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Abstract. There has been a recent surge of interest in incorporating
fairness aspects into classical clustering problems. Two recently intro-
duced variants of the k-Center problem in this spirit are Colorful k-
Center, introduced by Bandyapadhyay, Inamdar, Pai, and Varadarajan,
and lottery models, such as the Fair Robust k-Center problem introduced
by Harris, Pensyl, Srinivasan, and Trinh. To address fairness aspects,
these models, compared to traditional k-Center, include additional cov-
ering constraints. Prior approximation results for these models require to
relax some of the normally hard constraints, like the number of centers to
be opened or the involved covering constraints, and therefore, only obtain
constant-factor pseudo-approximations. In this paper, we introduce a
new approach to deal with such covering constraints that leads to (true)
approximations, including a 4-approximation for Colorful k-Center with
constantly many colors—settling an open question raised by Bandya-
padhyay, Inamdar, Pai, and Varadarajan—and a 4-approximation for
Fair Robust k-Center, for which the existence of a (true) constant-factor
approximation was also open.

We complement our results by showing that if one allows an
unbounded number of colors, then Colorful k-Center admits no approx-
imation algorithm with finite approximation guarantee, assuming that
P �= NP. Moreover, under the Exponential Time Hypothesis, the problem
is inapproximable if the number of colors grows faster than logarithmic
in the size of the ground set.

1 Introduction

Along with k-Median and k-Means, k-Center is one of the most fundamental
and heavily studied clustering problems. In k-Center, we are given a finite metric
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space (X, d) and an integer k ∈ [|X|] := {1, . . . , |X|}, and the task is to find a set
C ⊆ X with |C| ≤ k minimizing the maximum distance of any point in X to its
closest point in C. Equivalently, the problem can be phrased as covering X with
k balls of radius as small as possible, i.e., finding the smallest radius r ∈ R≥0

together with a set C ⊆ X with |C| ≤ k such that X = B(C, r) :=
⋃

c∈C B(c, r),
where B(c, r) := {u ∈ X : d(c, u) ≤ r} is the ball of radius r around c.

k-Center, like most clustering problems, is computationally hard; actually it
is NP-hard to approximate to within any constant below 2 [18]. On the positive
side, various 2-approximations [12,16] have been found, and thus, its approxima-
bility is settled. Many variations of k-Center have been studied, most of which
are based on generalizations along one of the following two main axes:

(i) which sets of centers can be selected, and
(ii) which sets of points of X need to be covered.

The most prominent variations along (i) are variations where the set of centers
is required to be in some down-closed family F ⊆ 2X . For example, if centers
have non-negative opening costs and there is a global budget for opening centers,
Knapsack Center is obtained. If F are the independent sets of a matroid, the
problem is known as Matroid Center. The best-known problem type linked to (ii)
is Robust k-Center. Here, an integer m ∈ [|X|] is given, and one only needs to
cover any m points of X with k balls of radius as small as possible. Research on k-
Center variants along one or both of these axes has been very active and fruitful,
see, e.g., [7,9,10,17]. In particular, a recent elegant framework of Chakrabarty
and Negahbani [8] presents a unifying framework for designing best possible
approximation algorithms for all above-mentioned variants.

All the above variants have in common that there is a single covering require-
ment; either all of X needs to be covered or a subset of it. Moreover, they come
with different kinds of packing constraints on the centers to be opened as in
Knapsack or Matroid Center. However, the desire to address fairness in cluster-
ing, which has received significant attention recently, naturally leads to multi-
ple covering constraints. Here, existing techniques only lead to constant-factor
pseudo-approximations that violate at least one constraint, like the number of
centers to be opened. In this work, we present techniques for obtaining (true)
approximations for two recent fairness-inspired generalizations of k-Center along
axis (ii), namely

(i) γ-Colorful k-Center, as introduced by Bandyapadhyay et al. [3], and
(ii) Fair Robust k-Center, a lottery model introduced by Harris et al. [15].

γ-Colorful k-Center (γCkC) is a fairness-inspired k-Center model imposing
covering constraints on subgroups. It is formally defined as follows:1

1 The version introduced in [3] requires X1, . . . , Xγ to partition X. However, γCkC
readily reduces to the more restrictive model in [3] by replacing an element with q
colors by q elements on the same location with each having a single color.
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Definition 1 (γ-Colorful k-Center (γCkC) [3]). Let γ, k ∈ Z≥1, (X, d) be a
finite metric space, X� ⊆ X for � ∈ [γ], and m ∈ Z

γ
≥0. The γ-Colorful k-Center

problem (γCkC ) asks to find the smallest radius r ∈ R≥0 together with centers
C ⊆ X, |C| ≤ k such that

|B(C, r) ∩ X�| ≥ m� ∀� ∈ [γ] .

