
Daniel Bienstock
Giacomo Zambelli (Eds.)

LN
CS

 1
21

25

21st International Conference, IPCO 2020
London, UK, June 8–10, 2020
Proceedings

Integer Programming
and Combinatorial Optimization

Lecture Notes in Computer Science 12125

Founding Editors

Gerhard Goos
Karlsruhe Institute of Technology, Karlsruhe, Germany

Juris Hartmanis
Cornell University, Ithaca, NY, USA

Editorial Board Members

Elisa Bertino
Purdue University, West Lafayette, IN, USA

Wen Gao
Peking University, Beijing, China

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Gerhard Woeginger
RWTH Aachen, Aachen, Germany

Moti Yung
Columbia University, New York, NY, USA

https://orcid.org/0000-0001-9619-1558
https://orcid.org/0000-0001-8816-2693

More information about this series at http://www.springer.com/series/7407

http://www.springer.com/series/7407

Daniel Bienstock • Giacomo Zambelli (Eds.)

Integer Programming
and Combinatorial Optimization
21st International Conference, IPCO 2020
London, UK, June 8–10, 2020
Proceedings

123

Editors
Daniel Bienstock
Department of IEOR
Columbia University
New York, NY, USA

Giacomo Zambelli
Department of Management
London School of Economics
and Political Science
London, UK

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-030-45770-9 ISBN 978-3-030-45771-6 (eBook)
https://doi.org/10.1007/978-3-030-45771-6

LNCS Sublibrary: SL1 – Theoretical Computer Science and General Issues

© Springer Nature Switzerland AG 2020
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, expressed or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://doi.org/10.1007/978-3-030-45771-6

Preface

This volume collects the 33 extended abstracts presented at IPCO 2020, the 21st
Conference on Integer Programming and Combinatorial Optimization, held during
June 8–10, 2020, in London, UK. IPCO is under the auspices of the Mathematical
Optimization Society, and it is an important forum for presenting the latest results
of theory and practice of the various aspects of discrete optimization. The first IPCO
conference took place at the University of Waterloo in May 1990, and the London
School of Economics and Political Science is hosting the 21st such event – in online
form, due to unavoidable circumstances.

In response to the call for papers, we received 126 submissions. The 16-person
Program Committee met in Aussois, France, in January 2020. Each submission was
reviewed by at least three Program Committee members. There were many high-quality
submissions, of which the committee selected 33 to appear in the conference pro-
ceedings. We expect the full versions of the extended abstracts appearing in this
Springer Lecture Notes in Computer Science (LNCS) series to be submitted for pub-
lication in refereed journals, and a special issue of Mathematical Programming Series
B is on the way. For the first time, IPCO featured a Best Paper Award, which was
awarded to Kim-Manuel Klein for the paper “About the Complexity of Two-Stage
Stochastic IPs.”

This year, IPCO was preceded (again, in online format) by a Summer School during
May 6–7, 2020, with lectures by Bertrand Guenin, Santanu Dey, and Laura Sanita. We
thank them warmly for their contributions. We would also like to thank:

– The authors who submitted their research to IPCO
– The members of the Program Committee, who spent much time and energy

reviewing the submissions
– The expert additional reviewers whose opinions were crucial in the paper selection
– The members of the Local Organizing Committee, who made this conference

possible
– The Mathematical Optimization Society and in particular the members of its IPCO

Steering Committee: Jens Vygen, Oktay Günlük, and Jochen Koenemann, for their
help and advice

– EasyChair for making paper management simple and effective
– EasyChair and Springer for their efficient cooperation in producing this volume

We would also like to thank the following sponsors for their financial support:
Amazon, FICO, MOSEK, Springer, The Optimization Firm, and the Department of
Mathematics (London School of Economics and Political Science).

March 2020 Daniel Bienstock
Giacomo Zambelli

Organization

Program Committee

Tobias Achterberg Gurobi and ZIB, Germany
Alper Atamtürk UC Berkeley, USA
Amitabh Basu Johns Hopkins University, USA
Daniel Bienstock

(PC Chair)
Columbia University, USA

Claudia D’Ambrosio LIX, CNRS, and École Polytechnique, France
Daniel Dadush CWI, The Netherlands
Alberto del Pia University of Wisconsin-Madison, USA
Santanu S. Dey Georgia Tech, USA
Yuri Faenza Columbia University, USA
Jon Lee University of Michigan, USA
Jeff Linderoth University of Wisconsin-Madison, USA
Michele Monaci University of Bologna, Italy
Sebastian Pokutta Georgia Tech, USA
Eduardo Uchoa Universidade Federal Fluminense, Brazil
László Végh LSE, UK
Giacomo Zambelli LSE, UK

Local Committee

Ahmad Abdi LSE, UK
Neil Olver LSE, UK
László Végh LSE, UK
Giacomo Zambelli LSE, UK

Contents

Idealness of k-wise Intersecting Families . 1
Ahmad Abdi, Gérard Cornuéjols, Tony Huynh, and Dabeen Lee

Flexible Graph Connectivity: Approximating Network Design Problems
Between 1- and 2-Connectivity . 13

David Adjiashvili, Felix Hommelsheim, and Moritz Mühlenthaler

Faster Algorithms for Next Breakpoint and Max Value for Parametric
Global Minimum Cuts . 27

Hassene Aissi, S. Thomas McCormick, and Maurice Queyranne

Optimizing Sparsity over Lattices and Semigroups 40
Iskander Aliev, Gennadiy Averkov, Jesús A. De Loera, and Timm Oertel

A Technique for Obtaining True Approximations for k-Center
with Covering Constraints . 52

Georg Anegg, Haris Angelidakis, Adam Kurpisz, and Rico Zenklusen

Tight Approximation Bounds for Maximum Multi-coverage 66
Siddharth Barman, Omar Fawzi, Suprovat Ghoshal,
and Emirhan Gürpınar

Implementing Automatic Benders Decomposition in a Modern
MIP Solver . 78

Pierre Bonami, Domenico Salvagnin, and Andrea Tramontani

Improved Approximation Algorithms for Inventory Problems 91
Thomas Bosman and Neil Olver

Extended Formulations for Stable Set Polytopes of Graphs Without
Two Disjoint Odd Cycles. 104

Michele Conforti, Samuel Fiorini, Tony Huynh, and Stefan Weltge

On a Generalization of the Chvátal-Gomory Closure 117
Sanjeeb Dash, Oktay Günlük, and Dabeen Lee

Algorithms for Flows over Time with Scheduling Costs. 130
Dario Frascaria and Neil Olver

Integer Plane Multiflow Maximisation: Flow-Cut Gap
and One-Quarter-Approximation . 144

Naveen Garg, Nikhil Kumar, and András Sebő

Stochastic Makespan Minimization in Structured Set Systems
(Extended Abstract) . 158

Anupam Gupta, Amit Kumar, Viswanath Nagarajan, and Xiangkun Shen

Continuous Facility Location on Graphs . 171
Tim A. Hartmann, Stefan Lendl, and Gerhard J. Woeginger

Recognizing Even-Cycle and Even-Cut Matroids . 182
Cheolwon Heo and Bertrand Guenin

A Combinatorial Algorithm for Computing the Rank of a Generic
Partitioned Matrix with 2 � 2 Submatrices. 196

Hiroshi Hirai and Yuni Iwamasa

Fair Colorful k-Center Clustering . 209
Xinrui Jia, Kshiteej Sheth, and Ola Svensson

Popular Branchings and Their Dual Certificates . 223
Telikepalli Kavitha, Tamás Király, Jannik Matuschke, Ildikó Schlotter,
and Ulrike Schmidt-Kraepelin

Sparse Graphs and an Augmentation Problem. 238
Csaba Király and András Mihálykó

About the Complexity of Two-Stage Stochastic IPs 252
Kim-Manuel Klein

Packing Under Convex Quadratic Constraints . 266
Max Klimm, Marc E. Pfetsch, Rico Raber, and Martin Skutella

Weighted Triangle-Free 2-Matching Problem with Edge-Disjoint
Forbidden Triangles. 280

Yusuke Kobayashi

Single Source Unsplittable Flows with Arc-Wise Lower
and Upper Bounds . 294

Sarah Morell and Martin Skutella

Maximal Quadratic-Free Sets . 307
Gonzalo Muñoz and Felipe Serrano

On Generalized Surrogate Duality in Mixed-Integer
Nonlinear Programming . 322

Benjamin Müller, Gonzalo Muñoz, Maxime Gasse, Ambros Gleixner,
Andrea Lodi, and Felipe Serrano

The Integrality Number of an Integer Program . 338
Joseph Paat, Miriam Schlöter, and Robert Weismantel

viii Contents

Persistency of Linear Programming Relaxations for the Stable
Set Problem . 351

Elisabeth Rodríguez-Heck, Karl Stickler, Matthias Walter,
and Stefan Weltge

Constructing Lattice-Free Gradient Polyhedra in Dimension Two 364
Joseph Paat, Miriam Schlöter, and Emily Speakman

Sequence Independent Lifting for the Set of Submodular
Maximization Problem. 378

Xueyu Shi, Oleg A. Prokopyev, and Bo Zeng

A Fast ð2þ 2=7Þ-Approximation Algorithm for Capacitated
Cycle Covering. 391

Vera Traub and Thorben Tröbst

Graph Coloring Lower Bounds from Decision Diagrams 405
Willem-Jan van Hoeve

On Convex Hulls of Epigraphs of QCQPs . 419
Alex L. Wang and Fatma Kılınç-Karzan

On the Convexification of Constrained Quadratic Optimization
Problems with Indicator Variables . 433

Linchuan Wei, Andrés Gómez, and Simge Küçükyavuz

Author Index . 449

Contents ix

Idealness of k-wise Intersecting Families

Ahmad Abdi1(B), Gérard Cornuéjols2, Tony Huynh3, and Dabeen Lee4

1 Department of Mathematics, LSE, London, UK
a.abdi1@lse.ac.uk

2 Tepper School of Business, Carnegie Mellon University, Pittsburgh, USA
gc0v@andrew.cmu.edu

3 School of Mathematics, Monash University, Melbourne, Australia
tony.bourbaki@gmail.com

4 Institute for Basic Science, Daejeon, South Korea
dabeenl@ibs.re.kr

Abstract. A clutter is k-wise intersecting if every k members have a
common element, yet no element belongs to all members. We conjecture
that every 4-wise intersecting clutter is non-ideal. As evidence for our
conjecture, we prove it in the binary case. Two key ingredients for our
proof are Jaeger’s 8-flow theorem for graphs, and Seymour’s character-
ization of the binary matroids with the sums of circuits property. As
further evidence for our conjecture, we also note that it follows from an
unpublished conjecture of Seymour from 1975.

1 Introduction

Let V be a finite set of elements, and C be a family of subsets of V called
members. The family C is a clutter over ground set V , if no member contains
another one [11]. A cover of C is a subset B ⊆ V such that B∩C ≠∅ for all C ∈ C.
A cover is minimal if it does not contain another cover. The family of minimal
covers forms another clutter over the ground set V , called the blocker of C and
denoted b(C). It is well-known that b(b(C)) = C [11,15]. Consider for w ∈ ZV

+
the

dual pair of linear programs

min w⊺x
s.t. ∑(xu ∶ u ∈ C) ≥ 1 ∀C ∈ C

x ≥ 0

max 1⊺y
s.t. ∑(yC ∶ u ∈ C ∈ C) ≤ wu ∀u ∈ V

y ≥ 0

where the left and right LPs are denoted (P) and (D), respectively. If the dual
(D) has an integral optimal solution for every right-hand-side vector w ∈ ZV

+
,

then C is said to have the max-flow min-cut (MFMC) property [7]. By the theory
of totally dual integral linear systems, for every MFMC clutter, the primal (P)
also admits an integral optimal solution for every cost vector w ∈ ZV

+
[12]. This

is why the class of MFMC clutters is a natural host to many beautiful min-max
theorems in Combinatorial Optimization [8]. Let us elaborate.

The packing number of C, denoted ν(C), is the maximum number of pairwise
disjoint members. Note that ν(C) is equal to the maximum value of an integral
c© Springer Nature Switzerland AG 2020
D. Bienstock and G. Zambelli (Eds.): IPCO 2020, LNCS 12125, pp. 1–12, 2020.
https://doi.org/10.1007/978-3-030-45771-6_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-45771-6_1&domain=pdf
https://doi.org/10.1007/978-3-030-45771-6_1

2 A. Abdi et al.

feasible solution to (D) for w = 1. Furthermore, the covers correspond precisely
to the 0−1 feasible solutions to (P). The covering number of C, denoted τ(C), is
the minimum cardinality of a cover. Notice that τ(C) is equal to the minimum
value of an integral feasible solution to (P) for w=1. Also, by Weak LP Duality,
τ(C) ≥ ν(C). The clutter C packs if τ(C) = ν(C) [9]. Observe that if a clutter is
MFMC, then it packs.

If the primal (P) has an integral optimal solution for every cost vector w ∈ZV
+

,
then C is said to be ideal [10]. Ideal clutters form a rich class of clutters, one
that contains the class of MFMC clutters, as discussed above. This containment
is strict, and in fact, the richest examples of ideal clutters are those that are not
MFMC [14,19]. Furthermore, unlike MFMC clutters, if a clutter is ideal, then
so is its blocker [8,13,18].

A clutter is intersecting if every two members intersect yet no element belongs
to every member [2]. That is, a clutter C is intersecting if τ(C) ≥ 2 and ν(C) = 1.
In particular, an intersecting clutter does not pack, and therefore is not MFMC.
Intersecting clutters, however, may be ideal. For instance, the clutter

Q6 ∶= {{1,3,5},{1,4,6},{2,3,6},{2,4,5}},

whose elements are the edges and whose members are the triangles of K4, is
an intersecting clutter that is ideal [23]. In fact, Q6 is the smallest intersecting
clutter which is ideal ([1], Proposition 1.2). It is worth pointing out that if
a clutter and its blocker are both intersecting, then the clutter must be non-
ideal [3].

In this paper, we propose a sufficient condition for non-idealness that is purely
combinatorial. We say that C is k-wise intersecting if every k members have a
common element, yet no element belongs to all members. Note that for k = 2,
this notion coincides with the notion of intersecting clutters. Furthermore, for
k ≥ 3, a k-wise intersecting clutter is also (k−1)-wise intersecting. The following
is our main conjecture.

Conjecture 1. There exists an integer k ≥ 4 such that every k-wise intersecting
clutter is non-ideal.

A clutter is binary if the symmetric difference of any odd number of members
contains a member [17]. Equivalently, a clutter is binary if every member and
every minimal cover have an odd number of elements in common [17]. In partic-
ular, if a clutter is binary, then so is the blocker. Many rich classes of clutters
are in fact binary [8]. For example, given a graph G=(V,E) and distinct vertices
s and t, the clutter of st-paths over ground set E is binary. The clutter Q6 is
also binary. As evidence for Conjecture 1, our main result is that it holds for all
binary clutters.

Theorem 2. Every 4-wise intersecting binary clutter is non-ideal.

We also show that 4 cannot be replaced by 3 in Conjecture 1, even for binary
clutters.

Idealness of k-wise Intersecting Families 3

Proposition 3. There exists an ideal 3-wise intersecting binary clutter.

The example from Proposition 3 comes from the Petersen graph, and also
coincides with the clutter T30 from [21], §79.3e. It has 30 elements and is the
smallest such example that we are aware of.

Finally, as further evidence for Conjecture 1, we also show that it follows
from an unpublished conjecture by Seymour from 1975 that was documented in
[21], §79.3e.

1.1 Paper Outline

In Sect. 2, we show that a special class of clutters, called cuboids [1,5], sit at the
heart of Conjecture 1. Cuboids allow us to reformulate Conjecture 1 in terms of
set systems.

In Sect. 3, we prove Proposition 3 and Theorem 2. Two key ingredients of our
proof of Theorem 2 are Jaeger’s 8-flow Theorem [16] for graphs, and Seymour’s
characterization of the binary matroids with the sums of circuits property [25].

In Sect. 4, we propose a line of attack for tackling Conjecture 1, inspired by
the recent work of [4]. We also discuss two applications of Theorem 2 to ideal
binary clutters. Each application goes hand-in-hand with two strengthenings
of Conjecture 1. One strengthening is proposed by us, which we believe is the
right strategy for tackling Conjecture 1. The other conjecture is the unpublished
conjecture by Seymour.

2 Cuboids

Let n ∈ N and S ⊆ {0,1}n. The cuboid of S, denoted cuboid(S), is the clutter
over ground set [2n] ∶= {1, . . . ,2n} whose members have incidence vectors (p1,1−
p1, . . . , pn,1− pn) over all (p1, . . . , pn) ∈ S. We say that a clutter is a cuboid if it
is isomorphic to cuboid(S), for some S.

Observe that for each C ∈ cuboid(S), ∣C ∩ {2i − 1,2i}∣ = 1 for all i ∈ [n]. In
particular, every member of cuboid(S) has size n (hence cuboid(S) is a clutter)
and τ(cuboid(S)) ≤ 2. Cuboids were introduced in [5] and further studied in [1].

We now describe what it means for cuboid(S) to be k-wise intersecting. We
say that the points in S agree on a coordinate if S ⊆ {x ∶ xi = a} for some
coordinate i ∈ [n] and some a ∈ {0,1}.

Remark 4. Let S ⊆ {0,1}n. Then cuboid(S) is a k-wise intersecting clutter if,
and only if, the points in S do not agree on a coordinate yet every k points do.

Next, we describe what it means for cuboid(S) to be ideal. Let conv(S)
denote the convex hull of S. An inequality of the form ∑i ∈ I xi+∑j ∈J(1−xj) ≥ 1,
for some disjoint I, J ⊆ [n], is called a generalized set covering inequality [8]. The
set S is cube-ideal if every facet of conv(S) is defined by xi ≥ 0, xi ≤ 1, or a
generalized set covering inequality [1].

4 A. Abdi et al.

Theorem 5 ([1], Theorem 1.6). Let S ⊆ {0,1}n. Then cuboid(S) is an ideal
clutter if, and only if, S is a cube-ideal set.

As a result, Conjecture 1 for cuboids reduces to the following conjecture:

Conjecture 6. There is a constant k ≥ 4 such that for every cube-ideal set, either
all the points agree on a coordinate, or there is a subset of at most k points that
do not agree on a coordinate.

Surprisingly, we now show that Conjecture 6 is equivalent to Conjecture 1!
Let C be a clutter over ground set V . To duplicate an element u of C is to
introduce a new element ū, and replace C by the clutter over ground set V ∪{ū},
whose members are {C ∶ C ∈ C, u ∉C} ∪ {C ∪ {ū} ∶ C ∈ C, u ∈ C}. A duplication
of C is a clutter obtained from C by repeatedly duplicating elements. It is easily
checked that a clutter is ideal if and only if some duplication of it is ideal.
Moreover, a clutter is k-wise intersecting if and only if some duplication of it is
k-wise intersecting.

Let I and J be disjoint subsets of V . The minor C ∖ I/J obtained after
deleting I and contracting J is the clutter over ground set V − (I ∪ J) whose
members are the minimal sets in {C − J ∶ C ∈ C,C ∩ I = ∅}. It is well-known
that b(C ∖ I/J) = b(C)/I ∖J [22]. If J =∅, then C ∖ I/J = C ∖ I is called a deletion
minor.

If every k ≥ 2 members of a clutter have a common element, then so do
every k members of a deletion minor. Furthermore, for every element v ∈ V ,
τ(C) ≥ τ(C ∖ v) ≥ τ(C) − 1, where τ(C ∖ v) = τ(C) − 1 if and only if v belongs
to some minimum cover of C. Motivated by these observations, we say that a
clutter C is tangled if τ(C) = 2 and every element belongs to a minimum cover.

We require the following facts about tangled clutters.

Proposition 7. Let C be a binary tangled clutter. Then C is a duplication of a
cuboid.

Proof. If {e, f} is a minimum cover, then for each C ∈ C, ∣C ∩ {e, f}∣ must be
odd and therefore 1, since C is a binary clutter. As a result, if {e, f},{e, g} are
both minimum covers, then f, g must be duplicated elements. Moreover, if every
element is contained in exactly one minimum cover, then C must be a cuboid.
These two observations, along with the fact that C is a tangled clutter, imply
that C is a duplication of a cuboid. ⊓⊔

Remark 8. Let C be a k-wise intersecting clutter. Let C′ be a deletion minor of
C that is minimal subject to τ(C′) ≥ 2. Then C′ is a tangled k-wise intersecting
clutter.

Moreover, if a clutter is ideal, then so is every minor of it [23]. Thus, it suffices
to prove Conjecture 1 for tangled clutters.

Theorem 9 ([4], Theorem 5.5). Let C be an ideal tangled clutter. Then

C
′
∶= {C ∈ C ∶ ∣C ∩ {u, v}∣ = 1 ∀ {u, v} ∈ b(C)}

is also an ideal tangled clutter. Moreover, C′ is a duplication of some cuboid.

Idealness of k-wise Intersecting Families 5

We are now ready to prove that Conjectures 6 and 1 are equivalent.

Theorem 10. Conjecture 6 is true for k if, and only if, Conjecture 1 is true
for k.

Proof. We already showed (⇐). It remains to prove (⇒). Suppose Conjecture 1
is false for some k ≥ 4. That is, there is an ideal k-wise intersecting clutter C. Let
C
′ be a deletion minor of C that is minimal subject to τ(C′) ≥ 2. By Remark 8,
C
′ is an ideal tangled k-wise intersecting clutter. Let

C
′′
∶= {C ∈ C′ ∶ ∣C ∩ {u, v}∣ = 1 ∀ {u, v} ∈ b(C′)}.

By Theorem 9, C′′ is an ideal tangled clutter that is a duplication of some cuboid,
say cuboid(S). As every k members of C′ have a common element, so do every
k members of C′′, so the latter is k-wise intersecting. As a result, cuboid(S)
is an ideal k-wise intersecting clutter, so by Remark 4 and Theorem 5, S is a
cube-ideal set whose points do not agree on a coordinate yet every k points do.
Therefore, S refutes Conjecture 6 for k, as required. ⊓⊔

3 Proof of Theorem 2

Let S ⊆ {0,1}n. For x, y ∈ {0,1}n, x △ y denotes the coordinate-wise sum of x, y
modulo 2. We say that S is a vector space over GF (2), or simply a binary space,
if a △ b ∈ S for all a, b ∈ S. Notice that a nonempty binary space necessarily
contains 0.

Remark 11 ([4], Remark 7.5). Let 0 ∈ S ⊆ {0,1}n. If cuboid(S) is a binary
clutter, then S is a binary space.

3.1 The 8-flow Theorem

Let G = (V,E) be a graph where loops and parallel edges are allowed, where
every loop is treated as an edge not incident to any vertex. A cycle is a subset
C ⊆ E such that every vertex is incident with an even number of edges in C. A
bridge of G is an edge e that does not belong to any cycle. The cycle space of G
is the set

cycle(G) ∶= {χC ∶ C ⊆ E is a cycle} ⊆ {0,1}E

where χC denotes the incidence vector of C. As ∅ is a cycle, and the symmetric
difference of any two cycles is also a cycle, it follows that cycle(G) is a binary
space. We require the following two results on cycle spaces of graphs.

Remark 12. Let G = (V,E) be a graph. Then the points in cycle(G) agree on a
coordinate if, and only if, G has a bridge. Moreover, for all k ∈ N, cycle(G) has
a subset of at most k + 1 points that do not agree on a coordinate if, and only
if, G has at most k cycles the union of which is E.

6 A. Abdi et al.

Theorem 13 ([1], Corollary 2.6 and Theorem 2.8). The cycle space of
every graph is a cube-ideal set.

We need the following version of the celebrated 8-Flow Theorem of
Jaeger [16].

Theorem 14 ([16]). Every bridgeless graph G=(V,E) contains at most 3 cycles
the union of which is E. That is, given the set cycle(G) ⊆ {0,1}E, either all the
points agree on a coordinate, or there is a subset of at most 4 points that do not
agree on a coordinate.

One may wonder whether the 3,4 in Theorem 14 may be replaced by 2,3?
The answer is no, due to the Petersen graph (see Fig. 1a):

Remark 15 (see [26]). The edge set of the Petersen graph is not the union of 2
cycles.

Fig. 1. (a) Petersen. (b) Fano. (c) Wagner.

As a consequence, an ideal 3-wise intersecting clutter does exist:

Proof of Proposition 3. Let S be the cycle space of the Petersen graph, and let
C ∶= cuboid(S). By Remark 15, the Petersen is a bridgeless graph that does not
have 2 cycles the union of which is the edge set, so by Remark 12, the points in
S do not agree on a coordinate, but every subset of 2+1=3 points do. Moreover,
S is a cube-ideal set by Theorem 13. Therefore, by Remark 4 and Theorem 5, C
is an ideal 3-wise intersecting clutter, as required. ⊓⊔

The cuboid of the cycle space of the Petersen graph has already shown up in
the literature, and is denoted T30 by Schrijver [21], §79.3e. Consider the graph
obtained from Petersen by subdividing every edge once, and let T be any vertex
subset of even cardinality containing all the new vertices. Then the clutter of
minimal T -joins of this graft is precisely T30. This construction is due to Seymour
([24], p. 440).

3.2 Sums of Circuits Property

For background and notation regarding binary matroids, we refer the reader to
Appendix A.

Idealness of k-wise Intersecting Families 7

A binary matroid has the sums of circuits property if its cycle space is a cube-
ideal set. This notion is due to Seymour [24].1 By Theorem 13, graphic matroids
have the sums of circuits property [24]. Seymour also proved a decomposition
theorem [25] for binary matroids with the sums of circuits property. It turns out
they can all be produced from graphic matroids and two other matroids, which
we now describe. The Fano matroid F7 is the binary matroid represented by
the matrix in Fig. 1b. The second matroid is M(V8)

⋆, where V8 is the graph in
Fig. 1c. Seymour [25] showed that F7 and M(V8)

⋆ both have the sums of circuits
property.

To generate all binary matroids with the sums of circuits property, we require
three composition rules. Let M1,M2 be binary matroids over ground sets E1,E2,
respectively. We denote by M1△M2 the binary matroid over ground set E1△E2

whose cycles are all subsets of E1 △ E2 of the form C1 △ C2, where Ci is a cycle
of Mi for i ∈ [2]. Then M1 △M2 is a 1-sum if E1∩E2=∅; M1 △M2 is a 2-sum if
E1∩E2 ={e}, where e is neither a loop nor a coloop of M1 or M2; and M1 △M2

is a Y -sum if E1 ∩ E2 is a cocircuit of cardinality 3 in both M1 and M2 and
contains no circuit in M1 or M2.

Theorem 16 ([25], (6.4), (6.7), (6.10) and (16.4)). Let M be a binary
matroid with the sums of circuits property. Then M is obtained recursively by
means of 1-sums, 2-sums and Y -sums starting from copies of F7,M(V8)

⋆ and
graphic matroids.

We are ready to prove Conjecture 6 for cube-ideal binary spaces.

Theorem 17. Every binary matroid without a coloop and with the sums of cir-
cuits property has at most 3 cycles the union of which is the ground set.

Proof. A 3-cycle cover of a binary matroid is three (not necessarily distinct)
cycles whose union is the ground set.

Claim. Both F7 and M(V8)
⋆ have 3-cycle covers.

Subproof. Given the matrix representation of F7 in Fig. 1a, label the columns
1, . . . ,7 from left to right. Then ∅,{1,2,3,7},{4,5,6} a 3-cycle cover of F7.
Next, label the vertices of V8 so that the outer 8-cycle is labelled 1, . . . ,8. Then
M(V8)

⋆ has a 3-cycle cover given by the following cuts of V8: δ({1,6,7,8}),
δ({1,7}), δ({2,4}), where δ(X) is the set of edges with exactly one end in X.◇

Claim. Let M,M1,M2 be binary matroids such that M=M1△M2 and Mi, i ∈ [2]
has a 3-cycle cover. Then the following statements hold:

(i) If M is a 1-sum of M1,M2, then M has a 3-cycle cover.
(ii) If M is a 2-sum of M1,M2, then M has a 3-cycle cover.
(iii) If M is a Y -sum of M1,M2, then M has a 3-cycle cover.

1 Seymour’s definition appears different from ours, but they are equivalent by [1],
Corollary 2.6.

8 A. Abdi et al.

Subproof. For i ∈ [2], let Ei be the ground set of Mi and Ci
1,C

i
2,C

i
3 be a 3-cycle

cover of Mi. Clearly, (i) holds. For (ii), let E1∩E2 ={e}. We may assume e ∈ Ci
1

for all i ∈ [2]. By replacing Ci
2 by Ci

1 △ Ci
2 if necessary, we may assume e∉Ci

2 for
all i ∈ [2]. Similarly, we may assume e∉Ci

3 for i ∈ [2]. But now {C1
j △ C2

j ∶ j ∈ [3]}
is a 3-cycle cover of M . For (iii), suppose E1 ∩E2 = {e, f, g}. Since {e, f, g} is a
cocircuit of both M1,M2, and since cocircuits and circuits of a binary matroid
have an even number of elements in common, ∣Ci

j ∩ {e, f, g}∣ ∈ {0,2} for all i, j.
Therefore, after possibly relabeling e, f, g simultaneously in M1 and M2, and
after possibly relabeling Ci

1,C
i
2,C

i
3 for all i, we may assume that

– Ci
1 ∩ {e, f, g} = {e, f} for all i ∈ [2], and

– Ci
2 ∩ {e, f, g} = {e, g} or {f, g} for all i = [2].

For i ∈ [2], after possibly replacing Ci
2 with Ci

2 △ Ci
1, we may assume Ci

2 ∩

{e, f, g} = {e, g}. For i ∈ [2], after possibly replacing Ci
3 with Ci

3 △ Ci
1,C

i
3 △ Ci

2

or Ci
3 △ Ci

1 △ Ci
2, we may assume Ci

3∩{e, f, g}=∅. But now {C1
j △ C2

j ∶ j ∈ [3]}
is a 3-cycle cover of M , as required.◇

We leave the proof of the following claim as an easy exercise for the reader.

Claim. Let M,M1,M2 be binary matroids such that M =M1 △ M2, where △ is
either a 1-, 2- or Y -sum. If M has no coloop, then neither do M1,M2.◇

The proof is complete by combining the above claims with Theorems 14
and 16. ⊓⊔

3.3 Proof of Theorem 2

Proof of Theorem 2. We prove the contrapositive statement. Let C be an ideal
binary clutter such that τ(C) ≥ 2. We need to exhibit ≤4 members without a
common element. Let C′ be a deletion minor of C that is minimal subject to
τ(C′) ≥ 2. It suffices to exhibit ≤4 members of C′ without a common element.
Notice that C′ is ideal, and as a minor of a binary clutter, it is also binary [22].
Moreover, by our minimality assumption, C′ is a tangled clutter. Thus, by Propo-
sition 7, C′ is a duplication of a cuboid, say cuboid(S) where we may choose S
so that 0 ∈ S. It suffices to exhibit ≤4 members of cuboid(S) without a common
element.

Note that cuboid(S) is an ideal binary cuboid with τ(cuboid(S)) ≥ 2. So,
by Theorem 5 and Remark 11, S is a cube-ideal binary space whose points do
not agree on a coordinate. By Theorem 17, S has ≤4 points that do not agree
on a coordinate, thereby yielding ≤4 members of cuboid(S) without a common
element, as required. ⊓⊔

4 Applications and Two More Conjectures

4.1 Embedding Projective Geometries

In this section, we propose a strengthening of Conjecture 1. We begin by moti-
vating our strengthening. Conjecture 1 predicts that for some k ≥ 4, every ideal

Idealness of k-wise Intersecting Families 9

clutter with covering number at least two has k members without a common
element. By moving to a deletion minor, if necessary, we may assume that our
ideal clutter is tangled. Our stronger conjecture predicts that the clutter must
actually have 2k−1 members that “correspond to a projective geometry”, and of
these members, k many will not have a common element.

Let A be the (k − 1) × (2k−1 − 1) matrix whose columns are all the nonzero
vectors in {0,1}k−1. The binary matroid represented by A is called a projective
geometry over GF (2), and is denoted PG(k − 2,2). Let r ∶= 2k−1 − 1. Recall that
cocycle(PG(k − 2,2)) ⊆ {0,1}r is the row space of A generated over GF (2). Note
that the k − 1 points in cocycle(PG(k − 2,2)) corresponding to the rows of A
agree on precisely one coordinate, which is set to 1. These k − 1 points, together
with the zero point 0, yield k points that do not agree on a coordinate. This
yields the following remark.

Remark 18. There are k points of cocycle(PG(k − 2,2)) that do not agree on a
coordinate. In particular, cuboid(cocycle(PG(k − 2,2))) has k members without
a common element.

Let C be an ideal tangled clutter. We say that C embeds the projective geome-
try PG(k−2,2) if a subset of C is a duplication of cuboid(cocycle(PG(k − 2,2))).
This notion is due to [4]. We propose the following conjecture.

Conjecture 19. There exists an integer k ≥ 4 such that every ideal tangled clutter
embeds one of PG(0,2), . . . , PG(k − 2,2).

In Appendix B we show that Conjecture 19 is indeed a strengthening of
Conjecture 1.

Proposition 20. If Conjecture 19 holds for k, then Conjecture 1 holds for k.

Proposition 21 ([4], Proposition 7.4). Let S be a binary space of GF (2)-
rank r whose points do not agree on a coordinate. Then cuboid(S) embeds one
of PG(0,2), . . . , PG(r − 1,2).

As an application of Theorem 2, we now prove Conjecture 19 for k=3 for the
class of binary clutters.

Theorem 22. Every ideal binary tangled clutter embeds PG(0,2), PG(1,2), or
PG(2,2).

Proof. Let C be a binary tangled clutter. By Proposition 7, C is a duplication
of a cuboid, say cuboid(S) for some S containing 0. It suffices to show that
cuboid(S) embeds one of the three projective geometries. Note that cuboid(S)
is an ideal binary cuboid with τ(cuboid(S)) ≥ 2. By Theorem 5 and Remark 11,
S is a cube-ideal binary space whose points do not agree on a coordinate.
By Theorem 17, S has a subset of at most 3 points that do not agree on a
coordinate. Let S′ be the binary space generated by these points. Note that
S′ ⊆ S, the points in S′ do not agree on a coordinate, and S′ has GF (2)-rank
at most 3. By Proposition 21, cuboid(S′), and therefore cuboid(S), embeds one
of PG(0,2), PG(1,2), PG(2,2), as desired. ⊓⊔

10 A. Abdi et al.

We now give an application of Theorem 22. Let G be a bridgeless graph. By
applying Theorem 22 to cuboid(cycle(G)), G has 8 cycles where every edge is
used in exactly 4 of the cycles. Since one of the 8 cycles may be assumed to
be ∅, G has 7 cycles such that each edge is in exactly 4 of the cycles. This is
Proposition 6 of [6].

4.2 Dyadic Fractional Packings

We finish by deriving another consequence of Theorem 2. Let C be a clutter
over ground set V . A fractional packing of C is a vector y ∈ R

C

+
such that

∑(yC ∶ C ∈ C, v ∈ C) ≤ 1 for all v ∈ V . The value of y is 1⊺y. For n ∈ N, the
vector y is 1

n
-integral if every entry is 1

n
-integral.

Proposition 23 ([4], follows from Theorem 1.16). For every k ∈ Z≥0,
cuboid(cocycle(PG(k,2))) has a 1

2k
-integral packing of value 2.

This, combined with Theorem 22, implies the following:

Theorem 24. Every ideal binary clutter C with τ(C) ≥ 2 has a 1
4
-integral packing

of value 2.

Proof. Let C′ be a deletion minor of C that is minimal subject to τ(C′) ≥ 2.
Then C′ is an ideal binary tangled clutter, so by Theorem 22, C′ embeds one
of PG(0,2), PG(1,2), PG(2,2). By Proposition 23, C′, and therefore C, has a
1
4
-integral packing of value 2, as required. ⊓⊔

In fact, Seymour conjectures a far-reaching generalization of this theorem:

Conjecture 25 Seymour 1975, see [21], §79.3e). Every ideal clutter C has a
1
4
-integral packing of value τ(C).

This conjecture is open even for binary clutters, and in particular, for the
clutter of minimal T -joins of a graft ([8], Conjecture 2.15).

Proposition 26. If Conjecture 25 is true, then so is Conjecture 1 for k = 5.

Proof. Assume Conjecture 25 is true. Let C be an ideal clutter with τ(C) ≥ 2.
Let C′ be a deletion minor of C with τ(C′) = 2. Since C′ is also ideal, it has a
1
4
-integral packing y ∈ RC

′

+
of value 2. Notice that yC ∈ {0, 1

4
, 2
4
, 3
4
,1} for each

C ∈ C′. In particular, ∣{C ∶ yC > 0}∣ ≤ 8. Pick a minimal subset C′′ ⊆ {C ∶ yC > 0}
such that ∑C ∈C′′ yC > 1. Then ∣C′′∣ ≤ 5, and it is easily checked that the members
of C′′ cannot have a common element. As a result, C′, and therefore C, has a
subset of at most 5 members without a common element, as required. ⊓⊔

A Binary Matroids

For basics on matroids, we refer the reader to Oxley [20]. Let E be a finite set,
S ⊆ {0,1}E a binary space, and S⊥ the orthogonal complement of S, that is,

Idealness of k-wise Intersecting Families 11

S⊥ = {y ∈ {0,1}E ∶ y⊺x ≡ 0 (mod 2) ∀ x ∈ S}. Notice that S⊥ is another binary
space, and that (S⊥)⊥=S. Therefore, there exists a 0−1 matrix A whose columns
are labeled by E such that S = {x ∈ {0,1}E ∶ Ax ≡ 0 (mod 2)}, and S⊥ is the
row space of A generated over GF (2).

Let S ∶= {C ⊆ E ∶ χC ∈ S}. The pair M ∶= (E,S) is a binary matroid, and the
matrix A is a representation of M . We call E the ground set of M . The sets in
S are the cycles of M , and S is the cycle space of M , denoted by cycle(M). The
minimal nonempty sets in S are the circuits of M , and the circuits of cardinality
one are loops.

Let S⊥ ∶= {D ⊆ E ∶ χD ∈ S⊥}. The binary matroid M⋆
∶= (E,S⊥) is the dual

of M . Notice that (M⋆
)
⋆
=M . The sets in S⊥ are the cocycles of M , and S⊥

is the cocycle space of M , denoted by cocycle(M). The minimal nonempty sets
in S⊥ are the cocircuits of M , and the cocircuits of cardinality one are coloops
of M .

Remark 27. Let M be a binary matroid. Then the points in cycle(M) agree on
a coordinate if, and only if, M has a coloop. Moreover, for every integer k ≥ 1,
cycle(M) has a subset of at most k + 1 points that do not agree on a coordinate
if, and only if, M has at most k cycles the union of which is E.

Let G=(V,E) be a graph. The binary matroid whose cycle space is cycle(G) is
a graphic matroid, and is denoted M(G). Notice the one-to-one correspondence
between the cycles of M(G) and the cycles of G, between the loops of M(G) and
the loops of G, between the cocycles of M(G) and the cuts of G, and between
the coloops of M(G) and the bridges of G. Therefore, Remark 27 is an extension
of Remark 12.

B Proof of Proposition 20

Proof of Proposition 20. Assume Conjecture 19 holds for k. Let C be an ideal
clutter with τ(C) ≥ 2. Let C′ be a deletion minor of C that is minimal subject to
τ(C′) ≥ 2. Then C′ is an ideal tangled clutter. Thus, C′ embeds PG(n− 2,2) for
some n ∈ {2, . . . , k}. That is, a duplication of cuboid(PG(n − 2,2)) is a subset
of C′. By Remark 18, cuboid(PG(n − 2,2)) has n members without a common
element, so the duplication, and therefore C′, must have n members without a
common element. Thus, C has n ≤ k members without a common element, as
required. ⊓⊔

References

1. Abdi, A., Cornuéjols, G., Guričanová, N., Lee, D.: Cuboids, a class of clutters. J.
Comb. Theor. Ser. B 142, 144–209 (2019)

2. Abdi, A., Cornuéjols, G., Lee, D.: Intersecting restrictions in clutters. Combina-
torica (to appear)

3. Abdi, A., Cornuéjols, G., Lee, D.: Identically self-blocking clutters. In: Lodi, A.,
Nagarajan, V. (eds.) IPCO 2019. LNCS, vol. 11480, pp. 1–12. Springer, Cham
(2019). https://doi.org/10.1007/978-3-030-17953-3 1

https://doi.org/10.1007/978-3-030-17953-3_1

12 A. Abdi et al.

4. Abdi, A., Cornuéjols, G., Superdock, M.: Projective geometries, simplices and clut-
ters (to be submitted)

5. Abdi, A., Pashkovich, K., Cornuéjols, G.: Ideal clutters that do not pack. Math.
Oper. Res. 43(2), 533–553 (2017)

6. Bermond, J.C., Jackson, B., Jaeger, F.: Shortest coverings of graphs with cycles.
J. Combin. Theor. Ser. B 35(3), 297–308 (1983)

7. Conforti, M., Corneujois, G.: Clutters that pack and the max flow min cut property:
a conjecture. Technical report, The Fourth Bellairs Workshop on Combinatorial
Optimization (1993)

8. Cornuéjols, G.: Combinatorial Optimization: Packing and Covering, vol. 74. SIAM
(2001)

9. Cornuéjols, G., Guenin, B., Margot, F.: The packing property. Math. Program.
89(1, Ser. A), 113–126 (2000)

10. Cornuéjols, G., Novick, B.: Ideal 0,1 matrices. J. Combin. Theor. Ser. B 60(1),
145–157 (1994)

11. Edmonds, J., Fulkerson, D.R.: Bottleneck extrema. J. Comb. Theor. 8, 299–306
(1970)

12. Edmonds, J., Giles, R.: A min-max relation for submodular functions on graphs.
In: Studies in Integer Programming, Annals of Discrete Mathematics, vol. 1, pp.
185–204 (1977). (proceedings of Workshop, Bonn, 1975)

13. Fulkerson, D.R.: Blocking polyhedra. In: Graph Theory and its Applications, pp.
93–112. Academic Press, New York (1970). (Proc. Advanced Sem., Math. Research
Center, Univ. of Wisconsin, Madison, Wis., 1969)

14. Guenin, B.: A characterization of weakly bipartite graphs. J. Combin. Theor. Ser.
B 83(1), 112–168 (2001)

15. Isbell, J.R.: A class of simple games. Duke Math. J. 25, 423–439 (1958)
16. Jaeger, F.: Flows and generalized coloring theorems in graphs. J. Combin. Theor.

Ser. B 26(2), 205–216 (1979)
17. Lehman, A.: A solution of the Shannon switching game. J. Soc. Ind. Appl. Math.

12, 687–725 (1964)
18. Lehman, A.: On the width-length inequality. Math. Program. 16(2), 245–259

(1979)
19. Lucchesi, C.L., Younger, D.H.: A minimax theorem for directed graphs. J. London

Math. Soc. 17(3), 369–374 (1978)
20. Oxley, J.: Matroid Theory. Oxford Graduate Texts in Mathematics, 2nd edn., vol.

21. Oxford University Press, Oxford (2011)
21. Schrijver, A.: Combinatorial Optimization. Polyhedra and Efficiency, Algorithms

and Combinatorics, vol. 24. Springer, Heidelberg (2003)
22. Seymour, P.D.: The forbidden minors of binary clutters. J. London Math. Soc.

12(3), 356–360 (1975/76)
23. Seymour, P.D.: The matroids with the max-flow min-cut property. J. Combin.

Theor. Ser. B 23(2–3), 189–222 (1977)
24. Seymour, P.D.: Sums of circuits. In: Graph Theory and Related Topics, pp. 341–

355. Academic Press, New York-London (1979). (Proc. Conf., Univ. Waterloo,
Waterloo, Ont., 1977)

25. Seymour, P.D.: Matroids and multicommodity flows. Eur. J. Combin. 2(3), 257–
290 (1981)

26. Tutte, W.T.: On the algebraic theory of graph colorings. J. Comb. Theor. 1, 15–50
(1966)

Flexible Graph Connectivity

Approximating Network Design Problems Between
1- and 2-Connectivity

David Adjiashvili1, Felix Hommelsheim2(B), and Moritz Mühlenthaler3

1 Department of Mathematics, ETH Zürich, Zürich, Switzerland
2 Fakultät für Mathematik, TU Dortmund University, Dortmund, Germany

felix.hommelsheim@math.tu-dortmund.de
3 Laboratoire G-SCOP, Grenoble INP, Univ. Grenoble-Alpes, Grenoble, France

Abstract. Graph connectivity and network design problems are among
the most fundamental problems in combinatorial optimization. The min-
imum spanning tree problem, the two edge-connected spanning subgraph
problem (2-ECSS) and the tree augmentation problem (WTAP) are all
examples of fundamental well-studied network design tasks that pos-
tulate different initial states of the network and different assumptions
on the reliability of network components. In this paper we motivate
and study Flexible Graph Connectivity (FGC), a problem that mixes
together both the modeling power and the complexities of all aforemen-
tioned problems and more. In a nutshell, FGC asks to design a connected
network, while allowing to specify different reliability levels for individ-
ual edges.

In this paper we develop a general algorithmic approach for approxi-
mating FGC that yields approximation algorithms with ratios that are
close to the known best bounds for many special cases, such as 2-ECSS
and WTAP. Our algorithm and analysis combine various techniques
including a weight-scaling algorithm, a charging argument that uses a
variant of exchange bijections between spanning trees and a factor reveal-
ing min-max-min optimization problem.

Keywords: Connectivity augmentation · Approximation algorithms ·
Network design

1 Introduction

Many real-world design and engineering problems can be modeled as either graph
connectivity or network design problems. Routing, city planning, communica-
tion infrastructure are just a few examples where network design problems are
omnipresent. To realistically model a real-life problem as a network design prob-
lem, it is imperative to consider issues of reliability, namely the capacity of
the systems’ resources to withstand disturbances, failures, or even adversarial
attacks. This aspect motivates the study of many classical network design prob-
lems, as well as robust counterparts of many connectivity problem.
c© Springer Nature Switzerland AG 2020
D. Bienstock and G. Zambelli (Eds.): IPCO 2020, LNCS 12125, pp. 13–26, 2020.
https://doi.org/10.1007/978-3-030-45771-6_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-45771-6_2&domain=pdf
https://doi.org/10.1007/978-3-030-45771-6_2

14 D. Adjiashvili et al.

The problem studied in this paper, which we call Flexible Graph Connectivity
(FGC), lies in the intersection of classical network design and robust optimiza-
tion. It encapsulates several well studied problems that have received significant
attention from the research community, such as the minimum spanning tree prob-
lem, the 2-edge-connected spanning subgraph problem (2-ECSS) [9,13,15,20],
the weighted tree augmentation problem (WTAP) [1,8,9,14,17–19], and the
matching augmentation problem [6]. As such, FGC is APX-hard and it encom-
passes all of the technical challenges associated with approximating these prob-
lems simultaneously. In a sense, minimum spanning tree and 2-ECSS represent
two far ends of a spectrum of possible network design tasks that can be modeled
with FGC and the other mentioned problems lie in between. We argue that by
translating attributes of a real-life network design problem, one is much more
likely to encounter a problem from the aforementioned spectrum, as opposed to
one of its more famous extreme cases.

The problem FGC is formally defined as follows. The input is given by an
undirected connected graph G = (V,E), non-negative edge weights w ∈ QE

≥0

and a set of edges F ⊆ E called safe edges. Let F := E \ F be the unsafe edges.
The task is to compute a minimum-weight edge set S ⊆ E with the property
that (V, S − f) is a connected graph for every f ∈ F .

We briefly illustrate why minimum spanning tree, 2-ECSS, and WTAP are
all special cases of FGC. Clearly, if all edges of the input graph are safe, then
an optimal solution is a minimum-weight spanning tree. If, on the other hand,
all edges of the input graph are unsafe, then an optimal solution is a minimum-
weight 2-edge-connected spanning subgraph. Finally, if the unsafe edges form
a weight-zero spanning tree T of the input graph, then an optimal solution is
a minimum-cost tree augmentation of T . The goal of this paper is to provide
approximation algorithms for FGC and our main result is the following theorem.

Theorem 1. FGC admits a polynomial-time 2 .523 -approximation algorithm.

In the spirit of recent advancements for WTAP [1,8,14,19], our results also
extend to bounded-weight versions of the problem. A bounded-weight FGC
instance is one whose weights all range between 1 and some fixed constant
M ∈ N. For bounded-weight FGC we obtain the following result.

Theorem 2. Bounded-weight FGC admits a polynomial-time 2 .404 -approxi-
mation algorithm.

We elaborate on the techniques used to prove these theorems as well as their
connection to results on 2-ECSS and WTAP later on. We start by giving our
motivation for studying this problem.

1.1 Importance of Non-uniform Models for Network Reliability

The vast majority of network design problems are motivated by reliability
requirements imposed on real-life networks. For example, the k-edge connected
spanning subgraph problem [10,11] asks to construct a connected network that

Flexible Graph Connectivity 15

can withstand a failure of at most k − 1 edges. In the k-edge connectivity aug-
mentation problem we are given a k-edge connected graph and the goal is to
add a minimum weight-set of edges such that the resulting graph is (k + 1)-
edge connected. It is shown in [7] that k-edge connectivity augmentation can
be reduced to WTAP for odd k and to cactus augmentation for even k [5,12].
The more general survivable network design problem asks to construct a network
that admits a prescribed number of edge-disjoint paths between every pair of
nodes [13,15].

While all of the above problems are important for modeling reliability in the
design of real-world networks, they also neglect the inherent inhomogeneity of
resources (such as nodes, links etc.) in such environments. This inhomogeneity
stems from various factors, such as geographical region, available construction
material, proximity to hazards, the ability to defend the asset and more. To
incorporate this aspect of real-world problems it is imperative to differentiate
between different resources, not only in terms of their cost, but also in terms
of their reliability. In the simplest setup, we would like to distinguish between
safe and unsafe resources (edges, nodes etc.) and postulate that failures can only
occur among the unsafe resources. With FGC we adopt this model and study
the basic graph connectivity problem.

In the robust optimization literature, several non-uniform failure models have
been proposed. Adjiashvili, Stiller and Zenklusen [4] proposed the bulk-robust
model, in which a solution has to be chosen that withstands the failure of any
input prescribed set of scenarios, each comprising a subset of the resources. Since
subsets can be specified arbitrarily, bulk-robustness can be used to model high
correlations between failures of individual elements, as well as highly non-uniform
scenarios. FGC falls into the category of bulk-robust network design problems,
since we can model the reliability criterion by creating failure scenarios, one per
unsafe edge in the bulk-robust setup and require the graph to be connected. In
fact, the existing results [4] on bulk-robust optimization imply the existence of
log n ratio for the problem. In this paper we improve this significantly.

For further related work and connections to robust optimization we refer the
reader to the full version of the paper [3].

1.2 Complexity of FGC and Its Relationship to 2-ECSS and WTAP

As was pointed out before, some classical and well studied network design prob-
lems are special cases of FGC, including 2-ECSS, and WTAP. Thus, approxi-
mating FGC, is at least as challenging as approximating the latter two problems.
In this section we present some evidence that FGC might actually be signifi-
cantly harder. For the general case of both 2-ECSS and WTAP the iterative
rounding algorithm of Jain [15] provides an approximation factor of 2, which is
best known. It is important to note that 2-ECSS subsumes WTAP in the general
(weighted) case. Nevertheless, it is both instructive and useful to relate FGC,
to both problems. In particular, this enables us to improve the approximation
ratio for the bounded-weight version of FGC.

16 D. Adjiashvili et al.

Fig. 1. FGC instance for which (1) has integrality gap 8/3. Gray edges are unsafe and
have cost 0. Black edges are safe and have cost 1. The dashed (safe) edges are fractional
with value 1/4.

In contrast, for the unweighted versions of both problems (and in the case of
WTAP more generally for bounded weights), a long line of results has generated
numerous improvements beyond ratio two, leading to the currently best known
bounds of 4/3 for unweighted 2-ECSS [20], 1.46 for unweighted tree augmenta-
tion [14] and 1.5 for WTAP with bounded weights [8,14]. The case of unit (or
bounded) weights is where techniques for approximating 2-ECSS and WTAP
start to differ significantly. In both cases, the known best bounds are achieved
by combining LP-based techniques with clever combinatorial tools. Nevertheless,
there seems to be very little intersection in both the nature of used LPs and the
overall approaches, as techniques suitable for one problem do no seem to provide
competitive ratios for the other.

Consequently, there are several implications for approximating FGC. Firstly,
achieving an approximation factor better than two is an ambitious task, as it
would simultaneously improve the long-standing best known bounds for both
2-ECSS and WTAP. At the same time, for achieving a factor two, it may be
possible to use classical tools for survivable network design [15]. We show that, at
least with the natural LPs, this is impossible, as the integrality gap of such LPs
can be significantly larger than 2. Consider the following natural generalization
of the cut-based formulation for survivable network design to FGC.

minimize wT x

subject to
∑

f∈δ(S)∩F

xf +
∑

e∈δ(S)∩F

2xe ≥ 2 for all ∅ � S � V

xe ∈ {0, 1} for all e ∈ E.

(1)

In essence, the IP formulation (1) states that each cut in the graph needs
to contain at least one safe edge or at least two edges, which indeed is the
feasibility condition for FGC. One can show that many important properties
that are central in Jain’s [15] analysis still hold, e.g., the possibility to perform
uncrossing for tight constraints at a vertex LP solution. These properties might
become useful for devising a pure LP-based algorithm for FGC. However, for
the instance shown in Fig. 1, the integrality gap of formulation (1) is at least 8/3.

Flexible Graph Connectivity 17

Table 1. Approximation ratios for FGC and some special cases.

Problem General weights Bounded weights Unweighted

FGC 2.523 (Theorem 1) 2.404 (Theorem 2) 3/2 ([3, Theorem 3])

2-ECSS 2 [15] 2 [15] 4/3 [20]

WTAP 2 [9] 3/2 [14] 1.46 [14]

Finally, the recent advances achieved for unweighted and bounded-weight
versions of 2-ECSS and WTAP seem to be unsuitable to directly tackle FGC,
as they were not found to provide good ratios for both 2-ECSS and WTAP
simultaneously. It is natural to conclude that a good ratio for FGC can only be
achieved by a combination of techniques suitable for both 2-ECSS and WTAP.

To summarize, it seems that while the only known techniques for simulta-
neously approximating both 2-ECSS and WTAP within a factor two rely on
rounding natural linear programs relaxations of a more general network design
problem (such as the survivable network design problem [13,15]), the integrality
gaps of such natural LPs for FGC are significantly larger than two. At the same
time, due to its strong motivation, it is desirable to achieve a factor close to two,
which is the state of the art for both 2-ECSS and WTAP.

In this paper we show that this goal can be achieved by properly combining
algorithms for 2-ECSS, and WTAP. Our algorithms are simple and black-box
to such an extent that results for restricted versions of WTAP (e.g., bounded
cost) can be directly applied to FGC with the same restrictions, thus leading to
improved bounds for these restricted versions of FGC as well. At the same time,
the analysis is complex and requires careful charging arguments, generalizations
of the notion of exchange bijections of spanning trees and factor revealing opti-
mization problems, as we elaborate next.

1.3 Main Techniques and an Overview of the Algorithm

We present here a high-level overview of some of the technical ingredients that
go into our algorithm and analysis used to prove Theorem 1. The algorithm
carefully combines the following three rather simple algorithms for FGC, each
having an approximation ratio significantly worse than the one exhibited in
Theorem 1. Each of the algorithms establishes 2-edge-connectivity in a modified
graph, where a subset of safe edges is contracted. In order to be able to establish
2-edge connectivity, we need to add a parallel unsafe edge e′ for each safe edge
e of the same cost. It can easily be observed that optimal solutions for the new
instance are also optimal solution for the old instance and vice versa.

Algorithm A Compute a 2-edge connected spanning subgraph.
Algorithm B Compute a minimum spanning tree and make it 2-connected

by solving the corresponding WTAP instance.

18 D. Adjiashvili et al.

Algorithm C Compute a minimum spanning tree, contract its safe edges,
then compute a 2-edge connected spanning subgraph. Return
the union of this solution and the safe edges of the spanning
tree.

It is not hard to show that Algorithms A, B and C are polynomial-
time approximation algorithms for FGC, with approximation ratios of 4, 3
and 5, respectively, given that 2-ECSS and WTAP admit polynomial-time 2-
approximation algorithms. We defer the details to the later sections and instead
present a road map for proving the main result.

Our approximate solution is obtained from returning the best of many solu-
tions, each computed by one of the above three algorithms on an instance that
is computed from the original instance by appropriately scaling the costs of the
safe edges. The motivation for making safe edges cheaper is that buying a simi-
larly priced unsafe edge instead likely incurs extra costs, since one safe edge or
at least two edges have to cross each cut. The technical challenge is to determine
the most useful scaling factors.

The main idea in the analysis is to relate the costs of edges in an optimal
solution to the costs of edges in the computed solutions based on a generalization
of exchange bijections between spanning trees. Exchange bijections are bijections
between two bases of a matroid (e.g., spanning trees in a connected graph). We
introduce our generalized notion of α-monotone exchange bijections, where α is
a scaling factor used in the algorithm, and prove that they always exist between
spanning trees of the optimal and computed solutions. We then combine the
properties of such bijections with additional technical ideas to derive an upper
bound on the cost of the computed solutions of algorithms A, B and C. The
bound is given in terms of several parameters that represent proportions of costs
associated with parts of the computed and an unknown optimal solution, defined
through the exchange bijections.

The final step is to combine all obtained upper bounds. Since we have the
choice of selecting the scaling factors, but have no control over the remaining
parameters appearing in the upper bounds, we can compute a conservative upper
bound on the approximation ratio by solving a three-stage factor-revealing min-
max-min optimization problem. The inner minimum is taken over the upper
bounds on the values of the solutions computed by algorithms A, B, and C. The
maximum is taken over the parameters that depend on an unknown optimal
solution. Finally, the outer minimum is taken over the choice of scaling factors.
One interesting aspect of our factor revealing optimization problem is that its
solution gives not only a bound on the approximation ratio of the algorithm
(as in, e.g., [2,16]), but it also suggests optimal instance-independent scaling
factors to be used by the algorithm itself. One can show that by computing the
scaling factors it is possible to constrain further the unknown parameters in the
problem, thus obtaining better instance-specific bounds. While we can compute
these factors in polynomial time, we will not elaborate on this approach in the
paper.

Flexible Graph Connectivity 19

Since the overall factor-revealing optimization problem is a three-stage min-
max-min program, we can only provide analytic proof for its optimal value for
very small sizes. However, we are still able to give an analytic bound of 2.523
in order to prove Theorem 1 by combining only algorithms A and C, but using
the optimal choices of scaling factors for a given instance. To achieve the factor
2.404 for bounded weight instances we use all three algorithms A, B and C to
bound the optimal solution of the min-max-min problem. Clearly, using all three
algorithms yields better bounds, but we cannot give an analytic upper bound.
Instead we give a computational upper bound on the min-max-min problem
using the baron solver [21]. An overview of our approximation guarantees along
with some related results can be found in Table 1.

1.4 Notation and Organization

Unless stated otherwise graphs are loopless but may have parallel edges. Let
G = (V,E) be a graph with vertex set V and edge set E. We denote by E(G)
the edge set of G. For an edge e we may write G − e (resp., G + e) for the graph
(V,E \ {e}) (resp., (V,E ∪ {e}). For an edge set E′ ⊆ E we denote by G/E′ the
graph obtained from G by contracting the edges in E′. We denote by λ (resp.,
τ) the ratio of an approximation algorithm for 2-ECSS (resp., WTAP).

For the remainder of this paper we fix an instance I = (G,w, F) of FGC
and some optimal solution Z∗ ⊆ E(G) of I. To avoid technicalities, we add to
each safe edge a parallel unsafe edge of the same cost. It is readily seen that
this modification preserves optimal solutions. Observe that the solution Z∗ has
the following structure. For some r ∈ N, the graph (V (G), Z∗) consists of r 2-
edge-connected components C1, C2, . . . , Cr that are joined together by safe edges
E′ := {f1, f2, . . . , fr−1} ⊆ F in a tree-like fashion. That is, if we contract each
component Ci to a single vertex, the remaining graph is a tree T ∗ with edge set
E′. On the other hand, if we contract E′, we obtain a 2-edge-connected spanning
subgraph of the resulting graph. We let δ := w(E′)/OPT(I). That is, the value
δ is the proportion of the cost of the safe cut edges E′ relative to the total cost
of the optimal solution Z∗.

2 The Algorithm

We start by formally defining algorithms A, B and C, and give bounds for their
individual ratios (except for Algorithm C, which requires results from the full
version [3, Section 4]). We then state our algorithm for FGC, which combines
all three algorithms together with a careful weight scaling.

Algorithm A: A (2 + 2δ)-Approximation Algorithm. Algorithm A computes (in
polynomial time) a λ-approximate 2-edge connected spanning subgraph, e.g., by
Jain’s algorithm [15]. Algorithm A then removes all unsafe edges that are par-
allel to safe edges and returns the resulting edge set. Observe that the returned
solution is feasible. We now argue that Algorithm A is a (2+2δ)-approximation
algorithm. By adding a copy of each edge in E′ to the optimal solution Z∗ we

20 D. Adjiashvili et al.

obtain a 2-edge-connected spanning subgraph H∗
1 of G. The cost w(H∗

1) of H∗
1

is given by
w(H∗

1) =
∑

e∈Z∗\E′
w(e) + 2 ·

∑

e∈E(Z∗)∩E′
w(e) .

and since w(H1) ≤ 2w(H∗
1), it follows that w(H1) ≤ 2w(H∗

1) = 2(1 − δ) ·
OPT(I)+ 4δOPT(I) = (2+2δ) ·OPT(I) as claimed. Observe that Algorithm A
performs best if the weight of the safe edges E′ is small.

Algorithm B: A 3-Approximation Algorithm. Algorithm B computes a minimum
spanning tree T of G and then computes a τ -approximate solution to the WTAP
instance (G,T ′, w), where the tree T ′ is obtained by contracting each safe edge
of T . The solution of the WTAP instance together with the tree T is a feasible
solution for I Since w(T) ≤ OPT(I), the best available algorithms for WTAP
(see Table 1) give a 3-approximation for FGC, and a 5/2-approximation for FGC
on bounded-weight instances.

Algorithm C: Algorithm C first computes a minimum spanning tree T of G. Let
G′ be the graph obtained from G by contracting the safe edges of T , that is, G′ :=
G/(E(T) ∩ F). Algorithm C then computes a λ-approximate 2-edge-connected
spanning subgraph H ′ ⊆ E(G′) and returns the edge set (E(T) ∩ F) ∪ H ′.
It is readily seen that Algorithm C computes a feasible solution and that the
safe edges of T have cost at most OPT(I). Using exchange bijections from [3,
Section 4], it can be shown that w(H ′) ≤ 4 · OPT(I), so Algorithm C is a 5-
approximation algorithm for FGC.

Algorithm 1, our main approximation algorithm for FGC, proceeds as fol-
lows. It first computes suitable scaling factors W ⊆ [0, 1] (called “threshold
values”) for the costs of the safe edges (see [3, Proposition 8]). Then, it runs
Algorithm A to obtain solution ZA. We say that we run Algorithm B (resp., C)
with scaling factor α if the minimum spanning tree in Algorithm B (resp., C) is
computed with respect to weights obtained from w by scaling the costs of the
safe edges by α. Algorithm 1 runs Algorithms B and C with each scaling factor
α ∈ W ∪ {0, 1} and returns a solution of minimal weight among all the different
solutions computed by Algorithms A, B, and C.

Clearly Algorithm 1 computes a feasible solution. It runs in polynomial time
if there are polynomially many threshold values in the set W and if this set
can be computed in polynomial time. Proofs are deferred to the full version [3,
Section 4]. Using properties of the computed threshold values we show that the
selection of the scaling factors in Algorithm 1 is best possible.

Lemma 1. Let W ′ ⊆ [0, 1] and let A′(I) be the weight of the solution returned
by Algorithm 1 run with W set to W ′. Then A(I) ≤ A′(I).

An analysis of the approximation ratio of Algorithm 1 is given in Sect. A.
Here, we provide a high-level overview. Our starting point is Lemma 1, which
allows us to assume that Algorithm 1 tries all scaling factors in [0, 1]. Let us
denote by A(I) the weight of the solution returned by Algorithm 1. We show that
the approximation ratio of Algorithm 1 is bounded from above by the optimal

Flexible Graph Connectivity 21

Algorithm 1: Improved Approximation Algorithm for FGC

input : Instance I = (G, w, F) of FGC
compute threshold values W := {αe | e ∈ E(G)} ∪ {0, 1}
run Algorithm A on I to obtain solution ZA

for threshold value α ∈ W do
run algorithms B and C with scaling factor α to obtain solutions ZB

α

and ZC
α , respectively

return solution with lowest cost among ZA and {ZB
α , ZC

α | α ∈ W}

value of a min-max-min optimization problem. For an instance I of FGC and
some N ∈ N, the optimization problem has the following data.

– Scaling factors α1, α2, . . . , αN ∈ [0, 1]. Due to the discussion above, in our
analysis of Algorithm 1 we are free to choose these values.

– Parameters β1, β2, . . . , βN , γ1, γ2, . . . , γN , δ ∈ [0, 1], which depend on the
structure of an optimal solution and satisfy

∑N
j=1 βj +

∑N
j=1 γj = 1.

– Functions fA, as well as fB
1 , fB

2 , . . . , fB
N and fC

1 , fC
2 , . . . , fC

N that bound from
above in terms of αi, βi, γi, 1 ≤ i ≤ N , λ and τ , the cost of the solutions
computed by algorithms A, B, and C, respectively.

Precise definitions of the parameters and the functions will be given later. We
note that Algorithm B is only used in the proof of Theorem 2. Technically, we
show that for a proper choice of functions fA, fB

i and fC
i , the ratio of Algo-

rithm 1 is bounded by the optimal value of the following optimization problem.

min
αi∈[0,1] : 1≤i≤N

max
βi∈[0,1] : 1≤i≤N
γi∈[0,1] : 1≤i≤N

min
1≤i≤N

{fA(·), fB
i (·), fC

i (·)}

subject to
N∑

j=1

βj +
N∑

j=1

γj = 1
(2)

Next, we present the main technical tools we use in order to derive the
functions fA, fB

i and fC
i that occur in (2). We first show that safe edges and

unsafe edges exhibit a “threshold” behavior with respect to MSTs if the costs
are scaled by some α ∈ [0, 1]. Furthermore, we show that (i) the corresponding
threshold values can be computed in polynomial time, which is essential to ensure
that Algorithm 1 runs in polynomial time and (ii) they are the best choice of
scaling factors for Algorithm 1, which allows us to assume in our analysis that
we execute Algorithm 1 for all scaling factors α ∈ [0, 1]. For α ∈ [0, 1], we denote
by

wα(e) =

{
α · w(e) if e ∈ F , and
w(e) otherwise

the weight function obtained from w by scaling the costs of the safe edges by
α. A spanning tree T is called α-minimum spanning tree (α-MST) if E(T) has
minimal weight with respect to wα.

22 D. Adjiashvili et al.

Consider changing the scaling factor α smoothly from 0 to 1. We observe
that for any safe edge e, if there is an α-MST containing e, then there is also an
α′-MST containing e for any α′ ≤ α. On the other hand, if there is an α-MST
containing an unsafe edge f then there is also an α′-MST containing f for any
α ≤ α′ ≤ 1. Next, we formally define the notion of thresholds and state that
they always exist.

Definition 1. Let e ∈ E and αe ∈ [0, 1]. We say that αe is a lower threshold
for e if for any α ∈ [0, 1] there is an α-MST containing e if and only if α ≥ αe.
If e is in no α-MST for 0 ≤ α ≤ 1, we let the lower threshold value of e be
∞. Similarly, αe is an upper threshold for e if for α ∈ [0, 1] there is an α-
MST containing e if and only if α ≤ αe. The threshold values of an instance
I = (G,w, F) is defined as {αe | e ∈ E(G)}.
Lemma 2. For each unsafe edge f ∈ F there is a lower threshold αf ∈ [0, 1] ∪
{∞}. For each safe edge e ∈ F there is an upper threshold αe ∈ [0, 1].

It is easily seen that there are O(|V (G)|2) threshold values. In fact, one can
show that there are at most |V (G)|−1 different threshold values [3, Proposition
1]. This implies in particular that Algorithm 1 runs in polynomial time. To prove
that threshold values are optimal scaling factors (Lemma 1), consider a scaling
factor α ∈ [0, 1] and an α-MST Tα computed by Algorithm B or C. Choose
a smallest interval [αL, αR] containing α, such that αL and αR are threshold
values and observe that Tα is either a αL-MST or a αR-MST. Hence, the solution
returned by Algorithm 1 is at least as good as one for scaling factor α.

In our analysis of Algorithm 1, we use a charging argument based on the
notion of monotone exchange bijections, which we now introduce. Let G be a
connected graph and let T and T ′ be spanning trees of G. A bijection ϕ : E(T ′) →
E(T) is called exchange bijection if for each e ∈ E(T ′), the graph T ′ − e + ϕ(e)
is a spanning tree of G. An exchange bijection ϕ is monotone if for each edge
e ∈ E(T ′) we have w(e) ≤ w(ϕ(e)). For any two spanning trees T and T ′ a
canonical exchange bijection exists: Note that the edge sets of spanning trees of
G are the bases of the graphic matroid M(G) of G. By the strong basis exchange
property of matroids there is a bijection between E(T)\E(T ′) and E(T ′)\E(T)
with the required properties, which can be extended to an exchange bijection by
mapping each item in E(T)∩E(T ′) to itself. Furthermore, if T ′ is an MST then
for any spanning tree T ′, a canonical exchange bijection is monotone.

We generalize monotone exchange bijections as follows.

Definition 2. Let α ∈ [0, 1] and let T , T ′ be spanning trees of G. An exchange
bijection ϕ : E(T ′) → E(T) is α-monotone if for each edge e ∈ E(T ′) we have

1. w(e) ≤ 1
αw(ϕ(e)) if e ∈ F and ϕ(e) ∈ F , and

2. w(e) ≤ w(ϕ(e)) if either e, ϕ(e) ∈ F or e, ϕ(e) ∈ F , and
3. w(e) ≤ αw(ϕ(e)) if e ∈ F and ϕ(e) ∈ F .

We show that for any spanning tree T of G, there is an α-monotone exchange
bijection from an α-MST to T .

Flexible Graph Connectivity 23

Lemma 3. Let α ∈ [0, 1], let Tα be an α-MST of G and let T be any spanning
tree of G. Then there is an α-monotone exchange bijection ϕ : E(Tα) → E(T).

A Proof Sketch of Theorem 1

In this section we give a sketch of an analytic upper bound of 2.523 on the
approximation ratio of Algorithm 1. For this purpose it suffices to only con-
sider Algorithms A and C. That is, using α-monotone exchange bijections from
Sect. 2, we determine functions fA(·) and fC(·) for the optimization problem (2),
where fC(·) depends on a selection of scaling factors and some other parame-
ters to be introduced shortly. Recall that according to Lemma 1, the selection
of scaling factors in Algorithm 1 is optimal. Surprisingly, a worst-case instance
for our bounds fA(·) and fC(·) in fact has a single threshold value which is
1/λ. However, to obtain the approximation ratio of 2.523 it is crucial to execute
Algorithm 1 with all threshold values of the given instance.

Let I(N) be a class of instances of FGC with at most N threshold values
(see Definition 1). In the following, suppose that I ∈ I(N) and recall that an
optimal solution Z∗ ⊆ E(G) of I consists of r 2-edge-connected components
C1, C2, . . . , Cr that are joined together by safe edges E′ := {f1, f2, . . . , fr−1} ⊆
F in a tree-like fashion. Moreover, for any spanning tree T ⊆ Z∗ we have E′ ⊆ T .

Observe that since there is an unsafe edge for each safe edge of same weight
in G, we have that each threshold value is in [0, 1]. Let 0 ≤ α1 ≤ α2 ≤ . . . ≤
αN ≤ 1 be the N threshold values of I in non-decreasing order. In order to
prepare our analysis, we consider for i ∈ {1, 2, . . . , N} an αi-MST Ti, an αi-
monotone exchange bijection ϕi : Ti → T (which exist due to Lemma 3) and
a weight function wi := wαi

. For 2 ≤ i ≤ N we choose ϕi such that for each
e ∈ E(Ti−1)∩E(Ti) we have ϕi−1(e) = ϕi(e). This can be done due to Corollary
12 in [3]. In order to define the parameters of the optimization problem (2), for
1 ≤ i ≤ N , we partition the edge set of the αi-MST Ti into four parts Di, Oi,
Fi, and Si as follows.

– Di := {e ∈ E(Ti) ∩ F | ϕi(e) ∈ E′}
– Oi := {e ∈ E(Ti) ∩ F | ϕi(e) ∈ E′}
– Fi := {e ∈ E(Ti) ∩ F | ϕi(e) ∈ E(T) \ E′}
– Si := {e ∈ E(Ti) ∩ F | ϕi(e) ∈ E(T) \ E′}

The parameters of (2) are given as follows. For 1 ≤ i ≤ N we let EF̄
i (resp.,

EF
i) be the set of edges in E′ (resp., E(T) − E′) that have threshold value αi.

That is, EF̄
i := {e ∈ E′ | αe = αi} and EF

i := {e ∈ E(T) − E′ | αe = αi}.
For 1 ≤ i ≤ N we let βi = w(EF̄

i)/OPT(I) and γi = w(EF
i)/OPT(I) be the

fraction of the weight of the optimal solution that is contributed by the edges
in EF̄

i (resp., EF
i). Finally, let ξ ∈ [0, 1] be the the fraction of the weight of the

optimal solution that does not correspond to the tree T ; i.e., ξ := w(Z∗)−w(T)
OPT(I) .

The following properties of βi, γi, 1 ≤ i ≤ N , are readily verified:

24 D. Adjiashvili et al.

1. β1, β2, . . . βN , γ1, γ2, . . . γN , ξ ∈ [0, 1],
2.

∑N
j=1 βj = w(E′)

OPT(I) ,

3.
∑N

j=1 γj = w(T−E′)
OPT(I) and

4. ξ = 1 − ∑N
j=1 βj − ∑N

j=1 γj .

We now bound the cost of the solutions ZC
i and ZA returned by Algorithm C

(resp., Algorithm A) in terms of the parameters.

Lemma 4. Suppose we run Algorithm 1 with the optimal threshold values W =
{αi}1≤i≤N . Let ZC

i be the solution to the instance (G,wi, F) of FGC computed
by Algorithm C in Algorithm 1. Then

w(ZC
i) ≤

⎛

⎝1 +
i−1∑

j=1

(λ − 1 + λαj)βj + (λ − 1) ·
N∑

j=1

γj +
N∑

j=i

γj

αj

⎞

⎠ · OPT(I).

Lemma 5. Suppose we run Algorithm 1 with the optimal threshold values W =
{αi}1≤i≤N . Let ZA be the solution to the instance (G,w, F) of FGC computed
by Algorithm A in Algorithm 1. Then

w(ZA) ≤
⎛

⎝λ + λ ·
N∑

j=1

αjβj

⎞

⎠ · OPT(I).

With the bounds from Lemmas 4 and 5 and by applying standard techniques
we can simplify problem (2) to

max λ ·
⎛

⎝1 +
N∑

j=1

αj β̂j

⎞

⎠

subject to
N∑

j=1

β̂j · (1 + αj(λ − 1 + λαj)) = 1,

0 ≤ α1 ≤ α2 ≤ . . . ≤ αN ≤ 1,

β̂j ∈ [0, 1] for all j ∈ {1, . . . , N}.

(3)

Theorem 3. The approximation guarantee of Algorithm 1 for instances with at
most N threshold values is upper bounded by the optimal value of optimization
problem (3).

We solve Problem (3) analytically and observe that the optimal value does
not depend on N . Hence we obtain the claimed approximation ratio of 2.523 for
λ = 2.

Theorem 4. Algorithm 1 has an approximation guarantee of λ·(λ+2
√

λ)

2
√

λ+λ−1
.

Flexible Graph Connectivity 25

References

1. Adjiashvili, D.: Beating approximation factor two for weighted tree augmentation
with bounded costs. ACM Trans. Alg. (TALG) 15(2), 19 (2018)

2. Adjiashvili, D., Bosio, S., Weismantel, R., Zenklusen, R.: Time-expanded packings.
In: Esparza, J., Fraigniaud, P., Husfeldt, T., Koutsoupias, E. (eds.) ICALP 2014.
LNCS, vol. 8572, pp. 64–76. Springer, Heidelberg (2014). https://doi.org/10.1007/
978-3-662-43948-7 6

3. Adjiashvili, D., Hommelsheim, F., Mühlenthaler, M.: Flexible graph connectivity
(2019). https://arxiv.org/abs/1910.13297

4. Adjiashvili, D., Stiller, S., Zenklusen, R.: Bulk-robust combinatorial optimization.
Math. Program. 149(1–2), 361–390 (2015). https://doi.org/10.1007/s10107-014-
0760-6

5. Byrka, J., Grandoni, F., Ameli, A.J.: Breaching the 2-approximation barrier for
connectivity augmentation: a reduction to Steiner tree (2019). https://arxiv.org/
abs/1911.02259

6. Cheriyan, J., Dippel, J., Grandoni, F., Khan, A., Narayan, V.: The matching aug-
mentation problem: a 7

4
-approximation algorithm. Math. Program. (2019). https://

doi.org/10.1007/s10107-019-01394-z
7. Dinits, E., Karzanov, A., Lomonosov, M.: On the structure of a family of minimal

weighted cuts in a graph. Studies in Discrete Optimization, pp. 290–306 (1976)
8. Fiorini, S., Groß, M., Könemann, J., Sanità, L.: Approximating weighted tree aug-

mentation via Chvátal-gomory cuts. In: Proceedings of the Twenty-Ninth Annual
ACM-SIAM Symposium on Discrete Algorithms. SODA 2018, pp. 817–831. Society
for Industrial and Applied Mathematics (2018)

9. Frederickson, G.N., JáJá, J.: Approximation algorithms for several graph aug-
mentation problems. SIAM J. Comput. 10(2), 270–283 (1981). https://doi.org/10.
1137/0210019

10. Gabow, H.N., Gallagher, S.R.: Iterated rounding algorithms for the smallest k-edge
connected spanning subgraph. SIAM J. Comput. 41(1), 61–103 (2012)

11. Gabow, H.N., Goemans, M.X., Tardos, É., Williamson, D.P.: Approximating the
smallest k-edge connected spanning subgraph by LP-rounding. Networks 53(4),
345–357 (2009). https://doi.org/10.1002/net.20289

12. Gálvez, W., Grandoni, F., Ameli, A.J., Sornat, K.: On the cycle augmentation
problem: hardness and approximation algorithms. In: Bampis, E., Megow, N. (eds.)
WAOA 2019. LNCS, vol. 11926, pp. 138–153. Springer, Cham (2020). https://doi.
org/10.1007/978-3-030-39479-0 10

13. Goemans, M.X., Goldberg, A.V., Plotkin, S.A., Shmoys, D.B., Tardos, É.,
Williamson, D.P.: Improved approximation algorithms for network design prob-
lems. In: Proceedings of the Fifth Annual ACM-SIAM Symposium on Discrete
Algorithms, pp. 223–232 (1994)

14. Grandoni, F., Kalaitzis, C., Zenklusen, R.: Improved approximation for tree aug-
mentation: saving by rewiring. In: Proceedings of the 50th Annual ACM SIGACT
Symposium on Theory of Computing. STOC 2018, pp. 632–645. ACM, New York
(2018). https://doi.org/10.1145/3188745.3188898

15. Jain, K.: A factor 2 approximation algorithm for the generalized Steiner net-
work problem. Combinatorica 21(1), 39–60 (2001). https://doi.org/10.1007/
s004930170004

16. Jain, K., Mahdian, M., Markakis, E., Saberi, A., Vazirani, V.V.: Greedy facility
location algorithms analyzed using dual fitting with factor-revealing LP. J. ACM
50(6), 795–824 (2003). https://doi.org/10.1145/950620.950621

https://doi.org/10.1007/978-3-662-43948-7_6
https://doi.org/10.1007/978-3-662-43948-7_6
https://arxiv.org/abs/1910.13297
https://doi.org/10.1007/s10107-014-0760-6
https://doi.org/10.1007/s10107-014-0760-6
https://arxiv.org/abs/1911.02259
https://arxiv.org/abs/1911.02259
https://doi.org/10.1007/s10107-019-01394-z
https://doi.org/10.1007/s10107-019-01394-z
https://doi.org/10.1137/0210019
https://doi.org/10.1137/0210019
https://doi.org/10.1002/net.20289
https://doi.org/10.1007/978-3-030-39479-0_10
https://doi.org/10.1007/978-3-030-39479-0_10
https://doi.org/10.1145/3188745.3188898
https://doi.org/10.1007/s004930170004
https://doi.org/10.1007/s004930170004
https://doi.org/10.1145/950620.950621

26 D. Adjiashvili et al.

17. Kortsarz, G., Nutov, Z.: A simplified 1.5-approximation algorithm for augmenting
edge-connectivity of a graph from 1 to 2. ACM Trans. Algorithms 12(2), 23 (2016).
https://doi.org/10.1145/2786981

18. Kortsarz, G., Nutov, Z.: LP-relaxations for tree augmentation. Discrete Appl.
Math. 239, 94–105 (2018). https://doi.org/10.1016/j.dam.2017.12.033

19. Nutov, Z.: On the tree augmentation problem. In: 25th Annual European Sympo-
sium on Algorithms (ESA 2017), vol. 87, p. 61. Schloss Dagstuhl-Leibniz-Zentrum
für Informatik (2017)

20. Sebő, A., Vygen, J.: Shorter tours by nicer ears: 7/5-approximation for the graph-
TSP, 3/2 for the path version, and 4/3 for two-edge-connected subgraphs. Combi-
natorica 34(5), 597–629 (2014). https://doi.org/10.1007/s00493-014-2960-3

21. The Optimization Firm: Baron (2019). https://minlp.com/baron

https://doi.org/10.1145/2786981
https://doi.org/10.1016/j.dam.2017.12.033
https://doi.org/10.1007/s00493-014-2960-3
https://minlp.com/baron

Faster Algorithms for Next Breakpoint
and Max Value for Parametric Global

Minimum Cuts

Hassene Aissi1(B), S. Thomas McCormick2, and Maurice Queyranne2

1 Paris Dauphine University, Paris, France
aissi@lamsade.dauphine.fr

2 Sauder School of Business at the University of British Columbia,
Vancouver, Canada

{tom.mccormick,maurice.queyranne}@sauder.ubc.ca

Abstract. The parametric global minimum cut problem concerns a
graph G = (V, E) where the cost of each edge is an affine function
of a parameter μ ∈ R

d for some fixed dimension d. We consider the
problems of finding the next breakpoint in a given direction, and find-
ing a parameter value with maximum minimum cut value. We develop
strongly polynomial algorithms for these problems that are faster than a
naive application of Megiddo’s parametric search technique. Our results
indicate that the next breakpoint problem is easier than the max value
problem.

Keywords: Parametric optimization · Global minimum cut

1 Introduction

Connectivity is a central subject in graph theory and has many practical appli-
cations in, e.g., communication and electrical networks. We consider the para-
metric global minimum cut problem in graphs. A cut X in an undirected graph
G = (V,E) is a non-trivial vertex subset, i.e., ∅ �= X ⊂ V . It cuts the set
δ(X) = {e ∈ E : e ∩ X �= ∅ �= e \ X} of edges.

In the parametric global minimum cut problem, we are given an undirected
graph G = (V,E) where the cost cμ(e) of each edge e ∈ E is an affine function
of a d-dimensional parameter μ ∈ R

d, i.e., cμ(e) = c0(e) +
∑d

i=1 μic
i(e), where

c0, . . . , cd : E → Z are d + 1 cost functions defined on the set of edges. By
not imposing a sign condition on these functions, we may handle, as in [28,
Section 3.5], situations where some characteristics, measured by functions ci,
improve with μ while other deteriorate. We assume that the dimension d of the
parameter space is a fixed constant. The cost of cut C for the edge costs cμ is
cμ(C) ≡ cμ(δ(C)) =

∑
e∈δ(C) cμ(e). Define M0 = {μ ∈ R

d | cμ(e) ≥ 0 for all

H. Aissi—This research benefited from the support of the FMJH Program PGMO and
from the support of EDF, Thales, Orange et Criteo.

c© Springer Nature Switzerland AG 2020
D. Bienstock and G. Zambelli (Eds.): IPCO 2020, LNCS 12125, pp. 27–39, 2020.
https://doi.org/10.1007/978-3-030-45771-6_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-45771-6_3&domain=pdf
https://doi.org/10.1007/978-3-030-45771-6_3

28 H. Aissi et al.

e ∈ E} a closed and convex subset of the parameter space where the parametric
costs of all the edges are non-negative. Throughout the paper we consider only
μ belonging to a nonempty simplex M ⊂ M0. As usual we denote |E| by m and
|V | by n.

For any μ ∈ M , let C∗
μ denote a cut with a minimum cost Z(μ) ≡ cμ(C∗

μ) for
edge costs cμ. Function Z := Z(μ) is a piecewise linear concave function [27]. Its
graph is composed by a number of facets (linear pieces) and breakpoints (ver-
tices). In order to avoid dealing with a trivial problem, Z is assumed to have at
least one breakpoint. The maximum number of facets of the graph of Z is called
the combinatorial facet complexity of Z. Mulmuley [23, Theorem 3.10] considers
the case d = 1 and gives a large strongly polynomial bound on the combinato-
rial facet complexity of the global minimum cut problem. In [4, Theorem 4], the
authors improved and extended this result to a constant dimension d and give
a strongly polynomial bound O

(
mdn2 logd−1 n

)
. By combining this result with

several existing computational geometry algorithms, the authors give a slow algo-
rithm for constructing function Z for general d, and a O(mn4 log n + n5 log2 n)
algorithm when d = 1. In the particular case where cost functions c0, . . . , cd

are nonnegative, Karger [16] gives a significantly tighter bound O
(
nd+2

)
on

the combinatorial facet complexity and shows that function Z can be computed
using a randomized algorithm in O

(
n2d+2 log n

)
time. These results are sum-

marized in rows 5 and 6 of Table 1. Note that in contrast with the parametric
global minimum cut problem, Carstensen [6] shows that the combinatorial facet
complexity of the minimum s − t-cut problem (namely, to find a minimum cost
cut X that separates two given vertices s and t, in the sense that |X∩{s, t}| = 1)
is exponential, even for a single parameter.

In this paper, we consider the following parametric problems:

PNB(M) Given a simplex M ⊂ R
d, a value μ0 ∈ M ⊂ R

d, and a direction ν ∈ Z
d.

Find the next breakpoint μNB ∈ M of Z after μ0 in direction ν, if any.
Pmax(M)Given a simplex M ⊂ R

d, find a value μ∗ ∈ M such that Z(μ∗) =
maxμ∈M Z(μ).

In contrast to Pmax(M), PNB(M) is a one-dimensional parametric optimiza-
tion problem as it considers the restriction of function Z to some direction
ν ∈ Z

d. This problem corresponds to the ray shooting problem which is a stan-
dard topic in sensitivity analysis [13, Section 30.3] to identify ranges of optimality
and related quantities. Given λ � 0, the cost cμ0+λν of each edge e ∈ E in the
direction ν and with step λ is defined by cμ0+λν(e) = c0(e)+

∑d
i=1(μ

0
i +λνi)ci(e).

Let c̄0(e) = c0(e) +
∑d

i=1 μ0
i c

i(e) and c̄1(e) =
∑d

i=1 νic
i(e). The edge costs can

be rewritten as cμ0+λν(e) = c̄0(e) + λc̄1(e). For any cut ∅ �= C ⊂ V , its cost for
the edge costs cμ0+λν is a function cμ0+λν(C) = c̄0(C) + λc̄1(C) of variable λ.
For any μ ∈ M , let Z ′(μ, ν) denote the right derivative of Z in direction ν at μ.

Pmax(M) arises in the context of network reinforcement problem. Consider
the following 2-player game of reinforcing a graph against an attacker. Given a
graph G = (V,E) where each edge e ∈ E has a capacity c0(e), the Graph player

Faster Algorithms for Parametric Global Minimum Cut Problems 29

wants to reinforce the capacities of the edges in E by buying d + 1 resources
subject to a budget B. The Graph player can spend $μi � 0 on each resource i
to increase the capacities of all edges to cμ(e) = c0(e) +

∑d+1
i=1 μic

i(e), where all
functions ci are assumed to be non-negative. The Attacker wants to remove some
edges of E in order to cut the graph into two pieces at a minimum cost. Therefore,
these edges correspond to an optimal cut δ(C∗

μ) and their removal cost is Z(μ).
The Graph player wants to make it as expensive as possible for the Attacker to
cut the graph, and so he wants to solve Pmax(M). It is optimal for the Graph
player to spend all the budget, and thus to spend μd+1 = B−∑d

i=1 μi on resource
d + 1. Therefore, the cost of removing edge e as a function of the amounts spent
on the first d resources is cμ(e) = c0(e)+

∑d
i=1 μic

i(e)+
(
B −∑d

i=1 μi

)
cd+1(e) =

(
c0(e)+Bcd+1(e)

)
+

∑d
i=1 μi

(
ci(e)− cd+1(e)

)
. Note that ci(e)− cd+1(e) may be

negative. This application illustrates how negative parametric edge costs may
arise even when all original data are non-negative.

Clearly problems Pmax(M) and PNB(M) can be solved by constructing func-
tion Z. However, the goal of this paper is to give much faster strongly polynomial
algorithms for these problems without explicitly constructing the whole function
Z. This extended abstract omits most proofs; see the full version [3] for details.

1.1 Related Works

The results mentioned in this section are summarized in the first four rows of
Table 1. We concentrate on strongly polynomial bounds here.

Table 1. New results in this paper are in red. Compare these to the non-parametric
lower bounds in green, and the various upper bounds in blue.

Problem Deterministic Randomized
Non-param Global MC [25, 31] O(mn + n2 log n) [16] O(m log3 n) ([18] O(n2 log3 n))
All α-approx for α < 4

3
[26] O(n4) [16] O(n2 log n)

Megiddo PNB (∼ d = 1) [31] O(n5 logn) [32, 18] O(n2 log5 n)
Megiddo Pmax (∼ gen’l d) [31] O(n2d+3 logd n) [32, 18] O(n2 log4d+1 n)

All of Z(μ) for d = 1 [4] O(mn4 logn + n5 log2 n) [17] O(n4 log n)
All of Z(μ) for gen’l d [4] [big] [17] O(n2d+2 logn)

This paper PNB (∼ d = 1) [25, 31] O(mn + n2 log n) [15] O(n2 log3 n)
This paper Pmax (∼ gen’l d) O(n4 logd−1 n) Open

The standard (non-parametric) global minimum cut is a special case of the
parametric global minimum cut, i.e., for some fixed value μ ∈ M . Nagamochi
and Ibaraki [24] and Stoer and Wagner [29] give a deterministic algorithm for
this problem that runs in O(mn + n2 log n) time. Karger and Stein [17] give a
faster randomized algorithm that runs in Õ(n2) time. Karger [15] improves the
running time and gives an Õ(m) time algorithm.

Given α > 1, a cut is called α-approximate if its cost is at most at factor of
α larger than the optimal value. A remarkable property of the global minimum

30 H. Aissi et al.

cut problem is that there exists a strongly polynomial number of near-optimal
cuts. Karger [15] showed that the number of α-approximate cuts is O(n�2α�).
Nagamochi et al. [26] give a deterministic O(m2n + mn2α) time algorithm for
enumerating them. For the particular case 1 < α < 4

3 , they improved this
running time to O(m2n+mn2 log n). Nagamochi and Ibaraki [25, Corollary 4.14]
further reduced the running time to O(n4). The fastest randomized algorithm
to enumerate all the near-optimal cuts, which is an Õ(n�2α�) time algorithm by
Karger and Stein [17], is faster than the best deterministic algorithm.

Megiddo’s parametric searching method [19,20] is a powerful technique to
solve parametric optimization problems. Megiddo’s approach was originally
designed to handle one-dimensional parametric problems. Cohen and Megiddo [9]
extend it to fixed dimension d > 1, see also [2]. The crucial requirement is that
the underlying non-parametric problem must have an affine algorithm, that is all
numbers manipulated are affine functions of parameter μ. This condition is not
restrictive, as many combinatorial optimization algorithms have this property;
e.g., minimum spanning tree [12], matroid and polymatroid optimization [30],
maximum flow [10]. The technique can be summarized as follows in the special
case d = 1. Megiddo’s approach simulates the execution of an affine algorithm
A on an unknown target value μ̄ (= μNB or μ∗) by considering it as a symbolic
constant. During the course of execution of A, if we need to determine the sign
of some function f at μ̄, we compute the root r of f . The key point is that by
testing if μ̄ = r, μ̄ < r, or μ̄ > r, we can determine the sign of f(μ̄). This opera-
tion is called a parametric test and requires calling algorithm A with parameter
value fixed at r.

Tokuyama [30] considers the analogue of problem Pmax(M) for several geo-
metric and graph problems, called the minimax (or maximin) parametric opti-
mization, and gives efficient algorithms for them based on Megiddo’s approach.
He observes that the randomized algorithm of Karger [14] is affine. In order to
improve the running time, Tokuyama implemented Megiddo’s technique using
the parallel algorithm of Karger and Stein [17] which solves the minimum cut
problem in Õ(log3 n) randomized parallel time using O(n2

log2 n
) processors. The

resulting randomized algorithm for Pmax(M) has a O(n2 log4d+1 n) running time.
The result was stated only for Pmax(M) but it is easy to see that the same run-
ning time can be obtained for PNB(M). We show in [3] that Stoer and Wagner’s
algorithm [29] is affine and can be combined with Megiddo’s approach in order
to solve PNB(M) and Pmax(M). This gives deterministic algorithms that run in
O(n2d+3 logd n) and O(n5 log n) time for Pmax(M) and PNB(M) respectively.

1.2 Our Results

Our new results are summarized in rows 7 and 8 of Table 1.
The algorithms based on Megiddo’s approach typically introduce a slowdown

with respect to the non-parametric algorithm. For d = 1, these algorithms per-
form similar parametric tests and solve problems PNB(M) and Pmax(M) with
the same running time. This gives the impression that these problems have the

Faster Algorithms for Parametric Global Minimum Cut Problems 31

same complexity in this special case. The main contribution of the paper is to
extend the techniques of Nagamochi and Ibaraki [24] and Stoer and Wagner [29]
and Karger [14] to handle parametric edge costs. We give faster deterministic
and randomized algorithms for problems PNB(M) and Pmax(M) which are not
based on Megiddo’s approach. We show that problem PNB(M) can be solved
with the same running time as the non-parametric global minimum cut (Theo-
rems 1 and 2). We give for problem Pmax(M) a much faster deterministic algo-
rithm exploiting the key property that all near-optimal cuts can be enumerated
in strongly polynomial time (Theorem 3). The algorithm builds upon a scaling
technique given in [4]. The differences in how we tackle problems PNB(M) and
Pmax(M) illustrate that PNB(M) might be significantly easier than Pmax(M).

Notice that our new algorithms for PNB(M) in row 7 of Table 1 are optimal,
in the sense that their running times match the best-known running times of the
non-parametric versions of the problem (up to log factors). That is, the times
quoted in row 7 of Table 1 are (nearly) the same as those in row 1 (with the
exception that we do not match the Karger’s speedup from Õ(n2) to Õ(m) for
the non-parametric randomized case).

2 Problem PNB(M)

We discuss in Sects. 2.1 and 2.2 efficient deterministic and randomized algorithms
for solving problem PNB(M) respectively. These algorithms are based on edge
contractions. A preliminary step is to compute an upper bound λ̄ > 0 such that
the next breakpoint μNB satisfies μNB = μ0 + λNBν for some λNB ∈ [0, λ̄]. We
show that λ̄ :=

∑
e∈E |c̄0(e)| suffices, and we show also how to compute the right

derivative Z ′(μ0, ν) of Z in direction ν at μ0.

2.1 A Deterministic Contraction Algorithm

We describe in this section a deterministic algorithm for PNB(M) based on
the concept of pendant pair. We call an ordered pair (u, v) of vertices in G a
pendant pair for edge costs cμ(e) for some μ ∈ M if min{cμ(X) : ∅ ⊂ X ⊂
V separating u and v} = cμ(δ(v)).

The algorithm proceeds in n − 1 phases and computes iteratively the next
breakpoint μNB, if any, or claims that it does not exist. In the former case, the
algorithm refines, at each iteration r, an upper bound λ̄NB of λNB by choos-
ing some λr ∈ [0, λ̄] and merging a pendant pair (ur, vr) in Gr for edge costs
cμ0+λrν(e). The process continues until the residual graph contains only one
node. All the details are summarized in Algorithm 1.

Since cuts δ(v) for all v ∈ V r are also cuts in G, it follows that Z(μ) � Zr(μ)
for any μ ∈ M . In particular, L(λ) = Z(μ0 + λν) � Zr(μ0 + λν) for any
λ ∈ [0, λNB]. By the definition of λr, this implies that

λNB � λr and L(λr) � Zr(μ0 + λrν). (1)

32 H. Aissi et al.

Computing the lower envelope of O(n) linear functions and getting func-
tion Zr takes O(n log n) time [5]. Therefore, the running time of an iteration
r of Algorithm 1 is dominated by the time of computing a pendant pair in
O(m + n log n) time [29]. The added running time of the n − 1 iterations of
the while loop takes O(mn + n2 log n). Note that this corresponds to the same
running time of computing a non-parametric minimum cut [29]. Since the test
performed in Step 11 requires the computation of a minimum cut in graph G with
edge costs cμ0+λ̄ν(e), it follows that the overall running time of Algorithm1 is
O(mn + n2 log n). The following result summarizes the running time of our con-
traction algorithm.

Theorem 1. Algorithm1 solves PNB(M) in O(mn + n2 log n) time.

Algorithm 1. Deterministic Parametric Edge Contraction for PNB(M)
Require: graph G = (V, E), edge costs c0, . . . , cd, a direction ν, an upper bound λ̄,

the optimal value Z(μ0), and the slope Z′(μ0, ν)
Ensure: next breakpoint μNB if any
1: let E0 ← E, V 0 ← V , G0 ← G, r ← 0, λ̄NB ← λ̄
2: while |V r| > 1 do
3: define functions L(λ) := Z(μ0) + λZ′(μ0, ν), Zr(μ) := minv∈V r cμ(δ(v)), com-

pute, if any, λ̂r := min{λ > 0 : Zr(μ0 + λν) � L(λ)}, and let λr :={
min{λ̄, λ̂r} if λ̂r exists
λ̄ otherwise

4: if λr < λ̄NB then
5: set λ̄NB ← λr

6: end if
7: compute a pendant pair (ur, vr) in Gr for edge costs cμ0+λrν(e) using the algo-

rithm given in [29]
8: merge nodes ur and vr and remove self-loops
9: set r ← r + 1 and let Gr = (V r, Er) denote the resulting graph

10: end while
11: if L(λ̄) > minC{cμ0+λ̄ν(C) : ∅ �= C ⊂ V } then

12: return μNB = μ0 + λ̄NBν
13: else
14: the next breakpoint does not exist
15: end if

2.2 A Randomized Contraction Algorithm

The algorithm performs a number of random edge contractions and itera-
tively solves the next breakpoint problem. At each iteration r, the algorithm
chooses some μ̃r ∈ M and randomly selects an edge e ∈ Er with probability
cµ̃r (e)

cµ̃r (Er)
to be contracted. The point μ̃r is defined as the intersection of func-

tions L(λ) := Z(μ0) + λZ ′(μ0, ν) and UBr(λ) := 1
|Vr|cμ0+λν(Er) and may vary

Faster Algorithms for Parametric Global Minimum Cut Problems 33

from one iteration to the next. The choice of the appropriate value of μ̃r is cru-
cial to ensure the high success probability of solving the problem, and is the
main contribution of this algorithm. The random edges contraction sequence
continues until obtaining a graph G′ with two nodes. If the next breakpoint μNB

exists, then the algorithm returns it after computing an optimal cut C∗
μNB for

edge costs cμNB(e) defining the right derivative Z ′(μNB, ν) of Z in direction ν at
μNB. Otherwise, the algorithm claims that it does not exist. All the details are
summarized in Algorithm 2.

Algorithm 2. Randomized Parametric Edge Contraction for PNB(M)
Require: graph G = (V, E), edge costs c0, . . . , cd, a direction ν, an upper bound λ̄,

the optimal value Z(μ0), and the slope Z′(μ0, ν)
Ensure: next breakpoint μNB if any
1: let E0 ← E, V 0 ← V , G0 ← G, r ← 0
2: while |V r| > 2 do
3: compute the intersection point λr of functions L(λ) := Z(μ0) + λZ′(μ0, ν) and

UBr(λ) := 1
|V r|

∑
v∈V r cμ0+λν(δ({v}))

4: if λr ∈ [0, λ̄] then
5: set μ̃r = μ0 + λrν
6: else
7: set μ̃r = μ0 + λ̄ν
8: end if
9: choose an arbitrary edge e ∈ Er with probability

cµ̃r (e)

cµ̃r (Er)

10: r ← r + 1
11: contract e by merging all its vertices and removing self-loops
12: let Gr = (V r, Er) denote the resulting graph
13: end while
14: let C denote the unique cut in the final graph G′ and define μ0 + λ̄NBν as the

intersection value of functions L(λ) and cμ0+λν(C)
15: if λ̄NB > 0 then
16: return μNB = μ0 + λ̄NBν
17: else
18: the next breakpoint does not exist
19: end if

We say that an edge e in Gr survives at the current contraction if it is not
chosen to be contracted. An edge e ∈ G survives at the end of iteration r if it
survives all the r edge contractions. A cut C survives at the end of iteration r
if every edge e ∈ δ(C) has survived. We show that a fixed optimal cut C∗

μNB is

returned by Algorithm 2 with probability at least
(

n

2

)−1

. This error probability

is the same as for the original (non-parametric) contraction algorithm [14,17].

Theorem 2. Algorithm2 solves PNB(M) with high probability in O(n2 log3 n)
time.

34 H. Aissi et al.

3 Problem Pmax(M)

Our Pmax(M) algorithm uses the following geometric tools [22]: an arrangement
A(H), formed by a set H of hyperplanes in R

d, corresponds to a division of Rd

into O(|H|d) d-dimensional convex regions called cells. Given a simplex P in R
d,

let A(H) ∩ P denote the restriction of the arrangement A(H) to P . We use a
version of point location in arrangements (PLA) in our algorithm [9,30].

Preg(H, P, μ̄) Given a simplex P , a set H of hyperplanes in R
d, and a target value

μ̄ ∈ R
d, locate a d-dimensional simplex R ⊆ A(H)∩P containing μ̄.

Fix a constant 1 < ε <
√

4
3 and let β = ε2−1

m > 0. Compute p = 1 +

�log m2

ε2−1/ log ε2� so that βε2(p−1) > m, and observe that p = O(log n). For
a given edge ē ∈ E, define the p + 2 affine functions gi : Rd → R by g0(ē, μ) = 0,
gi(ē, μ) = β ε2(i−1)cμ(ē) for i = 1, . . . , p, and gp+1(ē, μ) = +∞.

Algorithm 3. Deterministic algorithm for Pmax(M)

Require: graph G = (V, E), edge costs c0, . . . , cd, and 1 < ε <
√

4
3

Ensure: the optimal value μ∗

1: let A(H1) denote the arrangement formed by the set H1 of hyperplanes He,e′ =
{μ ∈ R

d : cμ(e) = cμ(e′)} for any pair of edges e, e′ ∈ E
2: solve Preg(H1, M, μ∗) and compute a d-dimensional simplex R1 ⊆ A(H1) ∩ M

containing μ∗

3: choose arbitrarily μ1 in the interior of R1, compute a maximum spanning tree
T of G for edge costs cμ1(e), and let ē be an edge in T such that cμ1(ē) =
arg mine∈T cμ1(e)

4: let π(e) denote the rank of edge e ∈ E according to the increasing edges costs order
in R1 (ties are broken arbitrary)

5: if minμ∈R1 cμ(ē) = 0 then
6: let ẽ be an edge such that π(ẽ) ∈ arg mine∈E{π(e) : ce(μ) > 0 for all μ ∈ R1}

and R′
1 = {μ ∈ R1 : gp(ē, μ) � cμ(ẽ)}

7: set R1 ←− R′
1

8: end if
9: let A(H2) denote the arrangement formed by the set H2 of hyperplanes Hi(e) =

{μ ∈ R
d : cμ(e) = gi(ē, μ)} for any edges e ∈ E and for i = 1, . . . , p

10: solve Preg(H2, R1, μ
∗) and compute a d dimensional simplex R2 ⊆ A(H2) ∩ R1

containing μ∗

11: choose arbitrarily μ2 ∈ R2 and compute the set C of all the ε-approximate cuts for
edge costs cμ2(e)

12: let A(H3) denote the arrangement formed by the set H3 of hyperplanes HC,C′ =
{μ ∈ R

d : cμ(C) = cμ(C′)} for any pair of cuts C, C′ ∈ C
13: solve Preg(H3, R2, μ

∗) and return μ∗

In order to overcome the difficulty that edges costs cμ(e) may have different
total orders for different values of μ, Algorithm 3 restricts the parametric search

Faster Algorithms for Parametric Global Minimum Cut Problems 35

to a d-dimensional simplex R1 containing μ∗ where cμ(e) have the same total
order for any μ ∈ R1. Let π(e) denote the rank of edge e ∈ E according to the
increasing edges costs order in R1. The algorithm needs to divide R1 into smaller
regions using as in Mulmuley [23] the relationship between cuts and spanning
trees. However, the proof of Mulmuley’s result is complicated and yields a large
number of regions. Consider an arbitrary μ1 in the interior of R1 and compute
a maximum spanning tree T for costs cμ1(e). Let ē denote an edge in T such
that cμ1(ē) = arg mine∈T cμ1(e). Since functions cμ(e) may intersect only at the
boundaries of R1, for any edge e ∈ T \ {ē} exactly one of the following cases
occurs: i) cμ1(e) = cμ1(ē), and therefore cμ(e) = cμ(ē) for all μ ∈ R1, or ii)
cμ1(e) > cμ1(ē), and therefore cμ(e) � cμ(ē) for all μ ∈ R1. In either cases, edge
ē satisfies

cμ(ē) = min
e∈T

cμ(e) for all μ ∈ R1. (2)

Since every cut in G intersects T in at least one edge, by (2) we have the following
lower bound on the minimum cut value.

cμ(ē) � Z(μ) for all μ ∈ R1. (3)

Let C̄ denote the cut formed by deleting ē from T . By the cut optimality con-
dition, we obtain the following upper bound on the minimum cut value.

Z(μ) � cμ(C̄) =
∑

e∈δ(C̄)

cμ(e) � mcμ(ē) < gp(ē, μ), (4)

where the last inequality follows from the definition of function gp(ē, μ). Let
A(H2) denote the arrangement formed by the set H2 of hyperplanes Hi(e) =
{μ ∈ R

d : cμ(e) = gi(ē, μ)} for any edges e ∈ E and for i = 1, . . . , p. Suppose
first that cμ(ē) > 0 for all μ ∈ R1, then by (3) we have Z(μ) > 0 for all μ ∈ R1.
In this case, we may apply the technique given in [4, Theorem 4] to compute all
the optimal cuts for the unknown edge costs cμ∗(e). Consider a d-dimensional
simplex R2 ⊆ A(H2) ∩ R1 containing μ∗ and any optimal cut C∗

μ∗ for edge costs
cμ∗(e). Since functions gp(ē, μ) and cμ(e), for all e ∈ E, may intersect only at
the boundaries of R2, it follows by (4) that cμ(e) � gp(ē, μ) for all e ∈ δ(C∗

μ∗)
and all μ ∈ R2. By construction of the arrangement A(H2) ∩ R1, for every edge
e in δ(C∗

μ∗) there exists some q ∈ {0, . . . , p} such that

gq(ē, μ) � cμ(e) � gq+1(ē, μ) for all μ ∈ R2. (5)

The following result shows that not all functions cμ(e) of the edges in δ(C∗
μ) are

below function g1(ē, μ) for all μ ∈ R2.

Lemma 1. For any μ̄ ∈ R2 and any optimal cut C∗
μ̄ for edge costs cμ̄(e), there

exists at least an edge e ∈ δ(C∗
μ̄) satisfying cμ(e) � g1(ē, μ) for all μ ∈ R2.

By (5) and Lemma 1, one can use the same arguments as in [4, Theorem 4] and
get the following result.

36 H. Aissi et al.

Lemma 2. If Z(μ) > 0 for all μ ∈ R1, then any specific optimal cut C∗
μ∗ for

edge costs cμ∗(e) is an ε-approximate cut for edge costs cμ(e) for every μ ∈ R2.

The optimal value μ∗ is defined by the intersection of parametric functions
cμ(C) of at least d + 1 optimal cuts C for edge costs cμ∗(e). If the condition
of Lemma 2 holds, the enumeration of these solutions can be done by picking
some μ2 in a simplex R2 ⊆ A(H2) ∩ R1 containing μ∗ and computing the
set C of all the ε-approximate cuts for edge costs cμ2(e). Note that this set
is formed by O(n2) cuts [26]. Naturally, μ∗ can be obtained by computing the
lower envelope of the parametric functions cμ(C) for all the cuts C ∈ C. How-
ever, this will take an excessive O(n2dα(n)) running time [11], where α(n) is the
inverse of Ackermann’s function. Instead, observe that μ∗ is a vertex of at least
d + 1 cells of the arrangement A(H3) ∩ R2 formed by the set H3 of hyperplanes
HC,C′ = {μ ∈ R

d : cμ(C) = cμ(C ′)} for any pair of cuts C,C ′ ∈ C. Therefore, μ∗

is a vertex of any simplex containing it and included in a cell of the arrangement
A(H3)∩R2. By solving PLA problem in A(H3)∩R2, μ∗ can be computed more
efficiently.

In order to complete the algorithm, we need to handle the case where
minμ∈R1 cμ(ē) = 0. It is sufficient to consider in this case a restriction R′

1 ⊂ R1

containing μ∗ such that minμ∈R′
1
cμ(ē) > 0. The following results show how to

construct such a restriction.

Lemma 3. There exists at least an edge ê ∈ E such that cμ(ê) > 0 for all
μ ∈ R1.

Let ẽ be an edge such that π(ẽ) ∈ arg mine∈E{π(e) : cμ(e) > 0 for all μ ∈ R1}
and R′

1 = {μ ∈ R1 : gp(ē, μ) � cμ(ẽ)}. By Lemma 3, edge ẽ exists and we have
gp(ē, μ) = β ε2(p−1)cμ(ē) > 0 for all μ ∈ R′

1. This shows that cμ(ē) > 0 for all
μ ∈ R′

1 and thus, the condition of Lemma2 holds in R′
1. It remains now to show

that μ∗ /∈ R1 \ R′
1.

Lemma 4. Function Z has no breakpoint in R1 \ R′
1.

Let T (d) denote the running time of Algorithm3 for solving Pmax(M) with d
parameters and T (0) = O(n2 log n + nm) denote the running time of comput-
ing a minimum (non-parametric) global cut using the algorithm given in [29].
The input of a call to problem PLA requires O(n4) hyperplanes. Therefore, by
Lemma 5 given in the appendix, the Θ(1) calls to problem PLA can be solved
recursively in O(log(n)T (d − 1) + n4) time. The enumeration of all the O(n2)
approximate cuts can be done in O(n4) time [25, Corollary 4.14]. Therefore, the
running time of Algorithm3 is given by the following recursive formula.

T (d) = O(log(n)T (d− 1) + n4) = O(logd(n)T (0) + logd−1(n)n4) = O(logd−1(n)n4).

Theorem 3. Algorithm3 solves Pmax(M) in O(logd−1(n)n4) time.

Faster Algorithms for Parametric Global Minimum Cut Problems 37

4 Conclusion

As shown in Table 1, our improved algorithms are significantly faster than what
one could otherwise get from just using Megiddo’s algorithm [20,21]. As men-
tioned in Sect. 1.2, our results for PNB(M) are close to being the best possible, as
they are only log factors slower than the best known non-parametric algorithms.
One exception is that we don’t quite match Karger’s [15] speedup to near-linear
time for the randomized case, and we leave this as an open problem.

Our deterministic algorithm for Pmax(M) is also close to best possible, though
in a weaker sense. It uses the ability to compute all α-optimal cuts in O(n4)
time, and otherwise is only log factors slower than O(n4). The conspicuous open
problem here is to find a faster randomized algorithm for Pmax(M) when d > 1.

5 Appendix

5.1 Geometric tools

A classical problem in computational geometry called point location in arrange-
ments (PLA) is useful to our algorithm. PLA has been widely used in various
contexts such as linear programming [1,18] or parametric optimization [9,30].
For more details, see [22, Chapter 5].

Given a simplex P , an arrangement A(H) formed by a set H of hyperplanes
in R

d, let A(H) ∩ P denote the restriction of the arrangement A(H) to P . The
goal of PLA is to construct a data structure in order to quickly locate a cell
of A(H) ∩ P containing an unknown target value μ̄. Solving PLA requires the
explicit construction of the arrangement A(H) which can be done in an excessive
O(|H|d) running time [22, Theorem 6.1.2]. For our purposes, it is sufficient to
solve the following simpler form of PLA.

Preg(H, P, μ̄) Given a simplex P , a set H of hyperplanes in R
d, and a target

value μ̄, locate a d-dimensional simplex R ⊆ A(H) ∩ P containing
a target and unknown value μ̄.

Cohen and Megiddo [9] consider the problem Max(f) of maximizing a concave
function f : Rd → R with fixed dimension d and give, under some conditions,
a polynomial time algorithm. This algorithm also uses problem Preg(H, P, μ̄) as
a subroutine, where in this context the target value μ̄ is the optimal value of
Max(f). Let T (d) denote the time required to solve Max(f) with d parameters
and T (0) denote the running time of evaluating f at any value in R

d. The
authors solve Preg(H, P, μ̄) recursively using multidimensional parametric search
technique. See also [7,8,30].

Lemma 5. Given a simplex P , a set H of hyperplanes in R
d, and a target and

unknown value μ̄, Preg(H, P, μ̄) can be solved in O(log(|H|)T (d− 1)+ |H|) time.

38 H. Aissi et al.

References

1. Agarwal, P.K., Sharir, M., Toledo, S.: An efficient multi-dimensional searching tech-
nique and its applications. Technical report CS-1993-20, Department of Computer
Science, Duke University (1993)

2. Agarwal, P.K., Sharir, M.: Efficient algorithms for geometric optimization. ACM
Comput. Surv. (CSUR) 30(4), 412–458 (1998)

3. Aissi, H., McCormick, S.T., Queyranne, M.: Faster algorithms for next breakpoint
and max value for parametric global minimum cuts. arXiv:1911.11847 (2019)

4. Aissi, H., Mahjoub, A.R., McCormick, S.T., Queyranne, M.: Strongly polynomial
bounds for multiobjective and parametric global minimum cuts in graphs and
hypergraphs. Math. Program. 154(1–2), 3–28 (2015). https://doi.org/10.1007/
s10107-015-0944-8

5. Boissonnat, J.D., Yvinec, M.: Algorithmic Geometry. Cambridge University Press,
Cambridge (1998)

6. Carstensen, P.J.: Complexity of some parametric integer and network program-
ming problems. Math. Program. 26(1), 64–75 (1983). https://doi.org/10.1007/
BF02591893

7. Chazelle, B., Friedman, J.: A deterministic view of random sampling and its
use in geometry. Combinatorica 10(3), 229–249 (1990). https://doi.org/10.1007/
BF02122778

8. Clarkson, K.L.: New applications of random sampling in computational geom-
etry. Discret. Comput. Geom. 2(2), 195–222 (1987). https://doi.org/10.1007/
BF02187879

9. Cohen, E., Megiddo, N.: Maximizing concave functions in fixed dimensions. In:
Pardalos, P.M. (ed.) Complexity in Numerical Optimization, pp. 74–87. World
Scientific Publishing, Singapore (1993)

10. Cohen, E., Megiddo, N.: Algorithms and complexity analysis for some flow prob-
lems. Algorithmica 11(3), 320–340 (1994). https://doi.org/10.1007/BF01240739

11. Edelsbrunner, H., Herbert, H., Guibas, L.J., Sharir, M.: The upper envelope of
piecewise linear functions: algorithms and applications. Discret. Comput. Geom.
4(1), 311–336 (1989)

12. Fernández-Baca, D.: Multi-parameter minimum spanning trees. In: Gonnet, G.H.,
Viola, A. (eds.) LATIN 2000. LNCS, vol. 1776, pp. 217–226. Springer, Heidelberg
(2000). https://doi.org/10.1007/10719839 22

13. Fernández-Baca, D., Venkatachalam, B.: Sensitivity analysis in combinatorial opti-
mization. In: Gonzalez, T. (ed.) Handbook of Approximation Algorithms and
Metaheuristics. Chapman and Hall/CRC Press, Boca Raton (2007)

14. Karger, D.R.: Global min-cuts in RNC, and other ramifications of a simple min-
cut algorithm. In: Proceedings of the Fourth Annual ACM-SIAM Symposium on
Discrete Algorithms, pp. 21–30 (1993)

15. Karger, D.R.: Minimum cuts in near-linear time. J. ACM 47(1), 46–76 (2000)
16. Karger, D.R.: Enumerating parametric global minimum cuts by random interleav-

ing. In: Proceedings of the Forty-Eight Annual ACM Symposium on Theory of
Computing, pp. 542–555 (2016)

17. Karger, D.R., Stein, C.: A new approach to the minimum cut problem. J. ACM
43(4), 601–640 (1996)

18. Matous̆ek, J., Schwarzkopf, O.: Linear optimization queries. In: Proceedings of the
Eighth ACM Symposium on Computational Geometry, pp. 16–25 (1992)

http://arxiv.org/abs/1911.11847
https://doi.org/10.1007/s10107-015-0944-8
https://doi.org/10.1007/s10107-015-0944-8
https://doi.org/10.1007/BF02591893
https://doi.org/10.1007/BF02591893
https://doi.org/10.1007/BF02122778
https://doi.org/10.1007/BF02122778
https://doi.org/10.1007/BF02187879
https://doi.org/10.1007/BF02187879
https://doi.org/10.1007/BF01240739
https://doi.org/10.1007/10719839_22

Faster Algorithms for Parametric Global Minimum Cut Problems 39

19. Megiddo, N.: Combinatorial optimization with rational objective functions. Math.
Oper. Res. 4(4), 414–424 (1979)

20. Megiddo, N.: Applying parallel computation algorithms in the design of serial
algorithms. J. ACM 30, 852–865 (1983)

21. Megiddo, N.: Linear programming in linear time when the dimension is fixed. J.
ACM 31, 114–127 (1984)

22. Mulmuley, K.: Computational Geometry: An Introduction Through Randomized
Algorithms. Prentice-Hall, Upper Saddle River (1994)

23. Mulmuley, K.: Lower bounds in a parallel model without bit operations. SIAM J.
Comput. 28(4), 1460–1509 (1999)

24. Nagamochi, H., Ibaraki, T.: Computing edge-connectivity in multigraphs and
capacitated graphs. SIAM J. Discret. Math. 5(1), 54–66 (1992)

25. Nagamochi, H., Ibaraki, T.: Algorithmic Aspects of Graph Connectivity. Cam-
bridge University Press, Cambridge (2008)

26. Nagamochi, H., Nishimura, K., Ibaraki, T.: Computing all small cuts in undirected
networks. SIAM J. Discret. Math. 10, 469–481 (1997)

27. Nemhauser, G.L., Wolsey, L.A.: Integer and Combinatorial Optimization. Wiley,
Hoboken (1999)

28. Radzik, T.: Parametric flows, weighted means of cuts, and fractional combinatorial
optimization. In: Pardalos, P. (ed.) Complexity in Numerical Optimization, pp.
351–386. World Scientific Publishing, Singapore (1993)

29. Stoer, M., Wagner, F.: A simple min-cut algorithm. J. ACM 44(4), 585–591 (1997)
30. Tokuyama, T.: Minimax parametric optimization problems and multi-dimensional

parametric searching. In: Proceedings of the Thirty-Third Annual ACM Sympo-
sium on Theory of Computing, pp. 75–83 (2001)

Optimizing Sparsity over Lattices
and Semigroups

Iskander Aliev1, Gennadiy Averkov2(B), Jesús A. De Loera3, and Timm Oertel1

1 Cardiff University, Cardiff, UK
2 Brandenburg University of Technology Cottbus-Senftenberg, Senftenberg, Germany

averkov@b-tu.de
3 University of California, Davis, USA

Abstract. Motivated by problems in optimization we study the sparsity
of the solutions to systems of linear Diophantine equations and linear
integer programs, i.e., the number of non-zero entries of a solution, which
is often referred to as the �0-norm. Our main results are improved bounds
on the �0-norm of sparse solutions to systems Ax = b, where A ∈ Z

m×n,
b ∈ Z

m and x is either a general integer vector (lattice case) or a non-
negative integer vector (semigroup case). In the lattice case and certain
scenarios of the semigroup case, we give polynomial time algorithms for
computing solutions with �0-norm satisfying the obtained bounds.

1 Introduction

This paper discusses the problem of finding sparse solutions to systems of linear
Diophantine equations and integer linear programs. We investigate the �0-norm
‖x‖0 := | {i : xi �= 0} |, a function widely used in the theory of compressed sens-
ing [6,9], which measures the sparsity of a given vector x = (x1, . . . , xn)� ∈ R

n

(it is clear that the �0-norm is actually not a norm).
Sparsity is a topic of interest in several areas of optimization. The �0-norm

minimization problem over reals is central in the theory of the classical com-
pressed sensing, where a linear programming relaxation provides a guaranteed
approximation [8,9]. Support minimization for solutions to Diophantine equa-
tions is relevant for the theory of compressed sensing for discrete-valued signals
[11,12,17]. There is still little understanding of discrete signals in the compressed
sensing paradigm, despite the fact that there are many applications in which the
signal is known to have discrete-valued entries, for instance, in wireless com-
munication [22] and the theory of error-correcting codes [7]. Sparsity was also
investigated in integer optimization [1,10,20], where many combinatorial opti-
mization problems have useful interpretations as sparse semigroup problems. For
example, the edge-coloring problem can be seen as a problem in the semigroup
generated by matchings of the graph [18]. Our results provide natural out-of-the-
box sparsity bounds for problems with linear constraints and integer variables
in a general form.

c© Springer Nature Switzerland AG 2020
D. Bienstock and G. Zambelli (Eds.): IPCO 2020, LNCS 12125, pp. 40–51, 2020.
https://doi.org/10.1007/978-3-030-45771-6_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-45771-6_4&domain=pdf
https://doi.org/10.1007/978-3-030-45771-6_4

Optimizing Sparsity over Lattices and Semigroups 41

1.1 Lattices: Sparse Solutions of Linear Diophantine Systems

Each integer matrix A ∈ Z
m×n determines the lattice L(A) := {Ax : x ∈ Z

n}
generated by the columns of A. By an easy reduction via row transformations,
we may assume without loss of generality that the rank of A is m.

Let [n] := {1, . . . , n} and let
(
[n]
m

)
be the set of all m-element subsets of [n].

For γ ⊆ [n], consider the m × |γ| submatrix Aγ of A with columns indexed by
γ. One can easily prove that the determinant of L(A) is equal to

gcd(A) := gcd
{

det(Aγ) : γ ∈
(

[n]
m

)}
.

Since L(Aγ) is the lattice spanned by the columns of A indexed by γ, it is a
sublattice of L(A). We first deal with a natural question: Can the description of
a given lattice L(A) in terms of A be made sparser by passing from A to Aγ with
γ having a smaller cardinality than n and satisfying L(A) = L(Aγ)? That is,
we want to discard some of the columns of A and generate L(A) by |γ| columns
with |γ| being possibly small.

For stating our results, we need several number-theoretic functions. Given
z ∈ Z>0, consider the prime factorization z = ps1

1 · · · psk

k with pairwise distinct
prime factors p1, . . . , pk and their multiplicities s1, . . . , sk ∈ Z>0. Then the num-
ber of prime factors

∑k
i=1 si counting the multiplicities is denoted by Ω(z).

Furthermore, we introduce Ωm(z) :=
∑k

i=1 min{si,m}. That is, by introduc-
ing m we set a threshold to account for multiplicities. In the case m = 1 we
thus have ω(z) := Ω1(z) = k, which is the number of prime factors in z, not
taking the multiplicities into account. The functions Ω and ω are called prime
Ω-function and prime ω-function, respectively, in number theory [15]. We call
Ωm the truncated prime Ω-function.

Theorem 1. Let A ∈ Z
m×n, with m ≤ n, and let τ ∈ (

[n]
m

)
be such that the

matrix Aτ is non-singular. Then the equality L(A) = L(Aγ) holds for some γ
satisfying τ ⊆ γ ⊆ [n] and

|γ| ≤ m + Ωm

(|det(Aτ)|
gcd(A)

)
. (1)

Given A and τ , the set γ can be computed in polynomial time.

One can easily see that ω(z) ≤ Ωm(z) ≤ Ω(z) ≤ log2(z) for every z ∈ Z>0.
The estimate using log2(z) gives a first impression on the quality of the bound
(1). It turns out, however, that Ωm(z) is much smaller on the average. Results
in number theory [15, §22.10] show that the average values 1

z (ω(1) + · · · + ω(z))
and 1

z (Ω(1) + · · · + Ω(z)) are of order log log z, as z → ∞.
As an immediate consequence of Theorem 1 we obtain

Corollary 2. Consider the linear Diophantine system

Ax = b, x ∈ Z
n (2)

42 I. Aliev et al.

with A ∈ Z
m×n, b ∈ Z

m and m ≤ n. Let τ ∈ (
[n]
m

)
be such that the m×m matrix

Aτ is non-singular. If (2) is feasible, then (2) has a solution x satisfying the
sparsity bound

‖x‖0 ≤ m + Ωm

(|det(Aτ)|
gcd(A)

)
.

Under the above assumptions, for given A, b and τ , such a sparse solution can
be computed in polynomial time.

From the optimization perspective, Corollary 2 deals with the problem

min {‖x‖0 : Ax = b, x ∈ Z
n}

of minimization of the �0-norm over the affine lattice {x ∈ Z
n : Ax = b}.

1.2 Semigroups: Sparse Solutions in Integer Programming

Consider next the standard form of the feasibility constraints of integer linear
programming

Ax = b, x ∈ Z
n
≥0. (3)

For a given matrix A, the set of all b such that (3) is feasible, is the semigroup
Sg(A) = {Ax : x ∈ Z

n
≥0} generated by the columns of A.

If (3) has a solution, i.e., b ∈ Sg(A), how sparse can such a solution be? In
other words, we are interested in the �0-norm minimization problem

min
{‖x‖0 : Ax = b, x ∈ Z

n
≥0

}
. (4)

It is clear that Problem (4) is NP-hard, because deciding the feasibility of (3)
[23, §18.2] or even solving the relaxation of (4) with the condition x ∈ Z

n
≥0

replaced by x ∈ R
n [19] is NP-hard.

Taking the NP-hardness of Problem (4) into account, our aim is to estimate
the optimal value of (4) under the assumption that this problem is feasible. In
[2, Theorem 1.1 (i)] (see also [1, Theorem 1]), it was shown that for any b ∈
Sg(A), there exists a x ∈ Z

n, such that Ax = b and

‖x‖0 ≤ m +

⌊

log2

(√
det(AA�)
gcd(A)

)⌋

. (5)

In [1, Theorem 2], it was shown that (5) cannot be improved significantly,
but nevertheless we show here how to improve it in some special cases. As a
consequence of Theorem 1 we obtain the following.

Corollary 3. Let A ∈ Z
m×n be a matrix whose columns positively span R

m

and let b ∈ Z
m. Then L(A) = Sg(A). Furthermore, if b ∈ L(A), and τ ∈ (

[n]
m

)

is a set, for which the matrix Aτ is non-singular, then there is a solution x of
the integer-programming feasibility problem Ax = b,x ∈ Z

m
≥0 that satisfies the

sparsity bound

‖x‖0 ≤ 2m + Ωm

(|det(Aτ)|
gcd(A)

)
. (6)

Optimizing Sparsity over Lattices and Semigroups 43

Under the above assumptions, for given A, b and τ , such a sparse solution x can
be computed in polynomial time.

Note that for a fixed m, (6) is usually much tighter than (5), because the
function Ωm(z) is bounded from above by the logarithmic function log2(z)
and is much smaller than log2(z) on the average. Furthermore, |det(Aτ)| ≤√

det(AA�) in view of the Cauchy-Binet formula.
We take a closer look at the case m = 1 of a single equation and tighten the

given bounds in this case. That is, we consider the knapsack feasibility problem

a�x = b, x ∈ Z
n
≥0, (7)

where a ∈ Z
n and b ∈ Z. Without loss of generality we can assume that all

components of the vector a are not equal to zero. It follows from (5) that a
feasible problem (7) has a solution x with

‖x‖0 ≤ 1 +
⌊
log2

(‖a‖2
gcd(a)

)⌋
. (8)

If all components of a have the same sign, without loss of generality we can
assume a ∈ Z

n
>0. In this setting, Theorem 1.2 in [2] strengthens the bound (8)

by replacing the �2-norm of the vector a with the �∞-norm. It was conjectured
in [2, page 247] that a bound ‖x‖0 ≤ c+	log2 (‖a‖∞/ gcd(a))
 with an absolute
constant c holds for an arbitrary a ∈ Z

n. We obtain the following result, which
covers the case that has not been settled so far and yields a confirmation of this
conjecture.

Corollary 4. Let a = (a1, . . . , an)� ∈ (Z \ {0})n be a vector that contains both
positive and negative components. If the knapsack feasibility problem a�x =
b, x ∈ Z

n
≥0 has a solution, then there is a solution x satisfying the sparsity

bound

‖x‖0 ≤ 2 + min
{

ω

(|ai|
gcd(a)

)
: i ∈ [n]

}
.

Under the above assumptions, for given a and b, such a sparse solution x can
be computed in polynomial time.

Our next contribution is that, given additional structure on A, we can
improve on [2, Theorem 1.1 (i)], which in turn also gives an improvement on
[2, Theorem 1.2]. For a1, . . . ,an ∈ R

m, we denote by cone(a1, . . . ,an) the con-
vex conic hull of the set {a1, . . . ,an}. Now assume the matrix A = (a1, . . . ,an) ∈
Z

m×n with columns ai satisfies the following conditions:

a1, . . . ,an ∈ Z
m \ {0}, (9)

cone(a1, . . . ,an) is an m-dimensional pointed cone, (10)
cone(a1) is an extreme ray of cone(a1, . . . ,an). (11)

44 I. Aliev et al.

Note that the previously best sparsity bound for the general case of the integer-
programming feasibility problem is (5). Using the Cauchy-Binet formula, (5) can
be written as

‖x‖0 ≤ m + log2

√∑
I∈([n]

m) det(AI)2

gcd(A)
.

The following theorem improves this bound in the “pointed cone case” by remov-
ing a fraction of m/n of terms in the sum under the square root.

Theorem 5. Let A = (a1, . . . ,an) ∈ Z
m×n satisfy (9)–(11) and, for b ∈ Z

m,
consider the integer-programming feasibility problem

Ax = b, x ∈ Z
n
≥0. (12)

If (12) is feasible, then there is a feasible solution x satisfying the sparsity bound

‖x‖0 ≤ m +
⌊
log2

q(A)
gcd(A)

⌋
,

where

q(A) :=
√√
√
√

∑

I∈([n]
m) : 1∈I

det(AI)2.

We omit the proof of this result due to the page limit for the IPCO proceed-
ings. Instead we focus on the particularly interesting case m = 1. In this case,
assumption (10) is equivalent to a ∈ Z

n
>0 ∪ Z

n
<0. Without loss of generality, one

can assume a ∈ Z
n
>0.

Theorem 6. Let a = (a1, . . . , an)� ∈ Z
n
>0 and b ∈ Z≥0. If the knapsack feasi-

bility problem a�x = b, x ∈ Z
n
≥0 has a solution, there is a solution x satisfying

the sparsity bound

‖x‖0 ≤ 1 +
⌊
log2

(
min{a1, . . . , an}

gcd(a)

)⌋
.

When dealing with bounds for sparsity it would be interesting to understand the
worst case scenario among all members of the semigroup, which is described by
the function

ICR(A) = max
b∈Sg(A)

min{‖x‖0 : Ax = b, x ∈ Z
n
≥0}. (13)

We call ICR(A) the integer Carathéodory rank in resemblance to the classical
problem of finding the integer Carathéodory number for Hilbert bases [24]. Above
results for the problem Ax = b, x ∈ Z

n
≥0 can be phrased as upper bounds

on ICR(A). We are interested in the complexity of computing ICR(A). The
first question is: can the integer Carathéodory rank of a matrix A be computed
at all? After all, remember that the semigroup has infinitely many elements

Optimizing Sparsity over Lattices and Semigroups 45

and, despite the fact that ICR(A) is a finite number, a direct usage of (13)
would result into the determination of the sparsest representation Ax = b for
all of the infinitely many elements b of Sg(A). It turns out that ICR(A) is
computable, as the inequality ICR(A) ≤ k can be expressed as the formula
∀x ∈ Z

n
≥0 ∃y ∈ Z

n
≥0 : (Ax = Ay) ∧ (‖y‖0 ≤ k) in Presburger arithmetic [14].

Beyond this fact, the complexity status of computing ICR(A) is largely open,
even when A is just one row:

Problem 7. Given the input a = (a1, . . . , an)� ∈ Z
n, is it NP-hard to compute

ICR(a�)?

The Frobenius number max Z≥0 \ Sg(a�), defined under the assumptions
a ∈ Z

n
>0 and gcd(a) = 1, is yet another value associated to Sg(a�). The Frobe-

nius number can be computed in polynomial time when n is fixed [5,16] but is
NP-hard to compute when n is not fixed [21]. It seems that there might be a
connection between computing the Frobenius number and ICR(a�).

2 Proofs of Theorem 1 and its consequences

The proof of Theorem 1 relies on the theory of finite Abelian groups. We write
Abelian groups additively. An Abelian group G is said to be a direct sum of its
finitely many subgroups G1, . . . , Gm, which is written as G =

⊕m
i=1 Gi, if every

element x ∈ G has a unique representation as x = x1 + · · · + xm with xi ∈ Gi

for each i ∈ [m]. A primary cyclic group is a non-zero finite cyclic group whose
order is a power of a prime number. We use G/H to denote the quotient of G
modulo its subgroup H.

The fundamental theorem of finite Abelian groups states that every finite
Abelian group G has a primary decomposition, which is essentially unique. This
means, G is decomposable into a direct sum of its primary cyclic groups and that
this decomposition is unique up to automorphisms of G. We denote by κ(G) the
number of direct summands in the primary decomposition of G.

For a subset S of a finite Abelian group G, we denote by 〈S〉 the subgroup
of G generated by S. We call a subset S of G non-redundant if the subgroups
〈T 〉 generated by proper subsets T of S are properly contained in 〈S〉. In other
words, S is non-redundant if 〈S \ {x}〉 is a proper subgroup of 〈S〉 for every
x ∈ S. The following result can be found in [13, Lemma A.6].

Theorem 8. Let G be a finite Abelian group. Then the maximum cardinality of
a non-redundant subset S of G is equal to κ(G).

We will also need the following lemmas, proved in the Appendix.

Lemma 1. Let G be a finite Abelian group representable as a direct sum G =⊕m
j=1 Gj of m ∈ Z>0 cyclic groups. Then κ(G) ≤ Ωm(|G|).

Lemma 2. Let Λ be a sublattice of Z
m of rank m ∈ Z

m
>0. Then G = Z

m/Λ is
a finite Abelian group of order det(Λ) that can be represented as a direct sum of
at most m cyclic groups.

46 I. Aliev et al.

Proof (Theorem 1). Let a1, . . . ,an be the columns of A. Without loss of gener-
ality, let τ = [m]. We use the notation B := Aτ .

Reduction to the case gcd(A) = 1. For a non-singular square matrix M , the
columns of M−1A are representations of the columns of A in the basis of columns
of M . In particular, for a matrix M whose columns form a basis of L(A), the
matrix M−1A is integral and the m × m minors of M−1A are the respective
m × m minors of A divided by det(M) = gcd(A). Thus, replacing A by M−1A,
we pass from L(A) to L(M−1A) =

{
M−1z : z ∈ L(A)

}
, which corresponds to

a change of a coordinate system in R
m and ensures that gcd(A) = 1.

Sparsity bound (1). The matrix B gives rise to the lattice Λ := L(B) of rank
m, while Λ determines the finite Abelian group Z

m/Λ.
Consider the canonical homomorphism φ : Z

m → Z
m/Λ, sending an element

of Z
m to its coset modulo Λ. Since gcd(A) = 1, we have L(A) = Z

m, which
implies 〈T 〉 = Z

m/Λ for T := {φ(am+1), . . . , φ(an)}. For every non-redundant
subset S of T , we have

|S| ≤ κ(Zm/Λ) (by Theorem 8)
≤ Ωm(|det(Aτ)|) (by Lemmas 1 and 2).

Fixing a set I ⊆ {m + 1, . . . , n} that satisfies |I| = |S| and S = {φ(ai) : i ∈ I},
we reformulate 〈S〉 = Z

m/Λ as Z
m = L(AI) + Λ = L(AI) + L(Aτ) = L(AI∪τ).

Thus, (1) holds for γ = I ∪ τ .
Construction of γ in polynomial time. The matrix M used in the reduction

to the case gcd(A) = 1 can be constructed in polynomial time: one can obtain
M from the Hermite Normal Form of A (with respect to the column trans-
formations) by discarding zero columns. For the determination of γ, the set I
that defines the non-redundant subset S = {φ(ai) : i ∈ I} of Z

m/Λ needs to be
determined. Start with I = {m + 1, . . . , n} and iteratively check if some of the
elements φ(ai) ∈ Z

m/Λ, where i ∈ I, is in the group generated by the remaining
elements. Suppose j ∈ I and we want to check if φ(aj) is in the group generated
by all φ(ai) with i ∈ I \ {j}. Since Λ = L(Aτ), this is equivalent to checking
aj ∈ L(AI\{j}∪τ) and is thus reduced to solving a system of linear Diophantine
equations with the left-hand side matrix AI\{j}∪τ and the right-hand side vector
aj . Thus, carrying the above procedure for every j ∈ I and removing j from I
whenever aj ∈ L(AI\{j}∪τ), we eventually arrive at a set I that determines a
non-redundant subset S of Z

m/Λ. This is done by solving at most n − m linear
Diophantine systems in total, where the matrix of each system is a sub-matrix
of A and the right-hand vector of the system is a column of A. ��
Remark 1 (Optimality of the bounds). For a given Δ ∈ Z≥2 let us consider
matrices A ∈ Z

m×n with Δ = |det(Aτ)|/ gcd(A). We construct a matrix A
that shows the optimality of the bound (1). As in the proof of Theorem 1, we
assume τ = [m] and use the notation B = Aτ . Consider the prime factorization
Δ = pn1

1 · · · pns
s . We will fix the matrix B to be a diagonal matrix with diagonal

entries d1, . . . , dm ∈ Z>0 so that det(B) = d1 · · · dm = Δ.
The diagonal entries are defined by distributing the prime factors of Δ among

the diagonal entries of B. If the multiplicity ni of the prime pi is less than m,

Optimizing Sparsity over Lattices and Semigroups 47

we introduce pi as a factor of multiplicity 1 in ni of the m diagonal entries of B.
If the multiplicity ni is at least m, we are able distribute the factors pi among
all of the diagonal entries of B so that each diagonal entry contains the factor
pi with multiplicity at least 1.

The group Z
m/Λ = Z

m/L(B) is a direct sum of m cyclic groups G1, . . . , Gm

of orders d1, . . . , dm, respectively. By the Chinese Remainder Theorem, these
cyclic groups can be further decomposed into the direct sum of primary cyclic
groups. By our construction, the prime factor pi of the multiplicity ni < m
generates a cyclic direct summand of order pi in ni of the subgroups G1, . . . , Gm.
If ni ≥ m, then each of the groups G1, . . . , Gm has a direct summand, which is a
non-trivial cyclic group whose order is a power of pi. Summarizing, we see that
the decomposition of Z

m/Λ into primary cyclic groups contains ni summands of
order pi, when ni < m, and m summands, whose order is a power of pi, when
ni ≥ m. The total number of summands is thus

∑s
i=1 min{m,ni} = Ωm(Δ).

Now, fix n = m+Ωm(Δ) and choose columns am+1, . . . ,an so that φ(am+1),
. . . , φ(an) generate all direct summands in the decomposition of Z

m/Λ into
primary cyclic groups. With this choice, φ(am+1), . . . , φ(an) generate Z

m/Λ,
which means that L(A) = Z

m and implies gcd(A) = 1. On the other hand, any
proper subset {φ(am+1), . . . , φ(an)} generates a proper subgroup of Z

m/Λ, as
some of the direct summands in the decomposition of Z

m/Λ into primary cyclic
groups will be missing. This means L(A[m]∪I) � Z

m for every I � {m+1, . . . , n}.

Proof (Corollary 2). Feasiblity of (2) can be expressed as b ∈ L(A). Choose γ
from the assertion of Theorem 1. One has b ∈ L(A) = L(Aγ) and so there exists
a solution x of (2) whose support is a subset of γ. This sparse solution x can be
computed by solving the Diophantine system with the left-hand side matrix Aγ

and the right-hand side vector b.

Proof (Corollary 3). Assume that the Diophantine system Ax = b, x ∈ Z
n

has a solution. It suffices to show that, in this case, the integer-programming
feasibility problem Ax = b, x ∈ Z

n
≥0 has a solution, too, and that one can find

a solution of the desired sparsity to the integer-programming feasibility problem
in polynomial time.

One can determine γ as in Theorem 1 in polynomial time. Using γ, we can
determine a solution x∗ = (x∗

1, . . . , x
∗
n)� ∈ Z

n of the Diophantine system Ax =
b, x ∈ Z

n satisfying x∗
i = 0 for i ∈ [n] \ γ in polynomial time, as described in

the proof of Corollary 2.
Let a1, . . . ,an be the columns of A. Since the matrix Aτ is non-singular, the

m vectors ai, where i ∈ τ , together with the vector v = −∑
i∈τ ai positively

span R
n. Since all columns of A positive span R

n, the conic version of the
Carathéodory theorem implies the existence of a set β ⊆ [m] with |β| ≤ m, such
that v is in the conic hull of {ai : i ∈ β}. Consequently, the set {ai : i ∈ β ∪ τ}
and by this also the larger set {ai : i ∈ β ∪ γ} positively span R

m. Let I = β∪γ.
By construction, |I| ≤ |β| + |γ| ≤ m + |γ|.

Since the vectors ai with i ∈ I positively span R
m, there exist a choice

of rational coefficients λi > 0 (i ∈ I) with
∑

i∈I λiai = 0. After rescaling we

48 I. Aliev et al.

can assume λi ∈ Z>0. Define x′ = (x′
1, . . . , x

′
n)� ∈ Z

n
≥0 by setting x′

i = λi for
i ∈ I and x′

i = 0 otherwise. The vector x′ is a solution of Ax = 0. Choosing
N ∈ Z>0 large enough, we can ensure that the vector x∗ +Nx′ has non-negative
components. Hence, x = x∗ + Nx′ is a solution of the system Ax = b, x ∈ Z

n
≥0

satisfying the desired sparsity estimate. The coefficients λi and the number N
can be computed in polynomial time.

Proof (Corollary 4). The assertion follows by applying Corollary 3 for m = 1
and all τ = {i} with i ∈ [n].

3 Proof of Theorem 6

Lemma 3. Let a1, . . . , at ∈ Z>0, where t ∈ Z>0. If t > 1 + log2(a1), then the
system

y1a1 + · · · + ytat = 0,

y1 ∈ Z≥0, y2, . . . , yt ∈ {−1, 0, 1}.

in the unknowns y1, . . . , yt has a solution that is not identically equal to zero.

Proof. The proof is inspired by the approach in [3, §3.1] (used in a different
context) that suggests to reformulate the underlying equation over integers as
two strict inequalities and then use Minkowski’s first theorem [4, Ch. VII, Sect. 3]
from the geometry of numbers. Consider the convex set Y ⊆ R

t defined by 2t
strict linear inequalities

−1 <y1a1 + · · · + ytat < 1,

−2 <yi < 2 for all i ∈ {2, . . . , t}.

Clearly, the set Y is the interior of a hyper-parallelepiped and can also be
described as Y = {y ∈ R

t : ‖My‖∞ < 1}, where M is the upper triangular
matrix

M =

⎛

⎜
⎜
⎜
⎝

a1 a2 · · · at

1/2
. . .

1/2

⎞

⎟
⎟
⎟
⎠

.

It is easy to see that the t-dimensional volume vol(Y) of Y is

vol(Y) = vol(M−1[−1, 1]t) =
1

det(M)
2t =

4t

2a1
.

The assumption t > 1 + log2(a1) implies that the volume of Y is strictly larger
than 2t. Thus, by Minkowski’s first theorem, the set Y contains a non-zero integer
vector y = (y1, . . . , yt)� ∈ Z

t. Without loss of generality we can assume that
y1 ≥ 0 (if the latter is not true, one can replace y by −y). The vector y is a
desired solution from the assertion of the lemma. ��

Optimizing Sparsity over Lattices and Semigroups 49

Proof (Theorem 6). Without loss of generality we can assume that gcd(a) = 1.
In fact, if b is divisible by gcd(a) we can convert a�x = b to a�x = b with
a = a

gcd(a) and b = b
gcd(a) , and, if b is not divisible by gcd(a), the knapsack

feasibility problem a�x = b, x ∈ Z
n
≥0 has no solution.

Without loss of generality, let a1 = min{a1, . . . , an}. We need to show the
existence of solution of the knapsack feasibility problem satisfying ‖x‖0 ≤ 1 +
log2(a1).

Choose a solution x = (x1, . . . , xn)� of the knapsack feasibility problem
with the property that the number of indices i ∈ {2, . . . , n} for which xi �=
0 is minimized. Without loss of generality we can assume that, for some t ∈
{2, . . . , n} one has x2 > 0, . . . , xt > 0, xt+1 = · · · = xn = 0. Lemma 3 implies
t ≤ 1 + log2(a1). In fact, if the latter was not true, then a solution y ∈ R

t of
the system in Lemma 3 could be extended to a solution y ∈ R

n by appending
zero components. It is clear that some of the components y2, . . . , yt are negative,
because a2 > 0, . . . , at > 0. It then turns out that, for an appropriate choice
of k ∈ Z≥0, the vector x′ = (x′

1, . . . , x
′
n)� = x + ky is a solution of the same

knapsack feasibility problem satisfying x′
1 ≥ 0, . . . , x′

t ≥ 0, x′
t+1 = · · · = x′

n = 0
and x′

i = 0 for at least one i ∈ {2, . . . , t}. Indeed, one can choose k to be the
minimum among all ai with i ∈ {2, . . . , t} and yi = −1.

The existence of x′ with at most t − 1 non-zero components x′
i with i ∈

{2, . . . , n} contradicts the choice of x and yields the assertion. ��

Acknowledgements. The second author is supported by the DFG (German Research
Foundation) within the project number 413995221. The third author acknowledges
partial support from NSF grant 1818969.

A Appendix

Proof (Lemma 1). Consider the prime factorization |G| = pn1
1 · · · pns

s . Then
|Gj | = p

ni,j

1 · · · pni,j
s with 0 ≤ ni,j ≤ ni and, by the Chinese Remainder The-

orem, the cyclic group Gj can be represented as Gj =
⊕s

i=1 Gi,j , where Gi,j

is a cyclic group of order p
ni,j

i . Consequently, G =
⊕s

i=1

⊕m
j=1 Gi,j . This is a

decomposition of G into a direct sum of primary cyclic groups and, possibly,
some trivial summands Gi,j equal to {0}. We can count the non-trivial direct
summands whose order is a power of pi, for a given i ∈ [s]. There is at most one
summand like this for each of the groups Gj . So, there are at most m non-trivial
summands in the decomposition whose order is a power of pi. On the other
hand, the direct sum of all non-trivial summands whose order is a power of pi is
a group of order p

ni,1+···+ni,s

i = pni
i so that the total number of such summands

is not larger than ni, as every summand contributes the factor at least pi to
the power pni

i . This shows that the total number of non-zero summands in the
decomposition of G is at most

∑s
i=1 min{m,ni} = Ωm(|G|). ��

Proof (Lemma 2). The proof relies on the relationship of finite Abelian groups
and lattices, see [23, §4.4]. Fix a matrix M ∈ Z

m×m whose columns form a basis
of Λ. Then |det(M)| = det(Λ). There exist unimodular matrices U ∈ Z

m×m

50 I. Aliev et al.

and V ∈ Z
m×m such that D := UMV is diagonal matrix with positive integer

diagonal entries. For example, one can choose D to be the Smith Normal Form
of M [23, §4.4]. Let d1, . . . , dm ∈ Z>0 be the diagonal entries of D. Since U and
V are unimodular, d1 · · · dm = det(D) = det(Λ).

We introduce the quotient group G′ := Z
m/Λ′ = (Z/d1Z) × · · · × (Z/dmZ)

with respect to the lattice Λ′ := L(D) = (d1Z) × · · · × (dmZ). The order of G′ is
d1 · · · dm = det(D) = det(Λ) and G′ is a direct sum of at most m cyclic groups,
as every di > 1 determines a non-trivial direct summand.

To conclude the proof, it suffices to show that G′ is isomorphic to G. To
see this, note that Λ′ = L(D) = L(UMV) = L(UM) = {Uz : z ∈ Λ}. Thus,
the map z �→ Uz is an automorphism of Z

m and an isomorphism from Λ to Λ′.
Thus, z �→ Uz induces an isomorphism from the group G = Z

m/Λ to the group
G′ = Z

m/Λ′. ��

References

1. Aliev, I., De Loera, J.A., Eisenbrand, F., Oertel, T., Weismantel, R.: The support
of integer optimal solutions. SIAM J. Optim. 28(3), 2152–2157 (2018)

2. Aliev, I., De Loera, J.A., Oertel, T., O’Neill, C.: Sparse solutions of linear diophan-
tine equations. SIAM J. Appl. Algebra Geom. 1(1), 239–253 (2017)

3. Averkov, G.: On the size of lattice simplices with a single interior lattice point.
SIAM J. Discrete Math. 26(2), 515–526 (2012)

4. Barvinok, A.I.: A Course in Convexity. Graduate Studies in Mathematics, vol. 54.
American Mathematical Society, Providence, RI (2002)

5. Barvinok, A.I., Woods, K.: Short rational generating functions for lattice point
problems. J. AMS 16(4), 957–979 (2003)

6. Boche, H., Calderbank, R., Kutyniok, G., Vyb́ıral, J.: A survey of compressed
sensing. In: Boche, H., Calderbank, R., Kutyniok, G., Vyb́ıral, J. (eds.) Compressed
Sensing and its Applications. ANHA, pp. 1–39. Springer, Cham (2015). https://
doi.org/10.1007/978-3-319-16042-9 1

7. Candès, E., Rudelson, M., Tao, T., Vershynin, R.: Error correction via linear pro-
gramming. In: 46th Annual IEEE Symposium on Foundations of Computer Science
(FOCS 2005), pp. 668–681 (2005)

8. Candès, E.J., Romberg, J.K., Tao, T.: Stable signal recovery from incomplete and
inaccurate measurements. Comm. Pure Appl. Math. 59(8), 1207–1223 (2006)

9. Candès, E.J., Tao, T.: Decoding by linear programming. IEEE Trans. Inform.
Theory 51(12), 4203–4215 (2005)

10. Eisenbrand, F., Shmonin, G.: Carathéodory bounds for integer cones. Oper. Res.
Lett. 34(5), 564–568 (2006)

11. Flinth, A., Kutyniok, G.: PROMP: a sparse recovery approach to lattice-valued
signals. Appl. Comput. Harmon. Anal. 45(3), 668–708 (2018)

12. Fukshansky, L., Needell, D., Sudakov, B.: An algebraic perspective on integer
sparse recovery. Appl. Math. Comput. 340, 31–42 (2019)

13. Geroldinger, A., Halter-Koch, F.: Non-Unique Factorizations: Algebraic Combi-
natorial and Analytic Theory. Pure and Applied Mathematics. Chapman and
Hall/CRC, Boca Raton (2006)

14. Haase, C.: A survival guide to Presburger arithmetic. ACM SIGLOG News 5(3),
67–82 (2018)

https://doi.org/10.1007/978-3-319-16042-9_1
https://doi.org/10.1007/978-3-319-16042-9_1

Optimizing Sparsity over Lattices and Semigroups 51

15. Hardy, G.H., Wright, E.M., Heath-Brown, R., Silverman, J.: An Introduction to
the Theory of Numbers. Oxford Mathematics. OUP, Oxford (2008)

16. Kannan, R.: Lattice translates of a polytope and the frobenius problem. Combi-
natorica 12(2), 161–177 (1992)

17. Konyagin, S.V.: On the recovery of an integer vector from linear measurements.
Mat. Zametki 104(6), 863–871 (2018)

18. Lovász, L.: Matching structure and the matching lattice. J. Comb. Theory Ser. B
43(2), 187–222 (1987)

19. Natarajan, B.K.: Sparse approximate solutions to linear systems. SIAM J. Comput.
24(2), 227–234 (1995)

20. Oertel, T., Paat, J., Weismantel, R.: Sparsity of integer solutions in the average
case. In: Lodi, A., Nagarajan, V. (eds.) IPCO 2019. LNCS, vol. 11480, pp. 341–353.
Springer, Cham (2019). https://doi.org/10.1007/978-3-030-17953-3 26

21. Ramı́rez-Alfonśın, J.L.: Complexity of the Frobenius problem. Combinatorica
16(1), 143–147 (1996)

22. Rossi, M., Haimovich, A.M., Eldar, Y.C.: Spatial compressive sensing for MIMO
radar. IEEE Trans. Signal Process. 62(2), 419–430 (2014)

23. Schrijver, A.: Theory of Linear and Integer Programming. Wiley-Interscience Series
in Discrete Mathematics. John Wiley & Sons Ltd., Chichester (1986). A Wiley-
Interscience Publication

24. Sebö, A.: Hilbert bases, Carathéodory’s Theorem and combinatorial optimization.
In: Proceedings of the 1st Integer Programming and Combinatorial Optimization
Conference, Waterloo, Ont., Canada, pp. 431–455. University of Waterloo Press
(1990)

https://doi.org/10.1007/978-3-030-17953-3_26

A Technique for Obtaining True
Approximations for k-Center
with Covering Constraints

Georg Anegg, Haris Angelidakis, Adam Kurpisz, and Rico Zenklusen(B)

Department of Mathematics, ETH Zurich, Zurich, Switzerland
{ganegg,angelidc,kurpisza,ricoz}@ethz.ch

Abstract. There has been a recent surge of interest in incorporating
fairness aspects into classical clustering problems. Two recently intro-
duced variants of the k-Center problem in this spirit are Colorful k-
Center, introduced by Bandyapadhyay, Inamdar, Pai, and Varadarajan,
and lottery models, such as the Fair Robust k-Center problem introduced
by Harris, Pensyl, Srinivasan, and Trinh. To address fairness aspects,
these models, compared to traditional k-Center, include additional cov-
ering constraints. Prior approximation results for these models require to
relax some of the normally hard constraints, like the number of centers to
be opened or the involved covering constraints, and therefore, only obtain
constant-factor pseudo-approximations. In this paper, we introduce a
new approach to deal with such covering constraints that leads to (true)
approximations, including a 4-approximation for Colorful k-Center with
constantly many colors—settling an open question raised by Bandya-
padhyay, Inamdar, Pai, and Varadarajan—and a 4-approximation for
Fair Robust k-Center, for which the existence of a (true) constant-factor
approximation was also open.

We complement our results by showing that if one allows an
unbounded number of colors, then Colorful k-Center admits no approx-
imation algorithm with finite approximation guarantee, assuming that
P �= NP. Moreover, under the Exponential Time Hypothesis, the problem
is inapproximable if the number of colors grows faster than logarithmic
in the size of the ground set.

1 Introduction

Along with k-Median and k-Means, k-Center is one of the most fundamental
and heavily studied clustering problems. In k-Center, we are given a finite metric

G. Anegg and R. Zenklusen—Research supported by Swiss National Science Founda-
tion grant 200021 184622.
H. Angelidakis and R. Zenklusen—This project has received funding from the Euro-
pean Research Council (ERC) under the European Union’s Horizon 2020 research and
innovation programme (grant agreement No 817750).
A. Kurpisz—Research supported by Swiss National Science Foundation grant
PZ00P2 174117.

c© Springer Nature Switzerland AG 2020
D. Bienstock and G. Zambelli (Eds.): IPCO 2020, LNCS 12125, pp. 52–65, 2020.
https://doi.org/10.1007/978-3-030-45771-6_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-45771-6_5&domain=pdf
https://doi.org/10.1007/978-3-030-45771-6_5

A Technique for Obtaining True Approximations for k-Center 53

space (X, d) and an integer k ∈ [|X|] := {1, . . . , |X|}, and the task is to find a set
C ⊆ X with |C| ≤ k minimizing the maximum distance of any point in X to its
closest point in C. Equivalently, the problem can be phrased as covering X with
k balls of radius as small as possible, i.e., finding the smallest radius r ∈ R≥0

together with a set C ⊆ X with |C| ≤ k such that X = B(C, r) :=
⋃

c∈C B(c, r),
where B(c, r) := {u ∈ X : d(c, u) ≤ r} is the ball of radius r around c.

k-Center, like most clustering problems, is computationally hard; actually it
is NP-hard to approximate to within any constant below 2 [18]. On the positive
side, various 2-approximations [12,16] have been found, and thus, its approxima-
bility is settled. Many variations of k-Center have been studied, most of which
are based on generalizations along one of the following two main axes:

(i) which sets of centers can be selected, and
(ii) which sets of points of X need to be covered.

The most prominent variations along (i) are variations where the set of centers
is required to be in some down-closed family F ⊆ 2X . For example, if centers
have non-negative opening costs and there is a global budget for opening centers,
Knapsack Center is obtained. If F are the independent sets of a matroid, the
problem is known as Matroid Center. The best-known problem type linked to (ii)
is Robust k-Center. Here, an integer m ∈ [|X|] is given, and one only needs to
cover any m points of X with k balls of radius as small as possible. Research on k-
Center variants along one or both of these axes has been very active and fruitful,
see, e.g., [7,9,10,17]. In particular, a recent elegant framework of Chakrabarty
and Negahbani [8] presents a unifying framework for designing best possible
approximation algorithms for all above-mentioned variants.

All the above variants have in common that there is a single covering require-
ment; either all of X needs to be covered or a subset of it. Moreover, they come
with different kinds of packing constraints on the centers to be opened as in
Knapsack or Matroid Center. However, the desire to address fairness in cluster-
ing, which has received significant attention recently, naturally leads to multi-
ple covering constraints. Here, existing techniques only lead to constant-factor
pseudo-approximations that violate at least one constraint, like the number of
centers to be opened. In this work, we present techniques for obtaining (true)
approximations for two recent fairness-inspired generalizations of k-Center along
axis (ii), namely

(i) γ-Colorful k-Center, as introduced by Bandyapadhyay et al. [3], and
(ii) Fair Robust k-Center, a lottery model introduced by Harris et al. [15].

γ-Colorful k-Center (γCkC) is a fairness-inspired k-Center model imposing
covering constraints on subgroups. It is formally defined as follows:1

1 The version introduced in [3] requires X1, . . . , Xγ to partition X. However, γCkC
readily reduces to the more restrictive model in [3] by replacing an element with q
colors by q elements on the same location with each having a single color.

54 G. Anegg et al.

Definition 1 (γ-Colorful k-Center (γCkC) [3]). Let γ, k ∈ Z≥1, (X, d) be a
finite metric space, X� ⊆ X for � ∈ [γ], and m ∈ Z

γ
≥0. The γ-Colorful k-Center

problem (γCkC) asks to find the smallest radius r ∈ R≥0 together with centers
C ⊆ X, |C| ≤ k such that

|B(C, r) ∩ X�| ≥ m� ∀� ∈ [γ] .

Such a set of centers C is called a (γCkC) solution of radius r.

