(5)

g2 (z)j =
ezj∑N
k=1 ezk

for j ∈ [1; 15] (6)

Training. For model implementation and training, we have used python and
Tensorflow as deep learning framework. Training set is divided in mini-batch of
32 instances. MLP learns classification by tuning the weights w between neural
network nodes in order to reduce the cross-entropy loss function L(w) as defined
in Eq. 7 where y the ground truth label and ŷ the predicted class. L(w) is opti-
mized with Adam algorithm. Three parameters α, β1 and β2 described in [7]
allow to configure this optimizer.

L(w) = − [y. log (ŷ) + (1 − y) . log (1 − ŷ)] (7)

Two different models corresponding to the two variants described in Sect. 3.2
have been trained.
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3.4 Evaluation Metrics

Several key information can be extracted from a confusion matrix as depicted
in Table 4: True Positive (TP) is the number of attacks correctly predicted as
attacks, True Negative (TN) is the number of normal instances classified as
normal traffic while False Positive (FP) and False Negative (FN) are respectively
the number of normal instances classified as attacks and the number of attacks
predicted as normal traffic.

Table 4. Confusion matrix.

Predicted labels

Attacks Normal

Actual
labels

Attacks TP FN

Normal FP TN

Different metrics can be derived from the information contained in the con-
fusion matrix. As some existing papers use only a subset of metrics, we propose
to cover more metrics in order to enable comparison of our work with future
studies on the same dataset.

TNrate given in Eq. 8 is the percentage of traffic classified as benign over
the actual number of benign instances and FPrate in Eq. 9 is the percentage of
benign traffic classified as attacks.

TNrate =
TN

TN + FP
(8)

FPrate =
FP

TN + FP
(9)

Precision and Recall given in Eqs. 10 and 11 correspond respectively to the
percentage of attacks correctly detected over the number of instances predicted
as attacks and the percentage of attacks correctly detected over the total number
of actual attacks.

Precision =
TP

TP + FP
(10)

Recall =
TP

TP + FN
(11)

Accuracy measures the proportion of total number of correct classifications.

Accuracy =
TP + TN

TP + TN + FP + FN
(12)

f1score is the harmonic mean of Precision and Recall

f1score =
2 × precision × recall

precision + recall
(13)
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Matthews Correlation Coefficient (MCC) is an interesting measure taking
into account all elements of the confusion matrix in a correct way for imbalanced
dataset as opposed to the accuracy which may report high value even when the
whole minority class is wrongly classified. As intrusion detection datasets are
intrinsically imbalanced, this is an key metric for such application. MCC provides
a value between −1 and +1. A perfect prediction corresponds to MCC = 1. At
the opposite, MCC = −1 denotes a full disagreement between predictions and
actual classes. A random prediction would result to MCC = 0.

MCC =
TP × TN + FP × FN√

(TP + FP ) × (TP + FN) × (TN + FP ) × (TN + FN)
(14)

4 Experimental Results

4.1 Performance Evaluation

After training a golden model, the test set has been used to measure the MLP
performance as a 15-class classifier. The resulting confusion matrices for the 2
variants are simplified in Tables 5 and 6 to show the estimated class in 3 columns:
benign, correct attack and other attacks. In multi-class classification, an attack
can be predicted as another attack. This denotes an issue if the correct class
is required. In intrusion detection, such a misclassification is acceptable as it is
still considered as an attack. Consequently, predictions of all attack types have
been merged in one single class to get a binary classifier to calculate metrics in
Table 7.

Table 5 shows that MLP performs well on all classes except ‘Infiltration’. This
specific issue is most likely due to the extremely low number of instances. The
neural network didn’t succeed in learning from the only 18 examples available
in the training set. A significant difference can be observed in Table 6. On the
one hand, 1244 normal traffic instances are classified as error, generating false
positive detection. On the other hand, more attack instances are classified as
normal traffic for almost all classes, meaning that the classifier failed to detect
some attacks. In particular, ‘infiltration’ and ‘WebAttack’ are not successfully
detected. Again, it corresponds to classes with low number of instances. It con-
firms the well-know fact that the amount of data is a key point for success in
machine learning.

The best results are obtained with variant-1 but we can guess the MLP learns
the IP address of the machine conducting the attack. By removing IP addresses
and source ports in variant-2, the model requires a longer training to reach good
performances without being as good as the previous one. This clearly show the
importance of these 3 features. Even if the accuracy is above 99%, the recall
falls from 99.99% to 99.34% and FPrate goes up from 0.08% to 0.62%. Our
classifier provides an MCC value close to 1 and therefore indicate a pretty good
performance.

All results can be fully reproduced by using the source code available on
Github (https://github.com/ArnaudRosay/mlp4nids) to generate the training,

https://github.com/ArnaudRosay/mlp4nids
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cross-validation and test sets, build the golden model and obtain the values of
all the metrics described in this document.

Table 5. Simplified confusion matrix for variant-1.

Actual classes Predictions

BENIGN Correct attack Other attack

BENIGN 139,017 – 118

Bot 5 472 12

DDoS 1 31,994 11

DoS GoldenEye 0 2,544 29

DoS Hulk 0 57,529 2

DoS Slowhttptest 0 1,345 29

DoS Slowloris 0 1,434 15

FTP-PATATOR 0 1,969 14

Heartbleed 0 2 0

Infiltration 4 3 2

PortScan 0 39,675 26

SSH-PATATOR 0 1,459 15

WebAttack BruteForce 0 349 27

WebAttack SQL Injection 0 0 5

WebAttack XSS 0 0 163

Table 6. Simplified confusion matrix for variant-2.

Actual classes Predictions

BENIGN Correct attack Other attack

BENIGN 138,277 – 858

Bot 193 296 0

DDoS 30 31,970 6

DoS GoldenEye 33 2,537 3

DoS Hulk 45 57,486 0

DoS Slowhttptest 18 1,348 8

DoS Slowloris 7 1,420 22

FTP-PATATOR 12 1,967 4

Heartbleed 0 2 0

Infiltration 7 0 2

PortScan 43 39,639 19

SSH-PATATOR 18 1,455 1

WebAttack BruteForce 340 0 36

WebAttack SQL Injection 2 0 3

WebAttack XSS 162 0 1
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Table 7. Performance results.

Metrics Variant-1 (73 feat.) Variant-2 (70 feat.)

Training Test Training Test

TP 278,256 139,125 276,444 138,225

FP 257 118 1,630 858

FN 18 10 1,830 910

TN 278,017 139,017 276,644 138,277

TNrate (%) 99.91 99.92 99.41 99.34

FPrate (%) 0.09 0.08 0.59 0.62

Recall (%) 99.99 99.99 99.34 99.35

Precision (%) 99.91 99.92 99.42 99.38

Accuracy (%) 99.95 99.95 99.38 99.36

F1-score (%) 99.95 99.95 99.38 99.36

MCC 0.9990 0.9991 0.9876 0.9873

4.2 Comparison with Prior Results

Table 8 compares results with reference papers. As different metrics are used,
it is not possible to fill in all cells of the table. In addition to neural network
solutions, traditional machine learning algorithms are also considered for this
comparison.

Our model outperforms all the results reported by Sharafaldin et al, both for
neural network and traditional machine learning techniques. Jiang et al. achieves
a slightly worse performances than our solution. It should be noted that the type
of attacks has been limited to application layer DoS (slowloris, slowhttptest, hulk,
DDos GoldenEye) and with a very limited amount of instances (4171). Therefore
it is difficult to make an exact comparison.

A two-stage approach using decision trees proposed by Ullah and Mahmoud
[18] reports metrics with an average of 100%, a closer look at the details reveals
that 4 attack types are not perfectly detected by the decision trees. These are
the exact same classes for which our classifier encounter some difficulties. The
lack of significant digits and averaging method in [18] do not allow a fine-grain
analysis but the overall comparison shows that our MLP-based solution reaches
the same performance level as traditional machine learning algorithms.

The neural network based solution of Jiang et al. [6] achieved results similar
to our proposed method but only cover DoS attacks. As shown in Tables 5 and
6, those attacks are not the most difficult to detect. We can expect a drop of
their overall performance when all other attacks are taken into account.

Ustebay et al. [19] also used multi-layer perceptron but did not achieved
high performance. Nevertheless, their results cannot be directly compared with
[6] and [18] as the latter use IP addresses of the machines conducting attacks. In
a real life scenario, addresses of hackers are not known and cannot be used for
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Table 8. Performance comparison.

Paper Algorithm Accuracy (%) Precision (%) Recall (%) FPrate (%) MCC

Our work - variant-1 MLP (45 epochs) 99.95 99.92 99.99 0.08 0.9991

Our work - variant-2 MLP (715 epochs) 99.36 99.38 99.35 0.62 0.9873

Sharafaldin et al. [14] MLP – 77 83 – –

Quadratic

Discriminant

Analysis

– 97 88 – –

K-Nearest

Neighbors

– 96 96 – –

Jiang et al. [6] MLP 99.23 99.87 99.60 0.77 –

Ullah and Mahmoud [18] Decision Tree +

Random Forest

– 100 100 – –

Ustebay et al. [19] MLP 91 – – – –

intrusion detection. It should be noted that once source IP address is removed,
RFE reports the source port as the most important feature. More generally,
this proves that usage of source/destination ports and addresses features may
improve intrusion detection on CICIDS2017 but may not be realistic for appli-
cation to a real network.

5 Conclusion

This paper proposed an approach based on multi-layer perceptron for network
intrusion detection system covering analysis of the dataset, definition of the MLP
and its training. As in any machine learning project, cleaning the dataset and
selecting features is an important step before optimization of a neural network.
The experiment has shown that MLP is a viable solution reaching top per-
formance. Our approach provides better results than previous implementations
with neural networks. It should be noted that IP addresses and destination port
are important features, helping to detect intrusion detection. Nevertheless this is
not suitable for real world implementation. Without these features, our approach
reaches high performance at the cost of a longer training phase. Deep learning
techniques are computationally expensive. We only focused on performance but
in a constrained system it may be a drawback pushing to use traditional machine
learning algorithms. This may evolve with the increase of hardware accelerators
for deep learning in many electronic devices.

In future work, neural network in supervised learning may be improved by
data augmentation techniques. Number of instances in classes that are not well
detected is clearly a point to address to obtain better performances. Beyond
this, supervised learning does not allow detection of attacks unseen during the
training phase. Unsupervised learning methods may be considered to overcome
this limitation.
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Abstract. Although Random Forests (RFs) are an effective and scal-
able ensemble machine learning approach, they are highly dependent on
the discriminative ability of the available individual features. Since most
data mining problems occur in the context of pre-existing data, there is
little room to choose the original input features. Individual RF decision
trees follow a greedy algorithm that iteratively selects the feature with
the highest potential for achieving subsample purity. Common heuristics
for ranking this potential include the gini-index and information gain
metrics. This study seeks to improve the effectiveness of RFs through
an adapted gini-index splitting function and a feature engineering tech-
nique. Using a structured framework for comparative evaluation of RFs,
the study demonstrates that the effectiveness of the proposed methods
is comparable with conventional gini-index based RFs. Improvements in
the minimum accuracy recorded over some UCI data sets, demonstrate
the potential for a hybrid set of splitting functions.

Keywords: Random Forest · Gini-index · Feature engineering ·
Feature coherence · Circularity

1 Introduction

Legacy supervised machine learning algorithms that are commonly used in pat-
tern recognition tasks include Bayesian Networks, Neural Networks, Support
Vector Machines, k-Nearest Neighbours and Decision Trees (DTs) [16]. Although
sustained research into each of these individual classification and regression algo-
rithms has led to improved effectiveness, it is widely accepted that ensemble
methods generally out perform them [26]. Ensemble methods such as bagging,
boosting and Random Forests (RFs) combine the individual outputs of several
base learners into a more reliable aggregate committee decision [26]. RFs are
ensembles of DTs generated from a bootstrapped training data set [6]; they
have gained cross-disciplinary popularity due to their high accuracy rates and
simple interpretation [32].
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The history of RFs can be traced back to the first breed of DTs: CART [7],
ID3 and C4.5 [21], which use a common recursive divide-and-conquer approach
to partition the training data set until class homogeneity is achieved. These
DT types differ in terms of splitting criteria, types of attributes allowed, type
of output provided (regression and/or classification), support for missing values,
tree pruning strategy and ability to detect outliers [25]. Tree pruning is normally
required to reduce the problem of overfitting the classification model on the given
training instances. Although the concept of bagging was one of the first tech-
niques to combine outputs from several random DTs, the resultant trees were
found to be highly correlated [26]. RFs seek to improve the effectiveness of bag-
ging by reducing the resemblance between trees and thus, simultaneously reduce
variance and bias errors. Bias error reflects how inaccurate, learned models are
at capturing the significant trends in the training data while variance error cap-
tures how monotonous the models are at labeling training instances [18, p. 311].
Simultaneously low, bias and variance errors, are desirable in ensemble classifiers
as they indicate that individual base classifiers are highly accurate but diverse1.

An alternative DT-based ensemble technique is boosting, which aims to
improve weak learning algorithms through a committee method that gives more
focus to incorrectly classified instances [14,26]. This is done by specifically assign-
ing weights to: (1) individual classifiers in the committee based on training set
error and (2) misclassified instances in the training set in order to increase their
influence in the next iteration. Boosting has however been found to be less pop-
ular than RFs and bagging due to its lack of consistency and low convergence
likelihood [26, p. 150]. Furthermore, RFs offer greater opportunity for parallel
execution than boosting which has sequential iterations that are dependent on
their predecessors.

In DT induction, the criteria used to decide which attribute is the most suit-
able for partitioning the data set portion at each node, is crucial for achieving
high classification accuracy. A study by Raileanu et al. [22] sought to theoret-
ically analyze the two most commonly used splitting criteria/metrics: the gini-
index and information gain functions in order to solve the general problem of
selecting the most suitable criteria for a given data set. Their findings revealed
that the frequency of disagreement between the two criteria is only 2%, thus
confirming previously published empirical results which assert that it is impos-
sible to decide on which of the two tests is preferable [22]. This however does
not mean, the two criteria can not be optimized individually, neither should it
preclude the search for other criteria that may be more effective. Although RFs
are an elegant and effective classification technique, there is room for achieving
locally optimal attributes [23] and a need for capturing other attribute relations
besides conditional interactions [32].

Feature engineering/construction refers to the common practice of creating
new features from an existing feature set in a bid to assist classification algo-
rithms to better distinguish between similar previously encountered instances
[15]. It is a part of the broader topic of data representation, which seeks to

1 The few misclassifications that individual classifiers make, are in different contexts.
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unravel more informative perspectives of a data set by mainly using dimension-
ality reduction methods such as Linear Discriminant Analysis (LDA) and Prin-
cipal Component analysis (PCA) [2]. In practise, the new augmented feature set
from feature engineering may be used as is or subsequently complemented by
a feature selection stage which identifies the most suitable subset of features.
Typical feature engineering strategies include computations such as rule based
conjunctions, rational differences and polynomial relations based on existing fea-
tures [15].

This study proposes an optimized gini-index metric and a shape based feature
engineering technique as a means towards improving the effectiveness of RFs.
A steepend gini-index function is used to replace the conventional gini-index
function in order to induce a preferential bias towards probabilities that suggest
purity. A novel feature coherence model, based on the shape of a synthetic radial
feature contour, is proposed for injecting new attributes to reflect general feature
correlation within an instance. The specific question that the study seeks to
answer is whether this steepened gini-index splitting function and the proposed
shape feature injection can improve the effectiveness of RFs.

The remainder of this paper is structured as follows. Section 2 outlines the
RF algorithm in detail and reports on previous work centred on its optimiza-
tion. Section 3 explains the proposed new methods while Sect. 4 describes the
framework used for experimentation. The results of the study are presented in
Sect. 5 then Sect. 6 concludes the study and looks at proposed future work.

2 Random Forests

Although RFs also use sampling of training instances with replacement (boot-
strapped sampling) like bagging, they introduce additional stochastic behaviour
by choosing a random set of predictors (attributes or features) without replace-
ment at each DT node. The conventional RF algorithm (commonly referred to
as Forest-RI) can be formally described by Algorithm 1; alternative descriptions
can be found in [6,14,26].

The maximum permissible purity of DT nodes, along with the parameters ns
and d, can be used as constraints for limiting the size and sensitivity of each DT
in the RF. The purity of a node is the highest proportion of any class present in
its sample. A choice can be made between the constraints imposed by parameters
ns and d, since either constraint can effectively limit tree depth, albeit though
different criteria. The most commonly used values in literature for the parameter
m are 1, sqrt(M) and log2(M) + 1 [3]. The sample size, n is normally set to N ,
the size of the training set [6], to yield a sampling ratio of 1. In each of the Ntree
iterations, a DT is induced based on the given inputs; thus creating a forest of
DTs, {Tt, t = 1, . . . , Ntree}.

Each DT, Tt can be considered as a classifier, {h(x, θt)} where θt is a set
of independent but identically distributed stochastic vectors and x is a new
instance to be classified [6]. θt is determined during induction by the set of
random samples and features chosen with and without replacement respectively.
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Algorithm 1. The Forest-RI Algorithm

Input: ST =

⎧
⎪⎨

⎪⎩
(xi, yi)

∣
∣
∣
∣
∣
∣
∣

i = 1, . . . , N,

xi = {xij | j = 1, . . . ,M},
yi ∈ {1, . . . , C}

⎫
⎪⎬

⎪⎭
, where ST is the training set.

m ≤ M, where m is the number of features to select.
n <= N, where n is the sample size.
ns <= n, where ns is the minimum node size.
d ∈ N, where d is the maximum tree depth.
Ntree ∈ N, where Ntree is the number of trees in the forest.

Output: A forest {Tt, t = 1, . . . , Ntree} of DT classifiers
for t = 1, . . . , Ntree do

create a bootstrapped sample, St by randomly selecting (with replacement) n
elements from ST such that |St| = n.

create a root node to a DT, Tt based on St.
add the root node to the set, Lnt of non-terminal leaf nodes of Tt.
while Lnt is not empty do

let lnt.depth and lnt.sample represent the depth of lnt in Tt and the sam-
ple associated with lnt respectively, where lnt is a non-terminal leaf node in Lnt.
Calculate lnt.depth, |lnt.sample| and purity(lnt.sample).

if |lnt.sample| < ns or purity(lnt.sample) == 1 or lnt.depth > d then
calculate lnt.class as the majority class of lnt.sample.
remove lnt from Lnt.

else
choose a random feature set {fj , 1 ≤ j ≤ M} of size m, without replace-

ment.
find the best feature, fb ∈ {fj} for splitting lnt.sample.
split lnt into lnta and lntb using fb.
remove lnt from Lnt.
add lnta and lntb to Lnt.

end if
end while

end for

An individual DT classifier is considered to have perfectly mastered its training
set if h(xi, θt) = yi ∀ (xi, yi) ∈ ST . The algorithm terminates when Lnt is empty;
at this point all leaf nodes in a given DT are labelled with one of the C possible
classifications based on the majority class within their node’s sample. For a
given test instance, a RF solicits predictions from each of its Ntree DTs and the
ensemble prediction is usually determined by a majority vote.

Although the gini-index was used in the Forest-RI algorithm to determine
the attribute value yielding the best split, it has since been found to be weak at
identifying strong conditional associations among features [17]. A study by Rob-
nik and Sikonja [23] sought to improve the effectiveness of RFs by using several
attribute evaluation measures instead of just one, then aggregating DT votes
using the margin achieved on similar out-of-bag instances as a weight. The eval-
uation heuristics used were: gini-index, gain ratio, Minimum Description Length



RFs with a Steepend GI Split Function and Feature Coherence Injection 259

(MDL), ReliefF or Myopic ReliefF; with each heuristic being applied to its fifth
of the trees in a RF. A slight increase in effectiveness is observed when compar-
ing the use of five heuristics against the Gini index alone. This improvement is
especially visible on data sets with strong feature dependencies and is attributed
to the use of the ReliefF algorithm which manages to decrease DT correlation
while retaining prediction strength. A more significant improvement in RF clas-
sification accuracy is achieved across several data sets when adopting the new
voting strategy.

The pioneering study on RFs by Breiman [6] also proposed a variation in the
induction of RFs by using random linear combinations of inputs, a procedure
known as Forest-RC. At any given node, L existing numerical features are ran-
domly chosen and added together using random weights in the range [−1,1] to
form a new feature. F such features are generated and the best splitting condi-
tion is chosen from the range of all possible feature values. Experiments on 19
data sets using L = 3 and F = 2 or 8 show that although Forest-RC is generally
more comparable to Adaboost than Forest-RI, it is not necessarily superior.

Due to the multiple steps in the Forest-RI algorithm, there are several options
for improving performance and effectiveness. Improvement in performance can be
facilitated through an implementation that exploits parallelization opportunities
presented by modern multi-core processors and GPUs like the FastRF, LibRF
and the CUDARF algorithms [12]. Improvement in RF effectiveness is generally
facilitated by creating a committee of diverse but highly accurate tree based
classifiers; a comprehensive survey of such RF variants can be found in [11,17].

3 Proposed Methods

This study aims to improve the effectiveness of RFs by using an alternative split-
ting function and a feature construction technique that captures inter-feature
relationships. The foundations for these two concepts are elaborated below.

3.1 Split Functions

In the original Forest-RI algorithm, the gini-index [7] is used to obtain the best
splitting criteria from the random subset of features that represent the instances
internal to each DT node. Since the gini-index is a measure of impurity, it can
be used to estimate how well a given splitting condition separates the instances
within a node into their different classes. The gini-index (also known as gini
impurity2) was proposed by Breiman et al. [8] as a splitting criteria for DTs
known as Classification and Regression Trees (CART). Although 4 other splitting
criteria (symmetric Gini, twoing, ordered twoing and class probability) were also
proposed, the Gini index generally performs best. Other impurity measures that
can be used as alternatives to the gini-index include entropy and classification

2 Higher scores are achieved on impure data sets, so it can be seen as measuring
impurity.
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error [30]. Because the CART algorithm is generally used to build binary DTs,
it is more applicable to binary, numerical and ordinal attributes as their values
can be partitioned into 2 groups. For numerical attributes, all possible values
of each feature are evaluated as possible thresholds for splitting a node and the
value that yields the highest gini-index is chosen.

The Gini index of a DT node can be formulated as follows [11]:

Gini(S) = 1 −
C∑

i=1

p(i)2, (1)

which is equivalent to:

Gini(S) =
C∑

i=1

p(i) ∗ (1 − p(i)), (2)

where S is the sample of instances in a node and C is the number of class labels
in the data set. If all the classes in the data set are enumerated from 1 to C, then
p(i) is the probability of the ith class in a particular node. Likewise the entropy
and classification error metrics can be formulated as in Eqs. 3 and 4 respectively
[24,30].

E(S) = −
N∑

i=1

p(i) ∗ log(pi). (3)

CE(S) = 1 − max
1≤i≤C

p(i). (4)

When considering the viability of an attribute splitting condition or value,
the chosen impurity metric is calculated for each potential child node resulting
from such a split and normalized using the probability of the child node. These
normalized total impurity values are then summed up to represent the combined
impurity for the splitting condition in question. The splitting condition yield-
ing the lowest normalized total impurity is potentially the best condition as it
corresponds to the highest purity in the given context. The general approach in
literature is to use the impurity gained at a particular child node relative to its
parent as opposed to the absolute impurity of the child node [23,31]. The generic
formulation of this approach for all impurity based measures in the context of
binary DTs is as follows [23]:

Δimpurity(av) = impurity(S0) −
2∑

j=1

p(Sj |av) ∗ impurity(Sj |av), (5)

where a is the attribute to split on using av as the specific condition or value, S0

is the parent node and Sj is one of the two child nodes. Δimpurity is normally
referred to as impurity gain; when applied to the gini-index it is referred to
as gini gain. Despite the availability of other gain splitting functions such as
Information Gain and Gain Ratio, the Gini Gain was chosen by Breiman for
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use in RFs because of its simplicity and effectiveness [23]. Information Gain
and Gain Ratio are both based on entropy, with the latter being a normalized
derivation of the former. The complexity of Information Gain and Gain Ratio
arises mainly from their logarithmic computations.

The approach adopted towards formulating alternative impurity measures
was to visually analyse the behaviour of existing metrics (gini-index, entropy
and class error) in the context of different probabilities. The assumption made
was that the gini-index and entropy were superior to class error [8,30], with
the gini-index being preferred primarily because of its computational simplicity
[22]. The task was then to identify or formulate alternative functions that had
a similar shape to the gini-index and entropy functions for input in the range
[0,1]. Two proposals were made: the Gaussian and Steepened Gini Index (SGI)
functions, with the latter proving more effective than the former.

Gaussian Impurity Function. The Gaussian function was proposed due to
its graph which is a symmetric bell curve shape that is similar to the graph of
the gini-index. It is widely used in statistics to describe normal distributions and
can be formulated as follows [13]:

G(x) = a ∗ e−(
(x−b)2

2c2
), (6)

where a is the amplitude, b is the position of the peak within the bell shape and
c is the standard deviation which controls the spread of the bell shape. Since
the input of an impurity measure is a probability, this Gaussian distribution is
over input values between 0 and 1. In this study, the parameter b was set to 0.5
since probabilities at the tails of the distribution are generally indicative of lower
impurity while those in the middle are more likely to correspond with diversity.
In a statistical normal distribution, about 99.7% of the data values lie within
three standard deviation [9], hence the standard deviation is one third of the
distance from the mean to either of the tail ends. We thus set parameter c to
0.1667 (which is 0.5

3 ). After considering a few options (0.125, 0.25, 0.5, and 1),
the parameter a was set to 0.5 as this value seemed to yield higher accuracy
rates on the sonar UCI data set3 [19]. The resulting Gaussian impurity function,
shown in Eq. 7, simply replaces class probabilities with corresponding Gaussian
distribution outputs.

Gaussian(S) =
C∑

i=1

G(i). (7)

Figure 1 shows the behaviour of the Gini index, entropy, classification error,
SGI and the proposed Gaussian metric for probabilities encountered in two-class
nodes of a dichotomous DT4. It can be observed that all metrics are:
3 Since this data set was used for parameter tuning, final evaluation is mainly based

on other data sets to ensure an unbiased experimental context.
4 Each node has at most two child nodes and each node has at most two classes. The

permutations of nodes with more than two classes were not explored due to the
computational overhead of computing them.
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1. symmetric, showing that a p(i) vs 1 − p(i) node class split has the same
impurity as its inverse, 1 − p(i) vs p(i);

2. maximized at probability 0.5 when classes are equally represented within a
node and,

3. minimized for pure nodes which are represented at the tail ends where all
metrics give an impurity value of 0 except the Gaussian metric which slightly
deviates from the trend with a value of 0.011.

Fig. 1. Impurity functions for two-class node distributions

The Gaussian metric was anticipated to emphasize the difference between the
impurity of probabilities in the middle of the distribution and that of those
towards the tails; this was expected to favour splits where one of the classes
is clearly dominant. Although preliminary experiments on the sonar data set
showed the Gaussian metric to be comparable with the gini-index, the former was
consistently lower than the latter. Hence, the Gaussian metric was not explored
in further experiments and an alternative was sort.

Steepend Gini Index. Our interpretation of the inferiority of the Gaussian
metric to the gini-index is based on the fact that split scores are determined
using the relative as opposed to absolute impurity of a node. This highlights the
importance of comparing the metrics based on gradient in order to model the
concept of relative impurity. Since nodes are expected to gain in purity as we
move down a DT, it is proposed that a desirable metric would be one that has a
steeper negative impurity gradient towards the leaves of the DT. At this stage,
a split that leads to greater node purity should be favoured since this node is
unlikely to undergo further purification.
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This reasoning led us to explore the possibility of modifying the gini-index
function such that it yields a steeper gradient towards the two ends of its sym-
metric shape. After a few attempts at adapting the gini-index function in order
to achieve this behaviour, the following function was adopted:

SGI(S) =
C∑

i=1

p(i) ∗ (1 − p(i)) +
√

p(i) ∗ (1 − p(i))
2

. (8)

Fig. 2. Gradual change in purity for two-class node splits

Figure 1 shows that the SGI metric is indeed a steepend version of the gini-
index. Figure 2 simulates the situation where the dorminant class within a node
consistently achieves an increase of 10% in purity as we move down a DT. The
root node is assumed to have an equal proportion of two classes while the leaf
nodes are pure. From this simulation it is evident that although the Gaussian
metric has a similar shape to other metrics, the same can not be said for its
gradient function. The gini-index is observed to maintain a consistant gradient
while the SGI tries to initially mimick this consistancy but then steepens towards
the end. Although entropy appears to have similar behaviour to SGI, it has an
initially less consistant gradiant change than SGI and is less steeper at the final
node transformation.

3.2 Shape Based Feature Engineering

It was initially envisaged that the adoption of the SGI metric would be enough to
yield a significant improvement in the effectiveness of RFs; previous literature
however seems to suggest that alternative impurity measures alone may only
provide minor improvement [22]. Robnik [23] observes that although the gini-
index offers good performance, it evaluates attributes separately and does not
take attribute inter-relationships into account. The ReliefF measure was then
proposed as a solution for alleviating misclassifications due to high feature inter-
actions. Our work explores feature engineering as an alternative approach for
capturing important information from multiple features simultaneously.
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Feature engineering/construction entails transforming a given input feature
set in order to give a more adequate representation of instances during the train-
ing and testing of machine learning models [27]. In some cases, the generated set
of new features is deliberately smaller than the original feature set for improved
computational efficiency and in order to remove irrelevant features. Examples
of such approaches include clustering, LDA and PCA; which are also used for
data compression [27]. In other cases, the size of the set of generated features
is not constrained and may even be bigger than that of the original feature set.
Examples of such approaches in the context of DTs include the FRINGE [20] and
Forest-RC [6] algorithms which used Boolean operators and linear combinations
respectively to generate a new set of composite features.

Instead of constructing new features that are each based on a selected subset
of the original input feature set, this study proposes the formulation of new fea-
tures that capture the level of coherence between all the feature values in a given
instance. The underlying assumption is that if such properties can be empirically
quantified, they could be used as extra features for improved class discrimina-
tion. This proposed formulation is inspired by the statistical radar/spider chart,
which graphically displays multivariate data using a two-dimensional chart of
multiple numerical variables represented on a radial axes with a common start-
ing line [29]. Normalized input attributes are allocated fixed orientations from
the centre using the order provided by the data set and the contour produced
by a given instance is used to characterize its level of feature coherence. These
contours can then be analyzed using existing shape descriptors; at this stage
only the circularity property has been used as the viability of this concept is
still being explored. A circularity score is normally deduced by measuring the
perimeter of a closed contour as well as the area of the region it encloses, then
computing [5]

perimeter2

4 ∗ π ∗ area
. (9)

The fact that the axes of radar charts are numerical, restricts the application
of this method to data sets with only numerical feature values. A hypothetical
radar chart is shown in Fig. 3 as an illustration of how normalized feature values
can be used to plot radial graphs. The main conclusion that can be drawn from
the plots is that spherical contours should be more indicative of greater feature
coherence than jagged shapes; it is also expected that instances from the same
class should have similarly shaped radial graphs. In cases where instance feature
values are in the range [0,1), the generated shapes were observed to be generally
the same. This effectively meant that there was no improvement in instance
differentiation after adding circularity as an extra feature, especially for data
sets with few attributes. This problem was alleviated by scaling the normalized
values to the range [0,10). It was envisage that there would be a need for the
normalization of feature values so as to reduce the bias of circularity towards any
one feature. Indeed, experiments on the sonar data set showed an improvement
in classification effectiveness when the injected circularity score was calculated
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from normalized feature values. The original feature values were however, left
un-normalized to avoid distorting the data sets.

Fig. 3. Hypothetical feature coherence example. Instance1 has greater circularity than
Instance2

4 Experimental Protocol

The main of objective of this study is to improve the effectiveness of RFs through
the use of a SGI feature evaluation heuristic and a shape-based feature set char-
acterization method. In order to ascertain the effectiveness of these two tech-
niques on RFs, four experiments are conducted in line with the experimental
design shown in Fig. 4. The remainder of this section ellaborates on the sub-
components of this design.

Fig. 4. Experimental design
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4.1 Dataset Preparation

The effectiveness of the methods proposed in this study is tested using 105 data
sets from the UCI repository [19]. These data sets are drawn from Robnik [23]
and Breiman’s [6] studies on RFs; we exclude data sets with nominal attributes
and missing values as these properties are beyond the scope of the present study.
An additional constraint is enforced to exclude data sets with more than 3000
instances, for computational reasons. The characteristics of the chosen data sets
are summarized in Table 1, which reveals the diversity of the problems repre-
sented, in terms of data set size (N), number of features (M) and number of
classes (C).

Table 1. UCI datasets

Dataset N M C Dataset N M C

bupa 345 6 2 iris 150 4 3

ecoli 336 7 8 segmentation 2310 19 7

german-numeric 1000 24 2 sonar 208 60 2

glass 214 9 7 vehicle 846 18 4

ionosphere 351 34 2 yeast 1484 8 10

Each of the chosen data sets is preprocessed by converting all feature values
to floating points and class labels to integers, then saved in a consistant format.
The output of the data preparation phase is two data set files: one with the
original feature set only and another with the circularity feature included.

4.2 Static Random List Generation

Given the highly stochastic nature of RFs, it is imperative to ensure a significant
level of contextual consistancy in their induction and evaluation in order to
minimize the effect of uncertainty on the outcome of comparative analyses. A
deliberate effort is made to subject each RF variant taking part in a comparative
experiment, to the same training and testing instances. This is accomplished by
generating static/fixed lists of cross validation folds and training samples, before
any tree induction or experimentation takes place.

The lists that are generated only contain indexes of instances in the data
set, for the sake of efficiency. One random number generator seed is used to pro-
duce an entire collection of static random lists. This collection is subsequently
used to ensure RF training and testing consistancy in four evaluation experi-
ments. The random number generator is reset at the start of each experiment to
enable flexible reenactment of all 4 experiments. The same results can be repro-
duced repeatedly regardless of the order in which the individual experiments are
conducted.
5 The sonar data set is used for parameter tuning.
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Although the adopted experimental design (including the RF algorithm),
offers several opportunities for parallelization on multi-core processors, this gen-
erally comes at the expense of a deterministic execution cycle since parallel loop
iterations are typically non-deterministic and may differ from run to run [4,
p. 670]. In our case, we require loop iterations to follow a specific order of exe-
cution in order to ensure that experimental results can be reproduced verbatim.
As a result, no parallelization is implemented in this study. This unfortunately
forces us to cap the size of data sets to be investigated, in order to avoid com-
putational overhead.

4.3 Random Forest Analysis

In line with the methodology adopted by Robnik [23] we execute all experiments
under the following settings: (1) The recommended RF parameter values are
used: the number of trees, Ntrees = 100; the number of attributes randomly
chosen at each DT node, m = sqrt(M)6; and the cut-off node size, ns = 5. (2) All
data sets are evaluated using 10-fold cross-validation. The following additional
default parameter values are used: a sampling ratio of 1 and a maximum tree
depth, d equal to n.

The four experiments conducted, test the effectiveness of the standard Forest-
RI algorithm using either the gini or SCI impurity measure, with and without
shape feature injection. We refer to each of these four modifications to the Forest-
RI algorithm as RF variants. The use of 10-fold cross validation means that
each experiment trains and tests 10 RFs. The accuracy of a RF is calculated as
the percentage of test set instances that it correctly classifies. To capture the
overall effectiveness of a particular RF approach, we record statistics such as the
minimum, maximum, mean and median from the 10 fold accuracies. The code
to facilitate all these experiments was implemented in C++, with the opencv
library being used for shape feature calculation.

The output of the four experiments is used to compare the effectiveness of
the Forest-RI algorithm in the following five contexts: (1) using gini impurity
with and without shape feature injection, (2) using SGI impurity with and with-
out shape feature injection, (3) using gini impurity vs SGI, both without shape
feature injection, (4) using gini impurity vs SGI, both with shape feature injec-
tion and (5) using gini impurity without shape feature injection vs SGI with
shape feature injection. We consider this comparison to be objective, since all
Forest-RI variants are trained and tested on precisely the same instances.

Since preliminary experiments revealed that it was possible for results to dif-
fer on different runs of cross validation, it seemed appropriate to adopt repeated
cross validation [33]. For each data set, the cross validations of four experiments
are repeated 30 times [28,34], with a different seed in each case. To avoid ambi-
guity, we propose some terminology for referring to the statistics recorded in
this study. For each complete run of 10-fold cross validation using one of the
four experiments, we record the following fold accuracies (FAs): minimum-FA,

6 M is the number of attributes used to represent each instance in the data set.
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maximum-FA, mean-FA and median-FA. After the 30 cross validation repeats,
we calculate the cross validation accuracies (CVAs) for each of the four experi-
ments. Specifically, minimum-CVA, maximum-CVA and mean-CVA are derived
using the minimum minimum-FA, maximum maximum-FA and mean mean-FA
respectively.

We ultimately seek to establish whether any comparative difference in effec-
tiveness can be attributed to the proposed techniques under investigation or the
stochastic properties of RFs and training vs. testing set splits. The Wilcoxon
signed-ranks test [10,23] is used to evaluate the statistical significance of such
a difference in RF effectiveness. For each of the five effectiveness comparisons
conducted, the null hypothesis assumes there is no difference in the performance
of the two RF approaches in question.

5 Results

Table 2 shows the p-values associated with the Wilcoxon signed-ranks test com-
paring pairs of median-FAs from 30 repeated experiments. Each pair either com-
pares RFs based on splitting function or inclusion of shape feature injection; the
training and testing sets used in both cases are however identical. We thus have
two groups of 30 corresponding median-FAs and the p-values indicate the overall
probability that the difference in corresponding median-FAs is due to chance.
A lower p-value is indicative of a more significant difference in median-FAs of
the two groups of RFs. We used this test to demonstrate whether the RF vari-
ants proposed in this study yield significant differences in effectiveness. Out of
the 45 tests done, 5 and 13 tests were significant at an α level of 0.1 and 0.05
respectively. Although this means that in the majority of tests, the RF variants
under comparison showed insignificant differences in effectiveness; we note that
the +gini vs +sgi and -gini vs +sgi tests each recorded significant differences in
5 of the 9 data sets used. For the bupa data set all tests yielded insignificant
differences while the yeast data set attained significant differences in all but the
-sgi vs +sgi test.

Table 2. Wilcoxon signed-ranks test p-values from comparing 30 repeated experiment
pairs. p-values are classified as either significant at 0.05 level✔, significant at 0.1 level✔,
or non-significant✘. +gini and -gini represent RFs using the gini-index with and without
shape feature injection respectively. Likewise with steepend gini-index (sgi).

RF pair Dataset

bupa ecoli german-numeric glass ionosphere iris segmentation vehicle yeast

-gini vs +gini 0.866✘ 0.178✘ 0.137✘ 0.118✘ 0.091✔ 0.208✘ 0.05✔ 0.232✘ <0.01✔

-sgi vs +sgi 0.15✘ 0.125✘ <0.01✔ 0.021✔ 0.851✘ 0.08✔ 0.268✘ 0.551✘ 0.838✘

-gini vs -sgi 0.461✘ 0.144✘ 0.732✘ 0.187✘ 0.035✔ 0.779✘ 0.315✘ 0.316✘ <0.01✔

+gini vs +sgi 0.757✘ <0.01✔ 0.018✔ 0.407✘ 0.155✘ 0.333✘ 0.025✔ 0.078✔ <0.01✔

-gini vs +sgi 0.232✘ 0.011✔ <0.01✔ 0.275✘ 0.028✔ 0.067✔ 0.834✘ 0.202✘ <0.01✔
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Fig. 5. Frequencies of median-FA superiority after 30 experiment repeats

Table 3. CVA statistics (%) over 30 repeats

CVAs Dataset

bupa ecoli german-numeric glass ionosphere iris segmentation sonara vehicle yeast

minimum-CVA -gini 52.94 66.67 64 42.86 80 73.33 52.38 52.38 60.71 49.32

+gini 55.88 66.67 65 33.33 82.86 80 66.67 55 61.18 50.68

-sgi 47.06 66.67 64 47.62 80 73.33 66.67 55 60 45.27

+sgi 44.12 63.64 65 42.86 80 80 66.67 57.14 63.53 43.24

mean-CVA -gini 71.63 85.21 76.47 76.38 92.94 94.78 87.67 83.18 74.98 61.52

+gini 71.36 85.43 76.97 74.9 93.17 95.02 87.38 83.25 74.73 60.96

-sgi 72.45 84.63 76.69 76.8 93.55 94.84 87.75 84.08 75.01 59.49

+sgi 70.95 84.57 77.26 75.48 93.53 95.2 87.73 84.36 75.07 59.28

robnik

[23]

71.90 86.60 75.80 78.10 94 96 98.10 84.10 74.60 61.40

bader

[1]

– 70.51 – 77.10 97.24 95.08 – 87.97 75.31 –

maximum-CVA -gini 91.43 100 90 100 100 100 100 100 87.06 71.81

+gini 88.57 100 91 100 100 100 100 100 87.06 70.95

-sgi 91.43 97.06 91 100 100 100 100 100 88.24 72.48

+sgi 91.43 100 89 95.45 100 100 100 100 89.29 70.47
aResults after parameter tuning.

Since the Wilcoxon signed-ranks test merely highlights the significance of
differences in performance, we rely on median-FA comparisons to infer on the
superiority of one RF variant over another. Figure 5 shows the number of times
the median-FA of a RF variant was higher than that of its competitor over 30
cross validation repeats. Although no clear trend of superiority is demonstrated
in the 9 data sets used, we note that the RF variants considered have strengths
in different contexts. For example, the german-numeric data set seems to favour
+gini over -gini, +sgi over -sgi, +sgi over +gini and +sgi over -gini; which
is the exact opposite of the yeast data set context. For some data sets (for
example isonosphere, iris and segmentation), most of the 30 experiment repeats
yielded exactly the same median-FA while the remaining repeats favoured one
RF variant.
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Table 3 shows the range of FAs over the 300 (30 cross validation repeats, each
with 10 folds) times RFs are trained and tested for each data set. In previous
literature such as [1,23], classification effectiveness is reported using the mean-
FA of just one cross validation cycle. Although our mean-CVA results are shown
to be comparable with accuracies in previous literature, this statistic alone does
not give a comprehensive and reliable picture of RF performance. By reporting
the minimum-CVA, maximum-CVA and mean-CVA, we give an indication of
the worst, best and average performance of a given RF variant. The distribution
of our mean-CVAs confirm the finding of a disagreement of only 2% between
splitting criteria, made in previous literature [22]. However, the minimum-CVAs
show a greater level of variance. For example, a difference of −14% is shown
between the mean-CVAs of -gini and other RF variants.

6 Conclusion

This study sought to improve the effectiveness of RFs through the use of a
steepend gini-index and shape feature injection. Although such improvements are
indeed recorded over some data sets, the general trend is that of an insignificant
difference in effectiveness. When considering the mean-CVA and minimum-CVA
results of -gini vs +sgi, we note that the latter outperforms the former over more
datasets; we therefore conclude that the steepened gini-index splitting function
and the proposed shape feature injection can improve the effectiveness of RFs.

In addition to the proposed RF variants, a major contribution of this study
is an experimental framework which allows for a high level of contextual consis-
tancy and repeatability in the induction and evaluation of RFs. Previous studies
such as [1,23] have used the outcome of single runs of cross validation on multiple
data sets as evidence of apparent algorithm optimization. We have argued that
any claimed superiority should be demonstrated under highly controlled con-
ditions that limit unnecessary stochastic variation, and sustained over multiple
repetitions.

