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Abstract. We consider the capacitated cycle covering problem: given an
undirected, complete graph G with metric edge lengths and demands on
the vertices, we want to cover the vertices with vertex-disjoint cycles,
each serving a demand of at most one. The objective is to minimize a
linear combination of the total length and the number of cycles. This
problem is closely related to the capacitated vehicle routing problem
(CVRP) and other cycle cover problems such as min-max cycle cover
and bounded cycle cover. We show that a greedy algorithm followed by
a post-processing step yields a (2 + 2/7)-approximation for this problem
by comparing the solution to a polymatroid relaxation. We also show
that the analysis of our algorithm is tight and provide a 2 + ε lower
bound for the relaxation.

Keywords: Cycle cover · Vehicle routing · Greedy algorithms ·
Approximation algorithms · Polymatroids

1 Introduction

Our work is motivated by the classical and well-studied capacitated vehicle rout-
ing problem (CVRP) which was introduced by Dantzig and Ramser [7]. In this
problem we are given an undirected, complete graph G = (V,E) with metric
edge lengths � : E → R≥0 and a distinguished vertex s ∈ V which is called the
depot. Moreover, every vertex is assigned a demand b(v). The goal is to cover V
with cycles C1, . . . , Ck such that each cycle visits s, satisfies b(Ci) ≤ 1 and the
total length

∑k
i=1 �(Ci) is minimum. Here b(Ci) :=

∑
v∈V (Ci)

b(v) is the total
demand of the vertices of Ci and �(Ci) :=

∑
e∈E(Ci)

�(e) is the total length of
the edges of Ci.

The CVRP has received a large amount of attention in the last 60 years.
While there has been much progress regarding computational results (see e.g. [16,
17,19]), from the viewpoint of approximation algorithms little progress has been
made. The simple optimal tour partitioning algorithm by Altinkemer and Gavish
[1], which achieves an approximation ratio of 3.5, has not been improved in the
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past 30 years. (In fact, the approximation ratio is 2+α where α is the best known
approximation ratio for TSP.) For the case where all vertices have demand 1/Q
for some Q ∈ N, the tour partitioning algorithm by Haimovich and Kan [12]
from 1985 has approximation ratio 1 + α, which is currently 2.5, and this result
is also still the best known.

Significant improvements have only been achieved in special cases, such as
when the metric is Euclidean [8,13] or arises from graphs with special structure
[2–4,14]. The only result for the general case is by Bompadre et al. [5] who
improved the approximation guarantee by Θ(1/Q3) where Q is the least common
denominator of the (rational) demands b.

In this paper we study a variant of the CVRP, where we do not have a depot
vertex that must be visited by every tour, but instead have a fixed opening
cost γ > 0 per tour. Formally, this problem, which we call the capacitated cycle
covering problem (CCCP), is defined as follows. We are given an undirected,
complete graph G = (V,E) with metric edge lengths � : E → R≥0, vertex
demands b : V → [0, 1], and an opening cost γ ∈ R≥0. The goal is to compute
a capacitated cycle cover, i.e. cycles C1, . . . , Ck in G, such that every v ∈ V is
contained in exactly one cycle and b(Ci) ≤ 1 for all i, minimizing the total cost
∑k

i=1 �(Ck)+γk. Here it is allowed that a cycle contains only one or two vertices.
To the best of our knowledge, this precise problem formulation has not

appeared in the literature. However, besides the capacitated vehicle routing
problem, the CCCP is also closely related to other cycle covering problems. This
includes min-max cycle cover and bounded cycle cover which were first studied
by Even et al. [10]. In the former problem we are asked to compute a cycle cover
C1, . . . , Ck which minimizes maxk

i=1 �(Ci) where k is part of the input. In the
latter we wish to find a cycle cover C1, . . . , Ck with �(Ci) ≤ 1 for all i with
minimum k. Recently, Yu et al. [20,21] provided new approximation algorithms
for the these problems with approximation ratios of 5 and 4 + 4/7 respectively.
Their algorithms need O(n5) time, where here and in the following n := |V |.