The name stems from interpreting each set X� for � ∈ [γ] as a color assigned
to the elements of X�. In particular, an element can have multiple colors or no
color. In words, the task is to open k centers of smallest possible radius such
that, for each color � ∈ [γ], at least m� points of color � are covered. Hence, for
γ = 1, we recover the Robust k-Center problem.

We briefly contrast γCkC with related fairness models. A related class of
models that has received significant attention also assumes that the ground
set is colored, but requires that each cluster contains approximately the same
number of points from each color. Such variants have been considered for k-
Median, k-Means, and k-Center, e.g., see [2,4,5,11,23] and references therein.
γCkC differentiates itself from the above notion of fairness by not requiring a
per-cluster guarantee, but a global fairness guarantee. More precisely, each color
can be thought of as representing a certain group of people (demographic), and a
global covering requirement is given per demographic. Also notice the difference
with the well-known Robust k-Center problem, where a feasible solution might,
potentially, completely ignore a certain subgroup, resulting in a heavily unfair
treatment. γCkC addresses this issue.

The presence of multiple covering constraints in γCkC, imposed by the colors,
hinders the use of classical k-Center clustering techniques, which, as mentioned
above, have mostly been developed for packing constraints on the centers to
be opened. An elegant first step was done by Bandyapadhyay et al. [3]. They
exploit sparsity of a well-chosen LP (in a similar spirit as in [15]) to obtain the
following pseudo-approximation for γCkC: they efficiently compute a solution of
twice the optimal radius by opening at most k+γ −1 centers. Hence, up to γ −1
more centers than allowed may have to be opened. Moreover, [3] shows that in
the Euclidean plane, a significantly more involved extension of this technique
allows for obtaining a (17 + ε)-approximation for γ = O(1). Unfortunately, this
approach is heavily problem-tailored and does not even extend to 3-dimensional
Euclidean spaces. This naturally leads to the main open question raised in [3]:

Does γCkC with γ = O(1) admit an O(1)-approximation, for any finite
metric?

Here, we introduce a new approach that answers this question affirmatively.

Together with additional ingredients, our approach also applies to Fair
Robust k-Center, which is a natural lottery model introduced by Harris et al. [15].
We introduce the following generalization thereof that can be handled with our
techniques, which we name Fair γ-Colorful k-Center problem (Fair γCkC). (The
Fair Robust k-Center problem, as introduced in [15], corresponds to γ = 1.)

A Technique for Obtaining True Approximations for k-Center 55

Definition 2 (Fair γ-Colorful k-Center (Fair γCkC)). Given is a γCkC
instance on a finite metric space (X, d) together with a vector p ∈ [0, 1]X . The
goal is to find the smallest radius r ∈ R≥0, together with an efficient procedure
returning a random γCkC solution C ⊆ X of radius r such that

Pr[u ∈ B(C, r)] ≥ p(u) ∀u ∈ X .

Hence, Fair γCkC is a generalization of γCkC, where each element u ∈ X needs
to be covered with a prescribed probability p(u). The Fair Robust k-Center
problem, i.e., Fair γCkC with γ = 1, is indeed a fairness-inspired generalization
of Robust k-Center, since Robust k-Center is obtained by setting p(u) = 0 for
u ∈ X. One example setting where the additional fairness aspect of Fair γCkC
compared to γCkC is nicely illustrated, is when k-Center problems have to be
solved repeatedly on the same metric space. The introduction of the probability
requirements p allows for obtaining a distribution to draw from that needs to
consider all elements of X (as prescribed by p), whereas classical Robust k-Center
likely ignores a group of badly-placed elements. We refer to Harris et al. [15] for
further motivation of the problem setting. They also discuss the Knapsack and
Matroid Center problem under the same notion of fairness.

For Fair Robust k-Center, [15] presents a 2-pseudo-approximation that
slightly violates both the number of points to be covered and the probability
of covering each point. More precisely, for any constant ε > 0, only a (1 − ε)-
fraction of the required number of elements are covered, and element u ∈ X is
covered only with probability (1− ε)p(u) instead of p(u). It was left open in [15]
whether a true approximation may exist for Fair Robust k-Center.

1.1 Our Results

Our main contribution is a method to obtain 4-approximations for variants of
k-Center with unary encoded covering constraints on the points to be covered.
We illustrate our technique in the context of γCkC, affirmatively resolving the
open question of Bandyapadhyay et al. [3] about the existence of an O(1)-
approximation for constantly many colors (without restrictions on the under-
lying metric space).

Theorem 3. There is a 4-approximation for γCkC running in time |X|O(γ).

In a second step we extend and generalize our technique to Fair γCkC,
which, as mentioned, is a generalization of γCkC. We show that Fair γCkC
admits a O(1)-approximation, which neither violates covering nor probabilistic
constraints.

Theorem 4. There is a 4-approximation for Fair γCkC running in time
|X|O(γ).

We complete our results by showing inapproximability for γCkC when γ is
not bounded. This holds even on the real line (1-dimensional Euclidean space).

56 G. Anegg et al.

Theorem 5. It is NP-hard to decide whether γCkC on the real line admits a
solution of radius 0. Moreover, unless the Exponential Time Hypothesis fails,
for any function f : Z≥0 → Z≥0 with f(n) = ω(log n), no polynomial time
algorithm can distinguish whether γCkC on the real line with γ = f(|X|) admits
a solution of radius 0.

Hence, assuming the Exponential Time Hypothesis, γCkC is not approximable
(with a polynomial-time algorithm) if the number of colors grows faster than
logarithmic in the size of the ground set. Notice that, for a logarithmic number
of colors, our procedures run in quasi-polynomial time.

1.2 Outline of Main Technical Contributions and Paper
Organization

We introduce two main technical ingredients. The first is a method to deal with
additional covering constraints in k-Center problems, which leads to Theorem 3.
For this, we combine polyhedral sparsity-based arguments as used by Bandya-
padhyay et al. [3], which by themselves only lead to pseudo-approximations,
with dynamic programming to design a round-or-cut approach. Round-or-cut
approaches, first used by Carr et al. [6], leverage the ellipsoid method in a clever
way. In each ellipsoid iteration they either separate the current point from a well-
defined polyhedron P , or round the current point to a good solution. The round-
ing step may happen even if the current point is not in P . Round-or-cut methods
have found applications in numerous problem settings (see, e.g., [1,8,13,19–22]).
The way we employ round-or-cut is inspired by a powerful round-or-cut app-
roach of Chakrabarty and Negahbani [8] also developed in the context of k-
Center. However, their approach is not applicable to k-center problems as soon
as multiple covering constraints exist, like in γCkC.

Our second technical contribution first employs LP duality to transform
lottery-type models, like Fair γCkC, into an auxiliary problem that corresponds
to a weighted version of k-center with covering constraints. We then show how a
certain type of approximate separation over the dual is possible, by leveraging the
techniques we introduced in the context of γCkC, leading to a 4-approximation.

Even though Theorem 4 is a strictly stronger statement than Theorem 3, we
first prove Theorem 3 in Sect. 2, because it allows us to give a significantly cleaner
presentation of some of our main technical contributions. In Sect. 3, we then focus
on the additional techniques needed to deal with Fair γCkC, by reducing it to a
problem that can be tackled with the techniques introduced in Sect. 2.

Due to space constraints, various proofs are deferred to the full version of
the paper, including the proof of our hardness result, Theorem5.

2 A 4-approximation for γCkC for γ = O(1)

In this section, we prove Theorem 3, which implies a 4-approximation algorithm
for γCkC with constantly many colors. We assume γ ≥ 2, since γ = 1 corresponds
to Robust k-Center, for which an (optimal) 2-approximation is known [7,15].

A Technique for Obtaining True Approximations for k-Center 57

We present a procedure that for any r ∈ R≥0 returns a solution of radius
4r if a solution of radius r exists. This implies Theorem 3 because the optimal
radius is a distance between two points. Hence, we can run the procedure for all
possible pairwise distances r between points in X and return the best solution
found. Hence, we fix r ∈ R≥0 in what follows. We denote by P the following
canonical relaxation of γCkC with radius r:

P =

⎧
⎪⎨

⎪⎩
(x, y) ∈ [0, 1]X × [0, 1]X

∣
∣
∣
∣
∣
∣
∣

∑
v∈X y(v) ≤ k

∑
v∈B(u,r) y(v) ≥ x(u) ∀u ∈ X
∑

u∈X�
x(u) ≥ m� ∀� ∈ [γ]

⎫
⎪⎬

⎪⎭
. (1)

Integral points (x, y) ∈ P correspond to solutions of radius r, where y indi-
cates the opened centers and x indicates the points that are covered. We denote
by PI := conv

(P ∩ ({0, 1}X × {0, 1}X)
)

the integer hull of P.
Our algorithm is based on the round-or-cut framework, first used in [6]. The

main building block is a procedure that rounds a point (x, y) ∈ P to a radius
4r solution under certain conditions. It will turn out that these conditions are
always satisfied if (x, y) ∈ PI . If they are not satisfied, then we can prove that
(x, y) /∈ PI and generate in polynomial time a hyperplane separating (x, y)
from PI . This separation step now becomes an iteration of the ellipsoid method,
employed to find a point in PI , and we continue with a new candidate point
(x, y). Schematically, the whole process is described in Fig. 1.

compute
y-good

clustering
(S, D)

(Theorem 7)

y(B(S, r)) ≤
k − γ + 1 ?

∃ sol. C of
radius 2r with
|C\S| ≤ γ−2 ?
(Lemma 10)

violated inequality
y(B(S, r)) ≤ k − γ + 1

separates (x, y)
from PI (Lemma 9)

candidate
(x, y) (x, y) ∈ P?

ellipsoid
step

solution of
radius 4r
(Lemma 8)

solution of
radius 2r

separate
(x, y)

from P

NO

YES

NO NO

YES
YES

Fig. 1. An iteration of the ellipsoid method.

On a high level, we realize our round-or-cut procedure as follows. First, we
check whether (x, y) ∈ P and return a violated constraint if this is not the case.
If (x, y) ∈ P, we partition the metric space, based on a natural greedy heuristic
introduced by Harris et al. [15]. This gives a set of centers S = {s1, . . . , sq}
with corresponding clusters D = {D1, . . . Dq}. We now exploit a technique by
Bandyapadhyay et al. [3], which implies that if y(B(S, r)) ≤ k − γ + 1, then one

58 G. Anegg et al.

can leverage sparsity arguments in a simplified LP to obtain a radius 4r solution
that picks centers only within S. We then turn to the case where y(B(S, r)) >
k − γ + 1. At this point, we show that one can efficiently check whether there
exists a solution of radius 2r that opens at most γ − 2 centers outside of S. This
is achieved by guessing γ−2 centers and using dynamic programming to find the
remaining k − γ + 2 centers in S. If no such radius 2r solution exists, we argue
that any solution of radius r has at most k − γ + 1 centers in B(S, r), proving
that y(B(S, r)) ≤ k − γ + 1 is an inequality separating (x, y) from PI .

We now give a formal treatment of each step of the algorithm described in
Fig. 1. Given a point (x, y) ∈ R

X × R
X , we first check whether (x, y) ∈ P, and,

if not, return a violated constraint of P. Such a constraint separates (x, y) from
PI because PI ⊆ P. Hence, we may assume that (x, y) ∈ P.

We now use a clustering technique by Harris et al. [15] that, given (x, y) ∈ P,
allows for obtaining what we call a y-good clustering (S,D), defined as follows.2

Definition 6 (y-good clustering). Let (x, y) ∈ P. A tuple (S,D), where the
family D = {D1, . . . , Dq} partitions X and S = {s1, . . . , sq} ⊆ X with si ∈ Di

for i ∈ [q], is a y-good clustering if:

(i) d(si, sj) > 4r ∀i, j ∈ [q], i 	= j,
(ii) Di ⊆ B(si, 4r) ∀i ∈ [q], and
(iii)

∑
i∈[q] min{1, y(B(si, r))} · |Di ∩ X�| ≥ m� ∀� ∈ [γ].

The clustering procedure of [15] was originally introduced for Robust k-
Center and naturally extends to γCkC (see [3]). For completeness, we describe
it in Algorithm 1. Contrary to prior procedures, we compute a y-good clustering
whose centers have pairwise distances of strictly more than 4r (instead of 2r as
in prior work). This large separation avoids overlap of radius 2r balls around
centers in S, and allows us to use dynamic programming (DP) to build a radius
2r solution with centers in S under certain conditions. However, it is also the
reason why get a 4-approximation if the DP approach cannot be applied.

Algorithm 1: Compute y-good clustering, given (x, y) ∈ P
U ← X; i ← 0; S ← ∅; D ← ∅;
while U 	= ∅ do

i ← i + 1; si ← argmaxu∈U{x(u)}; Di ← U ∩ B(si, 4r);
S ← S ∪ {si}; D ← D ∪ {Di}; U ← U \ B(si, 4r);

end
return (S,D)

Theorem 7 ([3,15]). For (x, y) ∈ P, Algorithm1 computes a y-good clustering
(S,D) in polynomial time.

2 As the name suggests, the properties of a y-good clustering do not depend on x.
Hence, we could equivalently define the clustering for any y ∈ R

X that lies in the
projection of P onto the last |X| coordinates, i.e., the ones corresponding to y.

A Technique for Obtaining True Approximations for k-Center 59

Theorem 7 as well as the following lemma follow from the results in [3].

Lemma 8 ([3]). Let (x, y) ∈ P and (S,D) be a y-good clustering. Then, if
y(B(S, r)) ≤ k − γ + 1, a solution of radius 4r can be found in polynomial time.

We are left with the case y(B(S, r)) > k − γ + 1. If (x, y) ∈ PI , then there
must exist a solution C1 ⊆ X of radius r with |C1 ∩ B(S, r)| > k − γ + 1.
Hence, C1 has at most γ − 2 centers outside of B(S, r). We observe that if such
solution C1 exists, then there must be a solution C2 of radius 2r with all centers
being within S, except for γ −2 many. This is formalized in the following lemma
(which states the contrapositive of the mentioned implication because this form
is slightly more convenient later).

Lemma 9. Let S ⊆ X with d(s, s′) > 4r for all s 	= s′ ∈ S, β ∈ Z≥0. If no
radius 2r solution C2 ⊆ X satisfies |C2 \ S| ≤ β, then |C1 ∩ B(S, r)| ≤ k − β − 1
for any radius r solution C1.

Proof. Assume there is a solution C1 of radius r where |C1∩B(S, r)| ≥ k−β. Let
A = C1∩B(S, r). For each p ∈ A, let φ(p) ∈ S be the unique point in S such that
p ∈ B(φ(p), r); φ(p) is well defined because d(s, s′) > 4r for every s 	= s′ ∈ S. Let
C2 = φ(A)∪(C1\A). Then |C2| ≤ |φ(A)|+|C1\A| ≤ |A|+|C1\A| ≤ k. Moreover,
as d(p, φ(p)) ≤ r for every p ∈ A, we conclude that B(C1, r) ⊆ B(C2, 2r). Thus,
C2 is a feasible solution of radius 2r.
�

Hence, if y(B(S, r)) > k − γ + 1 and (x, y) ∈ PI , then there is a solution
C2 of radius 2r with |C2 \ S| ≤ γ − 2. The motivation for considering solutions
of radius 2r with all centers in S except for constantly many (if γ = O(1)) is
that such solutions can be found efficiently via dynamic programming. This is
possible because the centers in S are separated by distances strictly larger than
4r, which implies that radius 2r balls centered at points in S do not overlap.
Hence, there are no interactions between such balls. This is formalized below.

Lemma 10. Let S ⊆ X with d(s, s′) > 4r for all s, s′ ∈ S with s 	= s′, and
β ∈ Z≥0. If a radius 2r solution C ⊆ X with |C \S| ≤ β exists, then we can find
such a solution in time |X|O(β+γ).

Proof. Suppose there is a solution C ⊆ X of radius 2r with |C \ S| ≤ β. The
algorithm has two components. We first guess the set Q := C \S. Because |Q| ≤
β, there are |X|O(β) choices. Given Q, it remains to select at most k−|Q| centers
W ⊆ S to fulfill the color requirements. Note that for any W ⊆ S, the number
of points of color � ∈ [γ] that B(W, 2r) covers on top of those already covered by
B(Q, 2r) is |(B(W, 2r) \ B(Q, 2r)) ∩ X�| =

∑
w∈W |(B(w, 2r) \ B(Q, 2r)) ∩ X�| ,

where equality holds because centers in W are separated by distances strictly
larger than 4r, and thus B(W, 2r) is the disjoint union of the sets B(w, 2r) for
w ∈ W . Hence, the task of finding a set W ⊆ S with |W | ≤ k − |Q| such that
Q ∪ W is a solution of radius 2r can be phrased as finding a feasible solution to
the following binary program:

60 G. Anegg et al.

∑

s∈S

z(s) · |(B(s, 2r) \ B(Q, 2r)) ∩ X�| ≥ m� − |B(Q, 2r) ∩ X�| ∀� ∈ [γ]
∑

s∈S

z(s) ≤ k − |Q|

z ∈ {0, 1}S .

(2)

As this is a binary linear program with γ + 1 constraints with coefficients in
{0, . . . , |X|}, it can be solved by standard dynamic programming techniques in
|X|O(γ) time.3 As the dynamic program is run for |X|O(β) many guesses of Q,
we obtain an overall running time of |X|O(β+γ), as claimed.
�

This completes the last ingredient for an iteration of our round-or-cut app-
roach as shown in Fig. 1. In summary, assuming y(B(S, r)) > k − γ + 1 (for
otherwise Lemma 8 leads to a solution of radius 4r) we use Lemma 10 to check
whether there is a radius 2r solution C2 with |C2 \ S| ≤ γ − 2. If this is the
case, we are done. If not, Lemma 9 implies that every radius r solution C1

fulfills |C1 ∩ B(S, r)| ≤ k − γ + 1. Hence, every point (x, y) ∈ PI satisfies
y(B(S, r)) ≤ k − γ + 1. However, this constraint is violated by (x, y), and so
it separates (x, y) from PI . Thus, we proved that the process described in Fig. 1
is a valid round-or-cut procedure that runs in polynomial time.

Corollary 11. There is a polynomial-time algorithm that, given a point (x, y) ∈
R

X ×R
X , either returns a γCkC solution of radius 4r or an inequality separating

(x, y) from PI .

We can now prove the main theorem.

Proof (of Theorem 3). We run the ellipsoid method on PI for each of the O(|X|2)
candidate radii r. For each r, the number of ellipsoid iterations is polynomially
bounded as the separating hyperplanes have encoding length at most O(|X|) (see
Theorem 6.4.9 of [14]). To see this, note that all generated hyperplanes are either
inequalities defining P or inequalities of the form y(B(S, r)) ≤ k −γ +1. For the
correct guess of r, PI is non-empty and the algorithm terminates by returning a
radius 4r solution. Hence, if we return the best solution among those computed
for all guesses of r, we have a 4-approximation.
�

3 The Lottery Model of Harris et al. [15]

Let (X, d) be a Fair γCkC instance, and let F(r) be the family of sets of centers
satisfying the covering requirements with radius r, i.e.,

F(r) :=
{
C ⊆ X

∣
∣ |C| ≤ k and |B(C, r) ∩ X�| ≥ m� ∀� ∈ [γ]

}
.

Note that a radius r solution for Fair γCkC defines a distribution over the sets in
F(r). Given r, such a distribution exists if and only if the following (exponential-
size) linear program PLP(r) is feasible (with DLP(r) being its dual):
3 For any ordering S = {s1, . . . , sq} of the elements in S, the DP successively computes
for any prefix {s1, . . . , si} all possible left-hand side values for the γ + 1 constraints
that can be achieved if supp(z) := {s ∈ S : z(s) > 0} ⊆ {s1, . . . , si}. This is a
straightforward extension of classical DPs for binary knapsack problems.

A Technique for Obtaining True Approximations for k-Center 61

PLP(r) : min 0

∑

C∈F(r):
u∈B(C,r)

λ(C) ≥ p(u) ∀u ∈ X

∑

C∈F(r)

λ(C) = 1

λ ∈ R
F(r)
≥0

DLP(r) : max
∑

u∈X

p(u)α(u) − μ

∑

u∈B(C,r)

α(u) ≤ μ ∀C ∈ F(r)

α ∈ R
X
≥0

μ ∈ R .

Clearly, if PLP(r) is feasible, then its optimal value is 0. Observe that DLP(r)
always has a feasible solution (the zero vector) of value 0. Thus, by strong duality,
PLP(r) is feasible if and only if the optimal value of DLP(r) is 0. We note now
that DLP(r) is scale-invariant, meaning that if (α, μ) is feasible for DLP(r) then
so is (tα, tμ) for t ∈ R≥0. Hence, DLP(r) has a solution of strictly positive
objective value if and only if DLP(r) is unbounded. We thus define the following
polyhedron Q(r), which contains all solutions of DLP(r) of value at least 1:

Q(r) :=

{

(α, μ) ∈ R
X
≥0 ×R

∣
∣
∣
∣
∣

∑

u∈X

p(u)α(u) ≥ μ + 1,
∑

u∈B(C,r)

α(u) ≤ μ ∀C ∈ F(r)

}

.

As discussed, we have the following.

Lemma 12. Q(r) is empty if and only if PLP (r) is feasible.

The main lemma that allows us to obtain our result is the following.

Lemma 13. There is a polynomial-time algorithm that, given a point (α, μ) ∈
R

X
≥0 × R satisfying

∑
u∈X p(u)α(u) ≥ μ + 1 and a radius r ≥ 0, either certifies

that (α, μ) ∈ Q(r), or outputs a set C ∈ F(4r) with
∑

u∈B(C,4r) α(u) > μ.

In words, Lemma 13 either certifies (α, μ) ∈ Q(r) or returns a hyperplane sep-
arating (α, μ) from Q(4r). Its proof leverages techniques introduced in Sect. 2,
and we sketch it in AppendixA. Using Lemma 13, we can now prove Theorem 4.

Proof (of Theorem 4). As noted, there are polynomially many choices for the
radius r, for each of which we run the ellipsoid method to check emptiness of
Q(4r) as follows. Whenever there is a call to the separation oracle for a point
(α, μ) ∈ R

X × R, we first check whether α ≥ 0 and
∑

u∈X p(u)α(u) ≥ μ + 1.
If one of these constraints is violated, we return it as separating hyperplane.
Otherwise, we invoke the algorithm of Lemma 13. The algorithm either returns
a constraint in the inequality description of Q(4r) violated by (α, μ), which
solves the separation problem, or certifies (α, μ) ∈ Q(r). If, at any iteration of
the ellipsoid method, the separation oracle is called for a point (α, μ) for which
Lemma 13 certifies (α, μ) ∈ Q(r), then Lemma 12 implies PLP(r) is infeasible.
Thus, there is no solution to the considered Fair γCkC instance of radius r.
Hence, consider from now on that the separation oracle always returns a sepa-
rating hyperplane, in which case the ellipsoid method certifies that Q(4r) = ∅ as

62 G. Anegg et al.

follows. Let H ⊆ F(4r) be the family of all sets C ∈ F(4r) returned by Lemma 13
through calls to the separation oracle. Then, the following polyhedron:

QH(4r) =

{

(α, μ) ∈ R
X
≥0 ×R

∣
∣
∣
∣
∣

∑

u∈X

p(u)α(u) ≥ μ + 1,
∑

u∈B(C,4r)

α(u) ≤ μ ∀C ∈ H
}

,

containing Q(4r), is empty. As the encoding length of any constraint in the
inequality description of Q(4r) is polynomially bounded in the input, the ellip-
soid method runs in polynomial time (see Theorem 6.4.9 of [14]). In particu-
lar, the number of calls to the separation oracle, and thus |H|, is polynomially
bounded.

As Q(4r) ⊆ QH(4r) = ∅, Lemma 12 implies that PLP (4r) is feasible. More
precisely, because QH(4r) = ∅, the linear program obtained from DLP (4r) by
replacing F(4r), which parameterizes the constraints in DLP (4r), by H, has
optimal value equal to zero. Hence, its dual, which corresponds to PLP (4r)
where we replace F(4r) by H is feasible. As this feasible linear program has
polynomial size, because |H| is polynomially bounded, we can solve it efficiently
to obtain a distribution with the desired properties.
�

A Appendix

In this appendix we discuss the proof of Lemma13. Due to space constraints,
we only sketch the proofs of some auxiliary lemmas; formal proofs are deferred
to the full version.

The desired separation algorithm requires us to find a solution for a γCkC
instance with an extra covering constraint; the procedure of Sect. 2 generalizes
to handle this extra constraint. We follow similar steps as in Fig. 1.

Let (α, μ) ∈ R
X
≥0 ×R be a point satisfying

∑
u∈X p(u)a(u) ≥ μ+1, let r ≥ 0,

and, moreover, let Fα,μ(r) := {C ∈ F(r) | ∑
u∈B(C,r) α(u) > μ}. We have to

decide whether Fα,μ(4r) = ∅ and, if not, find a set C ∈ Fα,μ(4r). We claim that
there is a polynomially encoded ε > 0, such that this is equivalent to finding
C ∈ F(4r) with

∑
u∈B(C,4r) α(u) ≥ μ+ε, or deciding that no such C exists. The

next standard result guarantees that such an ε > 0 can be computed efficiently.

Lemma 14. Let (α, μ) ∈ R
X
≥0 × R. Then one can efficiently compute an ε > 0

with encoding length O(L), where L is the encoding length of (α, μ), such that
the following holds: For any C ∈ F(r), we have

∑
u∈B(C,r) α(u) > μ if and only

if
∑

u∈B(C,r) α(u) ≥ μ + ε.

Proof. The tuple (α, μ) consists of |X| + 1 rationals {pi/qi}i∈[N], with pi ∈ Z

and qi ∈ Z>0. Let Π =
∏

i∈[N] qi. Note that if
∑

u∈B(C,r) α(u) > μ, then
∑

u∈B(C,r) α(u)−μ ≥ 1
Π . Thus, we set ε = 1/Π. Moreover log Π =

∑
i∈[N] log qi,

and so the encoding length of ε is O(L).
�

A Technique for Obtaining True Approximations for k-Center 63

Let Pα,μ be the following modified relaxation of γCkC, defined for given
(α, μ) ∈ R

X
≥0 × R, where the polytope P is defined for a fixed radius r, as in

Sect. 2 (see (1)):

Pα,μ :=

{

(x, y) ∈ P
∣
∣
∣
∣
∣

∑

u∈X

α(u)x(u) ≥ μ + ε

}

.

Let Pα,μ
I := conv

(Pα,μ ∩ ({0, 1}X × {0, 1}X)
)

be the integer hull of Pα,μ.
We now state the following straightforward lemma, whose proof is an immediate
consequence of the definitions of the corresponding polytopes and Lemma14.

Lemma 15. Let (α, μ) ∈ R
X
≥0 × R be such that

∑
u∈X p(u)α(u) ≥ μ + 1 and

Pα,μ
I = ∅. Then (α, μ) ∈ Q(r).

We now state Lemma 16, a modified version of Lemma 8. Its proof is analo-
gous to the one of Lemma 8 and is deferred to the full version. The only difference
is that the auxiliary polytope on which we exploit sparsity has one additional
constraint, the one corresponding to

∑
u∈X α(u)x(u) ≥ μ + ε, which explains

the shift by one unit in the condition on y(B(S, r)).

Lemma 16. Let (α, μ) ∈ R
X
≥0 × R, let (x, y) ∈ Pα,μ, and let (S,D) be a y-good

clustering. If y(B(S, r)) ≤ k − γ, a set C ∈ Fα,μ(4r) can be found in polynomial
time.

If y(B(S, r)) ≤ k − γ, then Lemma 16 leads to a set C ∈ F(4r) that satisfies∑
u∈B(S,4r) α(u) ≥ μ + ε; this gives a constraint separating (α, μ) from Q(4r).
It remains to consider the case y(B(S, r)) > k − γ. As in Sect. 2, we can

either find a set C2 ∈ Fα,μ(2r) or certify that every C1 ∈ Fα,μ(r) satisfies
|C1 ∩ B(S, r)| ≤ k − γ.

Lemma 17. Let (α, μ) ∈ R
X
≥0 × R, S ⊆ X with d(s, s′) > 4r for all s, s′ ∈ S

with s 	= s′, and β ∈ Z≥0. If no C2 ∈ Fα,μ(2r) satisfies |C2 \ S| ≤ β, then
|C1 ∩ B(S, r)| ≤ k − β − 1 for any C1 ∈ Fα,μ(r).

Proof (Sketch). As in Lemma 9, we prove that any C1 ∈ Fα,μ(r) satisfying
|C1 ∩ B(S, r)| > k − β − 1 can be transformed into a set C2 ∈ Fα,μ(2r) with
|C2 \ S| ≤ β.
�
Lemma 18. Let (α, μ) ∈ R

X
≥0 × R, S ⊆ X with d(s, s′) > 4r for all s, s′ ∈ S

with s 	= s′, and β ∈ Z≥0. If there exists a set C ∈ Fα,μ(2r) with |C \ S| ≤ β,
then we can find such a set in time |X|O(β+γ).

Proof (Sketch). As in the proof of Lemma 10, we first guess up to β centers
Q = X \ S. For each of those guesses, we then consider the binary program (2)
with objective function

∑
s∈S z(s) · α(B(s, 2r)) to be maximized. For the guess

Q = C \ S, the characteristic vector χC∩S is feasible for this binary program,
implying that the optimal centers Z ⊆ S chosen by the binary program fulfill
Z ∪ Q ∈ Fα,μ(2r).
�

64 G. Anegg et al.

Corollary 19. Let (α, μ) ∈ R
X
≥0 × R. There is a polynomial-time algorithm

that, given (x, y) ∈ R
X × R

X , either returns a set C ∈ Fα,μ(4r) or returns a
hyperplane separating (x, y) from Pα,μ

I .

Proof. If (x, y) /∈ Pα,μ, we return a violated constraint separating (x, y) from
Pα,μ

I . Hence we may assume (x, y) ∈ Pα,μ. Since Pα,μ ⊆ P, we can use The-
orem 7 to get a y-good clustering (S,D). If y(B(S, r)) ≤ k − γ, Lemma 16
gives a set C ∈ Fα,μ(4r). So, assuming y(B(S, r)) > k − γ, we use Lemma 18
to check whether there is C2 ∈ Fα,μ(2r) with |C2 \ S| ≤ γ − 1. If this is
the case, we are done. If not, Lemma 17 implies that every C1 ∈ Fα,μ(r)
fulfills |C1 ∩ B(S, r)| ≤ k − γ. Hence, every point (x, y) ∈ Pα,μ

I satisfies
y(B(S, r)) ≤ k − γ. However, this constraint is violated by (x, y), and it thus
separates (x, y) from Pα,μ

I .
�
Proof (Proof of Lemma 13). We use the ellipsoid method to check emptiness of
Pα,μ

I . Whenever the separation oracle gets called for a point (x, y) ∈ R
X×R

X , we
invoke the algorithm of Corollary 19. If the algorithm returns at any point a set
C ∈ Fα,μ(4r), then C corresponds to a constraint in the inequality description of
Q(4r) violated by (α, μ). Otherwise, the ellipsoid method certifies that Pα,μ

I = ∅,
which implies (α, μ) ∈ Q(r) by Lemma 15. Note that the number of iterations
of the ellipsoid method is polynomial as the hyperplanes used by the procedure
above have encoding length O(poly(|X|)) (see Theorem 6.4.9 of [14]).
�

References

1. An, H.C., Singh, M., Svensson, O.: LP-based algorithms for capacitated facility
location. SIAM J. Comput. 46(1), 272–306 (2017)

2. Backurs, A., Indyk, P., Onak, K., Schieber, B., Vakilian, A., Wagner, T.: Scalable
fair clustering. In: Proceedings of the 36th International Conference on Machine
Learning (ICML), pp. 405–413 (2019)

3. Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.R.: A constant approx-
imation for colorful k-center. In: Proceedings of the 27th Annual European Sym-
posium on Algorithms (ESA), pp. 12:1–12:14 (2019)

4. Bera, S.K., Chakrabarty, D., Flores, N., Negahbani, M.: Fair algorithms for clus-
tering. In: Proceedings of the 33rd International Conference on Neural Information
Processing Systems (NeurIPS), pp. 4955–4966 (2019)

5. Bercea, I.O., et al.: On the cost of essentially fair clusterings. In: Proceedings of the
22nd International Conference on Approximation Algorithms for Combinatorial
Optimization Problems (APPROX/RANDOM), pp. 18:1–18:22 (2019)

6. Carr, R.D., Fleischer, L.K., Leung, V.J., Phillips, C.A.: Strengthening integrality
gaps for capacitated network design and covering problems. In: Proceedings of
the 11th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pp.
106–115 (2000)

7. Chakrabarty, D., Goyal, P., Krishnaswamy, R.: The non-uniform k-center problem.
In: Proceedings of the 43rd International Colloquium on Automata, Languages,
and Programming, (ICALP), pp. 67:1–67:15 (2016)

8. Chakrabarty, D., Negahbani, M.: Generalized center problems with outliers. ACM
Trans. Algorithms 15(3), 1–14 (2019)

A Technique for Obtaining True Approximations for k-Center 65

9. Charikar, M., Khuller, S., Mount, D.M., Narasimhan, G.: Algorithms for facility
location problems with outliers. In: Proceedings of the 12th Annual Symposium
on Discrete Algorithms (SODA), pp. 642–651 (2001)

10. Chen, D.Z., Li, J., Liang, H., Wang, H.: Matroid and knapsack center problems.
Algorithmica 75(1), 27–52 (2016)

11. Chierichetti, F., Kumar, R., Lattanzi, S., Vassilvitskii, S.: Fair clustering through
fairlets. In: Proceedings of the 31st International Conference on Neural Information
Processing Systems (NIPS), pp. 5029–5037 (2017)

12. Gonzalez, T.F.: Clustering to minimize the maximum intercluster distance. Theor.
Comput. Sci. 38, 293–306 (1985)

13. Grandoni, F., Kalaitzis, C., Zenklusen, R.: Improved approximation for tree aug-
mentation: saving by rewiring. In: Proceedings of the 50th ACM Symposium on
Theory of Computing (STOC), pp. 632–645 (2018)

14. Grötschel, M., Lovász, L., Schrijver, A.: Geometric Algorithms and Combinatorial
Optimization, vol. 2. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-
642-78240-4

15. Harris, D.G., Pensyl, T., Srinivasan, A., Trinh, K.: A lottery model for center-type
problems with outliers. ACM Trans. Algorithms 15(3), 36:1–36:25 (2019)

16. Hochbaum, D.S., Shmoys, D.B.: A best possible heuristic for the k-center problem.
Math. Oper. Res. 10(2), 180–184 (1985)

17. Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms
for bottleneck problems. J. ACM 33(3), 533–550 (1986)

18. Hsu, W., Nemhauser, G.L.: Easy and hard bottleneck location problems. Discrete
Appl. Math. 1(3), 209–215 (1979)

19. Levi, R., Lodi, A., Sviridenko, M.: Approximation algorithms for the capacitated
multi-item lot-sizing problem via flow-cover inequalities. Math. Oper. Res. 33(2),
461–474 (2008)

20. Li, S.: Approximating capacitated k-median with (1 + ε)k open facilities. In: Pro-
ceedings of the 27th Annual ACM Symposium on Discrete Algorithms (SODA),
pp. 786–796 (2016)

21. Li, S.: On uniform capacitated k-median beyond the natural LP relaxation. ACM
Trans. Algorithms 13(2), 22:1–22:18 (2017)

22. Nutov, Z.: On the tree augmentation problem. In: Proceedings of the 25th Annual
Symposium on Algorithms (ESA), pp. 61:1–61:14 (2017)

23. Rösner, C., Schmidt, M.: Privacy preserving clustering with constraints. In: Pro-
ceedings of the 45th International Colloquium on Automata, Languages, and Pro-
gramming (ICALP), pp. 96:1–96:14 (2018)

https://doi.org/10.1007/978-3-642-78240-4
https://doi.org/10.1007/978-3-642-78240-4

Tight Approximation Bounds
for Maximum Multi-coverage

Siddharth Barman1(B), Omar Fawzi2, Suprovat Ghoshal1,
and Emirhan Gürpınar2

1 Indian Institute of Science, Bangalore, India
barman@iisc.ac.in

2 Univ Lyon, ENS Lyon, UCBL, CNRS, LIP, 69342 Lyon Cedex 07, France

Abstract. In the classic maximum coverage problem, we are given sub-
sets T1, . . . , Tm of a universe [n] along with an integer k and the objective
is to find a subset S ⊆ [m] of size k that maximizes C(S) := | ∪i∈S Ti|.
It is well-known that the greedy algorithm for this problem achieves an
approximation ratio of (1−e−1) and there is a matching inapproximabil-
ity result. We note that in the maximum coverage problem if an element
e ∈ [n] is covered by several sets, it is still counted only once. By contrast,
if we change the problem and count each element e as many times as it is
covered, then we obtain a linear objective function, C(∞)(S) =

∑
i∈S |Ti|,

which can be easily maximized under a cardinality constraint.
We study the maximum �-multi-coverage problem which naturally

interpolates between these two extremes. In this problem, an element
can be counted up to � times but no more; hence, we consider maximiz-
ing the function C(�)(S) =

∑
e∈[n] min{�, |{i ∈ S : e ∈ Ti}|}, subject to

the constraint |S| ≤ k. Note that the case of � = 1 corresponds to the
standard maximum coverage setting and � = ∞ gives us a linear objec-
tive.

We develop an efficient approximation algorithm that achieves an

approximation ratio of 1 − ��e−�

�!
for the �-multi-coverage problem. In

particular, when � = 2, this factor is 1 − 2e−2 ≈ 0.73 and as �
grows the approximation ratio behaves as 1 − 1√

2π�
. We also prove that

this approximation ratio is tight, i.e., establish a matching hardness-of-
approximation result, under the Unique Games Conjecture.

This problem is motivated by the question of finding a code that opti-
mizes the list-decoding success probability for a given noisy channel. We
show how the multi-coverage problem can be relevant in other contexts,
such as combinatorial auctions.

A full version of the paper containing the proofs can be found in [3]. This research is sup-
ported by the French ANR project ANR-18-CE47-0011 (ACOM). Siddharth Barman
gratefully acknowledges the support of a Ramanujan Fellowship (SERB - SB/S2/RJN-
128/2015) and a Pratiksha Trust Young Investigator Award. Part of this work was
conducted during the first author’s visit to École Normale Supérieure de Lyon and was
supported by the Administration de la recherche (ADRE), France.

c© Springer Nature Switzerland AG 2020
D. Bienstock and G. Zambelli (Eds.): IPCO 2020, LNCS 12125, pp. 66–77, 2020.
https://doi.org/10.1007/978-3-030-45771-6_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-45771-6_6&domain=pdf
https://doi.org/10.1007/978-3-030-45771-6_6

Tight Approximation Bounds for Maximum Multi-coverage 67

Keywords: Approximation algorithms · Covering problems ·
Submodular optimization

1 Introduction

Coverage problems lie at the core of combinatorial optimization and have been
extensively studied in computer science. A quintessential example of such prob-
lems is the maximum coverage problem wherein we are given subsets T1, . . . , Tm

of a universe [n] along with an integer k ∈ Z+, and the objective is to find a
size-k set S ⊆ [m] that maximizes the covering function C(S) := | ∪i∈S Ti|. It is
well-known that a natural greedy algorithm achieves an approximation ratio of
1−e−1 for this problem (see, e.g., [16]). Furthermore, the work of Feige [13] shows
that this approximation factor is tight, under the assumption that P �= NP.
Over the years, a large body of work has been directed towards extending these
fundamental results and, more generally, coverage problems have been studied
across multiple fields, such as operations research [8], machine learning [15], and
algorithmic game theory [12].

In this paper, we study the �-multi-coverage (�-coverage for short) problem,
which is a natural generalization of the classic maximum coverage problem. Here,
we are given a universe of elements [n] and a collection of subsets F = {Ti ⊆
[n]}m

i=1. For any integer � ∈ Z+ and a choice of index set S ⊆ [m], we define
the �-coverage of an element e to be C

(�)
e (S) := min{�, |{i ∈ S : e ∈ Ti}|}, i.e.,

C
(�)
e (S) counts—up to �—how many times element e is covered by the subsets

indexed in S. We extend this definition to that of �-coverage of all the elements,
C(�)(S) :=

∑
e∈[n] C

(�)
e (S).

The �-multi-coverage problem is defined as follows: given a universe of ele-
ments [n], a collection F of subsets of [n] and an integer k ≤ m, find a size-k
subset S ⊆ [m] which maximizes C(�)(S). For � = 1, it is easy to see that this
reduces to the standard maximum coverage problem.

1.1 Our Results and Techniques

Our main result is a polynomial-time algorithm that achieves a tight approxi-
mation ratio for the �-multi-coverage problem, with any � ≥ 1.

Theorem 1. Let � be a positive integer. There exists a polynomial-time algo-
rithm that takes as input an integer n, a set system F = {Ti ⊆ [n]}m

i=1 along
with an integer k ≤ m and outputs a size-k set S ⊆ [m] (i.e., identifies k subsets
{Ti}i∈S from F) such that

C(�)(S) ≥
(

1 − ��e−�

�!

)

max
S′∈([m]

k)
C(�)(S′).

One way to interpret this approximation ratio ρ� :=
(
1 − ��e−�

�!

)
is that

ρ� = E
[
1
� min{�,Poi(�)}], where Poi(�) denotes a Poisson random variable with

rate parameter �.

68 S. Barman et al.

We complement Theorem 1 by proving that the achieved approximation guar-
antee is tight, under the Unique Games Conjecture. Formally,

Theorem 2. Assuming the Unique Games Conjecture, it is NP-hard to approx-
imate the maximum �-multi-coverage problem to within a factor greater than(
1 − ��

�! e
−� + ε

)
, for any constant of ε > 0.

The Approximation Algorithm. We first observe that for the maximum multi-
coverage problem the standard greedy algorithm fails: the approximation guar-
antee does not improve with �. The greedy algorithm starts with S0 = ∅ and
repeats the following k times for j = 0 to k − 1. Let ij be a maximizer of the
function i 	→ C(�)(Sj ∪{i}) and let Sj+1 ← Sj ∪{ij}. The greedy algorithm out-
puts Sk. As the function C(�) is a monotone, submodular function, the greedy
algorithm will certainly still achieve an approximation ratio of 1−e−1. However,
it is simple to construct instances wherein exactly this ratio is achieved. In fact,
if F is a collection of distinct subsets, let F (�) contain the same subsets as F but
each one appearing � times. Then, it is easy to see that the greedy algorithm,
when applied to F (�), will simply choose � times the sets chosen by the algorithm
on input F . So the greedy algorithm is not able to take advantage when we have
� > 1.

Instead, we use another algorithmic idea, which is standard in the context
of covering problems. We consider the natural linear programming (LP) relax-
ation of the problem to obtain a fractional, optimal solution and apply pipage
rounding [1,5,27]. Pipage rounding is a method that maps a fractional solution
x ∈ [0, 1]m into an integral one xint ∈ {0, 1}m, in a way that does not decrease the
expected value of the objective function; here the fractional solution x ∈ [0, 1]m

is viewed as a (product) distribution over the index set [m].
Hence, the core of the analysis of this algorithm is to compute the expected �-

coverage, ES∼x

[
C(�)(S)

]
, and relate it to the optimal value of the linear program

(which, of course, upper bounds the value of an integral, optimal solution).
With a careful use of convexity, one can establish that the analytic form of this
expectation corresponds to the expected value of a binomial random variable
truncated at �.

To obtain the claimed approximation ratio (which, as mentioned above, has
a Poisson interpretation), one would like to use the well-known Poisson approx-
imation for binomial distributions. However, this convergence statement is only
asymptotic and thus will lead to an error term that will depend on the size of the
problem instance and on the value of �. One can alternatively try to compare the
two distributions using the natural notion of stochastic domination. It turns out
that indeed a binomial distribution can be stochastically dominated by a Poisson
distribution, but this again cannot be used in our setting for two reasons: there
is a loss in terms of the underlying parameters (and, hence, this cannot lead to
a tight approximation factor) and more importantly the inequality goes in the
wrong direction.1

1 Here, the Poisson distribution stochastically dominates the binomial. Hence, instead
of a lower bound, we obtain an upper bound.

Tight Approximation Bounds for Maximum Multi-coverage 69

The right tool for us turns out to be the notion of convex order between
distributions. It expresses the property that one distribution is more “spread”
than the other. While this notion has found several applications in statistics,
economics, and other related fields (see [25] and references therein), to the best
of our knowledge, its use in the context of analyzing approximation algorithms
is novel. In particular, it leads to tight comparison inequalities between bino-
mial and Poisson distributions, even in non-asymptotic regimes (see Lemma 1).
Overall, using this tool we are able to obtain optimal approximation guarantees
for all values of �.

We also note that our algorithmic result directly generalizes to the weighted
version of maximum �-coverage and we can replace the constraint |S| ≤ k by
a matroid constraint S ∈ M; here, M is any matroid that admits an efficient,
optimization algorithm (equivalently, any matroid whose basis polytope admits
an efficient separation oracle). To keep the exposition simple, we conform to the
unweighted case and to the cardinality constraint |S| ≤ k.

Hardness Result. We now give a brief description of our hardness result and the
techniques used to establish it. In [13], the (1 − 1/e) inapproximability of the
standard maximum coverage problem was shown using the tight lnn inapprox-
imability of the set cover problem, which in turn was obtained via a reduction
from a variant of MAX-3-SAT. However, in our setting, one cannot hope to
show tight inapproximability for the maximum �-multi-coverage problem by a
similar sequence of reductions. This is because, as detailed in Sect. 1.2, the multi-
coverage analogue of the set cover problem is as inapproximable as the usual set
cover problem. Therefore, one cannot hope to directly reuse the arguments from
Feige’s reduction in order to get tight inapproximability for the maximum �-
multi-coverage problem. We bypass this by developing a direct reduction to the
maximum �-multi-coverage problem without going through the set cover variant.

Our reduction is from an h-ary hypergraph variant of UniqueGames [19,20],
which we call h-AryUniqueGames. Here the constraints are given by h-uniform
hyperedges on a vertex set V with a label set Σ. A salient feature of the h-
AryUniqueGames, which is crucially used in our reduction, is that it involves
two distinct notions of satisfied hyperedges, namely strongly and weakly satisfied
hyperedges. A labeling σ : V 	→ Σ strongly satisfies a hyperedge e = (vi)i∈[h]

if all the labels project to the same alphabet, i.e., πe,v1(σ(v1)) = πe,v2(σ(v2)) =
· · · = πe,v3(σ(vh)). We say a labelling σ weakly satisfies the hyperedge e if
at least two of the projected labels match, i.e., πe,vi

(σ(vi)) = πe,vj
(σ(vj)) for

some i, j ∈ [h], i �= j. For these instances, the equivalent form of the Unique
Games Conjecture is the following: It is NP-Hard to distinguish between whether
(YES): most hyperedges can be strongly satisfied, or (NO): even a small fraction
of hyperedges cannot be weakly satisfied.

We employ the above variant of UniqueGames with a generalization
of Feige’s partitioning gadget, which has been tailored to work with the �-
coverage objective C(�)(·). This gadget is essentially a collection of s set families
P1,P2, . . . ,Ps over a universe [n̂] satisfying (i) Each family Pi is a collection
of sets such that each element in [n̂] is covered exactly �-times, i.e., it has

70 S. Barman et al.

(normalized) �-coverage 1 (ii) Any choice of sets S1, S2, . . . , Sh from distinct
families has �-coverage at most ρ� (the target approximation ratio). We combine
the h-AryUniqueGames instance with the partitioning gadget by associating
each hyperedge constraint with a disjoint copy of the gadget. The construction
of the set family in our reduction ensures that sets corresponding to strongly
satisfied edges use property (i), whereas sets corresponding to not even weakly
satisfied hyperedges use property (ii). Since in the YES case, most hyperedges
can be strongly satisfied, we get that there exists a choice of sets for which the
normalized �-multi-coverage is close to 1. On the other hand, in the NO case,
since most hyperedges are not even weakly satisfied, for any choice of sets, the
normalized �-multi-coverage will be at most ρ�. Combining the two cases gives
us the desired inapproximability. Due to space limitations, we do not discuss
further the hardness result here and we refer to the full version [3] for the proof.

1.2 Related Covering Problems and Submodular Function
Maximization

Another fundamental problem in the covering context is the set cover problem:
given subsets T1, . . . , Tm of a universe [n], the objective is to find a set S ⊆ [m] of
minimum cardinality that covers all of n, i.e., C(S) = ∪i∈STi = [n]. This is one of
the first problems for which approximation algorithms were studied: Johnson [18]
showed that the natural greedy algorithm achieves an approximation ratio of
1 + ln n and much later Feige [13], building on a long line of works, established
a matching inapproximability result.

Along the lines of maximum coverage, one can also consider the �-version of
set cover. In this version, the goal is to find the smallest set S such that C(�)(S) =
�n (this corresponds to every element being covered at least � times). Here,
with � > 1, we observe an interesting dichotomy: while one achieves improved
approximation guarantees for the maximum �-multi-coverage, this is not the case
for set �-cover. In particular, set �-cover is essentially as hard as to approximate
as the standard set cover problem. To see this, consider the instance where F (�)

is obtained from F by adding � − 1 copies of the whole set [n]. Then, we have
that [n] can be 1-covered with k sets in F if and only if [n] can be �-covered with
k + � − 1 sets in F (�).

A well-studied generalization of the set cover problem, called the set multi-
cover problem, requires element e ∈ [n] to be covered at least de times, where the
demand de is part of the input. The greedy algorithm was shown to also achieve
1 + lnn approximation for this problem as well [9,24]. Even though there has
been extensive research on set multicover, its variants, and applications (see
e.g., [4,6,17] and references therein), we are not aware of any previous work that
considers the maximum multi-coverage problem.

The problem of maximum coverage fits within the larger framework of sub-
modular function maximization [22]. In fact, the covering function C : 2[n] → R

is submodular in the sense that it satisfies a diminishing-returns property:
C(S ∪ {i}) − C(S) ≥ C(S′ ∪ {i}) − C(S′) for any S ⊆ S′ and i /∈ S′. Nemhauser
et al. [22] showed that the greedy algorithm achieves the ratio 1 − e−1 not only

Tight Approximation Bounds for Maximum Multi-coverage 71

for the coverage function C but for any (monotone) submodular function. Sub-
modular functions are a central object of study in combinatorial optimization
and appear in a wide variety of applications; we refer the reader to [21] for a
textbook treatment of this topic. Here, an important thread of research is that
of maximizing submodular functions that have an additional structure which
render them closer to linear functions. Specifically, the notion of curvature of a
function was introduced by [7]. The curvature of a monotone submodular func-
tion f : 2[m] → R is a parameter c ∈ [0, 1] such that for any S ⊂ [m] and j /∈ S,
we have f(S ∪ {j}) − f(S) ≥ (1 − c)f({j}). Note that if c = 0, this means that
f is a linear function and if c = 1, the condition is mute.

Conforti and Cornuéjols [7] have shown that when the greedy algorithm is
applied to a function with curvature c, the approximation guarantee is 1

c (1−e−c).
Using a different algorithm, this was later improved by Sviridenko et al. [26] to
a factor of approximately 1− c

e . This notion of curvature does have applications
in some settings (see e.g., [26] and references therein), but the requirement is
too strong and does not apply to the �-coverage function C(�). In fact, if S is
such that the sets Ti for i ∈ S cover all the universe at least � times, then adding
another set Tj will not change the function C(�). Another way to see that this
condition is not adapted to our �-coverage problem is that we know that the
greedy algorithm will not be able to beat the factor 1 − e−1 for any value of
�. We hope that this work will help in establishing a more operational way of
interpolating between general submodular functions and linear functions.

1.3 Applications

We now briefly discuss some applications of the �-coverage problem, the main
message being that for most settings where coverage is used, �-coverage has a
very natural and meaningful interpretation as well. We leave the more detailed
discussion of such applications for future work.

Our initial motivation for studying the maximum multi-coverage problem
was in understanding the complexity of finding the code for which the list-
decoding success probability is optimal. More precisely, consider a noisy channel
with input set X and output set Y that maps an input x ∈ X to y ∈ Y with
probability W (y|x). To simplify the discussion, assume that for any input x, the
output is uniform on a set Tx of size t, i.e., W (y|x) = 1

t if y ∈ Tx and 0 otherwise.
We would like to send a message m belonging to the set {1, . . . , k} using this
noisy channel in such a way to maximize the probability of successfully decoding
the message m. It is elementary to see that this problem can be written as one
of maximizing the quantity 1

tk | ∪x∈S Tx| over codes S ⊆ X of size k [2]. Thus,
the problem of finding the optimal code can be written as a covering problem,
and handling general noisy channels corresponds to a weighted covering problem.
This connection was exploited in [2] to prove tightness of the bound known as the
meta-converse in the information theory literature [23] and to give limitations
on the effect of quantum entanglement to decrease the communication errors.
Suppose we now consider the list-decoding success probability, i.e., the receiver
now decodes y into a list of size � and we deem the decoding successful if m is in

72 S. Barman et al.

this list. Then the success probability can be written as: 1
tk

∑
y∈Y min{�, |{x ∈

S : y ∈ Tx}|}, i.e., an �-coverage function. Our main result thus shows that the
code with the maximum list-decoding success probability can be approximated
to a factor of ρ� = 1− ��e−�

�! and it shows that the meta-converse for list-decoding
is tight within the factor ρ�.

The applicability of the multi-coverage can also be observed in game-theoretic
settings in which the (standard) covering function is used to represent valuations
of agents; see, e.g., works on combinatorial auctions [10,11]. As a stylized instan-
tiation, consider a setup wherein the elements in the ground set represent types of
goods and the given subsets correspond to bundles of goods (of different types).
Assuming that, for each agent, goods of a single type are perfect substitutes of
each other, one obtains valuations (defined over the bundles) that correspond
to covering functions. In this context, the �-multi-coverage formulation provides
an operationally-useful generalization: additional copies (of the same type of the
good) are valued, till a threshold �. Indeed, our algorithmic result shows that
if the diminishing-returns property does not come into effect right away, then
better (compared to 1 − e−1) approximation guarantees can be obtained.

2 Approximation Algorithm for the �-Multi-coverage
Problem

The algorithm we analyze is simple and composed of two steps (relax and round):
First, we solve the natural linear programming relaxation (see Eq. (1)) obtaining
a fractional, optimal solution x∗ ∈ [0, 1]m, which satisfies

∑
i∈[m] x

∗
i = k. The

second step is to use pipage rounding to find an integral vector xint ∈ {0, 1}m

with the property that
∑

i∈[m] x
int
i = k. This is the size-k set returned by the

algorithm, S = {i ∈ [m] : xint
i = 1}. These two steps are detailed below.

Step 1. Solve the Linear Programming Relaxation: Specifically, we consider the
following linear programming relaxation of the �-multi-coverage problem. Here,
with the given collection of sets F = {T1, T2, . . . , Tm}, the set Γe := {i ∈ [m] :
e ∈ Ti} denotes the indices of Tis that contain the element e.

max
x,c

∑

e∈[n]

ce

subject to ce ≤ � ∀e ∈ [n]

ce ≤
∑

i∈Γe

xi ∀e ∈ [n]

0 ≤ xi ≤ 1 ∀i ∈ [m]
m∑

i=1

xi = k.

(1)

In this linear program (LP), the number of variables is n + m and the number
of constraints is O(n + m) and, hence, an optimal solution can be found in
polynomial time.

Tight Approximation Bounds for Maximum Multi-coverage 73

Step 2. Round the fractional, optimal solution: We round the computed frac-
tional solution x∗ by considering the multilinear extension of the objective,
and applying pipage rounding [1,5,27] on it. Formally, given any function
f : {0, 1}m → R, one can define the multilinear extension F : [0, 1]m → R

by F (x1, . . . , xm) := E
[
f(X1, . . . , Xm)

]
, where X1, . . . , Xm ∈ {0, 1} are inde-

pendent random variables with Pr
[
Xi = 1

]
= xi.

For a submodular function f , one can use pipage rounding to transform, in
polynomial time, any fractional solution x ∈ [0, 1]m satisfying

∑
i∈[m] xi = k into

an integral vector xint ∈ {0, 1}m such that
∑

i∈[m] x
int
i = k and F (xint) ≥ F (x).

We apply this strategy for the �-coverage function and the fractional, optimal
solution x∗ of the LP relaxation (1). It is simple to check that the �-coverage
function C(�) is submodular. We thus get the following lower bound for the
�-coverage value of the set returned by the algorithm:2

C(�)(xint) = E(X1,...,Xm)∼(xint
1 ,...,xint

m)

[
C(�)(X1, . . . , Xm)

]

≥ E(X1,...,Xm)∼(x∗
1 ,...,x∗

m)

[
C(�)(X1, . . . , Xm)

]
.

To conclude it suffices to relate E(X1,...,Xm)∼(x∗
1 ,...,x∗

m)

[
C(�)(X1, . . . , Xm)

]
to

the value taken by the LP at the optimal solution x∗ = (x∗
1, . . . , x

∗
m). In partic-

ular, Theorem 1 directly follows from the following result (Theorem 3), which
provides a lower bound in terms of the value achieved by the LP relaxation.

Indeed, this deterministic algorithm is quite direct: it simply solves a linear
program and applies pipage rounding. We consider this as a positive aspect of
the work and note that our key technical contribution lies in the underlying
analysis; specifically, Theorem 3.

Theorem 3. Let x ∈ [0, 1]m and c ∈ [0, 1]n constitute a feasible solution of the
LP relaxation (1). Then we have,

E(X1,...,Xm)∼(x1,...,xm)

[
C(�)(X1, . . . , Xm)

] ≥ ρ�

∑

e∈[n]

ce

where ρ� is defined by

ρ� := 1 − ��

�!
e−�. (2)

2.1 Proof Sketch of Theorem3

To prepare for the proof, we need to establish some useful properties of the
quantity ρ�. As mentioned previously, ρ� has an interpretation as the expectation
of some function applied to a Poisson random variable. However, for the analysis
of the algorithm, we need to relate ρ� to the expectation of this function applied
to a Binomial random variable. In order to do this we use the following lemma.

2 That is, a lower bound for the �-coverage value of the size-k set {i ∈ [m] : xint
i = 1}.

74 S. Barman et al.

Lemma 1. For any convex function f , any integer N ≥ 1 and parameter p ∈
[0, 1], we have

E
[
f(Bin(N, p))

] ≤ E
[
f(Poi(Np))

]
. (3)

Proof. The notion of convex order between two distributions is defined as follows.
If X and Y are random variables, we say that X ≤cvx Y whenever E

[
f(X)

] ≤
E

[
f(Y)

]
holds for any convex function f : R → R. We refer the reader to [25,

Section 3.A] for more information and properties of this order.
As a result, the lemma will follow once we show that

Bin(N, p) ≤cvx Poi(Np). (4)

First, we note that it suffices to prove this inequality for N = 1; this is a direct
consequence of the fact that the convex order is closed under convolution [25,
Theorem 3.A.12] (i.e., it is closed under the addition of independent random
variables).3

Now, using [25, Theorem 3.A.2], we have that Eq. (4) for N = 1 is equivalent
to showing that E

[|Ber(p) − a|] ≤ E
[|Poi(p) − a|] for any a ∈ R. This follows

from a simple case analysis.

We now state the main lemma and give a sketch for its proof. We refer to
the full version for the complete argument.

Lemma 2. Let x ∈ [0, 1]m and c ∈ [0, 1]n constitute a feasible solution of the
linear program (1). Then, we have for any e ∈ [n]:

E(X1,...,Xm)∼(x1,...,xm)

[
C(�)

e (X1, . . . , Xm)
] ≥ ρ�ce.

Proof (sketch). To make the notation lighter, we write C
(�)
e = C

(�)
e (X1, . . . , Xm)

with indicators Xi ∼ Ber(xi). Recall that C
(�)
e = min{�,

∑
i∈Γe

Xi}, where Γe :=
{i ∈ [m] : e ∈ Ti} denotes the indices of all the given subsets Ti ∈ F that contain
the element e.

The tail-sum formula gives us

E
[
C(�)

e

]
=

�∑

a=1

Pr
[∑

i∈Γe

Xi ≥ a
]

= � −
�−1∑

a=0

(� − a) Pr
[∑

i∈Γe

Xi = a
]
.

Now we can apply a standard lemma in the context of approximation algorithms
(see e.g., [14]) and get that the expression for E

[
C

(�)
e

]
is minimum when for all

3 Recall that if X and Y are independent, Poisson random variables with rate param-
eters λ1 and λ2, respectively, then X + Y is Poisson-distributed with parameter
λ1 + λ2.

Tight Approximation Bounds for Maximum Multi-coverage 75

i ∈ Γe, xi ∈ {0, 1, q} for some q ∈ (0, 1). We now assume x has this form. Let
� be the number of elements i ∈ Γe such that xi = 1. In this proof sketch, we
assume � = 0. We can write

E
[
C(�)

e

]
= � −

�−1∑

a=0

(� − a) Pr
[∑

i∈Γe

Xi = a
]
.

We write t for the number of elements i ∈ Γe such that xi = q; hence,∑
i∈Γe

xi = qt.
Note that

∑
i∈Γe

Xi has a binomial distribution with parameters t and q. We
can then write

E
[
C(�)

e

]
= � −

�−1∑

a=0

(� − a)
(

t

a

)

qa(1 − q)t−a

≥ � −
�−1∑

a=0

(� − a)
(

t

a

) (ce

t

)a (
1 − ce

t

)t−a

,

where we used the fact that this expression is increasing in q together with the
inequality ce ≤ qt (this follows from the linear program (1)). Using the fact that
the function x 	→ ∑�−1

a=0(� − a)
(

t
a

) (
x
t

)a (
1 − x

t

)t−a is convex in the interval [0, t]
together with properties of the quantity ρ� that follow from Lemma 1, we finally
get

E
[
C(�)

e

] ≥ ρ�ce .

3 Concluding Remarks

Generalizing the results of this paper, it would be interesting to consider the
general setting where c copies have a value ϕ(c) for some function ϕ, and identify
what properties of ϕ lead to better approximation bounds. More generally, we
believe that our work paves the way towards an operationally motivated notion of
submodularity that interpolates between linear functions and completely general
submodular functions. The previously mentioned notion of curvature studied
in [7,26] does this interpolation but the definition is unfortunately too restrictive
and thus difficult to interpret operationally.

Another interesting question is whether there exists combinatorial algorithms
that achieve the approximation ratio ρ� for maximum �-coverage for � ≥ 2. For
� = 1, the simple greedy algorithm does the job, but as we observed previously,
the greedy algorithm continues to provide a 1 − e−1 approximation ratio even
for � ≥ 2. Hence, an interesting direction of future work is to understand if the
greedy algorithm can be generalized to obtain an approximation ratio better
than 1 − e−1.

76 S. Barman et al.

References

1. Ageev, A.A., Sviridenko, M.I.: Pipage rounding: a new method of constructing
algorithms with proven performance guarantee. J. Comb. Optim. 8(3), 307–328
(2004)

2. Barman, S., Fawzi, O.: Algorithmic aspects of optimal channel coding. IEEE Trans.
Inform. Theory (2018). arXiv:1508.04095

3. Barman, S., Fawzi, O., Ghoshal, S., Gürpınar, E.: Tight approximation bounds for
maximum multi-coverage (2019). arXiv:1905.00640

4. Berman, P., DasGupta, B., Sontag, E.: Randomized approximation algorithms
for set multicover problems with applications to reverse engineering of protein and
gene networks. Discrete Appl. Math. 155(6), 733–749 (2007). https://doi.org/
10.1016/j.dam.2004.11.009. http://www.sciencedirect.com/science/article/pii/S01
66218X06003659. Computational Molecular Biology Series, Issue V

5. Calinescu, G., Chekuri, C., Pál, M., Vondrák, J.: Maximizing a monotone submod-
ular function subject to a matroid constraint. SIAM J. Comput. 40(6), 1740–1766
(2011)

6. Chekuri, C., Clarkson, K.L., Har-Peled, S.: On the set multicover problem in geo-
metric settings. ACM Trans. Algorithms (TALG) 9(1), 9 (2012)

7. Conforti, M., Cornuéjols, G.: Submodular set functions, matroids and the greedy
algorithm: tight worst-case bounds and some generalizations of the Rado-Edmonds
theorem. Discrete Appl. Math. 7(3), 251–274 (1984)

8. Cornuejols, G., Fisher, M.L., Nemhauser, G.L.: Location of bank accounts to opti-
mize float: an analytic study of exact and approximate algorithms. Manag. Sci.
23(8), 789–810 (1977). https://doi.org/10.1287/mnsc.23.8.789

9. Dobson, G.: Worst-case analysis of greedy heuristics for integer programming with
nonnegative data. Math. Oper. Res. 7(4), 515–531 (1982)

10. Dobzinski, S., Schapira, M.: An improved approximation algorithm for combinato-
rial auctions with submodular bidders. In: Proceedings of the Seventeenth Annual
ACM-SIAM Symposium on Discrete Algorithm, pp. 1064–1073. Society for Indus-
trial and Applied Mathematics (2006)

11. Dughmi, S., Roughgarden, T., Yan, Q.: Optimal mechanisms for combinatorial
auctions and combinatorial public projects via convex rounding. J. ACM (JACM)
63(4), 30 (2016)

12. Dughmi, S., Vondrák, J.: Limitations of randomized mechanisms for combinatorial
auctions. In: Proceedings of the 2011 IEEE 52nd Annual Symposium on Founda-
tions of Computer Science (FOCS 2011), pp. 502–511. IEEE Computer Society,
Washington, DC (2011). https://doi.org/10.1109/FOCS.2011.64

13. Feige, U.: A threshold of ln n for approximating set cover. J. ACM 45(4), 634–652
(1998)

14. Feige, U.: On maximizing welfare when utility functions are subadditive. SIAM J.
Comput. 39(1), 122–142 (2009)

15. Feldman, V., Kothari, P.: Learning coverage functions and private release of
marginals. In: Conference on Learning Theory, pp. 679–702 (2014)

16. Hochbaum, D.S.: Approximating covering and packing problems: set cover, vertex
cover, independent set, and related problems. In: Approximation Algorithms for
NP-Hard Problem, pp. 94–143. PWS Pub. (1997)

17. Hua, Q.-S., Yu, D., Lau, F.C.M., Wang, Y.: Exact algorithms for set multicover
and multiset multicover problems. In: Dong, Y., Du, D.-Z., Ibarra, O. (eds.) ISAAC
2009. LNCS, vol. 5878, pp. 34–44. Springer, Heidelberg (2009). https://doi.org/10.
1007/978-3-642-10631-6 6

http://arxiv.org/abs/1508.04095
http://arxiv.org/abs/1905.00640
https://doi.org/10.1016/j.dam.2004.11.009
https://doi.org/10.1016/j.dam.2004.11.009
http://www.sciencedirect.com/science/article/pii/S0166218X06003659
http://www.sciencedirect.com/science/article/pii/S0166218X06003659
https://doi.org/10.1287/mnsc.23.8.789
https://doi.org/10.1109/FOCS.2011.64
https://doi.org/10.1007/978-3-642-10631-6_6
https://doi.org/10.1007/978-3-642-10631-6_6

Tight Approximation Bounds for Maximum Multi-coverage 77

18. Johnson, D.S.: Approximation algorithms for combinatorial problems. J. Comput.
Syst. Sci. 9(3), 256–278 (1974)

19. Khot, S.: On the power of unique 2-prover 1-round games. In: Proceedings of the
Thirty-Fourth Annual ACM Symposium on Theory of Computing, pp. 767–775.
ACM (2002)

20. Khot, S., Vishnoi, N.K.: On the unique games conjecture. In: FOCS, vol. 5, p. 3
(2005)

21. Krause, A., Golovin, D.: Submodular function maximization. In: Tractability: Prac-
tical Approaches to Hard Problems, vol. 3, p. 19 (2012)

22. Nemhauser, G.L., Wolsey, L.A., Fisher, M.L.: An analysis of approximations for
maximizing submodular set functions. Math. Program. 14(1), 265–294 (1978)

23. Polyanskiy, Y., Poor, H.V., Verdú, S.: Channel coding rate in the finite blocklength
regime. IEEE Trans. Inf. Theory 56(5), 2307–2359 (2010)

24. Rajagopalan, S., Vazirani, V.V.: Primal-dual RNC approximation algorithms for
set cover and covering integer programs. SIAM J. Comput. 28(2), 525–540 (1998)

25. Shaked, M., Shanthikumar, J.G.: Stochastic Orders. Springer, New York (2007).
https://doi.org/10.1007/978-0-387-34675-5

26. Sviridenko, M., Vondrák, J., Ward, J.: Optimal approximation for submodular
and supermodular optimization with bounded curvature. Math. Oper. Res. 42(4),
1197–1218 (2017)

27. Vondrák, J.: Submodularity in combinatorial optimization (2007)

https://doi.org/10.1007/978-0-387-34675-5

Implementing Automatic Benders
Decomposition in a Modern MIP Solver

Pierre Bonami1(B), Domenico Salvagnin2, and Andrea Tramontani3

1 CPLEX Optimization, IBM, Madrid, Spain
pierre.bonami@es.ibm.com

2 DEI, Via Gradenigo, 6/B, 35131 Padova, Italy
3 CPLEX Optimization, IBM, Bologna, Italy

Abstract. We describe the automatic Benders decomposition imple-
mented in the commercial solver IBM CPLEX. We propose several
improvements to the state-of-the-art along two lines: making a numer-
ically robust method able to deal with the general case and improving
the efficiency of the method on models amenable to decomposition. For
the former, we deal with: unboundedness, failures in generating cuts and
scaling of the artificial variable representing the objective. For the latter,
we propose a new technique to handle so-called generalized bound con-
straints and we use different types of normalization conditions in the Cut
Generating LPs. We present computational experiments aimed at assess-
ing the importance of the various enhancements. In particular, on our
test bed of models amenable to a decomposition, our implementation
is approximately 5 times faster than CPLEX default branch-and-cut.
A remarkable result is that, on the same test bed, default branch-and-
cut is faster than a Benders decomposition that doesn’t implement our
improvements.

1 Introduction

Benders decomposition was originally proposed in [5] to solve Mixed Integer
Programs (MIP). The decomposition consists in splitting the original problem
between a master problem, that consists of the integer variables of the original
problem and possibly some additional continuous variables, and a Cut Generat-
ing Linear Program (CGLP) formulated in the space of the remaining variables.
As originally stated, Benders method is iterative. At each step, the master is
first solved to optimality. The CGLP is then constructed using the solution of
master and solved: from its solution cuts for the master are derived (Benders
cuts herein). This process is repeated until no cuts are found by the CGLP. The
theorem of Benders guarantees that at this point the original problem is solved
to optimality.

Benders decomposition is more often applied to MIPs where the CGLP con-
straint matrix has a block diagonal structure and can be further decomposed
into smaller problems. Among the numerous applications the most notable are
Facility Location [11,12], Network Design [15] and Stochastic Optimization [6].
c© Springer Nature Switzerland AG 2020
D. Bienstock and G. Zambelli (Eds.): IPCO 2020, LNCS 12125, pp. 78–90, 2020.
https://doi.org/10.1007/978-3-030-45771-6_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-45771-6_7&domain=pdf
https://doi.org/10.1007/978-3-030-45771-6_7

Implementing Automatic Benders Decomposition in a Modern MIP Solver 79

In the last decades, a vast body of research has examined every step of Ben-
ders decomposition. A recent and comprehensive survey can be found in [24].
Here, we overview the literature most relevant to our work. First, a feasible
solution of the master problem is not needed to generate a Benders cut. An
initial good set of cuts can usually be found by solving the initial LP relaxation
of the problem by Benders decomposition [21]. More generally, in branch-and-
cut, Benders cuts can be separated at any node of the search tree. Second,
several computational studies (e.g., [4,11]) have shown that a simple stabiliza-
tion mechanism for the cutting plane loop allows to significantly improve the
effectiveness of the method. Finally, most of the research has been devoted to
separating non-dominated or even facet defining Benders cuts. For the case where
the CGLP is feasible and bounded, [20] proposes to solve two LPs to guaran-
tee non-domination. In [23], this approach was improved and it was shown that
non-domination can be obtained with a single LP. For the infeasible case, in [14]
a normalization was proposed based on the concept of minimal infeasible sub-
system.

For the applications mentioned above, Benders decomposition is often the
only method able to solve problems of realistic size. Most implementations in the
scientific literature or in the industry are ad-hoc implementations for a specific
class of problems. In this paper, we report on the automatic Benders decom-
position solver implemented in CPLEX [17]. Our goal is to have a numerically
robust implementation that can be used as a black-box on any MIP, and that is
competitive on the classes of problems where Benders decomposition has been
reported to be useful in practice.

To achieve this goal our main contributions are: applying a generic stabi-
lization procedure to solve the initial Benders cut loop efficiently, dealing with
cases of unboundedness, dealing with numerical stability of Benders cuts and
artificial variables, handling of linking constraints with special structure to sim-
plify the CGLP, and applying normalizations to find “good” Benders cuts when
the CGLP is infeasible. Our computational results show that the resulting algo-
rithm is considerably faster than default branch-and-cut on models amenable
to decomposition, and that the algorithmic enhancements we propose have a
dramatic effect.

The outline of the paper is as follows: in Sect. 2, we outline the overall Benders
decomposition algorithm, setting up the required notation. In Sect. 3, we detail
enhancements to the construction of the master problem and overall numerical
stability of the procedure. In Sect. 4, we describe the improvements to solving
the CGLP mentioned above. Finally, in Sect. 5 we computationally evaluate our
algorithm and we analyze the effect of the different algorithmic ideas we propose.

2 Benders Decomposition

In this section we briefly outline the Benders decomposition algorithm. Most
textbooks use the so-called dual space of the CGLP, which has the advantage
of directly expressing coefficients for the Benders cuts. However, as noted in the

80 P. Bonami et al.

original paper [5], it is often computationally more convenient to work in the
primal space, i.e., the space in which the problem is originally formulated. The
implementation in CPLEX is entirely done in the primal space, and we believe
it is also a simpler way to view the method. We will use this point of view in
the remainder. We consider a MIP of the form:

min cx + dy (1)
Ax ≥ b, (2)

Tx + Qy ≥ r, (3)
x, y ≥ 0 and x ∈ Z

n, (4)

where c ∈ Q
n, d ∈ Q

p, A ∈ Q
m1×n, T ∈ Q

m2×n, and Q ∈ Q
m2×p. The decom-

position starts by creating the master problem. It involves the x variables and
an additional variable η representing the contribution to the objective of the y
variables:

min cx + η (5)
Ax ≥ b, (6)

<Benders cuts>, (7)
x ∈ Z

n
+, η free. (8)

Some of the x variables could be continuous without significantly changing the
method. Note that the set of Benders cuts (7) is initially empty. Also, at any
point we can assume that (5)–(8) is feasible, otherwise the original problem is
proven infeasible and the method is stopped.

Given a solution (x∗, η∗) to the master problem, the CGLP tries to find a
feasible y satisfying the linking constraints (3) for fixed x = x∗. The following
lemma details how the CGLP is defined and how it is used to either derive a
Benders cut, or conclude optimality.

Lemma 1 (Benders Theorem [5]). Let (x∗, η∗) be an optimal solution of
(5)–(8) and define the CGLP:

min dy (9)
Tx∗ + Qy ≥ r (10)

y ≥ 0. (11)

(i) If (9)–(11) is infeasible, then there exists π ∈ Q
m2
+ such that

πTx ≥ πr (12)

is valid and πTx∗ < πr.
(ii) If (9)–(11) has a finite optimum y∗, then: Either dy∗ ≤ η∗ and (x∗, y∗) is

optimal for (1)–(4). Otherwise, there exists π ∈ Q
m2
+ such that

η + πTx ≥ πr (13)

is valid and cuts off (x∗, η∗).

Implementing Automatic Benders Decomposition in a Modern MIP Solver 81

Although the result is well known, we give a short proof in the appendix.
The two cuts (12) and (13) defined in Lemma 1 are the so-called Benders

cuts. The former is the feasibility cut and the latter the optimality cut. After
the CGLP is solved, if a cut has been derived, it can be added to the master
problem, and the method is iterated. Otherwise, (1)–(4) is solved. Note that we
have neglected the particular case where the master problem is unbounded. We
will deal with it in Sect. 3.

Before proceeding to our implementation of this procedure, two remarks are
in order. First, as noted in the introduction, the CGLP is often itself decom-
posable (Q is block diagonal). In this case, introducing an η variable for each
block, the CGLP can be split into smaller problems and each one may give a
cut. Second, the procedure outlined doesn’t require solving (5)–(8) to optimality
before solving the CGLP. Instead, in a branch-and-cut algorithm, the CGLP
can be solved every time an integer feasible solution for (5)–(8) is encountered.
Either this solution is cut and the search can proceed or it is not cut and it is
indeed also feasible for (1)–(4).

3 The Master Problem

The overall Benders decomposition algorithm implemented in CPLEX follows
the algorithm described in the previous section. In this section, we detail in
particular how the master problem is constructed. Here is the main workflow of
the method:
1. A decomposition of the complete model (1)–(4) is detected. If the user pro-

vided a decomposition (via annotations [17]), then CPLEX will decompose
the model according to it. Otherwise, it performs an automatic split, in which
integer variables are assigned to the master, while continuous variables are
assigned to the CGLP. The latter is eventually split into several indepen-
dent CGLPs if a block decomposition can be detected. This detection is very
efficient, as it is linear in the number of nonzeros of the CGLP matrix.

2. The complete model (1)–(4) is presolved using CPLEX regular MIP presolve
(only reductions that may invalidate the decomposition previously identified
are disabled). This step is applied before actually decomposing the problem
because more reductions are typically found on the complete model and pre-
solve is usually cheap enough that it can be done on the full model.

3. The presolved model is decomposed according to the decomposition identified
at Step 1.

4. An initial stabilized Benders cut loop is executed on the LP relaxation of
the problem. The rationale is to warm start the Benders search with a tighter
approximation of the projection of the complete model, so that the subsequent
search can benefit from it. We detail the stabilization procedure below.

5. Once the initial Benders cut loop is over, a regular branch-and-cut is started
from the current master. This is pretty much a regular MIP solve, but in
which Benders cuts are separated on the fly as lazy constraints.

To deal with all challenges in maintaining a numerically stable master problem,
several additional ingredients are needed. We detail them in the next paragraphs.

82 P. Bonami et al.

Stabilization of Initial Cut Loop. Stabilization is obtained using an in-
out strategy [4,11]. Briefly, this consists in not trying to separate the optimal
solution of the LP relaxation (x∗, η∗) of (5)–(8), but using instead a suitable
convex combination of (x∗, η∗) and a point (x0, η0) that is in the relative interior
of the projection of the feasible region of (1)–(4) onto the variables (x, η). The
point (x0, η0) is called the core point. The in-out strategy performs a binary
search on the line segment joining (x0, η0) and (x∗, η∗), until a violated cut is
found. In applications, the corepoint is usually obtained by exploiting the specific
structure of the problem. In our generic framework, we compute it by solving
the LP relaxation of the complete model without the objective and using the
barrier algorithm without crossover. This is to attempt to get a point close to
the analytic center of the LP relaxation of (1)–(4).

Cut Violation. A key decision for the soundness (and numerical stability) of
the overall decomposition is the strategy used to decide when a master solution
(x∗, η∗) is violated or not by a Benders cut. As CPLEX is based on floating point
arithmetic, tolerances are needed. For optimality cuts, the violation of a cut
has a natural interpretation: it is the amount by which the artificial variable η∗

underestimates the contribution of the CGLP variables to the objective function.
As such, for optimality cuts we use the regular optimality tolerance used by the
solver. For feasibility cuts, there is no such natural interpretation, and any scaling
of feasibility cuts is arbitrary. Therefore, we consider a master solution (x∗, η∗)
to be violated if and only if the corresponding CGLP is infeasible (according to
the regular feasibility tolerances) regardless of whether we are actually able to
derive a sufficiently violated feasibility cut out of it. This is also consistent with
what a regular B&C algorithm would have done on the complete model.

Another key aspect is what to do if we fail to derive a cut. When the issue is
on the CGLP side, sometimes it can pay off to resolve the CGLP from scratch
(possibly forcing a different LP algorithm), and reconstruct the cut. However, in
some cases the cut is inherently bad, e.g., when the cut returned by the CGLP is
violated but its dynamism is such that it cannot be added to master. In this case,
the current master solution is still flagged as invalid, and we act as follows. If the
master solution comes from a heuristic, we just discard the solution. If it comes
from a node, we have no choice but to branch on a non-fractional variable, unless
we already reached a leaf of the enumeration tree. If we are at a leaf of the tree,
and there are no continuous variables (except the artificial η) in master, we can
still prune the node. However, this would not be correct if there are structural
continuous variables in master, so in this latter case we have no choice but to
abort with a numerical failure.

Scaling of the Variable η in Optimality Cuts. Another aspect where the
method may fail for numerical reasons is the scaling of η in optimality cuts.
Note that in (13) the coefficient of η is 1 by construction. Depending on the
contribution of the y variables to the objective this can pose severe problems in
the numerical behavior of the method. If the coefficients πT for the variables x in
the cuts are very large or very small, an LP solver using floating point arithmetic

Implementing Automatic Benders Decomposition in a Modern MIP Solver 83

might not be able to handle them correctly. In such a case it is possible to scale
η to get more numerically stable cuts. In particular, we can define η so that
instead of being equal to dy, it is a fraction of it, i.e., αη = dy. The derivation of
a cut is the same as before, except that in the aggregation used to construct the
optimality cut we now use the inequality dy ≤ αη leading to the cut αη+πTx ≥
πr. Of course all optimality cuts must share the same scaling for η while the
coefficients for x may be vastly different among them. Therefore choosing an
appropriate value for α is not trivial. In our implementation, we define α to
be equal to the largest coefficient for an x variable in the first optimality cut
derived. Note that α could be dynamically rescaled in the procedure but our
simple attempt did not find any advantage to it.

Cutting a Ray. Finally, a case that we left out in Sect. 2 is the separation
of cuts when master is unbounded. In most of the literature this is excluded
by construction, but CPLEX has to deal with the general case. Denote with P
and R the continuous relaxations of (1)–(4) and (5)–(8), respectively. When R
is unbounded, the next lemma shows that a variant of the CGLP can be used
to conclude that P is unbounded as well (and hence (1)–(4) is either infeasible
or unbounded), or to separate a cut to truncate an unbounded ray of R.

Lemma 2. Let (u∗, u∗
0) be an unbounded ray of R and consider the modified

CGLP

min ds (14)
Tu∗ + Qs ≥ 0 (15)

s ≥ 0. (16)

(i) If (14)–(16) is unbounded, then P is unbounded.
(ii) If (14)–(16) is infeasible, then there exists π ∈ Q

m2
+ such that πTx ≥ πr is

valid and πTu∗ < 0.
(iii) If (14)–(16) has a finite optimum s∗, then: If ds∗ ≤ u∗

0, P is unbounded.
Otherwise, ∃π ∈ Q

m2
+ such that η + πTx ≥ πr is valid and u∗

0 + πTu∗ < 0.

The proof is in the appendix. Note that the only differences w.r.t. the case in
which we cut a point are (i) fix the master variables to the values in the ray
(rather than a point), and (ii) zero out the right hand side of the constraints1.

4 CGLP Improvements

In this section we describe several improvements to the CGLP: exploiting linking
constraints with special structure in Sect. 4.1, and normalization conditions to
separate “good” feasibility cuts in Sect. 4.2.

1 This also applies to bounds: bounded y variables turn into directions s fixed to zero.

84 P. Bonami et al.

4.1 Generalized Bound Constraints

Benders decomposition can be effective when the problem structurally simplifies
after fixing variables x. The most common case is when Q is block diagonal.
However, the simplification can be significant in other cases as well. A relevant
case arises when many linking constraints (3) involve only one y variable. We
denote those constraints as Generalized Bound Constraints (GBCs) since in the
CGLP, with the x variables fixed, they boil down to simple bound constraints on
the y variables. A prime example of GBCs is the one of variable bound constraints
like, e.g., constraints of the form yj ≤ xi that are prevalent in facility location
problems. However, other and more complex GBCs, involving several x variables
at a time, can also arise in practice, as, for instance, in the case of partial set
covering location problems [9].

Translating GBCs to simple bound constraints is key to solving the CGLP
faster. However, fully exploiting the presence of GBCs requires some dedicated
machinery. Blindly fixing the x variable in the CGLP and having LP presolve do
the necessary simplifications potentially destroys the warm-starting capabilities
of the simplex method. On the other hand, disabling presolve is of course not an
option either as in this case GBCs would not be turned into simple bounds
anymore, negating all the benefits of the method. For this reason, we treat
GBCs explicitly when we set up the CGLP: we don’t add them to the CGLP
formulation, but rather compute on the fly the corresponding simple bounds
and directly change those. Note that we need to keep track of which GBC (if
any) is active for each CGLP variable yj , as we need to multiply it with the
corresponding dual multiplier when computing the cut coefficients.

4.2 CGLP Normalization

It was noted in [14] that the textbook implementation of the Benders CGLP
gives little control on which feasibility cut is returned. Actually, any dual feasible
solution is optimal and any arbitrary unbounded dual ray will be returned by
an LP solver. To select “good” feasibility cuts, we need to add a normalization
condition that truncates the dual cone: clearly, the choice of the normalization
is critical. In the following, we will describe two such normalizations. Note that,
by adding the objective as a constraint, we can always reduce ourselves to the
case where the CGLP is infeasible, and treat feasibility and optimality cuts in
a unified way. However, this has several drawbacks: the objective is often dense,
numerically shaky and badly scaled w.r.t. the other constraints in the model. A
preliminary implementation of this unified approach indicated it is not effective.
For this reason, we adopt a two-stage approach. We first solve (9)–(11): if it
is feasible, an optimality cut is derived. Otherwise, we temporarily remove the
objective and add a normalization. Once the cut is obtained, the normalization
is removed and the objective restored2. It is important to note that the addition
2 There is a notable exception to this strategy: if the CGLP has no objective (i.e.
d = 0) we never remove the normalization, as any violated Benders cut will be a
feasibility one by construction.

Implementing Automatic Benders Decomposition in a Modern MIP Solver 85

of the normalization can be done in both cases without hindering the warm-start
capabilities of the simplex method. Finally, we note that GBCs (see Sect. 4.1) do
not simplify to simple bounds if they are used in the normalization. Therefore,
we do not apply the normalization to those constraints. As a result cuts are
potentially weaker, but separation would be orders of magnitude slower on some
models classes otherwise.

L1 Normalization. Assume that (9)–(11) is infeasible. A normalization is sim-
ply introduced by adding a penalty variable z0 as follows:

min z0 (17)
Tx∗ + Qy + z0 ≥ r (18)

y, z0 ≥ 0 (19)

Note that the addition of z0 acts as normalization condition in the dual space,
specifically the L1-norm of the dual multipliers is constrained to be 1. This
normalization is the one used in [14] but expressed in the primal space. It was
originally proposed in the context of lift-and-project cuts in [2] and, as shown
in [13], it has nice numerical properties as it favors the separation of cuts with
a sparse support.

As we assumed that (9)–(11) is infeasible, the optimal solution of (17)–(19)
has z∗

0 > 0. Using the vector π of optimal dual multipliers we can obtain (12).
By strong duality it holds that z∗

0 = π(r −Tx∗), hence the cut is violated by x∗.

CW Normalization. The L1 normalization is known to have nice numerical
properties, but it does not give any theoretical guarantee on the strength of the
feasibility cuts. A better approach in this sense is the one proposed by Conforti
and Wolsey in [8] and recently implemented in [7,9]. Let x0 be the core point
defined in Sect. 3. The geometric idea is to find the point on the line segment
(x0, x∗) which is feasible for (9)–(11) and further away from x0. It is shown
in [8] that this approach separates facet defining inequalities with probability
1. Defining the convex combination as x∗ + λ(x0 − x∗), after introducing the
variable λ, we can write the CGLP as:

min λ

Tx∗ + Qy + λ[T (x0 − x∗)] ≥ r

y ≥ 0
0 ≤ λ ≤ 1 (20)

Note that the dual constraint associated with λ reads πT (x0 − x∗) = 1, which
is the well known Balas–Perregaard normalization on the polar space [3]. Given
the optimal dual multipliers π, a feasibility cut is derived as previously.

Although the CW normalization is theoretically stronger than the L1 nor-
malization, (20) is typically harder to solve than (17)–(19). Therefore, CPLEX
chooses at runtime which normalization to apply, with the rationale of trying to
use the CW normalization when feasibility cuts appear to be important w.r.t.
optimality cuts.

86 P. Bonami et al.

5 Computational Results

In this section we report on some computational experiments aimed at assessing
the importance of the algorithmic components previously described. In particu-
lar, we focus on (i) in-out techniques to stabilize and accelerate the convergence
of the initial Benders cut loop, (ii) CW normalization to separate stronger fea-
sibility cuts, and (iii) special handling of GBCs in the CGLP.

To this end, we considered a benchmark test bed of instances that are suitable
for Benders decomposition. Specifically, we collected 209 two-stage stochastic
models from various applications (capacitated facility location [6,19], network
interdiction [6,22], fixed charge multi-commodity network design [10], chance-
constrained programs [18], and others from CPLEX internal library) and 166
non-stochastic models also coming from different applications (capacitated and
uncapacitated facility location [11,12,16,25], network expansion [1], partial set
covering location [9], and others from CPLEX internal library), for a total of
375 benchmark instances on which Benders decomposition is expected to be
effective. All tests were conducted by running CPLEX 12.10 [17] on a cluster
of identical 12 core Intel Xeon CPU E5430 machines running at 2.66 GHz and
equipped with 24 GB of RAM. A time limit of 10,000 s was enforced on each run.

Table 1 compares the default CPLEX branch-and-cut (“B&C”) to two ver-
sions of CPLEX automatic Benders search: the default method (“Benders
default”) and the much weaker variant where we disabled in-out, CW normal-
ization3, and the special handling of GBCs (“Benders no all”). The table reports
aggregated results on all 375 instances which are grouped in each row based on
the hardness of the models. First, the set “all” consists of all the models for which
no method had a failure and all methods gave consistent objective values. Then,
the set “all” is subdivided in classes “[n, 10k]” (n ∈ {0, 1, 10, 100}), containing
the models for which at least one of the methods took at least n seconds and
that were solved to optimality within the time limit by at least one. For each
set, we report: the number of models (“#models”), the number of time limit hit
by each method (“#tilim”), then for the two methods “Benders default” and
“Benders no all”, the ratio of the shifted geometric means with respect to the
reference “B&C” for solution times (“time”) and number of nodes to optimality
(“nodes”)4 (a value t < 1 indicates that the specific method is faster than the
reference one by a factor of 1/t).

The results reported in Table 1 clearly show that, on a test bed of instances
amenable to Benders decomposition, the default variant of CPLEX Benders
significantly outperforms regular branch-and-cut. In particular, considering the
instances in the class [0,10k], the number of timeouts is reduced from 117 to 24
and the Benders solver is around 5.26 times faster. However, the table also shows
that advanced algorithmic components are crucial to achieve good performance.
Indeed, by disabling in-out techniques, the CW normalization and the special

3 Note that, when the CW normalization is disabled, the L1 normalization is used
instead, and thus feasibility cuts are still separated using some normalization.

4 The shift applied is of 1 s for “time” and 10 nodes for “nodes”.

Implementing Automatic Benders Decomposition in a Modern MIP Solver 87

Table 1. Comparison between regular B&C and Benders decomposition.

B&C Benders default Benders no all
Class #models #tilim #tilim time nodes #tilim time nodes

All 361 165 72 0.23 58.6 179 1.44 149.
[0,10k] 313 117 24 0.19 44.8 131 1.53 162.
[1,10k] 310 117 24 0.18 45.0 131 1.53 166.
[10,10k] 304 117 24 0.18 47.8 131 1.51 160.
[100,10k] 285 117 24 0.16 55.5 131 1.55 192.

handling of GBCs, performance dramatically deteriorates. In particular, still
considering the instances in [0,10k], the number of timeouts increases to 131 and
the Benders solver becomes 1.53 times slower than regular branch-and-cut.

In order to better assess the performance impact of the individual algorithmic
components highlighted in Table 1, we conducted a set of experiments in which
we disabled each of them individually. The outcome of these experiments is
summarized in Table 2. Each row compares a variant of the CPLEX Benders
solver, obtained by disabling one or more features, against the default Benders
solver. For each comparison we report only the results for the instances in the
class [0,10k]. We remark that each row is independent of the others and the
number of models varies a little. The structure of the table is similar to Table 1.
We add three columns under the header “affected” to report results only on the
models on which the specific solver in the comparison is at least 10% slower or
faster than the reference solver (i.e., default Benders decomposition).

Table 2. Impact of the individual features in the Benders solver on the [0,10k] bracket.

Default All models Affected
Feature #models #tilim #tilim time nodes #models time nodes

No InOut 298 1 41 1.31 0.99 243 1.40 0.96
No CW-norm 301 0 0 1.14 1.40 71 1.83 4.36
No InOut and CW-norm 297 0 76 3.35 3.52 266 3.85 4.06
No GBCs 305 3 20 2.31 0.83 214 3.29 0.79
No all 300 6 113 9.03 3.87 275 11.00 4.45

The results reported in Table 2 lead to the following observations:

1. In-out appears to be the most important feature, as it affects 82% of the
models and disabling it leads to 40 additional timeouts.

2. The CW normalization seems to be less important than in-out, as it affects
only 24% of the models and no timeouts are introduced by disabling it. How-
ever, by comparing “No InOut” and “No InOut and CW-norm”, we can
clearly see that CW normalization becomes fundamental if in-out is disabled.

88 P. Bonami et al.

Intuitively, the two techniques are related as they both use the segment join-
ing x∗ to x0 to separate deeper cuts. In this sense, the CW normalization is
theoretically superior, but our experiments show that in-out is also essential.

3. Handling of GBCs affects 70% of the models and allows to solve 17 additional
instances. Also, it appears to be the most important single feature in terms
of overall improvement of computing time.

Acknowledgement. We thank Daniel Junglas and Roland Wunderling for many dis-
cussions and helping out with the implementation of some of the ideas. We also thank
Michele Conforti for the many discussions on normalizations in Benders CGLPs.

A Appendix

A.1 Proof of Lemma 1

(i) Assume that (9)–(11) is infeasible. Then, Farkas lemma implies that there
exists a ray π ≥ 0 such that πQ ≤ 0 and π(r − Tx∗) > 0. Multiplying (3)
by π, and eliminating the y variables from the resulting constraint using
πQ ≤ 0 and y ≥ 0, we get the inequality (12). This inequality is violated by
x∗ by definition of π.

(ii) Suppose now that (9)–(11) has a finite optimal value and let y∗ be an optimal
solution. If dy∗ ≤ η∗ we claim that (x∗, y∗) is optimal for (1)–(4). Indeed, it is
feasible, and since (5)–(8) is a relaxation of (1)–(4) and cx∗+dy∗ ≤ cx∗+η∗,
(x∗, y∗) is optimal. Otherwise, let’s consider the optimal dual vector π. It
satisfies the conditions πQ ≤ d, π(r − Tx∗) = dy∗ and π ≥ 0. Multiplying
again (3) by π and using πQ ≤ d, y ≥ 0 and dy ≤ η, we can eliminate the
y variables from the resulting constraint and we obtain the inequality (13).
This inequality is violated by the point (x∗, η∗) by strong duality.

A.2 Proof of Lemma 2

By definition, (u, u0) is an unbounded ray of R if

u ≥ 0, Au ≥ 0, cu + u0 < 0,

and (u, s) is an unbounded ray of P if

u ≥ 0, Au ≥ 0, s ≥ 0, Tu + Qs ≥ 0, cu + ds < 0. (21)

Given an unbounded ray (u∗, u∗
0) of R, we want to check whether it can be

turned into an unbounded ray (u∗, s∗) of P , meaning that P itself is unbounded,
or find a cut that truncates R along (u∗, u∗

0).

(i) Assume (14)–(16) is unbounded, and consider an unbounded ray s∗. By
definition, s∗ ≥ 0, Qs∗ ≥ 0 and ds∗ < 0. Thus, there exists a scalar λ > 0
such that (u∗, λs∗) satisfies (21). This proves that P is unbounded.

Implementing Automatic Benders Decomposition in a Modern MIP Solver 89

(ii) Assume that (14)–(16) is infeasible. Then by Farkas lemma ∃π ≥ 0 such
that πQ ≤ 0 and πTu∗ < 0. Multiplying (3) by π, and eliminating the y
variables from the resulting constraint using πQ ≤ 0 and y ≥ 0, we get the
inequality (12). By definition of π we have πTu∗ < 0 and thus the inequality
truncates R along (u∗, u∗

0).
(iii) Finally, suppose that (14)–(16) is feasible and bounded and let s∗ be an opti-

mal solution. If ds∗ ≤ u∗
0, then (u∗, s∗) satisfies (21) and P is unbounded.

Now suppose ds∗ > u∗
0, and consider the optimal dual vector π ≥ 0 which

satisfies the conditions πQ ≤ d and πTu∗ = −ds∗. Multiplying again (3)
by π and using πQ ≤ d, y ≥ 0 and dy ≤ η, we can eliminate the y vari-
ables from the resulting constraint and we obtain the inequality (13). From
πTu∗ = −ds∗ and ds∗ > u∗

0 we get πTu∗ + u∗
0 < 0 and thus the inequality

truncates R along (u∗, u∗
0).

References

1. Atamtürk, A., Nemhauser, G.L., Savelsbergh, M.W.P.: Valid inequalities for prob-
lems with additive variable upper bounds. Math. Program. 91, 145–162 (2001)

2. Balas, E.: A modified lift-and-project procedure. Math. Program. 79, 19–31 (1997)
3. Balas, E., Perregaard, M.: Lift-and-project for mixed 0–1 programming: recent

progress. Discret. Appl. Math. 123, 129–154 (2002)
4. Ben-Ameur, W., Neto, J.: Acceleration of cutting-plane and column generation

algorithms: applications to network design. Networks: Int. J. 49(1), 3–17 (2007)
5. Benders, J.F.: Partitioning procedures for solving mixed-variables programming

problems. Numer. Math. 4, 238–252 (1962)
6. Bodur, M., Dash, S., Günlük, O., Luedtke, J.: Strengthened benders cuts for

stochastic integer programs with continuous recourse. INFORMS J. Comput.
29(1), 77–91 (2017)

7. Bucarey, V., Elloumi, S., Labbé, M., Plein, F.: Models and algorithms for the
product pricing with single-minded customers requesting bundles. Technical report
hal-02056763 (2019)

8. Conforti, M., Wolsey, L.A.: Facet separation with one linear program. Math. Pro-
gram. 178(1–2), 361–380 (2019). https://doi.org/10.1007/s10107-018-1299-8D

9. Cordeau, J.F., Furini, F., Ljubić, I.: Benders decomposition for very large scale
partial set covering and maximal covering location problems. Eur. J. Oper. Res.
275(3), 882–896 (2019)

10. Crainic, T.G., Hewitt, M., Rei, W.: Partial decomposition strategies for two-stage
stochastic integer programs. Technical report 13, CIRRELT (2014)

11. Fischetti, M., Ljubic, I., Sinnl, M.: Benders decomposition without separability: a
computational study for capacitated facility location problems. Eur. J. Oper. Res.
253(3), 557–569 (2016)

12. Fischetti, M., Ljubić, I., Sinnl, M.: Redesigning benders decomposition for large-
scale facility location. Manag. Sci. 63(7), 2146–2162 (2017)

13. Fischetti, M., Lodi, A., Tramontani, A.: On the separation of disjunctive cuts.
Math. Program. 128, 205–230 (2011). https://doi.org/10.1007/s10107-009-0300-y

14. Fischetti, M., Salvagnin, D., Zanette, A.: A note on the selection of Benders’
cuts. Math. Program. B 124, 175–182 (2010). https://doi.org/10.1007/s10107-010-
0365-7

https://doi.org/10.1007/s10107-018-1299-8D
https://doi.org/10.1007/s10107-009-0300-y
https://doi.org/10.1007/s10107-010-0365-7
https://doi.org/10.1007/s10107-010-0365-7

90 P. Bonami et al.

15. Geoffrion, A.M., Graves, G.W.: Multicommodity distribution system design by
benders decomposition. Manag. Sci. 20(5), 822–844 (1974)

16. Görtz, S., Klose, A.: A simple but usually fast branch-and-bound algorithm for
the capacitated facility location problem. INFORMS J. Comput. 24(4), 597–610
(2012)

17. IBM CPLEX Optimizer: CPLEX user’s manual (2019). https://www.ibm.com/
analytics/cplex-optimizer

18. Liu, X., Küçükyavuz, S., Luedtke, J.: Decomposition algorithms for two-stage
chance-constrained programs. Math. Program. 157(1), 219–243 (2014). https://
doi.org/10.1007/s10107-014-0832-7

19. Louveaux, F.V.: Discrete stochastic location models. Ann. Oper. Res. 6(2), 21–34
(1986). https://doi.org/10.1007/BF02027380

20. Magnanti, T., Wong, R.: Accelerating Benders decomposition: algorithmic
enhancement and model selection criteria. Oper. Res. 29, 464–484 (1981)

21. McDaniel, D., Devine, M.: A modified Benders’ partitioning algorithm for mixed
integer programming. Manag. Sci. 4, 312–319 (1977)

22. Pan, F., Morton, D.P.: Minimizing a stochastic maximum-reliability path. Net-
works: Int. J. 52(3), 111–119 (2008)

23. Papadakos, N.: Practical enhancements to the Magnanti-Wong method. Oper. Res.
Lett. 36(4), 444–449 (2008)

24. Rahmaniani, R., Crainic, T.G., Gendreau, M., Rei, W.: The benders decomposition
algorithm: a literature review. Eur. J. Oper. Res. 259(3), 801–817 (2017)

25. UflLib: Uncapacitated facility location library. http://resources.mpi-inf.mpg.de/
departments/d1/projects/benchmarks/UflLib/packages.html

https://www.ibm.com/analytics/cplex-optimizer
https://www.ibm.com/analytics/cplex-optimizer
https://doi.org/10.1007/s10107-014-0832-7
https://doi.org/10.1007/s10107-014-0832-7
https://doi.org/10.1007/BF02027380
http://resources.mpi-inf.mpg.de/departments/d1/projects/benchmarks/UflLib/packages.html
http://resources.mpi-inf.mpg.de/departments/d1/projects/benchmarks/UflLib/packages.html

Improved Approximation Algorithms
for Inventory Problems

Thomas Bosman1 and Neil Olver2(B)

1 Booking.com, Amsterdam, The Netherlands
tbosman@gmail.com

2 Department of Mathematics,
London School of Economics and Political Science, London, UK

N.Olver@lse.ac.uk

Abstract. We give new approximation algorithms for the submodular
joint replenishment problem and the inventory routing problem, using
an iterative rounding approach. In both problems, we are given a set of
N items and a discrete time horizon of T days in which given demands
for the items must be satisfied. Ordering a set of items incurs a cost
according to a set function, with properties depending on the problem
under consideration. Demand for an item at time t can be satisfied by an
order on any day prior to t, but a holding cost is charged for storing the
items during the intermediate period; the goal is to minimize the sum of
the ordering and holding cost.

Our approximation factor for both problems is O(log log min(N,T));
this improves exponentially on the previous best results.

Keywords: Approximation algorithms · Iterative rounding · Inventory

1 Introduction

The inventory problem studied in this paper captures a number of related mod-
els studied in the supply chain literature. One of the simplest is the dynamic
economic lot size model [14]. Here we have varying demand for a single item over
T time units. Demand at time t or later can be satisfied by an order at time t
(but not vice versa). For each day, there is a per-unit cost for holding the items
in storage; there is also a fixed setup cost for ordering any positive quantity of
the item, which is the same for each day. We want to decide on how many items
to order on each day so as to minimize the total ordering and holding cost.

The joint replenishment problem (JRP) generalizes this problem to multiple
items. We now have a unique holding cost for each day and each item, and a
per item setup cost for ordering any quantity of that item. Furthermore, there
is a general setup cost for ordering any items at all. This setup cost struc-
ture is called additive. While having limited expressive power in comparison to

N. Olver—Supported by Dutch Science Foundation (NWO) Vidi grant 016.Vidi.
189.087.

c© Springer Nature Switzerland AG 2020
D. Bienstock and G. Zambelli (Eds.): IPCO 2020, LNCS 12125, pp. 91–103, 2020.
https://doi.org/10.1007/978-3-030-45771-6_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-45771-6_8&domain=pdf
https://doi.org/10.1007/978-3-030-45771-6_8

92 T. Bosman and N. Olver

some of the more complex generalizations that have been studied, the additive
joint replenishment problem is long known to be NP-hard [1]. This problem has
attracted considerable attention from the theory community in the past, result-
ing in a line of progressively stronger approximation algorithms [11,12], the best
of which gives an approximation ratio of 1.791 [2].

A more general version of this problem uses an ordering cost structure in
which the setup cost is a submodular function of the items ordered. This model,
introduced by Cheung et al. [6], is called the submodular joint replenishment
problem (SJRP) and captures both the additive cost structure as well as other
sensible models. In the same work, the authors give constant factor approxi-
mation algorithms for special cases of submodular cost functions, such as tree
cost, laminar cost (i.e., coverage functions where the sets form a laminar fam-
ily) and cardinality cost (where the cost is a concave function of the number of
distinct items). For the general case, they provide an O(log NT) approximation
algorithm.

In the inventory routing problem (IRP) setup costs are routing costs in a
metric space. There is a root node and every item corresponds to a point in
the metric. The setup cost for a given item set is then given by the length
of the shortest tour visiting the depot and every item in the set. The usual
interpretation of the model is that the root node represents a central depot and
every other point in the metric represents a warehouse to be supplied from the
depot. (To streamline terminology with the joint replenishment problem, we will
keep using the term “item” rather than “location”.)

The IRP has been extensively studied in the past three decades (see [7] for a
recent survey), but primarily from a computational perspective. But very little
is known about its approximability. Fukunaga et al. [9] presented a constant
factor approximation under the restriction that orders for a given item must
be scheduled periodically. This restriction appears to significantly simplify the
construction of an approximation algorithm, as prior to this work the best known
polynomial time approximation algorithms gave (incomparable) O(log N) [9] and
O(log T) [13] performance guarantees.

Nagarajan and Shi [13] break the logarithmic barrier for both IRP and SJRP,
under the condition that holding costs grow as a fixed degree monomial. This is a
very natural restriction; in particular it captures the case where holding an item
incurs a fixed rate per unit per day, depending only on the item. Building on
their approach, we improve exponentially on their O(log T/ log log T) approxi-
mation factor. We also provide some general techniques to turn (sub)logarithmic
approximation algorithms in terms of T into equivalent algorithms in terms of
N ; and we are able to obtain results without restriction on the holding costs.
Our main contributions are summarized in the following theorems.

Theorem 1. There is a polynomial time O(log log min(N,T))-approximation
algorithm for the inventory routing problem.

Theorem 2. There is a polynomial time O(log log min(N,T))-approximation
algorithm for the submodular joint replenishment problem.

Improved Approximation Algorithms for Inventory Problems 93

We also mention the works on submodular partitioning problems [4,5,8]. In
these problems, a ground set V must be partitioned across k different sets to
minimize a submodular cost function. They use rounding of a relaxation based on
the Lovász extension to unify and improve several prior results. Their approach
inspired our use of the Lovász extension in the rounding algorithm for SJRP.

2 Preliminaries, Model and Technical Overview

We use log for the base 2 logarithm. We write [k] for {1, . . . , k}, and [k, �] for
{k, k + 1, . . . , �}, for any integers k ≤ �.

The general framework of the inventory problems we investigate is defined
by a set of items V of size N , ordering cost function f : 2V → R≥0 and a
time horizon [T] = {1, . . . , T}. We will assume throughout this paper that f is
monotone and subadditive, with f(∅) = 0. We will typically refer to the atomic
time units as days.

For each item v ∈ V and day t, there is a demand dvt ≥ 0. The collection
of item-day pairs for which there is positive demand is denoted D := {(v, t) :
dvt > 0}. Demand for day t can be satisfied on or before day t. If we satisfy
demand for item i on day t using an order on some day s < t, we need to store
the items in the intervening days, and we pay a holding cost of hv

st per unit we
store. The magnitude of the demand only plays a role in the holding cost; the
ordering cost is determined by the unique items ordered and is independent of
how many units are ordered.

Given these inputs, we need to place an order for items to be delivered on
each day so as to minimize the total ordering cost plus the holding cost. Since
the cost of delivering an item does not depend on the size of the order and we
want to store items as briefly as possible, it is always optimal to deliver just
enough units of an item to satisfy demand until the next order for that item
is scheduled. Hence, once we decide which items to order on which days, the
optimal schedule is completely determined.

The inventory routing problem is the special case where we have a metric
on V , some distinguished root node r ∈ V , and the ordering cost f(S) of a
set S ⊆ V is the minimum possible length of a tree containing S ∪ {r}. Here
we differ from the usual definition, where f(S) is defined to be the length of
a shortest tour on S ∪ {r}; but as is well known, these two definitions differ
only by a factor of at most 2, which will not concern us. The submodular joint
replenishment problem is the special case where f is submodular (in addition to
the required properties already listed).

An integer programming formulation for this problem is given in (1). Here
the variable yS

t indicates whether item set S is ordered on day t, and xv
st indicates

whether the demand for item v on day t is satisfied by an order on day s.

94 T. Bosman and N. Olver

minimize
∑

t∈[T]

∑
S⊆V f(S)yS

t +
∑

t∈[T]

∑
v∈V

∑
s≤t dvth

v
stx

v
st

subject to xv
st ≤

∑
S:v∈S yS

s ∀(v, t) ∈ D, s ≤ t
∑

s≤t xv
st = 1 ∀(v, t) ∈ D

yS
t , xv

st ∈ {0, 1} ∀v ∈ V, s ≤ t, S ⊆ V

(1)

Let (lp) denote the LP relaxation obtained by replacing the integrality con-
straints of ILP (1) by nonnegativity constraints; this LP has an exponential
number of variables. To efficiently solve (lp), it suffices to provide an efficient
separation oracle for the dual. This can be done for both SJRP and IRP (in the
latter case, in an approximate sense); see [13].

Nagarajan and Shi [13] show that in order to round (lp), it suffices to round
an associated covering problem. Essentially, given a solution (x̂, ŷ) to (lp), we
require that each demand (v, t) ∈ D is served within an interval [s′(v, t), t], where
s′(v, t) is the median of the distribution (x̂v

st)s≤t. Serving (v, t) anywhere within
this interval will incur cost at most twice what the fractional solution pays; and
moreover, they show that enforcing this restriction cannot make the optimal
solution more than a constant factor more expensive. The holding costs can
then be dropped from the objective function. All in all, we obtain an instance
of the following subadditive cover over time problem: for each item v ∈ V we
are given an associated set of demand windows Wv ⊆ {[s, t] : s ≤ t ∈ [T]}. We
must choose a subset St ⊆ V for each day t ∈ [T] such that every item v ∈ V is
covered in each of its demand windows—that is, v ∈ Sr for some r ∈ [s, t], for
each [s, t] ∈ Wv. The goal is to find a feasible solution minimizing the total cost∑

t∈[T] f(St).
We also associate the canonical LP (2) with the subadditive cover over time

problem.

minimize
∑

t∈[T]

∑
S⊆V f(S)yS

t

subject to
∑

r∈[s,t]

∑
S:v∈S yS

r ≥ 1 ∀[s, t] ∈ Wv, ∀v ∈ V

yS
t ≥ 0 ∀t ∈ [T], S ⊆ V

(2)

Our goal, given a fractional solution to this LP, is to round it to an integral
solution. Note that the instance of subadditive cover over time is constructed
from a solution (x̂, ŷ) to (lp) in such a way that ŷ is already a feasible fractional
solution to (2).

We now come to our first contribution. We show that this reduction can be
taken much further: we can reduce to covering problems where the set of intervals
have a very special structure. This structure, which we call left aligned, shares
many of the benefits of a laminar family. For example, they have a natural notion
of depth, which is always logarithmically bounded by T ; the approximation
factors of our algorithms are essentially logarithmic in this depth. We describe
this reduction, which is rather general and applies identically to both SJRP and
IRP, in Sect. 3. We also show, again generally, how the time horizon T can be
polynomially bounded in terms of the number of items N .

Improved Approximation Algorithms for Inventory Problems 95

So to obtain our main theorems, it suffices to give O(log log T)-factor approx-
imation algorithms for these well-structured covering variants of SJRP and IRP.
Here the approaches diverge; we give rather different algorithms for these two
problems, albeit based on iterative rounding [10] in both cases.

For IRP, the algorithm uses randomized iterative rounding [3] of a certain
path-based relaxation. We can show that after sampling every path in the sup-
port of the relaxation O(log log T) times, we can remove a constant fraction of
the edges and reorder the remaining paths such that we retain a feasible solution.
Details are given in Sect. 4.

For SJRP, by contrast, the iterative rounding approach is naturally deter-
ministic in nature. Instead of randomly rounding item sets in the support of a
relaxation, we carefully try to pick a set for each day such that we win a constant
fraction of its cost back in the subsequent reduction of the cost of the relaxation.
If such a set cannot be found, we show that we can shrink the time horizon T
by merging some adjacent time units (or put differently, we are able to remove
the bottom “leaf” layer of the left-aligned family); we can then recurse on the
smaller instance. We discuss this further in Sect. 5.

3 Reducing to Structured Covering Problems

The results of this section will not use any properties of the ordering cost function
f that differ between IRP and SJRP. All that we will need, other than the
general properties of f assumed at the start of Sect. 2, is that we are given an
(approximately) optimal solution to the LP relaxation of (1).

Let D = {[k2i+1, (k+1)2i] : i, k ∈ Z≥0} denote the family of dyadic intervals
over the nonnegative integers; the value of i for one of these intervals in D we
call the level of that interval.

Definition 1. A family of intervals F ⊆ {[s, t] : s, t ∈ Z≥0} is called

– left aligned if for all [s, t] ∈ F there exists [s, t′] ∈ D with t′ ≥ t,
– right aligned if for all [s, t] ∈ F there exists [s′, t] ∈ D with s′ ≤ s.

The level of an interval [s, t] ∈ F is the level of the minimal interval of D
containing [s, t].

We will call an instance of subadditive cover over time left (right) aligned if⋃
v∈V Wv is left (right) aligned.

Theorem 3. At the loss of a constant factor, we can reduce an instance of the
subadditive cover over time problem to a pair of instances, one left aligned and
the other right aligned.

The proof is given in the appendix. Right-aligned instances can be handled
identically to left-aligned ones (by simply reversing the time indexing in the
instance), so we consider only left-aligned instances in the sequel.

96 T. Bosman and N. Olver

3.1 Bounding the Time Horizon, and Further Simplifications

Due to space constraints, we defer the proof of the following to the full version.

Theorem 4. At the loss of a constant factor we can reduce a left-aligned sub-
additive cover over time problem to a polynomial-sized collection of left-aligned
subadditive cover over time problems with time horizons equal to N2.

This theorem could already be used to improve the dependence of the Nagarajan-
Shi algorithm from O

(
log T

log log T

)
to O

(
logmin{T,N}

log logmin{T,N}
)
. It also allows us to make

the simplifying assumption that each item has positive demand on exactly one
day, by making a copy of an item for each day in which it has a positive demand
(with T ≤ N2, this only increases the number of items by a polynomial factor).
Finally, we also assume that T = 22

k

for some k ∈ N; if not, simply round up.
Call an instance with all these properties (including being left aligned) nice; we
will assume throughout the remainder of the paper that we are working with a
nice instance.

4 Steiner Tree over Time

So in order to prove Theorem1, we need to give an O(log log T)-approximation
algorithm to nice instances of subadditive cover over time, for the appropriate
class of order functions f . More precisely, V is the set of nodes of a semimetric
space with distance function c : V ×V → R≥0; a root node r ∈ V is specified, and
for all other nodes v ∈ V \ {r}, a time window Fv = [av, bv] ⊆ [T] is given. Since
f(S) denotes the cost of a cheapest tree containing S ∪ {r}, we will consider a
solution to be described by a collection of trees (Tt)t∈T , all containing the root.
To be feasible, each node v
= r must be contained in Tt for some t ∈ Fv. The
cost of a tree T (i.e., the sum of the length of its edges) is denoted c(T); the
objective is to minimize the total cost

∑
t c(Tt). We will call this the Steiner tree

over time problem.
The main part of our result works by iteratively massaging a specific type

of fractional solution until it becomes integral. We now describe this type of
solution.

We let P denote the collection of directed paths in V . For each such directed
path P ∈ P, let P �t v signify that P connects v to Tt, i.e., P �t v if there is
a directed subpath on P from v to a node in the tree Tt containing the root on
day t. If v ∈ Tt we let P �t v hold for all P by convention.

Definition 2. A fractional path solution (FPS) is a pair (T , w), giving for each
day t a tree Tt rooted at r and weights wt : P → [0, 1], with the property that

∑
t∈Fv

∑
P∈P:P�tv

wt(P) ≥ 1 ∀v ∈ V \ {r}.

The cost of the fractional path solution is given by the sum of the cost of the
trees and the cost of the paths weighted by w:

∑
t∈[T]

∑
P∈P wt(P)c(P) +

∑
t∈[T] c(Tt).

Improved Approximation Algorithms for Inventory Problems 97

Note that a fractional path solution with wt(P) = 0 for all P and t cor-
responds to a feasible integral solution to the Steiner tree over time problem.
Moreover, we can start with a solution y to (2) and convert it to a fractional
path solution at the loss of a constant (or more directly, we can solve a compact
LP corresponding to fractional path solution). To do this, start by initializing all
trees Tt to contain only the root. Then for each day t and set S in supp(yt), con-
struct a minimum spanning tree on S ∪{r}, and use this to define a path P to r
that contains S and has cost at most twice the cost of this spanning tree (simply
shortcut the doubled tree). Add P to the solution with weight wt(P) = yS

t .
Hence, we focus on turning a fractional path solution into one where all path

weights are zero, without losing too much in the cost of the solution.
We need some preliminary notation and definitions. Given a directed path

P , we use V (P) and E(P) to denote the node set and edge set, respectively. We
similarly define V (T) and E(T) for a tree T . The head and tail of P are denoted
head(P) and tail(P) respectively. Given a tree T and path P with head(P) in
T , adding P to T (which we may write as T + P) results in a spanning tree
of the union of T and P . In particular, T + P is a tree, costing no more than
c(T) + c(P), and spanning V (T) ∪ V (P). We associate with each node v a level
�(v) in the natural way, namely as the level of Fv in the left aligned family⋃

v∈V \{r} Fv.
The rounding algorithm will consist of a number of iterations. Each iteration

will increase the size of the integral part (Tt)t∈[T], while reducing the size of the
fractional part (wt)t∈[T], until the solution is entirely integral. We will ensure
that the cost increase in the integral part is an O(log log T) factor times the cost
decrease in the fractional part, which clearly yields the required approximation
guarantee.

Each iteration of the rounding scheme involves two steps. The first step is,
for each t ∈ [T], to independently sample the paths according to the weights
wt(P), upscaled by a factor K log log T ; K is a fixed constant we will choose
later. These paths are added (one by one) to Tt. The total cost increase due
to this step is O(C log log T), where C =

∑
t∈[T]

∑
P∈P wt(P)c(P) is the total

cost of the fractional part. Our goal will now be to adjust the fractional paths
in a way that reduces the total fractional cost by a constant factor with high
probability, while maintaining feasibility. This will clearly lead to our desired
approximation ratio: each iteration we pay O(log log T) times the decrease in
the total fractional cost, and once the total fractional cost reaches zero, we have
an integral solution.

The main operation that the algorithm will perform in order to achieve this
is a “split and shift” operation. Let (T , w) be the fractional path solution after
the above sampling step. Let P be some path in supp(wt). Our goal will be to

– (split) remove some edges from P , resulting in a collection of subpaths
P1, P2, . . . , Pq, which may not have their heads in Tt; and then

– (shift) for each one of these paths Pj , assign its weight to some day tj , in
such a way that now head(Pj) is in Ttj , and tj is still in the time windows of
all the nodes in Pj .

98 T. Bosman and N. Olver

This would ensure feasibility, while reducing the fractional cost by w(P) times
the total cost of the removed edges. If each edge is removed with constant prob-
ability, we obtain the required cost decrease.

In order to make this work, we need some control of the interaction of the
different time windows of the nodes on a given path. The most important fact,
immediate from the left aligned structure, is the following.

Lemma 1. If the time windows of v and w overlap, with �(w) ≥ �(v), then
aw ≤ av.

This means that if we consider a path P ′ with head v′ (which might be a
subpath of a path in supp(wt) say) where �(v′) is minimal amongst all nodes in
P ′, then any t′ ∈ Fv′ with t′ ≤ t will be in Fv for all v ∈ V (P ′).

The following definition will aid us in shifting always to earlier days, so that
the above can be applied.

Definition 3. Given a fractional path solution (T , w), for each v ∈ V \ {r}, let
mv be maximal such that

∑bv
t=mv

∑
P∈P:P�tv

wt(P) ≥ 1
2 .

Then for any v ∈ V , we call [av,mv] the sow phase of v and [mv, bv] the reap
phase of v. (Note that the sow and reap phases both contain mv.)

Let Sv and Rv denote the sow and reap phases of v ∈ V , at the start of this
iteration. We first double all weights; let w′ = 2w. This ensures that

∑

t∈Rv

∑

P∈P:P�tv

w′
t(P) ≥ 1 and

∑

t∈Sv

∑

P∈P:P�tv

w′
t(P) ≥ 1. (3)

Our goal will be to show that every edge on a path can be removed with probabil-
ity 3

4 ; this counteracts the doubling of the weights and ensures that the expected
fractional cost at the end of the iteration is at most half its initial value.

Consider each day t ∈ [T] and path P ∈ supp(w′
t) separately. Let us say that

a node v ∈ V (P) is serviced by P if t ∈ Rv. Assume that tail(P) is serviced by
P ; otherwise replace P in w′

t by the subpath of P from the first serviced node,
retaining feasibility by (3). We say that a node v serviced by P has germinated
if it lies in V (Tt) for some t ∈ Sv. Let v1, v2, . . . , vk be the nodes serviced by P ,
in order from the tail to the head of P ; so v1 = tail(P) and vk = head(P). We
consider each node vj (with j < k) in turn, and check if (i) vj has germinated,
and (ii) �(vj) is minimal amongst �(v1), �(v2), . . . , �(vj). If this is the case, we
proceed as follows:

– Let P (1), P (2) and P (3) be the subpaths of P from tail(P) to vj , from vj to
vj+1, and from vj+1 to head(P), respectively.

– Shift P (1) to a day tj witnessing that vj germinated, and delete all edges
of P (2). Thus, we modify w′ by increasing both w′

tj (P
(1)) and w′

t(P
(3)) by

w′
t(P), and then setting w′

t(P) to zero.

Improved Approximation Algorithms for Inventory Problems 99

Since tj ∈ Svj
, and t ∈ Rvj

, we know that tj ≤ t; thus by the condition (ii) and
Lemma 1, tj lies in the sow phases of v1, v2, . . . , vj . Thus, this modification retains
feasibility of (T , w′). We then repeat this process, continuing with path P (3)

instead of P (resulting in a new sequence of nodes serviced by P (3); v1, . . . , vj

will not be part of this sequence). The iteration ends when this process has been
completed for all fractional paths on all days.

As observed, (T , w′) is still feasible at the end of this process. All that remains
is to show that indeed each edge is removed with the desired 3

4 probability.
So fix a day t ∈ [T] and a path P ∈ supp(wt) (thus, a path in the support of

the solution before this process began). As before, let v1, . . . , vk be the ordered
sequence of nodes serviced by P . Fix now also an edge e ∈ E(P), and let vj be
the last node in the sequence that lies in the subpath of P from the tail of P to
the tail of e. We have the following characterization of when e can be deleted.

Lemma 2. Edge e will be deleted in the described split-and-shift procedure if the
following condition holds:

For each layer i, the last (furthest from tail(P)) node from v1, . . . , vj with
layer at most i has germinated.

The proof can be found in the appendix.
The probability that e is deleted is now easily controlled. Fix a level i, and

consider the last node u from v1, . . . , vj of level at most i. Since
∑

t∈Su

∑

P∈P:P�tu

wt(P) ≥ 1
2 ,

standard calculations imply that the probability that u has not germinated is
at most e−K log log T/2 = ε/ log T , where ε = log(−K/2). A union bound over all
levels, and an appropriate choice of K, gives us the desired result (with high
probability).

To complete the proof of Theorem 1, we should observe that the number of
iterations is polynomial (in expectation). This is fairly clear, and we omit the
details in this extended abstract.

5 Submodular Cover over Time

Here we consider the subadditive cover over time problem where in addition
to the previously required properties (in particular, that f is monotone with
f(∅) = 0), f is submodular. We assume throughout that we have a nice instance,
and use Fv to denote the single time window for v ∈ V .

First, we observe that the LP relaxation (2) has an equivalent convex formu-
lation in terms of the Lovász extension f̂ of f .

min
∑

t∈[T] f̂(xt)

s.t.
∑

t∈Fv
xt

v = 1 ∀v ∈ V

x ≥ 0

(4)

100 T. Bosman and N. Olver

For x ∈ [0, 1]V and θ ∈ [0, 1], we define the level set Lθ(x) = {v ∈ V : xv ≥
θ}. Then f̂(x) = Eθ[f(Lθ(x))], where θ ∼ Uniform(0, 1). Define the truncation
x|θ by x

|θ
v = min{xv, θ}.

Definition 4. Given θ ∈ [0, 1] and x ∈ [0, 1]V , we say that the set Lθ(x) is
α-supported if:

f̂(x) − f̂(x|θ) ≥ αf(Lθ(x)). (5)

We will provide some intuition for this definition later, but first we describe the
algorithm.

Input: A solution x to (4).
Output: A solution (St)t∈[T] to the submodular cover over time problem.
1: St ← ∅ for all t ∈ [T].
2: for i = 1, . . . , log T do
3: for t ∈ [T] do
4: if there exists θ ∈ [0, 1] such that Lθ(xt) is 1

32 log log T -supported then
5: Choose such a θ and set St ← St ∪ Lθ(xt), xt ← xt|θ.
6: else
7: St ← St ∪ L1(xt).
8: Merge time periods by setting, for all t ∈ {k2i : k = 0, 1, 2, . . . },

xt+1 ← xt+1 + xt+2i−1+1 and xt+2i−1+1 ← 0.
9: return (St)t∈[T].

Feasibility. The only steps where the coverage
∑

t∈Fv
xt

v for an item v could
possibly decrease are steps 5 and 8. In step 5, v is added to St, so this is clearly
no problem. In step 8, we are shifting weight from some time t+2i−1+1 to t+1.
This cannot leave the time window of v unless �(v) < i. But if v has not been
covered by the end of iteration �(v), all of the fractional coverage for v will have
been merged into the left endpoint of its time window t′ = min Fv. This means
that Lθ(xt′

) contains v for any θ, ensuring v will be added to St′ in step 3 of
iteration �(v) + 1.

Cost analysis. This is where the key insights lie. The main driver is the following
technical lemma (the proof is postponed to the appendix).

Lemma 3. For any x ∈ [0, 1]V and α ∈ (0, 1], either there exists θ ∈ [0, 1] such
that Lθ(x) is α

32 -supported, or otherwise 21/αf(L1(x)) ≤ f̂(x).

The intuition for this lemma is that if no θ with the desired property exists,
it can be shown that f(Lθ(x)) decreases quickly everywhere, and consequently
f(L1(x)) is small compared to f̂(x) = Eθ[f(Lθ(x))].

Consider now some iteration i of the algorithm, and a particular choice
of t. If step 5 is executed, then f̂(xt) decreases by at least a 1

32 log log T frac-
tion of f(Lθ(xt)), which is an upper bound on the cost increase of the cur-
rent solution by subadditivity. Otherwise, by Lemma3 (with α = 1

log log T),

Improved Approximation Algorithms for Inventory Problems 101

f(L1(xt)) ≤ f̂(xt)/ log T . The total cost of sets chosen in step 7 in a single
iteration is thus at most

∑
t∈[T] f̂(xt)/ log T . So over all log T iterations, this

incurs a total cost not more than the original objective value of the relaxation.
Again, to complete the proof of Theorem 2, we should argue that the algo-

rithm runs in polynomial time; we postpone the straightforward details to the
full version.

A Some Omitted Proofs

Proof (Theorem 3). Let y be a solution to (2). We will first generate two new
instances of the subadditive cover over time problem, one being left aligned and
the other right aligned.

Given an interval [s, t], define the right-aligned part R([s, t]) and the left-
aligned part L([s, t]) by

R([s, t]) = [s, k2i] and L([s, t]) = [k2i + 1, t],

where i, k are integers such that k2i ∈ [s, t] and i is maximal. If k2i = t, then
L([s, t]) = ∅, and if k2i + 1 = s then R([s, t]) = ∅ by convention. It is clear from
this definition that {L([s, t]) : v ∈ V, [s, t] ∈ Wv} forms a left-aligned family, and
similarly the right-aligned parts form a right-aligned family.

Any LP solution must cover every item by at least half in either the right-
aligned or left-aligned part of its demand window. For each v ∈ V and demand
window [s, t] ∈ Wv, if L([s, t]) receives half a unit of coverage under y, add
L([s, t]) as a time window for v in the left-aligned instance; otherwise put R([s, t])
in the right-aligned instance.

It is immediate from the way in which we constructed the two instances that
2y is a feasible solution to each. Hence the combined cost of the optimal solutions
to the LP relaxations of the generated instances is at most 4 times that of the
original instance. Furthermore, we can translate integral solutions to the left
and right aligned instances back to one for the original instance by adding them
together, which does not increase the cost by subadditivity of f . ��

Proof (Lemma 2). We proceed by induction on j, the number of serviced nodes
on the subpath of P from the tail of P until before edge e. The claim is clearly
true if j = 1, since the condition ensures that v1 germinated, in which case all
edges from v1 to v2 will be deleted by the procedure. (The claim is trivial if
j = 0, in which case edge e is always deleted).

Suppose j > 1, and that that the condition holds. First, by considering
level �(vj), it follows that vj germinated. Next, consider level i = �(vj) − 1. If
none of v1, v2, . . . , vj have level i or less, then the procedure will clearly remove
the edges between vj and vj+1, irrespective of what edges have already been
removed from P . Otherwise, let q be chosen maximally from {1, 2, . . . , j − 1}
so that �(vq) ≤ i. Then the condition of the lemma holds for an edge between
vq and vq+1; hence by our inductive assumption, these edges were removed by
the split-and-shift procedure. So at the point that the current edge e is being

102 T. Bosman and N. Olver

considered for removal, the subpath of P remaining contains only the services
nodes vq+1, . . . , vk. Since vj has the smallest level amongst vq+1, . . . , vj and has
germinated, e will be removed. This completes the induction. ��
Proof (Lemma 3). Let k ∈ N be such that 1

16α ≤ 1
k ≤ 1

8α. Note that this implies
k ≥ 8. Let z = f(L1(x)).

Claim. If 21/αz > f̂(x), there exists m ∈ N such that

f(L k−m
k

(x)) < 2mz. (6)

Before we prove the claim, let’s see that it implies the lemma. Suppose that
21/αf(L1(x)) > f̂(x), since otherwise we are done. The condition of the claim
then holds, so take the smallest m that satisfies (6), and let θ = k−m

k . We claim
that

α

32
f(Lθ(x)) ≤ f̂(x) − f̂(x|θ).

To see this we first rewrite the right hand side as an integral.

f̂(x) − f̂(x|θ) =
∫ 1

0

f(Lη(x)) dη −
∫ 1

0

f(Lη(x|θ)) dη (7)

=
∫ 1

0

f(Lη(x)) dη −
∫ θ

0

f(Lη(x)) dη =
∫ 1

θ

f(Lη(x)) dη.

Recall that f(Lη(x)) is monotonically decreasing and that m ≥ 1 so that θ+ 1
k =

k−m+1
k ≤ 1. Then

∫ 1

θ

f(Lη(x)) dη ≥
∫ θ+ 1

k

θ

f(Lη(x)) dη ≥ 1
k

f(Lθ+ 1
k
(x)). (8)

Finally, we use the fact that m is minimal, which implies that f(L k−m+1
k

(x)) ≥
2m−1z, together with (7) and (8):

f̂(x) − f̂(x|θ) ≥ 1
k2m−1z = 1

2k2mz > α
32f(Lθ(x)). (9)

In the final inequality of (9) we use that the fact that we chose m to satisfy
2mz > f(L k−m

k
(x)) and 1

k ≥ 1
16α.

Now we proceed to prove the claim. Suppose for contradiction that the con-
dition of the claim holds but no m satisfies inequality (6). Then, in particular it
must hold that f(L 1

k
(x)) ≥ 2k−1z and therefore we obtain

f̂(x) ≥
∫ 1

k

0

f(Lη(x)) dη ≥ 1
k

f(L 1
k
(x)) ≥ 1

k
2k−1z.

Since k ≥ 8, 1
k2k−1z ≥ 2k/2z. Since also 1

k ≤ 1
8α, we deduce

f̂(x) ≥ 2k/2z ≥ 24/αz ≥ 21/αz,

contradicting that 21/αz > f̂(x). This proves the claim, and hence the lemma.
��

Improved Approximation Algorithms for Inventory Problems 103

References

1. Arkin, E., Joneja, D., Roundy, R.: Computational complexity of uncapacitated
multi-echelon production planning problems. Oper. Res. Lett. 8(2), 61–66 (1989)

2. Bienkowski, M., Byrka, J., Chrobak, M., Jeż, �L., Nogneng, D., Sgall, J.: Better
approximation bounds for the joint replenishment problem. In: Proceedings of the
25th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 42–54
(2014)

3. Byrka, J., Grandoni, F., Rothvoß, T., Sanità, L.: Steiner tree approximation via
iterative randomized rounding. J. ACM 60(1), 6:1–6:33 (2013)

4. Chekuri, C., Ene, A.: Approximation algorithms for submodular multiway par-
tition. In: Proceedings of the 52nd Annual IEEE Symposium on Foundations of
Computer Science (FOCS), pp. 807–816 (2011)

5. Chekuri, C., Ene, A.: Submodular cost allocation problem and applications. In:
Aceto, L., Henzinger, M., Sgall, J. (eds.) ICALP 2011. LNCS, vol. 6755, pp. 354–
366. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-22006-7 30

6. Cheung, M., Elmachtoub, A.N., Levi, R., Shmoys, D.B.: The submodular joint
replenishment problem. Math. Programm. 158(1–2), 207–233 (2016)

7. Coelho, L.C., Cordeau, J.-F., Laporte, G.: Thirty years of inventory routing.
Transp. Sci. 48(1), 1–19 (2013)

8. Ene, A., Vondrák, J., Wu, Y.: Local distribution and the symmetry gap: approx-
imability of multiway partitioning problems. In: Proceedings of the 24th Annual
ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 306–325 (2013)

9. Fukunaga, T., Nikzad, A., Ravi, R.: Deliver or hold: approximation algorithms for
the periodic inventory routing problem. In: Proceedings of APPROX/RANDOM
(2014)

10. Jain, K.: A factor 2 approximation algorithm for the generalized steiner network
problem. Combinatorica 21(1), 39–60 (2001)

11. Levi, R., Roundy, R., Shmoys, D., Sviridenko, M.: A constant approximation algo-
rithm for the one-warehouse multiretailer problem. Manag. Sci. 54(4), 763–776
(2008)

12. Levi, R., Roundy, R.O., Shmoys, D.B.: Primal-dual algorithms for deterministic
inventory problems. Math. Oper. Res. 31(2), 267–284 (2006)

13. Nagarajan, V., Shi, C.: Approximation algorithms for inventory problems with
submodular or routing costs. Math. Program. 160(1–2), 225–244 (2016)

14. Wagner, H.M., Whitin, T.M.: Dynamic version of the economic lot size model.
Manag. Sci. 5(1), 89–96 (1958)

https://doi.org/10.1007/978-3-642-22006-7_30

Extended Formulations for Stable Set
Polytopes of Graphs Without Two Disjoint

Odd Cycles

Michele Conforti1, Samuel Fiorini2, Tony Huynh3, and Stefan Weltge4(B)

1 Dipartimento di Matematica, Università degli Studi di Padova, Padova, Italy
conforti@math.unipd.it

2 Département de Mathématique, Université libre de Bruxelles, Brussels, Belgium
sfiorini@ulb.ac.be

3 School of Mathematics, Monash University, Melbourne, Australia
tony.bourbaki@gmail.com

4 Fakultät für Mathematik, Technische Universität München, Munich, Germany
weltge@tum.de

Abstract. Let G be an n-node graph without two disjoint odd cycles.
The algorithm of Artmann, Weismantel and Zenklusen (STOC’17) for
bimodular integer programs can be used to find a maximum weight stable
set in G in strongly polynomial time. Building on structural results char-
acterizing sufficiently connected graphs without two disjoint odd cycles,
we construct a size-O(n2) extended formulation for the stable set poly-
tope of G.

1 Introduction

It is a classic result that integer programs with a totally unimodular constraint
matrix A are solvable in strongly polynomial time. Very recently, Artmann,
Weismantel and Zenklusen [1] generalized this to bimodular matrices A. These
include all matrices with all subdeterminants in {−2,−1,0,1,2}. As noted in [1],
this has consequences for the maximum weight stable set problem in graphs as
follows.

Let STAB(G) be the stable set polytope of a graph G and note that

STAB(G) = conv{x ∈ {0,1}V (G) ∣ Mx ⩽ 1},

where M ∈ {0,1}E(G)×V (G) is the edge-node incidence matrix of G. It is well-
known that the maximum absolute value of a subdeterminant of M is equal to
2ocp(G), where ocp(G) is the maximum number of (node-)disjoint odd cycles of
G (see [12]). Therefore, the bimodular algorithm of [1] can be used to efficiently
compute a maximum weight stable set in a graph without two disjoint odd cycles.

Although the bimodular algorithm is extremely powerful, it provides limited
insight on which properties of graphs with ocp(G) ⩽ 1 are relevant to derive

Extended abstract. For the full version, see [8].
c© Springer Nature Switzerland AG 2020
D. Bienstock and G. Zambelli (Eds.): IPCO 2020, LNCS 12125, pp. 104–116, 2020.
https://doi.org/10.1007/978-3-030-45771-6_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-45771-6_9&domain=pdf
https://doi.org/10.1007/978-3-030-45771-6_9

Extended Formulations for Stable Set Polytopes of OCP-1 Graphs 105

efficient algorithms for graphs with higher odd cycle packing number. Indeed, in
light of recent work linking the complexity and structural properties of integer
programs to the magnitude of its subdeterminants [1,4,10,11,14,17,18], it is
tempting to believe that integer programs with bounded subdeterminants can
be solved in polynomial time. This would imply in particular that the stable set
problem on graphs with ocp(G) ⩽ k is polynomial for every fixed k. Conforti,
Fiorini, Huynh, Joret, and Weltge [7] recently proved this is true under the
additional assumption that G has bounded (Euler) genus.1

Furthermore, by itself the bimodular algorithm does not imply any linear
description of the stable set polytope of graphs G with ocp(G) = 1. It turns
out that for such graphs, STAB(G) may have many facets with high coefficients
that do not seem to allow a “nice” combinatorial description in the original space.
While stable set polytopes have been studied for several classes of graphs, very
little is known about STAB(G) when ocp(G) = 1. Our main result is to show that
every such stable set polytope admits a compact description in an “extended”
space.

To this end, we say that an extended formulation of a polyhedron P is a
description of the form P = {x ∣ ∃y ∶ Ax +By ⩽ b} whose size is the number of
inequalities in Ax +By ⩽ b. The extension complexity of P , denoted xc(P), is the
minimum size of an extended formulation of P . Our main result is the following.

Theorem 1. For every n-node graph G with ocp(G) ⩽ 1, STAB(G) admits a
size-O(n2) extended formulation. Moreover, this extended formulation can be
constructed in polynomial time.

Note that this does not follow from the main result of [1]. As noted in [5,
Thm. 5.4], integer hulls of bimodular integer programs can have exponential
extension complexity. Moreover, Theorem 1 does also not follow from [7] since
here we are dealing with arbitrary graphs G with ocp(G) ⩽ 1.

On the one hand, our proof uses a characterization of graphs with ocp(G) ⩽ 1
due to Lovász (see Seymour [15]). Kawarabayashi and Ozeki [13] later gave a
short, purely graph-theoretical proof of the same result. Before stating Lovász’
theorem, we need a few more definitions. The odd cycle transversal number of
a graph G, denoted oct(G), is the minimum size of a set of nodes X such that
G −X is bipartite. The projective plane is the surface obtained from a closed disk
by identifying antipodal points on its boundary. An embedding of a graph G in
a surface is an even-face embedding if every face of G is an open disk bounded
by an even cycle of G.

Theorem 2 (Lovász, cited in [15]). Let G be a 4-connected graph with
ocp(G) ⩽ 1. Then

1 The Euler genus of graph G is the minimum of ∣E(G)∣ − ∣V (G)∣ − ∣F (G)∣ − 2, taken
over all embeddings of G in a (orientable or non-orientable) surface, where F (G)
denotes the set of faces of G with respect to the embedding.

106 M. Conforti et al.

(i) oct(G) ⩽ 3, or
(ii) G has an even-face embedding in the projective plane.

Note that if a graph G satisfies (i) of Theorem 2, then STAB(G) has a
compact extended formulation since it is the convex hull of the union of at most
eight polytopes described by nonnegativity and edge constraints. As a special
case of [7, Theorem 3], STAB(G) also has a compact extended formulation if G
satisfies (ii) of Theorem 2.

Theorem 3. Let G be an n-node graph that is even-face embedded in the pro-
jective plane. Then STAB(G) has a size-O(n2) extended formulation.

However, the decomposition portion of our proof is non-trivial since Theo-
rem 2 is stated for 4-connected graphs. Hence, we have to deal with the polyhe-
dral aspects of performing 2- and 3-sums, using the properties of graphs without
two disjoint odd cycles. In general graphs, performing multiple k-sums does not
preserve small extended formulations for the respective stable set polytopes, even
for k = 2.

On the other hand, our polyhedral analysis crucially relies on new insights
about the structure of facets of stable set polytopes (see Lemma 12) and a
transformation of stable set polytopes into the edge space (see Appendix A and
Sect. 4). We believe that this perspective can be equally beneficial for other
future investigations of (general) stable set polytopes.

Finally, we remark that our proof also can be turned into a direct, purely
graph-theoretic strongly polynomial time algorithm for the stable set problem
in graphs G with ocp(G) ⩽ 1.

We conclude this introduction with a brief outline of the paper. In Sect. 2,
we build on Theorem 2 and its signed version due to Slilaty [16] to describe the
structure of graphs without two disjoint odd cycles. Roughly, we prove that each
such graph G either has oct(G) ⩽ 3 or can be obtained from a graph H0 having
an even-face embedding in the projective plane by gluing internally disjoint
bipartite graphs T1, . . . , T� “around” H0 in a certain way. Appendix A gives
a short account of the known compact extended formulation for STAB(G) for
graphs G admitting an even-face embedding in the projective plane, see [7].
This is our base case. The general case is treated in Sects. 3 and 4 by a delicate
argument using certain gadgets H1, . . . , H� “simulating” the bipartite graphs
T1, . . . , T�.

Due to length restrictions, some material has been deleted from this extended
abstract. For a full version, see [8].

2 The Structure of Graphs Without Two Disjoint Odd
Cycles

In this section we show that every graph without two disjoint odd cycles either
has a small odd cycle transversal or has a structure that we will exploit later.

Extended Formulations for Stable Set Polytopes of OCP-1 Graphs 107

For this purpose we use the notion of separations. A k-separation of a graph
G is an ordered pair (G0,G1) of edge-disjoint subgraphs of G with G = G0 ∪G1,
∣V (G0) ∩ V (G1)∣ = k, and E(G0),E(G1), V (G1) ∖ V (G0), V (G0) ∖ V (G1) all
non-empty. We say that a k-separation is linked if for every two distinct nodes
of V (G0)∩V (G1) there exists a u–v path in G1 whose internal nodes are disjoint
from G0.

Definition 4. A comb structure of a graph G is a set of subgraphs H0, T1, . . . , T�

of G such that for all i ∈ [�]: Ti is bipartite, (H0 ∪j≠i Tj , Ti) is a linked k-
separation of G with k ⩽ 3, and V (Ti) ∩ V (Tj) ⊆ V (H0) for all j ≠ i (Fig. 1).

H0

T1

T2 T3 T4 T5

T6

Fig. 1. A comb structure.

For our structural result we will also use the notion of signed graphs. A signed
graph is a pair (G,Σ) where G is a graph and Σ ⊆ E(G). A subgraph of G is said
to be Σ-odd if it contains an odd number of edges in Σ, and is Σ-even otherwise.
The odd cycle packing number of a signed graph (G,Σ) is the maximum number
of disjoint Σ-odd cycles in (G,Σ), and is denoted by ocp(G,Σ). A signed graph
(G,Σ) is balanced if ocp(G,Σ) = 0. The odd cycle transversal number of (G,Σ)
is the minimum number of nodes in (G,Σ) intersecting every Σ-odd cycle in
(G,Σ), and is denoted by oct(G,Σ). An embedding of a signed graph (G,Σ)
in a surface is an even-face embedding if every face of (G,Σ) is an open disk
bounded by a Σ-even cycle of (G,Σ). Graphs in this section may have parallel
edges.

In the definition below, ⊎ is used to denote the edge-disjoint union of graphs.

Definition 5. Let G be a graph with comb structure H0, T1, . . . , T�. For each
i ∈ [�], let Si ∶= V (H0) ∩ V (Ti) and note that there is a signed clique (Ki,Σi)
with V (Ki) = Si such that (Ki ⊎Ti,Σi ⊎E(Ti)) is balanced. The signed graph
(H+,Σ) is defined via H+ ∶= H0⊎K1⊎⋅ ⋅ ⋅⊎K� and Σ ∶= E(H0)⊎Σ1⊎⋯⊎ Σ�.

Our structural result is as follows. The proof can be found in the full version
of the paper. It uses a finer version of Theorem 2 that is suited for signed graphs,
due to Slilaty [16].

Theorem 6. Let G be a graph with ocp(G) = 1 and oct(G) ⩾ 4. Then G admits a
comb structure H0, T1, . . . , T�, such that S1, . . . , S� and (H+,Σ) from Definition 5
have the following properties:

108 M. Conforti et al.

– Si is not a subset of Sj for all distinct i, j ∈ [�],
– (H+,Σ) has an even-face embedding in the projective plane, and
– the nodes of each Si are on the boundary of some face of the embedding.

3 Constructing a Compact Extended Formulation

Here, we describe how Theorem 1 can be proven using Theorems 6 and 3. Let
G be a graph with ocp(G) = 1. If oct(G) ⩽ 3, then STAB(G) has a O(n2)-
size extended formulation by Balas’ theorem [2]. Otherwise, oct(G) ⩾ 4 and G
can be decomposed as in Theorem 6. In particular, G is the union of graphs
H0, T1, . . . , T� where H0 has an even-face embedding in the projective plane and
T1, . . . , T� are bipartite.

Although the stable set polytopes of H0, T1, . . . , T� admit small extended
formulations and each Ti intersects H0 ∪j≠i Tj in at most three nodes, it is not
obvious how to obtain a small extended formulation for STAB(G). In some cases
it is possible to use linear descriptions of the stable set polytopes of graphs G1,G2

to obtain a description of STAB(G1 ∪G2), provided that G1 ∩G2 has a specific
structure, see [3,6,9]. However, for general graphs, having at most three nodes
in common does not help much.

With this in mind, recall that not only H0 but also the signed graph (H+,Σ)
has an even-face embedding in the projective plane. We will replace each signed
clique used to define (H+,Σ) by a constant size gadget Hi corresponding to each
Ti in a way that the resulting graph G(�) ∶= H0 ∪H1 ∪ ⋅ ⋅ ⋅ ∪H� (the “core”) still has
an even-face embedding in the projective plane. Moreover, each T ′i ∶= Ti ∪Hi will
still be bipartite. In this way G is obtained from G(�) by iteratively performing
k-sums (k ⩽ 3) with T ′1, . . . , T

′
� along H1, . . . ,H�. In each such operation, the

specific choice of the gadget will allow us to relate the extension complexities of
the stable set polytopes of the participating graphs in a controlled way. Let us
start with describing the gadgets that will be used.

Definition 7. A gadget is a graph isomorphic to P3, P4, S2,2,2 or S2,3,3, see
Fig. 2. Let G be a graph with a linked k-separation (G0,G1) such that k ∈ {2,3}
and G1 is bipartite. We say that a gadget H is attachable to G1 (with respect
to separation (G0,G1)) if its set of leaf nodes equals V (G0) ∩ V (G1), its set of
non-leaf nodes is disjoint from V (G), and G′1 ∶= G1 ∪H is bipartite.

Note that if G is a graph with a linked k-separation (G0,G1)
such that k ∈ {2,3} and G1 is bipartite, then there is a unique gadget
H ∈ {P3, P4, S2,2,2, S2,3,3} that is attachable to G1.

Next, let us formally describe how the signed cliques used to define (H+,Σ)
are replaced by gadgets in order to obtain the core.

Definition 8. Let G be a 2-connected graph with comb structure H0, T1, . . . , T�.
For each i ∈ [�], pick a gadget Hi that is attachable to Ti with respect to the
separation (H0 ∪⋃j≠i Tj , Ti). (We always assume that the set of non-leaf nodes of
the gadgets Hi, i ∈ [�] are mutually disjoint.) We call the graph H0 ∪H1 ∪ ⋅ ⋅ ⋅ ∪H�

the core.

Extended Formulations for Stable Set Polytopes of OCP-1 Graphs 109

P3 P4 S2,2,2 S2,3,3

Fig. 2. Gadgets and their names.

Lemma 9. Every 2-connected graph G with ocp(G) = 1 and oct(G) ⩾ 4 admits
a comb structure whose core has an even-face embedding in the projective plane.

Proof. The proof is immediate by choosing a comb structure that satisfies The-
orem 6. ⊓⊔

The remaining ingredient for our proof of Theorem 1 will be the following
result. To this end, let (G0,G1) be a separation of graph G. Below, for i ∈ {0,1},
we call a vertex internal if it belongs to V (Gi) ∖ V (G1−i) and an edge of Gi

internal if at least one of its endnodes is not in G1−i.

Theorem 10. Let G be a 2-connected, non-bipartite graph. Assume that G has a
k-separation (G0,G1) such that G1 is bipartite, and k ∈ {2,3}. Let μ1 denote the
number of internal vertices and edges of G1. Let H be a gadget that is attachable
to G1, and let G′0 ∶= G0 ∪H. Then xc(STAB(G)) ⩽ xc(STAB(G′0)) +O(μ1).

Before we continue with the proof of Theorem 10 in the next section, let us
see how this yields a proof of our main result.

Proof of Theorem 1. By induction on the number of nodes n, we may assume
that G is 2-connected. Indeed, suppose that G has a k-separation (G0,G1) with
k ∈ {0,1}. For i ∈ {0,1}, let ni ∶= ∣V (Gi)∣. Thus n = n0+n1−k. If c is any constant
such that xc(STAB(Gi)) ⩽ c ⋅ n2

i for i ∈ {0,1}, we get

xc(STAB(G)) ⩽ xc(STAB(G0)) + xc(STAB(G1)) ⩽ c ⋅ n2
0 + c ⋅ n2

1 ⩽ c ⋅ n2 ,

where the first inequality is due to [6, Thm. 4.1].
As observed above, if oct(G) ⩽ 3 then STAB(G) trivially has a size-O(n2)

extended formulation. Now assume that ocp(G) = 1 and oct(G) ⩾ 4. Let H0, T1,
. . . , T� be a comb structure of G as in Lemma 9. Since G is 2-connected, each
separation (H0 ∪j≠i Tj , Ti) is either a 2- or a 3-separation. For each i ∈ [�], we
consider the graph

G(i) ∶= H0 ∪H1 ∪⋯∪Hi ∪ Ti+1 ∪ ⋅ ⋅ ⋅ ∪ T� .

where Hi denotes a gadget attachable to Ti. For i ∈ [�], let μi denote the number
of internal vertices and edges of Ti. Notice that G(�) is the core, and thus by
Lemma 9 has an even-face embedding in the projective plane. By Theorem 10,

xc(STAB(G(i−1))) ⩽ xc(STAB(G(i))) +O(μi) .

110 M. Conforti et al.

Since ∣V (G(�))∣ = O(n), Theorem 3 implies xc(STAB(G(�))) = O(n2). Since
moreover ∑

�
i=1 μi ⩽ ∣V (G)∣ + ∣E(G)∣ = O(n2), we have

xc(STAB(G)) = xc(STAB(G(0))) ⩽ xc(STAB(G(�))) +O (
�

∑
i=1

μi) = O(n2) .

⊓⊔

4 Dealing with Small Separations

In this section we describe an extended formulation that yields the bound claimed
in Theorem 10. Given a stable set S in a graph G, we say that an edge is slack
if none of its endnodes is in S. We denote by σ(S) the set of slack edges. An
edge is said to be tight if it is not slack.

Lemma 11. Let G, G0, G′0, G1 and H be as in Theorem 10. Letting STAB(G′1)
denote the convex hull of characteristic vectors of stable sets S in G′1 ∶= G1 ∪H
having at most one slack edge in H, we have

STAB(G) = {(x0, x1, x01) ∈ RV (G) ∣ ∃xH ∶ (x0, x01, xH) ∈ STAB(G′0),

(x1, x01, xH) ∈ STAB(G′1)}.

(1)

where x0 ∈ RV (G0)∖V (G1), x1 ∈ RV (G1)∖V (G0), x01 ∈ RV (G0)∩V (G1) and xH ∈
R

V (H)∖V (G).

Let us first verify that Lemma 11 indeed implies Theorem 10.

Proof of Theorem 10. By Lemma 11, we have xc(STAB(G)) ⩽
xc(STAB(G′0)) + xc(STAB(G′1)). Since gadget H has constant size, STAB(G′1)
is the convex hull of the union of a constant number of faces of STAB(G′1)
in which the coordinates of the nodes in H are fixed. Hence by Balas’
union of polytopes [2], we obtain xc(STAB(G′1)) = O(xc(STAB(G1))) =
O(∣V (G1)∣ + ∣E(G1)∣). Since ∣V (G1)∣ + ∣E(G1)∣ ⩽ 6 + μ1 and μ1 ⩾ 1, we conclude
xc(STAB(G′1)) = O(μ1). This proves the claim. ⊓⊔

In the proof of Lemma 11, we exploit a special property of the weight func-
tions that are facet-defining for stable set polytopes, which we describe next.

4.1 Reducing to Edge-Induced Weights

We call a weight function w ∶ V (G) → R on the nodes of G edge-induced if there
is a nonnegative cost function c ∶ E(G) → R⩾0 such that w(v) = c(δ(v)) for all
v ∈ V (G). For a given node-weighted graph (G,w) we let α(G,w) denote the
maximum weight of a stable set. The proof of the next lemma is given in the
full version.

Extended Formulations for Stable Set Polytopes of OCP-1 Graphs 111

Lemma 12. Let G = (V,E) be a graph without isolated nodes and let w ∶ V → R

be a weight function. There exists an edge-induced weight function w′ ∶ V → R

such that w(v) ⩽ w′(v) for all nodes v and α(G,w) = α(G,w′). In particular,
the node weights of every non-trivial facet-defining inequality of STAB(G) are
edge-induced.

For c ∶ E(G) → R⩾0, we let

β(G, c) ∶= min
⎧⎪⎪
⎨
⎪⎪⎩

∑
e∈E(G)

c(e)ye ∣ y ∈ σ(STAB(G))

⎫⎪⎪
⎬
⎪⎪⎭

.

In fact, in [7, Propositions 11 and 14] it is shown that one can optimize over
Q(G) = σ(P (G)) instead of σ(STAB(G)) without changing the optimum. How-
ever, we will not need this here. Our last lemma follows from [7, Observation
13].

Lemma 13. Let G = (V,E) be a graph. If w ∶ V (G) → R is induced by
c ∶ E(G) → R⩾0, then α(G,w) = c(E(G)) − β(G, c).

4.2 Correctness of the Extended Formulation

In this section we prove Lemma 11. To this end, let R(G) denote the right-hand
side of (1). We leave to the reader to verify that for each stable set S of G, there
exists a stable set S′ of G′ ∶= G ∪H such that S′ ∩ V (G) = S and moreover at
most one edge of H is slack with respect to S′. The inclusion STAB(G) ⊆ R(G)
follows directly from this.

In order to prove the reverse inclusion R(G) ⊆ STAB(G), first observe that
R(G) ⊆ R

V (G)
⩾0 . Thus, by Lemma 12 it suffices to show that, for all edge-induced

node weights w ∶ V (G) → R, the inequality

∑
v∈V (G)

w(v)xv ⩽ α(G,w) (2)

is valid for all x ∈ R(G). As in Sect. A it will be convenient to work in the edge
space instead of the node space. To this end, let c ∶ E(G) → R+ be non-negative
edge costs, and let w(v) ∶= c(δ(v)) for every node v. By Lemma 13 we see that
(2) is valid for R(G) if and only if

∑
e∈E(G)

c(e)ye ⩾ β(G, c) (3)

is satisfied by all points y ∈ σ(R(G)). Our proof strategy to derive (3) is to seek
additional edge costs cH ∶ E(H) → R⩾0 on the edges of gadget H such that

∑
e∈E(G0)

c(e)y0
e + ∑

e∈E(H)

cH(e)yH
e ⩾ β(G, c) (4)

is valid for all (y0, yH) ∈ σ(STAB(G′0)) and

112 M. Conforti et al.

∑
e∈E(G1)

c(e)y1
e − ∑

e∈E(H)

cH(e)yH
e ⩾ 0 (5)

is valid for all (y1, yH) ∈ σ(STAB(G′1)). Then (3) is obtained as the sum of (4)
and (5).

Let us first focus on Inequality (5). Independently of how the edge costs cH

are defined, in order to prove that (5) holds for all (y0, yH) ∈ σ(STAB(G′1)), we
may assume that yH is a 0/1-vector with at most one nonzero entry. The general
case follows by convexity. Since the case yH = 0 is trivial, assume that yH = χ{f}

for some f ∈ E(H). Hence (5) can be rewritten as

∑
e∈E(G1)

c(e)y1
e ⩾ cH(f) . (6)

This suggests the following definition of cH . For F ⊆ E(H), we let

γ(F) ∶= min{c(σ(S) ∩E(G1)) ∣ S stable set of G′1, σ(S) ∩E(H) = F} .

Observe that γ(F) ∈ R⩾0 ∪ {∞}. We say that F is feasible if γ(F) is finite, that is,
there exists a stable set S of G′1 such that σ(S)∩E(H) = F . Notice that F ∶= {f}
is feasible for all f ∈ E(H). By setting cH(f) ∶= γ({f}) ∈ R⩾0 for each f ∈ E(H)
we clearly satisfy (6), and hence (5) is valid for all (y1, yH) ∈ σ(STAB(G′1)) for
this choice of cH .

It remains to prove that (4) is valid for all (y0, yH) ∈ σ(STAB(G′0)). To this
end, we will need the following observation, see Lemma 14 below. The geomet-
ric intuition behind Lemma 14 is that Q(G) = σ(P (G)) is a polyhedral cone
whenever G is bipartite.

Lemma 14. If F ⊆ E(H) is feasible and the disjoint union of A and B, then
γ(F) ⩽ γ(A) + γ(B).

To prove that the inequality in (4) is valid for all (y0, yH) ∈ σ(STAB(G′0)),
it suffices to consider any vertex (y0, yH) of σ(STAB(G′0)) minimizing the left-
hand size of (4). We may even assume that (y0, yH) minimizes ∣∣yH ∣∣1 among all
such vertices.

Let S0 denote the stable set of G′0 corresponding to (y0, yH) and let
F ∶= σ(S0) ∩E(H). Note that yH = χF . Observe that S0 is not properly con-
tained in another stable set, since this would contradict the minimality of y.
Moreover, we claim that F has at most one edge. In order to prove the claim,
we consider only the case where H = S2,2,2, see Fig. 2. The other cases are easier
or similar, and we leave the details to the reader.

Let us assume that F contains at least two edges, that is, ∥yH∥1 ⩾ 2. We will
replace yH by a new vector ȳH ∈ {0,1}E(H) such that (y0, ȳH) ∈ σ(STAB(G′0))
with smaller �1-norm in such a way that the cost of (y0, ȳH) is not higher
than that of (y0, yH), arriving at a contradiction. In order to prove that
(y0, ȳH) ∈ σ(STAB(G′0)) we will explain how to obtain the corresponding stable
set S̄0 from stable set S0 in each case. To guarantee that the cost of (y0, ȳH)
does not exceed that of (y0, yH), we will mainly rely on Lemma 14.

