
Stochastic Makespan Minimization
in Structured Set Systems

(Extended Abstract)

Anupam Gupta1, Amit Kumar2, Viswanath Nagarajan3(B),
and Xiangkun Shen4

1 Carnegie Mellon University, Pittsburgh, USA
2 Indian Institute of Technology, Delhi, Delhi, India

3 University of Michigan, Ann Arbor, USA
viswa@umich.edu

4 Yahoo! Research, New York City, USA

Abstract. We study stochastic combinatorial optimization problems
where the objective is to minimize the expected maximum load (a.k.a. the
makespan). In this framework, we have a set of n tasks and m resources,
where each task j uses some subset of the resources. Tasks have random
sizes Xj , and our goal is to non-adaptively select t tasks to minimize
the expected maximum load over all resources, where the load on any
resource i is the total size of all selected tasks that use i. For example,
given a set of intervals in time, with each interval j having random load
Xj , how do we choose t intervals to minimize the expected maximum load
at any time? Our technique is also applicable to other problems with
some geometric structure in the relation between tasks and resources;
e.g., packing paths, rectangles, and “fat” objects. Specifically, we give an
O(log log m)-approximation algorithm for all these problems.

Our approach uses a strong LP relaxation using the cumulant gener-
ating functions of the random variables. We also show an LP integrality
gap of Ω(log∗ m) even for the problem of selecting intervals on a line.

1 Introduction

Consider the following task scheduling problem: an event center receives
requests/tasks from its clients. Each task j specifies a start and end time
(denoted (aj , bj)), and the amount xj of some shared resource (e.g., staff sup-
port) that this task requires throughout its duration. The goal is to accept some
target t number of tasks so that the maximum resource-utilization over time is
as small as possible. Concretely, we want to choose a set S of tasks with |S| = t
to minimize

max
times τ

∑

j∈S:τ∈[aj ,bj]

xj

︸ ︷︷ ︸
usage at time τ

.

All missing proofs and details can be found in the full version [11].

c© Springer Nature Switzerland AG 2020
D. Bienstock and G. Zambelli (Eds.): IPCO 2020, LNCS 12125, pp. 158–170, 2020.
https://doi.org/10.1007/978-3-030-45771-6_13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-45771-6_13&domain=pdf
https://doi.org/10.1007/978-3-030-45771-6_13

Stochastic Makespan Minimization 159

This can be modeled as an interval packing problem: if the sizes are identical, the
natural LP is totally unimodular and we get an optimal algorithm. For general
sizes, there is a constant-factor approximation algorithm [3].

However, in many settings, we may not know the resource consumption Xj

precisely up-front, at the time we need to make a decision. Instead, we may be
only given estimates. What if the requirement Xj is a random variable whose
distribution is given to us? Again we want to choose S of size t, but this time
we want to minimize the expected maximum usage:

E

[
max

times τ

∑

j∈S:τ∈[aj ,bj]

Xj

]
.

Note that our decision to pick task j affects all times in [aj , bj], and hence the
loads on various places are no longer independent: how can we effectively reason
about such a problem?

In this paper we consider general resource allocation problems of the follow-
ing form. There are several tasks and resources, where each task j has some
size Xj and uses some subset Uj of resources. That is, if task j is selected then
it induces a load of Xj on every resource in Uj . Given a target t, we want to
select a subset S of t tasks to minimize the expected maximum load over all
resources. For the non-stochastic versions of these problems (when Xj is a single
value and not a random variable), we can use the natural linear programming
(LP) relaxation and randomized rounding to get an O(log m

log log m)-approximation
algorithm; here m is the number of resources. However, much better results are
known when the task-resource incidence matrix has some geometric structure.
One such example appeared above: when the resources have some linear struc-
ture, and the tasks are intervals. Other examples include selecting rectangles in
a plane (where tasks are rectangles and resources are points in the plane), and
selecting paths in a tree (tasks are paths and resources are edges/vertices in
the tree). This class of problems has received a lot of attention and has strong
approximation guarantees, see e.g. [1–8].

However, the stochastic counterparts of these resource allocation problems
remain wide open. Can we achieve good approximation algorithms when the task
sizes Xj are random variables? We refer to this class of problems as stochastic
makespan minimization (GenMakespan). In the rest of this work, we assume
that the distributions of all the random variables are known, and that the r.v.s
Xjs are independent.