Even more recently, Das et al. [9] studied the min-max variant of the capaci-
tated cycle covering problem. In this problem we wish to find a capacitated cycle
cover C1, . . . , Ck where k is part of the input such that maxk

i=1 �(Ci) is minimized.
They provide a 196-approximation algorithm for min-max capacitated tree cover
which implies a 392-approximation algorithm for the cycle cover variant.

1.1 Our Results and Techniques

Note that the capacitated cycle covering problem includes both the TSP (for
b ≡ 0 and suitably large γ) and bin packing (for � ≡ 0) and is thus NP-hard
to approximate within a factor of 3/2 − ε. Hence, we are primarily interested in
approximation algorithms and relaxations for the problem. Our main result is
the following theorem.

Theorem 1. Given an instance of the capacitated cycle covering problem, we
can compute a (2 + 2/7)-approximate solution in O(n2) time.
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We remark that if the pairwise distances between all vertices are given explicitly,
the input has size n2 and hence the runtime is linear.

The first step of our algorithm is to compute a carefully chosen spanning
forest in our input graph. Having such a forest, we turn it into a capacitated
cycle cover as follows. We first ensure that every connected component of the
forest contains vertices of total demand at most 1. This is done by splitting large
components into smaller ones if necessary. Then from every connected component
of the forest we can compute a cycle of at most twice the length of the forest
component. See Sect. 2.

The most important part of our algorithm is to choose the initial spanning
forest. We do not solve a tree covering problem as a black box but anticipate
that we will have to double edges and split up large components. To compute our
spanning forest we use a linear programming relaxation, which we call the tree
cover LP. This LP is closely related to a natural LP relaxation for the capacitated
vehicle routing problem. Moreover, the tree cover LP has the important property
that the set of feasible solutions is a polymatroid. This allows us to solve the LP
very efficiently using the polymatroid greedy algorithm. See Sect. 3.

We then analyze a simple randomized rounding algorithm that rounds a
fractional LP solution to a spanning forest. For this we exploit that the extreme
point solutions of our LP relaxation are highly structured. As a result, we obtain
a randomized (2 + 2/7)-approximation algorithm for the CCCP and also show
that the ratio between our solution for CCCP and the value of the tree cover
LP is at most 2 + 2/7. See Sect. 4.

Then we show that we can derandomize our algorithm and obtain a simple
and deterministic greedy algorithm for computing our spanning forest (Sect. 5).
This will complete the proof of Theorem1.

Finally, we provide two forms of lower bounds for our analysis: we prove that
the analysis of our deterministic algorithm is tight and we show a 2 + ε lower
bound on the gap between the tree cover LP and the capacitated cycle covering
problem (Sect. 6).

2 Tree Splitting

In the following we will call a set U of vertices large if b(U) :=
∑

u∈U b(u) > 1
and small otherwise. A common and useful technique for dealing with capacities
in facility location and vehicle routing problems is to cluster vertices into clusters
with demands between 1/2 and 1 (see e.g. [10,14,15,20]). By making sure that
the demand in each cluster is at least 1/2, we can guarantee that we have at
most twice as many clusters as necessary. This idea can be used to prove the
following lemma.

Lemma 1 (Tree Splitting). Let T = (V,E) be a tree and b : V → [0, 1]
some vertex demands with b(V ) > 1, i.e. V is large. Then we can partition V
into k ≤ 2b(V ) many small sets R1, . . . , Rk and find edge-disjoint connected
subgraphs T1, . . . , Tk of T such that Ri ⊆ V (Ti), i.e. Ti is a Steiner tree with
terminal set Ri, for all i. Moreover, this can be done in linear time.
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We defer the proof to AppendixA. As a corollary, we get a simple construc-
tion which turns any forest F in G into a solution to the capacitated cycle
covering problem. For an edge set F , we denote by C(F ) the collection of vertex
sets of the connected components of (V, F ).