Such a set of centers C is called a (γCkC) solution of radius r.

The name stems from interpreting each set X� for � ∈ [γ] as a color assigned
to the elements of X�. In particular, an element can have multiple colors or no
color. In words, the task is to open k centers of smallest possible radius such
that, for each color � ∈ [γ], at least m� points of color � are covered. Hence, for
γ = 1, we recover the Robust k-Center problem.

We briefly contrast γCkC with related fairness models. A related class of
models that has received significant attention also assumes that the ground
set is colored, but requires that each cluster contains approximately the same
number of points from each color. Such variants have been considered for k-
Median, k-Means, and k-Center, e.g., see [2,4,5,11,23] and references therein.
γCkC differentiates itself from the above notion of fairness by not requiring a
per-cluster guarantee, but a global fairness guarantee. More precisely, each color
can be thought of as representing a certain group of people (demographic), and a
global covering requirement is given per demographic. Also notice the difference
with the well-known Robust k-Center problem, where a feasible solution might,
potentially, completely ignore a certain subgroup, resulting in a heavily unfair
treatment. γCkC addresses this issue.

The presence of multiple covering constraints in γCkC, imposed by the colors,
hinders the use of classical k-Center clustering techniques, which, as mentioned
above, have mostly been developed for packing constraints on the centers to
be opened. An elegant first step was done by Bandyapadhyay et al. [3]. They
exploit sparsity of a well-chosen LP (in a similar spirit as in [15]) to obtain the
following pseudo-approximation for γCkC: they efficiently compute a solution of
twice the optimal radius by opening at most k+γ −1 centers. Hence, up to γ −1
more centers than allowed may have to be opened. Moreover, [3] shows that in
the Euclidean plane, a significantly more involved extension of this technique
allows for obtaining a (17 + ε)-approximation for γ = O(1). Unfortunately, this
approach is heavily problem-tailored and does not even extend to 3-dimensional
Euclidean spaces. This naturally leads to the main open question raised in [3]:

Does γCkC with γ = O(1) admit an O(1)-approximation, for any finite
metric?

Here, we introduce a new approach that answers this question affirmatively.

Together with additional ingredients, our approach also applies to Fair
Robust k-Center, which is a natural lottery model introduced by Harris et al. [15].
We introduce the following generalization thereof that can be handled with our
techniques, which we name Fair γ-Colorful k-Center problem (Fair γCkC ). (The
Fair Robust k-Center problem, as introduced in [15], corresponds to γ = 1.)
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Definition 2 (Fair γ-Colorful k-Center (Fair γCkC)). Given is a γCkC
instance on a finite metric space (X, d) together with a vector p ∈ [0, 1]X . The
goal is to find the smallest radius r ∈ R≥0, together with an efficient procedure
returning a random γCkC solution C ⊆ X of radius r such that

Pr[u ∈ B(C, r)] ≥ p(u) ∀u ∈ X .

Hence, Fair γCkC is a generalization of γCkC, where each element u ∈ X needs
to be covered with a prescribed probability p(u). The Fair Robust k-Center
problem, i.e., Fair γCkC with γ = 1, is indeed a fairness-inspired generalization
of Robust k-Center, since Robust k-Center is obtained by setting p(u) = 0 for
u ∈ X. One example setting where the additional fairness aspect of Fair γCkC
compared to γCkC is nicely illustrated, is when k-Center problems have to be
solved repeatedly on the same metric space. The introduction of the probability
requirements p allows for obtaining a distribution to draw from that needs to
consider all elements of X (as prescribed by p), whereas classical Robust k-Center
likely ignores a group of badly-placed elements. We refer to Harris et al. [15] for
further motivation of the problem setting. They also discuss the Knapsack and
Matroid Center problem under the same notion of fairness.

For Fair Robust k-Center, [15] presents a 2-pseudo-approximation that
slightly violates both the number of points to be covered and the probability
of covering each point. More precisely, for any constant ε > 0, only a (1 − ε)-
fraction of the required number of elements are covered, and element u ∈ X is
covered only with probability (1− ε)p(u) instead of p(u). It was left open in [15]
whether a true approximation may exist for Fair Robust k-Center.

1.1 Our Results

Our main contribution is a method to obtain 4-approximations for variants of
k-Center with unary encoded covering constraints on the points to be covered.
We illustrate our technique in the context of γCkC, affirmatively resolving the
open question of Bandyapadhyay et al. [3] about the existence of an O(1)-
approximation for constantly many colors (without restrictions on the under-
lying metric space).