1.1 Results and Techniques

We show that good approximation algorithms are indeed possible for Gen-
Makespan problems that have certain geometric structure. We consider the
following two assumptions:

– Deterministic problem assumption: There is a linear-program based α approx-
imation algorithm for a suitable deterministic variant of GenMakespan.

160 A. Gupta et al.

– Well-covered assumption: for any subset D ⊆ [m] of resources and tasks L(D)
incident to D, the tasks in L(D) incident to any resource i ∈ [m] are “covered”
by at most λ resources in D.

These assumptions are formalized in Sect. 2. To give some intuition for these
assumptions, consider intervals on the line. The first assumption holds by the
results of [3]. The second assumption holds because each resource is some time
τ , and the tasks using time τ can be covered by two resources in D, namely
times τ1, τ2 ∈ D such that τ1 ≤ τ ≤ τ2.

Theorem 1 (Main (Informal)). There is an O(αλ log log m)-approximation
algorithm for stochastic makespan minimization (GenMakespan), with α and
λ as in the above assumptions.

We also show that both α and λ are constant in a number of geometric
settings: for intervals on a line, for paths in a tree, for rectangles in a plane and
for “fat” objects (such as disks) in a plane. Therefore, we obtain an O(log log m)-
approximation algorithm in all these cases.

A first naive approach for GenMakespan is (i) to write an LP relaxation
with expected sizes E[Xj] as deterministic sizes and then (ii) to use any LP-
based α-approximation algorithm for the deterministic problem. However, this
approach only yields an O(α log m

log log m) approximation ratio, due to the use of union
bounds in calculating the expected maximum. Our idea is to use the structure
of the problem to improve the approximation ratio.

Our approach is as follows. First, we use the (scaled) logarithmic moment
generating function (log-mgf) of the random variables Xj to define determinis-
tic surrogates to the random sizes. Second, we formulate a strong LP relaxation
with an exponential number of “volume” constraints that use the log-mgf val-
ues. These two ideas were used earlier for stochastic makespan minimization in
settings where each task loads a single resource [10,14]. In the example above,
where each task uses only a single time instant. However, we need a more sophis-
ticated LP for GenMakespan to be able to handle the combinatorial structure
when tasks use many resources. Despite the large number of constraints, this
LP can be solved approximately in polynomial time, using the ellipsoid method
and using a maximum-coverage algorithm as the separation oracle. Third (and
most important), we provide an iterative-rounding algorithm that partitions the
tasks/resources into O(log log m) many nearly-disjoint instances of the deter-
ministic problem. The analysis of our rounding algorithm relies on both the
assumptions above, and also on the volume constraints in our LP and on prop-
erties of the log-mgf.

We also show some limitations of our approach. For GenMakespan involv-
ing intervals in a line (which is our simplest application), we prove that the
integrality gap of our LP is Ω(log∗ m). This rules out a constant-factor approx-
imation via this LP. For GenMakespan on more general set-systems (without
any structure), we prove that the integrality gap can be Ω(log m

(log log m)2) even if
all deterministic instances solved in our algorithm have an α = O(1) integral-
ity gap. This suggests that we do need to exploit additional structure—such

Stochastic Makespan Minimization 161

as the well-covered assumption above—in order to obtain significantly better
approximation ratios via our LP.

1.2 Related Work

The deterministic counterparts of the problems studied here are well-understood.
In particular, there are LP-based O(1)-approximation algorithms for intervals in
a line [3], paths in a tree (with edge loads) [8] and rectangles in a plane (under
some restrictions) [1].

Our techniques draw on prior work on stochastic makespan minimization
for identical [14] and unrelated [10] resources; but there are also important new
ideas. In particular, the use of log-mgf values as the deterministic proxy for
random variables comes from [14] and the use of log-mgf values at multiple scales
comes from [10]. The “volume” constraints in our LP also has some similarity
to those in [10]: however, a key difference here is that the random variables
loading different resources are correlated (whereas they were independent in
[10]). Indeed, this is why our LP can only be solved approximately whereas
the LP relaxation in [10] was optimally solvable. We emphasize that our main
contribution is the rounding algorithm, which uses a new set of ideas; these
lead to the O(log log m) approximation bound, whereas the rounding in [10]
obtained a constant-factor approximation. Note that we also prove a super-
constant integrality gap in our setting, even for the case of intervals in a line.