Lemma 2. Let (V, F ) be a forest. Then we can compute in linear time a feasible
solution C1, . . . , Ck to the CCCP with cost bounded by

2�(F ) + γ ·
∑

A∈C(F )

u(A) (1)

where �(F ) :=
∑

e∈F �(e) and u : 2V → R≥0 is given by

u(A) :=

{
1 if A is small,
2b(A) if A is large.

(2)

Proof. We first apply Lemma 1 to all large connected components of F . Together
with the remaining small connected components, this yields a partition of V into
k small sets R1, . . . , Rk and Steiner trees T1, . . . , Tk with terminal sets R1, . . . , Rk

respectively, where k ≤ ∑
A∈C(F ) u(A). Then we turn each Steiner tree Ti with

terminal set Ri into a cycle Ci with vertex set Ri and �(Ci) ≤ 2�(Ti). This is
accomplished by the standard technique of ordering the elements of Ri as they
appear in a depth-first search of Ti. Equivalently, one can double all edges of
Ti, find an Eulerian walk, and shortcut this walk to a cycle on Ri. Shortcutting
does not increase the length since � is metric. ��

Thus in the following sections we will discuss how to find a forest F such that
(1) is at most (2 + 2/7) times the cost of an optimum capacitated cycle cover.

3 The Tree Cover LP

To obtain a lower bound on the cost of an optimum solution to the CCCP, we
use the following linear program.

min �(x) + γ(|V | − x(E))
s.t. x(E[A]) ≤ |A| − max{1, b(A)} ∀∅ �= A ⊆ V

x ≥ 0,
(3)

where �(x) :=
∑

e∈E xe�(e), x(E) :=
∑

e∈E xe, and E[A] denotes the set of edges
in E that have both endpoints in A.

Note that LP (3) is rather a relaxation of a tree covering problem than
of capacitated cycle covering: integral solutions are edge sets of forests in which
every connected component contains vertices of total demand at most 1. Nonethe-
less, it provides a lower bound for the cost of an optimum CCCP solution because
every feasible solution to the CCCP contains such a forest. Hence we get the
following.
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Lemma 3. Let (G, �, b, γ) be an instance of the CCCP. Then the optimum value
of the LP (3) is a lower bound on the cost of an optimum solution of the CCCP.

We would like to remark that the tree cover LP (3) is related to the following
natural LP relaxation for the CVRP:

min �(x)
s.t. x(δ(A)) ≥ 2 ∀∅ �= A ⊆ V \ {s}

x(δ(A)) ≥ 2b(A) ∀∅ �= A ⊆ V \ {s}
x(δ(v)) = 2 ∀v ∈ V \ {s}

x ≥ 0,

(4)

where δ(A) denotes the set of edges with exactly one endpoint in A and δ(v) :=
δ({v}). (To see that (4) is a relaxation of the CVRP, note that we need at least
b(A) cycles for covering the vertices in A and each cycle contains the depot s.)

The optimal tour partitioning algorithm for the CVRP [1] computes a solu-
tion of cost at most 3.5 times the value of (4) (see e.g. [18]). In particular, the
integrality gap of (4) is at most 3.5. The following LP is equivalent to (4) in the
sense that every feasible solution to one of the LPs is also a feasible solution for
the other.

min �(x)
s.t. x(E[A]) ≤ |A| − max{1, b(A)} ∀∅ �= A ⊆ V \ {s}

x(δ(v)) = 2 ∀v ∈ V \ {s}
x ≥ 0.

Therefore, for every feasible solution x to (4), the restriction of x to G − s is a
feasible solution to the tree cover LP (3).

In the remaining part of this section we explain how one can solve the tree
cover LP (3) by a greedy algorithm. The key insight for proving this is that (3)
is equivalent to optimizing over a polymatroid.