Extended Formulations for Stable Set Polytopes of OCP-1 Graphs 113

To distinguish the different cases, let v1, v2 and v3 denote the leaves of H and
v0 denote its degree-3 node. For i, j ∈ {0,1,2,3} we let Pij denote the vi–vj path
in H. For i ∈ [3], let v0i denote the middle vertex of Pij and let ei and fi denote
the edges of the path P0i incident to vi and v0 respectively. The relevant cases
and the replacements are listed in Fig. 3. We treat each of them below. Notice
that the case ∣S0 ∩ {v1, v2, v3}∣ = 3 cannot arise since this would contradict the
maximality of S0.

Case 1: ∣S0 ∩ {v1, v2, v3}∣ = 0. In this case we set ȳH ∶= 0, which corresponds to
letting S̄0 ∶= (S0 ∪ {v01, v02, v03}) ∖ {v0}. In this case it is clear that the cost of
(y0, ȳH) is at most the cost of (y0, yH).

Case 2: ∣S0∩{v1, v2, v3}∣ = 1. We may assume that S0 ∩ {v1, v2, v3} = {v3}. Since
∣F ∣ ⩾ 2 and S0 is maximal, we must have S0 ∩ V (H) = {v0, v3} and hence yH =
χ{e1,e2}.

We let ȳH ∶= χ{f3}, which corresponds to letting S̄0 ∶= S0 ∖ {v0} ∪ {v01, v02}.
The cost of (y0, ȳH) equals the cost of (y0, yH) minus γ({e1}) + γ({e2})−
γ({f3}) = γ({e1}) + γ({e2}) − γ({e1, e2}) ⩾ 0. The equality follows from the fact
that stable sets S of G′1 such that σ(S) ∩E(H) = {f3} and stable sets S of G′1
such that σ(S) ∩E(H) = {e1, e2} have the same intersection with the leaves of
H. The inequality follows from Lemma 14.

Case 3: ∣S0 ∩ {v1, v2, v3}∣ = 2. We may assume that S0 ∩ {v1, v2, v3} = {v1, v2}.
Again, since ∣F ∣ ⩾ 2 and S0 is maximal, we must have S0 ∩ V (H) =
{v1, v2, v03} and hence yH = χ{f1,f2}. We let ȳH ∶= χ{e3}, which corre-
sponds to letting S̄0 ∶= S0 ∖ {v03} ∪ {v01, v02}. Similar to the previous case,
we obtain that the cost of (y0, ȳH) equals the cost of (y0, yH) minus
γ({f1}) + γ({f2}) − γ({e3}) = γ({f1}) + γ({f2}) − γ({f1, f2}) ⩾ 0.

Thus, F has indeed at most one edge. There exists a stable set S1 of G′1
that is a minimizer for γ(F) such that S1 ∩ V (G) ∩ V (H) = S0 ∩ V (G) ∩ V (H).
Hence, S ∶= S1 ∪ S0 is a stable set of G. Let (y0, y1) denote the characteristic
vector of σ(S), so that (y0, y1) ∈ σ(STAB(G)). We get

∑
e∈E(G0)

c(e)y0
e + ∑

e∈E(H)

cH(e)yH
e = ∑

e∈E(G0)

c(e)y0
e + γ(F)

= ∑
e∈E(G0)

c(e)y0
e + ∑

e∈E(G1)

c(e)y1
e ⩾ β(G, c) .

Above, the first equality comes from the fact that F has at most one edge, the
definition of cH(f) for f ∈ E(H) and γ(∅) = 0. The second equality follows from
the hypothesis that S1 is a minimizer for γ(F). Finally, the inequality is due
to the validity of (3) for σ(STAB(G)). This shows that (4) is indeed valid for
(y0, yH) ∈ σ(STAB(G′0)), which concludes the proof of Lemma 11.

114 M. Conforti et al.

Fig. 3. Replacements in the proof of Lemma 11 (top row: before, bottom row: after).
Red thick edges are slack. Blue thick, dotted edges are tight. Red nodes are in the
stable set, blue nodes are not. (Color figure online)

Acknowledgements. This paper was supported by ERC Consolidator Grant 615640-
ForEFront and FNRS PDR Funding T008720F “Structural and Algorithmic Aspects
of Graphs with Few Disjoint Odd Cycles”. We would like to thank the IPCO reviewers
for their comments. Also, we would like to mention that the total unimodularity test of
Truemper & Walter [19] provided valuable insights in the early stages of our project,
especially for gaining a better understanding of the algorithm in [1].

A Review of the Projective Planar Case

In this section, we briefly review the compact extended formulation from [7] for
STAB(G), when k and g are fixed constants, where k = ocp(G) and g denotes
the Euler genus of G. Since here we are only interested in the case k = g = 1,
the extended formulation is much easier to describe. Our starting point is the
unbounded polyhedron

P (G) ∶= conv{x ∈ ZV (G) ∣ Mx ⩽ 1},

where M is the edge-node incidence matrix of G. Its relationship to STAB(G)
is as follows.

Lemma 15 ([7, Prop. 49]). For every graph G, STAB(G) = P (G)∩
[0,1]V (G).

Thus, it suffices to study P (G) instead of STAB(G). To this end, it is conve-
nient to switch from the node space of G to the edge space of G by considering
the affine map σ ∶ RV (G) → R

E(G) defined via

σ(x) ∶= 1 −Mx.

Under σ, a vector x ∈ RV (G) is mapped to y = σ(x) ∈ RE(G) where yvw = 1−xv−xw

for every edge vw ∈ E(G). Since σ is invertible if and only if G has no bipartite
component, we can focus on Q(G) ∶= σ(P (G)).

Extended Formulations for Stable Set Polytopes of OCP-1 Graphs 115

We provide an extended formulation for Q(G), assuming that G is even-face
embedded in the projective plane. Let G∗ be the dual graph of G. An orientation
D of the edges of G∗ is called alternating if in the local cyclic ordering of the
edges incident to each dual node f , the edges alternatively leave and enter f .
We say that a graph G satisfies the standard assumptions if it is non-bipartite,
2-connected, and even-face embedded in the projective plane.

Lemma 16 ([7, Lem. 17]). Let G be a graph satisfying the standard assump-
tions. Then the dual graph G∗ of G has an alternating orientation.

Let G be even-face embedded in the projective plane and D be an alternating
orientation of G∗. Note that there is a bijection between the edges of G and the
arcs of D. Therefore, we may regard a vector y ∈ RE(G) as a vector in R

A(D),
and vice versa. With this identification, Q(G) turns out to be the convex hull of
all non-negative integer circulations of D that satisfy one additional constraint.

Lemma 17 ([7, Lem. 18]). Let G be a graph satisfying the standard assump-
tions, D be an alternating orientation of G∗, and C be an arbitrary odd cycle in
G. Then

Q(G) = conv{y ∈ Z
E(G)
⩾0 ∣ y is a circulation in D and y(E(C)) is odd}.

Motivated by Lemma 17, we now introduce an auxiliary directed graph to
design an extended formulation for Q(G). Let G be a graph satisfying the
standard assumptions, D be an alternating orientation of G∗, and C be an
odd cycle in G. The cover graph of D is the directed graph D with node set
{(f, p) ∣ f ∈ V (D), p ∈ {0,1}} and an arc from (f1, p1) to (f2, p2) if and only if
(f1, f2) ∈ A(D) and p1+p2 ≡ χ

E(C)
e (mod 2), where e is the edge of G correspond-

ing to the arc (f1, f2). For each node f ∈ V (D) we let Qf be the polyhedron of
all (uncapacitated) unit flows from (f,0) to (f,1) in D. Finally, we let Q(G)
denote the convex hull of the union of all polyhedra Qf for f ∈ V (D).

By [7, Sec. 12.3], Q(G) is an extension2 of Q(G). Moreover, each Qf has
O(∣A(D)∣) = O(∣E(G)∣) = O(∣V (G)∣) facets. Finally, by applying Balas’ theo-
rem [2], we obtain a quadratic size extended formulation for Q(G), and thus for
STAB(G) in case G satisfies the standard assumptions. By [7, Sec. 12.1], this
result extends to all graphs that are even-face embedded in the projective plane.
This proves Theorem 3.

References

1. Artmann, S., Weismantel, R., Zenklusen, R.: A strongly polynomial algorithm for
bimodular integer linear programming. In: STOC 2017–Proceedings of the 49th
Annual ACM SIGACT Symposium on Theory of Computing, pp. 1206–1219. ACM,
New York (2017)

2 If P = {x ∣ Ax +By ⩽ b} is an extended formulation of some polyhedron, then the
polyhedron Q ∶= {(x, y) ∣ Ax +By ⩽ b} is called an extension of P .

116 M. Conforti et al.

2. Balas, E.: Disjunctive programming. Ann. Discrete Math. 5, 3–51 (1979). discrete
optimization (Proc. Adv. Res. Inst. Discrete Optimization and Systems Appl.,
Banff, Alta., 1977), II

3. Barahona, F., Mahjoub, A.R.: Compositions of graphs and polyhedra ii: stable
sets. SIAM J. Discrete Math. 7(3), 359–371 (1994)

4. Bonifas, N., Di Summa, M., Eisenbrand, F., Hähnle, N., Niemeier, M.: On sub-
determinants and the diameter of polyhedra. Discrete Comput. Geom. 52(1), 102–
115 (2014)

5. Cevallos, A., Weltge, S., Zenklusen, R.: Lifting linear extension complexity bounds
to the mixed-integer setting. In: Proceedings of the Twenty-Ninth Annual ACM-
SIAM Symposium on Discrete Algorithms, SODA ’18, Society for Industrial and
Applied Mathematics, Philadelphia, PA, USA, pp. 788–807 (2018). http://dl.acm.
org/citation.cfm?id=3174304.3175321

6. Chvátal, V.: On certain polytopes associated with graphs. J. Comb. Theory Ser.
B 18(2), 138–154 (1975)

7. Conforti, M., Fiorini, S., Huynh, T., Joret, G., Weltge, S.: The stable set problem
in graphs with bounded genus and bounded odd cycle packing number (2020).
https://arxiv.org/abs/1908.06300. to appear in SODA ’20

8. Conforti, M., Fiorini, S., Huynh, T., Weltge, S.: Extended formulations for stable
set polytopes of graphs without two disjoint odd cycles (2019). http://arxiv.org/
abs/1911.12179

9. Conforti, M., Gerards, B., Pashkovich, K.: Stable sets and graphs with no even
holes. Math. Program. 153(1), 13–39 (2015). https://doi.org/10.1007/s10107-015-
0912-3

10. Dyer, M., Frieze, A.: Random walks, totally unimodular matrices, and a ran-
domised dual simplex algorithm. Math. Program. 64(1–3), 1–16 (1994)

11. Eisenbrand, F., Vempala, S.: Geometric random edge. Math. Program. 164(1–2),
325–339 (2017)

12. Grossman, J.W., Kulkarni, D.M., Schochetman, I.E.: On the minors of an incidence
matrix and its smith normal form. Linear Algebra Appl. 218, 213–224 (1995)

13. Kawarabayashi, K.I., Ozeki, K.: A simpler proof for the two disjoint odd cycles
theorem. J. Comb. Theory Ser. B 103(3), 313–319 (2013). https://doi.org/10.1016/
j.jctb.2012.11.004

14. Paat, J., Schlöter, M., Weismantel, R.: Most IPs with bounded determinants can
be solved in polynomial time (2019). http://arxiv.org/abs/1904.06874

15. Seymour, P.D.: Matroid minors. In: Handbook of Combinatorics, vol. 1, no. 2, pp.
527–550. Elsevier Sci. B. V., Amsterdam (1995)

16. Slilaty, D.: Projective-planar signed graphs and tangled signed graphs. J. Comb.
Theory Ser. B 97(5), 693–717 (2007). https://doi.org/10.1016/j.jctb.2006.10.002

17. Tardos, E.: A strongly polynomial algorithm to solve combinatorial linear pro-
grams. Oper. Res. 34(2), 250–256 (1986)

18. Veselov, S.I., Chirkov, A.J.: Integer program with bimodular matrix. Discrete
Optim. 6(2), 220–222 (2009)

19. Walter, M., Truemper, K.: Implementation of a unimodularity test. Math. Pro-
gram. Ser. C 5(1), 57–73 (2013). https://doi.org/10.1007/s12532-012-0048-x

http://dl.acm.org/citation.cfm?id=3174304.3175321
http://dl.acm.org/citation.cfm?id=3174304.3175321
https://arxiv.org/abs/1908.06300
http://arxiv.org/abs/1911.12179
http://arxiv.org/abs/1911.12179
https://doi.org/10.1007/s10107-015-0912-3
https://doi.org/10.1007/s10107-015-0912-3
https://doi.org/10.1016/j.jctb.2012.11.004
https://doi.org/10.1016/j.jctb.2012.11.004
http://arxiv.org/abs/1904.06874
https://doi.org/10.1016/j.jctb.2006.10.002
https://doi.org/10.1007/s12532-012-0048-x

On a Generalization
of the Chvátal-Gomory Closure

Sanjeeb Dash1, Oktay Günlük1, and Dabeen Lee2(B)

1 IBM Research, Yorktown Heights, USA
{sanjeebd,gunluk}@us.ibm.com

2 Discrete Mathematics Group, Institute for Basic Science (IBS),
Daejeon, Republic of Korea

dabeenl@ibs.re.kr

Abstract. Many practical integer programming problems involve vari-
ables with one or two-sided bounds. Dunkel and Schulz (2012) considered
a strengthened version of Chvátal-Gomory (CG) inequalities that use
0–1 bounds on variables, and showed that the set of points in a ratio-
nal polytope that satisfy all these strengthened inequalities is a poly-
tope. Recently, we generalized this result by considering strengthened
CG inequalities that use all variable bounds. In this paper, we generalize
further by considering not just variable bounds, but general linear con-
straints on variables. We show that all points in a rational polyhedron
that satisfy such strengthened CG inequalities form a rational polyhe-
dron.

Keywords: Integer programming · Cutting planes · Chvátal-Gomory
cuts

1 Introduction

Let S ⊆ Z
n, and let P be a rational polyhedron. Let αx ≤ β be a valid inequality

for P and assume that α ∈ Z
n. Assume further that S has a point satisfying

αx ≤ β. Let
�β�S,α = max{αx : x ∈ S, αx ≤ β}.

We call the inequality αx ≤ �β�S,α an S-Chvátal-Gomory cut for P (or S-CGcut,
for short). This inequality is valid for P ∩S. If αx ≤ β is valid for P , but S does
not contain a point satisfying this inequality, then P ∩ S is clearly empty, and
we say that 0x ≤ −1 is an S-CG cut for P derived from αx ≤ β. In a similar
manner, we define

�β	S,α = min{αx : x ∈ S, αx ≥ β},

assuming that S has a point satisfying αx ≥ β. Then we say that αx ≥ �β	S,α is
the S-CG cut obtained from αx ≥ β. We define the S-CG closure of a polyhedron

c© Springer Nature Switzerland AG 2020
D. Bienstock and G. Zambelli (Eds.): IPCO 2020, LNCS 12125, pp. 117–129, 2020.
https://doi.org/10.1007/978-3-030-45771-6_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-45771-6_10&domain=pdf
https://doi.org/10.1007/978-3-030-45771-6_10

118 S. Dash et al.

P to be the set of all points in P that satisfy all S-CG cuts for P , and we denote
this set by PS .

For the case S = Z
n, S-CG cuts for a polyhedron P are essentially the

same as Chvátal-Gomory (CG) cuts [4,11] for P , an important class of cutting
planes for integer programming problems. More precisely, let αx ≤ β be a valid
inequality for P such that α is an integral vector. Then αx ≤ �β� is called a CG
inequality for P . We also have

�β� ≥ max{αx : x ∈ Z
n, αx ≤ β} = �β�Zn,α.

The above inequality becomes an equality if the coefficients of α are coprime
integers. Therefore, when S = Z

n, PS is equal to the Chvátal closure of P .
The Chvátal closure is known to be a rational polyhedron when P is a rational
polyhedron (see Schrijver [14]). There exist other classes of convex sets whose
Chvátal closure is a rational polyhedron [2,5,9]. For general S, the hyperplane
{x ∈ R

n : αx = β} is moved until it hits a point in S; the resulting hyperplane
is given by {x ∈ R

n : αx = �β�S,α}. Here, the gap β − �β�S,α can be larger than
1 when S �= Z

n. In this case, S-CG cuts can be viewed as a special case of
wide split cuts, where each cut coincides with one side of a wide split disjunction
(introduced by Bonami, Lodi, Tramontani, and Wiese [1]). Since there is no
constant bound on the gap β − �β�S,α, standard arguments for proving the
polyhedrality of the Chvátal closure cannot be directly applied to the S-CG
closure when S �= Z

n.
Dunkel and Schulz [8] studied S-CG cuts and PS for the case P ⊆ [0, 1]n

and S = {0, 1}n. Clearly, the inequality αx ≤ �β�S,α dominates the inequality
αx ≤ �β� in this case. They proved that when S = {0, 1}n, the set PS is a
rational polyhedron. The inequalities studied by Dunkel and Schulz are valid
for the 0–1 knapsack set {x ∈ {0, 1}n : αx ≤ β}; valid inequalities for such
knapsack sets are used to solve practical problem instances in Crowder, Johnson,
and Padberg [3], and an associated closure operation is defined by Fischetti and
Lodi [10]. Pashkovich, Poirrier, and Pulyassary [12] showed that the aggregation
closure – which is the set of points satisfying valid inequalities for all knapsack
sets {x ∈ Z

n : x ≥ 0, αx ≤ β} where αx ≤ β is valid for P and α ≤ 0 or α ≥ 0
– is polyhedral for packing and covering polyhedra. For packing polyhedra, Del
Pia, Linderoth, and Zhu [13] independently proved the same result.

In [6], we showed that PS is a rational polyhedron when P ⊆ conv(S) and
S is the set of integral points that satisfy an arbitrary collection of single vari-
able bounds. In this paper, we prove that even if S is the set of integer points
contained in an arbitrary rational polyhedron, PS is a rational polyhedron.

Theorem 1. Let S = R ∩Z
n for some rational polyhedron R and P ⊆ conv(S)

be a rational polyhedron. Then PS is a rational polyhedron.

The proof outline is as follows. We first prove that the result holds when R is
a rational cylinder, via a unimodular mapping of R to the set T ×R

l where l ≤ n
and T ⊆ R

n−l is a polytope. The case R = T × R
l is already covered in [6]. We

then consider the case when R is pointed, and we show, via a translation, that R

On a Generalization of the Chvátal-Gomory Closure 119

can be assumed to be contained in its recession cone. The hardest case in [6] is the
case when S = Z

n
+ and P is a packing or covering polyhedron contained in R

n
+.

Similarly, the case when R is a pointed polyhedron and P behaves like a packing
or covering polyhedron with respect to R is the hardest case in this paper. The
main technical difference between a pointed polyhedron R and conv(Zn

+) = R
n
+

is that R can have more than n extreme rays and, in particular, the extreme
rays can be linearly dependent. Nevertheless, this case can be dealt with by an
argument generalizing the argument in [6] for the case S = Z

n
+. Essentially, we

prove that given a valid inequality for P (and the associated hyperplane) that
yields a nonredundant S-CG cut, the points at which the hyperplane intersects
the rays of the recession cone of R are bounded.

1.1 Preliminaries

Given a rational polyhedron P = {x ∈ R
n : Ax ≤ b} where A ∈ Z

m×n and
b ∈ Z

m, we define ΠP as the set of all coefficient vectors that define valid,
supporting inequalities for P with integral left-hand-side coefficients:

ΠP =
{
(λA, λb) ∈ Z

n × R : λ ∈ R
m
+ , λb = max{λAx : x ∈ P}} .

Finally, for Ω ⊆ ΠP , we define PS,Ω as follows:

PS,Ω =
⋂

(α,β)∈Ω

{x ∈ R
n : αx ≤ �β�S,α} .

PS , the S-CG closure of P , can be formally defined as PS,ΠP
. Notice that if

Γ ⊆ Ω ⊆ ΠP , then PS ⊆ PS,Ω ⊆ PS,Γ . Also, if S ⊆ T for some T ⊆ Z
n, then

PS ⊆ PT . Likewise, for any Ω ⊆ ΠP , we have PS,Ω ⊆ PT,Ω if S ⊆ T .

2 Integer Points in a General Cylinder

In [6], Dash, Günlük, and Lee proved the following:

Theorem 2 ([6, Theorem 3.4]). Let S = F × Z
l for some finite F ⊆ Z

n−l and
P ⊆ R

n be a rational polyhedron. Then PS is a rational polyhedron.

We say that a rational polyhedron R is a rational cylinder if the recession
cone and lineality space of R are the same. For instance, the convex hull of F ×Z

l

for some finite F ⊆ Z
n−l is a rational cylinder. In this section, we consider the

case where S = R ∩ Z
n for some rational cylinder R.

Remember that a unimodular transformation is a mapping τ : Rn → R
n that

maps x ∈ R
n to Ux + v ∈ R

n for some unimodular matrix U ∈ Z
n×n and some

integral vector v ∈ Z
n. Note that the inverse mapping τ−1(x) = U−1x − U−1v

is also a unimodular transformation. For X ⊆ R
n, we denote by τ(X) the image

of X under τ . For Π ⊆ ΠP , although Π is not in the space of Rn, we abuse our
notation and define τ(Π) as {(αU−1, β + αU−1v) : (α, β) ∈ Π} ⊆ Πτ(P).

120 S. Dash et al.

Lemma 1 (Unimodular mapping lemma [6]). Let S ⊆ Z
n and P ⊆ conv(S)

be a rational polyhedron. Then τ(P) ⊆ conv(τ(S)), and for any Π ⊆ ΠP ,
τ(PS,Π) = τ(P)τ(S),τ(Π). In particular, τ(PS) = τ(P)τ(S).

Essentially, we will argue that there is a unimodular transformation mapping
S to F × Z

l for some finite F ⊆ Z
n−l.

Theorem 3. Let S = R ∩Z
n for some rational cylinder R and P ⊆ conv(S) be

a rational polyhedron. Then PS is a rational polyhedron.

Proof. Since S = R∩Z
n and R is a rational cylinder, we have conv(S)∩Z

n = S
and, for some integer g ≥ 0, there exist integer vectors v1, . . . , vg such that
conv(S) = conv

{
v1, . . . , vg

}
+ L where L is the lineality space of conv(S). Let

P ⊆ conv(S) be a rational polyhedron. There exists a unimodular transformation
τ such that τ(L) = {0} × R

l and τ(conv(S)) = τ
(
conv

{
v1, . . . , vg

})
+ τ (L)

where 0 ≤ l ≤ n is the dimension of L. This implies that τ(S) = F ×Z
l for some

finite F ⊆ Z
n−l. Then Theorem 2 implies that τ(P)τ(S) is a rational polyhedron,

and by Lemma 1, PS is a rational polyhedron, as required.
�

3 Integer Points in a Pointed Polyhedron

In this section, we consider the case when

S = R ∩ Z
n where R is a rational pointed polyhedron.

Then conv(S) ∩ Z
n = S and, for some integers g, h ≥ 0, there exist integer

vectors v1, . . . , vg, r1, . . . , rh ∈ Z
n such that conv(S) can be rewritten as

conv(S) = conv
{
v1, . . . , vg

}
+ cone

{
r1, . . . , rh

}
. (1)

Since R is pointed, cone
{
r1, . . . , rh

}
has to be pointed as well. Let Nv =

{1, . . . , g} and Nr = {1, . . . , h}. We will show that the S-CG closure of a rational
polyhedron P ⊆ conv(S) is again a rational polyhedron. To simplify the proof,
we will reduce this setting to a more restricted setting with additional assump-
tions on S and P , and we will see that these assumptions make the structure
of S and that of P easier to deal with. The first part of Sect. 3 explains the
reduction, and Sects. 3.1 and 3.2 consider the narrower case of S and P obtained
after the reduction.

The first assumption we make is the following:

rec (conv(S)) ⊆ {0} × R
n2 , conv(S) ⊆ cone

{
e1, . . . , en1 , r1, . . . , rh

}
(2)

where n2 is the dimension of rec (conv(S)), n1 = n−n2, and e1, . . . , en1 are unit
vectors in R

n1 × {0}. The following lemma justifies the assumption (2).

Lemma 2. Let S = R∩Zn for some rational pointed polyhedron R. Then there is
a unimodular transformation τ so that T := τ(S) has the property that conv(T)∩
Z

n = T and conv(T) is of the form (1) satisfying (2).

On a Generalization of the Chvátal-Gomory Closure 121

Proof. As R is pointed, conv(S) is also pointed and conv(S)∩Z
n = S. Let n2 be

the dimension of rec (conv(S)). Then there is a unimodular transformation u such
that u (rec (conv(S))) = rec (conv(u(S))) ⊆ {0} × R

n2 . Let rec (conv(u(S))) =
cone

{
r1, . . . , rh

}
. Then it follows that e1, . . . , en1 , r1, . . . , rh span R

n. Therefore,
there exists a sufficiently large integer M such that v +M(

∑n1
i=1 ei +

∑h
j=1 rj) ∈

cone
{
e1, . . . , en1 , r1, . . . , rh

}
for all vertices v of conv(u(S)). Let ν be the undi-

modular transformation defined by ν(x) := x+M(
∑n1

i=1 ei+
∑h

j=1 rj) for x ∈ R
n.

Then conv(ν(u(S))) ⊆ cone
{
e1, . . . , en1 , r1, . . . , rh

}
, and since ν is just a transla-

tion, the recession cone of conv(ν(u(S))) remains the same as that of conv(u(S)).
So, τ = ν ◦ u is the desired unimodular transformation.
�
By Lemma 1, PS is a rational polyhedron if and only if τ(P)τ(S) is a rational
polyhedron, so we may assume that S satisfies (2).

The second assumption is on the structure of the polyhedron P . Let P 1 and
P 2 be defined as follows:

P 1 := P+cone
{
e1, . . . , en1 , r1, . . . , rh

}
, P 2 := P−cone

{
e1, . . . , en1 , r1, . . . , rh

}
.

Since P ⊆ conv(S) ⊆ cone
{
e1, . . . , en1 , r1, . . . , rh

}
, P 1 is pointed and the

extreme points of P 1 are contained in conv(S). Moreover, P 1 can be written
as P 1 = {x ∈ R

n : Ax ≥ b} where A ∈ Z
m×n, b ∈ Z

m are matrices satisfying

Ax ≥ 0 for all x ∈ {
e1, . . . , en1 , r1, . . . , rh

}
and b ≥ 0. (3)

Similarly, P 2 can be written as P 2 = {x ∈ R
n : Ax ≤ b} for some A ∈ Z

m×n,
b ∈ Z

m satisfying (3). Essentially, we can focus on the polyhedra of the form P ↑

or P ↓:
P ↑ = {x ∈ R

n : Ax ≥ b} or P ↓ = {x ∈ R
n : Ax ≤ b} (4)

for some A ∈ Z
m×n, b ∈ Z

m satisfying (3). In Sects. 3.1 and 3.2, we prove that
the following holds:

(
) Let Q ⊆ R
n be a rational polyhedron of the form P ↑ or P ↓ as in (4) for

some A ∈ Z
m×n, b ∈ Z

m satisfying (3). We further assume that if Q = P ↑,
then P ↑ ⊆ cone

{
e1, . . . , en1 , r1, . . . , rh

}
and the extreme points of P ↑ are

contained in conv(S). Then QS is a rational polyhedron.

The following Lemma implies that proving (
) is sufficient to prove the result
for conv(S) being pointed polyhedra.

Lemma 3. Let S ⊆ Z
n be such that conv(S)∩Zn = S, conv(S) is of the form (1)

satisfying (2). Let P ⊆ conv(S) be a rational polyhedron. Assume that (
) holds.
Then PS is a rational polyhedron.

The basic idea for proving Lemma3 is to come up with a series of unimodular
transformations so that the setting in Lemma3 is reduced to the narrow case
in (
). We defer the formal proof of Lemma3 to a full version of this paper.

122 S. Dash et al.

3.1 Covering Polyhedra

In Sects. 3.1 and 3.2, we assume that conv(S) ∩ Z
n = S and conv(S) is of

the form (1) satisfying (2). In this section, we consider polyhedra of the form
P ↑ as in (4) where A ∈ Z

m×n and b ∈ Z
m satisfy (3). We will prove that if

P ↑ ⊆ cone
{
e1, . . . , en1 , r1, . . . , rh

}
and the extreme points of P ↑ are contained

in conv(S), then P ↑
S is a rational polyhedron. Notice that every valid inequality

for P ↑ is of the form

αx ≥ β where αx ≥ 0 for all x ∈ {
e1, . . . , en1 , r1, . . . , rh

}
and β ≥ 0. (5)

As we will be dealing with inequalities of the greater or equal to form in this
section, we will abuse notation and define ΠP ↑ as follows:

ΠP ↑ =
{
(λA, λb) ∈ Z

n × R : λ ∈ R
m
+ , λb = min{λAx : x ∈ P ↑}}

.

Given (α, β) ∈ ΠP ↑ , the S-CG cut obtained from αx ≥ β is αx ≥ �β	S,α.
To prove that P ↑

S is a rational polyhedron, we define the notion of “ray-
support”. Given a vector α ∈ R

n, we define the ray-support of α, denoted
r-supp(α), as follows:

r-supp(α) :=
{
j ∈ Nr : αrj > 0

}
.

If (α, β) ∈ ΠP ↑ and j ∈ r-supp(α), then αrj ≥ 1. For j ∈ r-supp(α), the
ray generated by rj always intersects the hyperplane {x ∈ R

n : αx = β},
and (β/αrj)rj is the intersection point. Henceforth, β/αrj is referred to as an
“intercept” for convenience for j ∈ r-supp(α). Lemma 4 implies that if every
nondominated S-CG cut for P ↑ has bounded intercepts, then P ↑

S is a rational
polyhedron. The following proposition will be useful:

Proposition 1 ([6, Proposition 2.9]). Let S be a finite subset of Zn and P ⊆
R

n be a rational polyhedron. Let H ⊆ R
n × R be a rational polyhedron that is

contained in its recession cone rec(H) and let Ω = ΠP ∩ H. Then, PS,Ω is a
rational polyhedron.

Lemma 4. Let M∗ be a positive integer, and let

Π =
{
(α, β) ∈ ΠP ↑ : β/αrj ≤ M∗ for all j ∈ r-supp(α)

}
. (6)

Then P ↑
S,Π is a rational polyhedron.

Proof. Recall that conv(S) = conv
{
v1, . . . , vg

}
+cone

{
r1, . . . , rh

}
. Let S∗ be a

finite subset of S defined as

S∗ := S ∩ (
conv

{
v1, . . . , vg

}
+

{
μ1r

1 + · · · + μhrh : 0 ≤ μj ≤ M∗ for j ∈ Nr

})
.

As S∗ ⊆ S, we have P ↑
S∗,Π ⊆ P ↑

S,Π . In fact, we can show that P ↑
S∗,Π = P ↑

S,Π .
It suffices to argue that �β	S∗,α = �β	S,α for every (α, β) ∈ Π. The details of
this are deferred to a full version of this paper. So, it remains to show that

On a Generalization of the Chvátal-Gomory Closure 123

P ↑
S∗,Π is a rational polyhedron. Note that we can write Π =

⋃
I⊆Nr

Π(I)
where Π(I) = {(α, β) ∈ Π : r-supp(α) = I}. Therefore, Π(I) = ΠP ↑ ∩ H(I)
where

H(I) =
{

(α, β) ∈ R
n × R :

αrj ≥ 1 for j ∈ I, αrj = 0 for j ∈ Nr \ I,
M∗αrj ≥ β for j ∈ I

}
.

Notice that H(I) ⊆ rec(H(I)). So, by Proposition 1, P ↑
S∗,Π(I) is a rational

polyhedron. As P ↑
S∗,Π =

⋂
I⊆Nr

P ↑
S∗,Π(I), the proof is complete.
�

By Lemma 4, it is enough to argue that all nondominated S-CG cut for
P ↑ have “bounded” intercepts, in the sense that these inequalities belong to
Π defined in (6). In the end, we will prove that P ↑

S = P ↑
S,Π . Recall that

P ↑ is described by the system Ax ≥ b consisting of m inequalities, denoted
a1x ≥ b1, . . . , amx ≥ bm. Since P ↑ is pointed, we know that m ≥ 1. By (3), for
every i = 1, . . . ,m, we have air

j ≥ 0 for j ∈ Nr. Then for any λ ∈ R
m
+ , it follows

that r-supp(λiai) ⊆ r-supp(λA).

Definition 1. Let λ ∈ R
m
+ \ {0}, and λ1 ≥ λ2 ≥ · · · ≥ λm. The tilting ratio of

λ with respect to A is defined as

r(λ,A) = λ1/λt(λ,A)

where t(λ,A) = min
{
j ∈ {1, . . . , m} :

⋃j
i=1 r-supp(ai) = r-supp (λA)

}
. In par-

ticular, λ1 . . . , λt(λ,A) > 0 and r(λ,A) > 0.

Definition 2. Let B = max
1≤i≤m

{bi} and D =
∑m

i=1 ai

(∑n1
i=1 ei +

∑h
j=1 rj

)
. We

define M1 = 2 (mB + 2D) and M =
∏m−1

i=1 Mi where

Mi = (2mB

i−1∏

j=1

Mj)i−1M1 for i = 2, . . . ,m − 1.

In particular, M = 1 if m = 1 and M ≥ M1 ≥ 4 if m ≥ 2.

Moreover, (Mi/M1)1/(i−1) ≥ 4, and thus, (M1/Mi)1/(i−1) ≤ 1/4 for all i ≥ 2.
We will show in Lemma 5 that if λ ∈ R

m
+ \ {0} has tilting ratio r(λ,A) > M ,

then there exists a μ ∈ R
m
+ \ {0} that defines an S-CG cut dominating the one

defined by λ, but with ‖μ‖1 ≤ ‖λ‖1 − 1. We will need a result of Dirichlet:

Theorem 4 (Simultaneous Diophantine Approximation Theorem [7]).
Let k be a positive integer. Given any real numbers r1, . . . , rk and 0 < ε < 1,
there exist integers p1, . . . , pk and q such that

∣
∣
∣ri − pi

q

∣
∣
∣ < ε

q for i = 1, . . . , k and

1 ≤ q ≤ ε−k.

The following technical lemma generalizes Lemma 4.10 in [6]:

124 S. Dash et al.

Lemma 5. Let λ ∈ R
m
+ \{0} be such that (λA, λb) ∈ ΠP ↑ . If r(λ,A) > M , then

there exists μ ∈ R
m
+ \ {0} that satisfies the following: (i) ‖μ‖1 ≤ ‖λ‖1 − 1, (ii)

(μA, μb) ∈ ΠP ↑ , and (iii) μAx ≥ �μb	S,μA dominates λAx ≥ �λb	S,λA.

Proof. After relabeling the rows of Ax ≥ b, we may assume that λ1 ≥ · · · ≥ λm.
Let t stand for t(λ,A). If t = 1, we have r(λ,A) = 1 ≤ M , a contradiction to
our assumption. This implies that t ≥ 2, and thus, m ≥ 2. Let Δ be defined as

Δ = min
{
λArj : j ∈ r-supp(λA)

}
, (7)

and let

k = argmin

{

λArj : j ∈ r-supp (λA) \
t−1⋃

i=1

r-supp(ai)

}

. (8)

By the definition of t, it follows that r-supp (λA)\⋃t−1
i=1 r-supp(ai) is not empty,

and therefore, k is a well-defined index. Moreover, we obtain

Δ ≤ λArk =
m∑

i=t

λiair
k ≤ λt

m∑

i=t

air
k ≤ Dλt (9)

where the first inequality is due to (7), the equality holds due to (8), the sec-
ond inequality follows from the assumption that λ1 ≥ · · · ≥ λm, and the last
inequality follows from the definition of D given in Definition 2. Notice that
as r(λ,A) = λ1

λt
= λ1

λ2
× · · · × λt−1

λt
> M ≥ M1 × · · · × Mt−1, there exists

 ∈ {1, . . . , t − 1} such that

λi/λi+1 ≤ Mi for all i ∈ {1, . . . ,
 − 1} and λ
/λ
+1 > M
. (10)

We now construct the vector μ ∈ R
m \ {0}. We consider the case
 ≥ 2 first.

It follows from the Simultaneous Diophantine Approximation Theorem (with
k =
 − 1 and ri = λi/λ
 for i ∈ {1, . . . ,
 − 1}) that there exist positive integers
p1, . . . , p
 satisfying

∣
∣
∣
∣
λi

λ

− pi

p

∣
∣
∣
∣ <

ε

p

, i ∈ {1, . . . ,
} and p
 ≤ ε−(
−1) (11)

where ε = (M1/M
)1/(
−1). Moreover, for all i ∈ {1, . . . ,
 − 1}, we can assume
that pi ≥ pi+1 ≥ p
, as λi ≥ λi+1. If pi < pi+1 for some i ∈ {1, . . . ,
 − 1}, then
increasing pi to pi+1 can only reduce |λi/λ
 − pi/p
|. Now we define μ1, . . . , μm

as follows:

μi =
{

λi − piΔ for i ∈ {1, . . . ,
},
λi otherwise. (12)

If, on the other hand,
 = 1, we define μ as in (12) with p1 = 1.
We can show that μ ≥ 0 (see Claim 1 in AppendixA), implying in turn

that ‖μ‖1 ≤ ‖λ‖1 − 1. Then we can prove that μAx ≥ �μb	S,μA dominates
λAx ≥ �λb	S,λA (See Claim 4 in AppendixA).
�

On a Generalization of the Chvátal-Gomory Closure 125

Now we are ready to prove that P ↑
S is a rational polyhedron. The following

theorem extends Theorem 4.11 in [6]:

Theorem 5. Let

Π =
{
(α, β) ∈ ΠP ↑ : β/αrj ≤ M∗ for all j ∈ r−supp(α)

}
.

where M∗ = mBM . If P ↑ ⊆ cone
{
e1, . . . , en1 , r1, . . . , rh

}
and the extreme points

of P ↑ are contained in conv(S), then P ↑
S = P ↑

S,Π , and in particular, P ↑
S is a

rational polyhedron.

Proof. As Π ⊆ ΠP ↑ , we have P ↑
S ⊆ P ↑

S,Π . We will show that P ↑
S = P ↑

S,Π by
arguing that for each (α, β) ∈ ΠP ↑ , there is an (α′, β′) ∈ Π such that the S-CG
cut derived from (α′, β′) dominates the S-CG cut derived from (α, β) on P ↑.

Let λ ∈ R
m
+ \ {0} be such that (λA, λb) ∈ ΠP ↑ , and set (α, β) = (αA, βb).

If β/αrj ≤ M∗ for all j ∈ r-supp(α), then (α, β) ∈ Π as desired. Otherwise,
consider an arbitrary j ∈ r-supp(α) such that β/αrj > M∗. Let t stand for
t(λ,A) and note that

M∗ <
β

αrj
=

∑m
i=1 λibi∑m

i=1 λiairj
≤ λ1

∑m
i=1 bi

λt

∑t
i=1 airj

= r(λ,A)
∑m

i=1 bi
∑t

i=1 airj
≤ mB r(λ,A),

where the last inequality follows from the fact that bi ≤ B for all i ∈ {1, . . . , m}
and the fact that

∑t
i=1 air

j ≥ 1 as
⋃t

i=1 r-supp (ai) = r-supp (λA).
As M∗ = mBM , we have r(λ,A) > M . Then, by Lemma 5, there exists a

μ ∈ R
m
+ \ {0} such that ‖μ‖1 ≤ ‖λ‖1 − 1 and the S-CG cut generated by μ

dominates the S-CG cut generated by λ for P ↑. If necessary, we can repeat this
argument and construct a sequence of vectors μ1, μ2, . . . , with decreasing norms
such that each vector in the sequence defines an S-CG cut that dominates the
previous one. Therefore, after at most ‖λ‖1 iterations, we must obtain a vector
μ̂ ∈ R

m
+ \ {0} such that r(μ̂, A) ≤ M and (μ̂A, μ̂b) ∈ Π. As (μ̂A, μ̂b) ∈ Π and

the S-CG cut generated by μ̂ dominates the S-CG cut generated by λ for P ↑,
we conclude that P ↑

S = P ↑
S,Π . Moreover, as P ↑

S,Π is a rational polyhedron by
Lemma 4, it follows that P ↑

S is a rational polyhedron, as desired.
�

3.2 Packing Polyhedra and General Pointed Polyhedra

Similarly, we can show that P ↓
S is a rational polyhedron, where P ↓ is defined

as in (4) for some A ∈ Z
m×n and b ∈ Z

m satisfying (3). Unlike P ↑, P ↓ is not
necessarily pointed. Moreover, we do not assume that the extreme points of P ↓

are contained in conv(S). We may assume that m ≥ 1. Otherwise, P ↓ = R
n,

and therefore, P ↓
S = R

n is trivially a rational polyhedron. We defer the proof
of the following theorem to a full version of this paper.

Theorem 6. P ↓
S is a rational polyhedron.

By Theorems 5 and 6, it follows that (
), stated before Lemma 3, holds. As
a consequence of Lemmas 2 and 3, we obtain the main theorem of Sect. 3.

Theorem 7. Let S = R ∩ Z
n for some rational pointed polyhedron R and P ⊆

conv(S) be a rational polyhedron. Then PS is a rational polyhedron.

126 S. Dash et al.

4 The General Case

In this section, we get back to the most general case:

S = R ∩ Z
n where R is a rational polyhedron

and R is not necessarily pointed. Then conv(S) ∩ Z
n = S and conv(S) can be

written as
conv(S) = P + R + L

where L is the lineality space of conv(S), P + R is the pointed polyhedron
conv(S) ∩ L⊥ whose recession cone is R, and P is a polytope. Let S0 ⊆ Z

n be
the set of integer points such that conv(S0) ∩ Z

n = S0 and

conv(S0) = P + lin(R) + L
where lin(R) is the linear hull of R or R + (−R). By definition, S ⊆ S0 and
conv(S0) is a relaxation of conv(S). Moreover, conv(S0) is a rational cylinder.

Lemma 6. If P ⊆ conv(S) is a rational polyhedron, then

PS = PS0 ∩ PS,Π where Π := {(α, β) ∈ ΠP : α
 = 0 for
 ∈ L} . (13)

Due to the space limit, we defer the proof of Lemma6 to a full version of this
paper. By this lemma, it is sufficient to show that PS,Π is a rational polyhedron,
and the following lemma will be useful for that:

Lemma 7 (Projection lemma [6]). Let F, S and P be defined as

S = F × Z
n2 for some F ⊆ Z

n1 and P = {(x, y) ∈ R
n1 × R

n2 : Ax + Cy ≤ b}
where the matrices A,C, b have integral components and n1, n2, 1 columns,
respectively. Let Ω ⊆ {(α, β) ∈ ΠP : α = (φ,0) ∈ R

n1 × R
n2}, and let

Φ = {(φ, β) ∈ R
n1 × R : (φ,0) = α, (α, β) ∈ Ω}. If Q = projx(P), then PS,Ω =

P ∩ (QF,Φ × R
n2).

Now we are ready to prove the main result of this paper:

Proof of Theorem 1. Let Π be defined as in (13). By Lemma 6, we know
that PS = PS0 ∩ PS,Π . Since conv(S0) is a rational cylinder, Theorem3 implies
that PS0 is a rational polyhedron. So, it is sufficient to show that PS,Π is a
rational polyhedron. Since P + R = conv(S) ∩ L⊥, there exists a unimodular
transformation τ such that τ(L) = {0} × R

n2 and τ(P + R) ⊆ R
n1 × {0}. Let

Q = τ(P) and T = τ(S). Then Lemma 1 implies that

τ(PS,Π) = QT,Ω where Ω := {(α, β) ∈ ΠQ : α
 = 0 for
 ∈ τ(L)}.

Since τ(L) = {0} × R
n2 , we have Ω =

{
(α, β) ∈ ΠQ : αn1+1 = · · · =

αn1+n2 = 0
}
. Moreover, T can be written as T = TC×Z

n2 where conv(TC) ⊆ R
n1

is a pointed polyhedron and TC = conv(TC) ∩ Z
n1 . Let

Φ = {(φ, β) ∈ R
n1 × R : (φ,0) = α, (α, β) ∈ Ω} .

On a Generalization of the Chvátal-Gomory Closure 127

Let Q̂ denote the projection of Q onto the R
n1 -space. As Q ⊆ conv(S), we

have Q̂ ⊆ conv(TC) and Φ = ΠQ̂. Since conv(TC) is pointed, we know from

Theorem 7 that Q̂TC ,Φ is a rational polyhedron. Since QT,Ω = Q∩
(
Q̂TC ,Φ × R

n2

)

by Lemma 7, it follows that QT,Ω is a rational polyhedron. Therefore, PS is a
rational polyhedron, as required.
�

Acknowledgments. This research is supported, in part, by the Institute for Basic
Science (IBS-R029-C1).

A Proof of Lemma5

First of all, Claims 1 and 2 below are proved inside the proof of Lemma 4.10 in [6].

Claim 1. μ ≥ 0 and supp(μ) = supp(λ).

Claim 2. μb = min
{
μAx : x ∈ P ↑} and therefore (μA, μb) ∈ ΠP ↑ .

Since supp(μ) = supp(λ) by Claim 1 and Arj ≥ 0 for all j ∈ Nr, it follows that
r-supp(μA) = r-supp(λA), and therefore, t(μ,A) = t(λ,A).

The next claim extends Claim 3 of Lemma 4.10 in [6].

Claim 3. Let Q =
{
x ∈ cone

{
e1, . . . , en1 , r1, . . . , rnr

}
: μb ≤ μAx ≤ μb + Δ

}
.

There is no point x ∈ Q that satisfies

∑

i=1

piaix ≥ 1 +

∑

i=1

pibi. (14)

Proof. Suppose for a contradiction that there exists x̃ ∈ Q satisfying (14). Recall
that for the index k defined in (8), the inequality μArk > 0 holds. Let v =

μb
μArk rk. Then μAv = μb and v ∈ Q. In addition, for the index
 defined in (10),

we have
∑

i=1 piaiv = 0 since k �∈ ⋃t−1
i=1 r-supp(ai) and air

k = 0 for i ≤ t− 1. As
x̃ ∈ Q satisfies (14) and v ∈ Q satisfies

∑

i=1 piaiv = 0, we can take a convex

combination of these points to get a point x̄ ∈ Q such that

∑

i=1

piaix̄ = 1 +

∑

i=1

pibi ⇒

∑

i=1

pi(aix̄ − bi) = 1. (15)

As μAx̄ ≤ μb + Δ, we have

∑

i=1

μi(aix̄ − bi) ≤ −
m∑

j=
+1

μj(aj x̄ − bj) + Δ. (16)

As in [6], we can rewrite (16) as:

λ

p

(

1 +

∑

i=1

εi(aix̄ − bi)

)

≤ −
m∑

j=
+1

μj(aj x̄ − bj) + 2Δ

≤
m∑

j=
+1

μjbj + 2Δ ≤ λ
+1(mB + 2D) =
1
2
λ
+1M1

(17)

128 S. Dash et al.

where the second inequality in (17) follows from the assumption that A ∈ Z
m×n

and b ∈ Z
m satisfy (3), the third inequality follows from the fact that μi = λi ≤

λ
+1 for i =
 + 1, . . . , m by (12) and that bj ≤ B by Definition 2, and the last
equality simply follows from the definition of M1.

Next, we obtain a lower bound on the first term in (17). As aix̄ ≥ 0, bi ≥ 0,
and εi ∈ [−ε, ε], we have

∑

i=1

εi (aix̄ − bi) =

∑

i=1

εiaix̄ −

∑

i=1

εibi ≥ −ε

∑

i=1

(aix̄ + bi). (18)

Following the same argument in Claim 3 of Lemma 4.10 in [6], we can show that
−ε

∑

i=1(aix̄+bi) ≥ − 1

2 . Then it follows from (18) that
∑

i=1 εi(aix̄−bi) ≥ −1/2.
So, the left hand side of (17) is lower bounded by λ
/2p
.

Since the first term in (17) is at least λ
/2p
, we obtain λ
 ≤ p
λ
+1M1

from (17), implying in turn that M
 < p
M1 as we assumed that λ
 > M
λ
+1

as in (10). However, (11) implies that M
 ≥ p
M1, a contradiction.
�
Claim 4. μAx ≥ �μb	S,μA dominates λAx ≥ �λb	S,λA.

Proof. We will first show that

μb ≤ �μb	S,μA ≤ μb + Δ (19)

holds. Set (α, β) = (μA, μb). By Claim 2, we have that β = min{αx : x ∈ P ↑}. As
the extreme points of P ↑ are contained in conv(S), it follows that β ≥ min{αz :
z ∈ S}. If β = min{αz : z ∈ S}, then β = �β	S,α. Thus we may assume that
β > min{αz : z ∈ S}, so there exists z′ ∈ S such that β > αz′. Remember that
by (7), Δ = min{λArj : j ∈ r-supp(λA)}, and let j be such that λArj = Δ.
As r-supp(λA) = r-supp(μA), we have αrj > 0 and κ = (β − αz′)/αrj > 0.
Therefore z′′ = z′ + �κ	rj ∈ S. Observe that

β = αz′ + (β − αz′) = α
(
z′ + κrj

)
≤ α

(
z′ + �κ�rj

)
= β + αrj(�κ� − κ) ≤ β + αrj .

As λ ≥ μ, we have Δ ≥ αrj implying β ≤ αz′′ ≤ β + Δ and (19) holds, as
desired.

Using (19), we will show that μAx ≥ �μb	S,μA dominates λAx ≥ �λb	S,λA.
Let z ∈ S be such that μAz = �μb	S,μA. As z is integral and μb ≤ �μb	S,μA ≤
μb + Δ by (19), Claim 3 implies that

∑

i=1 piaiz < 1 +

∑

i=1 pibi, and therefore,

∑

i=1 piaiz =

∑

i=1 pibi−f for some integer f ∈ [0,

∑

i=1 pibi]. Consider z+frj ∈

S and observe that

λA
(
z + frj

)
= λAz + fλArj =

(

μA + Δ

∑

i=1

piai

)

z + Δ

∑

i=1

pi(bi − aiz)

= �μb	S,μA + Δ

∑

i=1

pibi.

On a Generalization of the Chvátal-Gomory Closure 129

Since �μb	S,μA ≥ μb, we must have �μb	S,μA+Δ
∑

i=1 pibi ≥ μb+Δ
∑

i=1 pibi =
λb. Then �μb	S,μA + Δ

∑

i=1 pibi ≥ �λb	S,λA. Then the inequality λAx ≥

�λb	S,λA is dominated by μAx ≥ �μb	S,μA, as the former is implied by the
latter and a nonnegative combination of the inequalities in Ax ≥ b, as required.

�

References

1. Bonami, P., Lodi, A., Tramontani, A., Wiese, S.: Cutting planes from wide split dis-
junctions. In: Eisenbrand, F., Koenemann, J. (eds.) IPCO 2017. LNCS, vol. 10328,
pp. 99–110. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-59250-3 9

2. Braun, G., Pokutta, S.: A short proof for the polyhedrality of the Chvátal-Gomory
closure of a compact convex set. Oper. Res. Lett. 42, 307–310 (2014)

3. Crowder, H., Johnson, E., Padberg, M.: Solving large-scale zero-one linear pro-
gramming problems. Oper. Res. 31, 803–834 (1983)

4. Chvátal, V.: Edmonds polytopes and a hierarchy of combinatorial problems. Dis-
cret. Math. 4, 305–337 (1973)

5. Dadush, D., Dey, S.S., Vielma, J.P.: On the Chvátal-Gomory closure of a compact
convex set. Math. Program. 145, 327–348 (2014)

6. Dash, S., Günlük, O., Lee, D.: Generalized Chvátal-Gomory closures for integer
programs with bounds on variables, June 2019. http://www.optimization-online.
org/DB HTML/2019/06/7245.html

7. Dirichlet, G.L.: Verallgemeinerung eines Satzes aus der Lehre von den Kettenbri-
ichen nebst einigen Anwendungen auf die Theorie der Zahlen, Bericht iiber die zur
Bekanntmachung geeigneten Verhandlungen der Königlich Preussischen Akademie
der Wissenschaften zu Berlin, pp. 93–95 (1842). (Reprinted in: L. Kronecker (ed.),
G. L. Dirichlet’s Werke, vol. I, G. Reimer, Berlin 1889 (reprinted: Chelsea, New
York 1969), pp. 635–638)

8. Dunkel, J., Schulz, A.S.: A refined Gomory-Chvátal closure for polytopes in the
unit cube, Technical report, March 2012. http://www.optimization-online.org/DB
HTML/2012/03/3404.html

9. Dunkel, J., Schulz, A.S.: The Gomory-Chvátal closure of a nonrational polytope is
a rational polytope. Math. Oper. Res. 38, 63–91 (2013)

10. Fischetti, M., Lodi, A.: On the Knapsack closure of 0-1 integer linear programs.
Electron. Notes Discret. Math. 36, 799–804 (2010)

11. Gomory, R.E.: Outline of an algorithm for integer solutions to linear programs.
Bull. Am. Math. Soc. 64, 275–278 (1958)

12. Pashkovich, K., Poirrier, L., Pulyassary, H.: The aggregation closure is polyhedral
for packing and covering integer programs arXiv:1910.03404 (2019)

13. Del Pia, A., Linderoth, J., Zhu, H.: Integer packing sets form a well-quasi-ordering
arXiv:1911.12841 (2019)

14. Schrijver, A.: On cutting planes. Ann. Discret. Math. 9, 291–296 (1980)

https://doi.org/10.1007/978-3-319-59250-3_9
http://www.optimization-online.org/DB_HTML/2019/06/7245.html
http://www.optimization-online.org/DB_HTML/2019/06/7245.html
http://www.optimization-online.org/DB_HTML/2012/03/3404.html
http://www.optimization-online.org/DB_HTML/2012/03/3404.html
http://arxiv.org/abs/1910.03404
http://arxiv.org/abs/1911.12841

Algorithms for Flows over Time
with Scheduling Costs

Dario Frascaria1(B) and Neil Olver2,3

1 Department of Econometrics and Operations Research,
Vrije Universiteit Amsterdam, Amsterdam, The Netherlands

d.frascaria@vu.nl
2 Department of Mathematics,

London School of Economics and Political Science, London, UK
N.Olver@lse.ac.uk

3 CWI, Amsterdam, The Netherlands

Abstract. Flows over time have received substantial attention from
both an optimization and (more recently) a game-theoretic perspective.
In this model, each arc has an associated delay for traversing the arc,
and a bound on the rate of flow entering the arc; flows are time-varying.
We consider a setting which is very standard within the transportation
economic literature, but has received little attention from an algorithmic
perspective. The flow consists of users who are able to choose their route
but also their departure time, and who desire to arrive at their desti-
nation at a particular time, incurring a scheduling cost if they arrive
earlier or later. The total cost of a user is then a combination of the time
they spend commuting, and the scheduling cost they incur. We present
a combinatorial algorithm for the natural optimization problem, that of
minimizing the average total cost of all users (i.e., maximizing the social
welfare). Based on this, we also show how to set tolls so that this optimal
flow is induced as an equilibrium of the underlying game.

Keywords: Flows over time · Tolls · Traffic

1 Introduction

The study of flows over time is a classical one in combinatorial optimization; it
began already with the work of Ford and Fulkerson [9] in the 50s. It is a natural
extension of static flows, which associates a single numerical value, representing
a total quantity or rate of flow on the arc. In a flow over time, a second value
associated with each arc represents the time it takes for flow to traverse it; the
flow is then described by a function on each arc, representing the rate of flow
entering the arc as a function of time.

Partially supported by NWO TOP grant 614.001.510 and NWO Vidi grant
016.Vidi.189.087. A version of this manuscript containing omitted proofs can be found
on arXiv:1912.00082.

c© Springer Nature Switzerland AG 2020
D. Bienstock and G. Zambelli (Eds.): IPCO 2020, LNCS 12125, pp. 130–143, 2020.
https://doi.org/10.1007/978-3-030-45771-6_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-45771-6_11&domain=pdf
https://arxiv.org/abs/1912.00082
https://doi.org/10.1007/978-3-030-45771-6_11

Algorithms for Flows over Time with Scheduling Costs 131

Classical optimization problems involving static flows have natural analogs
in the flow over time setting (see the surveys [17,24]). For example (restricting
the discussion to single commodity flows), the maximum flow over time problem
asks to send as much flow as possible, departing from the source starting from
time 0 and arriving to the sink by a given time horizon T ; this can be solved in
polynomial time [8–10]. A quickest flow asks, conversely, for the shortest time
horizon necessary to send a given amount of flow. Of particular importance for
us is the notion of an earliest arrival flow : this has the very strong property that
simultaneously for all T ′ ≤ T , the amount of flow arriving by time T ′ is as large
as possible [12]. Such a flow can also be characterized as minimizing the average
arrival time [15]. Earliest arrival flows can be “complicated”, in that they can
require exponential space (in the input size) to describe [29], and determining
the average arrival time of an earliest arrival flow is NP-hard [7]. But they can
be constructed in time strongly polynomial in the sum of the input and output
size [2].

Another important aspect of many settings where flow-over-time models are
applicable—such as traffic—involves game theoretic considerations. In traffic
settings, the flow is made up of a large number of individuals making their
own routing choices, and aiming to maximize their own utility rather than the
overall social welfare (e.g., average journey time). Dynamic equilibria, which
is the flow over time equivalent of Wardrop equilibria for static flows, are key
objects of study. Existence, uniqueness, structural and algorithmic issues, and
much more have been receiving increasing recent interest from the optimization
community [3–6,16,22,23].

Traffic, being such a relevant and important topic, has received attention
from many different communities, each with their own perspective. Within the
transportation economic literature, modelling other aspects of user choice besides
route choice has been considered particularly important. A very standard setting,
motivated by morning rush-hour traffic, is the following [1,26]. Users are able
to choose not only their route, but also their departure time. They are then
concerned not only with their journey time, but also their arrival time at the
destination. This is captured in a scheduling cost function which we will denote
by ρ: a user arriving at time θ will experience a scheduling cost of ρ(θ). The total
disutility of a user is then the sum of their scheduling cost and their journey time
(scaled by some factor α > 0 representing their value for time spent commuting).
A very standard choice of ρ is

ρ(θ) =

{
−βθ if θ ≤ 0

γθ if θ > 0
, (1)

where β < α < γ (it is very bad to be late, but time spent in the office early is
better than time spent in traffic). Our approach can handle essentially general
scheduling cost functions, but we will restrict our discussion to strongly unimodal
cost functions; these are the most relevant, and this avoids some distracting
technical details.

132 D. Frascaria and N. Olver

Two very natural questions can be posed at this point. The first is a purely
optimization question, with no attention paid to the decentralized nature of
traffic.

Problem 1. How can one compute a flow over time minimizing the average total
cost paid by users, i.e., maximizing the social welfare?

From now on, we will call a solution to this problem simply an optimal flow.
It is well understood that users will typically not coordinate their actions to

induce a flow that minimizes total disutility. There is a huge body of literature
(particularly in the setting of static flows [20]) investigating this phenomenon.
In the traffic setting, the relevance of an optimal flow represented by an answer
to this question comes primarily via the possibility of pricing. By putting appro-
priate tolls on roads, we can influence the behaviour of users and the resulting
dynamic equilibrium. Thus:

Problem 2. How can one set tolls (possibly time-varying) on the arcs of a given
instance so that an optimal flow is obtained in dynamic equilibrium?

One subtlety is that since dynamic equilibria need not be precisely unique, there
is a distinction between tolls that induce an optimal flow as an equilibrium,
compared to tolls for which all dynamic equilibria are optimal. (This is called
weak and strong enforcement by Harks [14] in a general pricing setting). We will
return to this subtlety shortly.

Questions like these are of great interest to transportation economists. How-
ever, most work in that community has focused on obtaining a fine-grained
understanding of very restricted topologies (such as a single link, or multiple
parallel links); see [25] for a survey.

Both of these questions (for general network topologies) were considered by
Yang and Meng [28] in a discrete time setting, by exploiting the notion of time-
expanded graphs. This is a standard tool in the area of flows over time; discrete
versions all of the optimization questions concerning flows over time mentioned
earlier can (in a sense) be dealt with in this way. A node v in the graph is
expanded to a collection (v, i) of nodes, for i ∈ Z in a suitable interval, and
an arc vw of delay τvw becomes a collection of arcs ((v, i), (w, i + τvw)) (this
assumes a scaling so that τvw is a length in multiples of the chosen discrete
timesteps). Scheduling costs are encoded by appropriately setting arc costs from
(t, i) to a supersink t′ for each i, and the problem can be solved by a minimum
cost static flow computation. A primary disadvantage of this approach (and in
the use of time-expanded graphs more generally) is that the running time of the
algorithm depends polynomially on the number of time steps, which can be very
large. Further, it cannot be used to exactly solve the continuous time version
(our interest in this paper); by discretizing time, it can be used to approximate
it, but the size of the time-expanded graph is inversely proportional to the step
size of the discretization. In the same work [28], the authors also observe that
in the discrete setting, an answer to the second question can be obtained from
the time-expanded graph as well. Taking the LP describing the minimum cost

Algorithms for Flows over Time with Scheduling Costs 133

flow problem on the time-expanded graph, the optimal dual solution to this LP
provides the necessary tolls to enforce (weakly) an optimal flow. (This is no big
surprise—dual variables can frequently be interpreted as prices.)

An Assumption on ρ. Suppose we consider ρ in the standard form given in (1),
but with β > α. This means that commuting is considered to be less unpleasant
than arriving early. A user arriving earlier than time 0 at the sink would be
better off “waiting” at the sink before leaving, in order to pay a scheduling cost
of 0. Whether waiting in this way is allowed or not depends on the precise way
one specifies the model, but it is most natural (and convenient) to allow this. If
we do so, then it is clear that a scheduling cost function ρ can be replaced by

ρ̂(θ) := min
ξ≥θ

ρ(ξ) + α(ξ − θ)

without changing the optimal flow (except there is no longer any incentive to wait
at the sink, and we need not even allow it). Then θ → ρ̂(θ)+αθ is nondecreasing.
From now on, we always assume that ρ satisfies this; we will call it the growth
bound on ρ.

Our Results. We give a combinatorial algorithm to compute an optimal flow.
Similarly to the case of earliest arrival flows, this flow can be necessarily com-
plicated, and involves a description length that is exponential in the input size.

The algorithm is also similar to that for computing an earliest arrival flow. It
is based on the (possibly exponentially sized) path decomposition of a minimum
cost flow into successive shortest paths. In particular, suppose we choose the
scheduling cost function to be as in (1), with β = α and γ = ∞. Then the
disutility a user experiences is precisely described by how much before time 0
they depart; all users must arrive by time 0 to ensure finite cost. This is precisely
the reversal (both in time and direction of all arcs) of an earliest arrival flow, from
the sink to the source. Our algorithm will be the same as the earliest arrival flow
in this case. This also shows that it may be the case that all optimal solutions to
Problem 1 require exponential size (as a function of the input encoding length),
since this is the case for earliest arrival flows.

Despite the close relation to earliest arrival flows, the proof of optimality
of our algorithm is rather different. A key reason for this is the following. As
mentioned, earliest arrival flows have the strong property that the amount of
flow arriving before a given deadline T ′ is the maximum possible, simultaneously
for all choices of T ′ (up to some maximum depending on the total amount of
flow being sent). This implies that an earliest arrival flow certainly minimizes
the average arrival time amongst all possible flows [15], but is a substantially
stronger property. A natural analog of this stronger property in our setting
would be to ask for a flow for which, simultaneously for any given cost horizon
C ′ ≤ C, the amount of flow consisting of agents experiencing disutility at most
C ′ is as large as possible. Unfortunately, in general no such flow exists. The
example is too involved to discuss here, but it relates to some questions on the
behaviour of dynamic equilibria in this model that are investigated in a parallel
manuscript [11].

134 D. Frascaria and N. Olver

Since the proofs for earliest arrival flows [2,12,19,27] show this stronger prop-
erty which does not generalize, we take a different approach. Our proof is based
on duality (of an infinite dimensional LP, though we do not require any technical
results on such LPs). The main technical challenge in our work comes from deter-
mining the correct ansatz for the dual solution, as well as exploiting properties
of the residual networks obtained from the successive shortest paths algorithm
in precisely the right way to demonstrate certain complementary slackness con-
ditions. As was the case with the time-expanded graph approach, the optimal
dual solution immediately provides us with the tolls. However, we obtain an
explicit formula for the optimal tolls, in terms of the successive shortest paths
of the graph (see Sect. 3). This may be useful in obtaining a better structural
understanding of optimal tolls, beyond just their computation. We also remark
that a corollary of our result is that there is always an optimal solution without
waiting (except at the source).

Consider for a moment the model where users cannot choose their departure
time, but instead are released from the source at a fixed rate u0, and simply wish
to reach the destination as early as possible. This is the game-theoretic model
that has received the most attention from the flow-over-time perspective [3,5,
6,16,22]. Our construction of optimal tolls is applicable to this model as well.
Reverse all arcs, as well as the role of the source and sink (thus making s the
new sink), and also introduce a replacement sink s′ and arc ss′ of capacity u0 in
the original instance. Then by choosing ρ as described in (1) with β = α, γ = ∞,
the optimal flow is an earliest arrival flow, and the tolls we construct will induce
it in the original instance (after appropriate time reversal).

We now return to the subtlety alluded to earlier: the distinction
between strongly enforcing an optimal flow, and only weakly enforcing it.

s a t
νe = 2, τe = 0

νf = 2, τf = 1

νg = 1, τg = 0

Consider the simple instance shown.
Suppose that the outflow of arc e
is larger than 1 for some period in
the optimum flow, due to the choice
of scheduling cost function. In this
period, one unit of flow would take the
bottom arc g, and the rest will be routed on f . Since the total cost (including
tolls) of all users is the same in a tolled dynamic equilibrium, a toll of cost equiv-
alent to a unit delay on arc g is needed in this period to induce the optimal flow.
But then it will also be an equilibrium to send all flow in this period along f .

To strongly enforce an optimal flow, we need more flexible tolls. One way
that we can do it is by “tolling lanes”. If we are allowed to dynamically divide
up the capacity of an arc into “lanes” (say a “fast lane” and a “slow lane”),
and then separately set time-varying tolls on each lane, then we can strongly
enforce any optimal flow. We discuss this further in Sect. 5. We are not aware of
settings where this phenomenon has been previously observed, and it would be
interesting to explore this further in a more applied context.

Outline of the Paper. We introduce some basic notation and notions, as well
as formally define our model, in Sect. 2. In Sect. 3, we describe our algorithm,

Algorithms for Flows over Time with Scheduling Costs 135

and show that it returns a feasible flow over time; we restrict ourselves to the
most relevant case of a strictly unimodal scheduling cost function. In Sect. 4 we
show optimality of this algorithm, and in Sect. 5 we derive optimal tolls from
this analysis.

2 Model and Preliminaries

The notation (z)+ is used to denote the nonnegative part of z, i.e., (z)+ =
max{z, 0}. Given v : X → R and A ⊆ X, we will use the shorthand notation
v(A) :=

∑
a∈A v(a). We will not distinguish between a map v : X → R and a

vector in R
X , and so the notation va and v(a) is interchangeable. All graphs will

be directed and (purely for notational convenience) simple and without digons.

Static Flows. Let G = (V,E) be a directed graph, with source node s ∈ V
and sink node t ∈ V . Each arc e ∈ E has a capacity νe and a delay τe (both
nonnegative). We use δ+(v) to denote the set of arcs in E with tail v, and δ−(v)
the set of arcs with head v.

Consider some f : E → R+ (which we will equivalently view as a vector in
R

E
+). We use ∇fv to denote the net flow into v ∈ V ; a (static) s-t-flow satisfies

the usual flow conservation conditions. Given an s-t-flow f , its residual network
Gf = (V,Ef) is defined by

Ef = {vw : vw ∈ E and fvw < νvw} ∪ {vw : wv ∈ E and fwv > 0}.

Call arcs in Ef ∩E forward arcs and arcs in Ef\E backwards arcs. The residual
capacity νf

e of an arc e ∈ Ef is then νf
vw = νvw − fvw for vw a forward arc, and

νf
vw = fwv for vw a backwards arc. We also define τvw = −τwv for all backwards

arcs vw.
Given a subset F ⊆ E, we use χ(F) to denote the characteristic vector of F .

We make the definitions
←−
E := {wv : vw ∈ E} and

←→
E := E ∪ ←−

E. Given f, g ∈ R
E
+,

we define f + g in the obvious way, and also define f − g ∈ R
←→
E
+ , by interpreting

a negative value on vw instead as a positive value on wv.

Flows over Time. Consider some f : E ×R → R+. We will generally write fe(θ)
rather than f(e, θ). Define the net flow into v at time θ by

∇fv(θ) :=
∑

e∈δ−(v)

fe(θ − τe) −
∑

e∈δ+(v)

fe(θ).

Note that fe(θ) represents the flow entering arc e at time θ; this flow will exit
the arc at time θ + τe (explaining the asymmetry between the terms for flow
entering and flow leaving in the above).

We say that f is a flow over time of value Q if the following hold.

(i) For each e ∈ E, fe is integrable and has compact support.
(ii)

∫ ∞
−∞ ∇fv(θ)dθ = Q(1v=t − 1v=s) for all v ∈ V .

(iii)
∫ ξ

−∞ ∇fv(θ)dθ ≥ 0 for all v ∈ V \{s} and ξ ∈ R.
(iv) fe(θ) ≤ νe for all e ∈ E and θ ∈ R.

136 D. Frascaria and N. Olver

Note that this definition allows for flow to wait at a node; to disallow this and
consider only flows over time without waiting, we would replace (iii) with the
condition that ∇fv(θ) = 0 for all v ∈ V \{s, t} and θ ∈ R.

We also have a natural notion of a residual network in the flow over time
setting. Define, for any flow over time f and θ ∈ R,

Ef (θ) = {vw : vw ∈ E and fvw(θ) < νvw}∪{vw : wv∈ E and fwv(θ−τwv) > 0}.

Minimizing Scheduling Cost. We are concerned with the following optimization
problem. Given a scheduling cost function ρ : R → R+, as well as a value α > 0,
determine a flow over time f of value Q that minimizes the sum of the commute
cost α

∑
e∈E τe ·∫

R
fe(θ)dθ and the scheduling cost

∫
R

∇ft(θ) ·ρ(θ)dθ. As already
discussed, we assume that ρ satisfies the growth bound, i.e., that θ → ρ(θ) + αθ
is nondecreasing. This ensures that waiting at t is not needed, which is in fact
disallowed by our definition1, and makes various arguments cleaner. We will also
make the assumption that ρ is strongly unimodal2. We then assume w.l.o.g. that
the minimizer of ρ is at 0, and that ρ(0) = 0. For further technical convenience,
by adjusting ρ on a set of measure zero we take ρ to be lower semi-continuous.

The unimodal assumption is not necessary; the algorithm and analysis can
be extended to essentially general ρ, under some very weak technical conditions.
We postpone discussion to the full version of the paper; no major new technical
ideas are needed.

We also assume that we are able to query ρ−1(y) for a given rational y >
0, obtaining a pair of solutions (one positive, one negative) of moderate bit
complexity.

3 A Combinatorial Algorithm

In this section we present an algorithm that computes an optimal flow over time,
assuming that ρ is strongly unimodal. The proof of optimality is discussed in
Sect. 4.

We begin by recalling the successive shortest paths (SSP) algorithm for com-
puting a minimum cost static flow. It is not a polynomial time algorithm, so
it is deficient as an algorithm for static flows, but it provides a structure that
is relevant for flows over time. This is of course well known from its role in
constructing earliest arrival flows, which we will briefly detail.

The SSP algorithm construct a sequence of paths (P1, P2, . . .) and associated
amounts (x1, x2, . . .) inductively as follows. Suppose P1, . . . , Pj and x1, . . . , xj

have been defined. Let f (j) =
∑j

i=1 xiχ(Pi), and let Gj denote the residual
graph of f (j) (G0 being the original network). Also let dj(v, w) denote the length
(w.r.t. arc delays τ in Gj) of a shortest path from v to w in Gj (this may be
infinite). By construction, Gj will contain no negative cost cycles, so that dj

1 Were this really needed, one could simply add a dummy arc tt′ to a new sink t′.
2 I.e., (strictly) decreasing until some moment, and then (strictly) increasing.

Algorithms for Flows over Time with Scheduling Costs 137

is computable. If dj(s, t) = ∞, we are done; set m := j. Otherwise, define Pj+1

to be any shortest s-t-path in Gj , and xj+1 the minimum capacity in Gj of an
arc in Pj+1. It can be shown that

∑r
j=1 x̃jχ(Pj), with r and x̃ defined such that

x̃j = xj for j < r, 0 ≤ x̃r ≤ xr and
∑r

j=1 x̃j = M , is a minimum cost flow of
value M , as long as M is not larger than the value of a maximum flow.

To construct an earliest arrival flow of value Q and time horizon T , we
(informally) send flow at rate xj along path Pj for the time interval [0, T −τ(Pj)],
for each j ∈ [m] (if τ(Pj) > T , we send no flow along the path). By this, we
mean that for each e = vw ∈ Pj , we increase by xj the value of fe(θ) for
θ ∈ [dj−1(s, v), T − dj−1(v, t)] (or if e is a backwards arc, we instead decrease
fwv(θ−τwv)). An argument is needed to show that this defines a valid flow, since
we must not violate the capacity constraints, and moreover, Pj may contain
reverse arcs not present in G.

We are now ready to describe our algorithm for minimizing the disutility,
which is a natural variation on the earliest arrival flow algorithm. It is also
constructed from the successive shortest paths, but using a cost horizon rather
than a time horizon. For now, consider C to be a given value (it will be the
“cost horizon”). For each j ∈ [m] with αdj−1(s, t) ≤ C, we send flow at rate
xj along path Pj for the time interval [aj , bj] chosen maximally so that ρ(ξ +
dj−1(s, t)) ≤ C − αdj−1(s, t) for all ξ ∈ [aj , bj]. (If ρ is continuous, then of
course ρ(aj + dj−1(s, t)) = ρ(bj + dj−1(s, t)) = C − αdj−1(s, t)). Note that a
user leaving at time aj or bj and using path Pj , without waiting at any moment,
incurs disutility C; whereas a user leaving at some time θ ∈ (aj , bj) and using
path Pj will incur a strictly smaller total cost.

As we will shortly argue, this results in a feasible flow over time f . Given
this, its value will be

∑m
j=1 xj(bj − aj). It is easy to see that this value changes

continuously and monotonically with C (here we use the strong unimodality).
Thus a bisection search can be used to determine the correct choice of C for a
given value Q. Alternatively, bisection search can be avoided by using Megiddo’s
parametric search technique [18]; this will ensure a strongly polynomial running
time, if queries to ρ−1 are considered to be of unit cost.

Feasibility. Given a vertex v ∈ V , a time θ ∈ R and j ∈ [m], let

cj(v, θ) = αdj−1(s, t) + ρ(θ + dj−1(v, t)).

If v ∈ Pj then cj(v, θ) is the travel cost of a user that utilizes path Pj and passes
through node v at time θ; there does not seem to be a simple interpretation if
v /∈ Pj however. Now define

J(v, θ) = max{j ∈ [m] : cj(v, θ) ≤ C}, (2)

with the convention that the maximum over the empty set is 0. The motivation
for this definition comes from the following theorem, which completely charac-
terizes f .

138 D. Frascaria and N. Olver

Theorem 1. fvw(θ) = f
(J(v,θ))
vw for any vw ∈ E and θ ∈ R.

Since f has value Q and satisfies flow conservation by construction, the feasibility
of f is an immediate corollary of this theorem. We sketch the proof in the
appendix.

4 Optimality

Duality-Based Certificates of Optimality. We can write the problem we are inter-
ested in as a (doubly) infinite linear program as follows:

min
∫ ∞

−∞ ρ(θ)∇ft(θ)dθ + α
∑

e∈E τe

∫ ∞
−∞ fe(θ)dθ + α

∑
v∈V \{s,t}

∫ ∞
−∞ zv(θ)dθ

s.t. − ∫ ∞
−∞ ∇fs(θ)dθ =

∫ ∞
−∞ ∇ft(θ)dθ = Q

∫ θ

−∞ ∇fv(ξ)dξ = zv(θ) ∀v ∈ V \{s, t}, θ ∈ R

fe(θ) ≤ νe ∀e ∈ E, θ ∈ R

z, f ≥ 0

(3)

Here, zv(θ) represents the amount of flow waiting at node v at time θ (which
must always be nonnegative). The travel cost is captured on a per-arc basis,
including waiting time as well.

The following theorem provides a certificate of optimality of a feasible solu-
tion to (3).

Theorem 2. Let f be a flow over time with value Q, and suppose that π :
V × R → R satisfies the following, for some choice of C:

(i) θ → πv(θ) − αθ is nonincreasing.
(ii) πw(θ + τvw) ≤ πv(θ) + ατvw for all θ ∈ R, vw ∈ Ef (θ).
(iii) πs(θ) = 0 for all θ ∈ R.
(iv) πt(θ) = (C − ρ(θ))+ for all θ ∈ R, and ∇ft(θ) = 0 whenever ρ(θ) > C.

Then f is an optimal solution.

Essentially, πv(θ) are dual variables, and the assumptions of the theorem are
that f and π satisfy the complementary slackness conditions. There are many
extensions of LP duality theory to infinite dimensional settings, e.g., [13,21];
however the situation is subtle, since strong duality and even weak duality can
fail [21]. We prefer to avoid technicalities and derive it directly (the proof is
given in the full version).

The Dual Prescription. We now give a certificate of optimality π : V × R → R

for (3) that satisfies the conditions of the above LP. Given a vertex v ∈ V and
a time θ ∈ R let

πv(θ) = max{π′
v(θ), π̄v(θ), 0}

where π′
v(θ) = −αdJ(v,θ)(v, s),

π̄v(θ) = C − αdJ(v,θ)(v, t) − ρ(θ + dJ(v,θ)(v, t)).

Algorithms for Flows over Time with Scheduling Costs 139

Notice that πs(θ) = 0 and πt(θ) = max{C − ρ(θ), 0} for all θ ∈ R and thus
conditions (iii) and (iv) of Theorem2 hold. The bulk of the technical work is
in showing the remaining conditions; we sketch some part of the proof in the
appendix.

5 Optimal Tolls

Tolls μ : E × R → R+ are per-arc, time-varying and nonnegative. The value
μe(ξ) represents the toll a user is charged upon entering the link at time ξ.

We have the following theorem.

Theorem 3. Let (f, π) be an optimal primal-dual solution to (3) (as constructed
in Sects. 3 and 4) and define, for each vw ∈ E,

μvw(θ) = (πw(θ + τvw) − πv(θ) − ατvw)+.

Then f is a dynamic equilibrium under tolls μ.

Of course, to make sense of this theorem we must know what is meant by
a dynamic equilibrium under tolls. A precise definition requires introducing the
full game-theoretic fluid queueing model (also known as the Vickrey bottleneck
model) [16,26]. Tolls and departure time choice can be introduced into the def-
inition of a dynamic equilibrium discussed in these works. Rather than going
this route, we will show that the tolls satisfy a strong property that very clearly
ensures the equilibrium property.

We show (in the full version—it is straightforward) that the following holds.
A user starting from some v ∈ V at some time θ ∈ R cannot incur a total
cost (including scheduling cost, and tolls and commuting cost from this point
forward) less than C − πv(θ). This is even allowing the user to take any link
at any time, as if no other users were present in the network. Since the flow
represents a solution where all users incur a total cost of precisely C, this must
certainly be an equilibrium.

As already discussed, we cannot in general strongly enforce an optimal flow.
The following shows that the “lane tolling” approach suffices to do this.

Theorem 4. Let f, π and μ be as in the previous theorem, and suppose g is any
dynamic equilibrium satisfying ge(θ) ≤ fe(θ) for all e ∈ E, θ ∈ R. Then g = f .

Essentially, being able to dynamically split and separately toll the capacity of
a link allows us to easily rule out all other potential equilibria just by using
tolls to artificially constrict the capacities (in addition to choosing tolls that
weakly enforce the desired flow, which is still needed). Tolling in this way seems
quite distant from what could be imaginable in realistic traffic scenarios. But
it does raise the interesting question of whether there is a tolling scheme which
can strongly enforce an optimum flow, but which is more restricted (and more
plausible) than fully dynamic lane tolling. Another natural question would be
to determine if an optimum flow can be strongly enforced using lane tolling only
on certain specified edges. We leave these as open questions.

140 D. Frascaria and N. Olver

A Some Omitted Proofs

Proof (Theorem 1). The key ingredient is the following observation.

Lemma 1. cj(v, θ) is nondecreasing with j for any θ ∈ R.

Proof. Consider any j ∈ [m − 1]; we show that cj+1(v, θ) ≥ cj(v, θ). Suppose Q
is a shortest v-t-path in Gj−1, so τ(Q) = dj−1(v, t). Consider the unit v-t flow
g = χ(Pj+1)−χ(Pj)+χ(Q) in

←→
E . Now observe that the support of g is contained

in Gj : Pj+1 and
←−
Pj are certainly contained in Gj ; and if e ∈ Q∩(Ej−1\Ej), then

e ∈ Pj . Since Gj contains no negative cost cycles, the cost of g is at least that
of a shortest v-t-path in Gj , and so dj(v, t) ≤ τ(Pj+1) − τ(Pj) + τ(Q). Finally,
we can conclude

cj(v, θ) = αdj(s, t) + ρ(θ + dj−1(v, t)) − ρ(θ + dj−1(v, t)) + ρ(θ + dj(v, t))
≥ αdj(s, t) + ρ(θ + dj−1(v, t)) − α(dj(v, t) − dj−1(v, t))
≥ αdj−1(s, t) + ρ(θ + dj−1(v, t)),

where the first inequality follows from the growth assumption, using dj(v, t) ≥
dj−1(v, t). ��

Fix some vw ∈ E and θ ∈ R. Consider now any Pj (with ατ(Pj) ≤ C, so that
it is used for a nontrivial interval), with vw ∈ Pj . Since Pj is a shortest path in
Gj−1, if we send flow along this path starting from some time ξ, it will arrive at
v at time ξ + dj−1(s, v). Considering the definition of the interval [aj , bj], we see
that Pj contributes flow to vw at time θ if cj(v, θ) ≤ C. By Lemma 1, this occurs
precisely if j ≤ J(v, θ). Considering in similar fashion paths Pj with wv ∈ Pj

(and noting that J(w, θ + τvw) = J(v, θ)), the claim follows. ��
Optimality. We give the proof that π satisfies property (ii) in Theorem2. The
proof of property (i), while differing in the details, has a very similar flavour.

We first state a technical lemma involving distances in the residual graphs
Gj ; we omit the proof.

Lemma 2.

(a) For all v ∈ V , dj(v, s) is nonincreasing with j.
(b) For all v ∈ V and j ∈ [m], dj−1(v, t) − dj−1(s, t) = dj(v, s).

Lemma 3. If vw ∈ Ef (θ), then πw(θ + τvw) ≤ πv(θ) + ατvw.

Proof. Let j := J(v, θ) and
 := J(w, θ + τvw). Note that since vw ∈ Ef (θ),
Theorem 1 implies that vw ∈ Ej .

– Case 1: πw(θ + τvw) = −αd�(w, s).
If
 ≤ j, then

πv(θ) ≥ −αdj(v, s)
≥ −ατvw − αdj(w, s) since vw ∈ Ej

≥ −ατvw − αd�(w, s) by Lemma 2(a)
= πw(θ + τvw) − ατvw.

Algorithms for Flows over Time with Scheduling Costs 141

So suppose
 > j. By the definition of J(w, θ + τvw) we know that

αd�−1(s, t) + ρ(θ + τvw + d�−1(w, t)) ≤ C. (4)

Since vw ∈ Ej and dj(w, t) ≤ d�−1(w, t), we also have

θ + dj(v, t) ≤ θ + τvw + d�−1(w, t). (5)

Thus

πv(θ) ≥ π̄v(θ)

= C − αdj(v, t) − ρ(θ + dj(v, t))

≥ C − αdj(v, t) − ρ(θ + τvw + d�−1(w, t)) − α (τvw + d�−1(w, t) − dj(v, t))

≥ αd�−1(s, t) − ατvw − αd�−1(w, t) by (4)

= −ατvw − αd�(w, s) by Lemma 2(b)

= πw(θ + τvw) − ατvw

where the second inequality follows from the growth assumption and (5).

– Case 2: πw(θ + τvw) = C − αd�(w, t) − ρ(θ + τvw + d�(w, t)).
If
 ≥ j, since vw ∈ Ej and dj(w, t) ≤ d�(w, t), we have that

θ + dj(v, t) ≤ θ + τvw + d�(w, t). (6)

As a consequence, exploiting also the growth assumption, we have

πv(θ) ≥ C − αdj(v, t) − ρ(θ + dj(v, t))
≥ C − αdj(v, t) − ρ(θ + τvw + d�(w, t)) − α (τvw + d�(w, t) − dj(v, t))
= C − ρ(θ + τvw + d�(w, t)) − ατvw − αd�(w, t)
= πw(θ + τvw) − ατvw.

If
 < j, by definition of J(w, θ + τvw) we have that

αd�(s, t) + ρ(θ + τvw + d�(w, t)) > C. (7)

Thus

πv(θ) ≥ −αdj(v, s)
≥ −αdj(w, s) − ατvw as vw ∈ Ej

≥ −αd�+1(w, s) − ατvw by Lemma 2(a)
> C − αd�(s, t) − ρ(θ + τvw + d�(w, t))

− αd�+1(w, s) − ατvw by (7)
= C − αd�(w, t) − ρ(θ + τvw + d�(w, t)) − ατvw by Lemma 2(b)
= πw(θ + τvw) − ατvw.

��

142 D. Frascaria and N. Olver

References

1. Arnott, R., de Palma, A., Lindsey, R.: Economics of a bottleneck. J. Urban Econ.
27(1), 111–130 (1990)

2. Baumann, N., Skutella, M.: Solving evacuation problems efficiently-earliest arrival
flows with multiple sources. In: Proceedings of the 47th Annual IEEE Symposium
on Foundations of Computer Science (FOCS), pp. 399–410 (2006)

3. Bhaskar, U., Fleischer, L., Anshelevich, E.: A Stackelberg strategy for routing flow
over time. In: Proceedings of the Twenty-Second Annual ACM-SIAM Symposium
on Discrete Algorithms, (SODA), pp. 192–201 (2011)

4. Cominetti, R., Correa, J., Larré, O.: Dynamic equilibria in fluid queueing networks.
Oper. Res. 63(1), 21–34 (2015)

5. Cominetti, R., Correa, J., Olver, N.: Long term behavior of dynamic equilibria
in fluid queuing networks. In: Eisenbrand, F., Koenemann, J. (eds.) IPCO 2017.
LNCS, vol. 10328, pp. 161–172. Springer, Cham (2017). https://doi.org/10.1007/
978-3-319-59250-3 14

6. Correa, J.R., Cristi, A., Oosterwijk, T.: On the price of anarchy for flows over time.
In: Proceedings of the 2019 ACM Conference on Economics and Computation,
(EC), pp. 559–577 (2019)

7. Disser, Y., Skutella, M.: The simplex algorithm is NP-mighty. In: Proceedings
of the Twenty-Sixth Annual ACM-SIAM Symposium on Discrete Algorithms,
(SODA), pp. 858–872 (2015)

8. Fleischer, L., Tardos, E.: Efficient continuous-time dynamic network flow algo-
rithms. Oper. Res. Lett. 23(3), 71–80 (1998)

9. Ford, L.R., Fulkerson, D.R.: Constructing maximal dynamic flows from static flows.
Oper. Res. 6(3), 419–433 (1958)

10. Ford, L.R., Fulkerson, D.R.: Flows in Networks. Princeton University Press, Prince-
ton (1962)

11. Frascaria, D., Olver, N., Verhoef, E.T.: Emergent hypercongestion in Vickrey
bottleneck networks. Preprint, Tinbergen Institute Discussion Paper TI 2020–
002/VIII (2020). https://papers.tinbergen.nl/20002.pdf

12. Gale, D.: Transient flows in networks. Mich. Math. J. 6(1), 59–63 (1959)
13. Grinold, R.: Infinite horizon programs. Manage. Sci. 18, 157–170 (1971)
14. Harks, T.: Pricing in resource allocation games based on duality gaps. Preprint,

arXiv:1907.01976 (2019). http://arxiv.org/abs/1907.01976
15. Jarvis, J.J., Ratliff, H.D.: Some equivalent objectives for dynamic network flow

problems. Manage. Sci. 28(1), 106–109 (1982)
16. Koch, R., Skutella, M.: Nash equilibria and the price of anarchy for flows over

time. Theory Comput. Syst. 49(1), 71–97 (2011)
17. Köhler, E., Möhring, R.H., Skutella, M.: Traffic networks and flows over time. In:

Lerner, J., Wagner, D., Zweig, K.A. (eds.) Algorithmics of Large and Complex
Networks. LNCS, vol. 5515, pp. 166–196. Springer, Heidelberg (2009). https://doi.
org/10.1007/978-3-642-02094-0 9

18. Megiddo, N.: Combinatorial optimization with rational objective functions. In: Pro-
ceedings of the 10th Annual ACM Symposium on Theory of Computing, (STOC),
pp. 1–12 (1978)

19. Minieka, E.: Maximal, lexicographic, and dynamic network flows. Oper. Res. 21(2),
517–527 (1973)

20. Nisan, N., Roughgarden, T., Tardos, É., Vazirani, V.V. (eds.): Algorithmic Game
Theory. Cambridge University Press, Cambridge (2007)

https://doi.org/10.1007/978-3-319-59250-3_14
https://doi.org/10.1007/978-3-319-59250-3_14
https://papers.tinbergen.nl/20002.pdf
http://arxiv.org/abs/1907.01976
http://arxiv.org/abs/1907.01976
https://doi.org/10.1007/978-3-642-02094-0_9
https://doi.org/10.1007/978-3-642-02094-0_9

Algorithms for Flows over Time with Scheduling Costs 143

21. Romeijn, H.E., Smith, R.L., Bean, J.C.: Duality in infinite dimensional linear pro-
gramming. Math. Program. 53, 79–97 (1992)

22. Sering, L., Koch, L.V.: Nash flows over time with spillback. In: Proceedings of the
Thirtieth Annual ACM-SIAM Symposium on Discrete Algorithms, (SODA), pp.
935–945 (2019)

23. Sering, L., Skutella, M.: Multi-source multi-sink Nash flows over time. In: 18th
Workshop on Algorithmic Approaches for Transportation Modelling, Optimization,
and Systems, (ATMOS), pp. 12:1–12:20 (2018)

24. Skutella, M.: An introduction to network flows over time. In: Cook, W., Lovász,
L., Vygen, J. (eds.) Research Trends in Combinatorial Optimization, pp. 451–482.
Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-540-76796-1 21

25. Small, K.A.: The bottleneck model: an assessment and interpretation. Econ.
Transp. 4(1), 110–117 (2015)

26. Vickrey, W.: Congestion theory and transport investment. Am. Econ. Rev. 59(2),
251–60 (1969)

27. Wilkinson, W.L.: An algorithm for universal maximal dynamic flows in a network.
Oper. Res. 19(7), 1602–1612 (1971)

28. Yang, H., Meng, Q.: Departure time, route choice and congestion toll in a queu-
ing network with elastic demand. Transp. Res. Part B: Methodol. 32(4), 247–260
(1998)

29. Zadeh, N.: A bad network problem for the simplex method and other minimum
cost flow algorithms. Math. Program. 5, 255–266 (1973)

https://doi.org/10.1007/978-3-540-76796-1_21

Integer Plane Multiflow Maximisation:
Flow-Cut Gap and

One-Quarter-Approximation

Naveen Garg1(B), Nikhil Kumar1, and András Sebő2

1 Indian Institute of Technology Delhi, Delhi, India
{naveen,nikhil}@cse.iitd.ac.in

2 CNRS, Laboratoire G-SCOP, Univ. Grenoble Alpes, Grenoble, France
andras.sebo@grenoble-inp.fr

Abstract. In this paper, we bound the integrality gap and the approxi-
mation ratio for maximum plane multiflow problems and deduce bounds
on the flow-cut-gap. Planarity means here that the union of the supply
and demand graph is planar. We first prove that there exists a multiflow
of value at least half of the capacity of a minimum multicut. We then
show how to convert any multiflow into a half-integer one of value at least
half of the original multiflow. Finally, we round any half-integer multi-
flow into an integer multiflow, losing again at most half of the value, in
polynomial time, achieving a 1/4-approximation algorithm for maximum
integer multiflows in the plane, and an integer-flow-cut gap of 8.

Keywords: Multicommodity flow · Multiflow · Multicut · Network
design · Planar graphs · Flow-cut · Integrality gap · Approximation
algorithm

1 Introduction

Given an undirected graph G = (V,E) with edge capacities c : E → R+, and
some pairs of vertices given as edges of the graph H = (V, F), the maximum-
multiflow problem with input (G,H, c), asks for the maximum flow that can be
routed in G, simultaneously between the endpoints of edges in F , respecting the
capacities c.

This is one of many widely studied variants of the multiflow problem. Other
popular variants include demand flows, all or nothing flows, unsplittable flows
etc. In this paper, we are mainly interested in the integer version of this problem,
and the half-integer or fractional versions also occur as tools. When capacities are
1, the capacity constraint specialises to edge-disjointness, whence the maximum
edge disjoint paths problem (MEDP) between a given set of pairs is a special
case; MEDP is NP-Hard to compute for general graphs, even in very restricted
settings like when G is a tree [8].

The edges in F are called demand edges (sometimes commodities), those in
E are called supply edges; accordingly, H = (V, F) is the demand graph, and
c© Springer Nature Switzerland AG 2020
D. Bienstock and G. Zambelli (Eds.): IPCO 2020, LNCS 12125, pp. 144–157, 2020.
https://doi.org/10.1007/978-3-030-45771-6_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-45771-6_12&domain=pdf
https://doi.org/10.1007/978-3-030-45771-6_12

Integer Plane Multiflow Maximisation: Gaps and Approximation 145

G = (V,E) is the supply graph. If G + H = (V,E ∪ F) is planar we call the
problem a plane multiflow problem. Plane multiflows have been studied for the
past forty years, starting with Seymour [22].

Let Pe (e ∈ F) be the set of paths in G between the endpoints of e, and
P := ∪e∈F Pe. For P ∈ Pe, the edge e is said to be the demand-edge of P ,
denoted by eP . A multiflow, or for simplicity a flow in this paper is a function
f : P → R+. The flow f is called feasible, if

∑
{P∈P:e∈P} f(P) ≤ c(e) for all

e ∈ E. The value of a flow f is defined as |f | :=
∑

P∈P f(P).
For a path P ∈ P, we refer to f(P) as the flow on P . If the flow on every

path is integer or half-integer, we say that the flow is integer or half-integer,
respectively. A circuit is a connected subgraph with all degrees equal to two.

Multiflows (without restrictions on integrality) can be maximised in general,
in (strongly) polynomial time [20, 70.6, page 1225] using a linear programming
algorithm.

A multicut for (G,H) is a set of edges M ⊆ E such that every P ∈ P contains
at least one edge in M .1 A multicut is the simplest possible and most natural
dual to the maximum multiflow problem.

It is easy to see that the value of any feasible multiflow is smaller than or
equal to the capacity of any multicut. Klein, Mathieu and Zhou [11] prove that
computing the minimum multicut is NP-hard if G+H is planar and also provide
a PTAS.

There is a rich literature on the maximum ratio of a minimum capacity of a
multicut over the maximum multiflow. With an abuse of terminology we will call
this the (possibly integer or half-integer) flow-cut gap, sometimes also restricted
to subclasses of problems. This is not to be confused with the same term used
for demand problems. The integer flow-cut gap is 1 when G is a path and 2
when G is a tree. For arbitrary (G,H), the flow-cut gap is θ(log |F |) [7]. Build-
ing on decomposition theorems from Klein, Plotkin and Rao [10], Tardos and
Vazirani [23] showed a flow-cut gap of O(r3) for graphs which do not contain
a Kr,r minor; note that for r = 3 this includes the class of planar graphs. A
long line of impressive work, culminated in [21] proving a constant approxima-
tion ratio for maximum half-integer flows, which together with [23] implies a
constant half-integer flow-cut gap for planar supply graphs. A simple topolog-
ical obstruction proves that the integer flow-cut gap for planar supply graphs,
even when all demand edges are on one face of the graph, also called Okamura-
Seymour instances, is Ω(|F |) [8].

These results are often bounded by the integrality gap of the multiflow prob-
lems for the problem classes, which is the infimum of MAX/|f | over all instances
(G,H, c) of the problem class, and where MAX is the maximum value of an inte-
ger multiflow, and f is a multiflow for this same input, and the half-integrality
gap is defined similarly by replacing “integer” by “half-integer” in the nomi-
nator. A ρ-approximation algorithm (ρ ∈ R) for a maximisation problem is a

1 Given a partition of V so that all edges in F join different classes, those of E joining
different classes form a multicut, and inclusionwise minimal multicuts are like this.

146 N. Garg et al.

polynomial algorithm which outputs a solution of value at least ρ times the
optimum; ρ is also called the approximation ratio (or guarantee).

Our first result (Sect. 3, Theorem 1) is an upper bound of 2 for the flow-
cut gap (i.e. multicut/multiflow ratio) for plane instances, the missing rela-
tion we mentioned. We prove this by relating multicuts to 2-edge-connectivity-
augmentation in the plane-dual, and applying a bound of Williamson, Goemans,
Mihail and Vazirani [25] for this problem.

We next show (Sect. 4, Theorem 2) how to obtain a half-integer flow from
a given (fractional) flow in plane instances, reducing the problem to a linear
program with a particular combinatorial structure, and solving it.

Finally, given any feasible half-integer flow, we show how to extract an integer
flow of value at least half of the original, in polynomial time, using an algorithm
that 4-colors planar graphs efficiently [18].

These results imply an integrality gap of 1/2 for maximum half-integer flows,
1/4 for maximum integer flows, and the same approximation ratios for each. In
turn, the flow-cut gap of 2 implies a half-integer flow-cut gap of 4 and an integer
flow-cut gap of 8 for plane instances.

A summary of the results completed by lower bounds and open problems
are stated in Sect. 7. These are the first constant approximation ratios and gaps
proved for the studied problems. Approximately at the same time as our sub-
mission to this volume, another manuscript was published on Arxiv, proving
constant ratios for the same problems (https://arxiv.org/abs/2001.01715).

2 Preliminaries

We detail here some notions, notations, terminology, facts and tools we use,
including some preceding results of influence.

Demands, the Cut Condition and Plane Duality
We describe the notion of demand flows, which is closely related to multi-
flows defined in the previous section. The problem is defined by the quadruple
(G,H, c, d), where G,H, c are as before, demands d : F → Z+ are given, and we
are looking for a feasible (sometimes in addition integer or half-integer) flow f
satisfying

∑
{P∈P:e∈P} = d(e) for all e ∈ F .

A cut in a graph G = (V,E) is a set of edges of the form δ(S) = δE(S) := {e ∈
E : e has exactly one endpoint in S} for all S ⊆ V . Note that δ(S) = δ(V \ S);
S, V \S are called the shores of the cut. For a subset E′ ⊆ E we use the notation
c(E′) :=

∑
e∈E′ c(e), and we adopt this usual way of extending a function on

single elements to subsets. For instance, d(F ′) :=
∑

e∈F ′ d(e) is the demand of
the set F ′ ⊂ F .

A necessary condition for the existence of a feasible multiflow is the so called
Cut Condition: for every S ⊆ V, c(δE(S)) ≥ d(δF (S)), that is, the capacity
of each cut must be at least as large as its demand. The cut condition is not
sufficient for a flow in general, but Seymour [22] showed that it is sufficient
for an integer flow, provided G + H is planar, the capacities and demands are
integer, and their sum is even on the edges incident to any vertex. A half-integer

https://arxiv.org/abs/2001.01715

Integer Plane Multiflow Maximisation: Gaps and Approximation 147

flow follows then for arbitrary integer capacities for such plane instances (see
Sect. 1). The same holds for Okamura-Seymour instances [17]. There are more
examples, unrelated to planarity, where the cut condition is sufficient to satisfy
all demands, and with an integer flow, for instance when all demand edges can
be covered by at most two vertices.

Seymour’s theorem [22] on the sufficiency of the cut condition and about the
existence of integer flows has promoted plane multiflow problems to become one
of the targets of investigations. This paper is devoted to plane multiflow maximi-
sation. Seymour’s proof is based on a nice correspondence to other combinatorial
problems through plane duality that we also adopt.

Middendorf and Pfeiffer [16] showed that the plane multiflow problem (edge
disjoint paths already) is NP-Hard. The cut condition can be checked in poly-
nomial time2 so the difficult question to decide is the existence or not of an
integer flow when the cut condition is satisfied. As far as multicuts are con-
cerned, we show that their minimisation in plane instances is equivalent to a
2-edge-connectivity augmentation problem in planar graphs.

Following Schrijver [20, p. 27] we denote the dual of the planar graph G by
G∗ = (V ∗, E∗), where V ∗ is the set of faces of G and each edge e ∈ E corresponds
to an edge e∗ ∈ E∗ joining the two faces that share e. For X ⊆ E denote
X∗ := {e∗ : e ∈ X}. An important fact we need and use about dualisation: C is
a minimal cut in G if and only if C∗ is a circuit in G∗.

Two Lemmas on Laminar Families
This correspondence by plane duality allows to transform any fact on cuts to
circuits in the dual and vice versa. For example fractional, half-integer or integer
packings of cuts in G∗, where each cut contains exactly one edge of F ∗ correspond
to a fractional, half-integer or integer multiflow in G. We provide now some
related definitions, notations and facts. We do this directly on the graph (G+H)∗

where they will be used; we denote by V ∗ the vertices of this graph, that is
the faces of G + H. So (G + H)∗ = (V ∗, E∗ ∪ F ∗). Let δ(A) = δE∗∪F ∗(A),
δ(B) = δE∗∪F ∗(B) (A,B ⊆ V ∗) be two crossing cuts, i.e. A and B are neither
disjoint nor contain one another, each of which contains exactly one edge of F ∗.
Then they can be replaced by δ(A∗ ∩ B∗) and δ(A∗ ∪ B∗) or δ(A∗ \ B∗) and
δ(B∗ \ A∗)(in the plane dual). It is easy to check that every edge is contained in
at most as many of these two cuts after the replacement as before, and if both
cuts contain exactly one edge of F ∗ then this also holds for the replacing cuts.
Doing this iteratively and using plane duality, we can convert any feasible flow
into another one (without changing the value of the flow) in which no two flow
paths cross. We formalise this below.

A family of subsets of V ∗ is called laminar if any two of its members are
disjoint or one of them contains the other. If for any two members one of them

2 Seymour’s correspondence through dualisation reduces this problem to checking
whether F ∗ is a minimum weight “TF∗ -join” (see e.g. [20]) in (G+H)∗ with weights
defined by c and d, where TF∗ is the set of odd degree vertices of F ∗. This also pro-
vides a polynomial separation algorithm for maximising the sum of (not necessarily
integer) demands satisfying the cut condition.

148 N. Garg et al.

contains the other we say that the family is a chain. Given a laminar family
L ⊆ 2V ∗

, a chain C ⊆ L is full (in L) if X,Y,Z ∈ L,X ⊆ Y ⊆ Z and X,Z ∈ C
implies Y ∈ C. We call a multiflow f laminar, if {C∗ : C = P ∪ {eP }, P ∈
P, f(P) > 0} = {δE∗∪F ∗(L) : L ∈ L}, where L ⊆ 2V ∗

is laminar. We state the
following well-known Lemma without proof (see the full version of this paper
(on ArXiv) for explanations and references).

Lemma 1. For every feasible multiflow f there exists a laminar feasible multi-
flow f ′ so that |f ′| = |f |, and f ′ can be found in polynomial time.

The following useful properties are easy to check:
For a family L of subsets of V ∗ and a
= b ∈ V ∗, denote L(a) := {L ∈ L : a ∈

L}; L(a, b) := {L ∈ L : a ∈ L, b /∈ L}.

Lemma 2. Let L be a laminar family of subsets of V ∗. Then

a. |L| ≤ 2(|V ∗| − 1) = O(|V |).
b. L(a, b) ⊆ L(a) ⊆ V ∗ both form full chains of subsets of V ∗. ��

Integrality in Demand Flows and Stable Sets
We first compute a half integer flow of value at least half the fractional flow
and then convert this into an integer flow. We now describe an instance which
illustrates the difficulty in finding an integer flow. Consider a planar graph with a
perfect matching without any nontrivial tight cut3 to be (G+H)∗, and F ∗ to be
any perfect matching in it. Let all capacities be 1. Upper bound the demands by
1, by replacing each demand edge by two edges in series, a demand and a supply
edge, the latter of capacity 1. Then multiflows can use only the dual edge-sets
of stars of vertices in (G + H)∗, so an integer multiflow of value k corresponds
exactly to a stable set, that is, a set of vertices not inducing any edge, of size k
in (G + H)∗. This indicates that in order to find a large integer flow, we need
to find large stable sets in planar graphs. Despite these restricted multiflows,
the gap between integer and half-integer flow is at least 1/2 for these graphs:
it follows from the 4-color theorem [1] that a stable set of size at least |V ∗|/4
exists while the maximum half integer flow cannot exceed |F | = |V ∗|/2. We will
be able to reach this ratio in general (see Sect. 5, Theorem 4), and K4 with a
matching F shows that this cannot be improved.

In order to reach this integrality gap of 2 in general, we will actually need to
find a stable-set of size |V ∗|/4 in (G + H)∗. The maximum stable set problem
is NP-hard, but there is a PTAS for it in planar graphs [2], which, combined
with the 4-color theorem [1] provides a stable-set of size |V ∗|/4; the 4-coloring
algorithm of Robertson, Sanders, Seymour and Thomas [18] directly provides a
4-coloring of a planar graph in polynomial time as well, and the largest color
class is clearly of size at least |V ∗|/4. Either of these algorithms can be used as
a black-box-tool for rounding half-integer flows, so we state the result:
3 i.e. a cut with both shores containing more than one vertex, and meeting every

perfect matching in exactly one edge. Lovász characterised graphs without nontrivial
tight cuts as “bicritical 3-connected graphs” [15]. Such graphs may have arbitrarily
many vertices, even under the planarity constraint.

Integer Plane Multiflow Maximisation: Gaps and Approximation 149

Lemma 3. In a planar graph on n vertices, a stable set of size n/4 can be found
in polynomial time.

A similar rounding argument appeared in the work of Fiorini, Hardy, Reed
and Vetta [5] in the somewhat different context of proving an upper bound of
Král and Voss [14] for the ratio between “minimum size of an odd cycle edge
transversal” versus the “maximum odd cycle edge packing” using the 4-color
theorem [1] non-algorithmically. Our procedure in Sect. 5, occurs to be more
general in that it is starting from an arbitrary, not necessary optimal, half-
integer multiflow for an arbitrary capacity function. However, similar difficulties
approached independently with the 4-color theorem confirm that the 4-color
theorem may be unavoidable for plane multiflows.

3 Multicuts Versus Multiflows via 2-Connectors

We show in this section that the flow-cut gap is at most two for plane instances,
via a reduction to the 2-edge-connectivity augmentation problem.

Given G = (V,E), H = (V, F), a 2-connector for H in G is a set of edges
Q ⊆ E such that none of the edges e ∈ F is a cut edge of (V,Q∪F); equivalently,
Q is a 2-connector if and only if each e ∈ F is contained in a circuit of Q ∪ F .
The 2-edge-connectivity Augmentation Problem (2ECAP) is to find, for given
edge costs c : E → Z+ on E, a minimum cost 2-connector.

Let (G,H, c), G = (V,E), H = (V, F) be the input of a plane multiflow
maximisation problem, and (G + H)∗ = (V ∗, E∗ ∪ F ∗), where V ∗ is the set of
faces of G + H. Define c(e∗) := c(e) (e ∈ E).

Lemma 4. The edge-set Q ⊆ E is a multicut for (G,H) if and only if Q∗ is a
2-connector for (V ∗, F ∗) in (V ∗, E∗).

Proof. The edge-set Q ⊆ E forms a multicut in G if and only if the endpoints
u, v of any edge e ∈ F are in different components of (V,E \ Q), that is, if and
only if for all e ∈ F there exists an inclusionwise minimal cut C ⊆ Q ∪ F of
G + H such that e ∈ C. But we saw among the preliminaries concerning duality
that C is an inclusionwise minimal cut in G + H if and only if C∗ is a circuit
in Q∗ ∪ F ∗. Summarizing, Q ⊆ E forms a multicut in G, if and only if for all
e∗ ∈ F ∗ there exists a circuit C∗ in Q∗ ∪ F ∗ such that e∗ ∈ C∗. This means
exactly that Q∗ ⊆ E∗ is a 2-connector for (V ∗, F ∗), in (V ∗, E∗), finishing the
proof. ��

Let (G,H, c) be an instance of multiflow problem with G + H planar. Let
p : 2V ∗ → {0, 1} with p(S) = 1 if and only if |δ(S)∩F ∗| = 1, otherwise p(S) = 0
(S ⊆ V ∗). The following linear program specialises the one investigated in [25]:

minimise
subject to

∑

e∈E∗ c(e)x(e),
∑

e∈δ(S) x(e) ≥ p(S), S ⊆ V ∗; (2ECAP)
x(e) ≥ 0 e ∈ E∗.

150 N. Garg et al.

Since p is {0, 1}-valued so are the coordinatewise minimal integer solutions
including the integer optima of (2ECAP). The {0, 1}-solutions are exactly the
(incidence vectors of) 2-connectors of (V ∗, F ∗) in (V ∗, E∗). In the dual lin-
ear program of (2ECAP), we have a variable y(S) for all S ⊆ V ∗, constraints∑

S:e∈δ(S) y(S) ≤ ce for all e ∈ E∗ and y(S) ≥ 0 for all S ⊆ V ∗. The objec-
tive is to maximize

∑
S⊆V ∗ p(S)y(S). Williamson, Goemans, Mihail and Vazi-

rani [25] developed a primal-dual algorithm finding for given input (G + H)∗

and c, an integer primal solution xWGMV to a class of linear programs includ-
ing (2ECAP), together with a (not necessarily integer) dual solution yWGMV, in
polynomial time, proving the following WGMV inequality [25, Lemma 2.1], see
also [13, Section 20.4]:

LIN ≤ OPT ≤
∑

e∈E∗
c(e)xWGMV(e) ≤ 2

∑

S⊆V ∗,p(S)=1

yWGMV(S) ≤ 2 LIN ≤ 2 OPT,

where OPT is the minimum cost of a 2-connector, and LIN is the optimum of
(2ECAP). We will refer to this algorithm as the WGMV algorithm.

Note that the WGMV algorithm works for the class of weakly supermodular
functions. A function h : 2V → {0, 1} is called weakly supermodular if h(V) = 0
and for any A,B ⊆ V , h(A) + h(B) ≤ max{h(A ∩ B) + h(A ∪ B), h(A \ B) +
h(B \ A)}. It can be verified that p defined above is weakly supermodular.

Theorem 1. Let (G,H, c) be a plane multiflow problem. Then there exists a
feasible multiflow f and a multicut Q, such that c(Q) ≤ 2|f |, where both f and
Q can be computed in polynomial time.

Proof. Recall that the WGMV algorithm finds xWGMV and yWGMV satisfying
the WGMV inequality, where xWGMV is the incidence vector of a 2-connector of
(V ∗, F ∗) in (V ∗, E∗), let us denote its plane dual set in G + H by QWGMV. By
Lemma 4 QWGMV is a multicut.

Consider a set S with p(S) = 1, that is, |δ(S) ∩ F ∗| = |δ(S)∗ ∩ F | = 1,
all the other sets can be supposed to be absent from the inequalities. Then
δ(S)∗ contains a circuit C of G + H containing the unique edge of |δ(S)∗ ∩ F |.
Therefore C \ F is a path in G, denote it by PS . Define a multiflow f in G + H
by f(PS) = yWGMV(S). The dual feasibility of yWGMV means exactly that the
multiflow f is feasible. By our construction and the WGMV inequality we have

c(QWGMV) =
∑

e∈E∗
c(e)xWGMV(e) ≤ 2

∑

S⊆V ∗,p(S)=1

yWGMV(S) = 2|f |.

So the multicut Q := QWGMV and the multiflow f satisfy the claimed inequality;
all operations, including the WGMV algorithm run in polynomial time. ��

Note that if yWGMV is half-integer (assuming integer edge-costs), the obtained
multiflow is half-integer and a half-integer flow-cut gap of 2 directly follows.
There are examples where the WGMV algorithm does not produce a half-integer
dual solution, but we do not know of an instance where half-integer flow-cut gap
is larger than 2.

Integer Plane Multiflow Maximisation: Gaps and Approximation 151

4 From Fractional to Half-Integer

We show here how to convert a flow to a half-integer one, loosing at most half
of the flow value, provided the capacities are integers.

Theorem 2. Let (G,H, c) be a plane multiflow problem, where c : E → Z+ is an
integer capacity function. Given a feasible multiflow f , there exists a feasible half-
integer multiflow f ′, such that |f ′| ≥ |f |/2, and it can be computed in polynomial
time.

Proof. By Lemma 1 we can suppose that the given feasible multiflow f is laminar
and can be found in polynomial time. Let L ⊆ 2V ∗

be the laminar family of cuts
in (G + H)∗, with {C∗ : C = P ∪ {eP }, f(P) > 0} = {δE∗∪F ∗(L) : L ∈ L} (see
Sect. 2, just above Lemma 1). Denote fL := f(δ(L)∗\F), (L ∈ L). The feasibility
of the multiflow f means

∑
L∈L,e∈δE∗ (L) fL ≤ c(e), that is, xL = fL ∈ N+

satisfies
∑

L∈L
xL = |f |, and

∑

L∈L,e∈δE∗ (L)

xL ≤ c(e), for all e ∈ E, xL ≥ 0, (L ∈ L). (1)

Clearly, the edge e = uv is contained in exactly those sets δ(L) (L ∈ L) for
which L ∈ L(u, v) ∪ L(v, u), where L(a, b) := {L ∈ L : a ∈ L, b /∈ L} (a, b ∈ V ∗),
and both L(u, v) and L(v, u) form full chains (Lemma 2). So the linear program

max
∑

L∈L
xL

subject to
∑

L∈L(u,v)

xL ≤ c(e) for all (u, v) ∈ V ∗ × V ∗, uv = e∗ ∈ E∗

xL ≥ 0 for all L ∈ L,

(2)

is a relaxation of (1): for each u, v ∈ V ∗, uv = e∗ ∈ E∗ the coefficient vector
of (1) associated with e∗ is the sum of the coefficient vectors, one for each of
(u, v) and (v, u), of the two inequalities associated with e∗ in (2). Both of these
(L(u, v) and L(v, u)) correspond to full chains in the laminar family L, and the
right hand side c(e) is repeated for both.

Denote M = M(f) the 2|E| × |L| coefficient matrix of (2) (without the
non-negativity constraints).

According to Edmonds and Giles [4], L has a rooted tree (arborescence)
representation in which the full chains correspond to subpaths of paths from the
root, so M is a network matrix. As such, it is totally unimodular by Tutte [24]
and (2) has an integer optimum x, computable in polynomial time by [9], [19,
Theorem 19.3 (ii), p. 269].

To finish the proof now, note that on the one hand, fL (L ∈ L) is a solution
to (1), and therefore it is also a feasible solution of the relaxation (2). Since
xL (L ∈ L) is the maximum of (2),

∑
L∈L xL ≥ ∑

L∈L fL = |f |. According to
the two inequalities of (2) associated to e∗, the sum of coefficients of the paths

152 N. Garg et al.

containing any given edge e ∈ E is at most c(e) + c(e) = 2 c(e), so f ′ = x/2
defines a half-integer feasible flow in (G,H, c) (by assigning the flow value f ′(L)
to the path δ(L)∗ \ F), so |f ′| ≥ |f |/2, finishing the proof. ��

For more explanations and references showing that M is a network matrix,
and an alternative direct combinatorial solution of the integer linear program
with a simple greedy-type algorithm, see in the full version on ArXiv.

This proof does not fully exploit the possibilities of totally unimodular matri-
ces: instead of putting c(e) as right hand side for both inequalities of (2) associ-
ated with e∗ we can put everywhere the smallest integer capacities satisfied by
the fractional flow. Since the fractional values on the mentioned two inequalities
sum to at most c(e) and not 2c(e) we get a sharper result this way. The proof
works if we replace the capacities by the rounded up fractional flow, leading to
an error of only 1 compared to the original capacities, due to the round-up. Let
us denote by 1 the all 1 function on E, and check this precisely:

Theorem 3. Let (G,H, c) be a plane multiflow problem, where c : E → Z+.
Given a feasible multiflow f , there exists a feasible integer multiflow f ′, com-
putable in polynomial time, feasible for the capacity function c+1, and |f ′| ≥ |f |.
Proof. Let f ∈ RL be a feasible multiflow, and M = M(f) the 2|E| × |L|
coefficient matrix defined in the proof of Theorem 2. Define d := Mf ∈ R2|E|,
and consider the linear program

max
∑

L∈L
xL

subject to
∑

L∈L(u,v)

xL ≤
d(u, v)� for all (u, v) ∈ V ∗ × V ∗, uv = e∗ ∈ E∗

xL ≥ 0 for all L ∈ L,
(3)

where d(u, v) :=
∑

L∈L(u,v) fδ(L)∗\F . In words, (3) has exactly the same coeffi-
cients as (2), but the right hand sides d(u, v) and d(v, u) of the two inequalities
associated with e ∈ E, e∗ = uv are defined with the sum of flow values on
δ(L)∗ \ F , for L ∈ L(u, v) and L ∈ L(v, u) respectively.

Since f is a feasible flow for (G,H, c), d(u, v) + d(v, u) ≤ c(e), so
d(u, v)� +

d(v, u)� ≤ c(e)+1, and f is feasible for (3) since the capacities have been defined
by rounding up the flow values. On the other hand, the coefficient matrix is
totally unimodular, so by [9], [19, Theorem 19.3 (ii), p. 269] the linear program
(3) has an integer maximum solution f ′, again computable in polynomial time,
and f ′ ≤ c + 1, |f ′| ≥ |f |. ��

Theorem 2 is an immediate consequence of Theorem 3:
For each k ∈ N, k ≥ 1, k+1

2 ≤ k holds, so (after deleting 0 capacity edges)
(c + 1)/2 ≤ c, and therefore, dividing by 2 the primal optimum of (3), we
immediately get a half-integer solution to (2).

Integer Plane Multiflow Maximisation: Gaps and Approximation 153

This result extends a natural consequence for maximisation of the tight addi-
tive integrality gap known for plane demand flow problems with integer capac-
ities and demands satisfying the cut condition: according to a result of Korach
and Penn [12], if all demand edges lie in two faces of the supply graph, there
exists an integer multiflow satisfying all demands but at most 1. This readily
implies that increasing each capacity by 1, an integer flow of the same value as
the maximum flow for the original capacities, can be reached.

From Frank and Szigeti [6] the same can be deduced for demand-edges lying
on an arbitrary number k of faces. Indeed, increasing all capacities by 1, the
surplus of the cut condition will be at least k, which is the Frank-Szigeti condition
for integer multiflows. Theorem 3 states that this consequence is actually true
in general, without requiring the integrality of the demands, and also for the
maximisation problem; the same holds for maximum “packings of T -cuts”.

5 From Half-Integer to Integer

In this section, we show how to round a half-integer flow to an integer one, losing
at most one half of the flow value.

Theorem 4. Let (G,H, c) be a plane multiflow problem, where G = (V,E), H =
(V, F) and c : E → Z+. Given a feasible half-integer multiflow f , there exists a
feasible integer multiflow f ′, computable in polynomial time, and |f ′| ≥ |f |/2.

Proof. Let (G,H, c) and f be as assumed in the condition, moreover that f is
laminar (Lemma 1). We proceed by induction on the integer 2|f |. We suppose
that all nonzero values f(P) > 0 (P ∈ P) are actually 1/2: if f(P) ≥ 1, we
can decrease f(P) by �f(P)�, as well as all capacities of edges of P , and the
statement follows from the induction hypothesis. (Such a step can be repeated
only a polynomial number of times, since |P| = O(|V |) by Lemma 2.)

To choose the values to round we replace c(e), by c(e) parallel edges of
capacity 1 each.4 Then take the plane dual of the resulting graph, which is
(G+H)∗ with each edge e∗ ∈ E∗ replaced by a path of size c(e). We consider the
laminar system L defining the paths P ∈ P, f(P) > 05 in this subdivided graph
so that every edge is contained in at most two sets L ∈ L, and remains laminar
(this is clearly possible, since all positive fP values are 1/2). For simplicity, we
keep the notations of the original graph - as if what we get in this way were the
given graph with all capacities equal to 1.

Let I(L) = (L,M) be the intersection graph of the cuts defined by L, that
is, M := {L1L2 : L1, L2 ∈ L, δ(L1) ∩ δ(L2)
= ∅}. We have Claim a. and b. so
far, and now we check Claim c.:

4 This is not an allowed step for a polynomial algorithm, but it will not really be
necessary to do it. The choice of the cuts to be rounded down or up will be clear
from the proof without actually executing this subdivision. The choices for rounding
concern a family of size O(|V |).

5 {δE∗∪F∗(L)∗ : L ∈ L} = {P ∪ eP : P ∈ P, f(P) > 0}, as before.

154 N. Garg et al.

Claim: a. Each e ∈ E∗ is contained in at most two sets in {δ(L) : L ∈ L}.

b. |f | = |L|/2.
c. I(L) is planar.

To check Claim c., note first its validity if L consists of disjoint sets. If this
does not hold, not even by complementing some L ∈ L (i.e. replacing it by V ∗\L),
then it is easy to find (possibly after coplementation) three sets L1 ⊂ L0 ⊂ L2

in L. We claim that L0 is a cut-vertex in I(L). By laminarity, every cut δ(L)
(L ∈ L) has either a shore A contained in L0 (like L1), or a shore B disjoint
from L0 (like V \ L2). If there exists an e ∈ δ(A) ∩ δ(B), this would mean that e
has an endpoint in A ⊆ L0 and the other endpoint in B ⊆ V \ L0, so e ∈ δ(L0),
contradicting Claim a. So L0 is a cut vertex, i.e. L = L1 ∪ L2, L1 ∩ L2 = {L0},
with no edge between L1 and L2 in I(L).

Since the graphs induced by Li (i = 1, 2) are both defined by flows of smaller
value, we can apply the induction hypothesis to them: they are planar, so I(L)
is also planar, and the Claim follows.

To finish the proof of the theorem using Claim c., find a stable set of size |L|/4
in L, by Lemma 3, and increase the flow on the corresponding paths δ(L)∗ \ F
to 1, while decreasing the flow on the other paths to 0. This results in a feasible
integer flow |f ′| ≥ |L|/4 = |f |/2, finishing the proof of the bound.

For the computational complexity results, first recall that the support of the
half integer laminar flow f obeys Lemma 2a. Then note, that among this linear
number of sets, the proof finds in polynomial time at least one fourth of the cuts
to round up, while the other cuts are rounded down, so that the capacity con-
straints are not violated. It is straightforward to mimic the subdivision of edges
without doing it, and to compute an input to Lemma 3, in strongly polynomial
time. ��

6 Lower Bounds on the Flow-Cut Gap

We show a class of plane multiflow instances Gk on which the half-integer flow-
cut gap is tending to 1/2 as k → ∞. Cheriyan et.al. [3] used these instances
to show integrality gap results for the Tree Augmentation Problem. Let Gk =
(Vk, Ek), Hk = (Vk, Fk), k ≥ 3 be an instance of the multiflow problem defined
as follows: Vk = {a1, a2, . . . , ak} ∪{b1, b2, . . . , bk}, Ek = {(ai, bi)|i ∈ [1, k]} ∪
{(ai, ai+1)|i ∈ [1, k − 1]} and Fk = {(bi, bi+1)|i ∈ [1, k − 1]} ∪ {(bi, ai+2)|i ∈
[1, k − 2]}. The capacity of all edges in Ek is 1 (see Fig. 1).

Theorem 5. The graph Gk +Hk is planar for all k = 1, 2, . . ., and the following
hold:

– The minimum multicut capacity is k − 1.
– The maximum multiflow value is 2(k − 1)/3.
– The maximum half-integer multiflow value is k/2.
– The maximum integer multiflow value is �k/2�.

Integer Plane Multiflow Maximisation: Gaps and Approximation 155

Fig. 1. G8: supply edges are black, their capacity is 1; demand edges are red (thick).
(Color figure online)

Proof. The minimum multicut capacity is clearly at most k − 1, since deleting
each edge of the (a1, ak−1)-path, the endpoints of all demand-edges are sepa-
rated. We check now |C| ≥ k − 1 for an arbitrary multicut C, by induction. For
k = 1, 2 the statement is obvious. Deleting b1 and a1, the remaining (G′,H ′) is
(isomorphic to) Gk−1,Hk−1 and C ′ := C \ {a1b1, a1a2} is a multicut in it. By
the induction hypothesis, the minimum multicut of (G′,H ′) is of size k − 2.

Now either both a2b2 ∈ C ′ and a2a3 ∈ C ′ in which case C ′ is not an inclusion-
wise minimal multicut for (G′,H ′), since deleting one of a1b1, a1a2 we already
disconnect the same terminal pairs. So in this case |C ′| > k − 2, and we are
done; or one of a2b2, a2a3 is not in C ′, but then one of a1b1, a1a2 must be in it,
since otherwise b1 is not disconnected by C from b2 or from a3. So in this case
|C| ≥ |C ′| + 1 ≥ k − 1, finishing the proof of the first assertion.

For the maximum multiflow value μ, or maximum half-integer and integer
multiflow values μhalf , μint, note that the supply edges form a tree, so the set
P of paths between the endpoints of demand edges contains exactly one path
Pe for each demand edge e, so |P| = 2k − 3. Defining f(Pbk−1bk) = 2/3 and
f(P) = 1/3 for each other path P ∈ P, we have |f | = 2(k − 1)/3. To prove that
this is a maximum flow, note that e1 := a1b1 is contained in P ∈ P if and only
if e2 := a2b2 is contained in it, so for any multiflow f ,

α := αf :=
∑

{P∈P:e1∈P}
f(P) =

∑

{P∈P:e2∈P}
f(P)

Claim: μ ≤ 2(k − 1)/3, and if α ≤ 2/3, then μ ≤ 2(k − 2)/3 + α.

Indeed, on the one hand, α = 2/3 + ε (0 ≤ ε ≤ 1/3) causes α′ ≤ 2/3 − ε in
(G′,H ′) isomorphic to (Gk−1,Hk−1) with max flow value μ′, after the deletion
of {a1, b1}, and then by induction, μ ≤ 2/3+ ε+μ′ ≤ 2/3+ ε+2(k − 2)/3− ε =
2(k − 1)/3. On the other hand, if α = 2/3 − ε we have by induction μ ≤
2/3 − ε + μ′ ≤ 2/3 − ε + 2(k − 2)/3 = 2(k − 1)/3 − ε, and the claim is proved,
finishing the proof of the second statement.

The proof of the third assertion, concerning μhalf works similarly. Defining
f(Pbibi+1) = 1/2 (i = 1, . . . , k − 1), and f(Pb1a3) = 1/2, otherwise f(P) = 0,

156 N. Garg et al.

where f is a feasible half-integer flow, |f | = k/2. To prove μhalf ≤ k/2 an
inductive proof using α works as before: for α ≥ 1/2 the stronger statement
μ ≤ (k − 2)/2 + α follows by induction.

Finally, the fourth assertion is immediate from the third one: μint ≤ μhalf ≤
k/2 is integer, and an integer flow f , |f | = �k/2� is also easy to construct. ��

7 Conclusions

This paper established bounds on the integrality gap of multiflows, developed
approximation algorithms for them and bounded the flow-cut gap. Applying
Theorem 1 first, then Theorem 2 to a maximum multiflow, and finally Theorem 4
to the result, we arrive at the following summary:

Theorem 6. There exists a 1/4-approximation algorithm for integer plane mul-
tiflow maximisation, with an integer flow-cut gap of 8; there exists a 1/2-
approximation algorithm for half-integer plane multiflows with a half-integer
flow-cut gap of 4; the flow-cut gap is at most 2; the approximation algorithms
provide lower bounds to the integrality or half-integrality gap equal to the approx-
imation ratio.

a. Multicuts and Flow-Cut Gap: The minimum multicut is NP-hard to find,
but has a PTAS by Lemma 4 and [11]. The half-integer flow-cut gap is at least
2 by the example illustrated in Fig. 1 (and Theorem 5) and it is at most 4 by
Theorem 6. The (fractional) flow-cut gap is in the interval [3/2, 2], again by the
same example and the theorem. For the integer flow-cut gap, a lower bound of 2
is shown by G = K4 and H consisting of two demand edges forming a matching.
The true value is thus wide open in the interval [2, 8].

b. Half-Integrality Gap: We do not know the complexity of finding a half-
integer multiflow of maximum value. The worst case ratio between the maximum
value of a half-integer feasible flow and of a fractional flow is in the interval
[1/2, 3/4], again by Theorems 2 and 5. It remains an interesting open problem
to pin down the exact half-integrality gap in this interval.

c. Integrality Gap: This lies in the interval [1/4, 1/2], with lower bound given
by Theorem 6, and upper bound by G = K4 and H consisting of two demand
edges forming a matching. Finally, the worst integer flow/half-integer flow ratio
is closed: it is exactly 1/2, as the same example of K4 and Theorem 4 together
show.

References

1. Appel, K., Haken, W.: A proof of the four color theorem. Discrete Math. 16, 179–
180 (1976)

2. Baker, B.S.: Approximation algorithms for np-complete problems on planar graphs.
J. ACM 41(1), 153–180 (1994)

Integer Plane Multiflow Maximisation: Gaps and Approximation 157

3. Cheriyan, J., Karloff, H., Khandekar, R., Könemann, J.: On the integrality ratio
for tree augmentation. Oper. Res. Lett. 36(4), 399–401 (2008)

4. Edmonds, J., Rick, G.: A min-max relation for submodular functions in graphs.
Ann. Discrete Math. I, 185–204 (1977)

5. Fiorini, S., Hardy, N., Reed, B., Vetta, A.: Approximate min-max relations for odd
cycles in planar graphs. Math. Program. 110(1), 71–91 (1995)

6. Frank, A., Szigeti, Z.: A note on packing paths in planar graphs. Math. Program.
70, 201–209 (1995)

7. Garg, N., Vazirani, V.V., Yannakakis, M.: Approximate max-flow min-(multi) cut
theorems and their applications. SIAM J. Comput. 25(2), 235–251 (1996)

8. Garg, N., Vazirani, V.V., Yannakakis, M.: Primal-dual approximation algorithms
for integral flow and multicut in trees. Algorithmica 18(1), 3–20 (1997)

9. Hoffman, A.J., Kruskal, J.B.: Integral boundary points of convex polyhedra. In:
Linear Inequalities and Related Systems, pp. 223–246 (1956)

10. Klein, P., Plotkin, S.A., Rao, S.: Excluded minors, network decomposition, and
multicommodity flow. In: Proceedings of the Twenty-Fifth Annual ACM Sympo-
sium on Theory of Computing, pp. 682–690. ACM (1993)

11. Klein, P.N., Mathieu, C., Zhou, H.: Correlation clustering and two-edge-connected
augmentation for planar graphs. In: 32nd International Symposium on Theoretical
Aspects of Computer Science (STACS 2015). Schloss Dagstuhl-Leibniz-Zentrum
fuer Informatik (2015)

12. Korach, E., Penn, M.: Tight integral duality gap in the chinese postman problem.
Mateh. Program. 55, 183–191 (1992)

13. Korte, B., Vygen, J.: Combinatorial Optimization: Theory and Algorithms, Collec-
tion Algorithms and Combinatorics, vol. 21, 5th edn. Springer, Heidelberg (2012).
https://doi.org/10.1007/978-3-642-24488-9

14. Král, D., Voss, H.: Edge-disjoint odd cycles in planar graphs. J. Comb. Theor. Ser.
B 90, 107–120 (2004)

15. Lovász, L., Plummer, M.: Matching Theory. Akadémiai Kiadó and Springer (1986)
16. Middendorf, M., Pfeiffer, F.: On the complexity of the disjoint paths problem.

Combinatorica 13(1), 97–107 (1993)
17. Okamura, H., Seymour, P.D.: Multicommodity flows in planar graphs. J. Comb.

Theor. Ser. B 31(1), 75–81 (1981)
18. Robertson, N., Sanders, D.P., Seymour, P., Thomas, R.: Efficiently four-coloring

planar graphs. In: Proceedings of the Twenty-Eighth Annual ACM Symposium on
Theory of Computing, pp. 571–575 (1996)

19. Schrijver, A.: Theory of Linear and Integer Programming. Wiley and Chichester
(1986)

20. Schrijver, A.: Combinatorial Optimization: Polyhedra and Efficiency, vol. 24.
Springer, Heidelberg (2003)

21. Seguin-Charbonneau, L., Bruce Shepherd, F.: Maximum edge-disjoint paths in pla-
nar graphs with congestion 2. In: 2011 IEEE 52nd Annual Symposium on Foun-
dations of Computer Science, pp. 200–209. IEEE (2011)

22. Seymour, P.D.: On odd cuts and plane multicommodity flows. Proc. London Math.
Soc. 3(1), 178–192 (1981)

23. Tardos, É., Vazirani, V.V.: Improved bounds for the max-flow min-multicut ratio
for planar and k r, r-free graphs. Inf. Process. Lett. 47(2), 77–80 (1993)

24. Tutte, W.T.: Lectures on matroids. J. Res. Nat. Bur. Stan. B 69, 1–47 (1965)
25. Williamson, D.P., Goemans, M.X., Mihail, M., Vazirani, V.V.: A primal-dual

approximation algorithm for generalized steiner network problems. Combinator-
ica 15(3), 435–454 (1995)

https://doi.org/10.1007/978-3-642-24488-9

Stochastic Makespan Minimization
in Structured Set Systems

(Extended Abstract)

Anupam Gupta1, Amit Kumar2, Viswanath Nagarajan3(B),
and Xiangkun Shen4

1 Carnegie Mellon University, Pittsburgh, USA
2 Indian Institute of Technology, Delhi, Delhi, India

3 University of Michigan, Ann Arbor, USA
viswa@umich.edu

4 Yahoo! Research, New York City, USA

Abstract. We study stochastic combinatorial optimization problems
where the objective is to minimize the expected maximum load (a.k.a. the
makespan). In this framework, we have a set of n tasks and m resources,
where each task j uses some subset of the resources. Tasks have random
sizes Xj , and our goal is to non-adaptively select t tasks to minimize
the expected maximum load over all resources, where the load on any
resource i is the total size of all selected tasks that use i. For example,
given a set of intervals in time, with each interval j having random load
Xj , how do we choose t intervals to minimize the expected maximum load
at any time? Our technique is also applicable to other problems with
some geometric structure in the relation between tasks and resources;
e.g., packing paths, rectangles, and “fat” objects. Specifically, we give an
O(log log m)-approximation algorithm for all these problems.

Our approach uses a strong LP relaxation using the cumulant gener-
ating functions of the random variables. We also show an LP integrality
gap of Ω(log∗ m) even for the problem of selecting intervals on a line.

1 Introduction

Consider the following task scheduling problem: an event center receives
requests/tasks from its clients. Each task j specifies a start and end time
(denoted (aj , bj)), and the amount xj of some shared resource (e.g., staff sup-
port) that this task requires throughout its duration. The goal is to accept some
target t number of tasks so that the maximum resource-utilization over time is
as small as possible. Concretely, we want to choose a set S of tasks with |S| = t
to minimize

max
times τ

∑

j∈S:τ∈[aj ,bj]

xj

︸ ︷︷ ︸
usage at time τ

.

All missing proofs and details can be found in the full version [11].

c© Springer Nature Switzerland AG 2020
D. Bienstock and G. Zambelli (Eds.): IPCO 2020, LNCS 12125, pp. 158–170, 2020.
https://doi.org/10.1007/978-3-030-45771-6_13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-45771-6_13&domain=pdf
https://doi.org/10.1007/978-3-030-45771-6_13

Stochastic Makespan Minimization 159

This can be modeled as an interval packing problem: if the sizes are identical, the
natural LP is totally unimodular and we get an optimal algorithm. For general
sizes, there is a constant-factor approximation algorithm [3].

However, in many settings, we may not know the resource consumption Xj

precisely up-front, at the time we need to make a decision. Instead, we may be
only given estimates. What if the requirement Xj is a random variable whose
distribution is given to us? Again we want to choose S of size t, but this time
we want to minimize the expected maximum usage:

E

[
max

times τ

∑

j∈S:τ∈[aj ,bj]

Xj

]
.

Note that our decision to pick task j affects all times in [aj , bj], and hence the
loads on various places are no longer independent: how can we effectively reason
about such a problem?

In this paper we consider general resource allocation problems of the follow-
ing form. There are several tasks and resources, where each task j has some
size Xj and uses some subset Uj of resources. That is, if task j is selected then
it induces a load of Xj on every resource in Uj . Given a target t, we want to
select a subset S of t tasks to minimize the expected maximum load over all
resources. For the non-stochastic versions of these problems (when Xj is a single
value and not a random variable), we can use the natural linear programming
(LP) relaxation and randomized rounding to get an O(log m

log log m)-approximation
algorithm; here m is the number of resources. However, much better results are
known when the task-resource incidence matrix has some geometric structure.
One such example appeared above: when the resources have some linear struc-
ture, and the tasks are intervals. Other examples include selecting rectangles in
a plane (where tasks are rectangles and resources are points in the plane), and
selecting paths in a tree (tasks are paths and resources are edges/vertices in
the tree). This class of problems has received a lot of attention and has strong
approximation guarantees, see e.g. [1–8].

However, the stochastic counterparts of these resource allocation problems
remain wide open. Can we achieve good approximation algorithms when the task
sizes Xj are random variables? We refer to this class of problems as stochastic
makespan minimization (GenMakespan). In the rest of this work, we assume
that the distributions of all the random variables are known, and that the r.v.s
Xjs are independent.

1.1 Results and Techniques

We show that good approximation algorithms are indeed possible for Gen-
Makespan problems that have certain geometric structure. We consider the
following two assumptions:

– Deterministic problem assumption: There is a linear-program based α approx-
imation algorithm for a suitable deterministic variant of GenMakespan.

160 A. Gupta et al.

– Well-covered assumption: for any subset D ⊆ [m] of resources and tasks L(D)
incident to D, the tasks in L(D) incident to any resource i ∈ [m] are “covered”
by at most λ resources in D.

These assumptions are formalized in Sect. 2. To give some intuition for these
assumptions, consider intervals on the line. The first assumption holds by the
results of [3]. The second assumption holds because each resource is some time
τ , and the tasks using time τ can be covered by two resources in D, namely
times τ1, τ2 ∈ D such that τ1 ≤ τ ≤ τ2.

Theorem 1 (Main (Informal)). There is an O(αλ log log m)-approximation
algorithm for stochastic makespan minimization (GenMakespan), with α and
λ as in the above assumptions.

We also show that both α and λ are constant in a number of geometric
settings: for intervals on a line, for paths in a tree, for rectangles in a plane and
for “fat” objects (such as disks) in a plane. Therefore, we obtain an O(log log m)-
approximation algorithm in all these cases.

A first naive approach for GenMakespan is (i) to write an LP relaxation
with expected sizes E[Xj] as deterministic sizes and then (ii) to use any LP-
based α-approximation algorithm for the deterministic problem. However, this
approach only yields an O(α log m

log log m) approximation ratio, due to the use of union
bounds in calculating the expected maximum. Our idea is to use the structure
of the problem to improve the approximation ratio.

Our approach is as follows. First, we use the (scaled) logarithmic moment
generating function (log-mgf) of the random variables Xj to define determinis-
tic surrogates to the random sizes. Second, we formulate a strong LP relaxation
with an exponential number of “volume” constraints that use the log-mgf val-
ues. These two ideas were used earlier for stochastic makespan minimization in
settings where each task loads a single resource [10,14]. In the example above,
where each task uses only a single time instant. However, we need a more sophis-
ticated LP for GenMakespan to be able to handle the combinatorial structure
when tasks use many resources. Despite the large number of constraints, this
LP can be solved approximately in polynomial time, using the ellipsoid method
and using a maximum-coverage algorithm as the separation oracle. Third (and
most important), we provide an iterative-rounding algorithm that partitions the
tasks/resources into O(log log m) many nearly-disjoint instances of the deter-
ministic problem. The analysis of our rounding algorithm relies on both the
assumptions above, and also on the volume constraints in our LP and on prop-
erties of the log-mgf.

We also show some limitations of our approach. For GenMakespan involv-
ing intervals in a line (which is our simplest application), we prove that the
integrality gap of our LP is Ω(log∗ m). This rules out a constant-factor approx-
imation via this LP. For GenMakespan on more general set-systems (without
any structure), we prove that the integrality gap can be Ω(log m

(log log m)2) even if
all deterministic instances solved in our algorithm have an α = O(1) integral-
ity gap. This suggests that we do need to exploit additional structure—such

Stochastic Makespan Minimization 161

as the well-covered assumption above—in order to obtain significantly better
approximation ratios via our LP.

1.2 Related Work

The deterministic counterparts of the problems studied here are well-understood.
In particular, there are LP-based O(1)-approximation algorithms for intervals in
a line [3], paths in a tree (with edge loads) [8] and rectangles in a plane (under
some restrictions) [1].

Our techniques draw on prior work on stochastic makespan minimization
for identical [14] and unrelated [10] resources; but there are also important new
ideas. In particular, the use of log-mgf values as the deterministic proxy for
random variables comes from [14] and the use of log-mgf values at multiple scales
comes from [10]. The “volume” constraints in our LP also has some similarity
to those in [10]: however, a key difference here is that the random variables
loading different resources are correlated (whereas they were independent in
[10]). Indeed, this is why our LP can only be solved approximately whereas
the LP relaxation in [10] was optimally solvable. We emphasize that our main
contribution is the rounding algorithm, which uses a new set of ideas; these
lead to the O(log log m) approximation bound, whereas the rounding in [10]
obtained a constant-factor approximation. Note that we also prove a super-
constant integrality gap in our setting, even for the case of intervals in a line.

The stochastic load balancing problem on unrelated resources has also been
studied for general �p-norms (note that the makespan corresponds to the �∞-
norm) and a constant-factor approximation is known [15]. We do not consider
�p-norms in this paper.

2 Problem Definition and Preliminaries

We are given n tasks and m resources. Each task j ∈ [n] uses some subset
Uj ⊆ [m] of resources. For each resource i ∈ [m], define Li ⊆ [n] to be the tasks
that utilize i. Each task j ∈ [n] has a random size Xj . If a task j is selected into
our set S, it adds a load of Xj to each resource in Uj : the load on resource i ∈ [m]
is Zi :=

∑
j∈S∩Li

Xj . The makespan is the maximum load, i.e. maxm
i=1 Zi. The

goal is to select a subset S ⊆ [n] with t tasks to minimize the expected makespan:

min
S⊆[n]:|S|=t

E

[
m

max
i=1

∑

j∈S∩Li

Xj

]
. (1)

The distribution of each r.v. Xj is known (we use this knowledge only to compute
some “effective” sizes below), and these distributions are independent.

For any subset K ⊆ [m] of resources, let L(K) := ∪i∈KLi be the set of tasks
that utilize at least one resource in K.

162 A. Gupta et al.

2.1 Structure of Set Systems: The Two Assumptions

Our results hold when the following two properties are satisfied by the set system
([n],L), where L is the collection of sets Li for each i ∈ [m]. Note that the set
system has n elements (corresponding to tasks) and m sets (corresponding to
resources).

A1 (α-packable): A set system ([n],L) is said to be α-packable if for any
assignment of size sj ≥ 0 and reward rj ≥ 0 to each element j ∈ [n], and any
threshold parameter θ ≥ maxj sj , there is a polynomial-time algorithm that
rounds a fractional solution y to the following LP relaxation into an integral
solution ŷ, losing a factor of at most α ≥ 1. (I.e.,

∑
j rj ŷj ≥ 1

α

∑
j rjyj .)

max
{ ∑

j∈[n]

rj · yj :
∑

j∈L

sj · yj ≤ θ, ∀L ∈ L, and 0 ≤ yj ≤ 1, ∀j ∈ [n]
}

. (2)

We also assume that the support of ŷ is contained in the support of y.1

A2 (λ-safe): Let [m] be the indices of the sets in L; recall that these are the
resources. The set system ([n],L) is λ-safe if for every subset D ⊆ [m] of
(“dangerous”) resources, there exists a subset M ⊇ D of (“safe”) resources,
such that (a) |M | is polynomially bounded by |D| and moreover, (b) for
every i ∈ [m], there is a subset Ri ⊆ M , |Ri| ≤ λ, such that Li ∩ L(D) ⊆
L(Ri). Recall that L(D) = ∪h∈DLh. We denote the set M as Extend(D).

Let us give an example. Suppose P consists of m points on the real line, and
consider n intervals I1, . . . , In on the line. The set system is defined on n elements
(one for each interval), with m sets with the set Li for point i ∈ P containing
the indices of intervals that contain i. The λ-safe condition says that for any
subset D of points in P , we can find a superset M which is not much larger such
that for any point i ∈ P , there are λ points in M containing all the intervals
that pass through both i and D. In other words, if these intervals contribute
any load to i and D, they also contribute to one of these λ points. And indeed,
choosing M = D ensures that λ = 2: for any i we choose the nearest points in
M on either side of i.

Other families that are α-packable and λ-safe include:

• Each element in [n] corresponds to a path in a tree, with the set Li being
the subset of paths through node i.

• Elements in [n] correspond to rectangles or disks in a plane, and each Li

consists of rectangles/disks containing a particular point i in the plane.

For a subset X ⊆ [n], the projection of ([n],L) to X is the smaller set system
([n],L|X), where L|X = {L ∩ X | L ∈ L}. The following lemma formalizes that
packability and safeness properties also hold for sub-families and disjoint unions.

1 The support of vector z ∈ R
n
+ is {j ∈ [n] : zj > 0} which corresponds to its positive

entries.

Stochastic Makespan Minimization 163

Lemma 1. Consider a set system ([n],L) that is α-packable and λ-safe. Then,

(i) for all X ⊆ [n], the set system (X,L) is α-packable and λ-safe, and
(ii) given a partition X1, . . . , Xs of [n], and set systems (X1,L1), . . . , (Xs,Ls),

where Li = L|Xi
, the disjoint union of these systems is also α-packable.

We consider the GenMakespan problem for settings where the set system
([n], {Li}i∈[m]) is α-packable and λ-safe for small parameters α and λ.

Theorem 2 (Main Result). For any instance of GenMakespan where the
corresponding set system ([n], {Li}i∈[m]) is α-packable and λ-safe, there is an
O(αλ · log log m)-approximation algorithm.

2.2 Effective Size and Random Variables

In all the arguments that follow, imagine that we have scaled the instance so
that the optimal expected makespan is between 1

2 and 1. It is useful to split each
random variable Xj into two parts:

• the truncated random variable X ′
j := Xj · I(Xj≤1), and

• the exceptional random variable X ′′
j := Xj · I(Xj>1).

These two kinds of random variables behave very differently with respect to
the expected makespan. Indeed, the expectation is a good measure of the load
due to exceptional r.v.s, whereas one needs a more nuanced notion for truncated
r.v.s (as we discuss below). The following result was shown in [14]:

Lemma 2 (Exceptional Items Lower Bound). Let {X ′′
j } be non-negative

discrete random variables each taking value zero or at least L. If
∑

j E[X ′′
j] ≥ L

then E[maxj X ′′
j] ≥ L/2.

We now consider the trickier case of truncated random variables X ′
j . We

want to find a deterministic quantity that is a good surrogate for each random
variable, and then use this deterministic surrogate instead of the actual random
variable. For stochastic load balancing, a useful surrogate is the effective size,
which is based on the logarithm of the (exponential) moment generating function
(also known as the cumulant generating function) [9,10,12,13].

Definition 1 (Effective Size). For any r.v. X and integer k ≥ 2, define

βk(X) :=
1

log k
· logE

[
e(log k)·X

]
. (3)

Also define β1(X) := E[X].

To see the intuition for the effective size, consider a set of independent r.v.s
Y1, . . . , Yk all assigned to the same resource. The following lemma, whose proof
is very reminiscent of the standard Chernoff bound (see [12]), says that the load
is not much higher than the expectation.

164 A. Gupta et al.

Lemma 3 (Effective Size: Upper Bound). For indep. r.v.s Y1, . . . , Yn, if∑
i βk(Yi) ≤ b then Pr[

∑
i Yi ≥ c] ≤ 1

kc−b .

The usefulness of the effective size comes from a partial converse [14]:

Lemma 4 (Effective Size: Lower Bound). Let X1,X2, · · · Xn be indepen-
dent [0, 1] r.v.s, and {L̃i}m

i=1 be a partition of [n]. If
∑n

j=1 βm(Xj) ≥ 17m then

E

[
m

max
i=1

∑

j∈˜Li

Xj

]
= Ω(1).

3 The General Framework

In this section we provide our main algorithm, which is used to prove The-
orem 2. The idea is to write a suitable LP relaxation for the problem (using
the effective sizes as deterministic surrogates for the stochastic jobs), to solve
this exponentially-sized LP, and then to round the solution. The novelty of the
solution is both in the LP itself, and in the rounding, which is based on a del-
icate decomposition of the instance into O(log log m) many sub-instances and
on showing that, loosely speaking, the load due to each sub-instance is at most
O(αλ). By binary-searching on the value of the optimal makespan, and rescaling,
we can assume that the optimal makespan is between 1

2 and 1.

The LP Relaxation. Consider an instance I of GenMakespan given by a set
of n tasks and m resources, with sets Uj and Li as described in Sect. 2. We give
an LP relaxation which is feasible if the optimal makespan is at most one.

Lemma 5. Consider any feasible solution to I that selects a subset S ⊆ [n] of
tasks. If the expected maximum load E

[
maxm

i=1

∑
j∈Li∩S Xj

]
≤ 1, then

∑

j∈S

E[X ′′
j] ≤ 2, and (4)

∑

j∈L(K)∩S

βk(X ′
j) ≤ b · k, for all K ⊆ [m], where k = |K|, (5)

for b being a large enough but fixed constant.

Lemma 5 allows us to write the following feasibility linear programming relax-
ation for GenMakespan (assuming the optimal value is 1). For every task j, we
have a binary variable yj , which is meant to be 1 if j is selected in the solution.
Moreover, we can drop all tasks j with cj = E[X ′′

j] > 2 as such a task would
never be part of an optimal solution- by (4). So in the rest of this paper we will
assume that maxj∈[n] cj ≤ 2. Further, note that we only use effective sizes βk of
truncated r.v.s, so we have 0 ≤ βk(X ′

j) ≤ 1 for all k ∈ [m] and j ∈ [n].

Stochastic Makespan Minimization 165

n∑

j=1

yj ≥ t (6)

n∑

j=1

E[X ′′
j] · yj ≤ 2 (7)

∑

j∈L(K)

βk(X ′
j) · yj ≤ b · k ∀K ⊆ [m] with |K| = k, ∀k = 1, 2, · · · m, (8)

0 ≤ yj ≤ 1 ∀j ∈ [n]. (9)

In the above LP, b ≥ 1 denotes the universal constant multiplying k in the
right-hand-side of (5). This can be solved approximately in polynomial time.

Theorem 3 (Solving the LP). There is a polynomial time algorithm which
given an instance I of GenMakespan outputs one of the following:

• a solution y ∈ R
n to LP (6)–(9), except that the RHS of (8) is replaced by

e
e−1bk, or

• a certificate that LP (6)–(9) is infeasible.

The e
e−1 factor comes from checking feasibility via an approximation algo-

rithm for the maximum coverage problem. In the rest of this section, we assume
we have a feasible solution y to (6)–(9) since the approximate feasibility of (8)
only affects the approximation ratio by a constant.

Rounding. We first give some intuition about the rounding algorithm. It
involves formulating O(log log m) many almost-disjoint instances of the deter-
ministic reward-maximization problem (2) used in the definition of α-packability.
The key aspect of each such deterministic instance is the definition of the sizes
sj : for the �th instance we use effective sizes βk(X ′

j) with parameter k = 22
�

. We
use the λ-safety property to construct these deterministic instances and the α-
packable property to solve them. Finally, we show that the expected makespan
induced by the selected tasks is at most O(αβ) factor away from each such
deterministic instance, which leads to an overall O(αβ log log m) ratio.

Before delving into the details, let us formulate a generalization of the reward-
maximization problem mentioned in (2), which we call the DetCost problem.
An instance I of the DetCost problem consists of a set system ([n],S), with a
size sj and cost cj for each element j ∈ [n]. It also has parameters θ ≥ maxj sj

and ψ ≥ maxj cj . The goal is to find a maximum cardinality subset V of [n] such
that each set in S is “loaded” to at most θ, and the total cost of V is at most
ψ. The DetCost problem has the following LP relaxation:

max

{ ∑
j∈[n]

yj :
∑
j∈S

sj · yj ≤ θ, ∀S ∈ S;
∑
j∈[n]

cj · yj ≤ ψ; 0 ≤ yj ≤ 1 ∀j ∈ [n]

}
. (10)

166 A. Gupta et al.

Theorem 4. If a set system satisfies the α-packable property, there is an O(α)-
approximation algorithm for DetCost relative to the LP relaxation (10).

We now give the rounding algorithm for the GenMakespan problem. The
procedure is described formally in Algorithm1. The algorithm proceeds in
log log m iterations of the for loop in lines 3–7, since the parameter k is squared
in line 3 for each iteration. In line 5, we identify resources i which are fraction-
ally loaded to more than 2b, where the load is measured in terms of βk2(X ′

j)
values. The set of such resources is grouped in the set D�, and we define J� to be
the tasks which can load these resources. Ideally, we would like to remove these
resources and tasks, and iterate on the remaining tasks and resources. However,
the problem is that tasks in J� also load resources other than D�, and so (D�, J�)
is not independent of the rest of the instance. This is where we use the λ-safe
property: we expand D� to a larger set of resources M�, which will be used to
show that the effect of J� on resources outside D� will not be significant.

Algorithm 1: Rounding Algorithm
Input : A fractional solution y to (6)–(9)
Output: A subset of tasks.

1 Initialize remaining tasks J ← [n];
2 for � = 0, 1, . . . , log log m do

3 Set k ← 22�

;
4 Initialize class-� resources D� ← ∅;
5 while there is a resource i ∈ [m] :

∑
j∈Li∩J βk2(X ′

j) · yj > 2b do

6 update D� ← D� ∪ {i};

7 Set L̃i ← J ∩ Li and J ← J \ L̃i;

8 Define the class-� tasks J� ← ⋃
i∈D�

L̃i ;

9 Use λ-safety on the set system (J�, {Li ∩ J�}i∈[m])to get
M� := Extend(D�) ;

10 ρ ← 1 + log log m;

11 Define class-ρ tasks Jρ = J and class-ρ resources Mρ := Dρ = [m] \ (∪ρ−1
�=0D�

)
;

12 Define an instance C of DetCost as follows: the set system is the disjoint union
of the set systems (J�, M�) for � = 0, . . . , ρ. The other parameters are:

Sizes sj = β
22

� (X ′
j) for each j ∈ J�, ∀0 ≤ � ≤ ρ, bound θ = 2ᾱb,

Costs cj = E[X ′′
j] for each j ∈ [n], bound ψ = 2ᾱ,

where ᾱ is the approximation ratio from Theorem 4 ;
13 Let NH = {j ∈ [n] : yj > 1/ᾱ} ;
14 Let ȳj = ᾱ · yj for j ∈ [n] \ NH and ȳj = 0 otherwise ;
15 Round ȳ (as a feasible solution to (10)) using Theorem 4 to obtain NL;
16 Output NH ∪ NL.

Consider any iteration � of the for-loop. We apply the λ-safety property to
the set-system (J�, {Li ∩ J�}i∈[m]) and set D� to get M� := Extend(D�). We

Stochastic Makespan Minimization 167

remove J� from the current set J of tasks, and continue to the next iteration.
We abuse notation by referring to (J�,M�) as the following set system: each
set is of the form Li ∩ J� for some i ∈ M�. Having partitioned the tasks into
classes J1, . . . , Jρ, we consider the disjoint union D of the set systems (J�,M�),
for � = 1, . . . , ρ. While the sets D� are disjoint, the sets M� may not be disjoint.
For each resource appearing in the sets M� of multiple classes, we make distinct
copies in the combined set-system D.

Finally, we set up an instance C of DetCost (in line 11): the set system
is the disjoint union of (J�,M�), for � = 1, . . . , ρ. Every task j ∈ J� has size
β22� (X ′

j) and cost E[X ′′
j]. The parameters θ and ψ are as mentioned in line 11.

Our proofs show that the solution ȳ defined in line 14 is a feasible solution to
the LP relaxation (10) for C. This allows us to use Theorem 4 to round ȳ to an
integral solution NL. Finally, we output NH ∪ NL, where NH is defined in line
12.

The analysis is outlined in the appendix.

4 Applications

As discussed in Sect. 2, the problem of selecting intervals in a line satisfies the
λ-safe property with λ = 2. Moreover, the α-packable property holds with
α = O(1), which follows from [3]—indeed, the LP relaxation (2) corresponds
to the unsplittable flow problem where all vertices have uniform capacity θ. So,
Theorem 2 now implies the following.

Corollary 1. There is an O(log log m)-approximation for GenMakespan
where resources are vertices on a line and tasks are intervals in this line.

The full version [11] has a number of other applications:

Corollary 2. There is an O(log log m)-approximation for GenMakespan
when

• resources are vertices in a tree and tasks are paths in this tree.
• resources are all points in the plane and tasks are rectangles, where the

rectangles in a solution can be shrunk by a (1−δ)-factor in either dimension;
δ > 0 is some constant.

• resources are all points in the plane and tasks are disks.

5 Integrality Gap Lower Bounds

We consider two natural questions – (i) does one require any assumption on the
underlying set system to obtain O(1)-approximation for GenMakespan?, and
(ii) what is the integrality gap of the LP relaxation given by the constraints (6)–
(9) for settings where α and λ are constants? For the first question, we show
that applying our LP based approach to general set systems only givesn an
Ω

(
log m

(log log m)2

)
approximation ratio, and so we do require some conditions on the

168 A. Gupta et al.

underlying set system. For the second question, we show that even for set systems
given by intervals on a line (as in Sect. 4), the integrality gap of our LP relaxation
is Ω(log∗ m). Hence this rules out getting a constant-factor approximation using
our approach even when α and λ are constants.

A Analysis Outline

We now show that the expected makespan for the solution produced by the
rounding algorithm above is O(αλρ), where ρ = log log m is the number of
classes. In particular, we show that the expected makespan (taken over all
resources) due to tasks of each class � is O(αλ).

Using the terminating condition in line 5, we can show:

Lemma 6. For any class �, 0 ≤ � ≤ ρ, and resource i ∈ [m],
∑

j∈J�∩Li

βr(X ′
j) · yj ≤ 2b, where r = 22

�

.

Next, the sets D� cannot become too large (as a function of �).

Lemma 7. For any �, 0 ≤ � ≤ ρ, |D�| ≤ k2, where k = 22
�

. So |M�| ≤ kp for
some constant p.

Proof. The claim is trivial for the last class � = ρ as k ≥ m in this case. Now
consider any class � < ρ. For each i ∈ D�, we know

∑
j∈˜Li

βk2(X ′
j) · yj > 2b,

where L̃i is as defined in line 7. Moreover, the subsets {L̃i : i ∈ D�} are disjoint
as the set J gets updated (in line 7) after adding each i ∈ D�. Suppose, for the
sake of contradiction, that |D�| > k2. Then let K ⊆ D� be any set of size k2. By
the LP constraint (8) on this subset K,

2b · k2 <
∑

i∈K

∑

j∈˜Li

βk2(X ′
j) · yj ≤

∑

j∈L(K)

βk2(X ′
j) · yj ≤ b|K| = b · k2,

which is a contradiction. This proves the first part of the claim. Finally, the
λ-safe property implies that |M�| is polynomially bounded by |D�|. �

Using the definition of the DetCost instance and Lemma 6, we can show:

Lemma 8. The fractional solution ȳ is feasible for the LP relaxation (10) corre-
sponding to the DetCost instance C. Moreover, θ ≥ maxj sj and ψ ≥ maxj cj.