Over the course of this study, some opportunities for further work have been
identified, we conclude by outlining some of these areas. The large differences in
minimum-CVA over several data sets, highlight the potential of creating a RF
that uses a hybrid of the RF variants considered in this study. In such a case,
the hybrid RF would be equiped to deal with the varying level of complexity in
different data sets. Additionally, the extreme weaknesses of one RF variant in
some contexts could be compensated for by the better performance of another.
Future work will focus on exploring this idea of a hybrid set of RF variants
in conjunction with weighted voting. Since some of the minimum-CVAs may
have been caused by unfavourable random cross validation splits, the use of
stratified cross validation in future work may provide a slightly more controlled
training and testing environment. A simple shape descriptor has been adopted
in this study; extensions to this work may consider other more advanced shape
characterization methods such as moments.
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Abstract. Right from our primary school to professional academic level, the
classical education system modus operandi, forces us to follow a series of
predefined steps to climb the stairs of academic levels. Traditionally those
predefined steps forces students to go through the beginner level to advanced
level and then specialized in a specific level. The main problem was that the
teaching styles and content delivery was not tailored to every learning styles and
student personalities. The traditional education system is moving towards
adaptive learning system where students are not bound only to one predefined
set of contents. Therefore the traditional “one size fits all” approach is no longer
valid as it were before. Each student has their curriculum based on their unique
needs and personality. Adaptive learning may be referred as the process of
creating unique learning experience for each and every learner based upon the
learner’s personality, interests and performance. This research presents a novel
approach of adaptive learning by presenting an emotion-based adaptive learning
system where the emotion and psychological traits of the learner is considered to
provide learning materials that would be most appropriate at that particular
instance of time. It shall demonstrate an intelligent agent based expert system
using artificial intelligence and emotion detections capabilities to measure the
user learning rate and find an optimum learning scheme for the latter.

Keywords: Adaptive learning � Personalisation � Emotion � Neural networks �
Machine learning

1 Introduction

Given the uproar of distance learning through Massive Open Online Courses (MOOC),
top universities in the world such as Harvard and MIT joined the craze to propagate
knowledge. Despite the millions of subscription for the Harvard MOC, only 10% of
students were completing the courses. Feedback from student’s show that the content
of the courses did not suit their current knowledge level and that the way the course
content was presented decelerated their learning rate. Hence the concept of “one size
fits all” was questioned by researchers who brought forward the concept of learning
styles and prior knowledge relationship to learning process. The idea of adaptive

© IFIP International Federation for Information Processing 2020
Published by Springer Nature Switzerland AG 2020
S. Boumerdassi et al. (Eds.): MLN 2019, LNCS 12081, pp. 273–286, 2020.
https://doi.org/10.1007/978-3-030-45778-5_18

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-45778-5_18&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-45778-5_18&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-45778-5_18&amp;domain=pdf
https://doi.org/10.1007/978-3-030-45778-5_18


learning system was the answer to mitigate the dropout rate from MOOC. The idea of
adaptation is described as the concept of making changes in the educational environ-
ment to match variety in the learner needs and abilities to sustain suitable context for
interaction. Adaptive hypermedia systems build a model of the goals, preferences and
knowledge of each individual user; this model is used throughout the interaction with
the user in order to adapt to the needs of that particular user (Brusilovsky et al. 2000).
One aspect of adaptive system is adaptive learning, which is the use of technology to
derive correct learning pattern for the different learner’s intrinsic and extrinsic factors
and delivering the contents in a personalized way. Components of an adaptive learning
system include a content model, a learner model and an instructional model.

1.1 Content Model

This refers to the way the specific topic, or content domain, is structured, with thor-
oughly detailed learning outcomes. It is responsible for adaptation of the content as per
the user requirements for better interaction. The structure of the domain knowledge
relies on symbolic methods. This is often represented as a semantic network of domain
concepts, or generally elementary pieces of knowledge for the given domain related
with different kinds of links (Oxman and Wong 2014).

1.2 Learner Model

This is also known as the Student Model. The aim is to guide the tutor in taking the
pedagogical decisions better adapted to a learner. It models the statistical implications
of the knowledge, complications and misapprehensions of the person. It reflects the
learner’s understanding in a particular field and is prone to changes. The learner
information can also be stored such as name, personality style, learning style, age etc.

1.3 Instructional Model

It is the interface provided by the system depending on the individual differences such
that the learning process is facilitated. Information from both learner and content model
is used to deliver responsive response.

2 Literature Review

2.1 Types of Adaptation

The different types of adaptation are briefly discussed in the section below.

Adaptive Interaction: Adaptation occurs at the graphical user interface and are
planned to simplify the user’s interaction with the system, without, however changing
in any way the learning content itself. Examples: alternative color scheme, font sizes to
accommodate user preferences (Paramythis and Loidi-Reisinger 2003).

Adaptive Course Delivery: Adaptations are envisioned to customize a course to the
individual learner. The intention is to adjust the gap between course contents and the
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user requirement so that the ideal learning result is attained (Paramythis and Loidi-
Reisinger 2003). Examples of adaptation in this category are dynamic course (re-)
structuring; adaptive navigation; and, adaptive selection of alternatives course material
(Brusilovsky 2000). Adaptive navigation tends to show the content of an on-line course
in enhanced order, where the enhancement criteria considers the learner’s background
and performance.

Dynamic Courseware Generation: It generates a customized course by considering
explicit learning goals, as well as, the basic level of the student’s knowledge. The
system with dynamic generation studies and adapts to the students’ advancement
during his interaction with the generated course in real-time.

Content Discovery and Assembly: Application of adaptive methods in the discovery
and assembly of learning material from the content model (Paramythis and Loidi-
Reisinger 2003). Information collected on the user learning style and prior knowledge
on the corpus are the parameters that allow rules defined to be triggered.

Adaptive Collaboration Support: It involves apprehending adaptive support in
learning processes that includes communication between multiple persons (Paramythis
and Loidi-Reisinger 2003).

2.2 Emotions

“Emotions are basic psychological systems regulating an individual’s adaptation to
personal and environmental demands. Emotions are closely related to cognitive,
behavioral, motivational and physiological processes; therefore they are generally
important for learning and achievement” (Seel 2012; Khalfallah and Slama 2018). An
influential research on human behaviour put forward that the learning process is more
effective when it is associated with positive relations than it is with building negative
one. Several researches have indicated that one way for effective learning to take place
is by having positive emotions while learning takes place (Corradino and Fogarty 2017;
Fatahi 2019; Lane and D’Mello 2019). Furthermore brain imaging has showed that
these positive emotions are very important to efficient learning; instructional styles that
backs up positive emotions have been correlated with more efficient cognitive pro-
cessing (Hinton et al. 2008). Researchers claimed that positive mood assists difficult
cognitive functions that require elasticity, integrations and use of cognitive material
such as memory, classification, creative problem solving, decision-making and learning
(Febrilia et al. 2011). However from the results of a recent research, it was stated that
good mood does not really guarantee that the student is able to focus. On the other
hand, it does show that a bad mood do affect learning process subsequently.

2.3 Studies in the Field

Several adaptive learning tools have been developed till now. These tools focus on
different aspects that contribute to learning. Thus they use one of these approaches:
adaptive content, adaptive assessments, and adaptive sequences or they use a combi-
nation of two of these approaches stated (EdSurge 2016). Knewton is a web learning
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platform which focuses on adaptive sequences. It records feedback and responds to
changes on a real time basis. According to Knewton (n.d.), the learning materials are
built on thousands of observations consisting of theories, structure, and difficulty level.
Knewton analyses these learning materials and uses sophisticated algorithms to render
the most appropriate content to the user. Knewton also added that data are collected
from a network of students and these data are recorded, analysed and applied to
optimize the next output to each student.

2.4 Machine Learning Techniques

A number of different learning styles classification algorithms have been used since the
last decades in adaptive learning system. As per (Truong 2016) which has reviewed 51
studies, the following were the most used in the last ten years: Bayesian network, Rules
(Association rules), Neural Network, and Naïve Bayes Network.

Bayesian Network
“A Bayesian network is a graphical model that encodes probabilistic relationships
among variables of interest” (Heckerman et al. 1995). Bayesian networks can be used
to establish learners profile according to activities that they are selected and realized.

Rule Based Algorithm
Rule based system also known as expert system uses rules knowledge representation
for knowledge coded into the system. A rule based system is a way of encoding a
human expert’s knowledge in a fairly narrow area into an automated system.

Neural Network
Artificial neural network models have specific properties such as capability to adapt,
learn or to cluster data. ANN has been modeled from the human cortex but in a less
complex way. It contains several nodes arranged in layers (input, hidden and output
layer). Activation of a layer is done by the activation function.

Naïve Bayes
“Naive Bayes classifiers, a family of classifiers that are based on the popular Bayes’
probability theorem, are known for creating simple yet well performing models”
(Raschka et al. 2014). A Naïve-Bayes classifier is built by using the training data to
approximate the probability of each group according the examples.

3 Proposed Solution

3.1 Overview of System

The system developed is an online adaptive learning platform which takes into con-
sideration the human psychological factor and human emotional behavior. To increase
the efficiency of the system and provide contribution to the field, a multimodal
approach for adaptivity is chosen. Upon registration, the user will be provided with a
prior knowledge test which is performed to situate the user knowledge level in the
domain model space and after a learning style questionnaire is used to identify the user
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learning style preference, and then, At this point the personalized learning path is
generated for optimum learning rate which is achieved by a neural network. During the
learning phase, the user emotion is tracked to identify the user current mood that is
bored, neutral, surprise among others. This data is used to predict a time table showing
exactly when it is optimum for him to study. This is done by a second neural network.
After each section completed the user will take a test whereby if his performance is low
a reinforcement rule will apply where he will be given additional personalized content
to master this section. Those methods will not require resource intensive hardware
except a camera and access to a good internet connection. These allow for a wider
audience to be acquired and educational academies can use the system at minimal cost.

3.2 Architecture of Proposed System

Three tier architecture is privileged where the system is broken down into Presentation,
Application, and Data tiers. This helps in the maintainability of the system and the
agility to cope with changing requirements. On the Presentation layer a web interface is
provided based on the bootstrap library for adaptivity on different screen sizes. Data tier
consist of a content and learner model. The content model contains the learning objects
in different version and the learner model contains the student static data such as
personal information and dynamic data like student performance and learning paths.
Springboot has been used as the web development framework it acts as a middleware
between the presentation tier and the data tier. At the application layer, two neural
network form the core logic of the system. The content prediction neural network take
input such a student performance, learning style and prior knowledge to predict best
learning object to learn. The time table neural network uses recorded emotion of user
during hourly interval and performance to predict favorable hours for student to learn.
Hence a personalized time table is created for the user which suggest hours of days best
to learn (Fig. 1).

Fig. 1. System architecture
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3.3 Choice of Final Tools

IntelliJ Ultimate was the IDE of choice in conjunction with tomcat server, XAMPP and
MySQL database. SpringBoot Framework was used as the backbone for the web
application. This bundle provide ease of development for web application using Spring
technologies such as Spring security, Spring MVC, Hibernate and view resolvers such
as Thymeleaf. Libraries used were bootstrap and JQuery for frontend and Neuroph for
the neural network on the server side. Microsoft cognitive emotion API was used for
emotion detection (Fig. 2).

Fig. 2. System description

3.4 Modules in the Proposed System

The modules proposed for the system are outlined below.

Module 1: Predict user’s learning content (Training of Data Set and testing the
neural with dataset to get the predicting of learning content)
Module 2: Psychometric model
Module 3: Predict user’s time table
Module 4: User prior knowledge
Module 5: Monitoring emotions of user while learning takes place
Module 6: Displaying time table (html)
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4 Results and Interpretation

4.1 Training of Data Set

The personalised content page for the learner is shown below (Fig. 3).

In this training of dataset, nine inputs, ten neurons and four outputs are used to
build the neural network. The neural is run for each interval learned to get the clas-
sification of the interval. The average emotion and performance for the specific time
interval is used as input (Table 1).

Each emotion is represented as:

1. Showing personalized video for a specific type of user
2. Transcript of video used as a summary and to provide additional resources
3. Showing navigation to all the section, each link point to a personalized page for the 

user

Fig. 3. Personalised content page

Table 1. Emotions

Emotion Binary representation

Anger 00000001
Contempt 00000010
Disgust 00001000
Fear 00010000
Happiness 00010000
Neutral 00100000
Sadness 01000000
Surprise 10000000
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The performance is represented as double integer. An example of input to the
neural network would be 0, 0, 0, 1, 0, 0, 0, 0, 0.80 (Table 2 and Fig. 4).

4.2 Results

A number of experiments have been performed to see if the emotion of the learner is
correctly detected. Since the monitoring works in background, this module has been
tested where the face of the person is visible on the page. The image in left is the live
streaming and the one in the right is the image shot. An alert is displayed when the
emotion is recognized (Fig. 5).

Table 2. Output

Output Meaning

001 Most favorable
010 Favorable
100 Not favorable

Fig. 4. Input and output using neural network

Fig. 5. Testing the emotion monitoring system
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Figure 6 below shows a personalized time table where learning would be most
conducive for a specific learner (Fig. 7).

5 Discussions

5.1 Testing the Accuracy

For the accuracy of training data set, the total network error for each iteration of the
neural network is observed. As the number of iteration performed increased, the total
network error decreases. The figure below shows the relations between iteration per-
formed a total network error (Fig. 8).

Fig. 6. Testing the emotion monitoring system - 2

Fig. 7. Personalised time table
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The table below shows the total network error for the iteration performed. It shows
the same concept as the graph above. At the first iteration, the total network error was
0.5009843578823818, which is not really good for a start however at the 493th iter-
ation the total network error is 0.009950455956534508 which is really good (Fig. 9
and Table 3).

Fig. 8. Accuracy

Fig. 9. Results for non-adaptive scenario
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5.2 Critical Analysis of Proposed System

The proposed system uses a form of supervised learning because it is based on storing
data from the user in a database and then generating data. A questionnaire has been
designed to get the learning profile of the user. Based on the answers provided, the
learning profile was determined and saved in the database for later for generating
learning content. Whenever the user is learning, his/her emotions are determined and an
algorithm is used to determine the emotion expressed for the longest time period in the
interval. The average emotion for the time interval, together with the performance is
used to predict if the time interval learned is favourable, most favourable or not
favourable using Neural Network. For each test and for each question, the probability
that a particular learner gets the right answer is calculated using the Item Response
Theory (IRT) model, with the knowledge level and difficulty of question as parameters.

Table 3. Total network error at each iteration

Iteration number Total network error

1 0.5009843578823818
2 0.47491693836473853
3 0.4696483547660897
4 0.46478039443432384
5 0.45985672557279855
.. ..
20 0.3932929797443801
.. ..
50 0.2555228021830213
.. ..
100 0.11904842671535672
.. ..
150 0.08475942876046237
.. ..
200 0.07397413704542873
.. ..
250 0.06740893346060287
.. ..
300 0.054403972658013805
..
350 0.03493140578900644
..
400 0.021648853428465915
..
450 0.013942979512677475
..
493 0.009950455956534508
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The expected performance is calculated using those probabilities (all questions have the
same marks). Actual performance is then compared with expected one. Any increase or
decrease in performance is reported and the user profile is updated. Additionally the
learning profile of each user is updated each time the system is used. For example,
when a test is taken, the learning profile is updated by using reinforcement rule to lower
the content level if performance is low.

Comparison Against Knewton Adaptive Learning by Knewton
This section compares the proposed system with Knewton which had been introduced
in the previous sections of this report. Knewton uses the unsupervised learning method
to get its data points whereas the proposed system uses supervised learning method.
While Knewton delivers courses based on the most recent student profile, the proposed
system uses learning style to determine which learning content is most appropriate for
the user. However, one major advantage is that Knewton depends on a large volume of
data to do precise clustering and prediction whereas the proposed system accommo-
dates for smaller user population and does not require a large sample size to determine
learning profiles. Most importantly the proposed system does something that Knewton
does not. The proposed system predicts the customised timetable of the learner by
adding a new dimension to adaptivity which is that of emotion. The system recognizes
the learner’s emotion while learning takes place and this emotion is evaluated to get a
favourable time interval for effective learning to take place.

5.3 User Testing

Testing of Non-adaptive System Scenario
Student was provided a PowerPoint presentation on the topic to learn and upon
completion was given a multiple choice test to ascertain his newly acquired knowledge.
Student were allow fifteen minute to learn the content and five minute to do the test.
Google form was used to create PowerPoint and questionnaire. Since topic to be
learned was C# programming, users with no prior background in programming was
chosen. A sample of 17 students was used (Fig. 9 and Table 4).

Testing of -Adaptive System Scenario
Student performance was tested using the adaptive system. A sample of 17 students
with no prior knowledge in programming was used. Student was given fifteen minute

Table 4. Statistical analysis of non-adaptive scenario

Statistical operation Explanation Result

Mean Average score of student 5.78
Mode Maximum occurrence of a score 2,7,9
Median Middle value separating the distribution 6
Variance How far a dataset is spread out 6.47
Standard deviation How spread out numbers are 2.54

284 S. P. Taurah et al.



to learn the content and five minute to complete the test. The topic to be learned was C#
programming. Test Question was the same as in the scenario of the non-adaptive
system scenario below (Table 5).

Discussion of Result
Student given personalized learning content had an average score above passing mark
and are nearly clustered. The result was satisfactory given users were put under a time
limit to learn a whole new concept. User feedback was used to improve details in each
section and more examples were suggested.

6 Conclusion

Nowadays e-learning application is being very responsive but there is a problem as
each individual’s needs is different. The one-size-fits-all is not the solution to build
learning platform as each learner is different. These were what has been confirmed at
the end of testing phase. It is found to be true that adaptivity in software is the key for
future application building success. This research brings forward a novel aspect of
adaptivity by considering another intrinsic factor that is that of the learner’s emotion.
Current research have so far been concentrating on intrinsic factors such as learner’s
prior knowledge, learning pace and learning style. Machine learning techniques such as
neural network to make prediction of personalized content and classification of time
interval proved to be very useful. The accuracy of the proposed emotion-based adaptive
learning system is also a conclusive factor. Future works may include the use of body
language recognition and human gesture recognition to get the mood of the user.
Additionally identifying hand gesture to navigate through content and speech-based
assessment of user would be interesting features to implement in the future to make the
content rendering mechanism more adaptive and responsive.

Table 5. Statistical analysis of adaptive scenario

Statistical operation Explanation Result

Mean Average score of student 6.18
Mode Maximum occurrence of a score 7
Median Middle value separating the distribution 5
Variance How far a dataset is spread out 2.10
Standard deviation How spread out numbers are 1.45
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Abstract. IoT devices have been the target of 100 million attacks in the first
half of 2019 [1]. According to [2], there will be more than 64 billion Internet of
Things (IoT) devices by 2025. It is thus crucial to secure IoT networks and
devices, which include significant devices like medical kit or autonomous car.
The problem is complicated by the wide range of possible attacks and their
evolution, by the limited computing resources and storage resources available on
devices. We begin by introducing the context and a survey of Intrusion
Detection System (IDS) for IoT networks with a state of the art. So as to test and
compare solutions, we consider available public datasets and select the CIDDS-
001 Dataset. We implement and test several machine learning algorithms and
show that it is relatively easy to obtain reproducible results [20] at the state-of-
the-art. Finally, we discuss embedding such algorithms in the IoT context and
point-out the possible interest of very simple rules.

Keywords: Internet of Things � IoT � IDS � NIDS � Intrusion detection
system � Rules � CIDDS-001

1 Introduction

The problem of securing electronic devices is as old as computers exist, but with time
computers have gained more and more resources, so IDS in these devices became more
efficient. Now, a lot of different small devices without the power of modern computers
are connected to a network and are the target of many attacks. Moreover, every IoT
system is different and has specific worries depending on the type of the attack (DDoS,
Blackhole, Sybil Attack…) they want to be protected from. Wireless Sensor Networks
(WSN) for instance has unique characteristics such as limited power supply, low
transmission bandwidth, small memory size, and data storage [3]. It is thus crucial to
develop and deploy new IDS.

Section 2 presents a brief review of the literature and Sect. 3 presents the problem
of selecting or simulating a dataset to test IDS. Section 4 presents the implementation,
tests, and results of several machine learning algorithms for outlier detection for
CIDDS-001 dataset. Section 5 presents some simple decision rules that can be
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introduced in an IoT network to work like an IDS. Section 6 presents a summary of the
conclusions and future work.

2 Related Work

Doshi et al. [4] simulate IoT networks with raspberry Pi and virtual machines. They
collect network data from their system and test this data with 5 algorithms: K-nearest
neighbors, Support Vector Machine (SVM) with linear kernel, decision tree, random
forest, and neural network. The specificity of their work is to use stateful features and
they get up to 30% better performance compared to without these features.

Hussain et al. [5] list for each problem many surveys that use machine learning
techniques (Table 4 on the document). For anomaly and intrusion detection:

– K-means clustering and Decision Tree [6]
– Artificial Neural Network ANN [7]
– Novelty and Outlier Detection [8]
– Decision Tree [9]
– Naive Bayes [9, 10]

Butun et al. [3] classify the IDS methodology of IDS in 3 categories:

1 Anomaly based detection:
We create an activity profile for each member of the network and a certain amount
of deviation is reported as an anomaly. This method is adequate to detect never
known attacks but we need to update the profiles periodically because the network
behavior can change rapidly.

2 Misuse based detection
A signature (profile) of the previously known attack is used and is used as a
reference to flag the next attacks. The disadvantage of this method is that it cannot
detect new type of attacks, but the false positive rate is very low.

3 Specification based detection
That’s a mix of the previous ones, “a set of specifications and constraints that
describe the correct operation of a program or protocol is defined.” [3] But it takes a
lot of time to develop special rules to get a low false-positive rate.

Some surveys have unclear results, sometimes there is no result. There are also very
few simulations and implementations in real systems.

3 Dataset

Selecting a dataset to design and evaluate NIDS ML-based algorithms is not immediate
and may be a full part challenge.

One of the most used datasets is the KDD cup99 set, but it still presents defaults, as
emphasized by Tavallaee et al. [11]:
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– a lot of redundant measures
– some parts of the train set were used as test sets in some studies
– set is too long forcing to take only part of the set.

Ring et al. [12] did an exhaustive list of network-based detection data set and
compared them. One of the recent and not too heavy dataset is the CIDDS-001 (Coburg
Intrusion Detection Data Set) [13] which was described as follows:

“The CIDDS-001 data set was captured within an emulated small business environment in
2017, contains four weeks of unidirectional flow-based network traffic, and comes along with a
detailed technical report with additional information. As special feature, the data set encom-
passes an external server which was attacked in the internet. In contrast to honeypots, this
server was also regularly used by the clients from the emulated environment. The CIDDS-001
data set is publicly available and contains SSH brute force, DoS and port scan attacks as well
as several attacks captured from the wild” [12].

The dataset contains 14 features as follow (Table 1).

In our experiment, we used the “Class” attribute as the target for classification,
removed the AttackType, AttackID and AttackDescription features which are obvi-
ously correlated with the “attacker” class. Furthermore, since IPs were anonymized,
they do not convey information so we also removed them. We also use “Date first
seen” as the x-axis. Finally, we transformed Flags, Class and Proto, which are cate-
gorical features, into “dummy variables” by one-hot encoding.

In the CIDDS-01 dataset, we used the internal-week1 subset of observations, as it
contains 42 of the 92 attacks on the entire dataset.

Anomalies are labeled as victim or attacker. However, this file has more than 8
million rows and less than 20% are anomalies. Hence we face a case of imbalanced

Table 1. Features within the CIDDS-001 data set, from [13]

Id Attribute name Attribute description

1 Src IP Source IP Address
2 Src Port Source Port
3 Dest IP Destination IP Address
4 Dest Port Destination Port
5 Proto Transport Protocol (e.g. ICMP, TCP, or UDP)
6 Date first seen Start time flow first seen
7 Duration Duration of the flow
8 Bytes Number of transmitted bytes
9 Packets Number of transmitted packets
10 Flags OR concatenation of all TCP Flags
11 Class Class label (Normal, Attacker, Victim)
12 AttackType Type of Attack (PortScan, DoS, Bruteforce, PingScan)
13 AttackID Unique Attack id
14 AttackDescription Additional information about the set attack parameters
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classes. In such a case, the more represented class can have a “masking effect” on the
others; this has been studied in [14] for this dataset. Given the high number of instances
available, rebalancing the classes can be simply done by subsampling the majority class
(otherwise, one can also oversample the minority classes by creating new, synthetic,
instances). In our case, we decided to (a) shuffle the data, (b) keep half of the data for a
final evaluation (c) subsample the other half to keep about 180000 instances per class.

4 Experiments and Results

The experiments were carried out using Google Colaboratory with 32 GB of ram and
the Tensor Processing Unit acceleration material.

The metrics that were used to evaluate the performance of the algorithm include the
classification accuracy, precision, recall and F1-score. These metrics are expressed by
the equations below,

Accuracy ¼ TPþ TN
TPþ TN þFPþFN

Precision ¼ TP
TPþFP

Recall ¼ TP
TPþFN

F1-score ¼ 2:Precision:Recall
PrecisionþRecall

where, TP, TN, FP and FN stand for true positives, true negatives, false positives and
false negatives, respectively.

We shuffle the set and we take 33% of the set as the test set and 66% as the train set.
Then, we classify the traffic with 4 algorithms: K-Nearest Neighbors (KNN), Decision
Tree (DT), Random Forest (RF) and Neural Network (NN). We used the python
sklearn package to do our test.

For the KNN, we use only 1 neighbour with a uniform weight function. We get a
global accuracy of 99.27%; other metrics are reported Table 2.

Table 2. Results with the K Nearest Neighbour algorithm

KNN Precision Recall F1-score

Attacker 0.9633 0.9972 0.9799
Normal 0.9996 0.9916 0.9956
Victim 0.9573 0.9988 0.9976
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For the Decision Tree, we used the default parameters, which is the Gini criterion
for measuring the quality of a split and maximum expansion of nodes. We already
obtained a global accuracy of 99.89%; other performance metrics are given Table 3.

For instance, we get something as shown in Fig. 1 for the beginning of the tree:

The decision tree has a depth of 31, a total of 563 nodes and 282 leaves, thus 281
tests. From this tree, it is possible to deduce, and even generate automatically, a
classification script (see the source code [20] for an example). Running this code on an
instance will predict the classification with 99.88% accuracy.

For the RF, we selected the best parameters using a grid search strategy, which
consists of computing the performance, by cross validation, on a grid of possible
parameters values, and then selecting the best estimator. We used global accuracy as
the performance metric. In particular, we used 800 trees with a max depth of 20. We get
a global accuracy of 99.95%, with the performances reported in Table 4.

Table 3. Results with the Decision Tree algorithm

DT Precision Recall F1-score

Attacker 0.9956 0.9982 0.9969
Normal 0.9998 0.9990 0.9994
Victim 0.9946 0.9996 0.9970

Fig. 1. First nodes of the decision tree

Table 4. Results with the Random Forest algorithm

RF Precision Recall F1-score

Attacker 0.9982 0.9981 0.9982
Normal 0.9997 0.9996 0.9997
Victim 0.9981 0.9993 0.9997
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An interesting outcome of the random forest is that we can extract which are the
most important features in computing the classification. The features are shown by
importance on Fig. 2.

For the Neural Network, we used the multi-layer perceptron classifier. This model
optimizes the log-loss function using LBFGS or stochastic gradient descent. We used
100 neurons in the hidden layer with the rectified linear unit function for the hidden
layer activation function. The maximum iteration was set to 200. We finally obtained a
global accuracy of 99.25%; performances metrics for the different classes are shown
Table 5.

Fig. 2. Relative importance of features in the CIDDS-01 dataset.

Table 5. Results with the Neural Network algorithm

NN Precision Recall F1-score

Attacker 0.9929 0.9938 0.9933
Normal 0.9906 0.9962 0.9934
Victim 0.9914 0.9883 0.9899
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For the CIDDS-01 dataset and the ML-based algorithms, we obtained very high
accuracies. As mentioned in [12], for this particular dataset, balancing the classes or not
has a very tight influence on the accuracy, which is already so high. Anyway, by a
careful selection of the hyperparameters we recover results similar to the best RF-
WHICD in [14] (where only two classes normal/attacker were considered) (Table 6).

5 Rules

The most accurate algorithm is the RF with 99.95% accuracy. However, it may be
difficult to embed on an IoT and it lacks interpretability. The problem of extracting
simple rules from a forest of decision trees has been considered in the machine learning
community. The goal was to find a trade-off between the modelization power of
random forests and some simple rules interpretable as in a (small) decision tree. The
Skope rules Python library [19] enables us to extract such rules from a random forest.
In our experiments, we took all the instances to train the model and extract the rules.
For the victim class, the skope rules are:

– Bytes > 100
– Duration <= 0.03749999962747097
– Flags == ASF

And for the attacker class, the identified rules are:

– Dst Pt <= 261
– Duration <= 0.032500000670552254
– Flags == APSF

With these very simple rules, we already get a global accuracy of 86.88%. Furthermore,
by a simple inspection of data, we discovered that adding the instances flagged with
AR (class victim) or S (class attacker) TCP flags enables us to improve the accuracy to
98.45%, with only 0.35% are miss classifications.

Table 6. Comparison with related work

Survey Approach Accuracy (%)

Verma and Ranga [15] 2NN 99.60
Verma and Ranga [16] DT 99.90
Tama and Rhee [17] DNN-10-FCV 99.90
Idhammad et al. [18] Entropy + RF 99.54
Abdulhammed et al. [14] RF-WHICD 99.99
Proposed KNN KNN-1 99.27
Proposed DT DT 99.89
Proposed RF RF 99.95
Proposed NN NN 99.25
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6 Conclusion

We have considered the problem of detecting anomalies or intrusions in IoT networks.
We have first presented the context and reviewed approaches in the literature. We have
focused on machine learning-based methods that can learn directly from data and find
what are the important features, without resorting to specialized models of the network
or specialized signatures. We have then selected a dataset of network activity with
several attacks, which is regularly used to develop NIDS and as a benchmark of
proposals. Using standard open-source libraries, we have implemented and evaluated
several ML-based algorithms, with performances that are at the state-of-the-art. The
sources are available and results easily reproducible [20].

Using and implementing such solutions in an IoT network requires to consider the
possible computational overhead. For a router or network supervisor, we need a net-
work traffic module to capture the incoming network, and the classifiers, once trained
by a decision tree or a random forest, can probably be implemented. For the IoT
devices themselves, where consumption and computational costs can be more severely
constrained, it is possible to use a decision tree classifier (at most 20 comparison tests
and a 840 lines program in Python) or even to use the very simple rules (3 tests)
derived from a random forest, with a 98.5% accuracy and a low false-positive rate.
Testing these ideas on real devices and real data is the objective of future efforts.
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Abstract. Wide area networks are built to have enough resilience and
flexibility, such as offering many paths between multiple pairs of end-
hosts. To prevent congestion, current practices involve numerous tweak-
ing of routing tables to optimize path computation, such as flow diver-
sion to alternate paths or load balancing. However, this process is slow,
costly and require difficult online decision-making to learn appropriate
settings, such as flow arrival rate, workload, and current network envi-
ronment. Inspired by recent advances in AI to manage resources, we
present DeepRoute, a model-less reinforcement learning approach that
translates the path computation problem to a learning problem. Learning
from the network environment, DeepRoute learns strategies to manage
arriving elephant and mice flows to improve the average path utilization
in the network. Comparing to other strategies such as prioritizing certain
flows and random decisions, DeepRoute is shown to improve average net-
work path utilization to 30% and potentially reduce possible congestion
across the whole network. This paper presents results in simulation and
also how DeepRoute can be demonstrated by a Mininet implementation.

Keywords: Reinforcement learning · Route optimization · Path
computation

1 Introduction

The rise of data hungry services such as mobile, video streaming and
Cloud/Internet applications are bringing unprecedented demands to underlying
network backbones [9]. Wide area networks (WANs) are investigating intelligent
and efficient network management techniques to do load balancing, improve used
bandwidth and overall optimize network performance. Traffic congestion can
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directly cause performance deterioration, such as when links are oversubscribed
causing bottlenecks [10]. Many services rely on having high-throughput transfers
and need high capacity links such as 100s Gbps. However, even for the busiest
link, the current average utilization is only between 40–60%, to account for unan-
ticipated peaks [1]. Traffic engineering and path computation techniques such
as MPLS-TE (Multiprotocol Label Switching Traffic Engineering) [5], Google’s
B4 [18] and Microsoft’s SWAN (Software Driven WAN) [1] have proposed man-
ners in which routers can greedily select routing patterns for arriving flows,
both locally and globally, to increase path utilization. However, these techniques
require meticulously designed heuristics to calculate optimal routes and also do
not distinguish between arriving flow characteristics.

Path computation has a number of real-world networking implications.
Examples such as load balancing, minimizing congestion and utilizing maxi-
mum bandwidth as some cases that can be explored as a reward. WAN networks
al-low a number of pathways to exist between pairs of end-hosts.

Internet and WAN traffic usually contains a mixture of flow characteristics,
such as long and short flows, which if on the same path, can have detrimental
effects on each other. Known as bulk long-living file transfers (elephant flows)
are bandwidth-sensitive and short transfers (mice flows) are latency-sensitive,
significantly impacting user experience and require innovative ways to manage
them [34]. WAN traffic usually contains a 80%:20% flow distribution (mice to
elephant ratio) and if mixed on same paths, can cause queuing delays impacted
by high latency and low throughput [2]. Isolating flows to dedicated routes [38] is
challenging in real-time [32,34] and has led to under-utilized paths. Researchers
have attempted to recognize arriving flows to efficiently manage them [22]. In
data center networks, these are often prioritized, such as mice latency [6,7] or
elephant throughput [4] to improve data center network performance. In WAN,
path computation uses optimization to calculate paths taken between end-hosts.

Leveraging research in software defined networking (SDN) and reinforcement
learning, we explore this problem of path computation and finding optimal routes
in general, as a path resource allocation problem. We use machine learning
algorithms to learn and provide viable solutions for dynamic flow management
for both elephant and mice flows.

Network routing and machine learning is not new. Broadly speaking, there
are two main approaches used here [33]:

1. optimize routing configurations by predicting future traffic conditions depend-
ing on past traffic patterns or

2. optimize routing configurations based on number of feasible traffic scenarios
with aim to improve performance parameters.

While SDN’s centralized control offers great promise, these calculations cause
overhead for high-performance networks and need global management to work,
which is difficult in a large network [12]. Recent success of machine learning in
complex decision making problems such as Alpha-Go [29], cooling datacenters
and self-driving cars [37] suggest feasible applications to our problem. Particu-
larly reinforcement learning (RL), actively being applied in robotics [31], allows
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agents to learn how to make better decisions by interacting directly with the envi-
ronment. Using concepts of rewards and penalties it can learn through experience
to optimize its objective function.

Revisiting the path computation challenge, in this paper we use RL to find
optimal paths (or routes) as a resource management problem. First, the system
learns optimal paths by repeatedly selecting available paths between source and
destination, given the arriving flow distribution. RL directly interacts with the
network environment and learns best paths to minimize the flow completion
time given the current network conditions. Our RL approach (DeepRoute) is
developed using Q-learning as a value-based gradient reinforcement learning [39].

Our experiments are focused on WAN scenarios, with two implementations,

1. We simulate an environment with synthetic data set of 100 flows, with 80:20
(elephant:mice) distributions, being allocated on 4 possible paths. We com-
pare DeepRoute to either randomly selecting paths or prioritizing one flow
type over the other. Here we use the analogy of 100 flows waiting to be allo-
cated on paths and aim to quickly empty the wait queue.

2. We translate the experiment on Mininet network emulator environment.
Doing so, we remove some assumptions we drew in the simulation and also
understand how DeepRoute will work in a real network environment.

In both cases, we train DeepRoute via experience generating abundance of flow
interaction data with the network. Evaluation of the agent’s performance is done
on test data set, which is previously unseen flow data, to see how well DeepRoute
fares against other techniques.

2 Background

2.1 Path Computation and Flow Management in WAN

We explain why path computation is a challenging problem:

– Network traffic demands are continuously changing and are often difficult
to predict. Routing tables are continuously changing with new devices join-
ing/leaving the network. However, paths between two endpoints, usually fol-
lows one optimized route. If there are too many flows, this leads to potential
congestion on the path [13].

– Underlying network systems are complex and distributed, with multiple links
between source-destination pairs. Understanding link properties such as band-
width or latency is difficult to model accurately [14].

– Most flow management techniques are developed for data center networks [3].
WANs, on the other hand, prioritize performance metrics such as minimizing
packet loss and bandwidth utilization for traffic diversion [36]. Google’s B4
and Microsoft’s SWAN, both, make decisions on application characteristics
and heuristics.
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Compared to approaches designed by B4 and SWAN [1,18], we leverage rein-
forcement learning to provide alternative to heuristic-based path computation
problem. We aim to allow networks to learn best routes such to minimize flow
completion times of both elephant and mice flows.

Path computation has a number of real-world networking implications.
Examples such as load balancing, minimizing congestion and utilizing maxi-
mum bandwidth as some cases that can be explored as a reward. WAN networks
allow a number of pathways to exist between pairs of end-hosts. These paths can
have equal or different cost distributions such as settings for bandwidth, latency,
throughput and more. These settings can determine how quickly the arriving
flow will reach its destination, and can be allocated using different egress ports
to choose path to take. ECMP routing is an example of this where it uniformly
picks an egress port to reduce congestion on one path, however has seen to suffer
from hash collisions [17] and unbalance on different cost distribution paths.

Fig. 1. Example of routing a new flow F1 from 1 → 4. There are two possible paths to
take through Node-3 or Node-2.

Another problem is the changing traffic conditions in the network. Figure 1
shows a new flow F2 being allocated to one of the paths. However, there might
be other previous flows running F0 and F1, already allocated on part of the
paths. This means that while the links costs can be set in advance, the available
bandwidth on the links is continuously changing and difficult to anticipate when
selecting paths.

Traffic engineering such as MPLS-TE, B4 and SWAN use heuristics to design
optimal allocations for paths using local and global optimization functions. For
DeepRoute, we focus on WAN network path computation, particularly where
we want flow-based routing decisions to improve flow completions times for mice
and elephants that can allow all available paths to be chosen and utilized.

2.2 Reinforcement Learning

A reinforcement learning problem is formulated with an agent, situated in a
partially observable environment, learning from past interaction data to make
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current decisions. The agent receives data in form of environment snapshots,
processed in some manner, with specific relevant features. After receiving infor-
mation and computing the value for future actions given the current state, an
agent then acts to change its environment, subsequently receiving feedback on
its action in form of rewards, until terminal state is reached. The objective is
to maximize the cumulative reward over all actions in the time agent is active.
Reinforcement learning research has investigated multiple techniques such as in
multi-armed bandit problems, resource allocation or finding routes through a
maze [30]. Deep reinforcement learning builds upon classical models, replacing
the learning with a neural network to approximate policy and value functions.
Here, the function approximates the environment state space with actions and
rewards. Particularly when the state space is too large to store, this approach
has proved feasible in learning approximate conditions. In future, we plan to
expand DeepRoute to adapt from Q-learning to neural network learning (deep
Q-networks), but is currently out of scope of the work presented here.

Reinforcement learning can be expressed as a Markov Decision Process
(MDP) involving sequential decisions. This is given as a tuple (S,A,R, P ), where
s ∈ S set of states, a ∈ A set of actions, R(s, a, s′) represents reward given for
executing action a at s and moving to new state s′. There is probability P for
executing action in state s.

In our problem, the network is modeled as a MDP. We model 4 paths and
their current allocations as a state. The agent selects a path and receives a reward
after a flow has completed. In the simulation model, this is delayed reward as
flows take longer to finish. In the mininet model, we get the reward at every
iteration. The reward act as signals to adjust the forwarding-link priorities to
enhance or diminish the probability a specific next-hop is selected for the flow.
Our agent learns to adjust path selection policies based on experience through
continuous modification and rewards.

2.3 Q-Learning Formulation

A Q-value represents state-action combinations. Better Q-values shows better
chances of getting higher rewards which are earned at the end of a complete
episode. The Q-value is calculated using a Q-function. It approximates the Q-
value using prior Q-values, a short-term and a discounted future reward. This
way the find optimal control policies across all environment states. Q-learning
is an off-policy reinforcement learning algorithm that uses a table to store all
Q-values with possible states and action pairs. This table is updated using the
Bellman equation, allowing the action to be chosen using a greedy policy, given
as with γ is discounting factor.

Q(s, a) = R(s, a) + γ max
a′

Q(s′, a′) (1)

Temporal Difference (TD) Learning. In our model, we enable the agent to
learn in every action taken, despite it being end of the episode or not. We define
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an episode to end after 100 flows have been allocated. The TD learning factor
updates current Q-value where α is the learning rate,

Qt(s, a) = Qt−1(s, a) + αTDt(a, s) (2)

Therefore, our final equation becomes,

Qt(s, a) = Qt−1(s, a) + α(R(s, a) + γ max Q(s′, a′) − Qt−1(s, a)) (3)

Where γ ∈ [0, 1] represents discounting factor that scales importance of the
immediate reward obtained for the action and rewards R obtainable for actions
at the new state s′. The learning rate α ∈ [0, 1] models the rate at which of
Q-values are updated.

3 Related Work

Efficient selection of paths for short and long flows has also shown to reduce con-
gestion [26]. Additionally, adaptive traffic management using congestion-based
routing has proven to improve overall network utilization [8,18]. However, adap-
tive algorithms in heavy traffic load, could cause oscillatory behavior and cause
performance degradation [35]. OWAN was developed to optimize bulk trans-
fers on WAN by re-configuring the optical layer showing a 4-times faster flow
completion rate [20].

Flow completion time has been used as a vital metric to improve network
congestion [27]. Additionally, separating elephant and mice flows can have a
direct impact on network quality [15]. Other approaches have used calendaring
to improve bandwidth utilization and reduce congestion [21].

In comparison to above approaches, machine learning has been used for net-
work routing. The authors [33] show how learning can help improve the average
congestion rate through softmin learning.

Reinforcement learning, in particular, has given interesting results in com-
pute resource allocations such as CAPES [23] learning to optimize the Luster
file system and DeepRM [24] learning to allocate jobs on processors. Within
networks, implementations of reinforcement learning in internet congestion con-
trol [19] and developing intelligent TCP congestion algorithms [36] have shown
game-changing results in managing bandwidth and bottleneck across individual
links. But nearly all of these demonstrations have only been shown on small
networks and simulation only. There is also little evidence on how these can be
expanded to real WAN environments.

In this paper, we prove the usefulness of reinforcement learning for path
computation, but this is presented as early work on how Q-learning approaches
can provide benefit and be translated in WAN environments, which we will
expand in future work.
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4 Design of DeepRoute

We define a general network topology with unidirectional links denoted as paths
p ∈ P with varying bandwidth capacity and latency. Flows arrive at time step
t = 1 and are assigned a fixed path, for example either 1 → 2 → 4 or 1 → 3 → 4
(in Fig. 1). The arriving flows are generated with a specified size and duration
allowing the flow to exist on the path for a time period (longer for elephant
flows). Given every flow fi from source si to destination di, is defined with flow
size vi and duration ri. The flow is assigned to a path pi which would have
latency latpi and available capacity acpi. The latency influences the actual flow
completion time ci = ri + latpi. At a given time, flows are allocated based on
available bandwidth acpi, which changes depending on traffic patterns.

Similar to SDN [1], we assume a centrally existing routing control. The con-
troller maintains information on current allocations across paths and makes rout-
ing decisions based on completion times of previous flows.

Table 1. Elephant and mice flow distributions used in simulation case.

Flow type Size of flow (bandwidth
units occupied)

Duration of flow (time
units occupied)

Distribution %

Elephant Range (3, 5) Range (5, 8) 20%

Mice Range (1, 2) Range (1, 3) 80%

4.1 DeepRoute in Simulation Model

Figure 2 shows the network topology used in the simulation. The goal is to move
all arriving flows from source to destination as quickly as possible. There are 4
possible paths with different bandwidth and latency settings. In the model, we
assume 100 flows are arriving together in one timestep, and the controller allo-
cates each flow to the next available path. The 100 flows contain a distribution
of 80% mice flows and 20% elephant flows (Table 1). Once allocated, the time
step progresses to t+1, where the controller tries to allocate the remaining flows.