Theorem 3. There is a 4-approximation for γCkC running in time |X|O(γ).

In a second step we extend and generalize our technique to Fair γCkC,
which, as mentioned, is a generalization of γCkC. We show that Fair γCkC
admits a O(1)-approximation, which neither violates covering nor probabilistic
constraints.

Theorem 4. There is a 4-approximation for Fair γCkC running in time
|X|O(γ).

We complete our results by showing inapproximability for γCkC when γ is
not bounded. This holds even on the real line (1-dimensional Euclidean space).
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Theorem 5. It is NP-hard to decide whether γCkC on the real line admits a
solution of radius 0. Moreover, unless the Exponential Time Hypothesis fails,
for any function f : Z≥0 → Z≥0 with f(n) = ω(log n), no polynomial time
algorithm can distinguish whether γCkC on the real line with γ = f(|X|) admits
a solution of radius 0.

Hence, assuming the Exponential Time Hypothesis, γCkC is not approximable
(with a polynomial-time algorithm) if the number of colors grows faster than
logarithmic in the size of the ground set. Notice that, for a logarithmic number
of colors, our procedures run in quasi-polynomial time.

1.2 Outline of Main Technical Contributions and Paper
Organization

We introduce two main technical ingredients. The first is a method to deal with
additional covering constraints in k-Center problems, which leads to Theorem 3.
For this, we combine polyhedral sparsity-based arguments as used by Bandya-
padhyay et al. [3], which by themselves only lead to pseudo-approximations,
with dynamic programming to design a round-or-cut approach. Round-or-cut
approaches, first used by Carr et al. [6], leverage the ellipsoid method in a clever
way. In each ellipsoid iteration they either separate the current point from a well-
defined polyhedron P , or round the current point to a good solution. The round-
ing step may happen even if the current point is not in P . Round-or-cut methods
have found applications in numerous problem settings (see, e.g., [1,8,13,19–22]).
The way we employ round-or-cut is inspired by a powerful round-or-cut app-
roach of Chakrabarty and Negahbani [8] also developed in the context of k-
Center. However, their approach is not applicable to k-center problems as soon
as multiple covering constraints exist, like in γCkC.

Our second technical contribution first employs LP duality to transform
lottery-type models, like Fair γCkC, into an auxiliary problem that corresponds
to a weighted version of k-center with covering constraints. We then show how a
certain type of approximate separation over the dual is possible, by leveraging the
techniques we introduced in the context of γCkC, leading to a 4-approximation.

Even though Theorem 4 is a strictly stronger statement than Theorem 3, we
first prove Theorem 3 in Sect. 2, because it allows us to give a significantly cleaner
presentation of some of our main technical contributions. In Sect. 3, we then focus
on the additional techniques needed to deal with Fair γCkC, by reducing it to a
problem that can be tackled with the techniques introduced in Sect. 2.

Due to space constraints, various proofs are deferred to the full version of
the paper, including the proof of our hardness result, Theorem5.

2 A 4-approximation for γCkC for γ = O(1)

In this section, we prove Theorem 3, which implies a 4-approximation algorithm
for γCkC with constantly many colors. We assume γ ≥ 2, since γ = 1 corresponds
to Robust k-Center, for which an (optimal) 2-approximation is known [7,15].
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We present a procedure that for any r ∈ R≥0 returns a solution of radius
4r if a solution of radius r exists. This implies Theorem 3 because the optimal
radius is a distance between two points. Hence, we can run the procedure for all
possible pairwise distances r between points in X and return the best solution
found. Hence, we fix r ∈ R≥0 in what follows. We denote by P the following
canonical relaxation of γCkC with radius r:

P =

⎧
⎪⎨

⎪⎩
(x, y) ∈ [0, 1]X × [0, 1]X

∣
∣
∣
∣
∣
∣
∣

∑
v∈X y(v) ≤ k

∑
v∈B(u,r) y(v) ≥ x(u) ∀u ∈ X
∑

u∈X�
x(u) ≥ m� ∀� ∈ [γ]

⎫
⎪⎬

⎪⎭
. (1)

Integral points (x, y) ∈ P correspond to solutions of radius r, where y indi-
cates the opened centers and x indicates the points that are covered. We denote
by PI := conv

(P ∩ ({0, 1}X × {0, 1}X)
)

the integer hull of P.
Our algorithm is based on the round-or-cut framework, first used in [6]. The

main building block is a procedure that rounds a point (x, y) ∈ P to a radius
4r solution under certain conditions. It will turn out that these conditions are
always satisfied if (x, y) ∈ PI . If they are not satisfied, then we can prove that
(x, y) /∈ PI and generate in polynomial time a hyperplane separating (x, y)
from PI . This separation step now becomes an iteration of the ellipsoid method,
employed to find a point in PI , and we continue with a new candidate point
(x, y). Schematically, the whole process is described in Fig. 1.

compute
y-good

clustering
(S, D)

(Theorem 7)

y(B(S, r)) ≤
k − γ + 1 ?