The above lemmas show that the algorithm is well-defined, so we can indeed
use Theorem 4 to round ȳ into an integer solution. Recall that our final solution
is N = NH ∪ NL. The next two lemmas follow from this rounding step.

Stochastic Makespan Minimization 169

Lemma 9. |NH | + |NL| ≥ t.

Lemma 10. For any class � ≤ ρ and resource i ∈ M�,
∑

j∈N�∩Li

βk(X ′
j) ≤ 4ᾱb, where k = 22

�

.

We now focus on a particular class � ≤ ρ and show that the expected makespan
due to tasks in N ∩ J� is small. Recall that k = 22

�

. Let N� := N ∩ J� and let
Load

(�)
i :=

∑
j∈N�∩Li

X ′
j be the load on any resource i ∈ [m] due to class-� tasks.

We can now bound the makespan due to the truncated random variables.

Lemma 11. For any class � ≤ ρ, E
[
maxi∈M�

Load
(�)
i

]
≤ 4ᾱb + O(1), and

E

[
m

max
i=1

Load
(�)
i

]
≤ 4λᾱb + O(λ) = O(αλ).

Proof. Consider a resource i ∈ M�. Lemmas 10 and 3 imply:

Pr
[
Load

(�)
i > 4ᾱb + γ

]
= Pr

⎡

⎣
∑

j∈N�∩Li

X ′
j > 4ᾱb + γ

⎤

⎦ ≤ k−γ , ∀γ ≥ 0.

By a union bound, we get

Pr
[
max
i∈M�

Load
(�)
i > 4ᾱb + γ

]
≤ |M�| · k−γ ≤ kp−γ , for all γ ≥ 0,

where p is the constant from Lemma 7. So the expectation

E

[
max
i∈M�

Load
(�)
i

]
=

∫ ∞

θ=0

Pr
[
max
i∈M�

Load
(�)
i > θ

]
dθ

≤ 4ᾱb + p + 2 +
∫ ∞

γ=p+2

k−γ+p dγ ≤ 4ᾱb + p + 2 +
1

k(p + 1)
,

which completes the proof of the first statement.
We now prove the second statement. Consider any class � < ρ: by definition

of J�, we know that J� ⊆ L(D�). So the λ-safe property implies that for every
resource i there is a subset Ri ⊆ M� of size at most λ such that Li ∩ J� ⊆
L(Ri) ∩ J�. Because N� ⊆ J�, we also have Li ∩ N� ⊆ L(Ri) ∩ N�. Therefore,

Load
(�)
i ≤

∑

z∈Ri

Load(�)z ≤ λ max
z∈M�

Load(�)z .

Taking expectation on both sides, we obtain the desired result.
Finally, for the last class � = ρ, note that any task in Jρ loads the resources

in Dρ = Mρ only. Therefore, maxm
i=1 Load

(�)
i = maxz∈M�

Load(�)z . The desired
result now follows by taking expectation on both sides. �

170 A. Gupta et al.

Using Lemma 11 for all ρ classes, it follows that the expected makespan due
to all truncated r.v.s is O(αλρ). For the exceptional random variables, we use:

Lemma 12. E

[∑
j∈N X ′′

j

]
=

∑
j∈N cj ≤ 4ᾱ.

Adding the contributions from truncated and exceptional r.v.s, the overall
expected makespan is O(αλρ), which completes the proof of Theorem2.

References

1. Adamaszek, A., Chalermsook, P., Wiese, A.: How to tame rectangles: solving inde-
pendent set and coloring of rectangles via shrinking. In: APPROX/RANDOM, pp.
43–60 (2015)

2. Agarwal, P.K., Mustafa, N.H.: Independent set of intersection graphs of convex
objects in 2D. Comput. Geom. 34(2), 83–95 (2006)

3. Chakrabarti, A., Chekuri, C., Gupta, A., Kumar, A.: Approximation algorithms
for the unsplittable flow problem. Algorithmica 47(1), 53–78 (2007)

4. Chalermsook, P.: Coloring and maximum independent set of rectangles. In: Gold-
berg, L.A., Jansen, K., Ravi, R., Rolim, J.D.P. (eds.) APPROX/RANDOM 2011.
LNCS, vol. 6845, pp. 123–134. Springer, Heidelberg (2011). https://doi.org/10.
1007/978-3-642-22935-0 11

5. Chalermsook, P., Chuzhoy, J.: Maximum independent set of rectangles. In: SODA,
pp. 892–901 (2009)

6. Chan, T.M.: A note on maximum independent sets in rectangle intersection graphs.
Inf. Process. Lett. 89(1), 19–23 (2004)

7. Chan, T.M., Har-Peled, S.: Approximation algorithms for maximum independent
set of pseudo-disks. Discret. Comput. Geom. 48(2), 373–392 (2012)

8. Chekuri, C., Mydlarz, M., Shepherd, F.B.: Multicommodity demand flow in a tree
and packing integer programs. ACM Trans. Algorithms 3(3), 27 (2007)

9. Elwalid, A.I., Mitra, D.: Effective bandwidth of general markovian traffic sources
and admission control of high speed networks. IEEE/ACM Trans. Netw. 1(3),
329–343 (1993)

10. Gupta, A., Kumar, A., Nagarajan, V., Shen, X.: Stochastic load balancing on
unrelated machines. In: SODA, pp. 1274–1285. Society for Industrial and Applied
Mathematics (2018)

11. Gupta, A., Kumar, A., Nagarajan, V., Shen, X.: Stochastic makespan minimization
in structured set systems. arXiv (2020). https://arxiv.org/abs/2002.11153

12. Hui, J.Y.: Resource allocation for broadband networks. IEEE J. Sel. Areas Com-
mun. 6(3), 1598–1608 (1988)

13. Kelly, F.P.: Notes on effective bandwidths. In: Stochastic Networks: Theory and
Applications, pp. 141–168. Oxford University Press (1996)

14. Kleinberg, J., Rabani, Y., Tardos, E.: Allocating bandwidth for bursty connections.
SIAM J. Comput. 30(1), 191–217 (2000)

15. Molinaro, M.: Stochastic �p load balancing and moment problems via the l-function
method. In: SODA, pp. 343–354 (2019)

https://doi.org/10.1007/978-3-642-22935-0_11
https://doi.org/10.1007/978-3-642-22935-0_11
https://arxiv.org/abs/2002.11153

Continuous Facility Location on Graphs

Tim A. Hartmann1, Stefan Lendl2, and Gerhard J. Woeginger1(B)

1 Department of Computer Science, RWTH Aachen, Aachen, Germany
woeginger@algo.rwth-aachen.de

2 Department of Mathematics, TU Graz, Graz, Austria

Abstract. We study a continuous facility location problem on undi-
rected graphs where all edges have unit length and where the facilities
may be positioned at the vertices as well as at interior points of the
edges. The goal is to cover the entire graph with a minimum number of
facilities with covering range δ > 0. In other words, we want to position
as few facilities as possible subject to the condition that every point on
every edge is at distance at most δ from one of these facilities.

We investigate this covering problem in terms of the rational param-
eter δ. We prove that the problem is polynomially solvable whenever δ
is a unit fraction, and that the problem is NP-hard for all non unit frac-
tions δ. We also analyze the parametrized complexity with the solution
size as parameter: The resulting problem is fixed parameter tractable for
all δ < 3/2, and it is W [2]-hard for all δ ≥ 3/2.

Keywords: Location theory · Graph theory · Parametrized complexity

1 Introduction

We investigate the algorithmic behavior of a continuous covering problem on
graphs. Consider an undirected connected graph G = (V,E), whose edges are
rectifiable and have unit length. Denote by P (G) the continuum set of points
on all the edges and vertices. For two points p, q ∈ P (G), denote by d(p, q) the
length of a shortest path connecting p and q in the underlying metric space.
Point p is said to δ-cover point q for some positive real number δ, if d(p, q) ≤ δ
holds. A subset S ⊆ P (G) is a δ-cover for G, if for every point p ∈ P (G) there
exists some s ∈ S that δ-covers p. The objective is to compute for a given graph
G = (V,E) and for a given positive real number δ a minimum cardinality δ-
cover S ⊆ P (G). Such a minimizing set S is called an optimal δ-cover, and the
cardinality |S| is called the δ-covering number δ-Cover(G) of graph G.

Known and Related Results. The area of continuous facility location on graphs
has been started by Megiddo and Tamir [8], who showed that computing an
optimal δ-cover is NP-hard in case δ = 2. Furthermore [8] contains a fast algo-
rithm for the δ-covering number of trees. Kariv and Hakimi [7] establish many
hardness results for discrete types of facility location problems on graphs, in

c© Springer Nature Switzerland AG 2020
D. Bienstock and G. Zambelli (Eds.): IPCO 2020, LNCS 12125, pp. 171–181, 2020.
https://doi.org/10.1007/978-3-030-45771-6_14

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-45771-6_14&domain=pdf
https://doi.org/10.1007/978-3-030-45771-6_14

172 T. A. Hartmann et al.

which the facilities must be located on vertices. Fekete, Mitchell and Beurer [3]
discuss a number of continuous facility location problems in a purely geometric
setting in the Euclidean plane. We refer to the books [9] by Mirchandani and
Francis and [1] by Drezner for comprehensive information on the area of facility
location.

In a closely related line of research, Grigoriev et al. [6] study an obnoxious
continuous facility location problem on graphs. The objective in [6] is not to
cover, but to pack: Place as many facilities as possible on the graph, subject to
the condition that any two facilities have at least distance δ from each other.
This packing problem is polynomially solvable, if δ is a rational number with
numerator 1 or 2, and it is NP-hard for all other rational values of δ.

Our Results. We provide a complete picture of the complexity of computing
the δ-covering number for connected graphs G = (V,E) and positive rational
numbers δ. We trace out the boundary between polynomial time solvability
and NP-hardness, as well as the boundary between parametrized tractability
and parametrized intractability. With respect to polynomial time solvability,
the picture is as follows:

– If δ is a unit fraction (that is, if δ = 1/c for some integer c), then the δ-covering
number can be computed in polynomial time.

– If δ is not a unit fraction, then computing the δ-covering number is NP-hard.

The parametrized version of δ-covering takes the solution size of a δ-cover as
parameter. The first intuition is that the problem should be easy for small values
of δ and hard for large values of δ. Indeed, if δ is small (say δ ≤ 1/4), then δ-
covering essentially boils down to covering all the edges of the input graph with
the facilities; this has the flavor of the VERTEX COVER problem, which is
known to be fixed parameter tractable. On the other hand, if δ is large (say
δ ≥ 4), then the main goal should be to cover all the vertices of the input
graph with the facilities, whereas the edges only play a minor role and will be
covered without much additional effort. Hence these cases have the flavor of the
DOMINATING SET problem, which belongs to the intractable problems in the
parametrized world. This intuition turns out to be correct, and we will show
that at the threshold δ = 3/2 the parametrized complexity jumps from tractable
to intractable:

– In the range 0 < δ < 3/2, the δ-covering number is fixed parameter tractable.
– In the range δ ≥ 3/2, the δ-covering number is W [2]-hard.

We stress that this transition occurs surprisingly sudden, and that there is no
intermediate range of δ values for which this δ-covering problem is W [1]-complete
(assuming FPT �= W [1] and W [1] �= W [2] as usual).

The paper is organized as follows. Section 2 states the basic notations and
presents some technical observations. Section 3 gives the W [2]-hardness results,
and Sect. 4 gives the NP-hardness results. The NP-hardness reductions are induc-
tively structured, and break down exactly at the unit fractions. The polynomial

Continuous Facility Location on Graphs 173

time algorithm in Sect. 5 for the case δ = 1 is mainly based on tools from match-
ing theory. Section 6 contains one of our technical main results, an fpt-algorithm
for the parametrized cases with δ < 3/2.

2 Notation and Technical Preliminaries

All the graphs in this paper are undirected and connected, and all the edges
have unit length. We use the word vertex in the graph-theoretic sense, and we
use the word point to denote the elements of the geometric structure P (G). For
a graph G = (V,E) and a vertex v ∈ V , we denote by Γ (v) the set of neighbors
of v and we denote Γ+(v) = Γ (v) ∪ {v}. For V ′ ⊆ V , we denote by G[V ′] the
subgraph induced by V ′. A subset C ⊆ V forms a vertex cover for the graph
G = (V,E), if every edge in E has at least one of its endpoints in C; the size
of the smallest vertex cover in G is denoted by τ(G). A subset M ⊆ E forms a
matching for G = (V,E), if no two edges in M share a common endpoint; the
size of the largest matching in G is denoted by ν(G).

The closed ball B+(v, r) of radius r around point v contains all points p ∈
P (G) with d(v, p) ≤ r, and the corresponding open ball B−(v, r) contains all p
with d(v, p) < r. For an edge e = {u, v} and a real number λ with 0 ≤ λ ≤ 1, we
denote by p(u, v, λ) the point on edge e that is at distance λ from vertex u. Note
that p(u, v, 0) = u and p(u, v, 1) = v, and note that p(u, v, λ) = p(v, u, 1 − λ).
For integers � and k, the rational number k/� is called �-simple. A set S ⊆ P (G)
is �-simple, if for every point p(u, v, λ) in S the number λ is �-simple.

Lemma 1. Let c ≥ 1 be an integer, let G be a graph, and let G′ be the graph that
results from G by subdividing every edge into c new edges. Then δ-Cover(G) =
(c · δ)-Cover(G′).

Proof. As the subdivision stretches the metric space P (G) by a factor c, the
δ-covers in G are in one-to-one correspondence with the (c · δ)-covers in G′. �	
Lemma 2. Let G = (V,E) be a graph and let δ = a/b with integers a and b.
Then there exists an optimal δ-cover S∗ that is 2b-simple. �	
Lemma 3. Let G = (V,E) be a graph, and let a and b be positive integers. Then

a

2a + b
-Cover(G) =

a

b
-Cover(G) + |E|. (1)

Proof. In this extended abstract, we only sketch some fragment of the proof for
the cases a/b < 1/2. The remaining cases with a/b ≥ 1/2 can be settled by
similar arguments, but need a number of tedious case distinctions.

Hence let δ = a/b < 1/2 and δ′ = a/(2a + b). Since δ < 1/2, every δ-cover
S must contain at least one point from every edge in E. Now consider an edge
{u, v} ∈ E, and let si = p(u, v, λi) with 1 ≤ i ≤ m denote the points from S
on this edge; we assume 0 ≤ λ1 < · · · < λm < 1. Since S is a δ-cover, we have
λi+1 − λi ≤ 2δ for 1 ≤ i ≤ m − 1.

174 T. A. Hartmann et al.

We define a new set S′ that contains m + 1 points s′
i = p(u, v, μi) with

0 ≤ i ≤ m as follows: We define the first point via μ0 = λ1b/(2a+b) and the last
point via μm = λmb/(2a+ b). For i = 1, . . . ,m−1 we set μi = μ0 +2ai/(2a+ b).
Note that μi+1 − μi = 2δ′ holds for 0 ≤ i ≤ m − 1; this implies that the
piece of the edge that lies between the two points s′

0 and s′
m−1 is δ′-covered

by S′. Next we want to argue that also the piece between s′
m−1 and s′

m is δ′-
covered by S′, which is equivalent to the inequality μm − μm−1 ≤ 2δ′. Since
μm−1 = μ0 +2(m− 1)a/(2a+ b) and μm = λmb/(2a+ b) and μ0 = λ1b/(2a+ b),
the desired inequality can be rewritten into λm −λ1 ≤ 2(m−1)δ, which is easily
seen to hold.

We repeat this translation process for every individual edge, and thereby
translate the old δ-cover S into a new set S′. Since every edge receives one
additional point, we have |S′| = |S| + |E|. We have argued above that the piece
of the edge between s′

0 and s′
m is δ′-covered by S′. A similar argument (that

also takes points on other edges into account) shows that also the initial piece
between point u and point s′

0 and also the final piece between s′
m and point v are

δ′-covered by S′. All in all this demonstrates that in the cases with a/b < 1/2
the left hand side in (1) is less or equal to the right hand side. The inequality in
the other direction can be shown in a very similar way. �	

3 Parametrized Hardness Results

In this section we prove the following theorem.

Theorem 1. For every fixed rational δ with δ ≥ 3/2, the δ-covering problem
with the solution size k as parameter is W [2]-hard.

The proof of Theorem 1 is done in three steps: Lemma 4 settles the cases with
3/2 ≤ δ < 2, Lemma 5 settles the cases with � ≤ δ < �+1/2 for every � ≥ 2, and
Lemma 6 settles the remaining cases with � + 1/2 ≤ δ < � + 1 for every � ≥ 2.
Some of our fpt-reductions are based on a W [2]-hard variant of the dominating
set problem that we call COLORFUL DOMINATING SET:

Instance: An undirected, connected graph H = (VH , EH) whose vertex set
VH is partitioned into k color classes V1, V2, . . . , Vk.
Question: Do there exist vertices ui ∈ Vi for 1 ≤ i ≤ k that form a
dominating set?

Now let us fix some rational number δ in the range 3/2 ≤ δ < 2. We fpt-reduce
from an instance H = (VH , EH) with color classes V1, V2, . . . , Vk of COLORFUL
DOMINATING SET by constructing the following instance G = (VG, EG) of
δ-covering.

– The vertex set VG contains every vertex u ∈ VH together with two copies u′

and u′′. Furthermore, there are 2k vertices x1, . . . , xk and y1, . . . , yk.

Continuous Facility Location on Graphs 175

– The edge set EG contains for every i with 1 ≤ i ≤ k all the edges on Vi ∪
{xi, yi}. Furthermore, EG contains the triangle on u, u′, u′′ for every u ∈ VH .
Finally, for every edge {u, v} ∈ EH the set EG contains {u, v}, the two cross-
edges {u, v′} and {u, v′′} and (by symmetry) the two cross-edges {v, u′} and
{v, u′′} (Fig. 1) .

u

u′ u′′

v

v′ v′′

Fig. 1. Illustration for the fpt-reduction for 3/2 ≤ δ < 2. The cross-edges between the
two triangles u, u′, u′′ and v, v′, v′′ are shown as dashed lines.

It can be shown (details omitted) that graph H possesses a colorful domi-
nating set, if and only if δ-Cover(G) ≤ k. This yields the following.

Lemma 4. For every fixed rational δ with 3/2 ≤ δ < 2, the δ-covering problem
with the solution size k as parameter is W [2]-hard. �	

The following two Lemmas 5 and 6 settle the remaining cases for the proof of
Theorem 1. The proofs are routine fpt-reductions from the classical W [2]-hard
DOMINATING SET problem, and are omitted.

Lemma 5. For every integer � ≥ 2 and for every rational δ with � ≤ δ < �+1/2,
the δ-covering problem with the solution size k as parameter is W [2]-hard. �	
Lemma 6. For every integer � ≥ 2 and for every rational δ with � + 1/2 ≤ δ <
� + 1, the δ-covering problem with solution size k as parameter is W [2]-hard. �	

4 NP-Hardness Results

Theorem 1 trivially implies the NP-hardness of computing the δ-covering number
for all δ ≥ 3/2. The NP-hard cases in the range δ < 3/2 will be identified and
settled on the following pages, and thereby yield the following theorem.

Theorem 2. For every fixed positive rational δ that is not a unit fraction, it is
NP-hard to compute the δ-covering number of a graph.

Our main tools are the following two Lemmas 7 and 8. The first lemma is an
immediate consequence of Lemma 1.

176 T. A. Hartmann et al.

Lemma 7. Let δ > 0 and let c ≥ 1 be an integer. Suppose that the computation
of the δ-covering number is NP-hard. Then also the computation of the (c · δ)-
covering number is NP-hard. �	
Lemma 8. Let � and r be real numbers with 0 ≤ � < r. Suppose that for every
rational δ with � < δ < r, the computation of the δ-covering number is NP-
hard. Then the computation of the δ′-covering number is also NP-hard for every
rational δ′ with

�

2� + 1
< δ′ <

r

2r + 1
. (2)

Furthermore, NP-hardness for the left boundary point δ = � implies NP-hardness
for δ′ = �/(2� + 1), and in a symmetric way NP-hardness for the right boundary
point δ = r implies NP-hardness for δ′ = r/(2r + 1).

Proof. The function f(x) = x/(2x + 1) forms a bijection between the rational
numbers in the open interval (�, r) and the rational numbers in the open interval
(�/(2� + 1), r/(2r + 1)). Note that for δ = a/b we have f(δ) = a/(2a + b).
Lemma 3 yields that δ-Cover(G) = f(δ)-Cover(G) − |E| for every graph G =
(V,E). Hence, computing the δ-covering number is polynomial time reducible to
computing the f(δ)-covering number. �	

Now we turn to the proof of Theorem 2, which is structured into three parts.
The main trick is to alternately apply the tools developed in Lemmas 7 and 8.

In the first part of the proof, we define for every integer j ≥ 0 a real
number αj = 3j/(3j−1) and a half-open interval Aj = [αj+1, αj). Note that with
the help of the function f(x) = x/(2x + 1) introduced in the proof of Lemma 8,
we may equivalently write αj+1 = 3f(αj). We prove by induction on j ≥ 0 that
for every rational δ ∈ Aj , the δ-covering number is NP-hard to compute. The
anchor step with j = 0 states NP-hardness for δ ∈ A0 = [3/2,∞), and hence
follows from Theorem 1. In the inductive step, we first apply Lemma 8 with
� = αj and r = αj−1 to interval Aj−1 and thus deduce hardness for all rational
δ in the range f(αj) ≤ δ < f(αj−1). Then we apply Lemma 7 with c = 3 to
deduce NP-hardness for all δ in the range 3f(αj) ≤ δ < 3f(αj−1) and hence
for all δ ∈ Aj . This completes the inductive step. Since the numbers αj form
a decreasing sequence that converges to the limit point 1, the union of these
intervals Aj covers all numbers that are strictly larger than 1. Summarizing, in
the first part we have established NP-hardness for all rational numbers δ > 1.

In the second part of the proof, we consider the open intervals A′
j =

(1/(2j + 1), 1/(2j)) for j ≥ 0. We prove by induction on j ≥ 0 that for every
rational δ ∈ A′

j , the δ-covering number is NP-hard to compute. The anchor step
with j = 0 claims NP-hardness for δ ∈ A′

0 = (1,∞), and hence follows from the
above first part of our proof. In the inductive step, we apply Lemma 8 with � =
1/(2j +1) and r = 1/(2j), which yields f(�) = 1/(2j +3) and f(r) = 1/(2j +2).
Thereby we lift NP-hardness from interval A′

j to the next interval A′
j+1.

In the third and last part of the proof, we finally establish NP-hardness
for all δ = a/b with gcd(a, b) = 1 and a ≥ 2. Note that this settles all the positive
rational numbers except for the unit fractions, and hence completes the proof of

Continuous Facility Location on Graphs 177

Theorem 2. The argument branches into two subcases. In the first subcase, we
assume that the denominator b is odd. Since the integers 2a and b are relatively
prime, there exists a positive integer c so that bc ≡ 1 mod 2a. In other words,
there are positive integers c and j with bc = 1 + 2aj. Then 2aj < bc implies
a/b < c/(2j), and bc < a + 2aj implies a/b > c/(2j + 1). We summarize these
inequalities as

c

2j + 1
< δ <

c

2j
.

This means that δ/c ∈ A′
j (for the interval A′

j as introduced in the second part
of the proof), and that consequently (δ/c)-covering is NP-hard. Then Lemma 7
implies that also δ-covering is NP-hard.

In the second subcase, we assume that the denominator b is even with b = 2b′;
note that in this case the numerator satisfies a ≥ 3. Since the integers a and b′

are relatively prime, there exists a positive integer c so that b′c ≡ 1 mod a. In
other words, there are positive integers c and j with b′c = 1 + aj. Then aj < b′c
implies a/b < c/(2j), and 2b′c < a + 2aj implies a/b > c/(2j + 1). Analogously
to the first subcase, we conclude that δ/c ∈ A′

j and that δ-covering is NP-hard.
This finally completes the proof of Theorem 2. It is instructive to examine

the places where the above argument breaks down for unit fractions δ = 1/b.

5 The Polynomial Time Result for 1-Covering

In this section we derive a polynomial time algorithm for computing the 1-
covering number of a graph G = (V,E). A 1-cover is in canonical form, if it
entirely consists of vertices and of midpoints of edges. By Lemma 2 every graph
possesses an optimal 1-cover in canonical form. Our algorithm heavily relies on
Edmonds-Gallai decompositions. The following theorem summarizes the result
in a notation that is appropriate for our usage.

Theorem 3 (Edmonds [2] and Gallai [4,5]). Let G = (V,E) be a graph. The
following decomposition of V into X,Y,Z can be computed in polynomial time.

X = {v ∈ V | there exists a maximum cardinality matching that misses v}
Y = {v ∈ V | v /∈ X and v is adjacent to some vertex in X}
Z = V − (X ∪ Y)

Set X is the union of the odd-sized components of G − Y ; every such odd-sized
component is factor-critical. Set Z is the union of the even-sized components of
G−Y . Every maximum cardinality matching in G induces perfect matchings on
all components of Z, induces near-perfect matchings on all components of X,
and matches the vertices in Y to vertices in different components of X. �	
Based on such an Edmonds-Gallai decomposition of G, we define three sub-
graphs:

– G0 = (Z,E0) is the subgraph of G induced by Z.

178 T. A. Hartmann et al.

– Let X1 contain the vertices that form components of size 1 in X, let Y1 =
Γ (X1), and let E1 denote the set of edges between X1 and Y1. We define
G1 = (X1 ∪ Y1, E1) as the corresponding (not necessarily induced) bipartite
subgraph of G.

– Let X≥3 = X − X1 denote the vertices of X that belong to (odd-sized)
components of size at least 3. We define G≥3 = G[X≥3] as the subgraph of G
induced by X≥3, and we let c≥3 denote the number of components in G≥3.

Lemma 9. Every 1-cover S satisfies |S| ≥ ν(G0) + τ(G1) + ν(G≥3) + c≥3.

Proof. We separately derive three lower bounds for the three subgraphs G0, G1

and G≥3. An appropriate combination of these bounds yields the inequality. The
arguments are not difficult but lengthy, and hence are omitted in this extended
abstract. �	

Our next goal is to construct in polynomial time a 1-cover S∗ whose size
matches the lower bound stated in Lemma 9, and which therefore is an optimal
1-cover. We start by computing a maximum cardinality matching M ⊆ E for
graph G and a minimum vertex cover C ⊆ X1 ∪ Y1 for the bipartite subgraph
G1. The set S∗ is defined as follows:

(i) S∗ contains the midpoint of every edge in M that does not belong to the
edges between X and Y .

(ii) S∗ contains every vertex in C ∩ Y1, and furthermore contains every vertex
in C ∩ X1 that is not saturated by M . If x ∈ C ∩ X1 is saturated by M ,
then S∗ contains the midpoint of the matching edge incident to x.

(iii) S∗ contains every vertex x ∈ X≥3 that is not saturated by M and the
midpoint of each edge {x, y} ∈ M for which x ∈ X≥3 and y ∈ Y .

Note that (i) contributes ν(G0) + ν(G≥3) points to S∗, (ii) contributes τ(G1)
points, and (iii) contributes c≥3 points. Hence the size of S∗ indeed matches the
lower bound in Lemma 9. It remains to show that S∗ is a 1-cover for G.

– As M induces a perfect matching on Z, the set S∗ contains for every z ∈ Z
the midpoint of some incident edge. Hence every closed ball B+(z, 1/2) is
1-covered by S∗.

– Every vertex y ∈ Y is saturated by the matching M . If y ∈ C ∩ Y1 then
y ∈ S∗, and if y /∈ C ∩Y1 then S∗ contains the midpoint of the matching edge
incident to y. In either case the ball B+(y, 1/2) is 1-covered by S∗.

– Let x ∈ X1. If x ∈ C, then S∗ does either contain x itself or does contain
the midpoint of an incident matching edge; in either case the ball B+(x, 1/2)
is 1-covered by S∗. If x /∈ C, then every vertex y ∈ Γ (x) lies in C ∩ Y1; in
this case S∗ contains every neighbor y ∈ Γ (x) so that the ball B+(x, 1) is
1-covered by S∗.

– If a vertex x ∈ X≥3 is saturated by M , then S∗ contains the midpoint of
the incident matching edge. If x ∈ X≥3 is not saturated by M , then by
construction x ∈ S∗. In either case the ball B+(x, 1/2) is 1-covered by S∗.

Continuous Facility Location on Graphs 179

All in all, we have shown that for every vertex v ∈ V the entire ball B+(v, 1/2) is
1-covered by S∗. Hence all the edges in G are covered, and S∗ indeed is a 1-cover
for G. The above discussion yields a polynomial time algorithm for δ = 1, and
Lemma 1 extends this result to all unit fractions δ.

Theorem 4. For every unit fraction δ, the δ-covering problem is solvable in
polynomial time.

6 The Fixed Parameter Tractable Cases

Throughout this section, we consider some fixed rational number δ < 3/2 and
some fixed integer k. We will develop an fpt-algorithm with parameter k for
deciding whether an input graph G satisfies δ-Cover(G) ≤ k, that is, a decision
algorithm whose running time is bounded by some computable function f(k)
and by some polynomial function in the instance size |G|.

In a preliminary step, we consider a vertex v that is incident to � ≤ 4k edges.
We denote by g(�, δ) the minimum size of a δ-cover for the open ball B−(v, 1−δ).
Note that g(�, δ) = 0 whenever δ ≥ 1. Note furthermore that the value g(�, δ) can
be computed in constant time, as the numbers � ≤ 4k and δ are fixed constants
and do not depend on the input graph G.

Lemma 10. For δ < 3/2, every graph G = (V,E) satisfies δ-Cover(G) ≥
ν(G)/2.

Proof. Let M ⊆ E be a maximum size matching in G, and let S ⊆ P (G) be
a minimum size δ-cover. Then any point p ∈ S will δ-cover at most two of the
midpoints of edges in M . (This is the only place in this section where we exploit
the condition δ < 3/2.) �	

Our fpt-algorithm first computes a maximum cardinality matching M for
the input graph G. If |M | > 2k then the algorithm outputs NO and stops; this
step is justified by Lemma 10, as δ-Cover(G) > k implies a negative answer to
the decision problem. Hence from now on we will assume |M | ≤ 2k. Then the
end-vertices of the edges in M form a vertex cover C of size |C| ≤ 4k and the
vertices in I = V −C form an independent set. For T ⊆ C, we let IT denote the
set of all vertices v ∈ I with Γ (v) = T .

Lemma 11. Let S be an optimal δ-cover for the graph G = (V,E) and let
T ⊆ C. Then in the set IT there are at most |T | vertices v for which S∩B−(v, 1)
contains at least g(|T |, δ) + 1 points.

Proof. Suppose otherwise. Then there are at least |T | + 1 vertices v in IT for
which the ball B−(v, 1) contains at least g(|T |, δ)+1 points from S. For all other
vertices v ∈ IT , the ball B−(v, 1) contains at least g(|T |, δ) points from S. All in
all, this yields that S contains at least |IT | g(|T |, δ) + |T | + 1 points from these
open balls around vertices in IT . We remove all these points from set S and
replace them by the following points:

180 T. A. Hartmann et al.

– We add all the points in T to S.
– For every vertex v ∈ IT , we add g(|T |, δ) points to S that δ-cover B−(v, 1−δ).

The resulting point set is again a δ-cover for G, but does contain strictly fewer
points than the optimal δ-cover S. This yields the desired contradiction. �	

In the following paragraphs, we investigate a subset T ⊆ C that satisfies
|IT | ≥ 2|T | + 1. Recall that IT is an independent set and that every vertex
v ∈ IT satisfies Γ (v) = T . We denote by BT the union of all the open balls
B−(v, 1) with v ∈ IT . Now consider some fixed optimal δ-cover S for graph G.

– For every vertex t ∈ T , consider a point st ∈ S ∩ BT that minimizes the
distance d(st, t). Whenever some point p /∈ BT is δ-covered by a point from
S ∩ BT , then this point p will also be covered by one of the points st with
t ∈ T . If st ∈ B−(v, 1), then we say that the corresponding vertex v is busy.
There are at most |T | busy vertices in IT .

– A vertex v in IT is heavy, if B−(v, 1) contains at least g(|T |, δ) + 1 points
from S. By Lemma 11, there are at most |T | heavy vertices in IT .

Since |IT | ≥ 2|T |+1, there exists a vertex w ∈ IT that is neither busy nor heavy.
What can we say about the points in the set S ∩ B−(w, 1)? Since vertex w is
not heavy, S ∩ B−(w, 1) must contain exactly g(|T |, δ) points. Since vertex w is
not busy, the points in S ∩ B−(w, 1) are not required for δ-covering the points
outside of BT . In other words, the only duty of these points in S ∩ B−(w, 1) is
to cover the open ball B−(w, 1). This observation allows us to eliminate vertex
w, as it is dispensable and only imposes minor constraints on the structure of a
δ-cover. We define a new instance by removing vertex w (together with its |T |
incident edges) from G and by simultaneously decreasing the parameter k by
the value g(|T |, δ).
Lemma 12. The new instance G − w and k − g(|T |, δ) is a YES-instance of δ-
covering, if and only if the old instance G and k is a YES-instance of δ-covering.

Proof. For the (if) part, assume that G has a δ-cover of size at most k. Let S be
an optimal δ-cover with |S| ≤ k. We pick a vertex w ∈ IT that is neither busy
nor heavy, and remove the g(|T |, δ) points in S ∩ B−(w, 1) from S. This yields
a δ-cover of size k − g(|T |, δ) for G − w.

For the (only if) part, assume that the graph G − w has a δ-cover S′ of size
at most k−g(|T |, δ). We pick an arbitrary vertex u ∈ IT with u �= w, and we use
a clone of the set S′ ∩ B−(u, 1) to cover B−(w, 1). This extends S′ to a δ-cover
of G of size at most k. �	

The above discussion yields the following reduction rule: “Whenever some
subset T ⊆ C satisfies |IT | ≥ 2|T | + 1, then we may remove a vertex w ∈ IT
from G and decrease the parameter k by g(|T |, δ).” We apply this reduction rule
over and over again, until no further reductions are possible. At termination, the
vertex set of the residual graph will consist of a vertex cover C together with
the shrunken independent sets IT that now satisfy |IT | ≤ 2|T | ≤ 8k. Hence the

Continuous Facility Location on Graphs 181

residual graph has at most 4k(1 + 24k+1) vertices. As this size is bounded by
a function in the parameter k and as the parameter is not part of the input,
the resulting instance of δ-covering can be solved in constant time. Since the
reduction rule can easily be implemented in polynomial time, we formulate the
following summarizing theorem.

Theorem 5. For every fixed rational δ with δ < 3/2, the δ-covering problem
with the solution size k as parameter allows an fpt-algorithm. �	

Acknowledgement. Stefan Lendl acknowledges support by the Austrian Science
Fund (FWF): W1230, Doctoral Program “Discrete Mathematics”. Gerhard Woeginger
acknowledges support by the DFG RTG 2236 “UnRAVeL”.

References

1. Drezner, Z.: Facility Location: A Survey of Applications and Methods. Springer
Series in Operations Research. Springer, New York (1995)

2. Edmonds, J.: Paths, trees, and flowers. Can. J. Math. 17, 449–467 (1965)
3. Fekete, S.P., Mitchell, J.S.B., Beurer, K.: On the continuous Fermat-Weber problem.

Oper. Res. 53, 61–76 (2005)
4. Gallai, T.: Kritische graphen II. Magyar Tudományos Akadémia Matematikai

Kutat’o Intézetének közleményei 8, 373–395 (1963)
5. Gallai, T.: Maximale Systeme unabhn̈giger Kanten. Magyar Tudományos Akadémia

Matematikai Kutat’o Intézetének közleményei 9, 401–413 (1964)
6. Grigoriev, A., Hartmann, T.A., Lendl, S., Woeginger, G.J.: Dispersing obnoxious

facilities on a graph. In: Proceedings of the 36th Annual Symposium on Theoretical
Aspects of Computer Science (STACS 2019), Leibniz International Proceedings in
Informatics, LIPICS, vol. 126, pp. 33:1–33:11 (2019)

7. Kariv, O., Hakimi, S.L.: An algorithmic approach to network location problems,
part I. The p-centers. SIAM J. Appl. Math. 37, 513–538 (1979)

8. Megiddo, N., Tamir, A.: New results on the complexity of p-center problems. SIAM
J. Comput. 12, 751–758 (1983)

9. Mirchandani, P.B., Francis, R.L.: Discrete Location Theory. Wiley, New York (1990)

Recognizing Even-Cycle
and Even-Cut Matroids

Cheolwon Heo(B) and Bertrand Guenin(B)

Department of Combinatorics and Optimization, University of Waterloo,
200 University Avenue West, Waterloo, ON N2L 3G1, Canada

{cheo,bguenin}@uwaterloo.ca

Abstract. Even-cycle matroids are elementary lifts of graphic matroids.
Even-cut matroids are elementary lifts of cographic matroids. We give
a polynomial time algorithm to check if a binary matroid is an even-
cycle matroid. We also give a polynomial time algorithm to check if a
binary matroid is an even-cut matroid. These algorithms rely on struc-
tural properties of the class of pinch-graphic matroids.

Keywords: Binary matroids · Signed graphs · Complexity

1 Introduction

By a cycle in a graph we mean a subset of the edges with the property that
every vertex of the subgraph formed by these edges has even degree. A matroid
M is graphic if its circuits are precisely the inclusion-wise minimal non-empty
cycles of some graph G. The vertex-edge incidence matrix of G is a matrix rep-
resentation of M over the two-element field. In particular, graphic matroids are
binary. Tutte [18] proved that one can recognize if a binary matroid is graphic in
polynomial-time. Seymour [15] extended this result and showed that there exists
a polynomial time algorithm to check if a matroid specified by an independence
oracle is graphic.

A signed graph is a pair (G,Σ) where G is a graph and Σ ⊆ EG. A cycle
C ⊆ EG is even (resp. odd) if |C ∩ Σ| is even (resp. odd). M is an even-cycle
matroid if its circuits are precisely the inclusion-wise minimal non-empty even
cycles of some signed graph (G,Σ). The matrix obtained from the vertex-edge
incidence matrix of G by adding a row corresponding to the characteristic vector
of Σ is a matrix representation of M over the two-element field. In particular,
even-cycle matroids are binary and are elementary lifts of graphic matroids.
Even-cycle matroids are examples of lift matroids [21]. A graft is a pair (G,T)
where G is a graph and T ⊆ V G where |T | is even. Vertices in T are called
terminals. A cut δ(U) := {uv ∈ EG : u ∈ U, v /∈ U} �= ∅ is even (resp. odd) if
|T ∩ U | is even (resp. odd). M is an even-cut matroid if its circuits are precisely

Supported by NSERC grant 238811 and ONR grant N00014-12-1-0049.

c© Springer Nature Switzerland AG 2020
D. Bienstock and G. Zambelli (Eds.): IPCO 2020, LNCS 12125, pp. 182–195, 2020.
https://doi.org/10.1007/978-3-030-45771-6_15

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-45771-6_15&domain=pdf
https://doi.org/10.1007/978-3-030-45771-6_15

Recognizing Even-Cycle and Even-Cut Matroids 183

the inclusion-wise minimal non-empty even cuts of some graft (G,T). Even-cut
matroids are binary and are elementary lifts of cographic matroids [13].

We are ready to state the main results of our paper,

– Given a binary matroid M described by its 0, 1 matrix representation A, we
present an algorithm that will check if M is an even-cycle matroid, in time
polynomial in the number of entries of A.

– Given a binary matroid M described by its 0, 1 matrix representation A, we
present an algorithm that will check if M is an even-cut matroid, in time
polynomial in the number of entries of A.

We believe that these algorithms ought to be fast in practice but have not
conducted numerical experiments. For both algorithms the bound on the running
time depends on a constant c that arises from the Matroid Minors Project and
that has no explicit bound [5]. However, the algorithm does not use the value c
for its computation. In the interest of brevity we only discuss the first algorithm
in this paper. The second algorithm is similar and is also based on the recognition
of pinch-graphic matroids.

2 A Simple Algorithm for Recognizing Graphic Matroids

2.1 Reduction to the 3-Connected Case

Consider a matroid M with rank function r, a set X ⊆ EM is k-separating if
r(X) + r(EM − X) − r(M) ≤ k − 1.1 A set X ⊆ EM is a k-separation if it is
k-separating and |X|, |EM − X| ≥ k. M is connected if it has no 1-separations,
and M is 3-connected if it is connected and has no 2-separations. A matroid M
has a 1-separation if and only if M can be expressed as a 1-sum, M1 ⊕1 M2.
A connected matroid has a 2-separation if and only if M can be expressed as a
2-sum, M1 ⊕2 M2 [1,2,14]. Moreover, for k ∈ {1, 2}, M = M1 ⊕k M2 is graphic
if and only if both M1 and M2 are graphic [12], Corollary 7.1.26. Assume that
we know how to check if a 3-connected binary matroid is graphic and suppose
that we want to check if an arbitrary binary matroid M is graphic. If M is
3-connected use the algorithm for 3-connected matroids. Otherwise find a k-
separation for k ∈ {1, 2}, express M as M1 ⊕k M2 and recursively check if M1

and M2 are both graphic, if so then M is graphic otherwise M is not. We need to
be able to check for the presence of 1- and 2-separations in a binary matroid in
polynomial time. Cunningham and Edmonds [2] showed that the more general
problem of checking if a matroid has a k-separating set with separators of size
at least � ≥ k can be reduced to the matroid intersection problem [3,10] and be
solved in polynomial-time for fixed values k and �.

1 For sets A, B we denote by A − B the set {a ∈ A : a /∈ B}.

184 C. Heo and B. Guenin

2.2 Graph Representations

Given a graph G and X ⊆ EG, we write G|X for the subgraph of G with edges
X and vertices that correspond to endpoints of edges of X. We denote ∂(X) the
set of vertices common to G|X and G|(EG − X). Consider a graph G with a
partition X,Y of its edge set where G|X and G|Y are connected and where ∂(X)
consists of two vertices v1 and v2. Let G′ be obtained from G by identifying, for
i = 1, 2, vertex vi of G|X with vertex v3−i of G|Y . We say that G′ is obtained
from G by a 2-flip on the set X (resp. Y). We call a 1-flip the identification of two
vertices in distinct components or splitting two blocks into different components.
Two graphs are equivalent if they are related by a sequence of 1-flips and 2-flips.
Given a graphic matroid M where the cycles of M correspond to the cycles of a
graph G we say that G is a graph representation of M . Whitney [20] proved that
any two graph representations of a graphic matroid are equivalent. This implies
in particular,

Theorem 1. A 3-connected graphic matroid has a unique graph representation.

Given a graph G we denote by G/I \J the graph obtained from G by contracting
edges I and deleting edges J . Given a matroid M we denote by M/I \ J the
matroid obtained from M by contracting elements I and deleting elements J .
Consider a graphic matroid M with graph representation G. Then H = G/I \ J
is a graph representation of the minor N = M/I \ J . In particular, the class of
graphic matroids is minor-closed. We say that the representation H of N extends
to the representation G of M . Theorem 1 implies the following result:

Remark 1. Suppose N is a 3-connected graphic matroid with a graph represen-
tation H. If N is a minor of a 3-connected matroid M , then M is graphic if and
only if the representation H of N extends to a representation of M .

2.3 The Algorithm

A wheel is the graph obtained by starting with a circuit with at least three edges,
adding a new vertex (the hub) and connecting every vertex of the circuit to the
hub. Consider a 3-connected binary matroid M and suppose that we wish to
check if M is graphic. First we check if M is the graphic matroid of a wheel.
Otherwise it follows from Tutte’s Wheels-and-Whirls Theorem [19] that there
exists an element e, and for either: N = M/e or N = M \ e, N is 3-connected.
Recursively, we check if N is graphic, if it is not, then neither is M . Otherwise,
we check if the (unique) representation of N extends to M . If it does then M is
graphic, otherwise it is not.

3 A First Attempt at Generalization

In this section we try to generalize the algorithm outlined in the previous section
to recognize even-cycle matroids and identify some pitfalls.

Recognizing Even-Cycle and Even-Cut Matroids 185

3.1 Signed Graph Representations

We say that Γ ⊆ EG is a signature of a signed graph (G,Σ) if (G,Σ) and
(G,Γ) have the same even cycles. Equivalently, Γ is a signature of (G,Σ) if
Γ
Σ := Γ ∪ Σ − Γ ∩ Σ is a cut of G [8]. The operation that consists of
replacing a signature by another signature is called resigning. A pair of signed
graphs are equivalent if they are related by a sequence of 1-flips, 2-flips, and
resignings. Given an even-cycle matroid M where the cycles of M correspond
to the even cycles of a signed graph (G,Σ) we say that (G,Σ) is a signed graph
representation of M . We will see that in contrast to Theorem 1, 3-connected
even-cycle matroids can have inequivalent representations. Consider a signed
graph (G,Σ) and I, J ⊆ EG where I ∩ J = ∅. The minor (G,Σ) \ I/J is the
signed graph defined as follows: If there exists an odd circuit of (G,Σ) contained
in I then (G,Σ)/I \ J = (G/I \ J, ∅), otherwise there exists a signature Γ
where Γ ∩ I = ∅ and (G,Σ)/I \ J = (G/I \ J, Γ − J). Note, minors are only
defined up to resigning. Consider an even-cycle matroid M with a signed graph
representation (G,Σ). Then (H,Γ) = (G,Σ)/I \ J is a graph representation
of the minor N = M/I \ J [13], page 21. In particular, the class of even-cycle
matroids is minor-closed. We say that the representation (H,Γ) of N extends to
the representation (G,Σ) of M .

Remark 2. Suppose N is an even-cycle matroid that is a minor of a matroid M .
Then M is an even-cycle matroid if and only if some signed graph representation
of N extends to M .

3.2 A Bad Example

In light of the similarities between Remark 1 and Remark 2 it is natural to
wonder if the strategy outlined in Sect. 2, can be used to check if a 3-connected
binary matroid M is an even-cycle matroid. Namely, we would find e such that
N = M/e or N = M\e is 3-connected. We would then, recursively, find all
signed graph representations of N (up to equivalence) and then check which
of these representations extend to M . Alas this does not lead to a polynomial-
time algorithm as we can have an exponential number of pairwise inequivalent
representations as we illustrate next.

Consider a 2-connected graph H with subsets X1 ⊂ . . . ⊂ Xk ⊂ EH (k ≥ 1)
where for all i ∈ {1, . . . , k}, |∂(Xi)| = 2 and for all distinct i, j ∈ {1, . . . , k},
∂(Xi) ∩ ∂(Xj) = ∅. Consider distinct vertices u1, u2, v1, v2 of H where u1, u2 ∈
V (H|X1)−∂(X1) and v1, v2 ∈ V (H|(EH−Xk))−∂(Xk). Let G be obtained from
H by identifying ui and vi for i = 1, 2. Let Σ = δH(u1)
δH(u2).2 We call the
signed graph (G,Σ) obtained from that construction a donut. This construction
is illustrated in Fig. 1(i) for the case k = 3. In that example let A = X1, B =
X2 − X1, C = X3 − X2 and D = EH − X3. The shaded region next to vertices
u1 = v1 and u2 = v2 of G corresponds to edges in Σ. (G,Σ) is a representation
of some matroid M . Let us now show how to construct other donuts that are also
2 δH(ui) denotes the set of non-loop edges of H incident to ui.

186 C. Heo and B. Guenin

representations of M . Let S ⊆ {1, . . . , k} and let H ′ be obtained from H by doing
a 2-flip on the set Xi for each i ∈ S. Let G′ be obtained from H by identifying
for ui and v3−i for i = 1, 2. Then (G′, Σ) is a donut that is also a representation
of M , i.e. (G,Σ) and (G′, Σ′) have the same even cycles [13]. This construction
is illustrated in Fig. 1(ii). In that example we pick S = {1, 2, 3}. There are 2k

donuts that we can obtain in that way and for suitable choice of graph H they
will be pairwise inequivalent.

X1 X2 X3

u1

u2

v1

v2

A

B

C

D

A B DC

H

(G, Σ)

(i)

X1 X2 X3

u1

u2 v1

v2

A

B

C

D

A B DC

H ′

(G′, Σ)

(ii)

u1 = v1

u2 = v2

u1 = v2

u2 = v1

Fig. 1. Constructing donuts.

4 Pinch-Graphic Matroids

4.1 The Definition

Consider a signed graph (G,Σ). A pair of vertices a, b of G is a blocking pair if
every odd circuit of (G,Σ) uses at least one of vertices a or b. Vertices a, b form
a blocking pair if and only if there exists a signature Γ ⊆ δ(a) ∪ δ(b). Observe
that the donuts defined in Sect. 3.2 all have a blocking pair. A matroid M is
pinch-graphic if its circuits are precisely the non-empty inclusion-wise minimal
even cycles of a signed graph (G,Σ) with a blocking pair. We say that (G,Σ) is
a blocking pair representation of M .

Remark 3. Every graphic matroid is pinch-graphic and every pinch-graphic
matroid is an even-cycle matroid.

Recognizing Even-Cycle and Even-Cut Matroids 187

The inclusions are strict in the previous remark, for instance, F ∗
7 is pinch-graphic

but not graphic, and R10 is an even-cycle matroid that is not pinch-graphic. If a
signed graph has a blocking pair then so does every minor. In particular, the class
of pinch-graphic matroids is minor-closed. We saw that even-cycle matroids are
elementary lifts of graphic matroids. Pinch-graphic matroids are also elementary
projections of graphic matroids [13], page 30.

4.2 Even-Cycle Matroids that Are Not Pinch-Graphic

The matroids described in Sect. 3.2 are pinch-graphic. Hence, pinch-graphic
matroids can have exponentially many pairwise inequivalent signed graph rep-
resentations. This in stark contrast with even-cycle matroids that are not pinch
graphic as the next result illustrates,

Theorem 2. There exists a constant c such that every even-cycle matroid that
is not pinch-graphic has fewer than c pairwise inequivalent signed graph repre-
sentations.

As an example an even-cycle matroid that contains R10 has at most 6 pairwise
inequivalent representations [7]. Observe that there are no connectivity condi-
tions in the previous result.

Let us prove Theorem 2 for the case of 3-connected matroids. A binary
matroid is minimally non-pinch-graphic if it is not pinch-graphic but every
proper minor is. A highlight of the Matroid Minor Project [5] is the fact that
minor-closed classes of binary matroids are well-quasi ordered. Hence,

Theorem 3. There exists a constant c, such that every minimally non-pinch-
graphic matroid has at most c elements.

For a matroid N , let λ1(N) denote the number of connected components of N .
Now N can be constructed from a collection Λ2(N) of 3-connected matroids by
1-sum and 2-sum. Cunningham and Edmonds [2] showed that Λ2(N) is unique
up to isomorphism. Let λ2(N) be the number of matroids in Λ2(N). Lemos and
Oxley [11] proved the following result,

Theorem 4. Let N be a non-empty matroid and M be a minor-minimal 3-
connected matroid having N as a minor. Then

|EM | − |EN | ≤ 22 (λ1(N) − 1) + 5 (λ2(N) − 1) .

The relation “(G,Σ) is equivalent to (G′, Σ′)” defines an equivalence relation.
Hence, for an even-cycle matroid M , the set of signed graph representations can
be partitioned into equivalence classes. Guenin, Pivotto, and Wollan proved [7],

Theorem 5. Let M be a 3-connected matroid and let N be a 3-connected minor
of M that is not pinch-graphic. For every equivalence class F of N , the set of
extensions of F to M is the union of at most two equivalence classes.

188 C. Heo and B. Guenin

Let us now prove Theorem 2 for the 3-connected case, i.e. we have a 3-connected
matroid M that is not pinch-graphic and we need to show that M has a constant
number of pairwise inequivalent signed graph representations. Since M is not
pinch-graphic, it has a minor N that is minimally non-pinch-graphic. By Theo-
rem 3, |E(N)| ≤ c for some constant c. In particular, λ1(N), λ2(N) ≤ c. Let N ′

be a minor-minimal matroid with the following properties: (a) N ′ is 3-connected,
(b) N is a minor of N ′ and (c) N ′ is a minor of M . Since M = N ′ satisfies (a)–(c),
N ′ is well-defined. By Theorem 4, |EN ′| ≤ c + 22(c − 1) + 5(c − 1) ≤ 28c. Thus
N ′ has a constant number, say d, of equivalence classes. It follows by Theorem 5
that there are at most 2d equivalence classes for M .

4.3 Recognition: From Pinch-Graphic to Even-Cycle Matroids

Let us assume now that we have a polynomial time algorithm to check if a
binary matroid is pinch-graphic. We can use it to check in polynomial-time if
a matroid M is an even-cycle matroid. First we check if M is pinch-graphic, if
it is, then M is an even-cycle matroid and we stop. Thus we may assume M is
not pinch-graphic. If for every e ∈ M , M/e and M\e is pinch-graphic then M
is minimally non-pinch graphic. It follows by Theorem 3 that M has constant
size. Then we can find all representations of M , up to equivalence, in constant
time (A finite algorithm for finding all representations, up to equivalence, of
a an even-cycle matroid is given in [13], page 132.) Otherwise, there exists e
such that N = M/e or N = M\e is not pinch-graphic. Recursively, we construct
every equivalence class (of signed graph representations) of N . Then we construct
every equivalence class of M from the equivalence classes of N . If M has a signed
graph representation, then it is an even-cycle matroid, otherwise it is not. Unlike
the algorithm sketched in Sect. 2 we are keeping track of equivalence classes of
signed graphs rather than individual signed graphs. It turns out that it suffices
to keep track of one representative of each equivalence class. To construct the
representative of equivalence classes of M from N we use the algorithm to check
if a matroid is graphic as a subroutine. Note, by Theorem 2 the algorithm never
has to keep track of more than a constant number of equivalence classes.

5 Internally 4-Connected Pinch-Graphic Matroids

In light of the result in Sect. 4.3 to obtain a polynomial time algorithm to rec-
ognize even-cycle matroids, it suffices to obtain a polynomial time algorithm to
recognize pinch-graphic matroids. In this section we consider the case where we
wish to check if an internally 4-connected matroid is pinch-graphic.

5.1 Connectivity Helps, up to a Point

A matroid M is internally 4-connected if it is 3-connected and for every X ⊆ EM
that is 3-separating, min{|X|, |EM −X|} ≤ 3. In Sect. 3.2 we saw that the pinch-
graphic matroids M with a donut representation (G,Σ) can have an exponential

Recognizing Even-Cycle and Even-Cut Matroids 189

number of pairwise inequivalent blocking pair representations. However, for large
donuts (k ≥ 6), M is not internally 4-connected. On the other hand, while
Theorem 1 says that 3-connected graphic matroids have a unique representation,
we give examples of internally 4-connected pinch-graphic matroids with a linear
(in the rank) number of blocking pair representations. A double wheel is the
signed graph obtained by starting with an odd circuit, adding a new vertex (the
hub) and joining every vertex of the circuit with both an odd and an even edge.
See Fig. 2(i) for an example of such a graph (G,Σ) with 6 vertices on the rim.
Odd edges correspond to dashed lines. Every odd edge is incident to either a or b,
in particular, a, b is a blocking pair. Get a new signed graph (H,Σ) by replacing
odd edge 6 joining a and b by an odd loop, and moving the end of every other
odd edge incident to a to b and vice-versa. This is known as a Lovász-flip and
it preserves the even-cycles [6]. See Fig. 2(ii) for an example. We can repeat the
same construction for every rim vertex (after resigning). For a general double
wheel (G,Σ), this yields |V G| pairwise inequivalent blocking pair representations
of a pinch graphic matroid M and r(M) = |V G|.

1

2

3
4

5

6

b

a 1
2

3

4

5

6

b

a

7

7

(i) (ii)

Fig. 2. (i) Double wheel (G, Σ). (ii) Double wheel after Lovász-flip (H, Σ).

5.2 Preserving Connectivity

A binary matroid is minimally non-graphic if it is non-graphic but every proper
minor is graphic. Tutte [16,17] proved that the set of minimally non-graphic
binary matroids is S = {F7, F

∗
7 ,M(K3,3)∗,M(K5)∗} where F7 is the Fano, M(G)

is the graphic matroid with graph representation G, and M∗ is the dual of M . A
matroid is almost 4-connected if it is 3-connected and min{|X|, |EM − X|} ≤ 6.
Thus internally 4-connected matroids are almost 4-connected. We define a good
sequence to be a sequence of almost 4-connected matroids M1, . . . , Mk where
Mk ∈ S and where for all i ∈ {1, . . . , k − 1}, Mi+1 is a single element deletion or
contraction of Mi. Combining Seymour’s Splitter Theorem [14] with a Splitter
Theorem by Geelen and Zhou for internally 4-connected binary matroids [4], we
derive the following result,

Theorem 6. If M is an internally 4-connected binary matroid that is not
graphic then there exists a good sequence M1, . . . , Mk where M = M1.

190 C. Heo and B. Guenin

Next, we use connectivity to get a polynomial bound on the number of blocking
pair representations.

Theorem 7. Let M1, . . . , Mk be a good sequence, then for all i ∈ {1, . . . , k}, Mi

has at most O(|EMi|4) distinct blocking pair representations.

Note that this theorem only bounds the number of blocking pair representa-
tions. Pinch-graphic matroids may have signed-graph representations without
blocking pairs that are very complicated. This is the main reason we use a two
step approach: (1) recognize pinch-graphic matroid (and only consider block-
ing pair representations), then (2) recognize even-cycle matroids that are not
pinch-graphic. We outline a proof of Theorem 7 in the AppendixA.

5.3 Recognition: Is an Internally 4-Connected Matroid
pinch-Graphic?

Suppose we wish to check if an internally 4-connected binary matroid M is pinch-
graphic. First we check if M is graphic, if it is, then M is pinch-graphic and we
stop. Otherwise, by Theorem 6 there exists a good sequence M = M1, . . . , Mk.
For Mk ∈ S we can find all blocking pair representations. For all i ∈ {1, . . . , k −
1}, we construct every blocking pair representation of Mi from the blocking
pair representations of Mi+1. If M has a blocking pair representation, then it is
pinch-graphic, otherwise it is not. Note, by Theorem 7 the algorithm never has
to keep track of more than a polynomial number of representations.

6 Taming 1-, 2-, and 3-Separations

In Sect. 5.3 we saw an outline of a polynomial-time algorithm to recognize if
an internally 4-connected binary matroid is pinch-graphic. In this section, we
will sketch an algorithm that takes as input an arbitrary binary matroid M
and in polynomial-time either: certifies that M is pinch-graphic, or not pinch-
graphic, or finds a matroid N isomorphic to a minor of M where N is internally
4-connected and is pinch-graphic if and only if M is pinch-graphic. We can then
combine the algorithm in Sect. 5.3 with this algorithm to recognize if an arbitrary
binary matroid is pinch-graphic.

6.1 Reduction to the 3-Connected Case

A 3-connected binary matroid M has a 3-separation if and only if M can be
expressed as a 3-sum M1 ⊕3 M2 [14]. We first prove,

Proposition 1. Let M = M1 ⊕1 M2 be a binary matroid where M1 is graphic.
Then M is pinch-graphic if and only if M2 is pinch-graphic.

Proposition 2. Let M = M1 ⊕2 M2 be a connected binary matroid where M1

is graphic. Then M is pinch-graphic if and only if M2 is pinch-graphic.

Recognizing Even-Cycle and Even-Cut Matroids 191

Proposition 3. Let M = M1 ⊕3 M2 be a 3-connected binary matroid where M1

is graphic. Then M is pinch-graphic if and only if M2 is pinch-graphic.

Consider a binary matroid M with a k-separation X for some k ∈ {1, 2, 3}. We
say that X is reducible if M = M1 ⊕k M2 for some matroids M1 and M2 where
at least one of M1 or M2 is graphic. We then prove that 1- and 2-separations in
pinch-graphic matroids are reducible.

Proposition 4. If X is a 1-separation of a pinch-graphic matroid M or X is a
2-separation of a connected pinch-graphic matroid, then X is reducible.

Suppose you are now given a binary matroid M and would like to check if it
is pinch-graphic. If M has a k-separation for k ∈ {1, 2}, then M = M1 ⊕k M2.
Then X = EM1 − EM2 is a k-separation. By Proposition 4, X is reducible,
say M1 is graphic. Then by Proposition 1 or 2, M2 is pinch-graphic if and only
if M is pinch-graphic. Then we apply the algorithm recursively to M2. When
we are done the resulting matroid is 3-connected. Thus it suffices to check if
3-connected binary matroids are pinch-graphic.

(i) (ii)a b

a

b

Fig. 3. Examples of 3-separations that are not reducible.

6.2 Structure of 3-Separations

There is no analogue of Proposition 4 for 3-separations. Indeed, 3-separations of
pinch-graphic matroids need not be reducible as we illustrate next. Consider the
signed graphs (G1, Σ1) and (G2, Σ2) illustrated in Fig. 3(i) and (ii) respectively.
The shaded region corresponds to edges X. In black we indicate a signature
with all edges incident to the blocking pair a, b. Then X is a 3-separation of
the corresponding pinch-graphic matroid and in general X is not reducible. If a
pinch-graphic matroid M has a blocking pair representation of the form given
by (G1, Σ1) then X is a compliant separation. If M has a representation of the
form given by (G2, Σ2) then X is a recalcitrant separation.

Given a 3-separation X, we can get a new 3-separation X ′ by moving elements
that are in the co-closure of either side of the separation. We say that X and
X ′ are homologous. There are at most 8 separations that are homologous to X.
Next we characterize the structure of 3-separations in pinch-graphic matroids.

Theorem 8. Let M be a 3-connected pinch-graphic matroid. For every proper 3-
separation there exists a homologous proper 3-separation that is either reducible,
compliant, or recalcitrant.

192 C. Heo and B. Guenin

Suppose you are given a 3-connected binary matroid M and would like to check if
it is pinch-graphic. If it has a proper 3-separation X we consider all homologous
proper 3-separations X ′. If X ′ is reducible, then M = M1⊕3M2 for some M1,M2

where say M1 is graphic. Then by Proposition 3, M2 is pinch-graphic if and only
if M is pinch-graphic and we apply the algorithm recursively to M2. If X is
compliant or recalcitrant then M is pinch-graphic. If none of the homologous
separations are reducible, compliant, or recalcitrant, then by Theorem 8, M is
not pinch-graphic. When we are done the matroid is internally 4-connected as
required. We need to be able to check if a separation is in fact (a) reducible, (b)
compliant, or (c) recalcitrant. Cases (a) and (b) can be reduced to checking if a
binary matroid is graphic. Case (c) is more complex, there we either prove that
the separation is recalcitrant or find another reducible separation.

A Appendix: Outline of the Proof of Theorem 7

A.1 Pinch Cographic Matroids

Given an even-cut matroid M where the cycles of M correspond to the even
cuts of a graft (G,T) we say that (G,T) is a graft representation of M . An even-
cut matroid is pinch-cographic if it has a graft representation with at most four
terminals. Consider a graft (H,T) with four terminals, i.e. T = {t1, t2, t3, t4}.
Let G be obtained from H by identifying vertices t1 and t2 and by identifying
vertices t3 and t4. Denote by a the vertex of G corresponding to t1 = t2 and
by b the vertex of G corresponding to t3 = t4. Let Σ = δH(t1)
δH(t3). Then
(G,Σ) is a signed graph with blocking pair a, b. We say that (G,Σ) is obtained
from (H,T) by folding and that (H,T) is obtained from (G,Σ) by unfolding.
Pinch-graphic and pinch-cographic matroids are duals [13], page 26.

Proposition 5. Let (G,Σ) be a signed graph with a blocking pair and let (H,T)
be obtained from (G,Σ) by unfolding. Let M be the pinch-graphic matroid with
representation (G,Σ) and let N be the pinch-cographic matroid with representa-
tion (H,T). Then M∗ = N .

A.2 Sizes of Equivalence Classes

Recall that a pair of signed graphs are equivalent if they are related by 1-flips,
2-flips, and resigning.

Proposition 6. There exists a constant c1 such that for every non-graphic,
pinch-graphic matroid that is almost 4-connected, the number of pairwise equiv-
alent blocking pair representations is at most c1r(M)3 where r(M) denotes the
rank of M .

A pair of grafts (H,T) and (H ′, T ′) are equivalent if they have the same even-cuts
and H and H ′ are related by 1-flips and 2-flips.

Recognizing Even-Cycle and Even-Cut Matroids 193

Proposition 7. There exists a constant c2 such that for every non-cographic,
pinch-cographic matroid that is almost 4-connected, the number of pairwise equiv-
alent graft representations with four terminals is at most c2.
We will require the following observations [7],
Remark 4. If a pair of signed graphs have the same even-cycles and a common
odd cycle then they are equivalent. If a pair of grafts have the same even-cuts
and a common odd cut then they are equivalent.

A.3 Counting Representations

Let M1, . . . , Mk be a good sequence and let i ∈ {1, . . . , k}. For i ∈ {1, . . . , k}, let
f(i) denote the number of blocking pair representations of Mi. We will show,

f(i) ≤ 8 + 6c2r(Mi) + c1r(M∗
i)r(Mi)3 ∈ O(|EMi|4). (1)

Proceed by induction on k − i. If k − i = 0, i.e. Mi = Mk then Mk is minimally
non-graphic and f(k) ≤ 8. Otherwise Mi+1 =Mi\e or Mi+1 = Mi/e.

Consider first the case where Mi+1 = Mi \e. By induction, (1) holds for i+1,
i.e. f(i+1) ≤ 8+6c2r(Mi+1)+c1r(M∗

i+1)r(Mi+1)3. Since r(M∗
i) = r(M∗

i+1)+1 to
prove that (1) holds for Mi we will show f(i) ≤ f(i+1)+c1r(Mi)3. Every block-
ing pair representation of Mi extends some blocking pair representation of Mi+1.
If each of these representations of Mi+1 extends to at most one representation
of Mi then f(i) ≤ f(i + 1). We prove that if a blocking pair representation of
Mi+1 extends to more than one blocking pair representation of Mi then in each
of these representations, e is an odd loop. By Remark 4 each of these represen-
tations are pairwise equivalent. By Proposition 6 there are at most c1r(Mi)3 of
these representations. Thus f(i) ≤ f(i + 1) + c1r(Mi)3 as required.

Consider now the case where Mi+1 = Mi/e. By induction, (1) holds for
i + 1 and since r(Mi) = r(Mi+1) + 1 to prove that (1) holds for Mi it suf-
fices to show f(i) ≤ f(i + 1) + 6c2. We only consider an example here where
we have two distinct blocking pair representations (G1, Σ) and (G2, Σ) of Mi

where (G,Σ) := (G1, Σ)/e = (G2, Σ)/e is a representation of Mi+1 with
Σ ⊆ δG(a)∪ δG(b) and a, b ∈ V G, and where G1 is obtained from G by splitting
vertex a into two vertices, say a′, a′′ so that all edges in δG(a)∩Σ are incident to
a′ and no edge of δG(a)∩Σ is incident to a′′ and by joining a′, a′′ by e and where
G2 is obtained from G by applying the same construction but now to vertex b.
(G,Σ) is illustrated in Fig. 4(i) and (G1, Σ) and (G2, Σ) in Fig. 4(ii). We say
that (Gi, Σ) is obtained from (G,Σ) by splitting a signature. How many repre-
sentations of Mi are obtained in that way? For each representation obtained by
splitting a signature, let (H,T) be the graft obtained by unfolding that represen-
tation. See Fig. 4(iii) for an illustration where square vertices correspond to ter-
minals. Observe that e is an odd cut of (H,T). By Remark 4, each of these grafts
are equivalent. By Propositions 5 and 7 there are at most c2 such grafts. More-
over, every representation of Mi obtained by splitting a signature is obtained by
folding such a graft. There are

(
4
2

)
ways of folding a graft, hence, at most 6c2

representations obtained by splitting a signature. Hence, f(i) ≤ f(i + 1) + 6c2
in this case. The analysis for the other cases is similar.

194 C. Heo and B. Guenin

(i)

e

e

(ii) (iii)

α

β

γ

δ

α

β

γ

δ

α γ

β δ

α

β

γ

δe

e

α

β

γ

δ

a b

Fig. 4. Non unique extension and unfolding.

References

1. Bixby, R.E.: Composition and decomposition of matroids and related topics. Ph.D.
thesis, Cornell University (1972)

2. Cunningham, W.H.: A combinatorial decomposition theory. Ph.D. thesis, Univer-
sity of Waterloo (1973)

3. Edmonds, J.: Matroid intersection. In: Hammer, P.L., Johnson, E.L., Korte, B.H.
(eds.) Discrete Optimization I. Annals of Discrete Mathematics, vol. 4, pp. 39–49,
North-Holland, Amsterdam (1979)

4. Geelen, J.F., Zhou, X.: A splitter theorem for internally 4-connected binary
matroids. SIAM J. Discret. Math. 20, 578–587 (2016)

5. Geelen, J.F., Gerards, A.M.H., Whittle, G.: Towards a matroid-minor structure
theory. In: Grimmett, G., Mcdiarmid, C. (eds.) Combinatorics, Complexity, and
Chance. A tribute to Dominic Welsh, Oxford Lecture Series in Mathematics and
its Applications, vol. 34, pp. 72–82. Oxford University Press, Oxford (2007)

6. Gerards, A.M.H.: Personal communication
7. Guenin, B., Pivotto, I., Wollan, P.: Stabilizer theorems for even cycle matroids. J.

Comb. Theory Ser. B 118, 44–75 (2016)
8. Harary, F.: On the notion of balance of a signed graph. Michigan Math. J. 2,

143–146 (1953)
9. Heo, C.: Recognizing even-cycle and even-cut matroids. Master’s thesis, University

of Waterloo (2016)
10. Lawler, E.: Combinatorial Optimization: Networks and Matroids. Holt, Rinehart

and Winston, New York (2001). Reprinted 2001, Dover, Mineola
11. Lemos, M., Oxley, J.: On the minor-minimal 3-connected matroids having a fixed

minor. Eur. J. Comb. 24, 1097–1123 (2003)
12. Oxley, J.: Matroid Theory, 2nd edn. Oxford University Press Inc., New York (2011)
13. Pivotto, I.: Even cycle and even cut matroids. Ph.D. thesis, University of Waterloo

(2011)
14. Seymour, P.D.: Decomposition of regular matroids. J. Comb. Theory Ser. B 28,

305–359 (1980)
15. Seymour, P.D.: Recognizing graphic matroids. Combinatorica 1, 75–78 (1981)
16. Tutte, W.T.: Matroids and graphs. Trans. Am. Math. Soc. 90, 527–552 (1959)
17. Tutte, W.T.: Lectures on matroids. J. Res. Natl. Bur. Stand. Sect B 69B, 1–47

(1965)
18. Tutte, W.T.: An algorithm for determining whether a given binary matroid is

graphic. Proc. Am. Math. Soc. 11, 905–917 (1960)

Recognizing Even-Cycle and Even-Cut Matroids 195

19. Tutte, W.T.: Connectivity in matroids. Canad. J. Math. 18, 1301–1324 (1966)
20. Whitney, H.: 2-isomorphic graphs. Am. J. Math. 55, 245–254 (1933)
21. Zaslavsky, T.: Biased graphs. II. The three matroids. J. Comb. Theory Ser. B 51,

46–72 (1991)

A Combinatorial Algorithm
for Computing the Rank of a Generic

Partitioned Matrix with 2× 2
Submatrices

Hiroshi Hirai1 and Yuni Iwamasa2(B)

1 The University of Tokyo, Tokyo 113-8656, Japan
hirai@mist.i.u-tokyo.ac.jp

2 Kyoto University, Kyoto 606-8501, Japan
iwamasa@i.kyoto-u.ac.jp

Abstract. In this paper, we consider the problem of computing the
rank of a block-structured symbolic matrix (a generic partitioned matrix)
A = (Aαβxαβ), where Aαβ is a 2 × 2 matrix over a field F and xαβ is
an indeterminate for α = 1, 2, . . . , μ and β = 1, 2, . . . , ν. This problem
can be viewed as an algebraic generalization of the bipartite matching
problem, and was considered by Iwata and Murota (1995). One of recent
interests on this problem lies in the connection with non-commutative
Edmonds’ problem by Ivanyos, Qiao and Subrahamanyam (2018), and
Garg, Gurvits, Oliveiva and Wigderson (2019), where a result by Iwata
and Murota implicitly says that the rank and the non-commutative rank
(nc-rank) are the same for this class of symbolic matrices.

The main result of this paper is a combinatorial O((μν)2 min{μ, ν})-
time algorithm for computing the symbolic rank of a (2×2)-type generic
partitioned matrix of size 2μ × 2ν. Our algorithm is based on the Wong
sequence algorithm by Ivanyos, Qiao, and Subrahamanyam for the nc-
rank of a general symbolic matrix, but is simpler. Our proposed algorithm
requires no blow-up operation, no field extension, and no additional care
for bounding the bit-size. Moreover it naturally provides a maximum
rank completion of A for an arbitrary field F.

Keywords: Generic partitioned matrix · Edmonds’ problem ·
Non-commutative Edmonds’ problem

1 Introduction

The maximum matching problem in a bipartite graph G has a natural algebraic
interpretation: It amounts to the symbolic rank computation of the matrix A

Hiroshi Hirai was supported by JSPS KAKENHI Grant Number JP17K00029 and JST
PRESTO Grant Number JPMJPR192A, Japan. Yuni Iwamasa was supported by JSPS
KAKENHI Grant Number JP19J01302, Japan.

c© Springer Nature Switzerland AG 2020
D. Bienstock and G. Zambelli (Eds.): IPCO 2020, LNCS 12125, pp. 196–208, 2020.
https://doi.org/10.1007/978-3-030-45771-6_16

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-45771-6_16&domain=pdf
http://orcid.org/0000-0002-4784-5110
http://orcid.org/0000-0002-6794-3543
https://doi.org/10.1007/978-3-030-45771-6_16

Computing the Rank of a (2× 2)-Type Generic Partitioned Matrix 197

defined by (A)ij := xij if ij ∈ E(G) and zero otherwise, where xij is a variable for
each edge ij and the row and column sets of A are identified with the color classes
of G. Such an algebraic interpretation is known for other matching-type com-
binatorial optimization problems. Examples include linear matroid intersection,
nonbipartite matching, and their generalizations (e.g., linear matroid matching);
see [16]. Edmonds’ problem [2] is a general algebraic formulation, which asks to
compute the rank of a symbolic matrix A represented by

A = A1x1 + A2x2 + · · · + Amxm. (1.1)

Here Ai is a matrix over a field F and xi is a variable for each i. Although a
randomized polynomial-time algorithm for Edmonds’ problem is known [15,17]
(if |F| is large), a deterministic polynomial-time algorithm is not known, which
is one of the prominent open problems in theoretical computer science; see
e.g., [13]. Known polynomial-time algorithms for the above-mentioned matching-
type problems can be viewed as solutions for special Edmonds’ problems.

The present article addresses the rank computation (Edmonds’ problem) of
a matrix of the following block-matrix structure

A =

⎛
⎜⎜⎜⎝

A11x11 A12x12 · · · A1νx1ν

A21x21 A22x22 · · · A2νx2ν

...
...

. . .
...

Aμ1xμ1 Aμ2xμ2 · · · Aμνxμν

⎞
⎟⎟⎟⎠ , (1.2)

where Aαβ is a 2×2 matrix over a field F and xαβ is a variable for α = 1, 2, . . . , μ
and β = 1, 2, . . . , ν. Recall that bipartite matching is precisely the case where
each Aαβ is a 1 × 1 matrix. This type of matrices, which we call (2 × 2)-type
generic partitioned matrices, was considered in detail by Iwata and Murota [12],
subsequent to the study on partitioned matrices of general type [8]. They estab-
lished a min-max formula (i.e., good characterization) for the rank of this class
of matrices, which involves the minimization of a submodular function on the
lattice of vector subspaces. A combinatorial polynomial-time rank-computation
has not been known and has been desired. Our main result solves this issue.

Theorem 1. There exists a combinatorial O((μν)2 min{μ, ν})-time algorithm
for Edmonds’ problem for a (2 × 2)-type generic partitioned matrix of the
form (1.2).

This result links the recent development on Edmonds’ problem in a noncom-
mutative setting. Noncommutative Edmonds’ problem [10] asks to compute the
rank of matrix of the form (1.1), where xi and xj are supposed to be noncom-
mutative, i.e., xixj �= xjxi. In this setting, the rank concept can be defined
(via the free skew field or the inner rank of a matrix over a ring), and is called
noncommutative rank or nc-rank. Nc-rank is an upper bound of (usual) rank.
Surprisingly, the nc-rank can be computed in deterministic polynomial time. The
algorithms were given by Garg, Gurvits, Oliveira, and Wigderson [5] for the case
of F = Q, and by Ivanyos, Qiao and Subrahmanyam [11] for an arbitrary field.

198 H. Hirai and Y. Iwamasa

The former algorithm (operator scaling) is an analytical algorithm motivated
from quantum information theory. The latter one, which we call IQS-algorithm,
is an augmenting-path type algorithm. It utilizes Wong sequence [9]—a vector-
space analogue of an alternating space-walk—and the formula of nc-rank earlier
proved by Fortin and Reutenauer [3]. In fact, for (2×2)-type generic partitioned
matrices, the rank formula proved by Iwata and Murota is the same as the nc-
rank formula by Fortin and Reutenauer. This means that the rank and nc-rank
are the same for this class of matrices and that the polynomial solvability fol-
lows from these results. Thus the real contribution of this paper is in the term
“combinatorial” in the theorem, which is explained as follows.

Our proposed algorithm is viewed as a combinatorial enhancement of IQS-
algorithm for (2 × 2)-type generic partitioned matrices. As mentioned, IQS-
algorithm is an augmenting-path type algorithm: Given a substitution Ã obtained
from A by substituting a value in F to each xi, construct the Wong sequence for
(A, Ã), which is an analogue of augmenting path search in the auxiliary graph.
If an augmenting path exists, then one can/try to find other substitution Ã′

with rank Ã′ > rank Ã and repeat it with updating Ã ← Ã′. If an augmenting
path does not exist, then one obtains a certificate of the optimality in the nc-
rank formula. Here, for reaching rank Ã = nc-rank A, the algorithm conducts the
blow-up operation, which replaces A by a larger matrix A(d) :=

∑m
i=1 Ai ⊗ Xi

for d×d matrices X1,X2, . . . , Xm of variable entries. It is known that nc-rank A
is equal to 1/d times the rank of a substitution Ã(d) for some d (if |F| is large).
The blow-up steps (and field extensions of F) make the algorithm considerably
difficult and slow. For our special case, the rank and nc-rank are equal, and
therefore a blow-up free algorithm is expected and desirable; a naive application
of IQS-algorithm cannot avoid the blow-up.

Our algorithm is the first blow-up free one for Edmonds’ problem for the class
of (2 × 2)-type generic partitioned matrices. The key concept that we introduce
in this paper is a matching. It is actually a 2-matching in the graph consisting of
edges αβ with nonzero Aαβ , which inherits the 2×2 structure of our matrix A and
gives a canonical substitution of A. Incorporating the idea of Wong sequence,
we introduce the auxiliary digraph and an augmenting path for a matching.
Then our algorithm goes on analogous to the augmenting path algorithm, as one
expects. It requires no blow-up operation, no field extension, and no additional
care for bounding the bit size. Moreover it naturally provides a maximum rank
completion (substitution) Ã of A for an arbitrary field F. This reveals that the
maximum rank completion problem for a (2×2)-type generic partitioned matrix
is polynomially solvable for arbitrary F, while this problem is known to be NP-
hard in general [1].

All proofs are omitted and will be given in the full version of this paper.

Related Works. It is an interesting research direction to construct a polynomial-
time blow-up free algorithm for general matrices A with rankA= nc-rank A.
Such an algorithm can decide whether rank and nc-rank are equal, and then leads
to a solution of (commutative) Edmonds’ problem. A representative example of
a matrix A with rankA = nc-rank A is a matrix such that each Ai in (1.1) is a

Computing the Rank of a (2× 2)-Type Generic Partitioned Matrix 199

rank-1 matrix. In this case, the rank computation is equivalent to linear matroid
intersection problem [16]. Edmonds’ matroid intersection algorithm becomes
obviously blow-up free. In fact, it can naturally be interpreted from the Wong
sequence [7]. Ivanyos, Karpinski, Qiao and Santha [9] gave a Wong-sequence-
based blow-up free algorithm for matrices A having an “implicit” rank-1 expres-
sion, that is, A becomes to consist of rank-1 summands by some (unknown)
linear transformation of variables.

Computation of nc-rank is formulated as submodular function minimization
on the modular lattice of vector subspaces. Based on this fact, Hamada and
Hirai [6] developed a conceptually different algorithm from [5] and [11]. Via an
analogue of the Lovász extension, they solved the problem as a geodesically-
convex optimization on a CAT(0)-space. For the case of a (2 × 2)-type generic
partitioned matrix, the submodular function is defined on the direct product
of modular lattices of rank-2 with infinite size. Following a pioneering work by
Kuivinen [14], Fujishige, Király, Makino, Takazawa and Tanigawa [4] showed the
oracle tractability of submodular function minimization on diamond, which is a
direct product of modular lattices of rank-2 with “finite” size.

Notations. For a positive integer k, we denote {1, 2, . . . , k} by [k]. A p×q matrix
B over a field K is regarded as the bilinear map defined by B(u, v) := u�Bv
for u ∈ Kp and v ∈ Kq. For a vector space U ⊆ Kp, let U⊥B ⊆ Kq denote the
orthogonal vector space with respect to B:

U⊥B := {v ∈ Kq | B(u, v) = 0 for all u ∈ U}.

For a vector space V ⊆ Kq, V ⊥B is defined analogously. We denote by kerL(B)
and kerR(B) the left kernel and the right kernel of B, respectively. That is,
kerL(B) := (Kq)⊥B and kerR(B) := (Kp)⊥B .

A (2 × 2)-type generic partitioned matrix A of the form (1.2) is regarded as
a matrix over the field F(x) of rational functions with variables xαβ for α ∈ [μ]
and β ∈ [ν]. Symbols α, β, and γ are used to represent elements of [μ], [ν], and
[μ] � [ν], respectively, where � denotes the direct sum. We often drop “∈ [μ]” from
“α ∈ [μ]” if it is clear in the context. For each α and β, consider 2-dimensional
F-vector spaces Uα = F2 and Vβ = F2. Each submatrix Aαβ is considered as a
bilinear form Uα × Vβ → F. The vector spaces Uα and Vβ are also regarded as
ones over F(x) by the scalar extensions F(x) ⊗ Uα and F(x) ⊗ Vβ , respectively.
Letting U := F(x)2μ =

⊕
α Uα and V := F(x)2ν =

⊕
β Vβ , the matrix A is

viewed as a bilinear form U × V → F(x).

2 Matching

In this section, we introduce the concept of matching for a (2 × 2)-type generic
partitioned matrix A of the form (1.2). First define the (undirected) bipartite
graph G := ([μ], [ν];E) by E := {αβ | Aαβ �= O}. An edge αβ ∈ E is said to
be rank-k (k = 1, 2) if rankAαβ = k. For notational simplicity, the subgraph
([μ], [ν]; I) for I ⊆ E is also denoted by I. For a node γ, let degI(γ) denote the

200 H. Hirai and Y. Iwamasa

degree of γ in I, i.e., the number of edges in I incident to γ. An edge αβ ∈ I
is said to be isolated if degI(α) = degI(β) = 1. A connected component of I is
said to be rank-1 if it contains a rank-1 edge.

An edge subset I ⊆ E is called a matching if it satisfies the following combi-
natorial and algebraic conditions (M1)–(M4):

(M1) degI(γ) ≤ 2 for each node γ.

Suppose that I satisfies (M1). Then each connected component of I forms a path
or a cycle. Thus I is 2-edge-colorable. Namely, there are two edge classes such
that any of two incident edges are in the different classes. An edge in one color
class is called a +-edge and an edge in the other color class is called a −-edge.

A valid labeling for I is a node-labeling that assigns two distinct 1-dimensional
subspaces for each node, U+

α , U−
α ⊆ Uα for α and V +

β , V −
β ⊆ Vβ for β, such that

for each edge αβ in I it hold

Aαβ(U+
α , V −

β) = Aαβ(U−
α , V +

β) = {0}, (2.1)

(kerL(Aαβ), kerR(Aαβ)) =

{
(U+

α , V +
β) if αβ is a rank-1 + -edge,

(U−
α , V −

β) if αβ is a rank-1 − -edge.
(2.2)

(M2) I has a valid labeling.

For a path component C of I, an end edge is an edge αβ ∈ C with degI(α) = 1
or degI(β) = 1.

(M3) For each path component of I with length at least two, both end edges
are rank-1.

(M4) Every cycle component of I contains at least one rank-1 edge.

For I ⊆ E, let AI denote the matrix obtained from A by replacing each
submatrix Aαβ with αβ �∈ I by the 2 × 2 zero matrix. If I is a matching, then
rankAI has a simple combinatorial formula. Let us define

r(I) := |I| + the number of isolated rank-2 edges in I.

Then the following holds.

Theorem 2. For a matching I, it holds rankAI = r(I).

Our algorithm gives a constructive proof of the existence of a matching I with
rankA = rankAI . By combining this with Iwata–Murota’s minimax formula [12]
(or Fortin–Reutenauer’s one [3] with rankA = nc-rank A), we obtain the follow-
ing combinatorial and algebraic minimax theorem between matchings and vector
spaces.

Theorem 3. The maximum of r(I) over matchings I is equal to the minimum
of 2μ+2ν−∑

α dim Xα−∑
β dim Yβ over all vector spaces Xα ⊆ Uα and Yβ ⊆ Vβ

such that Aαβ(Xα, Yβ) = {0} for α and β.

Computing the Rank of a (2× 2)-Type Generic Partitioned Matrix 201

From Theorem 2, we obtain an explicit expression of the left/right kernel of AI .
For a matching I, define

kerα(I) :=

⎧⎪⎨
⎪⎩

Uα if degI(α) = 0,
kerL(Aαβ) if α is incident only to a rank-1 edge αβ in I,

{0} otherwise.
(2.3)

Also let kerβ(I) be the vector subspace of Vβ such that “L”, α, and U in (2.3)
are replaced by “R”, β, and V , respectively.

Corollary 1. If I is a matching, then kerL(AI) =
⊕

α kerα(I) and kerR(AI) =⊕
β kerβ(I).

3 Algorithm

Our proposed algorithm is an augmenting-path type algorithm. The following
lemma will be used for verifying the optimality of a matching I.

Lemma 1 ([10]). If there exist vector spaces U∗ ⊆ F(x)2μ and V ∗ ⊆ F(x)2ν

satisfying (V ∗)⊥A = U∗, (U∗)⊥AI = V ∗, and U∗ ⊇ kerL(AI), then rankA =
rankAI .

A pair (U∗, V ∗) of vector spaces satisfying the conditions in Lemma 1 is called
an optimality witness of I.

The outline of our algorithm is the following. Let I be a matching of A.
We first search an optimality witness of I or an augmenting trail for I; this
procedure can be interpreted as a combinatorial/unsynchronized version of the
computation of the Wong sequence for (A,AI). The former case establishes
rankA = rankAI by Lemma 1, and hence output r(I) by Theorem 2. In the
latter case, we have rank A > rankAI and update a matching I to another
matching I∗ with rankAI∗ > rankAI via the augmenting trail.

3.1 Augmenting Trail

For a matching I, the auxiliary graph �GI := ([μ], [ν]; �EI) is defined as follows:
For each edge αβ �∈ I, consider a directed edge βα. In addition, if αβ is rank-2,
then one more edge βα is added. For each isolated rank-2 edge αβ in I, consider
two directed edges αβ (of the same direction). For the other rank-2 edges αβ in
I (i.e., αβ belongs to a rank-1 component of I), consider two directed edges αβ
and βα. For each rank-1 edge αβ in I, consider one directed edge αβ.

A walk (γ1γ2, γ2γ3, . . . , γk−1γk) in �GI is called a path if all vertices
γ1, γ2, . . . , γk are distinct, and is called a trail if all edges γ1γ2, γ2γ3, . . . , γk−1γk

are distinct. An ordered tuple P := (Z1, γ1γ2, Z2, γ2γ3, . . . , γk−1γk, Zk) is called a
space-trail for I if (γ1γ2, γ2γ3, . . . , γk−1γk) forms a trail in �GI and Z1, Z2, . . . , Zk

are vector subspaces of F2 satisfying Zi+1 = (Zi)⊥γiγi+1 for i = 1, 2, . . . , k − 1.
Here we abbreviate ⊥Aαβ

as ⊥αβ or ⊥βα for αβ ∈ E. We call γ1, γ1γ2, and

202 H. Hirai and Y. Iwamasa

X1 the initial vertex, the initial edge, and the initial space, respectively. Also
we call γk, γk−1γk, and Xk the last vertex, the last edge, and the last space,
respectively. The associated trail (γ1γ2, γ2γ3, . . . , γk−1γk) is also denoted by P ,
and the associated undirected edge set {γ1γ2, γ2γ3, . . . , γk−1γk} is denoted by
E(P).

An outer alternating trail P for I is a space-trail (Y1, β1α1,X1,
α1β2, . . . , βkαk,Xk) satisfying the following (O1)–(O3):

(O1) dim Y1 ≥ 1.
(O2) βiαi �∈ I and Yi �= kerR(Aαiβi

) for i = 1, 2, . . . , k.
(O3) αiβi+1 ∈ I is an isolated rank-2 edge for i = 1, 2, . . . , k − 1.

Also an inner alternating path Q for I is a space-trail (X1, α1β1, Y1,
β1α2, . . . , αkβk, Yk) satisfying the following (I1) and (I2).

(I1) Q forms a path in �GI that belongs to a rank-1 component of I.
(I2) α1β1, α2β2, . . . , αkβk satisfy

– αiβi is a +-edge and (Xi, Yi) = (U+
αi

, V −
βi

) for i = 1, 2, . . . , k − 1, or
– αiβi is a −-edge and (Xi, Yi) = (U−

αi
, V +

βi
) for i = 1, 2, . . . , k − 1.

By the construction of �GI and (I1), βiαi+1 is rank-2 for i = 1, 2, . . . , k − 1
Let P be an outer alternating trail, and Q an inner alternating path. An

ordered pair (Q,P) is said to be compatible if the last vertex and the last space
of Q coincide with the initial vertex and the initial space of P , respectively. Also
(P,Q) is said to be compatible if the last vertex α of P and the initial vertex
α′ of Q are the same, and the last space X of P and the initial space X ′ of Q
satisfy

X �=
{

U−
α′ if X′ = U+

α′ ,

U+
α′ if X′ = U−

α′ .
(3.1)

An ordered tuple T of space-trails is called an augmenting trail for I if the
following (A1)–(A5) hold:

(A1) T = (P0, Q1, P1, . . . , Qm, Pm) such that
– Pi is an outer alternating trail for i = 0, 1, 2, . . . ,m,
– Qj is an inner alternating path for j = 1, 2, . . . ,m, and
– (Pi, Qi+1) and (Qi+1, Pi+1) are compatible for i = 0, 1, 2, . . . ,m − 1.

(A2) The initial space of P0 coincides with kerβ(I), where β is the initial node
of P0.

(A3) The last space of Pm does not include kerα(I), where α is the last node of
Pm.

(A4) The union of the trails P0, Q1, P1, . . . , Qm, Pm also forms a trail in �GI .
(A5) For each α and β, no subspaces of Uα and of Vβ appear twice in T .

Theorem 4. For a matching I and an augmenting trail for I, we can construct
a matching I∗ with rankAI∗ > rankAI in O(|E|2) time.

An overview of the augmentation procedure is given in Sect. 3.3.

Computing the Rank of a (2× 2)-Type Generic Partitioned Matrix 203

3.2 Finding an Augmenting Trail

In this subsection, we present an algorithm for finding either an optimality wit-
ness or an augmenting trail. During the procedure, each vertex γ has (at most
two) vector subspaces of F2, which are used as labels. Each pair (γ, Z) of a vertex
γ and a label Z at γ has a back pointer to another pair (γ′, Z ′) which represents
that “Z is added to the label set label(γ) through Z ′ and γ′γ.” When I is
not maximum, i.e., rankAI < rankA, we can construct an augmenting trail by
tracking back pointers and composing them.

The formal description of our procedure is given as follows. For each vertex
γ, let label(γ) be a label set (or a set of vector spaces) of γ. While updating,
set U∗

α := Uα ∩ ⋂
X∈label(α) X for each α and V ∗

β := {0} +
∑

Y ∈label(β) Y for
each β, and U∗ :=

⊕
α U∗

α and V ∗ :=
⊕

β V ∗
β . As initialization, let label(β) :=

{kerβ(I)} for β with kerβ(I) �= {0}, and label(γ) := ∅ for other γ. Hence, in
the initial phase, it holds U∗

α = Uα and V ∗
β = kerβ(I), implying V ∗ = (U∗)⊥AI

by Corollary 1. This property V ∗ = (U∗)⊥AI is kept during the update.
The procedure is the following. Check first whether there is a triple (α, β, Y)

such that αβ ∈ E \ I, Y ∈ label(β), and Y ⊥αβ �⊇ U∗
α.

If there is no such a triple, namely, if all triples (α, β, Y) with αβ ∈ E \ I
and Y ∈ label(β) satisfy Y ⊥αβ ⊇ U∗

α, then output the pair (U∗, V ∗), which is
an optimality witness of I. Stop the procedure.

If there is such a triple (α, β, Y), then choose any (α, β, Y). There are two
cases: (i) α does not belong to a rank-1 component in I, and (ii) α belongs to a
rank-1 component C in I.

(i). This case corresponds to an expansion of an outer alternating trail. Add
Y ⊥αβ to label(α) and define the back pointer from (α, Y ⊥αβ) to (β, Y). Recall
that kerα(I) = Uα if degI(α) = 0, and kerα(I) = {0} if α is incident to an
isolated rank-2 edge in I.

– In the former case, output a tuple of space-trails by tracking back pointers
from (α, Y ⊥αβ), which is an augmenting trail.

– In the latter case, let αβ′ be the isolated rank-2 edge incident to α. Add
(Y ⊥αβ)⊥αβ′ to label(β′) and define the back pointer from (β′, (Y ⊥αβ)⊥αβ′)
to (α, Y ⊥αβ). Return to the check phase.

(ii). This case corresponds to an addition of an inner alternating trail. Update

label(α) ←

⎧⎪⎨
⎪⎩

label(α) ∪ {U+
α } if Y ⊥αβ = U+

α ,

label(α) ∪ {U−
α } if Y ⊥αβ = U−

α ,

label(α) ∪ {U+
α , U−

α } if U+
α �= Y ⊥αβ �= U−

α ;

see (3.1). Define the back pointer from (α,X) to (β, Y) for each label X newly
added to label(α). Since α belongs to a rank-1 component C, if degI(α) = 1
then α is incident to a rank-1 edge in I; see (M3). Hence kerα(I) �= {0} if
degI(α) = 1, and kerα(I) = {0} if degI(α) = 2.

204 H. Hirai and Y. Iwamasa

– If there is a newly added X with kerα(I) �⊆ X, i.e., α is incident only to one
rank-1 edge in I and {0} �= kerα(I) �= X, then output a tuple of space-trails
by tracking the back pointers from (α,X), which is an augmenting trail.

– Consider that kerα(I) ⊆ X for all new X ∈ label(α). Then, for each
such X, do the following; here we only consider the case of X = U+

α (for
X = U−

α we change all signs in the below argument). Let α1 := α and
α1β1 is a +-edge in I. Define (α1β1, β1α2, . . . , αkβk) by the longest path
in �GI satisfying that α1β1, β1α2, . . . , αkβk belong to C (and hence I) and
U+

αi
�∈ label(αi) for all i ≥ 2. Note that α1β1, α2β2, . . . , αkβk are +-edges

and β1α2, β2α3, . . . , βk−1αk are rank-2 −-edges. For i = 1, 2, . . . , k, add U+
αi

and V −
βi

to label(αi) and label(βi), respectively, and define the back point-
ers from (αi, U

+
αi

) to (βi−1, V
−
βi−1

) (except for i = 1) and from (βi, V
−
βi

) to
(αi, U

+
αi

). Then return to the check phase.

Theorem 5. The following hold:

(1) If the above algorithm outputs the pair (U∗, V ∗), then it is an optimality
witness of I.

(2) If the above algorithm outputs the ordered tuple of space-walks, then it is an
augmenting trail for I.

(3) The running-time of the above algorithm is O(|E|).

3.3 Augmentation

In this subsection, we present an overview of the augmentation procedure for a
given matching I and an augmenting trail T with respect to I. The procedure is
an inductive construction that repeats to replace (I, T) by (I ′, T ′) until reducing
to the base case, where I ′ is a matching with r(I) = r(I ′) and T ′ is an augmenting
trail for I ′ “shorter” than T . In the base case (I, T), we can construct a matching
I∗ with r(I∗) > r(I) from T .

We first consider the base case where T consists only of a single outer alter-
nating trail P = (Y1, β1α1,X1, α1β2, . . . , βkαk,Xk) that is a path with k ≥ 1.
Let I∗ := I ∪ E(P), which satisfies r(I∗) > r(I) and (M1); (M1) follows from
degI(β1) ≤ 1, degI(αk) ≤ 1, and (O3). We show that I∗ satisfies (M2), i.e., I∗

has a valid labeling. We can assume that if degI(αk) = 1, then αk is incident
to a +-edge in I. Define U+

αk
as kerI(αk) if degI(αk) = 1, and U+

αk
as any 1-

dimensional subspace of Uαk
different from Xk if degI(αk) = 0. Accordingly,

define V −
βi

:= (U+
αi

)⊥αiβi and U+
αi−1

:= (V −
βi

)⊥αi−1βi for i = k, k − 1, . . . , 1.
They are well-defined 1-dimensional subspaces (since U+

αi
�= kerL Aαiβi

and
V −

βi
= kerR Aαiβi

if αiβi is rank-1). The other vector subspaces (U−
αi

, V +
βi

)
are defined as (Xi, Yi) if both Xi and Yi are 1-dimensional. If some Yi is 2-
dimensional (equivalently Xi−1 is zero-dimensional), then degI(β1) = 0 and
βjαj is rank-2 for j = 1, 2, · · · , i − 1. In this case, consider the maximum
index i with this property. Define V +

βi
as any 1-dimensional subspace differ-

ent from kerR Aαiβi
= V −

βi
. Accordingly, define U−

αj−1
:= (V +

βj
)⊥αj−1βj and

Computing the Rank of a (2× 2)-Type Generic Partitioned Matrix 205

V +
βj−1

:= (U−
αj−1

)⊥αj−1βj−1 . Then the resulting labeling is valid for I∗. Indeed,
the orthogonal property (2.1) is satisfied by the construction. Observe that
U+

αi
�= U−

αi
implies V −

βi
�= V +

βi
and V −

βi
�= V +

βi
implies U+

αi−1
�= U−

αi−1
. There-

fore, from U+
αk

�= U−
αk

we have U+
αi

�= U−
αi

and V +
βi

�= V −
βi

for all i. Suppose
that β1 is incident to β1α

′ that is an end edge of a path component C of I. If
C contains αk, then β1α

′ is a +-edge. Otherwise we can assume by re-coloring
that β1α

′ is a +-edge. Thus we obtain a valid labeling for I∗. In addition, if
I∗ satisfies (M3) and (M4), then I∗ is a desired augmentation. Hence assume
that I∗ violates (M3) or (M4). Then (i) degI(β1) = 0 and β1α1 is rank-2, or (ii)
degI(αk) = 0 and βkαk is rank-2, or both. Suppose that (i) occurs. Consider a
path component of a path (β1α1, α1β2, . . . , βkαk, . . .) in I∗. To make I∗ satisfy
(M3) and (M4), remove edges α1β2, α2β3, . . . α�β�+1 for the minimum � ≥ 1 such
that α�+1β�+1 is rank-1. If such an � does not exist, then all +-edges in the path
are removed. This modification keeps r. The resulting I∗ is a desired one. For
the case of (ii), do the same procedure from αk in a reverse way.

Next we consider the general case of T = (P0, Q1, P1, . . . , Qm, Pm) that is
composed of several outer and inner alternating trails. For the space-limitation,
we only explain the procedure for the case where Pm is a path, Qm belongs to
a cycle component C, and Pk, Qk for k < m do not meet nodes in Qm and in
Pm. For explanation, we further assume that the last node of Pm is incident to
a rank-1 edge of I. Suppose that Qm = (X1, α1β1, Y1, β1α2, . . . , αkβk, Yk) and
α1β1 is a +-edge, and suppose that the cycle component C is formed by edges of
Qm and edges α1β

′
1, β

′
1α

′
2, . . . , α

′
pβk. Also suppose (for explanation) that there is

at least one rank-1 −-edge in C. Define Q := (βkαk, . . . , β1α1, α1β
′
1, . . . , β

′
�α

′
�+1)

by the longest path in �GI satisfying that all edges belong to C and all −-edges
in Q are rank-2. Let I ′ := I ∪ E(Pm) \ {all +-edges in E(Q)}. Then I ′ satisfies
(M1), (M3), and (M4), and r(I ′) = r(I). We show (M2). As above, assign two
vector subspaces on the nodes in Pm from (U+

α̃ , U−
α̃) := (Xα̃, kerI(α̃)) for the

last node α̃ and the last space Xα̃ of Pm, where we can assume that α̃ is incident
to a −-edge of I. Then V +

βk
is different from V −

βk
= Yk. Subsequently, propagate

V −
βk

on the path P = (βkα′
p, . . . , β

′
�+1α

′
�+1) to assign U+

α′
j
, V −

β′
j
. Then this labeling

is valid for I ′.
Here the labeling may change on the path P . If some previous inner alternat-

ing path Qm′ (m′ < m) uses the path, then update the spaces in Qm′ accordingly.
However the last space of Qm′ may be replaced by a different space. Then the
compatibility condition for Qm′ and Pm′+1 is violated. In this case, we back to
consider I and T . We can extend Qm′ to βk, and join Pm to it with the start
space V −

βk
. Then the last space of Pm is different from kerI(α̃). Thus we obtain

an augmenting trail T ′ := (P0, . . . , Qm′ , Pm) for I of a shorter length.
Therefore we assume that such a case does not occur. We modify T so that T

is an augmenting trail for I ′. First remove Qm and Pm from T . Suppose that the
last space of the outer path Pm−1 is X, which is different from U−

α1
by the compat-

ibility of (Pm−1, Qm). Join the space-walk (X,α1β
′
1, Y

′
1 , β′

1α
′
2, . . . , β

′
�α�+1,X

′
�+1)

to Pm−1, where Y ′
i := (X ′

i)
⊥α′

i
β′

i and X ′
i+1 := (Y ′

i)
⊥α′

i+1β′
i with α′

1 := α,

206 H. Hirai and Y. Iwamasa

X ′
1 := X, and α′

�+1 := α�+1. Then the resulting Pm−1 is an outer alternating
trail for I ′ such that the last space X ′

�+1 is different from U−
�+1 = kerI′(α�+1).

Thus T ′ := (P0, Q1, . . . , Pm−1) is a shorter augmenting trail for I ′

In this way, with modifying a matching, we can shorten an augmenting trail
to reach the base case. There remain several other cases to be dealt with, e.g., Pm

has repeated edges, or meets a previous outer alternating trail Pm′ , etc, which
are not explained here by space-limitation and will be given in the full version
of this paper.

A Bit Complexity

In the case of F = Q, the required bit-size during the algorithm is bounded by a
polynomial in the input bit-size as follows. Without loss of generality, we assume
that each entry of Aαβ is integer.

Consider the algorithm for finding an augmenting trail. During the algorithm,
a 1-dimensional vector subspace Z ⊆ F2 is represented as a nonzero vector z ∈ Z.
In the initial phase, for each αβ ∈ I such that αβ is rank-1 and degI(β) = 1, we
can take an integer nonzero vector yβ ∈ kerR(Aαβ) with the bit-length bounded
in a polynomial of the bit-size of Aαβ . In the update phase, we compute X⊥αβ

and Y ⊥αβ for X ⊆ Uα and Y ⊆ Vβ , respectively. This can be simulated as follows.
Here we only consider the case of computing X⊥αβ . Suppose rankAαβ = 1 and
that we have an integer nonzero vector x ∈ X at hand. Then X⊥αβ = Vβ if x ∈
kerL(Aαβ), and X⊥αβ = kerR(Aαβ) if x �∈ kerL(Aαβ). Suppose rankAαβ = 2 and

Aαβ =
[

a b
c d

]
and x =

[
s
t

]
. Then a nonzero vector y =

[−(cs + dt)
as + bt

]
belongs to

X⊥αβ . By log(|cs+dt|) = log |c|+log |s| if dt = 0, log(|cs+dt|) = log |d|+log |t|
if cs = 0, and log(|cs + dt|) ≤ log (|csdt| (1/|cs| + 1/|dt|)) ≤ log 2 + log |c| +
log |d| + log |s| + log |t|, we have bit(y) = bit(A) + bit(x) + O(1), where bit(·)
is the bit-length of the argument. Hence the bit-length is polynomially bounded
in finding an augmenting space-walk.

The case of the augmentation procedure is similar. Thus, in the whole step,
the bit-size is polynomially bounded.

B Constructing an Augmenting Space-Walk
and Computing the Wong Sequence

We formally introduce Wong sequence. Let B be a p × q symbolic matrix of the
form (1.1), and B̃ a substitution of B. The (orthogonal version of the) Wong
sequence [9] for (B, B̃) is a sequence X0, Y1,X1, . . . of vector spaces determined
by X0 := kerL(B̃), Yi := (Xi−1)⊥B̃ , and Xi := (Yi)⊥B for i = 1, 2, Here,
for a vector space Y ⊆ Fq, define Y ⊥B by the set of vectors x ∈ Fp such that
x is orthogonal to any y ∈ Y with respect to any substitution B̃ of B. That
is, Y ⊥B :=

⋂m
i=1 Y ⊥Bi . By easy observations, the limits X∞, Y∞ of the Wong

sequence for (B, B̃) can be obtained by O(min{p, q}) computations, and satisfy

Computing the Rank of a (2× 2)-Type Generic Partitioned Matrix 207

Y∞ = (X∞)⊥B̃ and X∞ = (Y∞)⊥B . In [9], they showed rankB = rank B̃ if
kerL(B̃) ⊆ X∞, which is used as an “optimality witness” of B̃ in a polynomial-
time algorithm for noncommutative Edmonds’ problem [11].

Our labeling procedure can be viewed as a nontrivial specialization of the
computation of the Wong sequence for (A, ÃI), where A is a (2×2)-type generic
partitioned matrix of the form (1.2) and I is a matching of A. Recall U :=
F2μ =

⊕
α Uα and V := F2ν =

⊕
β Vβ . For a vector subspace Y ⊆ V , we

denote by Prβ(Y) the projection of Y to the β-th coordinate, namely, Prβ(Y) :=
{yβ ∈ Vβ | y = (y1, y2, . . . , yν) ∈ Y }. By the partitioned structure of A, we can

see (Y)⊥A =
(⊕

β Prβ(Y)
)⊥A

. Hence it suffices to obtain Prβ(Y) for β for

computing the Wong sequence for (A, Ã). The vector space Y ∗
β in the labeling

procedure plays a role of the above Prβ(Y). Furthermore, while the computation
of the Wong sequence corresponds to the breadth-first search of an auxiliary
graph, our algorithm does not.

C Blow-Up Free Algorithm for Edmonds’ Problem

We see that Edmonds’ problem can be solved in polynomial time if there exists
a polynomial-time blow-up free algorithm for general symbolic matrices A of the
form (1.1) with rankA = nc-rank A. A framework of a blow-up free algorithm is
the following, where we are given a symbolic matrix A and an initial substitution
Ã of A:

1. Compute the Wong sequence for (A, Ã) and obtain the limits X∞ and Y∞
such that (Y∞)⊥A = X∞ and (X∞)⊥Ã = Y∞.

2. If X∞ includes kerL(Ã), then output rankA = rank Ã (see [10]). Other-
wise apply an augmenting step: Obtain another substitution Ã′ of A with
rank Ã′ > rank Ã and go to 1 with Ã ← Ã′, or output “we cannot augment Ã
without a blow-up procedure.” Here the latter implies rankA < nc-rank A.

By using the above blow-up free algorithm, we can check if A is full rank or not.
Indeed, if rankA= nc-rank A, then we can compute rank A by the algorithm. On
the one hand, rankA < nc-rank A implies that A is not full. Hence a polynomial-
time blow-up free algorithm naturally provides the polynomial-time solvability
of the full-rank decision version of Edmonds’ problem.

The tractability of Edmonds’ problem follows from that of the full-rank deci-
sion version of Edmonds’ problem. Note that the family of linear independent
column sets of A forms a matroid, and the full-rank decision version of Edmonds’
problem can play a role as an independence oracle of the matroid. Thus, by a
greedy algorithm for the matroid, we can obtain a basis in polynomial time; the
size of the basis is equal to rank A.

References

1. Buss, J.F., Frandsen, G.S., Shallit, J.O.: The computational complexity of some
problems of linear algebra. J. Comput. Syst. Sci. 58, 572–596 (1999)

208 H. Hirai and Y. Iwamasa

2. Edmonds, J.: Systems of distinct representatives and linear algebra. J. Res. Nat.
Bur. Stand. 71B(4), 241–245 (1967)

3. Fortin, M., Reutenauer, C.: Commutative/noncommutative rank of linear matrices
and subspaces of matrices of low rank. Séminaire Lotharingien de Combinatoire
52, B52f (2004)

4. Fujishige, S., Király, T., Makino, K., Takazawa, K., Tanigawa, S.: Minimizing
submodular functions on diamonds via generalized fractional matroid matchings.
EGRES Technical reports, TR-2014-14 (2014)

5. Garg, A., Gurvits, L., Oliveira, R., Wigderson, A.: Operator scaling: theory and
applications. Found. Comput. Math. (2019)

6. Hamada, M., Hirai, H.: Maximum vanishing subspace problem, CAT(0)-
space relaxation, and block-triangularization of partitioned matrix (2017).
arXiv:1705.02060

7. Ishikawa, T.: Max-rank matrix completion via Wong sequence. Bachelor thesis,
The University of Tokyo (2018). (in Japanese)

8. Ito, H., Iwata, S., Murota, K.: Block-triangularizations of partitioned matrices
under similarity/equivalence transformations. SIAM J. Matrix Anal. Appl. 15(4),
1226–1255 (1994)

9. Ivanyos, G., Karpinski, M., Qiao, Y., Santha, M.: Generalized Wong sequences
and their applications to Edmonds’ problems. J. Comput. Syst. Sci. 81, 1373–1386
(2015)

10. Ivanyos, G., Qiao, Y., Subrahmanyam, K.V.: Non-commutative Edmonds’ problem
and matrix semi-invariants. Comput. Complex. 26, 717–763 (2017). https://doi.
org/10.1007/s00037-016-0143-x

11. Ivanyos, G., Qiao, Y., Subrahmanyam, K.V.: Constructive non-commutative rank
computation is in deterministic polynomial time. Comput. Complex. 27, 561–593
(2018). https://doi.org/10.1007/s00037-018-0165-7

12. Iwata, S., Murota, K.: A minimax theorem and a Dulmage-Mendelsohn type
decomposition for a class of generic partitioned matrices. SIAM J. Matrix Anal.
Appl. 16(3), 719–734 (1995)

13. Kabanets, V., Impagliazzo, R.: Derandomizing polynomial identity tests means
proving circuit lower bounds. Comput. Complex. 13, 1–46 (2004)

14. Kuivinen, F.: On the complexity of submodular function minimisation on dia-
monds. Discret. Optim. 8, 459–477 (2011)

15. Lovász, L.: On determinants, matchings, and random algorithms. In: International
Symposium on Fundamentals of Computation Theory (FCT 1979) (1979)

16. Lovász, L.: Singular spaces of matrices and their application in combinatorics.
Boletim da Sociedade Brasileira de Matemática 20(1), 87–99 (1989). https://doi.
org/10.1007/BF02585470

17. Schwartz, J.T.: Fast probabilistic algorithms for verification of polynomial identi-
ties. J. ACM 27(4), 701–717 (1980)

http://arxiv.org/abs/1705.02060
https://doi.org/10.1007/s00037-016-0143-x
https://doi.org/10.1007/s00037-016-0143-x
https://doi.org/10.1007/s00037-018-0165-7
https://doi.org/10.1007/BF02585470
https://doi.org/10.1007/BF02585470

Fair Colorful k-Center Clustering

Xinrui Jia(B), Kshiteej Sheth, and Ola Svensson

School of Computer and Communication Sciences, EPFL, Lausanne, Switzerland
{xinrui.jia,kshiteej.sheth,ola.svensson}@epfl.ch

Abstract. An instance of colorful k-center consists of points in a metric
space that are colored red or blue, along with an integer k and a coverage
requirement for each color. The goal is to find the smallest radius ρ such
that there exist balls of radius ρ around k of the points that meet the
coverage requirements.

The motivation behind this problem is twofold. First, from fairness
considerations: each color/group should receive a similar service guaran-
tee, and second, from the algorithmic challenges it poses: this problem
combines the difficulties of clustering along with the subset-sum problem.
In particular, we show that this combination results in strong integrality
gap lower bounds for several natural linear programming relaxations.

Our main result is an efficient approximation algorithm that over-
comes these difficulties to achieve an approximation guarantee of 3,
nearly matching the tight approximation guarantee of 2 for the classical
k-center problem which this problem generalizes.

Keywords: Approximation algorithms · k-Center · Clustering and
facility location · Fairness

1 Introduction

In the colorful k-center problem introduced in [4], we are given a set of n points
P in a metric space partitioned into a set R of red points and a set B of blue
points, along with parameters k, r, and b.1 The goal is to find a set of k centers
C ⊆ P that minimizes ρ so that balls of radius ρ around each point in C cover
at least r red points and at least b blue points.

This generalization of the classic k-center problem has applications in situa-
tions where fairness is a concern. For example, if a telecommunications company
is required to provide service to at least 90% of the people in a country, it would
be cost effective to only provide service in densely populated areas. This is at

1 Our results (in particular the 3-approximation algorithm) rather immediately gener-
alize to any constant number of colors. However, to keep the exposition of our ideas
as clean as possible, we have restricted this abstract to the version with two colors.

Supported by the Swiss National Science Foundation project 200021-184656 “Random-
ness in Problem Instances and Randomized Algorithms”.

c© Springer Nature Switzerland AG 2020
D. Bienstock and G. Zambelli (Eds.): IPCO 2020, LNCS 12125, pp. 209–222, 2020.
https://doi.org/10.1007/978-3-030-45771-6_17

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-45771-6_17&domain=pdf
https://doi.org/10.1007/978-3-030-45771-6_17

210 X. Jia et al.

odds with the ideal that at least some people in every community should receive
service. In the absence of color classes, an approximation algorithm could be
“unfair” to some groups by completely considering them as outliers. The incep-
tion of fairness in clustering can be found in the recent paper [7] (see also [1,3]),
which uses a related but incomparable notion of fairness. Their notion of fair-
ness requires each individual cluster to have a balanced number of points from
each color class, which leads to very different algorithmic considerations and is
motivated by other applications, such as “feature engineering”.

The other motive for studying the colorful k-center problem derives from the
algorithmic challenges it poses. One can observe that it generalizes the k-center
problem with outliers, which is equivalent to only having red points and needing
to cover at least r of them. This outlier version is already more challenging than
the classic k-center problem: only recent results give tight 2-approximation algo-
rithms [5,11], improving upon the 3-approximation guarantee of [6]. In contrast,
such algorithms for the classic k-center problem have been known since the ’80s
[9,12]. That the approximation guarantee of 2 is tight, even for classic k-center,
was proved in [13].

At the same time, a subset-sum problem with polynomial-sized numbers is
embedded within the colorful k-center problem. To see this, consider n numbers
a1, . . . , an and let A =

∑n
i=1 ai. Construct an instance of the colorful k-center

problem with r = k · A + A/2, b = k · A − A/2, and for every i ∈ {1, . . . , n}, a
ball of radius one containing A + ai red points and A − ai blue points. These
balls are assumed to be far apart so that any single ball that covers two of these
balls must have a very large radius. It is easy to see that the constructed colorful
k-center instance has a solution of radius one if and only if there is a size k subset
of the n numbers whose sum equals A/2.

We use this connection to subset-sum to show that the standard lin-
ear programming (LP) relaxation of the colorful k-center problem has an
unbounded integrality gap even after a linear number of rounds of the pow-
erful Lasserre/Sum-of-Squares hierarchy (see Sect. 3). We remark that the stan-
dard linear programming relaxation gives a 2-approximation algorithm for the
outliers version even without applying lift-and-project methods. Another nat-
ural approach for strengthening the standard linear programming relaxation is
to add flow-based inequalities specially designed to solve subset-sum problems.
However, in AppendixB, we prove that they do not improve the integrality gap
due to the clustering feature of the problem. This shows that clustering and
the subset-sum problem are intricately related in colorful k-center. This inter-
play makes the problem more complex and prior to our work only a randomized
constant-factor approximation algorithm was known when the points are in R

2

with an approximation guarantee greater than 6 [4].
Our main result overcomes these difficulties and we give a nearly tight approx-

imation guarantee:

Theorem 1. There is a 3-approximation algorithm for the colorful k-center
problem.

Fair Colorful k-Center Clustering 211

As aforementioned, our techniques can be easily extended to a constant num-
ber of color classes but we restrict the discussion here to two colors. On a very
high level, our algorithm manages to decouple the clustering and the subset-sum
aspects. First, our algorithm guesses certain centers of the optimal solution that
it then uses to partition the point set into a “dense” part Pd and a “sparse” part
Ps. The dense part is clustered using a subset-sum instance while the sparse set is
clustered using the techniques of Bandyapadhyay, Inamdar, Pai, and Varadara-
jan [4] (see Sect. 2.1). Specifically, we use the pseudo-approximation of [4] that
satisfies the coverage requirements using k +1 balls of at most twice the optimal
radius.

While our approximation guarantee is nearly tight, it remains an interesting
open problem to give a 2-approximation algorithm or to show that the ratio 3
is tight. One possible direction is to understand the strength of the relaxation
obtained by combining the Lasserre/Sum-of-Squares hierarchy with the flow con-
straints. While we show that individually they do not improve the integrality
gap, we believe that their combination can lead to a strong relaxation.

Organization. We begin by giving some notation and definitions and describ-
ing the pseudo-approximation algorithm in [4]. In fact, we then describe a 2-
approximation algorithm on a certain class of instances that are well-separated,
and the 3-approximation follows almost immediately. This 2-approximation pro-
ceeds in two phases: the first is dedicated to the guessing of certain centers,
while the second processes the dense and sparse sets. In Sect. 3 we present our
integrality gap under the Sum-of-Squares hierarchy, and AppendixB contains
an integrality gap example for the flow constraints.

2 A 3-Approximation Algorithm

In this section we present our 3-approximation algorithm. We briefly describe
the pseudo-approximation algorithm of Bandhyapadhyay et al. [4] since we use
it as a subroutine in our algorithm.

Notation: We assume that our problem instance is normalized to have an opti-
mal radius of one and we refer to the set of centers in an optimal solution as
OPT . The set of all points at distance at most ρ from a point j is denoted by
B(j, ρ) and we refer to this set as a ball of radius ρ at j. We write B(p) for
B(p, 1). By a ball of OPT we mean B(p) for some p ∈ OPT .

2.1 The Pseudo-Approximation Algorithm

The algorithm of Bandhyapadhyay et al. [4] first guesses the optimal radius for
the instance (there are at most O(n2) distinct values the optimal radius can
take), which we assume to be one after normalization, and considers the natural
LP relaxation LP1 depicted on the left in Fig. 1. The variable xi indicates how
much point i is fractionally opened as a center and zi indicates the amount that
i is covered by centers.

212 X. Jia et al.

Given a fractional solution to LP1, the algorithm of [4] finds a clustering of
the points. The clusters that are produced are of radius two, and with a simple
modification (details and proof can be found in the full version), can be made
to have a special structure that we call a flower:

LP1
∑

i∈B(j)

xi ≥ zj , ∀j ∈ P

∑

i∈P

xi ≤ k

∑

j∈R

zj ≥ r,

∑

j∈B

zj ≥ b,

zj , xi ∈ [0, 1], ∀i, j ∈ P.

LP2

maximize
∑

j∈S

rjyj

subject to
∑

j∈S

bjyj ≥ b,

∑

j∈S

yj ≤ k,

yj ∈[0, 1] ∀j ∈ S.

Fig. 1. The linear programs used in the pseudo-approximation algorithm.

Definition 1. For j ∈ P , a flower centered at j is the set F(j) = ∪i∈B(j)B(i).

More specifically, given a fractional solution (x, z) to LP1, Algorithm 1 in [4]
produces a set of points S ⊆ P and a cluster Cj ⊆ P for every j ∈ S such that:

1. The set S is a subset of the points {j ∈ P : zj > 0} with positive z-values.
2. For each j ∈ S, we have Cj ⊆ F(j) and the clusters {Cj}j∈S are pairwise

disjoint.
3. If we let rj = |Cj ∩ R| and bj = |Cj ∩ B| for j ∈ S, then the linear program

LP2 (depicted on the right in Fig. 1) has a feasible solution y of value at
least r.

As LP2 has only two non-trivial constraints, any extreme point will have at most
two variables attaining strictly fractional values. So at most k + 1 variables of y
are non-zero. The pseudo-approximation of [4] now simply takes those non-zero
points as centers. Since each flower is of radius two, this gives a 2-approximation
algorithm that opens at most k + 1 centers. (Note that, as the clusters {Cj}j∈S

are pairwise disjoint, at least b blue points are covered, and at least r red points
are covered since the value of the solution is at least r.)

Obtaining a constant-factor approximation algorithm that only opens k cen-
ters turns out to be significantly more challenging. Nevertheless, the above tech-
niques form an important subroutine in our algorithm. Given a fractional solu-
tion (x, z) to LP1, we proceed as above to find S and an extreme point to LP2
of value at least r. However, instead of selecting all points with positive y-value,

Fair Colorful k-Center Clustering 213

we, in the case of two fractional values, only select the one whose cluster covers
more blue points. This gives us a solution of at most k centers whose clusters
cover at least b blue points. Furthermore, the number of red points that are
covered is at least r − maxj∈S rj since we disregarded at most one center. As
S ⊆ {j : zj > 0} (see first property above) and Cj ⊆ F(j) (see second property
above), we have maxj∈S rj ≤ maxj:zj>0 |F(j) ∩ R|. We summarize the obtained
properties in the following lemma.

Lemma 1. Given a fractional solution (x, z) to LP1, there is a polynomial time
algorithm that outputs at most k clusters of radius two that cover at least b blue
points and at least r − maxj:zj>0 |F(j) ∩ R| red points.

We can thus find a 2-approximate solution that covers sufficiently many blue
points but may cover fewer red points than necessary. The idea now is that, if the
number of red points in any cluster is not too large, i.e., maxj:zj>0 |F(j) ∩ R| is
“small”, then we can hope to meet the coverage requirements for the red points
by increasing the radius around some opened centers. Our algorithm builds on
this intuition to get a 2-approximation algorithm using at most k centers for
well-separated instances as defined below.

Definition 2. An instance of colorful k-center is well-separated if there does
not exist a ball of radius three that covers at least two balls of OPT .

Our main result of this section can now be stated as follows:

Theorem 2. There is a 2-approximation algorithm for well-separated instances.

The above theorem immediately implies Theorem 1, i.e., the 3-approximation
algorithm for general instances. Indeed, if the instance is not well-separated, we
can find a ball of radius three that covers at least two balls of OPT by trying all n
points and running the pseudo-approximation of [4] on the remaining uncovered
points with k − 2 centers. In the correct iteration, this gives us at most k − 1
centers of radius two, which when combined with the ball of radius three that
covers two balls of OPT , is a 3-approximation.

Our algorithm for well-separated instances now proceeds in two phases with
the objective of finding a subset of P on which the pseudo-approximation algo-
rithm produces subsets of flowers containing not too many red points. In addi-
tion, we maintain a partial solution set of centers (some guessed in the first
phase), so that we can expand the radius around these centers to recover the
deficit of red points from closing one of the fractional centers.

2.2 Phase I

In this phase we will guess some balls of OPT that can be used to construct a
bound on maxj:zj>0 |R ∩ F(j)|. To achieve this, define the notion of Gain(p, q)
for any point p ∈ P and q ∈ B(p).

214 X. Jia et al.

Definition 3. For any p ∈ P and q ∈ B(p), let

Gain(p, q) := R ∩ (F(q) \ B(p))

be the set of red points added to B(p) by forming a flower centered at q.

Our algorithm in this phase proceeds by guessing three centers c1, c2, c3 of
the optimal solution OPT :

For i = 1, 2, 3, guess the center ci in OPT and calculate the point
qi ∈ B(ci) such that the number of red points in Gain(ci, qi) ∩ Pi is
maximized over all possible ci, where

P1 = P

Pi = Pi−1 \ F(qi−1) for 2 ≤ i ≤ 4.

The time it takes to guess c1, c2, and c3 is O(n3) and for each ci we find the
qi ∈ B(ci) such that |Gain(ci, qi)∩Pi| is maximized by trying all points in B(ci)
(at most n many).

For notation, define Guess := ∪3
i=1B(ci) and let

τ = |Gain(c3, q3) ∩ P3|.

The important properties guaranteed by the first phase is summarized in the
following lemma.

Lemma 2. Assuming that c1, c2, and c3 are guessed correctly, we have that

1. the k − 3 balls of radius one in OPT \ {ci}3i=1 are contained in P4 and cover
b − |B ∩ Guess| blue points and r − |R ∩ Guess| red points; and

2. the three clusters F(q1),F(q2), and F(q3) are contained in P \ P4 and cover
at least |B ∩ Guess| blue points and at least |R ∩ Guess| + 3 · τ red points.

Proof. (1) We claim that the intersection of any ball of OPT \{ci}3i=1 with F(qi)
in P is empty, for all 1 ≤ i ≤ 3. Then the k−3 balls in OPT \{ci}3i=1 satisfy the
statement of (1). To prove the claim, suppose that there is p ∈ OPT \{ci}3i=1

such that B(p)∩F(qi) �= ∅ for some 1 ≤ i ≤ 3. Note that F(qi) = ∪i∈B(qi)B(i),
so this implies that B(p) ∩ B(q′) �= ∅, for some q′ ∈ B(qi). Hence, a ball
of radius three around q′ covers both B(p) and B(ci) as ci ∈ B(qi), which
contradicts that the instance is well-separated.

(2) Note that for 1 ≤ i ≤ 3, B(ci) ∪ Gain(ci, qi) ⊆ F(qi), and that B(ci) and
Gain(ci, qi) are disjoint. The balls B(ci) cover at least |B ∩ Guess| blue
points and |R ∩ Guess| red points, while

∑3
i=1 |Gain(ci, qi) ∩ Pi| ≥ 3τ .

�

Fair Colorful k-Center Clustering 215

2.3 Phase II

Throughout this section we assume c1, c2, and c3 have been guessed correctly in
Phase I so that the properties of Lemma 2 hold. Furthermore, by the selection
and the definition of τ , we also have

|Gain(p, q) ∩ P4| ≤ τ for any p ∈ P4 ∩ OPT and q ∈ B(p) ∩ P4. (1)

This implies that F(p) \ B(p) contains at most τ red points of P4. However, to
apply Lemma 1 we need that the number of red points of P4 in the whole flower
F(p) is bounded. To deal with balls with many more than τ red points, we will
iteratively remove dense sets from P4 to obtain a subset Ps of sparse points.

cj p cj i p

(a) (b)

Fig. 2. The shaded regions are subsets of Gain(c,p), which contain the darkly shaded
regions that have > τ red points. (Color figure online)

Definition 4. When considering a subset of the points Ps ⊆ P , we say that a
point j ∈ Ps is dense if the ball B(j) contains strictly more than 2 · τ red points
of Ps. For a dense point j, we also let Ij ⊆ Ps contain those points i ∈ Ps whose
intersection B(i) ∩ B(j) contains strictly more than τ red points of Ps.

We remark that in the above definition, we have in particular that j ∈ Ij for
a dense point j ∈ Ps. Our iterative procedure now works as follows:

Initially, let I = ∅ and Ps = P4. While there is a dense point j ∈ Ps:
– Add Ij to I and update Ps by removing the points Dj = ∪i∈IjB(i)∩Ps.

Let Pd = P4 \Ps denote those points that were removed from P4. We will cluster
the two sets Ps and Pd of points separately. Indeed, the following lemma says
that a center in OPT \ {ci}3i=1 either covers points in Ps or Pd but not points
from both sets. Recall that Dj denotes the set of points that are removed from
Ps in the iteration when j was selected and so Pd = ∪jDj .

Lemma 3. For any c ∈ OPT \ {ci}3i=1 and any Ij ∈ I, either c ∈ Ij or
B(c) ∩ Dj = ∅.
Proof. Let c ∈ OPT \ {ci}3i=1, Ij ∈ I, and suppose c /∈ Ij . If B(c) ∩ Dj �= ∅,
there is a point p in the intersection B(c) ∩ B(i) for some i ∈ Ij . Suppose first
that B(c) ∩ B(j) �= ∅. Then, since c /∈ Ij , the intersection B(c) ∩ B(j) contains
fewer than τ red points from Dj (recall that Dj contains the points of B(j) in
Ps at the time j was selected). But by the definition of dense clients, B(j) ∩ Dj

216 X. Jia et al.

has more than 2 · τ red points, so (B(j) \ B(c)) ∩ Dj has more than τ red points.
This region is a subset of Gain(c, p) ∩ P4, which contradicts (1). This is shown
in Fig. 2(a). Now consider the second case when B(c) ∩ B(j) = ∅ and there is a
point p in the intersection B(c) ∩ B(i) for some i ∈ Ij and i �= j. Then, by the
definition of Ij , B(i) ∩ B(j) has more than τ red points of Dj . However, this is
also a subset of Gain(c, p)∩P4 so we reach the same contradiction. See Fig. 2(b).

�
Our algorithm now proceeds by guessing the number kd of balls of OPT \

{ci}3i=1 contained in Pd. We also guess the numbers rd and bd of red and blue
points, respectively, that these balls cover in Pd. Note that after guessing kd,
we know that the number of balls in OPT \ {ci}3i=1 contained in Ps equals
ks = k − 3 − kd. Furthermore, by the first property of Lemma2, these balls
cover at least bs = b − |B ∩ Guess| − bd blue points in Ps and at least rs =
r−|R∩Guess|−rd red points in Ps. As there are O(n3) possible values of kd, bd,
and rd (each can take a value between 0 and n) we can try all possibilities by
increasing the running time by a multiplicative factor of O(n3). Henceforth, we
therefore assume that we have guessed those parameters correctly. In that case,
we show that we can recover an equally good solution for Pd and a solution for
Ps that covers bs blue points and almost rs red points:

Lemma 4. There exist two polynomial-time algorithms Ad and As such that
if kd, rd, and bd are guessed correctly then

– Ad returns kd balls of radius one that cover bd blue points of Pd and rd red
points of Pd;

– As returns ks balls of radius two that cover at least bs blue points of Ps and
at least rs − 3 · τ red points of Ps.

Proof. We first describe and analyze the algorithm Ad followed by As.

The algorithm Ad for the dense point set Pd. By Lemma 3, we have that all kd
balls in OPT \ {ci}3i=1 that cover points in Pd are centered at points in ∪jIj .
Furthermore, we have that each Ij contains at most one center of OPT . This
is because every i ∈ Ij is such that B(i) ∩ B(j) �= ∅ and so, by the triangle
inequality, B(j, 3) contains all balls {B(i)}i∈Ij . Hence, by the assumption that
the instance is well-separated, the set Ij contains at most one center of OPT .

We now reduce our problem to a 3-dimensional subset-sum problem. For each
Ij ∈ I, form a group consisting of an item for each p ∈ Ij . The item corresponding
to p ∈ Ij has the 3-dimensional value vector (1, |B(p)∩Dj ∩B|, |B(p)∩Dj ∩R|).
Our goal is to find kd items such that at most one item per group is selected and
their 3-dimensional vectors sum up to (kd, bd, rd). Such a solution, if it exists, can
be found by dynamic programming that has a table of size O(n4). The recurrence
and precise details of this are given in AppendixA. Furthermore, since the Dj ’s
are disjoint by definition, this gives kd centers that cover bd blue points and rd
red points in Pd, as required in the statement of the lemma.

Fair Colorful k-Center Clustering 217

It remains to show that such a solution exists. Let o1, o2, . . . , okd
denote the

centers of the balls in OPT \ {ci}3i=1 that cover points in Pd. Furthermore, let
Ij1 , . . . , Ijkd

be the sets in I such that oi ∈ Iji for i ∈ {1, . . . , kd}. Notice that
by Lemma 3 we have that B(oi) ∩ Pd is disjoint from Pd \ Dji and contained in
Dji . It follows that the 3-dimensional vector corresponding to an OPT center oi
equals (1, |B(p) ∩ Pd ∩ B|, |B(p) ∩ Pd ∩ R|). Therefore, the sum of these vectors
corresponding to o1, . . . , okd

results in the vector (kd, bd, rd), where we used that
our guesses of kd, bd, and rd were correct.

The algorithm As for the sparse point set Ps. Assuming that the guesses are
correct we have that OPT \ {ci}3i=1 contains ks balls that cover bs blue points
of Ps and rs red points of Ps. Hence, LP1 has a feasible solution (x, z) to the
instance defined by the point set Ps, the number of balls ks, and the constraints
bs and rs on the number of blue and red points to be covered, respectively.
Lemma 1 then says that we can in polynomial-time find ks balls of radius two
such that at least bs blue balls of Ps are covered and at least

rs − max
j:zj>0

|F(j) ∩ R|

red points of Ps are covered. Here, F(j) refers to the flower restricted to the
point set Ps.

To prove the second part of Lemma 4, it is thus sufficient to show that LP1
has a feasible solution where zj = 0 for all j ∈ Ps such that |F(j)∩R| > 3 · τ . In
turn, this follows by showing that, for any such j ∈ Ps with |F(j)∩R| > 3 ·τ , no
point in B(j) is in OPT (since then zj = 0 in the integral solution corresponding
to OPT).

To see why this holds, suppose towards a contradiction that there is a c ∈
OPT such that c ∈ B(j). First, since there are no dense points in Ps, we have
that the number of red points in B(c)∩Ps is at most 2 · τ . Therefore the number
of red points of Ps in F(j)\B(c) is strictly more than τ . In other words, we have
τ < |Gain(c, j) ∩ Ps| ≤ |Gain(c, j) ∩ P4| which contradicts (1).
�

Equipped with the above lemma we are now ready to finalize the proof of
Theorem 2.

Proof of Theorem 2. Our algorithm guesses the optimal radius, the centers
c1, c2, c3 in Phase I, and kd, rd, bd in Phase II. There are at most

(
n
2

)
choices

of the optimal radius, n choices for each ci, and n + 1 choices of kd, rd, bd (rang-
ing from 0 to n). We can thus try all these possibilities in polynomial time and,
since all other steps in our algorithm run in polynomial time, the total running
time will be polynomial. The algorithm tries all these guesses and outputs the
best solution found over all choices. For the correct guesses, we output a solution
with 3 + kd + ks = k balls of radius at most two. Furthermore, by the second
property of Lemma 2 and the two properties of Lemma 4, we have that

– the number of blue points covered is at least |B ∩ Guess| + bd + bs = b; and
– the number of red points covered is at least |R ∩ Guess|+3τ+rd+rs−3τ = r.

We have thus given a polynomial-time algorithm that returns a solution where
the balls are of radius at most twice the optimal radius.
�

218 X. Jia et al.

3 Sum-of-Squares Integrality Gap

By “integrality gap” of the feasibility relaxation LP1 we mean the largest ratio
between ρ such that LP1 with balls of radius ρ is feasible, and the radius of the
optimal integral solution, for any instance of colorful k-center. In essence, the
pseudo-approximation algorithm finds too many centers because the clustering
S comes from LP1 which has unbounded integrality gap and there is no feasible
subset-sum solution with the clusters in S as the items.

The Sum-of-Squares (abbreviated SoS, equivalently Lasserre [15,16]) hierar-
chy is a method of strengthening linear programs that has been used with varying
degrees of success in constraint satisfaction problems, set-cover, and graph col-
oring, to just name a few examples [2,8,17]. For a succinct definition see [14]. A
known weakness of SoS is in recognizing the infeasibility of knapsack constraints.
Likewise, we show that SoS does not improve the integrality gap of LP1 in a
small number of rounds.

We use a reduction from Grigoriev’s SoS lower bound for knapsack [10].

Theorem 3 (Grigoriev). At least min{2�min{k/2, n − k/2}
 + 3, n} rounds
of SoS are required to recognize that the following is infeasible for k ∈ Z odd.

n∑

i=1

2xi = k, xi ∈ {0, 1} ∀i. (2)

Consider an instance of colorful k-center with 8n points, k = n, r = b = 2n,
and n odd. The points are in pairs of clusters of radius one. There are three blue
points and one red point in one cluster and one blue point and three red points
in the other, as shown in Fig. 3. In an optimal integer solution, one center needs
to cover two of these clusters while a fractional solution satisfying LP1 can open
1/2 of a center around each cluster. Hence, LP1 has an unbounded integrality
gap since the clusters can be arbitrarily far apart. This instance takes an odd
number of copies of the integrality gap example given in [4].

n

Fig. 3. Integrality gap example for linear rounds of SoS (Color figure online)

We can do a simple mapping from a feasible solution for the tth round of
SoS on (2) to our variables in the tth round of SoS on LP1 for this instance

Fair Colorful k-Center Clustering 219

to demonstrate that the infeasibility of balls of radius one is not recognized.
Intuitively, we can assign a variable xi to each pair of clusters of radius one as
shown in Fig. 3, corresponding to opening each cluster in the pair by xi amount.
Then a feasible opening of centers reduces to a feasible assignment of variables
in Theorem 3. Formal details can be found in the full version.

Theorem 4. The integrality gap of LP1 with 8n points persists up to n rounds
of Sum-of-Squares. �

Appendix A Dynamic Programming for Dense Points

In this section we describe the dynamic programming algorithm discussed in
Lemma 4. As stated in the proof of Lemma 4, given I = ∪jIj and correct
guesses for kd, bd, rd, we need to find kd balls of radius one centered at points
in I covering bd blue and rd red points with at most one point from each
Ij ∈ I picked as a center. To do this, we first order the sets in I arbitrarily
as I = {Ij1 , . . . , Ijm},m = |I|. We create a 4-dimensional table T of dimension
(m, bd, rd, kd). T [m′, b′, r′, k′] stores whether there is a set of k′ balls in the first
m′ sets of I covering b′ blue and r′ red points. The recurrence relation for T is

T [0, 0, 0, 0] = True
T [0, b′, r′, k′] = False, for any b′, r′, k′ �= 0

T [m′, b′, r′, k′] =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

True if T [m′ − 1, b′, r′, k′] = True
True if ∃c ∈ Ijm′ s.t. T [m′ − 1, b′′, r′′, k′ − 1] = True, for

b′′ = b′ − |B(c) ∩ B|, r′′ = r′ − |B(c) ∩ R|
False otherwise

.

The table T has size O((m + 1) · (n + 1) · (n + 1) · (n + 1)) = O(n4) since the
first parameter has range from 0 to m, and the other parameters can have value
0 up to at most n. Moreover, since |Ij | ≤ n for all Ij ∈ I, we can compute the
whole table in time O(n5) using for e.g. the bottom-up approach. We can also
remember the choices in a separate table and so we can find a solution in time
O(n5) if it exists.

Appendix B Flow Constraints

In this section we add additional constraints to LP1 that incorporate natural
subset-sum requirements for the fractional centers produced by LP1. The objec-
tive is to obtain a better clustering, but we show that this fails to reduce the
integrality gap.

We define an instance of a multi-dimensional subset-sum problem. Each point
p ∈ P corresponds to an item with three dimensions: a dimension of size one,
|B ∩ B(p)|, and |R ∩ B(p)|. We set up a flow network with an (n+1)×n×n×k grid
of nodes and we name the nodes with the coordinate (w, x, y, z) of its position.

220 X. Jia et al.

Flow 2

Flow 1

Fig. 4. k = 3, r = b = 8 (Color figure online)

The source is located at (0, 0, 0, 0) and we add an extra node t for the sink.
Assign an arbitrary order to the points in P . For the item corresponding to
i ∈ P , for each x ∈ [n], y ∈ [n], z ∈ [k]:

1. Add an edge from (i, x, y, z) to (i + 1, x, y, z) with flow variable ei,x,y,z.
2. With bi := |B ∩ B(i)| and ri := |R ∩ B(i)|, if z < k add an edge from

(i, x, y, z) to (i + 1,min{x + bi, n},min{y + bi, n}, z + 1) with flow variable
fi,x,y,z.

For each x ∈ [b, n], y ∈ [r, n]:

3. Add an edge from (n + 1, x, y, k) to t with flow variable gx,y.

Set the capacities of all edges to one. In addition to the constraint that there
should be one unit of flow from s to t and the usual flow conservation constraints,
we add to LP1 the constraints

xi =
∑

x,y∈[n],z∈[k]

fi,x,y,z for all i ∈ P (3)

1 − xi =
∑

x,y∈[n],z∈[k]

ei,x,y,z for all i ∈ P. (4)

We refer to the resulting linear program as LP3. Notice that by definition, any
path P from s to t defines a set CP of at most k centers by taking those points
c for which fc,x,y,z ∈ P for some x, y, and z. Moreover, as t can only be reached
from a coordinate with x ≥ b and y ≥ r we have that

∑
c∈CP

|B(c) ∩ B| ≥ b
and

∑
c∈CP

|B(c) ∩ R| ≥ r. It follows that CP forms a solution to the problem
of radius one if the balls are disjoint. In particular, our integrality gap instances
for the Sum-of-Squares hierarchy do not fool LP3.

However, the example in Fig. 4 shows that in an instance where balls overlap,
the integrality gap remains large. Here, the fractional assignment of open centers
is 1/2 for each of the six balls and this gives a fractional covering of 8 red and
8 blue points as required. This assignment also satisfies the flow constraints
because the three balls at the top of the diagram define a path disjoint from the
three at the bottom. By double counting the five points in the intersection of
two balls we cover 8 red and 8 blue points with each set of three balls. Hence,
we can send flow along each path. However, this does not give a feasible integral

Fair Colorful k-Center Clustering 221

solution with three centers as any set of three clusters does not contain enough
points. In fact, the four clusters can be placed arbitrarily far from each other
and in this way we have an unbounded integrality gap since one ball needs to
cover two clusters.

References

1. Anagnostopoulos, A., et al.: Principal fairness: removing bias via projections.
CoRR abs/1905.13651 (2019)

2. Arora, S., Ge, R.: New tools for graph coloring. In: Goldberg, L.A., Jansen, K.,
Ravi, R., Rolim, J.D.P. (eds.) APPROX/RANDOM -2011. LNCS, vol. 6845, pp.
1–12. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-22935-0 1

3. Backurs, A., Indyk, P., Onak, K., Schieber, B., Vakilian, A., Wagner, T.: Scalable
fair clustering. In: Proceedings of the 36th International Conference on Machine
Learning, ICML, pp. 405–413 (2019)

4. Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.R.: A constant approxi-
mation for colorful k-center. In: 27th Annual European Symposium on Algorithms,
ESA, pp. 12:1–12:14 (2019)

5. Chakrabarty, D., Goyal, P., Krishnaswamy, R.: The non-uniform k-center problem.
In: 43rd International Colloquium on Automata, Languages, and Programming,
ICALP, pp. 67:1–67:15 (2016)

6. Charikar, M., Khuller, S., Mount, D.M., Narasimhan, G.: Algorithms for facility
location problems with outliers. In: Proceedings of the 12th Annual ACM-SIAM
Symposium on Discrete Algorithms (SODA), pp. 642–651 (2001)

7. Chierichetti, F., Kumar, R., Lattanzi, S., Vassilvitskii, S.: Fair clustering through
fairlets. In: Advances in Neural Information Processing Systems (NIPS), pp. 5029–
5037 (2017)

8. Chlamtac, E., Friggstad, Z., Georgiou, K.: Understanding set cover: sub-
exponential time approximations and lift-and-project methods. CoRR
abs/1204.5489 (2012)

9. Gonzalez, T.F.: Clustering to minimize the maximum intercluster distance. Theo-
ret. Comput. Sci. 38, 293–306 (1985)

10. Grigoriev, D.: Complexity of positivstellensatz proofs for the knapsack. Comput.
Complex. 10(2), 139–154 (2001)

11. Harris, D.G., Pensyl, T., Srinivasan, A., Trinh, K.: A lottery model for center-type
problems with outliers. ACM Trans. Algorithms 15(3), 36:1–36:25 (2019)

12. Hochbaum, D.S., Shmoys, D.B.: A best possible heuristic for the k-center problem.
Math. Oper. Res. 10(2), 180–184 (1985)

13. Hsu, W.L., Nemhauser, G.L.: Easy and hard bottleneck location problems. Discrete
Appl. Math. 1(3), 209–215 (1979)

14. Karlin, A.R., Mathieu, C., Nguyen, C.T.: Integrality gaps of linear and semi-
definite programming relaxations for knapsack. In: Günlük, O., Woeginger, G.J.
(eds.) IPCO 2011. LNCS, vol. 6655, pp. 301–314. Springer, Heidelberg (2011).
https://doi.org/10.1007/978-3-642-20807-2 24

15. Lasserre, J.B.: An explicit exact SDP relaxation for nonlinear 0–1 programs. In:
Aardal, K., Gerards, B. (eds.) IPCO 2001. LNCS, vol. 2081, pp. 293–303. Springer,
Heidelberg (2001). https://doi.org/10.1007/3-540-45535-3 23

https://doi.org/10.1007/978-3-642-22935-0_1
https://doi.org/10.1007/978-3-642-20807-2_24
https://doi.org/10.1007/3-540-45535-3_23

222 X. Jia et al.

16. Lasserre, J.B.: Global optimization with polynomials and the problem of moments.
SIAM J. Optim. 11(3), 796–817 (2001)

17. Tulsiani, M.: CSP gaps and reductions in the Lasserre hierarchy. In: Proceedings of
the 41st Annual ACM Symposium on Theory of Computing, STOC, pp. 303–312
(2009)

Popular Branchings and Their Dual
Certificates

Telikepalli Kavitha1, Tamás Király2, Jannik Matuschke3, Ildikó Schlotter4,
and Ulrike Schmidt-Kraepelin5(B)

1 TIFR, Mumbai, India
kavitha@tifr.res.in

2 Eötvös University, Budapest, Hungary
tkiraly@cs.elte.hu

3 KU Leuven, Leuven, Belgium
jannik.matuschke@kuleuven.be

4 Budapest University of Technology and Economics, and KRTK KTI,
Budapest, Hungary
ildi@cs.bme.hu

5 Technische Universität Berlin, Berlin, Germany
u.schmidt-kraepelin@tu-berlin.de

Abstract. Let G be a digraph where every node has preferences over its
incoming edges. The preferences of a node extend naturally to preferences
over branchings, i.e., directed forests; a branching B is popular if B does
not lose a head-to-head election (where nodes cast votes) against any
branching. Such popular branchings have a natural application in liquid
democracy. The popular branching problem is to decide if G admits a
popular branching or not. We give a characterization of popular branch-
ings in terms of dual certificates and use this characterization to design
an efficient combinatorial algorithm for the popular branching problem.
When preferences are weak rankings, we use our characterization to for-
mulate the popular branching polytope in the original space and also show
that our algorithm can be modified to compute a branching with least
unpopularity margin. When preferences are strict rankings, we show that
“approximately popular” branchings always exist.

1 Introduction

Let G be a directed graph where every node has preferences (in partial order)
over its incoming edges. When G is simple, the preferences can equivalently be
defined on in-neighbors. We define a branching as a subgraph of G that is a
directed forest where any node has in-degree at most 1; a node with in-degree 0
is a root. The problem we consider here is to find a branching that is popular.

Given any pair of branchings, we say a node u prefers the branching where it
has a more preferred incoming edge (being a root is u’s worst choice). If neither
incoming edge is preferred to the other, then u is indifferent between the two

Part of this work was done at the 9th Emléktábla workshop in Gárdony, Hungary.

c© Springer Nature Switzerland AG 2020
D. Bienstock and G. Zambelli (Eds.): IPCO 2020, LNCS 12125, pp. 223–237, 2020.
https://doi.org/10.1007/978-3-030-45771-6_18

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-45771-6_18&domain=pdf
https://doi.org/10.1007/978-3-030-45771-6_18

224 T. Kavitha et al.

branchings. So any pair of branchings, say B and B′, can be compared by asking
for the majority opinion, i.e., every node opts for the branching that it prefers,
and it abstains if it is indifferent between them. Let φ(B,B′) (resp., φ(B′, B))
be the number of nodes that prefer B (resp., B′) in the B-vs-B′ comparison. If
φ(B′, B) > φ(B,B′), then we say B′ is more popular than B.

Definition 1. A branching B is popular in G if there is no branching that is
more popular than B. That is, φ(B,B′) ≥ φ(B′, B) for all branchings B′ in G.

An Application in Computational Social Choice. We see the main appli-
cation of popular branchings within liquid democracy. Suppose there is an elec-
tion where a specific issue should be decided upon, and there are several proposed
alternatives. Every individual voter has an opinion on these alternatives, but
might also consider certain other voters as being better informed than her. Liq-
uid democracy is a novel voting scheme that provides a middle ground between
the feasibility of representative democracy and the idealistic appeal of direct
democracy [4]: Voters can choose whether they delegate their vote to another,
well-informed voter or cast their vote themselves. As the name suggests, voting
power flows through the underlying network, or in other words, delegations are
transitive. During the last decade, this idea has been implemented within sev-
eral online decision platforms such as Sovereign and LiquidFeedback1 and was
used for internal decision making at Google [22] and political parties, such as
the German Pirate Party or the Swedish party Demoex.

In order to circumvent delegation cycles, e.g., a situation in which voter x del-
egates to voter y and vice versa, and to enhance the expressiveness of delegation
preferences, several authors proposed to let voters declare a set of acceptable
representatives [20] together with a preference relation among them [5,22,30].
Then, a mechanism selects one of the approved representatives for each voter,
avoiding delegation cycles. Similarly as suggested in [6], we additionally assume
that voters accept themselves as their least preferred approved representative.

This reveals the connection to branchings in simple graphs where nodes corre-
spond to voters and the edge (x, y) indicates that voter x is an approved delegate
of voter y.2 Every root in the branching casts a weighted vote on behalf of all
her descendants. We assume that voters rate branchings only based on their pre-
decessors. This is justified when approved delegates are considered to be more
competent on the issue as well as in assessing the competence of others. What
is a good mechanism to select representatives for voters? A crucial aspect in
liquid democracy is the stability of the delegation process [3,14]. For the model
described above, we propose popular branchings as a new concept of stability.

Not every directed graph admits a popular branching. Consider the following
simple graph on four nodes a, b, c, d where a, b (similarly, c, d) are each other’s top
choices, while a, c (similarly, b, d) are each other’s second choices. There is no edge

1 See www.democracy.earth and www.interaktive-demokratie.org, respectively.
2 Typically, such a delegation is represented by an edge (y, x); for the sake of consis-

tency with downward edges in a branching, we use (x, y).

http://www.democracy.earth
http://www.interaktive-demokratie.org

Popular Branchings and Their Dual Certificates 225

between a, d (similarly, b, c). Consider the branching B = {(a, b), (a, c), (c, d)}.
A more popular branching is B′ = {(d, c), (c, a), (a, b)}. Observe that a and c
prefer B′ to B, while d prefers B to B′ and b is indifferent between B and B′. We
can similarly obtain a branching B′′ = {(b, a), (b, d), (d, c)} that is more popular
than B′. It is easy to check that this instance has no popular branching.

1.1 Our Problem and Results

The popular branching problem is to decide if a given digraph G admits a popular
branching or not, and if so, to find one. We show that determining whether a
given branching B is popular is equivalent to solving a min-cost arborescence
problem in an extension of G with appropriately defined edge costs (these edge
costs are a function of the branching). The dual LP to this arborescence problem
gives rise to a laminar set system that serves as a certificate for the popularity
of B if it is popular. This dual certificate proves crucial in devising an algorithm
for efficiently solving the popular branching problem.

Theorem 2. Given a directed graph G where every node has preferences in arbi-
trary partial order over its incoming edges, there is a polynomial-time algorithm
to decide if G admits a popular branching or not, and if so, to find one.

The proof of Theorem 2 is presented in Sect. 3; it is based on a characteriza-
tion of popular branchings that we develop in Sect. 2. In applications like liquid
democracy, it is natural to assume that the preference order of every node is
a weak ranking, i.e., a ranking of its incoming edges with possible ties. In this
case, the proof of correctness of our popular branching algorithm leads to a for-
mulation of the popular branching polytope BG, i.e., the convex hull of incidence
vectors of popular branchings in G.

Theorem 3. Let G be a digraph on n nodes and m edges where every node has
a weak ranking over its incoming edges. The popular branching polytope of G
admits a formulation of size O(2n) in R

m. Moreover, this polytope has Ω(2n)
facets.

We also show an extended formulation of BG in R
m+mn with O(mn) constraints.

When G has edge costs and node preferences are weak rankings, the min-cost
popular branching problem can be efficiently solved. So we can efficiently solve
extensions of the popular branching problem, such as finding one that minimizes
the largest rank used or one with given forced/forbidden edges.

Relaxing Popularity. Since popular branchings need not always exist in G,
this motivates relaxing popularity to approximate popularity—do approximately
popular branchings always exist in any instance G? An approximately popular
branching B may lose an election against another branching, however the extent
of this defeat will be bounded. There are two measures of unpopularity: unpop-
ularity factor u(·) and unpopularity margin μ(·). These are defined as follows:

u(B) = max
φ(B′,B)>0

φ(B′, B)
φ(B,B′)

and μ(B) = max
B′

φ(B′, B) − φ(B,B′).

226 T. Kavitha et al.

A branching B is popular if and only if u(B) ≤ 1 or μ(B) = 0. We show the
following results.

Theorem 4 (�3). A branching with minimum unpopularity margin in a digraph
where every node has a weak ranking over its incoming edges can be efficiently
computed. In contrast, when node preferences are in arbitrary partial order, the
minimum unpopularity margin problem is NP-hard.

Theorem 5 (�). Let G be a digraph where every node has a strict ranking over
its incoming edges. Then there always exists a branching B in G with u(B) ≤
�log n�. Moreover, for every n, we can show an instance Gn on n nodes with
strict rankings such that u(B) ≥ �log n� for every branching B in Gn.

Hardness Results for Restricted Popular Branching Problems. A nat-
ural optimization problem here is to compute a popular branching where no tree
is large. In liquid democracy, a large-sized tree shows a high concentration of
power in the hands of a single voter, and this is harmful for social welfare [20].
When there is a fixed subset of root nodes in a directed graph, it was shown
in [20] that it is NP-hard to find a branching that minimizes the size of the
largest tree. To translate this result to popular branchings, we need to allow
ties, whereas Theorem 6 below holds even for strict rankings. Another natural
restriction is to limit the out-degree of nodes; Theorem 6 also shows that this
variant is computationally hard.

Theorem 6 (�). Given a digraph G where each node has a strict ranking over
its incoming edges, it is NP-hard to decide if there exists

(a) a popular branching in G where each node has at most 9 descendants;
(b) a popular branching in G with maximum out-degree at most 2.

1.2 Background and Related Work

The notion of popularity was introduced by Gärdenfors [19] in 1975 in the domain
of bipartite matchings. Algorithmic questions in popular matchings have been
well-studied for the last 10–15 years [1,2,8,9,15,16,21,23–26,28,31].

Algorithms for popular matchings were first studied in the one-sided prefer-
ences model where vertices on only one side of the bipartite graph have prefer-
ences over their neighbors. Popular matchings need not always exist here and
there is an efficient algorithm to solve the popular matching problem [1]. The
functions unpopularity factor/margin were introduced in [31] to measure the
unpopularity of a matching; it was shown in [31] that it is NP-hard to compute
a matching that minimizes either of these quantities. In the domain of bipartite
matchings with two-sided strict preferences, popular matchings always exist since
stable matchings always exist [18] and every stable matching is popular [19].

3 Theorems marked by an asterisk (�) are proved in the full version [27] of our paper.

Popular Branchings and Their Dual Certificates 227

The concept of popularity has previously been applied to (undirected) span-
ning trees [10–12]. In contrast to our setting, voters have rankings over the entire
edge set. This allows for a number of different ways to derive preferences over
trees, most of which lead to hardness results.

Techniques. We characterize popular branchings in terms of dual certificates.
This is analogous to characterizing popular matchings in terms of witnesses (see
[15,24,26]). However, witnesses of popular matchings are in R

n and these are
far simpler than dual certificates. A dual certificate is an appropriate family of
subsets of the node set V . A certificate of size k implies that the unpopularity
margin of the branching is at most n−k. Our algorithm constructs a partition X ′

of V such that if G admits popular branchings, then there has to be some popular
branching in G with a dual certificate of size n supported by X ′. Moreover, when
nodes have weak rankings, X ′ supports some dual certificate of size n to every
popular branching in G: this leads to the formulation of BG (see Sect. 4). Our
positive results on low unpopularity branchings are extensions of our algorithm.

Notation. The preferences of node v on its incoming edges are given by a strict
partial order ≺v, so e ≺v f means that v prefers edge f to edge e. We use e ∼v f
to denote that v is indifferent between e and f , that is, neither e ≺v f nor e �v f
holds. The relation ≺v is a weak ranking if ∼v is transitive. In this case, ∼v is an
equivalence relation and there is a strict order on the equivalence classes. When
each equivalence class has size 1, we call it a strict ranking.

2 Dual Certificates

We add a dummy node r to G = (VG, EG) as the root and make (r, v) the least
preferred incoming edge of any node v in G. Let D = (V ∪{r}, E) be the resulting
graph where V = VG and E = EG ∪ {(r, u) : u ∈ V }. An r-arborescence in D is
an out-tree with root r (throughout the paper, all arborescences are assumed to
be rooted at r and to span V , unless otherwise stated).

Note that there is a one-to-one correspondence between branchings in G and
arborescences in D (simply make r the parent of all roots of the branching). A
branching is popular in G if and only if the corresponding arborescence is popular
among all arborescences in D.4 We will therefore prove our results for arbores-
cences in D. The corresponding results for branchings in G follow immediately
by projection, i.e., removing node r and its incident edges.

Let A be an arborescence in D. There is a simple way to check if A is popular
in D. Let A(v) be the incoming edge of v in A. For e = (u, v) in D, define:

cA(e) :=

⎧
⎪⎨

⎪⎩

0, if e �v A(v), i.e., v prefers e to A(v);
1, if e ∼v A(v), i.e., v is indifferent between e and A(v);
2, if e ≺v A(v), i.e., v prefers A(v) to e.

4 Note that, by the special structure of D, an arborescence is popular among all
arborescences in D if and only if it is a popular branching in D.

228 T. Kavitha et al.

Observe that cA(A) = |V | = n since cA(e) = 1 for every e ∈ A. Let A′ be
any arborescence in D and let Δ(A,A′) = φ(A,A′) − φ(A′, A) be the difference
in the number of votes for A and the number of votes for A′ in the A-vs-A′

comparison. Observe that cA(A′) = Δ(A,A′) + n. Thus, cA(A′) ≥ n = cA(A) if
and only if Δ(A,A′) ≥ 0. So we can conclude the following.

Proposition 7. Let A′ be a min-cost arborescence in D with respect to cA. Then
μ(A) = n−cA(A′). In particular, A is popular in D if and only if it is a min-cost
arborescence in D with edge costs given by cA.

Consider the following linear program LP1, which computes a min-cost
arborescence in D, and its dual LP2. For any non-empty X ⊆ V , let δ−(X)
be the set of edges entering the set X in the graph D.

minimize
∑

e∈E

cA(e) · xe (LP1)

subject to
∑

e∈δ−(X)

xe ≥ 1 ∀X ⊆ V, X
= ∅

xe ≥ 0 ∀ e ∈ E.

maximize
∑

X⊆V, X �=∅
yX (LP2)

subject to
∑

X: δ−(X)�e

yX ≤ cA(e) ∀ e ∈ E

yX ≥ 0 ∀X ⊆ V, X
= ∅.

For any feasible solution y to LP2, let Fy := {X ⊆ V : yX > 0} be the
support of y. Inspired by Edmonds’ branching algorithm [13], Fulkerson [17]
gave an algorithm to find an optimal solution y to LP2 such that y is integral.
From an alternative proof in [29], we obtain the following useful lemma.