Lemma 4. Let P be the set of feasible solutions to the LP (3). Then

P =
{

x ∈ R
E

∣
∣
∣
∣

x(F ) ≤ r(F ) ∀F ⊆ E,
x ≥ 0

}

where r(F ) :=
∑

A∈C(F ) (|A| − max{1, b(A)}). Moreover, r is monotone, sub-
modular, and satisfies r(∅) = 0. Thus P is a polymatroid.

We sketch the proof of Lemma 4 in AppendixB. Algorithm 1 formally describes
the polymatroid greedy algorithm for solving (3).

Note that C remains a partition of the vertex set. At the end of iteration i it
contains the vertex sets of the connected components of (V, {e1, . . . , ei}). More-
over, the support {e ∈ E : xe > 0} of the returned LP solution x is the edge set
of a forest (by the condition in line 5). This structure will be useful in the next
section, where we analyze an algorithm for rounding x to an integral vector.
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Algorithm 1: Polymatroid greedy algorithm for the tree cover LP
Input: An instance (G, �, b, γ) of the CCCP with G = (V, E).
Output: An optimum solution x to the linear program (3).

1 Let xe := 0 for all e ∈ E.
2 Let e1, . . . , em ∈ E be the edges with �(ei) < γ sorted such that

�(e1) ≤ · · · ≤ �(em).
3 Let C := {{v} | v ∈ V } .
4 for i := 1, . . . , m do
5 if ei connects two distinct C, C′ ∈ C then
6 C := C \ {C, C′} ∪ {C ∪ C′}

7 xei :=

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

1 if C ∪ C′ is small

1 − b(C) if C is small and C′ is large

1 − b(C′) if C′ is small and C is large

2 − b(C) − b(C′) if C, C′ are small, but C ∪ C′ is large

0 else, i.e. C, C′ large.

8 return x.

Lemma 5. Algorithm1 computes an optimum solution of the LP (3).

Proof (Sketch). By Lemma 4 we know that LP (3) optimizes over a polyma-
troid. Thus the polymatroid greedy algorithm which sets xei

:= r({e1, . . . , ei})−
r({e1, . . . , ei−1}) for every i ≤ m produces an optimal solution. One can verify
that Algorithm 1 sets x to exactly those values. ��

4 Randomized Rounding

We will now show how we can round the fractional solution x generated by
Algorithm 1 to a forest F while bounding the cost (1) of the resulting CCCP
solution. More precisely, we will prove the following theorem.

Theorem 2 (Randomized rounding). Let x be a solution of the tree-
covering LP (3) computed by Algorithm1. Define a random edge set F ⊆ E
by independently picking each edge e with probability min{1, (1 + 1/7)xe}. Then

E

⎡

⎣
∑

A∈C(F )

u(A)

⎤

⎦ ≤
(

2 +
2
7

)

(|V | − x(E)),

where u is defined by (2), and E[2�(F )] ≤ (2 + 2/7) �(x).

Note that this implies that the total cost (1) is at most 2 + 2/7 times the
objective value �(x) + γ(|V | − x(E)) of our optimum LP solution x. The scaling
factor 1 + 1/7 on the probabilities xe is chosen to decrease the expected number
of components of (V, F ) (while increasing the expected length) such that we lose
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the same factor in both cost terms wrt. the LP. By Lemmas 2 and 3, Theorem 2
yields a randomized (2 + 2/7)-approximation algorithm for the CCCP.

In the rest of this section we prove Theorem 2. We may assume wlog. that
(V, {e1, . . . , em}) is connected; otherwise we prove the statement for each con-
nected component. Let E′ be the set of edges ei for which the condition in line 5
of Algorithm 1 was fulfilled. Every such edge ei = {v, w} ∈ E′ connected two sets
C,C ′ ∈ C in iteration i of Algorithm 1. Let Cv

ei
∈ {C,C ′} be the set containing

v and let Cw
ei

∈ {C,C ′} be the other set (containing w). By construction of C
in Algorithm 1, (V,E′) is a spanning tree. Thus, F is always a forest. Moreover,
the subgraphs of (V, {e1, . . . , ei−1} ∩ E′) induced by Cv

ei
and Cw

ei
are connected.