∃ sol. C of
radius 2r with
|C\S| ≤ γ−2 ?
(Lemma 10)

violated inequality
y(B(S, r)) ≤ k − γ + 1

separates (x, y)
from PI (Lemma 9)

candidate
(x, y) (x, y) ∈ P?

ellipsoid
step

solution of
radius 4r
(Lemma 8)

solution of
radius 2r

separate
(x, y)

from P

NO

YES

NO NO

YES
YES

Fig. 1. An iteration of the ellipsoid method.

On a high level, we realize our round-or-cut procedure as follows. First, we
check whether (x, y) ∈ P and return a violated constraint if this is not the case.
If (x, y) ∈ P, we partition the metric space, based on a natural greedy heuristic
introduced by Harris et al. [15]. This gives a set of centers S = {s1, . . . , sq}
with corresponding clusters D = {D1, . . . Dq}. We now exploit a technique by
Bandyapadhyay et al. [3], which implies that if y(B(S, r)) ≤ k − γ + 1, then one
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can leverage sparsity arguments in a simplified LP to obtain a radius 4r solution
that picks centers only within S. We then turn to the case where y(B(S, r)) >
k − γ + 1. At this point, we show that one can efficiently check whether there
exists a solution of radius 2r that opens at most γ − 2 centers outside of S. This
is achieved by guessing γ−2 centers and using dynamic programming to find the
remaining k − γ + 2 centers in S. If no such radius 2r solution exists, we argue
that any solution of radius r has at most k − γ + 1 centers in B(S, r), proving
that y(B(S, r)) ≤ k − γ + 1 is an inequality separating (x, y) from PI .

We now give a formal treatment of each step of the algorithm described in
Fig. 1. Given a point (x, y) ∈ R

X × R
X , we first check whether (x, y) ∈ P, and,

if not, return a violated constraint of P. Such a constraint separates (x, y) from
PI because PI ⊆ P. Hence, we may assume that (x, y) ∈ P.

We now use a clustering technique by Harris et al. [15] that, given (x, y) ∈ P,
allows for obtaining what we call a y-good clustering (S,D), defined as follows.2

Definition 6 (y-good clustering). Let (x, y) ∈ P. A tuple (S,D), where the
family D = {D1, . . . , Dq} partitions X and S = {s1, . . . , sq} ⊆ X with si ∈ Di

for i ∈ [q], is a y-good clustering if:

(i) d(si, sj) > 4r ∀i, j ∈ [q], i 	= j,
(ii) Di ⊆ B(si, 4r) ∀i ∈ [q], and
(iii)

∑
i∈[q] min{1, y(B(si, r))} · |Di ∩ X�| ≥ m� ∀� ∈ [γ].

The clustering procedure of [15] was originally introduced for Robust k-
Center and naturally extends to γCkC (see [3]). For completeness, we describe
it in Algorithm 1. Contrary to prior procedures, we compute a y-good clustering
whose centers have pairwise distances of strictly more than 4r (instead of 2r as
in prior work). This large separation avoids overlap of radius 2r balls around
centers in S, and allows us to use dynamic programming (DP) to build a radius
2r solution with centers in S under certain conditions. However, it is also the
reason why get a 4-approximation if the DP approach cannot be applied.

Algorithm 1: Compute y-good clustering, given (x, y) ∈ P
U ← X; i ← 0; S ← ∅; D ← ∅;
while U 	= ∅ do

i ← i + 1; si ← argmaxu∈U{x(u)}; Di ← U ∩ B(si, 4r);
S ← S ∪ {si}; D ← D ∪ {Di}; U ← U \ B(si, 4r);

end
return (S,D)

Theorem 7 ([3,15]). For (x, y) ∈ P, Algorithm1 computes a y-good clustering
(S,D) in polynomial time.

2 As the name suggests, the properties of a y-good clustering do not depend on x.
Hence, we could equivalently define the clustering for any y ∈ R

X that lies in the
projection of P onto the last |X| coordinates, i.e., the ones corresponding to y.
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Theorem 7 as well as the following lemma follow from the results in [3].

Lemma 8 ([3]). Let (x, y) ∈ P and (S,D) be a y-good clustering. Then, if
y(B(S, r)) ≤ k − γ + 1, a solution of radius 4r can be found in polynomial time.