The stochastic load balancing problem on unrelated resources has also been
studied for general �p-norms (note that the makespan corresponds to the �∞-
norm) and a constant-factor approximation is known [15]. We do not consider
�p-norms in this paper.

2 Problem Definition and Preliminaries

We are given n tasks and m resources. Each task j ∈ [n] uses some subset
Uj ⊆ [m] of resources. For each resource i ∈ [m], define Li ⊆ [n] to be the tasks
that utilize i. Each task j ∈ [n] has a random size Xj . If a task j is selected into
our set S, it adds a load of Xj to each resource in Uj : the load on resource i ∈ [m]
is Zi :=

∑
j∈S∩Li

Xj . The makespan is the maximum load, i.e. maxm
i=1 Zi. The

goal is to select a subset S ⊆ [n] with t tasks to minimize the expected makespan:

min
S⊆[n]:|S|=t

E

[
m

max
i=1

∑

j∈S∩Li

Xj

]
. (1)

The distribution of each r.v. Xj is known (we use this knowledge only to compute
some “effective” sizes below), and these distributions are independent.

For any subset K ⊆ [m] of resources, let L(K) := ∪i∈KLi be the set of tasks
that utilize at least one resource in K.

162 A. Gupta et al.

2.1 Structure of Set Systems: The Two Assumptions

Our results hold when the following two properties are satisfied by the set system
([n],L), where L is the collection of sets Li for each i ∈ [m]. Note that the set
system has n elements (corresponding to tasks) and m sets (corresponding to
resources).

A1 (α-packable): A set system ([n],L) is said to be α-packable if for any
assignment of size sj ≥ 0 and reward rj ≥ 0 to each element j ∈ [n], and any
threshold parameter θ ≥ maxj sj , there is a polynomial-time algorithm that
rounds a fractional solution y to the following LP relaxation into an integral
solution ŷ, losing a factor of at most α ≥ 1. (I.e.,

∑
j rj ŷj ≥ 1

α

∑
j rjyj .)

max
{ ∑

j∈[n]

rj · yj :
∑

j∈L

sj · yj ≤ θ, ∀L ∈ L, and 0 ≤ yj ≤ 1, ∀j ∈ [n]
}

. (2)

We also assume that the support of ŷ is contained in the support of y.1

A2 (λ-safe): Let [m] be the indices of the sets in L; recall that these are the
resources. The set system ([n],L) is λ-safe if for every subset D ⊆ [m] of
(“dangerous”) resources, there exists a subset M ⊇ D of (“safe”) resources,
such that (a) |M | is polynomially bounded by |D| and moreover, (b) for
every i ∈ [m], there is a subset Ri ⊆ M , |Ri| ≤ λ, such that Li ∩ L(D) ⊆
L(Ri). Recall that L(D) = ∪h∈DLh. We denote the set M as Extend(D).

Let us give an example. Suppose P consists of m points on the real line, and
consider n intervals I1, . . . , In on the line. The set system is defined on n elements
(one for each interval), with m sets with the set Li for point i ∈ P containing
the indices of intervals that contain i. The λ-safe condition says that for any
subset D of points in P , we can find a superset M which is not much larger such
that for any point i ∈ P , there are λ points in M containing all the intervals
that pass through both i and D. In other words, if these intervals contribute
any load to i and D, they also contribute to one of these λ points. And indeed,
choosing M = D ensures that λ = 2: for any i we choose the nearest points in
M on either side of i.

Other families that are α-packable and λ-safe include:

• Each element in [n] corresponds to a path in a tree, with the set Li being
the subset of paths through node i.

• Elements in [n] correspond to rectangles or disks in a plane, and each Li

consists of rectangles/disks containing a particular point i in the plane.

For a subset X ⊆ [n], the projection of ([n],L) to X is the smaller set system
([n],L|X), where L|X = {L ∩ X | L ∈ L}. The following lemma formalizes that
packability and safeness properties also hold for sub-families and disjoint unions.

1 The support of vector z ∈ R
n
+ is {j ∈ [n] : zj > 0} which corresponds to its positive

entries.