Lemma 6. For every set F ⊆ E′, we have
∑

A∈C(F )

u(A) ≤ 2 · (|V | − x(E)) +
∑

e∈E′\F

∑

u∈e

max{1 − 2b(Cu
e ), 0}.

Proof. We first consider the case C(F ) = {V } and hence F = E′. Then we
have x(E) ≤ |V | − max{1, b(V )} since x is a feasible solution to (3) and hence
u(V ) ≤ max{1, 2b(V )} ≤ 2(|V | − x(E)). Now assume C(F ) �= {V } and compute

∑

A∈C(F )

u(A) =
∑

A∈C(F )
A large

2b(A) +
∑

A∈C(F )
A small

1

= 2b(V ) +
∑

A∈C(F )
A small

(1 − 2b(A))

≤ 2b(V ) +
∑

A∈C(F )

max{1 − 2b(A), 0}

≤ 2 · (|V | − x(E)) +
∑

A∈C(F )

max{1 − 2b(A), 0},

(5)

where we used in the last inequality that x is a feasible solution to (3).
Recall that C(F ) �= {V } and (V,E′) is a spanning tree. Consider some A ∈

C(F ) and let i minimum such that ei = {v, w} ∈ δ(A) ∩ E′, where wlog. v ∈ A.
So v ∈ A ∩ Cv

ei
�= ∅. Since the subgraphs of (V, {e1, . . . , ei−1} ∩ E′) induced by

Cv
ei

and Cw
ei

are connected and i was chosen minimal, we have Cv
ei

⊆ A. Hence,
max{1−2b(Cv

ei
), 0} ≥ max{1−2b(A), 0}. Note that ei ∈ E′\F because ei ∈ δ(A)

and A ∈ C(F ). Hence,
∑

A∈C(F )

max{1 − 2b(A), 0} ≤
∑

A∈C(F )

∑

e∈E′\F

∑

u∈e
Cu

e ⊆A

max{1 − 2b(A), 0}

≤
∑

e∈E′\F

∑

u∈e

max{1 − 2b(Cu
e ), 0},

because C(F ) is a partition of V . Together with (5) this completes the proof. ��
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Lemma 7. Let x be a solution of the tree-covering LP (3) computed by Algo-
rithm1. Define a random edge set F ⊆ E by independently picking each edge e
with probability min{1, (1 + 1/7)xe}. Then

E

⎡

⎣
∑

e∈E′\F

∑

u∈e

max{1 − 2b(Cu
e ), 0}

⎤

⎦ ≤ 2/7 · (|V | − x(E)).

Proof. We consider an edge e ∈ E′ and a vertex u ∈ e. If xe < 1, by the definition
of xe in Algorithm 1 we have xe ≥ 1 − b(Cu

e ) and therefore

P[e /∈ F ] · max{1 − 2b(Cu
e ), 0}

= max {1 − (1 + 1/7) · xe, 0} · max{1 − 2b(Cu
e ), 0}

≤ max {1 − (1 + 1/7) · (1 − b(Cu
e )), 0} · max{1 − 2b(Cu

e ), 0}
≤ 2/7 · b(Cu

e ).

Hence,

E

⎡

⎣
∑

e∈E′\F

∑

u∈e

max{1 − 2b(Cu
e ), 0}

⎤

⎦

=
∑

e∈E′:xe<1

P[e /∈ F ] ·
∑

u∈e

max{1 − 2b(Cu
e ), 0}

≤
∑

e∈E′:xe<1

∑

u∈e:Cu
e small

2/7 · b(Cu
e ).