We are left with the case y(B(S, r)) > k − γ + 1. If (x, y) ∈ PI , then there
must exist a solution C1 ⊆ X of radius r with |C1 ∩ B(S, r)| > k − γ + 1.
Hence, C1 has at most γ − 2 centers outside of B(S, r). We observe that if such
solution C1 exists, then there must be a solution C2 of radius 2r with all centers
being within S, except for γ −2 many. This is formalized in the following lemma
(which states the contrapositive of the mentioned implication because this form
is slightly more convenient later).

Lemma 9. Let S ⊆ X with d(s, s′) > 4r for all s 	= s′ ∈ S, β ∈ Z≥0. If no
radius 2r solution C2 ⊆ X satisfies |C2 \ S| ≤ β, then |C1 ∩ B(S, r)| ≤ k − β − 1
for any radius r solution C1.

Proof. Assume there is a solution C1 of radius r where |C1∩B(S, r)| ≥ k−β. Let
A = C1∩B(S, r). For each p ∈ A, let φ(p) ∈ S be the unique point in S such that
p ∈ B(φ(p), r); φ(p) is well defined because d(s, s′) > 4r for every s 	= s′ ∈ S. Let
C2 = φ(A)∪(C1\A). Then |C2| ≤ |φ(A)|+|C1\A| ≤ |A|+|C1\A| ≤ k. Moreover,
as d(p, φ(p)) ≤ r for every p ∈ A, we conclude that B(C1, r) ⊆ B(C2, 2r). Thus,
C2 is a feasible solution of radius 2r. 
�

Hence, if y(B(S, r)) > k − γ + 1 and (x, y) ∈ PI , then there is a solution
C2 of radius 2r with |C2 \ S| ≤ γ − 2. The motivation for considering solutions
of radius 2r with all centers in S except for constantly many (if γ = O(1)) is
that such solutions can be found efficiently via dynamic programming. This is
possible because the centers in S are separated by distances strictly larger than
4r, which implies that radius 2r balls centered at points in S do not overlap.
Hence, there are no interactions between such balls. This is formalized below.

Lemma 10. Let S ⊆ X with d(s, s′) > 4r for all s, s′ ∈ S with s 	= s′, and
β ∈ Z≥0. If a radius 2r solution C ⊆ X with |C \S| ≤ β exists, then we can find
such a solution in time |X|O(β+γ).

Proof. Suppose there is a solution C ⊆ X of radius 2r with |C \ S| ≤ β. The
algorithm has two components. We first guess the set Q := C \S. Because |Q| ≤
β, there are |X|O(β) choices. Given Q, it remains to select at most k−|Q| centers
W ⊆ S to fulfill the color requirements. Note that for any W ⊆ S, the number
of points of color � ∈ [γ] that B(W, 2r) covers on top of those already covered by
B(Q, 2r) is |(B(W, 2r) \ B(Q, 2r)) ∩ X�| =

∑
w∈W |(B(w, 2r) \ B(Q, 2r)) ∩ X�| ,

where equality holds because centers in W are separated by distances strictly
larger than 4r, and thus B(W, 2r) is the disjoint union of the sets B(w, 2r) for
w ∈ W . Hence, the task of finding a set W ⊆ S with |W | ≤ k − |Q| such that
Q ∪ W is a solution of radius 2r can be phrased as finding a feasible solution to
the following binary program:
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∑

s∈S

z(s) · |(B(s, 2r) \ B(Q, 2r)) ∩ X�| ≥ m� − |B(Q, 2r) ∩ X�| ∀� ∈ [γ]
∑

s∈S

z(s) ≤ k − |Q|

z ∈ {0, 1}S .

(2)

As this is a binary linear program with γ + 1 constraints with coefficients in
{0, . . . , |X|}, it can be solved by standard dynamic programming techniques in
|X|O(γ) time.3 As the dynamic program is run for |X|O(β) many guesses of Q,
we obtain an overall running time of |X|O(β+γ), as claimed. 
�

This completes the last ingredient for an iteration of our round-or-cut app-
roach as shown in Fig. 1. In summary, assuming y(B(S, r)) > k − γ + 1 (for
otherwise Lemma 8 leads to a solution of radius 4r) we use Lemma 10 to check
whether there is a radius 2r solution C2 with |C2 \ S| ≤ γ − 2. If this is the
case, we are done. If not, Lemma 9 implies that every radius r solution C1

fulfills |C1 ∩ B(S, r)| ≤ k − γ + 1. Hence, every point (x, y) ∈ PI satisfies
y(B(S, r)) ≤ k − γ + 1. However, this constraint is violated by (x, y), and so
it separates (x, y) from PI . Thus, we proved that the process described in Fig. 1
is a valid round-or-cut procedure that runs in polynomial time.