Stochastic Makespan Minimization 163

Lemma 1. Consider a set system ([n],L) that is α-packable and λ-safe. Then,

(i) for all X ⊆ [n], the set system (X,L) is α-packable and λ-safe, and
(ii) given a partition X1, . . . , Xs of [n], and set systems (X1,L1), . . . , (Xs,Ls),

where Li = L|Xi
, the disjoint union of these systems is also α-packable.

We consider the GenMakespan problem for settings where the set system
([n], {Li}i∈[m]) is α-packable and λ-safe for small parameters α and λ.

Theorem 2 (Main Result). For any instance of GenMakespan where the
corresponding set system ([n], {Li}i∈[m]) is α-packable and λ-safe, there is an
O(αλ · log log m)-approximation algorithm.

2.2 Effective Size and Random Variables

In all the arguments that follow, imagine that we have scaled the instance so
that the optimal expected makespan is between 1

2 and 1. It is useful to split each
random variable Xj into two parts:

• the truncated random variable X ′
j := Xj · I(Xj≤1), and

• the exceptional random variable X ′′
j := Xj · I(Xj>1).

These two kinds of random variables behave very differently with respect to
the expected makespan. Indeed, the expectation is a good measure of the load
due to exceptional r.v.s, whereas one needs a more nuanced notion for truncated
r.v.s (as we discuss below). The following result was shown in [14]:

Lemma 2 (Exceptional Items Lower Bound). Let {X ′′
j } be non-negative

discrete random variables each taking value zero or at least L. If
∑

j E[X ′′
j] ≥ L

then E[maxj X ′′
j] ≥ L/2.

We now consider the trickier case of truncated random variables X ′
j . We

want to find a deterministic quantity that is a good surrogate for each random
variable, and then use this deterministic surrogate instead of the actual random
variable. For stochastic load balancing, a useful surrogate is the effective size,
which is based on the logarithm of the (exponential) moment generating function
(also known as the cumulant generating function) [9,10,12,13].

Definition 1 (Effective Size). For any r.v. X and integer k ≥ 2, define

βk(X) :=
1

log k
· logE

[
e(log k)·X

]
. (3)

Also define β1(X) := E[X].

To see the intuition for the effective size, consider a set of independent r.v.s
Y1, . . . , Yk all assigned to the same resource. The following lemma, whose proof
is very reminiscent of the standard Chernoff bound (see [12]), says that the load
is not much higher than the expectation.

164 A. Gupta et al.

Lemma 3 (Effective Size: Upper Bound). For indep. r.v.s Y1, . . . , Yn, if∑
i βk(Yi) ≤ b then Pr[

∑
i Yi ≥ c] ≤ 1

kc−b .

The usefulness of the effective size comes from a partial converse [14]:

Lemma 4 (Effective Size: Lower Bound). Let X1,X2, · · · Xn be indepen-
dent [0, 1] r.v.s, and {L̃i}m

i=1 be a partition of [n]. If
∑n

j=1 βm(Xj) ≥ 17m then

E

[
m

max
i=1

∑

j∈˜Li

Xj

]
= Ω(1).

3 The General Framework

In this section we provide our main algorithm, which is used to prove The-
orem 2. The idea is to write a suitable LP relaxation for the problem (using
the effective sizes as deterministic surrogates for the stochastic jobs), to solve
this exponentially-sized LP, and then to round the solution. The novelty of the
solution is both in the LP itself, and in the rounding, which is based on a del-
icate decomposition of the instance into O(log log m) many sub-instances and
on showing that, loosely speaking, the load due to each sub-instance is at most
O(αλ). By binary-searching on the value of the optimal makespan, and rescaling,
we can assume that the optimal makespan is between 1

2 and 1.

The LP Relaxation. Consider an instance I of GenMakespan given by a set
of n tasks and m resources, with sets Uj and Li as described in Sect. 2. We give
an LP relaxation which is feasible if the optimal makespan is at most one.

Lemma 5. Consider any feasible solution to I that selects a subset S ⊆ [n] of
tasks. If the expected maximum load E

[
maxm

i=1

∑
j∈Li∩S Xj

]
≤ 1, then

∑

j∈S

E[X ′′
j] ≤ 2, and (4)

∑

j∈L(K)∩S

βk(X ′
j) ≤ b · k, for all K ⊆ [m], where k = |K|, (5)

for b being a large enough but fixed constant.