Lemma 8. There exists an optimal, integral solution y∗ to LP2 such that Fy∗

is laminar.

Let y be an optimal, integral solution to LP2 such that Fy is laminar. Note
that for any nonempty X ⊆ V , there is an e ∈ A ∩ δ−(X) and thus yX ≤
cA(e) = 1. This implies that yX ∈ {0, 1} for all X. We conclude that Fy is a
dual certificate for A in the sense of the following definition.

Definition 9. A dual certificate for A is a laminar family Y ⊆ 2V such that
|{X ∈ Y : e ∈ δ−(X)}| ≤ cA(e) for all e ∈ E.

For the remainder of this section, let Y be a dual certificate maximizing |Y|.
Lemma 10. Arborescence A has unpopularity margin μ(A) = n − |Y|. Further-
more, the following three statements are equivalent:

Popular Branchings and Their Dual Certificates 229

(1) A is popular.
(2) |Y| = n.
(3) |A∩ δ−(X)| = 1 for all X ∈ Y and |{X ∈ Y : e ∈ δ−(X)}| = 1 for all e ∈ A.

Proof. Let x and y be the characteristic vectors of A and Y, respectively. By
Proposition 7, A is popular if and only if x is an optimal solution to LP1. This
is equivalent to (2) because cA(A) = n. Note also that (3) is equivalent to x and
y fulfilling complementary slackness, which is equivalent to x being optimal. ��

Lemma 10 establishes the following one-to-one correspondence between the
nodes in V and the sets of Y: For every set X ∈ Y, there is a unique edge
(u, v) ∈ A that enters X. We call v the entry-point for X. Conversely, we let Yv

be the unique set in Y for which v is the entry-point; thus Y = {Yv : v ∈ V }.

Observation 11. For every v ∈ V we have |{X ∈ Y : v ∈ X}| ≤ 2.

Observation 11 is implied by the fact that e = (r, v) is an edge in D for every
v ∈ V and cA(e) ≤ 2. Laminarity of Y yields the following corollary:

Corollary 12. If |Y| = n, then w ∈ Yv \{v} for some v ∈ V implies Yw = {w}.
The following definition of the set of safe edges S(X) with respect to a subset

X ⊆ V will be useful. S(X) is the set of edges (u, v) in E[X] := E ∩ (X × X)
such that properties 1 and 2 hold:

1. (u, v) is undominated in E[X], i.e., (u, v)
≺v (u′, v) ∀ (u′, v) ∈ E[X].
2. (u, v) dominates (w, v) ∀w /∈ X, i.e., (u, v) �v (w, v) ∀ (w, v) ∈ δ−(X).

The interpretation of S(X) is the following. Suppose that the dual certifi-
cate Y proves the popularity of A. Let X ∈ Y with |X| > 1. By Corollary 12,
for every node v ∈ X other than the entry-point in X we have {v} = Yv ∈ Y.
So edges in δ−(v) within E[X] enter exactly one dual set, i.e., {v}, while any
edge (w, v) where w /∈ X enters two of the dual sets: X and {v}. This induces
exactly the constraints (1) and (2) given above on (u, v) ∈ A (see LP2), showing
that the edge A(v) must be safe, as stated in Observation 13.

Observation 13. If A is popular, then A ∩ E[X] ⊆ S(X) for all X ∈ Y.

3 Popular Branching Algorithm

We are now ready to present our algorithm for deciding if D admits a popular
arborescence or not. For each v ∈ V , step 1 builds the largest set Xv such that v
can reach all nodes in Xv using edges in S(Xv). The collection X = {Xv : v ∈ V }
will be laminar (see Lemma 14). To construct the sets Xv we make use of the
monotonicity of S: X ⊆ X ′ implies S(X) ⊆ S(X ′).

In steps 2–3, the algorithm contracts each maximal set in X into a single
node and builds a graph D′ on these nodes and r. For each set X here that has
been contracted into a node, edges incident to X in D′ are undominated edges

230 T. Kavitha et al.

from other nodes in D′ to the candidate entry-points of X, which are nodes
v ∈ X such that X = Xv. Our proof of correctness (see Theorems 15–16) shows
that D admits a popular arborescence if and only if D′ admits an arborescence.

Our algorithm for computing a popular arborescence in D is given below.

1. For each v ∈ V do:
– let X0

v = V and i = 0;
– while v does not reach all nodes in the graph Di

v = (Xi
v, S(Xi

v)) do:
Xi+1

v = the set of nodes reachable from v in Di
v; let i = i + 1.

– let Xv = Xi
v.

2. Let X = {Xv : v ∈ V }, X ′ = {Xv ∈ X : Xv is ⊆ -maximal in X}, E′ = ∅.
3. For every edge e = (u, v) in D such that Xv ∈ X ′ and u /∈ Xv do:

– if e is undominated (i.e., e
≺v e′) among all edges e′ ∈ δ−(Xv), then

f(e) =

{
(U,Xv) where u ∈ U and U ∈ X ′,
(r,Xv) if u = r;

– let E′ := E′ ∪ {f(e)}.
4. If D′ = (X ′ ∪ {r}, E′) contains an arborescence Ã, then

– let A′ = {e : f(e) ∈ Ã};
– let R = {v ∈ V : |Xv| ≥ 2 and v has an incoming edge in A′};
– for each v ∈ R: let Av be an arborescence in (Xv, S(Xv));
– return A∗ = A′ ∪v∈R Av.

5. Else return “No popular arborescence in D”.

Correctness of the Above Algorithm. We will first show the easy direction,
that is, if the algorithm returns an edge set A∗, then A∗ is a popular arborescence
in D. The following lemma will be key to this. Note that the set Xu, for each
u ∈ V , is defined in step 1. Lemmas marked by (◦) are proved in the appendix.

Lemma 14 (◦). X = {Xv : v ∈ V } is laminar. If u ∈ Xv, then Xu ⊆ Xv.

Theorem 15 (�). If the above algorithm returns an edge set A∗, then A∗ is a
popular arborescence in D.

Proof (Sketch). It is straightforward to verify that A∗ is an arborescence in D.
To prove the popularity of A∗, we construct a dual certificate Y of size n for A∗,
by setting Y := {Xv : v ∈ R} ∪ {{v} : v ∈ V \ R}.

Note that |Y| = |R|+|V \R| = n. It remains to show that any edge (w, v) ∈ E
satisfies the constraints in LP2; let (u, v) be the incoming edge of v in A∗.

Suppose v ∈ R; then (u, v) ∈ A′ and u /∈ Xv. Consider any edge (w, v): this
enters one set of Y iff w
∈ Xv and no set iff w ∈ Xv. Hence, it suffices to show
that cA∗((w, v)) ∈ {1, 2} for w /∈ Xv. By construction of E′, (w, v) does not
dominate (u, v) and therefore cA∗((w, v)) ∈ {1, 2}.

Suppose v ∈ V \ R. Let s be v’s local root, i.e., the unique s ∈ R with
v ∈ Xs. Then (u, v) ∈ As ⊆ S(Xs) by construction of As. Any edge (w, v) ∈
δ−(v) enters at most two sets of Y: {v} and possibly Xs. If, on the one hand,

Popular Branchings and Their Dual Certificates 231

(w, v) ∈ δ−(Xs), then (u, v) ∈ S(Xs) dominates (w, v) by property 2 of S(Xs),
and hence cA∗((w, v)) = 2. If, on the other hand, w ∈ Xs, then (u, v) ∈ S(Xs)
is not dominated by (w, v) by property 1 of S(Xs), and hence cA∗((w, v)) ≥ 1.
Thus, any edge satisfies the constraints in LP2, proving the theorem. ��
Theorem 16. If D admits a popular arborescence, then our algorithm finds one.

Before we prove Theorem 16, we need Lemma 17 and Lemma 18.

Lemma 17 (◦). Let A be a popular arborescence and Y a dual certificate for
A of size n. Then Yv ⊆ Xv for any v ∈ V .

Lemma 18 (◦). Let A be a popular arborescence in D and let X ∈ X ′. Then
A enters X exactly once, and it enters X at some node v such that X = Xv.

Proof of Theorem 16. Assume there exists a popular arborescence A in D;
then there exists a dual certificate Y of size n for A. We will show there exists
an arborescence in D′. By Lemma 18, for each X ∈ X ′ there exists exactly one
edge eX = (u, v) of A that enters X and v is a candidate entry-point of X.

We claim that (u, v) is not dominated by any (u′, v) ∈ δ−(X). Recall that
by Lemma 17, we know Yv ⊆ Xv = X. If some (u′, v) ∈ δ−(X) dominates
(u, v) ∈ A, its cost must be cA((u′, v)) = 0. However, (u′, v) clearly enters
Yv ⊆ X, and thus violates LP2, contradicting our assumption that Y is a dual
solution. Hence, eX is undominated among the edges of δ−(X) ∩ δ−(v) and
therefore our algorithm creates an edge f(eX) in E′ pointing to X. Using the
fact that A is an arborescence in D, it is straightforward to verify that the edges
{f(eX) : X ∈ X ′} form an arborescence Ã in D′. Thus our algorithm returns an
edge set A∗, which by Theorem 15 must be a popular arborescence in D. ��

It is easy to see that step 1 (the bottleneck step) takes O(mn) time per node.
Hence the running time of the algorithm is O(mn2); thus Theorem 2 follows.

3.1 A Simple Extension of Our Algorithm: Algorithm MinMargin

Our algorithm can be extended to compute an arborescence with minimum
unpopularity margin when nodes have weak rankings. When D′ does not admit
an arborescence, algorithm MinMargin below computes a max-size branching
B̃ in D′ and adds edges from r to all root nodes in B̃ to construct an arbores-
cence. This arborescence in D′ is then transformed into an arborescence in D.

1. Let D′ be the graph constructed in our algorithm for Theorem 2, and let B̃
be a branching of maximum cardinality in D′.

2. Let B′ = {e | f(e) ∈ B̃}, R1 = {v ∈ V | δ−(v) ∩ B′
= ∅}, R2 = ∅.
3. For each X ∈ X ′ which is a root in the branching B̃, select one arbitrary

v ∈ V such that Xv = X, add v to R2 and (r, v) to B′.
4. For each v ∈ R1 ∪ R2: let Av be an arborescence in (Xv, S(Xv)).
5. Return A∗ := B′ ⋃

v∈R1∪R2
Av.

Theorem 19 (�). When nodes have weak rankings, Algorithm MinMargin
returns an arborescence with minimum unpopularity margin in D = (V ∪{r}, E).

232 T. Kavitha et al.

4 The Popular Arborescence Polytope of D

We now describe the popular arborescence polytope of D = (V ∪{r}, E) in R
m.

Throughout this section we assume that every node has a weak ranking over its
incoming edges. The arborescence polytope A of D is described below [29].

∑

e∈E[X]

xe ≤ |X| − 1 ∀X ⊆ V, |X| ≥ 2. (1)

∑

e∈δ−(v)

xe = 1 ∀ v ∈ V and xe ≥ 0 ∀ e ∈ E. (2)

We will define a subgraph D∗ = (V ∪ {r}, ED∗) of D: this is essentially the
expanded version of the graph D′ from our algorithm. The edge set of D∗ is:

ED∗ =
⋃

X∈X ′ S(X) ∪ {(u, v) ∈ E : Xv ∈ X ′, u /∈ Xv, and (u, v) is

undominated in δ−(Xv)}.

Thus each set X ∈ X ′, which is a node in D′, is replaced in D∗ by the nodes
in X and with edges in S(X) between nodes in X. We also replace edges in D′

between sets in X ′ by the original edges in E.

Lemma 20. If every node has a weak ranking over its incoming edges, then
every popular arborescence in D is an arborescence in D∗ that includes exactly
|X| − 1 edges from S(X) for each X ∈ X ′.

Proof. Let A be a popular arborescence in D and let X ∈ X ′. By Lemma 18
we know |A ∩ δ−(X)| = 1; moreover, the proof of Theorem 16 tells us that the
unique edge in A ∩ δ−(X) is contained in D∗. So A contains |X| − 1 edges from
E[X] for each X ∈ X ′. It remains to show that these |X| − 1 edges are in S(X).

Let u ∈ X. Suppose A(u) ∈ E[X] \ S(X). This means that either (i) A(u)
is dominated by some edge in E[X] ∪ δ−(X) or (ii) u is indifferent between
A(u) and some edge in δ−(X). Let Y be a dual certificate of A. We know that
Yu ⊆ Xu ⊆ X (by Lemma 17). Since the entry point of A into X is not in Yu,
there is an edge e ∈ S(X) ∩ δ−(Yu).

Let e enter w ∈ Yu. Since e ∈ S(X), we have e �w A(w) or e ∼w A(w), hence
cA(e) ∈ {0, 1}. If w
= u, then e enters two sets Yu and {w}—thus the constraint
in LP2 corresponding to edge e is violated. If w = u then e �u A(u) (since
A(u) ∈ E[X] \ S(X), e ∈ S(X), and u has a weak ranking over its incoming
edges): so cA(e) = 0. Since e enters one set Yu, the constraint corresponding to
e in LP2 is again violated. So A(u) ∈ S(X), i.e., A ∩ E[X] ⊆ S(X). ��

Hence, every popular arborescence in D satisfies constraints (1)–(2) along
with constraints (3) given below, where ED∗ is the edge set of D∗.

∑

e∈E[X]

xe = |X| − 1 ∀X ∈ X ′, |X| ≥ 2 and xe = 0 ∀ e ∈ E \ ED∗ (3)

Popular Branchings and Their Dual Certificates 233

Note that constraints (3) define a face F of the arborescence polytope A of D.
Thus every popular arborescence in D belongs to face F .

Consider a vertex in face F : this is an arborescence A in D of the form
A′ ∪X∈X ′ AX where (i) AX is an arborescence in (X,S(X)) whose root is an
entry-point of X and (ii) A′ = {eX : X ∈ X ′} where eX is an edge in D∗ entering
the root of AX . Theorem 15 proved that such an arborescence A is popular in D.
Thus we can conclude Theorem 21 which proves the upper bound in Theorem 3.
The lower bound in Theorem 3 is given in the appendix.

Theorem 21. If every node has a weak ranking over its incoming edges, then
face F (defined by constraints (1)–(3)) is the popular arborescence polytope of D.

A compact extended formulation of this polytope and all missing proofs are
in the full version of our paper [27]. We also discuss popular mixed branchings
(probability distributions over branchings) in the full version [27].

Acknowledgments. Thanks to Markus Brill for helpful discussions on liquid democ-
racy, and to Nika Salia for our conversations in Gárdony. Telikepalli Kavitha is sup-
ported by the DAE, Government of India, under project no. 12-R&D-TFR-5.01-0500,
Tamás Király is supported by NKFIH grant no. K120254 and by the HAS, grant
no. KEP-6/2017, Ildikó Schlotter was supported by the Hungarian Academy of Sci-
ences under its Momentum Programme (LP2016-3/2018) and Cooperation of Excel-
lences Grant (KEP-6/2018), and the Hungarian Scientific Research Fund, NFKIH,
grants no. K128611 and K124171, and Ulrike Schmidt-Kraepelin by the Deutsche For-
schungsgemeinschaft (DFG) under grant BR 4744/2-1.

Appendix: Missing Proofs from Sects. 3 and 4

Lemma 14 (◦). X = {Xv : v ∈ V } is laminar. If u ∈ Xv, then Xu ⊆ Xv.

Proof. We first show that Xi
u ⊆ Xi

v for any i, where we set Xi
v := Xv whenever

Xi
v is not defined by the above algorithm. The claim clearly holds for i = 0. Let

i be the smallest index such that x ∈ Xi
u \ Xi

v for some node x; we must have
x ∈ Xi−1

u ∩Xi−1
v . By the definition of Xi

u, x is reachable from u in S(Xi−1
u). Note

that Xi−1
u ⊆ Xi−1

v implies S(Xi−1
u) ⊆ S(Xi−1

v), which yields that x is reachable
from u in S(Xi−1

v) as well. Moreover, u is reachable from v in S(Xi−1
v) ⊇ S(Xv)

because u ∈ Xv and S(·) is monotone. Hence it follows that x is reachable from
v in S(Xi−1

v) via u, contradicting the assumption that x /∈ Xi
v. This proves the

second statement of the lemma.
Now we will show the laminarity of X . For contradiction, assume there exist

s, t ∈ V such that Xs and Xt cross, i.e., their intersection is non-empty, and
neither contains the other. Then, by the second statement of the lemma, neither
s ∈ Xt nor t ∈ Xs can hold. So we have that s /∈ Xt and t /∈ Xs.

Let (x, y) be an edge in S(Xt) such that y ∈ Xs ∩ Xt but x ∈ Xt \ Xs;
since each node in Xt is reachable from t in S(Xt), such an edge exists. Since
y ∈ Xs \ {s}, there also exists an edge (u, y) in S(Xs). As x /∈ Xs but (u, y) ∈
S(Xs), we know that (u, y) �y (x, y) which contradicts (x, y) ∈ S(Xt). ��

234 T. Kavitha et al.

Lemma 17 (◦). Let A be a popular arborescence and Y a dual certificate for A
of size n. Then Yv ⊆ Xv for any v ∈ V .

Proof. If Yv = {v}, then Yv ⊆ Xv is trivial, so suppose that Yv is not a singleton.
We know from Corollary 12 that Yw is a singleton set for each w ∈ Yv \ {v}.
Moreover, for every (u,w) ∈ A with w ∈ Yv \ {v} it holds that u ∈ Yv since this
edge would otherwise enter two sets; however, cA((u,w)) = 1 as (u,w) ∈ A.

Assume for contradiction that Yv \ Xv
= ∅. Let i be the last iteration when
Yv ⊆ Xi

v. Then there exists a subset of Yv which is not reachable by edges
in S(Xi

v), i.e., δ−(Yv \ Xi+1
v) ∩ S(Xi

v) = ∅. On the other hand, we know that
the arborescence A can only enter nodes in Yv \ {v} by edges from E[Yv], and
therefore, it needs to contain at least one edge from δ−(Yv \Xi+1

v)∩ δ+(X(i+1)
v).

Let (u,w) be this edge (see Fig. 1). By construction of Xi
v and Xi+1

v , we know
that one of the following cases has to be true.

Case 1. There exists an edge (x,w) ∈ E[Xi
v] which dominates (u,w). Note that

we do not know if (x,w) ∈ E[Yv] or not. However, cA((x,w)) = 0 in either case,
but by Corollary 12, (x,w) enters at least one set in Y, namely {w}. This is a
violation of LP2 and it contradicts Y being a dual certificate for A.

Case 2. There exists an edge (x,w) ∈ δ−(Xi
v) which is not dominated by (u,w).

Note that cA((x,w)) ∈ {0, 1}, but (x,w) ∈ δ−(Yv) and so the edge (x,w) enters
two dual sets: Yv and {w}. This contradicts Y being a dual solution. ��
Lemma 18 (◦). Let A be a popular arborescence in D and let X ∈ X ′. Then A
enters X exactly once, and it enters X at some node v such that X = Xv.

X i
v

X i+1
v

Yv

v
u

w

Fig. 1. Illustration of the situation in the proof of Lemma 17.

Proof. Let X ∈ X ′ and let A be a popular arborescence which enters X at some
node v ∈ V through an edge (u, v) ∈ A ∩ δ−(X). Moreover, let Y be a dual
certificate for A, and let Yv be the set whose entry-point is v.

Let entry(X) := {w ∈ V : Xw = X}. We first show that entry(X) ⊆ Yv.
Assume for contradiction that there exists w ∈ entry(X) such that w /∈ Yv. Since
Xw = X we know that there exists a w-v path P in (X,S(X)). Hence, there
exists an edge e ∈ P which enters Yv. If the head of e is v, we know that e

Popular Branchings and Their Dual Certificates 235

dominates (u, v) ∈ δ−(X) and hence cA(e) = 0, a contradiction to the feasibility
of Y. If v is not the head of e, then e not only enters Yv, but also the singleton
set corresponding to its head. However, cA(e) ≤ 1 since e is an undominated
edge by e ∈ S(X), a contradiction to the feasibility of Y.

To prove that v ∈ entry(X), let us choose some s ∈ entry(X). By the previous
paragraph and Lemma 17, we get s ∈ Yv ⊆ Xv, from which Lemma 14 implies
Xs ⊆ Xv. Because s ∈ entry(X), we have X = Xs ⊆ Xv. Because X ∈ X ′ is
inclusionwise maximal in X , we get X = Xv, proving v ∈ entry(X).

It remains to prove that A enters X only once. Suppose for contradiction
that there exist two nodes v, v′ ∈ entry(X) such that (u, v), (u′, v′) ∈ A∩ δ−(X).
By ∅
= entry(X) ⊆ Yv ∩Yv′ and the laminarity of Y, we can assume w.l.o.g. that
Yv ⊆ Yv′ . Moreover, since Yv′ ⊆ X, the arborescence edge (u, v) enters both Yv

and Yv′ , a contradiction to the feasibility of the dual solution Y. ��
Lower Bound for the Popular Arborescence Polytope of D. Let D =
(V ∪ {r}, E) be the complete graph where every node v ∈ V regards all other
nodes u ∈ V as top-choice in-neighbors and r as its second-choice in-neighbor.
Here X ′ = {V } and D∗ is the complete bidirected graph on V along with edges
(r, v) for all v ∈ V . We claim that in any minimal system contained in (1)–(3),
the constraint

∑
e∈E[X] xe ≤ |X| − 1 for every X ⊂ V with |X| ≥ 2 has to

be present. This is because a cycle on the nodes in X along with any rooted
arborescence A on V \ X plus (r, v), where v is the root of A, satisfies all the
remaining constraints. Thus any minimal system of inequalities from (1)–(3) has
to contain 2n − n − 2 inequalities from (1): one for every X ⊂ V with |X| ≥ 2.
Since inequalities in a minimal system are in one-to-one correspondence with
the facets of the polyhedron they describe [7, Theorem 3.30], the lower bound
given in Theorem 3 follows.

References

1. Abraham, D.J., Irving, R.W., Kavitha, T., Mehlhorn, K.: Popular matchings.
SIAM J. Comput. 37(4), 1030–1034 (2007)

2. Biró, P., Irving, R.W., Manlove, D.F.: Popular matchings in the marriage and
roommates problems. In: Calamoneri, T., Diaz, J. (eds.) CIAC 2010. LNCS, vol.
6078, pp. 97–108. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-
13073-1 10

3. Bloembergen, D., Grossi, D., Lackner, M.: On rational delegations in liquid democ-
racy. In: Proceedings of the 33rd AAAI Conference on Artificial Intelligence
(AAAI) (2019)

4. Blum, C., Zuber, C.I.: Liquid democracy: Potentials, problems, and perspectives.
J. Polit. Philos. 24(2), 162–182 (2016)

5. Brill, M.: Interactive democracy. In: Proceedings of the 17th International Confer-
ence on Autonomous Agents and Multiagent Systems (AAMAS) Blue Sky Ideas
Track, pp. 1183–1187 (2018)

6. Christoff, Z., Grossi, D.: Binary voting with delegable proxy: An analysis of liq-
uid democracy. In: Proceedings of the 16th Conference on Theoretical Aspects of
Rationality and Knowledge (TARK), pp. 134–150 (2017)

https://doi.org/10.1007/978-3-642-13073-1_10
https://doi.org/10.1007/978-3-642-13073-1_10

236 T. Kavitha et al.

7. Conforti, M., Cornuéjols, G., Zambelli, G.: Integer Programming. GTM, vol. 271.
Springer, Cham (2014). https://doi.org/10.1007/978-3-319-11008-0

8. Cseh, Á., Huang, C.C., Kavitha, T.: Popular matchings with two-sided preferences
and one-sided ties. SIAM J. Disc. Math. 31(4), 2348–2377 (2017)

9. Cseh, Á., Kavitha, T.: Popular edges and dominant matchings. Math. Program.
172(1), 209–229 (2017)

10. Darmann, A.: Popular spanning trees. Int. J. Found. Comput. Sci. 24(5), 655–677
(2013)

11. Darmann, A.: It is difficult to tell if there is a Condorcet spanning tree. Math.
Methods Oper. Res. 84(1), 93–104 (2016). https://doi.org/10.1007/s00186-016-
0535-3

12. Darmann, A., Klamler, C., Pferschy, U.: Finding socially best spanning trees. The-
ory Decis. 70(4), 511–527 (2011)

13. Edmonds, J.: Optimum branchings. J. Res. Nat. Bureau Stan. 71B(4), 233–240
(1967)

14. Escoffier, B., Gilbert, H., Pass-Lanneau, A.: The convergence of iterative delega-
tions in liquid democracy in a social network. In: Fotakis, D., Markakis, E. (eds.)
SAGT 2019. LNCS, vol. 11801, pp. 284–297. Springer, Cham (2019). https://doi.
org/10.1007/978-3-030-30473-7 19

15. Faenza, Y., Kavitha, T.: Quasi-popular matchings, optimality, and extended for-
mulations. In: Proceedings of the 31st Annual ACM-SIAM Symposium on Discrete
Algorithms (SODA), pp. 325–344 (2020)

16. Faenza, Y., Kavitha, T., Powers, V., Zhang, X.: Popular matchings and limits
to tractability. In: Proceedings of the 30th Annual ACM-SIAM Symposium on
Discrete Algorithms (SODA), pp. 2790–2809 (2019)

17. Fulkerson, D.R.: Packing rooted directed cuts in a weighted directed graph. Math.
Program. 6(1), 1–13 (1974)

18. Gale, D., Shapley, L.S.: College admissions and the stability of marriage. Am.
Math. Mon. 69(1), 9–15 (1962)

19. Gärdenfors, P.: Match making: Assignments based on bilateral preferences. Behav.
Sci. 20(3), 166–173 (1975)

20. Gölz, P., Kahng, A., Mackenzie, S., Procaccia, A.D.: The fluid mechanics of liq-
uid democracy. In: Christodoulou, G., Harks, T. (eds.) WINE 2018. LNCS, vol.
11316, pp. 188–202. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-
04612-5 13

21. Gupta, S., Misra, P., Saurabh, S., Zehavi, M.: Popular matching in roommates
setting is NP-hard. In: Proceedings of the 30th Annual ACM-SIAM Symposium
on Discrete Algorithms (SODA), pp. 2810–2822 (2019)

22. Hardt, S., Lopes, L.: Google votes: A liquid democracy experiment on a corporate
social network. Technical report, Technical Disclosure Commons (2015)

23. Huang, C.C., Kavitha, T.: Popular matchings in the stable marriage problem. Inf.
Comput. 222, 180–194 (2013)

24. Huang, C.C., Kavitha, T.: Popularity, mixed matchings, and self-duality. In: Pro-
ceedings of the 28th Annual ACM-SIAM Symposium on Discrete Algorithms
(SODA), pp. 2294–2310 (2017)

25. Kavitha, T.: A size-popularity tradeoff in the stable marriage problem. SIAM J.
Comput. 43(1), 52–71 (2014)

26. Kavitha, T.: Popular half-integral matchings. In: Proceedings of the 43rd Interna-
tional Colloquium on Automata, Languages, and Programming (ICALP), Leibniz
International Proceedings in Informatics (LIPIcs), vol. 55, pp. 22:1–22:13. Schloss
Dagstuhl-Leibniz-Zentrum fuer Informatik (2016)

https://doi.org/10.1007/978-3-319-11008-0
https://doi.org/10.1007/s00186-016-0535-3
https://doi.org/10.1007/s00186-016-0535-3
https://doi.org/10.1007/978-3-030-30473-7_19
https://doi.org/10.1007/978-3-030-30473-7_19
https://doi.org/10.1007/978-3-030-04612-5_13
https://doi.org/10.1007/978-3-030-04612-5_13

Popular Branchings and Their Dual Certificates 237

27. Kavitha, T., Király, T., Matuschke, J., Schlotter, I., Schmidt-Kraepelin, U.: Pop-
ular branchings and their dual certificates. Technical report 1912.01854 (2019).
https://arxiv.org/abs/1912.01854

28. Kavitha, T., Mestre, J., Nasre, M.: Popular mixed matchings. Theor. Comput. Sci.
412(24), 2679–2690 (2011)

29. Korte, B., Vygen, J.: Combinatorial Optimization. Springer, Heidelberg (2012).
https://doi.org/10.1007/978-3-642-24488-9

30. Kotsialou, G., Riley, L.: Incentivising participation in liquid democracy with
breadth first delegation. Technical report 1811.03710 (2018). https://arxiv.org/
abs/1811.03710

31. McCutchen, R.M.: The least-unpopularity-factor and least-unpopularity-margin
criteria for matching problems with one-sided preferences. In: Laber, E.S., Born-
stein, C., Nogueira, L.T., Faria, L. (eds.) LATIN 2008. LNCS, vol. 4957, pp. 593–
604. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-78773-0 51

https://arxiv.org/abs/1912.01854
https://doi.org/10.1007/978-3-642-24488-9
https://arxiv.org/abs/1811.03710
https://arxiv.org/abs/1811.03710
https://doi.org/10.1007/978-3-540-78773-0_51

Sparse Graphs and an Augmentation
Problem

Csaba Király1,2(B) and András Mihálykó2

1 MTA-ELTE Egerváry Research Group, Budapest, Hungary
2 Department of Operations Research, ELTE Eötvös Loránd University,

Budapest, Hungary
{cskiraly,mihalyko}@cs.elte.hu

Abstract. For two integers k > 0 and �, a graph G = (V, E) is called
(k, �)-tight if |E| = k|V | − � and |E(X)| ≤ k|X| − � for all X ⊆ V
for which k|X| − � ≥ 0. G is called (k, �)-redundant if G − e has a
spanning (k, �)-tight subgraph for all e ∈ E. We consider the following
augmentation problem. Given a graph G = (V, E) that has a (k, �)-tight
spanning subgraph, find a graph H = (V, F) with minimum number of
edges, such that G + H is (k, �)-redundant.

In this paper, we give a polynomial algorithm and a min-max theorem
for this augmentation problem when the input is (k, �)-tight. For general
inputs, we give a polynomial algorithm when k ≥ � and show the NP-
hardness of the problem when k < �. Since (k, �)-tight graphs play an
important role in rigidity theory, these algorithms can be used to make
several types of rigid frameworks redundantly rigid by adding a smallest
set of new bars.

1 Introduction

Let k be a positive integer and � be an integer such that � < 2k. A (multi)graph
G = (V,E) is called (k, �)-sparse if iG(X) ≤ k|X| − � for all X ⊆ V for
which k|X| − � ≥ 0, where iG(X) denotes the number of edges of G induced by
X ⊆ V . A (k, �)-sparse graph is called (k, �)-tight if |E| = k|V | − �. A graph G
is called (k, �)-rigid if G has a (k, �)-tight spanning subgraph. We will call an
edge e of G a (k, �)-redundant edge if G−e is (k, �)-rigid. A graph G is called
a (k, �)-redundant graph if each edge of G is (k, �)-redundant. We consider
the following augmentation problem that we call the general (augmentation)
problem.

Problem. Let k and � be integers with k ≥ 0 and � < 2k and let G = (V,E)
be a (k, �)-rigid graph. Find a graph H = (V, F) on the same vertex set with
minimum number of edges, such that G + H = (V,E ∪ F) is (k, �)-redundant.

We call the special case of this problem, where the input graph G is (k, �)-
tight, the reduced (augmentation) problem. In this extended abstract, we
give a min-max theorem and an O(n2) running time algorithm on a graph with
n vertices for fixed k and � for the reduced problem. We also show how this
c© Springer Nature Switzerland AG 2020
D. Bienstock and G. Zambelli (Eds.): IPCO 2020, LNCS 12125, pp. 238–251, 2020.
https://doi.org/10.1007/978-3-030-45771-6_19

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-45771-6_19&domain=pdf
http://orcid.org/0000-0001-8081-9056
http://orcid.org/0000-0002-0624-655X
https://doi.org/10.1007/978-3-030-45771-6_19

Sparse Graphs and an Augmentation Problem 239

algorithm can be extended to solve the general problem in the same running
time when � ≤ k. In contrast, we note that the general problem is NP-hard
whenever � > k. We leave all the detailed proofs to the full version [16].

Sparsity properties are important in rigidity theory as they can be used in
the characterization of many rigidity classes. For example, the generically rigid
graphs in R2 are exactly the (2, 3)-rigid graphs by the fundamental theorem of
Pollaczek-Geiringer [23] and Laman [17]. The ‘body-bar graph’ induced by a
given graph G is generically rigid in Rd if and only if G is

((
d+1
2

)
,
(
d+1
2

))
-rigid

by Tay’s theorem [25]. Note that G is (k, k)-rigid if and only if G contains k
edge-disjoint spanning trees by the fundamental result of Nash-Williams [21].

Besides the effect of redundancy, redundant rigidity is an important concept
in rigidity theory since variants of Hendrickson’s result [8] show that redundant
rigidity is often a necessary condition of ‘global rigidity’ which plays a crucial
role in many applications [1,28,29]. Furthermore, in some cases, for example for
‘body-bar graphs’ (see [3]), redundant rigidity is also a sufficient condition of
global rigidity. It is thus natural to ask how many new edges are needed to make
a rigid graph redundantly rigid.

Known Special Cases. The general problem for (1, 1)-rigid graphs is the well-
studied 2-edge-connectivity augmentation problem solved by Eswaran and Tar-
jan [4]. The general problem for k = � was solved by Frank and T. Király [6] who
gave a polynomial algorithm to augment a graph to an h-times (k, k)-redundant
graph using polyhedral techniques. The algorithm, that will be presented here,
is a more efficient solution for this problem, however, it does not deal with the
case of h ≥ 2 and also the (k, k)-rigidity of the input is needed. Garćıa and Tejel
[7] showed that the general problem is NP-hard for (2, 3)-rigid graphs but can
be solved in polynomial time for (2, 3)-tight graphs. We use similar techniques
to [7], however, our method is based on a new min-max theorem for the reduced
problem.

To obtain the solution for the general problem by using the reduced problem
when k ≥ �, we need more general concepts. The idea of our method comes
from Jackson and Jordán [9] who proved that the (k, k)-redundant edges of a
(k, k)-rigid graph Ḡ form induced subgraphs of Ḡ with disjoint vertex sets. If
we contract these subgraphs into single vertices one can show that the resulting
graph is (k, k)-tight for which we can use the algorithm for the reduced problem.
In order to extend this idea for k > �, we need the following generalization of
sparsity. Suppose throughout this paper that

(A0) � ∈ Z and m : V → Z+ such that m(u)+m(v) ≥ � holds for each u, v ∈ V
and equality is only allowed when m(u) = m(v) = � = 0.

A graph G = (V,E) is called (m, �)-sparse if iG(X) ≤ m(X)−� holds for every
X ⊆ V for which m(X) − � ≥ 0, where m(X) :=

∑
v∈X m(v). An (m, �)-sparse

graph is called (m, �)-tight if |E| = m(V) − �. Observe that each subgraph of
an (m, �)-sparse graph is (m, �)-sparse. For simplicity, we will call a set X ⊆ V
(m, �)-tight in G if the induced subgraphG[X] of X in G is (m, �)-tight.

240 Cs. Király and A. Mihálykó

A graph G is called (m, �)-rigid if G has an (m, �)-tight spanning subgraph. We
call an edge e of G an (m, �)-redundant edge if G − e is (m, �)-rigid. A graph
G is called an (m, �)-redundant graph if each edge of G is (m, �)-redundant.
Note that when m ≡ k, an (m, �)-sparse/tight/rigid/redundant graph is (k, �)-
sparse/tight/rigid/redundant, respectively. For our solution of the general prob-
lem in Sect. 6, we need an algorithm for the reduced problem on (m, �)-tight
graphs. Hence we shall solve the reduced problem also for (m, �)-tight graphs.

2 Preliminaries

In this section we list some basic properties of (m, �)-sparse graphs. It follows
from the definition that an (m, �)-tight subgraph of an (m, �)-sparse graph is
always an induced subgraph. The following statement can be proved by using
standard submodular techniques.

Lemma 1. Let G = (V,E) be an (m, �)-sparse graph, and let T1 = (V1, E1) and
T2 = (V2, E2) be (m, �)-tight subgraphs of G. If m(V1 ∩ V2) ≥ �, then T1 ∪ T2

is an (m, �)-tight graph and there are no edges between V1 − V2 and V2 − V1. If
|V1 ∩ V2| ≥ 1, then T1 ∩ T2 is (m, �)-tight as well.

We note that, by (A0), the assumption on m(V1 ∩ V2) always holds when
|V1 ∩ V2| ≥ 2, and also when � ≤ 0 (since m ≥ 0).

It is known that the edge sets of the (m, �)-sparse subgraphs of a given graph
form a matroid which is a generalization of the well-known 2-dimensional rigidity
matroid (see Frank [5, Sect. 13.5], Lorea [19], and Whiteley [27, Appendix A]).
A circuit of this matroid is called an (m, �)-circuit. It follows from matroid
theory (see details in [5, Chap. 5]) that for an (m, �)-sparse graph G = (V,E)
and i, j ∈ V for which G+ij is not (m, �)-sparse, G+ij contains a unique (m, �)-
circuit CG

(m,�)(ij). In this case T G
(m,�)(ij) := CG

(m,�)(ij) − ij is (m, �)-tight. Let
V G

(m,�)(ij) denote the vertex set of TG
(m,�)(ij). The main property of TG

(m,�)(ij)
is the following.

Lemma 2. Let G = (V,E) be an (m, �)-sparse graph and i, j ∈ V . Assume that
G+ ij is not (m, �)-sparse. If G′ = (V ′, E′) is an (m, �)-tight subgraph of G with
i, j ∈ V ′, then TG

(m,�)(ij) ⊆ G′. Hence TG
(m,�)(ij) =

⋂{Th : Th is an (m, �)-tight
subgraph of G inducing i and j}.

Let RG
(m,�)(i1j1, . . . , ir jr) denote the subgraph induced by the (m, �)-re-

dundant edges of G = (V,E) in G ∪ {i1j1, . . . , irjr} for i1, . . . , ir, j1, . . . , jr ∈ V .
For the sake of simplicity, when the graph G or (m, �) is clear from the context,
we will omit the superscript G or subscript (m, �), respectively, from all of the
above notation. Note that R(ij) = T (ij) for any i, j ∈ V . The following lemma
extends this simple fact by generalizing [7, Lemma 4] .

Lemma 3. If G is an (m, �)-tight graph, then

R(i1j1, . . . , irjr) = T (i1j1) ∪ · · · ∪ T (irjr).

Sparse Graphs and an Augmentation Problem 241

2.1 Algorithmic Preliminaries

To give a polynomial algorithm for our (general or reduced) augmentation prob-
lem, one first needs an algorithm for testing the (m, �)-sparsity of a graph. Such
a polynomial algorithm already exists for each pair of m and � (see the works
of Hendrickson and Jacobs [11,12] and Berg and Jordán [2] for the case where
k = 2 and � = 3, the paper by Lee and Streinu [18] for general k and � ≥ 0, the
book of Frank [5, Sect. 13.5.4] for the (m, �) case, and the note of the first author
[15] for the � < 0 case). We note that in the main applications of (k, �)-sparse
graphs k and � are fixed constants which translates to the general (m, �)-sparse
case that

(∗) there exists a constant c > 0 such that m(v) ≤ c for all v ∈ V and |�| ≤ c.

Thus we give the running time of our algorithms by assuming this condition.
Observe that (*) implies that an (m, �)-sparse graph on V has O(|V |) edges.

We shall use the algorithm provided by the following theorem (which can
be constructed based on the algorithms in [5,15,18]) as a subroutine in our
algorithms.

Theorem 1 (Based on [5,15,18]). There exists an algorithm which decides in
O(|V |2) time whether its input graph G = (V,E) is (m, �)-sparse. It has the
following outputs:

If G is (m, �)-sparse, then it outputs this fact along with an orientation D of
all the edges in G minus a set F ′ of at most −� edges when � < 0. If G is also
(m, �)-tight, then it also outputs this fact.

If G is not (m, �)-sparse, then it outputs a maximal (m, �)-sparse subgraph
H = (V, F) of G along with an orientation D of the edges in H minus a set
F ′ of −� edges when � < 0. It also outputs the set R of edges in H which are
(m, �)-redundant in G.

Furthermore, if it returns that G is (m, �)-sparse (including the case when G
is (m, �)-tight), then by only using the extra data in the output one can decide
in O(|V |) extra time whether G + e is (m, �)-sparse for any new edge e, and if
the answer is no, then output the (m, �)-tight subgraph T (e) of G.

3 Preprocessing

It is easier to formulate our results by assuming some extra conditions for our
(m, �)-tight graph. In most of our results we make the following assumption.

(A) Assuming (A0) for m and �, G = (V,E) is an (m, �)-tight graph on at least
4 vertices such that either � ≤ 0 or all of the following three conditions
hold.
(A1) There exists no v ∈ V such that m(v) = 0 and v is an isolated vertex.
(A2) There exist u, v ∈ V such that V (uv)
= {u, v}.
(A3) There exists no v ∈ V such that V (uv) = {u, v} for all u ∈ V − v

and V − v induces an (m, �)-tight graph.

242 Cs. Király and A. Mihálykó

We note that conditions (A1)–(A3) (and thus (A)) automatically hold for
(k, �)-tight graphs with sufficiently many vertices and also for (m, �)-tight graphs
that arise from (k, �)-rigid graphs in the algorithm of Sect. 6. However, it is also
true that these conditions do not affect the reduced augmentation problem in
any significant way, as the following lemma states.

Lemma 4. Assume (A0), � > 0, and (*). Let G = (V,E) be an (m, �)-tight
graph with |V | ≥ 4. We can determine whether G violates (A1), (A2) or (A3)
and we can construct a graph G′ such that either G′ does not violate any of (A1),
(A2) and (A3) or G′ has less than four vertices, and from the optimal solution
of the reduced augmentation problem on G′ we can compute the optimal solution
of the reduced augmentation problem on G. All these computations can be done
in O(|V |2) running time.

4 The Min-Max Theorem for the Reduced Problem

Throughout this whole section, we shall assume (A). We call a set of vertices
∅
= C � V (m, �)-co-tight in G if iG(V − C) = m(V − C) − �, that is, if the
complement of C is an (m, �)-tight set in G. Equivalently, C is (m, �)-co-tight
if |Ê(C)| = m(C) where Ê(C) denotes the set of edges that are incident with
at least one vertex in C. Note that for every X ⊂ V for which m(V − X) ≥ �,
|Ê(X)| ≥ m(X) holds by the sparsity of V − X. For the sake of brevity let us
denote the inclusion-wise minimal (m, �)-co-tight sets as (m, �)-MCT sets. We
omit the (m, �) prefix of the notions (m, �)-tight (m, �)-co-tight, and (m, �)-MCT
when it is clear from the context.

Lemmas 2 and 3 imply that if G + H is (m, �)-redundant for a graph H =
(V, F) and C is a co-tight set in G then there exists an edge uv ∈ F such that
u ∈ C or v ∈ C. This observation immediately gives a lower bound for the
cardinality of the optimal solution of the reduced problem.

Lemma 5. The minimum number of edges that augment G to an (m, �)-
redundant graph is at least the half of the maximal number of pairwise disjoint
(m, �)-co-tight sets.

We say that a set U covers a set family C, if |U ∩ C| ≥ 1 for every C ∈ C.
The definition of MCT sets implies the following.

Lemma 6. Let C be the family of all (m, �)-MCT sets of G. Suppose that U ⊆ V
is a set that covers C. If V ′ ⊆ V such that U ⊆ V ′ and V ′ induces an (m, �)-
tight subgraph in G, then V ′ = V . In particular, for two vertices u, v ∈ V , the
set {u, v} covers C if and only if G + uv is (m, �)-redundant.

Note that it is possible that there are no co-tight sets in a graph G. For
example, K6 − e is (3, 4)-tight and there are no (3, 4)-co-tight sets in it. By
Lemma 6, if there are no MCT sets in G then G + uv is (m, �)-redundant for
any pair u, v ∈ V . Thus we may suppose that G contains at least one MCT set.
We shall show that in this case the lower bound of Lemma 5 is sharp. From now

Sparse Graphs and an Augmentation Problem 243

on, let C = {C1, . . . , Ct} be the family of all (m, �)-MCT sets in G. The following
statement on the structure of MCT sets is the key of our solution to the reduced
problem. It is an extension of a result of Jordán [13, Theorem 3.9.13] that states
the same for (2, 3)-MCT sets.

Lemma 7. The members of C are either pairwise disjoint or there exists a pair
u, v ∈ V such that T (uv) = G.

The proof of Lemma 7 is quite complex hence we sketch some of its details in
Appendix A. When there exists a pair u, v ∈ V such that T (uv) = G, Lemma 6
implies that the lower bound of Lemma 5 is sharp. A set X = {x1, . . . , xt} ⊆ V
is called a transversal of a family {S1, . . . , St} if xi ∈ Si for each i ∈ {1, . . . , t}.
When there is no pair u, v ∈ V such that T (uv) = G, Lemma 7 claims that
the members of C are disjoint and |C| = t ≥ 3. In this case we shall show that
any graph isomorphic to a star on a transversal of C augments G to an (m, �)-
redundant graph. Next, by extending the ideas of [7, Lemma 15] we reduce the
number of the edges of this star to the optimum.

Let N(X) denote the neighbor set of X ⊆ V in a graph G = (V,E), that is,
N(X) := {v ∈ V − X : v has at least one neighbor in X}. One can show that
the members of C are not only disjoint but there is no edge between any two of
them. This observation and Lemma 1 lead to the following statement.

Lemma 8. Suppose that the members of C are pairwise disjoint and t ≥ 3.
Let {x1, . . . , xt} be a transversal of C where xi ∈ Ci for i ∈ {1, . . . , t}. Then
V (xixj) ⊇ Ci ∪ N(Ci) ∪ Cj ∪ N(Cj) for each i, j ∈ {1, . . . , t} with i
= j.

Based on Lemmas 1 and 8 we can construct a (not yet optimal) edge set,
that augments G to an (m, �)-redundant graph, as follows.

Lemma 9. Suppose that the members of C are pairwise disjoint and t ≥ 3. Let
{x1, . . . , xt} be a transversal of C. If H is a connected graph on the vertices
{x1, . . . , xt}, (in particular, if H is isomorphic to K1,t−1) then G + H is (m, �)-
redundant.

The cardinality of the edge set provided by Lemma 9 can be decreased by
iteratively using the following statement.

Lemma 10. Let C = {C1, . . . , Ct} be the family of all (m, �)-MCT sets in G.
Suppose that the members of C are pairwise disjoint and t ≥ 4. Let {x1, . . . , xt}
be a transversal of C and let xi, xj , xk, y be distinct vertices from this transversal
set. Let T ∗ = T (yxi) ∪ T (yxj) ∪ T (yxk). Then T ∗ = T (yxi) ∪ T (xjxk) or T ∗ =
T (yxj) ∪ T (xixk) holds.

This allows us to state that the lower bound in Lemma 5 can be reached.

Theorem 2. Assume (A). If there exists any (m, �)-co-tight set in G, then

min{|F | : H = (V, F) is a graph for which G + H is (m, �)-redundant}
= max

{⌈ |C|
2

⌉
: C is a family of disjoint (m, �)-co-tight sets

}
.

Otherwise, G + uv is (m, �)-redundant for every pair u, v ∈ V .

244 Cs. Király and A. Mihálykó

5 The Algorithm for the Reduced Problem

Our goal is to show that the reduced augmentation problem can be solved in
O(|V |2) time (under the assumption (*)). According to Lemma 4 the prepro-
cessing can be done in this time complexity.

By Sect. 4, the MCT sets of G play an important role in giving a solution to
the reduced problem. Let G/X denote the graph arising from G by shrinking
X into a single vertex. To give an efficient algorithm for finding MCT sets, we
need the following statement.

Lemma 11. Assume (A). Suppose that T � V is an (m, �)-tight set in G. Let t′

be the new vertex that arises after shrinking T in G. Let �′ := max(�, 0) and let
m′ : V (G/T) → Z+ be a map such that m′(v) = m(v) when v ∈ V (G/T)∩V and
m′(t′) = �′. Then S is an (m′, �′)-tight set in G/T such that t′ ∈ S if and only if
S − t′ ∪T is (m, �)-tight in G. Furthermore, S ⊆ V (G/T)− t′ is an (m′, �′)-tight
set in G/T if and only if S is an (m, �)-tight set in G and � ≥ 0, or S ∪ T is an
(m, �)-tight set in G such that no edge of G connects S and T and � < 0.

By Lemma 11, the following algorithm finds an MCT set in O(|V |2) time.

Algorithm 1. Input: A graph G = (V,E) along with m : V → Z+ and � ∈ Z

such that (A) and (*) hold, and two vertices u, v ∈ V .
Output: An (m, �)-MCT set in G that does not contain u, v or an edge e such
that T (e) = G.

0. Run the algorithm of Theorem 1 on G, let D be the output orientation.
1. Using the output of Step 0, calculate T := V G

(m,�)(uv).
2. If T = V then Output: the edge uv, STOP.
3. Shrink T to t′ according to Lemma 11, that is, G′ := G/T, D′ := D/T ,

�′ := max(�, 0), m′(u) := m(u) for each u ∈ V (G′) ∩ V , m′(t′) := �′.
4. v := t′ (hence m′(v) = �′), V ∗ := V (G′) − v.
5. While V ∗
= ∅, do:
6. Calculate T ′ := V G′

(m′,�′)(uv) using D′.
7. If V ′ = V (G′), then V ∗ := V ∗ − u.
8. Else,

Shrink T ′ to t′, so G′ := G′/T ′,D′ := D′/T ′.
9. v := t′, V ∗ := V ∗ ∩ V (G′) − v.

10. Output: V (G′) − v.

It can be checked in polynomial time whether G+uv is (m, �)-redundant for
some pair u, v ∈ V . The näıve algorithm has O(|V |3) running time, however, as
the following lemma shows, this can be improved to O(|V |2).
Lemma 12. Assume (A) and (*). Then there exists an algorithm which outputs
in O(|V |2) time an edge e for which T (e) = G or, if there is no such edge, a
vertex v of an (m, �)-MCT set in G.

Sparse Graphs and an Augmentation Problem 245

Such an algorithm can be given by using some details of the proof of Lemma 7
and Algorithm 1. We provide some details in Appendix B. Now, we focus our
attention to the case where there is no edge e that augments G to a redundant
graph. We aim to find a minimal transversal set of the MCT sets of G starting
from a vertex v that is in a MCT set. This is solved by the following algorithm
in O(|V |2) time. From this point on, our algorithm’s idea is a generalization of
that of Garćıa and Tejel [7] (see Sect. 7 for some explanation).

Algorithm 2. Input: A graph G = (V,E) along with m : V → Z+ and � ∈ Z

such that (A) and (*) hold and there exists no edge e that augments G to an
(m, �)-redundant graph, and a vertex v ∈ V from an (m, �)-MCT set.
Output: A transversal of the MCT sets of G: X = {v, x2, . . . , xt}.
0. Run the algorithm of Theorem 1 on G.
1. Initialize X = ∅. All vertices are unmarked. Mark v.
2. Explore all vertices j ∈ V :

If j is unmarked, then
Calculate T (vj) by using the output of Step 0;
Mark all unmarked vertices in V (vj);
X := (X − V (vj)) + j.

3. Output: X + v.

Finally, by using Lemma 10 and the above algorithms, we can give the following
algorithm to find an optimal solution of the reduced problem in O(|V |2) time.

Algorithm 3. Input: A graph G = (V,E) along with m : V → Z+ and � ∈ Z

such that (A) and (*) hold.
Output: A minimum cardinality edge set F that augments G to an (m, �)-
redundant graph.

1. Run the algorithm of Lemma 12 (Algorithm 4 in Appendix B). Result: edge
e or vertex y.

If the result is an edge e, then Output {e}, STOP.
2. Generate a transversal system X of the (m, �)-MCT stets of G by using

Algorithm 2 with y.
3. F := {vy|v ∈ X − y}.
4. Calculate T (f) for all f ∈ F by using the output of Step 0 of Algorithm 2.
5. While dF (y) ≥ 3, do

Choose three neighbours of y in F , say xi, xj , xk.
Calculate T (xjxk) by using the output of Step 0 of Algorithm 2.
If T (yxi) ∪ T (xjxk) = T (yxi) ∪ T (yxj) ∪ T (yxk), then

F := F − {yxj , yxk} + {xjxk}.
Else, F := F − {yxi, yxk} + {xixk}.

6. Output: F .

It follows by Lemma 4 that we do not need to assume that (A1), (A2) and (A3)
hold for G. This implies the following.

Theorem 3. Assume (A0) and (*). Let G = (V,E) be an (m, �)-tight graph.
There exists an algorithm that gives an optimal solution for the reduced augmen-
tation problem in O(|V |2) time.

246 Cs. Király and A. Mihálykó

6 The General Augmentation Problem

Garćıa and Tejel [7] showed that the general augmentation problem is NP-hard
for (2, 3)-rigid graphs by reducing it to the set cover problem. Based on their
method and the inapproximability of the set cover problem [20], we can show
the following.

Theorem 4. Let k and � be two integers such that 1 < k < � < 2k. Then
the general problem for (k, �)-rigid graphs is NP-hard, moreover, there is no
polynomial algorithm that gives a constant factor approximation to this problem
unless P=NP.

In this section we will show that, in any other case (that is, if � ≤ k), there
exists an O(|V |2) time algorithm that gives an optimal solution for the general
problem. Moreover, we give our solution for all (m, �)-rigid graphs for which
m ≥ �. Ḡ = (V, Ē) will denote an (m, �)-rigid graph and G = (V,E) will denote
an (m, �)-tight spanning subgraph of Ḡ. Obviously, every edge in Ē−E is (m, �)-
redundant in Ḡ. By Lemma 3, the (m, �)-redundant edges of G in Ḡ are the edges
of RG(Ē −E) =

⋃
uv∈Ē−E TG(uv). As we already have solved the augmentation

problem for (m, �)-tight graphs, we assume that Ē − E
= ∅.
As mentioned in the Introduction, the idea of our method comes from Jackson

and Jordán [9].
Since m ≤ �, the (m, �)-redundant edges of G in Ḡ form some vertex disjoint

(m, �)-redundant induced subgraphs of G by Lemmas 1 and 3. (Note that we
have only one such subgraph when � < 0.) By shrinking each of these subgraphs
to a single vertex and by defining �′ := max(�, 0) and m′ to be �′ on each of
the shrunken vertices and to be m(v) on each non-shrunken vertex v, we get the
shrunken graph G′ = (V ′, E′) along with the map m′ : V ′ → Z+. The following
statement follows by Lemma 11.

Proposition 1. Let G be an (m, �)-tight graph and let G′ = (V ′, E′) and
m′ : V ′ → Z+ arise from G as we defined above. Then G′ is (m′, �′)-tight.
Moreover, the shrunken image of an (m, �)-tight subgraph of G is (m′, �′)-tight,
which contains the only shrunken vertex when � < 0. Furhermore, the pre-image
of any (m′, �′)-tight subgraph of G′ is either (m, �)-tight or, when � < 0, it gets
(m, �)-tight if we union it to the sole shrunken (m, �)-tight subgraph of G.

By Proposition 1, a covering of the edges of G which are not (m, �)-redundant
in Ḡ with (m, �)-tight subgraphs gives a covering of G′ with (m′, �′)-tight sub-
graphs. Hence the minimum number of edges that we need to make G (m, �)-
redundant is at least the minimum number of edges that we need to make G′

(m′, �′)-redundant. The following statement shows that these two values are
equal.

Proposition 2. Let F ′ denote an edge set of minimum cardinality on V ′ for
which G′ ∪ F ′ is (m′, �′)-redundant. Let F be an arbitrary pre-image of F ′, that
is, we get F ′ from F by our shrinking procedure. Then Ḡ∪F is (m, �)-redundant.

Sparse Graphs and an Augmentation Problem 247

With Proposition 2, we have reduced the problem of augmenting an (m, �)-
rigid graph to an (m, �)-redundant graph to the problem of augmenting an
(m′, �′)-tight graph to an (m′, �′)-redundant graph that we can solve in O(|V |2)
time by Theorem 3 as (A0) holds obviously. Note that the contraction that we
used can be done in O(|V |2) time by Theorem 1. This implies the following.

Theorem 5. There exists an O(|V |2) time algorithm to obtain a set of edges
F of minimum cardinality for any input of m : V → Z+, � ∈ Z for which
m ≥ � and (*) hold, and of an (m, �)-rigid graph Ḡ = (V, Ē), such that Ḡ ∪ F is
(m, �)-redundant.

7 Concluding Remarks

We conclude this extended abstract by mentioning three facts which we shall
only explicate precisely in the full version of this paper [16].

As we observed before Algorithm 2, the second part of our algorithm general-
izes the steps of the algorithm of Garćıa and Tejel [7] for all (m, �)-tight graphs.
This is the consequence of the fact that the ‘classes of extreme vertices’ defined
in [7] are exactly the (2, 3)-MCT sets when there exist at least three disjoint such
sets. The main difference between the two algorithms is their first part where
we check this latter condition and output an element of an MCT set. To do this,
[7] only needs to run an algorithm like Algorithm 2 by starting it with a vertex
of minimum degree. We note that this idea only works when � ≤ 3

2k.
In several applications of sparse graphs in rigidity theory, parallel edges are

meaningless, that is, we need to assume that our graph is simple (see e.g. [10,22]).
We shall show that our concept is capable of optimally augmenting G to a simple
(m, �)-redundant graph (if there exists any non-graph edge of the input). Indeed,
when our algorithm outputs at least two edges, those are not in G by Lemma 8.
On the other hand, if there exists no non-graph edge which augments G to an
(m, �)-redundant graph, then there exists no sole edge augmenting G to (m, �)-
redundant. Hence, if the output of our algorithm is a sole edge, one of the non-
graph edges augments G to an (m, �)-redundant graph. We note that looking for
such a single edge may lead to an O(|V |3) time algorithm.

In some other applications (e.g. in [14,24,26]), instead of a sparsity condition
on G, we have a sparsity condition on cG (that is, the graph that arises from G by
replacing each edge e of G by c parallel copies of e). By Lemma 3, cG+H is (m, �)-
redundant if and only if c(G + H) is (m, �)-redundant. Hence the augmentation
problem is also solvable in this case.

Acknowledgements. Project no. NKFI-128673 has been implemented with the sup-
port provided from the National Research, Development and Innovation Fund of Hun-
gary, financed under the FK 18 funding scheme. The first author was supported by
the János Bolyai Research Scholarship of the Hungarian Academy of Sciences and by
the ÚNKP-19-4 New National Excellence Program of the Ministry for Innovation and
Technology. The authors are grateful to Tibor Jordán for the inspiring discussions and
his comments.

248 Cs. Király and A. Mihálykó

Appendix A: Sketch of the Proof of Lemma 7

Here we give the main steps of the proof of Lemma 7. Recall that we assume
(A) and C is the family of all (m, �)-MCT sets of G. When � ≤ 0, the proof is
straightforward from Lemmas 1 and 6. In the case of � > 0, we need to use our
assumptions (A1), (A2), and (A3) at some points. Our first statement follows
by Lemma 1.

Lemma 13. If X and Y are two (m, �)-MCT sets in G, such that X ∩ Y
= ∅,
then m(V − (X ∪ Y)) < �. In particular, |X ∪ Y | ≥ |V | − 1.

If X ∪ Y = V holds whenever X and Y are intersecting MCT sets, then the
proof is straightforward. Hence we may assume that |X ∪ Y | = |V | − 1 for some
X,Y ⊂ V . For a vertex v ∈ V , let C(v) := {C ∈ C : v /∈ C}. The first key
of the proof is the following lemma which can be proved by Lemmas 6 and 13.
Assumption (A1) is used in its proof.

Lemma 14. Suppose that � > 0. Assume that there exists two (m, �)-MCT sets
X,Y ∈ C such that X ∩ Y
= ∅ and X ∪ Y = V − v for some v ∈ V . Then C(v)
is a co-partition of V − v with |C(v)| ≥ 3 or there exists a vertex u ∈ V − v such
that T (uv) = G.

For a vertex v ∈ V and a set W ⊆ V − v, let W̃ v := V − v − W . Lemma 6
implies that, if we take two members W1 and W2 of the co-partition C(v) and
take w1 ∈ W̃ v

1 and w2 ∈ W̃ v
2 , then V is the only (m, �)-tight set in G which

contains w1, w2 and v. Using this observation we can prove a much stronger
statement which claims that in many cases V (w1w2) is also V .

Lemma 15. Suppose that � > 0. Let v ∈ V be a vertex for which the family
C(v) is a co-partition of V − v with |C(v)| ≥ 3. Suppose that there exists a vertex
u ∈ V −v with m(u) ≤ m(v). Let W1,W2 ∈ C(v) and let w1 ∈ W̃ v

1 and w2 ∈ W̃ v
2 .

Suppose that V ′ is an (m, �)-tight set in G with w1, w2 ∈ V ′. Then either V ′ = V
or V ′ = {w1, w2}. In particular, either V (w1w2) = V (and T (w1w2) = G) or
V (w1w2) = {w1, w2}.

Based on Lemma 15, using assumption (A2) one can prove the following.

Lemma 16. Suppose that � > 0. Let v ∈ V be a vertex for which the family
C(v) is a co-partition of V − v with |C(v)| ≥ 3. Then m(v) < m(u) holds for
every u ∈ V − v or there exist two vertices x, y ∈ V − v such that T (xy) = G.

Finally, to finish the proof of Lemma 7, we can assume by Lemma 16 that,
whenever X and Y are intersecting MCT sets with X ∪ Y = V − v for a v ∈ V ,
then m(v) < m(u) holds for every u ∈ V − v. In this case, one can prove that
{v} is an MCT set and hence d(v) = m(v). Now the proof follows from (A0),
(A3) and the fact that the degree of v in any (m, �)-tight subgraph on more than
3 vertices is at least m(v).

Sparse Graphs and an Augmentation Problem 249

Appendix B: The algorithm of Lemma 12

In this section we give the algorithm of Lemma 12. First we solve the case when
we have an MCT set consisting of a single vertex.

Lemma 17. Assume (A). If we are given an (m, �)-MCT singleton set C = {v},
then we can check if there exists an edge e such that T (e) = G in O(|V |2) time.

Based on the steps of the proof of Lemma 7 in Appendix A we can provide
the following algorithm for Lemma 12.

Algorithm 4. Input: A graph G = (V,E) along with m : V → Z+ and � ∈ Z

such that (A) and (*) hold.
Output: If there exists an edge e such that T (e) = G, then e, otherwise a vertex
v of an (m, �)-MCT set.

1. Choose two vertices u, v ∈ V , such that |V (uv)| > 2. Also suppose that
m(v) ≥ m(u).

2. Run Algorithm 1 with u and v. Result: edge e or MCT set Z.
If the result is an edge e, then Output e, STOP.

3. If |Z| = 1, then check every edge from it by the algorithm of Lemma 17.
If this outputs an edge e, then Output e, STOP.
Else, Output the single element z of Z, STOP.

4. Let z ∈ Z be such that m(z) is not the unique minimum of m.
5. Run Algorithm 1 with z, and v. Result: edge e or MCT set C.

If the result is an edge e, then Output e, STOP.
7. If |C| = 1, then check every edge from it by the algorithm of Lemma 17.

If this outputs an edge e, then Output e, STOP.
Else, Output z, STOP.

8. Let c ∈ C − Z.
9. Run Algorithm 1 with z and c. Result: edge e or MCT set S.

If the result is an edge e, then Output e, STOP.
10. If Z ∩ C = ∅, C ∩ S = ∅, and S ∩ Z = ∅, then Output: z.
11. Else, check each possible edge from v, z and c, it gives a suitable edge e.

Output e.

Proof Sketch of the Correctness of Algorithm 4: By Lemma 17 and by the cor-
rectness of Algorithm 1, we can see that any output from Steps 2−9 is correct.
It is also clear by Algorithm 1 that the sets Z, C and S are MCT sets, thus the
output in Step 10 is also correct by Lemma 7. Hence we only need to see that
Step 11 gives a suitable edge. By Lemma 14, if no suitable edge is given, then
C(v), C(z) and C(c) are co-partitions. However, this contradicts Lemma 15. ��

250 Cs. Király and A. Mihálykó

References

1. Aspnes, J., et al.: A theory of network localization. IEEE Trans. Mob. Comput.
5(12), 1663–1678 (2006)

2. Berg, A.R., Jordán, T.: Algorithms for graph rigidity and scene analysis. In: Di
Battista, G., Zwick, U. (eds.) ESA 2003. LNCS, vol. 2832, pp. 78–89. Springer,
Heidelberg (2003). https://doi.org/10.1007/978-3-540-39658-1 10

3. Connelly, R., Jordán, T., Whiteley, W.: Generic global rigidity of body-bar frame-
works. J. Comb. Theory Ser. B 103(6), 689–705 (2013)

4. Eswaran, K.P., Tarjan, R.E.: Augmentation problems. SIAM J. Comput. 5(4),
653–665 (1976)

5. Frank, A.: Connections in Combinatorial Optimization. Oxford University Press,
Oxford (2011)

6. Frank, A., Király, T.: Combined connectivity augmentation and orientation prob-
lems. Discrete Appl. Math. 131(2), 401–419 (2003)

7. Garćıa, A., Tejel, J.: Augmenting the rigidity of a graph in R2. Algorithmica 59(2),
145–168 (2011)

8. Hendrickson, B.: Conditions for unique graph realizations. SIAM J. Comput. 21(1),
65–84 (1992)

9. Jackson, B., Jordán, T.: Brick partitions of graphs. Discrete Math. 310(2), 270–275
(2010)

10. Jackson, B., Nixon, A.: Global rigidity of generic frameworks on the cylinder. J.
Comb. Theory Ser. B 139, 193–229 (2019)

11. Jacobs, D.J., Hendrickson, B.: An algorithm for two dimensional rigidity percola-
tion: the pebble game. J. Comput. Phys. 137, 346–365 (1997)

12. Jacobs, D.J., Thorpe, M.F.: Generic rigidity percolation: the pebble game. Phys.
Rev. Lett. 75, 4051–4054 (1995)

13. Jordán, T.: Combinatorial rigidity: graphs and matroids in the theory of rigid
frameworks. Discrete Geometric Analysis. vol. 34 of MSJ Memoirs, pp. 33–112.
Mathematical Society of Japan, Japan (2016)

14. Jordán, T., Király, Cs., Tanigawa, S.: Generic global rigidity of body-hinge frame-
works. J. Comb. Theory Ser. B 117, 59–76 (2016)

15. Király, Cs.: An efficient algorithm for testing (k, �)-sparsity when �<0. Technical
Report (Quick Proof) QP-2019-04, Egerváry Research Group, Budapest (2019).
www.cs.elte.hu/egres

16. Király, Cs., Mihálykó, A.: Sparse graphs and an augmentation problem. Technical
Report TR-2019-14, Egerváry Research Group, Budapest (2019). www.cs.elte.hu/
egres

17. Laman, G.: On graphs and rigidity of plane skeletal structures. J. Eng. Math. 4,
331–340 (1970)

18. Lee, A., Streinu, I.: Pebble game algorithms and sparse graphs. Discrete Math.
308(8), 1425–37 (2008)

19. Lorea, M.: On matroidal families. Discrete Math. 28(1), 103–106 (1979)
20. Lund, C., Yannakakis, M.: On the hardness of approximating minimization prob-

lems. J. ACM 41(5), 960–981 (1994)
21. Nash-Williams, C.S.J.A.: Decomposition of finite graphs into forests. J. Lond.

Math. Soc. 39, 12 (1961)
22. Nixon, A., Owen, J.C., Power, S.C.: Rigidity of frameworks supported on surfaces.

SIAM J. Discrete Math. 26(4), 1733–1757 (2012)

https://doi.org/10.1007/978-3-540-39658-1_10
www.cs.elte.hu/egres
www.cs.elte.hu/egres
www.cs.elte.hu/egres

Sparse Graphs and an Augmentation Problem 251

23. Pollaczek-Geiringer, H.: Über die Gliederung ebener Fachwerke. ZAMM - J. Appl.
Math. Mech. / Zeitschrift für Angewandte Mathematik und Mechanik 7(1), 58–72
(1927)

24. Tay, T.-S.: Linking (n − 2)-dimensional panels in n-space II: (n − 2, 2)-frameworks
and body and hinge structures. Graphs Comb. 5(1), 245–73 (1989)

25. Tay, T.-S.: Henneberg’s method for bar and body frameworks. Struct. Topol. 17,
53–8 (1991)

26. Whiteley, W.: The union of matroids and the rigidity of frameworks. SIAM J.
Discrete Math. 1(2), 237–55 (1988)

27. Whiteley, W.: Some matroids from discrete applied geometry. In: Bonin, J.E.,
Oxley, J.G., Servatius, B. (eds.) Matroid Theory of Contemporary Mathematics,
vol. 197, pp. 171–311. AMS (1996)

28. Whiteley, W.: Rigidity of molecular structures: generic and geometric analysis. In:
Thorpe, M.F., Duxbury, P.M. (eds.) Rigidity Theory and Applications, pp. 21–46.
Springer, Boston (2002). https://doi.org/10.1007/0-306-47089-6 2

29. Yu, C., Anderson, B.D.O.: Development of redundant rigidity theory for formation
control. Int. J. Robust Nonlinear Control 19(13), 1427–1446 (2009)

https://doi.org/10.1007/0-306-47089-6_2

About the Complexity of Two-Stage
Stochastic IPs

Kim-Manuel Klein(B)

University of Kiel, Christian-Albrechts-Platz 4, 24118 Kiel, Germany
kmk@informatik.uni-kiel.de

Abstract. We consider so called 2-stage stochastic integer programs
(IPs) and their generalized form of multi-stage stochastic IPs. A 2-stage
stochastic IP is an integer program of the form max{cTx | Ax = b, l ≤
x ≤ u, x ∈ Z

s+nt} where the constraint matrix A ∈ Z
rn×s+nt consists

roughly of n repetitions of a block matrix A ∈ Z
r×s on the vertical line

and n repetitions of a matrix B ∈ Z
r×t on the diagonal.

In this paper we improve upon an algorithmic result by Hemmecke
and Schultz from 2003 [16] to solve 2-stage stochastic IPs. The algorithm
is based on the Graver augmentation framework where our main contri-
bution is to give an explicit doubly exponential bound on the size of the
augmenting steps. The previous bound for the size of the augmenting
steps relied on non-constructive finiteness arguments from commutative
algebra and therefore only an implicit bound was known that depends on
parameters r, s, t and Δ, where Δ is the largest entry of the constraint
matrix. Our new improved bound however is obtained by a novel theo-
rem which argues about the intersection of paths in a vector space. As a
result of our new bound we obtain an algorithm to solve 2-stage stochas-
tic IPs in time f(r, s, Δ) · poly(n, t), where f is a doubly exponential
function.

Keywords: Integer programming · 2-stage stochastic programming ·
Graver complexity

1 Introduction

Integer programming is one of the most fundamental problems in algorithm
theory. Many problems in combinatorial optimization and other areas can be
modeled by integer programs. An integer program (IP) is thereby of the form

max{cT x | Ax = b, l ≤ x ≤ u, x ∈ Z
n}

This work was mostly done during the authors time at EPFL. The project was sup-
ported by the Swiss National Science Foundation (SNSF) within the project Convexity,
geometry of numbers, and the complexity of integer programming (Nr.163071).
A full version of the paper is available at https://arxiv.org/abs/1901.01135.

c© Springer Nature Switzerland AG 2020
D. Bienstock and G. Zambelli (Eds.): IPCO 2020, LNCS 12125, pp. 252–265, 2020.
https://doi.org/10.1007/978-3-030-45771-6_20

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-45771-6_20&domain=pdf
http://orcid.org/0000-0002-0188-9492
https://arxiv.org/abs/1901.01135
https://doi.org/10.1007/978-3-030-45771-6_20

About the Complexity of Two-Stage Stochastic IPs 253

for some matrix A ∈ Z
m×n, a right hand side b ∈ Z

m, a cost vector c ∈ Z
n

and lower and upper bounds l, u ∈ Z
n. The famous algorithm of Kannan [20]

computes an optimal solution of the IP in time of roughly nO(n) ·poly(m, log Δ),
where Δ is the largest entry of A and b.

In recent years there was significant progress in the development of algo-
rithms for IPs when the constraint matrix A has a specific structure. Consider
for example the class of integer programs with a constraint matrix N of the form

N =

⎛
⎜⎜⎜⎜⎜⎜⎝

A A · · · A
B 0 · · · 0

0 B
. . .

...
...

. 0
0 · · · 0 B

⎞
⎟⎟⎟⎟⎟⎟⎠

for some block matrices A ∈ Z
r×s and B ∈ Z

r×t. An IP of this specific structure
is called an n-fold IP. This class of IPs has found numerous applications in the
area of string algorithms [22], social choice games [23] and scheduling [17,21].
State-of-the-art algorithms compute a solution of an n-fold IP in time ΔO(r2s) ·
poly(n, t) [9,18,25], where Δ is the largest entry in the matrices A and B.

1.1 Two-Stage Stochastic Integer Programming

Stochastic programming deals with uncertainty of decision making over time
[19]. One of the basic models in stochastic programming is 2-stage stochastic
programming. In this model one has to decide on a solution at the first stage
and in the second stage there is an uncertainty where n possible scenarios can
happen. Each of n possible scenarios might have a different optimal solution and
the goal is to minimize the costs of the solution of the first stage in addition
to the expected costs of the solution of the second stage. In the case that said
scenarios can be modeled by an (integer) linear program, we are talking about
2-stage stochastic (integer) linear programs. 2-stage stochastic linear programs
that do not contain any integer variable are well understood (we refer to standard
text books [3,19]). In contrast, 2-stage stochastic programs that contain integer
variables are hard to solve and are the topic of ongoing research. Typically, those
IPs are investigated in the context of decomposition based methods (we refer
to a tutorial [26] or a survey [29] on the topic). For recent progress on 2-stage
stochastic programs we refer to [1,4,29]. The interest in solving 2-stage stochastic
(I)LPs efficiently stems from their wide range of applications for example in
modeling manufacturing processes [8] or energy planing [15].

In this paper we consider 2-stage stochastic IPs with only integral variables.
These so called pure integral 2-stage stochastic IPs have also been considered
in the literature from a practical perspective (see [12,31]). The considered IP is
then of the form

254 K.-M. Klein

max cT x (1)
Ax = b

l ≤ x ≤ u

x ∈ Z
s+nt

for given objective vector c ∈ Z
s+nt
≥0 , upper and lower bound �, u ∈ Z

s+nt
≥0 . The

constraint matrix A has the shape

A =

⎛
⎜⎜⎜⎜⎝

A(1) B(1) 0 · · · 0

A(2) 0 B(2) . . .
...

...
...

. 0
A(n) 0 · · · 0 B(n)

⎞
⎟⎟⎟⎟⎠

for given block matrices A(1), . . . , A(n) ∈ Z
r×s and B(1), . . . , B(n) ∈ Z

r×t. Typi-
cally, 2-stage stochastic IPs are written in a slightly different (equivalent) form
that explicitly involves the scenarios and the probability distribution of the sce-
narios of the second stage. In this presented form, roughly speaking, the solution
for the first stage scenario is encoded in the variables corresponding to vertical
block matrices. A solution for each of the second stage scenarios is encoded in the
variables corresponding to one of the diagonal block matrices and the expecta-
tion for the second stage scenarios can be encoded in a linear objective function.
Since we do not rely on known techniques of stochastic programming in this
paper, we omit the technicalities surrounding 2-stage stochastic IPs and simply
refer to a survey for further details [29].

Despite their similarity, it seems that 2-stage IPs are significantly harder to
solve than n-fold IPs. While it is known that the 2-stage stochastic IP with
constraint matrix S can be solved in running time of the form f(r, s, t,Δ) ·
poly(n) for some computable function f , which was developed by Hemmecke and
Schultz [16], the actual dependence on the parameters r, s, t,Δ was unknown (we
elaborate on this further in the coming section). Their algorithm is based on the
augmentation framework which we also discuss in the following section.

1.2 The Augmentation Framework

Suppose we have an initial feasible solution z0 of an IP max{cT x | Ax = b, l ≤
x ≤ u, x ∈ Z

n} and our goal is to find an optimal solution. The idea behind the
augmentation framework (see [7]) is to compute an augmenting (integral) vector
y in the kernel, i.e. y ∈ ker(A) with cT y > 0. A new solution z′ with improved
objective can then be defined by z′ = z0 + λy for a suitable λ ∈ Z≥0. This
procedure can be iterated until a solution with optimal objective is obtained
eventually.

We call an integer vector y ∈ ker(A) a cycle. A cycle can be decomposed if
there exist integral vectors u, v ∈ ker(A) \ {0} with y = u + v and ui · vi ≥ 0 for
all i (i.e. the vectors are sign-compatible with y). An integral vector y ∈ ker(A)

About the Complexity of Two-Stage Stochastic IPs 255

that can not be decomposed is called a Graver element [13] or we simply say
that it is indecomposable. The set of all indecomposable elements is called the
Graver basis.

The power of the augmentation framework is based on the observation that
the size of Graver elements can be bounded. With the help of these bounds,
good augmenting steps can be computed by a dynamic program and finally the
corresponding IP can be solved efficiently.

In the case that the constraint matrix has a very specific structure, one
can sometimes show improved bounds. Specifically, if the constraint matrix A
has a 2-stage stochastic shape with identical block matrices in the vertical and
diagonal line, then Hemmecke and Schultz [16] were able to prove a bound for
the size of Graver elements that only depends on the parameters r, s, t and Δ.
The presented bound is an existential result and uses so called saturation results
from commutative algebra. As MacLagan’s theorem is used in the proof of the
bound, no explicit function can be derived. It is only known that the dependence
on the parameters is lower bounded by Ackerman’s function [27]. This implies
that the parameter dependence of r, s, t and Δ for the bound of the the running
time of the algorithm by Hemmecke and Schultz is at least ackermanian. In a
very recent paper it was even conjectured that an algorithm with an explicit
bound on parameters r, s, t and Δ in the running time to solve IPs of the form
(1) does not exist [24].

Very recently, improved bounds for Graver elements of general matrices and
matrices with specific structure like n-fold [9] or 4-block structure [5] were devel-
oped. They are based on the Steinitz Lemma, which was previously also used by
Eisenbrand and Weismantel [11] in the context of integer programming.

Lemma 1 (Steinitz [14,30]). Let v1, . . . , vn ∈ R
m be vectors with ‖vi‖∞ ≤ Δ

for 1 ≤ i ≤ n. Assuming that
∑n

i=1 vi = 0 then there is a permutation Π

such that for each k ∈ {1, . . . , n} the norm of the partial sum
∥∥∥∑k

i=1 vΠ(i)

∥∥∥
∞

is
bounded by mΔ.

The Steinitz Lemma was used by Eisenbrand, Hunkenschröder and Klein [9] to
bound the size of Graver elements for a given matrix A.

Theorem 1 (Eisenbrand, Hunkenschröder, Klein [9]). Let A ∈ Z
m×n be

an integer matrix where every entry of A is bounded by Δ in absolute value. Let
g ∈ Z

n be an element of the Graver Basis of A then ‖g‖1 ≤ (2mΔ + 1)m.

1.3 Our Results

The main result of this paper is to prove a new structural lemma that enhances
the toolset of the augmentation framework. We show that this Lemma can be
directly used to obtain an explicit bound for Graver elements of the constraint
matrix of 2-stage stochastic IPs. But we think that it might also be of indepen-
dent interest as it provides interesting structural insights in vector sets.

256 K.-M. Klein

Lemma 2. Given multisets T1, . . . , Tn ⊂ Z
d
≥0 where all elements t ∈ Ti have

bounded size ‖t‖∞ ≤ Δ. Assuming that the total sum of all elements in each set
is equal, i.e.

∑
t∈T1

t = . . . =
∑
t∈Tn

t

then there exist nonempty submultisets S1 ⊆ T1, . . . , Sn ⊆ Tn of bounded size
|Si| ≤ (dΔ)O(d(Δd2)) such that

∑
s∈S1

s = . . . =
∑
s∈Sn

s.

Note that Lemma 2 only makes sense when we consider the Ti to be multisets
as the number of different sets without allowing multiplicity of vectors would be
bounded by 2(Δ+1)d .

A geometric interpretation of Lemma 2 is given in the following figure. On
the left side we have n-paths consisting of sets of vectors and all path end at the
same point b.

T1

b

T3 T2

permute

T1

b

T2

b′

T3

Then Lemma 2 shows, that there always exist permutations of the vectors of
each path such that all paths meet at a point b′ of bounded size. The bound
does only depend on Δ and the dimension d and is thus independent of the
number of paths n and the size of b. For the proof of Lemma 2 we need basic
properties for the intersection of integer cones. We show that those properties
can be obtained by using the Steinitz Lemma.

We show that Lemma 2 has strong implications in the context of integer
programming. Using Lemma 2, we can show that the size of Graver elements of
matrix A is bounded by (rsΔ)O(rs((2rΔ+1)rs

2
)). Within the framework of Graver

augmenting steps the bound implies that 2-stage stochastic IPs can be solved in
time (rsΔ)O(rs2((2rΔ+1)rs

2
)) · n2t2ϕ log2(nt), where ϕ is the encoding length of

the instance. With this we improve upon an implicit bound for the size of the
Graver elements matrix 2-stage stochastic constraint matrices due to Hemmecke
and Schultz [16].

Furthermore, we show that our Lemma can also be applied to bound the
size of Graver elements of constraint matrices that have a multi-stage stochastic
structure. Multi-stage stochastic IPs are a well known generalization of 2-stage

About the Complexity of Two-Stage Stochastic IPs 257

stochastic IPs. By this, we improve upon a result of Aschenbrenner and Hem-
mecke [2]. Due to space constraints however, this section is omitted here and we
refer to the full version of the paper. Very recently, our Lemma 2 has been used
by Eisenbrand et al. [10] to solve multi-stage stochastic IPs with a nearly linear
dependence on n.

To complement our results for the upper bound, we also present a lower
bound for the size of Graver elements of matrices that have a 2-stage stochastic
IP structure. The given lower bound is for the case of r = 1. In this case we
present a matrix where the Graver elements have a size of 2Ω(Δs). The proof of
the lower bound can be found in the full version of the paper.

2 The Complexity of Two-Stage Stochastic IPs

First, we argue about the application of our main Lemma 2. In the following
we show that the infinity-norm of Graver elements of matrices with a 2-stage
stochastic structure can be bounded using Lemma 2.

Given the block structure of the IP 1, we define for a vector y ∈ Z
s+nt with

Ay = 0 the vector y(0) ∈ Z
s
≥0 which consists of the entries of y that belong to

the vertical block matrices A(i) and we define y(i) ∈ Z
t
≥0 to be the entries of y

that belong to the diagonal block matrix B(i).

Theorem 2. Let y be a Graver element of the constraint matrix A of IP (1).

Then ‖y‖∞ is bounded by (rsΔ)O(rs((2rΔ+1)rs
2
)). More precisely,

∥∥∥y(i)
∥∥∥
1

≤ (rsΔ)O(rs((2rΔ+1)rs
2
))

for every 0 ≤ i ≤ n.

Proof. Let y ∈ Z
s+nt be a cycle of IP (1), i.e. Ay = 0. Consider a submatrix of

the matrix A denoted by (A(i)B(i)) ∈ Z
r×(s+t) consisting of the block matrix

A(i) of the vertical line and the block matrix B(i) of the diagonal line. Consider

further the corresponding variables v(i) =
(

y(0)

y(i)

)
∈ Z

s+t of the respective matrix

A(i) and B(i). Since Ay = 0, we also have that (A(i)B(i))v(i) = 0. Hence, we
can decompose v(i) into a multiset Ci of indecomposable elements, i.e. v(i) =∑

z∈Ci
z. By Theorem 1 we obtain the bound ‖z‖1 ≤ (2rΔ+1)r for each z ∈ Ci.

Since all matrices (A(i)B(i)) share the same set of variables in the overlapping
block matrices A(i), we can not choose indecomposable elements independently
in each block to obtain a cycle of smaller size for the entire matrix A. Let
p : Zs+t → Z

s be the projection that maps a cycle z of a block matrix (A(i)B(i))

to the variables in the overlapping part, i.e. p(z) = p(
(

z(0)

z(i)

)
) = z(0). In the

case that ‖y‖∞ is large we will show that we can find a cycle ȳ of smaller
length with |ȳi| ≤ |yi| and therefore show that y can be decomposed. In order to
obtain this cycle ȳ for the entire matrix A, we have to find a multiset of cycles

258 K.-M. Klein

C̄i ⊂ Ci in each block matrix (A(i)B(i)) such that the sum of the projected
parts is identical, i.e.

∑
z∈C̄1

p(z) = . . . =
∑

z∈C̄n
p(z). We apply Lemma 2 to

the multisets p(C1), . . . , p(Cn), where p(Ci) = {p(z) | z ∈ Ci} is the multiset of
projected elements in Ci with ‖p(z)‖1 ≤ (2rΔ + 1)r. Note that

∑
x∈p(C1)

x =
. . . =

∑
x∈p(Cn)

x = y(0) and hence the conditions to apply Lemma 2 are fulfilled.
Since every v(i) is decomposed in a sign compatible way, every entry of the vector
in p(Ci) has the same sign. Hence we can flip the negative signs in order to apply
Lemma 2.

By Lemma 2, there exist submultisets S1 ⊆ p(C1), . . . , Sn ⊆ p(Cn)

such that
∑

x∈S1
x = . . . =

∑
x∈Sn

x and |Si| ≤ (s ‖z‖1)O(s(‖z‖s2
1)) =

(rsΔ)O(rs((2rΔ+1)rs
2
)). As there exist submultisets C̄1 ⊆ C1, . . . C̄n ⊆ Cn with

p(C̄1) = S1, . . . p(C̄n) = Sn, we can use those submultisets C̄i to define a solu-
tion ȳ with |ȳi| ≤ |yi|. For i > 0 let ȳ(i) =

∑
z∈C̄i

p̄(z), where p̄(z) is the
projection that maps a cycle z ∈ C̄i to the part that belongs to matrix B(i),

i.e. p̄(
(

z(0)

z(i)

)
) = z(i). Let ȳ(0) =

∑
z∈C̄i

p(z) for an arbitrary i > 0, which is

well defined as the sum is identical for all multisets C̄i. As the cardinality of
the multisets C̄i is bounded, we know by construction of ȳ that the one-norm of
every y(i) is bounded by

∥∥∥y(i)
∥∥∥
1

≤ (2rΔ + 1)r · (rsΔ)O(rs((2rΔ+1)rs
2
)) = (rsΔ)O(rs((2rΔ+1)rs

2
)).

This directly implies the infinity-norm bound for y as well.

Computing the Augmenting Step. As a direct consequence of the bound
for the size of the Graver elements, we obtain by the framework of augmenting
steps an efficient algorithm to compute an optimal solution of a 2-stage stochastic
IP. For this we can use the algorithm by Hemmecke and Schultz [16] or a more
recent result by Koutecky, Levin and Onn [25] which gives a strongly polynomial
algorithm. Using these algorithms directly would result in an algorithm with
a running time of the form f(r, s, t,Δ) · poly(n) for some doubly exponential
function involving parameters r, s, t and Δ. However, in the following we explain
briefly how the augmenting step can be computed in order to obtain an algorithm
with running time that is polynomial in t.

Let z ∈ Z
s+nt
≥0 be a feasible solution of IP (1) and let λ ∈ Z≥0 be a multiplicity

(which can be guessed). A core ingredient in the augmenting framework is to find
an augmenting step. Therefore, we have to compute a Graver element y ∈ ker(A)
such that z+λy is a feasible solution of IP (1) and the objective λcT y is maximal
over such all Graver elements.

Let L = (rsΔ)O(rs((2rΔ+1)rs
2
)) be the bound for

∥∥y(i)
∥∥
1

that we obtain from
the previous Lemma. To find the optimal augmenting step, it is sufficient to solve
the IP max{cT x | Ax = 0, �̄ ≤ x ≤ ū, ‖x‖∞ ≤ L} for modified upper and lower
bounds �̄, ū according to the multiple λ and the feasible solution z. Having the
best augmenting step at hand, one can show that the objective value improves

About the Complexity of Two-Stage Stochastic IPs 259

by a factor of 1 − 1
2n . This is due to the fact (see [6]) that the difference z − z∗

between z and an optimal solution z∗ can be represented by

z − z∗ =
2n∑
i=1

λigi

for Graver elements g1, . . . g2n ∈ Z
d
≥0 and multiplicities λ1, . . . , λ2n ∈ Z≥0.

In the following we briefly show how to solve the IP max{cT x | Ax = 0, �̄ ≤
x ≤ ū, ‖x‖∞ ≤ L} in order to compute the augmenting step. The algorithm
works as follows:

– Compute for every y(0) with
∥∥y(0)

∥∥
1

≤ L the objective value of the cycle y

consisting of y(0), ȳ(1), . . . , ȳ(n), where ȳ(i) for i > 0 are the optimal solutions
of the IP

max(c(i))T ȳ(i)

B(i)ȳ(i) = −A(i)y(0)

�̄(i) ≤ ȳ(i) ≤ ū(i)

where �̄(i), ū(i) are the upper and lower bounds for the variables ȳ(i) and c(i)

their corresponding objective vector. Note that the first set of constraints of
the IP ensure that Ay = 0. The IPs can be solved with the algorithm of
Eisenbrand and Weismantel [11] in time O(ΔO(r2)) each.

– Return the cycle with maximum objective.

As the number of different vectors y(0) with 1-norm ≤ L is bounded by (L + 1)s =

(rsΔ)O(rs2((2rΔ+1)rs
2
)) step 1 of the algorithm takes time (rsΔ)O(rs2((2rΔ+1)rs

2
))·

n2t2ϕ log2(nt).
Putting all things together, we obtain the following theorem regarding the

worst-case complexity for solving 2-stage stochastic IPs. For details regarding
the remaining parts of the augmenting framework like finding an initial feasible
solution or a bound on the required augmenting steps we refer to [9] and [25].

Theorem 3. A 2-stage stochastic IP of the form (1) can be solved in time

(rsΔ)O(rs2((2rΔ+1)rs
2
)) · n2t2ϕ log2(nt),

where ϕ is the encoding length of the IP.

3 About the Intersection of Integer Cones

In order to prove our main Lemma 2, we need two observations about the inter-
section of integer cones. An integer cone is defined for a given (finite) generating
set B ⊂ Z

d
≥0 of elements by

int.cone(B) = {
∑
b∈B

λbb | λ ∈ Z
B
≥0}.

260 K.-M. Klein

Note that the intersection of two integer cones is again an integer cone, as the
intersection is closed under addition and scalar multiplication of positive integers.

We say that an element b of an integer cone int.cone(B) is indecomposable if
there do not exist elements b1, b2 ∈ int.cone(B) \ {0} such that b = b1 + b2. We
can assume that the generating set B of an integer cone consists just of the set
of indecomposable elements as any decomposable element can be removed from
the generating set.

In the following we allow to use a vector set B as a matrix and vice versa
where the elements of the set B are the columns of the matrix B. This way we
can multiply B with a vector, i.e. Bλ =

∑
b∈B λbb for some λ ∈ Z

B . For the
proof of the lemma, we refer to the full version of the paper.

Lemma 3. Consider integer cones int.cone(B(1)) and int.cone(B(2)) for some
generating sets B(1), B(2) ⊂ Z

d where each element x ∈ B(1) ∪ B(2) has bounded
norm ‖x‖∞ ≤ Δ. Consider the integer cone of the intersection

int.cone(B̂) = int.cone(B(1)) ∩ int.cone(B(2))

for some generating set of elements B̂. Then for each indecomposable element
b ∈ B̂ of the intersection cone with b = B(1)λ = B(2)γ for some λ ∈ Z

B(1)

≥0 and

γ ∈ Z
B(2)

≥0 , we have that ‖λ‖1 , ‖γ‖1 ≤ (2dΔ + 1)d. Furthermore, the norm of b

is bounded by ‖b‖∞ ≤ Δ(2dΔ + 1)d.

Using a similar argumentation as in the previous lemma, we can consider the
intersection of several integer cones. Note that we can not simply use the above
Lemma inductively as this would lead to worse bounds. Due to space constraints
we omit the proof and refer to the full version of the paper.

Lemma 4. Consider integer cones int.cone(B(1)), . . . , int.cone(B(�)) for some
generating sets B(1), . . . , B(�) ⊂ Z

d
≥0 with ‖x‖∞ ≤ Δ for each x ∈ B(i). Consider

the integer cone of the intersection

int.cone(B̂) =
�⋂

i=1

int.cone(B(i))

for some generating set of elements B̂.
Then for each indecomposable element b ∈ B̂ with B(i)λ(i) = b for some

λ(i) ∈ Z
B(i)

≥0 in the intersection cone, we have that
∥∥λ(i)

∥∥
1

≤ O((dΔ)d(�−1)) for
all 1 ≤ i ≤ �.

4 Proof of Lemma 2

Using the results from the previous section, we are now finally able to prove our
main Lemma 2.

To get an intuition for the problem however, we start by giving a sketch of the
proof for the 1-dimensional case. In this case, the multisets Ti consist solely of

About the Complexity of Two-Stage Stochastic IPs 261

natural numbers, i.e T1, . . . , Tn ⊂ Z≥0. Suppose that each set Ti consists only of
many copies of a single integral number xi ∈ {1, . . . , Δ}. Then it is easy to find a
common multiple as Δ!

1 ·1 = Δ!
2 ·2 = . . . = Δ!

Δ ·Δ. Hence one can choose the subsets
consisting of Δ!

xi
copies of xi. Now suppose that the multisets Ti can be arbitrary.

If |Ti| ≤ Δ ·Δ! = ΔO(Δ) we are done. But on the other hand, if |Ti| ≥ Δ ·Δ!, by
the pigeonhole principle there exists a single element xi ∈ {1, . . . , Δ} for every
Ti that appears at least Δ! times. Then we can argue as in the previous case
where we needed at most Δ! copies of a number xi ∈ {1, . . . ,Δ}. Note that the
cardinality of the sets Ti has to be of similar size. As the elements of each set
sums up to the same value, the cardinality of two sets Ti, Tj can only differ by
a factor of Δ. This proves the lemma in the case d = 1.

In the case of higher dimensions, the lemma seems much harder to prove.
But in principle we use generalizations of the above techniques. Instead of single
natural numbers however, we have to work with bases of corresponding basic
feasible LP solutions and the intersection of the integer cone generated by those
bases.

Proof. First, we describe the multisets T1, . . . , Tn ⊂ Z
d
≥0 by multiplicity vectors

λ(1), . . . , λ(n) ∈ Z
P
≥0, where P ⊂ Z

d is the set of non-negative integer points p

with ‖p‖∞ ≤ Δ. Each λ
(i)
p thereby states the multiplicity of vector p in Ti. Hence∑

t∈Ti
t =

∑
p∈P λ

(i)
p p and our objective is to find vectors y(1), . . . , y(n) ∈ Z

P
≥0

with y(i) ≤ λ(i) such that
∑

p∈P y
(1)
p p = . . . =

∑
p∈P y

(n)
p p.

Consider the linear program
∑
p∈P

xpp = b (2)

x ∈ R
P
≥0

Note that each λ(i) is a feasible solution of the LP. First, we are interested in
the set of all possible basic feasible solutions x(1), . . . , x(�) ∈ R

d
≥0 of the LP

corresponding to bases B(1), . . . , B(�) ∈ Z
d×d
≥0 with B(i)x(i) = b. In the proof

we consider the special case first, that each multiset Ti corresponds to one of
those basic feasible solution x(j). In the 1-dimensional case this would mean that
each set consists only of a single number. In this case, we argued above that we
can simply pick the least common multiple. What is the correspondence of a
least common multiple in a d-dimensional space? This is where the intersection
of integer cones come into play. Note that the intersection of integer cones in
dimension 1 is just the least common multiple, i.e. int.cone(z1)∩ int.cone(z2) =
int.cone(lcm(z1, z2)) for some z1, z2 ∈ Z≥0.

For the remaining part of the proof, we refer the reader to the appendix or
the full version of the paper. There, we prove two claims that correspond to the
two previously described cases of the one dimensional case.

262 K.-M. Klein

Continuation of the Proof of Lemma 2

In the proof we need the notion of a cone which is simply the relaxation of an
integer cone. For a generating set B ⊂ Z

d
≥0, a cone is defined by

cone(B) = {
∑
b∈B

λbb | λ ∈ R
B
≥0}.

Proof. Claim 1: If for all i we have
∥∥x(i)

∥∥
1

> d · O((dΔ)d(�−1)) then there
exist non-zero vectors y(1), . . . , y(�) ∈ Z

d
≥0 with y(1) ≤ x(1), . . . , y(�) ≤ x(�) and∥∥y(i)

∥∥
1

≤ d · O((dΔ)d(�−1)) such that B(1)y(1) = . . . = B(�)y(�).
Note that all basic feasible solutions x(i) ∈ R

d
≥0 have to be of similar size.

Since Bx(i) = b holds for all 1 ≤ i ≤ � we know that
∥∥x(i)

∥∥
1

and
∥∥x(j)

∥∥
1

can
only differ by a factor of dΔ for all 1 ≤ i, j ≤ �. Hence all basic feasible solutions
x(i) have to be either small or all have to be large. This claim considers the case
that the size of all x(i) is large.

Proof of the Claim: Note that B(i)x(i) = b and hence b ∈ cone(B(i)). In the
following, our goal is to find a non-zero point q ∈ Z

d
≥0 such that q = B(1)y(1) =

. . . = B(�)y(�) for some vectors y(1), . . . , y(�) ∈ Z
d
≥0. However, this means that q

has to be in the integer cone int.cone(B(i)) for every 1 ≤ i ≤ � and therefore in
the intersection of all the integer cones, i.e. q ∈ ⋂n

i=1 int.cone(B(i)). By Lemma
4 there exists a set of generating elements B̂ such that

– int.cone(B̂) =
⋂n

i=1 int.cone(B(i)) and int.cone(B̂) �= {0} as b ∈ cone(B̂)
and

– each generating vector p ∈ B̂ can be represented by p = B(i)λ for some
λ ∈ Z

d
≥0 with ‖λ‖1 ≤ O((dΔ)d(�−1)) for each basis B(i).

As b ∈ cone(B̂) there exists a vector x̂ ∈ R
B̂
≥0 with B̂x̂ = b. Our goal is to show

that there exists a non-zero vector q ∈ B̂ with x̂q ≥ 1. In this case b can be
simply written by b = q + q′ for some q′ ∈ cone(B̂). As q and q′ are contained in
the intersection of all cones, there exists for each generating set B(j) a vectors
y(j) ∈ Z

B(j)

≥0 and z(j) ∈ R
B(j)

≥0 such that B(j)y(j) = q and B(j)z(j) = q′. Hence

x(j) = y(j) + z(j) and we finally obtain that x(j) ≥ y(j) for y(j) ∈ Z
B(j)

≥0 which
shows the claim.

Therefore it only remains to prove the existence of the point q with x̂q ≥ 1.
By Lemma 4, each vector p ∈ B̂ can be represented, by p = B(i)x(p) for some
x(p) ∈ Z

B(i)

≥0 with
∥∥x(p)

∥∥
1

≤ O((dΔ)d(�−1)) for every basis B(i).
As B(i)x(i) = b =

∑
p∈B̂ x̂pp =

∑
p∈B̂ x̂p(B(i)x(p)), every x(i) can be written

by x(i) =
∑

p∈B̂ x(p)x̂p and we obtain a bound on
∥∥x(i)

∥∥
1

assuming that every
for every p ∈ B̂ we have x̂p < 1.

∥∥∥x(i)
∥∥∥
1

≤
∑

p∈B̂

∥∥∥x(p)x̂p

∥∥∥
1

x̂p<1
<

∑

p∈B̂

∥∥∥x(p)
∥∥∥
1

≤ d · O((dΔ)d(�−1)).

About the Complexity of Two-Stage Stochastic IPs 263

The last inequality follows as we can assume by Caratheodory’s theorem [28]
that the number of non-zero components of x̂ is less or equal than d. Hence if∥∥x(i)

∥∥
1

≥ d · O((dΔ)d(�−1)) then there has to exist a vector q ∈ B̂ with xq ≥ 1
which proves the claim.

Claim 2: For every vector λ(i) ∈ Z
P
≥0 with

∑
p∈P λpp = b there exists a basic

feasible solution x(k) of LP (2) with basis B(k) such that 1
� x(k) ≤ λ(i) in the

sense that 1
� x

(k)
p ≤ λ

(i)
p for every p ∈ B(k).

Proof of the Claim: The proof of the claim can be easily seen as each multiplic-
ity vector λ(i) is also a solution of the linear program (2). By standard LP theory,
we know that each solution of the LP is a convex combination of the basic fea-
sible solutions x(1), . . . , x(�). Hence, each multiplicity vector λ(i) can be written
as a convex combination of x(1), . . . , x(�), i.e. for each λ(i), there exists a t ∈ R

�
≥0

with ‖t‖1 = 1 such that λ(i) =
∑�

j=1 tj x̄
(j), where x̄

(j)
p =

{
x
(j)
p if p ∈ B(j)

0 otherwise
.

By the pigeonhole principle, there exists for each multiplicity vector λ(i) an index
k with tk ≥ 1

� which proves the claim.
Using the above two claims, we can now prove the claim of the lemma by

showing that for each λ(i), there exist a vector y(i) ≤ λ(i) with bounded 1-norm
such that

∑
p∈P y

(1)
p p = . . . =

∑
p∈P y

(n)
p p.

First, consider the case that there exists a basic feasible solution x(j) of LP 2
with

∥∥x(j)
∥∥
1

≤ �d · O((dΔ)d(�−1)). In this case we have for all 1 ≤ i ≤ n that∥∥λ(i)
∥∥
1

≤ �d2Δ ·O((dΔ)d(�−1)) as the size of solutions of LP (2) can not differ by
a factor of more than dΔ (this is because for every p, p′ ∈ P the sizes ‖p‖1 , ‖p′‖1
can not differ by a factor of more than dΔ).

Now, assume that for all basic feasible solutions x(i) we have
∥∥x(i)

∥∥
1

>

�d · O((dΔ)d(�−1)). We can argue by Claim 2 that for each λ(i) (with 1 ≤ i ≤ n)
we find one of the basic feasible solutions x(k) (1 ≤ k ≤ �) with 1

� x(k) ≤ λ(i).
As 1

� x(i) ≥ d · O((dΔ)d(�−1)) for all 1 ≤ i ≤ �, we can apply the first claim to
vectors 1

� x(1), . . . , 1
� x(�) with 1

� b = 1
� Bx(1) = . . . = 1

� Bx(�), we obtain vectors
y(1) ≤ 1

� x(1), . . . , y(�) ≤ 1
� x(�) with By(1) = . . . = By(�). Hence, we find for each

λ(i) a vector y(k) ∈ Z
B(k)

≥0 with y(k) ≤ λ(i).
Finally we obtain that

∥∥∥y(j)
∥∥∥
1

≤ d2Δ� · O((dΔ)d(�−1)) = (dΔ)O(d(Δd2))

using that � is bounded by
(|P |

d

) ≤ |P |d and |P | ≤ Δd.

References

1. Ahmed, S., Tawarmalani, M., Sahinidis, N.V.: A finite branch-and-bound algorithm
for two-stage stochastic integer programs. Math. Program. 100(2), 355–377 (2004)

264 K.-M. Klein

2. Aschenbrenner, M., Hemmecke, R.: Finiteness theorems in stochastic integer pro-
gramming. Found. Comput. Math. 7(2), 183–227 (2007)

3. Birge, J.R., Louveaux, F.: Introduction to Stochastic Programming. Springer, Hei-
delberg (2011). https://doi.org/10.1007/978-1-4614-0237-4

4. Carøe, C.C., Tind, J.: L-shaped decomposition of two-stage stochastic programs
with integer recourse. Math. Program. 83(1–3), 451–464 (1998)

5. Chen, L., Xu, L., Shi, W.: On the Graver basis of block-structured integer pro-
gramming. arXiv preprint arXiv:1805.03741 (2018)

6. Cook, W., Fonlupt, J., Schrijver, A.: An integer analogue of Caratheodory’s theo-
rem. J. Comb. Theory Ser. B 40(1), 63–70 (1986)

7. De Loera, J.A., Hemmecke, R., Köppe, M.: Algebraic and Geometric Ideas in the
Theory of Discrete Optimization. SIAM, New York (2012)

8. Dempster, M.A.H., Fisher, M., Jansen, L., Lageweg, B., Lenstra, J.K., Rinnooy
Kan, A.: Analytical evaluation of hierarchical planning systems. Oper. Res. 29(4),
707–716 (1981)

9. Eisenbrand, F., Hunkenschröder, C., Klein, K.: Faster algorithms for integer pro-
grams with block structure. In: 45th International Colloquium on Automata, Lan-
guages, and Programming, ICALP 2018, Prague, Czech Republic, 9–13 July 2018,
pp. 49:1–49:13 (2018)

10. Eisenbrand, F., Hunkenschröder, C., Klein, K.M., Koutecký, M., Levin, A., Onn,
S.: An algorithmic theory of integer programming (2019)

11. Eisenbrand, F., Weismantel, R.: Proximity results and faster algorithms for inte-
ger programming using the Steinitz lemma. In: Proceedings of the Twenty-Ninth
Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 808–816. SIAM
(2018)

12. Gade, D., Küçükyavuz, S., Sen, S.: Decomposition algorithms with parametric
gomory cuts for two-stage stochastic integer programs. Math. Program. 144(1–2),
39–64 (2014)

13. Graver, J.E.: On the foundations of linear and integer linear programming I. Math.
Program. 9(1), 207–226 (1975)

14. Grinberg, V.S., Sevast’yanov, S.V.: Value of the Steinitz constant. Funct. Anal.
Appl. 14(2), 125–126 (1980)

15. Haneveld, W.K.K., van der Vlerk, M.H.: Optimizing electricity distribution using
two-stage integer recourse models. In: Uryasev, S., Pardalos, P.M. (eds.) Stochastic
Optimization: Algorithms and Applications, vol. 54, pp. 137–154. Springer, Hei-
delberg (2001). https://doi.org/10.1007/978-1-4757-6594-6 7

16. Hemmecke, R., Schultz, R.: Decomposition of test sets in stochastic integer pro-
gramming. Math. Program. 94(2–3), 323–341 (2003)

17. Jansen, K., Klein, K., Maack, M., Rau, M.: Empowering the configuration-IP -
new PTAS results for scheduling with setups times. CoRR abs/1801.06460 (2018).
http://arxiv.org/abs/1801.06460

18. Jansen, K., Lassota, A., Rohwedder, L.: Near-linear time algorithm for n-fold ILPs
via color coding. arXiv preprint arXiv:1811.00950 (2018)

19. Kall, P., Wallace, S.W.: Stochastic Programming. Springer, Heidelberg (1994)
20. Kannan, R.: Minkowski’s convex body theorem and integer programming. Math.

Oper. Res. 12(3), 415–440 (1987)
21. Knop, D., Koutecký, M.: Scheduling meets n-fold integer programming. J. Sched.

21(5), 493–503 (2018)

https://doi.org/10.1007/978-1-4614-0237-4
http://arxiv.org/abs/1805.03741
https://doi.org/10.1007/978-1-4757-6594-6_7
http://arxiv.org/abs/1801.06460
http://arxiv.org/abs/1811.00950

About the Complexity of Two-Stage Stochastic IPs 265

22. Knop, D., Koutecký, M., Mnich, M.: Combinatorial n-fold integer programming
and applications. In: Pruhs, K., Sohler, C. (eds.) 25th Annual European Sympo-
sium on Algorithms (ESA 2017). Leibniz International Proceedings in Informatics
(LIPIcs), vol. 87, pp. 54:1–54:14. Schloss Dagstuhl-Leibniz-Zentrum fuer Infor-
matik, Dagstuhl (2017)

23. Knop, D., Koutecký, M., Mnich, M.: Voting and bribing in single-exponential time.
In: 34th Symposium on Theoretical Aspects of Computer Science, STACS 2017,
Hannover, Germany, 8–11 March 2017, pp. 46:1–46:14 (2017)

24. Knop, D., Pilipczuk, M., Wrochna, M.: Tight complexity lower bounds for integer
linear programming with few constraints. arXiv preprint arXiv:1811.01296 (2018)

25. Koutecký, M., Levin, A., Onn, S.: A parameterized strongly polynomial algo-
rithm for block structured integer programs. In: 45th International Colloquium
on Automata, Languages, and Programming, ICALP 2018, Prague, Czech Repub-
lic, 9–13 July 2018, pp. 85:1–85:14 (2018)

26. Küçükyavuz, S., Sen, S.: An introduction to two-stage stochastic mixed-integer
programming. In: Leading Developments from INFORMS Communities, pp. 1–27.
INFORMS (2017)

27. Pelupessy, F., Weiermann, A.: Ackermannian lower bounds for lengths of bad
sequences of monomial ideals over polynomial rings in two variables. Math. Theory
Comput. Practice 276 (2009)

28. Schrijver, A.: Theory of Linear and Integer Programming. Wiley, Hoboken (1998)
29. Schultz, R., Stougie, L., Van Der Vlerk, M.H.: Two-stage stochastic integer pro-

gramming: a survey. Statistica Neerlandica 50(3), 404–416 (1996)
30. Steinitz, E.: Bedingt konvergente reihen und konvexe systeme. Journal für die reine

und angewandte Mathematik 143, 128–176 (1913)
31. Zhang, M., Küçükyavuzvuz, S.: Finitely convergent decomposition algorithms for

two-stage stochastic pure integer programs. SIAM J. Optim. 24(4), 1933–1951
(2014)

http://arxiv.org/abs/1811.01296

Packing Under Convex Quadratic
Constraints

Max Klimm1(B), Marc E. Pfetsch2(B), Rico Raber3(B),
and Martin Skutella3(B)

1 School of Business and Economics, HU Berlin,
Spandauer Str. 1, 10178 Berlin, Germany

max.klimm@hu-berlin.de
2 Department of Mathematics, TU Darmstadt,

Dolivostr. 15, 64293 Darmstadt, Germany
pfetsch@mathematik.tu-darmstadt.de
3 Institute of Mathematics, TU Berlin,

Straße des 17. Juni 136, 10623 Berlin, Germany
{raber,skutella}@math.tu-berlin.de

Abstract. We consider a general class of binary packing problems with
a convex quadratic knapsack constraint. We prove that these problems
are APX-hard to approximate and present constant-factor approxima-
tion algorithms based upon three different algorithmic techniques: (1) a
rounding technique tailored to a convex relaxation in conjunction with
a non-convex relaxation whose approximation ratio equals the golden
ratio; (2) a greedy strategy; (3) a randomized rounding method leading
to an approximation algorithm for the more general case with multiple
convex quadratic constraints. We further show that a combination of the
first two strategies can be used to yield a monotone algorithm leading to
a strategyproof mechanism for a game-theoretic variant of the problem.
Finally, we present a computational study of the empirical approxima-
tion of the three algorithms for problem instances arising in the context
of real-world gas transport networks.

1 Introduction

We consider packing problems with a convex quadratic knapsack constraint of
the form

max
{
p�x : x�Wx ≤ c, x ∈ {0, 1}n

}
, (P)

where W ∈ Qn×n
≥0 is a symmetric positive semi-definite (psd) matrix with non-

negative entries, p ∈ Qn
≥0 is a non-negative profit vector, and c ∈ Q≥0 is a non-

negative budget. Such convex and quadratically constrained packing problems
are clearly NP-complete since they contain the classical (linearly constrained)

We acknowledge funding through the DFG CRC/TRR 154, Subproject A007.

c© Springer Nature Switzerland AG 2020
D. Bienstock and G. Zambelli (Eds.): IPCO 2020, LNCS 12125, pp. 266–279, 2020.
https://doi.org/10.1007/978-3-030-45771-6_21

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-45771-6_21&domain=pdf
https://doi.org/10.1007/978-3-030-45771-6_21

Packing Under Convex Quadratic Constraints 267

NP-complete knapsack problem [12] as a special case when W is a diagonal
matrix. In this paper, we therefore focus on the development of approximation
algorithms. For some ρ ∈ [0, 1], an algorithm is a ρ-approximation algorithm if
its runtime is polynomial in the input size and for every instance, it computes
a solution with objective value at least ρ times that of an optimum solution.
The value ρ is then called the approximation ratio of the algorithm. We note
that the assumption on W being psd is necessary in order to allow for sensible
approximation. To see this, observe that when W is the adjacency matrix of an
undirected graph and c = 0, (P) encodes the problem of finding an independent
set of maximal weight, which is NP-hard to approximate within a factor better
than n−(1−ε) for any ε > 0, even in the unweighted case [9].

The packing problems that we consider also have a natural interpretation in
terms of mechanism design. Consider a situation where a set of n selfish agents
demands a service, and the subsets of agents that can be served simultaneously
are modeled by a convex quadratic packing constraint. Each agent j has private
information pj about its willingness to pay for receiving the service. In this
context, a (direct revelation) mechanism takes as input the matrix W and the
budget c. It then elicits the private value pj from agent j. Each agent j may
misreport a value p′

j instead of their true value pj if this is to their benefit. The
mechanism then computes a solution x ∈ {0, 1}n to (P) as well as a payment
vector g ∈ Qn

≥0. A mechanism is strategyproof if no agent has an interest in
misreporting pj , no matter what the other agents report.

Before we present our results on approximation ratios and mechanisms for
non-negative, convex, and quadratically constrained packing problems, we give
two real-world examples that fall into this category.

Example 1. (Welfare maximization in gas supply networks). Consider a gas
pipeline modeled by a directed graph G = (V,E) with different entry and exit
nodes. There is a set of n transportation requests (sj , tj , qj , pj), j ∈ [n] :=
{1, . . . , n}, each specifying an entry node sj ∈ V , an exit node tj ∈ V , the
amount of gas to be transported qj ∈ Q≥0, and an economic value pj ∈ Q≥0.
One model for gas flows in pipe networks is given by the Weymouth equations
[27] of the form βe qe |qe| = πu − πv for all e = (u, v) ∈ E. Here, the parameter
βe ∈ Q>0 is a pipe specific value that depends on physical properties of the pipe
segment modeled by the edge, such as length, diameter, and roughness. Positive
flow values qe > 0 denote flow from u to v, while a negative qe indicates flow
in the opposite direction. The value πu denotes the square of the pressure at
node u ∈ V . In real-life gas networks, there is typically a bound c ∈ Q≥0 on the
maximal difference of the squared pressures in the network. For the operation
of gas networks, it is a natural problem to find the welfare-maximal subset of
transportation requests that can be satisfied simultaneously while satisfying the
pressure constraint.

To illustrate this problem, we consider the particular case in which the net-
work has a path topology similar to the one depicted in Fig. 1. We assume that
for each request the entry node is left of the exit node. Thus, the pressure in the
pipe is decreasing from left to right. For j ∈ [n], let Ej ⊆ E denote the set of

268 M. Klimm et al.

s1, s2 s3 s4

t1

s5, s6

t4 t5 t3, t6

e1 e2 e3 e4 e5

Fig. 1. Gas network with feed-in and feed-out nodes.

edges on the unique (sj , tj)-path in G. Indexing the vertices v0, . . . , vk and edges
e1, . . . , ek from left to right, the maximal squared pressure difference in the pipe
is given by

π0 − πk =
k∑

i=1

(
πi−1 − πi

)
=

k∑

i=1

βei

(∑

j∈[n]:ei∈Ej

qj xj

)2
,

where xj ∈ {0, 1} indicates whether transportation request j ∈ [n] is being
served. For the matrix W = (wij)i,j∈[n] defined by wij =

∑
e∈Ei∩Ej

βe qi qj , the
pressure constraint can be formulated as x�Wx ≤ c. To see that the matrix W
is positive semi-definite, we write W =

∑
e∈E βe qe (qe)�, where qe ∈ Qn

≥0 is
defined as qe

i = qi if e ∈ Ei, and qe
i = 0, otherwise.

Gas networks are particularly interesting from a mechanism design perspec-
tive, since several countries employ or plan to employ auctions to allocate gas
network capacities [20], but theoretical and experimental work uses only linear
flow models [16,23], thus ignoring the physics of the gas flow.

Example 2 (Processor speed scaling). Consider a mobile device with battery
capacity c and k compute cores. Further, there is a set of n tasks (qj , pj), each
specifying a load qj ∈ Qk

≥0 for the k cores and a profit pj . The computations
start at time 0 and all computations have to be finished at time 1. In order to
adapt to varying workloads, the compute cores can run at different speeds. In
the speed scaling literature, it is a common assumption that energy consump-
tion of core i when running at speed s is equal to βi s2, where βi ∈ Q>0 is a
core-specific parameter [2,11,28].1 The goal is to select a profit-maximal subset
of tasks that can be scheduled in the available time with the available battery
capacity. Given a subset of tasks, it is without loss of generality to assume that
each core runs at the minimal speed such that the core finishes at time 1, i.e.,
every core i runs at speed

∑
j∈[n] xj qj

i so that the total energy consumption
is

∑k
i=1 βi(

∑
j∈[n] xj qj

i)
2. The energy constraint can thus be formulated as a

convex quadratic constraint.
Mechanism design problems for processor speed scaling are interesting when

the tasks are controlled by selfish agents and access to computation on the
energy-constrained device is determined via an auction.

1 Other works assume that the relationship is cubic, but experiments conducted by
Wierman et al. [28] suggest that the relationship is closer to quadratic than cubic.

Packing Under Convex Quadratic Constraints 269

Our Results and Paper Outline. In Sect. 3 we derive a φ-approximation
algorithm for packing problems with convex quadratic constraints where φ =
(
√

5 − 1)/2 ≈ 0.618 is the inverse golden ratio. The algorithm first solves a con-
vex relaxation and scales the solution by φ, which turns it into a feasible solution
to a second non-convex relaxation. The latter relaxation has the property that
any solution can be transformed into a solution with at most one fractional
component without decreasing the objective value. In the end, the algorithm
returns the integral part of the transformed solution. Combining this procedure
with a partial enumeration scheme yields a φ-approximation; see Theorem 1. In
Sect. 4 we prove that the greedy algorithm, when combined with partial enu-
meration, is a constant-factor approximation algorithm with an approximation
ratio of at least (1 − √

3/e) ≈ 0.363. In Sect. 5, we show that a combination of
the results from the previous section allows to derive a strategyproof mechanism
with constant approximation ratio. In Sect. 6 we derive a randomized constant-
factor approximation algorithm for the more general problem with a constant
number of r convex quadratic packing constraints. The algorithm solves a con-
vex relaxation, scales the solution, and performs randomized rounding based on
that scaled solution. Combining this algorithm with partial enumeration yields
a constant-factor approximation; see Theorem 4. In Sect. 7 we show that pack-
ing problems with convex quadratic constraints of type (P) are APX-hard; see
Theorem 5. Finally, in the appendix, we apply the three algorithms to several
instances of the problem type described in Example 1 based on real-world data
from the GasLib library [25].

Due to space constraints, the proofs are deferred to the full version of the
paper [13].

Related Work. When W is a non-negative diagonal matrix, the quadratic
constraint in (P) becomes linear and the problem is then equivalent to the 0-1-
knapsack problem which admits a fully polynomial-time approximation scheme
(FPTAS) [10]. Another interesting special case is when W is completely-positive,
i.e., it can then be written as W = UU� for some matrix U ∈ Qn×k

≥0 with non-
negative entries. The minimal k for which W can be expressed in this way is
called the cp-rank of W , see [3] for an overview on completely positive matrices.
The quadratic constraint in (P) can then be expressed as ‖U�x‖2 ≤ √

c. For
the case that U ∈ Qn×2

≥0 , this problem is known as the 2-weighted knapsack
problem for which Woeginger [29] showed that it does not admit an FPTAS,
unless P = NP. Chau et al. [5] settled the complexity of this problem showing
that it admits a polynomial-time approximation scheme (PTAS). Elbassioni et
al. [6] generalized this result to matrices with constant cp-rank.

Exchanging constraints and objective in (P) leads to knapsack problems with
quadratic objective function and a linear constraint first studied by Gallo [7].
These problems have a natural graph-theoretic interpretation where nodes and
edges have profits, the nodes have weights, and the task is to choose a subset
of nodes so as to maximize the total profit of the induced subgraph. Rader and
Woeginger [22] give an FPTAS when the graph is edge series-parallel. Pferschy
and Schauer [21] generalize this result to graphs of bounded treewidth. They also

270 M. Klimm et al.

give a PTAS for graphs not including a forbidden minor which includes planar
graphs.

Mechanism design problems with a knapsack constraint are contained as
a special case when W is a diagonal matrix. For this special case, Mu’alem
and Nisan [17] give a mechanism that is strategyproof and yields a 1/2-
approximation. Briest et al. [4] give a general framework that allows to construct
a mechanism that is an FPTAS for the objective function. Aggarwal and Hart-
line [1] study knapsack auctions with the objective to maximize the sum of the
payments to the mechanism.

2 Preliminaries

For ease of exposition, we assume that all matrices and vectors are integer. Let
[n] := {1, . . . , n} and W = (wij)i,j∈[n] ∈ Nn×n be a symmetric psd matrix.
Furthermore, let p ∈ Nn be a profit vector and let c ∈ N be a budget. We
consider problems of the form (P), i.e., max {p�x : x�Wx ≤ c, x ∈ {0, 1}n}.
Throughout the paper, we denote the characteristic vector of a subset S ⊆ [n]
by χS ∈ {0, 1}n, i.e., χi = 1 if i ∈ S and χi = 0, otherwise.

We first state the intuitive result that after fixing xi = 1 for i ∈ N1 ⊆ [n] and
fixing xi = 0 for i ∈ N0 (with N0 ∩ N1 = ∅), we again obtain a packing problem
with a convex and quadratic packing constraint.

Lemma 1. Let W ∈ Nn×n be symmetric psd, p ∈ Nn, and c ∈ N. Further, let
N0, N1 ∈ 2[n] with N0 ∩ N1 = ∅ and N0 ∪ N1 � [n] be arbitrary. Then, there
exist ñ ∈ N, W̃ ∈ Nñ×ñ symmetric psd, p̃ ∈ Nñ, and c̃ ∈ N such that

max
{
p�x : x�Wx ≤ c, x ∈ {0, 1}n, xi = 0 ∀i ∈ N0, xi = 1 ∀i ∈ N1

}

= p�χN1 + max
{
p̃�x̃ : x̃�W̃ x̃ ≤ c̃, x̃ ∈ {0, 1}ñ

}
.

By Lemma 1, the following assumptions are without loss of generality.

Lemma 2. It is without loss of generality to assume that 0 < wii ≤ c and pi > 0
for all i ∈ [n].

3 A Golden Ratio Approximation Algorithm

In this section, we derive a φ-approximation algorithm for packing problems
with convex quadratic constraints of type (P) where φ = (

√
5 − 1)/2 ≈ 0.618

is the inverse golden ratio. To this end, we first solve a convex relaxation of
the problem. We then use the resulting solution to compute a feasible solution
to another non-convex relaxation of the problem. The second relaxation has
the property that any solution can be transformed so that it has at most one
fractional value, and the transformation does not decrease the objective value.
Together with a partial enumeration scheme in the spirit of Sahni [24], this yields
a φ-approximation.

Packing Under Convex Quadratic Constraints 271

Denote by d ∈ Nn the diagonal of W ∈ Nn×n and let D := diag(d) ∈ Nn×n

be the corresponding diagonal matrix. For a vector x ∈ {0, 1}n we have x2
i = xi

for all i ∈ [n] and, thus, we obtain x�Wx ≥ x�Dx = d�x for all x ∈ {0, 1}n.
We arrive at the following relaxation of (P):

max
{
p�x� : x�Wx ≤ c, d�x ≤ c, x ∈ [0, 1]n

}
. (R1)

Algorithm 1: Golden ratio algorithm
1 foreach H ⊆ [n] with |H| ≤ 3 do
2 yH ← sol. of (R1) with xi = 1 ∀i ∈ H,

xi = 0 ∀i ∈ {j ∈ [n] \ H : pj > min
h∈H

ph};

3 zH ← transf. of φyH containing at most one fractional variable;

4 z̄H ← �zH�;
5 H∗ ← argmax {p�z̄H : H ⊆ [n] with |H| ≤ 3};

6 return z̄H∗
;

The following lemma shows that we can compute an exact optimal solution
to (R1) in polynomial time. For the proof, we use binary search for the optimal
objective value in order to bring the quadratic constraint into the objective.
The resulting quadratic program with linear constraints can then be solved to
optimality by the ellipsoid method [15].

Lemma 3. The relaxation (R1) can be solved exactly in polynomial time.

We proceed to propose a second relaxation of (P). To this end, note that for
every x ∈ {0, 1}n we have x�Wx = x�(W −D)x+x�Dx = x�(W −D)x+d�x.
Relaxing the integrality condition yields the following relaxation of (P):

max
{
p�x : x�(W − D)x + d�x ≤ c, x ∈ [0, 1]n

}
. (R2)

Note that since the trace of W − D is zero, W − D has a negative eigenvalue
unless all eigenvalues are zero. Hence, W −D is not positive semi-definite, unless
W is a diagonal matrix. Therefore, the relaxation (R2) is in general not convex.

We proceed to show that (R2) always has an optimal solution for which at
most one variable is fractional. For x ∈ Rn, let N0(x) := {i ∈ [n] : xi = 0},
N1(x) := {i ∈ [n] : xi = 1}, and Nf (x) := [n] \ (N1(x) ∪ N0(x)).

Lemma 4. For any feasible solution x of (R2), one can construct a feasible
solution x̄ with |Nf (x̄)| ≤ 1 and p�x̄ ≥ p�x in linear time.

We proceed to devise a φ-approximation algorithm. The algorithm iterates
over all sets H ⊆ [n] with |H| ≤ 3. For each set H it computes an optimal
solution yH to the convex relaxation (R1) with the additional constraints that

272 M. Klimm et al.

xi = 1 for all i ∈ H, and xi = 0 for all i ∈ {j ∈ [n] \ H : pj > minh∈H ph}.
Then, we scale down yH by a factor of φ and show that φyH is a feasible solution
to the non-convex relaxation (R2). By Lemma 4, we can transform this solution
into another solution zH with at most one fractional variable. The integral part
of zH is our candidate solution for the starting set H. In the end, we return the
best thus computed candidate over all possible sets H; see Algorithm 1.

Theorem 1. Algorithm1 computes a φ-approximation for (P).

As a result of Theorem 1, we can derive an upper bound on the optimal value
of (R1). This will turn out to be useful when constructing a monotone greedy
algorithm in the next section.

Corollary 1. Let x∗ and y∗ be optimal solutions to (P) and (R1), respectively.
Then p�y∗ ≤ 2

φp�x∗.

4 The Greedy Algorithm

In this section we analyze the greedy algorithm and show that, when combined
with a partial enumeration scheme in the spirit of Sahni [24], it is at least a
(1 − √

3/e)-approximation for packing problems with quadratic constraints of
type (P). Even though this approximation ratio is thus not better than the one
guaranteed by the golden ratio algorithm (Theorem 1), it is worth analyzing it
for several reasons. Firstly, it is simple to understand as well as to implement
and turns out to have a much better running time in practice than the golden
ratio algorithm; see the computational results in the appendix. And, secondly,
the greedy algorithm serves as a main building block to devise a strategyproof
mechanism with constant welfare guarantee; see Sect. 5.

For a set S ⊆ [n], we write w(S) := χ�
S WχS . The core idea of the greedy

algorithm is as follows. Assume that we have an initial solution S ⊂ [n]. Amongst
all remaining items in [n]\S, we pick an item i that maximizes the ratio between
profit gain and weight gain, i.e.,

i ∈ argmax
j∈[n]\S

pj

w(S ∪ {j}) − w(S)
.

If adding i to the solution set would make it infeasible, i.e., w(S ∪ {i}) > c,
then we delete i from [n]. Otherwise, we add i to S. We repeat this process until
[n] \ S is empty.

It is known from the knapsack problem that, when starting the greedy algo-
rithm as described above with the empty set as initial set, then the produced
solution can be arbitrarily bad compared to an optimal solution. However, the
greedy algorithm can be turned into a constant-factor approximation by using
partial enumeration: For all feasible subsets U ⊆ [n] with |U | ≤ 2, we run the
greedy algorithm starting with U as initial set. In the end we return the best
solution set found in this process.

Packing Under Convex Quadratic Constraints 273

The analysis of the algorithm follows a similar approach as the analysis of
Sviridenko [26] for the greedy algorithm for maximizing a submodular function
under a linear knapsack constraint. The non-linearity of the constraint in our
case makes the analysis more complicated, though. We first need the following
technical lemma.

Lemma 5. Let w0, . . . , wm ∈ N with 0 = w0 < w1 < · · · < wm, and let θi ≥ 0,
i ∈ [m]. Then,

∑m
i=1 θi(wi −wi−1) ≥ (1−

√
3

e) min
t=0,...,m−1

∑t
i=1 θi(wi −wi−1) +

θt+1(wm+2
√

wtwm).

We can now prove the approximation ratio of the greedy algorithm.

Theorem 2. The Greedy algorithm with partial enumeration is an approxima-
tion algorithm with approximation ratio 1 −

√
3

e for (P).

For an upper bound of φ on the approximation ratio of the greedy algorithm,
we refer to the full version of the paper [13].

5 Monotone Algorithms

To illustrate the need for monotone algorithms, reconsider the situation
described in Example 1 with a set of n selfish agents requesting permission
to send gas through a pipeline. Each agent j has a private value pj expressing
the monetary gain from being allowed to send the gas. A natural objective of a
system provider is to maximize social welfare, i.e., to solve (P). Since the true
value pj is the private information of agent j, the system designer has to employ
a mechanism that incentivizes the agents to report their true values pj .2 It is
without loss of generality [8,18] to assume the following form of a direct reve-
lation mechanism. The mechanism elicits a (potentially misrepresented) bid p′

j

from each agent j and computes a solution x(p′) ∈ {0, 1}n to (P) based on these
values. Further, the mechanism computes a payment gj for each agent j. The
utility of agent j, when their true valuation is pj and the agents report p′, is then
pjxj(p′) − gj(p′). The mechanism is strategyproof if truthtelling is a dominant
strategy of each agent j in the underlying game where each agent chooses a value
to report.

Myerson [18] shows that an algorithm A can be turned into a strategyproof
mechanism if and only if it is monotone in the following sense. Let x(p′) denote
the feasible solution to (P) computed by A as a function of the reported valua-
tions. Then A is monotone if for all agents j the function xj(p′) is nondecreasing
in p′

j for all fixed values p′
i with i �= j. For a monotone algorithm, charging every

2 We here make the standard assumption that the true values of the source vertex sj ,
the target vertex tj , and the quantity of gas qj are public knowledge. This is rea-
sonable since these values are physically measurable by the system provider so that
misreporting them would be pointless for the agent. This assumption is also fre-
quently made in the knapsack auction literature [1,4,17].

274 M. Klimm et al.

agent j with xj(p′) = 1 the critical bid inf {z ∈ R≥0 : xj(z, p′
−j) = 1} and charg-

ing all other agents nothing yields a strategyproof mechanism. Here, xj(z, p′
−j)

denotes the binary variable xj as a function of the bid of agent j, when the bids
p′

−j of the other agents are fixed.
We note that the algorithms designed in Sects. 3 and 4 are unlikely to be

monotone, since the partial enumeration schemes in both of them are not mono-
tone. On the other hand, without the enumeration scheme, they do not provide
a constant approximation, even when W is a diagonal matrix. However, by com-
bining ideas from both algorithm, we derive a monotone algorithm with constant
approximation guarantee.

Theorem 3. Algorithm2 is a monotone α-approximation algorithm for (P),
where α =

(
1 −

√
3

e

)
/
(
1 + 4√

5−1

) ≈ 0.086. The corresponding critical payments
can be computed in polynomial time.

Algorithm 2: Monotone greedy algorithm
1 y∗ ← solution of (R1);

2 if max
i∈[n]

pi ≥ (
1 −

√
3

e

)
/
(
1 + 4√

5−1

)
p�y∗ then

3 return χi∗ for i∗ ∈ argmax
i∈[n]

pi;
4 else
5 return solution of Greedy algorithm without partial enumeration.

Algorithm 3: Randomized rounding
1 y ← ε-optimal solution of (Rk);
2 repeat
3 x ← realization of Ber(αy)

4 until x is feasible for (P k);
5 return x;

6 Constantly Many Packing Constraints

In this section we generalize Problem (P) by allowing a constant number of
convex quadratic constraints and derive a constant-factor approximation algo-
rithm using randomized rounding combined with partial enumeration. To this
end, let r ∈ N be a constant natural number, and for every k ∈ [r] let
W k = (wk

ij)i,j∈[n] ∈ Nn×n be a symmetric psd matrix with non-negative entries.
Furthermore, let p ∈ Nn and ck ∈ N, k ∈ [r]. We consider packing problems
with r convex quadratic knapsack constraints of the form

max
{
p�x : x�W kx ≤ ck for all k ∈ [r], x ∈ {0, 1}n

}
. (P k)

Packing Under Convex Quadratic Constraints 275

Denote by dk the vector consisting of the diagonal elements of W k. We obtain
the following convex relaxation of (P k),

max
{
p�x : x�W kx ≤ ck, (dk)�x ≤ ck for all k ∈ [r], x ∈ [0, 1]n

}
. (Rk)

For ε > 0 we call a solution y of (Rk) ε-optimal if p�y ≥ (1 − ε)q∗, where q∗

is the optimal value of (Rk). Convex problems of type (Rk) can be solved ε-
optimally in polynomial time by interior points methods [19].

Algorithm 4: Randomized rounding with partial enumeration
1 Hδ ← {i ∈ [n] : ∃k ∈ [r] with wk

ii > δck} ;

2 zδ ← optimal solution of (P k) with xi = 0 ∀i ∈ [n] \ Hδ and |N1(x)| ≤ r
δ

(via
enumeration) ;

3 yδ ← approximate solution of (P k) with xi = 0 ∀i ∈ Hδ computed by
randomized rounding (Algorithm 3) with α = αδ;

4 return argmaxx∈{yδ,zδ} p�x

We proceed to derive an approximation algorithm based on solving (Rk).
For some fixed value δ ∈ (0, 1), we call items i with wk

ii ≤ δck for all k ∈ [r]
δ-light. All other items are called δ-heavy. We first assume that all items are δ-
light and devise a randomized constant-factor approximation algorithm for (P k)
based on randomized rounding; see Algorithm3. To that end, for some vector
y ∈ [0, 1]n, denote by Ber(y) the vector of stochastically independent binary
random variables X = (X1, . . . , Xn)� with the property P[Xi = 1] = yi and
P[Xi = 0] = 1 − yi, for i ∈ [n].

Lemma 6. Let δ ∈ (0, 1) and assume that all items i ∈ [n] are δ-light. Let
ε ∈ (0, 1), p∗ be the optimal value of (P k), y be an ε-optimal solution of (Rk),
α ∈ (0, 1), and X = Ber(αy). Then, E[p�X | X is feasible] ≥ f(α, δ)(1 − ε)p∗,
where f(α, δ) = α

(
1 − g(α, δ)

)r and g(α, δ) = α
(
1 + (1 + δ

1
3)3

)
+ (1 − α)δ.

Standard calculus shows that Lemma 6 provides the best approximation
guarantee for αδ := (1−δ)/(r+1)(1−δ+(1+

3√
δ)3). The approximation guarantee

approaches 1
2(r+1)

(
r

r+1

)r ≥ 1
2e(r+1) as ε and δ go to zero. We proceed to show

that for this α, the probability that the random vector X = Ber(αy) produced
by Algorithm 3 is infeasible for (P k) can be bounded from above by 1

2 .

Lemma 7. Let y be an optimal solution to (Rk), α ∈ (0, 1), and X = Ber(αy).
Then P[X infeasible for (P k)] ≤ r(α2 + α). In particular, if α = αδ, then
P[X infeasible for (P k)] ≤ 1

2 .

To finish the proof, we show that for any constant δ ∈ (0, 1), any optimal
solution to (P k) contains a constant number of δ-heavy items only.

276 M. Klimm et al.

Lemma 8. Let x∗ be an optimal solution to problem (P k), let δ ∈ (0, 1), and
let H∗ := {i ∈ [n] : x∗

i = 1 and i is δ-heavy}. Then |H∗| ≤ r
δ .

We are now in position to devise a randomized constant-factor approximation
algorithm for Problem (P k). The algorithm first enumerates all solutions using
only heavy items, then computes a solution with randomized rounding involving
only the light items, and returns the better of the two solutions; see Algorithm4.

Theorem 4. For every ε̄ > 0, there are ε > 0 and δ > 0 such that Algorithm4
yields an (α + ε̄)-approximation for (P k) where α = 1

1+2(r+1)(r+1
r)r

≥ 1
1+2e(r+1) .

7 Approximation Hardness

We finally note that packing problems with convex quadratic constraints of type
(P) are APX-hard.

Theorem 5. It is NP-hard to approximate packing problems with convex
quadratic constraints by a factor of 91

92 + ε, for any ε > 0.

Appendix A – Computational results

We apply our algorithms to gas transportation as described in Example 1, using
the GasLib-134 instance [25], see Fig. 2. Sources and sinks are denoted by S
and T , resp. Every t ∈ T has a demand of qt units of gas. To ensure network
robustness in the sense of [14], we assume that all sinks between s1 and s2 are
supplied by s1, all sinks between s3 and t45 by s3, and all other sinks by s2. Let
Ti be the sinks supplied by si. For simplicity, we assume that for every t ∈ T ,
the economic welfare pt of transporting qt units of gas to t equals θqt for θ > 0.

The goal is to choose a welfare-maximal feasible subset of transportations,
while the pressures at the first sink s1 and the last source t45 are within their
feasible interval. Let Ē denote the path from s1 to t45, and for every t ∈ Ti denote
by Et the set of edges on the unique path from si to t, i ∈ [3]. Let p = (pt)t∈T ,
W = (wt,t′)t,t′∈T , with wt,t′ =

∑
e∈Ē∩Et∩Et′ βe qt qt′ , and let c = π̄s1 − π

¯t45 ,
where π̄v and π

¯v denote the upper and lower bound on the squared pressure at
node v, respectively. Finally, let x = (xt)t∈T ∈ {0, 1}T , where xt = 1 if and only
if sink t is supplied. This results in a formulation as (P); see Example 1.

The GasLib-134 instance contains different scenarios, where each scenario
provides demands q̂t for every sink t ∈ T . In order to make the optimization
problem non-trivial, we increase the node demands by setting qt = γ q̂t, for
γ ∈ Γ := {5, 10, 50, 100}. We apply the golden ratio, greedy, and randomized
rounding algorithm to the first 100 scenarios, using each γ ∈ Γ . The algorithms
are executed using k initial elements in partial enumeration for each k ∈ {0, 1, 3}.

Randomized rounding is run with α chosen uniformly at random from [0, 1].
Instead of a single feasible realization, we generate 100 feasible realizations of
Ber(φy) and return the one with the highest profit. For the golden ratio algo-
rithm, instead of scaling the optimal solution y of (R1) by φ, we scale it by the

Packing Under Convex Quadratic Constraints 277

t45

s1

s2

s3

Fig. 2. The Gaslib-134 instance. Sources are shown in blue, sinks in red. (Color figure
online)

Table 1. Mean and standard deviation (SD) of the approximation ratio of the greedy
algorithm, the golden ratio algorithm, and randomized rounding. Each algorithm has
been executed with partial enumeration of k elements.

k = 0 k = 1 k = 3

Mean SD Mean SD Mean SD

Greedy 0.927 0.0814 0.985 0.0247 0.999 0.0034

Golden ratio 0.870 0.1290 0.944 0.0769 0.976 0.0464

Rand. rounding 0.950 0.0437 0.984 0.0235 0.995 0.0124

largest number λ ∈ [φ, 1] such that λ y is feasible for (R2), using binary search.
The result of each algorithm is compared to an optimal solution computed with
a standard MIP solver. The computations were executed on a 4-core Intel Core
i5-2520M processor with 2.5 GHz. The code is implemented in Python 3.6 and
we use the SLSQP algorithm of the SciPy optimize package to solve (R1). The
results are shown in Table 1 and as box plots in Fig. 3.

The greedy algorithm achieves the best approximation ratios on average when
combined with partial enumeration and is at least 20 times faster than the other
algorithms, because the latter rely on solving (R1) first. The approximation ratio
of all three algorithms is on average much higher than their proven worst case
lower bounds. However, the quality of the solutions produced by the golden
ratio algorithm is subject to strong fluctuations. By running the algorithm with
partial enumeration with k = 3 initial items, the ratio is at least φ for every
instance, as guaranteed by Theorem 1.

278 M. Klimm et al.

Fig. 3. Approximation ratios (top row) and computation times (bottom row) of the
three algorithms when executed with partial enumeration of k = 0, 1, 3 elements. The
red line indicates the median. (Color figure online)

References

1. Aggarwal, G., Hartline, J.D.: Knapsack auctions. In: Proceedings of 17th Annual
ACM-SIAM Symposium Discrete Algorithms (SODA), pp. 1083–1092 (2006)

2. Bansal, N., Kimbrel, T., Pruhs, K.: Dynamic speed scaling to manage energy and
temperature. In: Proceedings of 45th Annual IEEE Symposium Foundations Com-
puter Science (FOCS), pp. 520–529 (2004)

3. Berman, A., Shaked-Monderer, N.: Completely Positive Matrices. World Scientific
Publishing, Singapore (2003)

4. Briest, P., Krysta, P., Vöcking, B.: Approximation techniques for utilitarian mech-
anism design. SIAM J. Comput. 40, 1587–1622 (2011)

5. Chau, C.-K., Elbassioni, K.M., Khonji, M.: Truthful mechanisms for combinatorial
allocation of electric power in alternating current electric systems for smart grid.
ACM Trans. Econ. Comput. 5 (2016). Art. nr. 7

6. Elbassioni, K.M., Nguyen, T.T.: Approximation algorithms for binary packing
problems with quadratic constraints of low cp-rank decompositions. Discrete Appl.
Math. 230, 56–70 (2017)

7. Gallo, G., Hammer, P.L., Simeone, B.: Quadratic knapsack problems. Math. Pro-
gram. Study 12, 132–149 (1980)

8. Gibbard, A.: Manipulation of voting schemes: a general result. Econometrica 41,
587–601 (1973)

9. H̊astad, J.: Clique is hard to approximate within n1−ε. Acta Mathematica 182(1),
105–142 (1999)

10. Ibarra, O.H., Kim, C.E.: Fast approximation algorithms for the knapsack and sum
of subsets problems. J. ACM 22, 463–468 (1975)

Packing Under Convex Quadratic Constraints 279

11. Irani, S., Pruhs, K.R.: Algorithmic problems in power management. SIGACT News
36(2), 63–76 (2005)

12. Karp, R.M.: Reducibility among combinatorial problems. In: Miller, R.E.,
Thatcher, J.W., Bohlinger, J.D. (eds.) Complexity of Computer Computations.
The IBM Research Symposia Series. Springer, Boston (1972). https://doi.org/10.
1007/978-1-4684-2001-2 9

13. Klimm, M., Pfetsch, M.E., Raber, R., Skutella, M.: Packing under convex quadratic
constraints. Preprint (2019). arXiv:1912.00468 [math.OC]

14. Klimm, M., Pfetsch, M.E., Raber, R., Skutella, M.: On the robustness of
potential-based flow networks. Preprint (2020). https://opus4.kobv.de/opus4-
trr154/frontdoor/index/index/docId/309

15. Kozlov, M.K., Tarasov, S.P., Khachiyan, L.G.: The polynomial solvability of convex
quadratic programming. USSR Comput. Math. Math. Phys. 20(5), 223–228 (1980)

16. McCabe, K.A., Rassenti, S.J., Smith, V.L.: Designing ‘smart’ computer-assisted
markets: an experimental auction for gas networks. Eur. J. Polit. Econ. 5, 259–283
(1989)

17. Mu’alem, A., Nisan, N.: Truthful approximation mechanisms for restricted combi-
natorial auctions. Games Econ. Behav. 64, 612–631 (2008)

18. Myerson, R.B.: Optimal auction design. Math. Oper. Res. 6, 58–73 (1981)
19. Nesterov, Y., Nemirovskii, A.: Interior-Point Polynomial Algorithms in Convex

Programming, vol. 13. SIAM (1994)
20. Newbery, D.M.: Network capacity auctions: promise and problems. Utilities Policy

11, 27–32 (2002)
21. Pferschy, U., Schauer, J.: Approximation of the quadratic knapsack problem.

INFORMS J. Comput. 28, 308–318 (2016)
22. Rader Jr., D.J., Woeginger, G.J.: The quadratic 0–1 knapsack problem with series-

parallel support. Oper. Res. Lett. 30, 159–166 (2002)
23. Rassenti, S.J., Reynolds, S.S., Smit, V.L.: Cotenancy and competition in an exper-

imental auction market for natural gas pipeline networks. Econ. Theory 4, 41–65
(1994)

24. Sahni, S.: Approximate algorithms for the 0/1 knapsack problem. J. ACM 22(1),
115–124 (1975)

25. Schmidt, M., et al.: GasLib - a library of gas network instances. Data 2(4) (2017).
Article 40

26. Sviridenko, M.: A note on maximizing a submodular set function subject to a
knapsack constraint. Oper. Res. Lett. 32, 41–43 (2004)

27. Weymouth, T.R.: Problems in natural gas engineering. Trans. Am. Soc. Mech.
Eng. 34, 185–231 (1912)

28. Wierman, A., Andrew, L.L.H., Tang, A.: Power-aware speed scaling in processor
sharing systems: optimality and robustness. Perform. Eval. 69, 601–622 (2012)

29. Woeginger, G.J.: When does a dynamic programming formulation guarantee the
existence of a fully polynomial time approximation scheme (FPTAS)? INFORMS
J. Comput. 12, 57–74 (2000)

https://doi.org/10.1007/978-1-4684-2001-2_9
https://doi.org/10.1007/978-1-4684-2001-2_9
http://arxiv.org/abs/1912.00468
https://opus4.kobv.de/opus4-trr154/frontdoor/index/index/docId/309
https://opus4.kobv.de/opus4-trr154/frontdoor/index/index/docId/309

Weighted Triangle-Free 2-Matching
Problem with Edge-Disjoint

Forbidden Triangles

Yusuke Kobayashi(B)

Research Institute for Mathematical Sciences, Kyoto University,
Kyoto 606-8502, Japan

yusuke@kurims.kyoto-u.ac.jp

Abstract. The weighted T -free 2-matching problem is the following
problem: given an undirected graph G, a weight function on its edge set,
and a set T of triangles in G, find a maximum weight 2-matching contain-
ing no triangle in T . When T is the set of all triangles in G, this problem
is known as the weighted triangle-free 2-matching problem, which is a
long-standing open problem. A main contribution of this paper is to give
a first polynomial-time algorithm for the weighted T -free 2-matching
problem under the assumption that T is a set of edge-disjoint triangles.
In our algorithm, a key ingredient is to give an extended formulation
representing the solution set, that is, we introduce new variables and rep-
resent the convex hull of the feasible solutions as a projection of another
polytope in a higher dimensional space. Although our extended formu-
lation has exponentially many inequalities, we show that the separation
problem can be solved in polynomial time, which leads to a polynomial-
time algorithm for the weighted T -free 2-matching problem.

Keywords: Triangle-free 2-matchings · b-factors · Extended
formulation · Polynomial-time algorithm

1 Introduction

1.1 2-Matchings Without Short Cycles

In an undirected graph, an edge set M is said to be a 2-matching1 if each vertex
is incident to at most two edges in M . Finding a 2-matching of maximum size is
a classical combinatorial optimization problem, which can be solved efficiently

1 Although such an edge set is often called a simple 2-matching in the literature, we
call it a 2-matching to simplify the description.

Supported by JSPS KAKENHI Grant Numbers JP16K16010, 16H03118, JP18H05291,
and JP19H05485, Japan.

c© Springer Nature Switzerland AG 2020
D. Bienstock and G. Zambelli (Eds.): IPCO 2020, LNCS 12125, pp. 280–293, 2020.
https://doi.org/10.1007/978-3-030-45771-6_22

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-45771-6_22&domain=pdf
http://orcid.org/0000-0001-9478-7307
https://doi.org/10.1007/978-3-030-45771-6_22

Weighted Triangle-Free 2-Matching Problem 281

by using a matching algorithm. By imposing restrictions on 2-matchings, various
extensions have been introduced and studied in the literature. Among them, the
problem of finding a maximum 2-matching without short cycles has attracted
attentions, because it has applications to approximation algorithms for TSP and
its variants. We say that a 2-matching M is C≤k-free if M contains no cycle of
length k or less, and the C≤k-free 2-matching problem is to find a C≤k-free 2-
matching of maximum size in a given graph. When k ≤ 2, every 2-matching
without self-loops and parallel edges is C≤k-free, and hence the C≤k-free 2-
matching problem can be solved in polynomial time. On the other hand, when
n/2 ≤ k ≤ n − 1, where n is the number of vertices in the input graph, the
C≤k-free 2-matching problem is NP-hard, because it decides the existence of a
Hamiltonian cycle. These facts motivate us to investigate the borderline between
polynomially solvable cases and NP-hard cases of the problem. Hartvigsen [12]
gave a polynomial-time algorithm for the C≤3-free 2-matching problem, and
Papadimitriou showed that the problem is NP-hard when k ≥ 5 (see [6]). The
polynomial solvability of the C≤4-free 2-matching problem is still open, whereas
some positive results are known for special cases. For the case when the input
graph is restricted to be bipartite, Hartvigsen [13], Király [18], and Frank [10]
gave min-max theorems, Hartvigsen [14] and Pap [26] designed polynomial-time
algorithms, Babenko [1] improved the running time, and Takazawa [28] showed
decomposition theorems. Recently, Takazawa [29,30] extended these results to a
generalized problem. When the input graph is restricted to be subcubic, i.e., the
maximum degree is at most three, Bérczi and Végh [4] gave a polynomial-time
algorithm for the C≤4-free 2-matching problem. Relationship between C≤k-free
2-matchings and jump systems is studied in [3,8,22].

There are a lot of studies also on the weighted version of the C≤k-free 2-
matching problem. In the weighted problem, an input consists of a graph and a
weight function on the edge set, and the objective is to find a C≤k-free 2-matching
of maximum total weight. Király proved that the weighted C≤4-free 2-matching
problem is NP-hard even if the input graph is restricted to be bipartite (see
[10]), and a stronger NP-hardness result was shown in [3]. Under the assump-
tion that the weight function satisfies a certain property called vertex-induced
on every square, Makai [24] gave a polyhedral description and Takazawa [27]
designed a combinatorial polynomial-time algorithm for the weighted C≤4-free
2-matching problem in bipartite graphs. The case of k = 3, which we call the
weighted triangle-free 2-matching problem, is a long-standing open problem. For
the weighted triangle-free 2-matching problem in subcubic graphs, Hartvigsen
and Li [15] gave a polyhedral description and a polynomial-time algorithm, fol-
lowed by a slight generalized polyhedral description by Bérczi [2] and another
polynomial-time algorithm by Kobayashi [19]. Relationship between C≤k-free
2-matchings and discrete convexity is studied in [19,20,22].

1.2 Our Results

The previous papers on the weighted triangle-free 2-matching problem [2,15,19]
deal with a generalized problem in which we are given a set T of forbidden

282 Y. Kobayashi

triangles as an input in addition to a graph and a weight function. The objective
is to find a maximum weight 2-matching that contains no triangle in T , which
we call the weighted T -free 2-matching problem. In this paper, we focus on the
case when T is a set of edge-disjoint triangles, i.e., no pair of triangles in T
shares an edge in common. A main contribution of this paper is to give a first
polynomial-time algorithm for the weighted T -free 2-matching problem under
the assumption that T is a set of edge-disjoint triangles. Note that we impose
an assumption only on T , and no restriction is required for the input graph. We
now describe the formal statement of our result.

Let G = (V,E) be an undirected graph with vertex set V and edge set E,
which might have self-loops and parallel edges. For a vertex set X ⊆ V , let
δG(X) denote the set of edges between X and V \X. For v ∈ V , δG({v}) is
simply denoted by δG(v). For v ∈ V , let δ̇G(v) denote the multiset of edges
incident to v ∈ V , that is, a self-loop incident to v is counted twice. We omit the
subscript G if no confusion may arise. For b ∈ ZV

≥0, an edge set M ⊆ E is said to

be a b-matching (resp. b-factor) if
∣
∣
∣M ∩ δ̇(v)

∣
∣
∣ ≤ b(v) (resp.

∣
∣
∣M ∩ δ̇(v)

∣
∣
∣ = b(v)) for

every v ∈ V . If b(v) = 2 for every v ∈ V , a b-matching and a b-factor are called a
2-matching and a 2-factor, respectively. Let T be a set of triangles in G, where a
triangle is a cycle of length three. For a triangle T , let V (T) and E(T) denote the
vertex set and the edge set of T , respectively. An edge set M ⊆ E is said to be
T -free if E(T) �⊆ M for every T ∈ T . For a vertex set S ⊆ V , let E[S] denote the
set of all edges with both endpoints in S. For an edge weight vector w ∈ RE , we
consider the problem of finding a T -free b-matching (resp. b-factor) maximizing
w(M), which we call the weighted T -free b-matching (resp. b-factor) problem.
Note that, for a set A and a vector c ∈ RA, we denote c(A) =

∑

a∈A c(a).
Our main result is formally stated as follows.

Theorem 1. There exists a polynomial-time algorithm for the following prob-
lem: given a graph G = (V,E), b(v) ∈ Z≥0 for each v ∈ V , a set T of edge-
disjoint triangles, and a weight w(e) ∈ R for each e ∈ E, find a T -free b-factor
M ⊆ E that maximizes the total weight w(M).

A proof of this theorem is given in Sect. 4. Since finding a maximum weight T -
free b-matching can be reduced to finding a maximum weight T -free b-factor by
adding dummy vertices and zero-weight edges, Theorem 1 implies the following
corollary.

Corollary 1. There exists a polynomial-time algorithm for the following prob-
lem: given a graph G = (V,E), b(v) ∈ Z≥0 for each v ∈ V , a set T of edge-
disjoint triangles, and a weight w(e) ∈ R for each e ∈ E, find a T -free b-
matching M ⊆ E that maximizes the total weight w(M).

In particular, we can find a T -free 2-matching (or 2-factor) M ⊆ E that
maximizes the total weight w(M) in polynomial time if T is a set of edge-disjoint
triangles.

Weighted Triangle-Free 2-Matching Problem 283

1.3 Key Ingredient: Extended Formulation

A natural strategy to solve the maximum weight T -free b-factor problem is to
give a polyhedral description of the T -free b-factor polytope as Hartvigsen and
Li [15] did for the subcubic case. However, as we will see in Example 1, giving a
system of inequalities that represents the T -free b-factor polytope seems to be
quite difficult even when T is a set of edge-disjoint triangles. A key idea of this
paper is to give an extended formulation of the T -free b-factor polytope, that
is, we introduce new variables and represent the T -free b-factor polytope as a
projection of another polytope in a higher dimensional space.

Extended formulations of polytopes arising from various combinatorial opti-
mization problems have been intensively studied in the literature, and the main
focus in this area is on the number of inequalities that are required to represent
the polytope. If a polytope has an extended formulation with polynomially many
inequalities, then we can optimize a linear function in the original polytope by
the ellipsoid method (see e.g. [11]). On the other hand, even if a linear function
on a polytope can be optimized in polynomial time, the polytope does not nec-
essarily have an extended formulation of polynomial size. In this context, the
existence of a polynomial size extended formulation has attracted attentions.
See survey papers [5,17] for previous work on extended formulations.

In this paper, under the assumption that T is a set of edge-disjoint trian-
gles, we give an extended formulation of the T -free b-factor polytope that has
exponentially many inequalities (Theorem 2). In addition, we show that the sep-
aration problem for the extended formulation is solvable in polynomial time, and
hence we can optimize a linear function on the T -free b-factor polytope by the
ellipsoid method in polynomial time. This yields a first polynomial-time algo-
rithm for the weighted T -free b-factor (or b-matching) problem. Note that it is
rare that the first polynomial-time algorithm was designed with the aid of an
extended formulation. To the best of our knowledge, the weighted linear matroid
parity problem was the only such problem before this paper (see [16]).

1.4 Organization of the Paper

The rest of this paper is organized as follows. In Sect. 2, we introduce an extended
formulation of the T -free b-factor polytope. The outline of the correctness proof is
given in Sect. 3. In Sect. 4, we give a polynomial-time algorithm for the weighted
T -factor problem and prove Theorem 1. Finally, we conclude this paper with
remarks in Sect. 5. Some of the proofs are omitted due to the space constraint
and given in the full version [21].

2 Extended Formulation of the T -free b-factor Polytope

Let G = (V,E) be a graph, b ∈ ZV
≥0 be a vector, and T be a set of forbidden

triangles. Throughout this paper, we only consider the case when triangles in T
are mutually edge-disjoint.

284 Y. Kobayashi

For an edge set M ⊆ E, define its characteristic vector xM ∈ RE by

xM (e) =

{

1 if e ∈ M,

0 otherwise.
(1)

The T -free b-factor polytope is defined as conv
{

xM | M is a T -free b-factor
in G

}

, where conv denotes the convex hull of vectors, and the b-factor polytope
is defined similarly. Edmonds [9] shows that the b-factor polytope is determined
by the following inequalities.

x(δ̇(v)) = b(v) (v ∈ V) (2)
0 ≤ x(e) ≤ 1 (e ∈ E) (3)
∑

e∈F0

x(e) +
∑

e∈F1

(1 − x(e)) ≥ 1 ((S, F0, F1) ∈ F) (4)

Here, F is the set of all triples (S, F0, F1) such that S ⊆ V , (F0, F1) is a partition
of δ(S), and b(S) + |F1| is odd. Note that x(δ̇(v)) =

∑

e∈δ̇(v) x(e) and x(e) is
added twice if e is a self-loop incident to v.

In order to deal with T -free b-factors, we consider the following constraint in
addition to (2)–(4).

x(E(T)) ≤ 2 (T ∈ T) (5)

However, as we will see in Example 1, the system of inequalities (2)–(5) does not
represent the T -free b-factor polytope. Note that when we consider uncapacitated
2-factors, i.e., we are allowed to use two copies of the same edge, it is shown by
Cornuejols and Pulleyblank [7] that the T -free uncapacitated 2-factor polytope
is represented by x(e) ≥ 0 for e ∈ E, x(δ̇(v)) = 2 for v ∈ V , and (5).

Example 1. Consider the graph G = (V,E) in Fig. 1. Let b(v) = 2 for every
v ∈ V and T be the set of all triangles in G. Then, G has no T -free b-factor,
i.e., the T -free b-factor polytope is empty. For e ∈ E, let x(e) = 1 if e is drawn
as a blue line in Fig. 1 and let x(e) = 1

2 otherwise. Then, we can easily check
that x satisfies (2), (3), and (5). Furthermore, since x is represented as a linear
combination of two b-factors M1 and M2 shown in Figs. 2 and 3, x satisfies (4).

Fig. 1. Graph G = (V,E)
(Color figure online)

Fig. 2. b-factor M1 Fig. 3. b-factor M2

Weighted Triangle-Free 2-Matching Problem 285

In what follows in this section, we introduce new variables and give an
extended formulation of the T -free b-factor polytope. For T ∈ T , we denote
ET = {J ⊆ E(T)|J �= E(T)}. For T ∈ T and J ∈ ET , we introduce a new vari-
able y(T, J). Roughly, y(T, J) denotes the (fractional) amount of b-factors M
satisfying M ∩ E(T) = J . In particular, when x and y are integral, y(T, J) = 1
if and only if the b-factor M corresponding to (x, y) satisfies M ∩E(T) = J . We
consider the following inequalities.

∑

J∈ET

y(T, J) = 1 (T ∈ T) (6)

∑

e∈J∈ET

y(T, J) = x(e) (T ∈ T , e ∈ E(T)) (7)

y(T, J) ≥ 0 (T ∈ T , J ∈ ET) (8)

If T is clear from the context, y(T, J) is simply denoted by y(J). Since trian-
gles in T are edge-disjoint, this causes no ambiguity unless J = ∅. In addition,
for α, β ∈ E(T), y({α}), y({α, β}), and y(∅) are simply denoted by yα, yαβ , and
y∅, respectively.

We now strengthen (4) by using y. For (S, F0, F1) ∈ F , let TS = {T ∈
T |E(T)∩δ(S) �= ∅}. For T ∈ TS with E(T) = {α, β, γ} and E(T)∩δ(S) = {α, β},
we define

q∗(T) =

⎧

⎪⎪⎪⎨

⎪⎪⎪⎩

yα + yαγ if α ∈ F0 and β ∈ F1,

yβ + yβγ if β ∈ F0 and α ∈ F1,

y∅ + yγ if α, β ∈ F1,

yαβ if α, β ∈ F0.