Corollary 11. There is a polynomial-time algorithm that, given a point (x, y) ∈
R

X ×R
X , either returns a γCkC solution of radius 4r or an inequality separating

(x, y) from PI .

We can now prove the main theorem.

Proof (of Theorem 3). We run the ellipsoid method on PI for each of the O(|X|2)
candidate radii r. For each r, the number of ellipsoid iterations is polynomially
bounded as the separating hyperplanes have encoding length at most O(|X|) (see
Theorem 6.4.9 of [14]). To see this, note that all generated hyperplanes are either
inequalities defining P or inequalities of the form y(B(S, r)) ≤ k −γ +1. For the
correct guess of r, PI is non-empty and the algorithm terminates by returning a
radius 4r solution. Hence, if we return the best solution among those computed
for all guesses of r, we have a 4-approximation. 
�

3 The Lottery Model of Harris et al. [15]

Let (X, d) be a Fair γCkC instance, and let F(r) be the family of sets of centers
satisfying the covering requirements with radius r, i.e.,

F(r) :=
{
C ⊆ X

∣
∣ |C| ≤ k and |B(C, r) ∩ X�| ≥ m� ∀� ∈ [γ]

}
.

Note that a radius r solution for Fair γCkC defines a distribution over the sets in
F(r). Given r, such a distribution exists if and only if the following (exponential-
size) linear program PLP(r) is feasible (with DLP(r) being its dual):
3 For any ordering S = {s1, . . . , sq} of the elements in S, the DP successively computes
for any prefix {s1, . . . , si} all possible left-hand side values for the γ + 1 constraints
that can be achieved if supp(z) := {s ∈ S : z(s) > 0} ⊆ {s1, . . . , si}. This is a
straightforward extension of classical DPs for binary knapsack problems.
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PLP(r) : min 0

∑

C∈F(r):
u∈B(C,r)

λ(C) ≥ p(u) ∀u ∈ X

∑

C∈F(r)

λ(C) = 1

λ ∈ R
F(r)
≥0

DLP(r) : max
∑

u∈X

p(u)α(u) − μ

∑

u∈B(C,r)

α(u) ≤ μ ∀C ∈ F(r)

α ∈ R
X
≥0

μ ∈ R .

Clearly, if PLP(r) is feasible, then its optimal value is 0. Observe that DLP(r)
always has a feasible solution (the zero vector) of value 0. Thus, by strong duality,
PLP(r) is feasible if and only if the optimal value of DLP(r) is 0. We note now
that DLP(r) is scale-invariant, meaning that if (α, μ) is feasible for DLP(r) then
so is (tα, tμ) for t ∈ R≥0. Hence, DLP(r) has a solution of strictly positive
objective value if and only if DLP(r) is unbounded. We thus define the following
polyhedron Q(r), which contains all solutions of DLP(r) of value at least 1:

Q(r) :=

{

(α, μ) ∈ R
X
≥0 ×R

∣
∣
∣
∣
∣

∑

u∈X

p(u)α(u) ≥ μ + 1,
∑

u∈B(C,r)

α(u) ≤ μ ∀C ∈ F(r)

}

.

As discussed, we have the following.

Lemma 12. Q(r) is empty if and only if PLP (r) is feasible.

The main lemma that allows us to obtain our result is the following.

Lemma 13. There is a polynomial-time algorithm that, given a point (α, μ) ∈
R

X
≥0 × R satisfying

∑
u∈X p(u)α(u) ≥ μ + 1 and a radius r ≥ 0, either certifies

that (α, μ) ∈ Q(r), or outputs a set C ∈ F(4r) with
∑

u∈B(C,4r) α(u) > μ.

In words, Lemma 13 either certifies (α, μ) ∈ Q(r) or returns a hyperplane sep-
arating (α, μ) from Q(4r). Its proof leverages techniques introduced in Sect. 2,
and we sketch it in AppendixA. Using Lemma 13, we can now prove Theorem 4.