Lemma 5 allows us to write the following feasibility linear programming relax-
ation for GenMakespan (assuming the optimal value is 1). For every task j, we
have a binary variable yj , which is meant to be 1 if j is selected in the solution.
Moreover, we can drop all tasks j with cj = E[X ′′

j] > 2 as such a task would
never be part of an optimal solution- by (4). So in the rest of this paper we will
assume that maxj∈[n] cj ≤ 2. Further, note that we only use effective sizes βk of
truncated r.v.s, so we have 0 ≤ βk(X ′

j) ≤ 1 for all k ∈ [m] and j ∈ [n].

Stochastic Makespan Minimization 165

n∑

j=1

yj ≥ t (6)

n∑

j=1

E[X ′′
j] · yj ≤ 2 (7)

∑

j∈L(K)

βk(X ′
j) · yj ≤ b · k ∀K ⊆ [m] with |K| = k, ∀k = 1, 2, · · · m, (8)

0 ≤ yj ≤ 1 ∀j ∈ [n]. (9)

In the above LP, b ≥ 1 denotes the universal constant multiplying k in the
right-hand-side of (5). This can be solved approximately in polynomial time.

Theorem 3 (Solving the LP). There is a polynomial time algorithm which
given an instance I of GenMakespan outputs one of the following:

• a solution y ∈ R
n to LP (6)–(9), except that the RHS of (8) is replaced by

e
e−1bk, or

• a certificate that LP (6)–(9) is infeasible.

The e
e−1 factor comes from checking feasibility via an approximation algo-

rithm for the maximum coverage problem. In the rest of this section, we assume
we have a feasible solution y to (6)–(9) since the approximate feasibility of (8)
only affects the approximation ratio by a constant.

Rounding. We first give some intuition about the rounding algorithm. It
involves formulating O(log log m) many almost-disjoint instances of the deter-
ministic reward-maximization problem (2) used in the definition of α-packability.
The key aspect of each such deterministic instance is the definition of the sizes
sj : for the �th instance we use effective sizes βk(X ′

j) with parameter k = 22
�

. We
use the λ-safety property to construct these deterministic instances and the α-
packable property to solve them. Finally, we show that the expected makespan
induced by the selected tasks is at most O(αβ) factor away from each such
deterministic instance, which leads to an overall O(αβ log log m) ratio.

Before delving into the details, let us formulate a generalization of the reward-
maximization problem mentioned in (2), which we call the DetCost problem.
An instance I of the DetCost problem consists of a set system ([n],S), with a
size sj and cost cj for each element j ∈ [n]. It also has parameters θ ≥ maxj sj

and ψ ≥ maxj cj . The goal is to find a maximum cardinality subset V of [n] such
that each set in S is “loaded” to at most θ, and the total cost of V is at most
ψ. The DetCost problem has the following LP relaxation:

max

{ ∑
j∈[n]

yj :
∑
j∈S

sj · yj ≤ θ, ∀S ∈ S;
∑
j∈[n]

cj · yj ≤ ψ; 0 ≤ yj ≤ 1 ∀j ∈ [n]

}
. (10)

166 A. Gupta et al.

Theorem 4. If a set system satisfies the α-packable property, there is an O(α)-
approximation algorithm for DetCost relative to the LP relaxation (10).

We now give the rounding algorithm for the GenMakespan problem. The
procedure is described formally in Algorithm1. The algorithm proceeds in
log log m iterations of the for loop in lines 3–7, since the parameter k is squared
in line 3 for each iteration. In line 5, we identify resources i which are fraction-
ally loaded to more than 2b, where the load is measured in terms of βk2(X ′

j)
values. The set of such resources is grouped in the set D�, and we define J� to be
the tasks which can load these resources. Ideally, we would like to remove these
resources and tasks, and iterate on the remaining tasks and resources. However,
the problem is that tasks in J� also load resources other than D�, and so (D�, J�)
is not independent of the rest of the instance. This is where we use the λ-safe
property: we expand D� to a larger set of resources M�, which will be used to
show that the effect of J� on resources outside D� will not be significant.

Algorithm 1: Rounding Algorithm
Input : A fractional solution y to (6)–(9)
Output: A subset of tasks.