Note that this value depends on (S, F0, F1) ∈ F and y, but it is simply denoted
by q∗(T) for a notational convenience. We consider the following inequality.

∑

e∈F0

x(e) +
∑

e∈F1

(1 − x(e)) −
∑

T∈TS

2q∗(T) ≥ 1 ((S, F0, F1) ∈ F) (9)

For T ∈ TS with E(T) = {α, β, γ} and E(T) ∩ δ(S) = {α, β}, the contribution
of α, β, and T to the left-hand side of (9) is equal to the amount of b-factors M
such that |M ∩ {α, β}| �≡ |F1 ∩ {α, β}| (mod 2) by the following observations.

– If α ∈ F0 and β ∈ F1, then (6) and (7) show that x(α) = yα + yαβ + yαγ

and 1 − x(β) = 1 − (yβ + yαβ + yβγ) = y∅ + yα + yγ + yαγ . Therefore,
x(α) + (1 − x(β)) − 2q∗(T) = y∅ + yγ + yαβ , which denotes the amount of
b-factors M such that |M ∩ {α, β}| is even.

– If β ∈ F0 and α ∈ F1, then (6) and (7) show that (1−x(α))+x(β)−2q∗(T) =
y∅+yγ +yαβ , which denotes the amount of b-factors M such that |M ∩ {α, β}|
is even.

– If α, β ∈ F1, then (6) and (7) show that (1 − x(α)) + (1 − x(β)) − 2q∗(T) =
yα + yβ + yαγ + yβγ , which denotes the amount of b-factors M such that
|M ∩ {α, β}| is odd.

286 Y. Kobayashi

– If α, β ∈ F0, then (6) and (7) show that x(α) + x(β) − 2q∗(T) = yα + yβ +
yαγ + yβγ , which denotes the amount of b-factors M such that |M ∩ {α, β}|
is odd.

Let P be the polytope defined by

P = {(x, y) ∈ RE × RY |x and y satisfy (2), (3), and (5) − (9)},

where Y = {(T, F)|T ∈ T , F ∈ ET }. Note that we do not need (4), because it
is implied by (9). Define the projection of P onto E as

projE(P) = {x ∈ RE |There exists y ∈ RY such that (x, y) ∈ P}.

Our aim is to show that projE(P) is equal to the T -free b-factor polytope. It is
not difficult to see that the T -free b-factor polytope is contained in projE(P).

Lemma 1. The T -free b-factor polytope is contained in projE(P).

Proof. Suppose that M ⊆ E is a T -free b-factor in G and define xM ∈ RE by
(1). For T ∈ T and J ∈ ET , define

yM (T, J) =

{

1 if M ∩ E(T) = J,

0 otherwise.

We can easily see that (xM , yM) satisfies (2), (3), and (5)–(8). Thus, it suffices
to show that (xM , yM) satisfies (9). Assume to the contrary that (9) does not
hold for (S, F0, F1) ∈ F . Then, xM (e) = 0 for every e ∈ F0\

⋃

T∈TS
E(T) and

xM (e) = 1 for every e ∈ F1\
⋃

T∈TS
E(T). Furthermore, since the contribution

of E(T) ∩ δ(S) and T to the left-hand side of (9) is equal to 1 if and only
if |M ∩ E(T) ∩ δ(S)| �≡ |F1 ∩ E(T)| (mod 2), we obtain |M ∩ E(T) ∩ δ(S)| ≡
|F1 ∩ E(T)| (mod 2) for every T ∈ TS . Then,

|M ∩ δ(S)| = |(M ∩ δ(S))\
⋃

T∈TS

E(T)| +
∑

T∈TS

|M ∩ E(T) ∩ δ(S)|

≡ |F1\
⋃

T∈TS

E(T)| +
∑

T∈TS

|F1 ∩ E(T)| = |F1| .

Since M is a b-factor, it holds that |M ∩ δ(S)| ≡ b(S) (mod 2), which contradicts
that b(S) + |F1| is odd.
�

To prove the opposite inclusion (i.e., projE(P) is contained in the T -free
b-factor polytope), we consider a relaxation of (9). For T ∈ TS with E(T) =
{α, β, γ} and E(T) ∩ δ(S) = {α, β}, we define

q(T) =

⎧

⎪⎪⎪⎨

⎪⎪⎪⎩

yα + yαγ if α ∈ F0 and β ∈ F1,

yβ + yβγ if β ∈ F0 and α ∈ F1,

yγ if α, β ∈ F1,

0 if α, β ∈ F0.

Weighted Triangle-Free 2-Matching Problem 287

Since q(T) ≤ q∗(T) for every T ∈ TS , the following inequality is a relaxation
of (9).

∑

e∈F0

x(e) +
∑

e∈F1

(1 − x(e)) −
∑

T∈TS

2q(T) ≥ 1 ((S, F0, F1) ∈ F) (10)

Define a polytope Q and its projection onto E as

Q = {(x, y) ∈ RE × RY |x and y satisfy (2), (3), (5) − (8), and (10)},

projE(Q) = {x ∈ RE |There exists y ∈ RY such that (x, y) ∈ Q}.

Since (10) is implied by (9), we have that P ⊆ Q and projE(P) ⊆ projE(Q).
In addition, we show the following proposition whose proof outline is given in
Sect. 3.

Proposition 1. projE(Q) is contained in the T -free b-factor polytope.

By Lemma 1, Proposition 1, and projE(P) ⊆ projE(Q), we obtain the fol-
lowing theorem.

Theorem 2. Let G = (V,E) be a graph, b(v) ∈ Z≥0 for each v ∈ V , and let T
be a set of edge-disjoint triangles. Then, both projE(P) and projE(Q) are equal
to the T -free b-factor polytope.

We remark here that we do not know how to prove directly that projE(P) is
contained in the T -free b-factor polytope. Introducing projE(Q) and considering
Proposition 1, which is a stronger statement, is a key idea in our proof. We also
note that our algorithm in Sect. 4 is based on the fact that the T -free b-factor
polytope is equal to projE(P). In this sense, both projE(P) and projE(Q) play
important roles in this paper.

Example 2. Suppose that G = (V,E), b ∈ ZV
≥0, and x ∈ RE are as in Example 1.

Let T be the central triangle in G and let E(T) = {α, β, γ}. If y ∈ RY satisfies (6)
and (8), then yαβ+yβγ+yαγ ≤ 1. Thus, without loss of generality, we may assume
that yαβ ≤ 1

3 by symmetry. Let S be a vertex set with δ(S) = {α, β}. Then,
(10) does not hold for (S, {α}, {β}) ∈ F , because x(α) + (1 − x(β)) − 2q(T) =
1 − x(α) − x(β) + 2yαβ ≤ 2

3 < 1. Therefore, x is not in projE(Q).

3 Outline of the Proof of Proposition 1

In this section, we describe the outline of the proof of Proposition 1. In our proof,
we use the following lemma whose proof is given in Appendix A.

Lemma 2. Let x be an extreme point of projE(Q). Then, one of the following
holds.

(i) x = xM for some T -free b-factor M ⊆ E.
(ii) (5) is tight for some T ∈ T .

288 Y. Kobayashi

(iii) There exists a vector y ∈ RY with (x, y) ∈ Q such that (10) is tight for
some (S, F0, F1) ∈ F with T +

S �= ∅, where we define T +
S = {T ∈ T |E(T) ∩

δ(S) ∩ F1 �= ∅}.

We prove Proposition 1 by induction on |T |. If |T | = 0, then y does not exist
and (10) is equivalent to (4). Thus, projE(Q) is the b-factor polytope, which
shows the base case of the induction.

Fix an instance (G, b, T) with |T | ≥ 1 and assume that Proposition 1 holds
for instances with smaller |T |. Suppose that Q �= ∅, which implies that b(V) is
even as (V, ∅, ∅) �∈ F by (10). Pick up an extreme point x of projE(Q) and let
y ∈ RY be a vector with (x, y) ∈ Q. Our aim is to show that x is contained in
the T -free b-factor polytope.

We apply Lemma 2 to obtain one of (i), (ii), and (iii). If (i) holds, that is,
x = xM for some T -free b-factor M ⊆ E, then x is obviously in the T -free
b-factor polytope. If (ii) holds, that is, (5) is tight for some T ∈ T , then we
replace T with a certain graph and apply the induction. If (iii) holds, that is,
(10) is tight for some (S, F0, F1) ∈ F with T +

S �= ∅, then we divide G into two
graphs, where one corresponds to S and the other corresponds to V \S, apply
the induction for each graph, and merge them. See the full version [21] for a
complete proof.

4 Algorithm

In this section, we give a polynomial-time algorithm for the weighted T -free
b-factor problem and prove Theorem 1. Our algorithm is based on the ellipsoid
method using the fact that the T -free b-factor polytope is equal to projE(P)
(Theorem 2). In order to apply the ellipsoid method, we need a polynomial-time
algorithm for the separation problem. That is, for (x, y) ∈ RE × RY , we need
a polynomial-time algorithm that concludes (x, y) ∈ P or returns a violated
inequality.

Let (x, y) ∈ RE × RY . We can easily check whether (x, y) satisfies (2), (3),
and (5)–(8) or not in polynomial time. In order to solve the separation problem
for (9), we use the following theorem, which implies that the separation problem
for (4) can be solved in polynomial time.

Theorem 3 (Padberg-Rao [25] (see also [23])). Suppose we are given a
graph G′ = (V ′, E′), b′ ∈ ZV ′

≥0, and x′ ∈ [0, 1]E
′
. Then, in polynomial time,

we can compute S′ ⊆ V ′ and a partition (F ′
0, F

′
1) of δG′(S′) that minimize

∑

e∈F ′
0
x′(e) +

∑

e∈F ′
1
(1 − x′(e)) subject to b′(S′) + |F ′

1| is odd.

In what follows, we reduce the separation problem for (9) to that for (4) and
utilize Theorem 3. Suppose that (x, y) ∈ RE ×RY satisfies (2), (3), and (5)–(8).
For each triangle T ∈ T , we remove E(T) and add a vertex rT together with three
new edges e1 = rT v1, e2 = rT v2, and e3 = rT v3 (Fig. 4). Let E′

T = {e1, e2, e3}
and define x′(e1) = x(α) + x(γ) − 2yαγ , x′(e2) = x(α) + x(β) − 2yαβ , and
x′(e3) = x(β) + x(γ) − 2yβγ . Let G′ = (V ′, E′) be the graph obtained from G

Weighted Triangle-Free 2-Matching Problem 289

by applying this procedure for every T ∈ T . Define b′ ∈ ZV ′
≥0 as b′(v) = b(v) for

v ∈ V and b′(v) = 0 for v ∈ V ′\V . By setting x′(e) = x(e) for e ∈ E′ ∩ E and
by defining x′(e) as above for e ∈ E′\E, we obtain x′ ∈ [0, 1]E

′
. Then, we can

show the following lemma whose proof is given in Appendix B.

v2

v1

v3
α

β

γ
v2

v1

v3

e1
e2 e3
rT

Fig. 4. Replacement of a triangle T ∈ T

Lemma 3. Suppose that (x, y) ∈ RE×RY satisfies (2), (3), and (5)–(8). Define
G′ = (V ′, E′), b′, and x′ as above. Then, (x, y) violates (9) for some (S, F0, F1) ∈
F if and only if there exist S′ ⊆ V ′ and a partition (F ′

0, F
′
1) of δG′(S′) such that

b′(S′) + |F ′
1| is odd and

∑

e∈F ′
0
x′(e) +

∑

e∈F ′
1
(1 − x′(e)) < 1.

Since our proof of Lemma 3 is constructive, given S′ ⊆ V ′ and F ′
0, F

′
1 ⊆ E′

such that (F ′
0, F

′
1) is a partition of δG′(S′), b′(S′)+|F ′

1| is odd, and
∑

e∈F ′
0
x′(e)+

∑

e∈F ′
1
(1 − x′(e)) < 1, we can construct (S, F0, F1) ∈ F for which (x, y) violates

(9) in polynomial time. By combining this with Theorem 3, it holds that the sep-
aration problem for P can be solved in polynomial time. Therefore, the ellipsoid
method can maximize a linear function on P in polynomial time (see e.g. [11]),
and hence we can maximize

∑

e∈E w(e)x(e) subject to x ∈ projE(P). By per-
turbing the objective function if necessary, we can obtain a maximizer x∗ that is
an extreme point of projE(P). Since each extreme point of projE(P) corresponds
to a T -free b-factor by Theorem 2, x∗ is a characteristic vector of a maximum
weight T -free b-factor. This completes the proof of Theorem 1.

5 Concluding Remarks

This paper gives a first polynomial-time algorithm for the weighted T -free b-
matching problem where T is a set of edge-disjoint triangles. A key ingredient is
an extended formulation of the T -free b-factor polytope with exponentially many
inequalities. As we mentioned in Sect. 1.3, it is rare that the first polynomial-time
algorithm was designed with the aid of an extended formulation. This approach
has a potential to be used for other combinatorial optimization problems for
which no polynomial-time algorithm is known.

Some interesting problems remain open. Since the algorithm proposed in
this paper relies on the ellipsoid method, it is natural to ask whether we can
design a combinatorial polynomial-time algorithm. It is also open whether our
approach can be applied to the weighted C≤4-free b-matching problem in general

290 Y. Kobayashi

graphs under the assumption that the forbidden cycles are edge-disjoint and the
weight is vertex-induced on every square. In addition, the weighted C≤3-free 2-
matching problem and the C≤4-free 2-matching problem are big open problems
in this area.

A Proof of Lemma 2

In this section, we give a proof of Lemma 2. We begin with the following easy
lemma.

Lemma 4. Suppose that x ∈ RE satisfies (3) and (5). Then, there exists y ∈
RY that satisfies (6)–(8).

Proof. Let T ∈ T be a triangle with E(T) = {α, β, γ} and x(α) ≥ x(β) ≥ x(γ).
For J ∈ ET , we define y(T, J) as follows.

– If x(α) ≥ x(β) + x(γ), then yαβ = x(β), yαγ = x(γ), y∅ = 1 − x(α), yα =
x(α) − x(β) − x(γ), and yβ = yγ = yβγ = 0.

– If x(α) < x(β) + x(γ), then yαβ = 1
2 (x(α) + x(β) − x(γ)), yαγ = 1

2 (x(α) +
x(γ) − x(β)), yβγ = 1

2 (x(β) + x(γ) − x(α)), y∅ = 1 − 1
2 (x(α) + x(β) + x(γ)),

and yα = yβ = yγ = 0.

Then, y satisfies (6)–(8).
�

By using this lemma, we can prove Lemma 2.

Proof (Proof of Lemma 2). We prove (i) by assuming that (ii) and (iii) do not
hold. Since (10) is not tight for any (S, F0, F1) ∈ F with T +

S �= ∅, x is an extreme
point of

{x ∈ RE |There exists y ∈ RY such that (x, y) satisfies (2) − (8)},

because (4) is a special case of (10) in which T +
S = ∅. By Lemma 4, this polytope

is equal to {x ∈ RE |x satisfies (2) – (5)}. Since (5) is not tight for any T ∈ T ,
x is an extreme point of {x ∈ RE |x satisfies (2) – (4)}, which is the b-factor
polytope. Thus, x is a characteristic vector of a b-factor. Since x satisfies (5), it
holds that x = xM for some T -free b-factor M ⊆ E.
�

B Proof of Lemma 3

In this section, we give a proof of Lemma 3.
First, to show the “only if” part, assume that (x, y) violates (9) for some

(S, F0, F1) ∈ F . Recall that TS = {T ∈ T |E(T) ∩ δG(S) �= ∅}. Define S′ ⊆ V ′

by S′ = S ∪ {rT |T ∈ T , |V (T) ∩ S| ≥ 2}. Then, for each T ∈ TS , E′
T ∩ δG′(S′)

consists of a single edge, which we denote eT . Define F ′
0 and F ′

1 as follows:

F ′
0 = (F0 ∩ E′) ∪ {eT |T ∈ TS , |E(T) ∩ F1| = 0 or 2},

F ′
1 = (F1 ∩ E′) ∪ {eT |T ∈ TS , |E(T) ∩ F1| = 1}.

Weighted Triangle-Free 2-Matching Problem 291

It is obvious that (F ′
0, F

′
1) is a partition of δG′(S′) and b′(S′)+|F ′

1| ≡ b(S)+|F1| ≡
1 (mod 2).

To show that
∑

e∈F ′
0
x′(e) +

∑

e∈F ′
1
(1 − x′(e)) < 1, we evaluate x′(eT) or

1 − x′(eT) for each T ∈ TS . Let T ∈ TS be a triangle such that E(T) = {α, β, γ}
and E(T) ∩ δG(S) = {α, β}. Then, we obtain the following by the definition of
q∗(T).

– If T ∈ TS and α, β ∈ F0, then x(α) + x(β) − 2q∗(T) = x′(eT).
– If T ∈ TS and α, β ∈ F1, then (1 − x(α)) + (1 − x(β)) − 2q∗(T) = x′(eT).
– If T ∈ TS , α ∈ F0, and β ∈ F1, then x(α) + (1 − x(β)) − 2q∗(T) = y∅ +

yγ + yαβ = 1 − x′(eT).
– If T ∈ TS , β ∈ F0, and α ∈ F1, then (1 − x(α)) + x(β) − 2q∗(T) =

y∅ + yγ + yαβ = 1 − x′(eT).

With these observations, we obtain
∑

e∈F ′
0

x′(e) +
∑

e∈F ′
1

(1 − x′(e)) =
∑

e∈F0

x(e) +
∑

e∈F1

(1 − x(e)) −
∑

T∈TS

2q∗(T) < 1,

which shows the “only if” part.
We next show the “if” part. For edge sets F ′

0, F
′
1 ⊆ E′, we denote g(F ′

0, F
′
1) =

∑

e∈F ′
0
x′(e) +

∑

e∈F ′
1
(1 − x′(e)) to simplify the notation. Let (S′, F ′

0, F
′
1) be a

minimizer of g(F ′
0, F

′
1) subject to (F ′

0, F
′
1) is a partition of δG′(S′) and b′(S′)+|F ′

1|
is odd. Among minimizers, we choose (S′, F ′

0, F
′
1) so that F ′

0∪F ′
1 is inclusion-wise

minimal. To derive a contradiction, assume that g(F ′
0, F

′
1) < 1. We can show the

following claim by a case analysis (see [21] for a proof).

Claim. Let T ∈ T be a triangle as shown in Fig. 4 and denote F̂0 = F ′
0 ∩E′

T and
F̂1 = F ′

1 ∩ E′
T . Then, we obtain the following.

(i) If v1, v2, v3 �∈ S′, then rT �∈ S′.
(ii) If v1, v2, v3 ∈ S′, then rT ∈ S′.
(iii) If v1 ∈ S′, v2, v3 �∈ S′, and

∣
∣
∣F̂1

∣
∣
∣ is even, then g(F̂0, F̂1) = x′(e1) = x(α) +

x(γ) − 2yαγ .

(iv) If v1 ∈ S′, v2, v3 �∈ S′, and
∣
∣
∣F̂1

∣
∣
∣ is odd, then g(F̂0, F̂1) = 1 − x′(e1) =

y∅ + yβ + yαγ .

Note that each T ∈ T satisfies exactly one of (i)–(iv) by changing the labels
of v1, v2, and v3 if necessary. In what follows, we construct (S, F0, F1) ∈ F for
which (x, y) violates (9). We initialize (S, F0, F1) as

S = S′ ∩ V, F0 = F ′
0 ∩ E, F1 = F ′

1 ∩ E,

and apply the following procedures for each triangle T ∈ T .

– If T satisfies the condition (i) or (ii), then we do nothing.
– If T satisfies the condition (iii), then we add α and γ to F0.

292 Y. Kobayashi

– If T satisfies the condition (iv), then we add α to F0 and add γ to F1.

Then, we obtain that (F0, F1) is a partition of δG(S), b(S)+|F1| ≡ b′(S′)+|F ′
1| ≡

1 (mod 2), and
∑

e∈F0

x(e) +
∑

e∈F1

(1 − x(e)) −
∑

T∈TS

2q∗(T) =
∑

e∈F ′
0

x′(e) +
∑

e∈F ′
1

(1 − x′(e)) < 1

by the above claim. This shows that (x, y) violates (9) for (S, F0, F1) ∈ F , which
completes the proof of the “if” part.
�

References

1. Babenko, M.A.: Improved algorithms for even factors and square-free simple b-
matchings. Algorithmica 64(3), 362–383 (2012). https://doi.org/10.1007/s00453-
012-9642-6

2. Bérczi, K.: The triangle-free 2-matching polytope of subcubic graphs. Technical
report TR-2012-2, Egerváry Research Group (2012)

3. Bérczi, K., Kobayashi, Y.: An algorithm for (n − 3)-connectivity augmentation
problem: jump system approach. J. Comb. Theory Ser. B 102(3), 565–587 (2012).
https://doi.org/10.1016/j.jctb.2011.08.007

4. Bérczi, K., Végh, L.A.: Restricted b-matchings in degree-bounded graphs. In:
Eisenbrand, F., Shepherd, F.B. (eds.) IPCO 2010. LNCS, vol. 6080, pp. 43–56.
Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13036-6 4

5. Conforti, M., Cornuéjols, G., Zambelli, G.: Extended formulations in combinatorial
optimization. 4OR 8(1), 1–48 (2010). https://doi.org/10.1007/s10288-010-0122-z

6. Cornuéjols, G., Pulleyblank, W.: A matching problem with side conditions. Discrete
Math. 29(2), 135–159 (1980). https://doi.org/10.1016/0012-365x(80)90002-3

7. Cornuejols, G., Pulleyblank, W.R.: Perfect triangle-free 2-matchings. In: Rayward-
Smith, V.J. (ed.) Mathematical Programming Studies, vol. 13, pp. 1–7. Springer,
Heidelberg (1980). https://doi.org/10.1007/bfb0120901

8. Cunningham, W.H.: Matching, matroids, and extensions. Math. Program. 91(3),
515–542 (2001). https://doi.org/10.1007/s101070100256

9. Edmonds, J.: Maximum matching and a polyhedron with 0, 1-vertices. J. Res. Nat.
Bur. Stand. B 69, 125–130 (1965)

10. Frank, A.: Restricted t-matchings in bipartite graphs. Discrete Appl. Math. 131(2),
337–346 (2003). https://doi.org/10.1016/s0166-218x(02)00461-4

11. Grötschel, M., Lovász, L., Schrijver, A.: Geometric Algorithms and Combinatorial
Optimization. Algorithms and Combinatorics, vol. 2. Springer, Heidelberg (1988).
https://doi.org/10.1007/978-3-642-78240-4

12. Hartvigsen, D.: Extensions of Matching Theory. Ph.D. thesis, Carnegie Mellon
University (1984)

13. Hartvigsen, D.: The square-free 2-factor problem in bipartite graphs. In:
Cornuéjols, G., Burkard, R.E., Woeginger, G.J. (eds.) IPCO 1999. LNCS, vol.
1610, pp. 234–241. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-
48777-8 18

14. Hartvigsen, D.: Finding maximum square-free 2-matchings in bipartite graphs. J.
Comb. Theor. Ser. B 96(5), 693–705 (2006). https://doi.org/10.1016/j.jctb.2006.
01.004

https://doi.org/10.1007/s00453-012-9642-6
https://doi.org/10.1007/s00453-012-9642-6
https://doi.org/10.1016/j.jctb.2011.08.007
https://doi.org/10.1007/978-3-642-13036-6_4
https://doi.org/10.1007/s10288-010-0122-z
https://doi.org/10.1016/0012-365x(80)90002-3
https://doi.org/10.1007/bfb0120901
https://doi.org/10.1007/s101070100256
https://doi.org/10.1016/s0166-218x(02)00461-4
https://doi.org/10.1007/978-3-642-78240-4
https://doi.org/10.1007/3-540-48777-8_18
https://doi.org/10.1007/3-540-48777-8_18
https://doi.org/10.1016/j.jctb.2006.01.004
https://doi.org/10.1016/j.jctb.2006.01.004

Weighted Triangle-Free 2-Matching Problem 293

15. Hartvigsen, D., Li, Y.: Polyhedron of triangle-free simple 2-matchings in subcubic
graphs. Math. Program. 138(1–2), 43–82 (2012). https://doi.org/10.1007/s10107-
012-0516-0

16. Iwata, S., Kobayashi, Y.: A weighted linear matroid parity algorithm. In: Pro-
ceedings of the 49th Annual ACM SIGACT Symposium on Theory of Computing
- STOC 2017, pp. 264–276. ACM Press (2017). https://doi.org/10.1145/3055399.
3055436

17. Kaibel, V.: Extended formulations in combinatorial optimization. Technical report
(2011). arXiv:1104.1023

18. Király, Z.: C4-free 2-factors in bipartite graphs. Technical report TR-2012-2,
Egerváry Research Group (1999)

19. Kobayashi, Y.: A simple algorithm for finding a maximum triangle-free 2-matching
in subcubic graphs. Discrete Optim. 7(4), 197–202 (2010). https://doi.org/10.
1016/j.disopt.2010.04.001

20. Kobayashi, Y.: Triangle-free 2-matchings and M-concave functions on jump sys-
tems. Discrete Appl. Math. 175, 35–42 (2014). https://doi.org/10.1016/j.dam.
2014.05.016

21. Kobayashi, Y.: Weighted triangle-free 2-matching problem with edge-disjoint for-
bidden triangles (2019). arXiv:1911.06436

22. Kobayashi, Y., Szabó, J., Takazawa, K.: A proof of Cunningham’s conjecture on
restricted subgraphs and jump systems. J. Comb. Theor. Ser. B 102(4), 948–966
(2012). https://doi.org/10.1016/j.jctb.2012.03.003

23. Letchford, A.N., Reinelt, G., Theis, D.O.: Odd minimum cut sets and b-matchings
revisited. SIAM J. Discrete Math. 22(4), 1480–1487 (2008). https://doi.org/10.
1137/060664793

24. Makai, M.: On maximum cost Kt,t-free t-matchings of bipartite graphs. SIAM J.
Discrete Math. 21(2), 349–360 (2007). https://doi.org/10.1137/060652282

25. Padberg, M.W., Rao, M.R.: Odd minimum cut-sets and b-matchings. Math. Oper.
Res. 7(1), 67–80 (1982)

26. Pap, G.: Combinatorial algorithms for matchings, even factors and square-free 2-
factors. Math. Program. 110(1), 57–69 (2007). https://doi.org/10.1007/s10107-
006-0053-9

27. Takazawa, K.: A weighted Kt,t-free t-factor algorithm for bipartite graphs. Math.
Oper. Res. 34(2), 351–362 (2009). https://doi.org/10.1287/moor.1080.0365

28. Takazawa, K.: Decomposition theorems for square-free 2-matchings in bipartite
graphs. Discrete Appl. Math. 233, 215–223 (2017). https://doi.org/10.1016/j.dam.
2017.07.035

29. Takazawa, K.: Excluded t-factors in bipartite graphs: a unified framework for non-
bipartite matchings and restricted 2-matchings. In: Eisenbrand, F., Koenemann, J.
(eds.) IPCO 2017. LNCS, vol. 10328, pp. 430–441. Springer, Cham (2017). https://
doi.org/10.1007/978-3-319-59250-3 35

30. Takazawa, K.: Finding a maximum 2-matching excluding prescribed cycles in
bipartite graphs. Discrete Optim. 26, 26–40 (2017). https://doi.org/10.1016/j.
disopt.2017.05.003

https://doi.org/10.1007/s10107-012-0516-0
https://doi.org/10.1007/s10107-012-0516-0
https://doi.org/10.1145/3055399.3055436
https://doi.org/10.1145/3055399.3055436
http://arxiv.org/abs/1104.1023
https://doi.org/10.1016/j.disopt.2010.04.001
https://doi.org/10.1016/j.disopt.2010.04.001
https://doi.org/10.1016/j.dam.2014.05.016
https://doi.org/10.1016/j.dam.2014.05.016
http://arxiv.org/abs/1911.06436
https://doi.org/10.1016/j.jctb.2012.03.003
https://doi.org/10.1137/060664793
https://doi.org/10.1137/060664793
https://doi.org/10.1137/060652282
https://doi.org/10.1007/s10107-006-0053-9
https://doi.org/10.1007/s10107-006-0053-9
https://doi.org/10.1287/moor.1080.0365
https://doi.org/10.1016/j.dam.2017.07.035
https://doi.org/10.1016/j.dam.2017.07.035
https://doi.org/10.1007/978-3-319-59250-3_35
https://doi.org/10.1007/978-3-319-59250-3_35
https://doi.org/10.1016/j.disopt.2017.05.003
https://doi.org/10.1016/j.disopt.2017.05.003

Single Source Unsplittable Flows
with Arc-Wise Lower and Upper Bounds

Sarah Morell and Martin Skutella(B)

Combinatorial Optimization & Graph Algorithms Group, Institut für Mathematik,
Technische Universität Berlin, Berlin, Germany

{morell,skutella}@math.tu-berlin.de

Abstract. In a digraph with a source and several destination nodes
with associated demands, an unsplittable flow routes each demand along
a single path from the common source to its destination. Given some
flow x that is not necessarily unsplittable but satisfies all demands, it is
a natural question to ask for an unsplittable flow y that does not deviate
from x by too much, i.e., ya ≈ xa for all arcs a. Twenty years ago, in a
landmark paper, Dinitz, Garg, and Goemans [3] proved that there is an
unsplittable flow y such that ya ≤ xa + dmax for all arcs a, where dmax

denotes the maximum demand value.
Our first contribution is a considerably simpler one-page proof for this

classical result, based upon an entirely new approach. Secondly, using a
subtle variant of this approach, we obtain a new result: There is an
unsplittable flow y such that ya ≥ xa − dmax for all arcs a. Finally,
building upon an iterative rounding technique previously introduced by
Kolliopoulos and Stein [10] and Skutella [15], we prove existence of
an unsplittable flow that simultaneously satisfies the upper and lower
bounds for the special case when demands are integer multiples of each
other. For arbitrary demand values, we prove the slightly weaker simul-
taneous bounds xa/2 − dmax ≤ ya ≤ 2xa + dmax for all arcs a.

1 Introduction

Ever since the seminal work of Ford and Fulkerson [5] network flows belong to the
most important and fundamental class of problems in combinatorial optimization
and mathematical programming. We refer to the classical textbook [1] by Ahuja,
Magnanti, and Orlin as well as the very recent new textbook [16] by Williamson
on the topic.

Problem Setting and Notation. Let D = (V,A) be a directed acyclic graph
with source node s ∈ V and k commodities with destination nodes t1, . . . , tk ∈ V
and associated demands d1, . . . , dk ∈ R>0. A flow x ∈ RA

≥0 satisfies the given

Partially supported by DFG Priority Programme 1736 (grant SK 58/10-2).
c© Springer Nature Switzerland AG 2020
D. Bienstock and G. Zambelli (Eds.): IPCO 2020, LNCS 12125, pp. 294–306, 2020.
https://doi.org/10.1007/978-3-030-45771-6_23

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-45771-6_23&domain=pdf
https://doi.org/10.1007/978-3-030-45771-6_23

Single Source Unsplittable Flows with Arc-Wise Lower and Upper Bounds 295

demands if it simultaneously sends di units of flow from s to ti, for all i = 1, . . . , k.
That is, x must satisfy the following flow conservation constraints:

x(δin(v)) − x(δout(v)) =

⎧
⎪⎨

⎪⎩

di if v = ti for some i ∈ {1, . . . , k},

−∑k
i=1 di if v = s,

0 otherwise.
(1)

Here, δin(v) and δout(v) denote the set of incoming and outgoing arcs of
node v, respectively; for B ⊆ A, let x(B) :=

∑
a∈B xa. In the following, when-

ever we refer to a flow, we mean a flow satisfying the given demands, i.e., Con-
straints (1), unless stated otherwise.

The following classical integrality property of network flows follows, for exam-
ple, from the fact that the node-arc incidence matrix, which implicitly occurs on
the left-hand side of (1), is totally unimodular.

Theorem 1. If the demands d1, . . . , dk are all integral, then any flow x can be
written as a convex combination of integral flows such that each such integral
flow y ∈ ZA

≥0 satisfies

�xa� ≤ ya ≤ �xa� for all a ∈ A.

In particular, there exists an integral flow obeying these upper and lower bounds.

Single Source Unsplittable Flows. In 1996, Kleinberg [6] introduced single
source unsplittable flows. A flow is called unsplittable if the entire demand of each
commodity is routed along one path from the source to its destination node. That
is, an unsplittable flow y can be specified as follows: for all i = 1, . . . , k, there is
one s-ti-path P y

i in D such that

ya =
∑

i:a∈Py
i

di for all a ∈ A.

In order to emphasize the fact that a particular flow x is not necessarily unsplit-
table, we sometimes refer to x as a fractional flow in this case. Notice that for
the special case of unit demands, a flow is unsplittable if and only if it is integral.

Related Literature. Single source unsplittable flows constitute a special case
of more general unsplittable flows where each commodity has its own source
and destination node. General unsplittable flows have been well studied in the
literature as an interesting extension of disjoint paths. For instance, if we are
given arc capacities and demands for each commodity and look for an unsplit-
table flow of minimum congestion, i.e., of minimum overload of arc capacities,
Raghavan and Thompson [12,13] present an approximation algorithm based on
their randomized rounding technique. We refer to the survey [9] by Kolliopoulos
for further results on general unsplittable flows.

296 S. Morell and M. Skutella

The problem of finding a single source unsplittable flow in a directed graph
with capacities on the arcs contains several well-known NP-complete problems as
special cases, e.g., Partition, Bin Packing, or even scheduling parallel machines
with makespan objective; we refer to [6] for more details and other special cases.

Kleinberg [6], Dinitz, Garg, and Goemans [3], Kolliopoulos and Stein [10], and
Skutella [15] present approximation algorithms for various optimization versions
of the single source unsplittable flow problem. Du and Kolliopoulos [4] have
implemented and empirically tested several of those approximation algorithms.

Baier et al. [2] introduce the following relaxation of unsplittable flows. For
a given k ≥ 1, a k-splittable flow must route each commodity along at most k
paths. In particular, 1-splittable flows are unsplittable flows. It follows from
the classical flow decomposition theorem that k-splittability is not a meaningful
restriction for k ≥ |A|. Single source k-splittable flows are studied, e.g., by
Kolliopoulos [8], Koch, Skutella, and Spenke [7], and Salazar and Skutella [14].

Let dmax := max{d1, . . . , dk} denote the maximum demand value. The cen-
tral result in the seminal paper of Dinitz, Garg, and Goemans [3] is the following
theorem on single source unsplittable flows:

Theorem 2. For a given flow x, there is an unsplittable flow y such that

ya ≤ xa + dmax for all a ∈ A. (2)

The proof of this theorem given in [3] is in fact algorithmic, that is, the authors
provide an efficient algorithm that turns the given flow x into an unsplittable
flow y satisfying the arc-wise upper bounds (2). Starting from the fractional
flow x, the algorithm repeatedly augments flow along cycles featuring a special
property until all commodities have been routed unsplittably.

Contribution and Outline. In Sect. 2 we present a considerably simpler one-
page proof of Theorem 2, based upon an entirely new approach. Dinitz, Garg,
and Goemans start with the fractional flow y := x and then iteratively modify y,
always maintaining Property (2), until y is unsplittable. In contrast, we start
with an arbitrary unsplittable flow y violating Property (2) and then iteratively
modify y, always maintaining an unsplittable flow, until y meets Property (2).

In Sect. 3, using a similar approach, we derive the following new covering
analogue of the packing result in Theorem 2:

Theorem 3. For a given flow x, there is an unsplittable flow y such that

ya ≥ xa − dmax for all a ∈ A. (3)

To prove this result, we again iteratively turn an arbitrary unsplittable flow into
one that meets Property (3). In contrast to the packing result, however, the
proof of the covering bounds in (3) turns out to be somewhat more intricate,
requiring several additional insights and arguments.

Section 4 considers upper bounds (2) and lower bounds (3) simultaneously.
Using techniques introduced by Kolliopoulos and Stein [10], Skutella [15], and
Martens et al. [11], one can obtain the following generalization of Theorem 1:

Single Source Unsplittable Flows with Arc-Wise Lower and Upper Bounds 297

Theorem 4. If the demands are multiples of each other, i.e., d1 | d2 | . . . | dk,
then any flow x can be written as a convex combination of unsplittable flows such
that each such unsplittable flow y satisfies

xa − dmax ≤ ya ≤ xa + dmax for all a ∈ A. (4)

In particular, there does exist an unsplittable flow y obeying (4).

Finally, for arbitrary demand values, we obtain the following slightly weaker
bounds:

Theorem 5. For a given flow x, there is an unsplittable flow y such that

xa

2
− dmax ≤ ya ≤ 2xa + dmax for all a ∈ A. (5)

We conclude in Sect. 5 by pointing out several interesting open problems and
stating a stronger version of Goemans’ unsplittable flow conjecture.

Preliminaries. We assume throughout this paper that, without loss of general-
ity, each node v ∈ V lies on an s-ti-path for some i ∈ {1, . . . , k}. Paths are con-
sidered to be subsets of the given arc set A. For a path Q and two nodes v, w ∈ V
lying on path Q (with v being visited first), the v-w-subpath of Q is denoted
by Q|[v,w]. Finally, for a subset of nodes X ⊆ V \ {s}, let d(X) :=

∑
i:ti∈X di.

2 A Short Proof of the Dinitz-Garg-Goemans Theorem

Our novel proof of Theorem 2 relies on a simple augmentation step, called upper
bound preserving (UBP) augmentation step. For a given flow x and an arbitrary
unsplittable flow y, we say that a node v is UBP-reachable w.r.t. y if there is
an s-v-path Q in D such that

ya ≤ xa for all a ∈ Q.

A UBP augmentation step for an unsplittable flow y is defined as follows: Given
a node v that is UBP-reachable w.r.t. y along path Q and a commodity i such
that node v lies on path P y

i , reroute commodity i from s to v along path Q. This
results in a new unsplittable flow y′ using a new s-ti-path P y′

i with P y′
i |[s,v] = Q;

see Fig. 2 in Appendix A. Notice that

y′
a ≤ xa + di for all a ∈ P y′

i |[s,v],

which explains why the augmentation step is called upper bound preserving.
If an unsplittable flow y′ results from y by a finite sequence of UBP augmen-

tation steps, we write y
UBP� y′. We say that a node v is eventually UBP-reachable

w.r.t. y if there is an unsplittable flow y′ with y
UBP� y′ such that v is UBP-

reachable w.r.t. y′.

298 S. Morell and M. Skutella

Lemma 1. For any unsplittable flow y, all nodes in V are eventually UBP-
reachable w.r.t. y.

Proof. Assume that there is an unsplittable flow y such that the set Xy of even-
tually UBP-reachable nodes w.r.t. y is a proper subset of V , i.e., Xy � V .
Applying UBP augmentation steps to y cannot enlarge the set of eventually
UBP-reachable nodes. Hence, if we choose y such that Xy is inclusion-wise min-
imal, then Xy = Xy′ =: X for any unsplittable flow y′ with y

UBP� y′. We prove
three important properties of y and X:

(P1) ya > xa for all a ∈ δout(X).
Indeed, if there is an arc a = (v, w) ∈ δout(X) with ya ≤ xa, let y′ be an
unsplittable flow resulting from y by a shortest possible sequence of UBP
augmentation steps such that v is UBP-reachable w.r.t. y′. As long as
node v is not UBP-reachable, flow on arc a cannot increase during a UBP
augmentation step. Hence, y′

a ≤ ya ≤ xa which implies that not only v
but also w is UBP-reachable w.r.t. y′. Hence, w ∈ X, a contradiction.

(P2) y(δin(X)) =
∑

a∈δin(X) ya > 0.
Indeed, δout(X)
= ∅, as otherwise there is no path from source s ∈ X to
the nodes in V \ X. Both flows x and y satisfy the same set of demands,
i.e., y(δout(X)) − y(δin(X)) = d(V \ X) = x(δout(X)) − x(δin(X)). But,
by Property (P1), y(δout(X)) > x(δout(X)). Hence, y(δin(X)) > 0.

(P3) y′(δin(X)) ≤ y(δin(X)) for each unsplittable flow y′ with y
UBP� y′.

Let a UBP augmentation step reroute commodity i from source s to some
node v ∈ X along an s-v-path Q. By definition of X, path Q must remain
in X. Moreover, P y

i |[s,v] may either remain in X, implying that the total
income flow of y does not change; or it may exit and re-enter X, implying
that y(δin(X)) decreases by (a multiple of) demand di.

With a view to Property (P3), we choose y with y(δin(X)) minimal. By Prop-
erty (P2), there is an arc a = (w, v) ∈ δin(X) such that ya > 0. Since v ∈ X,
there is an unsplittable flow y′ with y

UBP� y′ such that v is UBP-reachable w.r.t. y′

via an s-v-path Q. Flow on arc a remains unchanged, i.e., y′
a = ya, and there

is a commodity i with a ∈ Pi. Rerouting commodity i from s to v along Q
decreases y′(δin(X)) = y(δin(X)), contradicting its minimality. �

In order to prove Theorem 2, we start with an arbitrary unsplittable flow y0.
Apply Lemma 1 successively to each of the destination nodes ti with i = 1, . . . , k :
Once ti is UBP-reachable w.r.t. some unsplittable flow via an s-ti-path Q, we
apply a UBP augmentation step, rerouting demand di along path Q. The result-
ing flow yi satisfies the desired arc-wise upper bound on all arcs lying on the
new s-ti-path P yi

i = Q. Notice that whenever a commodity i is routed properly,
it remains so, independently of which UBP augmentation steps may follow. This
implies for yi that all commodities 1, . . . , i are now properly routed. Hence, the
final flow yk satisfies the arc-wise upper bound on all arcs. This concludes the
proof of Theorem 2.

Single Source Unsplittable Flows with Arc-Wise Lower and Upper Bounds 299

1

1

1

1

s

Fig. 1. An instance with k demands of value 1. Flow x is given as follows: solid arcs
have flow value k

k+1
and dashed arcs carry flow value 1

k+1
. Notice that any unsplittable

flow sends zero flow on some solid arc.

3 Unsplittable Flows with Arc-Wise Lower Bounds

Notice that the lower bound (3) in Theorem 3 is tight in the following sense: For
each ε > 0, there is a digraph D together with a fractional flow x such that no
unsplittable flow y satisfies ya ≥ xa − dmax + ε, for all a ∈ A; see the instance
depicted in Fig. 1 with k = �1/ε�.

We point out that the techniques provided in [3] are not adapted for handling
arc-wise lower bounds, see Appendix B for further details. The proof of Theo-
rem 3 is based on a similar approach as our proof of the Dinitz-Garg-Goemans
Theorem in Sect. 2, yet turns out to be somewhat more intricate. Since we are no
longer interested in upper bounds but in lower bounds, we now use lower bound
preserving (LBP) augmentation steps: for an unsplittable flow y, we say that
node v is LBP-reachable w.r.t. y if there is a commodity i whose s-ti-path P y

i

passes through node v and the s-v-subpath P y
i |[s,v] satisfies

ya ≥ xa for all a ∈ P y
i |[s,v].

To emphasize the role of commodity i, we also say that node v is LBP-reachable
for commodity i w.r.t. y in this case.

An LBP augmentation step for an unsplittable flow y is defined as follows:
Given a node v that is LBP-reachable for commodity i w.r.t. y, reroute com-
modity i from source s to node v along an arbitrary s-v-path Q. This results
in a new unsplittable flow y′ using a new s-ti-path P y′

i with P y′
i |[s,v] = Q; see

Fig. 3 in Appendix A. Notice that for each a ∈ P y
i |[s,v] we have y′

a ≥ xa − di,
which explains why the augmentation step is called lower bound preserving.

If an unsplittable flow y′ results from y by a finite sequence of LBP augmen-
tation steps, we write y

LBP� y′. We say that a node v is eventually LBP-reachable
(for commodity i) w.r.t. y if there is an unsplittable flow y′ with y

LBP� y′ such
that v is LBP-reachable (for commodity i) w.r.t. y′.

Proposition 1. Let y be an unsplittable flow and v a node on path P y
i for

some commodity i such that v is eventually LBP-reachable w.r.t. y′ for all y′

with y
LBP� y′. Then v is eventually LBP-reachable for commodity i w.r.t. y.

300 S. Morell and M. Skutella

Proof. Assume by contradiction that v is not eventually LBP-reachable for com-
modity i w.r.t. y. Then any y′ with y

LBP� y′ constitutes another counterexample.
In particular, node v is on path P y′

i and the s-v-subpath P y′
i |[s,v] contains at

least one arc a such that y′
a < xa. Let ay′

= (uy′
, wy′

) be such arc closest to v.
Let dy′

be the number of arcs on P y′
i |[wy′ ,v].

Choose counterexample y such that the following two criteria are met in the
given order: (i) dy is maximal, (ii) yay is maximal.

Consider a sequence of unsplittable flows y = y0, y1, . . . , yq, where each yj

results from yj−1 via an LBP augmentation step, such that there is a node w
on P y

i |[wy,v] that is LBP-reachable w.r.t. yq but no node on P y
i |[wy,v] is LBP-

reachable w.r.t. yj for any j < q. Such a sequence exists since node v is eventually
LBP-reachable w.r.t. y. As no node on P y

i |[wy,v] is LBP-reachable w.r.t. yj for
any j < q, flow on the arcs of P y

i |[uy,v] is never decreased during these LBP
augmentation steps and P y

i |[uy,v] = P
yj

i |[uy,v] for all j ≤ q. In particular, due
to (i) and (ii), dyj = dy, ayj = ay, and the flow on ay remains unchanged for
all j ≤ q. Node w is LBP-reachable for some commodity w.r.t yq. Rerouting that
commodity along P y

i |[s,w] strictly increases flow on ay, contradicting the choice
of y in terms of (i) and (ii). �

Lemma 2. For any unsplittable flow y, all nodes in V are eventually LBP-
reachable for some commodity w.r.t. y.

Proof. Assume that there is an unsplittable flow y such that the set Xy of
eventually LBP-reachable nodes w.r.t. y is a proper subset of V , i.e., Xy � V .
Applying LBP augmentation steps to y cannot enlarge the set of eventually
LBP-reachable nodes. Hence, if we choose y such that Xy is inclusion-wise min-
imal, then Xy = Xy′ =: X for any unsplittable flow y′ with y

LBP� y′. Notice
that an LBP augmentation step cannot decrease the outgoing flow y(δout(X)).
Indeed, if a node v ∈ X is LBP-reachable for a commodity i w.r.t. y, then all
nodes on the s-v-subpath P y

i |[s,v] are LBP-reachable for commodity i w.r.t y.
Hence, P y

i |[s,v] remains inside of the set Xy and rerouting commodity i cannot
decrease y(δout(X)). Therefore, y′(δout(X)) ≥ y(δout(X)) for each unsplittable
flow y′ with y

LBP� y′. With a view to this property, choose y with y(δout(X))
maximal. We prove two important properties of y and X:

(P1’) δin(X) = ∅.
If there is an arc (w, v) ∈ δin(X), let y′ with y

LBP� y′ be such that
node v ∈ X is LBP-reachable for some commodity i w.r.t. y′. Rerouting
commodity i along an arbitrary s-v-path Q with (w, v) ∈ Q increases flow
on (w, v) as well as on some arc in δout(X), contradicting the maximality
of y(δout(X)).

(P2’) There is an arc a ∈ δout(X) with ya > 0 and ya ≥ xa.
Consider a node v ∈ V \ X. By assumption, there is a v-ti-path in D for
some commodity i. Since δin(X) = ∅ by Property (P1’), node ti must also
lie in V \ X. Therefore, again by Property (P1’), we have

y(δout(X)) = x(δout(X)) = d(V \ X) ≥ di > 0.

Single Source Unsplittable Flows with Arc-Wise Lower and Upper Bounds 301

This implies the existence of arc a with the properties stated above.

Consider an arc a = (v, w) ∈ δout(X) as in (P2’) and a commodity i with a ∈ P y
i .

Since w ∈ V \ X and δin(X) = ∅ by (P1’), it is impossible for any sequence of
LBP augmentations to add or delete flow on arc a. In particular, y′

a = ya ≥ xa

and a ∈ P y′
i for each unsplittable flow y′ with y

LBP� y′. By Proposition 1, node v is
eventually LBP-reachable for commodity i w.r.t. y. Hence, node w is eventually
LBP-reachable w.r.t. y, a contradiction to w
∈ X. �

Lemma 3. For any unsplittable flow y and any arc a, there is an unsplittable
flow y′ with y

LBP� y′ such that y′
a ≥ xa.

Proof. Assume that there is an unsplittable flow y and an arc a = (v, w) ∈ A

such that y′
a < xa for any y′ with y

LBP� y′. Notice that flow on arc a can never
be decreased by an LBP augmentation step. We may choose y in such a way
that ya is maximal. By Lemma 2, node w is LBP-reachable for some commodity i
w.r.t. an unsplittable flow y′ with y

LBP� y′. Rerouting i along any s-w-path Q
with a ∈ Q increases the flow on arc a, hence contradicting its maximality. �

We can now prove Theorem 3: Let y be an arbitrary unsplittable flow. By
Lemma 3, for each arc a ∈ A there is an unsplittable flow y′ with y

LBP� y′ such
that y′

a ≥ xa. Notice that any flow resulting from y′ by a sequence of LBP
augmentation has a flow value on a of at least xa −dmax. Going through all arcs
successively leads to a final unsplittable flow with the desired properties.

Unsplittable Flows Satisfying Lower Capacities on Arcs
In the context of unsplittable flows respecting arc-wise upper bounds, several
interesting problem variants have been considered in the literature; see, e.g., [6].
Theorem 2 immediately implies approximation results for the minimum conges-
tion problem whose objective is to bound the violation of given upper bounds
(arc capacities). Another prominent problem, the minimum number of rounds
problem, asks for a partition of the set of commodities into a minimum number
of subsets (rounds) such that each subset can be routed unsplittably without
violating given arc capacities. Finally, the maximum routable demand problem
asks for a feasible (w.r.t. arc capacities) unsplittable routing of a subset of com-
modities of maximum total demand. We refer to [3] for further details.

With a view to these optimization problems, the (fractional) flow x in The-
orem 2 plays the role of a solution to a fractional relaxation obeying given arc
capacities. Similarly, our new result in Theorem 3 is relevant for unsplittable
flow problems with lower capacities on the arcs. If we assume that a given (frac-
tional) flow x obeys lower arc capacities, a meaningful question in this context
is, how many copies of the commodities are needed such that one can find an
unsplittable routing y of all copies such that ya ≥ xa for all arcs a ∈ A.

Corollary 1. Given a fractional flow x, let α ≥ 1 be such that α · xa ≥ maxi di

for all a ∈ A, where the maximum is taken over all i with arc a lying on an s-
ti-path. Then, at most �1 + α� copies of commodities are necessary in order to
find an unsplittable routing y of all those copies such that ya ≥ xa for all a ∈ A.

302 S. Morell and M. Skutella

Proof. Let x̃ be given by x̃a = �1+α�·xa for each a ∈ A, hence satisfying �1+α�
copies of each demand di for i = 1, . . . , k. As a consequence of Theorem 3, there
is an unsplittable flow y satisfying �1+α� copies of each demand di, i = 1, . . . , k,
such that ya ≥ x̃a − maxi di for all a ∈ A, where the maximum is taken over
all commodities i with arc a lying on an s-ti-path. Since α · xa ≥ maxi di for
all a ∈ A, and by definition of x̃, we get ya ≥ �1 + α� · xa − α · xa ≥ xa for
all a ∈ A. �

4 Combining Lower and Upper Bounds

In this section we obtain results on unsplittable flows that simultaneously satisfy
arc-wise upper and lower bounds with respect to the given fractional flow x.
We first consider the special case where demands are multiples of each other,
i.e., d1 | d2 | . . . | dk, and give a rough sketch how Theorem 4 can be obtained via
methods introduced by Kolliopoulos and Stein [10], Skutella [15], and Martens
et al. [11]. To make the terminology precise, for a, b ∈ R>0 we write a | b if there
is an integer c ∈ Z such that a · c = b. In this case we say that b is a-integral.

Proof Sketch of Theorem 4. In the considered case, the demands are all dmin-
integral where dmin is the minimum demand value. By scaling the demand values
and the flow x accordingly, we may assume that dmin = 1 such that all demands
are integral. Therefore, by Theorem 1, the given fractional flow x is a convex
combination of dmin-integral flows whose flow values on the arcs differ from x
by at most dmin. Thus, it suffices to show that any dmin-integral flow can be
written as a convex combination of unsplittable flows whose flow values differ
by at most dmax − dmin.

Notice that a dmin-integral flow can be interpreted to route all commodi-
ties i of value di = dmin unsplittably by iteratively choosing a flow-carrying s-
ti-path Pi for each such commodity. We can thus decrease the flow along Pi

by di = dmin and delete commodity i from the instance. This leaves us with
a dmin-integral flow satisfying all demands strictly larger than dmin =: d̃1. We
are thus left to deal with d̃2-integral demands where d̃2 denotes the smallest
remaining demand value. Again applying Theorem 1, our d̃1-integral flow satis-
fying d̃2-integral demands can be written as a convex combination of d̃2-integral
flows whose flow values differ by at most d̃2 − d̃1. Thus, overall, the flow values
of the d̃2-integral flows differ from x by at most d̃1 + (d̃2 − d̃1) = d̃2. Applying
this chain of arguments iteratively finally yields Theorem 4 as well as an efficient
algorithm to compute the desired convex combination of unsplittable flows. We
refer to [11,15] for further details.

Proof Sketch of Theorem 5. The basic idea of the proof is to round down
the demand values such that the rounded demands satisfy the conditions of
Theorem 4. The flow x has to be modified accordingly in a careful way in order to
finally satisfy the desired lower and upper bounds (5). Then, we apply Theorem 4
to the modified flow x which yields an unsplittable flow satisfying the rounded
demands. Finally, we increase flow on the paths of this unsplittable flow to meet
the original demand values; see Algorithm 1.

Single Source Unsplittable Flows with Arc-Wise Lower and Upper Bounds 303

Algorithm 1:
Input : A flow x0 on D satisfying demands d1, . . . , dk;
Output: An unsplittable flow y given by an s-ti-path for i = 1, . . . , k;
For i = 1, . . . , k, set d̄i := dmin · 2�log(di/dmin)�;
Compute a flow x̄ satisfying demands d̄1, . . . , d̄k with x̄a ≥ xa

2
for all a ∈ A;

Apply Theorem 4 to x̄, yielding an unsplittable flow ȳ for demands d̄1, . . . , d̄k;
Return unsplittable flow y for original demands with P y

i = P ȳ
i , for i = 1, . . . , k;

Lemma 4. Algorithm 1 computes an unsplittable flow y satisfying (5).

We refer to Appendix C for the proof of Lemma 4.

5 Conclusion

We conclude by pointing out interesting open problems and conjectures related
to the results presented in this paper.

While the original proof of Theorem 2 in [3] comes with an efficient algorithm
for computing an unsplittable flow y satisfying (2), our proof seems to only give
rise to an exponential time algorithm. We conjecture, however, that there always
exists a sequence of UBP augmentation steps leading to an unsplittable flow y
satisfying (2) whose length is polynomially bounded. We also conjecture that a
polynomially bounded sequence of LBP augmentation steps exists in the context
of Theorem 3.

With respect to the combination of upper and lower bounds discussed in
Sect. 4, we conjecture that for a given flow x, there always exists an unsplittable
flow y such that both upper bounds (2) and lower bounds (3) hold. Even more, we
conjecture that any flow x can be written as a convex combination of unsplittable
flows y satisfying (2) and (3). This can be equivalently stated as follows (cf.,
e.g., [11]):

Conjecture 1. Given arbitrary cost c = (ca)a∈A on the arcs and a (fractional)
flow x, there is an unsplittable flow y such that c(y) ≤ c(x) and

xa − dmax ≤ ya ≤ xa + dmax for all a ∈ A.

This conjecture is a strengthening of a famous, yet still unresolved conjecture
of Goemans (see [15]) which does not take the lower bounds on y into account.
Theorem 4 implies that Conjecture 1 is true for the special case of demands that
are multiples of each other (also see Theorem 1 for the case of unit demands).

We hope that the new techniques and methods presented in Sects. 2 and 3 will
turn out to be of further use and stimulate progress towards these open problems.
They might also be useful in the context of k-splittable flows considered, e.g.,
in [8,14].

Acknowledgements. The authors would like to thank Rico Zenklusen as well as
Mohammed Majthoub Almoghrabi and Philipp Warode for interesting discussions on
the topic of this paper.

304 S. Morell and M. Skutella

A Illustration of UBP and LBP Augmentation Steps

ti

v

s

P y
i

≤ x

ti

v

s

P y′
i

≤ x + di

× ××

Fig. 2. For a given unsplittable flow y, let v be UBP-reachable w.r.t. y along a path Q
(illustrated dashed on the left) and let i be a commodity such that v lies on path P y

i . A
UBP augmentation step reroutes commodity i from s to v along path Q. The resulting
unsplittable flow y′ is illustrated on the right.

ti

v

s

P y
i≥ xa

ti

v

s

P y′
i≥ xa − di× ××

Fig. 3. For a given unsplittable flow y, let v be LBP-reachable for some commodity i
w.r.t. y and Q be an arbitrary s-v-path (illustrated dashed on the left). An LBP
augmentation step reroutes commodity i from s to v along path Q. The resulting
unsplittable flow y′ is illustrated on the right.

B Counterexample

In Fig. 4 we give an example showing that the algorithm of Dinitz, Garg, and
Goemans [3] (that was designed for the problem with arc-wise upper bounds)
is not adapted for handling arc-wise lower bounds. Their violation can be arbi-
trarily large, as we can see by adding commodities and expanding the graph in
Fig. 4. Consequently, even though the two problems regarding arc-wise upper
and lower bounds seem to be similar in spirit, we need completely new tools in
order to solve the above mentioned problem.

C Proof of Lemma 4

In order to prove the correctness of Algorithm 1 and the lower (resp. upper)
bound, we use the following well-known results on splittable flows, also known
as the cut condition; see, e.g., [1]: Given an arc-capacitated directed graph D =
(V,A) with a source node s and k commodities with corresponding destination
nodes t1, . . . , tk and demands d1, . . . , dk ∈ R>0, there is a feasible flow satisfying
all demands if and only if, for any subset T ⊂ V \ {s}, the sum of capacities of
arcs in the directed cut (V \ T, T) is at least d(T).

Single Source Unsplittable Flows with Arc-Wise Lower and Upper Bounds 305

s

1

1

1 s

1

1

Fig. 4. Let the digraph have three commodities with demand 1, as illustrated on the
left, and let the fractional flow x be given as follows: xsolid = 1, xdashed = 1−ε, xdotted =
ε, and xred = 3−3ε for some ε > 0. The algorithm in [3] first moves one of the demands
to the source node along its corresponding dotted arc, hence decreasing flow on the
red arc by 1 − ε. The remaining instance with two commodities and x′

red = 2 − 2ε is
illustrated on the right. Any further augmentation step decreases flow on the red arc
by 1 − ε, hence violating the desired lower bound on the red arc. (Color figure online)

By definition, d̄i ≤ di < 2d̄i for all i = 1, . . . , k. We thus get di − d̄i < di

2 for
all i = 1, . . . , k. We first show that there is a flow x̄ satisfying demands d̄1, . . . , d̄k

such that x̄a ≥ xa

2 for all a ∈ A. By the cut condition for flow x, it holds that
∑

a∈δout(T)

xa ≥ d(T) for each T ⊆ V \ {s}.

Therefore,
∑

a∈δout(T)

xa

2
≥ d(T)

2
> d(T) − d̄(T).

By the cut condition, there is a flow satisfying demands di − d̄i for i = 1, . . . , k
and obeying arc capacities xa

2 for all a ∈ A. Subtract this flow from the original
flow x to get a flow x̄ satisfying demands d̄1, . . . , d̄k. The flow x̄ actually satisfies

x̄a ≥ xa − xa

2
=

xa

2
for all a ∈ A.

Applying Theorem 4 to x̄ leads to an unsplittable flow ȳ such that

x̄a − d̄max ≤ ȳa ≤ x̄a + d̄max for all a ∈ A.

By construction of flow y, we obtain the lower bound

ya ≥ ȳa ≥ x̄a − d̄max ≥ xa

2
− dmax for all a ∈ A.

In order to prove the upper bound, let dia be a commodity with maximal demand
that is routed across an arc a ∈ A. Notice that ȳ even satisfies a slightly stronger
upper bound (also see [15]): we have ȳa ≤ x̄a + d̄ia for each arc a. Therefore,

ya =
∑

i:a∈Pi

di ≤ dia + 2
∑

i:a∈Pi,
i�=ia

d̄i ≤ dia + 2x̄a ≤ 2xa + dmax.

This concludes the proof. �

306 S. Morell and M. Skutella

References

1. Ahuja, R.K., Magnanti, T.L., Orlin, J.B.: Network Flows: Theory, Algorithms, and
Applications. Prentice-Hall Inc., Upper Saddle River (1993)

2. Baier, G., Köhler, E., Skutella, M.: On the k-splittable flow problem. Algorithmica
42, 231–248 (2005). https://doi.org/10.1007/s00453-005-1167-9

3. Dinitz, Y., Garg, N., Goemans, M.X.: On the single source unsplittable flow prob-
lem. Combinatorica 19, 17–41 (1999). https://doi.org/10.1007/s004930050043

4. Du, J., Kolliopoulos, S.: Implementing approximation algorithms for the single-
source unsplittable flow problem. J. Exp. Algorithmics 10, 2–3 (2005)

5. Ford, L.R., Fulkerson, D.R.: Flows in Networks. Princeton University Press, Prince-
ton (1962)

6. Kleinberg, J.M.: Approximation algorithms for disjoint paths problems. Ph.D. the-
sis, M.I.T. (1996)

7. Koch, R., Skutella, M., Spenke, I.: Maximum k-splittable s, t-flows. Theor. Comput.
Syst. 43, 56–66 (2008). https://doi.org/10.1007/s00224-007-9068-8

8. Kolliopoulos, S.G.: Minimum-cost single-source 2-splittable flow. Inf. Process. Lett.
94, 15–18 (2005)

9. Kolliopoulos, S.G.: Edge-disjoint paths and unsplittable flow. In: Gonzalez, T.F.
(ed.) Handbook of Approximation Algorithms and Metaheuristics. Chapman and
Hall/CRC, Boca Raton (2007)

10. Kolliopoulos, S.G., Stein, C.: Approximation algorithms for single-source unsplit-
table flow. SIAM J. Comput. 31, 919–946 (2002)

11. Martens, M., Salazar, F., Skutella, M.: Convex combinations of single source
unsplittable flows. In: Arge, L., Hoffmann, M., Welzl, E. (eds.) ESA 2007. LNCS,
vol. 4698, pp. 395–406. Springer, Heidelberg (2007). https://doi.org/10.1007/978-
3-540-75520-3_36

12. Raghavan, P.: Probabilistic construction of deterministic algorithms: approximat-
ing packing integer programs. J. Comput. Syst. Sci. 37, 130–143 (1988)

13. Raghavan, P., Thompson, C.D.: Randomized rounding: a technique for provably
good algorithms and algorithmic proofs. Combinatorica 7, 365–374 (1987). https://
doi.org/10.1007/BF02579324

14. Salazar, F., Skutella, M.: Single-source k-splittable min-cost flows. Oper. Res. Lett.
37, 71–74 (2009)

15. Skutella, M.: Approximating the single source unsplittable min-cost flow problem.
Math. Program. 91(3), 493–514 (2001). https://doi.org/10.1007/s101070100260

16. Williamson, D.P.: Network Flow Algorithms. Cambridge University Press, Cam-
bridge (2019)

https://doi.org/10.1007/s00453-005-1167-9
https://doi.org/10.1007/s004930050043
https://doi.org/10.1007/s00224-007-9068-8
https://doi.org/10.1007/978-3-540-75520-3_36
https://doi.org/10.1007/978-3-540-75520-3_36
https://doi.org/10.1007/BF02579324
https://doi.org/10.1007/BF02579324
https://doi.org/10.1007/s101070100260

Maximal Quadratic-Free Sets

Gonzalo Muñoz1(B) and Felipe Serrano2

1 Universidad de O’Higgins, Rancagua, Chile
gonzalo.munoz@uoh.cl

2 Zuse Institute Berlin, Berlin, Germany
serrano@zib.de

Abstract. The intersection cut paradigm is a powerful framework that
facilitates the generation of valid linear inequalities, or cutting planes,
for a potentially complex set S. The key ingredients in this construction
are a simplicial conic relaxation of S and an S-free set: a convex zone
whose interior does not intersect S. Ideally, such S-free set would be
maximal inclusion-wise, as it would generate a deeper cutting plane.
However, maximality can be a challenging goal in general. In this work,
we show how to construct maximal S-free sets when S is defined as
a general quadratic inequality. Our maximal S-free sets are such that
efficient separation of a vertex in LP-based approaches to quadratically
constrained problems is guaranteed. To the best of our knowledge, this
work is the first to provide maximal quadratic-free sets.

Keywords: Non-convex quadratic · Intersection cut · S-free sets

1 Introduction

Cutting planes have been at the core of the development of tractable compu-
tational techniques for integer-programming for decades. Their rich theory and
remarkable empirical performance have constantly caught the attention of the
optimization community, and has recently seen renewed efforts on their exten-
sions to the nonlinear setting. Consider a generic optimization problem, which
we assume to have linear objective without loss of generality:

min cTx (1a)
s.t. x ∈ S ⊆ Rn. (1b)

A common framework for finding strong approximations to this problem is to
first find x̄, an extreme point optimal solution of an LP relaxation of (1), and
check if x̄ ∈ S. If so, then (1) is solved. Otherwise, we try to find an inequality
separating x̄ from S. Such inequality can be used to refine the LP relaxation
of (1).

One way of finding such a cutting plane is through the intersection cut frame-
work [4,23,39]. We refer the reader to [17] for background on this procedure.

c© Springer Nature Switzerland AG 2020
D. Bienstock and G. Zambelli (Eds.): IPCO 2020, LNCS 12125, pp. 307–321, 2020.
https://doi.org/10.1007/978-3-030-45771-6_24

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-45771-6_24&domain=pdf
http://orcid.org/0000-0002-9003-441X
http://orcid.org/0000-0002-7892-3951
https://doi.org/10.1007/978-3-030-45771-6_24

308 G. Muñoz and F. Serrano

For the purposes of this article, it suffices to know that to compute an inter-
section cut we need x̄ �∈ S as above, a simplicial conic relaxation of S with
apex x̄, and an S-free set C—a convex set satisfying int(C) ∩ S = ∅—such that
x̄ ∈ int(C). In this work, we assume that x̄ and the simplicial cone are given, and
thus only focus on the construction of the S-free sets. A particularly important
case is obtained when (1) is a quadratic problem, i.e.,

S = {x ∈ Rn : xTQix + bTi x + ci ≤ 0, i = 1, . . . ,m}
for certain n × n matrices Qi, not necessarily positive semi-definite. Note that if
x̄ �∈ S, then there exists i ∈ {1, . . . , m} such that

x̄ �∈ Si := {x ∈ Rn : xTQix + bTi x + ci ≤ 0},

and constructing an Si-free set containing x̄ would suffice to ensure separation.
Thus, slightly abusing notation, given x̄ we focus on a systematic way of con-
structing S-free sets containing x̄, where S is defined using a single quadratic
inequality:

S = {x ∈ Rn : xTQx + bTx + c ≤ 0}.

As a final note, if we consider the simplest form of intersection cuts, where the
cuts are computed using the intersection points of the S-free set and the extreme
rays of the simplicial conic relaxation of S (i.e., using the gauge function), then
the larger the S-free set the better the cut. In other words, if two S-free sets
C1, C2 are such that C1 � C2, the intersection cut derived from C2 is stronger
than the one derived from C1 [16]. Therefore, we aim at computing maximal
S-free sets.

Contribution. The main contribution of this paper is an explicit construction
of maximal S-free sets, when S is defined using a non-convex quadratic inequal-
ity (Theorems 3 and 4). While these maximal S-free sets are constructed using
semi-infinite representations, we show equivalent and simple closed-form rep-
resentations of them. In order to construct these sets, we also derive maximal
S-free sets for sets S defined as the intersection of a homogeneous quadratic
inequality intersected with a linear homogeneous inequality. These are an impor-
tant intermediate step in our construction, but they are of independent interest
as well.

In order to show our results, we state and prove a criterion for maximality
of S-free sets which generalizes a criterion proven by Dey and Wolsey (the ‘only
if’ of [20, Proposition A.4]) in the case of maximal lattice-free sets (Definition
2 and Theorem 1). We also develop a new criterion that can handle a special
phenomenon that arises in our setting and also in nonlinear integer programming:
the boundary of a maximal S-free set may not even intersect S. Instead, the
intersection might be at “infinity”. We formalize this in Definition 3 and show
the criterion in Theorem 1.

1.1 Literature Review

The history of intersection cuts and S-free sets dates back to the 60’s. They
were originally introduced in the nonlinear setting by Tuy [39] for the problem

Maximal Quadratic-Free Sets 309

of minimizing a concave function over a polytope. Later on, they were introduced
in integer programming by Balas [4]. The more modern form of intersection cuts
deduced from an arbitrary convex S-free set is due to Glover [23], although the
term S-free was coined by Dey and Wolsey [20]. While the origin of intersection
cuts was in nonlinear optimization, most developments have been in the mixed
integer linear programming literature. See e.g. [6,16,18] for in-depth analyses of
the relation of intersection cuts using maximal Zn-free sets and the generation
of facets of conv(S). We also refer the reader to [2,3,5,14,19,25] and references
therein. For extensions of this approach to the mixed-integer conic case see [1,
8,9,26,27,32,33,37,40].

Lately, there has been several developments of intersection cuts in a nonlin-
ear setting. Fischetti et al. [21] applied intersection cuts to bilevel optimization.
Bienstock et al. [10,11] studied outer-product-free sets; these can be used for
generating intersection cuts for polynomial optimization when using an extended
formulation. Serrano [36] showed how to construct a concave underestimator of
any factorable function and from them one can build intersection cuts for fac-
torable mixed integer nonlinear programs. Fischetti and Monaci [22] constructed
bilinear-free sets through a bound disjunction and underestimating a bilinear
term with McCormick inequalities [30].

Of all these approaches for constructing intersection cuts in a nonlinear set-
ting, the only one that ensures maximality of the corresponding S-free sets is
the work of Bienstock et al. [10,11]. While their approach can also be used to
generate cuts in our setting, the space where they are computed and definition
of S differ significantly: in an n-dimensional quadratic setting, the approach of
Bienstock et al. would use a matrix-based extended formulation of dimension
proportional to n2 [28,29,38], define S as the set of positive semi-definite and
rank 1 matrices and aim for maximality using this notion. Our approach can
construct a maximal S-free set in the original space. These differences make the
approaches incomparable at this point: the quadratic dimension increase can be
a drawback, however stronger cuts can be derived from extended formulations
in some cases [12]. A comparison is subject of future work.

If one were to rely on a second-order cone instead of a simplicial cone to
compute a cut, one can use the results of [15] to obtain valid inequalities. The
relation between these approaches is subject of future work. We refer to the
survey [13] for other efforts of extending cutting planes to the nonlinear setting.

1.2 Notation

We mostly follow standard notation. ‖·‖ is the euclidean norm in Rn. Dr(x) is the
boundary of the euclidean ball centered at x of radius r, i.e., Dr(x) = {y ∈ Rn :
‖y−x‖ = r}. Given a vector v and a set C, we denote the distance between v and
C as dist(v, C) = infx∈C ‖v − x‖. We denote the set {v + x : x ∈ C} as v + C.
We denote the transpose operator as (·)T. For a set of vectors {v1, . . . , vk} ⊆ Rn,
we denote 〈v1, . . . , vk〉 the subspace generated by them. Given a set C ⊆ Rn,
conv(C) and int(C) denotes the convex hull and interior of C, respectively. We
denote an inequality αTx ≤ β by (α, β). If β = 0 we denote it as well as α.

310 G. Muñoz and F. Serrano

2 Preliminaries

As we mentioned above, our main object of study is the set S = {x ∈ Rp :
q(x) ≤ 0} ⊆ Rp, where q is a quadratic function. To make the analysis easier,
we can work on Rp+1 and consider the cone generated by S × {1}, namely,
{(x, z) ∈ Rp+1 : z2q(x

z) ≤ 0, z ≥ 0}. To recover the original S, however, we
must intersect the cone with z = 1. Since we are interested in maximal S-free
sets, this motivates the following definition, see also [5].

Definition 1. Given S,C,H ⊆ Rn where S is closed, C is closed and convex
and H is an affine hyperplane, we say that C is S-free with respect to H if
C ∩ H is S ∩ H-free w.r.t the induced topology in H. We say C is maximal
S-free with respect to H, if for any C ′ ⊇ C that is S-free with respect to H it
holds that C ′ ∩ H ⊆ C ∩ H.

The next definition is motivated by the sufficient (and necessary) condition
for a full dimensional Zn-free set to be maximal: it must be a polyhedron con-
taining a point of Zn in the relative interior of each facet [31, Theorem 6.18].

Definition 2. Given a convex set C ⊆ Rn and a valid inequality αTx ≤ β,
we say that a point x0 ∈ Rn exposes (α, β) with respect to C or that (α, β)
is exposed by x0 if: αTx0 = β and if γTx ≤ δ is any other non-trivial valid
inequality for C such that γTx0 = δ, then there exists a μ > 0 such that γ = μα
and β = μδ. We omit saying “with respect to C” if it is clear from context.

Points that expose inequalities are also called smooth points [24]. A related
concept is that of blocking points [7].1

The reader might already anticipate our criteria: if all valid inequalities of
an S-free set are exposed by elements of S, then the set should be maximal
S-free. A result like this can be shown (see [35]), but there are cases where a
maximal S-free set has inequalities that are not exposed by any point in S. This
phenomenon occurs in nonlinear integer programming as well [34], but does not
occur in the integer linear setting [6]. This leads to the following definition.

Definition 3. Given a convex set C ⊆ Rn with non-empty recession cone and
a valid inequality αTx ≤ β, we say that a sequence (xn)n ⊆ Rn exposes (α, β)
at infinity with respect to C if (1) ‖xn‖ → ∞, (2) xn

‖xn‖ → d ∈ rec(C), (3) d

exposes αTx ≤ 0 with respect to rec(C), and (4) there exists y such that αTy = β
such that dist(xn, y + 〈d〉) → 0. As before, we omit saying “with respect to C” if
it is clear from context.

The next theorem summarizes how we use exposing points and exposing
sequences to determine maximality of a convex S-free set.

1 For the reader familiar with the notion of exposed point from convex analysis, we
would like to point that if C is convex with 0 in its interior and the valid inequality
αTx ≤ 1 has an exposing point, then α is an exposed point of the polar of C.

Maximal Quadratic-Free Sets 311

Theorem 1. Let S ⊆ Rn be a closed set, H an affine hyperplane and C ⊆ Rn

a convex S-free set. Assume that C = {x ∈ Rn : αT x ≤ β,∀(α, β) ∈ Γ}.
If for every inequality (α, β) there is, either an x ∈ S ∩C that exposes (α, β),

or a sequence (xn)n ⊆ S that exposes (α, β) at infinity, then C is maximal S-free.
Similarly, if for every inequality (α, β) there is, either an x ∈ S ∩C ∩H that

exposes (α, β), or a sequence (xn)n ⊆ S ∩ H that exposes (α, β) at infinity, then
C is maximal S-free with respect to H.

Finally, to easily find exposing points we rely on the following result. We recall
that a function is sublinear if and only if it is convex and positive homogeneous.

Lemma 1. Let φ : Rn → R be a sublinear function, λ ∈ D1(0), and let

C = {(x, y) : φ(y) ≤ λTx}.

Let (x̄, ȳ) ∈ C be such that φ is differentiable at ȳ and φ(ȳ) = λTx̄. Then (x̄, ȳ)
exposes the valid inequality −λTx + ∇φ(ȳ)Ty ≤ 0.

These definitions and results summarize our main tools. For the sake of
brevity we omit some technical details and intermediate steps which the inter-
ested reader can find in the full-length version of this paper [35].

3 Homogeneous Quadratics

In this section we construct maximal Sh-free sets that contain a vector x̄ �∈ Sh

for Sh = {x ∈ Rp : xTQx ≤ 0}. This is our building block towards maximality
in the general case. After a change of variable, we can assume that

Sh = {(x, y, z) ∈ Rn+m+l :
n∑

i=1

x2
i −

m∑

i=1

y2
i ≤ 0} (2a)

= {(x, y) ∈ Rn+m : ‖x‖ − ‖y‖ ≤ 0} × Rl. (2b)

Thus, we focus on Sh = {(x, y) ∈ Rn+m : ‖x‖ − ‖y‖ ≤ 0} and assume we
are given (x̄, ȳ) such that ‖x̄‖ > ‖ȳ‖.

Remark 1. Using (2b) instead of (2a) seems irrelevant, but it plays a subtle
role in our pursuit of maximality. We elaborate this in [35]. Additionally, the
transformation used to bring Sh to the “diagonal” form (2a) is, in general, not
unique. Nonetheless, maximality of the Sh-free sets is preserved, as there always
exist such transformation which is linear and one-to-one. In [35] we also discuss
this further.

The construction of maximal Sh-free sets is simple, and follows from the
approach of Serrano [36]. The function f(x, y) = ‖x‖ − ‖y‖ has the following
concave underestimator at x̄ �= 0: x̄Tx

‖x̄‖ − ‖y‖. Letting λ = x̄
‖x̄‖ , we get the

following Sh-free set containing (x̄, ȳ) in its interior

Cλ = {(x, y) ∈ Rn+m : λTx ≥ ‖y‖} (3)

= {(x, y) ∈ Rn+m : −λTx + βTy ≤ 0, ∀β ∈ D1(0)}.

312 G. Muñoz and F. Serrano

Theorem 2. Let Sh = {(x, y) ∈ Rn+m : ‖x‖ ≤ ‖y‖} and Cλ = {(x, y) ∈
Rn+m : λTx ≥ ‖y‖} for λ = x̄

‖x̄‖ . Then, Cλ is a maximal Sh-free set and
contains (x̄, ȳ) in its interior.

Proof (sketch). To show that Cλ is maximal, we use the norm function ‖·‖ as φ in
Lemma 1. We can show that for each β with ‖β‖ = 1 the point (λ, β) ∈ Sh ∩ Cλ

exposes the valid inequality −λTx + βTy ≤ 0. With Theorem 1 we conclude.

4 Including a Single Homogeneous Linear Constraint

In general, any S defined using a quadratic function can be described as

{(x, y, z) ∈ Rn+m+l : ‖x‖ ≤ ‖y‖, aTx + dTy + hTz = −1}. (4)

via a linear one-to-one transformation. This preserves maximality of S-free sets.
Note that the case h �= 0 can be tackled directly using Sect. 3: in this case C ×Rl

is maximal S-free, where C is any maximal Sh-free. Thus, we consider

S = {(x, y) ∈ Rn+m : ‖x‖ ≤ ‖y‖, aTx + dTy = −1}. (5)

The set S above is our goal. However, at this point, a simpler set to study is

S≤0 = {(x, y) ∈ Rn+m : ‖x‖ ≤ ‖y‖, aTx + dTy ≤ 0}.

In this section we construct maximal S≤0-free sets that contain (x̄, ȳ) satisfying
‖x̄‖ > ‖ȳ‖, aTx̄ + dTȳ ≤ 0. We distinguish the following cases.

‖a‖ ≤ ‖d‖ ∧ m > 1 (Case1) ∨ ‖a‖ ≥ ‖d‖ (Case2).

We omit m = 1 ∧ ‖a‖ < ‖d‖, as it can be shown that S≤0 is convex in such case.

4.1 Case 1: ‖a‖ ≤ ‖d‖ ∧ M > 1

The set Cλ is clearly S≤0-free. The strategy for proving maximality of Cλ with
respect to Sh was to show that (λ, β) ∈ Sh ∩ Cλ exposes each valid inequality
−λTx + βTy ≤ 0. However, these inequalities may not all have exposing points
in S≤0 ∩ Cλ, as we do not necessarily have aTλ + dTβ ≤ 0. To handle this issue,
let

G(λ) = {β : ‖β‖ = 1, aTλ + dTβ ≤ 0}.

and define

CG(λ) = {(x, y) ∈ Rn+m : −λTx + βTy ≤ 0, ∀β ∈ G(λ)}.

Intuitively, CG(λ) is obtained from enlarging Cλ by removing all inequalities that
do not have an exposing point in S≤0. It is reasonable to expect maximality, but
we need to be careful with losing S≤0-freeness. Indeed,

Proposition 1. Let (x̄, ȳ) /∈ S≤0 such that aTx̄ + dTȳ ≤ 0 and λ = x̄
‖x̄‖ . If

‖d‖ ≥ ‖a‖ and m > 1, then CG(λ) is maximal S≤0-free and contains (x̄, ȳ).

We would like to emphasize that the assumptions ‖d‖ ≥ ‖a‖ ∧ m > 1 play a
key role, as otherwise the set CG(λ) is not S≤0-free in general. Figure 1 shows an
example of this (for explicit details see Example 1 in the appendix).

Maximal Quadratic-Free Sets 313

(a) S≤0 in Example 1 (orange) and the
corresponding Cλ set (green). The lat-
ter is S≤0-free but not maximal.

(b) S≤0 in Example 1 (orange) and the
corresponding CG(λ) set (green). The
latter is not S≤0-free.

Fig. 1. Sets Cλ and CG(λ) in Example 1 for the case ‖a‖ > ‖d‖.(Color figure online)

4.2 Case 2: ‖a‖ ≥ ‖d‖
As CG(λ) is not necessarily S≤0-free in this case, we devise another strategy from
an equivalent description of Cλ. Note that ‖y‖ = max{λTβ : ‖β‖ ≤ ‖y‖} for
any λ ∈ D1(0). Thus,

Cλ = {(x, y) ∈ Rn+m : max
β

{λTβ : (β, y) ∈ Sh} ≤ λTx}.

This motivates the following definitions

φλ(y) = max
x

{λTx : (x, y) ∈ S≤0} (6)

Cφλ
= {(x, y) : φλ(y) ≤ λTx}. (7)

We now proceed to describe φλ and its properties. Note that in this case ‖a‖ = 0
implies S≤0 = Sh. Thus, we assume ‖a‖ = 1.

Proposition 2. Let λ, a ∈ D1(0) ⊆ Rn and d ∈ Rm such that ‖d‖ ≤ 1. Then,

φλ(y) =

{
‖y‖, if λTa‖y‖ + dTy ≤ 0√

(‖y‖2 − (dTy)2)(1 − (λTa)2) − dTyλTa, otherwise.

(8)

Furthermore, φλ is sublinear and: if ‖d‖ = 1 ∧ m > 1, then φλ is differentiable
in Rm \ dR+; otherwise φλ is differentiable in Rm \ {0}.
In this case, the fact that ‖a‖ ≥ ‖d‖ plays a key role in φλ being convex. From
here we can show the maximality of Cφλ

.

Proposition 3. Consider (x̄, ȳ) /∈ S≤0 such that aTx̄+dTȳ ≤ 0 and let λ = x̄
‖x̄‖ .

Let φλ(y) and Cφλ
defined as in (6) and (7), respectively. If ‖d‖ ≤ ‖a‖ = 1, then

Cφλ
= {(x, y) : φλ(y) ≤ λTx} is maximal S≤0-free and contains (x̄, ȳ) in its

interior.

Proof (sketch). As φλ is sublinear and has good differentiability properties, we
can use Lemma 1. We show that (xβ , β) ∈ S≤0 ∩ Cφλ

, β ∈ D1(0), exposes
−λTx + ∇φλ(β)Ty ≤ 0, where xβ is the optimal solution of φλ(β) in (6).

314 G. Muñoz and F. Serrano

5 Non-homogeneous Quadratics

As discussed at the beginning of the previous section, we now study a general
non-homogeneous quadratic which can be written as S in (5). We assume we are
given (x̄, ȳ) such that ‖x̄‖ > ‖ȳ‖, aTx̄ + dTȳ = −1 and distinguish the following
cases:

‖a‖ ≤ ‖d‖ ∧ m > 1 (Case1) ∨ ‖a‖ > ‖d‖ (Case2).

Much like in Sect. 4, we are omitting a simple case. Indeed, it can be proven that
when ‖a‖ ≤ ‖d‖ ∧ m = 1, the set S is convex. Since S � S≤0, then CG(λ) (Cφλ

)
is S-free in Case 1 (Case 2) as per Sect. 4. It is natural to wonder whether these
sets are maximal already.

5.1 Case 1: ‖a‖ ≤ ‖d‖ ∧ M > 1

To prove maximality of CG(λ) with respect to S≤0 we exploit that CG(λ) is
directly defined as the inequalities of Cλ exposed by elements in S≤0. Consider
an inequality of CG(λ) with coefficients (−λ, β) such that aTλ + dTβ < 0. Its
exposing point (λ, β) ∈ S≤0 can be scaled by μ = −1

aTλ+dTβ
to the exposing

point μ(λ, β) ∈ S. Thus, almost every inequality of CG(λ) is exposed by points
of S. Thanks to m > 1, we can remove inequalities that correspond to β such
that aTλ + dTβ = 0 without changing the set CG(λ). This strategy shows the
following.

Theorem 3. Let λ = x̄
‖x̄‖ , H = {(x, y) ∈ Rn+m : aTx + dTy = −1}, and

S≤0 = {(x, y)Rn+m : ‖x‖ ≤ ‖y‖, aTx + dTy ≤ 0},

where ‖a‖ ≤ ‖d‖ ∧ m > 1. Then, CG(λ) is maximal S≤0-free with respect to H
and contains (x̄, ȳ) in its interior.

This theorem states that obtaining a maximal S-free set in this case amounts
to simply use the maximal S≤0-free set CG(λ), and then intersect it with H.

5.2 Case 2: ‖a‖ > ‖d‖
Since ‖a‖ > 0, we can assume that ‖a‖ = 1 after rescaling the variables. Unfor-
tunately, in this case the maximality of Cφλ

with respect to S≤0 does not carry
over to S. In Fig. 2 we show this issue (for details see Example 2 in the appendix).
This figure displays an interesting feature though: the inequalities defining Cφλ

seem to have the correct “slope” and just need to be translated. We conjecture,
then, that in order to find a maximal S-free set, we only need to adequately
relax the inequalities of Cφλ

. Recall that

Cφλ
= {(x, y) : φλ(y) ≤ λTx} = {(x, y) : −λTx + ∇φλ(β)Ty ≤ 0,∀β ∈ D1(0)}.

Maximal Quadratic-Free Sets 315

(a) S≤0 (orange), H (green) and Cφλ

(blue).

- 4 - 2 0 2 4
- 25

- 20

- 15

- 10

- 5

0

5

(b) Projection onto (x1, x2) of S≤0 ∩H
(orange) and Cφλ ∩ H (blue).

Fig. 2. Plots of S≤0, H and Cφλ as defined in Example 2 showing that Cφλ is not
necessarily maximal S≤0-free with respect to H in the case ‖a‖ > ‖d‖. (Color figure
online)

- 4 - 2 0 2 4
- 25

- 20

- 15

- 10

- 5

0

5

Fig. 3. Projection onto (x1, x2) of S≤0 ∩H (orange), Cφλ ∩H (blue), and the sequence
(zn)n∈N in Example 2 for several values of n (red). The sequence diverges “downwards”.
(Color figure online)

We thus search for r(β) such that

C = {(x, y) : −λTx + ∇φλ(β)Ty ≤ r(β),∀β ∈ D1(0)}, (9)

is S-free. When β satisfies λTa + dTβ < 0, it should be that r(β) = 0, as in this
case the inequality is the same in Cφλ

and CG(λ) (since ∇φλ(β) = β), and has
an exposing point in S. Thus, in the following we find r(β) when λTa+dTβ ≥ 0.

Construction of r(β): Let β ∈ D1(0) be such that λTa + dTβ ≥ 0. The valid
inequality −λTx+∇φλ(β)Ty ≤ 0 is not exposed by any point in S∩Cφλ

(see [35]
for a proof). However, it is exposed by (xβ , β) ∈ S≤0, where xβ is the optimal
solution of (6) (see proof sketch of Proposition 3). Note that (xβ , β) ∈ H0 =
{(x, y) : aTx + dTy = 0}, as otherwise we can scale it so that it belongs to S.

To find r(β) we first find a sequence of points, (xn, yn)n∈N, in S≤0 that
converge to (xβ , β). We take yn = β and xn ∈ 〈λ, a〉 such that ‖xn‖ = 1,
aTxn + dTβ < 0, and xn → xβ . The requirement xn ∈ 〈λ, a〉 is fairly tech-
nical and involves also assuming λ �= ±a. However, we can show that such
requirement can always be assumed without loss of generality. We can also show
this sequence always exists when ‖d‖ < ‖a‖ = 1. Then, we scale the sequence:
zn = − (xn,β)

aTxn + dTβ
∈ S. This last scaled sequence diverges, as the denominator

goes to 0. The idea is that the violation (−λ,∇φλ(β))Tzn given by this sequence

316 G. Muñoz and F. Serrano

will give us, in the limit, the maximum relaxation that will ensure S-freeness. In
Fig. 3 we illustrate what such a sequence looks like in the case of Fig. 2b. Thus,
we define

r(β) = − lim
n→∞

−λTxn + ∇φλ(β)Tβ

aTxn + dTβ
. (10)

With these considerations, we can prove the following.

Lemma 2. Let β ∈ D1(0) such that λTa + dTβ ≥ 0. For any sequence (xn)n∈N

as described above and r(β) defined as (10), it holds that

r(β) =
dTβ + λTaφλ(β)
φλ(β) + dTβλTa

.

Finally, we show that our construction yields the desired result.

Theorem 4. Let S≤0, H and λ be defined as in Theorem 3, but with ‖a‖ > ‖d‖
instead. Define r(β) as in Lemma 2 for λTa + dTβ ≥ 0 and 0 otherwise. Then,
C defined in (9) is maximal S≤0-free with respect to H and contains (x̄, ȳ).
Furthermore,

C =

⎧
⎪⎨

⎪⎩
(x, y) :

φλ(y) ≤ λTx if λTa‖y‖ + dTy ≤ 0

φλ

(
y − d

1 − ‖d‖2
)

≤ λT

(
x +

a

1 − ‖d‖2
)

otherwise

⎫
⎪⎬

⎪⎭
.

(11)

Proof (sketch). The proof relies on both expressions for r(β) given in (10) and
in Lemma 2. The latter is used for proving S-freeness of C, and the former is
used for proving maximality. The sequence (zn)n∈N we used in defining r(β) in
(10) exposes the corresponding inequality at infinity, as per Definition 3. With
Theorem 1 we conclude. To obtain a closed-form expression of C, we conjecture
that, since C is obtained from Cφλ

by “translating” its inequalities, a translation
of (7) might yield C. After some algebraic manipulation we obtain (11).

The last theorem shows an explicit formula for obtaining maximal S-free sets
(recall that S = S≤0 ∩ H). In Fig. 5 (appendix) we show similar plots to Fig. 2
with C instead of Cφλ

.

6 Conclusions

In this work we have shown how to construct maximal quadratic-free sets. Using
the intersection cut framework, these sets can be used for generating deep cutting
planes for quadratically constrained problems. The maximal quadratic-free sets
we construct in this work allow for an efficient computation of the corresponding
intersection cuts, as all of them have a closed-form expressions: see (3), (7), (11)
for the closed-form expressions of Cλ, Cφλ

and C, respectively, and (8) for the
explicit description of the φλ function. The case of CG(λ) can be found in [35].

Maximal Quadratic-Free Sets 317

We strongly believe that, by carefully laying a theoretical framework for
quadratic-free sets, this work provides an important contribution to the under-
standing and future computational development of non-convex quadratically
constrained optimization problems. The empirical performance of these inter-
section cuts remains to be seen, and it is ongoing work. Future work includes a
careful comparison of the resulting intersection cuts and the related approaches
mentioned in the literature review, in particular the work of [10] and [15].

Acknowledgements. We are indebted to Franziska Schlösser for several inspiring
conversations. We would like to thank Stefan Vigerske, Antonia Chmiela, Ksenia
Bestuzheva and Nils-Christian Kempke for helpful discussions. We would also like to
thank the three anonymous reviewers for their valuable feedback. Lastly, we would like
to acknowledge the support of the IVADO Institute for Data Valorization for their sup-
port through the IVADO Post-Doctoral Fellowship program and to the IVADO-ZIB
academic partnership. The described research activities are funded by the German
Federal Ministry for Economic Affairs and Energy within the project EnBA-M (ID:
03ET1549D). The work for this article has been (partly) conducted within the Research
Campus MODAL funded by the German Federal Ministry of Education and Research
(BMBF grant number 05M14ZAM).

Appendix

Example 1 (Homogeneous case). Consider the set S≤0, defined as

S≤0 = {(x1, x2, y) ∈ R3 : ‖x‖ ≤ |y|, aTx + dy ≤ 0}
with a = (−1/

√
2, 1/

√
2)T and d = 1/

√
2, and (x̄, ȳ) = (−1,−1, 0)T. This point

satisfies the linear inequality in S≤0, but it is not in S≤0. It is not too hard to
check that G(λ) = {−1}. In Fig. 1 we show S≤0, the S≤0-free set given by Cλ

and the set CG(λ). In this case ‖a‖ = 1 > 1/
√

2 = |d|, so we have no guarantee
on the S≤0-freeness of CG(λ). Even more, it is not S≤0-free.

Moving forward, since λTa = 0 we have

λTa‖y‖ + dTy ≤ 0 ⇐⇒ y ≤ 0.

A simple calculation using (8) yields

φλ(y) =

{
−y, if y ≤ 0
y√
2

if y > 0

In Fig. 4 we show the set Cφλ
, which is maximal S≤0-free.

Example 2 (Non-homogeneous case). We continue with S≤0 defined in Example
1, but we now look for maximality with respect to

H = {(x, y) ∈ Rn+m : aTx + dTy = −1}.

318 G. Muñoz and F. Serrano

Fig. 4. S≤0 in Example 1 (orange) and Cφλ set (blue). The latter is maximal S≤0-free.
(Color figure online)

(a) S≤0 (orange), H (green) and C1

(blue). In this case C1 is no longer S≤0-
free.

- 4 - 2 0 2 4
- 25

- 20

- 15

- 10

- 5

0

5

(b) Projection onto (x1, x2) of S≤0 ∩H
(orange) and C1 ∩ H (blue).

Fig. 5. Plots of S≤0, H and C1 as defined in Example 2 showing that C1 is maximal
S≤0-free with respect to H.

In this case, Cφλ
∩ H is not maximal S≤0 ∩ H-free, as shown in Fig. 2. Since

λ = 1√
2
(−1,−1)T, we see that

Cφλ
= {(x, y) :

1√
2
(x1 + x2) − y ≤ 0, (12a)

1√
2
(x1 + x2) +

1√
2
y ≤ 0}. (12b)

It is not hard to check that −(1√
2
, 1√

2
,
√

2) ∈ S≤0∩H∩Cφλ
exposes inequality

(12a). This is the tangent point in Fig. 2b. On the other hand, (12b), which
is obtained from β = 1, does not have an exposing point in S≤0 ∩ H ∩ Cφλ

,
and corresponds to an inequality we should relax as per our discussion. This
inequality, however, is exposed by (xβ , β) = (0,−1, 1) ∈ S≤0 ∩ Cφλ

. Consider
now the sequence defined as

(xn, β) =
(

1√
n2 + 1

,− n√
n2 + 1

, 1
)

∈ S≤0.

Maximal Quadratic-Free Sets 319

Clearly the limit of this sequence is (0,−1, 1) and

aTxn + dTβ =
1√
2

(
− 1√

n2 + 1
− n√

n2 + 1
+ 1

)
< 0.

Now we let

zn = − (xn, β)
aTxn + dTβ

∈ S≤0 ∩ H.

which diverges. In Fig. 3, we plot the first two components of the sequence
(zn)n∈N along with S≤0 ∩ H and Cφλ

∩ H. The sequence (zn)n∈N moves along
the boundary of S≤0 ∩ H towards an “asymptote” from where we deduce r(β).

In this case r(−1) = 0, and it can be checked that r(1) = 1 using its formula.
Now, let

C1 = {(x, y) : −λTx + ∇φλ(β)Ty ≤ r(β), for all β ∈ D1(0)}
= {(x, y) :

1√
2
(x1 + x2) − y ≤ 0,

1√
2
(x1 + x2) +

1√
2
y ≤ 1}.

Figure 5 shows the same plots as Fig. 2 with C1 instead of Cφλ
.

References

1. Andersen, K., Jensen, A.N.: Intersection cuts for mixed integer conic quadratic
sets. In: Goemans, M., Correa, J. (eds.) IPCO 2013. LNCS, vol. 7801, pp. 37–48.
Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-36694-9 4

2. Andersen, K., Louveaux, Q., Weismantel, R.: An analysis of mixed integer linear
sets based on lattice point free convex sets. Math. Oper. Res. 35(1), 233–256 (2010)

3. Andersen, K., Louveaux, Q., Weismantel, R., Wolsey, L.A.: Inequalities from two
rows of a simplex tableau. In: Fischetti, M., Williamson, D.P. (eds.) IPCO 2007.
LNCS, vol. 4513, pp. 1–15. Springer, Heidelberg (2007). https://doi.org/10.1007/
978-3-540-72792-7 1

4. Balas, E.: Intersection cuts–a new type of cutting planes for integer programming.
Oper. Res. 19(1), 19–39 (1971). https://doi.org/10.1287/opre.19.1.19

5. Basu, A., Conforti, M., Cornuéjols, G., Zambelli, G.: Maximal lattice-free convex
sets in linear subspaces. Math. Oper. Res. 35(3), 704–720 (2010). https://doi.org/
10.1287/moor.1100.0461

6. Basu, A., Conforti, M., Cornuéjols, G., Zambelli, G.: Minimal inequalities for an
infinite relaxation of integer programs. SIAM J. Discrete Math. 24(1), 158–168
(2010). https://doi.org/10.1137/090756375

7. Basu, A., Dey, S.S., Paat, J.: Nonunique lifting of integer variables in minimal
inequalities. SIAM J. Discrete Math. 33(2), 755–783 (2019). https://doi.org/10.
1137/17m1117070

8. Belotti, P., Góez, J.C., Pólik, I., Ralphs, T.K., Terlaky, T.: On families of quadratic
surfaces having fixed intersections with two hyperplanes. Discrete Appl. Math.
161(16–17), 2778–2793 (2013)

9. Belotti, P., Góez, J.C., Pólik, I., Ralphs, T.K., Terlaky, T.: A conic representa-
tion of the convex hull of disjunctive sets and conic cuts for integer second order
cone optimization. In: Al-Baali, M., Grandinetti, L., Purnama, A. (eds.) Numeri-
cal Analysis and Optimization. SPMS, vol. 134, pp. 1–35. Springer, Cham (2015).
https://doi.org/10.1007/978-3-319-17689-5 1

https://doi.org/10.1007/978-3-642-36694-9_4
https://doi.org/10.1007/978-3-540-72792-7_1
https://doi.org/10.1007/978-3-540-72792-7_1
https://doi.org/10.1287/opre.19.1.19
https://doi.org/10.1287/moor.1100.0461
https://doi.org/10.1287/moor.1100.0461
https://doi.org/10.1137/090756375
https://doi.org/10.1137/17m1117070
https://doi.org/10.1137/17m1117070
https://doi.org/10.1007/978-3-319-17689-5_1

320 G. Muñoz and F. Serrano

10. Bienstock, D., Chen, C., Munoz, G.: Outer-product-free sets for polynomial opti-
mization and oracle-based cuts. Math. Program. 1–44 (2020)

11. Bienstock, D., Chen, C., Muñoz, G.: Intersection cuts for polynomial optimiza-
tion. In: Lodi, A., Nagarajan, V. (eds.) IPCO 2019. LNCS, vol. 11480, pp. 72–87.
Springer, Cham (2019). https://doi.org/10.1007/978-3-030-17953-3 6

12. Bodur, M., Dash, S., Günlük, O.: Cutting planes from extended LP formulations.
Math. Program. 161(1–2), 159–192 (2017)

13. Bonami, P., Linderoth, J., Lodi, A.: Disjunctive cuts for mixed integer nonlinear
programming problems. In: Progress in Combinatorial Optimization, pp. 521–541
(2011). (chapter 18)

14. Borozan, V., Cornuéjols, G.: Minimal valid inequalities for integer constraints.
Math. Oper. Res. 34(3), 538–546 (2009). https://doi.org/10.1287/moor.1080.0370

15. Burer, S., Kılınç-Karzan, F.: How to convexify the intersection of a second order
cone and a nonconvex quadratic. Math. Program. 162(1–2), 393–429 (2017)

16. Conforti, M., Cornuéjols, G., Daniilidis, A., Lemaréchal, C., Malick, J.: Cut-
generating functions and S-free sets. Math. Oper. Res. 40(2), 276–391 (2015).
https://doi.org/10.1287/moor.2014.0670

17. Conforti, M., Cornuéjols, G., Zambelli, G.: Corner polyhedron and intersection
cuts. Surv. Oper. Res. Manage. Sci. 16(2), 105–120 (2011). https://doi.org/10.
1016/j.sorms.2011.03.001

18. Cornuéjols, G., Wolsey, L., Yıldız, S.: Sufficiency of cut-generating functions. Math.
Program. 152(1–2), 643–651 (2015)

19. Dey, S.S., Wolsey, L.A.: Lifting integer variables in minimal inequalities corre-
sponding to lattice-free triangles. In: Lodi, A., Panconesi, A., Rinaldi, G. (eds.)
IPCO 2008. LNCS, vol. 5035, pp. 463–475. Springer, Heidelberg (2008). https://
doi.org/10.1007/978-3-540-68891-4 32

20. Dey, S.S., Wolsey, L.A.: Constrained infinite group relaxations of MIPs. SIAM J.
Optim. 20(6), 2890–2912 (2010). https://doi.org/10.1137/090754388

21. Fischetti, M., Ljubić, I., Monaci, M., Sinnl, M.: Intersection cuts for bilevel opti-
mization. In: Louveaux, Q., Skutella, M. (eds.) IPCO 2016. LNCS, vol. 9682, pp.
77–88. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-33461-5 7

22. Fischetti, M., Monaci, M.: A branch-and-cut algorithm for mixed-integer bilinear
programming. Eur. J. Oper. Res. (2019). https://doi.org/10.1016/j.ejor.2019.09.
043

23. Glover, F.: Convexity cuts and cut search. Oper. Res. 21(1), 123–134 (1973).
https://doi.org/10.1287/opre.21.1.123

24. Goberna, M., González, E., Mart́ınez-Legaz, J., Todorov, M.: Motzkin decomposi-
tion of closed convex sets. J. Math. Anal. Appl. 364(1), 209–221 (2010). https://
doi.org/10.1016/j.jmaa.2009.10.015

25. Gomory, R.E., Johnson, E.L.: Some continuous functions related to corner polyhe-
dra. Math. Program. 3–3(1), 23–85 (1972). https://doi.org/10.1007/bf01584976

26. Kılınç-Karzan, F.: On minimal valid inequalities for mixed integer conic programs.
Math. Oper. Res. 41(2), 477–510 (2015)

27. Kılınç-Karzan, F., Yıldız, S.: Two-term disjunctions on the second-order cone.
Math. Program. 154(1–2), 463–491 (2015)

28. Lasserre, J.B.: Global optimization with polynomials and the problem of moments.
SIAM J. Optim. 11(3), 796–817 (2001)

29. Laurent, M.: Sums of squares, moment matrices and optimization over polynomials.
In: Putinar, M., Sullivant, S. (eds.) Emerging Applications of Algebraic Geometry.
The IMA Volumes in Mathematics and its Applications, vol. 149, pp. 157–270.
Springer, New York (2009). https://doi.org/10.1007/978-0-387-09686-5 7

https://doi.org/10.1007/978-3-030-17953-3_6
https://doi.org/10.1287/moor.1080.0370
https://doi.org/10.1287/moor.2014.0670
https://doi.org/10.1016/j.sorms.2011.03.001
https://doi.org/10.1016/j.sorms.2011.03.001
https://doi.org/10.1007/978-3-540-68891-4_32
https://doi.org/10.1007/978-3-540-68891-4_32
https://doi.org/10.1137/090754388
https://doi.org/10.1007/978-3-319-33461-5_7
https://doi.org/10.1016/j.ejor.2019.09.043
https://doi.org/10.1016/j.ejor.2019.09.043
https://doi.org/10.1287/opre.21.1.123
https://doi.org/10.1016/j.jmaa.2009.10.015
https://doi.org/10.1016/j.jmaa.2009.10.015
https://doi.org/10.1007/bf01584976
https://doi.org/10.1007/978-0-387-09686-5_7

Maximal Quadratic-Free Sets 321

30. McCormick, G.P.: Computability of global solutions to factorable nonconvex pro-
grams: part I—convex underestimating problems. Math. Program. 10(1), 147–175
(1976). https://doi.org/10.1007/bf01580665

31. Conforti, M., Cornuejols, G., Zambelli, G.: Integer Programming. Springer, Hei-
delberg (2014). https://doi.org/10.1007/978-3-319-11008-0

32. Modaresi, S., Kılınç, M.R., Vielma, J.P.: Split cuts and extended formulations for
mixed integer conic quadratic programming. Oper. Res. Lett. 43(1), 10–15 (2015)

33. Modaresi, S., Kılınç, M.R., Vielma, J.P.: Intersection cuts for nonlinear integer pro-
gramming: convexification techniques for structured sets. Math. Program. 155(1–
2), 575–611 (2016)

34. Morán, D., Dey, S.S.: On maximal S-free convex sets. SIAM J. Discrete Math.
25(1), 379–393 (2011). https://doi.org/10.1137/100796947

35. Muñoz, G., Serrano, F.: Maximal quadratic-free sets. arXiv preprint
arXiv:1911.12341 (2019)

36. Serrano, F.: Intersection cuts for factorable MINLP. In: Lodi, A., Nagarajan, V.
(eds.) IPCO 2019. LNCS, vol. 11480, pp. 385–398. Springer, Cham (2019). https://
doi.org/10.1007/978-3-030-17953-3 29

37. Shahabsafa, M., Góez, J.C., Terlaky, T.: On pathological disjunctions and redun-
dant disjunctive conic cuts. Oper. Res. Lett. 46(5), 500–504 (2018)

38. Shor, N.Z.: Quadratic optimization problems. Sov. J. Comput. Syst. Sci. 25, 1–11
(1987)

39. Tuy, H.: Concave programming with linear constraints. In: Doklady Akademii
Nauk, vol. 159, pp. 32–35. Russian Academy of Sciences (1964)

40. Yıldız, S., Kılınç-Karzan, F.: Low-complexity relaxations and convex hulls of dis-
junctions on the positive semidefinite cone and general regular cones. Optim.
Online (2016)

https://doi.org/10.1007/bf01580665
https://doi.org/10.1007/978-3-319-11008-0
https://doi.org/10.1137/100796947
http://arxiv.org/abs/1911.12341
https://doi.org/10.1007/978-3-030-17953-3_29
https://doi.org/10.1007/978-3-030-17953-3_29

On Generalized Surrogate Duality
in Mixed-Integer Nonlinear Programming

Benjamin Müller1(B) , Gonzalo Muñoz2 , Maxime Gasse3 ,
Ambros Gleixner1 , Andrea Lodi3 , and Felipe Serrano1

1 Zuse Institute Berlin, Berlin, Germany
{benjamin.mueller,gleixner,serrano}@zib.de

2 Universidad de O’Higgins, Rancagua, Chile
gonzalo.munoz@uoh.cl

3 Polytechnique Montréal, Montréal, Canada
{maxime.gasse,andrea.lodi}@polymtl.ca

Abstract. Due to both theoretical and practical considerations, relax-
ations of MINLPs are usually required to be convex. Nonetheless, current
optimization solvers can often successfully handle a moderate presence
of nonconvexities, which opens the door for the use of potentially tighter
nonconvex relaxations. In this work, we exploit this fact and make use
of a nonconvex relaxation obtained via aggregation of constraints: a sur-
rogate relaxation. These relaxations were actively studied for linear inte-
ger programs in the 70s and 80s, but they have been scarcely considered
since. We revisit these relaxations in an MINLP setting and show the
computational benefits and challenges they can have. Additionally, we
study a generalization of such relaxation that allows for multiple aggre-
gations simultaneously and present the first algorithm that is capable of
computing the best set of aggregations. We propose a multitude of com-
putational enhancements for improving its practical performance and
evaluate the algorithm’s ability to generate strong dual bounds through
extensive computational experiments.

Keywords: Surrogate relaxation · MINLP · Nonconvex optimization

1 Introduction

We consider a mixed-integer nonlinear program (MINLP) of the form

min
x∈X

{
cTx : gi(x) ≤ 0 for all i ∈ M}

, (1)

where X := {x ∈ R
n−p × Z

p : Ax ≤ b} is a compact mixed-integer linear set,
each gi : Rn → R is a factorable continuous function [36], and M := {1, . . . , m}.
Many real-world applications are inherently nonlinear, and can be formulated as
a MINLP. See, e.g., [26] for an overview.

The state-of-the-art algorithm for solving nonconvex MINLPs to global ε-
optimality is spatial branch and bound, see, e.g., [28,42,43], whose performance
c© Springer Nature Switzerland AG 2020
D. Bienstock and G. Zambelli (Eds.): IPCO 2020, LNCS 12125, pp. 322–337, 2020.
https://doi.org/10.1007/978-3-030-45771-6_25

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-45771-6_25&domain=pdf
http://orcid.org/0000-0002-4463-2873
http://orcid.org/0000-0002-9003-441X
http://orcid.org/0000-0001-6982-062X
http://orcid.org/0000-0003-0391-5903
http://orcid.org/0000-0001-9269-633X
http://orcid.org/0000-0002-7892-3951
https://doi.org/10.1007/978-3-030-45771-6_25

On Generalized Surrogate Duality in Mixed-Integer Nonlinear Programming 323

highly depends on the tightness of the relaxations used. Those relaxations are
typically convex. As a result of the rapid progress during the last decades, current
solvers can often handle a moderate presence of nonconvex constraints efficiently.
This progress opens the door for practical use of potentially tighter nonconvex
relaxations in MINLP solvers. In this paper, we explore a nonconvex relaxation
referred to as surrogate relaxation [19].

Definition 1 (Surrogate Relaxation). For a given λ ∈ R
m
+ , we call the fol-

lowing optimization problem a surrogate relaxation of (1):

S(λ) := min
x∈X

{
cTx :

∑

i∈M
λigi(x) ≤ 0

}
. (2)

Denote by F ⊆ R
n the feasible region of (1), and Sλ ⊆ R

n that of (2).
Clearly, F ⊆ Sλ holds for every λ ∈ R

m
+ , and as such (2) provides a valid lower

bound of (1). Moreover, solving (2) might be computationally more convenient
than solving (1), since there is only one nonconvex nonlinear constraint in S(λ).

The quality of the bound provided by S(λ) may be highly dependent on λ,
and therefore it is natural to consider the surrogate dual problem.

Definition 2 (Surrogate Dual). We call the following optimization problem
the surrogate dual of (1):

sup
λ∈R

m
+

S(λ). (3)

The function S is only lower semi-continuous [25], thus, there might be no λ such
that S(λ) is equal to (3). The surrogate dual is closely related to the Lagrangian
dual, but provides a bound that is at least as good [25,33]. In contrast to the
Lagrangian, which is always concave, S is only quasi-concave [25].

Contribution. In this paper, we revisit surrogate duality in the context of mixed-
integer nonlinear programming. To the best of our knowledge, surrogate relax-
ations have never been considered for solving general MINLPs. The first contri-
bution of the paper is an algorithm capable of solving a generalized surrogate
dual that allows for multiple aggregations of the nonlinear constraints simultane-
ously. We also prove its convergence guarantees. Secondly, we present computa-
tional enhancements to make the algorithm practical. Our developed algorithm
allows us to compare the performance of the classic surrogate relaxation with
the generalized one. Finally, we provide a broad computational analysis using
publicly available benchmark instances, and we show the practical interest in
our proposed approach.

2 Background

Surrogate constraints were first introduced by Glover [19] in the context of zero-
one linear integer programming problems. Extensions were provided by Balas [7]
and Geoffrion [18], which were then analyzed from a unified perspective by

324 B. Müller et al.

Glover [20]. A theoretical analysis of surrogate duality in a nonlinear setting was
first presented by Greenberg and Pierskalla [25]. They also proposed a general-
ization using multiple disjoint aggregation constraints. A similar generalization
allowing multiple aggregations was later proposed by Glover [21]. These were
proposed without computational evaluation.

The first algorithmic method for solving (3) is attributed to Banerjee [9].
In the context of integer linear programming, he proposed a Benders’ approach
similar to the one considered by us. Karwan [32] expanded on this approach,
including a refinement of that of Banerjee and subgradient-based methods. Inde-
pendently, Dyer [15] proposed similar methods to those of Karwan. Karwan
and Rardin [33,34] further developed these approaches. Other search procedures
involve consecutive Lagrangian dual searches [35,44] and heuristics [17].

Surrogate constraints have been used in various applications: in primal
heuristics for IPs [22], knapsack problems with a quadratic objective func-
tion [14], the job shop problem [16], generalized assignment problems [40], among
others. We refer the reader to [5,23] for reviews on surrogate duality methods.

To the best of our knowledge, the efforts for practical implementations of
multiplier search methods have mainly focused on linear integer programs. This
focus can be explained by the maturity of computational optimization tools
available during the time where most of these implementations have been devel-
oped. We are only aware of two exceptions: the entropy approach to nonlinear
programming (see [48,53]) which uses an entropy-based surrogate reformulation
instead of a weighted sum of the constraints; and the work by Nakagawa [39],
who considered separable nonlinear integer programming and presented a novel,
albeit expensive, algorithm for solving the surrogate dual. Regarding the gener-
alization of the surrogate dual that considers multiple aggregated constraints, we
are not aware of any work considering a multiplier search method with provable
guarantees or a computational implementation of a heuristic approach.

3 Generalized Surrogate Duality

We consider a generalization of surrogate relaxations that was introduced by
Glover [21]. Instead of a single aggregation, as in (2), the generalization allows
for K ∈ N aggregations. These are encoded by the nonnegative vector λ =
(λ1, λ2, . . . , λK) ∈ R

Km
+

∑

i∈M
λk

i gi(x) ≤ 0, k ∈ {1, . . . , K}. (4)

Similar to Sλ, for a vector λ ∈ R
Km
+ the feasible region of the K -surrogate

relaxation is given by the intersection SK
λ :=

⋂K
k=1 Sλk , where Sλk is the feasible

region of the surrogate relaxation S(λk) for λk ∈ R
m
+ . It clearly follows that SK

λ

is a relaxation for (1). The best dual bound for (1) generated by a K-surrogate
relaxation is given by

sup
λ∈R

Km
+

SK(λ), (5)

On Generalized Surrogate Duality in Mixed-Integer Nonlinear Programming 325

which we call the K-surrogate dual. Note that scaling each λk ∈ R
m
+ individually

by a positive scalar does not affect the value of SK(λ), therefore, it is possible
to impose additional normalization constraints

∥
∥λk

∥
∥
1

≤ 1 for each k. Using the
proof idea of the case K = 1 by Glover [21], we can prove the following.

Proposition 1. If gi is continuous for every i ∈ M and X is compact, then
SK : RKm

+ → R is lower semi-continuous for any choice of K.

One important difference to the classic surrogate dual is that SK(λ) is no
longer quasi-concave. Due to this, subgradient-based methods, as in [32], do
not solve (5) to global optimality. Even though (5) is substantially more difficult
to solve than (3), it may also provide considerably stronger bounds for (1):

Proposition 2. The following inequality holds for any K ∈ N:

sup
λ∈R

Km
+

SK(λ) ≤ sup
λ∈R

(K+1)m
+

SK+1(λ). (6)

In Sect. 6, we analyze computationally how big the gap between different values
of K can be.

4 An Algorithm for the K-surrogate Dual

We now show how to solve the surrogate dual with a Benders’ approach. This
type of algorithm was presented independently for the K = 1 case by Baner-
jee [9], Karwan [32], and Dyer [15]. Here, we generalize it for arbitrary K and
prove its convergence guarantees. To the best of our knowledge, our generaliza-
tion is the first algorithm in the literature that solves (5).

4.1 A Benders’ Approach

We use an iterative approach that alternates between a master- and sub-problem.
Assume that we have a solution x̄ of SK(λ). The master problem searches for
the next multipliers ensuring that x̄ is not considered in later iterations, i.e., it
computes a vector λ̃ that satisfies

∑
i∈M λ̃k

i gi(x̄) > 0 for some k ∈ {1, . . . , K}.
One way of achieving this is through the following disjunctive program:

max Ψ

s.t.
K∨

k=1

(
∑

i∈M
λk

i gi(x̄) ≥ Ψ

)

for all x̄ ∈ X ,

∥
∥λk

∥
∥
1

≤ 1, λk ≥ 0 for all k ∈ {1, . . . , K},

(7)

where X ⊆ X is the set of generated points of the sub-problems. The sub-problem
solves SK(λ̃) and thus provides a valid dual bound. The resulting scheme is
formalized in Algorithm 1.

326 B. Müller et al.

Algorithm 1: Algorithm for the K-surrogate dual.
Input: MINLP of the form (1), K ∈ N, threshold ε > 0
Output: dual bound D ∈ R for (1)

1 initialize λ := 0 ∈ R
Km
+ , Ψ := ∞, X := ∅, D := −∞

2 while Ψ ≥ ε do

3 x̄ := argminx{cTx : x ∈ SK
λ }

4 D := max{D, cTx̄}
5 X := X ∪ {x̄}
6 (λ, Ψ) := optimal solution of (7) for X
7 return D

In order to solve (7) we use the following big-M formulation:

max Ψ

s.t.
∑

i∈M
λk

i gi(x̄) ≥ Ψ − M(1 − zx̄
k) for all k ∈ {1, . . . , K}, x̄ ∈ X ,

K∑

k=1

zx̄
k = 1 for all x̄ ∈ X ,

zx̄
k ∈ {0, 1} for all k ∈ {1, . . . , K}, x̄ ∈ X ,
∥
∥λk

∥
∥
1

≤ 1, λk ≥ 0 for all k ∈ {1, . . . , K},

(8)

where M is a large constant. A binary variable zx̄
k indicates if the k-th disjunction

of (7) is used to cut off the point x̄ ∈ X . It is well known that big-M formulations
are not considered strong in MILPs, given their usual weak LP relaxations.
Other formulations in extended spaces can yield better theoretical guarantees
(e.g., [8,10,49]). However, these formulations typically require to add copies of
variables depending on the number of disjunctions, which in our setting is rapidly
increasing. Furthermore, as we discuss below, we do not require a tight LP
relaxation of (7), and thus, we opted to use (8).

4.2 Convergence

The fact that the dual bounds obtained by Algorithm 1 converge to the optimal
value of the K-surrogate dual is summarized in the following theorem.

Theorem 1. Denote by (λt, Ψ t)t∈N the sequence of values obtained after solv-
ing (7) in Algorithm 1 for ε = 0. The algorithm either (a) terminates in T
steps, i.e., ΨT = 0, in which case max1≤t≤T SK(λt) is equal to (5), or (b)
supt≥1 SK(λt) is equal to (5).

The result for K = 1 was originally proven in [34], which we generalize to K > 1.
The key in the proof is to show that (Ψ t)t∈N converges to zero in Case (b). For
this, we use the compactness of the feasible regions of both the master and
sub-problems and the continuity of the constraint functions gi. In addition, this
shows that Algorithm 1 terminates after finitely many steps for any ε > 0.

On Generalized Surrogate Duality in Mixed-Integer Nonlinear Programming 327

5 Computational Enhancements

In what follows, we present computational enhancements that speed up
Algorithm 1 and improve the quality of the dual bound that can be achieved in
practice.

Refined MILP Relaxation. Instead of only using Ax ≤ b of (1), we exploit an
LP relaxation of (1) that is available in LP-based spatial branch and bound. This
LP contains constraints that have been derived from, e.g., integrality restrictions
of variables (e.g., MIR cuts [41] and Gomory cuts [24]), gradient cuts [30], RLT
cuts [46], SDP cuts [47], or underestimators for each gi. We also make use of
objective cutoff information. If there is a feasible solution x∗ to (1), then the
relaxation can be strengthened by the inequality cTx ≤ cTx∗. This inequality
preserves all optimal solutions of (1) and can improve the optimal value of (3).

Early Stopping in the Sub-problem. One crucial ingredient to speed up
Algorithm 1, proposed in [32] and [15] independently for K = 1, is an early
stopping criterion for SK(λ). If Algorithm 1 has proven a dual bound D in some
previous iteration, we can stop the solving process of SK(λ) if some x̄ ∈ SK

λ

with cTx̄ ≤ D has been found. The point x̄ provides a new inequality for (8) and
shows that λ will not lead to a better dual bound. All convergence/correctness
statements remain valid, and a good quality x̄ can often be found fast by heuris-
tics for MINLPs. Furthermore, we can apply the same idea with other choices
of D, in which case D would act as a target dual bound that we want to prove.

Early Stopping of the Master Problem. While the optimal value of Ψ
is needed to decide whether the algorithm terminated, to ensure progress of
Algorithm 1 it is enough to compute a feasible point (Ψ, λ1, . . . , λK) of (8) with
Ψ > 0. We balance these two opposing forces with the following early stopping
method. While solving (8), we have access to valid dual and primal bounds. Let
Ψ t

p and Ψ t
d be the primal and dual bounds obtained from the master problem in

iteration t of Algorithm 1. We stop the master problem in iteration t+1 as soon
as Ψ t+1

p ≥ αΨ t
d holds for a fixed α ∈ (0, 1]. The parameter α controls the trade-off

between proving a good dual bound Ψ t+1
d and saving time for solving the master

problem. In our experiments, we observed that setting α to 0.2 performs well.

Support Stabilization. Much like in column generation approaches, Algo-
rithm 1 can suffer from convergence issues. Deriving “stabilization” techniques
that can avoid oscillations of the λ variables and tailing-off effects, among others,
are common goals for improving performance, see, e.g., [4,6,37]. Our following
support stabilization technique was developed to handle some of these issues.
Specifically, once Algorithm 1 finds a multiplier vector that improves the overall
dual bound, we restrict the support to that of the improving dual multiplier.
This step restricts the search space and improves solution times of (8) consider-
ably. Once stalling is detected, we remove the support restriction until another
multiplier vector that improves the dual bound is found.

Trust-Region Stabilization. Even using the previous stabilization technique,
the non-zero entries of the λ vectors can (and do, in practice) vary significantly

328 B. Müller et al.

from iteration to iteration. To remedy this, we incorporated a classic stabiliza-
tion technique: a box trust-region stabilization [13]. Given a reference solution
(λ̂1, . . . , λ̂k), we impose ‖(λ1, . . . , λk)−(λ̂1, . . . , λ̂k)‖∞ ≤ δ in (8) for some param-
eter δ. This prevents the λ variables from oscillating excessively, and carefully
updating (λ̂1, . . . , λ̂k) and δ can maintain the convergence guarantees of the algo-
rithm. In our implementation, we maintain a fixed (λ̂1, . . . , λ̂k) until we obtain an
improvement or the algorithm stalls. When any of this happens, we remove the
box and compute a new (λ̂1, . . . , λ̂k) with (8) without any stabilization added.

Other Enhancements. For the sake of completeness, we briefly discuss some
natural ideas that can be considered but that we identified to not work in our
setting. These are not included in our final implementation.

– Dual objective cutoff in the sub-problem: The sequence of dual bounds D
provided by cTx∗ in Step 3 might not be monotone. Thus, one could think
of adding a dual objective cutoff cTx ≥ D to the sub-problem S(λ). How-
ever, this increases degeneracy and results in an overall negative effect. We
confirmed this with extensive computational experiments.

– Multiplier symmetry breaking: Permuting the continuous λ variables in (8)
yields equivalent solutions. With this in mind, we experimented with differ-
ent symmetry-breaking constraints to speed up Algorithm 1. However, all
inequalities that we used had insignificant impact.

– Constraint filtering: We tested different filtering heuristics to preselect non-
linear constraints to use in the aggregations and alleviate the computational
burden of solving (8). We used the violation of the constraints for an optimal
solution of the LP, MILP, and convex NLP relaxation of the MINLP, as mea-
sures of “importance” of nonlinear constraints, among others. After extensive
testing, unfortunately, we could not identify a good filtering rule that selects
few nonlinear constraints and results in strong bounds for (5).

6 Computational Experiments

In this section, we present a computational study on 1671 publicly available
instances of the MINLPLib [38]. We conduct three experiments in order to
answer different questions:

1. ROOTGAP: How much of the root gap with respect to the MILP relaxation can
be closed by using the K-surrogate dual?

2. BENDERS: How much do the ideas of Sect. 5 improve the performance of Algo-
rithm 1?

3. DUALBOUND: Can Algorithm 1 improve on the dual bounds obtained by the
MINLP solver SCIP?

Our methods are implemented in the MINLP solver SCIP [45]. We refer to [2]
for an overview of the general solving algorithm and to [50,51] for the particular
MINLP features of SCIP.

On Generalized Surrogate Duality in Mixed-Integer Nonlinear Programming 329

6.1 Experimental Setup

For the ROOTGAP experiment, we run Algorithm 1 for one hour for each choice
of K ∈ {1, 2, 3} after the root node has been completely processed by SCIP. To
measure how much more root gap can be closed by using K + 1 instead of K,
we use the best found aggregation vector of K as an initial point for K + 1.

The goal of the BENDERS experiment is to analyze the impact of the presented
computational enhancements. We compare the following settings, each of them
using a time limit of one hour and K = 3:

– DEFAULT: Algorithm 1 with all techniques described in Sect. 5.
– PLAIN: A plain version of Algorithm 1 without enhancements.
– NOSTAB: Same as DEFAULT but without trust-region and support stabilization.
– NOSUPP: Same as DEFAULT but without support stabilization.
– NOEARLY: Same as DEFAULT but without early termination for the master

problem.

In the DUALBOUND experiment we proceed as follows. First, we collect the dual
bounds for all instances that could not be solved by SCIP within three hours.
Afterwards, we apply Algorithm 1 for K = 3 with a time limit of three hours,
and set a target dual bound (see Sect. 6) of D+(P −D) ·0.2, where D is the dual
bound obtained by default SCIP and P the best known primal bound reported.
This means we aim for a gap closed reduction of at least 20%.

Test Set. We use the publicly available instances of the MINLPLib [38]. We
selected all instances that were available in OSiL format and consisted of nonlin-
ear expressions that could be handled by SCIP. In total these are 1671 instances.

Performance Evaluation. We use the gap closed measure to compare dual bounds
relative to a given primal bound. If d1, d2 ∈ R are two dual bounds for (1) with
d1 ≤ d2 and p ∈ R a reference primal bound, then the function GC(p, d1, d2) =
d2−d1
p−d1

measures the gap closed improvement of d2 with respect to d1.
To evaluate algorithmic performance over a large test set of benchmark

instances, we use shifted geometric means. This avoids results being dominated
by outliers with large absolute values (as is the case for the arithmetic mean)
and avoids an over-representation of differences among very small values. See
also the discussion in [2,3,27]. As shift values we use 10 s for averaging over
running time and 5% for averaging over gap closed values.

Hardware and Software. The computing environment is a cluster of 64bit Intel
Xeon X5672 CPUs at 3.2 GHz with 12 MB cache and 48 GB main memory. To
safeguard against a mutual slowdown of parallel processes, we run only one job
per node at a time. We use a development version of SCIP with CPLEX 12.8.0.0
as LP solver [29], the algorithmic differentiation code CppAD 20180000.0 [11],
the graph automorphism package bliss 0.73 [31] for detecting MILP symmetry,
and Ipopt 3.12.11 with Mumps 4.10.0 [1] as NLP solver [12,52].

330 B. Müller et al.

Table 1. Results for the ROOTGAP experiment. A row m ≥ x considers all instances that
have at least x nonlinear constraints. The second part of the table considers instances
for which at least one setting closes at least 1% of the root gap.

Group # instances K = 1 K = 2 K = 3

ALL 633 18.4% 21.4% 23.4%

m ≥ 10 528 14.6% 16.9% 18.4%

m ≥ 50 229 7.1% 7.9% 8.5%

AFFECTED 469 35.0% 42.2% 46.9%

m ≥ 10 370 30.1% 36.0% 40.1%

m ≥ 50 115 23.9% 28.0% 30.8%

6.2 Computational Results

ROOTGAP Experiment. From all instances of MINLPLib, we filter those for which
SCIP’s MILP relaxation proves optimality in the root node, no primal solution
is known, or SCIP aborted due to numerical issues. This leaves 633 instances.

Aggregated results are reported in Table 1. First, we observe an average gap
reduction of 18.4% for K = 1, 21.4% for K = 2, and 23.4% for K = 3, respec-
tively. The same tendency is true when considering instances grouped by their
number of nonlinear constraints, and the results are even more dramatic when
filtering-out unaffected instances. From these results, we see that using surro-
gate relaxations has a tremendous impact on reducing the root gap, even more
so when using the generalized surrogate dual for K = 2 and K = 3.

BENDERS Experiment. Table 2 reports aggregated results for the BENDERS exper-
iment. First, we observe that the DEFAULT performs significantly better than
PLAIN. Only on 36 instances PLAIN closes more gap, but over all instances it
closes on average 13.1% less gap than DEFAULT. On instances with a larger num-
ber of nonlinear constraints, DEFAULT performs even better: on the 107 instances
with at least 50 nonlinear constraints, PLAIN closes 25.8% less gap than DEFAULT.

Table 2 also shows that DEFAULT dominates NOSTAB, NOSUPP, and NOEARLY.
The most relevant computational enhancement is the early termination of the
master problem. Even though Table 2 suggests that the trust-region and support
stabilization are not crucial for closing a significant portion of the root gap, both
techniques are important to exploit the λ space in a more structured way. Due
to space limitations, we relegate this discussion to the Appendix.

DUALBOUND Experiment. For this experiment, we include all instances which
could not be solved by SCIP with default settings within three hours, have
a final gap of at least 10%, terminate without an error, and contain at least
four nonlinear constraints. This leaves 209 instances. To compute gaps, we use
the best known primal bounds from the MINLPLib as reference values. Table 4
in the Appendix reports detailed results on the subset of instances for which
Algorithm 1 was able to improve on the bound obtained by SCIP, which was
the case for 53 of the 209 instances. On these instances, the average gap of 284.3%

On Generalized Surrogate Duality in Mixed-Integer Nonlinear Programming 331

Table 2. Results for the BENDERS experiment. The column “M”/“L” reports the num-
ber of instances for which DEFAULT could close at least 1% more/less root gap than
the settings of the corresponding column. Column “rgc” reports the average root gap
closed relative to our default settings (in %). Instances for which no setting could close
at least 1% of the root gap are filtered out.

Group # instances PLAIN NOSTAB NOSUPP NOEARLY

M L rgc M L rgc M L rgc M L rgc

ALL 457 100 36 86.9 40 31 98.3 41 27 98.4 94 40 88.2

m ≥ 10 346 90 29 84.1 34 27 98.7 38 24 98.5 85 33 85.4

m ≥ 50 107 35 1 74.2 13 7 98.9 14 12 98.4 32 2 76.3

for SCIP could be reduced to an average gap of 142.8%. Generalized surrogate
duality works particularly well on difficult nonconvex MINLPs: for example, for
all polygon* instances and four facloc* instances we find better bounds than
the best known dual bounds from the MINLPLib, as shown in Table 3 of the
Appendix.

7 Conclusion

In this article, we studied theoretical and computational aspects of surrogate
relaxations for MINLPs. We developed the first algorithm able to solve exactly
a generalization of the surrogate dual problem and proved its convergence guar-
antees. Our extensive computational study on the heterogeneous set of publicly
available instances of the MINLPLib showed that exploiting surrogate duality
can lead to significantly better dual bounds than standard LP-based spatial
branch-and-bound. Additionally, our experiments showed that the presented
computational enhancements are key to obtaining strong dual bounds for prob-
lems with a larger number of nonlinear constraints. Finally, we showed that our
Algorithm can yield an average gap reduction from 284.3% to 142.8% on chal-
lenging instances. This includes instances of MINLPLib where we were able to
significantly improve the best known dual bounds.

We hope our results not only help to revitalize surrogate duality and make
it a viable alternative for challenging MINLPs, but also open the door for new
developments using these techniques. Two important open questions are the
following. First, in particular in the case of QCQPs, how much can be gained
from requiring the surrogate relaxations to be convex? This could yield much
more tractable sub-problems but might compromise the quality of the relaxation.
Second, what is the best way of developing a surrogate-based spatial branch-and-
bound approach? Solving a surrogate dual in each node of the branching tree
most certainly will be impractical, but a coordinated scheme for sharing infor-
mation between different surrogate duals across the tree could reduce relaxation
time to a level at which search trees can be traversed to near-optimality.

332 B. Müller et al.

Acknowledgements. We gratefully acknowledge support from the Research Campus
MODAL (BMBF Grant 05M14ZAM) and the Institute for Data Valorization (IVADO)
through an IVADO Postdoctoral Fellowship.

A Appendix

A.1 The Effect of Stabilization

To visualize the importance of stabilization techniques, we use the instance
genpooling lee1. Figure 1 shows the achieved dual bounds after each iteration
of Algorithm 1 for DEFAULT and NOSTAB. The achieved dual bound of −4775.26
with DEFAULT is significantly better than the dual bound of −5006.95 when using
NOSTAB. More importantly, stabilization helps to reach the final dual bound much
earlier.

Fig. 1. Dual bounds for DEFAULT (left) and NOSTAB (right) on genpooling lee1 using
K = 3. The red dashed curve shows the best found dual bound so far, whereas the
blue curve shows the computed dual bound at each iteration. (Color figure online)

A.2 Detailed Results for the DUALBOUND Experiment

Table 3. Best known primal vs. the dual bounds computed by SCIP, Algorithm 1,
and reported in MINLPLib for all polygon* and four facloc* instances.

Instance Best primal Dual bounds

MINLPLib SCIP DUALBOUND

polygon25 −0.78 −5.80 −4.24 −3.94

polygon50 −0.78 −15.27 −10.78 −8.72

polygon75 −0.78 −24.87 −16.82 −13.55

polygon100 −0.78 −34.00 −24.37 −19.03

facloc1 3 95 12.30 4.46 5.50 5.70

facloc1 4 80 7.88 0.16 0.09 0.41

facloc1 4 90 10.46 0.48 0.49 1.18

facloc1 4 95 11.18 0.79 1.40 2.40

On Generalized Surrogate Duality in Mixed-Integer Nonlinear Programming 333

Table 4. Detailed results for the DUALBOUND experiment on 53 instances for which
Algorithm 1 could find a better dual bound in the root node.

Instance m n p Obj Best primal gapSCIP gapBenders

case 1scv2 696 3377 25 Max 7888.57 2e+10 5e+09

crudeoil pooling ct1 37 362 71 Min 210538 27.1 21.6

crudeoil pooling ct3 182 966 108 Min 287000 27.3 21.6

eg int s 27 33968 3 Min 6.4531 3097.2 106.4

genpool10i 300 1294 187 Min 1.19809e+06 49.7 43.4

genpool10paper 33 727 187 Min 1.16851e+06 47.3 41.1

genpool15i 675 2759 352 Min 992088 34.5 25.8

heatexch gen3 241 1627 60 Min 122519 125.4 118.8

multiplants mtg1c 28 297 104 Max 683.971 498.9 362.2

multiplants mtg6 65 410 140 Max 5314.43 31.0 18.3

ngone 4951 5344 0 Min −0.0683939 1223.9 872.8

orth d3m6 pl 66 303 0 Min 0.707107 88.3 58.2

orth d4m6 pl 41 223 0 Min 0.649519 138.1 65.1

polygon100 4951 19899 0 Min −0.785056 3004.5 2324.6

polygon25 301 1224 0 Min −0.779741 444.3 405.5

polygon50 1226 4949 0 Min −0.783875 1275.8 1012.9

polygon75 2776 11174 0 Min −0.784464 2044.2 1626.8

radar-3000-10-a-8 lat 7 3000 18000 3000 Min 1039 6590.4 5672.2

rsyn0810m03h 18 679 198 Max 2722.45 74.4 8.3

rsyn0815m03h 33 842 217 Max 2827.93 78.4 28.6

rsyn0820m03h 42 972 242 Max 2028.81 139.1 83.3

rsyn0820m04h 56 1311 339 Max 2450.77 147.6 91.7

rsyn0830m02h 40 801 173 Max 730.507 177.8 94.4

rsyn0830m03h 60 1229 289 Max 1543.06 140.0 98.6

rsyn0840m02h 56 991 199 Max 734.984 222.7 102.8

rsyn0840m03h 84 1507 333 Max 2742.65 72.2 38.4

rsyn0840m04h 112 2044 467 Max 2564.5 148.7 88.4

sfacloc1 3 80 15 338 62 Min 8.52307 524.1 499.9

sfacloc1 3 95 15 278 9 Min 12.3025 123.7 115.8

sfacloc1 4 80 15 415 62 Min 7.8791 8198.1 1814.0

sfacloc1 4 90 15 383 30 Min 10.4575 2018.7 785.3

sfacloc1 4 95 15 355 9 Min 11.1841 699.6 365.4

sonet23v4 23 297 273 Min -22747.5 34.3 27.1

sonet24v5 24 299 297 Min -34704 78.9 73.0

sssd15-06 18 168 108 Min 539635 88.8 79.4

sssd18-06 18 186 126 Min 397992 73.4 64.2

sssd20-04persp 12 156 92 Min 347691 16.3 9.1

sssd22-08 24 280 200 Min 508714 75.6 69.6

(continued)

334 B. Müller et al.

Table 4. (continued)

Instance m n p Obj Best primal gapSCIP gapBenders

sssd25-04persp 12 176 112 Min 300177 22.0 12.8

syn20m03h 42 518 82 Max 2646.95 21.1 10.7

syn20m04h 56 695 115 Max 3532.74 50.7 15.1

syn30m02h 40 501 77 Max 399.684 219.0 14.6

syn30m03h 60 763 129 Max 654.155 234.3 54.4

syn30m04h 80 1022 181 Max 865.723 274.3 109.1

syn40m02h 56 691 103 Max 388.773 362.0 60.1

syn40m03h 84 1053 173 Max 395.149 492.8 239.7

tls12 12 575 419 Min 108.8 6769.5 3415.9

tls6 6 201 159 Min 15.3 87.2 48.5

tls7 7 306 250 Min 15 829.4 203.8

tspn10 11 212 45 Min 225.126 80.0 22.0

tspn12 13 302 66 Min 262.647 123.4 39.8

waterful2 57 798 56 Min 1012.61 162.4 50.2

watersym1 29 406 28 Min 913.776 114.4 32.1

m/n/p — total number of nonlinear onstraints/variables/integer variables
obj — objective sense
best primal — reference primal bound
gapSCIP — remaining gap for SCIP with default settings (in %)
gapBenders — remaining gap after applying Algorithm 1 in the root (in %)

References

1. MUMPS: Multifrontal massively parallel sparse direct solver. http://mumps.
enseeiht.fr

2. Achterberg, T.: Constraint integer programming. Ph.D. thesis, Technische
Universität Berlin (2007). https://doi.org/10.14279/depositonce-1634. URN:nbn:
de:kobv:83-opus-16117

3. Achterberg, T., Wunderling, R.: Mixed integer programming: analyzing 12 years
of progress. In: Jünger, M., Reinelt, G. (eds.) Facets of Combinatorial Optimiza-
tion, pp. 449–481. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-
38189-8 18

4. van Ackooij, W., Frangioni, A., de Oliveira, W.: Inexact stabilized benders’ decom-
position approaches with application to chance-constrained problems with finite
support. Comput. Optim. Appl. 65(3), 637–669 (2016). https://doi.org/10.1007/
s10589-016-9851-z

5. Alidaee, B.: Zero duality gap in surrogate constraint optimization: a concise review
of models. Eur. J. Oper. Res. 232(2), 241–248 (2014). https://doi.org/10.1016/j.
ejor.2013.04.023

6. Amor, H.M.B., Desrosiers, J., Frangioni, A.: On the choice of explicit stabiliz-
ing terms in column generation. Discrete Appl. Math. 157(6), 1167–1184 (2009).
https://doi.org/10.1016/j.dam.2008.06.021

7. Balas, E.: Discrete programming by the filter method. Oper. Res. 15(5), 915–957
(1967). https://doi.org/10.1287/opre.15.5.915

http://mumps.enseeiht.fr
http://mumps.enseeiht.fr
https://doi.org/10.14279/depositonce-1634
http://dx.doi.org/10.14279/depositonce-1634
http://dx.doi.org/10.14279/depositonce-1634
https://doi.org/10.1007/978-3-642-38189-8_18
https://doi.org/10.1007/978-3-642-38189-8_18
https://doi.org/10.1007/s10589-016-9851-z
https://doi.org/10.1007/s10589-016-9851-z
https://doi.org/10.1016/j.ejor.2013.04.023
https://doi.org/10.1016/j.ejor.2013.04.023
https://doi.org/10.1016/j.dam.2008.06.021
https://doi.org/10.1287/opre.15.5.915

On Generalized Surrogate Duality in Mixed-Integer Nonlinear Programming 335

8. Balas, E.: Disjunctive programming: properties of the convex hull of feasible
points. Discrete Appl. Math. 89(1–3), 3–44 (1998). https://doi.org/10.1016/s0166-
218x(98)00136-x

9. Banerjee, K.: Generalized Lagrange multipliers in dynamic programming. Ph.D.
thesis, University of California, Berkeley (1971)

10. Bonami, P., Lodi, A., Tramontani, A., Wiese, S.: On mathematical programming
with indicator constraints. Math. Program. 151(1), 191–223 (2015). https://doi.
org/10.1007/s10107-015-0891-4

11. COIN-OR: CppAD, a package for differentiation of C++ algorithms. http://www.
coin-or.org/CppAD

12. COIN-OR: Ipopt, Interior point optimizer. http://www.coin-or.org/Ipopt
13. Conn, A.R., Gould, N.I.M., Toint, P.L.: Trust Region Methods. Society for Indus-

trial and Applied Mathematics, Philadelphia (2000). https://doi.org/10.1137/1.
9780898719857

14. Djerdjour, M., Mathur, K., Salkin, H.M.: A surrogate relaxation based algorithm
for a general quadratic multi-dimensional knapsack problem. Oper. Res. Lett. 7(5),
253–258 (1988). https://doi.org/10.1016/0167-6377(88)90041-7

15. Dyer, M.E.: Calculating surrogate constraints. Math. Program. 19(1), 255–278
(1980). https://doi.org/10.1007/bf01581647

16. Fisher, M., Lageweg, B., Lenstra, J., Kan, A.: Surrogate duality relaxation for
job shop scheduling. Discrete Appl. Math. 5(1), 65–75 (1983). https://doi.org/10.
1016/0166-218x(83)90016-1

17. Gavish, B., Pirkul, H.: Efficient algorithms for solving multiconstraint zero-one
knapsack problems to optimality. Math. Program. 31(1), 78–105 (1985). https://
doi.org/10.1007/bf02591863

18. Geoffrion, A.M.: Implicit enumeration using an imbedded linear program. Techni-
cal report, May 1967. https://doi.org/10.21236/ad0655444

19. Glover, F.: A multiphase-dual algorithm for the zero-one integer programming
problem. Oper. Res. 13(6), 879–919 (1965). https://doi.org/10.1287/opre.13.6.879

20. Glover, F.: Surrogate constraints. Oper. Res. 16(4), 741–749 (1968). https://doi.
org/10.1287/opre.16.4.741

21. Glover, F.: Surrogate constraint duality in mathematical programming. Oper. Res.
23(3), 434–451 (1975). https://doi.org/10.1287/opre.23.3.434

22. Glover, F.: Heuristics for integer programming using surrogate constraints. Decis.
Sci. 8(1), 156–166 (1977). https://doi.org/10.1111/j.1540-5915.1977.tb01074.x

23. Glover, F.: Tutorial on surrogate constraint approaches for optimization in graphs.
J. Heuristics 9(3), 175–227 (2003). https://doi.org/10.1023/a:1023721723676

24. Gomory, R.E.: An algorithm for the mixed integer problem. Technical report. P-
1885, The RAND Corporation, June 1960

25. Greenberg, H.J., Pierskalla, W.P.: Surrogate mathematical programming. Oper.
Res. 18(5), 924–939 (1970). https://doi.org/10.1287/opre.18.5.924

26. Grossmann, I.E., Sahinidis, N.V.: Special issue on mixed integer programmingand
its application to engineering, part I. Optim. Eng. 3(4), 52–76 (2002)

27. Hendel, G.: Empirical analysis of solving phases in mixed integer programming.
Master’s thesis, Technische Universität Berlin, August 2014. URN:nbn:de: http://
nbn-resolving.de/urn:nbn:de:0297-zib-54270

28. Horst, R., Tuy, H.: Global Optimization. Springer, Berlin Heidelberg (1996). DOI:
https://doi.org/10.1007/978-3-662-03199-5

29. ILOG, I.: ILOG CPLEX: High-performance software for mathematical program-
ming and optimization. http://www.ilog.com/products/cplex/

https://doi.org/10.1016/s0166-218x(98)00136-x
https://doi.org/10.1016/s0166-218x(98)00136-x
https://doi.org/10.1007/s10107-015-0891-4
https://doi.org/10.1007/s10107-015-0891-4
http://www.coin-or.org/CppAD
http://www.coin-or.org/CppAD
http://www.coin-or.org/Ipopt
https://doi.org/10.1137/1.9780898719857
https://doi.org/10.1137/1.9780898719857
https://doi.org/10.1016/0167-6377(88)90041-7
https://doi.org/10.1007/bf01581647
https://doi.org/10.1016/0166-218x(83)90016-1
https://doi.org/10.1016/0166-218x(83)90016-1
https://doi.org/10.1007/bf02591863
https://doi.org/10.1007/bf02591863
https://doi.org/10.21236/ad0655444
https://doi.org/10.1287/opre.13.6.879
https://doi.org/10.1287/opre.16.4.741
https://doi.org/10.1287/opre.16.4.741
https://doi.org/10.1287/opre.23.3.434
https://doi.org/10.1111/j.1540-5915.1977.tb01074.x
https://doi.org/10.1023/a:1023721723676
https://doi.org/10.1287/opre.18.5.924
http://nbn-resolving.de/urn:nbn:de:0297-zib-54270
http://nbn-resolving.de/urn:nbn:de:0297-zib-54270
https://doi.org/10.1007/978-3-662-03199-5
http://www.ilog.com/products/cplex/

336 B. Müller et al.

30. Kelley Jr., J.E.: The cutting-plane method for solving convex programs. J. Soc.
Ind. Appl. Math. 8(4), 703–712 (1960). https://doi.org/10.1137/0108053

31. Junttila, T., Kaski, P.: Bliss: a tool for computing automorphism groups and canon-
ical labelings of graphs. (2012). http://www.tcs.hut.fi/Software/bliss/

32. Karwan, M.H.: Surrogate constraint duality and extensions in integer program-
ming. Ph.D. thesis, Georgia Institute of Technology, January 1976

33. Karwan, M.H., Rardin, R.L.: Some relationships between Lagrangian and surrogate
duality in integer programming. Math. Program. 17(1), 320–334 (1979). https://
doi.org/10.1007/bf01588253

34. Karwan, M.H., Rardin, R.L.: Surrogate dual multiplier search procedures in integer
programming. Oper. Res. 32(1), 52–69 (1984). https://doi.org/10.1287/opre.32.1.
52

35. Kim, S.L., Kim, S.: Exact algorithm for the surrogate dual of an integer pro-
gramming problem: subgradient method approach. J. Optim. Theory Appl. 96(2),
363–375 (1998). https://doi.org/10.1023/a:1022622231801

36. McCormick, G.P.: Computability of global solutions to factorable nonconvex pro-
grams: Part i – convex underestimating problems. Math. Program. 10(1), 147–175
(1976). https://doi.org/10.1007/bf01580665

37. du Merle, O., Villeneuve, D., Desrosiers, J., Hansen, P.: Stabilized column gener-
ation. Discrete Math. 194(1–3), 229–237 (1999). https://doi.org/10.1016/s0012-
365x(98)00213-1

38. MINLP library. http://www.minlplib.org/
39. Nakagawa, Y.: An improved surrogate constraints method for separable nonlinear

integer programming. J. Oper. Res. Soc. Jpn 46(2), 145–163 (2003). https://doi.
org/10.15807/jorsj.46.145

40. Narciso, M.G., Lorena, L.A.N.: Lagrangean/surrogate relaxation for generalized
assignment problems. Eur. J. Oper. Res. 114(1), 165–177 (1999). https://doi.org/
10.1016/s0377-2217(98)00038-1

41. Nemhauser, G.L., Wolsey, L.A.: A recursive procedure to generate all cuts for 0–1
mixed integer programs. Math. Program. 46(1–3), 379–390 (1990). https://doi.
org/10.1007/bf01585752

42. Quesada, I., Grossmann, I.E.: A global optimization algorithm for linear fractional
and bilinear programs. J. Glob. Optim. 6(1), 39–76 (1995). https://doi.org/10.
1007/bf01106605

43. Ryoo, H., Sahinidis, N.: Global optimization of nonconvex NLPs and MINLPs
with applications in process design. Comput. Chem. Eng. 19(5), 551–566 (1995).
https://doi.org/10.1016/0098-1354(94)00097-2

44. Sarin, S., Karwan, M.H., Rardin, R.L.: A new surrogate dual multiplier search
procedure. Naval Res. Logistics 34(3), 431–450 (1987). https://doi.org/10.1002/
1520-6750(198706)34:3〈431::aid-nav3220340309〉3.0.co;2-p

45. SCIP - Solving Constraint Integer Programs. http://scip.zib.de
46. Sherali, H.D., Adams, W.P.: A Reformulation-Linearization Technique for Solv-

ing Discrete and Continuous Nonconvex Problems. Springer, New York (1999).
https://doi.org/10.1007/978-1-4757-4388-3

47. Sherali, H.D., Fraticelli, B.M.P.: Enhancing RLT relaxations via a new class of
semidefinite cuts. J. Glob. Optim. 22(1/4), 233–261 (2002). https://doi.org/10.
1023/a:1013819515732

48. Templeman, A.B., Xingsi, L.: A maximum entropy approach to constrained non-
linear programming. Eng. Optim. 12(3), 191–205 (1987). https://doi.org/10.1080/
03052158708941094

https://doi.org/10.1137/0108053
http://www.tcs.hut.fi/Software/bliss/
https://doi.org/10.1007/bf01588253
https://doi.org/10.1007/bf01588253
https://doi.org/10.1287/opre.32.1.52
https://doi.org/10.1287/opre.32.1.52
https://doi.org/10.1023/a:1022622231801
https://doi.org/10.1007/bf01580665
https://doi.org/10.1016/s0012-365x(98)00213-1
https://doi.org/10.1016/s0012-365x(98)00213-1
http://www.minlplib.org/
https://doi.org/10.15807/jorsj.46.145
https://doi.org/10.15807/jorsj.46.145
https://doi.org/10.1016/s0377-2217(98)00038-1
https://doi.org/10.1016/s0377-2217(98)00038-1
https://doi.org/10.1007/bf01585752
https://doi.org/10.1007/bf01585752
https://doi.org/10.1007/bf01106605
https://doi.org/10.1007/bf01106605
https://doi.org/10.1016/0098-1354(94)00097-2
https://doi.org/10.1002/1520-6750(198706)34:3<431::aid-nav3220340309>3.0.co;2-p
https://doi.org/10.1002/1520-6750(198706)34:3<431::aid-nav3220340309>3.0.co;2-p
http://scip.zib.de
https://doi.org/10.1007/978-1-4757-4388-3
https://doi.org/10.1023/a:1013819515732
https://doi.org/10.1023/a:1013819515732
https://doi.org/10.1080/03052158708941094
https://doi.org/10.1080/03052158708941094

On Generalized Surrogate Duality in Mixed-Integer Nonlinear Programming 337

49. Vielma, J.P.: Small and strong formulations for unions of convex sets from the
Cayley embedding. Math. Program. 177(1–2), 21–53 (2018). https://doi.org/10.
1007/s10107-018-1258-4

50. Vigerske, S.: Decomposition in multistage stochastic programming and a constraint
integer programming approach to mixed-integer nonlinear programming. Ph.D.
thesis, Humboldt-Universität zu Berlin, Mathematisch-Naturwissenschaftliche
Fakultät II (2013). URN:nbn:de:kobv:11-100208240

51. Vigerske, S., Gleixner, A.: SCIP: global optimization of mixed-integer nonlinear
programs in a branch-and-cut framework. Optim. Methods Softw. 33(3), 563–593
(2017). https://doi.org/10.1080/10556788.2017.1335312

52. Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-
search algorithm for large-scale nonlinear programming. Math. Program. 106(1),
25–57 (2005). https://doi.org/10.1007/s10107-004-0559-y

53. Xingsi, L.: An aggregate constraint method for non-linear programming. J. Oper.
Res. Soc. 42(11), 1003–1010 (1991). https://doi.org/10.1057/jors.1991.190

https://doi.org/10.1007/s10107-018-1258-4
https://doi.org/10.1007/s10107-018-1258-4
https://edoc.hu-berlin.de/handle/18452/17356
https://doi.org/10.1080/10556788.2017.1335312
https://doi.org/10.1007/s10107-004-0559-y
https://doi.org/10.1057/jors.1991.190

The Integrality Number of an Integer
Program

Joseph Paat, Miriam Schlöter(B), and Robert Weismantel

Department of Mathematics, ETH Zürich, Zürich, Switzerland
{joseph.paat,miriam.schloeter,robert.weismantel}@ifor.math.ethz.ch

Abstract. We introduce the integrality number of an integer program
(IP) in inequality form. Roughly speaking, the integrality number is the
smallest number of integer constraints needed to solve an IP via a mixed
integer (MIP) relaxation. One notable property of this number is its
invariance under unimodular transformations of the constraint matrix.
Considering the largest minor Δ of the constraint matrix, our analysis
allows us to make statements of the following form: there exist numbers
τ(Δ) and κ(Δ) such that an IP with n ≥ τ(Δ) many variables and
n + κ(Δ) · √

n many inequality constraints can be solved via a MIP
relaxation with fewer than n integer constraints. A special instance of
our results shows that IPs defined by only n constraints can be solved
via a MIP relaxation with O(

√
Δ) many integer constraints.

1 Introduction

Let A ∈ Z
m×n satisfy rank(A) = n and c ∈ Z

n. We denote the integer linear
program parameterized by right hand side b ∈ Z

m by

IPA,c(b) := max{cᵀx : Ax ≤ b and x ∈ Z
n}.

See [8] for more on parametric integer programs.
We are interested in solving IPA,c(b) by relaxing it to have fewer integer

constraints. In special cases we can solve IPA,c(b) with zero integer constraints
by only solving its linear relaxation

LPA,c(b) := max{cᵀx : Ax ≤ b}.

However, these special cases require the underlying polyhedron to have opti-
mal integral vertices, which occurs for instance when A is totally unimodular.
Our target is to consider general matrices A and relaxations in the form of a
mixed integer program:

W-MIPA,c(b) := max{cᵀx : Ax ≤ b, Wx ∈ Z
k, and x ∈ R

n},

where k ∈ Z≥0 and W ∈ Z
k×n satisfies rank(W) = k.

c© Springer Nature Switzerland AG 2020
D. Bienstock and G. Zambelli (Eds.): IPCO 2020, LNCS 12125, pp. 338–350, 2020.
https://doi.org/10.1007/978-3-030-45771-6_26

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-45771-6_26&domain=pdf
https://doi.org/10.1007/978-3-030-45771-6_26

The Integrality Number of an Integer Program 339

One sufficient condition for solving IPA,c(b) using a mixed integer relaxation
is that the vertices of W-MIPA,c(b) are integral. The vertices of W-MIPA,c(b)
are the vertices of the polyhedron

conv
({x ∈ R

n : Ax ≤ b, Wx ∈ Z
k})

.

If W can be chosen such that every vertex of W-MIPA,c(b) is integral, then an
optimal valued vertex of W-MIPA,c(b) also solves IPA,c(b). Moreover, if W has
this property, then IPA,c(b) has a feasible solution if and only if W-MIPA,c(b)
does too. Lenstra’s algorithm combined with the ellipsoid method can find
an optimal valued vertex of W-MIPA,c(b) in polynomial time when k is fixed
(see [15], also [7,14]). This leads us to consider the smallest k for which such a
W exists:

iA(b) := min
{

k ∈ Z≥0 : ∃ W ∈ Z
k×n such that all vertices

of W-MIPA,c(b) are integral

}

We refer to iA(b) as the integrality number of IPA,c(b). The integrality number
can be interpreted as the number of integer constraints needed to solve IPA,c(b)
with a relaxation of the form W-MIPA,c(b). Observe that iA(b) is independent of c
because we look for W that describe all vertices of W-MIPA,c(b). Moreover, iA(b)
is always finite. If IPA,c(b) is infeasible, then iA(b) = 0 holds vacuously because
there are no vertices of IPA,c(b). On the other hand, if IPA,c(b) is feasible, then
iA(b) ≤ n because we can always choose W = I

n. Our goal is to find situations
(besides when IPA,c(b) is infeasible) in which iA(b) < n.

Our first main result bounds iA(b) using two well-studied data parameters.
The first of these parameters is the largest full rank minor of A. The largest full
rank minor of a matrix C ∈ R

d×� is denoted by

Δ = Δ(C) := max{|det(B)| : B is a (rank(C) × rank(C)) submatrix of C}.

We use Δ to denote the value Δ(A) unless explicitly stated otherwise. Solving
IPA,c(b) for bounded values of Δ(A) has been studied extensively over the years
with recent renewed interest [1,2,18]. The second parameter is the cardinality
of the column set of an integer-valued matrix. For r,Δ ∈ Z≥1 define

c(r,Δ) := max
{

d : ∃ B ∈ Z
r×d with d distinct columns,

rank(B) = r, and Δ(B) ≤ Δ

}
.

Heller [12] and Glanzer et al. [10] showed that

c(r,Δ) ≤
{

r2 + r + 1 if Δ = 1
Δ2+log2 log2(Δ) · r2 + 1 if Δ ≥ 2.

(1)

Theorem 1. Let A ∈ Z
m×n, c ∈ Z

n, and b ∈ Z
m. Suppose

A =
(

A1

A2

)
,

where r := rank(A2) and A1 ∈ Z
n×n is a full rank matrix with δ := |det(A1)|.

340 J. Paat et al.

(a) If r = 0, then iA(b) ≤ 6δ1/2 + log2(δ).
(b) If r ≥ 1, then iA(b) ≤ [6δ1/2 + log2(δ)] · min{c(r,Δ(A2)), c(r,Δ)}.

Combining Theorems 1 and (1) yields the following corollary.

Corollary 1. There exist constants τ(Δ), κ(Δ) > 0 that satisfy the following:
if IPA,c(b) has n ≥ τ(Δ) many variables and at most n + κ(Δ) · √

n many
constraints, then it can be reformulated using fewer than n integrality constraints.

Our proof of Theorem1 is inspired by the notion of affine TU decompositions
introduced by Bader et al. [3]. An affine TU decomposition of A is an equation
A = A0 + UW such that [Aᵀ

0 W ᵀ] is totally unimodular and U is an integral
matrix. It can be shown that such a decomposition implies that

conv({x ∈ R
n : Ax ≤ b, Wx ∈ Z

k})

is an integral polyhedron. Integral vertices are preserved under unimodular maps,
while the property of total unimodularity is not. This implies that affine TU
decompositions are not robust under unimodular transformations of A. In con-
trast, the integrality number is preserved under unimodular maps (see Lemma2).
We use this fact to construct a new homogeneous matrix decomposition that pro-
duces integral vertices and is invariant under unimodular maps. Furthermore,
our construction is a method for creating relaxations of IPA,c(b) for general A
while Bader et al. only describe relaxations for certain examples and prove hard-
ness results [3, Section 3]. It is worth mentioning that the examples in [3] can be
modified to show that Theorem 1 (a) is tight. See also Hupp [13] who investigated
computational benefits of affine TU decompositions.