Proof (of Theorem 4). As noted, there are polynomially many choices for the
radius r, for each of which we run the ellipsoid method to check emptiness of
Q(4r) as follows. Whenever there is a call to the separation oracle for a point
(α, μ) ∈ R

X × R, we first check whether α ≥ 0 and
∑

u∈X p(u)α(u) ≥ μ + 1.
If one of these constraints is violated, we return it as separating hyperplane.
Otherwise, we invoke the algorithm of Lemma 13. The algorithm either returns
a constraint in the inequality description of Q(4r) violated by (α, μ), which
solves the separation problem, or certifies (α, μ) ∈ Q(r). If, at any iteration of
the ellipsoid method, the separation oracle is called for a point (α, μ) for which
Lemma 13 certifies (α, μ) ∈ Q(r), then Lemma 12 implies PLP(r) is infeasible.
Thus, there is no solution to the considered Fair γCkC instance of radius r.
Hence, consider from now on that the separation oracle always returns a sepa-
rating hyperplane, in which case the ellipsoid method certifies that Q(4r) = ∅ as
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follows. Let H ⊆ F(4r) be the family of all sets C ∈ F(4r) returned by Lemma 13
through calls to the separation oracle. Then, the following polyhedron:

QH(4r) =

{

(α, μ) ∈ R
X
≥0 ×R

∣
∣
∣
∣
∣

∑

u∈X

p(u)α(u) ≥ μ + 1,
∑

u∈B(C,4r)

α(u) ≤ μ ∀C ∈ H
}

,

containing Q(4r), is empty. As the encoding length of any constraint in the
inequality description of Q(4r) is polynomially bounded in the input, the ellip-
soid method runs in polynomial time (see Theorem 6.4.9 of [14]). In particu-
lar, the number of calls to the separation oracle, and thus |H|, is polynomially
bounded.

As Q(4r) ⊆ QH(4r) = ∅, Lemma 12 implies that PLP (4r) is feasible. More
precisely, because QH(4r) = ∅, the linear program obtained from DLP (4r) by
replacing F(4r), which parameterizes the constraints in DLP (4r), by H, has
optimal value equal to zero. Hence, its dual, which corresponds to PLP (4r)
where we replace F(4r) by H is feasible. As this feasible linear program has
polynomial size, because |H| is polynomially bounded, we can solve it efficiently
to obtain a distribution with the desired properties. 
�

A Appendix

In this appendix we discuss the proof of Lemma13. Due to space constraints,
we only sketch the proofs of some auxiliary lemmas; formal proofs are deferred
to the full version.

The desired separation algorithm requires us to find a solution for a γCkC
instance with an extra covering constraint; the procedure of Sect. 2 generalizes
to handle this extra constraint. We follow similar steps as in Fig. 1.

Let (α, μ) ∈ R
X
≥0 ×R be a point satisfying

∑
u∈X p(u)a(u) ≥ μ+1, let r ≥ 0,

and, moreover, let Fα,μ(r) := {C ∈ F(r) | ∑
u∈B(C,r) α(u) > μ}. We have to

decide whether Fα,μ(4r) = ∅ and, if not, find a set C ∈ Fα,μ(4r). We claim that
there is a polynomially encoded ε > 0, such that this is equivalent to finding
C ∈ F(4r) with

∑
u∈B(C,4r) α(u) ≥ μ+ε, or deciding that no such C exists. The

next standard result guarantees that such an ε > 0 can be computed efficiently.

Lemma 14. Let (α, μ) ∈ R
X
≥0 × R. Then one can efficiently compute an ε > 0

with encoding length O(L), where L is the encoding length of (α, μ), such that
the following holds: For any C ∈ F(r), we have

∑
u∈B(C,r) α(u) > μ if and only

if
∑

u∈B(C,r) α(u) ≥ μ + ε.

Proof. The tuple (α, μ) consists of |X| + 1 rationals {pi/qi}i∈[N ], with pi ∈ Z

and qi ∈ Z>0. Let Π =
∏

i∈[N ] qi. Note that if
∑

u∈B(C,r) α(u) > μ, then
∑

u∈B(C,r) α(u)−μ ≥ 1
Π . Thus, we set ε = 1/Π. Moreover log Π =

∑
i∈[N ] log qi,

and so the encoding length of ε is O(L). 
�
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Let Pα,μ be the following modified relaxation of γCkC, defined for given
(α, μ) ∈ R

X
≥0 × R, where the polytope P is defined for a fixed radius r, as in

Sect. 2 (see (1)):

Pα,μ :=

{

(x, y) ∈ P
∣
∣
∣
∣
∣

∑

u∈X

α(u)x(u) ≥ μ + ε

}

.

Let Pα,μ
I := conv

(Pα,μ ∩ ({0, 1}X × {0, 1}X)
)

be the integer hull of Pα,μ.
We now state the following straightforward lemma, whose proof is an immediate
consequence of the definitions of the corresponding polytopes and Lemma14.

Lemma 15. Let (α, μ) ∈ R
X
≥0 × R be such that

∑
u∈X p(u)α(u) ≥ μ + 1 and

Pα,μ
I = ∅. Then (α, μ) ∈ Q(r).