(6)

Let 1 ≤ i < j ≤ m with ei = {u, v}, ej = {u′, v′} ∈ E′ with xei
, xej

< 1. We
claim that if the vertex sets Cu

ei
and Cu′

ej
are both small, then they are disjoint. In

iteration i of Algorithm 1, we merge Cu
e and Cv

e into a single component Cu
e ∪Cv

e .
This new component must be large because xei

< 1. During the course of the
algorithm we only merge components of the partition C of V . Therefore either
Cu

ei
and Cu′

ej
are disjoint, or Cu

e ∪ Cv
e ⊆ Cu′

ej
which implies that Cu′

ej
is large.

Hence, ∑

e∈E′:xe<1

∑

u∈e:Cu
e small

b(Cu
e ) ≤ b(V ) ≤ |V | − x(E),

where b(V ) ≤ |V | − x(E) holds because x is a feasible solution to (3). Together
with (6) this completes the proof. ��
The bound E[2�(F )] ≤ (2 + 2/7) �(x) follows directly from the linearity of expec-
tation. Hence, Lemmas 6 and 7 imply Theorem 2.

5 A Fast and Deterministic Algorithm

In this section we show how one can derandomize our (2 + 2/7)-approximation
algorithm. Algorithm 2 formally describes the computation of the forest (V, F ).
The partition C is updated exactly as in Algorithm 1. However, now we do not
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compute the value xei
but instead directly round it in a deterministic way (lines

7–10).

Algorithm 2: Solving the relaxation and rounding deterministically
Input: An instance (G, �, b, γ) of the CCCP with G = (V,E).
Output: A forest (V, F ).

1 Let F := ∅.
2 Let e1, . . . , em ∈ E be the edges with �(ei) < γ sorted such that

�(e1) ≤ · · · ≤ �(em).
3 Let C := {{v} | v ∈ V } .
4 for i := 1, . . . ,m do
5 if ei connects two distinct C,C ′ ∈ C then
6 C := C \ {C,C ′} ∪ {C ∪ C ′}
7 if C ∪ C ′ is small then
8 F := F ∪ {ei}
9 if γ · (max{1 − 2b(C), 0} + max{1 − 2b(C ′), 0}) > 2�(ei) then

10 F := F ∪ {ei}

11 return (V, F ).

Lemma 8. Algorithm2 computes a forest (V, F ) with

2�(F ) + γ ·
∑

A∈C(F )

u(A) ≤
(

2 +
2
7

)

· LP, (7)

where LP denotes the value of (3).

We defer the proof to AppendixC. Note that the runtime of Algorithm2 is
dominated by sorting the edges E in line 2. In a preprocessing step, one can
compute a minimum spanning tree wrt. to � and remove all edges not contained
in this tree. This yields a total runtime of O(θ + n log n) where θ = O(n2) is the
time needed to compute an MST. Lemmas 8, 3, and 2 thus directly imply our
main result Theorem 1.

6 Lower Bounds

In this section we show that the approximation ratio of Algorithm2 followed
by the Algorithm from Lemma 2 is at least (2 + 2/7), i.e. we show that the
analysis in the preceding sections is tight. Moreover, we show that the cost of
an optimum solution to the CCCP might be more than twice the value of the
tree cover LP (3).

Theorem 3. For any ε > 0 there is a CCCP instance where Algorithm2 com-
putes an edge set F ⊆ E, such that there is no capacitated cycle cover C1, . . . , Ck

with cost at most (2+2/7− ε)LP and where V (Ci) is connected in (V, F ) for all
i ∈ {1, . . . , k}.
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We defer the proof of Theorem3 to AppendixD. We remark that although The-
orem 3 shows that our analysis of Algorithm 2 followed by the Algorithm from
Lemma 2 is tight, it might be that the analysis of our randomized rounding
algorithm is not.