1 Initialize remaining tasks J ← [n];
2 for � = 0, 1, . . . , log log m do

3 Set k ← 22�

;
4 Initialize class-� resources D� ← ∅;
5 while there is a resource i ∈ [m] :

∑
j∈Li∩J βk2(X ′

j) · yj > 2b do

6 update D� ← D� ∪ {i};

7 Set L̃i ← J ∩ Li and J ← J \ L̃i;

8 Define the class-� tasks J� ← ⋃
i∈D�

L̃i ;

9 Use λ-safety on the set system (J�, {Li ∩ J�}i∈[m])to get
M� := Extend(D�) ;

10 ρ ← 1 + log log m;

11 Define class-ρ tasks Jρ = J and class-ρ resources Mρ := Dρ = [m] \ (∪ρ−1
�=0D�

)
;

12 Define an instance C of DetCost as follows: the set system is the disjoint union
of the set systems (J�, M�) for � = 0, . . . , ρ. The other parameters are:

Sizes sj = β
22

� (X ′
j) for each j ∈ J�, ∀0 ≤ � ≤ ρ, bound θ = 2ᾱb,

Costs cj = E[X ′′
j] for each j ∈ [n], bound ψ = 2ᾱ,

where ᾱ is the approximation ratio from Theorem 4 ;
13 Let NH = {j ∈ [n] : yj > 1/ᾱ} ;
14 Let ȳj = ᾱ · yj for j ∈ [n] \ NH and ȳj = 0 otherwise ;
15 Round ȳ (as a feasible solution to (10)) using Theorem 4 to obtain NL;
16 Output NH ∪ NL.

Consider any iteration � of the for-loop. We apply the λ-safety property to
the set-system (J�, {Li ∩ J�}i∈[m]) and set D� to get M� := Extend(D�). We

Stochastic Makespan Minimization 167

remove J� from the current set J of tasks, and continue to the next iteration.
We abuse notation by referring to (J�,M�) as the following set system: each
set is of the form Li ∩ J� for some i ∈ M�. Having partitioned the tasks into
classes J1, . . . , Jρ, we consider the disjoint union D of the set systems (J�,M�),
for � = 1, . . . , ρ. While the sets D� are disjoint, the sets M� may not be disjoint.
For each resource appearing in the sets M� of multiple classes, we make distinct
copies in the combined set-system D.

Finally, we set up an instance C of DetCost (in line 11): the set system
is the disjoint union of (J�,M�), for � = 1, . . . , ρ. Every task j ∈ J� has size
β22� (X ′

j) and cost E[X ′′
j]. The parameters θ and ψ are as mentioned in line 11.

Our proofs show that the solution ȳ defined in line 14 is a feasible solution to
the LP relaxation (10) for C. This allows us to use Theorem 4 to round ȳ to an
integral solution NL. Finally, we output NH ∪ NL, where NH is defined in line
12.

The analysis is outlined in the appendix.

4 Applications

As discussed in Sect. 2, the problem of selecting intervals in a line satisfies the
λ-safe property with λ = 2. Moreover, the α-packable property holds with
α = O(1), which follows from [3]—indeed, the LP relaxation (2) corresponds
to the unsplittable flow problem where all vertices have uniform capacity θ. So,
Theorem 2 now implies the following.

Corollary 1. There is an O(log log m)-approximation for GenMakespan
where resources are vertices on a line and tasks are intervals in this line.

The full version [11] has a number of other applications:

Corollary 2. There is an O(log log m)-approximation for GenMakespan
when

• resources are vertices in a tree and tasks are paths in this tree.
• resources are all points in the plane and tasks are rectangles, where the

rectangles in a solution can be shrunk by a (1−δ)-factor in either dimension;
δ > 0 is some constant.

• resources are all points in the plane and tasks are disks.

5 Integrality Gap Lower Bounds

We consider two natural questions – (i) does one require any assumption on the
underlying set system to obtain O(1)-approximation for GenMakespan?, and
(ii) what is the integrality gap of the LP relaxation given by the constraints (6)–
(9) for settings where α and λ are constants? For the first question, we show
that applying our LP based approach to general set systems only givesn an
Ω

(
log m

(log log m)2

)
approximation ratio, and so we do require some conditions on the

168 A. Gupta et al.

underlying set system. For the second question, we show that even for set systems
given by intervals on a line (as in Sect. 4), the integrality gap of our LP relaxation
is Ω(log∗ m). Hence this rules out getting a constant-factor approximation using
our approach even when α and λ are constants.