Objective. When a flow duration ri (in time units) finishes, it computes its
completion time ci by adding its duration with path latency. We then inverse
this, to give the flow’s slowness rate by li = ci/ri. Similar to [24], we normalize
this, to prevent skewing results for longer flows. The objective of DeepRoute is
to get as many flows completed soon as possible.

Paths as Resources. We assume 100 flows arrive at Node-1 going to Node-5.
There are 4 possible paths 1 → 2 → 5, 1 → 5, 1 → 3 → 5 or 1 → 4 → 5, with
each path having different bandwidths and latency attached. bu means total
bandwidth units available to be allocated. This changes as flows are allocated
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Fig. 2. Topology used in the Simulation Model (bu = bandwidth units occupied and
tu = time units occupied).

on them consuming part of the bu equal to flow size. The allocations last for
the flow’s duration, and the completion time is computed summing path latency
given in tu (time units).

State Space. The state of the environment is what DeepRoute learns against.
We define this as current available bandwidth across all paths, size of the flow
being allocated and current allocations on the paths. For example, after an allo-
cation on path 0 (1 → 2 → 5), the bandwidth availability is now acp0 = 10 − v1
and this part of state becomes (acp0, acp1, acp2, acp3).

Action Space. There are 4 paths so 4 possible actions. We assume one action
is taken per one flow, within one time step. If there are no available paths, the
controller skips a time step with no allocations. Once all 100 flows are allocated,
it finishes a complete episode. The simulation is run for number of iterations
containing many episodes. The total reward is calculated per episode when all
100 flows are allocated.

Reward Calculation. At the end of each episode, the RL agent calculates if
any flows have finished and total completion time is recorded.

4.2 DeepRoute in Mininet

Figure 3 shows mininet topology forming multiple paths to chose from one end-
host to the other. Here, we configure three metrics for the links - capacity,
packet loss and latency. Mininet allows us to add delays on links. The capacities
(bandwidth) are setup as 2× 10 Gbps links for path0 and path1 and 2× 8 Gbps
for path2 and path3.
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Fig. 3. Mininet topology.

Sending Flows. We ping from one end-host to the other and record the time
in which the ping reaches the other host. The controller learns which egress port
to use, deciding which path to take. This time is recorded as the reward against
the path taken.

SDN Control. We emulate an SDN network using an Ryu OpenFlow switch. To
have a global view, we configure a network controller, Openflow switches, linux
hosts and network links. The hosts run a standard Linux kernel and network
stack to emulate running real network applications. Traceroute measurements
are recorded on the route taken and the specific gateway at each hop. We cal-
culate the total time across each hop as a reward. In this case, every episode is
represented by one flow (one ping).

State and Action Space. For dynamic multipath selection, we send a packet
from source to destination via one of the four network paths, dynamically allo-
cating flows on links. The flows go through paths: 1 → 2 → 5, 1 → 5, 1 → 3 → 5
and 1 → 4 → 5.

For initial learning, we use Link Layer Discovery Protocol (LLDP) [11] to
obtain link and switch states in the topology, it uses to advertise device identity
and abilities, and other devices connected within. LLDP helps maintain a global
view of network topology and also retains a multipath environment.

5 Training DeepRoute

The DeepRoute agent runs in an episodic fashion (with 100 flows in simula-
tion and 1 flow in mininet). The episode terminates when all flows have been
allocated.
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A Q-value is added with each state and action taken and saved into a Q-table.
We design our algorithm based on [30]. As the reinforcement learning algorithm
uses Bellman’s equation, there is a possibility of overfitting to ideal conditions.
To prevent this, during the testing phase, we use ε for allowing DeepRoute to
select random action rather than Q-table values.

Algorithm 1. Q-learning for Training DeepRoute
Initialize Q-table
for each Iteration: do

for each Episode: do
Generate 100 flows
for each flow i=1,..., 100: do

Get available bandwidth (acp1, acp2, acp3, acp4)
Get flow to allocate vi
Get current flow allocations across the 4 paths
mp1, ep1, mp2, ep2, mp3, ep3, mp4, ep4
State si = ((acp1, acp2, acp3, acp4), vi, mp1, ep1, mp2,
ep2, mp3, ep3, mp4, ep4)
if randomnumber < ε
Select any action ai ∈ (a1, a2, a3, a4)
Else
Check if Q-table has this state and select best action with highest Q-Value
Update Q-value
Check expired flows and add reward
If (si, ai) not found in Q-table, add new entry to Q-table.

end for
end for

end for
For each episode:
Print Reward

5.1 Training in Simulation

DeepRoute is trained for multiple iterations as shown in Algorithm1. Each iter-
ation generates new 100 flows and DeepRoute learns by allocating these flows on
the paths. We record the network state (available bandwidth on all 4 paths, cur-
rent allocations, size of the flow to allocate), action taken (which path is chosen)
and reward collected in the episode.

Training Iterations. Training for more iterations, allows the size of the Q-table
to grow (from 3532 for 50 iterations, 6238 for 100 and 21640 for 500 iterations).
However, Fig. 4 shows that the maximum score is achieved by 400 iterations.
Therefore this is chosen as the ideal training iterations.
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Fig. 4. Changing number of iterations during training gives different rewards.

Fig. 5. Q-values for Local and Global levels.

5.2 Training in Mininet

The implementation in Mininet removes some assumptions drawn in the simu-
lation model. Here, along with using an OpenFlow switch, we use packet loss
and latency, to calculate the reward for every ping received at other host. The
Q-table is recorded by monitoring Wireshark logs across all interfaces on the
controller.

Initially, the OpenFlow switch performs active and passive measurements
across all egress links, building the Q-table. The utilization data across the inter-
faces is collected. Here, we also have a local Q-table at each network node, as well
as a global aggregation table managed by the network controller, shown in Fig. 5.
The wireshark logs allow to collect data on latency, throughput and packet loss.
Rewards or the completion time is added afterwards to populate the Q-values in
the table constructed. Table 2 shows an example of the Q-table constructed in
Mininet. Showing only 4 entries, 1 in each path. We transfer a mixture of flow
distributions (8 and 16 GB). The arrival time (or completion time) is considered
as the reward, added to the Q-table for that state and action.
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6 Evaluation

We evaluate DeepRoute for the following objectives:

– With a distribution of network path parameters, how does DeepRoute com-
pare with other allocation techniques in simulation model?

– How can DeepRoute be translated into real network environments as in a
mininet model?

– How much of utilized capacity improvements are observed for the overall
network?

Table 2. Sample Q-table showing capacity, latency and flow arrival time.

Capacity (Gbps) Latency (ms) Path Transfer (GB) Arrival time (ms)

10 300 0 16 60290

10 100 1 8 42086

8 100 2 8 50819

8 300 3 16 59732

(a) Path0. (b) Path1.

(c) Path2. (d) Path3.

Fig. 6. Occupied bandwidth across the paths with arriving flows. Occupied bandwidth
refers to the percentage bandwidth occupied on the path.

6.1 Simulation Model Results

Testing Data. We generate a new set of 100 flows of 80:20 (mice:elephant)
distribution. This data is unseen by the DeepRoute during training phase. The
test data is consistent for all other comparison schemes to validate the results.
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Comparing with Other Techniques. We compare DeepRoute with other
algorithms - Random, to randomly assign flows on available paths, Prioritize-
Mice, to allocate mice flows before allocating elephant flows, and Prioritize-
Elephant, allocate elephant flows before mice flows. These have been published
in path computation problems [3,32].

Fig. 7. Average flows allocated to all paths.

Average Path Utilization. Figure 6 shows the path capacity used during the
testing phase. Here we see that while Path0 is the most used by the elephant-
and mice-first techniques, DeepRoute is able to show a more spread of using
other paths efficiently. It learns to use Path1 and Path2, with lower latency
more efficiently. This is also shown in Fig. 7, where paths are used more than in
other techniques. The random technique just spread use across all paths.

Figure 8 shows that DeepRoute is able to completely utilize the network at
stable 30% as compared to the other techniques as number of flows increase.

Fig. 8. Average network utilization.
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Mice and Elephant Allocations. Figure 7 shows that DeepRoute is able to
spread elephant and mice flows more uniformly across all the paths. We also see
that by spreading the load, there is less congestion on one path, which was the
case with other techniques.

Comparing with Shortest Path Route. Based on the path configurations,
the network would use Path 1 the most due to higher bandwidth and lower
latency. However, in the simulation DeepRoute learns to allocate on alternate
paths, based on the current allocations already active on the paths.

6.2 Mininet Model Results

After training, we configure the Ryu SDN controller to select egress based on
Q-table. This adjusts forwarding rules dynamically as new flows arrive.

Testing Data. We generate 100 pings from one end-host to the other and
record the utilization across all the paths.

Throughputs Recorded. Figure 9 shows the throughput measurements along
the 4 paths. Here, because the mininet model is extremely simple, the states
learned are the available paths, flow size sent and the time recorded. This allows
the controller to learn the shortest, less cost path, Path 1, as the most optimal
path to use. As a result, all future traffic goes through this path and less evenly
distributed at other paths. This result shows, if the controller was able to learn
more features of the current state, we could enhance the controller decisions.
This will form basis for future investigations of implementing DeepRoute in real
networks.

7 Discussion

7.1 Modelling Realistic WAN Flows

In this section we explained how we model realistic WAN flows, using differ-
ent size parameters in mininet simulation. We use NETEM [16] which provides
network emulation functionality for testing protocols by emulating properties of
wide area networks. To emulate the real-world network scenario, with control
on parameters that affect network performance, we change the path delay on
all four paths to (300 ms, 100 ms, 100 ms, 300 ms). In running our emulation, we
consider four key metrics - link capacity (bandwidth), latency, transfer size and
flow arrival time (presented in Table 2). To calculate latency, link delays were
assigned paths.

For link capacities (bandwidth), the DeepRoute topology has a total link
capacity of 36 Gbps linking the path 0 to path 3. This includes (2× 10 Gbps) on
path 0 and 1 as well as (2× 8 Gbps) on path 2 and 3 respectively. Iperf3 [25] is
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(a) Network Path0 (b) Network Path1.

(c) Network Path2 (d) Network Path3

Fig. 9. Throughput measurement from Source-Destination.

used for measuring performance characteristics, specifically, the TCP version of
Iperf3. Each TCP Iperf throughput test is initiated for 60 s per path. All end
hosts loop through this process for at least 100 flow rounds, thereby measuring
throughput on all the network paths (path 0–3) with different flow distributions.
We use wireshark [28], a free and open-source packet analyzer to capture packets
on all interfaces.

7.2 Performance Measurement with Load and Delay

As flow are sent, the network controller starts the learning process by perform-
ing active and passive measurements between all switches (S1–S5). The active
measurements are used to measure latency between the switches, while passive
measurements are used to obtain load and residual capacity in each link.

Having successfully deployed emulated WAN using NETEM and Mininet,
we conducted some performance measurement. With a set of flows, we specify
a normal distribution for delay, but since delays are not always uniform, we
specify a Pareto distribution (non-uniform delay distribution). As a result, all
packets leaving source to destination via path 1 and 2 will experience a delay
time of 100 ms, while those leaving via path 0 and 3 will experience 300 ms. The
final results show minimum, average, maximum and standard deviation of the
Round-Trip-Time (RTT) and if packet loss is recorded.
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7.3 Comparing to Optimization Approaches

The current implementation of Q-table shows that similar results could have
been achieved by optimization techniques. However, this implementation is lim-
ited by modelling the system as a simple MDP approach. In a real network set-
ting, conditions are much more dynamic with unseen environment conditions.
This means the Q-table approach will have to updated the build approximate
value functions, such as deep Q-networks, to make decisions in unseen conditions.

8 Conclusions and Future Work

Recent breakthroughs in deep learning research, made possible by accelerated
hardware and big data, in many fields. However, there is still a lack of under-
standing on how this can be used in network routing research.

By utilizing Q-learning we allow the controller to learn from the environment
about the paths and best hops between source and destination. With network
environments being very dynamic, with possible packet loss and traffic congestion
across some of the best paths, we explore how a DeepRoute controller can learn
best possible combinations depending on the traffic arriving and the current
network conditions to optimally utilize the network.

Commercial systems that promise improved network performance tend to
focus on average typical flows and through exploring edges (when compared to
average) press exploration of new traffic engineering models. Our work highlights
the need to change approaches to path computation and flow management for
new applications like hybrid cloud computing and other use cases cited. While
networks are challenged to strike the balance between capacity, throughput,
latency and cost, AI applications can have an impact on future deployments.
Our results show promise on how DeepRoute can allow efficient use of path
capacity and the mininet implementation shows how it can be adapted in a real
network environment.
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Abstract. Due to the lack of adequate public datasets, the proponents of many
existing cloud intrusion detection systems (IDS) have relied on the DARPA
dataset to design and evaluate their models. In the current paper, we show
empirically that the DARPA dataset by failing to meet important statistical
characteristics of real world cloud traffic data center is inadequate for evaluating
cloud IDS. We present, as alternative, a new public dataset collected through a
cooperation between our lab and a non-profit cloud service provider, which
contains benign data and a wide variety of attack data. We present a new
hypervisor-based cloud IDS using instance-oriented feature model and super-
vised machine learning techniques. We investigate 3 different classifiers:
Logistic Regression (LR), Random Forest (RF), and Support Vector Machine
(SVM) algorithms. Experimental evaluation on a diversified dataset yields a
detection rate of 92.08% and a false positive rate of 1.49% for random forest, the
best performing of the three classifiers.

Keywords: Cloud IDS � Cloud security � Machine learning � IDS evaluation �
Hypervisor-based IDS

1 Introduction

In today’s IT and business world, there has been a significant increase in the public
adoption of cloud computing for the production systems and services support, and there
seems to be no end in sight [33]. However, the growth in the public adoption of the
cloud paradigm has increased organizations exposure to a wide variety of cyber attacks
and vulnerabilities. Intrusion detection system (IDS) is one of the key tools being used
or explored in combatting cloud attacks.

Until now, the availability of a cloud dataset has been one of the major challenges
hampering the progress of the research on cloud IDS. The majority of the works done
so far on cloud IDS was done using conventional datasets like the DARPA 1998 or the
KDD’99 datasets [1, 3, 5, 10]. More so, the datasets used in the works done on a cloud
environment are not made available for public use, in some cases for privacy concerns.

© IFIP International Federation for Information Processing 2020
Published by Springer Nature Switzerland AG 2020
S. Boumerdassi et al. (Eds.): MLN 2019, LNCS 12081, pp. 315–332, 2020.
https://doi.org/10.1007/978-3-030-45778-5_21

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-45778-5_21&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-45778-5_21&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-45778-5_21&amp;domain=pdf
https://doi.org/10.1007/978-3-030-45778-5_21


These factors have denied the cloud researchers of an all-encompassing real-world
cloud intrusion dataset to carry out their work on. As shown in previous studies [4, 7],
there are strong differences between cloud network data and conventional network data
in terms of their characteristics such as flow inter-arrival time, packet-level commu-
nication, load ratios of the internal/external traffic flow, and so forth. On the other hand,
the design of anomaly detection models involves constructing normal activity baselines
from previously collected sample activity data. Hence, constructing cloud anomaly
detection models using conventional network data would fail to capture adequately
cloud network behavior considering the aforementioned differences between cloud
network and conventional network data.

The objective of the current work is to provide an empirical justification for the
need for a dataset collected specifically in a real cloud environment compared with
using a conventional network dataset in developing cloud IDS. Furthermore, we
explore the design of cloud anomaly detection using supervised machine learning
techniques. Specifically, three machine learning algorithms are studied: logistic
regression (LR), random forest (RF) and support vector machine (SVM).

The rest of the paper is structured as follows. Section 2 discusses related work.
Section 3 highlights informally the deficiencies of the DARPA dataset and introduces
as alternative a real Cloud IDS dataset. Section 4 provides empirical evidence sup-
porting the claim that the DARPA dataset does not meet key characteristics of cloud
data. Section 5 presents a new hypervisor-based cloud IDS model using supervised
machine learning. Finally, Sect. 6 makes concluding remarks.

2 Related Works

To address the lack of public cloud-specific datasets, some researchers have focused on
generating new datasets, such as [9, 13, 14]; however, to the best of our knowledge
none of these datasets are openly available. As a result, many existing cloud IDS
proposals have relied on conventional IDS datasets for development and evaluation,
using primarily the DARPA IDS dataset or the KDD CUP dataset. We discuss some of
these proposals in the following.

Bhat et al. [3] proposed an approach for detecting intrusions in virtual machine
environment on cloud using traditional and multiclass (hybrid) machine learning
algorithms. The following machine learning algorithms were considered: Naïve Bayes
Tree (NB Tree) classifier, hybrid of NB Tree and Random Forest. The NSL-KDD’99
dataset was used for evaluation and it was observed that hybrid machine learning
models perform better than the traditional or individual algorithms. In using single
classifiers, their evaluation generated accuracies of 95%, 91% and 98% for each of
Random Forest, K-NN and SVM, respectively, while the combination of NB Tree and
hybrid of NB Tree and Random Forest resulted in a high accuracy of 99% and low
false positive rate of 2%. More so, the hybrid of Random Forest and weighted K-Means
amounted to 94.7% accuracy and 12% false positive rates.

Modi and Patel [12] presented an approach that integrates hybrid Network Intrusion
Detection Systems to cloud computing environment. The experimental set up involves
using the Eucalyptus infrastructure for the simulation of a cloud computing
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environment, while the KDD IDS dataset was used for the evaluation of their work.
Their research framework involved the integration of signature-based detection and
anomaly detection. They utilized Snort, for the signature-based intrusion detection and
three machine learning classifiers viz the Bayesian, Associative (a machine learning
model using association rule) and Decision Tree classifiers singularly and collectively
for the network anomaly detection. The experimental result of their proposal for the
three classifiers and their collective ability yielded a true positive rate (TPR) of 97.14%,
and a false positive rate (FPR) of 1.17%.

Muthurajkumar et al. [15], used the combination of fuzzy SVM and random feature
selection algorithms (RSFSA) to propose a cloud intrusion detection model. In their
experiment, they built two sets of intrusion detection model, one with the whole data
features and the other after introducing feature selection. A dataset consisting of 10% of
KDDCUP was used for the experiment and analysis of their approach. The average
detection rate from their experimental results before and after applying the RSFSA to
the Fuzzy SVM classifier are 86.88% and 94.15%, respectively. Their work confirmed
that feature selection plays an important role in the classifiers’ detection accuracy. It
would have ben interesting to evaluate this proposal using a real cloud intrusion
detection dataset.

Chou et al. [5] proposed an adaptive network-based intrusion detection system for
the cloud environment using the DARPA 2000 and the KDD Cup 1999 datasets. Their
approach used spectral clustering, an unsupervised learning algorithm to build a
decision tree-based detection model for detecting an anomaly in an unlabeled network
connection data. They used Bro-IDS to generate connections records from the raw
packets. Their experimental result on the DARPA dataset yielded a detection rate of
95% and a false positive rate of 4.5% while the KDD Cup 1999 dataset yielded a
detection rate of 90% and a false positive rate of 5%. Their approach is not enough
robust as it could not detect DOS and some probing attacks which create a great
amount of connections.

Ahmad et al. [1] presented an intrusion detection model that uses Dendritic Cell
Algorithm for detecting intrusions in cloud computing environment. The experimental
evaluation was conducted using the DARPA 1999 dataset. The network-based attri-
butes were used as signals in their experiments. They carried out their experiment on a
total of 187 threat events of Week 4 and Week 5 of the DARPA 1999 dataset and the
algorithm achieved a detection rate of 79.43% and a false positive rate of 13.43%. In
their work, they demonstrated that using Dendritic Cell algorithm could provide a
solution in detecting attacks in the cloud environment.

Kannan et al. [8] proposed a host-based cloud intrusion detection system which
uses a genetic algorithm based feature selection and a Fuzzy SVM based classifier for
deciding if an event is intrusion or not. The cloud environment was simulated with
Proxmox VE 1.8 which is an open source virtualization environment while the eval-
uation was done using the KDD’99 cup dataset. In the experimental results, a detection
rate of 98.51% and a false positive rate of 3.13% were obtained.

Zhao et al. [17] put forward an anomaly detection system based on an unsupervised
learning algorithm, namely the K-means clustering algorithm. The dataset chosen for
their experiment was the KDD Cup 99 dataset. For the comparative analysis of the
performance of their proposed approach, they used the Particle Swarm Optimization
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(PSO) and Backpropagation (BP) Neural Network algorithms to test the performance
of their proposed algorithm. The K-means algorithm performed better than the other
two algorithms, yielding a false positive rate (FPR) of 3.56% as against FPR of 6.78%
and 5.75% for PSO and BP neural network algorithms, respectively. And in terms of
false negative rate (FNR), 7.65% was achieved in contrast to 10.46% and 13.75%
obtained using PSO and BP neural network algorithm, respectively. Their study was
not carried out with a real cloud IDS dataset but it however worth its salt as it
highlighted the possibility of predicting several types of attacks in the cloud.

Xiong et al. [16] proposed an anomaly detection method for cloud computing
systems based on two approaches, viz the Synergetic Neural Network (SNN) algorithm
and the Catastrophe theory (CT) algorithm. They used the DARPA dataset for their
experiment and focused their work on the network traffic information. Their experiment
yielded an overall average detection rate of 83% on the SNN algorithm and 86.62%
overall average detection rate on the CT algorithm. The experiment also yielded an
overall average of 8.3% false positive rate on the SNN algorithm and an overall false
positive rate of 9.06% on the CT algorithm.

Li et al. [11] proposed an artificial neural network (ANN) based cloud IDS. The
experimental part of their proposal involved simulating a cloud environment using
Ubuntu Enterprise Cloud (UEC), a Eucalyptus-powered cloud platform and evaluating
the result on 10% of the KDD’99 dataset. The experiment yielded an average detection
rate of 99% and an average detection time of 37.1 s. One of the drawbacks here is that
the ANN takes huge training time for large databases, therefore, the anomaly detection
algorithm may incur an increased cost if retraining is required due to change in traffic
behaviour as in the case of the cloud computing environment. More so, the simulated
dataset can not stand in as a real cloud dataset.

3 Datasets for Cloud IDS Evaluation

In this section, we compare the characteristics of conventional network data with cloud
network data, and give an overview of the ISOT cloud IDS evaluation dataset.

3.1 Cloud Network vs. Conventional Network Data Characteristics

Great disparity exists when considering the proximity of both the cloud and conven-
tional network data centers. While the cloud data centers are distributed globally, the
non-cloud data centers are always situated in a close proximity to their users or on the
premises of the serving organizations. The global placement of the cloud datacenters
satisfies the requirements for geo-diversity, geo-redundancy and regulatory constraints
[4]. Studies [4, 7] have shown that the characteristics of cloud network traffic are
different from the conventional network traffic in so many ways as explained in the
following.

Network Flow: Empirical studies in [4, 7] have shown that the inter-arrival time for
80% of the traffics in the cloud network is usually under 1 ms while with the con-
ventional network, this can be between 4 ms and 40 ms as the traffic does not change
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that quickly. In their work, it was also noted that the number of active flows for any
given second at a switch is at most 10,000 flows and that new flows can also be highly
instantaneous in arrival. These studies also went on to explain how the flow inter-
arrival time affects the kind of processing that can be done for each new flow and the
usefulness of logically centralized controllers for the flow placement. The cloud net-
work traffic is usually bursty in nature with the ON/OFF intervals being characterized
by heavy-tailed distributions. Their analysis also shows that in a cloud computing
environment, the load ratios of the internal/external traffic flow between the instance to
instance or instance and other sources are usually high. In [7], it was also discovered
that in a conventional network data, 80% of flows are usually smaller than 10 Kb in
size as compared with a cloud network data. On the one hand, the flow of commu-
nication patterns in a cloud network is usually high due to the numerous applications
being hosted and high link utilization across the cloud’s multiple layers. On the other
hand, with the traditional network, the communication flow pattern and the link uti-
lization are usually small in size. Figures 1 and 2 show the network flows for a typical
cloud environment based on the ISOT-CID and the DARPA 1999 IDS evaluation
dataset which was collected by simulating a conventional network environment [2]. In
the ISOT-CID environment shown in Fig. 1, we can see significant variability in the
network flows including the hypervisor to hypervisor network flows, the in/out traffic
flows from VM to external source not within the cloud environment, the VM to VM
network flows, and traffic flow between tenants VMs [2]. The conventional network
comprises of limited network flows as can be seen in Fig. 1 which has only two
network flows viz external and internal traffic flows [2].

Fig. 1. Network flow in ISOT-CID

Arguments Against Using the 1998 DARPA Dataset 319



Topology: The physical topology of a cloud data center follows a canonical 3-Tier
architecture which consists of the core layer or the uppermost layer, aggregation layer
or the middle layer and the edge layer or the lower link layer. In contrast, the traditional
data centers follow a 2-Tiered topology in which the core layer and the aggregation
layers are collapsed to form one layer [4]. In a typical cloud network, data is either
centralized or outsourced and provided to the users on-demand irrespective of their
geographic location. This relieves the data owner of the full control of their data as the
cloud service providers now manage and maintain the data. The cloud data also has the
flexibility of being scaled up or down by automated means. Some giant cloud service
providers such as Amazon, Google and Microsoft do have cloud data centres dispersed
geographically for the provision of universal data access to the various users [4].

3.2 Overview of the ISOT Cloud IDS Dataset

The ISOT-CID is a publicly available dataset that was collected in a real world
environment using the infrastructure of Compute Canada, a nonprofit cloud service
provider that extends its services in the areas of providing the computational needs of
researchers [2]. There were two phases involved in the ISOT-CID data collection

Fig. 2. 1999 DARPA IDS evaluation dataset network flow
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procedure, namely Phase 1 in 2016 and Phase 2 in 2018. The data in the two phases
were collected on the same production environment based on OpenStack from various
cloud layers such as hypervisors, guest hosts layers and the network layer. The dataset
size is more than 8 terabytes and it contains data of different formats such as the
memory dumps, CPU and disk utilizations, system call traces, system logs and network
traffic [6]. Another advantage of the ISOT-CID is that it is labelled and includes both
normal and attack activities. The current work is based on the network traffic attributes
of the ISOT-CID.

The ISOT-CID collection environment contains three hypervisor nodes viz, node
A, node B, and node C. The collecting environment is also composed of 10 virtual
machines or instances (VM1 to VM10) launched in three different cloud zones A, B,
and C [2].

The benign data in the ISOT-CID came from web applications/traffic and admin-
istrative activities [6]. Some of the web application activities include account regis-
tration, blog activities, and web browsing. The web traffic statistics revealed that more
than 160 legitimate users were involved in the generation of the normal data which
comprises of 60 human users and 100 robots [2]. While the administrative activities cut
across instance routine maintenance, system rebooting, application updates, file cre-
ation, machine access via SSH and remote server access.

Table 1 presents all the attacks covered in ISOT-CID, such as probing, DoS,
information disclosure, R2L, input validation, backdoors and authentication breach,
etc. These attacks were grouped into insider or outsider attacks depending on its source
[2]. On the one hand, the inside malicious activities were perpetrated by either an
insider within the cloud environment who had a root access on the hypervisor nodes or
by a compromised VM within the cloud environment used as a stepping stone. Some of
the inside attacks were backdoor and Trojan horse, network scanning, password
cracking, DoS attacks, and so forth. On the other hand, the outside malicious activities
emanated from outside the cloud environment with the ISOT-cloud environment being
the primary target. Some of the outside attacks are made up of the application layer
(layer 7) and network layer (layer 3) DoS attacks, input validation attacks, SQL
injection, path/directory traversal and cryptojacking (unauthorized cryptomining). For
instance, Fig. 3 shows a timeline for the attack scenario in Phase 1 Day 2 (2016-12-15).

Composition of ISOT-CID Network Traffic Data
The ISOT-CID is composed of three levels of network communications namely:
external, internal and local traffic [6]. In the ISOT-CID context, the external traffic is
the traffic between the instance and an outside machine. The internal traffic or the
hypervisor traffic is between the hypervisor nodes. And finally, the local traffic is the
traffic between two VMs on the same hypervisor node. The ISOT-CID network data
also comes in kinds, one being without payload on both hypervisors and VMs and the
other involving the full network traffic only on the hypervisors [2]. The ISOT-CID
network traffic/packet statistics are shown in Table 2.
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Table 1. Attacks covered in the ISOT-CID dataset [2]

Attack target
layer

Insider attack types Outsider attack types

Application
layer

• SQL Injection
• Web Vulnerabilities
Scanning

• Cross-site Scripting
(XSS)

• Dictionary/Brute Force
login attack

• Fuzzers
• HTTP Flood DOS
• Directory/Path
Traversal

Network
layer

• Trojan Horse
• Backdoor (reverse shell)
• Unauthorized Cryptomining
(download/install/run cryptominer)

• UDP Flood DOS
• Stepping Stone Attack
• Ports and Network scanning
• Synflood DOS
• Revealing Users Credentials and Confidential
Data by Insider

• Dictionary/Brute Force login attack

• Synflood Dos
• Unclassified
(unsolicited traffic)

• DNS amplification
DOS

• Ports and Network
scanning

• Dictionary/Brute Force
login attack

Fig. 3. Timeline for phase 1 day 2 (2016-12-15) inside and outside attacks
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4 Traffic Characterization

We analyzed the network traffic data of the ISOT-CID and the DARPA 1998 datasets
by looking at the network communication patterns at the flow-level. The idea is to
show how similar or different they are in terms of data transmission behaviour at the
flow level. This is also in line with the work done in [4] where the authors used traffic
engineering techniques to distinguish between cloud data center networks and con-
ventional or traditional networks. We considered three metrics in our empirical data
analysis, viz Number of Flows, Flow Inter-arrival Times, and Flow of Traffic char-
acteristics of the two datasets.

4.1 Number of Active Flows Characteristics

Figure 4 represents the empirical cumulative distribution function (CDF) of the number
of active flows at different switches within 120 s time window for both ISOT-CID
Phase 2 Day 1 (2018-02-16) dataset and DARPA 1998 Tuesday week 4 Training
dataset. Our findings based on the distribution reveals that, the number of active flows
for the ISOT-CID is between 2,000 to 6000 about 90% of the time. In the case of the
DARPA 1998 dataset, the number of active flows is between 20 and 1000 in 90% of
the time interval. This empirical observation supports the results of a prior work on data
center traffic [4]. It is also considerable to note that the latency assigned by a controller
to a new flow is determinant on the lengths of the flows [4].

4.2 Flow Inter-arrival Time Characteristics

Additionally, we examined the empirical CDF of the flow inter-arrival times under a
120 s time window on ISOT-CID Phase 2 Day 1 (2018-02-16) dataset and DARPA
1998 Tuesday week 4 Training dataset as represented in Fig. 5. We discovered that the
flow inter-arrival time for 80% of the new flows arriving at the monitored switch is
1 ms for the ISOT-CID dataset and 4 ms for the DARPA dataset. These results suggest
that DARPA is characterized by a smaller number of flows than the ISOT_CID dataset.
This empirical observation also supports the results of a prior work [4].

The flow inter-arrival times affects the scalability of the controller because a sig-
nificant number of new flows arrive at a given switch within an interval of few
microseconds [4]. Therefore, it is recommended to use multiple CPU’s per controller
and multiple controllers to compute the routes in order to scale the throughput of a
centralized control framework.

Table 2. ISOT-CID Network Traffic Distribution [2]

Phase Total normal traffic Total malicious traffic Total packets

1 22,356,769 15,649 22,372,418
2 9502872 2,006,382 11,509,254
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4.3 Flow-Level Communication Characteristics

The aggregate network transmission behaviour of the two datasets were examined
using a day’s traffic from each respectively. We based the analysis on two network flow
metrics, viz the extra-rack traffic and the intra-rack traffic. The extra-rack traffic sig-
nifies the traffic leaving the switch rack or internal hosts for other internal hosts or
external destinations, this is easily measured while the intra-rack traffic represents the
amount of traffic that stays within the rack or node [4]. On the one hand, the intra-rack
traffic for ISOT-CID, was computed by taking the difference between the volume of
traffic generated by the instances attached to the hypervisor nodes and the traffic exiting
the nodes.

On the other hand, the intra-rack traffic for DARPA 1998 dataset was computed by
taking the difference between the volume of traffic generated by the servers or host

Fig. 4. The CDF of the distribution of the number of flows at the edge switch in ISOT and
DARPA

Fig. 5. The CDF of the distribution of the flow inter-arrival time in ISOT and DARPA
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attached to the switches and the traffic exiting the switches. Table 3 shows the extra-
rack and intra-rack traffic compositions, while Table 4 provides the percentage rep-
resentation of these two metrics. Figure 6 depicts a bar graph showing the ratio of
extra-rack to intra-rack traffic in the selected day traffic of both the ISOT-CID and the
DARPA 1998 datasets.

Table 3. Extra-Rack and Intra-Rack traffic composition for ISOT-CID and DARPA 1998,
showing the number of packets.

Flow metric ISOT-CID phase 2 day 1
(2018-02-16) dataset

DARPA Tuesday week 4
training dataset

Extra-rack traffic 693426 932843
Intra-rack traffic 2177148 864810
Total traffic 2870574 1797653

Table 4. Percentage composition of Extra-Rack and Intra-Rack traffic for ISOT-CID and
DARPA 1998

Flow Metric (%) ISOT-CID phase 2 day 16
dataset

DARPA Tuesday week 4 training
dataset

Extra-rack traffic
(%)

24.16 51.89

Intra-rack traffic
(%)

75.84 48.11

Total traffic (%) 100 100
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Fig. 6. Comparison of the ratio of extra-rack to intra-rack traffic for ISOT-CID and DARPA
1998 datasets
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The result of the analysis shows that for the ISOT-CID dataset, 75.84% of the traffic
is confined to within the hypervisor node in which it was generated while 24.16% of
the traffic leaves the nodes. This result is in contrast with the DARPA 1998 dataset in
which only 48.11% of the traffic stays within the communication nodes and 51.89% of
the traffic leaves the nodes. The result of this network traffic analysis supports the
observations made in prior studies [4, 7] of network traffic characterization of data
centers.

5 Hypervisor-Based Cloud IDS Using Supervised Machine
Learning

In this section, we explore the effectiveness of hypervisor-based cloud anomaly
intrusion detection using supervised machine learning. Specifically, three machine
learning algorithms are studied: logistic regression (LR), random forest (RF) and
support vector machine (SVM).

5.1 Feature Model

Because the VM instances in the cloud environment share the same hypervisor, to
improve the cloud computing intrusion detection process, the feature extraction should
be such that it takes into account the correlated behavior of the instances. A network
flow on the other hand can be seen as a bidirectional packet streams between two hosts
or the movement of network traffic across different network points, usually from a
source to a destination and vice versa. We first grouped the captured hypervisor packets
in the pcap file formats into a stream of packet flows based on a time window dt using a
flow based forensic and network troubleshooting traffic analyzing tool called Trana-
lyzer. Eighty raw features were extracted from the packet headers and some of the raw
features are represented in Table 5.

Table 5. Some of the raw features extracted from the hypervisor network traffic using the traffic
analyzer tool (Tranalyzer)

Feature Description

flowInd The flow index
timeFirst Date/time of first packet
timeLast Date/time of last packet
duration Flow duration
srcIP Source IP
srcPort Source port
dstIP Destination IP
dstPort Destination port
numPksSnt Number of transmitted packets
numPksRcvd Number of received packets
numBytesSnt Number of transmitted bytes
numBytesRcvd Number of received bytes
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We used a three-dimensional features space in this thesis work namely frequency-
based features, entropy-based features and load-based features based on the work of
Aldribi et al. [2].

Two categories of frequency-based features were adopted for each VM instance,
namely, the ‘in-frequency’ and the ‘out-frequency’ features. The in-frequency repre-
sents the frequency of the packets incoming to a specific instance from any source or
endpoint while the out-frequency represents the outgoing packets from a specific
instance back to the respective sources.

The load-based features were extracted by taking the ratio of the matching in an out
frequency features as proposed in [2].

The entropy associated with the probability distribution of network traffic occur-
rences at ingress and egress points during the observation time window was computed
for the specific instances. Given a distribution of probabilities P ¼ fp1; p2; . . .::; pNg
having N variables, entropy is defined as

Hs ¼ �
XN

i¼1
pi log2pi ð1Þ

Where 0� pi � 1 and
PN

i¼1 pi ¼ 1. And in our case, pi represents the probability of the
distinct frequency features of the traffic during the observation time window. For
instance, the entropy of the source IP is calculated by first computing the appearing
probability associated with the source IP which is gotten by taking the ratio of the
number of packets with the specified source IP address and the total number of packets
observed in the flow, after that the entropy equation of (1) is adopted to get the value.
The entropy is minimum (Hs = 0) at maximum flow concentration or when the features
exhibit a deterministic behaviour. On the other hand, the entropy Hs is maximum
(Hs = log2N) at maximum flow dispersion or when the feature is fully at random.

5.2 Data Preparation

The data preparation steps undertaken in this research work in order to get the best
features in the dataset are shown in Fig. 7.

We leveraged the computational power of pandas, an open source software library
for Python programming language to developed a python script to extract the afore-
mentioned three feature categories of our feature model. The extracted features were
transformed to the same scale between 0 and 1 using the min-max normalization
approach. To reduce the dimensionality and complexity of the feature space, we used
the CARET R-library, a tree-based feature selection technique. The CARET R-package
gives a percentage score to all the features with the noisy features having a percentage
score of zero (0) in accordance to their statistical significance, that is information gain.
The most important features are then used to train the machine learning model. Table 6
show the features and their overall significance to the model prediction as indicated by
the CARET R-package.
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5.3 Model Evaluation Using ISOT-CID

In this research work, the performance of the three machine learning algorithms was
measured using the detection rate (DR) (also known as true positive rate (TPR)) and the
false positive rate (FPR) which are two metrics commonly used for IDS performance
computation.

Fig. 7. Data preparation subsystem

Table 6. Features and their overall importance

Feature Definition Overall
significance
(%)

f ini tð Þ The total number of packets flowing to ei during
½t; tþ dt� divided by dt

100

Li tð Þ Load feature matching the ratio of the total number of
packets flowing to and from endpoint ei during ½t; tþ dt�

97.382

f outi;iP;d;dp tð Þ The number of packets flowing from the endpoint ei to
ed during ½t; tþ dt� divided by dt

87.251

f outi tð Þ The total number of packets flowing from ei during
½t; tþ dt� divided by dt

86.431

f ins;sP ;i;iP tð Þ The number of packets flowing from the endpoint es to
ei during ½t; tþ dt� divided by dt

85.590

maxip f outi;ip tð Þ
n o

The maximum number of packets over ip flowing out of
ei during ½t; tþ dt� divided by dt

8.298

entropy_dp Entropy of the destination port 8.023
f outi;ip tð Þ The number of packets flowing from specific ip in ei to

all dp in all endpoints ed during ½t; tþ dt� divided by dt
7.877

numPksRcvd Number of received packets 7.877
numPktsSnt Number of transmitted packets 6.992

(continued)
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Table 6. (continued)

Feature Definition Overall
significance
(%)

Lmax ipð Þ tð Þ Load feature matching the ratio of the maximum number
of packets over the instant port ðipÞ flowing to and from
endpoint ei during ½t; tþ dt�

3.098

f ini;ip tð Þ The number of packets flowing from all sp in all
endpoints es to specific ip in ei during ½t; tþ dt� divided
by dt

2.915

Li;ip tð Þ Load feature matching the ratio of the number of packets
flowing from all source ports in all endpoints es to and
from specific instance port ðipÞ in ei during ½t; tþ dt�

2.750

f insP ;i tð Þ The number of packets flowing from specific sp in all
endpoints es to all ip ei during ½t; tþ dt� divided by dt

0.00

Ls;sp;i;ip tð Þ Load feature matching the ratio of numbers of packets
flowing to and from the endpoint es to ei during
½t; tþ dt�

0.00

Lsp;i tð Þ Load feature matching the numbers of packets flowing
from specific source port in all endpoints es to and from
all instance ports in endpoint ei during ½t; tþ dt�

0.00

entropy_srcPort Entropy of the source port 0.00
entropy_srcIP Entropy of the source IP 0.00

maxip f ini;ip tð Þ
n o

The maximum number of packets over ip flowing to ei
during ½t; tþ dt� divided by dt

0.00

f outi tð Þ The total number of packets flowing from ei during
½t; tþ dt� divided by dt

0.00

Table 7. Comparison of overall performance for ISOT-CID

Algorithm Overall
FPR (%) DR (%)

Logistic regression 2.61 90.52
Random forest 1.49 92.08
SVM 1.84 92.06

Table 8. Confusion matrix for random classifier based on ISOT-CID

Prediction
Attack Normal

Reference Attack TP = 114291 FN = 9831
Normal FP = 4428 TN = 292775
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The observation time window dt was set at 120 s for the network flow aggregation
and feature extraction. The data was processed following the steps described in Fig. 7.
The DR and the FPR obtained from the three machine learning algorithms for each VM
instances over different attack days and their respective overall results were computed.
The overall performance of the machine learning classification algorithms is sum-
marised in Table 7 for ISOT-CID (covering both phases 1 and 2).

The random forest algorithm was the best of the three-machine learning algorithms
in terms of performance with a detection rate of 92.08% and a false positive rate of
1.49%.

Table 8 shows the confusion matrix for the random forest classifier. The matrix
shows the number of flows being classified; the cells contain the numbers of true
positives (TP), false positives (FP), false negatives (FN), and true negatives (TN).

We examined also the effect of varying the size of the observation time window dt
on the DR and FPR of the three machine learning models. Day 5 of phase 2 hypervisor
B data was used for this analysis. Figures 8 and 9 show the effect on the detection rate
and the false positive rate, respectively. On the one hand, as the observation time
window increases, the amount of data available for decision increase thereby presenting
the model with a more balanced dataset which will in turn aid in better decision
making. On the other hand, as the time window increases, the decision time is delayed
which represents an increased window of vulnerability.

6 Conclusion

Security and privacy remain one of the main issues faced by cloud computing adopters
and consequently, there is an urgent need for the IT professionals and subject matter
experts to come up with a system that can both detect and protect the cloud infras-
tructure from malicious activities. In this paper, we carried out an empirical analysis on
the DARPA intrusion evaluation dataset and showed its deficiencies when compared to
the ISOT-CID which is a real cloud computing dataset. The results support previous
work done on network traffic characterization of data centres. It is the claim of this
work that due the deficiencies, the DARPA dataset should not be used as a genuine
dataset in the design and evaluation of cloud IDS.

Also, we investigated cloud intrusion detection using different supervised machine
learning models. The performance results obtained using the machine learning algo-
rithms are encouraging meaning that if more effort and study is channeled into it,
academia and researchers can come up with a better way to protect the cloud com-
puting environment against intrusions.

In this paper, the empirical study for the characterization of network traffic to
substantiate the difference between a cloud dataset and a conventional dataset was only
limited to three flow-level metrics viz, the number of active flows, flow inter-arrival
time, and flow-level communication patterns. Our future work will consist of extending
the presented work by exploring other empirical means to further understand the nature
of network traffic of the cloud and conventional dataset/datacenters like in the areas of
packet-level communication, link utilizations and many more.
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Abstract. Steganography is a science which helps to hide secret data
inside multimedia supports like image, audio and video files to ensure
secure communication between two parts of a channel. Steganalysis is the
discipline which detects the presence of data hidden by a steganographic
algorithm. There are two types of steganalysis: targeted steganalysis and
universal steganalysis. In targeted steganalysis, the steganographic algo-
rithm used to hide data is known. In the case of universal steganaly-
sis, the detection of hidden data doesn’t depend on any specific algo-
rithm used in the process of steganography. In this paper, we focus on
universal steganalysis of images in a database with an eventual cover-
source mismatch problem. It is shown that combining both unsupervised
and supervised machine learning algorithms helps to improve the perfor-
mance of classifiers in the case of universal steganalysis by reducing the
cover-source mismatch problem. In the unsupervised step, the k-means
algorithm is generally used to group similar images. When the number
of features extracted from the image is very large it becomes difficult to
compute the k-means algorithm properly. We propose, in that case, to
use Deep Learning with Convolutional Neural Network (CNN) to group
similar images at first and implement a Multilayer Perceptron (MLP)
neural network to estimate the hidden message length in all the different
groups of images. The first step of this approach prevents the cover-
source mismatch problem. Reducing this issue boost the performance
of classifiers in the second step which consists of estimating the hidden
message length.