The proof of Theorem1 is given in Sect. 2. Given any basis matrix A1 (one
of which can be found efficiently), the matrix W underlying the result can be
constructed in polynomial time even if we do not know Δ a priori or Δ is large.
The number of distinct columns c(r, ·) plays an important role in bounding
iA(b) because we aggregate equal columns and represent them with a single
integer constraint. This is analogous to common aggregation techniques in one-
row knapsack problems. In Theorem 1 (b) the value c(r, ·) can be replaced by
the number of distinct columns of A2, but we present the results in terms of
c(r, ·) because (1) then allows us to bound iA(b) in terms of r and Δ(A2). The
next lemma shows that the number of distinct columns of A2 is also bounded
by c(r,Δ) even if Δ(A2) is significantly larger than Δ; hence, we can also bound
iA(b) in terms of r and Δ only. The matrix A2 is one choice of Y A1 in the next
lemma, but we state the result in generality as it may be of independent interest
in future research regarding c(r, ·).
Lemma 1. Let Δ, δ, and A1 as in Theorem 1. If Y ∈ R

r×n satisfies rank(Y) =
r, Δ(Y) ≤ Δ/δ, and Y A1 ∈ Z

r×n, then Y has at most c(r,Δ) many distinct
columns.

The bounds in Theorem 1 grow larger than n when r is larger than
√

n.
However, it turns out that most problems of the form IPA,c(b) have redundant

The Integrality Number of an Integer Program 341

constraints making it possible to bound iA(b) by a function of only Δ. To for-
malize this, we define the density of a set A ⊆ Z

m to be

Pr(A) := lim inf
t→∞

|{−t, . . . , t}m ∩ A|
|{−t, . . . , t}m| .

The value Pr(A) can be interpreted as the likelihood that the family {IPA,c(b) :
b ∈ A} occurs within {IPA,c(b) : b ∈ Z

m}. However, the functional is not for-
mally a probability measure but rather a lower density function. The functional
Pr(·) has been used before to study sparse solutions of IPA,c(b) [5,16]. Other
significant asymptotic results were given by Gomory [11] and Wolsey [19], who
showed that the value function of IPA,c(b) has periodic asymptotic behavior.

Theorem 2. It holds that Pr(GI ∪ GL) = 1, where

GI := {b ∈ Z
m : iA(b) ∈ O(Δ1/2) and IPA,c(b) is feasible}, and

GL := {b ∈ Z
m : LPA,c(b) is infeasible}.

(2)

The proof of Theorem 2 is given in Sect. 3, and it relies on the fact that
most feasible regions IPA,c(b) are either infeasible or simplicial polytopes. In
the proof we find a set G ⊆ Z

m such that Pr(G) = 1 and for every b ∈ G we
provide an efficient construction of a matrix W ∈ Z

k×n such that k ∈ O(Δ1/2)
and W-MIPA,c(b) has integer vertices. This allows us to conclude that almost all
integer programs in n variables can be solved as a mixed integer problem with
only O(Δ1/2) many integer constraints.

Corollary 2. Let A ∈ Z
m×n and c ∈ Z

n. There exists G ⊆ Z
m such that

Pr(G) = 1, and for every b ∈ G, IPA,c(b) can be solved as a mixed integer
program with only O(Δ1/2) many integer constraints.

A consequence of Corollary 2 is that almost all problems can be solved in
polynomial time provided Δ is constant. This consequence can also be derived
from a classic dynamic programming result by Gomory involving the so-called
group relaxation [11] as well as from the dynamic programs presented in [1] or [9].
The running time of the latter has lesser dependence on Δ than our approach in
Corollary 2. However, these proof ideas use dynamic programming rather than
mixed integer relaxations. To the best of our knowledge, Corollary 2 cannot be
derived from these works.

Notation. Denote the largest minor of C ∈ R
m×n by

Δmax(C) := max{|det(B)| : B a submatrix of A}.

Denote the i-th row of C by Ci. For I ⊆ {1, . . . , m} let CI denote the |I| × n
matrix consisting of the rows {Ci : i ∈ I}. A matrix U ∈ Z

n×n is unimodular if
|det(U)| = 1. A matrix W ∈ Z

k×n is totally unimodular if Δmax(W) ≤ 1. For
K1,K2 ⊆ R

n define K1 + K2 := {x + y : x ∈ K1, y ∈ K2}. Denote the d × d
identity matrix by I

d and the d × k all zero matrix by 0d×k.

342 J. Paat et al.

2 The Proof of Theorem1

Throughout this section, we assume that A1 is a given n×n invertible submatrix
of A. The first step in our proof of Theorem1 is to perform a suitable unimodular
transformation to A. The next result, which is proven in the appendix, states
that the integrality number is preserved under unimodular transformations.

Lemma 2. Let c ∈ Z
n, b ∈ Z

m, A ∈ Z
m×n, and U ∈ Z

n×n be unimodular.
Then iA(b) = iAU (b).

The particular unimodular transformation that we want to apply is the one
that transforms A into Hermite Normal Form. Notice that if we permute the
rows of (A b), then the optimization problem IPA,c(b) remains the same. After
reordering the constraints of IPA,c(b), there exists a unimodular matrix U such
that AU is in Hermite Normal Form (see, e.g., [17]):

A =
(

A1

A2

)
, where A1 =

(
I
n−� 0(n−�)×�

A1
I

)
and A1

I =

⎛

⎝
∗ ... ∗ α1...

...
...

. . .
∗ ... ∗ ∗ ∗ α�

⎞

⎠ , (3)

α1, . . . , αl ∈ Z≥2, A1
i,j ≤ αi − 1 if j < i and A1

i,j = 0 if j > i, and δ = |det(A1)|.
In light of Lemma2, we assume that A is in Hermite Normal Form for the rest
of the section.

We proceed by solving instances of the following problem:

Given C ∈ R
p×n, find a totally unimodular matrix W ∈ Z

k×n

and V ∈ R
p×k such that C = V W.

(4)

Our use of (4) for bounding iA(b) is justified by the following lemma.

Lemma 3. Let W ∈ Z
k×n be totally unimodular satisfying rank(W) = k.

If W satisfies (4) for C =
(

A1
I

A2

)
, then iA(b) ≤ k. (5)

Proof. If W-MIPA,c(b) is infeasible, then the result is vacuously true because
there are no vertices. A vertex z∗ of W-MIPA,c(b) has the form

z∗ =
(

AJ

W

)−1 (
bJ

y

)
, (6)

where y ∈ Z
k, J ⊆ {1, . . . , m}, and |J | = n − k. The rows of AJ are linearly

independent of the rows of W . By (4) and (5) we know there is a matrix V
satisfying C = V W , so the only rows of A that are linearly independent of W
are those not belonging to C. Hence, the rows of AJ are a subset of the first
n − � rows defining A1 in (3) and they form a partial-identity matrix. Thus, the
matrix in (6) is unimodular because W is totally unimodular. By Cramer’s Rule
we have z∗ ∈ Z

n. Every vertex of W-MIPA,c(b) is integral, so iA(b) ≤ k. ��

The Integrality Number of an Integer Program 343

It remains to discuss how to find a totally unimodular matrix W satisfying (4)
for C ∈ R

p×n. We could choose W = I
n, but we want k to be as small as possible.

In order to find W with fewer rows, we write C differently. Consider a finite
nonempty set B ⊆ R

p and a finite (possibly empty) set T ⊆ R
p \ {0} satisfying

the columns of C are contained in B + (T ∪ {0}). (7)

t1

t2 t3
t4 t1 t2

t3

t4
t5

Fig. 1. Let C ∈ Z
20×2 have columns ({0, . . . , 5} × {0, . . . , 2}) ∪ {[6, 0]ᵀ, [0, 3]ᵀ}. Two

choices of B and T satisfying (7) are shown. Each finite set B and its translations are
shaded. The vectors in T are denoted by ti.

Fig. 1 gives examples of B and T .
Every column u ∈ C can be written as u = v + t for some v ∈ B and

t ∈ T ∪ {0}. If many representations exist, then choose one. We can write C as

C = (B T)W, where W :=
(

WB

WT

)
, (8)

WB ∈ {0, 1}|B|×n, and WT ∈ {0, 1}|T |×n. Note WT has |T | rows rather than
|T |+1 because any column of C that is in B can be represented without T . The
benefit of creating W using (8) is that it only has |B|+ |T | rows. Thus, if B and
T have only a few elements, then W has few rows. We refer to the construction
of B and T using an oracle called Cover(C). In what follows, any sets B and
T constructed using Cover(C) will always be finite. We ensure W has full row
rank by removing linearly dependent rows. Lemma4 shows that W constructed
in this way is totally unimodular.

Lemma 4. Let C ∈ R
p×n. If W ∈ Z

k×n is constructed as in (8) using (B, T) =
Cover(C), then W is totally unimodular.

In order to prove Theorem 1 we use two specific constructions of B and T .
The first construction solves (4) for C = A1

I .

Construction 1. For i ∈ {1, . . . , �} let ki ∈ {0, . . . , αi − 1}. Let zi denote the
column of A1

I whose i-th component is αi. Define

B =
({0, . . . , k1} × . . . × {0, . . . , k�}

) ∪ {z1, . . . , z�}
and T =

{
z ∈ Z

� : zi ∈ {0, ki + 1, . . . , βi · (ki + 1)} ∀ i ∈ {1, . . . , �}}\{0},
(9)

where

βi :=
⌊

αi − 1
ki + 1

⌋
for all i ∈ {1, . . . , �}.

344 J. Paat et al.

Lemma 5. The sets B and T defined in (9) satisfy (7) for C = A1
I . Also,

k1, . . . , k� can be chosen such that |B|+|T | ≤ 6δ1/2+log2(δ), where δ =
∏�

i=1 αi.

The proofs of Lemmas 4 and 5 appear in the appendix. For the rest of this
section we use W I to denote the totally unimodular matrix derived from Con-
struction 1 and Lemma 5. We also use BI and T I to denote the corresponding
finite set and translation set. By Lemma 5

W I has |BI | + |T I | ≤ 6Δ1/2 + log2(Δ) many rows and A1
I = (BI T I)W I . (10)

Proof (of Theorem 1(a)). This follows directly from Lemma 3 and (10). ��
We turn our attention to proving iA(b) ≤ [6δ1/2+log2(δ)] ·c(r,Δ(A2)), which

we refer to as Theorem 1(b) Part 1. To show this, we solve (4) for C = A2. Our
construction is a simple enumeration of the distinct columns of A2.

Construction 2. Let C ∈ R
p×n. Choose B to be the set of columns of C and

T = ∅. By design, |B| + |T | = |B| equals the number of distinct columns in C.

It is not difficult to combine Constructions 1 and 2 in order to solve (4) for
C in (5). We state this as a lemma without proof.

Lemma 6. For i ∈ {1, 2} let Ci ∈ R
pi×n and construct W i ∈ Z

ki×n with
(Bi, T i) = Coveri(Ci) (the oracle depends on i). Set

B := B1 × B2, T := (T 1 ∪ {0}) × (T 2 ∪ {0}) \ {0}, and C :=
(

C1

C2

)
.

If W ∈ Z
k×n is constructed using (8) and (B, T), then W solves (4) for C. Note

k ≤ |B1| · |B2| + (|T 1| + 1) · (|T 2| + 1) − 1.

We are now prepared to prove Theorem 1(b) Part 1.

Proof (of Theorem 1(b) Part 1). Let BI , T I , and W I be as in (10). Let A 2 ∈
Z

r×n be any submatrix of A2 with rank(A 2) = r. Thus, there exists V 2 ∈
R

(m−n)×r such that A2 = V 2A 2. The number of distinct columns of A 2 is
bounded by c(r,Δ(A2)). Construction 2 yields a nonempty set B2 of cardinality
at most c(r,Δ(A2)), an empty translation set T 2, and a totally unimodular
W 2 ∈ Z

k×n with k ≤ |B2| + |T 2| ≤ c(r,Δ(A2)) such that A 2 = (B2 T 2)W 2.
Thus, A2 = V 2(B2 T 2)W 2. By Lemma 6, we can combine W I and W 2 to create
a totally unimodular W ∈ Z

k×n satisfying Lemma 3 and

iA(b) ≤ k ≤ |BI | · |B2| + (|T I | + 1)(|T 2| + 1) − 1 = |BI | · |B2| + |T I |
≤ (|BI | + |T I |) · (|B2| + |T 2|) ≤ [6δ1/2 + log2(δ)] · c(r,Δ(A2)). ��

If r = rank(A2) is at least n, then Δ(A2) is the maximum over all n × n
determinants of A2 and thus Δ(A2) ≤ Δ(A) = Δ. However, if r < n, then
Δ(A2) may be significantly larger than Δ. This follows from the fact that there
exists a unique matrix Y satisfying A2 = Y A1 (because A1 is invertible) and an

The Integrality Number of an Integer Program 345

r × r determinant of A2 is a linear combination of r × r determinants of A from
the Cauchy-Binet formula on the system A2 = Y A1. Nevertheless, the number of
distinct columns of A2 can still be bounded by c(r,Δ) rather than c(r,Δ(A2)).
To motivate why this is true, we note that the parallelepiped generated by the
rows of A1 induces a group on Z

n of size δ, and Y contains the coordinates
mapping these group elements to the rows of A2. This mapping allows us to
view distinct columns of A2 as distinct columns of Y . We can bound distinct
columns of Y using the group structure induced by A1. This is Lemma 1.

Proof (of Lemma 1). Define

Π := {g ∈ [0, 1)n : gᵀA1 ∈ Z
n}.

The set {gᵀA1 : g ∈ Π} is the additive quotient group of Z
n factored by the

rows of A1, and Π is isomorphic to this group. The identity element of Π is 0.
The group operation of Π is addition modulo 1. It is known that |Π| = Δ and
for all z ∈ Z

n there exists a unique g ∈ Π and v ∈ Z
n such that zᵀ = (g + v)ᵀA1

(see, e.g., [4, §VII]).
Recall Y A1 ∈ Z

r×n. Thus, there exist matrices G ∈ R
n×r and V ∈ Z

n×r

such that the columns of G are in Π and Y A1 = (G + V)ᵀA1. Because A1 is
invertible we have Y = (G+V)ᵀ. The columns G1, . . . , Gr of G form a sequence
of nested subgroups

{0} ⊆ 〈{G1}〉 ⊆ . . . ⊆ 〈{G1, . . . , Gr}〉,
where 〈Ω〉 := {∑

h∈Ω λhh mod 1 : λ ∈ Z
Ω} for Ω ⊆ Π. For each i ∈ {1, . . . , r}

the smallest positive integer αi such that αiGi mod 1 ∈ 〈{G1, . . . , Gi−1}〉 is the
so-called index of 〈{G1, . . . , Gi−1}〉 in 〈{G1, . . . , Gi}〉, i.e.,

α1 = |〈{G1}〉| and αi =
|〈{G1, . . . , Gi}〉|

|〈{G1, . . . , Gi−1}〉| ∀ i ∈ {2, . . . , r}.

The definition of αi implies that there are integers β1
i , . . . , βi−1

i such that

αiGi − ∑i−1
j=1 βj

i Gj ∈ Z
n.

We create a lower-triangular matrix E ∈ Z
r×r from these linear forms as follows:

the i-th row of E is [−β1
i , ...,−βi−1

i , αi, 0, ..., 0]. By design EGᵀ ∈ Z
r×n, so

E(G + V)ᵀ = EY ∈ Z
r×n. Also,

det(E) =
∏r

i=1 αi = |〈{G1}〉| · ∏r
i=2

|〈{G1,...,Gi}〉|
|〈{G1,...,Gi−1}〉| = |〈{G1, . . . , Gr}〉| ≤ δ,

where the last inequality follows from Lagrange’s Theorem and the fact that
〈{G1, . . . , Gr}〉 is a subgroup of Π whose order is δ. Furthermore, rank(EY) =
rank(Y) = r and an r × r submatrix of EY is of the form EF for an r × r
submatrix F of Y . The assumption Δ(Y) ≤ Δ/δ implies |det(F)| ≤ Δ/δ. Hence,
|det(EF)| = |det(E)| · |det(F)| ≤ Δ and so Δ(EY) ≤ Δ.

Columns of Y are distinct if and only if the corresponding columns of integer-
valued EY are distinct because E is invertible. The function c(r, ·) is nondecreas-
ing. Hence, EY has at most c(r,Δ(EY)) ≤ c(r,Δ) many distinct columns. ��

346 J. Paat et al.

We now show Theorem 1(b) Part 2, i.e., iA(b) ≤ [6δ1/2 + log2(δ)] · c(r,Δ).

Proof (of Theorem 1(b) Part 2). Recall that we assume that A is in Hermite
Normal Form (3). We construct W satisfying Lemma 3. If we remove linearly
dependent rows of A2, then W will still satisfy the conditions of the lemma. Thus,
we assume A2 ∈ Z

r×n and rank(A2) = r. The matrix A1 is invertible, so there
exist R ∈ R

r×(n−�) and Q ∈ R
r×� such that A2 = [R Q]A1 = [R 0r×�] + QA1

I .
Using R and Q we can also rewrite A as

A =
(

A1

A2

)
=

(
I
n

R Q

)
A1.

Note that

Δmax

((
I
n

R Q

))
≤ Δ

δ
. (11)

If (11) is false, then there exists a submatrix D of the matrix in (11) with
|det(D)| > Δ/δ. The matrix in (11) contains I

n, so we can extend D and
assume D ∈ R

n×n. Notice DA1 is an n × n submatrix of A with |det(DA1)| >
(Δ/δ)·|det(A1)| = Δ. However, this contradicts the definition of Δ and
proves (11).

By Lemma 1 [R Q] has at most c(r,Δ) many distinct columns. The matrix
[R Q 0r×�] also has at most c(r,Δ) many distinct columns because Δ([R Q]) =
Δ([R Q 0r×�]). We can apply Construction 2 with C = [R 0r×�] to obtain a
nonempty finite set BR, an empty translation set TR, and a totally unimodular
matrix WR ∈ Z

τ×n such that |BR| = τ ≤ c(r,Δ) and [R 0r×�] = (BR TR)WR.
Applying Lemma 6 to W I and WR yields a nonempty finite set B, a translation
set T , and a totally unimodular matrix W ∈ Z

k×n such that
(

A1
I

R 0r×�

)
= (B T)W.

The latter condition implies there is a submatrix V ∈ R
�×k of (B T) such that

A1
I = V W . Using this and the displayed identity, we see that

(
A1

I

A2

)
=

(
A1

I

[R 0r×�] + QA1
I

)
=

[
(B T) +

(
0�×k

QV

)]
W.

Hence, W satisfies the assumptions of Lemma 3 and

iA(b) ≤ k ≤ |BI | · |BR| + (|T I | + 1) · (|TR| + 1) − 1 = |BI | · |BR| + |T I |
≤ (|BI | + |T I |) · (|BR| + |TR|) ≤ [6δ1/2 + log2(δ)] · c(r,Δ). ��

3 The Proof of Theorem2

Let A ∈ Z
m×n have rank(A) = n. Our approach to bound iA(b) starts by finding

an LPA,c(b) basis matrix AI , if one exists. The matrix AI is square, so we can

The Integrality Number of an Integer Program 347

apply Theorem 1 (a) to find a suitable W for which W-MIPAI ,c(bI) has integer
vertices. These vertices may violate constraints Ajx ≤ bj for j ∈ {1, . . . , m} \ I.
Intuitively, this means the vertices of W-MIPAI ,c(bI) are close to other facets
of LPA,c(b). The next lemma gives a bound on the coefficients bj that ensures
the vertices are valid for LPA,c(b) and IPA,c(b). The proof is in the appendix.
A set I ⊆ {1, . . . , m} is a basis if |I| = n and rank(AI) = n, and I is feasible if
(AI)−1bI is a feasible solution for LPA,c(b). Set Δmax := Δmax(A).

Lemma 7. Let b ∈ Z
m be such that LPA,c(b) is feasible and I ⊆ {1, . . . , m} a

feasible LPA,c(b) basis. Let W ∈ Z
k×n and assume that z∗ is a feasible vertex of

W-MIPAI ,c(bI). If AjA
−1
I bI + (nΔmax)2 < bj for all j ∈ {1, . . . , m} \ I, then z∗

is also feasible for W-MIPA,c(b).

Lemma 7 inspires the following definition of G for Theorem 2:

G :=
{

b ∈ Z
m : AjA

−1
I bI + (nΔmax)2 < bj for all feasible bases I

of LPA,c(b) and j ∈ {1, . . . , m} \ I

}
. (12)

Recall GI and GL from (2). Lemma 7 can be combined with Theorem 1 (a) to
argue G ⊆ GI ∪ GL. We now show Pr(Zm \ G) = 0 by showing that Z

m \ G
is contained in a finite union of hyperplanes in Z

m. The proof of the following
lemma is in the appendix.

Lemma 8. For each basis I ⊆ {1, . . . , m}, set ΔI := |det(AI)|. It follows that

Z
m \ G ⊆

⋃

I⊆{1,...,m}
I basis

⋃

j �∈I

ΔI(nΔmax)2⋃

r=0

{b ∈ Z
m : ΔIbj = ΔIAjA

−1
I bI + r}.

The value Pr(Zm \ G) is zero because Z
m \ G is contained in a finite union of

hyperplanes, each of which has measure zero in R
m.

Proof (of Theorem 2). If we prove

lim
t→∞

|{−t, . . . , t}m ∩ (Zm \ G)|
|{−t, . . . , t}m| = 0, (13)

then we will have proven Pr(G) is defined by a true limit and Pr(G) = 1. The
denominator of (13) is (2t + 1)m; we show the numerator is in O((2t + 1)m−1).

Lemma 8 implies that |{−t, . . . , t}m ∩ (Zm \ G)| is at most

∑

I⊆{1,...,m}
I basis

∑

j �∈I

ΔI(nΔmax)2∑

r=0

|{b ∈ {−t, . . . , t}m : ΔIbj = ΔIAjA
−1
I bI + r}|.

Consider a basis I, an index j �∈ I, and a value r ∈ {0, . . . , ΔI(nΔmax)2}. If
b ∈ {−t, . . . , t}m and ΔIbj = ΔIAjA

−1
I bI + r, then bj is fixed and

|{b ∈ {−t, . . . , t}m : ΔIbj = ΔIAjA
−1
I bI + r}| ≤

m∏

i�=j

|{−t, . . . , t}| = (2t + 1)m−1.

348 J. Paat et al.

The previous two inequalities imply that |{−t, . . . , t}m ∩ (Zm \ G)| is at most
(

m

n

)
(m − n)(n2(Δmax)3 + 1)(2t + 1)m−1 ∈ O((2t + 1)m−1). ��

Acknowledgements. The authors wish to thank Helene Weiß and Stefan Weltge for
their help that led to major improvements of the manuscript. We are also grateful
to the anonymous referees for their comments that improved the presentation of the
material. The third author acknowledges the support from the Einstein Foundation
Berlin.

Appendix

Proof (of Lemma 2). Let W ∈ Z
k×n be a matrix with minimal k such that all

vertices of W-MIPA,c(b) are integral. Set A := AU , c := cᵀU , and W := WU .
The matrix U−1 maps the vertices of W-MIPA,c(b) to those of W-MIPA,c(b),
and U−1 maps Z

n to Z
n. Thus, W ∈ Z

k×n and the vertices of W-MIPA,c(b)
are integral. Hence, iA(b) ≥ iA(b). To see why the reverse inequality holds, it is
enough to notice that U−1 is also unimodular. ��
Proof (of Lemma 4). By Ghouila-Houri (see, e.g.,[17, §19]) it is enough to show

y :=
∑

w∈̂W∩WB −w +
∑

w∈̂W∩WT w ∈ {−1, 0, 1}n

for a subset Ŵ of the rows of W . Recall that every column u of C = (B T)W
can be written as u = v + t for some v ∈ B and t ∈ T ∪ {0}. Hence, a column
of W has at most two non-zero entries, where a non-zero entry equals 1. One
of these entries is in the rows of WB while the other is in WT . This shows
y ∈ {−1, 0, 1}n. ��
Proof (of Lemma 5). Let z be a column of A1

I . If z ∈ {z1, . . . , z�}, then z =
z + 0 ∈ B + (T ∪ {0}). Else, z ∈ {0, ..., α1 − 1} × ... × {0, ..., α� − 1}. Define

ti =
⌊

zi

ki + 1

⌋
· (ki + 1) and vi = zi − ti for all i ∈ {0, . . . , �}.

We have vi ∈ {0, . . . , ki} for each i ∈ {0, . . . , �}, so v := (v0, . . . , v�)ᵀ ∈ B. To
see that (t1, . . . , t�)ᵀ ∈ T note that ti ≤ βi · (ki + 1) for each i ∈ {1, . . . , �}.

It is left to choose k1, . . . , k� such that |B| + |T | ≤ 6δ1/2 + log2(δ). Note
� ≤ log2(δ) as α1, . . . , α� ≥ 2. By permuting rows and columns we assume
α1 ≤ α2 ≤ . . . ≤ α�. We consider two cases.
Case 1. Assume α� = δτ for τ ≥ 1/2. This implies

∏�−1
i=1 αi = δ1−τ ≤ δ1/2. Let

σ ≥ 0 such that 1 − τ + σ = 1/2. For each i ∈ {1, . . . , � − 1} define ki := αi − 1
and set k� := �δσ�. The value β� in (9) satisfies

β� =
⌊

α� − 1
⌈
δσ

⌉
+ 1

⌋
=

⌊
δτ − 1

⌈
δσ

⌉
+ 1

⌋
≤ ⌈

δ1/2
⌉ ≤ δ1/2 + 1.

The Integrality Number of an Integer Program 349

Define B = B ∪ {z1, . . . , z�}, where B := {0, . . . , k1} × . . . × {0, . . . , k�}, and
the set T via (9). A direct computation reveals that |B| + |T | = |B| + |T | + � is
upper bounded by

δ1−τ (�δσ� + 1) + (β� + 1) + log2(δ) ≤ 6δ1/2 + log2(δ).

Case 2. Assume α� < δ1/2, which implies δ1/2 <
∏�−1

i=1 αi. Let j ∈ {1, . . . , �−2}
be the largest index with γ :=

∏j
i=1 αi ≤ δ1/2. Let σ ≥ 0 be such that γ·δσ = δ1/2

and τ < 1/2 be such that αj+1 = δτ . Note that 0 ≤ σ < τ and δτ−σ ·∏�
i=j+2 αi =

δ1/2. For each i ∈ {1, . . . , j} define ki := 0, for each i ∈ {j + 2, . . . , �} define
ki := αi − 1, and set kj+1 := �δτ−σ�. The value βj+1 in (9) satisfies

βj+1 =
⌊

αj+1 − 1
⌈
δτ−σ

⌉
+ 1

⌋
=

⌊
δτ − 1

⌈
δτ−σ

⌉
+ 1

⌋
≤ ⌈

δσ
⌉
.

Define B = B ∪ {z1, . . . , z�}, where B := {0, . . . , k1} × . . . × {0, . . . , k�}, and the
set T via (9). In this case we have |B| + |T | = |B| + |T | + l is upper bounded by

(∏�
i=j+2 αi

)
(δτ−σ + 2) + γ(δσ + 2) + log2(δ) ≤ 6δ1/2 + log2(δ). ��

Proof (of Lemma 7). Let x∗ := A−1
I bI be the feasible vertex solution to LPA,c(b)

with respect to the basis I. Applying Theorem 1 in [6] to the simplicial problems
LPAI ,c(b) and IPAI ,c(b) shows that z∗ satisfies ‖z∗ − x∗‖∞ ≤ nΔmax. Thus, for
every j ∈ {1, . . . , m} \ I we have

|Ajz
∗ − Ajx

∗| ≤ ‖Aj‖1 · ‖z∗ − x∗‖∞ ≤ n2‖Aj‖∞ · Δmax ≤ (nΔmax)2.

The assumption AjA
−1
I bI + (nΔmax)2 < bj implies

Ajz
∗ ≤ Ajx

∗ + |Ajz
∗ − Ajx

∗| ≤ Ajx
∗ + (nΔmax)2 = AjA

−1
I bI + (nΔmax)2 < bj .

Thus, z∗ is feasible for W-MIPA,c(b). ��
Proof (of Lemma 8). Let b ∈ Z

m \ G. Therefore, there exists a feasible LPA,c(b)
basis I ⊆ {1, . . . , m} and j ∈ {1, . . . , m}\I such that bj ≤ AjA

−1
I bI +(nΔmax)2.

Recall AjA
−1
I bI ≤ bj because A−1

I bI is feasible for LPA,c(b). Thus, Zm \ G is in

{b ∈ Z
m : ∃ a basis I and j ∈ {1, . . . , m} \ I with bj ≤ AjA

−1
I bI + (nΔmax)2}.

Cramer’s Rule implies that ΔI · AjA
−1
I bI ∈ Z for all j ∈ {1, . . . , m} \ I. Thus,

{b ∈ Z
m : ∃ a basis I and j �∈ I with ΔIbj ≤ ΔIAjA

−1
I bI + ΔI(nΔmax)2}

⊆
⋃

I⊆{1,...,m}
I basis

⋃

j �∈I

ΔI(nΔmax)2⋃

r=0

{b ∈ Z
m : ΔIbj = ΔIAjA

−1
I bI + r}. ��

350 J. Paat et al.

References

1. Artmann, S., Eisenbrand, F., Glanzer, C., Oertel, T., Vempala, S., Weismantel, R.:
A note on non-degenerate integer programs with small sub-determinants. Oper.
Res. Lett. 44(5), 635–639 (2016)

2. Artmann, S., Weismantel, R., Zenklusen, R.: A strongly polynomial algorithm for
bimodular integer linear programming. In: Proceedings of the 49th Annual ACM
SIGACT Symposium on Theory of Computing, pp. 1206–1219 (2017)

3. Bader, J., Hildebrand, R., Weismantel, R., Zenklusen, R.: Mixed integer refor-
mulations of integer programs and the affine TU-dimension of a matrix. Math.
Programm. 169(2), 565–584 (2017). https://doi.org/10.1007/s10107-017-1147-2

4. Barvinok, A.: A Course in Convexity. Graduate Studies in Mathematics, vol. 54.
American Mathematical Society, Providence (2002)

5. Bruns, W., Gubeladze, J.: Normality and covering properties of affine semigroups.
J. für die reine und angewandte Mathematik 510, 151–178 (2004)

6. Cook, W., Gerards, A., Schrijver, A., Tardos, E.: Sensitivity theorems in integer
linear programming. Math. Programm. 34, 251–264 (1986). https://doi.org/10.
1007/BF01582230

7. Dadush, D., Peikert, C., Vempala, S.: Enumerative lattice algorithms in any norm
via M-ellipsoid coverings. In: 2011 IEEE 52nd Annual Symposium on Foundations
of Computer Science, pp. 580–589 (2011)

8. Eisenbrand, F., Shmonin, G.: Parametric integer programming in fixed dimension.
Math. Oper. Res. 33(4), 839–850 (2008). https://doi.org/10.1287/moor.1080.0320

9. Eisenbrand, F., Weismantel, R.: Proximity results and faster algorithms for inte-
ger programming using the Steinitz lemma. In: Proceedings of the Twenty-Ninth
Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 808–816 (2018)

10. Glanzer, C., Weismantel, R., Zenklusen, R.: On the number of distinct rows of
a matrix with bounded subdeterminants. SIAM J. Discrete Math. 32, 1706–1720
(2018)

11. Gomory, R.E.: On the relation between integer and noninteger solutions to linear
programs. Proc. Nat. Acad. Sci. 53(2), 260–265 (1965). https://doi.org/10.1073/
pnas.53.2.260

12. Heller, I.: On linear systems with integral valued solutions. Pac. J. Math. 7, 1351–
1364 (1957)

13. Hupp, L.M.: Integer and Mixed-Integer Reformulations of Stochastic Resource-
Constrained, and Quadratic Matching Problems. Ph.D. thesis. Friedrich-
Alexander-Universitat Erlangen-Nurnberg (2017)

14. Kannan, R.: Minkowski’s convex body theorem and integer programming. Math.
Oper. Res. 12(3), 415–440 (1987)

15. Lenstra, H.: Integer programming with a fixed number of variables. Math. Oper.
Res. 8, 538–548 (1983)

16. Oertel, T., Paat, J., Weismantel, R.: Sparsity of integer solutions in the average
case. In: Lodi, A., Nagarajan, V. (eds.) IPCO 2019. LNCS, vol. 11480, pp. 341–353.
Springer, Cham (2019). https://doi.org/10.1007/978-3-030-17953-3 26

17. Schrijver, A.: Theory of Linear and Integer Programming. Wiley, New York (1986)
18. Veselov, S., Chirkov, A.: Integer programming with bimodular matrix. Discrete

Optim. 6, 220–222 (2009)
19. Wolsey, L.: The b-hull of an integer program. Discrete Appl. Math. 3(3),

193–201 (1981). https://doi.org/10.1016/0166-218X(81)90016-0. http://www.
sciencedirect.com/science/article/pii/0166218X81900160

https://doi.org/10.1007/s10107-017-1147-2
https://doi.org/10.1007/BF01582230
https://doi.org/10.1007/BF01582230
https://doi.org/10.1287/moor.1080.0320
https://doi.org/10.1073/pnas.53.2.260
https://doi.org/10.1073/pnas.53.2.260
https://doi.org/10.1007/978-3-030-17953-3_26
https://doi.org/10.1016/0166-218X(81)90016-0
http://www.sciencedirect.com/science/article/pii/0166218X81900160
http://www.sciencedirect.com/science/article/pii/0166218X81900160

Persistency of Linear Programming
Relaxations for the Stable Set Problem

Elisabeth Rodŕıguez-Heck1, Karl Stickler1, Matthias Walter2(B),
and Stefan Weltge3

1 Lehrstuhl für Operations Research, RWTH Aachen University, Aachen, Germany
rodriguez-heck@or.rwth-aachen.de, karl.stickler@rwth-aachen.de

2 Department of Applied Mathematics, University of Twente,
Enschede, The Netherlands

m.walter@utwente.nl
3 Department of Mathematics, Technical University of Munich, Munich, Germany

weltge@tum.de

Abstract. The Nemhauser-Trotter theorem states that the standard
linear programming (LP) formulation for the stable set problem has a
remarkable property, also known as (weak) persistency : for every optimal
LP solution that assigns integer values to some variables, there exists an
optimal integer solution in which these variables retain the same values.
While the standard LP is defined by only non-negativity and edge con-
straints, a variety of stronger LP formulations have been studied and one
may wonder whether any of them has the this property as well. We show
that any stronger LP formulation that satisfies mild conditions cannot
have the persistency property on all graphs, unless it is always equal to
the stable-set polytope.

Keywords: Persistency · Integer linear programming · Stable set

1 Introduction

Given an undirected graph G with node set V (G) and edge set E(G), and node
weights w ∈ R

V (G), the (weighted) stable-set problem asks for finding a stable
set S in G that maximizes

∑
v∈S wv, where a set S is called stable if G contains

no edge with both endpoints in S. While the stable-set problem is NP-hard, it
is a common approach to maximize wᵀx over the edge relaxation

Redge
stab (G) :=

{
x ∈ [0, 1]V (G) | xv + xw ≤ 1 for each edge {v, w} ∈ E(G)

}

and use optimal (fractional) solutions to gain insights about optimal 0/1-
solutions. Note that the 0/1-points in the edge relaxation are precisely the char-
acteristic vectors of stable sets in G, and that maximizing a linear objective over
the edge relaxation is a linear program that can be solved efficiently. Given an
optimal solution of this linear program, its objective value is clearly an upper
c© Springer Nature Switzerland AG 2020
D. Bienstock and G. Zambelli (Eds.): IPCO 2020, LNCS 12125, pp. 351–363, 2020.
https://doi.org/10.1007/978-3-030-45771-6_27

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-45771-6_27&domain=pdf
https://doi.org/10.1007/978-3-030-45771-6_27

352 E. Rodŕıguez-Heck et al.

bound on the value of any 0/1-solution and its entries may guide initial decisions
in a branch-and-bound algorithm. While this is also the case for general polyhe-
dral relaxations, it turns out that optimal solutions of the edge relaxation have
a remarkable property that allows to reduce the size of the problem by fixing
some variables to provable optimal integer values.

Definition 1 (Persistency). We say that a polytope P ⊆ [0, 1]n has the per-
sistency property if for every objective vector c ∈ R

n and every c-maximal point
x ∈ P , there exists a c-maximal integer point y ∈ P ∩ {0, 1}n such that xi = yi

for each i ∈ {1, 2, . . . , n} with xi ∈ {0, 1}.
Proposition 1 (Nemhauser and Trotter [8]). The edge relaxation Redge

stab (G)
has the persistency property for every graph G.

In other words, the result of Nemhauser and Trotter [8] states that if x� is
an optimal solution for the edge relaxation, then there exists an optimal stable
set S� satisfying V1 ⊆ S� ⊆ V (G) \ V0, where Vi := {v ∈ V (G) | x�

v = i} for
i = 0, 1. In this case, the nodes in V0 ∪V1 can be deleted and the search only has
to be performed on the remaining graph. Clearly, this reduction is significant if
x� assigns integer values to many nodes.

For the maximum cardinality stable set problem it has been shown that
the probability of obtaining a single integer component when solving the LP
relaxation is very low for large random graphs [11]. However, persistencies have
been proved to be very useful in a different context, when dealing with highly
structured instances arising in the field of computer vision. More precisely, Ham-
mer, Hansen and Simeone [4] provided a reduction of (Unconstrained) Quadratic
Binary Programming (QBP) to the stable set problem and showed that weak
persistency holds for (QBP) as well. Boros et al. [1] provided an algorithm to
compute the largest possible set of variables to fix via persistencies in a quadratic
binary program in polynomial time, which has been successfully used in practice
to solve very large image restoration problems [3,5,7].

In general, dual bounds obtained from the edge relaxation are quite weak,
and several families of additional inequalities have been studied in order to
strengthen this formulation. Examples are the clique inequalities [10], (lifted)
odd-cycle inequalities [10,15] and clique-family inequalities [9]. Most of these
families were discovered by systematically studying the facets of the stable-set
polytope Pstab(G), which is the convex hull of the characteristic vectors of stable
sets in G. The stable-set polytope itself is known to be a complicated polytope.
In particular, one cannot expect to be able to completely characterize its facial
structure [6]. Thus, the following question is natural.

Do there exist stronger linear programming formulations for the stable set
problem that also have the persistency property for every graph G?

In this paper, we answer the question negatively. More precisely, we show that
an LP formulation (satisfying mild conditions) that is stronger than the edge
formulation cannot have the persistency property on all graphs, unless it always
yields the stable-set polytope.

Persistency of Linear Programming Relaxations for the Stable Set Problem 353

Outline. The paper is structured as follows. We start by introducing the con-
ditions we impose on the LP formulation in Sect. 2. Our main result and its
consequences are presented in Sect. 3. Section 4 is dedicated to the proof of the
main result. Our preprint [12] provides running examples that illustrate the steps
of the proof.

2 LP Formulations for Stable Set

It is clear that, for a single non-bipartite graph G, one can artificially construct
polytopes strictly between Redge

stab (G) and Pstab(G) that have the persistency prop-
erty. For instance, if x ∈ Redge

stab (G)\Pstab(G) is any point that has only fractional
coordinates, then the polytope conv(Pstab(G) ∪ x) has the persistency property
for trivial reasons. In this work, however, we consider relaxations defined for
every graph that arise in a more structured way.

To this end, let G denote the set of finite undirected simple graphs. We regard
an LP formulation for the stable set problem as a map that assigns to every graph
G ∈ G a polytope Rstab(G) ⊇ Pstab(G). As an example, the edge formulation
assigns Redge

stab (G) to every graph G. Next, let us specify some natural conditions
that are satisfied by many prominent formulations and under which our main
result holds. Each of these conditions is defined for a formulation Rstab.

First, we require that the formulation Rstab is at least as strong as the edge
formulation. Formally,

for each G ∈ G, we have Pstab(G) ⊆ Rstab(G) ⊆ Redge
stab (G). (A)

Second, the inequalities defining Rstab must be derived from facets of Pstab:

for each G ∈ G, each inequality with support U ⊆ V (G) that is facet- (B)
defining for Rstab(G) is also facet-defining for Pstab(G[U]),

where G[U] denotes the subgraph induced by U . Note that inequalities need
to define facets only on their support graph, hence also the generally not facet-
defining odd-cycle inequalities (see [10]) satisfy (B). However, a formulation con-
sisting of only rank inequalities (see [2]) does not satisfy (B).

Third, for every graph G ∈ G, validity of facet-defining inequalities of
Rstab(G) shall be inherited by induced subgraphs. Formally,

for each G ∈ G, each inequality with support U ⊆ V (G) that is facet- (C)
defining for Rstab(G) is valid (although not necessarily facet-defining)
for Rstab(G[U]).

This requirement ensures that if an (irredundant) inequality arises for some
graph then it must (at least implicitly) occur for all induced subgraphs for which
it is defined. The reverse implication is imposed by the fourth condition, although
in a more structured way. For this, we need the following definitions.

354 E. Rodŕıguez-Heck et al.

Let G1, G2 ∈ G and let v1 ∈ V (G1), v2 ∈ V (G2). Then the 1-sum of G1

and G2 at v1 and v2, denoted by G1 ⊕v1
v2

G2 is the graph obtained from the
disjoint union of G1 and G2 by identifying v1 with v2. Moreover, let P ⊆ R

m

and Q ⊆ R
n be polytopes and let i ∈ {1, 2, . . . ,m} and j ∈ {1, 2, . . . , n}. The

1-sum of P and Q at coordinates i and j, denoted by P ⊕i
j Q, is defined as the

projection of conv({(x, y) ∈ P × Q | xi = yj}) onto all variables except for yj .
Notice that this projection is an isomorphism from the convex hull to its image
since the variables xi and yj are equal.

Our fourth condition requires that for every pair of graphs G1, G2 ∈ G,
validity of inequalities is acquired by their 1-sum. Formally,

Rstab(G1⊕v1
v2

G2) = Rstab(G1)⊕v1
v2

Rstab(G2) holds for all G1, G2 ∈ G
and all nodes v1 ∈ V (G1) and v2 ∈ V (G2).

(D)

Also this condition is very natural since every inequality that is valid for
Rstab(G1) is also valid for Pstab(G1 ⊕v1

v2
G2), and hence its participation in

Rstab(G1 ⊕v1
v2

G2) is reasonable.

3 Results

We say that two formulations R1
stab and R2

stab are equivalent if R1
stab(G) =

R2
stab(G) holds for every G ∈ G, in which case we write R1

stab ≡ R2
stab. We can

now state our main result.

Theorem 1. Let Rstab be a formulation satisfying (A)–(D). Then Rstab(G) has
the persistency property for all graphs G ∈ G if and only if Rstab ≡ Redge

stab or
Rstab ≡ Pstab.

Sufficiency follows from Proposition 1 and from the fact that Pstab(G) is an
integral polytope for every G ∈ G. Before we prove necessity in Sect. 4, let us
mention some direct implications of Theorem 1 for known relaxations.

Corollary 1. The clique relaxation

Rclq
stab(G) =

{
x ∈ R

V (G) | x(V (C)) ≤ 1 for each clique C of G
}

does not have the persistency property for all graphs G ∈ G.
Proof. It is easy to see that Rclq

stab satisfies Properties (A) and (D). For Prop-
erties (B) and (C), consider a clique C of some graph G ∈ G. Clearly, C is
also a clique of G[V (C)] and the inequality is known to be facet-defining for
Pstab(G[V (C)]) (see Theorem 2.4 in [10]).
�

Also the relaxation based on odd-cycle inequalities satisfies these properties,
although the inequalities are generally not facet-defining.

Persistency of Linear Programming Relaxations for the Stable Set Problem 355

Corollary 2. The odd-cycle relaxation

Roc
stab(G) =

{
x ∈ Redge

stab (G) | x(V (C)) ≤ |V (C)|−1
2 for each odd cycle C of G

}

does not have the persistency property for all graphs G ∈ G.
Proof. It is easy to see that Roc

stab satisfies Properties (A) and (D). For Prop-
erties (B) and (C), consider an odd cycle C of some graph G ∈ G. To induce
a facet, C must be chordless, and the odd-cycle inequality is facet-defining for
Pstab(G[V (C)]) (see Theorem 3.3 in [10]).
�

4 Proof of the Main Result

Let us fix any formulation Rstab over G satisfying Properties (A)–(D). To prove
the “only if” implication of Theorem 1 we have to verify that if Rstab �≡ Redge

stab

and Rstab �≡ Pstab, then Rstab(G) does not have the persistency property for all
graphs G ∈ G. Equivalently, we have to prove the following:

If there exist graphs G1, G2 ∈ G with Rstab(G1) �= Redge
stab (G1) and

Rstab(G2) �= Pstab(G2), then there exists a graph G� for which the
polytope Rstab(G�) does not have the persistency property.

(♦)

Given G1 and G2, we will provide an explicit construction of G� and show
that Rstab(G�) does not have the persistency property. To see the latter, we will
give an objective vector c� ∈ R

V (G�) such that every c�-maximal solution over
Rstab(G�) has a certain coordinate equal to zero while every c�-maximal stable
set in G� contains the corresponding node.

The graph G� will consist of an “inner” graph Gin with Rstab(Gin) �=
Redge

stab (Gin) and |V (Gin)|−1 copies of an “outer” graph Gout with Rstab(Gout) �=
Pstab(Gout). Each copy of Gout is attached to a node of Gin via the 1-sum oper-
ation. The only node of Gin that does not have a copy of Gout attached cor-
responds precisely to the coordinate showing that Rstab(G�) does not have the
persistency property. Note that such graphs Gin, Gout exist due to the hypothesis
of (♦). Among all such graphs, we will make particular choices satisfying some
additional properties that we specify in the next sections.

4.1 The Graph Gout

In the definition of the auxiliary graph Gout we will make use of the following
lemma. In what follows, for a polytope P ⊆ R

n and a vector c ∈ R
n, let us

denote the optimal face of P induced by c by opt(P, c) := arg max {cᵀx | x ∈ P}.

Lemma 1. Let P,Q ⊆ R
n be polytopes. If there exists a vector c ∈ R

n such that
dim(opt(Q, c)) < dim(opt(P, c)), then there exists a vector c′ ∈ R

n such that
opt(Q, c′) is a vertex of Q, while opt(P, c′) is not a vertex of P .

356 E. Rodŕıguez-Heck et al.

The lemma is proved in Appendix A. The graph Gout is now defined through
the following statement.

Claim 1. Assuming the hypothesis of (♦), there exists a graph Gout ∈ G, a vector
cout ∈ R

V (Gout) and a node vout ∈ V (Gout) such that opt(Rstab(Gout), cout) =
{x̂} holds with x̂vout ≥ 1

2 and such that opt(Pstab(G), cout) contains a vertex

x̄ ∈ {0, 1}V (Gout) with x̄vout = 0.

Proof. Let G ∈ G be such that Rstab(G) �= Pstab(G). Such a graph exists by
hypothesis of (♦). By Property (A), there exists an inequality aᵀx ≤ δ that is
facet-defining for Pstab(G), but not valid for Rstab(G).

We claim that the face opt(Rstab(G), a) is not a facet of Rstab(G). Assume
for a contradiction that opt(Rstab(G), a) is a facet of Rstab(G) and define δ′ :=
max {aᵀx | x ∈ Rstab(G)}. Since aᵀx ≤ δ is not valid for Rstab(G), we have
δ′ > δ. Property (B) implies that aᵀx ≤ δ′ is facet-defining for Pstab(G[supp(a)]),
and in particular, equality holds for the characteristic vector of some stable
set S ⊆ V (G[supp(a)]). Since S is also a stable set in G, this contradicts the
assumption that aᵀx ≤ δ is valid for Pstab(G).

By Lemma 1, there exists a vector c ∈ R
n such that opt(Rstab(G), c) = {x̂}

and opt(Pstab(G), c) has (at least) two vertices x̄1, x̄2 ∈ {0, 1}V (G). Since x̄1 �= x̄2,
there exists a coordinate u ∈ V (G) at which they differ and we can assume x̄1

u = 0
and x̄2

u = 1 without loss of generality. If x̂u ≥ 1
2 , we can choose Gout := G,

cout := c and vout := u. Together with x̂ and x̄1, they satisfy the requirements
of the lemma.

Otherwise, let G′ be the graph G with an additional edge {u, u′} attached
at u. Formally, let G′′ be the graph consisting of a single edge {u, u′} and let
G′ := G ⊕u

u G′′. By Property (D), Rstab(G′) = Rstab(G) ⊕u
u Rstab(G′′) holds.

Since G′′ is a single edge, Redge
stab (G′′) = Pstab(G′′) holds. Thus, Rstab(G′) is

described by all inequalities that are valid for Rstab(G) together with xu′ ≥ 0
and xu + xu′ ≤ 1. Hence, for a sufficiently small ε > 0 and the objective vector
c′ ∈ R

V (G′) with c′
u′ = ε, c′

u = cu + 2ε and c′
v = cv for all v ∈ V (G) \ {u}, the

maximization of c′ over Rstab(G′) yields a unique optimum x̂′ ∈ R
V (G′) with

x̂′
v = x̂v for all v ∈ V (G) and x̂′

u′ = 1 − x̂′
u > 1

2 , while the maximization of
c′ over Pstab(G′) admits an optimum x̄′ ∈ R

V (G′) with x̄′
u = 1 and x̄′

u′ = 0.
Now, Gout := G′, cout := c′ and vout := u′ together with x̂′ and x̄′ satisfy the
requirements of the lemma.
�

4.2 The Graph Gin

Among all graphs G ∈ G with Rstab(G) �= Redge
stab (G) we choose Gin to have

a minimum number of nodes. Note that Gin exists by hypothesis of (♦). We
assume V (Gin) = {1, 2, . . . , n}. Let Ax ≤ b (with A ∈ Z

m×n and b ∈ Z
m) be the

system containing inequalities for all facets of Rstab(Gin) that are not valid for
Redge

stab (Gin). Note that m ≥ 1 and n ≥ 3 hold by assumption on Gin.

Claim 2. Ai,j ≥ 1 holds for every i ∈ {1, 2, . . . ,m} and every j ∈ {1, 2, . . . , n}.

Persistency of Linear Programming Relaxations for the Stable Set Problem 357

Proof. It is a basic fact that every facet-defining inequality of a stable-set poly-
tope that is not a nonnegativity constraint is of the form aᵀx ≤ β for some
nonnegative vector a ∈ R

n (see Section 9.3 in [13]). Assume, Ai,j = 0 holds for
some i, j. By Property (C), Ai,�x ≤ bi is valid for Rstab(G[supp(Ai,�)]), while it
is not valid for Redge

stab (Gin[supp(Ai,�)]), contradicting minimality of Gin.
�

4.3 The Graph G�

For each j ∈ {2, 3, . . . , n} let Gj be an isomorphic copy of Gout such that V (Gj)∩
V (Gk) = ∅ whenever j �= k. Let cj ∈ R

V (Gj) and vj ∈ V (Gj) be the vector
and node corresponding to cout and vout in Claim 1, respectively. Now G� is
defined as the 1-sum of Gin with all Gj at the respective nodes j ∈ V (Gin) and
vj ∈ V (Gj), i.e., G� := Gin ⊕2

v2 G2 ⊕3
v3 · · · ⊕n

vn Gn, where the ⊕-operator has to
be applied from left to right. By Property (D) we have

Rstab(G�) = Rstab(Gin) ⊕2
v2 Rstab(G2) ⊕3

v3 · · · ⊕n
vn Rstab(Gn).

4.4 The Objective Vector

It remains to construct an objective vector c� ∈ R
V (G�) that shows that

Rstab(G�) does not have the persistency property. Let A, b be as in the pre-
vious section, and denote by a := A1,� the first row of A. We will define c�

via
c�
1 := ε and c�

v := aj · cj
v for all v ∈ V (Gj), j ∈ {2, 3, . . . , n} ,

where ε > 0 is a positive constant that we will define later. Our first claim is
independent of the specific choice of ε.

Claim 3. Every c�-maximal stable set in G� contains node 1 ∈ V (Gin).

Proof. By Claim 1 there exists, for each j ∈ {2, 3, . . . , n}, a cj-maximal stable set
Sj ⊆ V (Gj) that does not use vj . Thus, the maximum objective value obtained
on V (G� \{1}) is

∑n
j=2 ajc

j(Sj), which is equal to the maximum objective value
for all stable sets that do not contain node 1. Since vj /∈ Sj for each j, the set
S� :=

⋃n
j=2 Sj∪{1} is a stable set in G� with objective value ε+

∑n
j=2 ajc

j(Sj) >
∑n

j=2 ajc
j(Sj), which proves the claim.
�

To see that Rstab(G�) does not have the persistency property, it suffices to
establish the following claim, which then yields Theorem 1.

Claim 4. For ε > 0 small enough, each c�-optimal x� ∈ Rstab(G�) satisfies
x�
1 = 0.

Let x� be any c�-optimal point in Rstab(G�). In order to understand the
contributions of the variables corresponding to nodes v ∈ V (Gj) to the total
optimal value in terms of x�

vj , let us introduce the function f : [0, 1] → R defined
via

f(y) := max
{

cjᵀ
x | x ∈ Rstab(Gj) and xvj = y

}
.

358 E. Rodŕıguez-Heck et al.

Note that the definition is independent of j since all (Gj , cj , vj) are identical
up to indexing. We observe that the restriction of x� onto the coordinates cor-
responding to V (Gin) is an optimal solution for

max
{
c′(x) | x ∈ Rstab(Gin)

}
= max

{
c′(x) | x ∈ Redge

stab (Gin), Ax ≤ b
}

, (1)

where c′(x) := εx1 +
∑n

j=2 ajf(xj). Thus, we see that Claim 4 immediately
follows from the following result.

Claim 5. For ε > 0 small enough, each c′-optimal x ∈ Rstab(Gin) satisfies x1 = 0.

We will consider the function g : [0,∞] → R defined via

g(z) := max
{ n∑

j=2

ajf(xj) | aᵀx ≤ z, x ∈ Redge
stab (Gin)

}
.

The intuition behind the proof of Claim 5 is the following: First, note that c′(x)
is the sum of εx1 and the objective function defining g. Function g(z) represents
the contribution to the objective value of Gj for j = 2, . . . , n as a function of the
right-hand side of the inequality aᵀx ≤ z. We will soon prove that g(z) is strictly
increasing on the interval z ∈ [0, b1]. Since a1 > 0 and x1 does not contribute
to the maximum in the definition of g, the latter is attained only by solutions
x with x1 = 0. If we ignore, for a moment, the inequalities Ax ≤ b, this shows
that for sufficiently small ε, also every c′-maximal solution x satisfies x1 = 0.
The formal steps are as follows.

Claim 6. The functions f and g are concave. Moreover, g is strictly monotoni-
cally increasing on [0, b1].

Proof of Claim 5. Letting

γ := min {x1 | x vertex of Rstab(G�) with x1 > 0} ∈ (0, 1], and
λ := min {γ/(Ai,1 + · · · + Ai,n) | i ∈ {1, 2, . . . ,m}} ∈ (0, 1),

we claim that every choice of ε with

0 < ε < λ(g(b1) − g(b1 − a1γ))

satisfies the assertion. First, we need to verify that the right-hand side of the
inequality above is positive. To this end, note that a1 ≤ b1 and hence 0 ≤
b1 − a1γ < b1. By Claim 6 we have

g(b1 − a1γ) < g(b1), (2)

which yields positivity of the right-hand side.
Next, let ε be as above. For the sake of contradiction, assume that there exists

a c′-optimal solution x� ∈ Rstab(Gin) with x�
1 > 0. Note that x� can be extended

Persistency of Linear Programming Relaxations for the Stable Set Problem 359

to a c�-optimal solution over Rstab(G�), which we may assume to be a vertex
of Rstab(G�), and hence x�

1 ≥ γ. Let x̂0 ∈ Rstab(Gin) be equal to x�, except for
x̂0
1 := 0. Moreover, let x̂1 ∈ R

V (Gin) be a maximizer of g(b1), which may not
be contained in Rstab(Gin). Now consider the vector x̂λ := (1 − λ)x̂0 + λx̂1. To
obtain the desired contradiction, we will show that x̂λ is contained in Rstab(Gin)
and that c′(x̂λ) > c′(x�).

Since x̂0 and x̂1 both lie in Redge
stab (Gin), also xλ lies in Redge

stab (Gin). Let i ∈
{1, 2, . . . ,m}. By Claim 2, Ai,1 ≥ 1 holds, which implies Ai,�x̂

0 ≤ Ai,�x
� − γ ≤

bi − γ. We obtain

Ai,�x̂
λ = Ai,�x̂

0 + λAi,�(x̂1 − x̂0) ≤ bi − γ + λ(Ai,1 + · · · + Ai,n) ≤ bi,

where the second inequality follows from the fact that each coordinate of x̂1− x̂0

is bounded by 1, and the last inequality holds by the definition of λ. This shows
that x̂λ is contained in Rstab(Gin).

For the objective value of x̂1 we clearly have c′(x̂1) ≥ g(b1). Moreover, since
x̂0
1 = 0 we have

c′(x̂0) ≤ g(aᵀx̂0) ≤ g(b1 − a1γ) < g(b1),

where the latter two inequalities again follow from Claim 6 and (2). Observe
that concavity of f and nonnegativity of a imply concavity of c′(x), which yields
c′(x̂λ) ≥ (1 − λ)c′(x̂0) + λc′(x̂1). We obtain

c′(x�) − c′(x̂λ) ≤ (
ε + c′(x̂0)

) − (
c′(x̂0) − λ(c′(x̂0) − c′(x̂1))

)

= ε + λ(c′(x̂0) − c′(x̂1)) ≤ ε + λ(g(b1 − a1γ) − g(b1)) < 0,

where the last inequality holds by definition of ε and due to (2).

�

To conclude the proof of Theorem 1, it remains to prove Claim 6. The fact
that f and g are concave is a simple consequence of the next basic lemma.

Lemma 2. Let P ⊆ R
n be a non-empty polytope, let c, a ∈ R

n and let
� := min {aᵀx | x ∈ P}. The functions h=, h≤ : [�,∞) → R defined via h=(β) =
max {cᵀx | x ∈ P, aᵀx = β} and h≤(β) = max {cᵀx | x ∈ P, aᵀx ≤ β} are con-
cave. Moreover, there exists a number β� ∈ [�,∞) such that h= and h≤ are
identical and strictly monotonically increasing on the interval [�, β�], and h≤ is
constant on the interval [β�,∞).

The lemma is proved in Appendix A. The proof of Claim 6 relies on the
following result of Sewell.

Proposition 2 (Corollary 3.4.3 in [14]). Let
∑n

j=1 ajxj ≤ b1 be a facet-
defining inequality for the stable-set polytope of a graph on n nodes that is neither
a bound nor an edge inequality. Then we have a1 ≤ ∑n

j=1 aj − 2b1.

360 E. Rodŕıguez-Heck et al.

Proof of Claim 6. From Lemma 2 it is clear that f is concave. By rewriting

g(z) = max
{ n∑

j=2

aj ·
∑

v∈V (Gj)

cj
vxv |

n∑

j=1

ajxj ≤ z,

x ∈ Redge
stab (Gin) ⊕2

v2 Rstab(G2) ⊕3
v3 · · · ⊕n

vn Rstab(Gn)
}
,

we also see that g is concave. Moreover, again by Lemma 2, there exists some
β� ≥ 0 such that g is strictly monotonically increasing on the interval [0, β�],
and constant on [β�,∞). It suffices to show that β� ≥ b1. To this end, let us
get back to our initial definition of g, and let x̂ ∈ Redge

stab (Gin) be a maximizer for
g(∞). Note that β� ≥ aᵀx̂ by definition of β�, and hence we have to show that
x̂ satisfies aᵀx̂ ≥ b1.

Since the objective value of x̂ does not depend on x̂1, we may assume that
x̂1 = 0. By the construction of Gj and cj , we know that f attains its unique
maximum at y� ≥ 1

2 . This implies 0 ≤ x̂j ≤ y� for j = 2, 3, . . . , n. Moreover,
we claim that also x̂j ≥ 1 − y� holds. Suppose not, then none of the edge
inequalities involving xj is tight. Then x̂j < 1 − y� ≤ y� shows that increasing
x̂j would improve the objective value, which in turn contradicts optimality of x̂.
Consequently, even 1 − y� ≤ x̂j ≤ y� holds for j = 2, 3, . . . , n.

Let J(α) := {2 ≤ j ≤ n | x̂j = α} for α ∈ [1 − y�, y�]. We will show that
a(J(α)) ≥ a(J(1 − α)) holds for all α ∈ (1/2, y�], where a(J(α)) shall denote∑

j∈J(α) aj . Note that this implies the claim since for each α ∈ (1/2, y�] we have
∑

j∈J(α)

aj x̂j +
∑

j∈J(1−α)

aj x̂j =
∑

j∈J(α)

ajα +
∑

j∈J(1−α)

aj(1 − α)

= α · [a(J(α)) − a(J(1 − α))
︸ ︷︷ ︸

≥0

] + a(J(1 − α))

≥ 1
2 · [a(J(α)) − a(J(1 − α))] + a(J(1 − α))

=
∑

j∈J(α)

aj
1
2 +

∑

j∈J(1−α)

aj
1
2

and hence

aᵀx̂ =
n∑

j=2

aj x̂j =
∑

j∈J(1/2)

aj x̂j +
∑

α∈(1/2,y�]

(∑

j∈J(α)

aj x̂j +
∑

j∈J(1−α)

aj x̂j

)

≥
∑

j∈J(1/2)

aj
1
2 +

∑

α∈(1/2,y�]

(∑

j∈J(α)

aj
1
2 +

∑

j∈J(1−α)

aj
1
2

) ≥ b1,

where the last inequality follows from Proposition 2.
For the sake of contradiction, assume that a(J(α)) < a(J(1 − α)) holds for

some α ∈ (1/2, y�]. For a sufficiently small ε′ > 0, the solution x̂′ ∈ R
V (Gin)

defined via

x̂′
j :=

⎧
⎪⎨

⎪⎩

x̂j + ε′ if j ∈ J(1 − α)
x̂j − ε′ if j ∈ J(α)
x̂j otherwise

for j = 1, 2, . . . , n

Persistency of Linear Programming Relaxations for the Stable Set Problem 361

is still contained in Redge
stab (Gin). To see this, observe that x̂′

j ≥ 0 holds for all
j ∈ V (Gin) since we only decrease entries that are at least 1/2. Moreover, edge
inequalities that are tight for x̂ remain tight for x̂′, since either none or both of
its two node values are modified, where in the latter case, the value is increased
by ε′ for one node and decreased by ε′ for the other. Finally, edge inequalities
that are not tight for x̂ will not be violated if we choose ε′ sufficiently small. For
the objective values we obtain

n∑

j=2

aj(f(x̂′
j) − f(x̂j)) =

∑

j∈J(1−α)

aj(f(x̂′
j) − f(x̂j)) +

∑

j∈J(α)

aj(f(x̂′
j) − f(x̂j))

= a(J(1 − α)) · (
f(1 − α + ε′) − f(1 − α)

)
+ a(J(α)) · (

f(α − ε′) − f(α)
)
.

We also assume that ε′ is small enough to guarantee 1−α+ε′ < α−ε′. Since f is
concave and monotonically increasing in [0, y�], we obtain f(1−α+ε′)−f(1−α) ≥
f(α)−f(α−ε′). Together with the assumption a(J(1−α)) > a(J(α)), this shows
that the objective value of x̂′ is strictly larger than that of x̂, a contradiction to
the optimality of x̂.
�

Acknowledgements. We are grateful to four anonymous reviewers whose comments
led to improvements of this manuscript.

A Deferred proofs

Lemma 1. Let P,Q ⊆ R
n be polytopes. If there exists a vector c ∈ R

n such that
dim(opt(Q, c)) < dim(opt(P, c)), then there exists a vector c′ ∈ R

n such that
opt(Q, c′) is a vertex of Q, while opt(P, c′) is not a vertex of P .

Proof. Let c′ ∈ R
n be such that dim(opt(Q, c′)) < dim(opt(P, c′)) holds, and

among those, such that dim(opt(Q, c′)) is minimum. Clearly, c′ is well-defined
since c′ := c satisfies the conditions.

Assume, for the sake of contradiction, that dim(opt(Q, c′)) > 0. Let F :=
opt(P, c′) and G := opt(Q, c′). Let F1, F2, . . . , Fk be the facets of F . By n(F, Fi)
we denote the set of vectors w ∈ R

n such that opt(F,w) ⊇ Fi. Since F is
a polytope,

⋃
i∈{1,2,...,k} n(F, Fi) contains a basis U of R

n. Moreover, not all
vectors u ∈ U can lie in aff(G)⊥, the orthogonal complement of aff(G), since
then aff(G)⊥ = R

n would hold, contradicting dim(G) > 0. Let u ∈ U \ aff(G)⊥.
Now, for a sufficiently small ε > 0, opt(P, c′ + εu) ⊇ Fi for some i ∈

{1, 2, . . . , k}, and opt(Q, c′ + εu) is a proper face of G. Thus, c′ + εu satisfies
the requirements at the beginning of the proof. However, dim(opt(Q, c′ + εu)) <
dim(G) contradicts the minimality assumption, which concludes the proof.
�
Lemma 2. Let P ⊆ R

n be a non-empty polytope, let c, a ∈ R
n and let

� := min {aᵀx | x ∈ P}. The functions h=, h≤ : [�,∞) → R defined via h=(β) =
max {cᵀx | x ∈ P, aᵀx = β} and h≤(β) = max {cᵀx | x ∈ P, aᵀx ≤ β} are con-
cave. Moreover, there exists a number β� ∈ [�,∞) such that h= and h≤ are
identical and strictly monotonically increasing on the interval [�, β�], and h≤ is
constant on the interval [β�,∞).

362 E. Rodŕıguez-Heck et al.

Proof. Let Q := {(y1
y2) | ∃x ∈ P : aᵀx = y1, cᵀx = y2} ⊆ R

2 be the projection
of P along a and c. By construction, h≤(β) = max {y2 | y ∈ Q, y1 ≤ β} holds.
Considering that Q is a polytope of dimension at most 2, the claimed properties
of h≤ and h= are obvious (see Fig. 1).
�

a

c

Q

� β�

h≤

h=

Fig. 1. Illustration of Lemma 2. The graph of h≤ is highlighted in red, while that of
h= is highlighted in blue. (Color figure online)

References

1. Boros, E., Hammer, P.L., Sun, R., Tavares, G.: A max-flow approach to improved
lower bounds for quadratic unconstrained binary optimization (QUBO). Disc.
Optim. 5(2), 501–529 (2008). In Memory of George B. Dantzig

2. Chvátal, V.: On certain polytopes associated with graphs. J. Combin. Theory, Ser.
B 18(2), 138–154 (1975)

3. Fix, A., Gruber, A., Boros, E., Zabih, R.: A hypergraph-based reduction for higher-
order binary Markov random fields. IEEE Trans. Pattern Anal. Mach. Intell. 37(7),
1387–1395 (2015)

4. Hammer, P.L., Hansen, P., Simeone, B.: Roof duality, complementation and per-
sistency in quadratic 0–1 optimization. Math. Program. 28(2), 121–155 (1984)

5. Ishikawa, H.: Transformation of general binary MRF minimization to the first-order
case. IEEE Trans. Pattern Anal. Mach. Intell. 33(6), 1234–1249 (2011)

6. Karp, R.M., Papadimitriou, C.H.: On linear characterizations of combinatorial
optimization problems. SIAM J. Comput. 11(4), 620–632 (1982)

7. Kolmogorov, V., Rother, C.: Minimizing nonsubmodular functions with graph cuts
- a review. IEEE Trans. Pattern Anal. Mach. Intell. 29(7), 1274–1279 (2007)

8. Nemhauser, G.L., Trotter, L.E.: Vertex packings: structural properties and algo-
rithms. Math. Programm. 8(1), 232–248 (1975)

9. Oriolo, G.: Clique family inequalities for the stable set polytope of quasi-line
graphs. Disc. Appl. Math. 132(1), 185–201 (2003). Stability in Graphs and Related
Topics

10. Padberg, M.W.: On the facial structure of set packing polyhedra. Math. Program.
5(1), 199–215 (1973)

11. Pulleyblank, W.R.: Minimum node covers and 2-bicritical graphs. Math. Program.
17(1), 91–103 (1979)

Persistency of Linear Programming Relaxations for the Stable Set Problem 363

12. Rodŕıguez-Heck, E., Stickler, K., Walter, M., Weltge, S.: Persistency of linear pro-
gramming formulations for the stable set problem (2019). arXiv:1911.01478

13. Schrijver, A.: Theory of Linear and Integer Programming. John Wiley, New York
(1986)

14. Sewell, E.C.: Stability critical graphs and the stable set polytope. Technical report,
Cornell University Operations Research and Industrial Engineering (1990)

15. Trotter, L.E.: A class of facet producing graphs for vertex packing polyhedra. Disc.
Math. 12(4), 373–388 (1975)

http://arxiv.org/abs/1911.01478

Constructing Lattice-Free Gradient
Polyhedra in Dimension Two

Joseph Paat1, Miriam Schlöter1(B), and Emily Speakman2

1 Department of Mathematics, ETH Zürich, Zürich, Switzerland
miriam.schloeter@ifor.math.ethz.ch

2 Department of Mathematical and Statistical Sciences,

University of Colorado Denver, Denver, USA

Abstract. Lattice-free gradient polyhedra are optimality certificates for
mixed integer convex minimization models. We consider how to construct
these polyhedra for unconstrained models with two integer variables. A
classic result of Bell, Doignon, and Scarf states that a lattice-free gradient
polyhedron exists with at most four facets. We show how to construct
a sequence of (not necessarily lattice-free) gradient polyhedra, each of
which has at most four facets, that finitely converges to a lattice-free
gradient polyhedron. Each update requires constantly many gradient
evaluations (By gradient evaluation, we refer to inner product evalua-
tion using gradients. For our updates we require at most 18 gradient
evaluations.). This update procedure imitates the gradient descent algo-
rithm, and consequently, it yields a gradient descent type of algorithm
for problems with two integer variables. An open question is to improve
the convergence rates to obtain a minimizer or a lattice-free set.

1 Introduction

A polyhedron P = {(x, z) ∈ R
d × R

n : A(x, z) ≤ b} is lattice-free if intr(P) ∩
(Rd × Z

n) = ∅, where intr(P) := {(x, z) ∈ R
d × R

n : A(x, z) < b}.1 Recent
work on lattice-free sets has focused mainly on three topics. The first of these is
the generation of valid inequalities for integer programs, see, e.g., [1,6,10,11,15].
The second is the classification of inclusion-wise maximal lattice-free sets [2,3,9,
16,22]. The third is the use of lattice-free sets as optimality certificates in mixed
integer convex minimization. This paper focuses on the latter topic.

Let f : Rd × R
n → R be convex and differentiable with gradient ∇f . We

assume oracle access to ∇f . Our results extend to non-differentiable functions
via subgradients, but we assume differentiability for the sake of presentation.
The unconstrained mixed integer convex minimization problem is

min{f(x, z) : (x, z) ∈ R
d × Z

n}. (CM)

1 If the inequality 0ᵀ(x, z) ≤ 0 is in the system A(x, z) ≤ b, then intr(P) = ∅.

c© Springer Nature Switzerland AG 2020
D. Bienstock and G. Zambelli (Eds.): IPCO 2020, LNCS 12125, pp. 364–377, 2020.
https://doi.org/10.1007/978-3-030-45771-6_28

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-45771-6_28&domain=pdf
https://doi.org/10.1007/978-3-030-45771-6_28

Constructing Lattice-Free Gradient Polyhedra in Dimension Two 365

Applications of (CM) include statistical regression and the closest vector prob-
lem. The gradient polyhedron of a non-empty finite set U ⊆ R

d × Z
n is

GP(U) := {(x, z) ∈ R
d × R

n : ∇f(x, z)ᵀ(x − x, z − z) ≤ 0 ∀(x, z) ∈ U}. (1)

It follows from the definitions of GP(U) and ∇f that if GP(U) is lattice-
free, then there exists (x∗, z∗) ∈ U that is an optimal solution for (CM).
Consequently, if GP(U) is lattice-free, then it is an optimality certificate
for (CM). The existence of a lattice-free gradient polyhedron GP(U) requires
that (CM) has an optimal solution. We assume an optimal solution exists in the
paper; our techniques do not immediately extend to detect if this assumption is
violated.

Bell, Doignon, and Scarf [12,17,23] showed that if n ≥ 1 and d = 0, then
there exists U ⊆ Z

n such that |U| ≤ 2n and GP(U) is lattice-free. Baes et al. [5]
extended this to show that |U| ≤ 2n suffices for d ≥ 0. Basu et al. [8] generalized
this further to so-called S-free sets. Motivated by this existential result, we aim
to algorithmically construct lattice-free gradient polyhedra with 2n facets.

Constructing lattice-free gradient polyhedra is well studied when n = 0 and
d ≥ 1. Although rarely described as such, the gradient descent algorithm is a
search algorithm for a lattice-free set when n = 0 (see [14, Chapter 9]). Gradient
descent updates a point xi ∈ R

d to xi+1 via xi+1 = xi−αi∇f(xi), where αi > 0.
The iterations (xi)∞

i=1 converge to x∗ with ∇f(x∗) = 0. One can verify that

∇f(x∗) = 0 if and only if intr(GP({x∗})) ∩ R
d = ∅.

Thus, (xi)∞
i=1 corresponds to a sequence of gradient polyhedra (GP({xi}))∞

i=1

that ‘converges’ to a lattice-free gradient polyhedron GP({x∗}). One notable
aspect of gradient descent is that it generates gradient polyhedra whose number
of facets never exceeds the bound 2n = 20 = 1. Another notable aspect is that
the initial x1 can be chosen arbitrarily.

A lattice-free gradient polyhedron can also be constructed algorithmically if
n = 1 and d = 0. In this case, U := {�x∗�,
x∗�} is the certifying set, where x∗ is
an optimal solution to the continuous relaxation of (CM). This U can be found
by starting with an arbitrary U i = {zi, zi + 1} ⊆ Z and updating it as follows:

U i+1 :=

⎧
⎪⎨

⎪⎩

{zi − 1, zi} if 0 < ∇f(zi)
{zi + 1, zi + 2} if ∇f(zi + 1) < 0
U i if ∇f(zi) ≤ 0 ≤ ∇f(zi + 1).

The gradient comparisons ensure that U i is updated by ‘flipping’ closer to x∗, and
if U i+1 = U i, then U i = U and GP(U i) is lattice-free. These updates are not the
most efficient way of obtaining U (one can simply round x∗), but it does have
the same properties as gradient descent: it generates a sequence (GP(U i))∞

i=1

that yields a lattice-free set, the initial set U1 is arbitrary, and each update only
requires a constant number of gradient evaluations. Also, the number of facets at
each iterate GP(U i) does not exceed the bound 2n = 21 = 2. These updates and

366 J. Paat et al.

the rounding approach both generalize to the setting n = 1 and d ≥ 1. However,
if n ≥ 2, then neither yields a lattice-free gradient polyhedron, in general.

Our first main result is an update procedure to create a lattice-free
gradient polyhedron when d = 0 and n = 2. We say U ⊆ Z

2 is unimodular if

U := U(z, U) := {z + Ue : e ∈ {0, 1}2}, (2)

for z ∈ Z
2 and a matrix U ∈ Z

2×2 with |det(U)| = 1. Our procedure updates any
unimodular set and each update only needs constantly many gradient evaluations
as opposed to solving 1- or 2-dimensional integer linear programs. We use two
metrics of progress to ensure this procedure generates a sequence (U i)∞

i=1 =
(U(zi, U i))∞

i=1 resulting in a lattice-free gradient polyhedron. The unimodularity
of U ensures that during our update procedure for each iterate GP(U i) the bound
of 22 = 4 facets is not exceeded and that U always contains precisely 4 points.

The first progress measure is the minimum function value in U i, i.e.,

min{f(z) : z ∈ U i}. (3)

Our second measure is the distance from the optimal solution set of (CM) to U i

with respect to U i:

min{‖(U i)−1(z∗ − z)‖1 : z ∈ U i and z∗ is optimal for CM}. (4)

This measure is a notion of graphic distance of an optimal solution z∗ to (CM).
We discuss (4) more in Subsect. 2.1.

Our updates are such that (3) and (4) are both non-increasing in i. Fur-
thermore, if neither measure strictly decreases from U i to U i+1, then either U i

already contains a minimizer of (CM), or, one or both measures will strictly
decrease when U i+1 is updated to U i+2.

Theorem 1. Assume d = 0 and n = 2. Let U i ⊆ Z
2 be a unimodular set. Any

unimodular set U i ⊆ Z
2 can be updated to a unimodular set U i+1 ⊆ Z

2 such that

(a) the update only uses constantly many gradient evaluations,
(b) neither (3) nor (4) increases from U i to U i+1, and
(c) if (3) and (4) do not decrease from U i to U i+1 and U i+1 is updated to U i+2,

then one of the following holds: (i) (3) or (4) decreases from U i+1 to U i+2

or (ii) U i contains a minimizer of (CM).

Figure 1 illustrates how our update procedure iterates for a specific f and U1.
If (U i)∞

i=1 is constructed using updates from Theorem 1, then GP(U i) is guar-
anteed to eventually contain a minimizer of (CM). Our update procedure also
guarantees that GP(U i) becomes lattice-free, and detecting this only needs con-
stantly many gradient evaluations (see Lemma 3). It is worth reminding the
reader that if we come across a unimodular set U i that contains a point z∗ ∈ Z

2

satisfying ∇f(z∗) = 0, then GP(U i) is lattice-free and z∗ is a minimizer of (CM).
We always assume this check is made and only update U i if it fails.

Constructing Lattice-Free Gradient Polyhedra in Dimension Two 367

U1 U2 U3 U4

Fig. 1. A sequence (U i)4i=1 of unimodular sets generated by our updates for f(x1, x2) :=
3x2

1 + x2
2 + x1 + x2. The convex hull of each U i is shaded in black, the hyperplanes

defining GP(U i) are in red, and GP(U i) is shaded in red. Level curves of f are in gray.
(Color figure online)

Theorem 2. Let (U i)∞
i=1 be created using updates from Theorem1. For some

T ∈ Z the gradient polyhedron GP(UT) is lattice-free. Moreover, this can be
checked using constantly many gradient evaluations.

Theorem 2 implies that our update procedure provides a ‘flipping’ algorithm
for solving (CM) when n = 2 and d = 0. We may start with any unimodular set
U , and then flip U (with a flip defined using only U and gradient information)
until GP(U) is lattice-free. Other algorithms for (CM) use techniques such as
branch and bound (see, e.g., [20,21]), outer approximations (see, e.g., [13,18]),
convex separation [19, Theorem 6.7.10], or improvement oracles [4]. In contrast
to the flipping algorithm, each of these algorithms use non-gradient information
or create polyhedral relaxations with more than 22 = 4 facets. Baes et al. [4]
give a geometric algorithm for (CM) when d = 0 and n = 2 but explicitly use
knowledge of a bounded set containing the minimum. We do not assume such
knowledge. Our updates are conservative, but if f is L-Lipschitz continuous and
c-strongly convex, then only 2(L/c+1)‖z∗‖1 many updates are needed to find an
optimal solution z∗. An open question remains to find a ‘best’ update procedure.

Our updates can be extended to d ≥ 0, provided we are able to exactly
minimize fz(x) := f(x, z) over x ∈ R

d for each fixed z ∈ Z
2. To see this, note

that (CM) is the same as minimizing fmin(z) := min{f(x, z) : x ∈ R
d} over Z

2.

Corollary 1. The update procedure from Theorem1 can be extended naturally to
obtain an exact iterative algorithm to solve (CM) for functions f : Rd ×R

2 → R

provided we can exactly minimize fz(x) over R
d.

The update procedures from Theorem 1 and Corollary 1 require exact gra-
dients to choose the correct updates. However, if f is strongly convex, then we
can extend Theorem 1 to an update procedure that only requires approximate
gradients. The major obstacle in extending Theorem1 is that if one of the defin-
ing gradients is perturbed a lattice-free gradient polyhedra may no longer be
lattice-free. We overcome this by identifying a subset of a gradient polyhedron
that contains the minimizers of (CM) and is robust to gradient perturbations.

We omit some proofs in this abstract. See arXiv:2002.11076 for complete
proofs and a discussion on extensions to the approximate gradient setting.

https://arxiv.org/abs/2002.11076

368 J. Paat et al.

Notation and Preliminaries. We refer to [14] for more on convexity and
gradients. We denote the i-th column of U ∈ Z

2×2 by ui and the zero vector
by 0. For z, z ∈ R

2 we say z cuts z if ∇f(z)ᵀ(z − z) ≥ 0 and strictly cuts z if
∇f(z)ᵀ(z − z) > 0. The next result follows from the definition of convexity.

Proposition 1. Assume n = 2 and d = 0. Let z, z ∈ R
2. If z cuts z (respec-

tively, strictly cuts), then f(z) ≥ f(z) (respectively, f(z) > f(z)).

The following properties of GP(U) can be shown using Proposition 1.

Lemma 1. Assume n = 2 and d = 0. Let U ⊆ Z
2 be a non-empty finite set.

(i) If z �∈ intr(GP(U)), then f(z) ≥ min{f(z) : z ∈ U}.
(ii) U ∩ GP(U) �= ∅.
(iii) If U does not contain an optimal solution of (CM), then every optimal

solution z∗ of (CM) is in intr(GP(U)).

2 An Update Procedure for n = 2 and d = 0

Assume n = 2 and d = 0. Let U = U(z, U) be unimodular as defined in (2).
After multiplying u1 and u2 by ±1 and relabeling the ‘anchor’ point z ∈ U to
be another point in U , we assume GP(U) fulfills preprocessing properties. The
proof of Lemma 2 is in the appendix.

Lemma 2. Let U = U(z, U) be unimodular. We can preprocess GP(U) so that

(i) z ∈ GP(U),
(ii) if |U ∩ GP(U)| = 2, then

(a) U ∩ GP(U) = {z, z + u1}, or
(b) U ∩ GP(U) = {z, z + u1 + u2}, z strictly cuts z + u1,

and z + u1 + u2 strictly cuts z + u2.
(iii) if |U ∩ GP(U)| = 3, then U ∩ GP(U) = {z, z + u1, z + u2}.

(5)

We update U by ‘flipping’ the columns of U to a new matrix U and prepro-
cessing (z, U) to satisfy (5). Flip(U) denotes the matrix U obtained from this
flipping, and Flip(U) denotes the unimodular set obtained after preprocessing
(z, U). Table 1 defines Flip(U). Certain flips rely on the following line segments:

Hi :=
{
z + k · u1 + i · u2 ∈ intr(GP(U)) : k ∈ R

} ∀ i ∈ {−1, 1}. (6)

We say that U is connected if U ∩ GP(U) ⊇ {z, z + u1} (Cases 3–5). Other-
wise, we say U is disconnected (Cases 1–2). Note that U can be disconnected
and not fit into Cases 1 or 2; this occurs when U = {z} but U does not meet
the other conditions required to update in Case 1. We show in Theorem 3 that
if U does not fall into one of these cases, then GP(U) is lattice-free.

Constructing Lattice-Free Gradient Polyhedra in Dimension Two 369

Table 1. The different updates U = Flip(U). Sample updates are drawn with U(z, U)
and U(z, U) as dashed lines and GP(U) in red.

Case 1: Assume U ∩ GP(U) = {z}. For each i ∈ {1, 2} define σi := 1 if ∇f(z)ᵀ(ui) ≤ 0

and σi := −1 otherwise. If (σ1, σ2) �= (1, 1), then set Flip(U) := (σ1u1, σ2u2).

z z + u1

z + u2

Update to U :=Flip(U)−−−−−−−−−−−−−→
z

z + u1

z + u2

Case 2: Assume U ∩ GP(U) = {z, z + u1 + u2}. Define U ′ := (u1, u1 + u2),

U ′ := U(z, U ′), U ′′ := (−u1, u1 + u2), and U ′′ := U(z, U ′′).

If U ′ is connected or GP(U ′) ∩ U ′ = {z + 2u1 + u2} or

z + u1 + u2 strictly cuts z − u1 and z − u1 strictly cuts z,

then set Flip(U) := U ′.

Else if U ′′ is connected or GP(U ′′) ∩ U ′′ = {z − u1} or

z strictly cuts z + 2u1 + u2 and z + 2u1 + u2 strictly cuts z + u1 + u2,

then set Flip(U) := U ′′.

Else set Flip(U) := (−u1, 2u1 + u2)

z z + u1

z + u2

Update to U :=Flip(U)−−−−−−−−−−−−−→
zz + u1

z + u2

Case 3: Assume U ∩ GP(U) = {z, z + u1} and |Hi ∩ Z
2| = 1 for some i ∈ {−1, 1}.

Let z + ku1 + iu2 ∈ Hi ∩ Z
2. Set Flip(U) := (ku1 + iu2, −(k − 1)u1 − iu2).

Case 4: Assume U ∩ GP(U) = {z, z + u1} and |Hi ∩ Z
2| ≥ 2 for some i ∈ {−1, 1}.

Let z + ku1 + iu2 ∈ Hi ∩ Z
2 minimize |k|.

If k ≥ 0, then set Flip(U) := (u1, ku1 + iu2).

If k ≤ −1, then set Flip(U) := (u1, (k − 1)u1 + iu2).

z z + u1

z + u2

Update to U :=Flip(U)−−−−−−−−−−−−−→
z z + u1

z + u2

Case 5: Assume U ∩ GP(U) = {z, z + u1, z + u2} and |Hi ∩ Z
2| ≥ 1 for some i ∈ {−1, 1}.

If i = 1, then set Flip(U) := (u1, −u1 + u2). Here, z − u1 + u2 ∈ H1.

Else set Flip(U) := (u1 − u2, u2). Here, z + u1 − u2 ∈ H−1.

z z + u1

z + u2

Update to U :=Flip(U)−−−−−−−−−−−−−→
z

z + u2

z + u1

370 J. Paat et al.

2.1 Convergence Towards an Optimal Solution Of (CM): Theorem1

Our first measure of progress for the update procedure is the smallest function
value that we have seen thus far. For unimodular sets U ,U ′ ⊆ Z

2 we say

U <f U ′ if min{f(z) : z ∈ U} < min{f(z) : z ∈ U ′}. (7)

We define U ≤f U ′ and U =f U ′ similarly.
To motivate and provide intuition for our second measure of progress (4), let

U = U(z, U) be a unimodular set. The orthants corresponding to U are

OU (z) := {z + Ur : r ∈ Z≤0 × Z≤0},
OU (z + u1) := {(z + u1) + Ur : r ∈ Z≥0 × Z≤0},
OU (z + u2) := {(z + u2) + Ur : r ∈ Z≤0 × Z≥0}, and

OU (z + u1 + u2) := {(z + u1 + u2) + Ur : r ∈ Z≥0 × Z≥0}.

(8)

For every x ∈ Z
2 and w ∈ U , the difference vector x−w is an integer combination

of signed copies of u1 and u2 (recall U has |det(U)| = 1 and see [7, §VII Corollary
2.2]). The number of signed copies is ‖U−1(x − w)‖1. However, for every x ∈ Z

2

there is a unique w ∈ U minimizing ‖U−1(x−w)‖1. Denote this minimum value:

rU (x) := min{‖U−1(x − w)‖1 : w ∈ U}.

The function rU is a distance measure from x to U , and it can be visualized by
considering the orthant OU (·) that contains x and reporting the distance with
respect to the U from x the ‘anchor’ of that orthant. The value in (4) equals
min{rU (z∗) : z∗ optimal for (CM)}. Note rU (z∗) = 0 if and only if z∗ ∈ U .

Theorem 1 shows that (4) is non-increasing in i after updating by demonstrat-
ing that rUi(z∗) is non-increasing for every optimal z∗ for (CM). Let U ′ ⊆ Z

2

be a unimodular set and z∗ ∈ Z
2 a fixed optimal solution to (CM). We write

U <r U ′ if rU (z∗) < rU ′(z∗), (9)

and define U ≤r U ′ and U =r U ′ similarly.
Theorem 1 (a) follows directly from Table 1. Theorem 1 (b) and (c) are

implied by the next result, which is stated using our new notation. Theorem3 also
demonstrates that if no update occurs, then GP(U) is lattice-free. We empha-
size that the ≤r used in Theorem 3 is satisfied for any choice of z∗ used to
define ≤r. Hence, although (9) depends on z∗, the choice of z∗ is arbitrary and
(Flip(U i))∞

i=1 never diverges away from any optimal z∗ with respect to ≤r.

Theorem 3. Assume U satisfies (5). If U does not satisfy a case in Table 1,
then GP(U) is lattice-free and U contains an optimal solution of (CM). If U
satisfies a case in Table 1 and does not contain an optimal solution of (CM),
then at least one of the following holds:

(a) Flip(U) <f U and Flip(U) ≤r U
(b) Flip(U) ≤f U and Flip(U) <r U
(c) Flip(U) ≤f U , Flip(U) ≤r U , and Flip(U) is connected.

If U is also connected, then Flip(U) satisfies (b).

Constructing Lattice-Free Gradient Polyhedra in Dimension Two 371

It is important to note the advantage of the connected case in Theorem3:
when U is connected, we are able to quickly determine if GP(U) is lattice-free.

Lemma 3. Recall definition (6). If U = U(z, U) is connected and satisfies (5),
then GP(U) is lattice-free if and only if H−1 ∩ Z

2 = ∅ and H1 ∩ Z
2 = ∅.

Table 1 does not consider |U ∩ GP(U)| = 4. The reason for this is that GP(U)
is lattice-free when |U ∩ GP(U)| = 4, a result that follows almost immediately
from Lemma 3. The proofs of Lemma 3 and Corollary 2 are in the appendix.

Corollary 2. If |U ∩ GP(U)| = 4, then GP(U) is lattice-free.

We first prove Theorem 3 when U does not fit in any case of Table 1.

Proof (of Theorem 3 when U does not fit into Table 1). Assume U does not fit
in any case of Table 1. If U is connected, then Lemma 3 implies that GP(U) is
lattice-free. Assume that U is disconnected; we claim this yields a contradiction.
If U ∩ GP(U) = {z, z + u1 + u2}, then U fits into Case 2, which is a contradic-
tion. Hence, we must have U ∩ GP(U) = {z}, ∇f(z)ᵀu1 ≤ 0, and ∇f(z)ᵀu2 ≤ 0.
This implies ∇f(z)ᵀ(u1 + u2) ≤ 0, so z does not strictly cut z + u1, z + u2, nor
z + u1 + u2. For the identity U ∩ GP(U) = {z} to hold, it must then follow that
(U\{z}) ∩ GP(U\{z}) = ∅, which contradicts Lemma 1 (ii). ��

We use the next observation and Lemma4 to prove the remaining cases of
Theorem 3. The lemma follows from the definitions in Table 1.

Observation 1. Let x, v1, v2 ∈ Z
2 and w = x + k1v

1 + k2v
2 for k1, k2 ≥ 0.

Then x ∈ conv{w, x − v1, x − v2}.
Lemma 4. If U = U(z, U) satisfies (5), then U ∩ GP(U) ⊆ Flip(U). Hence,
Flip(U) ≤f U by Lemma1.

In this abstract we only give a proof of Theorem3 in Case 2 as this is the
only case that captures every possible outcome of Theorem 3.

Proof (of Theorem 3 in Case 2). The following sets closely related to the
orthants in (8) will be helpful in the proof (see Fig. 2 (i)):

OU (z + u1 + u2)B := {(z + u1 + u2) + (u1 + u2)k1 + u2k2 : k1, k2 ∈ Z≥0},
OU (z + u1 + u2)A := OU (z + u1 + u2)\OU (z + u1 + u2)B ,

OU (z)B := {z + k1(u1 + u2) + k2u
2 : k1, k2 ∈ Z≤0}, and

OU (z)A := OU (z)\OU (z)B .

Let z∗ be optimal for (CM). We claim that z∗ ∈ OU (z)A ∪OU (z +u1 +u2)A.
We assume in Theorem 3 that U does not contain a minimizer of (CM), so z∗ �∈ U .
If z∗ ∈ OU (z + u2), then z + u2 ∈ conv{z∗, z + u1 + u2, z} by Observation 1 with
x = z + u2, v1 = −u1, v2 = u2, and w = z∗. We have conv{z∗, z + u1 + u2, z} ⊆
GP(U), so z + u2 ∈ GP(U). However, z + u2 �∈ GP(U) by the definition of

372 J. Paat et al.

OU (z)A

OU (z)B OU (z + u1)

OU (z + u2)
OU (z + u1 + u2)A

OU (z + u1 + u2)B

z z + u1

z + u2 z + u1 + u2

z + 2u1 + u2

OFlip(U)(z)

OFlip(U)(z − u1) z
z − u1

z + u1 + u2

)ii()i(

Fig. 2. (i) A depiction of the orthants and sets used to prove Theorem 3 in Case 2.
(ii) A sample update for Flip(U) = (−u1, 2u1 + u2).

Case 2, which gives a contradiction. Thus, z∗ �∈ OU (z + u2). By symmetry,
z∗ �∈ OU (z + u1). If z∗ ∈ OU (z + u1 + u2)B\{z + u1 + u2}, then

z∗ = (z + u1 + u2) + k1(u1 + u2) + k2u
2, where k1, k2 ∈ Z≥0.

We have ∇f(z +u1 +u2)ᵀ(−u2) < 0 by (5) and ∇f(z +u1 +u2)ᵀ(−u1 −u2) ≤ 0
because z ∈ GP(U). Thus, z + u1 + u2 cuts z∗, so z∗ �∈ intr(GP(U)), which
contradicts Lemma 1 (iii). By symmetry, z∗ �∈ OU (z)B\{z}. We have argued
that z∗ ∈ OU (z)A ∪ OU (z + u1 + u2)A.

Theorem 3 (a), (b), and (c) require that (7) and (9) do not increase after
updating U . We proved Flip(U) ≤f U in Lemma 4. It is left to show Flip(U) ≤r

U . We prove Flip(U) ≤r U in each of the three possible updates in Case 2.
Assume Flip(U) = (−u1, u1 + u2). If z∗ ∈ OU (z + u1 + u2)A, then

z∗ = (z + u1 + u2) + k1u
1 + k2u

2 = (z + u1 + u2) + (k1 − k2)u1 + k2(u1 + u2),

where k1, k2 ≥ 0 and k1 ≥ k2+1. The latter equations imply rU (x∗) = k1+k2 and
rFlip(U)(z∗) = k1 − k2 + k2. Hence, Flip(U) ≤r U . The case when z∗ ∈ OU (z)A
or Flip(U) = (u1, u1 + u2) can be proved by a similar argument.

Assume Flip(U) = (−u1, 2u1 + u2). If z∗ ∈ OU (z)A, then z∗ ∈ OFlip(U)(z −
u1) ∪ OFlip(U)(z). This is indicated in Fig. 2 (i) and (ii). The proof when z∗ ∈
OFlip(U)(z) is similar to when z∗ ∈ OFlip(U)(z − u1), so we only consider z∗ ∈
OFlip(U)(z). Here, there are k1, k2 ∈ Z≥0 such that

z∗ = z + k1(−u1) + k2(−u2) = z + (−k1 + 2k2)u1 + k2(−2u1 − u2).

We have k1 > k2, or equivalently k2 > (−k1 +2k2), because z∗ ∈ OU (z)A. Thus,

rU (z∗) = k1 + k2 > (−k1 + 2k2) + k2 = rFlip(U)(z∗).

Hence, Flip(U) <r U . Notice that we have strict decrease of <r in this setting.
The case z∗ ∈ OU (z + u1 + u2)A can be handled by a symmetric argument. We
have argued that Flip(U) ≤r U for each possible update of Case 2.

Constructing Lattice-Free Gradient Polyhedra in Dimension Two 373

We have shown that Flip(U) ≤f U and Flip(U) ≤r U . If either of the latter
inequalities is strict, then (a) or (b) hold. It suffices to assume Flip(U) =f U
and Flip(U) =r U and show Flip(U) is connected; this will prove (c).

Assume neither (a) nor (b) hold. If we update U to (−u1, 2u1 + u2), then
Flip(U) <r U and (b) would hold. Hence, Flip(U) = U ′ or Flip(U) = U ′′, where
U ′, U ′′, U ′, and U ′′ are defined in Case 2 of Table 1. We show the proof when
Flip(U) = U ′′ as the other proof follows symmetrically. If U ′′ is connected, then
(c) holds. If U ′′ ∩ GP(U ′′) = {z − u1}, then the points in argmin{f(w) : w ∈ U}
are all strictly cut by some point in U ′′. This implies Flip(U) <f U , which is
a contradiction. Thus, it is left to consider when z strictly cuts z + 2u1 + u2

and z + 2u1 + u2 strictly cuts z + u1 + u2. Here, f(z) < f(z + u1 + u2) and
f(z) = min{f(w) : w ∈ U}. The definition of Case 2 and the preprocessing (5)
on U imply that none of the points in U ′′\{z} = {z + u2, z + u1 + u2, z − u1}
are strictly cut by z. Hence, |GP(U ′′) ∩ U ′′| �= 1 as the points in U ′′\{z} cannot
strictly cut each other by Proposition 1. Thus, |GP(U ′′) ∩ U ′′| ≥ 1. One of these
points must be z because z = min{f(z) : z ∈ U}. If U ′′ was disconnected, then
U ′′ ∩GP(U ′′) = {z, z +u2}. However, z +u2 is strictly cut by z +u1 +u2 by the
preprocessing on U . Hence, Flip(U) is connected. ��

Theorem 3 also implies the following theorem.

Theorem 4. If (U i)∞
i=1 is constructed using the procedure in Theorem1, then

there exists T1 ∈ Z such that UT1 contains an optimal solution of (CM).

2.2 Convergence Towards a Lattice-Free Set: Theorem2

Let U0 be a unimodular set satisfying (5). For i ∈ Z≥0 set U i+1 = Flip(U i)
and preprocess U i+1 to satisfy (5). By Theorem 4 and Lemma 4, there exists
T1 ∈ Z≥1 such that GP(U i) ∩ U i contains an optimal solution of (CM) for all
i ≥ T1. After relabeling indices, we assume T1 = 0. It turns out that after at
most one flip, each U i is also connected. The proof appears in the appendix.

Lemma 5. Flip(U i) is connected for all i ≥ 1.

To show that (U i)∞
i=1 finitely converges to a lattice-free gradient polyhedron,

we now consider how the second minimum evolves as we update the unimodular
sets. Set f2 := ∞ and after U i+1 = Flip(U i) is computed update f2 as follows:

f2 =
{

f2 if f2 ≥ min{f(w) : w ∈ U ′ ∩ GP(U i+1)}
min{f(w) : w ∈ U ′ ∩ GP(U i+1)} otherwise,

where U ′ := U i+1\{z ∈ U i+1 : f(z) = f(z∗)}. Note that f2 ≥ f(z∗).

Lemma 6. There exists T2 ∈ Z such that f2 is minimized at UT2 , or UT2 does
not fit into any case of Table 1 (and GP(UT2) is lattice-free by Theorem3).

The proof of Lemma 6 is in the appendix. As was the case with z∗, it can be shown
that any vector z2 ∈ Z

2 such that f(z2) = f2 is contained in U i for all i ≥ T2.

374 J. Paat et al.

Define f3 analogously to f2. By similar arguments, f3 reaches its minimal value
after finitely many additional flips. Once f3 has reached its minimal possible
value, the element z3 ∈ U with f(z3) = f3 has to stay in GP(U) after flipping.
This implies that after one additional flip we have reached a lattice-free gradient
polyhedron by Corollary 2. This completes the proof of Theorem 2.

Acknowledgements. The authors would like to thank the anonymous reviewers for
their thorough review and comments, which led to an improved presentation.

Appendix

Proof (of Lemma 2). Lemma 1 (ii) states that U ∩ GP(U) �= ∅. If |U ∩ GP(U)| =
1, then z can be relabeled so that Lemma 2 (i) holds. If |U ∩ GP(U)| = 3,
then z can be relabeled and the columns of U can be multiplied by ±1 so that
Lemma 2 (iii) holds. It remains to consider when |U ∩ GP(U)| = 2. If the points
in U ∩ GP(U) differ by ±u1 or ±u2, then z and U can be relabeled so that
Lemma 2 (ii -a) holds.

We complete the proof by assuming the points in U ∩ GP(U) do not differ
by ±u1 nor ±u2. Here, z and U can be relabeled so that U ∩ GP(U) = {z, z +
u1 + u2}. Note that z cannot strictly cut both z + u1 and z + u2. Otherwise,
∇f(z)ᵀu1 > 0 and ∇f(z)ᵀu2 > 0 implying that z strictly cuts z + u1 + u2.
However, z + u1 + u2 is assumed to be in GP(U) and cannot be strictly cut by
z. Similarly, z + u1 + u2 cannot strictly cut both z + u1 and z + u2.

Also, z+u1 cannot strictly cut z+u2. Otherwise ∇f(z+u1)ᵀ(u2−u1) > 0; this
inequality, along with the fact that z+u1 does not cut z because z ∈ U ∩ GP(U),
implies ∇f(z +u1)ᵀu2 > 0. Consequently, z +u1 strictly cuts z +u1 +u2, which
is a contradiction. Similarly, z + u2 cannot strictly cut z + u1.

Collectively, the previous arguments imply that z and z+u1+u2 must strictly
cut z +u1 and z +u2. As neither z nor z +u1 +u2 can strictly cut both, we may
assume that z strictly cuts z + u1 and z + u1 + u2 strictly cuts z + u2. ��
Proof (of Lemma 3). If GP(U) is lattice-free, then both H−1∩Z

2 and H1∩Z
2 are

empty. Assume to the contrary that GP(U) is not lattice-free but H−1 ∩Z
2 = ∅

and H1 ∩ Z
2 = ∅. Let x ∈ intr(GP(U)) ∩ Z

2 with x = z + k1u
1 + k2u

2 and
k1, k2 ∈ Z. If |k2| = 1, then x ∈ H−1 or x ∈ H1, which is a contradiction.
Thus, |k2| ≥ 2. The triangle conv{z, z +u1, x} is contained in GP(U) as its three
vertices are contained in GP(U) and GP(U) is convex. Notice that

|det(z − x, (z + u1) − x)| = |det(−k1u
1 − k2u

2,−(k1 − 1)u1 − k2u
2)| = |k2| ≥ 2.

This implies conv{z, z + u1, x}\{z, z + u1, x} contains an integer point x := z +
k′
1u

1+k′
2u

2 with k′
1, k

′
2 ∈ Z (see, e.g., [7, Page 291, Corollary (2.6)]). There are no

such integer points in conv{z, z+u1}, so 0 < |k′
2| < |k2|. Hence, x ∈ intr(GP(U)).

Repeating this with x eventually returns a point in intr(GP(U))∩Z
2 that is also

in H−1 or H1, which is a contradiction. ��

Constructing Lattice-Free Gradient Polyhedra in Dimension Two 375

Proof (of Corollary 2). If |U ∩ GP(U)| = 4, then U is connected. Also, both
H−1 ∩ Z

2 and H1 ∩ Z
2 are empty otherwise one of the points in U is contained

in intr(GP(U)), which is a contradiction. Hence, GP(U) is lattice-free. ��
Proof (of Lemma 5). Let i ∈ Z≥0. We show that Flip(U i) is connected. The
possible cases are similar, and we only present the case when GP(U i) ∩ U i =
{z, z + u1, z + u2}. We only consider the case |H−1 ∩ Z

2| ≥ 1, i.e., Flip(U i) =
{u1−u2, u1}. The argument for the case |H1∩Z2| ≥ 1 is symmetric. We have z∗ ∈
GP(U i) ∩ U i by Proposition 1, and GP(U i) ∩ U i ⊆ GP(Flip(U i)) ∩Flip(U i) by
Lemma 4. The set Flip(U i) is defined by Case 5 in Table 1. Hence, Flip(U i) =
{z, z +u1, z +u2, z +u1 −u2} and z +u1 −u2 ∈ intr(GP(U i)). This implies that
z+u1−u2 is not cut by any of the points z, z+u2, z+u1. Thus, GP(Flip(U i))∩
Flip(U i) contains at least two points: a minimizer z∗ of (CM) contained in U i

and z+u1−u2. Because of this, Flip(U i) can only be disconnected if z∗ = z+u2.
However, z + u2 does not strictly cut z or z + u1, therefore, this implies that
z +u1 −u2 strictly cuts z and z +u1, but not z +u2. This is not possible. Thus,
Flip(U i) is connected. ��
Proof (of Lemma 6). By Lemma 5, U i is connected for all i ≥ 1. Hence, after
at most one iteration f2 becomes finite. Moreover, f2 can only decrease a finite
number of times because it is greater than or equal to the optimal value of (CM),
which was assumed finite.

Let i ∈ Z≥1. We use the following implication:

If f(w) = f2 for w ∈ U i ∩ GP(U i), then either w ∈ Flip(U i) ∩ GP(U i)
or the value of f2 strictly decreases after flipping U i to U i+1 = Flip(U i).

(10)
To see this, assume w �∈ Flip(U i) ∩ GP(U i). Since U i ∩ GP(U i) ⊆ U i+1 by
Lemma 4, this implies that w is strictly cut by one of the points in U i+1\U i.
Hence, f2 strictly decreases by Proposition 1. This proves (10).

Let i ∈ Z≥1 and assume that f2 is not minimized. Suppose f(z2) = f2 for
z2 ∈ U i ∩ GP(U i). We show that f2 decreases after a finite number of updates.
This will prove the lemma because f2 can only decrease a finite number of
times. If f2 decreases after updating U i to U i+1, then we are done. Otherwise,
z2 ∈ U i+1∩GP(U i) by (10), where U i+1 = Flip(U i). This implies that no points
in U i+1\U i strictly cut z2. The update definitions in Table 1 imply that

if U is connected, then (Flip(U)\U) ∩ intr(GP(U)) �= ∅. (11)

It follows from (11) that there always exists a point in U i+1\U i that is not strictly
cut by z∗ or z2. Also, z2 ∈ U i+1∩GP(U i+1) and S := (U i+1∩GP(U i+1))\{z∗, z2}
is non-empty. Define f3 := min{f(w) : w ∈ S} and let z3 ∈ S such that f(z3) =
f3. In particular f3 < ∞ and f3 is lower bounded by f2. We show that f2 has
to strictly decrease after at most f3 − f2 many additional updates.

Assume that after updating the set U i+1 to U i+2 the value of f2 still has not
decreased. Thus, z2 ∈ U i+2. Also, if the value of f3 has not decreased, then the
point in U i+2\U i+1 = U i+2\{z∗, z2, z3} does not strictly cut (nor strictly cut by)

376 J. Paat et al.

z∗, z2 and z3. Thus, |GP(U i+2) ∩ U i+2| = 4, GP(U i+2) is already lattice-free by
Corollary 2 and the update procedure terminates.

Thus, we can assume that the value of f3 decreases after flipping from U i+1

to U i+2. Since f3 can only decrease at most f3 − f2 times, this implies that
after that many additional flips the value of f2 has to decrease. Also note that
during these intermediate flips the value f2 does never increase. Iterating these
arguments implies that f2 has reached its minimal possible value after finitely
many updates to U1. ��

References

1. Andersen, K., Louveaux, Q., Weismantel, R., Wolsey, L.A.: Inequalities from two
rows of a simplex tableau. In: Fischetti, M., Williamson, D.P. (eds.) IPCO 2007.
LNCS, vol. 4513, pp. 1–15. Springer, Heidelberg (2007). https://doi.org/10.1007/
978-3-540-72792-7 1

2. Averkov, G., Krümpelmann, J., Weltge, S.: Notions of maximality for integral
lattice-free polyhedra: the case of dimension three. Math. Oper. Res. 42(4), 1035–
1062 (2017)

3. Averkov, G., Wagner, C., Weismantel, R.: Maximal lattice-free polyhedra: finite-
ness and an explicit description in dimension three. Math. Oper. Res. 36(4), 721–
742 (2011)

4. Baes, M., Oertel, T., Wagner, C., Weismantel, R.: Mirror-descent methods in
mixed-integer convex optimization. In: Jünger, M., Reinelt, G. (eds.) Facets of
Combinatorial Optimization, pp. 101–131. Springer, Heidelberg (2013). https://
doi.org/10.1007/978-3-642-38189-8 5

5. Baes, M., Oertel, T., Weismantel, R.: Duality for mixed-integer convex minimiza-
tion. Math. Program. Ser. A 158, 547–564 (2016)

6. Balas, E.: Intersection cuts - a new type of cutting planes for integer programming.
Oper. Res. 19(1), 19–39 (1971)

7. Barvinok, A.: A Course in Convexity, Graduate Studies in Mathematics, vol. 54.
American Mathematical Society, Providence (2002)

8. Basu, A., Conforti, M., Cornuéjols, G., Weismantel, R., Weltge, S.: Optimality
certificates for convex minimization and Helly numbers. Oper. Res. Lett. 45, 671–
674 (2017)

9. Basu, A., Conforti, M., Cornuéjols, G., Zambelli, G.: Maximal lattice-free convex
sets in linear subspaces. Math. Oper. Res. 35(3), 704–720 (2010)

10. Basu, A., Conforti, M., Di Summa, M.: A geometric approach to cut-generating
functions. Math. Program. 151(1), 153–189 (2015). https://doi.org/10.1007/
s10107-015-0890-5

11. Basu, A., Cornuéjols, G., Köppe, M.: Unique minimal liftings for simplicial poly-
topes. Math. Oper. Res. 37(2), 346–355 (2012)

12. Bell, D.: A theorem concerning the integer lattice. Stud. Appl. Math. 56, 187–188
(1977)

13. Bonami, P., et al.: An algorithmic framework for convex mixed integer nonlinear
programs. Discrete Optim. 5(2), 186–204 (2008)

14. Boyd, S., Vandenberghe, L.: Convex Optimization. Cambridge University Press,
Cambridge (2004)

https://doi.org/10.1007/978-3-540-72792-7_1
https://doi.org/10.1007/978-3-540-72792-7_1
https://doi.org/10.1007/978-3-642-38189-8_5
https://doi.org/10.1007/978-3-642-38189-8_5
https://doi.org/10.1007/s10107-015-0890-5
https://doi.org/10.1007/s10107-015-0890-5

Constructing Lattice-Free Gradient Polyhedra in Dimension Two 377

15. Del Pia, A., Weismantel, R.: Relaxations of mixed integer sets from lattice-
free polyhedra. Ann. Oper. Res. 240(1), 95–117 (2015). https://doi.org/10.1007/
s10479-015-2024-0

16. Dey, S.S., Wolsey, L.A.: Lifting integer variables in minimal inequalities corre-
sponding to lattice-free triangles. In: Lodi, A., Panconesi, A., Rinaldi, G. (eds.)
IPCO 2008. LNCS, vol. 5035, pp. 463–475. Springer, Heidelberg (2008). https://
doi.org/10.1007/978-3-540-68891-4 32

17. Doignon, J.: Convexity in cristallographical lattices. J. Geom. 3, 71–85 (1973)
18. Duran, M.A., Grossman, I.E.: An outer-approximation algorithm for a class of

mixed-integer nonlinear programs. Math. Program. 36(3), 307–339 (1986)
19. Grötschel, M., Lovász, L., Schrijver, A.: Geometric Algorithms and Combinatorial

Optimization, Algorithms and Combinatorics, vol. 2, 1st edn. Springer, Heidelberg
(1988). https://doi.org/10.1007/978-3-642-78240-4

20. Gupta, O., Ravindran, V.: Branch and bound experiments in convex nonlinear
integer programming. Manag. Sci. 31, 1533–1546 (1985)

21. Leyffer, S.: Integrating SQP and branch-and-bound for mixed integer nonlinear
programming. Comput. Optim. Appl. 18, 295–309 (2001)

22. Schnorr, C.P.: Geometry of numbers and integer programming. In: Cori, R., Wirs-
ing, M. (eds.) STACS 1988. LNCS, vol. 294, pp. 1–7. Springer, Heidelberg (1988).
https://doi.org/10.1007/BFb0035826

23. Scarf, H.: An observation on the structure of production sets with indivisibilities.
Proc. Nat. Acad. Sci. U.S.A. 74, 3637–3641 (1977)

https://doi.org/10.1007/s10479-015-2024-0
https://doi.org/10.1007/s10479-015-2024-0
https://doi.org/10.1007/978-3-540-68891-4_32
https://doi.org/10.1007/978-3-540-68891-4_32
https://doi.org/10.1007/978-3-642-78240-4
https://doi.org/10.1007/BFb0035826

Sequence Independent Lifting for the Set
of Submodular Maximization Problem

Xueyu Shi, Oleg A. Prokopyev, and Bo Zeng(B)

Department of Industrial Engineering, University of Pittsburgh, Pittsburgh, USA
{xus6,droleg,bzeng}@pitt.edu

Abstract. We study the polyhedral structure of a mixed 0-1 set aris-
ing in the submodular maximization problem, given by P = {(w, x) ∈
R × {0, 1}n : w ≤ f(x), x ∈ X}, where submodular function f(x) is rep-
resented by a concave function composed with a linear function, and X is
the feasible region of binary variables x. For X = {0, 1}n, two families of
facet-defining inequalities are proposed for the convex hull of P through
restriction and lifting using submodular inequalities. When X is a parti-
tion matroid, we propose a new class of facet-defining inequalities for the
convex hull of P through multidimensional sequence independent lifting.
Our results enable us to unify and generalize the existing results on valid
inequalities for the mixed 0-1 knapsack. Finally, we perform some pre-
liminary computational experiments to illustrate the superiority of our
facet-defining inequalities.

Keywords: Submodular function maximization · Sequence
independent multidimensional lifting · Polyhedra

1 Introduction

For the ground set N = {1, . . . , n}, consider a submodular maximization problem

max
S⊆N

{f(S) : S ∈ I}, (1)

where I is a collection of subsets of N , and f : 2N → R is a real-valued,
submodular set function. Let ρi(S) = f(S ∪ {i})−f(S) for S ⊆ N and i ∈ N \S.
Function f is said to be submodular if ρi(T) ≥ ρi(S) for any i ∈ N \ S and for
all subsets T ⊆ S ⊆ N [11].

In this paper, we are primarily interested in solving the submodular maxi-
mization problem exactly via mixed-integer programming. Specially, we focus on
a class of submodular functions [1] that are represented by a concave function
composed with a linear function, i.e.,

f(S) = g(a(S) + b), (2)

where g : R → R is a concave function, b ∈ R, vector a ∈ R
n whose components

are either all nonnegative or all nonpositive, and a(S) :=
∑

j∈S aj . This class
c© Springer Nature Switzerland AG 2020
D. Bienstock and G. Zambelli (Eds.): IPCO 2020, LNCS 12125, pp. 378–390, 2020.
https://doi.org/10.1007/978-3-030-45771-6_29

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-45771-6_29&domain=pdf
https://doi.org/10.1007/978-3-030-45771-6_29

Sequence Independent Lifting for Submodular Maximization 379

of functions is, in fact, very flexible and has been heavily used in number of
domains, see, e.g., [4–6,8,9,12]. Without loss of generality, in the remainder of
the paper we assume that b = 0 and a ∈ R

n
+.

Let binary vectors x be the incidence vectors for subsets of N , then the
submodular maximization problem (1) can be written as max{w : w ≤ f(x), x ∈
X ⊆ {0, 1}n}, where X is the feasible region of x with respect to I. Formally,
we study the following mixed 0-1 submodular maximization set:

P = {(w, x) ∈ R × {0, 1}n : w ≤ g(aT x), x ∈ X}. (3)

In the remainder of the paper if X = {0, 1}n, then we refer to P as P0. Note
that we can remove the assumption on the signs of a when X = {0, 1}n (as xj

can be replaced by 1 − xj for all j such that aj < 0).
The convex hull of P is a polyhedron since P is a union of a finite number of

rays with same directions. Nevertheless, it is very challenging to have a complete
characterization of this polyhedron; see, e.g., a discussion in [1]. Nemhauser and
Wolsey [11] propose an approach with exponentially many inequalities to formu-
late P as a mixed-integer linear program. However, its linear program relaxation
is quite weak and the traditional branch-and-bound methods are often ineffective
[1]. Considering a situation where g is strictly increasing, concave and differen-
tiable, Ahmed and Atamtürk [1] employ the lifting technique to derive strong
lifted inequalities for P0. Their study is mostly focused on continuous relaxation
of the lifting function as it enables the use of the KKT conditions to derive its
subadditive approximation. The numerical results in [1] demonstrate the effec-
tiveness of this approximated lifting. In a subsequent paper, Yu and Ahmed [14]
adopt this approximation idea to study set P , where X involves a single 0-1
knapsack constraint. Specifically, the authors consider its cardinality relaxation,
and extend the subadditive approximate lifting developed in [1] to handle this
somewhat more complex set.

Inspired by the fundamental results in [1,14], in this paper, we revisit
the sequence independent (SI) lifting and its multidimensional extensions for
conv(P). After developing a new class of subadditive functions, we recognize
that the lifting functions of conv(P0) given in [1] are naturally subadditive. We
believe that this new finding is of a significant value for further systematic study
of the submodular maximization problem and the associated set P .

Specifically, our technical results and contributions in this paper can be sum-
marized as follows. First, instead of assuming that g is strictly concave, increasing
and differentiable as in [1,14], we only assume that g is concave to ensure its
submodularity. As mentioned earlier, in [1,14] the increasing and differentiable
properties are exploited to apply the KKT conditions in order to derive the
closed-form subadditive approximation of the lifting function. Our results do
not rely on the KKT conditions. Clearly, with those key assumptions removed,
a much broader class of concave functions can be considered.

Second, as an immediate application of our first point, the piecewise lin-
ear functions can be studied. In particular, we show in the following that the
well-known mixed knapsack set is a special case of set P of the submodular

380 X. Shi et al.

maximization problem. Consider the mixed 0-1 knapsack set K, see [10],
where

K = {(π, x) ∈ R × {0, 1}n : aT x ≤ b + π, π ≥ 0, x ∈ X}.

Define w = −π, and piecewise concave function g(z) = min{0, b − z}. Then we
convert set K to the form of (3). We believe that these connections between the
mixed 0-1 knapsack sets and submodular sets are novel and rather important,
given that a number of computationally effective results have been derived in the
literature for the mixed 0-1 knapsack sets. Furthermore, it is known [10] that the
mixed 0-1 knapsack set K can be viewed as a relaxation of the popular single-
node flow set, given by F = {(x, y) ∈ {0, 1}n × R

n
+ :

∑
j∈N+ yj − ∑

j∈N− yj ≤
b, yj ≤ ajxj ∀j ∈ N,x ∈ X}, where N = N+ ∪ N−. This observation immedi-
ately implies that the valid inequalities for P are valid for the flow set F . Note
that the connections between the submodularity and the flow models are also
considered by Wolsey [13] and Atamtürk et al. [3].

Third, we develop several results to support lifting operations in the context
of submodular optimization. In particular, new results on multidimensional SI
lifting are derived, a new type of subadditive functions to ensure SI lifting is
constructed. The latter result generalizes the existing ones in the literature.

Finally, in addition to strengthening the existing polyhedral results for P0

we also derive new interesting results when P has a more complex structure.
Specifically, for P0, i.e., when X = {0, 1}n, we strengthen the results in [1,14]
and present two family of facets for conv(P0). Moreover, we consider set P when
X is a partition matroid; such X is often encountered in the discrete optimiza-
tion literature. For its convex hull, facet-defining inequalities are derived based
on the multidimensional SI lifting.

Notation. Define set [k] = {1, 2, . . . , k} for any positive integer k. Let ek be the
unit vector whose entry value is 1 for kth component, and 0 for the others. Let
S̄ = N \ S for any S ⊆ N . Define a(S) :=

∑
j∈S aj for a ∈ R

n and set S ⊆ N .

2 A New Class of Subadditive Function

In this section, we introduce a new class of subadditive functions, which is then
exploited in Sect. 3.

Definition 1. A function φ : R
n → R is subadditive on D ⊆ R

n if φ(z1) +
φ(z2) ≥ φ(z1 + z2) whenever z1, z2 ∈ D and z1 + z2 ∈ D. A function φ is called
superadditive on D if −φ is subadditive on D.

Theorem 1. Given a sequence of values a1, a2, . . . such that aj ≥ aj+1 ≥ 0
for all j, let A0 = 0 and Ak =

∑k
j=1 aj. Define a piecewise concave function

φ : R+ → R as follows

φ(z) =

{
0 if z = 0,

g(z − Ak + vk) + φ(Ak) − g(vk) if Ak ≤ z ≤ Ak+1, k = 0, 1, . . . ,
(4)

Sequence Independent Lifting for Submodular Maximization 381

(a) The lifting function on the flow cover in-
equality.

(b) Lifting function γ0(z) and its approxima-
tion γ̂0(z) in [1].

Fig. 1. Two subadditive functions in the form of φ, see Theorem 1.

where g is a concave function and {vk}∞
k=0 is a sequence of values such that

vk + ak+1 ≤ vk+1 + ak+2. Then function φ is subadditive on R+.

Proof. See Appendix A. 	

Remark. Note that subadditive function φ is of a general form as we do not
specify the representation of g. Hence, it provides an effective framework to
verify one function’s subadditivity or to construct its subadditive approximation,
according to its particular structure. Moreover, if g is replaced by −g, which is
convex, then the resulting function φ becomes a superadditive function.

Example 1 (Adapted from [7]). Consider the single-node flow set F when N− = ∅
and X = {0, 1}n. Given a flow cover S = {1, . . . , s} such that λ =

∑
j∈S aj−b > 0

and a1 ≥ · · · ≥ ar > λ ≥ ar+1 ≥ · · · ≥ as. Then the lifting function of the flow
cover inequality (depicted in Fig. 1(a)) is φ(0) = 0 and

φ(z) =

{
g(z − Ak + a1 − ak+1) + φ(Ak) if Ak ≤ z ≤ Ak+1, k = 0, 1, . . . , r − 2,

g(z − Ar + a1) + φ(Ak−1) if z ≥ Ar−1,

where φ(Ak) = kλ and g(z) = max{0, z − (a1 − λ)} is a convex function. Let
vk = a1−ak+1 for k = 0, 1 . . . , r−1, then g(vk) = 0 and the above lifting function
can be written in the form of (4). Thus, the lifting function is superadditive on
R+, which matches the corresponding result in [7].

3 Lifting for conv(P0)

In this section, we study the lifting for the convex hull of the basic set P0, i.e.,

P0 = {(w, x) ∈ R × {0, 1}n : w ≤ g(aT x)}.

We first derive a set of valid inequalities by exact lifting on variables fixed at
zeros. As we will see, the lifting is SI, and the resulting inequalities are facet-
defining for conv(P0). Similarly, another family of facet-defining inequalities are
derived by SI lifting on variables fixed at ones.

382 X. Shi et al.

3.1 Lifted Inequalities from Uplifting

Given a set S ⊆ N , consider set P0(S̄, ∅) by fixing xj = 0 for j ∈ S̄ in P0, i.e.,

P0(S̄, ∅) = {(w, x) ∈ R × {0, 1}n : w ≤ g(aT x), xj = 0 ∀j ∈ S̄}.

It is known [1,11] that the submodular inequality

w ≤ f(S) −
∑

j∈S

ρj(S \ j)(1 − xj) (5)

defines a facet of the convex hull of P0(S̄, ∅). To perform lifting on inequality (5)
for conv(P0), its lifting function is

γ0(z) = max w +
∑

j∈S

ρj(S \ j)(1 − xj) − f(S)

s.t. w ≤ g(
∑

j∈S

ajxj + z), xj ∈ {0, 1} ∀j ∈ S,

where z ∈ R+. With a similar strategy as in Proposition 5 in [1], we can derive
the exactly same formula for γ0(z) and any general concave function g.

Proposition 1. Suppose S = {1, . . . , s} and a1 ≥ · · · ≥ as, let A0 = 0, Ak =
∑k

j=1 aj and Δk(z) = z−Ak+a(S) for k ∈ S. Then γ0(Ak) =
∑k

j=1 ρj(S\j) and

γ0(z) =

{
g(Δk+1(z)) + γ0(Ak+1) − f(S) if Ak ≤ z ≤ Ak+1, k = 0, . . . , s − 2,

g(z) + γ0(As) − f(S) if z ≥ As−1.

Remark. Let vk = a(S) − ak+1, then vk + ak+1 = a(S) for k = 0, 1, . . . , s − 1.
Given that γ0(Ak) =

∑k
j=1 ρj(S \ j) and g(vk) = g(a(S) − ak+1) for k ∈ S,

it follows from Theorem 1 that the lifting function γ0(z) is subadditive on R+.
Thus, the exact lifting is SI, and the resulting inequality from lifting is facet-
defining for conv(P0), which is formally stated as follows.

Theorem 2. For any S ⊆ N , the following inequality defines a facet of conv(P0)

w ≤ f(S) −
∑

j∈S

ρj(S \ j)(1 − xj) +
∑

j∈S̄

γ0(aj)xj . (6)

Proof. It directly follows from the aforementioned Remark. 	

Note that Ahmed and Atamtürk [1] derive a subadditive approximation to

the lifting function γ0(z) by applying the continuous relaxation and then using
KKT conditions to solve the convex program. Nevertheless, as pointed out in
Theorems 1 and 2 that the exact lifting function is naturally subadditive and
we can directly obtain facet-defining inequalities without any approximations.
Next, we provide an example to illustrate the difference between inequalities
obtained by approximate lifting [1] and our exact lifting.

Sequence Independent Lifting for Submodular Maximization 383

Example 2. Consider P0 = {(w, x) ∈ R × {0, 1}n : w ≤ − exp(−aT x)}, where
n = 7, and a = (0.8, 0.7, 0.7, 0.6, 0.5, 0.3, 0.2)T . Let S = {3, 4, 5, 6}. Figure 1(b)
shows the lifting function γ0(z) and its approximation γ̂0 proposed in [1]. Specif-
ically, the lifted inequality obtained by the approximate lifting in [1] is

w ≤ − 0.4695 + 0.1484x1 + 0.1317x2 + 0.1241x3 + 0.1007x4

+ 0.0794x5 + 0.0428x6 + 0.0447x7.

The exact lifted inequality dominates the aforementioned one by carrying smaller
coefficients for x1 and x2, which are 0.1454 and 0.1241, respectively.

Denote by K0 and F0 as the mixed 0-1 knapsack set and single-node flow set
when X = {0, 1}n, respectively. As mentioned in Sect. 1, the well-known mixed
0-1 knapsack set K0 is a special case of P0. We then show that the lifted facet-
defining inequalities of conv(K0) can be obtained directly via (6). A class of
valid inequalities for conv(F0) then can be easily derived through the reduction
to K0, which has been well studied in [10]. Hence, our study on this submodular
set unifies those classical results.

Corollary 1 ([10]). Consider any S ⊆ N such that λ =
∑

j∈S aj − b > 0.
Supposing S = {1, . . . , s} with a1 ≥ · · · ≥ ar > λ ≥ · · · ≥ as, the inequality
−π ≤ −λ +

∑r
j=1 λ(1 − xj) +

∑s
j=r+1 aj(1 − xj) +

∑
j∈S̄ γK(aj)xj is facet-

defining for conv(K0), where γK(z) is the corresponding lifting function that can
be computed from Proposition 1 with g(z) = min{0, b − z}.

3.2 Lifted Inequalities from Downlifting

For a set S ⊆ N , denote by P0(∅, S) = {(w, x) ∈ R×{0, 1}n : w ≤ g(aT x), xj =
1 ∀j ∈ S} the set P0 with xj = 1 for j ∈ S. It is shown in [1,11] that the
submodular inequality w ≤ f(S) +

∑
j∈S̄ ρj(S)xj defines a facet for the convex

hull of P (∅, S). To lift that inequality for conv(P0), the lifting function is given as

η0(z) = max w −
∑

j∈S̄

ρj(S)xj − f(S)

s.t. w ≤ g(
∑

j∈S̄

ajxj + a(S) − z), xj ∈ {0, 1} ∀j ∈ S̄,

where z ∈ R+. We next strengthen the result presented in [1] by showing that
the lifting function is actually subadditive, and the resulting lifted inequality is
facet-defining for conv(P0). Again, it unifies some classical results for the mixed
0-1 knapsack set K0 and the single-node flow set F0.

Proposition 2. Suppose S̄ = {1, 2, . . . , s̄} and a1 ≥ · · · ≥ as̄, let A0 = 0,
Ak =

∑k
j=1 aj and Δk(z) = a(S) + Ak − z for k ∈ S̄. Then

η0(z) =

{
g(Δk+1(z)) + η0(Ak+1) − f(S) if Ak ≤ z ≤ Ak+1, k = 0, . . . , s̄ − 2,

g(a(N) − z) + η0(As̄) − f(S) if z ≥ As̄−1,

where η0(Ak) = −∑k
j=1 ρj(S). Furthermore, η0(z) is subadditive on R+.

384 X. Shi et al.

Theorem 3. For any S ⊆ N , the following inequality defines a facet of conv(P0)

w ≤ f(S) +
∑

j∈S̄

ρj(S)xj +
∑

j∈S

η0(aj)(1 − xj). (7)

Corollary 2 ([10]). Consider any S ⊆ N such that μ = b − ∑
j∈S aj > 0.

Supposing S̄ = {1, . . . , s̄} with a1 ≥ · · · ≥ ar̄ > μ ≥ · · · ≥ as̄, the inequality
−π ≤ ∑r̄

j=1(μ − aj)xj +
∑

j∈S ηK(aj)(1 − xj) is facet-defining for conv(K0),
where ηK(z) is the corresponding lifting function that can be computed from
Proposition 2 with g(z) = min{0, b − z}.

4 Lifting for conv(P) with a Partition Matroid X
Given a partition of N , {Ni}r

i=1, and a sequence of positive integers d1, . . . , dr,
we study the convex hull of the submodular maximization set with a partition
matroid constraints

PMC = {(w, x) ∈ R × {0, 1}n : w ≤ g(aT x),
∑

j∈Ni

xj ≤ di ∀i ∈ [r]}.

Define a mapping function σ : N → R such that σ(j) = i if j ∈ Ni for some
i ∈ [r]. For any set S ⊆ N , let Si := S ∩ Ni for any i ∈ [r].

4.1 Multidimensional Lifting and Lifted Inequalities

Given a set S ⊆ N such that |Si| ≤ di, we start with the lifting procedure by
restricting xj = 0 for j ∈ S̄. The lifting function of the submodular inequality
w ≤ f(S) − ∑

j∈S ρj(S \ j)(1 − xj) is

γ

(
z

u

)

= max w +
∑

j∈S

ρj(S \ j)(1 − xj) − f(S)

s.t. w ≤ g(
∑

j∈S

ajxj + z), xj ∈ {0, 1} ∀j ∈ S,

∑

j∈Si

xj + ui ≤ di ∀i ∈ [r],

where z ∈ R+ and u ∈ Z
r
+. Note that if r = 0, then γ

(
z
u

)
reduces to γ0(z)

studied in Sect. 3.1. Although u is multidimensional, the coefficient column of
xj is eσ(j) for j ∈ N . As demonstrated in [2,15,16], we are not interested in all(

z
u

) ∈ R+ ×Z
r
+ but are only concerned with the value of u = ei for some i ∈ [r].

Furthermore, as our discussion in Sect. 4.2, the subadditivity does not hold for
γ
(

z
u

)
on R+ × Z

r
+. On the other hand, our main result in Sect. 4 relies on the

following sufficient and necessary conditions for SI lifting.

Sequence Independent Lifting for Submodular Maximization 385

Proposition 3. The lifting of w ≤ f(S) − ∑
j∈S ρj(S \ j)(1 − xj) is SI for all

possible values of
(

z
u

) ∈ R+ × {e1, . . . , er} if and only if for any subset Γ ⊆ S̄
such that |Γi| ≤ di,

∑

j∈Γ

γ

(
zj

eσ(j)

)

≥ γ(
∑

j∈Γ

(
zj

eσ(j)

)

) ∀zj ≥ 0, j ∈ Γ. (8)

Theorem 4. Given any S ⊆ N such that |Si| ≤ di for all i ∈ [r], the inequality

w ≤ f(S) −
∑

j∈S

ρj(S \ j)(1 − xj) +
∑

j∈S̄

γ

(
aj

eσ(j)

)

xj (9)

is facet-defining for conv(PMC).

Proof. Proof sketch is shown in Appendix B. 	

We next discuss a couple of immediate results of Theorem 4. If N1 = N

and d1 = d, then let PC = {(w, x) ∈ {0, 1}n : w ≤ g(aT x),
∑

j∈N xj ≤ d}. In
[14], Yu and Ahmed provide approximation schemes by solving the continuous
relaxation of the lifting problem for PC . In fact, by Theorem 4, we show that
the lifting is naturally SI and the approximations are no longer needed.

Proposition 4. For any S ⊆ N such that |S| ≤ d, the inequality w ≤ f(S) −∑
j∈S ρj(S \ j)(1 − xj) +

∑
j∈S̄ γ0(aj)xj defines a facet of conv(PC).

Also, on the mixed 0-1 knapsack set with a partition matroid denoted by
KMC , which is a rather complex set that has not been investigated in the liter-
ature, we can easily derive a set of facet-defining inequalities by Theorem 4.

Proposition 5. Consider any S ⊆ N such that |Si| ≤ di and λ =
∑

j∈S aj−b >
0. Supposing S = {1, . . . , s} with a1 ≥ · · · ≥ ar > λ ≥ · · · ≥ as, the inequality
−π ≤ −λ +

∑r
j=1 λ(1 − xj) +

∑s
j=r+1 aj(1 − xj) +

∑
j∈S̄ γK

(
aj

eσ(j)

)
xj defines a

facet of conv(KMC), where γK

(
z
ei

)
is the corresponding lifting function.

4.2 Computing the Exact Lifting Function

To compute γ
(

z
u

)
, we introduce a simpler problem that replaces the cardinality

constraints by fixing some variables in a given set. For some T ⊆ S, define

γ(z, T) = max

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

w +
∑

j∈S

ρj(S \ j)(1 − xj) − f(S) : xj = 0 ∀j ∈ T,

w ≤ g(
∑

j∈S

ajxj + z), xj ∈ {0, 1} ∀j ∈ S

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

.

Note that if T = ∅, then γ(z, T) = γ0(z). For any Γ ⊆ S̄, we can conclude that

γ

(
z

∑
j∈Γ eσ(j)

)

= max
T⊆S

{γ(z, T) : |Ti| = max{0, |Si| + |Γi| − di} ∀i ∈ [r]}. (10)

386 X. Shi et al.

Fig. 2. The function γ(z, T). Fig. 3. The lifting function γ
(

z
u

)
.

Then our question now is reduced to computing γ(z, T). The explicit formula
of γ(z, T) is given in Lemma 3, see Appendix B. Note that γ(z, T) (depicted in
Fig. 2) is not subadditive on z ∈ R+ in general for a fixed T
= ∅.

Proposition 6. For any i ∈ [r], if |Si| < di, then γ
(

z
ei

)
= γ0(z). If |Si| = di,

and assume Si = {i1, . . . , i�} such that ai1 ≥ · · · ≥ ai�
, then γ

(
z
ei

)
=

max{γ(z, {i1}), γ(z, {i�})}.

Example 3. Consider PMC = {(w, x) ∈ R × {0, 1}n : w ≤ − exp(−aT x), x3 +
x5+x6 ≤ 2, x1+x4+x7 ≤ 2}, where n = 7 and a = (1, 0.8, 0.7, 0.6, 0.5, 0.3, 0.2)T .
Let S = {2, 3, 4, 6, 7}. If the cardinality constraints are ignored, then the lifted
inequality (6) for conv(P0) is calculated as:

w ≤ − 0.3441 + 0.1181x1 + 0.091x2 + 0.0753x3 + 0.0611x4

+ 0.065x5 + 0.026x6 + 0.0164x7.

If multidimensional lifting is performed with respect to conv(PMC), then coeffi-
cients of x1 and x5 can be strengthened to 0.1156 and 0.0589, respectively.

Remark. From Fig. 3, for a fixed u, it can be seen that γ
(

z
u

)
is not a subadditive

function on z ∈ R+. Furthermore, lifting function γ
(

z
u

)
is not subadditive on

(
z
u

) ∈ R+ × Z
r
+. As an example, γ

(
2
e1

)
+ γ

(
0.2

e1+e2

)
= 0.2196 + 0.0164 < 0.2369 =

γ
(

2.2
2e1+e2

)
. Therefore, the subadditivity in its standard form, which is a sufficient

condition to ensure SI lifting, is not applicable to prove Theorem4.

5 Computational Experiments

We perform a preliminary study for evaluating the lifted inequalities using the
expected utility maximization problem considered in [1,14]. Given a set of invest-
ment options N , let vi ∈ R

n be the value of investments in the future at scenario
i with probability πi, i = 1, . . . ,m. We use the exponential function 1−exp(z/λ)

Sequence Independent Lifting for Submodular Maximization 387

as the utility function with risk tolerance λ. Then the expected utility maxi-
mization problem is formulated as

max{
m∑

i=1

πiwi : wi ≤ exp(−vT
i x

λ
) ∀i ∈ [m],

∑

j∈N

xj ≤ d, x ∈ {0, 1}n},

where d is the cardinality budget. We generate the values of vi following the
settings in [1,14], with πi = 1

m for i ∈ [m] and d = 15. Then we use the exactly
same algorithm to generate the initial submodular inequalities as in [14].

Table 1. The average performance of lifted inequalities.

n m λ Lifted ineqs. in [1] Ineqs. (6) & (7) n m λ Lifted ineqs. in [1] Ineqs. (6) & (7)

Cuts Nodes Time Cuts Nodes Time Cuts Nodes Time Egap Cuts Nodes Time

50 50 0.8 400 0 0.96 400 0 0.54 150 50 0.8 2970 72 32 400 0 1.29

1 340 0 0.82 340 0 0.45 1 2740 48 27 400 0 1.29

2 200 0 0.51 200 0 0.27 2 745 7 9 200 0 0.66

100 0.8 800 0 1.83 800 0 1.02 100 0.8 2920 27 28 800 0 2.57

1 660 0 1.6 660 0 0.85 1 3340 21 32 800 0 2.6

2 440 0 1.31 400 0 0.54 2 1400 6 17 400 0 1.31

100 50 0.8 400 0 1.82 400 0 0.9 200 50 0.8 12430 477 225 400 0 1.68

1 620 3 4 400 0 0.91 1 6930 163 99 400 0 1.69

2 410 3 3 200 0 0.45 2 1780 22 24 200 0 0.84

100 0.8 1950 8 11 800 0 1.77 100 0.8 14310 314 379 0.081 800 0 3.42

1 2360 11 14 800 0 1.82 1 13150 250 284 800 0 3.47

2 980 4 8 400 0 0.89 2 1840 11 28 400 0 1.72

Our experiments are conducted using Gurobi 8.1.1 on a Windows 10 PC
with a 3.2 GHz CPU and 8 GB of RAM. We set the time limit to 1800 s. For
each values of n,m and λ, the average performance over 10 randomly generated
instances is reported, including the average solution time in seconds (time), the
number of added cuts (cuts) and branch-and-cut explored nodes (nodes). For
the instances that are not solved within the time limit, we show the percentage
gap between the best known upper and the lower bounds at termination (egap);
its superscript reports the number of unsolved instances.

The computational results that compare the approximate lifted inequalities
in [1] and our exact lifted inequalities (6) and (7) are presented in Table 1. Note
that the lifted inequalities developed in [14] are the same as those in [1] under
the cardinality constraint X . Observe that the parameter λ is an important fac-
tor to affect the overall performance, which is consistent with the computations
in [1]. We highlight that all of the considered instances are solved to optimal-
ity at the root node with negligible computational time, when the exact lifted
inequalities are applied. On the contrary, it often incurs many branch-and-bound
operations or fails to generate optimal solutions due to time limit, when the
approximate lifted inequalities are applied. Such a comparison clearly indicates
that the exact lifted inequalities are fundamental and effective, and they can
drastically improve the computational performance when solving submodular
maximization problems.

388 X. Shi et al.

A Proof of Theorem 1

Lemma 1. Let z ∈ [Ak, Ak+1] for some k ≥ 1. Then for any Δ ≥ 0 and
z + Δ ≤ Ak+1, we have

φ(z + Δ) − φ(z) ≤ φ(z −
k+1∑

j=�

aj + Δ) − φ(z −
k+1∑

j=�

aj) ∀� = 2, . . . , k + 1.

Proof. It suffices to show the statement holds for � = k +1. Since z ∈ [Ak, Ak+1]
and z+Δ ≤ Ak+1, then z−ak+1 ∈ [Ak−1, Ak] and z+Δ−ak+1 ≤ Ak. Therefore,

φ(z + Δ) − φ(z) = g(Ω + vk − ak + Δ) − g(Ω + vk − ak)
≤ g(Ω + vk−1 − ak+1 + Δ) − g(Ω + vk−1 − ak+1)
= φ(z − ak+1 + Δ) − φ(z − ak+1),

where Ω = z − Ak−1, the inequality follows from vk−1 + ak ≤ vk + ak+1 and the
concavity of g (i.e., g(z0+Δ)−g(z0) ≥ g(z1+Δ)−g(z1) if z0 ≤ z1 and Δ ≥ 0). 	

Lemma 2. Let Δ ∈ [0, ak+1] for some k ≥ 0. Then for any z ≥ Ak, we have

φ(Ak + Δ) − φ(Ak) ≥ φ(z + Δ) − φ(z).

Proof. Suppose z ∈ [Ak1 , Ak1+1] and z + Δ ∈ [Ak2 , Ak2+1], where k ≤ k1 ≤ k2.
We establish the result for each k2 − k1 by induction.

– If k2 = k1, then based on Lemma 1, we have

φ(z + Δ) − φ(z) ≤ φ(z −
k1+1∑

j=k+2

aj + Δ) − φ(z −
k1+1∑

j=k+2

aj)

= g(Ω + vk + Δ) − g(Ω + vk)
≤ g(vk + Δ) − g(vk) = φ(Ak + Δ) − φ(Ak),

where Ω = z − Ak − ∑k1+1
j=k+2 aj , the second inequality follows from ak+1 ≥

ak1+1 and Ω = z − Ak − ∑k1+1
j=k+2 aj ≥ z − Ak − ∑k1

j=k+1 aj ≥ 0.
– If the statement holds for k2 − k1 = m, then we show that the statement

also holds for k2 − k1 = m + 1. Let Δ′ = Ak1+1 − z, then Δ ≥ Δ′. Since
Δ ∈ [0, ak+1] and Ak1+1 − ∑k1+1

j=k+2 aj = Ak+1 ≥ Ak + Δ, we have

φ(Ak + Δ) − φ(Ak + Δ − Δ′) ≥ φ(Ak+1) − φ(Ak+1 − Δ′)

= φ(Ak1+1 −
k1+1∑

j=k+2

aj) − φ(z −
k1+1∑

j=k+2

aj)

≥ φ(Ak1+1) − φ(z),

where the first inequality follows from that φ is concave on [Ak, Ak+1].

Sequence Independent Lifting for Submodular Maximization 389

Let z′ = Ak1+1, then z′ ∈ [Ak1+1, Ak1+2]. Since k2 − (k1 + 1) = m, by the
induction hypothesis, we have

φ(Ak + Δ − Δ′) − φ(Ak) ≥ φ(z′ + Δ − Δ′) − φ(z′) = φ(z + Δ) − φ(Ak1+1).

Summing the above two inequalities, we obtain the desired inequality. 	

Proof (Theorem 1). To show that φ is subadditive on [0,+∞), it is sufficient to
prove that the inequality φ(z) − φ(0) ≥ φ(z + Δ) − φ(Δ) holds for any z,Δ ≥ 0.

First, by Lemma 2, we have that for any Δ ≥ 0,

φ(Aj+1) − φ(Aj) ≥ φ(Aj+1 + Δ) − φ(Aj + Δ) ∀j = 0, 1, (11)

Suppose z ∈ [Ak, Ak+1] for some k and let Δ′ = z −Ak ∈ [0, ak+1]. By Lemma 2
we have

φ(Ak + Δ′) − φ(Ak) ≥ φ(z + Δ) − φ(z + Δ − Δ′). (12)

Note that Ak + Δ′ = z and z + Δ − Δ′ = Ak + Δ. Summing equations (11) over
all j = 0, 1, . . . , k − 1 and (12), yields the desired result. 	

B Proof Sketch of Theorem 4

We first give the explicit formula to compute γ(z, T).

Lemma 3. Suppose T = {�1, . . . , �|T |} ⊆ S such that �1 < · · · < �|T |. Denote
Ak =

∑k
j=1 aj for k ∈ S and A0 = 0. Denote AT

t = a(T) − ∑t
j=1 a�j

for
t = 1, . . . , |T |, and AT

0 = a(T), �0 = 0. There have three cases to consider: (i) if
0 ≤ z ≤ a(T), then γ(z, T) = g(a(S) − a(T) + z) +

∑
j∈T ρj(S \ j) − f(S). (ii) if

Ak +AT
t ≤ z ≤ Ak+1 +AT

t for k = �t, . . . , �t+1 − 2 and t = 0, 1, . . . , |T |− 1, then
γ(z, T) = g(a(S)−Ak+1 −AT

t + z)+
∑

j∈[k]∪{�j}|T |
j=t+1

ρj(S \ j)− g(a(S)−ak+1).

(iii) if z ≥ A�|T | , then γ(z, T) = γ0(z).

To establish the proof of Theorem 4, our basic idea is to exploit (8) in Propo-
sition 3. To show (8), we first establish that inequalities similar in spirit to (8)
hold for γ(z, T) in Lemmas 4 and 5. Then we use the fact that γ

(
z
u

)
can be

computed through (10) and γ(z, T) to complete the proof of Theorem 4.

Lemma 4. For any T ⊆ S, we have
∑

j∈T γ(zj , {j}) ≥ γ(z(T), T),∀zj ≥ 0.

Lemma 5. For any i ∈ [r], we have γ0(z0) + γ
(
z1
ei

) ≥ γ
(
z0+z1

ei

)
,∀z0, z1 ≥ 0.

Proof (Theorem 4). Let Γ ⊆ S̄ and |Γi| ≤ di, recall equation (10), we have
∑

j∈Γ

γ

(
zj

eσ(j)

)

=
∑

j∈Γ

max
T j

{γ(zj , T
j) : |T j | = max{0, |Si| + 1 − di}, T j ⊆ Sσ(j)}

= max
{T j}j∈Γ

{
∑

j∈Γ

γ(zj , T
j) : |T j | = max{0, |Si| + 1 − di}, T j ⊆ Sσ(j)}

≥ max
T⊆S

{γ(z(Γ), T) : |Ti| = max{0, |Si| + |Γi| − di}} = γ

(
z(Γ)

∑
j∈Γ eσ(j)

)

,

where the inequality is based on Lemmas 4 and 5. 	

390 X. Shi et al.

References

1. Ahmed, S., Atamtürk, A.: Maximizing a class of submodular utility functions.
Math. Program. 128(1–2), 149–169 (2011). https://doi.org/10.1007/s10107-009-
0298-1

2. Angulo, A., Espinoza, D., Palma, R.: Sequence independent lifting for mixed Knap-
sack problems with GUB constraints. Math. Program. 154(1–2), 55–80 (2015).
https://doi.org/10.1007/s10107-015-0902-5

3. Atamtürk, A., Küçükyavuz, S., Tezel, B.: Path cover and path pack inequalities
for the capacitated fixed-charge network flow problem. SIAM J. Optimiz. 27(3),
1943–1976 (2017)

4. Chen, L., Xu, J., Lu, Z.: Contextual combinatorial multi-armed bandits with
volatile arms and submodular reward. In: Advances in Neural Information Pro-
cessing Systems, pp. 3247–3256 (2018)

5. Dolhansky, B.W., Bilmes, J.A.: Deep submodular functions: definitions and learn-
ing. In: Advances in Neural Information Processing Systems, pp. 3404–3412 (2016)

6. El-Arini, K., Veda, G., Shahaf, D., Guestrin, C.: Turning down the noise in the
blogosphere. In: Proceedings of the 15th ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining, pp. 289–298. ACM (2009)

7. Gu, Z., Nemhauser, G.L., Savelsbergh, M.W.: Sequence independent lifting in
mixed integer programming. J. Comb. Optimiz. 4(1), 109–129 (2000). https://
doi.org/10.1023/A:1009841107478

8. Li, J., Deshpande, A.: Maximizing expected utility for stochastic combinatorial
optimization problems. In: 2011 IEEE 52nd Annual Symposium on Foundations
of Computer Science, pp. 797–806. IEEE (2011)

9. Lin, H., Bilmes, J.: A class of submodular functions for document summarization.
In: Proceedings of the 49th Annual Meeting of the Association for Computational
Linguistics: Human Language Technologies-Volume 1, pp. 510–520. Association for
Computational Linguistics (2011)

10. Marchand, H., Wolsey, L.A.: The 0-1 Knapsack problem with a single contin-
uous variable. Math. Program. 85(1), 15–33 (1999). https://doi.org/10.1007/
s101070050044

11. Nemhauser, G.L., Wolsey, L.A.: Integer and Combinatorial Optimization. Wiley,
New York (1988)

12. Stobbe, P., Krause, A.: Efficient minimization of decomposable submodular func-
tions. In: Advances in Neural Information Processing Systems, pp. 2208–2216
(2010)

13. Wolsey, L.A.: Submodularity and valid inequalities in capacitated fixed charge
networks. Oper. Res. Lett. 8(3), 119–124 (1989)

14. Yu, J., Ahmed, S.: Maximizing a class of submodular utility functions with
constraints. Math. Program. 162(1–2), 145–164 (2017). https://doi.org/10.1007/
s10107-016-1033-3

15. Zeng, B., Richard, J.-P.P.: A framework to derive multidimensional superadditive
lifting functions and its applications. In: Fischetti, M., Williamson, D.P. (eds.)
IPCO 2007. LNCS, vol. 4513, pp. 210–224. Springer, Heidelberg (2007). https://
doi.org/10.1007/978-3-540-72792-7 17

16. Zeng, B., Richard, J.P.P.: A polyhedral study on 0–1 knapsack problems with
disjoint cardinality constraints: strong valid inequalities by sequence-independent
lifting. Discrete Optimiz. 8(2), 259–276 (2011)

https://doi.org/10.1007/s10107-009-0298-1
https://doi.org/10.1007/s10107-009-0298-1
https://doi.org/10.1007/s10107-015-0902-5
https://doi.org/10.1023/A:1009841107478
https://doi.org/10.1023/A:1009841107478
https://doi.org/10.1007/s101070050044
https://doi.org/10.1007/s101070050044
https://doi.org/10.1007/s10107-016-1033-3
https://doi.org/10.1007/s10107-016-1033-3
https://doi.org/10.1007/978-3-540-72792-7_17
https://doi.org/10.1007/978-3-540-72792-7_17

A Fast (2 + 2/7)-Approximation
Algorithm for Capacitated Cycle Covering

Vera Traub1(B) and Thorben Tröbst2

1 Research Institute for Discrete Mathematics and Hausdorff Center for Mathematics,
University of Bonn, Bonn, Germany

traub@dm.uni-bonn.de
2 Department of Computer Science, University of California, Irvine, Irvine, CA, USA

t.troebst@uci.edu

Abstract. We consider the capacitated cycle covering problem: given an
undirected, complete graph G with metric edge lengths and demands on
the vertices, we want to cover the vertices with vertex-disjoint cycles,
each serving a demand of at most one. The objective is to minimize a
linear combination of the total length and the number of cycles. This
problem is closely related to the capacitated vehicle routing problem
(CVRP) and other cycle cover problems such as min-max cycle cover
and bounded cycle cover. We show that a greedy algorithm followed by
a post-processing step yields a (2 + 2/7)-approximation for this problem
by comparing the solution to a polymatroid relaxation. We also show
that the analysis of our algorithm is tight and provide a 2 + ε lower
bound for the relaxation.

Keywords: Cycle cover · Vehicle routing · Greedy algorithms ·
Approximation algorithms · Polymatroids

1 Introduction

Our work is motivated by the classical and well-studied capacitated vehicle rout-
ing problem (CVRP) which was introduced by Dantzig and Ramser [7]. In this
problem we are given an undirected, complete graph G = (V,E) with metric
edge lengths � : E → R≥0 and a distinguished vertex s ∈ V which is called the
depot. Moreover, every vertex is assigned a demand b(v). The goal is to cover V
with cycles C1, . . . , Ck such that each cycle visits s, satisfies b(Ci) ≤ 1 and the
total length

∑k
i=1 �(Ci) is minimum. Here b(Ci) :=

∑
v∈V (Ci)

b(v) is the total
demand of the vertices of Ci and �(Ci) :=

∑
e∈E(Ci)

�(e) is the total length of
the edges of Ci.

The CVRP has received a large amount of attention in the last 60 years.
While there has been much progress regarding computational results (see e.g. [16,
17,19]), from the viewpoint of approximation algorithms little progress has been
made. The simple optimal tour partitioning algorithm by Altinkemer and Gavish
[1], which achieves an approximation ratio of 3.5, has not been improved in the
c© Springer Nature Switzerland AG 2020
D. Bienstock and G. Zambelli (Eds.): IPCO 2020, LNCS 12125, pp. 391–404, 2020.
https://doi.org/10.1007/978-3-030-45771-6_30

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-45771-6_30&domain=pdf
https://doi.org/10.1007/978-3-030-45771-6_30

392 V. Traub and T. Tröbst

past 30 years. (In fact, the approximation ratio is 2+α where α is the best known
approximation ratio for TSP.) For the case where all vertices have demand 1/Q
for some Q ∈ N, the tour partitioning algorithm by Haimovich and Kan [12]
from 1985 has approximation ratio 1 + α, which is currently 2.5, and this result
is also still the best known.

Significant improvements have only been achieved in special cases, such as
when the metric is Euclidean [8,13] or arises from graphs with special structure
[2–4,14]. The only result for the general case is by Bompadre et al. [5] who
improved the approximation guarantee by Θ(1/Q3) where Q is the least common
denominator of the (rational) demands b.

In this paper we study a variant of the CVRP, where we do not have a depot
vertex that must be visited by every tour, but instead have a fixed opening
cost γ > 0 per tour. Formally, this problem, which we call the capacitated cycle
covering problem (CCCP), is defined as follows. We are given an undirected,
complete graph G = (V,E) with metric edge lengths � : E → R≥0, vertex
demands b : V → [0, 1], and an opening cost γ ∈ R≥0. The goal is to compute
a capacitated cycle cover, i.e. cycles C1, . . . , Ck in G, such that every v ∈ V is
contained in exactly one cycle and b(Ci) ≤ 1 for all i, minimizing the total cost
∑k

i=1 �(Ck)+γk. Here it is allowed that a cycle contains only one or two vertices.
To the best of our knowledge, this precise problem formulation has not

appeared in the literature. However, besides the capacitated vehicle routing
problem, the CCCP is also closely related to other cycle covering problems. This
includes min-max cycle cover and bounded cycle cover which were first studied
by Even et al. [10]. In the former problem we are asked to compute a cycle cover
C1, . . . , Ck which minimizes maxk

i=1 �(Ci) where k is part of the input. In the
latter we wish to find a cycle cover C1, . . . , Ck with �(Ci) ≤ 1 for all i with
minimum k. Recently, Yu et al. [20,21] provided new approximation algorithms
for the these problems with approximation ratios of 5 and 4 + 4/7 respectively.
Their algorithms need O(n5) time, where here and in the following n := |V |.

Even more recently, Das et al. [9] studied the min-max variant of the capaci-
tated cycle covering problem. In this problem we wish to find a capacitated cycle
cover C1, . . . , Ck where k is part of the input such that maxk

i=1 �(Ci) is minimized.
They provide a 196-approximation algorithm for min-max capacitated tree cover
which implies a 392-approximation algorithm for the cycle cover variant.

1.1 Our Results and Techniques

Note that the capacitated cycle covering problem includes both the TSP (for
b ≡ 0 and suitably large γ) and bin packing (for � ≡ 0) and is thus NP-hard
to approximate within a factor of 3/2 − ε. Hence, we are primarily interested in
approximation algorithms and relaxations for the problem. Our main result is
the following theorem.

Theorem 1. Given an instance of the capacitated cycle covering problem, we
can compute a (2 + 2/7)-approximate solution in O(n2) time.

A Fast (2 + 2/7)-Approximation Algorithm for Capacitated Cycle Covering 393

We remark that if the pairwise distances between all vertices are given explicitly,
the input has size n2 and hence the runtime is linear.

The first step of our algorithm is to compute a carefully chosen spanning
forest in our input graph. Having such a forest, we turn it into a capacitated
cycle cover as follows. We first ensure that every connected component of the
forest contains vertices of total demand at most 1. This is done by splitting large
components into smaller ones if necessary. Then from every connected component
of the forest we can compute a cycle of at most twice the length of the forest
component. See Sect. 2.

The most important part of our algorithm is to choose the initial spanning
forest. We do not solve a tree covering problem as a black box but anticipate
that we will have to double edges and split up large components. To compute our
spanning forest we use a linear programming relaxation, which we call the tree
cover LP. This LP is closely related to a natural LP relaxation for the capacitated
vehicle routing problem. Moreover, the tree cover LP has the important property
that the set of feasible solutions is a polymatroid. This allows us to solve the LP
very efficiently using the polymatroid greedy algorithm. See Sect. 3.

We then analyze a simple randomized rounding algorithm that rounds a
fractional LP solution to a spanning forest. For this we exploit that the extreme
point solutions of our LP relaxation are highly structured. As a result, we obtain
a randomized (2 + 2/7)-approximation algorithm for the CCCP and also show
that the ratio between our solution for CCCP and the value of the tree cover
LP is at most 2 + 2/7. See Sect. 4.

Then we show that we can derandomize our algorithm and obtain a simple
and deterministic greedy algorithm for computing our spanning forest (Sect. 5).
This will complete the proof of Theorem1.

Finally, we provide two forms of lower bounds for our analysis: we prove that
the analysis of our deterministic algorithm is tight and we show a 2 + ε lower
bound on the gap between the tree cover LP and the capacitated cycle covering
problem (Sect. 6).

2 Tree Splitting

In the following we will call a set U of vertices large if b(U) :=
∑

u∈U b(u) > 1
and small otherwise. A common and useful technique for dealing with capacities
in facility location and vehicle routing problems is to cluster vertices into clusters
with demands between 1/2 and 1 (see e.g. [10,14,15,20]). By making sure that
the demand in each cluster is at least 1/2, we can guarantee that we have at
most twice as many clusters as necessary. This idea can be used to prove the
following lemma.

Lemma 1 (Tree Splitting). Let T = (V,E) be a tree and b : V → [0, 1]
some vertex demands with b(V) > 1, i.e. V is large. Then we can partition V
into k ≤ 2b(V) many small sets R1, . . . , Rk and find edge-disjoint connected
subgraphs T1, . . . , Tk of T such that Ri ⊆ V (Ti), i.e. Ti is a Steiner tree with
terminal set Ri, for all i. Moreover, this can be done in linear time.

394 V. Traub and T. Tröbst

We defer the proof to AppendixA. As a corollary, we get a simple construc-
tion which turns any forest F in G into a solution to the capacitated cycle
covering problem. For an edge set F , we denote by C(F) the collection of vertex
sets of the connected components of (V, F).

Lemma 2. Let (V, F) be a forest. Then we can compute in linear time a feasible
solution C1, . . . , Ck to the CCCP with cost bounded by

2�(F) + γ ·
∑

A∈C(F)

u(A) (1)

where �(F) :=
∑

e∈F �(e) and u : 2V → R≥0 is given by

u(A) :=

{
1 if A is small,
2b(A) if A is large.

(2)

Proof. We first apply Lemma 1 to all large connected components of F . Together
with the remaining small connected components, this yields a partition of V into
k small sets R1, . . . , Rk and Steiner trees T1, . . . , Tk with terminal sets R1, . . . , Rk

respectively, where k ≤ ∑
A∈C(F) u(A). Then we turn each Steiner tree Ti with

terminal set Ri into a cycle Ci with vertex set Ri and �(Ci) ≤ 2�(Ti). This is
accomplished by the standard technique of ordering the elements of Ri as they
appear in a depth-first search of Ti. Equivalently, one can double all edges of
Ti, find an Eulerian walk, and shortcut this walk to a cycle on Ri. Shortcutting
does not increase the length since � is metric. ��

Thus in the following sections we will discuss how to find a forest F such that
(1) is at most (2 + 2/7) times the cost of an optimum capacitated cycle cover.

3 The Tree Cover LP

To obtain a lower bound on the cost of an optimum solution to the CCCP, we
use the following linear program.

min �(x) + γ(|V | − x(E))
s.t. x(E[A]) ≤ |A| − max{1, b(A)} ∀∅ �= A ⊆ V

x ≥ 0,
(3)

where �(x) :=
∑

e∈E xe�(e), x(E) :=
∑

e∈E xe, and E[A] denotes the set of edges
in E that have both endpoints in A.