We now state Lemma 16, a modified version of Lemma 8. Its proof is analo-
gous to the one of Lemma 8 and is deferred to the full version. The only difference
is that the auxiliary polytope on which we exploit sparsity has one additional
constraint, the one corresponding to

∑
u∈X α(u)x(u) ≥ μ + ε, which explains

the shift by one unit in the condition on y(B(S, r)).

Lemma 16. Let (α, μ) ∈ R
X
≥0 × R, let (x, y) ∈ Pα,μ, and let (S,D) be a y-good

clustering. If y(B(S, r)) ≤ k − γ, a set C ∈ Fα,μ(4r) can be found in polynomial
time.

If y(B(S, r)) ≤ k − γ, then Lemma 16 leads to a set C ∈ F(4r) that satisfies∑
u∈B(S,4r) α(u) ≥ μ + ε; this gives a constraint separating (α, μ) from Q(4r).
It remains to consider the case y(B(S, r)) > k − γ. As in Sect. 2, we can

either find a set C2 ∈ Fα,μ(2r) or certify that every C1 ∈ Fα,μ(r) satisfies
|C1 ∩ B(S, r)| ≤ k − γ.

Lemma 17. Let (α, μ) ∈ R
X
≥0 × R, S ⊆ X with d(s, s′) > 4r for all s, s′ ∈ S

with s 	= s′, and β ∈ Z≥0. If no C2 ∈ Fα,μ(2r) satisfies |C2 \ S| ≤ β, then
|C1 ∩ B(S, r)| ≤ k − β − 1 for any C1 ∈ Fα,μ(r).

Proof (Sketch). As in Lemma 9, we prove that any C1 ∈ Fα,μ(r) satisfying
|C1 ∩ B(S, r)| > k − β − 1 can be transformed into a set C2 ∈ Fα,μ(2r) with
|C2 \ S| ≤ β. 
�
Lemma 18. Let (α, μ) ∈ R

X
≥0 × R, S ⊆ X with d(s, s′) > 4r for all s, s′ ∈ S

with s 	= s′, and β ∈ Z≥0. If there exists a set C ∈ Fα,μ(2r) with |C \ S| ≤ β,
then we can find such a set in time |X|O(β+γ).

Proof (Sketch). As in the proof of Lemma 10, we first guess up to β centers
Q = X \ S. For each of those guesses, we then consider the binary program (2)
with objective function

∑
s∈S z(s) · α(B(s, 2r)) to be maximized. For the guess

Q = C \ S, the characteristic vector χC∩S is feasible for this binary program,
implying that the optimal centers Z ⊆ S chosen by the binary program fulfill
Z ∪ Q ∈ Fα,μ(2r). 
�
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Corollary 19. Let (α, μ) ∈ R
X
≥0 × R. There is a polynomial-time algorithm

that, given (x, y) ∈ R
X × R

X , either returns a set C ∈ Fα,μ(4r) or returns a
hyperplane separating (x, y) from Pα,μ

I .

Proof. If (x, y) /∈ Pα,μ, we return a violated constraint separating (x, y) from
Pα,μ

I . Hence we may assume (x, y) ∈ Pα,μ. Since Pα,μ ⊆ P, we can use The-
orem 7 to get a y-good clustering (S,D). If y(B(S, r)) ≤ k − γ, Lemma 16
gives a set C ∈ Fα,μ(4r). So, assuming y(B(S, r)) > k − γ, we use Lemma 18
to check whether there is C2 ∈ Fα,μ(2r) with |C2 \ S| ≤ γ − 1. If this is
the case, we are done. If not, Lemma 17 implies that every C1 ∈ Fα,μ(r)
fulfills |C1 ∩ B(S, r)| ≤ k − γ. Hence, every point (x, y) ∈ Pα,μ

I satisfies
y(B(S, r)) ≤ k − γ. However, this constraint is violated by (x, y), and it thus
separates (x, y) from Pα,μ

I . 
�
Proof (Proof of Lemma 13). We use the ellipsoid method to check emptiness of
Pα,μ

I . Whenever the separation oracle gets called for a point (x, y) ∈ R
X×R

X , we
invoke the algorithm of Corollary 19. If the algorithm returns at any point a set
C ∈ Fα,μ(4r), then C corresponds to a constraint in the inequality description of
Q(4r) violated by (α, μ). Otherwise, the ellipsoid method certifies that Pα,μ

I = ∅,
which implies (α, μ) ∈ Q(r) by Lemma 15. Note that the number of iterations
of the ellipsoid method is polynomial as the hyperplanes used by the procedure
above have encoding length O(poly(|X|)) (see Theorem 6.4.9 of [14]). 
�
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