Keywords: Steganography · Steganalysis · Machine learning · Deep
learning · Convolutional Neural Networks · Multilayer Perceptron

1 Introduction

Research in universal steganalysis domain become very interesting since
researchers discover that deep learning with Convolutional Neural Networks
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(CNNs) helps to obtain better results in the classification between cover and
stego images. Till now CNNs have been never used for regression to estimate
the hidden message length. Various types of materials used to capture images
and various steganographic algorithms available for hiding data cause a problem
called cover-source mismatch in universal steganalysis. In previous studies, it is
demonstrated that clustering can be used, as a prior step in the process of ste-
ganalysis, to improve the performance of the classifiers in a database with cover-
source mismatch [9], before implementing a classification or regression algorithm
for universal steganalysis. Generally, authors used clustering with the k-means
algorithm to group images into clusters. However, if the number of features
extracted is big, it becomes computationally difficult to compute them with
the k-means algorithm. In this context, we propose to employ a deep learning-
based approach for estimation of the hidden message length in steganography.
We called the proposed method DeepStego. To estimate the hidden message
length, we use in the first step a CNN for grouping similar images into different
categories. Then, in the second step, we implement an MLP neural network to
estimate the hidden message length.

The rest of the paper is organized as follows: In Sect. 2, we give the theory
in universal steganalysis. In Sect. 3, we present our original method of universal
steganalysis. Then, we illustrate our scheme in Sect. 4. In Sect. 5, experiments
are conducted on a database and we discuss the results. Concluding remarks and
future directions are provided in Sect. 6.

2 Related Works

Research in the universal steganalysis domain focuses either on the extraction of
relevant features which are sensitive to any steganographic algorithm or in the
machine learning algorithms used to build models for classification or regression.
The goal in both cases is to help to boost the performance of classifiers. About
relevant features for universal steganalysis of JPEG images, authors use First-
order statistics, Inter-block, and Intra-block features. Table 1 is a summary of
different categories of features and some authors who proposed them for universal
steganalysis of images.

Table 1. Features for universal steganalysis: an overview.

Authors Categories Feature names

Ashu and Chhikara [1] First-order statistics Global histogram

AC histograms

Dual histograms

Chen and Shi [4] Inter-block features Co-occurrence matrix

Variation

Blockiness

Chen and Shi [4] Intra-block features Average Markov matrix
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All these features are sensitive to steganographic algorithms embedding
impact while at the same time insensitive to the image content. According to
the steganographic algorithm used to embed messages, a category of features
can be more useful than others. Thus, some authors proposed methods that
combine different categories of features [4]. Many different blind steganalysis
methods have been proposed in the literature [8]. After choosing a set of fea-
tures, we need to find a strong algorithm for binary classification or regression
(to separate stego and cover images or to estimate the hidden message length).
Support Vector Machine [6] and classical Neural Networks are very used for clas-
sification between stego and cover images. Recently, some authors start to use
Convolutional Neural Network for the same task [5]. To estimate the relative
payload, Multiple Linear Regression is also used but the cover-source mismatch
problem and the huge number of features extracted make its implementation
difficult. It is shown that applying clustering is a good solution before using it
[9]. About clustering when the number of features extracted is huge and when
the database is big (more than 10,000 images), the computation becomes diffi-
cult. Some papers related to deep learning for universal steganalysis have been
published. Chaumont et al. made a recapitulation of those methods in their
paper [3]. Deep learning with CNN has better performance than usual machine
learning algorithms. However, to estimate the hidden message length in the case
of universal steganalysis, there are still some difficult challenges to overcome to
boost the performance of blind steganalyzers. Some methods which deal with
estimation of hidden message length have been proposed in the literature [11].
CNN is a classification algorithm that has never been used in the perspective of
estimating the hidden message length.

3 DeepStego: A Deep Learning Methodology

In this section, we detail the proposed approach named DeepStego for universal
steganalysis in a database with a cover-source mismatch problem. Figure 1 shows

Fig. 1. DeepStego (proposed method): data pipeline.
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an overview of the data pipeline. The different steps are described and illustrated
in the following.

The proposed approach consists of combining deep learning with CNNs [10]
and MLP neural network [6] to build strong and robust models that estimate the
hidden message length in universal steganalysis. This method consists of three
main steps:

– Step 1: Implementation of CNN in a JPEG database containing cover and
stego images. The objective here is to group similar images into different
groups (or clusters). Grouping images is a strategy to prevent an eventual
cover-source mismatch problem in the database. That problem can occur
when there is a variety of materials used to get images and a lot of different
steganographic algorithms used to hide data into images.

– Step 2: Implementation of MLP in all the groups to build models for esti-
mating the hidden message length.

– Step 3: Utilization of the models for prediction.

4 Experimental Illustrations

4.1 Cover and Stego Images

We use a steganography Python module called Stegano [2] to generate stego
images with different payloads. As shown in Fig. 2, after the embedding process,
changes between stego and cover images are not visually detectable. Histograms
of the cover image and its stego image are generated by the Stegano module
algorithm.

Fig. 2. Histograms comparison between the cover image (left) and the stego image
(right).

4.2 The Hidden Message Estimation Technique

Image Database Description. To illustrate our purpose, we use the MNIST
Database [7]. This database is very practical in our case. It contains 70, 000
28 × 28 grayscale JPEG images divided into 10 categories.
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Stego Images Generation. To generate stego images for simulation, we use
the module Stegano of Python to embed messages with different lengths inside
images. So, we obtain 35, 000 stego images. After that process, we create a vector
of labels which contains the lengths of the hidden messages of all the images of
the database. That vector will be used for the regression part.

Outcome vector L for CNN Outcome vector Y for MLP
⎛
⎜⎜⎜⎜⎜⎜⎝

L1

L2

.

.
Ln−1

Ln
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⎛
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Y1

Y2

.

.
Yn−1

Yn

⎞
⎟⎟⎟⎟⎟⎟⎠

The vector L will be used for classification with CNN and the vector Y for
regression with MLP.

Convolutional Neural Networks in the Database. To group images of
the MNIST database into different categories, we implement a Convolutional
Neural Network classifier with four hidden layers. This is a practical and very
convenient database to highlight the proposed method. We perform CNN on the
data before using Multilayer Perceptron for regression in the different groups.
This architecture of CNN gives a good classification of the images into 10 groups
(Fig. 3)

Fig. 3. CNN architecture on MNIST dataset.

This architecture can be changed. It depends on the database we use to
perform universal steganalysis of images. The goal in this step is to reduce an
eventual cover-source mismatch issue.

Features for Regression with Multilayer Perceptron (MLP) in the
Different Categories of Images. To implement an MLP neural network, we
use both intra-block and inter-block correlations [4]. It consists of 486 features
extracted from a JPEG image. At this step, we need the labels (vector Y ) con-
taining the lengths of the embedded messages of all images in the database.
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Steganalysis on a Category of Images. To perform universal steganalysis
on clusters, we use regression with an MLP neural network architecture with the
most relevant features from both intra-block and inter-block correlations.

5 Experimental Results

Estimating the hidden message length is not an easy task. In the case of univer-
sal steganalysis combining CNN and MLP neural networks is a good approach
to perform that task. In our experiments on the MNIST database, we got inter-
esting results. This database is very convenient to illustrate our method of doing
universal steganalysis in a database with a cover-source mismatch problem.

5.1 Deep Learning with CNN for Classification

By applying CNN with a standard architecture, we obtain easily 10 groups of
images. Here an illustration of the model performance.

Fig. 4. Accuracy and loss in training and validation datasets.

In Fig. 4, we can observe the evolution of the accuracy score in the training
and validation data. We can note that they are very close.

5.2 MLP Neural Network for Regression

In this step, we implement in all the clusters an MLP neural network for esti-
mating the lengths of the hidden messages. Here the architecture of our neural
network which consists of an input layer of 12 nodes (12 features selected from
the 486 extracted features), three hidden layers of 13 nodes and an output layer
of 1 node (estimation of the hidden message length) (Fig. 5).
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Fig. 5. MLP architecture employed in DeepStego

Table 2 shows the MLP models accuracy scores in the groups generated by
CNN.

Table 2. Accuracy score value in the 10 groups for DeepStego.

Groups Accuracy score

Group 1 0.99

Group 2 0.99

Group 3 0.98

Group 4 0.99

Group 5 0.98

Group 6 0.98

Group 7 0.99

Group 8 0.98

Group 9 0.99

Group 10 0.99

Furthermore, the use of a stepwise feature selection helps to boost the MLP
accuracy in the regression step.

A normal universal steganalysis procedure consists of extracting relevant fea-
tures and implementing a supervised algorithm for classification or regression.
For that, we implement an MLP neural network (with the same architecture
implemented in the second part of DeepStego) to estimate the hidden message
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Fig. 6. Performance comparison between DeepStego (G1 to G10) and a normal uni-
versal steganalysis procedure (average score on the MNIST database).

length on the full database MNIST. In Fig. 6, we show a comparison between the
results of a normal universal steganalysis procedure and DeepStego. The average
score on the MNIST database for the universal steganalysis procedure is inferior
to each score obtained by DeepStego in all the 10 groups. Thus, DeepStego gives
better results (in all the 10 groups) than a universal steganalysis procedure on
the full database.

However, the highest accuracies of the universal steganalysis approaches pro-
posed in the literature, are often in the range [0.95, 0.97]. It rarely reaches 0.9.
With DeepStego, we get accuracy which turns around 0.9 in all groups showing
the interest of the proposed deep learning approach for the estimation of the
hidden message length in steganography.

6 Conclusion

In this paper, we addressed the cover-source mismatch problem that prevents
the utilization of regression for universal image steganalysis. For this, we need
to group similar images into clusters before applying it. When the extracted
feature vector from the image is very large, the k-means algorithm cannot help
to perform the clustering process. To address this issue, we have proposed an
original method that used in its first step CNNs to group similar images and
in its second step implementation of a multilayer perceptron neural network
to estimate the hidden message length. Experimental results on the MNIST
database provided good approximation models in all the 10 clusters. Thus, deep
learning with CNN is a suitable alternative to k-means to reduce the cover-source
mismatch problem in the case of universal steganalysis.
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Abstract. Deep learning (DL) based autoencoder (AE) has been pro-
posed recently as a promising, and potentially disruptive Physical Layer
(PHY) design for beyond-5G communication systems. Compared to a
traditional communication system with a multiple-block structure, the
DL based AE provides a new PHY paradigm with a pure data-driven
and end-to-end learning based solution. However, significant challenges
are to be overcome before this approach becomes a serious contender for
practical beyond-5G systems. One of such challenges is the robustness
of AE under interference channels. In this paper, we first evaluate the
performance and robustness of an AE in the presence of an interference
channel. Our results show that AE performs well under weak and moder-
ate interference condition, while its performance degrades substantially
under strong and very strong interference condition. We further pro-
pose a novel online adaptive deep learning (ADL) algorithm to tackle
the performance issue of AE under strong and very strong interference,
where level of interference can be predicted in real time for the decoding
process. The performance of the proposed algorithm for different inter-
ference scenarios is studied and compared to the existing system using
a conventional DL-assist AE through an offline learning method. Our
results demonstrate the robustness of the proposed ADL-assist AE over
the entire range of interference levels, while existing AE fail to perform in
the presence of strong and very strong interference. The work proposed
in this paper is an important step towards enabling AE for practical 5G
and beyond communication systems with dynamic and heterogeneous
interference.

Keywords: Deep learning · Physical layer · Autoencoder ·
Interference channel
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Fig. 1. System block diagram of an ADL algorithm based AE for a wireless communi-
cation interference channel with m-user

1 Introduction

Communication networks and services are becoming more intelligent with the
novel advancements and unprecedented levels of computational capacity that is
available for processing locally or in the cloud. AI, including machine learning
(ML) and deep learning (DL), has been widely used for the design and manage-
ment of communication systems, and has been shown to significantly enhance
the system performance and reduce the operational cost, hence has raised great
interest in standard [1], as well as in research. There has been a number of
examples of using AI in communication systems in the literature, for example,
for channel estimation [2], complex multiple-input and multiple-output (MIMO)
detection [3], channel decoding [4], joint channel estimation and detection [5],
joint channel encoding and source encoding [6].

In a conventional communication system, the channel propagation is often
modeled mathematically, which may not correctly reflect the channel in practical
scenarios and the dynamic nature of the changing. DL based approaches demon-
strate a useful and insightful way of fundamentally rethinking the communication
system design problem and hold the promise for performance enhancement in
complex scenarios that are difficult to characterize with tractable mathematical
models. Compared to a traditional communication system with a structure con-
sisting multiple functional blocks, autoencoder provides a new paradigm with
a pure data-driven and end-to-end learning based solution. For example, a DL
based AE is proposed in [7], where the deep neural networks (DNNs) based recon-
struction transceiver block jointly optimizes all the functions in a single process.
The work in [8] presents end-to-end learning of a communications system with-
out a channel model. In [9], authors propose a deep reinforcement learning app-
roach for training a link with noisy feedback, for both additive white Gaussian
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noise (AWGN) and Rayleigh block-fading (RBF) channels. Also, two practical
DL-based systems are implemented in [10] and [11].

All the work above provided great insights of the potential performance of
applying AE for interference-free channels. However, it is also revealed in [12]
that AE can be vulnerable to adversarial and jamming attacks, compared to
conventional coding schemes. While [13] shows that such drawbacks can be mit-
igated through adversarial training, it is not clear how AE will behave under a
multi-user interference channel, with which performance of a multi-user system
is often impaired [14,15]. The study in [7] considers a two-user link with interfer-
ence for AE. However, offline training is used and there is no adaptive training
for different levels of interference. Other studies on AE, MIMO channel learning
[16], channel estimation in an OFDM system [17], and learning to optimize for
interference management [18], are all based on offline learning, therefore does not
cope well with the situation when interference is dynamic, can be from different
sources, and can vary in real time.

In this work, we characterize the tolerance of a conventional AE under a
Gaussian interference channel, with respective to different interference levels.
Our results demonstrate that although the offline trained AE approach has rea-
sonable robustness for noisy to moderate interference channel, performance of
AE suffers substantially under a strong or very strong interference channel. To
date, there has been little work on DL-based AE in the presence of an interference
channel with a variety of interference strengths, even less so to address the issue
for allowing AE in practical dynamic and heterogamous interference scenarios.
In this paper, we proposed an adaptive deep learning (ADL) algorithm based
AE. The interference strength is predicted through an adaptive deep learning
process, where real time online learning is performed to obtain the knowledge of
the real time interference level for the subsequent decoding process, through an
updated DNNs layer. We demonstrate that the proposed AE works robustly for
all interference levels. In particular, the performance improvement compared to
conventional AE [7] is more notable for the strong and very strong interference
scenarios.

2 System Model

2.1 System Description

The proposed ADL algorithm based AE system for a wireless communication
interference channel with m-user is shown in Fig. 1. It has three main blocks:
transmitter, channel, and receiver. Compared to a conventional communication
system with a number of blocks, this proposed diagram recast the block diagram
as an end-to-end optimization task and represent the system as a simplified AE
system by using a DL based neural network (NN) layer. For basics of DNN,
an introduction is given in [24]. The NN layer stacks one on top of another. In
general, the NN layers considered in this work transform an input data lin into
an output lout as follows:

lout = f(wlin + b) (1)
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where w and b are weights and trainable parameters and f(.) is a non-linear
function [24]. The weights of the whole layers are optimized jointly. Let s as the
input, and the training set contains all the possible values of s. In an AE during
the training, the targets values are equal to the inputs ie ŝi = si, where si is
a realization of s. The network is trained to optimize the reconstruction error,
which is given:

L(s, ŝ) = −logp(s|ŝ) (2)

The reconstruction error here is the cross entropy loss, which is given [24]:

L(s, ŝ) = −
∑

k

(s(k)logŝ(k) + (1 − s(k))log(1 − ŝ(k))) (3)

where ŝ(k) = P (s(k) = 1|ŝ). s(k) stands for bit k of s and ŝ(k) stands for bit k of
ŝ. The training of the network is performed by solving the following optimization
problem:

arg min
P

Es,N,θ[L(s, ŝ)] (4)

where P is denote the set of trainable parameters. N and θ are generated noise
and phase by the channel layer each time it is used.

For the transmitter side, the transmitted messages s is reconstructed, and
si ∈ M = {1, 2, . . . ,M}, where M = 2k is the dimension of M with k being
the number of bits per message. The message is passed to the transmitter. The
transmitter applies a transformation by a DNN layer f : M → R

2n to the mes-
sage si to generate the transmitted signal x = f(si) ∈ R

2n. Note that the output
of the transmitter is an n-dimensional complex vector which is transformed to
a 2n real vector. We use ’one-hot vector’ with size of M to reconstruct si for

Table 1. The structure of the MLP AE

Block name Layer name Output dim

input: M

Block name Dense+eLu M

Dense+Linear 2n

nomalization 2n

Channel Noise 2n

Decoder Dense+ReLU M

Dense+Softmax M

Name [σ(u)]i range

ReLU max(0, Ui) [0, ∞)

Tanh tanh(Ui) (−1, 1)

Softmax eui
∑

j e(uj)
(0, 1)
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DNN layer. Following the similar definition in [7], the transmitter is constrained
by an average power: E [|x2

i |] ≤ 0.5∀ i. In this work, we use a m-user interference
channel with AWGN.

2.2 Model of Interference Channel with m-user

In Fig. 1, a m-user Gaussian AWGN interference channel is illustrated within the
dashed-line rectangle block. The interference channel has m transmitter-receiver
pairs that simultaneously communicate in blocks of size m. Each transmitter
communicates to its own receiver a message s ∈ m = {1, 2, . . . ,m}. Let xn and yn

denote the input and output signal of the nth user, respectively. Nn ∼ CN(0, 1)
is independent and identically distributed Gaussian noise that impairs receiver n.
Each xn has an associated average power constraint Pn so that 1

m

∑m
n=1 |xn

m|2 ≤
Pn. Receiver n observes ŷn and estimates the transmitted message x̂n. The
average probability of error for user n is εn

m = E[P (ŝn �= sn)], where expectation
is over the random choice of message. The channel output at each receiver is
a noisy linear combination of its desired signal and the sum of the interfering
terms, of the form [19]:

yn = xn +

√
INR
SNR

m∑

j=1,j �=n

xj + Nn,∀j, n = 1, 2, . . . ,m (5)

where yn and Nn are the channel output and AWGN respectively, at the n th
receiver and the xn is the channel input symbol at the n th transmitter. All
symbols are real and the channel coefficients are fixed. The AWGN is normalized
to have zero mean and unit variance and the input power constraint is given by
[19]:

E[(xn)2] ≤ SNR, ∀ n ∈ m. (6)

The INR is defined through the parameter α [19]:

log(INR)
log(SNR)

= α → INR = SNRα (7)

Note that the definition of INR ignores the fact that there are m-1 interferers
observed at each receiver. This is for two reasons. First, this definition parallels
that of the two-user case [20], which will make it easier to compare the two
rate regions. Second, the receivers will often be able to treat the interference as
stemming from a single effective transmitter, via interference alignment. This is
not the case when the receiver treats the interference as noise. In this work, the
introduced parameter α > 0 defined by INR = SNRα; this coupling parameter
α is used to specify the corresponding linear deterministic model in [21].

In this work, we address the interference scenarios including noisy, weak,
moderate, strong, and very strong interferences. The definition of the classifica-
tion for the interference is proposed in [19]. The degrees-of-freedom (GDoF) of
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Algorithm 1: ADL algorithm to predict the interference
Input: • AE model and specifications: n, k, batch size, epochs number,

optimizer, learning rate, etc
• the training data set lin
• the variance of channel noise σ2

Output: • • the estimated interference parameter α
1 Initialize:
2 Set AE model parameters (e.g., n ←4, k ←4, M ←4)
3 for i in range (training data samples) do
4 Set x = f(si) ∈ R

2n, si ∈ {1, 2 . . . M}, encoding
5 Create and Set ŷ(n) for receiver layer
6 for i in range (numble of guessing α) do
7 DNN layer to training data set (settings in Table I)
8 Recovery pilot signal ŝi according to a guessing α

9 Calculate reward R̂i according to Eqs. (5) and (6)

10 Set confidence interval of R̂i and predict α
11 Update DNN layer with α according to Eqs. (7) to (10)

the symmetric m-user interference channel is identical to that of the multiple-
user channel, except for a singularity at α = 1, as follows:

d(α) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 − α, 0 ≤ α < 1
2 (noisy)

α, 1
2 ≤ α < 2

3 (weak)
1 − α

2 , 2
3 ≤ α < 1 (moderate)

1
K , α = 1
α
2 , 1 < α < 2 (strong)
1, α ≥ 2 (very strong)

(8)

2.3 ADL Algorithm at Receiver Blocks

As shown in Fig. 1, at the receiver side, y(n) is the received signal after propagat-
ing through an AWGN channel, which includes the original transmitted signal,
the channel response, AWGN noise as well as the interference from other sources.
Here, the received n-dimensional signal y(n) noised by a channel represented as
a conditional probability density function p(y|x), and the DNNs receiver sub-
sequently learns it with multiple dense layers. The last layer of the receiver is
a Softmax activation layer that outputs an M -dimensional probability vector
p, in which the sum of its elements is equal to 1. The receiver first applies the
transformation f : R2n → M to decode the signal, creating a signal ŝi to recover
the original transmitted signal si.

To enable the comparability of the results implemented in different scenarios,
we set n = 4 and k = 4 throughout this work. For other setups of the AE, to allow
a benchmark for comparison, we use the similar AE structure and settings as in
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[7], which are based on a multi-layer perceptron (MLP) AE. The specifications
are listed in Table 1. We train the AE in an end-to-end manner using the Adam
optimizer, on the set of all possible messages si ∈ M , using the cross-entropy
loss function. ReLU and Softmax are used in DNNs layer.

As shown in Fig. 1, we design and propose an adaptive learning process-
ing, integrating with the DNNs based receiver block, named ADL algorithm,
to estimate the interference coupling parameter α. With the Predicted α, we
obtain an updated channel function, according to Eqs. (5) to (7). Then the DNN
layer is updated with this knowledge by substituting α into Eq. (5). This pro-
cess includes two stages. Firstly, we utilize multiple group of pilot signals for
online DNN training to predict the real-time α. Then with the knowledge of the
channel, we update the interference channel function, decode signals with DNN
layers.

It assumes that the signals consist of two parts. The first part is pilot signal,
as the training data set. The second part is the transmitted signal, which has
the same structure as it’s in a DL based OFDM system [17]. However, we utilize
the pilot signals here for both estimating interference and the DNN training.
We introduce and explain our proposed ADL algorithm in Algorithm1. At the
initialization stage, we set the specifications of an (n = 4, k = 4) AE and load the
input training data set. Then, the DNN layer encodes the data for propagating
through an AWGN channel. The DNNs based receiver block first captures a
group of signals, and then the reinforcement block starts to train the pilots
simultaneously. By process of reward computation, the block normalizes the
reward regarding different guessing values of α. Then we determines the optimum
α range with regarding the a predefined confidence interval. Based on the plot of
the reward according to the guessing values of α. We compute the mean, as the
predicted α. Next, the estimated α is substituted back into the DNNs block for
the decoding process with an updated DNNs layer. For this prediction process
based on the reward performance, we will give more details in the Section of
Numerical Evaluation. In this work, the normalized reward is defined as follows:

R̂i =
Ri

||Ri|| (9)

where
Ri =

1
BER|Pilot←(1,...,i)

(10)

Ri is defined as the reciprocal of the mean bit error rate (BER) value for i pilots
signals.

3 Numerical Results and Discussion

In this section, numerical simulation is carried out under the environment of
Python 3.0, with the libraries of PyTorch, TorchNet and TQDM. Training was
done at a fixed value of Eb/N0 = 7 dB using Adam [22] with a learning rate of
0.001. Activation functions rectified linear units (ReLU) [23] and Softmax are
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Fig. 2. SER versus SNR performance of an AE (4, 4): no interference, interference
α = (0.2 0.8) with blind training, α = 0.2 with knowledge of α.

Fig. 3. SER versus SNR performance of an AE (4, 4): weak interference α = 0.5 (at
training) with offset up to αoff = 2.5 (received).

used in our DNNs layer. The details are listed in Table 1. Detailed explanation
of these can be found in [24]. The pilot symbol ratio we used in our simulation
is 0.01. The group number of the bit streams is 30, which is used for jointly
training and estimating the interference α.



350 D. Wu et al.

3.1 Comparsion with and Without Interference

A DL based AE with different settings of (n, k) (n is the number of channel use,
and k is the bits of the signal) are studied and evaluated in [7]. It compares the
performance between the M -QAM modulation and AE with similar settings.
It demonstrates that the AE (4, 4) and (4, 8) outperforms the 4-QAM and
16-QAM. To enable a benchmark for comparison, we choose the setting (4, 4)
throughout all scenarios. However, we evaluate the performance according to
our proposed interference model, as shown in Eqs. 5–8. We verify our algorithm
through an example of a two-user interference channel case. For other multi-user
case, the methodology is similar, and the enhancement is more significant.

In the proposed DL based system, the AE reconstruct and compressed the
data with ‘one hot vector’ format for the NN layer. For a fair comparison to a
conventional system with other modulation schemes, we study the symbol error
rate (SER) for evaluating the system performance. We first simulate an AE (4,
4) system in an ideal channel without taking any interference, as a reference
point. The plot is illustrated in Fig. 2. It shows that without the interference,
the system works well, even under a low SNR. Then we evaluate a blind training
with interference. The blind training is defined as that the system does not
have any knowledge that it is an interference channel. Therefore the system
trains a model without interference α. However, the true received signal has a
certain value of α. We evaluate the system from α = 0.2 to α = 0.8, in Fig. 2.
The results show that with a blind training, the AE has some robustness even
without any knowledge of the channel. However, when α increases beyond 0.6,
then the AE doesn’t work well. We also plot the case with the knowledge of α for
comparison. When α = 0.2, we could achieve SER ∼10−3 at Eb/N0 = ∼7 dB,
and this is assuming that we know the exact α for training. The comparison in
Fig. 2 indicates that it is possible to overcome the interference effect if we have
an efficient approach to predict the interference parameter α.

3.2 Robustness of an AE for Different Interference Strengths

We demonstrate that the AE approach has some robustness when it applies in
an interference channel. However, we also want to characterize the robustness
for difference interference strengths. It assumes that the system knows the inter-
ference channel generalized formula (Eq. 5) and it applies a DL training for the
decoder. We train the model with a predetermined α. However, we assume that
α may change dynamically in a real time scenario and we want to evaluate how
robust of the decoder when α has some offset, denote as αoff.

Following the definition in Eqs. 5 to 8 , we simulate for weak (α = 0.5) and
very strong interference (α = 2) respectively. Results are plotted in Figs. 3 and
4. It shows that the AE approach is quite robust for a weak interference. The
system works even under a very large offset: 3 times of the training α. However,
the situation is slightly different for very strong interference, where α = 2. The
result in Fig. 4 indicates that the system is quite sensitive to the offset under a
very strong interference channel. For this scenario, it does require a technique to
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deal with the interference. To address this, we apply the proposed ADL algorithm
and the performance evaluation is given in the next section.

Fig. 4. SER versus SNR performance of an AE (4, 4): very strong interference α = 2
(at training) with offset up to α = 2.5 (received).

3.3 Evaluation with the Proposed Learning Algorithm

Recall the proposed ADL algorithm in sect. 2. We evaluate the ADL algorithm
to estimate α in different interference strengths. We also carried more groups
of study as in section B, and we found that for strong (α = 1.5) and very
strong (α = 2) interference, the offset of α becomes more critical. Therefore, we
address this and implement our algorithm for these cases. With the same setting
in Figs. 3 and 4, we plot the normalized reward versus a predicted α (different
values at training), in Fig. 5. for α = 1.5 and α = 2, respectively. We can see
that the peak value of the normalized reward appears around 1.5 (actual value),
and it reduces gradually to both sides of the actual value. By contrast, for the
very strong interference, where α = 2, we can also found out the peak value of
the normalized reward appears around the real value of α. However, it decreases
rapidly towards both sides of the actual value, which agree with the achievement
that it’s more sensitive to the offset. As the fluctuation is quite large in Fig. 5,
here we define 40% offset as the confidence interval of the reward, to estimate α.
We use the mean α for evaluating the performance, as we introduced in Sect. 2.
Furthermore, the reward is computed according to the instant SNR condition.
For this simulation, we use Eb/N0 = 7 dB as an example. To evaluate the
performance with and without applying the proposed ADL algorithm, we plot
the SER performance for weak, strong and very strong interference channels for
comparison, as shown in Fig. 6. In this simulation, we take a large interference
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Fig. 5. Normalized reward versus predicted α: strong interference α = 1.5 and very
strong interference α = 2.

Fig. 6. SER versus SNR: comparison for strong and very strong interference channel,
with and without the proposed ADL algorithm.

effect as an example, αoff = 2α, to demonstrate the improvement achieved by
our algorithm. Two groups of data are highlighted in Fig. 6. We can see that
the SER significantly degrades due to the large offset of α. In particular, for the
strong and very strong interference cases, the system does not work without the
knowledge of α. However, with applying the ADL algorithm, the result shows
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that with an efficient interference prediction, the ADL algorithm based AE is
capable of robust performance over the entire range of interference levels, even
for the worst case in a very strong interference channel.

4 Conclusion

An ADL algorithm based AE is proposed for interference channel with unknown
interference. With the proposed online learning, interference can be estimated
and predicted, which is then subsequently used for decoding of the signals using
DNN. The proposed algorithm is shown to significantly enhance the robustness
of the interference channel, and provides an AE system that is adaptable to real-
time interference, for the entire range of interference levels. The enhancement
is more notable for strong and very strong interference scenarios, compared to
performance of conventional AE with offline learning.

We believe that our proposed approach is an important step towards enabling
AE for 5G and beyond communication systems with dynamic and heterogeneous
interference. Our future work aims at improving computational efficiency of our
online learning scheme, and the implementation on real-life platforms.
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Abstract. In many urban areas where road drivers are suffering from
the huge road traffic flow, conventional traffic management methods have
become inefficient. One alternative is to let road-side units or vehicles
learn how to calculate the optimal path based on the traffic situation.
This work aims to provide the optimal path in terms of travel time for the
vehicles seeking to reach their destination avoiding road traffic congestion
and in the least possible time. In this paper we apply a reinforcement
learning technique, in particular Q-learning, that is employed to learn the
best action to take in different situations, where the transiting delay from
a state to another is used to determinate the rewards. The simulation
results confirm that the proposed Q-learning approach outperformed the
greedy existing algorithm and present better performances.

Keywords: C-ITS · VANETs · Reinforcement learning · Distributed
traffic management · Travel time

1 Introduction

Nowadays, emerging and developed countries suffer from the immense road traf-
fic flow, especially in urban environments, because of the continuous increase in
the number of vehicles traveling every day in parallel with the continued popula-
tion growth, but much faster than transportation infrastructure. Consequently,
this huge amount of vehicles will become a serious problem leading to traffic con-
gestion, air pollution, fuel consumption [1] and excessive traffic delays. There-
fore, intelligent transport systems is becoming a primary need to deal with these
problems and to accommodate the growing needs of transport systems today.

Cooperative Intelligent Transport System, or C-ITS [2,3], is a new trans-
portation system which aims to provide intelligent solutions for a variety of road
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traffic problems, as congestion and traffic accidents, by linking vehicles, roads
and people in an information and communications network through cutting-
edge technologies. It applies advanced technologies of computers, communica-
tions, electronics, control and detecting and sensing in all kinds of transportation
system in order to improve safety and mobility, efficiency and traffic situation
via transmitting real-time traffic information using wireless technology. C-ITS
focuses on the communication between vehicles (vehicle-to-vehicle), vehicle with
the infrastructure (vehicle-to-infrastructure) or with other systems.

The C-ITS system have attracted both industry leaders and academic
researchers. These systems are considered as a solution for many road traffic
issues and as an efficient way to enhance travel security, to avoid occasional traf-
fic jams and to provide optimal solutions for road users. In this system (C-ITS),
vehicles can exchange information with each other (V2V) or with road-side units
(V2I). These communications are handled through a specific WIFI called IEEE
802.11p [4].

The main contribution of this paper is to minimize the total traveling time
for drivers by providing optimal paths suggestion to reach their pretended des-
tination. The proposed solution highlights vehicular communications between
vehicles and road-side units in order to collect and exchange current traffic sta-
tus. The remainder of the paper is organized as follows. Section 2 presents a
review of some works related to transport traffic management. Section 3 details
the proposed approach. Section 4 presents the evaluation and performance of our
proposed solution, and Sect. 5 concludes the paper and highlights future works.

2 Related Works

A group routing optimization approach, based on Markov Decision Process
(MDP) [5], is proposed in [6]. Instead of finding the optimal path for individual
vehicles, group routing suggestion will be provided using vehicle similarities and
V2X communications to reduce traffic jams. The authors are studied the learn-
ing method of this approach and how it is going to work with their proposed
prototype. The MDP is a type of mathematics model used for studying optimiza-
tion problems solved via dynamic programming [7] and reinforcement learning
[8]. MDP is characterized by a set of actions that can lead to a certain state
depending on what you want to achieve. The selection of the most appropriate
actions is induced by MDP rewards.

In [9], and based on the Vehicular Ad-hoc Network (VANET) architecture,
the authors present a predictive road traffic management system named PRTMS.
The proposed system uses a modified linear prediction (LP) algorithm to esti-
mate the future traffic flow at different intersections based on a vehicle to infras-
tructure scheme. Based on the previous estimation results, the vehicles can be
rerouted in order to reduce the traffic congestion and minimise their journey
time. However, the proposed system relies mainly on a centralised architecture
to exchange road traffic information with vehicles, which can lead to a significant
overhead costs and power resources.
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In order to find the shortest path, Dijkstra [10] proposed a static algorithm
based only on the distance from the source node to all other nodes without
considering external parameters such as density, congestion, or average vehicle
speed. However, this algorithm is not practical enough in the case of continuous
changes over time in road traffic network. Thus, vehicle routing optimization
should always consider a continuous adaptation of routes for each vehicle to
reach their destinations in the least possible time.

Nahar and Hashim [11] introduced an ant-based congestion avoidance system.
This later use the average travel speed prediction of roads traffic combined with
the map segmentation to reduce congestion using the least congested shortest
paths to the destination. Real-time traffic information is collected from vehicles
and road side units (RSU) in order predict the average travel speed. Their stud-
ies have been conducted in fixing the ACO (Ant colony optimization) variables
[12] to reduce vehicle congestion on the roads. Their results show that the num-
ber of ants is directly correlated with the algorithm performance. However, the
proposed method does not perform well when there is only a small number of
ant-agents (under 100).

Kammoun et al. [13] proposed an adaptive vehicle guidance system. It aims
to find the best route by using real-time data from a vehicular network. In
order to improve driver request management and ensure dynamic traffic control,
the proposed method used three different ant-agents city agent, road supervi-
sor agent and intelligent vehicle-ant agent are three different ants, namely, city
agent, road supervisor agent and intelligent vehicle-ant agent. However, the pro-
posed method is faced with a limitation at managing a large and complex urban
transportation network.

The authors in [14] come up with two algorithms named GREEDY and
Probabilistic Data Collection (PDC) for vehicular multimedia sensor networks.
The proposed algorithms can provide data redundancy mitigation under network
capacity constraints by using submodular optimization techniques. They assume
that vehicles are equipped with cameras and they continuously capture images
from urban streets. The proposed algorithm is evaluated by using NS-2 simulator
and VanetMobiSim to generate the mobility traces. One major drawback is that
when many vehicles attempt to upload their data at the same time, quality of
service can highly decrease.

Based on the literature reviews and previous studies, both traditional and
centralized road traffic management solutions have become inefficient depending
on road traffic demands in urban areas and the high overhead costs they consume.
Also, predicting and calculating the shortest path is not always reliable due to
the continuous changes of road traffic flow over time. Our proposed approach
aims to enable an efficient traffic flow management by providing optimal paths
suggestion and reducing the total travel time of vehicles using reinforcement
learning and based on a vehicular ad-hoc network architecture (VANET).
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3 The Proposed Approach

3.1 System Architecture

The system architecture is presented in Fig. 1. It is composed of two main com-
ponents: Vehicles and RSUs. RSUs are placed at the intersections to collect
information from vehicles. Each vehicle exchange its current traffic information
with the closest RSU.

Fig. 1. System architecture

We used two types of communications in our system: wireless communication
using ITS G5 (IEEE 802.11p) that handles exchanges between vehicles and the
RSUs, and wired communications to handle exchanges between RSUs. As shown
in Fig. 3, the transport network consists of Manhattan street topology of overall
40 segments and a grid map of 5 × 5 junctions. There are 12 RSUs placed at
different intersections, the distance between two adjacent intersections is set to
0..1 km, and the maximum speed of vehicles is 60 km/h. The travel time on each
segment varies according to the road traffic status and ranges from 5 s to 1 h.

3.2 Machine Learning

Machine Learning (ML) is a science that get computer systems to learn through
data, observations and interacting with the world, and improve their learning
over time to act without being explicitly programmed. It gives the computer to
learn as well as humans do or better.
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Machine learning can generally be classified into 4 main categories according
to the learning style:

– Supervised learning: Learning is supervised when the model is getting
trained on a labeled data-set (i.e. which have both input and output param-
eters) and the algorithms must use it to predict the future result. For exam-
ple, you can give the system a list of customer profiles containing purchasing
habits, and explain to it which are regular customers and which ones are
occasional. Once the learning is finished, the algorithm will have to be able
to determine by itself from a customer profile to which category this one
belongs. The margin of error is thus reduced over the training, with the aim
of being able to generalize its learning to new cases.

– Unsupervised learning: the learning process is completely autonomous.
Data is communicated to the system without providing the examples of the
expected output results. It is much more complex since the system will have
to detect the similarities in the data-set and organize them without pre-
existing labels, leaving to the algorithm to determine the data patterns on
its own. It mainly deals with the unlabeled data. Although, unsupervised
learning algorithms can perform more complex processing tasks compared to
supervised learning.

– Semi-supervised Learning: This type is a combination of the supervised
and the unsupervised categories, in which both labeled and unlabeled data
are used, typically a large amount of unlabeled data with a small amount of
labeled data.

– Reinforcement Learning: in this type of learning, the algorithms try to
predict the output of a problem according to a set of parameters. Then, the
calculated output becomes an input parameter and a new output is calculated
until the optimal output is found. Artificial Neural Networks (ANN) and Deep
Learning, which will be discussed later, use this learning style. Reinforcement
learning [15] is mainly used for applications such as resource management,
robotics, helicopter flight, skills acquisition and real-time decisions.

Figure 2 shows a typical reinforcement learning scenario in which an agent
performs an action on the environment, this action is interpreted as a reward
and a representation of the new state, and this new representation is forwarded
to the agent.

3.3 Q-Learning Algorithm

Traffic routing management can be considered as a MDP while junctions states
represent the system states and the process of selecting directions across the
junctions represent the actions. When passing across a junction, the vehicle
observes a delay that can represents the reverse of a reward. Then, the objective
is to select at each junction the optimal direction in order to reduce the total
traveling time. Two methods can be used to address this problem as stated
in the previous section. However, instead of using dynamic programming, the
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Fig. 2. A typical reinforcement learning scenario

reinforcement learning can operate in case of unknown environment. In this work,
we consider that the vehicle driver is traveling in an unknown environment i.e.
he has no information about junctions delay. The driver will try to minimize the
cumulative long term transit delay (i.e. maximizing a reward given by the reverse
of the transition delay) by experimenting actions according to the observation
of current states and rewards.

Q-learning method is considered as an off policy reinforcement learning algo-
rithm, which tries to find the best action to take in the current state. No policy
is imposed, but the Q-learning algorithm learns from actions that seek to maxi-
mize the total reward. In this sub-section, we consider the driver reorientation in
the case of a model-free system environment. We propose the use of a reinforce-
ment learning approach to solve our optimization problem. Then, each junction
i in the road network is represented by a state in our system representation,
denoted as si. Let S be the set of possible states. We assume that in each state
si the vehicle driver can take one action of the set A = {turn left, turn right, go
forward, go backward}. When a vehicle goes across a junction, a delay time is
observed. In our proposition we look for minimizing the total travel time from
a source to a destination, so that our reward, that we try to maximize, will be
considered as the inverse value of the delay time.
We can summarize the reinforcement learning steps as follows:

– Observes the state at the iteration n: Sn = sj ∈ S,
– Selects and applies an action an = ai ∈ A,
– Go to the next state Sn+1 = sk ∈ S and observes the immediate reward

Rai
(sj , sk),

– Updates the Q function using the following Equation as in [14]:

Qn(Sj , ai) ← Qn−1(Sj , ai) + αn[Rai
(sj , sk) + γmax

aj∈A
(Q(Sn+1, a)) −

Qn−1(Sk, ai)]



A Learning Approach for Road Traffic Optimization in Urban Environments 361

Where αn is a learning rate factor and γ is the discount factor with γ ∈ [0, 1].
The Q-learning algorithm is given in Algorithm 1.

Algorithm 1. Q-learning algorithm

Initialize Q(s, a), ∀s ∈ S, a ∈ A(s), arbitrarily, and Q(terminal − state, .) = 0

Repeat (for each episode):

Initialize S

Repeat (for each step of episode):

Choose A from S using policy derived from Q(e.g., ε − greedy)

Take action A, observe R, S′

Q(S, A) ← Q(S, A) + α[R + γmaxaQ(S′, a) − Q(S, A)]

S ← S′

Until S is terminal

The learning rate α defines how much newly acquired information replaces
old information. When α = 0 that makes the agent exploiting prior knowledge,
and α = 1 makes the agent ignore prior knowledge and consider only the most
recent information to explore other possibilities. However, the discount factor γ
determines how the future rewards are important. When γ = 0 that will make
the agent considering only the current rewards, and while γ approaching 1 will
make it strive to get a long-term high reward, but if the discount factor exceeds
1 the action values may diverge [16]. The ε-greedy method is used for exploration
during the training process. This means that when an action is selected in train-
ing, it is either chosen as the action with the highest q-value (exploitation), or
a random action (exploration).

4 Evaluation and Performance Analysis

The proposed approach has been tested on a network that contains 25 inter-
sections and 40 two-way links using the Matlab platform [17]. It is considered
as a programming platform designed specifically for scientists and engineers, in
which we can analyze data, create models or develop algorithms, etc. It can used
for a range of applications including deep learning and machine learning, control
systems, test and measurement, computational finance and biology [18], and so
on. We have performed many simulations in order to compare the proposed app-
roach with the greedy algorithm that seeks to find the path with the largest sum
of the crossed nodes value. The simulations aim to determine the total travel
time of a vehicle in the network for different traffic scenarios and to check how
the traffic will be improved by suggesting optimal paths to the vehicles based
on the Q-learning approach.
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The transport network topology consists of a grid map of 5 × 5 intersections
as shown in Fig. 3, in which the vehicles are supposed to move according to the
Manhattan mobility model [19]. The network has 12 RSUs placed at different
intersections, the distance between two adjacent intersections is set to 0..1 km,
and the maximum speed of vehicles is 60 km/h. We assume that the time required
for a vehicle to cross a link between two intersections is between 5 s and 1 h
depending on traffic situation.