A Analysis Outline

We now show that the expected makespan for the solution produced by the
rounding algorithm above is O(αλρ), where ρ = log log m is the number of
classes. In particular, we show that the expected makespan (taken over all
resources) due to tasks of each class � is O(αλ).

Using the terminating condition in line 5, we can show:

Lemma 6. For any class �, 0 ≤ � ≤ ρ, and resource i ∈ [m],
∑

j∈J�∩Li

βr(X ′
j) · yj ≤ 2b, where r = 22

�

.

Next, the sets D� cannot become too large (as a function of �).

Lemma 7. For any �, 0 ≤ � ≤ ρ, |D�| ≤ k2, where k = 22
�

. So |M�| ≤ kp for
some constant p.

Proof. The claim is trivial for the last class � = ρ as k ≥ m in this case. Now
consider any class � < ρ. For each i ∈ D�, we know

∑
j∈˜Li

βk2(X ′
j) · yj > 2b,

where L̃i is as defined in line 7. Moreover, the subsets {L̃i : i ∈ D�} are disjoint
as the set J gets updated (in line 7) after adding each i ∈ D�. Suppose, for the
sake of contradiction, that |D�| > k2. Then let K ⊆ D� be any set of size k2. By
the LP constraint (8) on this subset K,

2b · k2 <
∑

i∈K

∑

j∈˜Li

βk2(X ′
j) · yj ≤

∑

j∈L(K)

βk2(X ′
j) · yj ≤ b|K| = b · k2,

which is a contradiction. This proves the first part of the claim. Finally, the
λ-safe property implies that |M�| is polynomially bounded by |D�|. �

Using the definition of the DetCost instance and Lemma 6, we can show:

Lemma 8. The fractional solution ȳ is feasible for the LP relaxation (10) corre-
sponding to the DetCost instance C. Moreover, θ ≥ maxj sj and ψ ≥ maxj cj.

The above lemmas show that the algorithm is well-defined, so we can indeed
use Theorem 4 to round ȳ into an integer solution. Recall that our final solution
is N = NH ∪ NL. The next two lemmas follow from this rounding step.

Stochastic Makespan Minimization 169

Lemma 9. |NH | + |NL| ≥ t.

Lemma 10. For any class � ≤ ρ and resource i ∈ M�,
∑

j∈N�∩Li

βk(X ′
j) ≤ 4ᾱb, where k = 22

�

.

We now focus on a particular class � ≤ ρ and show that the expected makespan
due to tasks in N ∩ J� is small. Recall that k = 22

�

. Let N� := N ∩ J� and let
Load

(�)
i :=

∑
j∈N�∩Li

X ′
j be the load on any resource i ∈ [m] due to class-� tasks.

We can now bound the makespan due to the truncated random variables.

Lemma 11. For any class � ≤ ρ, E
[
maxi∈M�

Load
(�)
i

]
≤ 4ᾱb + O(1), and

E

[
m

max
i=1

Load
(�)
i

]
≤ 4λᾱb + O(λ) = O(αλ).

Proof. Consider a resource i ∈ M�. Lemmas 10 and 3 imply:

Pr
[
Load

(�)
i > 4ᾱb + γ

]
= Pr

⎡

⎣
∑

j∈N�∩Li

X ′
j > 4ᾱb + γ

⎤

⎦ ≤ k−γ , ∀γ ≥ 0.

By a union bound, we get

Pr
[
max
i∈M�

Load
(�)
i > 4ᾱb + γ

]
≤ |M�| · k−γ ≤ kp−γ , for all γ ≥ 0,

where p is the constant from Lemma 7. So the expectation

E

[
max
i∈M�

Load
(�)
i

]
=

∫ ∞

θ=0

Pr
[
max
i∈M�

Load
(�)
i > θ

]
dθ

≤ 4ᾱb + p + 2 +
∫ ∞

γ=p+2

k−γ+p dγ ≤ 4ᾱb + p + 2 +
1

k(p + 1)
,

which completes the proof of the first statement.
We now prove the second statement. Consider any class � < ρ: by definition

of J�, we know that J� ⊆ L(D�). So the λ-safe property implies that for every
resource i there is a subset Ri ⊆ M� of size at most λ such that Li ∩ J� ⊆
L(Ri) ∩ J�. Because N� ⊆ J�, we also have Li ∩ N� ⊆ L(Ri) ∩ N�. Therefore,

Load
(�)
i ≤

∑

z∈Ri

Load(�)z ≤ λ max
z∈M�

Load(�)z .