We now show that the cost of an optimum solution to the CCCP might be
more than twice the value of the tree cover LP (3). We define

ρ := sup
{

OPT(I)
LP(I) | I is a CCCP instance

}
.

Here we use OPT(I) to refer to the minimum cost of a CCCP solution on the
instance I = (G, �, b, γ). Similarly, LP(I) refers to the solution value of the tree
cover LP (3) for the instance I.

Theorem 4. ρ ≥ 2 + 62
11745 > 2.005.

To prove Theorem 4 we use the following lemma that can be proven by an
argument similar to Goemans [11], and Carr and Vempala [6].

Lemma 9. Let G = (V,E) a complete graph and b : V → [0, 1] some vertex
demands. Moreover, let (xe)e∈E be a feasible solution to the tree cover LP (3)
such that the support of x is the edge set of a tree T . Then there are weights
λ1, . . . , λk > 0, small sets R1, . . . , Rk ⊆ V and trees T1, . . . , Tk in T such that
Ri ⊆ V (Ti) for all i and

–
∑k

i=1 λi ≤ ρ(|V | − x(E)),
–

∑
i:e∈Ti

λi ≤ ρ
2xe for every e ∈ E, and

–
∑

i:v∈Ri
λi ≥ 1 for every v ∈ V .

We consider the family of LP solutions depicted in Fig. 1. One can show that
if ρ < 2 + 62

11745 and k is sufficiently large, it is not possible to find weights λi,
vertex sets Ri, and trees Ti as in Lemma 9. This implies Theorem 4.

r

v1

vk

w1,1

w1,16

wk,1

wk,16

...

...

...

x{r,v1}
= 1

x{r,vk} = 1

x{v1,w1,1} = 22
23

x{v1,w1,16} = 22
23

x{vk,wk,1} = 22
23

x{vk ,wk,16} = 22
23

b(wi,j) = 1
23

Fig. 1. A family of LP solutions x that together with Lemma 9 proves Theorem 4. Here,
the demands for the vertex r and the vertices v1, . . . , vk are 0 and the demand of the
vertices wi,j for i = 1, . . . , k and j = 1, . . . , 16 are 1/23. The constants are chosen to
maximize the lower bound obtained from this family of instances. In the figure edges
e with xe > 0 are shown. One can verify that this is indeed a feasible solution to the
tree cover LP (3).
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A Sketch of the Proof of Lemma1

Pick an arbitrary root r for T . Then we perform the following splitting-off pro-
cedure (similar to Algorithm A in [15]).

As long as the vertex set V (T ) of the tree T remains large, we iterate the
following. Let v be maximally far away from r with the property that V (Tv) is
large, where Tv is the subtree rooted at v. Let w1, . . . , wl be the children of v.
Since b(V (Tv)) = b(v) +

∑l
i=1 b(V (Twl

)), we must have that b(v) ≥ 1/2 or there
exists a set N ⊆ {1, . . . , l} with

∑
i∈N b(V (Twi

)) ∈ [1/2, 1]. In the first case we
split off a singleton tree ({v}, ∅) covering the vertex v and replace v in T by a
Steiner vertex, i.e. we set its demand to zero. In the second case we split off a
tree covering all vertices contained in the subtrees Twi

for i ∈ N ; the Steiner tree
for this set of terminals contains v as a Steiner vertex and for i ∈ N contains
the edge {v, wi} and the subtree Twi

. Thus we then remove these subtrees from
T .

Let T1, . . . , Tk−1 be the Steiner trees split off during this algorithm and let
Tk be the remaining tree. Moreover, let R1, . . . , Rk be the respective terminal
sets of these Steiner trees. Then we know that b(Ri) ≥ 1/2 for all i ≤ k − 2 and
b(Rk−1) + b(Rk) ≥ 1. Thus 2b(V ) = 2

∑k
i=1 b(Ri) ≥ k.