Fig. 3. Simulation system network

Table 1. Network configuration parameters

Parameters Values

Number of intersections 25

Number of links 40

Number of actions 4

α: learning rate [0, 1]

γ: discount rate [0, 1]

Maximum number of iterations 3000

Mobility model Manhattan

Number of RSUs 12

Wireless transmission range 500 m

Wireless links ITS G5 (802.11p)



A Learning Approach for Road Traffic Optimization in Urban Environments 363

0 500 1000 1500 2000 2500 3000
0

1000

2000

3000

4000

5000

6000

7000

8000

9000

Iterations

T
ra

ve
l t

im
e 

in
 S

ec
o

n
d

s

α: 0.1; γ: 0.1

Q−learning
Greedy

(a)

0 500 1000 1500 2000 2500 3000
0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

Iterations

T
ra

ve
l t

im
e 

in
 S

ec
o

n
d

s

α: 0.5; γ: 0.1

Q−learning
Greedy

(b)

0 500 1000 1500 2000 2500 3000
0

1000

2000

3000

4000

5000

6000

7000

8000

Iterations

T
ra

ve
l t

im
e 

in
 S

ec
o

n
d

s

α: 0.5; γ: 0.5

Q−learning
Greedy

(c)

0 500 1000 1500 2000 2500 3000
0

1000

2000

3000

4000

5000

6000

7000

Iterations

T
ra

ve
l t

im
e 

in
 S

ec
o

n
d

s

α: 0.1; γ: 0.9

Q−learning
Greedy

(d)

Fig. 4. Traveling time comparison between our approach and the greedy algorithm.
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The vehicles can communicate with road-side units through periodic mes-
sages in order to collect the traffic status information around junctions by using
ITS G5 protocol (802.11p). The system configuration parameters are shown in
Table 1.

In this simulation, the total travel time is used as performance indicator for
the evaluation. This parameter represents the cumulative time spent to travel
from the starting node to reach the destination one. Different values of the
parameters α and γ are experienced to fined the optimal combination that gives
the best results. For this assessment, we take the parameter ε = 0.01. Figure 4
shows the obtained results by varying the parameters α and γ.

It is important to remainder that α represents the learning rate i.e. how much
newly acquired information replaces old information (α = 0 implies exploiting
prior knowledge and α = 1 means ignoring prior knowledge and considering the
last recent information in order to explore other possibilities). The parameter
γ represents the discount factor that determines how the future rewards are
important. When γ becomes close to 0 this implies that is important to find a
best path to use immediately, but when γ is near to 1, the driver prefers to find
the best path even if this path will take more traveling episodes. The results
presented in this figure show that the learning approach gives better results
than using the shortest path for searching to travel. The results are specially
important when γ = 0.9 in which the proposed approach gives a traveling time
always better than the greedy approach. For other values of γ, we can see that
our proposition is almost better than greedy solution.

5 Conclusion

In this work, we have proposed a learning approach for traffic optimization in
urban environments. The vehicles seeking to reach their destination can have the
ability to learn mainly in the purpose to provide the optimal path in terms of
travel time, which leads to reduce the total travel time and minimize congestion
in transport network. The proposed method is based on a reinforcement learn-
ing technique, in particular Q-learning, that is used to learn the best action to
take into account according to various traffic situations. The simulation results
showed that the proposed Q-learning approach outperformed the greedy algo-
rithm with better performances in terms of transit delay. As further works, we
intend to improve the proposed algorithm by considering other use-cases, for
example using a dynamic transition delay at the junctions or either exchanging
learning data between vehicles to accelerate the process of finding the optimal
path.
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Abstract. Indoor localization has attracted much attention due to its
many possible applications e.g. autonomous driving, Internet-Of-Things
(IOT), and routing, etc. Received Signal Strength Indicator (RSSI) has
been used extensively to achieve localization. However, due to its tem-
poral instability, the focus has shifted towards the use of Channel State
Information (CSI) aka channel response. In this paper, we propose a deep
learning solution for the indoor localization problem using the CSI of an
8×2 Multiple Input Multiple Output (MIMO) antenna. The variation of
the magnitude component of the CSI is chosen as the input for a Multi-
Layer Perceptron (MLP) neural network. Data augmentation is used
to improve the learning process. Finally, various MLP neural networks
are constructed using different portions of the training set and different
hyperparameters. An ensemble neural network technique is then used to
process the predictions of the MLPs in order to enhance the position esti-
mation. Our method is compared with two other deep learning solutions:
one that uses the Convolutional Neural Network (CNN) technique, and
the other that uses MLP. The proposed method yields higher accuracy
than its counterparts, achieving a Mean Square Error of 3.1 cm.

Keywords: Indoor localization · Channel State Information · MIMO ·
Deep learning · Neural networks

1 Introduction

Localization is the process of determining the position of an entity in a given
coordinate system. Knowing the position of devices is essential for many appli-
cations: autonomous driving, routing, environmental surveillance, etc. The local-
ization system depends on multiple factors. The environment, whether indoors
or outdoors, is one of the most dominant factors. In outdoor environments, the
Global Positioning System (GPS) is widely used to localize nodes. In [1], the
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authors present a location service which targets nodes in a Mobile Ad-hoc Net-
work (MANET). The aim is to use the GPS position information obtained from
each device and disseminate this information to other nodes in the network while
avoiding network congestion. Each node broadcasts its position with higher fre-
quency to nearby nodes and lower frequency to more distant nodes. The notion
of closeness is determined by the number of hops. In this way, nodes have more
updated position information of nearby nodes that is sufficient for routing appli-
cations, for instance. While the GPS satisfies the requirements of many outdoor
applications, it is not functional in indoor environments. Consequently, in such
scenarios, other measurements have to be exploited to overcome the absence
of GPS.

One family of localization methods is known as range-based localization. In
this method, a physical phenomenon is used to estimate the distance between
nodes. Then, the relative positions of nodes within a network can be com-
puted geometrically [2]. One of the most used phenomena is the Received Signal
Strength Indicator (RSSI). RSSI is an indication of the received signal power.
It is mainly used to compute the distance between a transmitter and a receiver
since the signal strength decreases as the distance increases. In [3], the distances
between nodes along with the position information of a subset of nodes, known as
the anchor nodes, are used to locate other nodes in a MANET. This is achieved
using a variant of the geometric triangulation method. The upside of RSSI is
that it does not need extra hardware to be computed and is readily available.
Another physical measure to compute the distance between devices is the Time-
Of-Arrival (TOA) or Time-Difference-Of-Arrival (TDOA). Here, the time taken
by the signal to reach the receiver is used to estimate the distance between
devices. Using TOA in localization proves to be more accurate than RSSI, but
requires external hardware to synchronize nodes [4]. In the case where only the
distance information is available, a minimum of three anchor nodes with previ-
ously known positions are needed to localize other nodes with unknown positions.
In order to relax this constraint, the Angle-Of-Arrival (AOA) information can be
used in addition to the distance. Knowing the angle makes it possible to local-
ize nodes with only one anchor node [5]. However, the infrastructure needed to
compute AOA is more expensive than TOA both in terms of energy and cost.

RSSI has been extensively used in indoor localization [6]. However, it exhibits
weak temporal stability due to its sensitivity to multi-path fading and environ-
mental changes [6]. This leads to relatively high errors in distance estimation
which, in turn, deteriorates the accuracy of position estimation. With the data
rate requirements of the 5G reaching up to 10 Gbps, the communication trend
is switching to the use of MIMO antennas where signals are sent from multiple
antennas simultaneously [7]. Furthermore, with orthogonal frequency-division
multiplexing (OFDM), each antenna receives multiple signals on adjacent sub-
carriers. This introduces the possibility of computing a finer-grained physical
phenomenon at the receiver, which is known as Channel State Information (CSI).
In other words, as opposed to getting one value per transmission with RSSI,
with CSI, it is possible to estimate CSI values which are equal to the number
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of antennas multiplied by the number of subcarriers. CSI represents the change
that occurs to the signal as it passes through the channel between the trans-
mitter and the receiver e.g. fading, scattering and power loss [8]. Equation (1)
specifies the relation between the transmitted signal Ti,j and the received signal
Ri,j at the ith antenna and the jth subcarrier. The transmitted signal is affected
by both the channel through the CSIi,j , which is a complex number, and the
noise N .

Ri,j = Ti,j · CSIi,j + N (1)
In Sect. 2, we present state-of-the-art solutions that use CSI to achieve Indoor

Localization. In Sect. 3, the building blocks of the proposed solution are intro-
duced. First, the choice of magnitude component and the data preprocessing
steps are briefly explained. Second, the data augmentation step is presented,
followed by the ensemble neural network technique. The localization accuracy of
our solution is compared with two state-of-the-art solutions in Sect. 4. Finally,
the conclusion and future work are discussed in Sect. 5.

2 Related Work

One of the very first attempts to use CSI for indoor localization is FILA [9].
With 30 subcarriers, the authors compute an effective CSI which represents
the 30 CSI values at each of the subcarriers. Then, they present a parametric
equation that relates the distance to the effective CSI. The parameters of the
equation are deduced using supervised learning. Finally, using a simple trian-
gulation technique, the position is estimated. In [10], the authors carry out an
experiment where a robot carrying a transmitter traverses a 4 × 2 meter table
and communicates with an 8 × 2 MIMO antenna. The transmission frequency
is 1.25 GHz and the bandwidth is 20 MHz. Signals are received at each of the
16 subantennas over 1024 subcarriers from which 10% are used as guard bands.
Using a convolutional neural network (CNN), the authors use the real and imag-
inary components of the CSI as an input to the learning model to estimate the
position of the robot. The authors publish the CSI and the corresponding posi-
tions (≈17,000 samples) readings which are used as a test bed for our algorithm.
Therefore, the comparison with their results is fair since both algorithms process
the same data. Figure 1 shows the experimental setup as well as a sketch of the
MIMO antenna and the position of its center. The lower part of the figure shows
the table which is traversed through the experiment and the MIMO antenna.
The upper part shows a sketch of the MIMO antenna showing its center at (3.5,
−3.15, 1.8) m in the local coordinate system. The distance between adjacent
antennas is lambda/2 which is computed from the carrier frequency.

Another solution that is tested on the same data set is NDR [11] which is
based on the magnitude component of the CSI. First, the magnitude values are
preprocessed by fitting a line through the points. Then a reduced number of
magnitude points are chosen on the fitted line to represent the whole spectrum
of the CSI. By achieving this, both the dimensionality of the input and the noise
are reduced. Since the proposed solution is based on a similar approach, we will
provide a brief explanation of the preprocessing step.
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Fig. 1. Experimental setup (bottom) and a sketch of the MIMO antenna (top) [10]

3 Methodology

3.1 Input of the Learning Model

Since the CSI is a complex number, it can be represented in both polar and
Cartesian forms. Thus, there are a total of four components to represent the
CSI; real, imaginary, magnitude, and phase. Equations (2) and (3) show the
conversion from one form to another.

CSIi,j = Re + iIm (2)

Mag =
√

Re2 + Im2

φ = arctan(Re, Im)
(3)

A good input feature is one that is stable for the same output. In other
words, if the transmission occurs multiple times from the same position, the fea-
ture values are expected to be similar. In order to examine the behaviour of the
components, the four components are plotted for four different transmissions
from the same position. Figure 2 shows the CSI components of four different
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transmissions from the same position. The example shown is for antenna 0 at
position (3.9, −0.44, −0.53) m. Each sub-figure shows the four CSI components
of one transmission. It should be noted that the phase values are all scaled to
be in the same order as the other components. With careful inspection, it can
be noticed that the magnitude component shows the highest stability. This con-
clusion is further supported by the analysis performed in [11,12]. Consequently,
we chose the magnitude to be the input component to the deep learning model.

Fig. 2. Real, Imaginary, Magnitude and Phase components estimated from 4 transmis-
sions from the same position.

3.2 Data Preprocessing

After choosing the magnitude as the input feature, the number of input values to
estimate one position is 924 × 16. As seen in Fig. 2, the magnitude points appear
to follow a continuous line with noise scattering points around this line. The
first step is to retrieve a line that passes through the magnitude values. Since
this process has to be performed for each of the 15k training samples multiplied
by the 16 antennas, it has to be relatively fast. This process is achieved by
polynomial fitting on four sections over the subcarrier spectrum [11]. Figure 3
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shows the four batches, each in a different color, and the degree of the polynomial
used to fit the line. The polynomial degree is chosen by attempting several values
and choosing the degree that yields the highest accuracy. Dividing the spectrum
into four sections increases the accuracy of the overall fitting. More details of
the fitting process can be found in [11].

Fig. 3. Fitting a line through the magnitude values. (Color figure online)

The following step is to use a reduced number of points along the fitted
lines instead of the whole set of 924 points. This mitigates the noise that leads
to the scattering around the line. In addition, the reduction allows us to build
a more complex MLP that can be trained in less time. In [11], 66 points are
used to represent the whole spectrum. We chose the input feature to be the
difference (slope) between two consecutive points. For the 66 points, there are
65 slope values. Using the same MLP structure as in [11], the mean square error
is reduced from 4.5 cm to 4.2 cm over a 10-fold cross validation experiment. Even
though this is a slight improvement of around 7%, it shows that the absolute
value of the magnitude is not the decisive factor to determine the position, but
rather the variation of the magnitude along the spectrum.



CSI Based Indoor Localization Using Ensemble Neural Networks 373

3.3 Data Augmentation

Data augmentation is a method to increase the training set which is the main
driver of the learning process. The artificially created training samples are con-
structed from the available samples with some mutation. In an image recognition
context; blurring, rotating, zooming in or out are all ways to generate a new
training sample from an existing one.

In our case, a training sample is composed of a set of 924 × 16 magnitude
points and the corresponding position. In our solution, we propose the mutation
to the input and the output sides of the training sample. As for the output posi-
tion, we know the measuring error of the tachymeter used to calculate the given
position, which is around 1 cm [10]. We model this error by a Gaussian distri-
bution with zero mean, which is the given position, and a standard deviation
which is 1/3 cm. Thus, the position of the augmented sample is computed using
this distribution. As for the magnitude points, first, a line is fitted through the
points using the previously mentioned method. Next, the standard deviation of
the absolute error between the line and the values is computed. The augmented
sample is then calculated by scattering the points around the fitted line with a
Gaussian distribution with zero mean and twice the computed standard devia-
tion. This can be seen as an equivalent to the blurring in the image recognition
context. Figure 4 shows an example of an augmented magnitude sample in red
from an original training sample in blue using a fitted line in black.

In order to test the effect of data augmentation on localization accuracy, an
MLP neural network is constructed with the hyperparameters listed in Table 1.
Training the MLP is then executed with different percentages of augmented
data. Figure 5 shows the effect of the number of augmented data samples on the
mean square error of the position estimation.

It is worth mentioning that the larger the augmented data set, the better
the localization accuracy. The mean square error is reduced from 8 cm to 6.7 cm
using an augmented sample from each training sample.

3.4 Ensemble Neural Networks

The last part of our algorithm is to construct several neural networks with differ-
ent characteristics. The difference between MLPs can be in the hyperparameters
or the samples used to train the model. For instance, the neural networks used to
plot Fig. 5 are different since they are trained on different training sample sizes.
Also, in k-fold cross validation, neural networks are trained on the same data
size but on different samples. Moreover, changing any of the hyperparameters
shown in Table 1 leads to different results.

Mixing the prediction of each neural network with different characteristics
can lead to a significant increase in accuracy. We examine different ways to mix
the prediction results of the MLPs:

1. Mean: The simplest way to mix the results is to compute the arithmetic mean
position of all the predictions.
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Fig. 4. Data augmentaion sample from an original training sample. (Color figure
online)

2. Weighted mean: Each of the MLPs is given a weight that is proportional to
its individual localization accuracy. Thus, the higher the accuracy, the higher
the weight. Then the final prediction is a weighted average of the individual
prediction.

3. Weighted power mean: The effect of weights is further magnified by raising
them to a certain power before computing the weighted average.

4. Median: The idea is to pick one of the predictions that is closest to all other
predictions. This makes sense when the ensemble has three or more MLPs.
This mitigates the effect of the large errors of some predictions.

5. Random: The final prediction is a randomly selected individual prediction.
6. Best pick: This is used as an indication of the best possible result one can

attain with the given ensemble. The final prediction is the closest individual
prediction to the actual position. This is not feasible since in normal cases
the actual position is not given.

Figure 6 shows the effect of adding one or more neural networks to the ensem-
ble. The x-axis represents the number of neural networks in the ensemble. Beside
the number of the NNs, there is a number between brackets representing the
mean square error of the added neural network. This means that the first MLP
has a Mean Square Error (MSE) of 3.9 cm. This is the best individual MLP that
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Table 1. Hyperparameters selection.

Hyperparameter Value

Number of layers 5

Units per layer 512

Epochs 100

Activation function relu

Learning rate 0.0005

Optimizer Adam

L2 regularization Without L2

Dropout percentage 0%

Batch sizes [128, 256, 512, 1024, 2096]

Fig. 5. Effect of data augmentation on localization accuracy.

was constructed using the data augmentation technique. The y-axis shows the
MSE for each type of prediction mixing. One of the types in Fig. 6 is labeled
“median + wght” meaning the average prediction of both mixing methods. It
can be seen that with different mixing techniques, except for the random pick,
the estimation accuracy can be improved even if the added MLP has a higher
individual error. The best accuracy achieved is 3.1 cm MSE using 11 MLPs. This
result outperforms [10] which uses a CNN learning from real and imaginary com-
ponents and achieves an error of 32 cm. It also outperforms [11] which uses an
MLP learning from the magnitude values and achieves an error of 4.5 cm. It is
to be noted that the accuracy can be further increased if there is a way to select
the best individual estimation of the MLPs ensemble.
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Fig. 6. Mixing the predictions of a neural network ensemble.

4 Experimental Results

In this section, we compare the localization accuracy of the proposed Ensemble
NN method based on the variation of magnitude and data augmentation with
the NDR [11] and CNN [10] methods. NDR is an MLP where the input is the
magnitude values, and the hyperparameters are chosen emperically to get the
lowest mean square error estimation. CNN is a convolutional network where the
input is the real and imaginary components of the CSI. The estimation results
in NDR and CNN are presented while varying the number of antennas used
(Fig. 7).

As expected, a lower number of antennas is used the estimation error is high.
In all solutions, the estimation improves with more data provided from the added
antennas. The proposed Ensemble NN technique outperforms NDR and CNN.
The error of CNN is much higher than NDR and Ensemble NN, probably due to
the high temporal instability of the real and imaginary CSI components. While
the error difference between Ensemble NN and NDR methods seems small, the
improvement is relatively significant. When using 16 antennas, NDR achieves an
MSE of 4.5 cm while the proposed Ensemble technique achieves 3.1 cm which is
an improvement of ≈30%.
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Fig. 7. Comparing Ensemble NN with NDR [11] and CNN [10]

5 Conclusion

In this work, we propose a deep learning solution for the indoor localization
problem based on the CSI of a 2× 8 MIMO antenna. The variation of the mag-
nitude component is chosen to be the input feature for the learning model. Using
the magnitude variation instead of the absolute values improves slightly the esti-
mation. This shows that the focus should be on better describing the change in
magnitude along the subcarrier spectrum rather than the absolute values. Data
augmentation is then used to further increase the estimation accuracy. Finally,
an ensemble neural network technique is presented to mix results of different
MLPs and achieves an accuracy of 3.1 cm, outperforming two state-of-the-art
solutions [10,11]. This work can be improved through the detection and correc-
tion of outliers as some of the errors are much larger than the mean error. The
possibility of using another learning layer to detect outliers or select the best
individual MLP estimation from the ensemble might enhance the estimation
accuracy.
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Abstract. To be able to identify computer attacks, detection systems
that are based on faults are not dependent on data base upgrades unlike
the ones based on misuse. The first type of systems mentioned gener-
ate a knowledge pattern from which the usual and unusual traffic is
distinguished. Within computer networks, different classification traffic
techniques have been implemented in intruder detection systems based
on abnormalities. These try to improve the measurement that assess the
performance quality of classifiers and reduce computational cost. In this
research work, a comparative analysis of the obtained results is carried
out after implementing different selection techniques such as Info.Gain,
Gain ratio and Relief as well as Bayesian (Näıve Bayes and Bayesians
Networks). Hence, 97.6% of right answers were got with 13 features.
Likewise, through the implementation of both load balanced methods
and attributes normalization and choice, it was also possible to dimin-
ish the number of features used in the ID classification process. Also, a
reduced computational expense was achieved.

Keywords: Näıve Bayes · Bayesian networks · Feature selection · IDS

1 Introduction

Cyber-attacks keep being a big problem in the current productive context. They
can lead to the loss of sensitive information employed to make decisions within
organizations. Thus, the necessity to develop tools to mitigate vulnerabilities in
computer environments comes up. Several systems protect from malware data
have emerged. However, when the database is not updated frequently, these
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systems may not be fully effective. As new attacks are created, inadequate man-
agement of vulnerabilities may generate catastrophic situations. Therefore, the
detection of fraudulent actions has become one of the research priorities of infor-
mation security. For this reason, algorithms have been integrated to many Intru-
sion Detection Systems - IDS based on data mining techniques for identification
of anomalous traffic. [11–14,16,17]. The CERT (Information Security Incident
Response Center) [12], has analyzed and classified in its database over 10,000
viruses. The viruses identified show that some remain over time and others evolve
and adapt to new operating systems expanding their actions. It is feasible to pro-
vide users with more optimal tools for protection of different threats that may
arise. INTECO has documented an important number of viruses that affect the
operating systems of mobile devices, PCs and servers.

Some simulation environments have been developed which allow the design
and implementation of new IDS Intrusion Detection Systems based on intelli-
gent techniques [14,17]. The proposed models are evaluated through different
experimental works in which quality measures are analyzed to be then imple-
mented in productive environments, [3,8]. Some of the techniques considered are
Näıve Bayes, J48 and PART classifiers and Chi Square selection techniques and
Consistency [15], the IBK classifier and the combination of Symmetric and Gain
ratio selection techniques [19], assembled vector support classifiers and non-linear
projection techniques [7], Bayesian authorizing maps [3], Hybridization of statis-
tical techniques and SOM performing feature selection with PCA + FDR [19], a
wrapper-based method, applied using a multi-objective approach and using the
GHSOM classifier [19]. This work focuses on the bi-class classification processes
because of their relevance in real application situations where possible attacks
are sought. In addition, it would be required to take corrective actions against
the anomalous behavior that has been identified. Selection techniques have been
applied based on information filtering: Info.Gain [3], Gain ratio [1] and Relief
[10]. The main purpose is to identify the attributes that contribute the most to
the classification process. Then, an appropriate selection technique is identified
and applied [6,9]. A comparative analysis of the quality metrics generated is
made.

2 Pre-processing

The simulation process used to validate the detection rates of a classifier
implies the execution of a series of phases: pre-processing, selection, train-
ing/classification and evaluation of the performance of the classifier. The pre-
processing phase involves the use of a data set from which the data to be analyzed
comes from. In this type of research, the DARPA NSL-KDD data set has been
used as it is widely supported by the scientific community that evaluates related
studies. According to [13], there are some improvements that NSL-KDD has
over its predecessors. The fact that it does not include redundant records in the
data collection for training. There are no duplicated records in the data collec-
tions proposed for the tests. The number of records selected from each group
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of difficulty level is inversely proportional to the percentage of records in the
original set of KDD data. Also, the number of records in the data collections for
training and testing is reasonable. In the different simulation contexts described
later, the NSL-KDD data set created from the KDD’99 [11] was used. The size
of the NSL-KDD is smaller than the one of KDD’99 because the records of
redundant connections have been eliminated. The NSL-KDD is made up of the
KDDTrain+, KDDTrain+20Percent, KDDTest+ and KDDTest-21 files which
are in both TXT and ARFF formats.

To be able to adjust the NSL-KDD set, techniques such as pre-processing,
load balancing and normalization were applied. The load balancing is intended
to level the number of normal connections and the number of attacks to avoid
bias. Classifiers that are trained with unbalanced data sets, tend to classify
data instances as part of the main class and ignoring the low representation of
the minority class. Table 1 shows the amount of both the normal connections
and the connections that represent attacks. They are contained in the NSL-
KDD. 53.46% of the connections are normal exceeding by 6.92% the connections
corresponding to the attacks. Thus, a load balancing technique called Synthetic
Minority Oversampling Technique - SMOTE [12] was implemented. According to
[18], this technique is responsible for adding random information to the training
process of the data set generating new data instances. In this research work,
SMOTE gives new instances of the “attack” data class by 14.86% of the current
ones in the training data set NSL-KDD. Each new instance is computed from
the average of the five closest neighbors and with a seed set to one.

Table 1. Connection distribution for NSL-KDD train

Training

Connections Qty %

Normal 67.343 53.46

Attacks 58.630 46.54

Total 125.973 100.00

Regarding standardization, 41 features of the NSL-KDD data set are used
in the different classification techniques. Therefore, the variables scale is very
important to determine the topological organization of the structures used by
these techniques. If the range of values of a variable is greater than the others,
it will probably dominate the organization of the classifier structure. Normal-
ization prevents one characteristic from contributing more than another to the
measurement of distances. In [5] six standardization methods are presented and
have been evaluated in this proposal. According to the results acquired, it has
been demonstrated that the technique with the best performance is the one
called normalization at zero mean and unit variance. The continuous variables
are normalized with zero mean and unit variance by using Eq. 1. On the other
hand, all the variables are scaled at the interval [0...1]. The symbolic features
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and the binary ones are not normalized. The normalization technique employed
is a simple linear transformation as shown in the following equation:

x̂ =
x − x

σ
(1)

Where x and x are the mean and the standard deviation of the variable x. This
is equivalent to express the x variable as the distance between the number of
deviations and its mean. After refining the data set through the pre-processing
techniques mentioned previously, the different features selection methods are
evaluated. The purpose is to reduce the complexity of the appraising process
which will be then executed by the classifier.

3 Feature Selection Techniques

The feature selection phase is essential for an efficient analysis of the data con-
tained in the data set since this usually contains information that adds noise to
the generation process of the model. Because of this issue, there is some degra-
dation of the quality of the patterns to be detected. The redundant variables and
the irrelevant ones make it difficult to get significant patterns from the data. In
[15], it is stated that the ability to use a feature selection is essential to perform
an effective analysis because the data contains information that is not necessary
for the generation of the model. It is affirmed in [19] that the features selection
allows to reduce the entries of the data to an appropriate size for processing and
analysis. Therefore, attributes or features must be selected or discarded depend-
ing on their usefulness for the analysis. Every selection process of attributes has
a starting point, which can be the complete set of attributes, the empty set or
any intermediate state. After the first subset is evaluated, other subsets will be
examined based on a search direction that can be forward, backward, random
or any variation of the above. The process will finish when the entire space is
covered or when a stop condition is fulfilled depending on the search strategy
followed. There are other methods of attribute selection which are based on the
transformation of input values providing information related to: how relevant is
each variable as a whole?

It is possible to discard the ones that are irrelevant or those that are below
a certain threshold of relevance. According to [8], filtering-based selection tech-
niques are used to find the best subset of features of the original set. The filtering
methods seem to be optimal for the selection of a subset of data. These do not
depend on the classification algorithm and the computational cost is lower for
large data sets. The wrapper-based choice features techniques (wrappers) also
defined in [3], use the prediction capability of the classification algorithm to
select the optimal subset of features. In this study the filtering-based selection
techniques known as Info.Gain [3], Gain ratio [7] and Relief [4] have been used.
In the references review, it was noticed that promising results can be got when
applied to detect faults. During the experimental works carried out, Bayesian
classifiers and networks were utilized to analyze the performance measurements
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obtained from the proposed models [1,3]. The following is a detailed description
of both the features selection techniques Info.Gain, Gain ratio, Relief and the
classification methods Näıve Bayes, Bayesian networks which are based upon the
suggested model.

3.1 Info.Gain

As presented in [2], Info.Gain is a filter-based features choice method. It is also
known as information gain and is used to identify the importance of the fea-
tures of a data set collection. The attribute with the largest gain is chosen as
the division feature for the umpteenth node. This trait minimizes the required
information to classify the couples in the resulting allocation. It reflects very
small defects among these partitions.

3.2 Gain Ratio

As studied in [7], Gain ratio belongs to the category of filtering-based traits
selection techniques which is applied to analyze the features of big size data
sets. When there are many different values, the gain information relationship is
used to consider these features. This approach is widely applied due to the good
results that can be obtained. Additionally, these results can be employed during
the classification phase. Its main distinctive feature is the modification of the
information gain that reduces the error. Gain ratio considers the number and
size of branches to choose from a characteristic.

3.3 Relief

This is an algorithm that determines significant features and allow to easily
distinguish between instances of diverse classes [4]. Based on this approach, it
defines the weight for each feature. However, the Relief genuine version limits
its application field to two-class problems. Hence, for weight allocation purposes
just the closest neighbor of a different class is utilized.

4 Classification and Training Techniques

At this stage, firstly, the classifier is trained. This process is done from the learn-
ing algorithm chosen and by using the normalized data set which is reduced to the
most important features. Hence, an efficient learning is created. Once the train-
ing is performed, the classifier determines normal traffic and attacks through a
subsequent classification of every connection within the data set. Then, the qual-
ity measures are computed to assess the classification technique performance.
Bayesian classifiers were used. These are based on the Bayes theorem [3].

p(A|B) =
p (A,B)
p (B)

=
p (A) p (B|A)

p (B)
=

p (A) p (B|A)
ΣA′p (A′) p (B|A′)

(2)
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Being A and B two random events whose possibilities are denoted as p(A) and
p(B) respectively and taking p(B) > 0. The A and B event possibilities pre-
viously known are supposed to be true. Likewise, the probability is subjected
to event B to be true assuming that A is too p(B|A). Finally, p(A|B) is the
possibility of A to be true considering that B is also true.

4.1 Näıve Bayes

As stated in [3], Näıve Bayes is a descriptive and predictive classification tech-
nique based upon the probability theory which comes from the Byes theorem
analysis. This theory suggests both an infinite sample and an independent statis-
tics among variables. In this case referring to the characteristics not to the
class. Under these conditions, the probability distributions of each class can
be calculated to establish the relationship between the traits and the class. If
x = (x1, ..., xn) is given, where xi is the observed value for the umpteenth fea-
ture. Hence, the possibility for a class ym with k possible values (y1, ..., yk) to
occur, results from the Bayes rules as shown in Eq. 3.

P (ym|x1, x2, . . . , xn) =
p (ym)

∏n
i=1 p (xi|yi)

p (x1, x2, . . . , xn)
(3)

In the above equation, p(ym) is the class proportion of ym in the data set.
Also, p(xi|yi) is computed from the examples amount with a xi value whose
class is ym. Therefore, it can be inferred that to compute p(xi|yi) makes the xi

values be discrete. So if there is some continuous feature, it should be discretized
in advanced. The assorting of a new class ““x”” is done by calculating the
conditioned possibilities of each class and choosing the best option. If Y =
(y1, y2, ..., yk) is the current class data sets, it will be sorted with the class that
satisfies Eq. 4.

∀i �= j, P (yi|x1, x2, . . . , xn) > P (yj |x1, x2, . . . , xn) (4)

Although the Bayesian classifier is a fast and simple method, it is required
to go all over the training set to compute P (ym|x1, x2, ..., xn). This calcula-
tion is unfeasible for a large number of examples. So, a simplification is needed.
Therefore, the conditional independence hypothesis is considered for decompos-
ing purposes of the probability.

4.2 Bayesians Networks

As stated in [1], a Bayesian network is a defined, directed and labeled acyclic
graph, which describes the joint probability distribution that governs a set of
random variables. Let X = x1, x2, ..., xn be a set of random variables, a Bayesian
Network for X is a pair B =< G,T > in which:

• G is a directed acyclic graph in which every node represents a variable
x1, x2, ..., xn and every arc symbolizes direct dependence relationships among
the variables. The arcs direction shows that the variable pointed by the arc
depends on the variable placed at its origin.
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• T is a parameters set to quantify the network. It contains the probabilities
PB(xi|Xi) for each possible xi value of each variable Xi and each possible
value of n which denotes the parents set of Xi in G. Hence, a Bayesian
network B defines a joint probability distribution over X as given in [1] and
as indicated in Eq. 5.

PB (x1, x2, . . . , xn) =
n∏

i=1

P

(

Xi|
∏

xi

)

(5)

5 Methodology

The proposal in this work was initially to take the NSL-KDD (raw data) data
set and to apply the pre-processing techniques: load balancing by data instances
(through the implementation of Synthetic Minority Oversampling Technique
- SMOTE) and normalization (applying standardization to zero average and
unit variance). When the purified data is obtained a series of features selection
techniques are applied to identify the attributes that affect the performance
of the classifier. After filtering data, two Bayesian classification techniques are
employed. The test process was performed through cross-validation using 10-
folds. The results got from it were represented in the respective confusion matri-
ces allowing the calculation of the quality metrics of each of the experimental
scenarios. From this, the techniques (deselection and classification) which pro-
vide the best results were identified (Fig. 1).

6 Simulations and Results

Two sets of experimental tests are involved in the development of this research.
For the first set of tests, the Näıve Bayes classifier is used to change the features
selection techniques (Info.Gain, Gain ratio and Relief). Once the corresponding
feature selection technique is applied, the priority order of the attributes can be
identified. Based on this, a series of experimentation scenarios are simulated in
which the number of attributes for each of the selection techniques implemented
are varied. See Table 2 and Fig. 2(a), (c) and (e). For the second set of tests the
Bayesian networks classifier is applied, and the features selection techniques are
also varied. After identifying the priority order of the attributes, the experimental
scenarios are carried out. In these simulations the traits number are modified
for each of the choice techniques implemented. (See Table 3 and Fig. 2(b), (d)
and (f)). For the set of tests carried out with the Näıve Bayes classifier, the best
results have been obtained by using the selection technique of Relief features
with 20 attributes. An accuracy of 91.27% was reached as shown in Table 2.
For the tests carried out with Bayesian Networks, the best results are obtained
with Gain ratio using only 13 attributes with a success rate of 97.56% (See
Table 3). The most significant simulation scenarios are provided in Table 3. The
compilation described does not intend to indicate that Bayesian Network + Gain
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Fig. 1. Suggested methodology

ratio is the best solution. The goal is to give a performance perspective of the
proposed procedure compared to the results provided by previous studies.

The methods shown can be classified into: (1) Methods that do not use fea-
tures selection, (2) filtering-based methods and (3) wrapping-based methods. All
the experimental work is performed by using a MacBook Air mid 2015 with an
Intel processor, 1.6 Ghz and an 8 gb RAM DDR3 at 1600 Mhz. Each experiment
is completed 10 times. Thanks to this, metrics values are obtained, and it allows
to evaluate the quality of the processes. See Tables 2 and 3 in which each qual-
ity metric by technique of selection of features and by classification method is
shown with their respective standard deviation. In the classifying process of both
sets of tests, the crossed to 10 folds validation technique is used. It is applied
to the NSL KDD data set of training. Simulations that allow to evaluate the
network traffic with a behavior like real computer attacks are generated. When
each experimental scenario is solved, the evaluation of the proposed functional
models is performed. Hence, the metrics of accuracy, sensitivity and specificity
can be computed.

7 Related Works

In [15] an analysis of the features selection techniques for a data set of network
traffic like the one proposed here was done. The Näıve Bayes, J48 and PART
classifiers were utilized. The performance of each of these classifiers was assessed
with the entire data set NSL-KDD and with subsets of data identified from
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Fig. 2. Tests set results for Näıve Bayes and Bayesian networks

the application of different features selection techniques. The best results were
obtained from the PART classifier (97.57% of accuracy). The techniques Chi
Square (30 features) and Consistency (14 features) were individually applied.
The results acquired were very similar to the ones got with Bayesian network +
Gain ratio (97.56%) and just 13 attributes were used. See Table 3. Moreover, in
this study, tests with Näıve Bayes and Gain ratio feature selection techniques are
also performed (89.03%) and Info.Gain (93.49%). Both tests with 30 features. In
the scenarios set up for this research with Näıve Bayes experimentation + Gain
ratio + 19 features, a correct rate is obtained 91.22%. Näıve Bayes + Info. Gain
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Table 2. Näıve Bayes classifier tests

Selection technique Features Percentage (%) Sensitivity (%) Specificity (%)

Info.Gain 15 89.14 ± 0.35 86.47 ± 0.35 83.070 ± 0.43

16 90.41 ± 0.35 88.46 ± 0.35 85.91 ± 0.42

17 89.80 ± 0.37 87.61 ± 0.37 84.74 ± 0.43

18 90.86 ± 0.41 89.34 ± 0.43 87.13 ± 0.32

19 90.30 ± 0.35 88.48 ± 0.37 85.97 ± 0.37

20 90.35 ± 0.43 88.54 ± 0.43 86.05 ± 0.47

Gain ratio 15 89.07 ± 0.36 86.460 ± 0.43 83.090 ± 0.82

16 90.09 ± 0.52 88.35 ± 0.65 85.84 ± 0.4

17 89.67 ± 0.47 87.72 ± 0.48 84.96 ± 0.77

18 90.03 ± 0.39 88.17 ± 0.47 85.57 ± 0.78

19 91.22 ± 0.41 89.63 ± 0.73 87.48 ± 0.42

20 90.95 ± 0.43 89.21 ± 0.81 86.92 ± 0.49

Relief 15 89.8 ± 1.1 92.32 ± 0.76 93.81 ± 0.78

16 89.45 ± 0.97 91.50 ± 0.93 93.08 ± 0.87

17 89.49 ± 0.81 91.56 ± 0.84 93.14 ± 0.76

18 89.30 ± 0.93 90.99 ± 0.74 92.61 ± 0.84

19 89.47 ± 0.75 91.36 ± 0.59 92.94 ± 0.67

20 91.27 ± 0.82 91.50 ± 0.53 92.74 ± 0.71

Table 3. Bayesian networks tests

Selection technique Features Percentage (%) Sensitivity (%) Specificity (%)

Info.Gain – – – –

30 96.55 ± 1.02 94.670 ± 0.93 93.61 ± 0.73

35 96.56 ± 1.21 94.690 ± 0.51 93.64 ± 0.49

40 96.56 ± 1.02 94.690 ± 0.47 93.64 ± 0.51

– – – –

Gain ratio – – – –

12 97.55 ± 0.41 96.14 ± 0.36 95.44 ± 0.47

13 97.56 ± 0.53 96.17 ± 0.51 95.47 ± 0.49

14 97.46 ± 0.56 96.29 ± 0.70 95.63 ± 0.53

– – – –

Relief – – – –

30 93.30 ± 0.92 98.40 ± 0.98 98.77 ± 0.83

35 96.54 ± 1.03 98.92 ± 0.75 99.11 ± 0.97

40 96.56 ± 1.28 98.93 ± 0.83 99.12 ± 1.03

– – – –
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+ 16 features with a success rate of 90.41%. In [19], a combination approach
to feature selection techniques is proposed for intrusion detection systems. In
this work the number of attributes is reduced by using different classification
techniques based on feature selection and evaluation is done through ten classifi-
cation algorithms that generate the most representative results. The best results
are achieved with the IBK classifier and the combination of selection techniques
such as Symmetric and Gain ratio with 15 features reaching a success rate of
98.5%. In [3], a method based on wrapper applied with a multi-objective app-
roach using the GHSOM classifier is studied. It is employed with a probabilistic
adaptation for the re-labeling process allowing to differentiate between normal
and anomalous traffic as well as different typologies of anomalies. This proposal
provided a rate of 99.12 ± 0.61 in which 25 features are analyzed.

8 Conclusions

The success rate is the most appropriate metric to evaluate the performance
of a classifier (regarding the level of traffic detection in computer networks).
It can be verified that better values are obtained with the Bayesian net-
work classifier with the Gain ratio feature selection. Some of the features
that best contribute to the classification process are: logged in, srv serror rate,
flag, serror rate, dst host srv serror rate, diff srv rate, dst host serror rate,
dst host srv diff host rate and wrong fragment. The quality metrics obtained
is: a success rate of 97.56%, 96.17% of sensitivity and the specificity of 95.47%.
Using the thirteen most relevant characteristics of the 41 possible attributes of
the NSL-KDD dataset helps to create a lighter IDS.

An important improvement in the detection rate of attacks and normal traffic
in computer networks has been identified. A lower proportion of features and
less computational resources are applied. It may be useful for a later solution
on equipment with lower performance and if necessary, for a real time analysis.
an exhaustive comparison would be required which is currently not possible
because the only available performance results refer to the success rate. Most of
the similar research works did not present statistical significance test from which
the standard deviation of the success rates could be extracted. Further, there
are not specific implementations to be able to execute and compare the results
obtained in a more detailed way.

9 Future Work

As future research work, an exhaustive review combining features selection tech-
niques with different classifying techniques is proposed. So, this will allow to
determine the optimal number of characteristics to acquire the best results and
the appropriate classifier. In addition, a choice technique based upon wrapper
will be developed in which an optimal classification technique is integrated and
identified from the experimental processes suggested.
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Abstract. Traditionally, research in Network Security has largely
focused on Intrusion Detection and the use of Machine Learning tech-
niques towards identifying malicious agents as well as work on methods
towards protecting ourselves from such attacks. In this paper, we wish
to make use of the same techniques to analyze the profile of the attacker
in the case of a DDoS attack on a distributed honeypot.

Keywords: Distributed denial of service attacks · Honey pot ·
Machine learning · Clustering algorithms · Attacker profiling

1 Introduction

The username password combination is one of the primary methods of authen-
tication in most of the organizations portals. Many methods such as the man
in the middle attack [3], DNS spoofing [6], and phishing attacks [16] are used
to obtain username password combinations. All of these activities are examples
of penetration attacks as they allow an attacker to intercept the connection and
make them believe that they are on the right website [1]. In the aforementioned
approaches, the user is fooled into giving their access credentials. Here, we ana-
lyze another type of attack, known as a brute force attack. In this approach, the
attacker attempts to guess the username and password with the help of tools
that make use of dictionaries of a username and password combinations. This
approach leads to an increase in load on the server, which in turn block the
actual user from logging in, this is an example of a denial of service attack.
In the scenario in which, such an attack is distributed, it is an example of a
distributed denial of service attack [5,7,13].

In this paper, we make use of Kippo honeypot [4,10], which helps us log
brute force attacks and help us understand the behavior patterns of the hacker.
The hacker attempts to gain access with the help of a Secure Shell session. Here,
we have made use of the data obtained from a honey pot deployed within the
Information Security Lab of BITS Pilani, Hyderabad Campus [14,17].

The primary reason for targeting SSH sessions is due to the fact that a sig-
nificant number of servers are not well maintained and often make use of weak
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credentials which make a perfect target for malicious agents [12]. A preliminary
analysis of credentials and passwords on SSH remote login servers from secure-
honey.net gave the following results (Table 1):

Table 1. Most common SSH usernames and passwords.

Username Frequency Password Frequency

Root 89% 123456 41%

Test 6% Admin 19%

User 2% Password 11%

Admin 2% Root 15%

The primary motive of our research is to find out how data with respect to
login credentials propagates [15], once a hacker has been successful in obtaining
access to an SSH server. Figure 1 shows how successful attacks on the honey
tend to be clustered around certain locations [9].

Fig. 1. From the above heatmap, we can see that most of the successful attacks seem
to be stemming from North America, Europe, and Southeast Asia.

We also have an image that shows us a zoomed-in perspective in China, from
which the majority of the attacks had originally originated. As we can see from
the image it appears as if all the attacks appear in pockets, which lends some
preliminary support to the hypothesis that data of the credentials appears to
spread in the vicinity of the original successful attempt. In the remainder of the
paper, we make use of a variety of clustering methods to catch patterns that
may escape the human eye (Fig. 2).
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Fig. 2. Distribution of login attempts from China.

2 Related Work

Babak Nabiyev in his work on the application of Clustering Techniques for the
detection of DDoS attacks had made use of the KDD CUP 99 dataset which
had been developed by DARPA. He attempted to differentiate between Normal
Traffic and DDoS traffic with the help of K-Means and EM Clustering techniques.
He had clubbed together six cases of DoS attacks as a single type and he defined
normal traffic flow to be the other type of behavior. Consquently, he made use
of these two classes for the final clustering analysis [8].

Shi Zhong also had made use of different clustering techniques for intrusion
detection. In addition, he had also made use of the DARPA intrusion detection
project for his dataset. Furthermore, he had done a comparative study on dif-
ferent clustering algorithms for intrusion detection, in which he concluded that
unsupervised clustering algorithms performed better than supervised learning
methods. Out of all the clustering algorithms, his proposed self-labeling heuris-
tic performed the best with an overall accuracy of 93.6% [19].