Taking expectation on both sides, we obtain the desired result.
Finally, for the last class � = ρ, note that any task in Jρ loads the resources

in Dρ = Mρ only. Therefore, maxm
i=1 Load

(�)
i = maxz∈M�

Load(�)z . The desired
result now follows by taking expectation on both sides. �

170 A. Gupta et al.

Using Lemma 11 for all ρ classes, it follows that the expected makespan due
to all truncated r.v.s is O(αλρ). For the exceptional random variables, we use:

Lemma 12. E

[∑
j∈N X ′′

j

]
=

∑
j∈N cj ≤ 4ᾱ.

Adding the contributions from truncated and exceptional r.v.s, the overall
expected makespan is O(αλρ), which completes the proof of Theorem2.

References

1. Adamaszek, A., Chalermsook, P., Wiese, A.: How to tame rectangles: solving inde-
pendent set and coloring of rectangles via shrinking. In: APPROX/RANDOM, pp.
43–60 (2015)

2. Agarwal, P.K., Mustafa, N.H.: Independent set of intersection graphs of convex
objects in 2D. Comput. Geom. 34(2), 83–95 (2006)

3. Chakrabarti, A., Chekuri, C., Gupta, A., Kumar, A.: Approximation algorithms
for the unsplittable flow problem. Algorithmica 47(1), 53–78 (2007)

4. Chalermsook, P.: Coloring and maximum independent set of rectangles. In: Gold-
berg, L.A., Jansen, K., Ravi, R., Rolim, J.D.P. (eds.) APPROX/RANDOM 2011.
LNCS, vol. 6845, pp. 123–134. Springer, Heidelberg (2011). https://doi.org/10.
1007/978-3-642-22935-0 11

5. Chalermsook, P., Chuzhoy, J.: Maximum independent set of rectangles. In: SODA,
pp. 892–901 (2009)

6. Chan, T.M.: A note on maximum independent sets in rectangle intersection graphs.
Inf. Process. Lett. 89(1), 19–23 (2004)

7. Chan, T.M., Har-Peled, S.: Approximation algorithms for maximum independent
set of pseudo-disks. Discret. Comput. Geom. 48(2), 373–392 (2012)

8. Chekuri, C., Mydlarz, M., Shepherd, F.B.: Multicommodity demand flow in a tree
and packing integer programs. ACM Trans. Algorithms 3(3), 27 (2007)

9. Elwalid, A.I., Mitra, D.: Effective bandwidth of general markovian traffic sources
and admission control of high speed networks. IEEE/ACM Trans. Netw. 1(3),
329–343 (1993)

10. Gupta, A., Kumar, A., Nagarajan, V., Shen, X.: Stochastic load balancing on
unrelated machines. In: SODA, pp. 1274–1285. Society for Industrial and Applied
Mathematics (2018)

11. Gupta, A., Kumar, A., Nagarajan, V., Shen, X.: Stochastic makespan minimization
in structured set systems. arXiv (2020). https://arxiv.org/abs/2002.11153

12. Hui, J.Y.: Resource allocation for broadband networks. IEEE J. Sel. Areas Com-
mun. 6(3), 1598–1608 (1988)

13. Kelly, F.P.: Notes on effective bandwidths. In: Stochastic Networks: Theory and
Applications, pp. 141–168. Oxford University Press (1996)

14. Kleinberg, J., Rabani, Y., Tardos, E.: Allocating bandwidth for bursty connections.
SIAM J. Comput. 30(1), 191–217 (2000)

15. Molinaro, M.: Stochastic �p load balancing and moment problems via the l-function
method. In: SODA, pp. 343–354 (2019)

https://doi.org/10.1007/978-3-642-22935-0_11
https://doi.org/10.1007/978-3-642-22935-0_11
https://arxiv.org/abs/2002.11153

	Stochastic Makespan Minimization in Structured Set Systems (Extended Abstract)
	1 Introduction
	1.1 Results and Techniques
	1.2 Related Work

	2 Problem Definition and Preliminaries
	2.1 Structure of Set Systems: The Two Assumptions
	2.2 Effective Size and Random Variables

	3 The General Framework
	4 Applications
	5 Integrality Gap Lower Bounds
	A Analysis Outline
	References