B Sketch of the Proof of Lemma4

The key part is showing that r is indeed submodular. For this let F ′ ⊆ F ⊆ E
be arbitrary and e ∈ E \ F . We need to show that

r(F ′ ∪ {e}) − r(F ′) ≥ r(F ∪ {e}) − r(F ).

Let A1, A2 ∈ C(F ) be the two components of F joined by e. Moreover, let
A′

1, A
′
2 ∈ C(F ′) be the same for F ′. We can assume that A′

1 ⊆ A1 and A′
2 ⊆ A2

since F ′ ⊆ F . Then one can show that

r(F ∪ {e}) − r(F ) = max{1, b(A1)} + max{1, b(A2)} − max{1, b(A1 ∪ A2)}

and

r(F ′ ∪ {e}) − r(F ′) = max{1, b(A′
1)} + max{1, b(A′

2)} − max{1, b(A′
1 ∪ A′

2)}.

So the submodularity of r reduces to observation that the expression

max{1, x} + max{1, y} − max{1, x + y}

is non-increasing in x and y for x, y ≥ 0.
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C Sketch of the Proof of Lemma8

Note that the partition C in iteration i of Algorithm 2 is the same as in iteration
i of Algorithm 1; here we assume wlog. that the edges are sorted in the same
order in both algorithms. Hence, we apply lines 7–10 of Algorithm2 precisely for
those edges ei for which we set xei

in line 7 of Algorithm 1. We define E′ as in
Sect. 4 and also define Cu

e ⊆ V for an edge e ∈ E′ and a vertex u ∈ e as before.
Let x be the output of Algorithm1. It is easy to verify that the choice of

which edges we include in the forest F in lines 7–10 of Algorithm 2 is such that
we minimize

∑

e∈F

2 · �(e) +
∑

e∈E\F

∑

u∈e

γ · max{1 − 2b(Cu
e ), 0} (8)

among all set F with {e ∈ E : xe = 1} ⊆ F ⊆ {e ∈ E : xe > 0}. By Lemma 7
there exists such an edge set F where (8) is at most (2 + 2/7) · �(x) + 2/7 · γ ·
(|V | − x(E)). Hence, also the edge set F computed by Algorithm 2 fulfills this
bound. By Lemma 6 this implies the claimed bound (7).

D Proof of Theorem3

For n ∈ N with n ≥ 4, let G = (V,E) be the complete graph on the vertices
v1, . . . , vn with the metric � on V given by �(vi, vj) := 1

4 |i − j|, i.e. (G, �) is the
metric closure of a path. Assign uniform demands of b(v) := 1/4 to every vertex
v and let γ := 1. Then we observe that LP(G, �, b, γ) = 7

16n. See Fig. 2.
But now consider what Algorithm 2 does on this instance. Assume that the

edges are sorted such that ei = {vi, vi+1} for all i ∈ {1, . . . , n−1}. The algorithm
will then buy the edges e1 to e3. But it will not buy any other edge as

γ max{1 − 2b(vi+1), 0} = 1
2 = 2�({vi, vi+1})

for all i ∈ {1, . . . , n − 1}. So the condition in line 9 is never satisfied except
for the first three iterations of the loop. Hence, any CCCP solution which is
“contained” in the connected components of F (i.e. it does not contain a cycle
Ci where V (Ci) is not connected in (V, F )), must contain at least n−4 singleton
cycles.

Finally, we conclude that any such CCCP solution has a cost of at least

n − 4 =
n − 4
7
16n

LP ≥
(16

7
− ε

)
LP =

(
2 +

2
7

− ε
)
LP

for n large enough.

v1 v2 v3 v4 v5 v6 v7 v8 v9 v10 v11 v12

Fig. 2. An optimum solution to the tree cover LP (3) for instance from the proof of
Theorem 3 for n = 12. For every solid edge e we have xe = 1 and for every dotted edge
e we have xe = 3/4.
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