Nikolskaia Kseniia analyzed IP traffic with the help of clustering on IP packet
headers. He considered multiple parameters such as the classification parameters
based on packet and transmission properties, choice of clustering methods and
the number of clusters. He concluded that real-time data is too complex to
dynamically change features or clustering algorithms. A hybrid neural network
approach showed the best results with about 95% correctness [11].

Jie Wang argues that clustering algorithms may not work very properly for
intrusion detection because the similarity level of data points cannot be con-
trolled. He proposes a two seed expanding algorithm that splits the attacks into
different phases. The preprocessing includes creating a network flow and chang-
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ing continuous-valued features to binary features. Based on these features, the
algorithm selects seeds until all flows are divided into clusters. Their experiments
show that two seed expanding algorithm performs better than the k-means and
other clustering methods [18].

Geoff Boeing used k-means clustering and dbscan techniques to cluster 1759
points of latitude and longitude data and they were reduced to 138 points and
obtained 92% compression, without losing out on the key features of the infor-
mation that had been spatially represented within the dataset [2].

3 Research Framework

Experimental Setup. We have deployed honey pots with the distributed archi-
tecture as shown in Fig. 3.

Fig. 3. The honey pot architecture which was used for the D-DoS Attack.
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The hypervisor runs five virtual machines, each of which runs a mini-Ubuntu
16.04. Each instance, in turn, runs a different honeypot. The traffic to the virtual
machines is controlled with the help of a firewall and Network Address Transla-
tion(NAT) to assist us to communicate with the outside world. The server runs
within the Information Security Laboratory of BITS, Pilani-Hyderabad campus
network. The server continuously monitors the activity that occurs on the public
IP addresses (Table 2).

Table 2. Spec table of the honeypot used — Kippo.

Components Specs

Processor Intel Xeon

RAM 8GB

Hard Disk 400 GB

Operating System Ubuntu 16.04

4 Analysis

4.1 Attackers Origin

The origin of the attacker refers to the country or the city location from which
the attack is being initiated. The source of their IP address help determines the
location of the attacker. We made use of the urllib2 library to find the location
of the attackers. However, IP addresses do not prove to be useful if the attacker
makes use of a VPN or Tor Network. The results of the analysis have been
mentioned in Table 3:

Table 3. Successful attempts city and country wise.

City Attempts Country Attempts

Ho Chi Minh 3225 Vietnam 3586

Kansas City 1237 United States 1368

Radomsko 521 Poland 522

Saint Petersburg 306 Russia 354

Prague 251 Netherlands 326

Hanoi 193 China 323

We observe that there seem to be clusters of activity followed by patches of
inactivity as seen in Fig. 4. Here, we observe there as spikes of activity in the
second week and the last week of June as well as the second week of July as well
as the end of October and the beginning of November. On the other hand, there
seem to be very less attacks initiated in the months of August and September
and hence they were not accommodated in the graph.
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Fig. 4. Attempts distribution over 6 months

Table 4. Most popular passwords and
number of attempts

Username Counts Username Counts

Root 190791 1234 1033

Admin 27161 Guest 838

Ubnt 4056 Test 816

Support 3597 Usuario 740

User 2533 pi 730

Table 5. Most popular passwords and
number of attempts

Password Attempts Password Attempts

Admin 13802 12345 2285

Ubnt 4653 123456 2146

1234 4508 User 1962

Support 3179 Default 1690

Password 2707 Admin123 1341

4.2 Traffic Analysis

We had segmented the data into files of 1MB size and had a total of 250MB
data. The configuration had allowed at most 21 attempts from a particular IP
before the IP was banned. Total 870 usernames and 9027 unique passwords were
attempted.

The most attempted username was “root” and the most attempted password
was “admin”. In addition to the popular combination of ‘root’ and ‘admin’ we
also get to see that the attackers tried other popular default passwords such
as ubnt (as we made use of the Ubuntu operating system) as well as 1234,
support and password. Furthermore, the hackers had also made use of popu-
lar usernames such as admin, user and guest. This analysis shows something as
simple as setting a strong username password combination can reduce the num-
ber of successful breaches in security. Finally, we observe that an overwhelming
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Table 6. Two Day of Interactions for the Ho Chi Minh City, Vietnam on 26th June
and 27th June, 2018—Obtained by 2 g Clustering Approach

IP Attempts City Country

116.31.116.20 20350 Guangzhou China

58.218.198.147 18817 Nanjing China

58.218.198.153 7478 Nanjing China

103.207.36.213 4545 Ho Chi Minh Vietnam

58.218.198.167 2590 Jiangsu China

91.211.1.100 2161 Vabalninkas Lithuania

58.218.198.170 1969 Nanjing China

31.207.47.50 1653 Amsterdam Netherlands

116.31.116.21 1640 Guangzhou China

58.218.198.172 1542 Nanjing China

majority of attacks on the distributed honeypot system appear to be coming
from China (Tables 4, 5 and 6).

4.3 Machine Learning Analysis

On this data, we have made use of three clustering methods which has helped us
gain insight on the attacker’s profile after obtaining access to the system. Here,
we have pooled the data in a manner that is similar to that used within n-gram
models of Natural language processing. Thus, the data comes in three forms-

– Single day data
– Two days at a time
– Three days at a time

We have made use of 3 different clustering algorithms to gain a better insight
on the information presented through the data. From the Figs. 5, 6 and 7 we
observe that most of the attacks seem to be concentrated only in certain parts
of the world. This means that the information gained by the attacker seems to
be spreading only to the vicinity to the earliest attack, rather than spreading
randomly over the world.

Fig. 5. Mean shift clustering (a) 1 g (b) 2 g (c) 3 g
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Fig. 6. GMM clustering (a) 1 g (b) 2 g (c) 3 g

Fig. 7. Kmeans clustering (a) 1 g (b) 2 g (c) 3 g

All three techniques seem to give us the similar results-

– All techniques give cluster centers which are very close to one another.
– The cluster centers obtained are similar across 1 g, 2 g and 3 g

On the other hand there seem to be some key differences-

– The mean shift algorithm appears to be more susceptible to outliers, which
causes it to detect a greater number of clusters.

– On the other hand, the algorithm behaves better when we increase the number
of data points as in the case of 2 g and 3 g.

To better understand why the clustering algorithms have singled out these
locations, we have probed the data from 1 g, 2 g and 3 g on specific geographic
locations so as to search for patterns that could help us better understand how
the attack seems to propogate.

In the 1 g analysis for Table 7, we observe that all the successful attacks have
appeared to have taken place one after another after short intervals of time. In
addition, we can see that once an attacker gains access, it seems like the others
in the vicinity gain access after a short interval of time.

In Table 8, we observe the following observation. The set of IP addresses
that make a successful attempt on the first day are the same as those which
are obtained on the following day. However, we notice that now there is a new
IP from the same location that is now able to successfully gain access to the
honeypot. This means either the attacker has gained access to a new IP or
another attacker has received information about the same from another attacker
in the same geolocation.



400 H. Gupta et al.

Table 7. One Day of interaction for the Date 27th October, 2018 from China on -
Obtained from the 1 g clustering approach

Time IP City Country Time IP CIty Country

13:45:41+0530 60.182.212.131 Jinhua China 13:58:45+0530 112.236.177.74 Qingdao China

13:46:03+0530 60.255.146.181 Chengdu China 14:04:46+0530 125.92.182.50 Shiqi China

13:46:11+0530 110.184.170.247 Zhongba China 14:05:30+0530 121.14.7.244 Guangzhou China

13:49:10+0530 182.44.84.228 Jinan China 14:06:51+0530 110.249.217.82 Xingfeng China

13:52:27+0530 210.51.191.26 Beijing China 14:07:03+0530 58.218.198.147 Nanjing China

13:52:53+0530 58.48.178.200 Shuiguo China 14:07:52+0530 218.60.136.106 Chaoyang China

13:54:21+0530 60.185.214.42 Zhoushan China 14:08:52+0530 111.121.192.6 Guiyang China

13:54:49+0530 222.47.26.139 Hangzhou China 14:10:41+0530 153.34.109.60 Chaowai China

13:55:29+0530 124.243.216.102 Beijing China 14:14:27+0530 122.190.252.82 Xiangfan China

13:58:08+0530 218.108.124.26 Hangzhou China 14:15:32+0530 113.122.34.247 Jinan China

13:58:11+0530 113.122.5.6 Jinan China 14:19:16+0530 113.206.115.125 Beiwenquan China

13:58:11+0530 210.51.191.26 Beijing China 14:23:03+0530 123.149.128.181 Henan China

Table 8. Two day of interactions for the Ho Chi Minh City, Vietnam on 26th June
and 27th June, 2018 — Obtained by 2 g clustering approach

Date IP Count Date IP Count

2018-06-26 142.54.189.114 90 2018-06-27 142.54.189.114 104

2018-06-26 173.208.187.66 2 2018-06-27 192.187.103.2 223

2018-06-26 192.187.103.2 204 2018-06-27 192.69.95.132 4

2018-06-26 69.197.135.10 23 2018-06-27 69.197.135.10 15

Table 9. 3Days of interactions for the country of Vietnam from 6th June to 8th June
2018 — Obtained by 3 g clustering approach

Date IP Count Date IP Count Date IP Count

2018-06-06 103.207.36.117 1 2018-06-06 116.98.0.212 1 2018-06-07 116.103.77.175 2

2018-06-06 103.207.36.9 2 2018-06-06 117.3.47.59 2 2018-06-07 116.105.225.86 2

2018-06-06 103.207.37.239 4 2018-06-06 117.5.195.121 1 2018-06-07 117.3.47.59 1

2018-06-06 103.207.39.43 3 2018-06-06 123.16.32.196 3 2018-06-07 125.212.226.227 1

2018-06-06 103.207.39.54 1 2018-06-06 123.19.170.93 1 2018-06-07 14.176.232.175 5

2018-06-06 103.79.141.153 2 2018-06-06 14.167.67.203 1 2018-06-07 27.70.150.55 1

2018-06-06 103.79.141.39 1 2018-06-06 14.176.232.175 3 2018-06-07 58.186.98.43 1

2018-06-06 103.79.143.136 6 2018-06-06 27.78.21.103 2 2018-06-08 103.207.39.159 2

2018-06-06 103.89.88.11 9 2018-06-06 42.118.152.107 1 2018-06-08 103.79.141.153 1

2018-06-06 113.170.210.40 1 2018-06-07 103.207.37.239 4 2018-06-08 103.89.88.11 9

2018-06-06 113.22.152.202 2 2018-06-07 103.207.39.228 1 2018-06-08 116.103.147.230 6

2018-06-06 116.104.79.5 1 2018-06-07 103.207.39.43 2 2018-06-08 116.98.44.241 1

2018-06-06 116.105.225.86 4 2018-06-07 103.79.141.153 2 2018-06-08 14.176.232.175 4

2018-06-06 116.110.160.11 2 2018-06-07 103.79.143.136 4 2018-06-08 27.70.151.209 2

2018-06-06 116.97.24.95 1 2018-06-07 103.89.88.11 9 2018-06-08 27.78.21.103 2

In Table 9, the pattern in the data obtained from the 3 g analysis further
strengthens the observations that we had made in the case of 2 g. Here, we can
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clearly observe that the same set of IP addresses make attack in regular intervals
of time. In addition, to those we see additional IP addresses which originate
from the same or nearby locations which gives weight to the argument that the
information about the credentials is spreading to the geographical vicinity.

5 Conclusion

We would like to draw the conclusion that attacks appear to be concentrated in
certain regions. Furthermore, it appears as if the data with respect to the access
credentials does not seem to spread randomly rather, it appears as if the success
with respect to successful attacks seems to spread in the near vicinity of the first
attack.
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Abstract. In this article we start from the observation that REST services are
the most used as tools of interoperability and orchestration in the Internet of
Things (IoT). But REST does not make it possible to inject artificial intelligence
into connected objects, i.e. it cannot allow autonomy and decision-making by
the objects themselves. To define an intelligence to a connected object, one can
use a Believe Desire Intention agent (BDI an intelligent agent that adopts human
behavior) such as Jason Agentspeak. But Jason AgentSpeak does not guarantee
orchestration or choreography between connected objects. There are platforms
for service orchestration and choreography in IoT, still the interconnection with
artificial intelligence needs to be built. In this article, we propose a new
approach called Jason-RS. It is a result of pairing Jason BDI agent with the web
service technologies to exploit the agent capacity as a service, Jason-RS turn in
Java SE and it does not need any middleware. The architecture that we propose
allows to create the link between Artificial Intelligence and Services choreog-
raphy to reduce human intervention in the service choreography. In order to
validate the proposed approach, we have interconnected the Iot BeC3 platform
and the REST agent (Jason-RS). The decision-making faculty offered by Jason-
RS is derived from the information sent by the objects according to the different
methods of REST (GET, POST, PUT, and DELETE) that Jason-RS offers. As a
result, the objects feed the inter-agent collaborations and decision-making inside
the agent. Finally, we show that Jason-RS allows the Web of Objects to power
complex systems such as an artificial intelligence responsible for processing
data. This performance is promising.
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1 Introduction

The tendency towards the Web of Object (WoO) does not cease to increase from time
to time. Given the number of objects to facilitate the daily life, the number of possible
interactions and the applications that one can imagine become more powerful and rich.
But what are the ways to make these application in a generic way? The object web
orientation is considered as a great resource not only for managing objects [1] but also
for questions of flexibility of exchanges. In the Web of Object (WoO) one is rather
directed towards the use of Web Service [1].

We note that the most used Web Service type is REST1 [1–3]. REST (Represen-
tational State Transfer) or RESTful is an architecture style for building applications
(Web, Intranet, Web Service). It is a set of conventions, rules and good practices to
respect and not a technology in its own right. Not only REST is stateless [4] (meaning
that the service consumer does not have to store information about the way he is using
the service); it is design to reduce the coupling between software pieces. In the Iot,
REST may allow reconfiguration of the object, it reuse in a different application for a
multiplatform application, REST service structure is easy to describe. REST allows
machine to machine communication and is simplier to do than SOAP. The commu-
nication is done through the HTTP protocol. Nevertheless the possibility of using the
resource via the web given by the REST, it still lacks intelligent data processing. Our
contribution aim to add a complex data processing of the object web. We then opt for
the reuse of our search fruit in [5] which we call Jason-RS or Jason-Rest for more
precision.

Jason-RS gives the REST Web Service ability to the BDI agent Service [5]. Jason is
a multi-agent platform based on the Agentspeak-L language [6, 7]. It is a platform for
BDI agent, that is to say goal-oriented software agent, it is a smart agent. We have to
look at the choice of the BDI agent because it is close to human behavior [8, 9]. So the
connexion of the latter with the REST Web Service allows him to publish his capacity
as a Web Service. The processing of a complex action can be done inside Jason
(prediction, composition of services, constraint logic programming) and could be
published as a Web Service. Jason-RS can serve as an intelligent treatment center.

We focus in the collaboration between agent and Iot platform cause connected
object had no intelligence, designed differently, so with this collaboration we can open
in the intelligence of Iot with a sensor less, little human intervention. In our approach,
we collect the information from the connected object and by Jason-RS we delegate the
intelligent agent works. All change in the object behavior is sent to the agent BDI (as a
perception) in order to provide a decision or to change the agent comportment. Through
this perception that the agent can decide and delegate a task to agent or service
choreography to object.

The rest of this article is organized as follows: Sect. 2 will discuss the related work
of our work. Section 3.1 describes in general the architecture of our contribution. In
Sect. 3.2 we will evaluate our work through an architecture. In Sect. 4 we discuss a
discussion and open challenge. We will conclude this article with a conclusion (Sect. 5).

1 https://www.supinfo.com/articles/single/5642-qu-est-ce-qu-une-api-rest-restful.
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2 Related Work

In this article we propose a new form of Web Service that the WoO can use. The use of
REST in WoO is not an innovative work as researchers have already done research for
the implementation of the latter to allow connected objects to trade [10, 11]. The
Internet of Things is a system of physical objects that can be discovered, monitored,
controlled or interact with electronic devices that communicate on various network
interfaces and can potentially be connected to the wider Internet.

The webs of object is a concept say recent in computing that offers a future with
which object of the daily life can integrate into the web [12]. The Web of Object is
considered as a subset of the Internet of Things. WoO applies to standards and software
infrastructures such as REST, HTTP and URIs to create applications and services that
combine and interact with a variety of network devices. The key point of the WoO is
that its implementation does not involve the reinvention of the means of communi-
cation given that they use the existing standards. It also gives an easy access to a wide
population of programmer that used to handle such an architecture. It facilitates the
integration of the IoT in the internet. It is also a solution that can open the connection of
the Industry 4.0 [13].

View the exponential increase of the connected object, to reduce the cost, the
required performance and to facilitate communication in the object internet, the W3C
recently launched the working group on the Web of Objects. They aim to fight the
fragmentation of IoT. They developed the initial standards for the Web of Objects [14].
To facilitate service choreography for Iot Cherrier describes in his thesis a new
approach based on a platform to standardize the interoperability of heterogeneous
objects [15].

Castellani and Al focused on the implementation of both CoAP and EXI tech-
nology for communication between objects by adopting the REST approach [16]. They
implemented the CoAP protocol to enable communication between distributed con-
nected objects. Then they also implemented the EXI library for compressing XML data
into binary.

In the paper [2], they discuss how to create an event SOA. They found a new
approach for coordinating IoT’s services with the resource service. They named
EDSOA the result of their research. It is an asynchronous SOA and responsive it can be
considered as an event based service. We have inspired by this approach for the
technical aspect of Jason-RS.

The Web of Object is used in almost any IoT field even in the field of health. On
what [17] proposed a new instance of cloud server and set up data collection services
on the heterogeneous devices they use. This aims to improve online health service by
properly implementing the architectural web object principle for remote control.

Based on WoO, [4] describes the object-based web architecture that adopts the
principle of Resource Oriented Architecture (ROA), hence the basis of RESTful. They
implemented a smart gateway for smart meters. This allows the connected object
management servers to keep track of the status and movements of the objects. [2] the
HTTP protocol is used to facilitate access to the service. The answer emitted is in JSON
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format. The architecture proposed by [4] allows developers to use web programming
languages such as (HTML, Python, …).

All of the research cited above are interesting from the point of view of exposure
and communication capacity in the Internet of Things. Each with its strong point in
communication and interconnection in the world of IoT. They all almost used the
REST Web Service. But for us, a simple service is not enough not only to bathe the
connected objects in the artificial intelligence but also to treat in intelligent way the data
captured at the level of the objects. This treatment helps automatic decision-making
thanks to the intelligent BDI agent that has the same reasoning mode as humans. We
focus our research on the intelligent Web Service, that is, a Web Service associated
with artificial intelligence in order to reduce human intervention to the orchestration of
services in connected objects and decision-making. We have exploited here our pre-
vious research work, Jason-RS. An intelligent Web Service with BDI agents that
perform the resolution and automation of certain tasks thanks to their ability to
cooperate and exchange using the AgenSpeak (L) agent language. These agents may
then exhibit functionality as a Web Rest Service. Jason-RS has the methods used in
REST (GET, PUT, POST, and DELETE) to ensure the dialog with heterogeneous
clients.

3 Proposed Architecture

3.1 General Architecture

In this section we discuss the general architecture of our approach. As we are in the
world of the IoT there is a mean of communication: the network. There are many types
of networks today for the connectivity of objects such as wifi, Bluetooth for common
devices, LoraWAN for IoT devices using long distance communication, and ZigBee,
6LowPan, EnOcean, Zwave for short range communication devices, etc. As connected
objects do not have enough memory space and very limited energy to feed themselves
permanently so it is important to outsource most of its function. Although the design of
its objects is different (i.e. the objects are heterogeneous), a standardization platform is
important to allow inter-object choreography. Taking into account all these parameters
we have our control center server constituted by the Jason-RS server and the IoT server
illustrated by Fig. 1. Generally the IoT server is a centralized platform of (Cloud, big
data) whether it is an IoT server that administers the objects.

Jason plays a complex problem solver role as well as the complex system such as
optimization … The autonomous and goal-oriented capability through the BDI agent
that it implements allows it to perform a task reasonably. This capability is now
exploitable through a distributed component as a service [5] through Jason-RS. Then
the objects can use it not only to send the sensor data but also to initiate a decision-
making process at the agent level.

406 H. F. Rafalimanana et al.



Communication between the IoT and the web is done through the HTTP protocol.
With Jason-RS we can use all the existing methods of the REST and most importantly
there is an interaction with the agent. As a result we can send data to the central control
servers via the POST method. We can also retrieve the data or decision made by the
GET method. JASON-RS recognizes directly the task that will send back to the agent.

At the agent level as soon as the service is called by the objects or other platform,
the agent reacts and changes state in relation to the perception it receives from it
environment.

We have already studied in our article [5] the publication of Jason’s BDI agent
capability as a Web Service. We have proposed an approach allows deploying and
running Web Services (REST and SOAP) pairs with a Jason BDI agent in java SE
environment. We didn’t use a modern Web-App server or application server, and we
didn’t developed a different middleware cause it requires a lot of time. Deploying an
agent inside a server is a tedious task. Then in our strategy, we reused the existing Java
frameworks called Non-Blocking Input Output. A small illustration for brightening the
architecture is shown in Fig. 2.

Jason-RS offers an opportunity to exploit the world-class logic, which is embedded
in Jason. It can associate them with other elements or heterogeneous application. When
we can manipulate first-order logic, we can imagine a kind of possibility of complex
problem solving as well as the common problem in artificial intelligence. What is
interesting here is that the reasoning mode of Jason agent is near the human reasoning
mode to achieve a goal. Jason-RS aims to outsource the capacity present in Jason as a
service.

This initial Jason-RS that we have exploited with the collaboration with the Iot
platform to intelligently process the data received from the connected object. By
exploiting the horn clause and the first-order logic included in Jason we will use this
ability to decide the action of objects. Then we take into account the behavior of the
objects as perception for the agents.

To validate our approach we tested the interoperability of Jason-RS and hetero-
geneous objects choreographed with BeC3.

Fig. 1. General architecture of the JASON-RS implementation in the Web of Object
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3.2 Application of the Architecture with a Python Object and BeC3

Scenario. To illustrate and motivate our approach, we introduce a concrete application
using the following scenario. We take the example of the disposal of household waste
in our paper [5]. Waste disposal agents have waste disposal costs that vary according to
time constraints, people, distances traveled and evacuation loads. A decision-maker
who gives these opinions to optimize the evacuation of waste thanks to the information
that the evacuator agents gives him. Information of each of its agents could be changed
thanks to the perception emitted by different connected objects. The Fig. 3 illustrates
the application of this scenario. We used BeC3 for the service Mashup. BeC3 is a
composer who allows a user to choreograph heterogeneous objects. In our experi-
mentation we have created sensor objects choreographed in BeC3 with other objects.
This sensor sends the data captured via Jason-RS in POST for the agents to change the
perception of the Jason agent (receiver agent). A decision-maker analyzes the present
data and the cost of performing the tasks for each of his agents in order to decide which
one is durable, and which one can perform a task at lower cost.

The sensor is controlled by the Python version of service compatible with BeC3.
When the service is launched, it can send a POST request to BeC3 to identify itself and
then another POST request to set up its feature handled by the device. Any mashup
designed by a user can then be assured by a communication the service on each object.
The decision made by the agent could be consumed via a GET request to the Jason-RS.

Fig. 2. General architecture of the JASON-RS micro-service [5]
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4 Result and Discussion

We tested this approach in two different objects: a python object, a mobile phone. We
used Jason-RS to communicate the BeC3 platform with choreographed objects and BDI
agents who take the place of a decision maker instead of a human being (such as it is
originally designed in BeC3.

There is a demo script (in Python) APIDemo.py in Pylite project (resources dir).
We have used xmpp2 server for login, its specificity is the presence. So as we describe
in the Sect. 3 we must log in BeC3 in order to create a virtual programmable object:

POST/login with content

{

“username”: {xmpp login},

“password”: {xmpp password},

“service”: {xmpp service (for example im.bec3.com)}

}

After login, create a BeC3 object with the following JSON format:

POST /feature with content

{

“name”: “tot2”,

“path” : “truc/bidul21”,

Fig. 3. Application interaction between object choreography and Jason-RS

2 https://xmpp.org/.
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“type”: “switch”,

“details”: “ooo”,

“widget”: “none”,

“mqtt”: false

}

Available types are accelerometer, button, buzzer, gauge, gps.
These object can be delete, update.

DELETE /feature/{id}

PUT /feature/{id}

{

“data”: {data (dependent of object type}

}

One object is associate with one BDI agent. To connect BeC3 an URL is available
from Jason-RS. To change the agent BDI perception a POST request is send by this url
format:

POST jason_rs_based_url/object_agent/

{

“data”:value_from_python_object

}

To receive a decision from BDI agent, Jason-RS provide an URL that we can
consume:

GET jason_rs_based_url/agent_decider/decision

The following sequence diagram presented in Fig. 4 shows the exchange between
these two platforms.

Fig. 4. Sequence diagram for communication between object a Jason agent by Jason-RS
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We analyzed the performance of our approach via a browser (Table 1).

We tested our approach on both devices. During our experiment the return is almost
� 1000 ms. Our test area are done through the WIFI network so the discussion field is
open for other types of networks available for the Internet of Things.

Agent-based internet of things is an interested field of research now [18], in the face
of these works, we focus in the technical side of things, and we compare in Table 2
what differentiates our approach compared to the state of the art.

So in our approach we taking in count the heterogeneity of IoT by using a platform
BeC3. To permit an automatic decision making we exploit the horn logic provided in
Jason. This collaboration permit a flexibility in interacting between agent and hetero-
geneous connected object.

5 Conclusion

This article describes our contribution on service improvement in the world of Web of
Object. We have integrated our previous Jason-RS research work into the sensor device
connected to the web. Object of the IoT do not support the execution of artificial
intelligence within themselves because there resources are very limited. Our approach
is towards the decentralization of this AI treatment with Jason-RS. Not only is Jason-
RS a Web Service but it has an artificial intelligence BDI engine running. So the
complex data processing in the connected web object is provided by the Jason. The
communication is done through HTTP protocol as it is more flexible and commonly
adopted in the world of web. We tested our approach with a Mashup service platform
for heterogeneous connected objects called BeC3. Our approach therefore allows the

Table 1. The calculation time of the exchanges between the objects and Jason-RS

Device Method REST Task Duration (millisecond)

Python Object GET Consumation WS 200–450
Smart Phone POST, GET Sending data 428–1000

Table 2. Comparison with a similar research domain work

Work in field Jason agent
and IoT

Agent flexibility in
internet

Horn
logic

Taking in count
Heterogeneity of IoT

[19] ? yes ?
[20] ? ? yes
[21] ? yes ?
Jason-RS and IoT
Platform

yes yes yes
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object connected to the web to open up to data processing with artificial intelligence as
well as complex systems itself. As perspective we are considering the automatic
injection of service inside the connected object to reduce the human task of defining the
service choreography.
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Abstract. Disasters are becoming more and more common around the world,
making technology important to guarantee people’s lives as much as possible.
One of the most modern advances of recent years is how AI is used in disaster

relief. Researchers propose works based on new technologies (IoT, Cloud
Computing, Blockchain, etc.) and AI concepts (Machine Learning, Natural
Language Processing, etc.). But these concepts are difficult to exploit in low and
middle socio-demographic index (SDI) countries, especially as most disasters
happen in.
In this paper we propose S2S intelligent system, based on voice recognition to

life-saving in disaster relief. Generally, a disaster victim is enable to access to
his Smartphone and ask help, with this system, saying “help” will be enough to
send automatically alerts to the nearest Emergency Operation Services (EOS).
S2S is composed of two parts: Intelligent application embedded on citizens

and victims Smartphones, and S2S System for the Emergency Operation
Services.

Keywords: Intelligent system � Voice recognition � Life-saving � Disaster
relief

1 Introduction

In countries around the world, natural disasters have been much in the news. Indonesia
tsunami in 2004, Wenchuan (China) earthquake in 2008, freezing rain disaster in
southern China in 2008, devastating 2011 earthquake in Japan, flood disaster in India in
2013. China severe flood in 2016, 2018 Earthquake and Tsunami in Indonesia and the
2019 tropical cyclone in Mozambique, Zimbabwe and Malawi.

Natural disasters caused by climate change, extreme weather, and aging and poorly
designed infrastructure, among other risks, represent a significant risk to human life and
communities.
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A natural disasters is the encounter between a hazard of natural origin and human,
economic or environmental issues. We talk about major risk when the damage and the
number of victims are important.

According to the World Health Organization, 160 million people are affected by
natural disasters and around 90,000 people are killed every year, [1].

However, with advances in technology, more and more deaths are becoming pre-
ventable, encouraging researchers to develop new methods of responding to natural
disasters.

Behind this improvement has been the enhancement in living standard and effective
response systems. These factors have been driven by an increase in incomes across the
world.

What remains true today is that populations in low-income countries, those where a
large percentage of the population still live in extreme poverty, or score low on the
Human Development Index are more vulnerable to the effects of natural disasters.

We see this effect in the visualization shown in Fig. 1. This chart shows the death
rates from natural disasters the number of deaths per 100,000 population of countries
grouped by their socio-demographic index (SDI). SDI is a metric of development,
where low-SDI denotes countries with low standards of living, [33].

What we see is that the large spikes in death rates occur almost exclusively for
countries with a low or low-middle SDI. Highly developed countries are much more
resilient to disaster events and therefore have a consistently low death rate from natural
disasters.

Fig. 1. Link between poverty and deaths from natural disasters (Death rates from natural
disasters)
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Note that this does not mean low-income countries have high death tolls from
disasters year-to-year: the data here shows that in most years they also have very low
death rates. But when low-frequency, high-impact events do occur they are particularly
vulnerable to its effects, [33].

Furthermore, the first three days after a natural disaster are the most critical when it
comes to saving human life. People trapped on rooftops, under rubble, or in isolated
areas need to be found and rescued before they succumb to the effects of the disaster
that imperiled them.

For human responders on the ground, this is an almost impossible challenge and
what has traditionally made disasters so deadly throughout human history; “you cannot
save people you do not know need help or whom you cannot reach”, [22].

To deal with these problems, we propose S2S system: Scream to Survive. We used
technologies available in middle and low SDI countries to help disaster victims, gen-
erally weak and helpless and unable to make call or ask for help in traditional way.

The S2S intelligent system is based on the voice recognition algorithm embedded
on the victim Smartphone. That is justified by the fact that an individual in crisis could
not be able to signal urgency to intervention team. This is a most helpless situation
where affected people need help, but they do not have the ability to look for it.

Furthermore, Smartphone attracts the users and its popularity is increasing in
worldwide due to its powerful processing and wireless network capabilities. It enables
users to communicate and share information in easily convenient way, [2, 3].

S2S is composed of two parts: Smartphone Intelligent Application installed on
citizen Smartphone and intelligent system for Emergency Operation Services (EOS).

Finally, the disaster management consists of four fundamental steps such as mitiga-
tion, preparedness, response, and recovery. Among these steps, the emphasis of our work
are response and recovery because most of disasters deaths happen in these two steps.

The rest of the paper is organized as follow: Sect. 2 summarizes the related work,
based on new technologies. Section 3 presents the proposed system. In Sect. 4 we
present implementation concepts, in Sect. 5 we evaluate the S2S performances and
Sect. 6 concludes the paper.

2 Related Work

In this section, we will present and discuss disaster management systems based on new
technologies and those based on the use of smart phones. The goal is to discuss
advantages and inconveniences of each system to motivate our proposition based on
the combination of intelligent systems embedded on Smartphone.

(1) New Technologies for Disasters Management
Emerging technologies present greater opportunities to make emergency man-
agement systems intelligent, protected, and efficient. Today, artificial intelligence
(AI), the Internet of Things (IoT), cloud computing and blockchain offer the
potential to generate, transmit and read emergency-related data for better decision-
making in disasters management, [23].
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a. Blockchain
Blockchain is in the earliest stages of development, but is a tool that some claim
will be transformational for how we transact data. Blockchain is a distributed and
immutable digital ledger, secured by cryptography, which can be programmed to
record a series of transactions. Its most scalable application today is bitcoin, a
cryptocurrency and payment system still growing in its use around the world.
A blockchain solution enables the key players/organizations during a disaster
management situation to communicate effectively and act on time, [24].

b. Natural Language Processing
Natural Language Processing is the technology used to aid computers to understand
the human’s natural language. Natural Language Processing, usually shortened as
NLP, is a branch of artificial intelligence that deals with the interaction between
computers and humans using the natural language. The use of NLP to understand
social, political, and economic processes aspects in disaster management has
become popular with the increase in the volume of data about human communi-
cation, including text, audio, and video [4].

Example applications include automatic extraction of international events from
political context [5], public opinion measurement from social media posts [6], sense of
place [7], and community happiness [8]. There are a growing number of uses of NLP
methods to understand topics of disasters, [9, 10].

c. Machine Learning in Disaster Management
AI and machine learning can help public safety officials refine strategies over time,
getting smarter about planning and response. AI can be used to analyze event data
for patterns, identify current at-risk areas and populations, and model future needs,
based on population growth, development, and climate change, among other vari-
ables. Government leaders can use these insights to craft policies that reduce the
impact of disasters on communities, like planning new buildings in less vulnerable
areas, [25].

(2) Intelligent Systems Based IoT and Cloud Computing in Disaster Management
IoT refers to a network of physical objects embedded with sensors and software
that collect data and communicate with one another.

As it relates to emergency management, IoT can be used to enhance data collection
from the physical environment and quickly communicate this data to different city
departments, [26].

During a crisis, IoT technology can help by continually updating which evacuation
routes are no longer available and what transit options are up and running, for safer,
faster mass people movement, [21]. Say there’s a fire in a building or a stadium: IoT-
powered systems can help direct individuals to all approved exits, while providing
updates on which to avoid, [25].

Authors in [11] proposed an approach based on the ant system algorithm and
Internet of Things. IoT was used to consider smoke concentration, temperature carbon
monoxide concentration. Then, they apply ant colony algorithm for intelligent evac-
uation. The purpose of intelligent evacuation is achieved.
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Furthermore, based on the research foundation of building data model construction,
intelligent evacuation application, indoor location, shortest path solution and other
issues, an intelligent evacuation system for large public buildings based on mobile
terminal is constructed.

The proposed project in [12] is based on the powerful spatial analysis function of
GIS, and uses the IoT, sensor network and artificial intelligence algorithm to analyze
events in the intelligent space processing system, to support the development of
intelligent evacuation systems for large public buildings. Large public building intel-
ligent evacuation system takes mobile terminal as carrier, and install sensors, RFID
tags, etc. in the interior space of the building, aiming to provide technical services such
as emergency evacuation guidance and escape rescue for the personnel in the disaster.

In [13], the sensor network, which will be installed around 47 volcanoes that the
Japanese government has selected for around-the-clock observation, will measure
several different variables. In addition to the seismic activity that almost always occurs
before an eruption, the sensors will monitor gas emissions, topography changes, and
vibrations in the air caused by rocks and ash spewing from the volcano.

The information gathered by the sensors will be transmitted via LoRa [27],
gateways to manned monitoring stations located 5–10 km away from the volca-
noes. LoRa, also known as LoRaWAN, operates using a chirp spread spectrum radio
scheme, sending data through a series of gateways that serve as a bridge between the
sensors and network servers.

BRINCO system is the first IoT-enabled beacon that is designed to notify its user
about possible earthquake or tsunami in personal-aware mode. The sensor system
comprises of accelerometer, signal processing unit and audio alarm units. It works as
follows. If it perceives a vibration of the ground, it sends this information to the Brinco
Data Center (BDC), a private cloud service. This DC assimilates this information with
other seismic networks information to obtain its perception. Finally, if the judgment is
good enough, it makes alarming sound and sends push notifications to it users smart
phone (Android or iOS) instantly. Further, this information can be shared among the
local as well as global community utilizing social network sites, [28].

BRCK It is versatile IoT-enabled device meant to be used in poor infrastructures.
This gives it power to connect with low connectivity areas where 2G communication
still exists. It is also em-powered with its private cloud service where environment data
could easily be transmitted and fetched on. It is capable to work with solar energy,
hence very much suitable for disastrous sites where flawless power is a main constraint.
The rugged design makes Brck the most suitable product to be deployed in disaster
management scenario. Users having smart phone can easily connect with it and share
the information to other WiFi-enabled local devices, [29].

a. Discussion
Intelligent systems have some characteristics making them difficult to apply in
middle and low SDI countries, where infrastructures are also poor. We present
bellow some of these characteristics.

Data Cannot be Effectively Collected
How to realize the integration of disaster data becomes an urgent and necessary key
problem.AI related data include meteorological data, urban waterlogging data, socio-
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economic data, and other sources, and the amount of data is huge. Furthermore, as the
data come from different departments such as water conservancy, meteorology, urban
management, operators and Internet, the spatial and temporal scales are not compatible
with each other, and the format standards are not unified, which poses a great obstacle
to the AI for natural disasters, [14, 15].

Incomplete Information
Decision is a question of timing, and this is particularly prominent in intelligent systems
because of the sudden, rapid evolution of disasters. Short time emergency decision face
the restriction of personnel, resources, information and other factors, therefore, decision
information is discredited and incomplete, [16, 17]. How to deal with the incomplete
information constraint is a difficult problem faced by intelligent systems.

Data Unavailability
Intelligent information processing techniques based on AI and machine learning such
as big data mining, remote sensing and GIS are promising methods, especially when
applied with a combination of conventional forecasting approaches working to update
dynamic demand information. However, its application is constrained due to the lack of
data availability from governments concerning risk and safety issues during the urgent
and limited time after unconventional emergency events have occurred. From this
perspective, the access to open source data from governments should be properly
unimpeded, [18].

Prediction Problem
In emergency situations there is an inherent demand uncertainty, requiring a large scale
of data sources to explore the characteristics of the target prediction case. A great deal
of crucial information required for demand predictions is difficult to obtain in the hours
immediately after an emergency event. Additionally, in order to save as many lives as
possible, analysis of large-scale data requires information processing techniques and
methods to be rapid and efficient, making the demand prediction problem based on
information processing techniques unique and challenging, [34].

(3) Smartphone Applications for Disasters Management
When a disaster happens, the Smartphone is generally used to send information
report. If a natural disaster happens, disaster information, including time, location,
classification, degree, trend of disaster, etc., need to be collected and sent to the
emergency management center through Smartphone. Among information, the
geometry location of the disaster is provided by the Smartphone’s location based
services, [18, 19].

a. Smart Rescue
The basic notion of Smart Rescue is to use Smartphone technology to assist in
delay phase in the initial crisis times. Smart Rescue technology maps threats and
help people in the case of emergency. If many Smartphones are sensing the
environment surrounding the people then those phones are used as input sources
for getting threat pictures and allow and inform people to take necessary actions to
avoid any hazards in the affected area [1].

b. FEMA
The FEMA Application (Smartphone app for mobile devices) contains disaster
safety tips, interactive lists for storing your emergency kit and emergency
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meeting location information, and a map with open shelters and open FEMA
Disaster Recovery Centers (DRCs). Bellow some FEMA functionalities [31].

• Receive real-time alerts from the National Weather Service for up to five locations
nationwide.

• Share real-time notifications with contacts via text, email and social media.
• Learn emergency safety tips for over 20 types of disasters, including fires, flooding,

hurricanes, snowstorms, tornadoes, volcanoes and more.
• Locate open emergency shelters and disaster recovery centers in the area where

user can talk to a FEMA representative in person.
• Prepare for disasters with a customizable emergency kit checklist, emergency

family plan, and reminders.
• Connect with FEMA to register for disaster assistance online.
• Upload and share disaster photos through Disaster Reporter.
• Toggle between English and Spanish.
• Follow the FEMA blog to learn about the work FEMA does across the United

States.

c. First Aid Application (FA)
FA is developed to give some preliminary instructions for taking care of users in
Android Smartphones; basically navigation system uses Google API (maps) for
searching an appropriate or suitable way or path to the nearest hospital. In the case
of any emergency this function is activated on user’s Smartphone to navigate
victims through the shortest path to the hospital [2]. This application gives some
useful instructions or precautionary measures about taking initial care of the patients
before sending them to the doctors or hospitals.

d. Fire Ready (FR)
FSC (Fire Service Commissioner) has launched the fire ready application is the
official Victoria government app for Country Fire Authority (CFA), Metropolitan
Fire Bridge (MFB) and Department of environment, Land, Water, Planning
(DELWP). This fire warnings and information system, notifies users of fire dangers
in affected area and sends photographs of bushfire activity. Application is managed
by Victoria emergency management on behalf of the fire agencies, supported by the
department of Justice and Regulations, [32].

e. Automatic Crash Notification (ACN)
Christopher Thompson presented another innovative application that is Automatic
Crash Notification system. The aim of this application is to save lives by reducing
time required for emergency teams to arrive to victims. ACN sensor network in
automobiles is used to detect car accidents, it also communicates with a checking or
monitoring station through radio cellular network. Sensor devices provide useful
information to detect auto car destruction. Wreck watch server utilize ACN system
to detect car accidents that are displayed on Smartphone devices and the user is
instantly allowed to access accident information through webpage [20].
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f. MYSHAKE
It is an APP-based service for the detection of seismic activities. This APP has
initially to be installed on users smart phone which whenever perceives a ground
vibration through the phones accelerometer, performs a match operation with the
vibrational profile of the quake. If matched, the information along with the present
GPS coordinate (received from the Smartphone) is sent for analysis to the Berkeley
Seismological Laboratory (BSL) for final check. This has opened a way to develop
a cost-effective, distributed and crowd sourced quake monitoring system that is
obviously a demand of time, [30].

3 Scream to Survive System (S2S)

S2S system combines the use of Smartphones, widely spread even in developing
countries, and voice recognition to help victims. Generally, a disaster victim is enable
to access to his Smartphone and ask help, with this system, saying “help” will be
enough to send automatically alerts to the nearest Emergency Operation Services
(EOS).

The essential feature of this system is the ability to analyze victims voices, words,
sentences, etc., in order to detect the emergency situation and immediately transmit
victims GPS location, identification, etc.

In EOS side, after the first alert, the system save victim GPS coordinates and collect
instantly all near users locations (potential victims). It proceeds to alert EOS staff,
family contacts and eventually nearest volunteers registered in the system.

Some of the basic objectives of S2S are:

• It automatically detects any disaster by using voice recognition algorithms.
• It responds in the time of critical situations by using real time system, right records

are sent at right time. Also, the other stakeholders are informed automatically by
S2S and the alerts are communicated through notifications, SMS, email etc.

• It responds to emergency situation with minimal human/manual intervention and
interaction.

• It takes into account potential victims, by collecting all near users having S2S
system on their smart phones.

S2S system is composed of two parts:

(1) S2S for victims and citizens (Android or IOS Smartphone)

This application collects voices, words or sentences, said by the victim, through
Smartphone microphone and converts them to text in order to deduce the emergency
situation and its type (fire, earthquake, flood, etc.).

After that, the application sends an alert message containing victim information, his
last location and risk type to the EOS.

(2) S2S for EOS

For EOS, we propose S2S part that allows officers and employees to receive alerts
sending by victims and select the appropriate action plan according to emergency type.
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They can consult all medical and personnel information from database and send help to
the exact location of the victim.

The system collects all near users positions. This information will be very useful for
victims relief, in case of earthquake for example.

Furthermore, the system sends victims location to nearest volunteers and family
contacts to increase surviving chance. The process is detailed in Fig. 2.

4 Implementation

In this section, we will describe implementation principals and tools. Then we present
some screens of S2S system.

Fig. 2. S2S Sequence diagram between system actors
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(1) Implementation Tools

a. Flutter
Flutter is Google’s mobile app SDK that gives developers an easy way to build and
deploy visually attractive, fast mobile apps on both Android and iOS platforms.

Flutter is an app SDK for building high-performance, high-fidelity apps for iOS,
Android, and web from a single codebase.1 Flutter combines a Dart framework with a
high-performance engine.

The Flutter Engine is a portable runtime for high-quality mobile applications. It
implements Flutter’s core libraries, including animation and graphics, file and network
I/O, accessibility support, plug-in architecture, and a Dart runtime and tool chain for
developing, compiling, and running Flutter applications.

Dart2 is a client-optimized language for fast apps on any platform, made by Google,
it is:

• Optimized for UI: Develop with a programming language specialized around the
needs of user interface creation.

• Productive development: Make changes iteratively, use hot reload to see the result
instantly in your running app.

• Fast on all platforms: Compile to ARM & x64 machine code for mobile, desktop,
and backend. Or compile to JavaScript for the web.

To develop the UI of S2S system, we choose Flutter for many reasons, here some
of them:

• Faster code writing: With flutter we can make changes in the code and see them
straight away in the app, this is called Hot reload, which usually takes milli-seconds
and help teams add features, fix bugs and experiment faster.

• Faster apps: Flutter apps work in a smooth and fast way, without hanging and
cutting while scrolling.

• Same app UI on older devices: Your new app will look the same, even on old
versions of Android and iOS systems. Flutter runs on Android Jelly Bean and
newer, as well as iOS 8 and newer.

• And the most important reason why we choose flutter is one code for two plat-
forms: this means that we can code once and get same app for two platforms
(Android and iOS), that helps us to spread S2S system in both platforms and target
more users.

b. TensorFlow Lite
TensorFlow Lite is a set of tools to help developers run TensorFlow models on mobile,
embedded, and IoT devices. It enables on-device machine learning inference with low
latency and a small binary size.3

S2S system will be used in emergency situation and with that a lot of pressure is put
on the device to act accordingly. The biggest problem we are dealing with is weak

1 Official flutter documentation: https://flutter.dev/docs/resources/technical-overview.
2 Official dart website: https://dart.dev/.
3 Official TensorFlow website: https://www.tensorflow.org/lite/guide.
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internet connection (maybe loss of internet connection). Which will limit the process of
being able to send data back and forth from the server. On the other hand, we offer a lot
of benefits that comes with an on-device machine learning such as:

• Privacy: Data will not leave the device.
• Connectivity: Internet connection isn’t required
• Power consumption: Network connections are power hungry

(2) Principles of voice recognition implementation

When a catastrophe occurs, the victim is in a state of fear and panic, so he begins to
shout and ask for help in order to survive. The first step we do is to build datasets words
said during disasters as well as surrounding sounds.

• The first dataset is a sample of a human words during a disaster.
• The second dataset is a sample of surrounding voices when a disaster strike.
• The third is a combination of the first and the second.

The second step is building files with the extension .tflite models (created with
TensorFlow Lite) from our datasets and integrate them in S2S mobile application
where the captured voice will be compared with models.

(3) Prototyping
We realize S2S prototypes: for the victim and the EOS.

Fig. 3. a. Signing screen b. Personal information c. Medical information

424 N. Bouchemal et al.



• S2S system for the victim

Some screens of S2S application for the victim are shown in Fig. 3. User login to
the application to update his information. In emergency situation, user access directly.
The system collects medical information which will be used to help him in emergency
situation. Furthermore, the user enter emergency contacts.

When the application detects an
emergency (after voice recognition
process and translating to words and/or
texts), it will ask user to confirm the
sending or cancel it during 5 s then it
sends the alert message automatically to
the EOS. The message contains user id,
type of emergency and last location. The
goal of the confirmation is to avoid
errors and conflict situation (one can
discuss with friends about earthquakes)
(Fig. 4).

• S2S system for Emergency Oper-
ation Services

In the side of EOS, when officers
receive the alert as notification and a red
label will appear in the map, as shown
in Fig. 5. Using the received informa-
tion about victim, S2S EOS gives the
possibility to consult all victims per-
sonal and medical information. EOS
employees will send helps to the exact
locations.

Furthermore, we propose messages to emergency contacts and to nearest volun-
teers, Fig. 6. This is called: Crisis Mode.

5 Performances Evaluation

All systems, presented in this paper, have been grouped together in Table 1 in order to
compare and analyze them. We have Intelligence and new technologies based systems
and Smartphone based systems.

We can observe that most of presented intelligent systems are successful in
countries where infrastructures are adapted, because they are based on new technolo-
gies (IoT, permanent Internet connection, cloud, WSN, etc.).

As for communication, it is done through advanced technologies such as WSN,
internet, satellite telemetering technology, high-precision air-to-land observation
technology.

Fig. 4. Voice recognition and sending process
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Fig. 5. S2S EOS: Victims list with the last positions (Red Sparrows) (Color figure online)

Fig. 6. S2S EOS: Crisis Mode Activated: Collecting all surrounding victims coordinates

426 N. Bouchemal et al.



Table 1. Comparison between Intelligent based Systems, Smartphone based Systems and S2S.

Works based on New Technologies

Disaster
management
solution

Used
technologies

Automatic
activation

Feasibility
low and
middle
SDI
countries

Taking other
victims in
consideration

Communication Disaster
management
levels

Mobile fire
evacuation
system [11]

Iot, Indoor
location (Ant
Algorithm)

Yes Medium No WiFi, WSN
Internet

Recovery

GIS and IoT
for
evacuation
[12]

Iot, Powerful
spatial
analysis
function
Of GIS, AI
algorithms

Yes Low No WiFi, WSN,
Satellite
telemetering
Internet

Recovery

WSN for
active
Volcanoes
[13]

Sensors,
Analysis
function of
GIS, AI
algorithms,
Cloud

Yes Low Yes Wifi, Servers
Network, WSN,
Satellite
telemetering,
Internet, Lora

Preparedness

BRINCO
[28]

Sensors, Big
data

Yes Low Yes Accelerometer,
Signal
Processing,
WiFi, WSN,
Internet,
Smartphones

Preparedness,
Response

BRCK [29] Iot, Smart
devices,
Cloud, Wifi

No Good No WiFi, WSN,
Internet,
Smartphones

Response,
Recovery

Smartphone applications for disasters management

Smart
rescue [1]

Sensors
network, WiFi

No Medium Yes WiFi, WSN,
Internet,
Smartphones

Preparedness,
Response

FEMA [31] GIS, Cloud No Medium Yes WiFi, WSN,
Internet,
Smartphones

Response,
Recovery

First Aid
Application
[2]

GIS, No Good No WiFi, WSN,
Internet,
Smartphones

Response,

Fire Ready
[32]

GIS, WiFi,
Sensor
network

Yes Low No WSN,
Internet,
Smartphones

Mitigation
preparedness,
Response

Automatic
crash
notification
[20]

Sensor
network,

Yes Medium No Internet,
Smartphones,
Wifi, WSN

Response

S2S: Scream to Survive System

S2S GIS, Voice
recognition
algo

Yes Good Yes Internet,
Smartphones

Response,
Recovery
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In disaster situation they are automatically triggered or activated. and take into
consideration several victims at a time. But most of these systems are not feasible in
SDI-reduced countries.

For their part, Smartphone-based systems are mostly feasible in these countries,
because Smartphone today is widely used. But, most of these systems are not activated
automatically and do not take the other users in consideration (only those who have the
application installed on their Smartphone).

In addition they do not take into account the rescue level which is very important to
save lives after any disaster.

Our system is a combination between smart systems and mobile apps on Smart-
phone. On the one hand we used simple artificial intelligence algorithms for voice
recognition.

On the other hand, communication will be done either by telephonic network or
Internet (depending on the situation of these networks) to inform the EOS. Further-
more, our system takes into consideration a maximum of victims by collecting their
coordinates as soon as the disaster happens.

Finally, the system takes into consideration the two levels where most lives could
be saved: response and recovery.

6 Conclusion

In recent years the disaster impact on human and material losses are considerable,
especially in middle and low SDI countries.

There are many systems designed for EOS in case of disasters to help the victims.
But these systems are often expensive for middle and low SDI countries. That is why
we have proposed in this paper Scream to Survive system (S2S) based on Smartphone,
as they are increasingly used, and artificial intelligence technology for voice recogni-
tion. With S2S system, it is sufficient for the victim to say words about disasters or for
asking help. The system is automatically activated to send notifications (sms, notifi-
cations, etc.) to the EOS, to the victims’ contacts and to the volunteers pre-registered in
S2S system. Furthermore, in the case of disasters like earthquakes, the system proceeds
to the collection of close people positions. It will be very useful in the recovery relief.
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Abstract. In this paper, we present a collaborative multi-agent based system
for data mining. We have used two data mining model functions, clustering of
variables in order to build homogeneous groups of attributes, association rules
inside each of these groups and a multi-agent approach to integrate the both data
mining techniques. For the association rules extraction, we use both apriori
algorithm and genetic algorithm.
The main goal of this paper is the evaluation of the association rules obtained

by running apriori and genetic algorithm using quantitative datasets in multi
agent environment.

Keywords: Association rules � Apriori � Clustering � Multi agent system �
Genetic algorithm

1 Introduction

In recent years, more researchers have been involved in research on both agent tech-
nology and data mining. A clear disciplinary effort has been activated toward removing
the boundary between them, which form the interaction and integration between agent
technology and data mining.

DM (Data Mining) has evolved to become a well-established technology field with
subfields such as classification, clustering, and rule mining.

In fact, the clustering encompasses a number of different algorithms and methods
for grouping objects of similar kind into respective categories. Such algorithms or
methods are concerned with organizing observed data into meaningful structures.

Otherwise, the association rules aims at finding strong relations between attributes.
In order to integrate the two data mining techniques, we used a multi agent system

which is the combination of multiple agents. Indeed, an agent is a computer system that
is capable of autonomous action on behalf of its user or owner. It is capable to figure
out what it is required to be done, rather than just been told what to do.

In this work, we developed a multi agent data mining framework to extract useful
rules from real data sets, relying on clustering of variables to build homogeneous
groups of attributes and mine supervised association rules inside each cluster.
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For the clustering step, we used the K-Means algorithm for variables and for the
association rules step we compare the results obtained by using two association rules
algorithm, the apriori algorithm and the genetic algorithm knowing that we deal only
with quantitative datasets.

2 Related Work

In this section, we will briefly review of the previously proposed studies in autonomous
intelligent agent systems or multi-agent systems for data mining and knowledge dis-
covery in database. The techniques used in these studies include association rule
mining, associative classification mining, computational intelligence and rule genera-
tion algorithms. The proposed approach is mainly related to two areas of research,
knowledge extraction from large dataset and knowledge modeling using multi-
intelligent agent system. Warkentin, Sugumaran, and Sainsbury produce a study in
which they discuss the role of intelligent agents and data mining in electronic part-
nership management. The procedures of data mining used in this process can be
enhanced by using intelligent agents [13]. Nahar, Imam, Tickle, and Chen discussed a
paper in which they used association rule mining and a computational intelligence to
identify the factors which contributes to heart diseases for males and females. This
research presents rule extraction experiments on heart disease data using three rule
generation algorithms apriori, predictive apriori and tertius [14]. Ait-Mlouk, Agouti
and Gharnati propose an approach to discover a category of relevant association rules
based on multi-criteria analysis to avoid redundant rules, they use multi agent system to
manage and model the quality measurement according to six agents working in
cooperation [15].

3 Data Mining Process

Currently, enormous volumes of data are being produced and stored in computer
systems around the world. So, data mining techniques are adequate to address the
problem of analyzing and understanding the massive datasets [11].

In this work, we use firstly, a combination of K-Means clustering for variables and
supervised association rules i.e. the right part of the rule are always known (the vari-
ables to predict) Table 1. Secondly we automate the process by relying on a multi agent
system. Through the research we were faced with several limitations such:

• Using K-Means for clustering variables.
• Using association rules algorithm for quantitative datasets.

To deal with the first limitation, we choose to deal only with quantitative datasets
and transpose the data in order to cluster the variables instead of individuals.

For the second limitation, we choose to compare two approach of rule mining. The
first one concerns the use of apriori algorithm, this after the discretization of all
datasets. The second approach is using genetic algorithm for quantitative datasets.
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We will apply the proposed system on a real dataset to illustrate how the proposed
system can extract a set of rules from real dataset to construct knowledge base.

• Heart datasets: Heart disease.
• Pima datasets: Pima Indians Diabetes Database.
• Vehicle datasets: Use vehicle silhouette to predict the model of a vehicle.

The data used in this work comes from UCI archives, internet.

4 Overview of Basic Techniques Used in the Data Mining
Process

4.1 K-Means Clustering

The K-Means algorithm takes two input parameters: the dataset of n objects, and k, the
number of clusters to be created. The algorithm partitions the dataset of n objects into k
clusters. Cluster similarity is measured by taking the Euclidean distance between
objects. In this way, K-Means finds spherical or ball shaped clusters. The mean value of
the objects in a cluster can be viewed as the cluster’s center of gravity.

Formally, the K-Means clustering algorithm follows the following steps:
Step 1: Choose a number of desired clusters, k.
Step 2: Choose k starting points to be used as initial estimates of the cluster

centroids. These are the initial starting values.
Step 3: Examine each point in the dataset and assign it to the cluster whose centroid

is nearest to it.
Step 4: When each point is assigned to a cluster, recalculate the new k centroids.
Step 5: Repeat steps 3 and 4 until no point changes its cluster assignment, or until a

maximum number of passes through the dataset is performed.

4.2 Discretization Pre-processing

Discretization is a data preprocessing technique which transforms continuous attributes
into discrete ones by dividing the continuous values into intervals, or bins. In this work,
we based our discretization process on Class-Attribute Interdependence Maximization
(CAIM) which is a discretization algorithm of data where the classes are known. In fact
the CAIM algorithm works in a greedy top down manner. It starts with a single interval
and divides it iteratively, using for the division the boundary that gave the highest

Table 1. Datasets description

Datasets Number of variables Number of lines Variable to predict

Heart datasets 13 244 Presence of heart disease
Pima datasets 8 692 Presence of diabetes
Vehicle datasets 15 677 The model of vehicle
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values of the CAIM criterion. The algorithm assumes that every discretized attribute
needs at least number of intervals equal to the number of classes.

Let us assume that we have a training data set consisting of M examples, and that
each example belongs to only one of the S classes. F will indicates any of the con-
tinuous attributes. Then there exists a discretization scheme D on F, which discretizes
the continuous domain of attribute F into n discrete intervals bounded by the pairs of
numbers: [1].

D : f½d0; d1�; ðd1; d2�; . . .ðdn�1; dng

where d0 is the minimal value dn is the maximal value of attribute F, and the values are
arranged in the ascending order. These values constitute the boundary set
fd1; d2; d3; . . .dn�1; dng for discretization D.

• Caim criterion

Given the quanta matrix defined in Fig. 1, the Class-Attribute Interdependency Max-
imization (CAIM) criterion that measures the dependency between the class variable C
and the discretization variable D for attribute F is defined as:

CAIM C; DjFð Þ ¼
Xn

i¼1

max2i
Mir

n
ð1Þ

Where:
n is the number of interval
i iterates through all intervals, i.e. i = 1,2,..n.
maxi is the maximum value among all qir values (maximum value within the ith

column of the quanta matrix), r = 1,2,…S (see Fig. 1).
Mir is the total number of continuous values of attribute F that are within the

interval ½dr;dr�1�.

Fig. 1. Quanta matrix

434 I. Belabed et al.



4.3 Association Rules

The most popular task of DM is to find trends in data that show associations between
domain elements. This is generally focused on transactional data such as a database of
purchases at a store. This task is known as Association Rule Mining (ARM). It was first
introduced in Agrawal et al. [2]. Association rules identify collections of data attributes
that are statistically related in the underlying data. An association rule is of the form
X ! Y where X and Y are disjoint conjunctions of attribute value pairs. The confi-
dence of the rule is the conditional probability of Y given X, Pr(Y|X), and the support
of the rule is the prior probability of X and Y, Pr(X\Y). Here probability is taken to be
the observed frequency in the dataset.

The traditional ARM problem can be described as follows. Given a database
of transactions, a minimal confidence threshold and a minimal support threshold, find
all association rules whose confidence and support are above the corresponding
thresholds.

Apriori Algorithm. The apriori algorithm iteratively identifies frequent itemsets FIs,
in data by employing the “closure property” of itemsets in the generation of candidate
itemsets, where a candidate (possibly frequent) itemset is confirmed as frequent only
when all its subsets are identified as frequent in the previous pass. The closure property
of itemsets can be described as follows: if an itemset is frequent then all its subsets will
also be frequent; conversely if an itemset is infrequent then all its supersets will also be
infrequent.

• Apriori

Input: (a) A transactional database Dt;

(b) A support threshold s;

Output: A set of frequent itemsets S;

1: begin:

2: k ←1;

3: S← an empty set for holding the identified frequent itemsets;

4: generate all candidate 1-itemsets from Dt;

5: while (candidate k-itemsets exist) do

6: determine support for candidate k-itemsets from Dt;

7: add frequent k-itemsets into S;

8: remove all candidate k-itemsets that are not sufficiently supported to

give frequent k-itemsets;

9: generate candidate (k + 1)-itemsets from frequent k- itemsets using

closure property;

10: k←k + 1;

11: end while

12: return (S);

13: end Algorithm

Note: A k-itemset represents a set of k items.
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Genetic Algorithm. Genetic algorithms are stochastic search methods that mimic the
metaphor of natural biological evolution [4]. At each generation, a new set of
approximations is created by the process of selecting individuals according to their
level of fitness in the problem domain and breading them together using operators
borrowed from natural genetics. Genetic algorithm take as an input the following
elements: population, selection according to fitness, crossover to produce new off-
spring, and random mutation of new offspring.

• Initial population: The initial population of individuals is generated as follows: in
the first individuals, the intervals ½li; ui� represent the whole domain of the ith

numeric attribute, and the following individuals encode intervals with decreasing
amplitudes (length of intervals) until they reach a minimum support in the dataset.
Once the amplitudes are fixed for an individual, the bounds li and ui are chosen at
random.

• Mutation and crossover: The crossover operator consists in taking two individuals,
called parents, at random and generating new individuals: Each attribute the interval
is either inherited from one of the parents or formed by mixing the bounds of the
two parents [5]. Mutation works on a single individual and increases or decreases
the lower or upper bound of its intervals respectively. Moving interval bounds is
done so as to discard/involve no more than 10% of tuples already covered by the
interval [6].

• Fitness function: The fitness function used is based on the gain measure [7]. If the
gain is positive (the confidence of the rule exceeds the minimum confidence
threshold), we take into account the proportions of the intervals (defined as the
ratios between the amplitudes and the domains). Moreover, rules with low supports
are penalized by decreasing drastically their fitness values by the number of tuples
in the database [8].

Algorithm. The algorithm starts with a set of rule templates and then looks dynamically
for the “best” intervals for the numeric attributes present in these templates. An opti-
mization criterion based on both support and confidence is used to keep only high
quality and interesting rules [4]. The algorithm follows a prototypical genetic algorithm
scheme. The inputs are the minimum support (MinSupp), the minimum confidence
(MinConf), the population size (PopSize), the number of generations (GenNum), the
fraction of population to be replaced by crossover (Cross) and the mutation rate (MutR).

Input: A dataset composed of NbTuples, PopSize, GenNb, CR, MR, MinSupp,

MinConf

Output: Quantitative association rules R

Select a set of attributes

Let Rt a set of rule templates defined on these attributes

foreach r ∊ Rt do

Generate a random population P of PopSize

While � GenNum do

Form the next generation of population by mutation and crossover w.r.t.

MutR and Cross.
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Extract the itemsets that satisfy the best fitness to constitute the asso-

ciation rule values

i++

Return R= max (fitness (r)); r belongs to P

4.4 Agent and Multi Agent System

Agents and multi-agent systems are an emergent technology that is expected to have a
significant impact in realizing the vision of a global and informational rich services
network to support dynamic decision making [3].

Agents. Agents are defined by Wooldridge [9] as computer systems that are situated in
some environment and are capable of autonomous action in this environment in order
to meet their design objectives.

Multi Agent Systems. By combining multiple agents in one system to solve a
problem, the resultant system is a multi-agent system (MAS). These systems are
comprised of agents that individually solve problems that are simpler than the overall
system problem. They can communicate with each other and assist each other in
achieving larger and more complex goals [12].

5 Multi Agent Framework for Data Mining Process

The proposed mining framework comprises four categories of agent Fig. 3:

• User agent: User agent is charged by the communication with the user interface.
• Coordinator agent: Coordinator Agent is focused on the correct message trans-

mission among the agents. It takes the requirements (data, number of clusters…)
and sends them to the corresponding agent.

• Data agent: Data Agent is in charge of a data source; it interacts and allows data
access. There is one data agent per data source.

• Clustering agent: Clustering agent is concerned with a clustering K-Means
algorithm.

• Association rules Agent: Association rules agent is in charge of extracting super-
vised rules though the genetic algorithm or apriori algorithm inside each cluster.

The sequence of operation between different agents constituted the system given in
Fig. 3. This diagram shows the sequence of operations during the execution of the
proposed multi-agent system. However in this work, we will focus on the execution of
association rules agent. Indeed there are two scenarios for the quantitative datasets. The
first is to execute the apriori algorithm and this includes the use of the discretization
preprocessing. The second is the use of the genetic algorithm Fig. 2.
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Fig. 2. Association rules use case.

Fig. 3. The sequence diagram of the proposed agent system.
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5.1 Overview of the Implementation of the Data Mining Process

The implementation of the Multi-Agent System for centralized Data Mining framework
was done by using java platform through Agent-Oriented Programming paradigm
(AOP). In order to allow inter-agents communication, agents must share the same
language, vocabulary and protocols so; we have followed the recommendations of the
standard Foundation for Intelligent, Physical Agents (FIPA).

We have developed our proposed framework with Java Agent Development
(JADE) [10] which is FIPA-compliant middleware that enables the development of
applications based on the agent paradigm and is adequate to process large amounts of
data with a data mining approach.

6 Results

In this section, we will illustrate the results obtained by running our data mining
process on the three datasets; heart, pima and vehicle datasets.

As perquisite, for clustering part, we choose to fix the K value of K-Means into 3.
Also, for association rules part, we fix the confidence threshold at 60%, the support
threshold at 10%; particularly for genetic algorithm we fix the population size at 250,
the crossover rate at 50%, generation number at 100 and the mutation rate at 40%.

1. Heart datasets

For the heart datasets, we find that, first; the association rules agent with apriori
algorithm generates more rules than with genetic algorithm. Second we notice that
there is a small difference in the execution time between the two algorithms (Table 2).

However, in the case where the number of the rules generated is the same (cluster
1), we find that the confidence of the rule with genetic algorithm is higher than the one
with apriori algorithm.

Table 2. Result of heart datasets.

Association rules agent
Heart datasets Number of rules with apriori Confidence Support Execution time

Cluster 1 1 70% 35% 3.27E-4 s
Cluster 2 101 >62% >10%
Cluster 3 10 >63% >10%
Total of rules 112 – –

Heart datasets Number of rules with genetic Confidence Support Execution time

Cluster 1 1 72% 27% 2.46E-4 s
Cluster 2 45 >63% >10%
Cluster 3 6 >65% >10%
Total of rules 52 – – –
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In this part and the next part, we specify that the execution time exclude the
execution time of the dicretization in the case of apriori algorithm.

2. Pima datasets

The results of the pima datasets are the opposite of the results of heart datasets. In
addition of the high confidence compared to apriori algorithm, the genetic algorithm
extracts more rules than the apriori algorithm. Also, in the case where the rules
extracted are the same (cluster 2), we notice that the confidence of rules with genetic
algorithm is higher compared to apriori algorithm. Moreover, the execution time of
genetic algorithm is lower than with apriori algorithm (Table 3).

3. Vehicle datasets

Table 3. Result of Pima datasets.

Association rules agent
Pima datasets Number of rules with apriori Confidence Support Execution time

Cluster 1 6 >65% >39% 2.79E-4 s
Cluster 2 2 >71% >16%
Cluster 3 10 >66% >45%
Total of rules 18
Pima datasets Number of rules with genetic Confidence Support Execution time

Cluster 1 10 >60% >10% 2.62E-4 s
Cluster 2 2 >81% >11%
Cluster 3 14 >74% >10%
Total of rules 26

Table 4. Result of vehicle datasets.

Association rules agent
Vehicle data Number of rules with apriori Confidence Support Execution time

Cluster 1 31 >61% >10% 3.65E-4 s
Cluster 2 32 >60% >10%
Cluster 3 53 >60% >11%
Total of rules 116
Vehicle data Number of rules with genetic Confidence Support Execution time

Cluster 1 25 >79% >10% 0.003 s
Cluster 2 26 >60% >10%
Cluster 3 107 >60% >10%
Total of rules 158
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For the vehicle datasets, we conclude that genetic algorithm generates more rules
than apriori algorithm, this with high confidence compared to apriori. However in this
case the execution time of genetic algorithm is 10 times more than apriori algorithm
(Table 4).

From the results presented in this section, we can conclude that genetic algorithm is
more performing than the apriori algorithm. In the majority of cases this is due to the
quality of the discretization phase.

In fact, some rules with apriori algorithm are redundant, does not brings new
information, this is due to the dicretization intervals.

Example:
Support = 42 (17%), confidence = 60%: MaxHeartRate = [71.0–147.5] and

SerumCholestoral = [126.0–272.0] –> class = presence of disease.
Support = 26 (10%), confidence = 86%: MaxHeartRate = [71.0–147.5] and

SerumCholestoral = [272.0–417.0] –> class = presence of disease
On the other hand, in the three datasets, we find that genetic algorithm brings new

rules that involve more attributes.
As a conclusion, we find that genetic algorithm is more adequate taking into

consideration to use of multi agent system. Firstly, it generates more significant rules;
secondly it avoids the discretization step which means that the gain of execution time in
whole process including clustering and association rules will be considerable.

7 Discussion

The proposed approach illustrated in this work is more efficient compared to previous
works such Ait-Mlouk (2016) [15]. In fact our approach deals with redundant rules by
using genetic algorithm instead of multi criteria approach. That allows decreasing the
number of agent in the association rules step. We have one association rules agent
rather than six agents in that work.

Also our proposed approach surpasses that of Nahar [14], mainly in the execution
time knowing that the both works processes heart datasets with the same number of
variables.

The developed framework in this paper is presented with three real test cases from
different domains such health and industry; however the framework is applicable to any
other datasets. The use of multi agent system allows us to take advantage of four
features: reactivity, autonomy, interaction and initiative. This makes our work
extending to distributed and parallel paradigm.

8 Conclusion

We have proposed a new approach based on a Multi Agent framework for data mining
process that includes genetic algorithm for extracting association rules, JADE frame-
works and five different types of agents (user agent, clustering agent, association rule
agent, data agent and coordinator agent).
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In this work we focus on the association rules step, because we propose two
scenarios for extracting rules. The experimental results proved that the extraction based
on genetic algorithm is more adequate. In addition to the quality of rules extracted, the
execution time of genetic algorithm is interesting because it avoids the discretization
step.

Also, if we take into consideration the integration of the algorithm in data mining
process using multi agent system and other algorithm that increase the execution time,
such clustering, we conclude that the use of genetic algorithm is an optimization of the
whole process.

As a perspective, we want to extend our approach to deal with a real time data sets
from agriculture field in order to extract rules based on real time weather, ground
composition. This, in order to improve the agricultural yields.
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Abstract. In recent years, the fast developments in hardware, software, net-
working and communication technologies have facilitated the big emergence of
many technologies such as Internet of things. Measurement and collecting data
from physical world, and then sending it to digital world is base of this tech-
nology. The transmitted data are stocked, processed and then possibly used to
act upon the physical world. IoT adds intelligence and autonomy to many
domains (e.g. health care, smart transportation and industrial monitoring). As a
result, it makes human life more comfortable and simple. However, as all
emerging technologies, IoT is suffering from several security challenges and
issues, especially that most of IoT devices and sensors are resources- con-
strained devices. As security issues and attacks could put systems in dangerous
and could threat human life too, this paper treats these problems. We will
provide an overview about IoT technology, and we will present various security
issues that target the perception and the network levels. Moreover, we will
discuss how each layer is damaged by harmful and malicious purposes. Most of
recent papers use the three layers architecture (which is an old architecture) to
present security problems; but this paper uses one of the new reference archi-
tectures to study security threats and attacks.

Keywords: IoT architectures � Security � Challenges

1 Introduction

The internet of things (IoT) could be seen as the second version of Internet, where large
number of physical objects (e.g. intelligent devices, sensors, actuators etc.) have the
ability to sense, collect data, and communicate with each other without any human
assistance .This technology gives many services in several application domains such as
health care, smart industry, and smart homes [12]. Nevertheless, with the great benefits
of IoT, there are many problems, challenges and issues of security which require deep
and serious thinking. Nodaway, security problems are increasing seriously [3], where
IoT has not only the same security issues of its construction technologies, but it has
more [1].
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Today, IoT architecture is very important, because a good architecture is the main
key to create a secure IoT system. But, there is no universal architecture used by all the
constructors to shape an IoT system [8].

For that, this paper provides an overview about IoT technology and presents the
key problems of security. It reposes on three main phases: In the first one we give an
overview about IoT technology and we present two main IoT architectures. The second
phase presents IoT security challenges that face the implementation of security policies.
It presents also the security feathers in IoT (CIA security triad).Finally, the third part is
reserved to present the most important security attacks and issues of perception
(sensing) and network levels. In order to analyze the IoT security issues and attacks in
more details, this part presents and classifies them using IBorgia et al [15]. ++ this
paper is organized

2 IoT Overview

In 1999, Kevin Ashton was the first person that used the term Internet of things (IoT).
IoT uses a set of sensor nodes and intelligent devices to collect data from physical
world (environment), and then send it to the digital world. RFID and WSN are the two
main technologies used to collect and send data in network level. After that, the data
get processed and delivered to final application and end-users [5].

IoT may be defined as a dynamic worldwide network infrastructure of intelligent
devices and sensor nodes, which are able to configure themselves automatically and
they can make their own decisions without human intervention. Each IoT device has a
unique identifier that allows this device to communicate with others (IoT devices use
many types of communication protocols) [13].

There are many application domains of IoT such as the following: [7]

• Smart energy, smart homes, Smart Buildings, smart cities.
• Internet connected cars and buses (smart transportation),health care and fitness

monitoring(smart watch and bracelets)
• Earth supervision and environment monitoring (water quality, fire detection, air

pollution monitoring etc.), industrial monitoring.
• Smart devices like tablets and smart phones.

2.1 The Three Layers Architecture

It presents the first IoT architecture which is
composed of three layers: Perception layer,
Network Layer and Application layer [6],
Fig. 1.

1. Perception Layer. Known also as phys-
ical layer, is the responsible layer of
interconnecting and identifying the dif-
ferent IoT devices [7]. It uses a very
large number of smart devices and

Fig. 1. Three layers architecture of IoT.
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sensor nodes to collect data from physical word (environment) [5, 6]. To connect
with other devices, each device must be identified with unique identifier [7].

2. Network Layer. The main objective of this layer is gathering information that is
obtained from physical layer, and then transfers it to application layer. WSN and
RFID are the main two technologies used to collect and send data.
This layer is the responsible of the communication between different devices, using
many communication protocols (e.g. MQTT, CoAP…) and technologies (e.g.
ZigBee, Bluetooth, WI-Fi…) [5, 6].

3. Application Layer. It presents the top layer of this architecture, which takes two
main responsibilities: data storage and processing, and provide a set of services to
different applications (final users) [6]. This layer is service-oriented that offers data
to different kind of final users and applications, to satisfy their needs. There are
many applications domains such as smart transportation and healthcare [4, 7].

2.2 IoT Layered Architecture of IBorgia and Al.

Borgia and al. propose an IoT
architecture that is very helpful
to solve the interoperability and
security issues. It has six dif-
ferent layers, presented in
Fig. 2. [8, 15].

From the bottom to up we
have:

• Sensing layer is responsible
layer to percept and collect
data from physical world
using a large number of
sensor and device nodes.

• The three layers Short-range Communication, Gateway access and network, serve
as Communication Bridge between Sensing and Service platform and enabler
layers. They use many standards and technologies to exchange data [11]. The idea
of splitting the network level into three layers comes from the fact that the existing
internet protocols (such as HTTP) require a memory size and power capabilities,
which is an issue for small devices, We have to point out that most of IoT devices
are small and weak devices [10].

• Most of IoT devices and sensor nodes are characterized with low processing
capabilities, limited storage and constrained memory.
Moreover, they usually implement only two or three bottom layers of OSI, and they
are mostly not directly compatible with TCP/IP. Gateways can solve this problem,

Fig. 2. IBorgia and al IoT architecture.
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because they use HTTP protocol to communicate with each other and they support
specialized protocols and technologies to interact with physical sensor and devices
[9].
They enables their connection with high bandwidth networks (the network layer)
[8], and they support aggregation, processing, and bridging [10]. In Short-range
Communication, IoT devices are usually interconnected through a short range
wireless network (WSN), where several technologies are used (e.g. Bluetooth, Z-
wave, ZigBee).

• IoT Service platform and Enabler: The fifth layer includes software and services to
control the IoT system (storage, processing etc.). It guarantees many non-functional
requirements such as security, safety, and availability.

• Application layer is the top layer of this architecture. It is a service-oriented layer
that offers services to final applications and users, such as services and software
devoted to smart transport, Health care and energy monitoring.

3 Security Challenges in IoT

This section will present the main challenges that face implementation of security
policies. Security trends in IoT will be also presented.

3.1 IoT Security Challenges

Security in IoT domain has many challenges that complicate the construction of
security solutions and policies, such as the following:

• The limitation of resources: IoT devices have usually limited resources such as low
processing power, limitations of energy and memory. These limitations complicate
the implementation of powerful encryption algorithm in IoT systems [9, 13].
Moreover, most of devices are resource constrained and they have not enough
hardware and software to support TCP/IP protocol and security protocols [12].

• Heterogeneity of devices and network technologies: IoT use many types of sensors,
devices and network technologies and this can result many security problems. It
complicates also the creation of powerful security policies [12].

• Lack of standardization: there are not unique standards that all the constructors of
IoT devices use. Each vendor uses his own standards, protocols and technologies
[12].

• The integration of the physical and cyber domains exposes the system to attacks.
Cyber attacks may target the cyber domain and paralyzes the physical domain (IoT
devices) [14].

Internet of Things: Security Between Challenges and Attacks 447



• IoT devices are placed everywhere, so they can easily be damaged, stolen, and get
unauthorized access [11].

• The proposed techniques and security methods are essentially based on traditional
network security methods. However, IoT system is more challenging than tradi-
tional networks, due to the heterogeneity of devices and protocols [14].

• Millions of devices could be used in an IoT system (e.g. a system to measure the
temperature all around the country), which result unmanageable amount of data [2].

3.2 Security Trends and Feathers in IoT

Security includes many trends or feathers, but in this section we present the three main
trends and the security triad CIA (confidentiality, integrity and availability) [4, 11].

1. Confidentiality
It is a security characteristic and it means that just the sender and the receiver can
read the exchanged information. So, data must be protected in all communication
process: in sender and receiver sides, and during data transportation in network
[11].

2. Integrity
It refers to the absence of unauthorized data changing (modification) .So, in all
process of communication; the data must not get modified in the sender side, the
receiver side and between them. The unauthorized data modification compromises
this security trend [11].

3. Availability
It means that the system or the service (or a device) is available and accessible to his
clients, and everything is offered correctly. The availability is stolen if the target
system or service is inaccessible, or the client couldn’t even make a communication
with it [11].

4 Related Work

This section will present three propositions to solve the security problem in IoT.

4.1 Ioannis Andrea and Al Classification of IoT Security Attacks

According to the authors [7], this contribution is a new classification of different types
of attacks. Compared to other classifications, this one is unique, because it uses four
distinct classes to divide the current different attacks. The four classes are: Physical,
Network, Software and Encryption attacks. We have to note that this classification is
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based on the target point of attacks to classify them. So the attack can target the system
physically (IoT devices), or its network, or from applications (that are running on
devices) on the system, and finally from encryption schemes.

1. Physical Attacks
In this type of attacks, the physical components (devices or things) are the target of
attacker. The goal of this type of attack is to compromise security feathers as
availability. It can be just to harm the target component(s) (the functional roles) or
as an enter point to harm all the system. To make the attack works, the attacker has
to be in the IoT system (as a foreign element) or physically close. Many attacked
could be mentioned such as: Malicious Node Injection, Physical Damage, and Node
jamming (in WSNs).

2. Network Attacks
Contrary to the previous type, the attacker doesn’t have to be close or near the IoT
system, he can make the attack works remotely. This class contains a set of attacks
which threat the level network of the IoT system. The communication between the
different physical devices is guaranteed by the network level (layer), so network
attacks are very dangerous for information confidentiality and privacy. There are
many attacks but the most important are: Traffic Analysis Attacks, Routing Infor-
mation Attacks, RFID Unauthorised Acces.

3. Software Attacks
In this type of attack, the software part of IoT system is the source of vulnerabilities.
The attack is basing of the use of deferent types of malicious programs to steal
information, change and tamper the system data, deny of service and even harm the
IoT system devices. The main tools (malicious programs) that are used in this class
are: worms, Trojan horses, spywares, viruses and malicious scripts. The main
attacks in this class are: Phishing Attacks Malicious, Script Attack, and Denial of
Service.

4. Encryption Attacks
The IoT system uses encryption scheme to protect the exchanged data between
devices. This class gathers a set of attacks that try to break the encryption scheme of
IoT system (generally, the goal of attack is to obtain the encryption key that has
being used for encrypting and decrypting data. Side channel Attacks and Crypt-
analysis Attacks are the main encryption scheme attacks.
A summarized representation of this classification is shown in table below:
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4.2 Abdul W.A and Al
Classification
of IoT Security

In this classification, the four
layers architecture of IoT has
been used to classify the different
attacks (the aim of the paper is to
discuss security of four layered
architecture of IoT). So, in each
layer, this classification presents
the possible attacks that could be,
as shown in the next figure [5]:

The four types of attacks are
[5]:

1. Physical Layer Attacks
The Physical Layer is the
responsible layer of collecting
information from the physical
word by using a set of sensor
nodes and intelligent devices,
and ensures the communica-
tion between these physical
equipments. Those devices
(hardware parts of an IoT
system) are the target of the
physical layer attacks to:
cause damages on the physi-
cal node, steal the data confi-
dentiality and integrity, and
deny the access to services.
To achieve his attack, the
adversary has to be close to
IoT system. There are many
physical attacks such as Node
Tempering, Unauthorized
Access to the Tag and Tag
cloning.

2. Network Layer Attacks
In this type, the attacker con-
centrates on the network level
of the IoT system, which
presents the communication
bridge between different physical devices and sensor nodes. The network layer
gathers information which is obtained from physical layer (collected by devices),

Fig. 4. Abdul W.A and Al classification [5]

Fig. 3. A summarized representation of AIoannis A
and Al’s
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and then transfers this data to processing layer, so attackers find it as a good part or
level to steal information. There are many network attacks such as: RFID Spoofing,
RFID Unauthorized Access (Fig. 4).

3. Processing Layer Attacks
The processing layer is the responsible of the storage, the processing, and data
analysis, as a result, this qualifies it to be a good level to practice several malicious
activities by attacker. Most of attacks are inherited from the used technologies (such
as cloud computing attacks).This type of attacks gathers many attacks such as:
Malicious Insider, Virtualization threats.

4. Application Layer Attacks
The application layer is service oriented layer which provides the processed
information to the final users (applications such as healthcare, smart homes etc.) as
services. In this layer, the attackers use malicious programs to harm the systems,
such as viruses, spywares, Trojan horse and worms. The application layer attacks
present a serious type of attacks, they are used to: steal private and confidential data,
altering data, damage the IoT devices, and get unauthorized access. There are many
attacks like: Virus, Worms, Trojan Horse and Spyware attacks, Malicious Scripts
attacks, and Denial of Service.

4.3 A Systemic Approach for IoT Security

In the paper [16], the aim of authors is the exploration of a new approach to design
security mechanisms and deployment in IoT context. They propose a systemic (and
cognitive) approach to ensure the IoT security, and to explore each actor’s role and its
interactions with the other principal actors of the proposed scheme. The paper [16] sees
the IoT system as a complex system in which people interact with intelligent devices.

In this proposed approach, the set of connections between different nodes have a
specific character depending on
complex nature of IoT environ-
ment. Moreover the paper [16]
takes into consideration the
dynamic and complex nature of
this proposed model. It presents
its perspective in respect of the
main elements illustrated in the
approach which are “nodes” and
“tensions”.

The interactions between
nodes are represented by ten-
sions. The nodes are the origi-
nation and destination actors of
a tension. This approach takes
into consideration the environ-
ment complexity. The approach
is presented in the Fig. 5. Fig. 5. A systemic approach for IoT security [16]
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In order to explain this model, we will describe each node and its functions briefly .
The tensions between different nodes need a special study and discussion; we will try
just to explain them shortly:

1. Nodes
There are four nodes: Person, Process, Intelligent Object, Technological ecosystem

• Person. The human resources play a principal role in the IoT security, because
they are responsible for security rules management that includes: the definition
of security rules and practices, ensure efficiency of rules, auditing and verifi-
cation practices. This vital node plays an essential role in the management and
enhancement of security. So, the person node should be able to analyze all the
context of IoT.

• Process. This node refers to a resources or a means that are used to accomplish
tasks, and to guarantee security requirements. In order to ensure the security of
the environment at different levels, the process has to be conformable and
compliant with the security policies. Furthermore, there is a big difficulty to
implement security processes, because the model is complex and the existence
of several interactions originating from the process node. According to practices,
security process has to face many requirements such as requirements of stan-
dards, requirements of strategies, requirements of policies etc.

• Intelligent Object. This node presents the heart of this approach; it refers to an
“object” enhanced with electronic capabilities to communicate with other
objects in his environment (intelligent devices). An object can exchange infor-
mation, cooperate and connect with other objects.

• Technological Ecosystem. The technological choices (technologies) that have
been made to ensure the security of IoT is represented by this node. There are
many categories of information security technology (or technologies) such as
Identification and Authorization, and Security Design and Configuration.

2. Tensions
Tensions represent the interaction between nodes. The paper presents 7 tensions:
Identification and authentication, Trust, Privacy, Responsibility, Autoimmunity,
Safety, and Reliability. This part wills discuss them:

• Identification and Authentication. This tension attaches the two nodes: intelli-
gent object with the person.In IoT context, each entity must be identified, to
ensure a correct communication between entities, and to guarantee the absence
of unauthorized access. Radio Frequency Identification (RFID) is the main
technologies used in IoT to connect different devices.

• Trust. The “Trust” tension attaches the technological ecosystem node with the
intelligent object node. Basically, we can say that Trust represents the level of
confidence that the environment can grantee to the intelligent object (if the level
is reliable and dependable or not).
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• Privacy. The tension that attaches the person with the technological ecosystem is
“privacy”. The ubiquitous characteristic of the IoT environment make the pri-
vacy an important tension in the systemic model of IoT security.

• Responsibility. The “Responsibility” tension attaches the process node with the
intelligent object. It means the set of access rights and privileges, which have to
be clearly specified and defined evidently, depending on privacy constraints.
Moreover, in order to avoid dangers when the object regulates a process; the set
of rules of liabilities and responsibilities for each entity must be taken in
consideration.

• Autoimmunity
The tension that attaches the intelligent object in self loop (with its self) is
“Autoimmunity”. Proposing an artificial immune system solution for IoT is the
aim of this tension.

• Safety
The “safety” tension attaches the two nodes: person with process. Ensuring
safety when an unexpected problem (egg: failure, attack …) appears, is one of
the main security challenges that the IoT system has to face (and overcome it).
So, the reduce damage possibility is considered by safety

• Reliability
The tension that attaches the process node with the technological ecosystem
node is “Reliability”. The goal of this tension is to guarantee the availability of
data and information, using efficient ways of managing data repositories. It deals
with communications management and data.

5 Security Attacks and Threats in IoT

IBorgia and al. architecture offers an
interesting functional view for IoT
system, and it satisfies the recent
requirements of IoT system. It cat-
ches the main features of an IoT
system that are: the interaction
between the local and personal net-
works of sensors nodes on one side
and the interaction between high-
bandwidth networks with computa-
tion power systems in the other side.

Basing on these considerations,
we adopt this architecture as a mould
(model), to analyze security issues
and attacks in IoT system. The main
security attacks are presented in the
Fig. 3. Fig. 6. Some security attacks in IoT (using IBorgia

architecture)
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Sensor-based threats present a serious family of IoT security threats [2], which
could be classified into four categories, basing on intentions and nature of these threats.
These categories are: (1) Information Leakage (2) Transmitting malicious sensor
commands (3) false sensor data injection (4) denial of-service (DOS) [1] Fig. 6.

1. Information Leakage
IoT sensors could stock sensitive
data like login, passwords, and
credit card information; and the
steal of this data puts the user
privacy and IoT system security
in danger. IoT attacker can use a
sensor information to achieve his
attack (or information from mul-
tiple sensors to achieve a more
complex attack).
In this category, four methods
could be used: keystroke inference, task inference, location inference, or eaves-
dropping [1], Fig. 7.

• Keystroke Inference. In this method, the attacker try to deduce the keystrokes
entered in the IoT device.
When a user types (or gives) inputs to his device, tilts it, or turns it, a set of
deviations are resulting. These deviations are used later by the attacker to infer the
entered data. Keystroke Inference can be performed on the device itself or by using
nearby sensor.
This attack can be performed using magnetic Sensors, light Sensors, audio Sensors,
and video Sensors [1].

• Task Inference. This type of attack is based on the deduction (the reasoning), in
which the attacker tries to extract information about the ongoing task or application
inside the target device. This information presents the state of the device and used to
start an attack, without alerting the device security policies.
The idea of this attack starts from the fact that sensors show deviation in the reading
process for various tasks running on the devices, and this deviation can be used to
infer the running process or application inside this device.
Task inference can be performed using magnetic Sensors, Power Analysis etc. [1].
For example, Timing Attack is a task inference attack, which enables the discovery
of vulnerabilities and extracting information about security policy.
Timing attack is done by observing the responding time for different inputs and
queries to determine the cryptographic algorithms implemented in the system.
It is usually used with small devices that have weak computing capabilities [3, 5].
This attack threats the data confidentiality.

• Location Inference. This type of attack is used to determine the victim location,
which is private and sensitive information in itself, and use it to launch another
attack.

Fig. 7. Information leakage method sensing layer
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This attack steals the location-privacy. The attacker use acoustic information
embedded in an audio source (e.g. audio messaging) to identify sensitive locations
of the target entity. For example, this attack could be used to compromise location
privacy of participant in anonymous session. This information is used to produce a
location fingerprint [1].

• Eavesdropping. In this type of attack, a malevolent application uses an audio sensor
(e.g.: microphone) to listen to a private conversation secretly. After that, the attacker
tries to extract confidential information from this conversation (e.g. social- security
number and credit card information).
The attacker can record the conversation on a storage device or listen to it in real-
time [1, 3].
For example, replay attack (or play back attack) uses the eavesdropping to steal
authentication information from the sender and then use it to send a request message
(Identity stealing) [3].

2. Transmitting Malicious Sensor
Commands
Today, most of IoT devices and
sensors allow the creation of unex-
pected communication channel with
other entities. This weak point could
be used by attacker to create a
communication channel, and then
he launches his attack. This attack
could change critical parameters of
the target sensor (e.g. light inten-
sity), or even transmit malicious
commands (trigger messages) to
activate a pre- planted malware [1]. The malicious program (virus or malware)
could be inserted into the device physically, or via Malicious Code Injection attack.
As a result, the attacker gains a full access to that node, and then he can control all
the IoT system [1]. There are many methods to transmit signals and malevolent
commands such as using a audio sensors, light sensors, or a magnetic sensors [1],
Fig. 8.

3. False Sensor Data Injection
IoT system uses different devices
and sensors to collect very important
and sensitive data. We could not
imagine the results if a patient data
in a hospital have been altered or
faked.
False sensor data injection is an
attack where the sensor data is
forged (faked), or even to inject false
data. It’s used to perform malicious

Fig. 8. Transmitting malicious sensor com-
mands method

Fig. 9. False sensor data injection method
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activities. The attacker use specific commands to change the real information or to
modify the device’s actions. This attack needs a physical access to the target device
or a remote access by using various communication medium (Wi-Fi, Bluetooth,
etc.) [1]. For example, Malicious Fake Node attack belongs to this type, in which
the attacker uses a fake node to inject false data [3], Fig. 9.

4. Denial of-Service (DoS)
In this section, we talk about
Denial-of-Service (DoS) for
a sensing and perception
device. DoS for a device is a
type of attack to deny mali-
ciously the normal operation
of this device, and to forbid
the access to it.
There are two types of DoS
attacks: active and passive
attacks. In active attacks, the
access to an application, a
task or a device is refused
effectively. However, if one
application has been attacked to stop another ongoing task on the device, we call
this a passive attack [1]. DoS attack could have an after-effect to exhaust the system
resources, such as battery and memory resources [3]. For example, DoS attack is
used with gyroscopes of drones and accelerometers to shut the device down [1].This
attack will be more explained in a next part.
From the explication above for each method, we conclude that each type can threat
one or more security trends. This is represented in the next table Table 1.
Note that, results of a type of attack (or all the attack) could be used to launch
another attack (The second attack can threat another security trends). That is called
composition of attacks.

5.1 Short-Range Communication, Gateway Access and Network Layers

Short-range communication, Gateway access and network represent together the net-
work layer of the three layers architecture [8, 11]. They have many common attacks,
but with some specifications in each one.

That is why this section treats them together, and it presents the attack specification
in each layer. The network level has many attacks but the main ones are:

1. Denial of Service (DoS)
It is an attack to deny authentic users to access a device or a network resource. The
attacker accomplishes this attack by flooding the targeted component with redun-
dant requests. He inundates the network traffic by sending a large amount of data,
and this results massive consumption of system resources. The flooding process
makes the system or the target device inaccessible or difficult to use by some or all
authentic users [3], Fig. 10.

Table 1. The stolen security trends of each attack type

Confidentiality Integrity Availability

Information
leakage

YES NO NO

Transmitting
malicious sensor
commands

YES YES YES

False sensor data
injection

NO YES YES

Denial of-Service
(DOS)

NO NO YES
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The DoS attack has a distributed version called distributed DoS (DDoS). DDoS
attack is defined as a set of concurrent DoS attacks. The attacker could use botnet
army, which is an army of IoT devices that are infected with malwares. DoS and
DDoS attacks may cause energy dissipation issues and physical damage [4],
Fig. 11.

2. Man-in-The-Middle (MiTM)
In this attack, the hacker plays secretly a role of a mediator between the sender and
the receiver who believe they have a direct communicating with each other.
He becomes the controller of all the communication; therefore he can capture,
change and manipulate the communication information in real time according to his
needs.
It is a serious security threat that steals the integrity of information [3]. MITM is
also known as Malicious Node Injection because the attacker injects (plants) a new
malicious node between the sender and receiver, to control all the exchanged data
[5], Fig. 12.

3. Storage Attack
In this attack, the hacker tries to get the stored data and information inside the target
node. For example, the gateway node can store sensitive user information, and that
make it a good target for attackers. The gateway can be attacked to change or delete
his stored information [3], Fig. 13.

Fig. 10. Denial of-Service (DOS) attack Fig. 11. Distributed Denial of-Service (DDoS)
attack
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4. Node Capture
Is a serious attack faced the IoT system, in which an attacker gets the full control
over a key node, like a gateway node. The attacker can steal many private infor-
mation such as communication information between a device and the gateway, a
communication security key, and many sensitive information stored in the gate-
way’s memory [3]. Moreover, the attacker can add a duplicate node to the network
to send malicious data; as a result he threats the data integrity and confidentiality
[5], Fig. 14.

5. Malicious Code Injection
As we presented earlier, the injected malicious code (or malware) gives the attacker
the full control over the infected node. He could activate the injected malware by
transmitting malicious command attack.
The attacker can use the infected nodes (devices) to gain a full control over the IoT
network, affect the IoT network, or even block it completely. This type of attack can
really cause serious problems in the IoT system [5], Fig. 15.

Fig. 12. Man-in-The-Middle (MiTM) attack Fig. 13. Storage attack

Fig. 14. NodeCaptureAttac attack Fig. 15. Malicious code injection attack
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5.2 Discussion

As we said earlier, the three
layers Short-range commu-
nication, Gateway access
and network have many
common attacks, but with
some specifications or dif-
ferences in each one. The
next table explains the
specifications (properties) of
each attack in each layer (if
the Attack could be per
formed), Table 2.

6 Conclusion

The increasing popularity of
IoT and its applications is
bringing attention towards
their security issues, threats
and attacks. This paper has
presented the IoT technol-
ogy and its main architec-
tures and then it focused a
very important aspect in
IoT: the security.

As a perspective of this
paper, some points will be
discussed in an extension
paper for this work such as:

Security issues in the
last two layers of IBorgia
and al architecture.

• Current security mechanisms to prevent security threats and attacks.
• Several security solutions and approaches.
• Some security implementation attempts, counter measures like Software Defined

Networking (SDN) and Blockchain.

Table 2. Main attacks in network level

Short-range
communication
layer

Gateway access
layer

Network layer

DOS/D.
DOS
(attacks to
compromise
the
availability)

——— Deny the access
to the gateway
(devices could
not access to the
gateway)

Deny of access
to the gateway
from “service
platform and
enabler
layer’’(or the
opposite sense)

Main-in-
The-
Middle
(MiTM)

The attacker
Intercepts and
alters the
communication
information,
which is sent
between a device
and the gateway

——— Intercepts and
alters the
information
between the
gateway and
capabilities of
“service
platform and
enabler layer’’
(e.g. cloud)

Storage
Attack

——— Steal, change, or
delete the
gateway’s stored
information

———

Node
Capture

——— Get the full
control over the
gateway

———

Malicious
Code
Injection

The attacker
affects and
controls the
communication.
He could block it
completely

The attacker
could control or
block the
Gateway node
(as a result all
the IoT system)

The attacker
affects and
controls the
entire network.
He could
block it
completely
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Juan P. Ospina1(B), Joaqúın F. Sánchez2, Jorge E. Ortiz1,
Carlos Collazos-Morales2, and Paola Ariza-Colpas3

1 Universidad Nacional de Colombia, Bogotá, Colombia
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Abstract. The design and development of future communications net-
works call for a careful examination of biological and social systems.
New technological developments like self-driving cars, wireless sensor
networks, drones swarm, Internet of Things, Big Data, and Blockchain
are promoting an integration process that will bring together all those
technologies in a large-scale heterogeneous network. Most of the chal-
lenges related to these new developments cannot be faced using tradi-
tional approaches, and require to explore novel paradigms for building
computational mechanisms that allow us to deal with the emergent com-
plexity of these new applications. In this article, we show that it is possi-
ble to use biologically and socially inspired computing for designing and
implementing self-organizing communication systems. We argue that an
abstract analysis of biological and social phenomena can be made to
develop computational models that provide a suitable conceptual frame-
work for building new networking technologies: biologically inspired com-
puting for achieving efficient and scalable networking under uncertain
environments; socially inspired computing for increasing the capacity
of a system for solving problems through collective actions. We aim to
enhance the state-of-the-art of these approaches and encourage other
researchers to use these models in their future work.

Keywords: Self-organization · Natural computing · Complex
systems · Ad hoc networks

1 Introduction

During the last decades, the number of services and technologies available for
networking applications has increasing significantly. These developments have
shown a direct relationship with different aspects of human society like the
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economy, education, politics, and quality of life. Computational devices seem
to be ubiquitous and are present in almost all aspect of our daily life. This
trend is promoting a technological integration that has already gone beyond of
what traditional networking paradigms can do regarding scalability, dynamic
environments, heterogeneity and collaborative operation. As a result, these con-
ditions impose several challenges for building the envisioned future networking
technology and show the need to explore new engineering approaches.

The next generation of communication networks will be composed of ubiqui-
tous and self-operating devices that will transform our immediate environment
into an intelligent computational system. New technological developments like
self-driving cars, wireless sensor networks, drones swarm, Internet of Things,
Big Data, and Blockchain are promoting an integration process that will bring
together all these technologies in a large-scale heterogeneous network. All these
applications involve a set of autonomous components (with possibly conflicting
goals) interacting asynchronously, in parallel, and peer-to-peer without a cen-
tralized controller; they should be easily accessible by users and operate with
minimum human intervention.

Given those conditions, it is necessary that all computational devices can
operate autonomously and collaborate with others to offer services through col-
lective actions. Besides, the future communication networks will require high
levels of self-organization for both, face challenges related to scalability, het-
erogeneity, and dynamic environments, and minimize centralized control and
human intervention during the processes of planning, deployment, and optimiza-
tion of the network. Indeed, these requirements cannot be faced using traditional
approaches; they are not able to deal with scale, heterogeneity, and complexity of
the future networking applications, making necessary to explore novel paradigms
for designing and implementing communication systems that can operate under
those conditions.

Accordingly, our aim in this paper is to introduce and overview the biologi-
cally and socially inspired computing used as technological solutions in network-
ing and artificial systems. The principal idea is to show that it is possible to
create analogies between living and artificial systems that enable us to inspire
mimetic solutions (biological, social, economic or political) and translate those
principles into engineering artifacts. Living systems show desirable properties
like adaptation, robustness, self-organization, and learning, all of them required
to handle the complexity of the future networking systems. In this regard, we can
analyze biological and social phenomena as a source of inspiration for new tech-
nological developments; biologically inspired computing for achieving efficient
and scalable networking under uncertain environments, and socially inspired
computing for increasing the capacity of a system for solving problems through
collective actions. In this work, we expect to provide a better comprehension
of the opportunities offered by these models and encourage other researchers to
explore these approaches as part of their future work.

The rest of the article is organized as follows: in Sect. 2 we present a histor-
ical review of the scientifical and technological development of communication
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systems. In Sect. 3 we summarize the most challenging issues of the next genera-
tion of communication networks from the perspective of biologically and socially
inspired computing. Section 4 introduces a general method for developing these
models; the main idea is to expose how to create a technological solution from
properties and behaviors observed in living systems. Section 5 concludes the
article.

2 Self-organizing Communication Networks:
A Historical Review

In this Section, the need of using self-organization as control paradigm for the
next generation of communication networks is discussed. First, we provided a his-
torical review of the scientific paradigms used for studying and building commu-
nications systems. Second, we show complexity signs related to traffic, topologies
and chaotic behaviors because of interactions among users, nodes, and applica-
tions. Third, a comparison of the current control and management paradigms
used for designing, controlling, and developing artificial systems is presented.
Finally, we depict some properties required for the future communications sys-
tems based on self-organizing properties.

2.1 Scientific Paradigms in Communications Networks Development

Traditionally, the scientific paradigm used for communications networks devel-
opment has been reductionism. Engineers conceived communication systems as a
hierarchical structure that allows offer services through protocols and distributed
algorithms; each layer was studied individually, and a communication interface
among them was used to provide functionalities during the network operation
[21]. Devices, protocols, and applications were designed separately, and linear
behavior in the whole system was expected. This idea arose from the first math-
ematical models used for planning and dimensioning communications systems,
in which engineers used stochastic models and queue theory to compute the
average traffic and assign resources according to the users demands [48,90]. This
approach played an essential role in traditional telephone networks in which
there was only one service and the performance required for all users was the
same. Thus, it was easy to combine the traffic flows and take advantage of their
homogeneous features for analytical purposes. However, an increasing amount of
networking technologies and also more complex software applications changed
the linear behavior expected inside communications networks [25].

During the last decades, integration of services and technologies available for
networking applications have occurred. Nowadays is possible to find data trans-
fer, online games, video, email, e-commerce, and browsing, working on the same
network infrastructure [86]. Also, we can find different transmission technologies
like wired connections, optical fiber, IEEE 802.11, WiMAX or Bluetooth, and
the performance required for each application (bandwidth, delay, and errors han-
dling) is different every case [85]. As a consequence, this increasing number of
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services and technologies changed the design principle on which engineers based
the networking development: linearity. Communication networks do not have
linear behaviors anymore, and it is necessary to see them as complex systems if
we want to design algorithms and control mechanisms capable of operating in a
dynamic environment with non-linear properties [39,65].

Fig. 1. Control paradigms evolution in artificial systems [25]

2.2 Complexity Signs: Self-similar Traffic, Chaos
and Scale-Free Topologies

Because of technologies and services integration, communications networks
started showing complexity signs like self-similar traffic, chaotic behaviors and
scale-free topologies. Although none of these properties were in the initial con-
ceptual framework used by engineers for design and building communications
systems, nowadays there is enough evidence to consider them as an inherent
part of the communication networks. A brief overview of these complexity signs
is exposed below.

Usually, traffic is modeled as a stochastic process that shows the amount
of data moving across a network and establishes a measure to represent the
demand that users imposed on the network resources. Both requests per time
unit and the incoming packets have been modeled as sequences of independent
random variables (call duration, packet lengths, file sizes, etc.) to make easier
their analytical treatment [48]. However, the correlation among these variables
persists through several time scales and has a significant impact on the network
performance [25,103]. It is important to mention that self-similarity is not a
property of traffic sources; it arises as emergent behavior from interactions among
users, applications, and networking protocols. Besides, traditional traffic models
based on Poisson processes has proven not be suitable to describe traffic patterns
in modern communications networks [3,90].

Similarly, chaotic behaviors take place in dynamical systems that are high-
sensitivity to initial conditions; small differences in the system states can produce
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a significant number of different outcomes. Chaos theory studies these behaviors
and tries to deal with the apparent randomness present in strange attractors,
feedback loops, and self-similarity. For example, in communications networks,
this behavior appears through interactions between TCP protocol and the RED
algorithm used for queue management [88]. Other examples are presented in [70]
in which chaos appear in the profile of daily peak hour call arrival and daily call
drop of a sub-urban local mobile switching center, or in [93] in which chaotic
patterns serve as a mobility model for an ad hoc network. More examples can
be found in [53,106,110].

Finally, the scale-free property is another complexity sign that suggests self-
similarity patterns in terms of the network topology [11]. The structure of the
network has nodes with more connections than others, and follows a power law
distribution. This pattern was found in the late 1990s when a part of the World
Wide Web was mapped in a moment of internet connection [58]. This phe-
nomenon could be explained analyzing the evolution of communications networks
in terms of their physical and logical topologies according to the preferential con-
nectivity principle [69]. If a web page is created, is reasonable to assume that
links to highly connected sites like Google, social networks, services companies,
etc., will be added. Also, the physical topology of the internet is also defined
by economic and technological requirements of the Internet Service Providers
(ISP) [3].

2.3 Control Paradigms Evolution

All artificial systems, including communications networks, use management and
control processes to regulate their behaviors. The management process consists
in manipulate subsystems, parameter updates, and verify the system state. On
the other hand, control is about feedback and run-time control according to
variations in the environment. Both processes define the routines to maintain,
operate, and adapt the system during operation time. Figure 1 shows a historical
review of the current control paradigms for artificial systems [25].

Initially, communications networks were composed by a single device and
some remote terminals. There was a single control process and all parameters
required for the network operation, e.g., addresses, access privileges and resources
were pre-configured by default. Changes in topology and applications were pos-
sible but required a complete manual configuration of the system [25]. Figure 1a
presents an example of these control paradigm through a hierarchical architec-
ture; the root shows the control process and the leaves the subsystems it can
handle. For instance, traditional telephone networks and client/server applica-
tions are classic examples of this approach [90]. Even though there are others
control schemes, centralized systems are still the preferred solution due to its
simplicity and effectiveness; if only a few well-known subsystems have to be
managed, there is no need for the high computational cost of distributed algo-
rithms or possibly less deterministic self-organizing methods [29,38].

The next paradigm is the distributed control [25,102]. Distributed systems
are composed of a set of independent nodes that works as a single coherent
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system. In this case, a logical abstraction is deployed as middleware in each
device to hide the internal structure and the communication process for the
application layer. Figure 1b shows a scheme for this paradigm. Although the
control process works in a centralized way, it is possible to locate it dynami-
cally inside any node to improve the fault tolerance and achieve a better use
of the resources. Cellular networks, distributed databases [1], orchestration soft-
ware [98], and multi-agent systems like JADE [12] are examples of this control
paradigm. Distributed systems offer several advantages to operate and combine
resources from different nodes. However, some issues like impossible synchro-
nization and overhead for resource management show the limits of this approach
[25,71]. The need to maintain complete information about the system state and
handle changes related to configuration and topology is an expensive computa-
tional task in highly dynamic environments [25].

Finally, we have self-organizing systems [38,39]. In this approach, the man-
agement and control process is completely distributed, i.e., each sub-system has
its own control process. The functionalities and the system structure arise as
emergent behaviors from interactions among elements. Similarly, the goals of
the system should not be designed, programmed, or controlled by default; the
components should interact with each other until they reach the expected con-
figuration. Self-organizing control is flexible, adaptive, robust, and scalable, it
does not need perfect coordination and can operate in dynamic environments
[47]. Since each component is autonomous, it is necessary to develop additional
mechanisms to promote cooperation, coordination, and synchronization among
the system components. It is important to mention that self-organization is not
a human invention; it is a natural principle that has been used for designing,
building, and controlling artificial systems, and face limitations of centralized and
distributed approaches [25]. Examples of this control paradigm can be found in
Smart Grids [77], communication networks [64], transportation systems [18], and
logistical processes [42].

Although self-organization increase scalability, also causes less deterministic
behaviors. The system predictability is reduced due to self-organized control.
Nevertheless, this is not a real disadvantage in a dynamic system with non-
linear properties in which an approximate solution can be very useful. Addition-
ally, we are in a transition process from distributed to self-organizing systems
due to changes in the network architectures, new computational technologies
and the need to build large-scale communication systems [85,86]. To sum up,
Table 1 describes the relationship between resources and control according to the
different paradigms presented above.

2.4 Current Self-organizing Communications Networks

The increasing use of mobile devices, pervasive computing, wireless sensor net-
works (WSNs), and cloud computing establish new requirements for future com-
munications systems (See Sect. 3). New applications like self-driving cars [28],
drones swarm [116], Internet of Things [59], Big Data and Blockchain [30] are
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Table 1. Control vs resources: a comparison for artificial systems.

Control paradigms for artificial systems

Centralized systems Resources Centralized

Control Centralized

Distributed systems Resources Distributed

Control Centralized

Self-organizing systems Resources Distributed

Control Distributed

promoting a technological integration that will bring together all these applica-
tions in a large scale heterogeneous network. As a result, the future networking
applications will require high levels of self-organization for both, face challenges
related to scalability, heterogeneity, and dynamic environments, and minimize
centralized control and human intervention during the processes of planning,
deployment, and optimization of the network. These challenges may be faced
through a set of networking functionalities based on self-organizing properties
[85–87]:

– Self-configuration: in this context, configuration refers to how the network is
set up. Nodes and applications should configure and reconfigure themselves
automatically under any predictable or unpredictable condition with mini-
mum human intervention. Self-configuration expects to reduce the effects of
networking dynamics to users.

– Self-deployment: preparation, installation, authentication, and verification of
every new network node. It includes all procedures to bring a new node or
applications into operation. Also, self-deployment try to find strategies to
improve both coverage and resource management in networking tasks.

– Self-optimization: it refers to the use of measurements and performance indi-
cators to optimize the local parameters according to global objectives. It is
a process in which the network settings are autonomously and continuously
adapted to the network environment regarding topology, resources, and users.

– Self-healing: execution of routines that keep the network in the steady state
and prevent problems from arising. These methods can change configuration
and operational parameters of the overall system to compensate failures.

3 Networking Challenges

Indeed, the majority of the requirements for the next generation of communi-
cation networks cannot be faced using traditional approaches [27,38,86]. In this
Section, we present some of those challenges and their possible relationship with
biological and social phenomena. It is important to mention that this Section is
not a full reference of challenges in networking but could be seen a list we can
address through biologically and socially inspired computing.
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3.1 Scalability

One of the most desirable properties in communication networks is the capacity
to increase the network size and be able to receive new nodes and applica-
tions without affecting the quality of the services [73]. This property, known
as scalability, is one of the leading challenges in protocols design, and it is a
requirement for building large-scale communication systems. Scalability can be
measured regarding applications, users, physical resources, and the network abil-
ity to react properly to unexpected conditions [71]. For example, wireless sensor
networks usually need to collect data from several hundred sensors, and during
this process the capacity of the network can be easily exceeded, causing loss of
packets, low network reliability, and routing problems [113].

Furthermore, the decision process required to operate a large-scale network is
too fast, too frequent and too complex for being handled by human operators. As
a result, network components need to self-organize by themselves across different
scales of time and space to adapt their behavior to any variation in the network
size [38,82]. Fortunately, there are many biological and social systems with self-
organization mechanisms we can learn from to inspire the design of scalable
systems [105]. For instance, data dissemination based on epidemic spreading
[27], routing protocols based on Ant Colony Optimization (ACO) [24], and trust
and reputation models for controlling free-riders may help to face challenges
related to large-scale networking [68].

3.2 Dynamic Nature

Unlike traditional communication networks in which infrastructure and applica-
tions were static, the future networking schemes will be highly dynamic regarding
devices, users, resources, and operating conditions [64,86]. For example, the net-
work topology may change according to different mobility patterns, and appli-
cations will need different levels of performance concerning bandwidth, delay,
and errors handling [16]. Also, cognitive radio allows to configure the spectrum
dynamically through overlapping spectrum bands, and users may decide what
will be their role in the network due to the absence of centralized control [120].
Additionally, the increasing autonomy in the network components may cause
unexpected behaviors, turning into a difficult task to predict the temporal evolu-
tion of the system. Under these conditions, self-organizing protocols are essential
to improve adaptation, robustness, and face challenges related to highly dynamic
environments [25,38].

3.3 Need for Infrastructure-Less and Autonomous Operation

The current levels of heterogeneity in communication systems in terms of users,
devices and services become centralized control an impractical solution [25,86].
Moreover, there is another trend towards automation in which networking appli-
cations require to operate with minimum human intervention. For example,
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drone swarm [116], delay tolerant networks [35], sensor networks [113] and cogni-
tive radio [64], demand networking protocols that can operate without a central-
ized control, recover from failures, and deal with highly dynamic environments.
In order to address these needs, networking protocols could be equipped with
self-organizing mechanisms observed in biological and social systems to develop
autonomous applications and decrease the level of centralized control required
for the network operation [27,50].

3.4 Heterogeneous Architectures

Future communications networks require integrating several technologies
through internet-based platforms. Given the diverse range of networking com-
ponents and the numerous interactions among them, it is reasonable to expect
complex global behaviors. The next generation of networking applications will
be composed of WSNs, ad hoc networks, wireless fidelity networks, VANETs,
etc., all of them working on a large-scale communication system [85,86]. For
instance, one of the emerging and challenging future networking architectures is
the Internet of things (IoT) [112]. This paradigm includes the pervasive presence
of network devices that through wireless connections can communicate among
them, and transform our immediate environment into an intelligent large-scale
computational system. Also, Wireless Mesh Networks and WiMAX are expected
to be composed of heterogeneous devices and protocols [64].

Heterogeneity needs to be understood, modeled and managed regarding tech-
nologies, users, and applications if we want to take advantage of large-scale
heterogeneous networks [27]. Therefore, we can analyze living systems with high
levels of heterogeneity and use them to inspire technological solutions. For exam-
ple, biological and social phenomena show stable behaviors through the cooper-
ation of a heterogeneous set of subsystems, e.g., nervous system, immune system
and normative social systems. This functionality is called homeostasis and can
be used for designing computational mechanisms to face challenges related to
heterogeneity [22].

3.5 Solving Problems Through Collective Actions

A standard requirement in self-organizing communication networks is to produce
coordination, cooperation, and synchronization among the network components
to achieve individual and collective goals. This process can be understood as
a requirement to solve problems through collective actions, in which accom-
plishment of tasks depends on interaction and interoperation of unreliable and
conflicting components [78]. Likewise, due to the absence of a centralized con-
trol, the network is instead relying on self-organization mechanisms to produce
the system functionalities. These models are useful for resource provisioning in
grid computing [79], cooperation in mobile clouds [34], platooning in vehicular
networks [4] and coordination in drone swarms [116].
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Collective actions are necessary to construct new levels of social organization;
multicellular organisms, social insects, and human society use it to take advan-
tage of skills and knowledge of others to achieve collective benefits [72]. Although
this is a common phenomenon in living systems, it is important to mention that
human society has more complex collective actions patterns than other species
and we can use them as a source of inspiration for engineering developments.
For example, computational justice models could be used for appropriation and
distribution of resources in mobile clouds and ad hoc networks [79], coopera-
tion models for controlling free-riders and promote collaborative work among
network components [68]. Also, collective behaviors from biological systems like
firefly synchronization and swarm intelligence could improve routing and net-
work optimization [27,38].

3.6 Appropriation and Distribution of Resources

One advantage offered by the next generation of communication networks is the
opportunity to share resources among nodes, users, and services, through the
combination of wireless technologies, mobile devices and the network capacity to
operate as a self-organizing system. For example, a mobile cloud allows to exploit
distributed resources inside a network if they are wirelessly connected; energy,
storage, communication interfaces and software applications can be exchanged,
moved, augmented and combined in novel ways [34]. Also, grid and cloud com-
puting provided an infrastructure based on common pool resources to support
on-demand computing applications [79]. As a consequence, optimal mechanisms
for resources appropriation and distribution are required [81,84]. This process
may be in a stochastic or deterministic manner, and the network components
need to self-organize themselves to achieve a distributed resources operation. In
this regard, several challenges related to how to carry out a sustainable cooper-
ation process in environments composed of potentially selfish components arise.
One solution could use electronic institutions and social capital as a way to
increase the capacity of the network to use collective actions. Applications of
this approach can be found in Smart Grids [80], VANET’s [37] and Multi-agent
systems [76].

3.7 Security and Privacy

Since the networks become a flexible, attackers can get sensitive information ana-
lyzing the messages embedded in communications channels and relay nodes [85].
Also, according to mobility patterns the network topology may change in dynam-
ical and unpredictable ways changing routing tables and increasing the risks of
exposing crucial private information [86]. As a result, there are several security
challenges such as a denial of service, black hole, resource consumption, location
disclosure, wormhole, and interference [64]. For instance, the future internet of
things will transfer a significant amount of private information through wireless
channels, and security protocols need to defend malicious attacks to provide a rel-
atively secure network environment [85]. One solution could use game theory to
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address situations where multiple players with contradictory goals or incentives
compete among them. Many biological and social systems have inspired solutions
to deal with security and privacy issues. For example, artificial immune systems
for anomaly and misbehavior detection and trust and reputations models to
control free-riders and selfish behaviors [27].

One purpose of this work is to introduce and overview the biologically and
socially inspired models used as technological solutions in networking and artifi-
cial systems. The main idea is to show how an abstract analysis of living systems
(biological, social, economic or political) can be made to develop computational
models that may provide a suitable conceptual framework for technological devel-
opments. According to this purpose, this Section is organized as follows: first,
we present a general method for developing computational models inspired by
biological and social phenomena. Second, we try to classify them and present
some selected examples to motivate their applications in the current network-
ing developments. Finally, we depict the need for both biologically and socially
inspired computing in the next generation of communications systems.

3.8 A General Methodology

The modeling approach presented below should not be seen as a general principle,
but it may work as a guideline to design algorithms and protocols for artificial
systems. It is important to mention that the proposed steps are not new and
have been used by many researchers during the last years [8,27,31]. However, we
try to take the essential parts of the approaches presented by Dressler for bio-
logically inspired networking [27], Pitt for socially inspired computing [50], and
Gershenson for designing and controlling of self-organizing systems [38]. Our aim
is to show the necessary steps for developing biologically and socially inspired
models, and also present how they may have a remarkable impact on techno-
logical developments. Figure 2 presents the steps included in this methodology.
It starts with a required system functionality, i.e. what the system should do,
and enables the designer to produce a protocol or an algorithm that fulfills those
requirements. Also, it is not necessary to follow this steps in order; according to
the designer needs, it is possible to return to an early step to make any necessary
adjustment.

4 Biological and Social Computing Inspiring
Self-organizing Networks Design

Identification of Analogies Between Living and Artificial Systems. In
the first step, an analogy between living and technological systems must be made
to identify similar patterns that help to understand and propose new compu-
tational solutions [27,50]. Analogies are the tools of the comprehension; people
understand new concepts by relating them to what they already knew [107]. If
we chose the right analogy, the model reaches a level of abstraction that allows
people foreign to the problem get a better understanding through a well-known
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Fig. 2. A modeling approach for socially and biologically inspired computing

vocabulary. Also, create analogies among different systems will enable us to
inspire mimetic solutions (biological, social, economic or political) and trans-
late those principles into engineering artifacts. However, analogies could have a
limitation regarding expressiveness; using a specific description to represent a
problem, may limit its comprehension if the analogy is not good enough. There-
fore, you can not use every analogy you know, it is necessary to master the
selection process to get access to new interpretation tools.

Representation. In this step, a pre-formal representation that relates the
observed biological or social phenomenon with a technological problem is devel-
oped. The designer should always remember the distinction between the model
and the modeled; there are many representations of a system, and it is not
possible to say one is better than another independently of a context [38,50].
Similarly, the initial representation can be made in natural language or through
any tool that allows us to describe variables, abstraction levels, granularity and
interactions among components.

Although there is a wide diversity of systems, we can use a general method
for developing an initial representation [38]. First, we need to divide the systems
into components and identify their internal goals. Second, since the number of
components may increase the complexity of the model, we should group them
according to their dynamic, and analyze the most important based on the prob-
lem requirements. Finally, the designer should consider at least two abstrac-
tion levels to capture emergent properties and possible collectives behaviors.
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Nevertheless, if the initial description has just few elements, probably the sys-
tem is predictable, and we could get a better understanding using traditional
approaches [39].

Modelling. In science and engineering, models should be as simple as possible
and predict as much as possible; they should provide a better understanding
of problems and not complicate them unnecessary [38,56,95]. Also, the quality
of the model is related to the analogies we chose to describe the system; if
the model becomes impractical, the selected representation should be carefully
revised [107]. This stage should not be driven by implementation issues because
of its primary goal is to achieve a clear understanding of the problem through a
formal analysis of biological and social phenomena.

Furthermore, this stage should specify a control paradigm that ensures the
expected behavior of the system. Since we are interested in self-organizing prop-
erties, the control mechanisms need to be internal and distributed. Given these
conditions, several approaches like actions languages, modal logic, game theory
and agent-based modeling have been extensively used to model complex systems
and may help during this process. Finally, the expected result of this stage is
a formal characterization that will enables us to translate biological and social
principles into computational protocols [50].

Application. This step aims both to translate the current model into compu-
tational routines, and tune its parameters through different test scenarios. This
process should be made from general to particular. Usually, little details take
time to develop, and sometimes we will require an ideal scenario to test the cen-
tral concepts involved in the model (for example through simulation techniques)
[38,56]. Particular details can influence the system behavior, and they should
not be included meanwhile their mechanisms and effects are not understood.
According to the application results, modeling and representation stages should
be improved.

Moreover, to get algorithms or protocols with acceptable computational
tractability, probably we need some degree of simplification in the concepts
involved in the model. However, it is a good practice to get as transparent as
possible an idea of what is going to be simplified; any simplification that needs
to be done should be carried out carefully with the purpose of not to dismiss
essential parts of the model [50]. In an ideal scenario, application stage should
not be constrained by considerations of computational tractability.

Performance Evaluation. The purpose of this step is to measure and compare
the performance of resulting algorithms or protocols with the performance of
previous results. This is an essential part of the method because allow integrating
our results with the current scientifical and engineering developments. Also, if the
system has multiple designers, they should agree on the expected functionality
of the system [27,38]. According to the performance evaluation, the efforts to
improve the model should continue as long as possible and even return to an
early step to do any necessary adjustment.
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Table 2. Categorization of biologically inspired models

Biological principle Application fields in networking POE Selected references

Swarm intelligence
and social insects

Distributed search and optimization;
routing in computer networks especially
in MANETs, WSNs, and overlay
networks; task and resource allocation

E [23,32,40,43,52,92,
119]

Firefly

synchronization

Robust and fully distributed clock

synchronization

E [13,20,45,46,51,91,

118]

Artificial inmune
system

Network security; anomaly and
misbehavior detection

E [2,14,49,60,62,74,
104]

Epidemic
spreading

Content distribution in computer
networks (e.g. in DTNs); overlay
networks; analysis of worm and virus
spreading

PE [19,36,63,100,111,
114,115]

Evolutionary
computing

Optimization, cooperation strategies,
adaptation to dynamic conditions

PO [66,68,89,94,121–
123]

4.1 Classification and Categorizations

The majority of the proposed solutions for self-organizing networks are based on
biologically inspired computing, which have successfully solved problems related
to routing, synchronization, security, and coordination [27]. However, there is a
new kind of socially inspired computing coming up; human society has many
self-organizing mechanisms that we can learn from to enhance the capacity of
artificial systems to solve problems through collective actions [50,78,82]. Not
only these models are useful to face the tension between individual and collec-
tive rationality, but also they help to answer questions like: are the cooperation
processes sustainable? Is the resources distribution efficient and fair? Can a set
of rules evolve autonomously in an artificial system? Socially inspired computing
tries to answer these question through a formal analysis of social phenomena.
It is important to mention that neither all socially and biologically inspired
models are related to self-organizing properties, nor all self-organizing behav-
iors arise from living systems. However, this work focus on computing models
with distributed and internal control related to social and biological systems. An
overview of these models is presented in the following subsections.

Biologically Inspired Computing. Biological systems exhibit a wide range
of desirable characteristics, such as evolution, adaptation, fault tolerance and
self-organizing behaviors. These properties are difficult to produce using tra-
ditional approaches, and make necessary to consider new methods [26]. Thus,
the purpose of biologically inspired computing is design algorithms and proto-
cols based on biological behaviors that allow artificial systems to face challenges
related to optimization, collective behavior, pattern recognition and uncertain
environments [15,57]. Classical examples of these models can be found in swarm
intelligence, firefly synchronization and evolutionary algorithms [27,75]. Table 2
shows a summary of biologically inspired models successfully used in networking.
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Furthermore, if we analyze living organisms, three different levels of organi-
zation are found: Phylogeny (P), Ontogeny (O), and Epigenesis (E) [97]. First,
Phylogeny is related to the temporal evolution of the genetic program. This pro-
cess is fundamentally non-deterministic and gives rise to the emergence of new
organisms through recombination and mutation of the genetic code. Second,
Ontogeny is related to the development of a single individual from its genetic
material. Finally, Epigenesis is concerned about the learning process in which an
organism can integrate information from the outside world through interactions
with the environment. The distinction among these categories cannot be easily
drawn and may be subject to discussion.

POE model can be used in the context of engineering to classify biologically
inspired models and identify possibles directions for future research [15]. We can
understand the POE model as follows: Phylogeny involves evolution, Ontogeny
involves development and Epigenesis involves learning. In this regard, evolution-
ary computing can be seen as a simplified artificial counterpart of Phylogeny
in nature. Multicellular automata, self-replicating and self-healing software are
based on ontogeny properties. For example, when a program can produce a copy
of its code or regenerate parts of itself to compensate failures. Finally, artificial
neural network and artificial immune systems can be seen as examples of epi-
genetic processes. In Table 2 a classification of the biologically inspired models
according to POE model is presented.

Socially Inspired Computing. Pitt, Jones, and Artikis introduced social
inspired computing as a way to create mechanisms that allow artificial systems
to solve problems through collective action [50]. Even though this is not the first
attempt to use social models in computer science [8,44], from the author’s knowl-
edge is the first proposal that presents a systematic method to develop them.
These models are useful in systems formed by a set of co-dependent components
in which there is a tension between individual and collective rationality [54,78].
In such systems, the achievement of individual and collective goals depends on
possible unreliable and conflicting components, interacting in the absence of
centralized control or other orchestration forms.

Although biological processes are the foundation of social systems, they are
not the core of sociability. Despite the fact that both living organisms and soci-
eties can be considered as meta-systems, the difference between them is the level
of autonomy in their components; while the units of an organism have little or
no independence, those of social systems have a maximum level of autonomy.
As a result, new kinds of self-organizing phenomenon appear, and it is valuable
to make a difference between biologically and socially inspired computing. On
the other hand, human society has more complex social patterns than other
species; cooperation, institutions, symbolic language and justice could be useful
to inspire computational mechanisms that allows translating these principles into
technological artifacts [44,82]. In Table 3 a summary of socially inspired models
successfully used in ad hoc networks, smart grids, and multi-agent systems is
presented.
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Table 3. Categorization of socially inspired models

Social
principle

Application fields in networking and
artificial systems

Selected references

Trust Cooperation mechanisms in
self-organizing artificial systems: Ad
hoc networks, WSNs, Smart grids,
Multi-agent systems

[41,55,61,67,101,109]

Justice Resources distribution and allocation;
Smart grids, VANETs, multi-agent
systems; Social dilemmas

[37,77–79,81,84,96]

Norms and
institutions

Evolution of norms. Institutions as a
mechanism for collective actions.
Self-organizing open systems

[6,7,17,83,99,117]

Negotiation Resources negotiation in ad hoc
network and multi-agent systems

[5,9,10,33]

4.2 The Need for Biological and Social Self-organizing Approaches

The design and development of communication networks, as well as all self-
organizing artificial systems, call for a careful examination of biological and social
concepts. In this section, we present the relationship between the networking
challenges presented in Sect. 3 and the biologically and socially inspired models
that we may use to deal with them. Although both biological and social inspired
models exhibit self-organizing patterns, in each case their goals are different.
Biologically inspired computing try to achieve efficient and scalable networking
under uncertain environments, and socially inspired computing is useful for solv-
ing problems through collective behaviors. Therefore, the combination of these
two approaches allows us to develop communication networks not only enough
robust and adaptive to be able to operate in highly dynamic environments, but
also with the capacity to use collective actions for solving complex problems. In
Fig. 3 the relationship between the biologically and socially inspired models and
the networking challenges presented in Sect. 3 is shown.

In general terms, a self-organizing network is a dynamic system of many
agents (which may represent nodes, services, applications, users) working in
parallel, always acting and reacting to what the other agents are doing. The
control process is highly dispersed and decentralized, and any expected behav-
ior in the network need to arise from competition, cooperation or coordination
among network components [108]. Biological and social systems have dealt with
similar situations for thousands of years, and we can learn from them to develop
new types of computational solutions. Although biologically inspired computing
has been successfully used during the last years, at this moment it is necessary to
design technological artifacts able to solve problems through collective actions.
Therefore, socially inspired computing turns into an opportunity for the next
generation of artificial systems, giving us a route to include these properties in
the future engineering developments.
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Fig. 3. Biologically and socially inspired computing for artificial systems

5 Conclusions

In this article, we have shown that is possible to use biologically and socially
inspired computing for building communications systems. We argue that an
abstract analysis of biological and social phenomena can be made to create a
conceptual framework for developing a new kind of networking technology. Bio-
logically inspired computing can be used for achieving efficient and scalable net-
working under uncertain conditions, and socially inspired computing for solving
problems through collective actions. The combination of these two approaches
enables us to develop communication networks not only enough robust and adap-
tive to operate in highly dynamic environments but also with the capacity to
use collective behaviors for solving complex problems.

Furthermore, we showed the challenges of the next generation of communica-
tion networks from the perspective of biologically and socially inspired comput-
ing; we introduced a general method for developing these models and presented
an overview in Tables 2 and 3. Also, we argue that the expected features of
the next generation of communications networks become centralized control an
impractical solution, and as a result, self-organization will take an essential role
in the future networking developments.

Despite the considerable amount of ongoing advances on biologically and
socially inspired computing, the research community is still quite young. There
are many challenges that we need to face if we want to integrate these models
with the emerging networking architectures. We expect this review will provide
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a better comprehension of the opportunities for biologically and socially inspired
computing inside technological developments and encourage other researchers to
explore these approaches as part of their future work.
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