Note that LP (3) is rather a relaxation of a tree covering problem than
of capacitated cycle covering: integral solutions are edge sets of forests in which
every connected component contains vertices of total demand at most 1. Nonethe-
less, it provides a lower bound for the cost of an optimum CCCP solution because
every feasible solution to the CCCP contains such a forest. Hence we get the
following.

A Fast (2 + 2/7)-Approximation Algorithm for Capacitated Cycle Covering 395

Lemma 3. Let (G, �, b, γ) be an instance of the CCCP. Then the optimum value
of the LP (3) is a lower bound on the cost of an optimum solution of the CCCP.

We would like to remark that the tree cover LP (3) is related to the following
natural LP relaxation for the CVRP:

min �(x)
s.t. x(δ(A)) ≥ 2 ∀∅ �= A ⊆ V \ {s}

x(δ(A)) ≥ 2b(A) ∀∅ �= A ⊆ V \ {s}
x(δ(v)) = 2 ∀v ∈ V \ {s}

x ≥ 0,

(4)

where δ(A) denotes the set of edges with exactly one endpoint in A and δ(v) :=
δ({v}). (To see that (4) is a relaxation of the CVRP, note that we need at least
b(A) cycles for covering the vertices in A and each cycle contains the depot s.)

The optimal tour partitioning algorithm for the CVRP [1] computes a solu-
tion of cost at most 3.5 times the value of (4) (see e.g. [18]). In particular, the
integrality gap of (4) is at most 3.5. The following LP is equivalent to (4) in the
sense that every feasible solution to one of the LPs is also a feasible solution for
the other.

min �(x)
s.t. x(E[A]) ≤ |A| − max{1, b(A)} ∀∅ �= A ⊆ V \ {s}

x(δ(v)) = 2 ∀v ∈ V \ {s}
x ≥ 0.

Therefore, for every feasible solution x to (4), the restriction of x to G − s is a
feasible solution to the tree cover LP (3).

In the remaining part of this section we explain how one can solve the tree
cover LP (3) by a greedy algorithm. The key insight for proving this is that (3)
is equivalent to optimizing over a polymatroid.

Lemma 4. Let P be the set of feasible solutions to the LP (3). Then

P =
{

x ∈ R
E

∣
∣
∣
∣

x(F) ≤ r(F) ∀F ⊆ E,
x ≥ 0

}

where r(F) :=
∑

A∈C(F) (|A| − max{1, b(A)}). Moreover, r is monotone, sub-
modular, and satisfies r(∅) = 0. Thus P is a polymatroid.

We sketch the proof of Lemma 4 in AppendixB. Algorithm 1 formally describes
the polymatroid greedy algorithm for solving (3).

Note that C remains a partition of the vertex set. At the end of iteration i it
contains the vertex sets of the connected components of (V, {e1, . . . , ei}). More-
over, the support {e ∈ E : xe > 0} of the returned LP solution x is the edge set
of a forest (by the condition in line 5). This structure will be useful in the next
section, where we analyze an algorithm for rounding x to an integral vector.

396 V. Traub and T. Tröbst

Algorithm 1: Polymatroid greedy algorithm for the tree cover LP
Input: An instance (G, �, b, γ) of the CCCP with G = (V, E).
Output: An optimum solution x to the linear program (3).

1 Let xe := 0 for all e ∈ E.
2 Let e1, . . . , em ∈ E be the edges with �(ei) < γ sorted such that

�(e1) ≤ · · · ≤ �(em).
3 Let C := {{v} | v ∈ V } .
4 for i := 1, . . . , m do
5 if ei connects two distinct C, C′ ∈ C then
6 C := C \ {C, C′} ∪ {C ∪ C′}

7 xei :=

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

1 if C ∪ C′ is small

1 − b(C) if C is small and C′ is large

1 − b(C′) if C′ is small and C is large

2 − b(C) − b(C′) if C, C′ are small, but C ∪ C′ is large

0 else, i.e. C, C′ large.

8 return x.

Lemma 5. Algorithm1 computes an optimum solution of the LP (3).

Proof (Sketch). By Lemma 4 we know that LP (3) optimizes over a polyma-
troid. Thus the polymatroid greedy algorithm which sets xei

:= r({e1, . . . , ei})−
r({e1, . . . , ei−1}) for every i ≤ m produces an optimal solution. One can verify
that Algorithm 1 sets x to exactly those values. ��

4 Randomized Rounding

We will now show how we can round the fractional solution x generated by
Algorithm 1 to a forest F while bounding the cost (1) of the resulting CCCP
solution. More precisely, we will prove the following theorem.

Theorem 2 (Randomized rounding). Let x be a solution of the tree-
covering LP (3) computed by Algorithm1. Define a random edge set F ⊆ E
by independently picking each edge e with probability min{1, (1 + 1/7)xe}. Then

E

⎡

⎣
∑

A∈C(F)

u(A)

⎤

⎦ ≤
(

2 +
2
7

)

(|V | − x(E)),

where u is defined by (2), and E[2�(F)] ≤ (2 + 2/7) �(x).

Note that this implies that the total cost (1) is at most 2 + 2/7 times the
objective value �(x) + γ(|V | − x(E)) of our optimum LP solution x. The scaling
factor 1 + 1/7 on the probabilities xe is chosen to decrease the expected number
of components of (V, F) (while increasing the expected length) such that we lose

A Fast (2 + 2/7)-Approximation Algorithm for Capacitated Cycle Covering 397

the same factor in both cost terms wrt. the LP. By Lemmas 2 and 3, Theorem 2
yields a randomized (2 + 2/7)-approximation algorithm for the CCCP.

In the rest of this section we prove Theorem 2. We may assume wlog. that
(V, {e1, . . . , em}) is connected; otherwise we prove the statement for each con-
nected component. Let E′ be the set of edges ei for which the condition in line 5
of Algorithm 1 was fulfilled. Every such edge ei = {v, w} ∈ E′ connected two sets
C,C ′ ∈ C in iteration i of Algorithm 1. Let Cv

ei
∈ {C,C ′} be the set containing

v and let Cw
ei

∈ {C,C ′} be the other set (containing w). By construction of C
in Algorithm 1, (V,E′) is a spanning tree. Thus, F is always a forest. Moreover,
the subgraphs of (V, {e1, . . . , ei−1} ∩ E′) induced by Cv

ei
and Cw

ei
are connected.

Lemma 6. For every set F ⊆ E′, we have
∑

A∈C(F)

u(A) ≤ 2 · (|V | − x(E)) +
∑

e∈E′\F

∑

u∈e

max{1 − 2b(Cu
e), 0}.

Proof. We first consider the case C(F) = {V } and hence F = E′. Then we
have x(E) ≤ |V | − max{1, b(V)} since x is a feasible solution to (3) and hence
u(V) ≤ max{1, 2b(V)} ≤ 2(|V | − x(E)). Now assume C(F) �= {V } and compute

∑

A∈C(F)

u(A) =
∑

A∈C(F)
A large

2b(A) +
∑

A∈C(F)
A small

1

= 2b(V) +
∑

A∈C(F)
A small

(1 − 2b(A))

≤ 2b(V) +
∑

A∈C(F)

max{1 − 2b(A), 0}

≤ 2 · (|V | − x(E)) +
∑

A∈C(F)

max{1 − 2b(A), 0},

(5)

where we used in the last inequality that x is a feasible solution to (3).
Recall that C(F) �= {V } and (V,E′) is a spanning tree. Consider some A ∈

C(F) and let i minimum such that ei = {v, w} ∈ δ(A) ∩ E′, where wlog. v ∈ A.
So v ∈ A ∩ Cv

ei
�= ∅. Since the subgraphs of (V, {e1, . . . , ei−1} ∩ E′) induced by

Cv
ei

and Cw
ei

are connected and i was chosen minimal, we have Cv
ei

⊆ A. Hence,
max{1−2b(Cv

ei
), 0} ≥ max{1−2b(A), 0}. Note that ei ∈ E′\F because ei ∈ δ(A)

and A ∈ C(F). Hence,
∑

A∈C(F)

max{1 − 2b(A), 0} ≤
∑

A∈C(F)

∑

e∈E′\F

∑

u∈e
Cu

e ⊆A

max{1 − 2b(A), 0}

≤
∑

e∈E′\F

∑

u∈e

max{1 − 2b(Cu
e), 0},

because C(F) is a partition of V . Together with (5) this completes the proof. ��

398 V. Traub and T. Tröbst

Lemma 7. Let x be a solution of the tree-covering LP (3) computed by Algo-
rithm1. Define a random edge set F ⊆ E by independently picking each edge e
with probability min{1, (1 + 1/7)xe}. Then

E

⎡

⎣
∑

e∈E′\F

∑

u∈e

max{1 − 2b(Cu
e), 0}

⎤

⎦ ≤ 2/7 · (|V | − x(E)).

Proof. We consider an edge e ∈ E′ and a vertex u ∈ e. If xe < 1, by the definition
of xe in Algorithm 1 we have xe ≥ 1 − b(Cu

e) and therefore

P[e /∈ F] · max{1 − 2b(Cu
e), 0}

= max {1 − (1 + 1/7) · xe, 0} · max{1 − 2b(Cu
e), 0}

≤ max {1 − (1 + 1/7) · (1 − b(Cu
e)), 0} · max{1 − 2b(Cu

e), 0}
≤ 2/7 · b(Cu

e).

Hence,

E

⎡

⎣
∑

e∈E′\F

∑

u∈e

max{1 − 2b(Cu
e), 0}

⎤

⎦

=
∑

e∈E′:xe<1

P[e /∈ F] ·
∑

u∈e

max{1 − 2b(Cu
e), 0}

≤
∑

e∈E′:xe<1

∑

u∈e:Cu
e small

2/7 · b(Cu
e).

(6)

Let 1 ≤ i < j ≤ m with ei = {u, v}, ej = {u′, v′} ∈ E′ with xei
, xej

< 1. We
claim that if the vertex sets Cu

ei
and Cu′

ej
are both small, then they are disjoint. In

iteration i of Algorithm 1, we merge Cu
e and Cv

e into a single component Cu
e ∪Cv

e .
This new component must be large because xei

< 1. During the course of the
algorithm we only merge components of the partition C of V . Therefore either
Cu

ei
and Cu′

ej
are disjoint, or Cu

e ∪ Cv
e ⊆ Cu′

ej
which implies that Cu′

ej
is large.

Hence, ∑

e∈E′:xe<1

∑

u∈e:Cu
e small

b(Cu
e) ≤ b(V) ≤ |V | − x(E),

where b(V) ≤ |V | − x(E) holds because x is a feasible solution to (3). Together
with (6) this completes the proof. ��
The bound E[2�(F)] ≤ (2 + 2/7) �(x) follows directly from the linearity of expec-
tation. Hence, Lemmas 6 and 7 imply Theorem 2.

5 A Fast and Deterministic Algorithm

In this section we show how one can derandomize our (2 + 2/7)-approximation
algorithm. Algorithm 2 formally describes the computation of the forest (V, F).
The partition C is updated exactly as in Algorithm 1. However, now we do not

A Fast (2 + 2/7)-Approximation Algorithm for Capacitated Cycle Covering 399

compute the value xei
but instead directly round it in a deterministic way (lines

7–10).

Algorithm 2: Solving the relaxation and rounding deterministically
Input: An instance (G, �, b, γ) of the CCCP with G = (V,E).
Output: A forest (V, F).

1 Let F := ∅.
2 Let e1, . . . , em ∈ E be the edges with �(ei) < γ sorted such that

�(e1) ≤ · · · ≤ �(em).
3 Let C := {{v} | v ∈ V } .
4 for i := 1, . . . ,m do
5 if ei connects two distinct C,C ′ ∈ C then
6 C := C \ {C,C ′} ∪ {C ∪ C ′}
7 if C ∪ C ′ is small then
8 F := F ∪ {ei}
9 if γ · (max{1 − 2b(C), 0} + max{1 − 2b(C ′), 0}) > 2�(ei) then

10 F := F ∪ {ei}

11 return (V, F).

Lemma 8. Algorithm2 computes a forest (V, F) with

2�(F) + γ ·
∑

A∈C(F)

u(A) ≤
(

2 +
2
7

)

· LP, (7)

where LP denotes the value of (3).

We defer the proof to AppendixC. Note that the runtime of Algorithm2 is
dominated by sorting the edges E in line 2. In a preprocessing step, one can
compute a minimum spanning tree wrt. to � and remove all edges not contained
in this tree. This yields a total runtime of O(θ + n log n) where θ = O(n2) is the
time needed to compute an MST. Lemmas 8, 3, and 2 thus directly imply our
main result Theorem 1.

6 Lower Bounds

In this section we show that the approximation ratio of Algorithm2 followed
by the Algorithm from Lemma 2 is at least (2 + 2/7), i.e. we show that the
analysis in the preceding sections is tight. Moreover, we show that the cost of
an optimum solution to the CCCP might be more than twice the value of the
tree cover LP (3).

Theorem 3. For any ε > 0 there is a CCCP instance where Algorithm2 com-
putes an edge set F ⊆ E, such that there is no capacitated cycle cover C1, . . . , Ck

with cost at most (2+2/7− ε)LP and where V (Ci) is connected in (V, F) for all
i ∈ {1, . . . , k}.

400 V. Traub and T. Tröbst

We defer the proof of Theorem3 to AppendixD. We remark that although The-
orem 3 shows that our analysis of Algorithm 2 followed by the Algorithm from
Lemma 2 is tight, it might be that the analysis of our randomized rounding
algorithm is not.

We now show that the cost of an optimum solution to the CCCP might be
more than twice the value of the tree cover LP (3). We define

ρ := sup
{

OPT(I)
LP(I) | I is a CCCP instance

}
.

Here we use OPT(I) to refer to the minimum cost of a CCCP solution on the
instance I = (G, �, b, γ). Similarly, LP(I) refers to the solution value of the tree
cover LP (3) for the instance I.

Theorem 4. ρ ≥ 2 + 62
11745 > 2.005.

To prove Theorem 4 we use the following lemma that can be proven by an
argument similar to Goemans [11], and Carr and Vempala [6].

Lemma 9. Let G = (V,E) a complete graph and b : V → [0, 1] some vertex
demands. Moreover, let (xe)e∈E be a feasible solution to the tree cover LP (3)
such that the support of x is the edge set of a tree T . Then there are weights
λ1, . . . , λk > 0, small sets R1, . . . , Rk ⊆ V and trees T1, . . . , Tk in T such that
Ri ⊆ V (Ti) for all i and

–
∑k

i=1 λi ≤ ρ(|V | − x(E)),
–

∑
i:e∈Ti

λi ≤ ρ
2xe for every e ∈ E, and

–
∑

i:v∈Ri
λi ≥ 1 for every v ∈ V .

We consider the family of LP solutions depicted in Fig. 1. One can show that
if ρ < 2 + 62

11745 and k is sufficiently large, it is not possible to find weights λi,
vertex sets Ri, and trees Ti as in Lemma 9. This implies Theorem 4.

r

v1

vk

w1,1

w1,16

wk,1

wk,16

...

...

...

x{r,v1}
= 1

x{r,vk} = 1

x{v1,w1,1} = 22
23

x{v1,w1,16} = 22
23

x{vk,wk,1} = 22
23

x{vk ,wk,16} = 22
23

b(wi,j) = 1
23

Fig. 1. A family of LP solutions x that together with Lemma 9 proves Theorem 4. Here,
the demands for the vertex r and the vertices v1, . . . , vk are 0 and the demand of the
vertices wi,j for i = 1, . . . , k and j = 1, . . . , 16 are 1/23. The constants are chosen to
maximize the lower bound obtained from this family of instances. In the figure edges
e with xe > 0 are shown. One can verify that this is indeed a feasible solution to the
tree cover LP (3).

A Fast (2 + 2/7)-Approximation Algorithm for Capacitated Cycle Covering 401

A Sketch of the Proof of Lemma1

Pick an arbitrary root r for T . Then we perform the following splitting-off pro-
cedure (similar to Algorithm A in [15]).

As long as the vertex set V (T) of the tree T remains large, we iterate the
following. Let v be maximally far away from r with the property that V (Tv) is
large, where Tv is the subtree rooted at v. Let w1, . . . , wl be the children of v.
Since b(V (Tv)) = b(v) +

∑l
i=1 b(V (Twl

)), we must have that b(v) ≥ 1/2 or there
exists a set N ⊆ {1, . . . , l} with

∑
i∈N b(V (Twi

)) ∈ [1/2, 1]. In the first case we
split off a singleton tree ({v}, ∅) covering the vertex v and replace v in T by a
Steiner vertex, i.e. we set its demand to zero. In the second case we split off a
tree covering all vertices contained in the subtrees Twi

for i ∈ N ; the Steiner tree
for this set of terminals contains v as a Steiner vertex and for i ∈ N contains
the edge {v, wi} and the subtree Twi

. Thus we then remove these subtrees from
T .

Let T1, . . . , Tk−1 be the Steiner trees split off during this algorithm and let
Tk be the remaining tree. Moreover, let R1, . . . , Rk be the respective terminal
sets of these Steiner trees. Then we know that b(Ri) ≥ 1/2 for all i ≤ k − 2 and
b(Rk−1) + b(Rk) ≥ 1. Thus 2b(V) = 2

∑k
i=1 b(Ri) ≥ k.

B Sketch of the Proof of Lemma4

The key part is showing that r is indeed submodular. For this let F ′ ⊆ F ⊆ E
be arbitrary and e ∈ E \ F . We need to show that

r(F ′ ∪ {e}) − r(F ′) ≥ r(F ∪ {e}) − r(F).

Let A1, A2 ∈ C(F) be the two components of F joined by e. Moreover, let
A′

1, A
′
2 ∈ C(F ′) be the same for F ′. We can assume that A′

1 ⊆ A1 and A′
2 ⊆ A2

since F ′ ⊆ F . Then one can show that

r(F ∪ {e}) − r(F) = max{1, b(A1)} + max{1, b(A2)} − max{1, b(A1 ∪ A2)}

and

r(F ′ ∪ {e}) − r(F ′) = max{1, b(A′
1)} + max{1, b(A′

2)} − max{1, b(A′
1 ∪ A′

2)}.

So the submodularity of r reduces to observation that the expression

max{1, x} + max{1, y} − max{1, x + y}

is non-increasing in x and y for x, y ≥ 0.

402 V. Traub and T. Tröbst

C Sketch of the Proof of Lemma8

Note that the partition C in iteration i of Algorithm 2 is the same as in iteration
i of Algorithm 1; here we assume wlog. that the edges are sorted in the same
order in both algorithms. Hence, we apply lines 7–10 of Algorithm2 precisely for
those edges ei for which we set xei

in line 7 of Algorithm 1. We define E′ as in
Sect. 4 and also define Cu

e ⊆ V for an edge e ∈ E′ and a vertex u ∈ e as before.
Let x be the output of Algorithm1. It is easy to verify that the choice of

which edges we include in the forest F in lines 7–10 of Algorithm 2 is such that
we minimize

∑

e∈F

2 · �(e) +
∑

e∈E\F

∑

u∈e

γ · max{1 − 2b(Cu
e), 0} (8)

among all set F with {e ∈ E : xe = 1} ⊆ F ⊆ {e ∈ E : xe > 0}. By Lemma 7
there exists such an edge set F where (8) is at most (2 + 2/7) · �(x) + 2/7 · γ ·
(|V | − x(E)). Hence, also the edge set F computed by Algorithm 2 fulfills this
bound. By Lemma 6 this implies the claimed bound (7).

D Proof of Theorem3

For n ∈ N with n ≥ 4, let G = (V,E) be the complete graph on the vertices
v1, . . . , vn with the metric � on V given by �(vi, vj) := 1

4 |i − j|, i.e. (G, �) is the
metric closure of a path. Assign uniform demands of b(v) := 1/4 to every vertex
v and let γ := 1. Then we observe that LP(G, �, b, γ) = 7

16n. See Fig. 2.
But now consider what Algorithm 2 does on this instance. Assume that the

edges are sorted such that ei = {vi, vi+1} for all i ∈ {1, . . . , n−1}. The algorithm
will then buy the edges e1 to e3. But it will not buy any other edge as

γ max{1 − 2b(vi+1), 0} = 1
2 = 2�({vi, vi+1})

for all i ∈ {1, . . . , n − 1}. So the condition in line 9 is never satisfied except
for the first three iterations of the loop. Hence, any CCCP solution which is
“contained” in the connected components of F (i.e. it does not contain a cycle
Ci where V (Ci) is not connected in (V, F)), must contain at least n−4 singleton
cycles.

Finally, we conclude that any such CCCP solution has a cost of at least

n − 4 =
n − 4
7
16n

LP ≥
(16

7
− ε

)
LP =

(
2 +

2
7

− ε
)
LP

for n large enough.

v1 v2 v3 v4 v5 v6 v7 v8 v9 v10 v11 v12

Fig. 2. An optimum solution to the tree cover LP (3) for instance from the proof of
Theorem 3 for n = 12. For every solid edge e we have xe = 1 and for every dotted edge
e we have xe = 3/4.

A Fast (2 + 2/7)-Approximation Algorithm for Capacitated Cycle Covering 403

References

1. Altinkemer, K., Gavish, B.: Heuristics for unequal weight delivery problems with
a fixed error guarantee. Oper. Res. Lett. 6(4), 149–158 (1987)

2. Becker, A.: A tight 4/3 approximation for capacitated vehicle routing in trees.
In: Blais, E., Jansen, K., Rolim, J.D.P., Steurer, D. (eds.) Approximation,
Randomization, and Combinatorial Optimization, Algorithms and Techniques
(APPROX/RANDOM 2018). Leibniz International Proceedings in Informatics
(LIPIcs), vol. 116, pp. 3:1–3:15. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik,
Dagstuhl (2018)

3. Becker, A., Klein, P.N., Saulpic, D.: Polynomial-time approximation schemes for
k-center, k-median, and capacitated vehicle routing in bounded highway dimension.
In: Azar, Y., Bast, H., Herman, G. (eds.) 26th Annual European Symposium on
Algorithms (ESA 2018). Leibniz International Proceedings in Informatics (LIPIcs),
vol. 112, pp. 8:1–8:15. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, Dagstuhl
(2018)

4. Becker, A., Klein, P.N., Schild, A.: A PTAS for bounded-capacity vehicle routing
in planar graphs. In: Friggstad, Z., Sack, J.-R., Salavatipour, M.R. (eds.) WADS
2019. LNCS, vol. 11646, pp. 99–111. Springer, Cham (2019). https://doi.org/10.
1007/978-3-030-24766-9 8

5. Bompadre, A., Dror, M., Orlin, J.B.: Improved bounds for vehicle routing solutions.
Discrete Optim. 3(4), 299–316 (2006)

6. Carr, R., Vempala, S.: On the Held-Karp relaxation for the asymmetric and
symmetric traveling salesman problems. Math. Program. 100(3), 569–587 (2004).
https://doi.org/10.1007/s10107-004-0506-y

7. Dantzig, G.B., Ramser, J.H.: The truck dispatching problem. Manag. Sci. 6(1),
80–91 (1959)

8. Das, A., Mathieu, C.: A quasipolynomial time approximation scheme for Euclidean
capacitated vehicle routing. Algorithmica 73(1), 115–142 (2015)

9. Das, S., Jain, L., Kumar, N.: A constant factor approximation for capacitated
min-max tree cover. arXiv:1907.08304 (2019)

10. Even, G., Garg, N., Koenemann, J., Ravi, R., Sinha, A.: Min-max tree covers of
graphs. Oper. Res. Lett. 32(4), 309–315 (2004)

11. Goemans, M.X.: Worst-case comparison of valid inequalities for the TSP. Math.
Program. 69(1), 335–349 (1995). https://doi.org/10.1007/BF01585563

12. Haimovich, M., Kan, A.H.G.R.: Bounds and heuristics for capacitated routing
problems. Math. Oper. Res. 10(4), 527–542 (1985)

13. Khachay, M., Dubinin, R.: PTAS for the Euclidean capacitated vehicle routing
problem in Rd. In: Kochetov, Y., Khachay, M., Beresnev, V., Nurminski, E., Parda-
los, P. (eds.) DOOR 2016. LNCS, vol. 9869, pp. 193–205. Springer, Cham (2016).
https://doi.org/10.1007/978-3-319-44914-2 16

14. Labbé, M., Laporte, G., Mercure, H.: Capacitated vehicle routing on trees. Oper.
Res. 39(4), 616–622 (1991)

15. Maßberg, J., Vygen, J.: Approximation algorithms for network design and facil-
ity location with service capacities. In: Chekuri, C., Jansen, K., Rolim, J.D.P.,
Trevisan, L. (eds.) APPROX/RANDOM-2005. LNCS, vol. 3624, pp. 158–169.
Springer, Heidelberg (2005). https://doi.org/10.1007/11538462 14

16. Pecin, D., Pessoa, A., Poggi, M., Uchoa, E.: Improved branch-cut-and-price for
capacitated vehicle routing. Math. Program. Comput. 9(1), 61–100 (2016). https://
doi.org/10.1007/s12532-016-0108-8

https://doi.org/10.1007/978-3-030-24766-9_8
https://doi.org/10.1007/978-3-030-24766-9_8
https://doi.org/10.1007/s10107-004-0506-y
http://arxiv.org/abs/1907.08304
https://doi.org/10.1007/BF01585563
https://doi.org/10.1007/978-3-319-44914-2_16
https://doi.org/10.1007/11538462_14
https://doi.org/10.1007/s12532-016-0108-8
https://doi.org/10.1007/s12532-016-0108-8

404 V. Traub and T. Tröbst

17. Pessoa, A., Sadykov, R., Uchoa, E., Vanderbeck, F.: A generic exact solver for
vehicle routing and related problems. In: Lodi, A., Nagarajan, V. (eds.) IPCO
2019. LNCS, vol. 11480, pp. 354–369. Springer, Cham (2019). https://doi.org/10.
1007/978-3-030-17953-3 27

18. Tröbst, T.: Capacitated vehicle routing and cycle covering problems. Master’s the-
sis, Research Institute for Discrete Mathematics, University of Bonn (2019)

19. Vidal, T., Crainic, T.G., Gendreau, M., Prins, C.: A unified solution framework
for multi-attribute vehicle routing problems. Eur. J. Oper. Res. 234(3), 658–673
(2014)

20. Yu, W., Liu, Z.: Better approximability results for min-max tree/cycle/path
cover problems. J. Comb. Optim. 37(2), 563–578 (2019). https://doi.org/10.1007/
s10878-018-0268-8

21. Yu, W., Liu, Z., Bao, X.: New approximation algorithms for the minimum cycle
cover problem. Theor. Comput. Sci. 793, 44–58 (2019)

https://doi.org/10.1007/978-3-030-17953-3_27
https://doi.org/10.1007/978-3-030-17953-3_27
https://doi.org/10.1007/s10878-018-0268-8
https://doi.org/10.1007/s10878-018-0268-8

Graph Coloring Lower Bounds
from Decision Diagrams

Willem-Jan van Hoeve(B)

Carnegie Mellon University, Pittsburgh, PA 15213, USA
vanhoeve@andrew.cmu.edu

Abstract. We introduce an iterative framework for computing lower
bounds to graph coloring problems. We utilize relaxed decision diagrams
to compactly represent an exponential set of color classes, or independent
sets, some of which may contain edge conflicts. Our procedure uses mini-
mum network flow models to compute lower bounds on the coloring num-
ber and identify conflicts. Infeasible color classes associated with these
conflicts are removed by refining the decision diagram. We prove that in
the best case, our approach may use exponentially smaller diagrams than
exact diagrams for proving optimality. We also provide an experimental
evaluation on benchmark instances, and report an improved lower bound
for one open instance.

1 Introduction

Graph coloring is a fundamental combinatorial optimization problem that asks
to color the vertices of a given graph with a minimum number of colors, such
that adjacent vertices are colored differently. Graph coloring is a core compo-
nent of many applications, in particular those related to timetabling or schedul-
ing [3,16,18,26]. The most efficient exact solution methods are the Randall-
Brown algorithm using the Dsatur vertex ordering [8,22,23], integer linear pro-
gramming [15], and column generation (branch-and-price) [13,14,19–21].

A major challenge for exact graph coloring methods is to find strong lower
bounds to help accelerate the proof of optimality. A natural lower bound is
the clique number of a graph—the size of the largest complete subgraph, which
requires all its vertices to be colored differently. In this work, we explore an
alternative approach that does not directly rely on maximal cliques, but instead
makes use of relaxed decision diagrams [2]. Relaxed decision diagrams provide
a graphical discrete relaxation of a solution set and can be used to derive opti-
mization bounds [2,6,7].

For the graph coloring problem, we let the decision diagram compactly rep-
resent the collection of independent sets of the input graph, each of which cor-
responds to a color class (a subset of vertices with the same color). We obtain
a graph coloring lower bound by solving a constrained minimum network flow

Partially supported by Office of Naval Research Grant No. N00014-18-1-2129 and
National Science Foundation Award #1918102.

c© Springer Nature Switzerland AG 2020
D. Bienstock and G. Zambelli (Eds.): IPCO 2020, LNCS 12125, pp. 405–418, 2020.
https://doi.org/10.1007/978-3-030-45771-6_31

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-45771-6_31&domain=pdf
http://orcid.org/0000-0002-0023-753X
https://doi.org/10.1007/978-3-030-45771-6_31

406 W.-J. van Hoeve

over the decision diagram that ensures that each vertex only appears in one
color class. However, in our relaxed decision diagram, not all color classes may
be exact. We therefore identify conflicts (adjacent vertices) in each color class,
which are subsequently removed from the diagram by a refinement step. We
iteratively apply this process until no more conflicts are found. We show that an
integral conflict-free solution to the constrained minimum network flow problem
is guaranteed to be optimal.

Our approach is relatively generic, in that the iterative refinement process
based on conflicts is not restricted to graph coloring problems. For example, we
can define a very similar procedure for bin packing problems, in which case a
subset of items is conflicting if its weight exceeds the capacity of the bin. In fact,
it can be viewed as a ‘dual’ form of column generation: instead of iteratively gen-
erating new columns (color classes), our approach iteratively removes infeasible
color classes from consideration. In both cases, however, a solution is defined as
a subset of columns.

Contributions. The main contributions of this work include (1) the introduc-
tion of a new framework for obtaining graph coloring lower bounds based on
relaxed decision diagrams, and proving its correctness, (2) a proof that relaxed
decision diagrams can be exponentially smaller than their exact versions for find-
ing optimal solutions, and (3) an experimental evaluation of our lower bounds
on benchmark instances, with an improved lower bound for one open instance.

2 Graph Coloring by Independent Sets

We first present a formal definition of graph coloring [24]. Let G = (V,E) be an
undirected simple graph with vertex set V and edge set E. We define n = |V |
and m = |E|. We denote by Ni the set of neighbors of i ∈ V . For convenience, we
label the vertices V as integers {1, . . . , n}. A vertex coloring of G is a mapping
of each vertex to a color such that adjacent vertices are assigned different colors.
We refer to the subset of vertices with the same color as a color class. The graph
coloring problem is to find a vertex coloring with the minimum number of colors.
The minimum number of colors to color G is called the coloring number or the
chromatic number of G, denoted by χ(G).

Observe that each color class is defined as a subset of variables that are pair-
wise non-adjacent. In other words, a color class corresponds to an independent
set of G, and conversely each independent set of G can be used as a color class.
This allows to formulate the graph coloring problem as follows. Let I be the
collection of all independent sets of G. We introduce a binary variable yi for
each independent set i ∈ I, representing whether i is used as a color class in a
solution. We let binary parameter aij represent whether vertex j ∈ V belongs
to independent set i ∈ I. The graph coloring problem can then be formulated as
the following integer program:

min
∑

i∈I yi

s.t.
∑

i∈I aijyi = 1 ∀j ∈ V,
yi ∈ {0, 1} ∀i ∈ I,

(1)

Graph Coloring Lower Bounds from Decision Diagrams 407

where the equality constraint ensures that each vertex belongs to one color class.
This formulation forms the basis of the column generation approaches for graph
coloring, as first proposed in [20]. Instead of enumerating all exponentially many
independent sets I, column generation iteratively adds new independent sets
(with negative reduced cost) to an initial collection. In our approach, we start
with all subsets sets I and iteratively remove sets that contain adjacent vertices.

3 Decision Diagrams

Decision diagrams were originally developed to represent switching circuits and,
more generally, Boolean functions [1,17,25]. They became particularly popular
after the introduction of efficient compilation methods for Reduced Ordered
Binary Decision Diagrams [9,10], and have been applied widely to verification
and configuration problems. More recently, decision diagrams have been applied
to solve optimization problems [6], which is the context we follow in this paper.

Definitions. For our purposes, a decision diagram will represent the set of
solutions to an optimization problem P defined on an ordered set of decision
variables X = {x1, . . . , xn}. In this paper, we assume that each variable is binary.
The feasible set of P is denoted by Sol(P).

A decision diagram for P is a layered directed acyclic graph D = (N,A) with
node set N and arc set A. D has n + 1 layers that represent state-dependent
decisions for the variables. The first layer (layer 1) is a single root node r, while
the last layer (layer n + 1) is a single terminal node t. Layer j is a collection of
nodes associated with variable xj ∈ X, for j = 1, . . . , n. Arcs are directed from
a node u in layer j to a node v in layer j +1, and have an associated label �(u, v)
which can be either 0 or 1. We refer to the former as 0-arcs and to the latter as
1-arcs. The layer of node u is denoted by L(u). Each arc, and each node, must
belong to a path from r to t. Each arc-specified r-t path p = (a1, a2, . . . , an)
defines a variable assignment by letting xj = �(aj) for j = 1, . . . , n. We slightly
abuse notation and denote by Sol(D) the collection of variable assignments for
all r-t paths in D.

Definition 1. A decision diagram D is exact for problem P if Sol(D) = Sol(P).
A decision diagram D is relaxed for problem P if Sol(D) ⊇ Sol(P).

The benefit of using decision diagrams for representing solutions is that equiv-
alent nodes, i.e., nodes with the same set of completions, can be merged. A deci-
sion diagram is called reduced if no two nodes in a layer are equivalent. A key
property is that for a given fixed variable ordering, there exists a unique reduced
ordered decision diagram [9]. Nonetheless, even reduced decision diagrams may
be exponentially large to represent all solutions for a given problem.

Exact Compilation. In this work we apply top-down compilation meth-
ods that depend on state-dependent information (similar to state variables in

408 W.-J. van Hoeve

1 2

3 4

a. Input graph

x1

x2

x3

x4

r

1234

24 234

- 4 3 34

- 4

-

t

b. Exact decision diagram

Fig. 1. Input graph for Example 1 (a) and the associated exact decision diagram rep-
resenting all independent sets (b). The diagram uses the lexicographic ordering of the
vertices. Dashed arcs represent 0-arcs, while solid arcs represent 1-arcs. For convenience,
the set of eligible vertices (the state information) is given in each node.

dynamic programming models). We limit the exposition to the compilation of
decision diagrams for independent set problems [4,5]. We define a binary vari-
able xi for each i ∈ V representing whether i is selected. The state information
we maintain is the set of ‘eligible vertices’, i.e., the set of graph vertices that can
be added to the independent sets represented by paths into the node.

Formally, for each node u in the decision diagram we recursively define a set
S(u) ⊆ V , and we initialize S(r) = V , S(t) = ∅. For node u in layer L(u) = j
we distinguish two cases. If j /∈ S(u), we define a 0-arc (or transition) from u to
v, with S(v) = S(u). Otherwise, if j ∈ S(u), we define both a 1-arc and a 0-arc
out of u, with

S(v) =
{

S(u) \ ({j} ∪ Nj) if (u, v) is a 1-arc
S(u) \ {j} if (u, v) is a 0-arc

The top-down compilation procedure starts at the root node, creates all nodes
in the next layer (following the 0-arcs and 1-arcs), and merges the nodes that are
equivalent. In our case, two nodes u and v are equivalent if S(u) = S(v). This
top-down compilation procedure yields the unique reduced decision diagram for
representing all independent sets (for a given ordering), as shown in [4,5].

Example 1. Consider the graph in Fig. 1a. We depict the exact decision diagram
representing all independent sets for this graph in Fig. 1b.

Compilation by Separation. As an alternative to exact compilation, we can
apply constraint separation to iteratively construct the decision diagram [6,11].
We will apply this method to compile relaxed decision diagrams, and again
describe it in the context of independent sets.

Graph Coloring Lower Bounds from Decision Diagrams 409

(a)

x1

x2

x3

x4

r

t

lower bound:
flow paths:

conflicting edge:

1
(1,1,1,1)

(1,3)

(b) r

t

2
(1,1,0,1)
(0,0,1,0)
(2,4)

(c) r

t

2
(1,1,0,0)
(0,0,1,1)
(3,4)

(d) r

t

2
(1,0,0,1)
(0,1,1,0)
-

Fig. 2. Applying constraint separation to the input graph of Example 1. The initial
relaxed diagram (a) is iteratively refined until the optimal solution (the flow paths) no
longer contains infeasible color classes.

We initialize each layer j of D as a single node uj , with state information
S(uj) = {j, . . . , n}, for j = 1, . . . , n, and S(un+1) = ∅. We define a 0-arc
and a 1-arc between nodes uj and uj+1, for j = 1, . . . , n. The input to our
separation algorithm is a relaxed decision diagram D together with a path p =
uj , uj+1, . . . , uk with associated arc labels lj , lj+1, . . . , lk−1, and a conflict, i.e.,
the edge between vertices j and k, where j < k. The goal of the separation
algorithm is to resolve the conflict along path p by splitting nodes, and arcs,
appropriately. This is described in Algorithm1.

We represent D as a two-dimensional vector D[][] of nodes, such that D
is a vector of ‘layers’ and D[] is a vector of ‘nodes’, one for each layer. Both
are indexed starting from 1. The size of vector D is fixed to n + 1, while we
dynamically update the size of the layers D[]. The root is represented as D[1][1]
and the terminal as D[n+1][1]. Each node u = D[j][i] (u is the i-th node in layer
j) has state information D[j][i].S = S(u), a reference to the node in layer j + 1
that represents the endpoint of its 1-arc D[j][i].oneArc, and a similar reference for
its 0-arc D[j][i].zeroArc. If the 1-arc does not exist, the reference holds value −1.

Algorithm 1 considers each node D[i][ui] along the path in sequence (line 2)
and splits off the next node in the path. This is done by first creating a temporary
node w (lines 3–5). If an equivalent node already exists in layer i + 1, we direct
the path to its index (lines 6–7). Otherwise we complete the definition of w by
copying the outgoing arcs of node D[i + 1][ui+1] (lines 9–11), and we add w
to layer i + 1 (lines 12–13). Lastly, we redirect the path from ui to the new
node with index t (lines 15–17). Figure 2 gives an illustration of the algorithm.
When we apply the algorithm to the decision diagram (a), with the all-ones path
and conflicting edge (1, 3) as input, we obtain the decision diagram (b).

410 W.-J. van Hoeve

Algorithm 1: Compilation by separation.
1 Input: relaxed decision diagram D (D[j][i] represents the ith node in layer j),

path node indices uj , . . . , uk−1, path arc labels lj , . . . , lk−1, conflict (j, k), and
list of neighbors Ni for each i ∈ V

2 for i = j, . . . , k − 1 do
3 create node w // goal is to split the path towards node w
4 w.S ← D[i][ui].S \ {i} // copy the state and remove i
5 if li = 1 then S(w) ← S(w) \ Ni // remove Ni for 1-arc
6 t ← −1 // t is index of the new node in layer i + 1
7 if ∃k such that D[i + 1][k].S = w.S then t ← k // equivalent node
8 if t = −1 then
9 if i + 1 ∈ w.S then w.oneArc = D[i + 1][ui+1].oneArc // copy 1-arc

10 else w.oneArc = -1
11 w.zeroArc = D[i + 1][ui+1].zeroArc // copy 0-arc
12 D[i + 1].add(w) // append w as new node to layer i + 1
13 t ← |D[i + 1]| // update t to last index of layer i + 1

14 end
15 if li = 1 then D[i][ui].oneArc= t // re-direct path in case of 1-arc
16 else D[i][ui].zeroArc= t // re-direct path in case of 0-arc
17 ui+1 = t // update path index

18 end

Compilation by constraint separation proceeds in iterations by gradually
refining the relaxed decision diagram. For our model, it has some useful proper-
ties:

Lemma 1. Each decision diagram that is compiled by separation is reduced, i.e.,
no two nodes on any layer are equivalent.

Lemma 2. Compilation by separation will terminate with an exact decision dia-
gram if each possible conflict, along any path, is separated.

These two lemmas follow from the fact that for independent set problems, the
state information is sufficient to prove equivalence [4,5]. Lemma 1 will ensure
that our approach produces the smallest decision diagram at each iteration,
while Lemma 2 will guarantee termination and optimality.

4 Network Flow Model

We next formulate the graph coloring problem based on independent sets as a
network flow problem on the decision diagram. We let δ+(u) and δ−(u) denote
the set of arcs leaving, respectively entering node u ∈ N . For each arc a ∈ A we
introduce a variable ya that represents the ‘flow’ through a. We then define:

(F) = min
∑

a∈δ+(r)

ya (2)

s.t.
∑

a=(u,v)|L(u)=j,�(a)=1

ya = 1 ∀j ∈ V (3)

Graph Coloring Lower Bounds from Decision Diagrams 411

∑

a∈δ−(u)

ya −
∑

a∈δ+(u)

ya = 0 ∀u ∈ N \ {r, t} (4)

ya ∈ {0, 1, . . . , n} ∀a ∈ A (5)

The objective function (2) minimizes the total amount of flow. Constraints (3)
define that in each layer exactly one 1-arc is selected. Constraints (4) ensure flow
conservation. Constraints (5) make sure the flow is integer.

Lemma 3. A solution to model (F) corresponds to a partition of vertex set V .

Proof. The partition can be found by decomposing the flow into paths. For
vertex i ∈ V there is exactly one arc a = (u, v) for which ya = 1, by constraints
(3). By constraints (4) there exists an r-u path and a v-t path for which ya ≥ 1
for each arc a along the path, which together with arc (u, v) forms an r-t path.
Let P be the collection of such r-t paths; the cardinality of P is given by the
objective function (2). Each path (a1, a2, . . . , an) ∈ P corresponds to a subset of
vertices {i | �(ai) = 1}. By constraints (3), these subsets are disjoint. �	
Theorem 1. If the decision diagram is exact, model (F) finds an optimal solu-
tion to the graph coloring problem.

Proof. Since each path in the exact decision diagram corresponds to an inde-
pendent set, the theorem follows from Lemma 3. �	
By the definition of relaxed decision diagrams, we have the following corollary:

Corollary 1. If the decision diagram is relaxed, the objective value of model (F)
is a lower bound on the graph coloring problem.

One may wonder whether model (F) can be solved in polynomial time, since the
NP-hardness of graph coloring may be accounted for by the worst-case exponen-
tial size of the decision diagram. The answer, however, is negative:

Theorem 2. Solving model (F) for an arbitrary decision diagram is NP-hard.

The proof follows from a reduction from minimum set partitioning and is given
in the appendix. Note that paths in the solution are not explicitly given, but
instead follow from the arc flow values. Moreover, paths can share nodes (and 0-
arcs). We can therefore restrict the proof of Theorem 2 to be paths corresponding
to a solution to the minimum set partitioning problem:

Corollary 2. If the decision diagram is relaxed, deciding whether a given solu-
tion to model (F) corresponds to a feasible graph coloring solution is NP-hard.

5 Iterative Refinement Procedure

While the worst-case complexity results in the previous section are negative, we
can, however, efficiently identify a conflict in a given solution:

412 W.-J. van Hoeve

Algorithm 2: Iterative refinement by conflict detection and separation.
1 Input: decision diagram D and input graph data
2 foundSol ← false
3 while foundSol = false do
4 solve model (F) with decision diagram D
5 lowerBound ← obj(F)
6 if flow decomposition algorithm finds no conflict then foundSol ← true
7 else separate conflict in D using Algorithm 1

8 end

Theorem 3. For a given solution to (F) we can in polynomial time (in the
size of the decision diagram) either determine feasibility or identify a subset of
vertices that creates an infeasibility.

The proof, given in the appendix, is constructive and based on a path decom-
position of the network flow. We apply this path decomposition to identify and
separate conflicts inside an iterative refinement procedure, described at a high-
level in Algorithm 2. The algorithm repeatedly solves the flow model, the objec-
tive of which provides a lower bound. If the solution contains a conflict, the
decision diagram is refined, and we repeat the process. Otherwise, we found an
optimal solution and terminate. Note that depending on the flow decomposition,
the same solution to (F) might either return a feasible solution or a conflict.

Example 2. Figure 2 depicts the iterative refinement procedure when applied to
the input graph given in Fig. 1a. We start with the trivial relaxation in (a), which
encodes all possible subsets of V , and find the all-ones solution as a single path.
Thus, the lower bound is 1. The first conflict we identify is edge (1,3) which
is subsequently separated. An optimal flow for diagram (b) contains two paths
which yields lower bound 2, and we can identify conflict (2,4) to be separated.
This continues until we find the diagram (d) and identify flow paths without
conflicts.

Example 2 shows that iterative refinement may yield relaxed decision dia-
gram that are smaller than exact decision diagrams, to prove optimality. This is
formalized in the following key result, the proof of which is given in the appendix:

Theorem 4. The iterative refinement procedure can find a provably optimal
solution with a relaxed decision diagram that is exponentially smaller than the
exact diagram that is defined on the same variable ordering.

6 Implementation and Experimental Results

We implemented our method in C++, and performed an experimental evalua-
tion on the 137 graph coloring benchmark instances obtained from [12], which
includes all DIMACS graph coloring instances [16]. We use CPLEX 12.9 as inte-
ger and linear programming solver. The decision diagrams have a given maximum
size (either 100,000 or 1,000,000 nodes).

Graph Coloring Lower Bounds from Decision Diagrams 413

Table 1. Evaluating the impact of solving linear programming models before solving
the integer programming models (a) and single conflict and multiple conflict resolution
(b). In each case, we first list the number of instances for which either method finds
a better bound. For those cases with equal bounds, we report the ratio of the average
time to the best solution and the standard deviation.

IP > LP+IP 2
LP+IP > IP 31
LP+IP = IP 104
(LP+IP)/IP 0.53 (s.d.=0.38)

a. Impact of adding LP to IP

single> multiple 3
multiple > single 43
multiple = single 91
multiple/single 0.36 (s.d.=0.39)

b. Single vs. multiple conflicts

Implementation Details. The single most important parameter that influ-
ences the performance of the algorithm is the variable ordering of the decision
diagram. We apply the following variable ordering heuristic, which dominated
all other heuristics we tested: among all unselected vertices, select the one that
is connected to the most vertices that have been selected so far. In case of ties,
select a vertex with the highest degree.

Second, observe that solving the continuous linear programming relaxation
of model (F) provides a valid lower bound, as well as a path decomposition
that can be used to identify conflicts. While the LP bound may be weaker than
the IP bound, it is faster to compute and may therefore speed up the overall
process. We implemented this by starting with LP-based iterative refinement,
which is continued until a conflict-free LP optimum solution is found. After that,
we continue with the IP-based iterative refinement to prove integer optimality.

Third, instead of resolving a single conflict (separation) in each iteration, it
is possible to resolve multiple conflicts; one for each path in the decomposition
(if it exists). The validity of identifying and separating multiple conflicts per
iteration relies on the specific state information for independent sets, as well as
on the indexing of our data structure D[][].

We ran experiments to assess the impact of adding the LP-based iterative
refinement and multiple conflicts. The results are shown in Table 1. For each fea-
ture, we ran our algorithm with and without that feature, on all 137 benchmark
instances for a maximum of 300 s per instance. The impact is measured by the
quality of the bound (number of instances with a better bound), and when the
bounds are equal, by the computation time to the best bound. Both using LP
and multiple conflicts have a substantial positive impact on the performance,
reducing the time to the best bound by a factor 0.53 (LP), resp. 0.38 (multiple
conflicts).

We added two other features to streamline the solving process. After reading
in the data, we run the Dsatur heuristic to quickly find an upper bound, to help
prove optimality in some cases. Furthermore, before running the LP and IP-
based iterative refinement, we run a refinement procedure based on the longest
path (with respect to 1-arcs) on the decision diagram, for at most 100 iterations.

414 W.-J. van Hoeve

Table 2. Performance of the relaxed decision diagram on a selection of open instances.
For each instance we list the number of nodes (n) and edges (m), edge density (d),
and the best known lower bound (χ) and upper bound (χ). For the relaxed decision
diagram, we report the lower bound (LB) and time to best bound (TTB). The time
limit was set to 3,600 s (the maximum size of 1,000,000 was never exceeded). Upper
bounds marked with an asterisk were computed with the Dsatur heuristic.

Relaxed DD
Instance n m d χ χ LB TTB

abb313GPIA 1,557 53,356 0.04 8 10 7 1.71
C2000.9 2,000 1,799,532 0.90 0 400 98 1,826.92
DSJC250.1 250 3,218 0.10 6 8 5 0.01
latin square 10 900 307,350 0.76 90 97 90 0.73
wap01a 2,368 110,871 0.04 41 48* 40 1.20
wap02a 2,464 111,742 0.04 40 45* 40 1.61
wap03a 4,730 286,722 0.03 40 56* 40 0.88
wap04a 5,231 294,902 0.02 40 42 40 1.05
wap06a 947 43,571 0.10 40 54* 40 0.15
wap07a 1,809 103,368 0.06 40 41 39 705.66
wap08a 1,870 104,176 0.06 40 45* 39 107.23

Experimental Analysis. The aim of our first experiment is to compare the
performance of the iterative refinement and the exact compilation. We con-
sider all instances that are solved to optimality by either method—47 instances
in total. The details can be found in Table 3 in the Appendix. The exact decision
diagram can be remarkably small, which allows solving 37 instances directly. Per-
haps even more remarkable is that the relaxed diagram can sometimes be orders
of magnitude smaller than the exact diagram for proving optimality, demon-
strating the value of Theorem 4 in practice.

The second set of experiments, presented in Table 2, investigates the quality
of the bounds of the iterative refinement procedure. The table considers a selec-
tion of open instances.1 We report the lower bound (LB) and the time to the
best lower bound in seconds (TTB). We were able to improve the lower bound
for instance C2000.9 (marked in bold).

7 Conclusion

We introduced a new approach for obtaining lower bounds to graph coloring
problems, by solving a minimum network flow problem defined over a relaxed
decision diagram. By separating conflicts in the network flow solution, the
relaxed decision diagram is iteratively refined, which results in stronger bounds.
We showed both theoretically and experimentally that relaxed decision diagrams
can be orders of magnitude smaller than exact diagrams when proving optimality.
This allowed to find an improved lower bound for one open benchmark instance.

1 According to the website with benchmark results [12] – accessed November 29, 2019.

Graph Coloring Lower Bounds from Decision Diagrams 415

Graph Coloring Lower Bounds from Decision Diagrams: Appendix

Proof of Theorem 2. By reduction from minimum set partitioning. We are given
a collection S of sets based on a universe of elements E, and need to find a
subset of S of minimum cardinality such that each element in E belongs to
exactly one subset. We define a polynomial-size decision diagram with |E| + 1
node layers, such that layer i represents the i-th element from E following an
arbitrary but fixed ordering of E. We then define an r-t path for each set in S
by introducing nodes and arcs between each layer i and i + 1, with arc label 1 if
the i-th element of E is in S and 0 otherwise. An optimal solution to model (F)
directly corresponds to solving the minimum set partitioning problem. �	
Proof of Theorem 3. We apply a flow decomposition algorithm that iteratively
finds r-t paths with flow value 1, starting from the root. The algorithm maintains
the set of vertices i for which ya = 1, �(a) = 1 and L(a) = i. Each time a vertex
i is added to this set, we inspect whether there exists an edge (i, j) ∈ E with j in
the set. If so, we terminate and report that the current (partial) path violates the
edge constraint for (i, j). Otherwise, when the r-t path is completed, we subtract
the minimum flow value along the path from each of its arcs, and repeat the
process until all arcs out of the root have flow value zero. If in the process none
of the paths violates an edge constraint, we report that the solution is feasible.
Finding one r-t path takes linear time (in the size of the decision diagram, |D|).
The edge inspection takes O(n) time per event, which makes the total time for
identifying a single path O(n · |D|). Since there are at most n paths, the total
time is O(n2|D|). �	
Proof of Theorem 4. Consider a graph G = (V,E) with vertex labels V =
{1, . . . , n} and edge set {(i, i+1) | i ∈ {1, . . . , n−1}}, i.e., G is a path from vertex
1 to n, where n is an odd integer. We define the following fixed variable ordering
to compile the decision diagrams. For layers i = 1, . . . ,
n/2�, we associate vertex
i if i is odd, and vertex
n/2�+ i if i is even. The remaining layers are defined in
the ‘reverse order’; layer i =
n/2� + 1, . . . , n is associated with vertex n − i + 2
if i is odd, and vertex n − i +
n/2� if i is even.
Observation 1: up to layer
n/2�−1, vertex i appears in each state of layer i−1
since the vertices associated with these layers are not adjacent in G. Therefore,
each of these states has two outgoing arcs, the 0-arc and the 1-arc.
Observation 2: up to layer
n/2�−1, each 1-arc eliminates one element from the
set {
n/2�+1, . . . , n}. Therefore, the states of each layer, up to layer
n/2�−1, are
distinct. These two observations imply that the exact decision diagram requires
at least O(2�n/2�) states (the size of layer
n/2�).

Without loss of generality, we assume that the iterative refinement proce-
dure applies a lexicographic search in each iteration to find an optimal solu-
tion to model (F), and refines the decision diagram whenever an edge conflict is
detected. In iteration i, the algorithm will consider the conflict associated with
edge (i, i +
n/2�). Each of these conflicts is refined by adding one more node
to state i +
n/2� + 1. After
n/2� iterations, no more conflicts are found. The
iterative refinement procedure therefore terminates with a decision diagram of
O(n) size. �	

416 W.-J. van Hoeve

Table 3. A comparison of relaxed and exact decision diagrams on instances that were
optimally solved by either method (indicated by *). For each instance we list the number
of nodes (n) and edges (m), and edge density (d). We report the lower bound (LB),
upper bound (UB), solving time (in seconds), and the size of the decision diagram.
The last column (R/E) represents the ratio of the relaxed and exact diagram sizes.
The time limit was set to 1,800 s, and the maximum size was set to 100,000 nodes.

Relaxed DD Exact DD
instance n m d LB UB time size LB UB time size R/E

1-FullIns 3 30 100 0.23 4 4 * 0.03 249 4 4 * 0.04 747 0.33
2-FullIns 3 52 201 0.15 5 5 * 0.26 1,206 5 5 * 0.59 12,866 0.09
david 87 406 0.11 11 11 * 0.01 246 11 11 * 1.60 37,029 0.01
DSJC125.9 125 6,961 0.90 44 44 * 9.52 9,433 44 44 * 0.37 9,868 0.96
fpsol2.i.1 496 11,654 0.09 65 65 * 3.19 7,135 65 65 * 0.09 8,295 0.86
fpsol2.i.2 451 8,691 0.09 30 30 * 0.06 957 30 30 * 0.14 10,167 0.09
fpsol2.i.3 425 8,688 0.10 30 30 * 0.06 970 30 30 * 0.19 10,257 0.09
huck 74 301 0.11 11 11 * 0.09 786 11 11 * 0.02 1,077 0.73
inithx.i.1 864 18,707 0.05 54 54 * 0.83 3,993 54 54 * 0.21 15,804 0.25
inithx.i.2 645 13,979 0.07 31 31 * 34.57 21,787 31 31 * 1.05 24,588 0.89
inithx.i.3 621 13,969 0.07 31 31 * 51.19 22,777 31 31 * 0.79 24,550 0.93
jean 80 254 0.08 10 10 * 0.01 291 10 10 * 0.32 5,251 0.06
miles1000 128 3,216 0.40 42 42 * 0.58 4,104 42 42 * 0.11 8,031 0.51
miles1500 128 5,198 0.64 73 73 * 0.31 2,697 73 73 * 0.04 4,007 0.67
miles250 128 387 0.05 8 8 * 0.01 294 8 8 * 0.17 2,812 0.10
miles500 128 1,170 0.14 20 20 * 0.02 361 20 20 * 0.39 15,272 0.02
miles750 128 2,113 0.26 31 31 * 0.04 710 31 31 * 0.29 13,153 0.05
mulsol.i.1 197 3,925 0.20 49 49 * 0.12 1,107 49 49 * 0.02 2,487 0.45
mulsol.i.2 188 3,885 0.22 31 31 * 0.07 793 31 31 * 0.03 2,611 0.30
mulsol.i.3 184 3,916 0.23 31 31 * 0.06 789 31 31 * 0.03 2,621 0.30
mulsol.i.4 185 3,946 0.23 31 31 * 0.06 806 31 31 * 0.03 2,636 0.31
mulsol.i.5 186 3,973 0.23 31 31 * 0.06 807 31 31 * 0.03 2,649 0.30
myciel3 11 20 0.36 4 4 * 0.02 59 4 4 * 0.01 62 0.95
myciel4 23 71 0.28 5 5 * 2.31 454 5 5 * 0.35 459 0.99
queen5 5 25 160 0.53 5 5 * 0.01 194 5 5 * 0.01 560 0.35
queen6 6 36 290 0.46 7 7 * 1.03 1,927 7 7 * 0.11 2,686 0.72
queen7 7 49 476 0.40 7 7 * 0.89 3,267 7 7 * 0.23 13,838 0.24
queen8 8 64 728 0.36 9 9 * 164.56 30,606 9 9 * 38.82 81,574 0.38
r125.1 125 209 0.03 5 5 * 0.01 339 5 5 * 0.02 920 0.37
r125.1c 125 7,501 0.97 46 46 * 0.65 3,569 46 46 * 0.04 4,007 0.89
r125.5 125 3,838 0.50 36 36 * 57.31 18,924 36 36 * 0.49 23,242 0.81
r250.1c 250 30,227 0.97 64 64 * 11.54 18,059 64 64 * 0.15 20,322 0.89
zeroin.i.1 211 4,100 0.19 49 49 * 0.08 1,024 49 49 * 0.03 2,769 0.37
zeroin.i.2 211 3,541 0.16 30 30 * 0.05 774 30 30 * 0.05 3,470 0.22
zeroin.i.3 206 3,540 0.17 30 30 * 0.05 769 30 30 * 0.05 3,457 0.22

anna 138 493 0.05 11 11 * 0.01 356 0 11 2.80 ≥ 100k ≤ 0.00
DSJR500.1 500 3,555 0.03 12 12 * 0.01 626 0 12 1.43 ≥ 100k ≤ 0.01
games120 120 638 0.09 9 9 * 40.77 43,074 0 9 1.90 ≥ 100k ≤ 0.39
le450 25a 450 8,260 0.08 25 25 * 0.05 943 0 25 1.90 ≥ 100k ≤ 0.01
le450 25b 450 8,263 0.08 25 25 * 0.04 827 0 25 1.51 ≥ 100k ≤ 0.01
le450 5d 450 9,757 0.10 5 5 * 0.02 700 0 5 2.45 ≥ 100k ≤ 0.01
r1000.1 1,000 14,378 0.03 20 20 * 0.06 1,234 0 20 1.56 ≥ 100k ≤ 0.01
r250.1 250 867 0.03 8 8 * 3.03 11,614 0 8 1.40 ≥ 100k ≤ 0.11
school1 385 19,095 0.26 14 14 * 23.87 22,322 0 15 1.01 ≥ 100k ≤ 0.21
school1 nsh 352 14,612 0.24 14 14 * 23.80 23,430 0 16 1.23 ≥ 100k ≤ 0.21

2-Insertions 3 37 72 0.11 3 4 1,800 2,713 4 4 * 362.45 2,963 0.92
DSJC250.9 250 27,897 0.90 71 93 1,800 79,637 72 72 * 1,749.80 80,681 0.99

Graph Coloring Lower Bounds from Decision Diagrams 417

References

1. Akers, S.B.: Binary decision diagrams. IEEE Trans. Comput. 27, 509–516 (1978)
2. Andersen, H.R., Hadzic, T., Hooker, J.N., Tiedemann, P.: A constraint store based

on multivalued decision diagrams. In: Bessière, C. (ed.) CP 2007. LNCS, vol.
4741, pp. 118–132. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-
540-74970-7 11

3. Barnier, N., Brisset, P.: Graph coloring for air traffic flow management. Ann. Oper.
Res. 130, 163–178 (2004)

4. Bergman, D., Cire, A.A., van Hoeve, W.-J., Hooker, J.N.: Variable ordering for the
application of BDDs to the maximum independent set problem. In: Beldiceanu, N.,
Jussien, N., Pinson, É. (eds.) CPAIOR 2012. LNCS, vol. 7298, pp. 34–49. Springer,
Heidelberg (2012). https://doi.org/10.1007/978-3-642-29828-8 3

5. Bergman, D., Cire, A.A., van Hoeve, W.-J., Hooker, J.N.: Optimization bounds
from binary decision diagrams. INFORMS J. Comput. 26(2), 253–268 (2014)

6. Bergman, D., Cire, A.A., van Hoeve, W.-J., Hooker, J.N.: Decision Diagrams
for Optimization. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-319-
42849-9

7. Bergman, D., van Hoeve, W.-J., Hooker, J.N.: Manipulating MDD relaxations for
combinatorial optimization. In: Achterberg, T., Beck, J.C. (eds.) CPAIOR 2011.
LNCS, vol. 6697, pp. 20–35. Springer, Heidelberg (2011). https://doi.org/10.1007/
978-3-642-21311-3 5

8. Brélaz, D.: New methods to color the vertices of a graph. Commun. ACM 22(4),
251–256 (1979)

9. Bryant, R.E.: Graph-based algorithms for Boolean function manipulation. IEEE
Trans. Comput. C–35, 677–691 (1986)

10. Bryant, R.E.: Symbolic Boolean manipulation with ordered binary decision dia-
grams. ACM Comput. Surv. 24, 293–318 (1992)

11. Cire, A.A., Hooker, J.N.: The separation problem for binary decision diagrams. In:
Proceedings of ISAIM (2014)

12. Gualandi, S., Chiarandini, M.: Graph Coloring Benchmarks. https://sites.google.
com/site/graphcoloring/home

13. Gualandi, S., Malucelli, F.: Exact solution of graph coloring problems via constraint
programming and column generation. INFORMS J. Comput. 24(1), 81–100 (2012)

14. Held, S., Cook, W., Sewell, E.C.: Maximum-weight stable sets and safe lower
bounds for graph coloring. Math. Program. Comput. 4(4), 363–381 (2012)

15. Jabrayilov, A., Mutzel, P.: New integer linear programming models for the ver-
tex coloring problem. In: Bender, M.A., Farach-Colton, M., Mosteiro, M.A. (eds.)
LATIN 2018. LNCS, vol. 10807, pp. 640–652. Springer, Cham (2018). https://doi.
org/10.1007/978-3-319-77404-6 47

16. Johnson, D.S., Trick, M.A. (eds.): Cliques, Coloring, and Satisfiability: Second
DIMACS Implementation Challenge. DIMACS Series in Discrete Mathematics and
Theoretical Computer Science, 11–13 October 1993, vol. 26. American Mathemat-
ical Society (1996)

17. Lee, C.Y.: Representation of switching circuits by binary-decision programs. Bell
Syst. Tech. J. 38, 985–999 (1959)

18. Lewis, R., Thompson, J.: On the application of graph colouring techniques in
round-robin sports scheduling. Comput. Oper. Res. 38(1), 190–204 (2011)

19. Malaguti, E., Monaci, M., Toth, P.: An exact approach for the Vertex Coloring
Problem. Discrete Optim. 8, 174–190 (2011)

https://doi.org/10.1007/978-3-540-74970-7_11
https://doi.org/10.1007/978-3-540-74970-7_11
https://doi.org/10.1007/978-3-642-29828-8_3
https://doi.org/10.1007/978-3-319-42849-9
https://doi.org/10.1007/978-3-319-42849-9
https://doi.org/10.1007/978-3-642-21311-3_5
https://doi.org/10.1007/978-3-642-21311-3_5
https://sites.google.com/site/graphcoloring/home
https://sites.google.com/site/graphcoloring/home
https://doi.org/10.1007/978-3-319-77404-6_47
https://doi.org/10.1007/978-3-319-77404-6_47

418 W.-J. van Hoeve

20. Mehrotra, A., Trick, M.A.: A column generation approach for graph coloring.
INFORMS J. Comput. 8(4), 344–354 (1996)

21. Morrison, D.R., Sewell, E.C., Jacobson, S.H.: Solving the pricing problem in a
branch-and-price algorithm for graph coloring using zero-suppressed binary deci-
sion diagrams. INFORMS J. Comput. 28(1), 67–82 (2016)

22. Peemöller, J.: A correction to Brelaz’s modification of Brown’s coloring algorithm.
Commun. ACM 26(8), 595–597 (1983)

23. Randall-Brown, J.: Chromatic scheduling and the chromatic number problem.
Manag. Sci. 19(4), 456–463 (1972)

24. Schrijver, A.: Combinatorial Optimization: Polyhedra and Efficiency. Springer, Hei-
delberg (2003)

25. Wegener, I.: Branching Programs and Binary Decision Diagrams: Theory and
Applications. SIAM Monographs on Discrete Mathematics and Applications. Soci-
ety for Industrial and Applied Mathematics (2000)

26. Wood, D.C.: A technique for coloring a graph applicable to large-scale timetabling
problems. Comput. J. 12(4), 317–322 (1969)

On Convex Hulls of Epigraphs of QCQPs

Alex L. Wang(B) and Fatma Kılınç-Karzan

Carnegie Mellon University, Pittsburgh, PA 15213, USA
alw1@cs.cmu.edu

Abstract. Quadratically constrained quadratic programs (QCQPs) are
a fundamental class of optimization problems well-known to be NP-hard
in general. In this paper we study sufficient conditions for a convex hull
result that immediately implies that the standard semidefinite program
(SDP) relaxation of a QCQP is tight. We begin by outlining a general
framework for proving such sufficient conditions. Then using this frame-
work, we show that the convex hull result holds whenever the quadratic
eigenvalue multiplicity, a parameter capturing the amount of symmetry
present in a given problem, is large enough. Our results also imply new
sufficient conditions for the tightness (as well as convex hull exactness) of
a second order cone program relaxation of simultaneously diagonalizable
QCQPs.

Keywords: Quadratically constrained quadratic programming ·
Semidefinite program · Convex hull · Relaxation · Lagrange function

1 Introduction

In this paper we study quadratically constrained quadratic programs (QCQPs)
of the following form

Opt := inf
x∈RN

{
q0(x) :

qi(x) ≤ 0, ∀i ∈ [[mI]]
qi(x) = 0, ∀i ∈ [[mI + 1,mI + mE]]

}
, (1)

where for every i ∈ [[0,mI + mE]], the function qi : R
N → R is a (possibly

nonconvex) quadratic function. We will write qi(x) = x�Aix + 2b�
i x + ci where

Ai ∈ S
N , bi ∈ R

N , and ci ∈ R. We will assume that the number of constraints
m := mI + mE is at least 1.

QCQPs arise naturally in many areas. A non-exhaustive list of applications
contains facility location, production planning, pooling, max-cut, max-clique,
and certain robust optimization problems (see [2,7,21] and references therein).

Although QCQPs are NP-hard to solve in general, they admit tractable con-
vex relaxations. One natural relaxation is the standard (Shor) semidefinite pro-
gram (SDP) relaxation [34]. There is a vast literature on approximation guaran-
tees associated with this relaxation [9,27,30,40], however, less is known about
its exactness. Recently, a number of exciting results in phase retrieval [17] and
clustering [1,28,31] have shown that under various assumptions on the data, the
c© Springer Nature Switzerland AG 2020
D. Bienstock and G. Zambelli (Eds.): IPCO 2020, LNCS 12125, pp. 419–432, 2020.
https://doi.org/10.1007/978-3-030-45771-6_32

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-45771-6_32&domain=pdf
https://doi.org/10.1007/978-3-030-45771-6_32

420 A. L. Wang and F. Kılınç-Karzan

QCQP formulation of the corresponding problem has a tight SDP relaxation.
In contrast to these results, which address QCQPs arising from particular prob-
lems, Burer and Ye [16] very recently gave appealing deterministic sufficient con-
ditions under which the standard SDP relaxation of general QCQPs is tight. In
our paper, we continue this vein of research for general QCQPs. More precisely,
we will provide sufficient conditions under which the convex hull of the epigraph
of the QCQP is given by the projection of the epigraph of its SDP relaxation.
Note that such a result immediately implies that the optimal objective value of
the QCQP is equal to the optimal objective value of its SDP relaxation. We will
refer to these two types of results as “convex hull results” and “SDP tightness
results.” In this paper we will focus mainly on conditions that imply the convex
hull result. See the full paper [38] for additional new conditions which imply the
SDP tightness result directly.

Convex hull results will necessarily require stronger assumptions than SDP
tightness results, however they are also more broadly applicable because they
may be used to derive strong convex relaxations for complex problems. In fact,
the convexification of commonly occurring substructures has been critical in
advancing the state-of-the-art computational approaches for mixed integer linear
programs and general nonlinear nonconvex programs [18,36]. For computational
purposes, conditions guaranteeing simple convex hull descriptions are particu-
larly favorable. As we will discuss later, a number of our sufficient conditions will
guarantee that the desired convex hulls are given by a finite number of easily
computable convex quadratic constraints in the original space of variables.

Related Work. Convex hull results are well-known for simple QCQPs such
as the Trust Region Subproblem (TRS) and the Generalized Trust Region Sub-
problem (GTRS). Recall that the TRS is a QCQP with a single strictly con-
vex inequality constraint and that the GTRS is a QCQP with a single (possi-
bly nonconvex) inequality constraint. A celebrated result due to Fradkov and
Yakubovich [19] implies that the SDP relaxation of the GTRS is tight. More
recently, Ho-Nguyen and Kılınç-Karzan [22] and Wang and Kılınç-Karzan [37]
showed that the (closed) convex hulls of the TRS and GTRS epigraphs are given
exactly by the projection of the SDP epigraphs. In both cases, the projections of
the SDP epigraphs can also be described in the original space of variables with
at most two convex quadratic inequalities. As a result, the TRS and the GTRS
can be solved without explicitly running costly SDP-based algorithms.

A different line of research has focused on providing explicit descriptions for
the convex hull of the intersection of a single nonconvex quadratic region with
convex sets such as convex quadratic regions, second-order cones (SOCs), or
polytopes, or with one other nonconvex quadratic region [14,24,29,32,42,43]. For
example, the convex hull of the intersection of a two-term disjunction, which is a
nonconvex quadratic constraint under mild assumptions, with the second-order
cone (SOC) or its cross sections has received much attention in mixed integer
programming; see [14,24,43] and references therein. In contrast to these results,
we will not limit the number of nonconvex quadratic constraints in our QCQPs.

On Convex Hulls of Epigraphs of QCQPs 421

On the other hand, the nonconvex sets that we study in this paper will arise as
epigraphs of QCQPs. In particular, the epigraph variable will play a special role
in our analysis. Therefore, we view our developments as complementary to these
results.

The convex hull question has also received attention for certain strength-
ened relaxations of simple QCQPs [12,13,15,35]. In this line of work, the stan-
dard SDP relaxation is strengthened by additional inequalities derived using the
Reformulation-Linearization Technique (RLT). For example, Sturm and Zhang
[35] showed that the standard SDP relaxation strengthened with an additional
SOC constraint derived from RLT gives the convex hull of the epigraph of the
TRS with one additional linear inequality. See [12] for a survey of some results in
this area. In this paper, we restrict our attention to the standard SDP relaxation
of QCQPs. Nevertheless, exactness conditions for strengthened SDP relaxations
of QCQPs are clearly of great interest and are a direction for future research.

A number of SDP tightness results are known for variants of the TRS [6,
22,23,41], for simultaneously diagonalizable QCQPs [26], quadratic matrix pro-
grams [4,5], and random general QCQPs [16]. See the full version of this paper
for a more complete survey of the related SDP tightness results.

Overview and Outline of Paper. In contrast to the literature, which has
mainly focused on simple QCQPs or QCQPs under certain structural assump-
tions, in this paper, we will consider general QCQPs and develop sufficient con-
ditions for both the convex hull result and the SDP tightness result.

We first introduce the epigraph of the QCQP by writing

Opt = inf
(x,t)∈RN+1

{2t : (x, t) ∈ D} ,

where D is the epigraph of the QCQP in (1), i.e.,

D :=

⎧⎨
⎩(x, t) ∈ R

N × R :
q0(x) ≤ 2t
qi(x) ≤ 0, ∀i ∈ [[mI]]
qi(x) = 0, ∀i ∈ [[mI + 1,m]]

⎫⎬
⎭ . (2)

As (x, t) �→ 2t is linear, we may replace the (potentially nonconvex) epigraph
D with its convex hull conv(D). Then,

Opt = inf
(x,t)∈RN+1

{2t : (x, t) ∈ conv(D)} .

A summary of our contributions1, along with an outline of the paper, is
as follows. In Sect. 2, we introduce and study the standard SDP relaxation of
QCQPs [34] along with its optimal value OptSDP and projected epigraph DSDP.
We set up a framework for deriving sufficient conditions for the “convex hull
1 Due to space constraints, we omit full proofs, more detailed comparisons of our

results with the literature, and our SDP tightness results in this extended abstract.
The full version of this paper can be found at [38].

422 A. L. Wang and F. Kılınç-Karzan

result,” conv(D) = DSDP, and the “SDP tightness result,” Opt = OptSDP. This
framework is based on the Lagrangian function (γ, x) �→ q0(x) +

∑m
i=1 γiqi(x)

and the eigenvalue structure of a dual object Γ ⊆ R
m. This object Γ , which

consists of the convex Lagrange multipliers, has been extensively studied in
the literature (see [39, Chapter 13.4] and more recently [33]). In Sect. 3, we
define an integer parameter k, the quadratic eigenvalue multiplicity, that cap-
tures the amount of symmetry in a given QCQP. We then give examples where
the quadratic eigenvalue multiplicity is large. Specifically, vectorized reformula-
tions of quadratic matrix programs [4] are such an example. In Sect. 4, we use our
framework to derive sufficient conditions for the convex hull result: conv(D) =
DSDP. Theorem 2 states that if Γ is polyhedral and k is sufficiently large, then
conv(D) = DSDP. This theorem actually follows as a consequence of Theorem 1,
which replaces the assumption on the quadratic eigenvalue multiplicity with a
weaker assumption regarding the dimension of zero eigenspaces related to the
Ai matrices. Furthermore, our results in this section establish that if Γ is poly-
hedral, then DSDP is SOC representable; see Remark 3. In particular, when the
assumptions of Theorems 1 or 2 hold, we have that conv(D) = DSDP is SOC rep-
resentable. We provide several classes of problems that satisfy the assumptions
of these theorems. In particular, we recover a number of results regarding the
TRS [22], the GTRS [37], and the solvability of systems of quadratic equations
[3].

To the best of our knowledge, our results are the first to provide a unified
explanation of many of the exactness guarantees in the literature. Moreover, we
provide significant generalizations of known results in a number of settings.

Notation. For nonnegative integers m ≤ n let [[n]] := {1, . . . , n} and [[m,n]] :=
{m,m + 1, . . . , n − 1, n}. Let Sn−1 = {x ∈ R

n : ‖x‖ = 1} denote the n − 1
sphere. Let S

n denote the set of real symmetric n × n matrices. For a positive
integer n, let I = In denote the n × n identity matrix. When the dimension is
clear, we will simply write I. Given two matrices A and B, let A⊗B denote their
Kronecker product. For a set D ⊆ R

n, let conv(D), cone(D), extr(D), dim(D)
and aff dim(D) denote the convex hull, conic hull, extreme points, dimension,
and affine dimension of D, respectively.

2 A General Framework

In this section, we introduce a general framework for analyzing the standard Shor
SDP relaxation of QCQPs. We will examine how both the objective value and
the feasible domain change when moving from a QCQP to its SDP relaxation.

We make an assumption that can be thought of as a primal feasibility and
dual strict feasibility assumption. This assumption (or a slightly stronger version
of it) is standard and is routinely made in the literature on QCQPs [4,10,41].

Assumption 1. Assume the feasible region of (1) is nonempty and there exists
γ∗ ∈ R

m such that γ∗
i ≥ 0 for all i ∈ [[mI]] and A0 +

∑m
i=1 γ∗

i Ai � 0. �

On Convex Hulls of Epigraphs of QCQPs 423

The standard SDP relaxation to (1) is

OptSDP := inf
x∈RN ,X∈SN

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

〈Q0, Y 〉 :

Y :=
(

1 x�

x X

)

〈Qi, Y 〉 ≤ 0, ∀i ∈ [[mI]]
〈Qi, Y 〉 = 0, ∀i ∈ [[mI + 1,m]]
Y � 0

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

, (3)

where Qi ∈ S
N+1 is the matrix Qi :=

(
ci b�

i

bi Ai

)
. Let DSDP denote the epigraph of

the relaxation (3) projected away from the X variables, i.e., define

DSDP :=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

(x, t) ∈ R
N+1 :

∃X ∈ S
N :

Y :=
(

1 x�

x X

)

〈Q0, Y 〉 ≤ 2t
〈Qi, Y 〉 ≤ 0, ∀i ∈ [[mI]]
〈Qi, Y 〉 = 0, ∀i ∈ [[mI + 1,m]]
Y � 0

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

. (4)

By taking X = xx� in both (3) and (4), we see that D ⊆ DSDP and
Opt ≥ OptSDP. Noting that DSDP is convex (it is the projection of a convex
set), we further have that conv(D) ⊆ DSDP. The framework that we set up in
the remainder of this section allows us to reason about when equality occurs in
either relation.

2.1 Rewriting the SDP in Terms of a Dual Object

For γ ∈ R
m, define

A(γ) := A0 +
m∑

i=1

γiAi, b(γ) := b0 +
m∑

i=1

γibi, c(γ) := c0 +
m∑

i=1

γici,

q(γ, x) := q0(x) +
m∑

i=1

γiqi(x).

Our framework for analyzing (3) is based on the dual object

Γ :=
{

γ ∈ R
m :

A(γ) � 0
γi ≥ 0, ∀i ∈ [[mI]]

}
.

This object will play a key role our analysis for the following fundamental reason.

Lemma 1. Suppose Assumption 1 holds. Then

DSDP =
{

(x, t) : sup
γ∈Γ

q(γ, x) ≤ 2t

}
and OptSDP = min

x∈RN
sup
γ∈Γ

q(γ, x).

The second identity is well-known; see e.g., Fujie and Kojima [20].

424 A. L. Wang and F. Kılınç-Karzan

2.2 The Eigenvalue Structure of Γ

We now define a number of objects related to Γ . Noting that γ �→ q(γ, x̂) is
linear and that Γ is closed leads to the following observation.

Observation 1. Let x̂ ∈ R
N . If supγ∈Γ q(γ, x̂) is finite, then q(γ, x̂) achieves

its maximum value in Γ on some face F of Γ .

In particular, the following definition is well-defined.

Definition 1. For any x̂ ∈ R
N such that supγ∈Γ q(γ, x̂) is finite, define F(x̂)

to be the face of Γ maximizing q(γ, x̂).

Definition 2. Let F be a face of Γ . We say that F is a definite face if there
exists γ ∈ F such that A(γ) � 0. Otherwise, we say that F is a semidefinite face
and let V(F) denote the shared zero eigenspace of F , i.e.,

V(F) :=
{
v ∈ R

N : A(γ)v = 0, ∀γ ∈ F}
.

It is possible to show that for F semidefinite, the set V(F) is nontrivial. As a
sketch, suppose otherwise, then for every v on the unit sphere, we can associate
a γv ∈ F such that v�A(γv)v > 0. Then we can produce a positive definite
matrix A(γ̄) where γ̄ is an “average” over the γv, a contradiction. See Lemma 2
in the full version of this paper for a formal proof.

2.3 The Framework

Our framework consists of two parts: an “easy part” that only requires Assump-
tion 1 to hold and a “hard part” that may require much stronger assumptions.
The “easy part” consists of the following lemma and observation.

Lemma 2. Suppose Assumption 1 holds and let (x̂, t̂) ∈ DSDP. If F(x̂) is a
definite face of Γ , then (x̂, t̂) ∈ D.

Observation 2. Suppose Assumption 1 holds and let F be a face of Γ . If
aff dim(F) = m, then F is definite.

The “hard part” of the framework works as follows: In order to show the
convex hull result DSDP = conv(D), it suffices to guarantee that every (x̂, t̂) ∈
DSDP can be decomposed as a convex combination of pairs (xα, tα) for which
F(xα) is definite. Then, by Lemma 2, we will have that (xα, tα) ∈ D. We give
examples of such sufficient conditions in Sect. 4. Our decomposition procedures
will be recursive and we will use Observation 2 to show that they terminate.

Remark 1. Consider performing an invertible affine transformation on the space
R

N , i.e. let y = U(x+z) where U ∈ R
N×N is an invertible linear transformation

and z ∈ R
N . Define the quadratic functions q′

0, . . . , q
′
m : R

N → R such that
q′
i(y) = q′

i(U(x+z)) = qi(x) for all x ∈ R
N . We will use an apostrophe to denote

all the quantities corresponding to the QCQP in the variable y.

On Convex Hulls of Epigraphs of QCQPs 425

Define the map � : RN+1 → R
N+1 by (x, t) �→ (U(x+z), t). Note that Opt′ =

Opt and conv(D′) = �(conv(D)). Furthermore a straightforward application of
Lemma 1 gives Opt′

SDP = OptSDP and D′
SDP = �(DSDP). We deduce that the

questions conv(D) ?= DSDP and Opt ?= OptSDP are invariant under invertible
affine transformation of the x-space. In particular, the sufficient conditions that
we will present in Theorems 1 and 2 only need to hold after some invertible affine
transformation. In this sense, the SDP relaxation will “find” structure in a given
QCQP even if it is “hidden” by an affine transformation. �

3 Symmetries in QCQPs

In this section, we examine a parameter k that captures the amount of symmetry
present in a QCQP of the form (1).

Definition 3. The quadratic eigenvalue multiplicity of a QCQP of the form (1)
is the largest integer k such that for every i ∈ [[0,m]] there exists Ai ∈ S

n for
which Ai = Ik ⊗ Ai. Let A(γ) := A0 +

∑m
i=1 γiAi.

This value is well-defined: k is always at least 1 as we can write Ai = I1 ⊗ Ai.
On the other hand, k must also be a divisor of N .

The next lemma states the crucial structure inherent in QCQPs with large
quadratic eigenvalue multiplicities.

Lemma 3. If F is a semidefinite face of Γ , then dim(V(F)) ≥ k.

Remark 2. In quadratic matrix programming [4,5], we are asked to optimize

inf
X∈Rn×k

⎧⎨
⎩

tr(X�A0X) + 2tr(B�
0 X) + c0 :

tr(X�AiX) + 2tr(B�
i X) + ci ≤ 0, ∀i ∈ [[mI]]

tr(X�AiX) + 2tr(B�
i X) + ci = 0, ∀i ∈ [[mI + 1,m]]

⎫⎬
⎭ , (5)

where Ai ∈ S
n, Bi ∈ R

n×k and ci ∈ R for all i ∈ [[0,m]]. We can transform
this program to an equivalent QCQP in the vector variable x ∈ R

nk. Then
tr(X�AiX) + 2tr(B�

i X) + ci = x� (Ik ⊗ Ai) x + 2b�
i x + ci, where bi ∈ R

nk has
entries (bi)(t−1)n+s = (Bi)s,t. In particular, the vectorized reformulation of (5)
has quadratic eigenvalue value multiplicity k. �

4 Convex Hull Results

We now present new sufficient conditions for the convex hull result DSDP =
conv(D). We analyze the case where the geometry of Γ is particularly nice.

Assumption 2. Assume that Γ is polyhedral. �

426 A. L. Wang and F. Kılınç-Karzan

We remark that although Assumption 2 is rather restrictive, it is general enough
to cover the case where the set of quadratic forms {Ai}i∈[[0,m]] is diagonal or
simultaneously diagonalizable—a class of QCQPs which have been studied exten-
sively in the literature [8,25,26]. See the full version of this paper for convex hull
and SDP tightness results without Assumption 2 as well as a discussion on the
difficulties in removing it.

Our main result in this paper is the following theorem.

Theorem 1. Suppose Assumptions 1 and 2 hold. If for every semidefinite face
F of Γ we have dim(V(F)) ≥ aff dim({b(γ) : γ ∈ F})+1, then conv(D) = DSDP.

Assumption 1 allows us to apply Lemma 2 to handle any (x̂, t̂) ∈ DSDP for
which F(x̂) is definite. Therefore, in order to prove Theorem 1, it suffices to
prove the following lemma.

Lemma 4. Suppose Assumptions 1 and 2 hold. Let (x̂, t̂) ∈ DSDP and
let F = F(x̂). If F is a semidefinite face of Γ and dim(V(F)) ≥
aff dim({b(γ) : γ ∈ F}) + 1, then (x̂, t̂) can be written as a convex combination
of points (xα, tα) satisfying the following properties:

1. (xα, tα) ∈ DSDP, and
2. aff dim(F(xα)) > aff dim(F(x̂)).

We give a proof sketch of Lemma 4 in AppendixA.
The proof of Theorem1 follows at once from Lemmas 2 and 4 and Observa-

tion 2. Indeed, Lemma 4 guarantees that aff dim(F(xα)) > aff dim(F(x̂)). Thus,
by Observation 2, we will have successfully decomposed (x̂, t̂) as a convex com-
bination of (xα, tα), where (xα, tα) ∈ DSDP and F(xα) is definite, after at most
m − 1 rounds of applying Lemma4. Finally, Lemma 2 guarantees that each pair
(xα, tα) is an element of D, the epigraph of the QCQP.

The next theorem follows as a corollary to Theorem 1.

Theorem 2. Suppose Assumptions 1 and 2 hold. If for every semidefinite face
F of Γ we have k ≥ aff dim({b(γ) : γ ∈ F}) + 1, then conv(D) = DSDP.

Remark 3. We remark that when Γ is polyhedral (Assumption 2), the set DSDP

is actually SOC representable: By the Minkowski-Weyl Theorem, we can decom-
pose Γ = Γe + cone(Γr) where both Γe and Γr are polytopes. Let q̆(γ, x) =∑m

i=1 γiqi(x). Then, by Lemma 1 we can write

DSDP =
{

(x, t) : sup
γ∈Γ

q(γ, x) ≤ 2t

}
=

{
(x, t) :

q(γe, x) ≤ 2t, ∀γe ∈ extr(Γe)
q̆(γf , x) ≤ 0, ∀γf ∈ extr(Γr)

}
.

That is, DSDP is defined by finitely many convex quadratic inequalities
Thus the assumptions of Theorems 1 and 2 imply that conv(D) is SOC rep-
resentable. �

We now give examples of problems where our assumptions hold.

On Convex Hulls of Epigraphs of QCQPs 427

Corollary 1. Suppose m = 1 and Assumption 1 holds. Then, conv(D) = DSDP.

Corollary 1 recovers results associated with the epigraph of the TRS2 and the
GTRS (see [22, Theorem 13] and [37, Theorems 1 and 2]).

Corollary 2. Suppose Assumptions 1 and 2 hold. If bi = 0 for all i ∈ [[m]], then
conv(D) = DSDP.

Example 1. Consider the following optimization problem.

inf
x∈R2

{
x2
1 + x2

2 + 10x1 :
x2
1 − x2

2 − 5 ≤ 0
−x2

1 + x2
2 − 50 ≤ 0

}

We check that the conditions of Corollary 2 hold. Assumption 1 holds as A(0) =
A0 = I � 0 and x = 0 is feasible. Next, Assumption 2 holds as

Γ =

⎧⎨
⎩γ ∈ R

2 :
1 + γ1 − γ2 ≥ 0
1 − γ1 + γ2 ≥ 0
γ ≥ 0

⎫⎬
⎭ .

One can verify that Γ = conv ({(0, 0), (1, 0), (0, 1)})+ cone({(1, 1)}). Finally, we
note that b1 = b2 = 0. Hence, Corollary 2 and Remark 3 imply that

conv(D) = DSDP =

⎧⎨
⎩(x, t) :

x2
1 + x2

2 + 10x1 ≤ 2t
2x2

1 + 10x1 − 5 ≤ 2t
2x2

2 + 10x1 − 50 ≤ 2t

⎫⎬
⎭ .

We plot D and conv(D) = DSDP in Fig. 1. �

Fig. 1. The sets D (in orange) and conv(D) (in yellow) from Example 1 (Color figure
online)

2 Corollary 1 fails to recover the full extent of [22, Theorem 13]. Indeed, [22, Theorem
13] also gives a description of the convex hull of the epigraph of the TRS with an
additional conic constraint under some assumptions.

428 A. L. Wang and F. Kılınç-Karzan

Remark 4. Barvinok [3] shows that one can decide in polynomial time (in N)
whether a constant number, mE , of quadratic forms {Ai}i∈[[mE]] has a joint
nontrivial zero. That is, whether the system x�Aix = 0 for i ∈ [[mE]] and x�x =
1 is feasible. We can recast this as asking whether the following optimization
problem

min
x∈RN

{
−x�x :

x�x ≤ 1
x�Aix = 0,∀i ∈ [[mE]]

}

has objective value −1 or 0.
Thus, the feasibility problem studied in [3] reduces to a QCQP of the form we

study in this paper. It is easy to verify that Assumption 1 holds. Then when Γ is
polyhedral (Assumption 2), Corollary 2 implies that the feasibility problem (even
in a variable number of quadratic forms) can be decided using a semidefinite
programming approach. Nevertheless, Assumption 2 may not necessarily hold in
general and so Corollary 2 does not recover the full result of [3]. �

Corollary 3. Suppose Assumption 1 holds and for every i ∈ [[0,m]], there exists
αi such that Ai = αiIN . If m ≤ N , then conv(D) = DSDP.

Remark 5. Consider the problem of finding the distance between the origin 0 ∈
R

N and a piece of Swiss cheese C ⊆ R
N . We will assume that C is nonempty

and defined as

C =

⎧⎨
⎩x ∈ R

N :
‖x − yi‖ ≤ si, ∀i ∈ [[m1]]
‖x − zi‖ ≥ ti, ∀i ∈ [[m2]]
〈x, bi〉 ≥ ci, ∀i ∈ [[m3]]

⎫⎬
⎭ ,

where yi, zi, bi ∈ R
N and si, ti, ci ∈ R are arbitrary. In other words, C is defined

by m1-many “inside-ball” constraints, m2-many “outside-ball” constraints, and
m3-many linear inequalities. Note that each of these constraints may be writ-
ten as a quadratic inequality constraint with quadratic form I, −I, or 0. In
particular, Corollary 3 implies that if m1 + m2 + m3 ≤ N , then the value

inf
x∈RN

{
‖x‖2 : x ∈ C

}

may be computed using the standard SDP relaxation of the problem.
Bienstock and Michalka [11] give sufficient conditions under which a related

problem

inf
x∈RN

{q0(x) : x ∈ C} ,

is polynomial-time solvable. Here, q0 : RN → R may be an arbitrary quadratic
function however m1 and m2 must be constant. They devise an enumerative
algorithm for this problem and prove its correctness under different assumptions.
In contrast, our work deals only with the standard SDP relaxation and does not
assume that the number of quadratic forms is constant. �

Acknowledgments. This research is supported in part by NSF grant CMMI 1454548.

On Convex Hulls of Epigraphs of QCQPs 429

A Proof Sketch of Lemma4

For simplicity, we will assume that Γ is a polytope in this proof sketch. Let (x̂, t̂)
satisfy the assumptions of Lemma 4. Without loss of generality, we may assume
that supγ∈Γ q(γ, x̂) = 2t̂.

We claim that the following system in variables v and s

{
〈b(γ), v〉 = s, ∀γ ∈ F
v ∈ V(F), s ∈ R

has a nonzero solution. Indeed, we may replace the first constraint with at most

aff dim({b(γ) : γ ∈ F}) + 1 ≤ dim(V(F))

homogeneous linear equalities in the variables v and s. The claim then follows by
noting that the equivalent system is an under-constrained homogeneous system
of linear equalities and thus has a nonzero solution (v, s). It is easy to verify that
v �= 0 and hence, by scaling, we may take v ∈ SN−1.

We will modify (x̂, t̂) in the (v, s) direction. For α ∈ R, define

(xα, tα) :=
(
x̂ + αv, t̂ + αs

)
.

We will sketch the existence of an α > 0 such that (xα, tα) satisfies the conclu-
sions of Lemma 4. A similar line of reasoning will produce an analogous α < 0.
This will complete the proof sketch.

Suppose γ ∈ F . Then, by our choice of v and s, the function α �→ q(γ, xα) −
2tα = q(γ, x̂) − 2t = 0 is identically zero. Now suppose γ ∈ Γ \ F . Then, the
function α �→ q(γ, xα) − 2tα is a convex quadratic function which is negative at
α = 0.

We conclude that the following set

Q := {α �→ q(γ, xα) − 2tα : γ ∈ extr(Γ)} \ {0} ,

consists of convex quadratic functions which are negative at α = 0. The finiteness
of this set follows from the assumption that Γ is polyhedral.

Assumption 1 implies that at least one of the functions in Q is strictly convex.
Then as Q is a finite set, there exists an α+ > 0 such that q(α+) ≤ 0 for all
q ∈ Q with at least one equality. We emphasize that this is the step where
Assumption 2 cannot be dropped.

Finally, it is easy to check that (xα+ , tα+) satisfies the conclusions of
Lemma 4.

430 A. L. Wang and F. Kılınç-Karzan

References

1. Abbe, E., Bandeira, A.S., Hall, G.: Exact recovery in the stochastic block model.
IEEE Trans. Inf. Theory 62(1), 471–487 (2015)

2. Bao, X., Sahinidis, N.V., Tawarmalani, M.: Semidefinite relaxations for quadrati-
cally constrained quadratic programming: a review and comparisons. Math. Pro-
gram. 129(1), 129 (2011). https://doi.org/10.1007/s10107-011-0462-2

3. Barvinok, A.I.: Feasibility testing for systems of real quadratic equations. Discrete
Comput. Geom. 10(1), 1–13 (1993). https://doi.org/10.1007/BF02573959

4. Beck, A.: Quadratic matrix programming. SIAM J. Optim. 17(4), 1224–1238
(2007)

5. Beck, A., Drori, Y., Teboulle, M.: A new semidefinite programming relaxation
scheme for a class of quadratic matrix problems. Oper. Res. Lett. 40(4), 298–302
(2012)

6. Beck, A., Eldar, Y.C.: Strong duality in nonconvex quadratic optimization with
two quadratic constraints. SIAM J. Optim. 17(3), 844–860 (2006)

7. Ben-Tal, A., El Ghaoui, L., Nemirovski, A.: Robust Optimization. Princeton Series
in Applied Mathematics. Princeton University Press, Philadehia (2009)

8. Ben-Tal, A., den Hertog, D.: Hidden conic quadratic representation of some non-
convex quadratic optimization problems. Math. Program. 143(1), 1–29 (2014).
https://doi.org/10.1007/s10107-013-0710-8

9. Ben-Tal, A., Nemirovski, A.: Lectures on Modern Convex Optimization. MPS-
SIAM Series on Optimization. SIAM, Philadehia (2001)

10. Ben-Tal, A., Teboulle, M.: Hidden convexity in some nonconvex quadratically con-
strained quadratic programming. Math. Program. 72(1), 51–63 (1996). https://
doi.org/10.1007/BF02592331

11. Bienstock, D., Michalka, A.: Polynomial solvability of variants of the trust-region
subproblem. In: Proceedings of the Twenty-Fifth Annual ACM-SIAM Symposium
on Discrete Algorithms, pp. 380–390 (2014)

12. Burer, S.: A gentle, geometric introduction to copositive optimization. Math. Pro-
gram. 151(1), 89–116 (2015). https://doi.org/10.1007/s10107-015-0888-z

13. Burer, S., Anstreicher, K.M.: Second-order-cone constraints for extended trust-
region subproblems. SIAM J. Optim. 23(1), 432–451 (2013)

14. Burer, S., Kılınç-Karzan, F.: How to convexify the intersection of a second order
cone and a nonconvex quadratic. Math. Program. 162(1), 393–429 (2017). https://
doi.org/10.1007/s10107-016-1045-z

15. Burer, S., Yang, B.: The trust region subproblem with non-intersecting linear con-
straints. Math. Program. 149(1), 253–264 (2015). https://doi.org/10.1007/s10107-
014-0749-1

16. Burer, S., Ye, Y.: Exact semidefinite formulations for a class of (random and non-
random) nonconvex quadratic programs. Math. Program., 1–17 (2018). https://
doi.org/10.1007/s10107-019-01367-2

17. Candes, E.J., Eldar, Y.C., Strohmer, T., Voroninski, V.: Phase retrieval via matrix
completion. SIAM Rev. 57(2), 225–251 (2015)

18. Conforti, M., Cornuéjols, G., Zambelli, G.: Integer Programming, vol. 271.
Springer, Cham (2014). https://doi.org/10.1007/978-3-319-11008-0

19. Fradkov, A.L., Yakubovich, V.A.: The S-procedure and duality relations in non-
convex problems of quadratic programming. Vestn. LGU Ser. Mat. Mekh. Astron
6(1), 101–109 (1979)

https://doi.org/10.1007/s10107-011-0462-2
https://doi.org/10.1007/BF02573959
https://doi.org/10.1007/s10107-013-0710-8
https://doi.org/10.1007/BF02592331
https://doi.org/10.1007/BF02592331
https://doi.org/10.1007/s10107-015-0888-z
https://doi.org/10.1007/s10107-016-1045-z
https://doi.org/10.1007/s10107-016-1045-z
https://doi.org/10.1007/s10107-014-0749-1
https://doi.org/10.1007/s10107-014-0749-1
https://doi.org/10.1007/s10107-019-01367-2
https://doi.org/10.1007/s10107-019-01367-2
https://doi.org/10.1007/978-3-319-11008-0

On Convex Hulls of Epigraphs of QCQPs 431

20. Fujie, T., Kojima, M.: Semidefinite programming relaxation for nonconvex
quadratic programs. J. Glob. Optim. 10(4), 367–380 (1997). https://doi.org/10.
1023/A:1008282830093. ISSN 1573-2916

21. Phan-huy Hao, E.: Quadratically constrained quadratic programming: some appli-
cations and a method for solution. Zeitschrift für Oper. Res. 26(1), 105–119 (1982)

22. Ho-Nguyen, N., Kılınç-Karzan, F.: A second-order cone based approach for solving
the trust region subproblem and its variants. SIAM J. Optim. 27(3), 1485–1512
(2017)

23. Jeyakumar, V., Li, G.Y.: Trust-region problems with linear inequality constraints:
exact SDP relaxation, global optimality and robust optimization. Math. Program.
147(1), 171–206 (2014). https://doi.org/10.1007/s10107-013-0716-2

24. Kılınç-Karzan, F., Yıldız, S.: Two-term disjunctions on the second-order cone.
Math. Program. 154(1), 463–491 (2015). https://doi.org/10.1007/s10107-015-
0903-4

25. Locatelli, M.: Some results for quadratic problems with one or two quadratic con-
straints. Oper. Res. Lett. 43(2), 126–131 (2015)

26. Locatelli, M.: Exactness conditions for an SDP relaxation of the extended trust
region problem. Optim. Lett. 10(6), 1141–1151 (2016). https://doi.org/10.1007/
s11590-016-1001-0

27. Megretski, A.: Relaxations of quadratic programs in operator theory and system
analysis. In: Borichev, A.A., Nikolski, N.K. (eds.) Systems, Approximation, Sin-
gular Integral Operators, and Related Topics, vol. 129, pp. 365–392. Birkhäuser
Basel, Basel (2001). https://doi.org/10.1007/978-3-0348-8362-7 15. ISBN 978-3-
0348-8362-7

28. Mixon, D.G., Villar, S., Ward, R.: Clustering subgaussian mixtures by semidefinite
programming. arXiv preprint arXiv:1602.06612 (2016)

29. Modaresi, S., Vielma, J.P.: Convex hull of two quadratic or a conic quadratic and a
quadratic inequality. Math. Program. 164(1–2), 383–409 (2017). https://doi.org/
10.1007/s10107-016-1084-5

30. Nesterov, Y.: Quality of semidefinite relaxation for nonconvex quadratic optimiza-
tion. Technical report, Université catholique de Louvain, Center for Operations
Research and Econometrics (CORE) (1997)

31. Rujeerapaiboon, N., Schindler, K., Kuhn, D., Wiesemann, W.: Size matters:
cardinality-constrained clustering and outlier detection via conic optimization.
SIAM J. Optim. 29(2), 1211–1239 (2019)

32. Santana, A., Dey, S.S.: The convex hull of a quadratic constraint over a polytope.
arXiv preprint arXiv:1812.10160 (2018)

33. Sheriff, J.L.: The convexity of quadratic maps and the controllability of coupled
systems. Ph.D. thesis (2013)

34. Shor, N.Z.: Dual quadratic estimates in polynomial and boolean programming.
Ann. Oper. Res. 25(1), 163–168 (1990). https://doi.org/10.1007/BF02283692

35. Sturm, J.F., Zhang, S.: On cones of nonnegative quadratic functions. Math. Oper.
Res. 28(2), 246–267 (2003)

36. Tawarmalani, M., Sahinidis, N.V., Sahinidis, N.: Convexification and Global Opti-
mization in Continuous and Mixed-Integer Nonlinear Programming: Theory, Algo-
rithms, Software, and Applications, vol. 65. Springer, Dordrecht (2002). https://
doi.org/10.1007/978-1-4757-3532-1

37. Wang, A.L., Kılınç-Karzan, F.: The generalized trust region subproblem: solution
complexity and convex hull results. Technical report (2019). https://arxiv.org/abs/
1907.08843

https://doi.org/10.1023/A:1008282830093
https://doi.org/10.1023/A:1008282830093
https://doi.org/10.1007/s10107-013-0716-2
https://doi.org/10.1007/s10107-015-0903-4
https://doi.org/10.1007/s10107-015-0903-4
https://doi.org/10.1007/s11590-016-1001-0
https://doi.org/10.1007/s11590-016-1001-0
https://doi.org/10.1007/978-3-0348-8362-7_15
http://arxiv.org/abs/1602.06612
https://doi.org/10.1007/s10107-016-1084-5
https://doi.org/10.1007/s10107-016-1084-5
http://arxiv.org/abs/1812.10160
https://doi.org/10.1007/BF02283692
https://doi.org/10.1007/978-1-4757-3532-1
https://doi.org/10.1007/978-1-4757-3532-1
https://arxiv.org/abs/1907.08843
https://arxiv.org/abs/1907.08843

432 A. L. Wang and F. Kılınç-Karzan

38. Wang, A.L., Kılınç-Karzan, F.: On the tightness of SDP relaxations of QCQPs.
Technical report (2019). https://arxiv.org/abs/1911.09195

39. Wolkowicz, H., Saigal, R., Vandenberghe, L.: Handbook of Semidefinite Program-
ming: Theory, Algorithms, and Applications, vol. 27. Springer, New York (2012).
https://doi.org/10.1007/978-1-4615-4381-7

40. Ye, Y.: Approximating quadratic programming with bound and quadratic con-
straints. Math. Program. 84(2), 219–226 (1999)

41. Ye, Y., Zhang, S.: New results on quadratic minimization. SIAM J. Optim. 14(1),
245–267 (2003)

42. Yıldıran, U.: Convex hull of two quadratic constraints is an LMI set. IMA J. Math.
Control Inf. 26(4), 417–450 (2009)

43. Yıldız, S., Cornuéjols, G.: Disjunctive cuts for cross-sections of the second-order
cone. Oper. Res. Lett. 43(4), 432–437 (2015)

https://arxiv.org/abs/1911.09195
https://doi.org/10.1007/978-1-4615-4381-7

On the Convexification of Constrained
Quadratic Optimization Problems

with Indicator Variables

Linchuan Wei1 , Andrés Gómez2(B) , and Simge Küçükyavuz1

1 Department of Industrial Engineering and Management Sciences,
Northwestern University, Evanston, IL, USA

LinchuanWei2022@u.northwestern.edu, simge@northwestern.edu
2 Daniel J. Epstein Department of Industrial and Systems Engineering,

University of Southern California, Los Angeles, CA, USA
gomezand@usc.edu

Abstract. Motivated by modern regression applications, in this paper,
we study the convexification of quadratic optimization problems with
indicator variables and combinatorial constraints on the indicators.
Unlike most of the previous work on convexification of sparse regression
problems, we simultaneously consider the nonlinear objective, indicator
variables, and combinatorial constraints. We prove that for a separa-
ble quadratic objective function, the perspective reformulation is ideal
independent from the constraints of the problem. In contrast, while rank-
one relaxations cannot be strengthened by exploiting information from
k-sparsity constraint for k ≥ 2, they can be improved for other con-
straints arising in inference problems with hierarchical structure or multi-
collinearity.

Keywords: Convexification · Perspective formulation · Indicator
variables · Quadratic optimization · Combinatorial constraints

1 Introduction

Given a data matrix X = [x1, . . . , xp] ∈ R
n×p of features and a response vector

y ∈ R
n, we study constrained regression problems of the form

min
z,β

‖y − Xβ‖22 + λf(β) (1a)

subject to βi(1 − zi) = 0, i ∈ [p] (1b)
β ∈ R

p, z ∈ Q ⊆ {0, 1}p, (1c)

where β is a vector of regression coefficients, z is a vector of indicator variables
with zi = 1 if βi �= 0 (through indicator constraint (1b)), the set Q in con-
straints (1c) encodes combinatorial constraints on the indicator variables and

Andrés Gómez is supported, in part, by grant 1930582 of the National Science Foun-
dation. Simge Küçükyavuz is supported, in part, by ONR grant N00014-19-1-2321.

c© Springer Nature Switzerland AG 2020
D. Bienstock and G. Zambelli (Eds.): IPCO 2020, LNCS 12125, pp. 433–447, 2020.
https://doi.org/10.1007/978-3-030-45771-6_33

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-45771-6_33&domain=pdf
http://orcid.org/0000-0003-1522-4501
http://orcid.org/0000-0003-3668-0653
http://orcid.org/0000-0001-6548-9378
https://doi.org/10.1007/978-3-030-45771-6_33

434 L. Wei et al.

[p] = {1, 2 . . . , p}. The objective (1a) is to minimize the squared loss function
plus a regularization term λf(β). Typical choices of f include L0, L1 or L2
regularizations.

If Q is defined via a k-sparsity constraint, Q = {z ∈ {0, 1}p | ∑p
i=1 zi ≤ k},

then problem (1) reduces to the best subset selection problem [37], a funda-
mental problem in statistics. Nonetheless, constraints other than the cardinality
constraint arise in several statistical problems. Bertsimas and King [9] suggest
imposing constraints of the form

∑
i∈S zi ≤ 1 for some S ⊆ [p] to prevent mul-

ticollinearity. Constraints of the form zi ≤ zj can be used to impose hierarchy
constraints [11]. In group variable selection, indicator variables of regression coef-
ficients of variables in the same group are linked, see [33]. Manzour et al. [36]
impose that the indicator variables, which correspond to edges in an underlying
graph, do not define cycles – a necessary constraint for inference problems with
causal graphs. Cozad et al. [17] suggest imposing a variety of constraints in both
the continuous and discrete variables to enforce priors from human experts.

Problem (1) is NP-hard [39], and is often approximated with a convex surro-
gate such as lasso [30,41]. Solutions with better statistical properties than lasso
can be obtained from non-convex continuous approximations [23,47]. Alterna-
tively, it is possible to solve (1) to optimality via branch-and-bound methods
[10,16]. In all cases, most of the approaches for (1) have focused on the k-
sparsity constraint (or its Lagrangian relaxation). For example, a standard tech-
nique to improve the relaxations of (1) revolves around the use of the perspective
reformulation [1,15,20,21,24–27,29,32,45,48], an ideal formulation of a separa-
ble quadratic function with indicators (but no additional constraints). Recent
work on obtaining ideal formulations for non-separable quadratic functions [3–
5,21,28,34] also ignores additional constraints in Q.

There is a recent research thrust on studying constrained versions of (1).
Dong et al. [19] study problem (1) from a continuous optimization perspec-
tive (after projecting out the discrete variables), see also [18]. Hazimeh and
Mazumder [31] give specialized algorithms for the natural convex relaxation
of (1) where Q is defined via hierarchy constraints. Several results exist con-
cerning the convexification of nonlinear optimization problems with constraints
[2,7,12–14,35,38,40,42–44], but such methods in general do not deliver ideal,
compact or closed-form formulations for the specific case of problem (1) with
structured feasible regions. In a recent work closely related to the setting con-
sidered here, Xie and Deng [46] proves that the perspective formulation is ideal if
the objective is separable and Q is defined with a k-sparsity constraint. In a sim-
ilar vein, Bacci et al. [6] show that the perspective reformulations of the form
zg(β/z) for convex differentiable functions are tight for 1-sum compositions,
and they use this result to show that they are ideal under unit commitment
constraints. However, similar results for more general (non-separable) objective
functions or constraints are currently not known.

Our Contributions and Outline. In this paper, we provide a first study (from
a convexification perspective) of the interplay between convex quadratic objec-
tives and combinatorial constraints on the indicator variables. Specifically, we

Constrained Quadratic Optimization Problems with Indicator Variables 435

generalize the result in Xie and Deng [46] to arbitrary constraints on z. We also
show that the rank-one strengthening given in [4] is ideal for k-sparsity with
k ≥ 2. However, we show that the rank-one strengthening can be improved if
k = 1, or for hierarchy constraints [11,31]. We conclude our work with a prelim-
inary numerical study on problems with hierarchy constraints showing that the
resulting formulations achieve strong relaxations with only a modest increase in
the computational effort required to solve the resulting convex formulations.

Notation. Throughout the paper, we adopt the convention that for a ∈ R,
a2

0 = +∞ if a �= 0 and a2

0 = 0 when a = 0. We let 1 be the vector of all ones,
and let ei denote the ith unit vector of appropriate dimension with 1 in ith
component and zeros elsewhere. For a set Q, we denote by conv(Q) its convex
hull and by cl conv(Q) the closure of its convex hull.

2 Convex Hull Results

We present our convex hull results first for separable quadratic functions, fol-
lowed by the non-separable case.

2.1 Separable Quadratic Function

Consider the mixed-integer epigraph of a separable quadratic function with arbi-
trary constraints, z ∈ Q ⊆ {0, 1}p, on the indicator variables:

W =

⎧
⎨

⎩
(z, β, t) ∈ Q × R

p × R |
∑

i∈[p]

β2
i ≤ t, βi(1 − zi) = 0, ∀i ∈ [p]

⎫
⎬

⎭
.

As Theorem 1 below shows, ideal formulations of W can be obtained by apply-
ing the perspective reformulation on the separable quadratic term and, indepen-
dently, strengthening the continuous relaxation of Q. This generalizes the result
of Xie and Deng [46] for Q = {z ∈ {0, 1}p | ∑p

i=1 zi ≤ k}. Let

Y =

⎧
⎨

⎩
(z, β, t) ∈ R

2p+1 |
∑

i∈[p]

β2
i

zi
≤ t, z ∈ conv(Q)

⎫
⎬

⎭
.

Theorem 1. Y is the closure of the convex hull of W : cl conv(W) = Y.

Proof. Note that inequality β2
i

zi
≤ ti is precisely the perspective reformulation

[25] of a single quadratic term ti = β2
i , thus the validity of the correspond-

ing inequality in Y follows immediately. For any (a, b, c) ∈ R
2p+1 consider the

following two problems

min a�z + b�β + ct subject to (z, β, t) ∈ W, (2)

436 L. Wei et al.

and

min a�z + b�β + ct subject to (z, β, t) ∈ Y. (3)

It suffices to show that (2) and (3) are equivalent, i.e., there exists an optimal
solution of (3) that is optimal for (2) with the same objective value. If c = 0, b =
0, then both (2) and (3) are equivalent to minz∈Q a�z. If either c = 0 and b �= 0,
or c < 0, then (2) and (3) are unbounded. When c > 0, without loss of generality,
we may assume that c = 1 by scaling. For any (zi, βi) ∈ [0, 1] × R, i ∈ [p]

max
αi∈R

−αiβi − α2
i

4
zi =

⎧
⎪⎨

⎪⎩

β2
i

zi
if zi �= 0,

0 if zi = βi = 0,

+∞ otherwise.

(4)

Identity (4) can be proven by taking derivatives with respect to αi and setting
to 0, see also [8]. Hence, for any α ∈ R

p,

− α�β −
∑

i∈[p]

α2
i

4
zi ≤

∑

i∈[p]

β2
i

zi
. (5)

In particular, consider the relaxation of (3) obtained by replacing the constraint
that

∑
i∈[p]

β2
i

zi
≤ t with −b�β − ∑

i∈[p]
b2i
4 zi ≤ t (where we let α = b in (5)), i.e.,

min a�z + b�β + t (6a)

subject to − b�β −
∑

i∈[p]

b2i
4

zi ≤ t (6b)

z ∈ conv(Q). (6c)

Due to constraint (6b), problem (6) is equivalent to

min a�z −
∑

i∈[p]

b2i
4

zi subject to z ∈ conv(Q).

Since (6) is equivalent to a linear program (LP) over an integral polyhedron, it
must have an integral optimal solution z∗ ∈ Q. Let β∗ be such that

β∗
i =

{
0 if z∗

i = 0,

− bi
2 if z∗

i = 1.

Now if we let t∗ =
∑

i∈[p](β
∗
i)2, then (z∗, β∗, t∗) ∈ W and b�β∗ + t∗ = −∑

i∈[p]

b2i
4 z∗

i . Thus the optimal values of (2) and (6) coincide. And since (6) is also a
relaxation of (3), the optimal values of (2) and (3) coincide.
�

Constrained Quadratic Optimization Problems with Indicator Variables 437

2.2 Rank-One Quadratic Function

In this section, we study the epigraph of a (non-separable) rank-one quadratic
function with constraints

ZQ = {(z, β, t) ∈ Q × R
p × R | (1�β)2 ≤ t, βi(1 − zi) = 0,∀i ∈ [p]}

for some Q ⊆ {0, 1}p. We note that ideal formulations for the unconstrained case
Z{0,1}p were provided in [4]:

Proposition 1 (Atamtürk and Gómez [4]). The closure of the convex hull
of Z{0,1}p is

cl conv(Z{0,1}p) =

{

(z, β, t) ∈ [0, 1]p × R
p+1|(1�β)2 ≤ t,

(1�β)2
∑

i∈[p] zi
≤ t

}

.

k-sparsity constraint We first study sets defined by the k-sparsity constraint,

Q1 =

⎧
⎨

⎩
z ∈ {0, 1}p :

∑

i∈[p]

zi ≤ k

⎫
⎬

⎭
,

and prove that, under mild conditions, a generalization of the result of Xie and
Deng [46] also holds in this case, that is, ideal formulations are achieved by
focusing only on the nonlinear objective and indicator constraints.

Theorem 2. If k ≥ 2 and integer, then

cl conv(ZQ1) =

⎧
⎨

⎩
(z, β, t) ∈ [0, 1]p × R

p+1 | (1�β)2 ≤ t,
(1�β)2

∑
i∈[p] zi

≤ t,
∑

i∈[p]

zi ≤ k

⎫
⎬

⎭
.

The proof of Theorem 2 is given in the appendix. The assumption that k ≥ 2
in Theorem 2 is necessary. As we show next, if k = 1, then it is possible to
strengthen the formulation with a valid inequality that uses the information
from the cardinality constraint, which was not possible for k > 1. Note that the
case k = 1 is also of practical interest, as set Q1 with k = 1 arises for example
when preventing multi-collinearity, see [9].

Proposition 2. If k = 1, then the following inequality is valid for ZQ1

∑

i∈[p]

β2
i

zi
≤ t. (7)

Proof. If k = 1, then for any (z, β, t) ∈ ZQ1 , if
∑

i∈[p] zi = 0, then zi = βi =

0,∀i ∈ [p]. Hence, by our convention 0 =
∑

i∈[p]
β2
i

zi
= (1�β)2 ≤ t. Otherwise,

zj = 1 for some j ∈ [p], and zi = βi = 0,∀i ∈ [p], i �= j. Hence
∑

i∈[p]
β2
i

zi
= β2

j =
(1�β)2 ≤ t.
�

438 L. Wei et al.

Observe that inequality (7) is not valid if k ≥ 2, as for example (βi + βj)2 <

β2
i +β2

j ≤ β2
i

zi
+ β2

j

zj
whenever βiβj < 0. As we now show, the addition of (7) leads

to an ideal formulation of ZQ1 if k = 1.

Theorem 3. If k = 1, then

cl conv(ZQ1) =

⎧
⎨

⎩
(z, β, t) ∈ [0, 1]p × R

p+1 |
∑

i∈[p]

β2
i

zi
≤ t,

∑

i∈[p]

zi ≤ 1

⎫
⎬

⎭
.

Proof. First, consider another mixed integer epigraph:

WQ1 =

⎧
⎨

⎩
(z, β, t) ∈ {0, 1}p × R

p+1|
∑

i∈[p]

β2
i ≤ t, βi(1 − zi) = 0, ∀i ∈ [p],

∑

i∈[p]

zi ≤ 1

⎫
⎬

⎭
.

For ∀(z, β, t) ∈ ZQ1 , there exists at most one βi, i ∈ [p] such that βi �= 0. Hence,
(1�β)2 =

∑
i∈[p] β

2
i and the result follows from Theorem 1.
�

Hierarchy Constraints. We now consider the hierarchy constraints. Hierarchy
constraints arise from regression problems under the model

y = Xβ +
∑

S∈P

⎛

⎝
∏

j∈S

Xj

⎞

⎠ θS + ε, (8)

where P is a collection of subsets of [p] – usually consisting of all pairs of ele-
ments of [p] –, Xj is the j-th column of X,

∏
j∈S Xj denotes the entry-wise

multiplication of vectors Xj , θS ∈ R is a regression variable and ε is a noise
vector. Under this setting, the strong hierarchy constraints

θS �= 0 =⇒ βi �= 0, ∀i ∈ S

have been shown to improve statistical performance [11,31]. Strong hierarchy
constraints can be enforced via the constraints zS ≤ zi for all i ∈ S, where
zS ∈ {0, 1} is an appropriate indicator variable such that θS(1−zS) = 0. Thus, in
order to devise strong convex relaxations of problems with hierarchy constraints,
we study the set

Q2 = {z ∈ {0, 1}p | zp ≤ zi, ∀i ∈ [p − 1]} .

Note that in Q2 we identify S with [p − 1], zS with zp and θS with βp; since
p is arbitrary, this identification is without loss of generality. First, we give a
valid inequality for the set ZQ2 , and then show that it is sufficient to describe
cl conv(ZQ2), when added to the continuous relaxation of the original formula-
tion.

Constrained Quadratic Optimization Problems with Indicator Variables 439

Proposition 3. The following inequality is valid for ZQ2

(1�β)2
∑

i∈[p−1] zi − (p − 2)zp
≤ t.

Proof. For any (z, β, t) ∈ ZQ2 , if zp = 1, then zi = 1,∀i ∈ [p]. In this case,
(1�β)2∑

i∈[p−1] zi−(p−2)zp
= (1�β)2 ≤ t. If zp = 0, then (1�β)2∑

i∈[p−1] zi−(p−2)zp
= (1�β)2∑

i∈[p] zi
≤

t. If zi = 0,∀i, then β = 0, and by our convention 0 = (1�β)2∑
i∈[p] zi

= (1�β)2 ≤ t. If

zi = 1 for some i ∈ [p], then (1�β)2∑
i∈[p] zi

≤ (1�β)2 ≤ t.
�

To establish the convex hull of ZQ2 , we first give a lemma whose proof is in
the Appendix.

Lemma 1. The extreme points of the polyhedron

Qg =

⎧
⎨

⎩
z ∈ [0, 1]p |

∑

i∈[p−1]

zi − (p − 2)zp ≥ 1, zp ≤ zi, ∀i ∈ [p − 1]

⎫
⎬

⎭

are integral.

Now we are ready to give an ideal formulation for ZQ2 .

Theorem 4. The closure of the convex hull of ZQ2 is given by

cl conv(ZQ2) =
{

(z, β, t) ∈ [0, 1]p × R
p+1 | (1�β)2 ≤ t, zp ≤ zi,∀i ∈ [p − 1],

(1�β)2
∑

i∈[p−1] zi − (p − 2)zp
≤ t

}
.

Proof. For a, b ∈ R
p and c ∈ R, consider the optimization problems:

min a�z + b�β + ct subject to (z, β, t) ∈ ZQ2 . (9)

and

min a�z + b�β + ct (10a)

subject to (1�β)2 ≤ t (10b)

(1�β)2
∑

i∈[p−1] zi − (p − 2)zp
≤ t (10c)

zp ≤ zi, ∀i ∈ [p − 1] (10d)
z ∈ [0, 1]p. (10e)

Following similar arguments to those in the beginning of the proof of The-
orem 2 (with the exception of letting z̄ = 1 in the corresponding case), we can
assume that c = 1 and b = κ1� for some κ ∈ R; in this case, (9) and (10) have

440 L. Wei et al.

finite optimal value. Suppose (z∗, β∗, t∗) is an optimal solution of (10), then it
suffices to show that (z∗, β∗, t∗) is integral in z∗. If 0 =

∑
i∈[p−1] z

∗
i − (p−2)z∗

p =

z∗
1 +

∑p−1
i=2 (z∗

i − z∗
p), then by the constraint zi ≥ zp and non-negativity of zi we

must have z∗
1 = 0 and z∗

i = z∗
p for i = 2, . . . , p − 1. Furthermore, since z∗

1 ≥ z∗
p ,

we find that z∗
p = 0 and z∗

i = 0,∀i ∈ [p − 1].
If 0 <

∑
i∈[p−1] z

∗
i − (p − 2)z∗

p < 1 and the corresponding optimal objective
value is 0 (or positive), then by letting z∗ = 0, β∗ = 0 and t∗ = 0, we obtain
a feasible solution with the same (or better) objective value and integral in
z∗. Now suppose (z∗, β∗, t∗) attains a negative objective value in (10); let γ =

1∑
i∈[p−1] z∗

i − (p−2)z∗
p

> 1, then (γz∗, γβ∗, γt∗) is also a feasible solution of (10)

because γ2(1�β∗)2 = γ (1�β∗)2∑
i∈[p−1] z∗

i − (p−2)z∗
p

≤ γt∗, for each i ∈ [p − 1] we have

γz∗
i = z∗

i

z∗
i +

∑
j �=i,j∈[p−1](z

∗
j −z∗

p)
≤ 1, and γz∗

p ≤ γz∗
i ≤ 1. Furthermore, the solution

(γz∗, γβ∗, γt∗) has a strictly smaller objective value than the solution (z∗, β∗, t∗),
which is a contradiction.

Finally, consider the case where
∑

i∈[p−1] z
∗
i − (p − 2)z∗

p ≥ 1. In this case,
because the constraint (1�β∗)2 ≤ t is active, the optimal value is attained when
1�β∗ = −κ

2 and t∗ = (1�β∗)2 and (10) has the same optimal value as

min a�z − κ2

4
subject to

∑

i∈[p−1]

zi − (p − 2)zp ≥ 1

zp ≤ zi, ∀i ∈ [p − 1]
zi ∈ [0, 1]p.

From Lemma 1, the extreme points of this problem are integral, which completes
the proof.
�

3 Computations

We provide preliminary computations of the proposed strengthening derived in
Sect. 2.2 with second-order hierarchy constraints, that is, P = {{i, j} : i < j} in
(8). All computations were performed on a laptop with Intel Core i7-8550U CPU
and 16 GB memory using Mosek 8.1 solver.

Specifically, there is a set of 3-tuples H, such that if (i, j, k) ∈ H then βk �= 0
implies βi �= 0 and βj �= 0, resulting in the optimization problem [31]

Constrained Quadratic Optimization Problems with Indicator Variables 441

min
1
2
‖y − Xβ‖22 + λ

p∑

i=1

zi (11a)

s.t. βi(1 − zi) = 0, ∀i ∈ [p] (11b)
zk ≤ zi, zk ≤ zj , ∀(i, j, k) ∈ H (11c)
z ∈ {0, 1}p, (11d)

with L0 regularization with parameter λ > 0. We consider the following strong
(and big-M free) semi-definite relaxations of (11):

• Dynamic perspective relaxation (persp) The dynamic perspective refor-
mulation was proposed in [20] and involves the introduction of additional
variables B = ββ�:

min
1
2
‖y‖22 − y�Xβ +

1
2
〈X�X,B〉 + λ

p∑

i=1

zi (12a)

s.t. zk ≤ zi, zk ≤ zj , ∀(i, j, k) ∈ H (12b)

β2
i ≤ ziBii, ∀i ∈ [p] (12c)

(
1 β�

β B

)

� 0 (12d)

z ∈ [0, 1]p. (12e)

It corresponds to the best perspective reformulation that can be attained by
decomposing the matrix X�X = D + R with D,R � 0 and D diagonal,
and using the perspective reformulation to strengthen the term β�Dβ. This
relaxation, depending on the diagonal dominance of matrix X�X, can be
substantially stronger than the natural convex relaxation of (11). In light
of Theorem 1 – and since the constraints (11c) are totally unimodular –, this
formulation cannot be strengthened unless non-separable quadratic terms are
accounted for.

• Two-dimensional rank-one relaxation (R1) The rank-one relaxation,
proposed in [4], is a strengthening of the perspective reformulation by opti-
mally decomposing X�X = T +R where T is a sum of low-dimensional rank-
one matrices, and using perspective and rank-one strengthening to strengthen
the term β�Tβ. If all rank-one matrices are two-dimensional, then the result-
ing formulation involves the addition of constraints

⎛

⎝
zi + zj βi βj

βi Bii Bij

βj Bij Bjj

⎞

⎠ � 0

for all i < j. Observe that this formulation requires adding O(p2) constraints.
• Hierarchical strengthening (Hier) Corresponds to strengthening the

rank-one formulation by exploiting the constraints of Theorem4. Suppose

442 L. Wei et al.

that (i, 	, j) ∈ H; then using the same techniques used in [4], we obtain three
valid inequalities

⎛

⎝
zi βi βj

βi Bii Bij

βj Bij Bjj

⎞

⎠ � 0,

⎛

⎝
z� β� βj

β� B�� B�j

βj B�j Bjj

⎞

⎠ � 0 and

⎛

⎜
⎜
⎝

zi + z� − zj βi β� βj

βi Bii Bi� Bij

β� Bi� B�� B�j

βj Bij B�j Bjj

⎞

⎟
⎟
⎠ � 0.

(13)
The hierarchical strengthening corresponds to adding constraints (13) for

every element in H to formulation (12); it requires adding only O(p) con-
straints.

• Full strengthening (Hier+R1) Corresponds to adding all constraints from
the rank-one relaxation and the hierarchical strengthening.

Results We compare the strength of the formulations as well as the time
required to solve the SDP relaxations on the Diabetes dataset [4,10,22] which
involves second order interactions between variables (p = 64). Figure 1 depicts
the result. Figure 1(a) shows the optimal objective values of the different convex
relaxations of (11) as a function of λ, thus larger values indicate stronger (and
better) relaxations. Figure 1(b) depicts the time required to solve the relaxations;
we did not observe any correlation between the value of λ and the time required,
so we report aggregated times across all values of λ tested.

100

105

110

115

120

125

130

135

140

0 0.05 0.1 0.15 0.2 0.25 0.3

Lo
w

er
 b

ou
nd

Regulariza�on

Persp. Hier R1 Hier+R1

(a) Lower bound from the convex relaxation as a
function of the regularization parameter λ.

0

2

4

6

8

10

12

14

16

Persp Hier R1 Hier+R1

Ti
m

e

Method

(b) Time (in seconds).

Fig. 1. Lower bounds obtained from the convex relaxation and time required to solve
the relaxation. In (a) the values were scaled so that the objective value obtained from
the perspective relaxation [20] is 100.

We observe that just using the hierarchical strengthening (Hier) achieves
almost the same improvement in terms of the lower bound as that using the rank-
one strengthening, despite only requiring O(p) additional constraints instead of
O(p2). Indeed we observe from Fig. 1(b) that the Hierarchical strengthening
results in only a modest increase in the computational time with respect to the
perspective relaxation, while the rank-one strengthening requires almost dou-
ble that time. In addition, if the Hierarchical strengthening is used on top of

Constrained Quadratic Optimization Problems with Indicator Variables 443

the rank-one strengthening (Hier+R1), then we notice a small but noticeable
improvement in the quality of the lower bound across all values of λ, with no
apparent increase in the computational time. These preliminary results suggest
that by exploiting the constraints of the optimization problems, it is possible
to achieve stronger relaxations without substantially increasing the difficulty of
solving the convex problems.

Appendix

Proof (Theorem 2). First, note that the validity of the new inequality defining
cl conv (ZQ1) follows from Proposition 1. For a, b ∈ R

p and c ∈ R, consider the
following two optimization problems:

min a�z + b�β + ct subject to (z, β, t) ∈ ZQ1 . (14)

and

min a�z + b�β + ct (15a)

subject to (1�β)2 ≤ t (15b)

(1�β)2
∑

i∈[p] zi
≤ t (15c)

∑

i∈[p]

zi ≤ k (15d)

z ∈ [0, 1]p. (15e)

The analysis for cases where c = 0 and c < 0 is similar to the proof of Theorem1,
and we can proceed with assuming c = 1 and b ∈ R

p. First suppose that b is
not a multiple of all-ones vector, then ∃bi < bj for some i, j ∈ [p], i �= j. Let
z̄ = ei + ej , β̄ = τ(ei − ej) for some scalar τ , and t̄ = 0. Note that (z̄, β̄, t̄) is
feasible for both (14) and (15), and if we let τ go to infinity the objective value
goes to minus infinity. So (14) and (15) are unbounded.

Now suppose that b = κ1� for some κ ∈ R and c = 1; in this case both
(14) and (15) have finite optimal value. It suffices to show that there exists
an optimal solution (z∗, β∗, t∗) of (15) that is integral in z∗. If

∑
i∈[p] z

∗
i = 0,

then we know z∗
i = β∗

i = 0,∀i ∈ [p] for both (14) and (15), and we are done.
If 0 <

∑
i∈[p] z

∗
i < 1 and the corresponding optimal objective value is 0 (or

positive), then by letting z∗ = 0, β∗ = 0 and t∗ = 0, we get a feasible solution
with the same objective value (or better). If 0 <

∑
i∈[p] z

∗
i < 1 and (z∗, β∗, t∗)

attains a negative objective value, then let γ = 1∑
i∈[p] z∗

i
: (γz∗, γβ∗, γt∗) is also

a feasible solution of (15) with a strictly smaller objective value, which is a
contradiction.

444 L. Wei et al.

Finally, consider the case where
∑

i∈[p] z
∗
i ≥ 1. In this case, the constraint

(1�β)2 ≤ t is active and the optimal value is attained when 1�β∗ = −κ
2 and

t∗ = (1�β∗)2, and (15) has the same optimal value as the LP:

min a�z − κ2

4
subject to 1 ≤

∑

i∈[p]

zi ≤ k, z ∈ [0, 1]p.

The constraint set of this LP is an interval matrix, so the LP has an integral
optimal solution, z∗, hence, so does (15).
�
Proof (Lemma 1). Suppose z∗ is an extreme point of Qg and z∗ has a fractional
entry. If

∑
i∈[p−1] z

∗
i − (p − 2)z∗

p > 1, let us consider the two cases where z∗
p = 0

and z∗
p > 0. When z∗

p = 0 and there exists a fractional coordinate z∗
i where

i ∈ [p − 1], we can perturb z∗
i by a sufficient small quantity ε such that z∗ + εei

and z∗ − εei are in Qg. Then, z∗ = 1
2 (z∗ + εei) + 1

2 (z∗ − εei) which contradicts
the fact that z∗ is an extreme point of Qg. When 1 > z∗

p > 0 we can perturb z∗
p

and all other z∗
i with z∗

i = z∗
p by a sufficiently small quantity ε and stay in Qg.

Similarly, we will reach a contradiction.
Now suppose

∑
i∈[p−1] z

∗
i − (p − 2)z∗

p = 1, and let us consider again the two
cases where z∗

p = 0 and z∗
p > 0. When z∗

p = 0, z∗ = z∗
1e1 + · · · + z∗

(p−1)e(p−1),
which is a contradiction since we can write z∗ as a convex combination of points
ei ∈ Qg, i ∈ [p−1] and there exists at least two indices i, j ∈ [p−1], i �= j such that
1 > z∗

i , z∗
j > 0 by the fact that z∗ has a fractional entry and

∑
i∈[p−1] z

∗
i = 1, 0 ≤

z∗
i ≤ 1,∀i. When 1 > z∗

p > 0, we first show that there exists at most one 1 in
z∗
1 , z

∗
2 , . . . , z∗

(p−1). Suppose we have z∗
i = 1 and z∗

j = 1 for i, j ∈ [p−1] with i �= j,
then

∑
i∈[p−1] z

∗
i −(p−2)z∗

p = z∗
i +

∑
l∈[p−1],l �=i(z

∗
l −z∗

p) ≥ z∗
i +(z∗

j −z∗
p) > z∗

i = 1,
which is a contradiction. We now show that we can perturb z∗

p and the p − 2
smallest elements in z∗

i , i ∈ [p − 1] by a small quantity ε and remain in Qg.
The equality

∑
i∈[p−1] zi − (p − 2)zp = 1 clearly holds after the perturbation.

And, adding a small quantity ε to z∗
p and the p − 2 smallest elements in z∗

i , i ∈
[p − 1] will not violate the hierarchy constraint since the largest element in
z∗
i , i ∈ [p − 1] has to be strictly greater than z∗

p . (Note that if z∗
i = z∗

p ,∀i ∈ [p],∑
i∈[p−1] z

∗
i − (p − 2)z∗

p = z∗
p < 1.) Since z∗

i ≥ z∗
p > 0,∀i ∈ [p − 1] subtracting

a small quantity ε will not violate the non-negativity constraint. Thus, we can
write z∗ as a convex combination of two points in Qg, which is a contradiction.
�

References

1. Aktürk, M.S., Atamtürk, A., Gürel, S.: A strong conic quadratic reformulation for
machine-job assignment with controllable processing times. Oper. Res. Lett. 37(3),
187–191 (2009)

2. Anstreicher, K.M.: On convex relaxations for quadratically constrained quadratic
programming. Math. Program. 136(2), 233–251 (2012). https://doi.org/10.1007/
s10107-012-0602-3

3. Atamtürk, A., Gómez, A.: Strong formulations for quadratic optimization with M-
matrices and indicator variables. Math. Program. 170(1), 141–176 (2018). https://
doi.org/10.1007/s10107-018-1301-5

https://doi.org/10.1007/s10107-012-0602-3
https://doi.org/10.1007/s10107-012-0602-3
https://doi.org/10.1007/s10107-018-1301-5
https://doi.org/10.1007/s10107-018-1301-5

Constrained Quadratic Optimization Problems with Indicator Variables 445

4. Atamtürk, A., Gómez, A.: Rank-one convexification for sparse regression (2019).
http://www.optimization-online.org/DB HTML/2019/01/7050.html

5. Atamtürk, A., Gómez, A., Han, S.: Sparse and smooth signal estimation: con-
vexification of L0 formulations (2018). http://www.optimization-online.org/DB
HTML/2018/11/6948.html

6. Bacci, T., Frangioni, A., Gentile, C., Tavlaridis-Gyparakis, K.: New MINLP formu-
lations for the unit commitment problems with ramping constraints. Optimization
(2019). http://www.optimization-online.org/DB FILE/2019/10/7426.pdf

7. Belotti, P., Góez, J.C., Pólik, I., Ralphs, T.K., Terlaky, T.: A conic representa-
tion of the convex hull of disjunctive sets and conic cuts for integer second order
cone optimization. In: Al-Baali, M., Grandinetti, L., Purnama, A. (eds.) Numeri-
cal Analysis and Optimization. SPMS, vol. 134, pp. 1–35. Springer, Cham (2015).
https://doi.org/10.1007/978-3-319-17689-5 1

8. Bertsimas, D., Cory-Wright, R., Pauphilet, J.: A unified approach to mixed-integer
optimization: nonlinear formulations and scalable algorithms. arXiv preprint
arXiv:1907.02109 (2019)

9. Bertsimas, D., King, A.: OR forum - an algorithmic approach to linear regression.
Oper. Res. 64(1), 2–16 (2016)

10. Bertsimas, D., King, A., Mazumder, R.: Best subset selection via a modern opti-
mization lens. Ann. Stat. 44(2), 813–852 (2016)

11. Bien, J., Taylor, J., Tibshirani, R.: A lasso for hierarchical interactions. Ann. Stat.
41(3), 1111 (2013)

12. Bienstock, D., Michalka, A.: Cutting-planes for optimization of convex functions
over nonconvex sets. SIAM J. Optim. 24(2), 643–677 (2014)

13. Burer, S.: On the copositive representation of binary and continuous nonconvex
quadratic programs. Math. Program. 120(2), 479–495 (2009). https://doi.org/10.
1007/s10107-008-0223-z

14. Burer, S., Kılınç-Karzan, F.: How to convexify the intersection of a second order
cone and a nonconvex quadratic. Math. Program. 162(1–2), 393–429 (2016).
https://doi.org/10.1007/s10107-016-1045-z

15. Ceria, S., Soares, J.: Convex programming for disjunctive convex optimization.
Math. Program. 86, 595–614 (1999). https://doi.org/10.1007/s101070050106

16. Cozad, A., Sahinidis, N.V., Miller, D.C.: Learning surrogate models for simulation-
based optimization. AIChE J. 60(6), 2211–2227 (2014)

17. Cozad, A., Sahinidis, N.V., Miller, D.C.: A combined first-principles and data-
driven approach to model building. Comput. Chem. Eng. 73, 116–127 (2015)

18. Dong, H.: On integer and MPCC representability of affine sparsity. Oper. Res.
Lett. 47(3), 208–212 (2019)

19. Dong, H., Ahn, M., Pang, J.-S.: Structural properties of affine sparsity constraints.
Math. Program. 176(1–2), 95–135 (2019). https://doi.org/10.1007/s10107-018-
1283-3

20. Dong, H., Chen, K., Linderoth, J.: Regularization vs. relaxation: a conic optimiza-
tion perspective of statistical variable selection. arXiv preprint arXiv:1510.06083
(2015)

21. Dong, H., Linderoth, J.: On valid inequalities for quadratic programming with
continuous variables and binary indicators. In: Goemans, M., Correa, J. (eds.)
IPCO 2013. LNCS, vol. 7801, pp. 169–180. Springer, Heidelberg (2013). https://
doi.org/10.1007/978-3-642-36694-9 15

22. Efron, B., Hastie, T., Johnstone, I., Tibshirani, R.: Least angle regression. Ann.
Stat. 32(2), 407–499 (2004)

http://www.optimization-online.org/DB_HTML/2019/01/7050.html
http://www.optimization-online.org/DB_HTML/2018/11/6948.html
http://www.optimization-online.org/DB_HTML/2018/11/6948.html
http://www.optimization-online.org/DB_FILE/2019/10/7426.pdf
https://doi.org/10.1007/978-3-319-17689-5_1
http://arxiv.org/abs/1907.02109
https://doi.org/10.1007/s10107-008-0223-z
https://doi.org/10.1007/s10107-008-0223-z
https://doi.org/10.1007/s10107-016-1045-z
https://doi.org/10.1007/s101070050106
https://doi.org/10.1007/s10107-018-1283-3
https://doi.org/10.1007/s10107-018-1283-3
http://arxiv.org/abs/1510.06083
https://doi.org/10.1007/978-3-642-36694-9_15
https://doi.org/10.1007/978-3-642-36694-9_15

446 L. Wei et al.

23. Fan, J., Li, R.: Variable selection via nonconcave penalized likelihood and its oracle
properties. J. Am. Stat. Assoc. 96(456), 1348–1360 (2001)

24. Frangioni, A., Furini, F., Gentile, C.: Approximated perspective relaxations: a
project and lift approach. Comput. Optim. Appl. 63(3), 705–735 (2015). https://
doi.org/10.1007/s10589-015-9787-8

25. Frangioni, A., Gentile, C.: Perspective cuts for a class of convex 0–1 mixed integer
programs. Math. Program. 106, 225–236 (2006). https://doi.org/10.1007/s10107-
005-0594-3

26. Frangioni, A., Gentile, C.: SDP diagonalizations and perspective cuts for a class
of nonseparable MIQP. Oper. Res. Lett. 35(2), 181–185 (2007)

27. Frangioni, A., Gentile, C., Grande, E., Pacifici, A.: Projected perspective reformu-
lations with applications in design problems. Oper. Res. 59(5), 1225–1232 (2011)

28. Frangioni, A., Gentile, C., Hungerford, J.: Decompositions of semidefinite matri-
ces and the perspective reformulation of nonseparable quadratic programs. Math.
Oper. Res. (2019). https://doi.org/10.1287/moor.2018.0969. Article in Advance
(October)

29. Günlük, O., Linderoth, J.: Perspective reformulations of mixed integer nonlinear
programs with indicator variables. Math. Program. 124, 183–205 (2010). https://
doi.org/10.1007/s10107-010-0360-z

30. Hastie, T., Tibshirani, R., Wainwright, M.: Statistical Learning with Sparsity: The
Lasso and Generalizations. Monographs on Statistics and Applied Probability, vol.
143. Chapman and Hall/CRC, Boca Raton (2015)

31. Hazimeh, H., Mazumder, R.: Learning hierarchical interactions at scale: a convex
optimization approach. arXiv preprint arXiv:1902.01542 (2019)

32. Hijazi, H., Bonami, P., Cornuéjols, G., Ouorou, A.: Mixed-integer nonlinear pro-
grams featuring “on/off” constraints. Comput. Optim. Appl. 52(2), 537–558
(2012). https://doi.org/10.1007/s10589-011-9424-0

33. Huang, J., Breheny, P., Ma, S.: A selective review of group selection in high-
dimensional models. Stat. Sci.: Rev. J. Inst. Math. Stat. 27(4), 481–499 (2012)

34. Jeon, H., Linderoth, J., Miller, A.: Quadratic cone cutting surfaces for quadratic
programs with on-off constraints. Discrete Optim. 24, 32–50 (2017)

35. Kılınç-Karzan, F., Yıldız, S.: Two-term disjunctions on the second-order cone. In:
Lee, J., Vygen, J. (eds.) IPCO 2014. LNCS, vol. 8494, pp. 345–356. Springer, Cham
(2014). https://doi.org/10.1007/978-3-319-07557-0 29

36. Manzour, H., Küçükyavuz, S., Shojaie, A.: Integer programming for learning
directed acyclic graphs from continuous data. arXiv preprint arXiv:1904.10574
(2019)

37. Miller, A.: Subset Selection in Regression. Chapman and Hall/CRC, Boca Raton
(2002). https://doi.org/10.1201/9781420035933

38. Modaresi, S., Kılınç, M.R., Vielma, J.P.: Intersection cuts for nonlinear integer pro-
gramming: convexification techniques for structured sets. Math. Program. 155(1),
575–611 (2015). https://doi.org/10.1007/s10107-015-0866-5

39. Natarajan, B.K.: Sparse approximate solutions to linear systems. SIAM J. Comput.
24(2), 227–234 (1995)

40. Richard, J.-P.P., Tawarmalani, M.: Lifting inequalities: a framework for generat-
ing strong cuts for nonlinear programs. Math. Program. 121(1), 61–104 (2010).
https://doi.org/10.1007/s10107-008-0226-9

41. Tibshirani, R.: Regression shrinkage and selection via the lasso. J. Roy. Stat. Soc.:
Ser. B (Methodol.) 58, 267–288 (1996)

https://doi.org/10.1007/s10589-015-9787-8
https://doi.org/10.1007/s10589-015-9787-8
https://doi.org/10.1007/s10107-005-0594-3
https://doi.org/10.1007/s10107-005-0594-3
https://doi.org/10.1287/moor.2018.0969
https://doi.org/10.1007/s10107-010-0360-z
https://doi.org/10.1007/s10107-010-0360-z
http://arxiv.org/abs/1902.01542
https://doi.org/10.1007/s10589-011-9424-0
https://doi.org/10.1007/978-3-319-07557-0_29
http://arxiv.org/abs/1904.10574
https://doi.org/10.1201/9781420035933
https://doi.org/10.1007/s10107-015-0866-5
https://doi.org/10.1007/s10107-008-0226-9

Constrained Quadratic Optimization Problems with Indicator Variables 447

42. Vielma, J.P.: Small and strong formulations for unions of convex sets from the
Cayley embedding. Math. Program. 177(1–2), 21–53 (2019). https://doi.org/10.
1007/s10107-018-1258-4

43. Wang, A.L., Kılınç-Karzan, F.: The generalized trust region subproblem: solution
complexity and convex hull results. arXiv preprint arXiv:1907.08843 (2019a)

44. Wang, A.L., Kılınç-Karzan, F.: On the tightness of SDP relaxations of QCQPs.
Optimization Online preprint (2019b). http://www.optimization-online.org/DB
FILE/2019/11/7487.pdf

45. Wu, B., Sun, X., Li, D., Zheng, X.: Quadratic convex reformulations for semicon-
tinuous quadratic programming. SIAM J. Optim. 27(3), 1531–1553 (2017)

46. Xie, W., Deng, X.: The CCP selector: scalable algorithms for sparse ridge regression
from chance-constrained programming. arXiv preprint arXiv:1806.03756 (2018)

47. Zhang, C.-H.: Nearly unbiased variable selection under minimax concave penalty.
Ann. Stat. 38, 894–942 (2010)

48. Zheng, X., Sun, X., Li, D.: Improving the performance of MIQP solvers for
quadratic programs with cardinality and minimum threshold constraints: a
semidefinite program approach. INFORMS J. Comput. 26(4), 690–703 (2014)

https://doi.org/10.1007/s10107-018-1258-4
https://doi.org/10.1007/s10107-018-1258-4
http://arxiv.org/abs/1907.08843
http://www.optimization-online.org/DB_FILE/2019/11/7487.pdf
http://www.optimization-online.org/DB_FILE/2019/11/7487.pdf
http://arxiv.org/abs/1806.03756

Author Index

Abdi, Ahmad 1
Adjiashvili, David 13
Aissi, Hassene 27
Aliev, Iskander 40
Anegg, Georg 52
Angelidakis, Haris 52
Averkov, Gennadiy 40

Barman, Siddharth 66
Bonami, Pierre 78
Bosman, Thomas 91

Conforti, Michele 104
Cornuéjols, Gérard 1

Dash, Sanjeeb 117
De Loera, Jesús A. 40

Fawzi, Omar 66
Fiorini, Samuel 104
Frascaria, Dario 130

Garg, Naveen 144
Gasse, Maxime 322
Ghoshal, Suprovat 66
Gleixner, Ambros 322
Gómez, Andrés 433
Guenin, Bertrand 182
Günlük, Oktay 117
Gupta, Anupam 158
Gürpınar, Emirhan 66

Hartmann, Tim A. 171
Heo, Cheolwon 182
Hirai, Hiroshi 196
Hommelsheim, Felix 13
Huynh, Tony 1, 104

Iwamasa, Yuni 196

Jia, Xinrui 209

Kavitha, Telikepalli 223
Kılınç-Karzan, Fatma 419
Király, Csaba 238

Király, Tamás 223
Klein, Kim-Manuel 252
Klimm, Max 266
Kobayashi, Yusuke 280
Küçükyavuz, Simge 433
Kumar, Amit 158
Kumar, Nikhil 144
Kurpisz, Adam 52

Lee, Dabeen 1, 117
Lendl, Stefan 171
Lodi, Andrea 322

Matuschke, Jannik 223
McCormick, S. Thomas 27
Mihálykó, András 238
Morell, Sarah 294
Mühlenthaler, Moritz 13
Müller, Benjamin 322
Muñoz, Gonzalo 307, 322

Nagarajan, Viswanath 158

Oertel, Timm 40
Olver, Neil 91, 130

Paat, Joseph 338, 364
Pfetsch, Marc E. 266
Prokopyev, Oleg A. 378

Queyranne, Maurice 27

Raber, Rico 266
Rodríguez-Heck, Elisabeth 351

Salvagnin, Domenico 78
Schlöter, Miriam 338, 364
Schlotter, Ildikó 223
Schmidt-Kraepelin, Ulrike 223
Sebő, András 144
Serrano, Felipe 307, 322
Shen, Xiangkun 158
Sheth, Kshiteej 209
Shi, Xueyu 378

Skutella, Martin 266, 294
Speakman, Emily 364
Stickler, Karl 351
Svensson, Ola 209

Tramontani, Andrea 78
Traub, Vera 391
Tröbst, Thorben 391

van Hoeve, Willem-Jan 405

Walter, Matthias 351
Wang, Alex L. 419
Wei, Linchuan 433
Weismantel, Robert 338
Weltge, Stefan 104, 351
Woeginger, Gerhard J. 171

Zeng, Bo 378
Zenklusen, Rico 52

450 Author Index

	Preface
	Organization
	Contents
	Idealness of k-wise Intersecting Families
	1 Introduction
	1.1 Paper Outline

	2 Cuboids
	3 Proof of Theorem 2
	3.1 The 8-flow Theorem
	3.2 Sums of Circuits Property
	3.3 Proof of Theorem 2

	4 Applications and Two More Conjectures
	4.1 Embedding Projective Geometries
	4.2 Dyadic Fractional Packings

	A Binary Matroids
	B Proof of Proposition 20
	References

	Flexible Graph Connectivity
	1 Introduction
	1.1 Importance of Non-uniform Models for Network Reliability
	1.2 Complexity of FGC and Its Relationship to 2-ECSS and WTAP
	1.3 Main Techniques and an Overview of the Algorithm
	1.4 Notation and Organization

	2 The Algorithm
	A Proof Sketch of Theorem 1
	References

	Faster Algorithms for Next Breakpoint and Max Value for Parametric Global Minimum Cuts
	1 Introduction
	1.1 Related Works
	1.2 Our Results

	2 Problem PNB(M)
	2.1 A Deterministic Contraction Algorithm
	2.2 A Randomized Contraction Algorithm

	3 Problem Pmax(M)
	4 Conclusion
	5 Appendix
	5.1 Geometric tools

	References

	Optimizing Sparsity over Lattices and Semigroups
	1 Introduction
	1.1 Lattices: Sparse Solutions of Linear Diophantine Systems
	1.2 Semigroups: Sparse Solutions in Integer Programming

	2 Proofs of Theorem 1 and its consequences
	3 Proof of Theorem 6
	A Appendix
	References

	A Technique for Obtaining True Approximations for k-Center with Covering Constraints
	1 Introduction
	1.1 Our Results
	1.2 Outline of Main Technical Contributions and Paper Organization

	2 A 4-approximation for C k C for =O(1)
	3 The Lottery Model of Harris et al. ch5HarrisPST19
	A Appendix
	References

	Tight Approximation Bounds for Maximum Multi-coverage
	1 Introduction
	1.1 Our Results and Techniques
	1.2 Related Covering Problems and Submodular Function Maximization
	1.3 Applications

	2 Approximation Algorithm for the -Multi-coverage Problem
	2.1 Proof Sketch of Theorem3

	3 Concluding Remarks
	References

	Implementing Automatic Benders Decomposition in a Modern MIP Solver
	1 Introduction
	2 Benders Decomposition
	3 The Master Problem
	4 CGLP Improvements
	4.1 Generalized Bound Constraints
	4.2 CGLP Normalization

	5 Computational Results
	A Appendix
	A.1 Proof of Lemma 1
	A.2 Proof of Lemma 2

	References

	Improved Approximation Algorithms for Inventory Problems
	1 Introduction
	2 Preliminaries, Model and Technical Overview
	3 Reducing to Structured Covering Problems
	3.1 Bounding the Time Horizon, and Further Simplifications

	4 Steiner Tree over Time
	5 Submodular Cover over Time
	A Some Omitted Proofs
	References

	Extended Formulations for Stable Set Polytopes of Graphs Without Two Disjoint Odd Cycles
	1 Introduction
	2 The Structure of Graphs Without Two Disjoint Odd Cycles
	3 Constructing a Compact Extended Formulation
	4 Dealing with Small Separations
	4.1 Reducing to Edge-Induced Weights
	4.2 Correctness of the Extended Formulation

	A Review of the Projective Planar Case
	References

	On a Generalization of the Chvátal-Gomory Closure
	1 Introduction
	1.1 Preliminaries

	2 Integer Points in a General Cylinder
	3 Integer Points in a Pointed Polyhedron
	3.1 Covering Polyhedra
	3.2 Packing Polyhedra and General Pointed Polyhedra

	4 The General Case
	A Proof of Lemma5
	References

	Algorithms for Flows over Time with Scheduling Costs
	1 Introduction
	2 Model and Preliminaries
	3 A Combinatorial Algorithm
	4 Optimality
	5 Optimal Tolls
	A Some Omitted Proofs
	References

	Integer Plane Multiflow Maximisation: Flow-Cut Gap and One-Quarter-Approximation
	1 Introduction
	2 Preliminaries
	3 Multicuts Versus Multiflows via 2-Connectors
	4 From Fractional to Half-Integer
	5 From Half-Integer to Integer
	6 Lower Bounds on the Flow-Cut Gap
	7 Conclusions
	References

	Stochastic Makespan Minimization in Structured Set Systems (Extended Abstract)
	1 Introduction
	1.1 Results and Techniques
	1.2 Related Work

	2 Problem Definition and Preliminaries
	2.1 Structure of Set Systems: The Two Assumptions
	2.2 Effective Size and Random Variables

	3 The General Framework
	4 Applications
	5 Integrality Gap Lower Bounds
	A Analysis Outline
	References

	Continuous Facility Location on Graphs
	1 Introduction
	2 Notation and Technical Preliminaries
	3 Parametrized Hardness Results
	4 NP-Hardness Results
	5 The Polynomial Time Result for 1-Covering
	6 The Fixed Parameter Tractable Cases
	References

	Recognizing Even-Cycle and Even-Cut Matroids
	1 Introduction
	2 A Simple Algorithm for Recognizing Graphic Matroids
	2.1 Reduction to the 3-Connected Case
	2.2 Graph Representations
	2.3 The Algorithm

	3 A First Attempt at Generalization
	3.1 Signed Graph Representations
	3.2 A Bad Example

	4 Pinch-Graphic Matroids
	4.1 The Definition
	4.2 Even-Cycle Matroids that Are Not Pinch-Graphic
	4.3 Recognition: From Pinch-Graphic to Even-Cycle Matroids

	5 Internally 4-Connected Pinch-Graphic Matroids
	5.1 Connectivity Helps, up to a Point
	5.2 Preserving Connectivity
	5.3 Recognition: Is an Internally 4-Connected Matroid pinch-Graphic?

	6 Taming 1-, 2-, and 3-Separations
	6.1 Reduction to the 3-Connected Case
	6.2 Structure of 3-Separations

	A Appendix: Outline of the Proof of Theorem 7
	A.1 Pinch Cographic Matroids
	A.2 Sizes of Equivalence Classes
	A.3 Counting Representations

	References

	A Combinatorial Algorithm for Computing the Rank of a Generic Partitioned Matrix with 22 Submatrices
	1 Introduction
	2 Matching
	3 Algorithm
	3.1 Augmenting Trail
	3.2 Finding an Augmenting Trail
	3.3 Augmentation

	A Bit Complexity
	B Constructing an Augmenting Space-Walk and Computing the Wong Sequence
	C Blow-Up Free Algorithm for Edmonds' Problem
	References

	Fair Colorful k-Center Clustering
	1 Introduction
	2 A 3-Approximation Algorithm
	2.1 The Pseudo-Approximation Algorithm
	2.2 Phase I
	2.3 Phase II

	3 Sum-of-Squares Integrality Gap
	A Dynamic Programming for Dense Points
	B Flow Constraints
	References

	Popular Branchings and Their Dual Certificates
	1 Introduction
	1.1 Our Problem and Results
	1.2 Background and Related Work

	2 Dual Certificates
	3 Popular Branching Algorithm
	3.1 A Simple Extension of Our Algorithm: Algorithm MinMargin

	4 The Popular Arborescence Polytope of D
	References

	Sparse Graphs and an Augmentation Problem
	1 Introduction
	2 Preliminaries
	2.1 Algorithmic Preliminaries

	3 Preprocessing
	4 The Min-Max Theorem for the Reduced Problem
	5 The Algorithm for the Reduced Problem
	6 The General Augmentation Problem
	7 Concluding Remarks
	References

	About the Complexity of Two-Stage Stochastic IPs
	1 Introduction
	1.1 Two-Stage Stochastic Integer Programming
	1.2 The Augmentation Framework
	1.3 Our Results

	2 The Complexity of Two-Stage Stochastic IPs
	3 About the Intersection of Integer Cones
	4 Proof of Lemma 2
	References

	Packing Under Convex Quadratic Constraints
	1 Introduction
	2 Preliminaries
	3 A Golden Ratio Approximation Algorithm
	4 The Greedy Algorithm
	5 Monotone Algorithms
	6 Constantly Many Packing Constraints
	7 Approximation Hardness
	References

	Weighted Triangle-Free 2-Matching Problem with Edge-Disjoint Forbidden Triangles
	1 Introduction
	1.1 2-Matchings Without Short Cycles
	1.2 Our Results
	1.3 Key Ingredient: Extended Formulation
	1.4 Organization of the Paper

	2 Extended Formulation of the T-free b-factor Polytope
	3 Outline of the Proof of Proposition 1
	4 Algorithm
	5 Concluding Remarks
	A Proof of Lemma 2
	B Proof of Lemma 3
	References

	Single Source Unsplittable Flows with Arc-Wise Lower and Upper Bounds
	1 Introduction
	2 A Short Proof of the Dinitz-Garg-Goemans Theorem
	3 Unsplittable Flows with Arc-Wise Lower Bounds
	4 Combining Lower and Upper Bounds
	5 Conclusion
	A Illustration of UBP and LBP Augmentation Steps
	B Counterexample
	C Proof of Lemma 4
	References

	Maximal Quadratic-Free Sets
	1 Introduction
	1.1 Literature Review
	1.2 Notation

	2 Preliminaries
	3 Homogeneous Quadratics
	4 Including a Single Homogeneous Linear Constraint
	4.1 Case 1: "026B30D a"026B30D "026B30D d"026B30D M > 1
	4.2 Case 2: "026B30D a"026B30D "026B30D d"026B30D

	5 Non-homogeneous Quadratics
	5.1 Case 1: "026B30D a"026B30D "026B30D d"026B30D M > 1
	5.2 Case 2: "026B30D a"026B30D > "026B30D d"026B30D

	6 Conclusions
	References

	On Generalized Surrogate Duality in Mixed-Integer Nonlinear Programming
	1 Introduction
	2 Background
	3 Generalized Surrogate Duality
	4 An Algorithm for the K-surrogate Dual
	4.1 A Benders' Approach
	4.2 Convergence

	5 Computational Enhancements
	6 Computational Experiments
	6.1 Experimental Setup
	6.2 Computational Results

	7 Conclusion
	A Appendix
	A.1 The Effect of Stabilization
	A.2 Detailed Results for the DUALBOUND Experiment

	References

	The Integrality Number of an Integer Program
	1 Introduction
	2 The Proof of Theorem1
	3 The Proof of Theorem2
	References

	Persistency of Linear Programming Relaxations for the Stable Set Problem
	1 Introduction
	2 LP Formulations for Stable Set
	3 Results
	4 Proof of the Main Result
	4.1 The Graph G-out
	4.2 The Graph G-in
	4.3 The Graph G*
	4.4 The Objective Vector

	A Deferred proofs
	References

	Constructing Lattice-Free Gradient Polyhedra in Dimension Two
	1 Introduction
	2 An Update Procedure for n = 2 and d = 0
	2.1 Convergence Towards an Optimal Solution Of ([eqMainProb]CM): Theorem1
	2.2 Convergence Towards a Lattice-Free Set: Theorem2

	References

	Sequence Independent Lifting for the Set of Submodular Maximization Problem
	1 Introduction
	2 A New Class of Subadditive Function
	3 Lifting for conv(P0)
	3.1 Lifted Inequalities from Uplifting
	3.2 Lifted Inequalities from Downlifting

	4 Lifting for conv(P) with a Partition Matroid X
	4.1 Multidimensional Lifting and Lifted Inequalities
	4.2 Computing the Exact Lifting Function

	5 Computational Experiments
	A Proof of Theorem 1
	B Proof Sketch of Theorem 4
	References

	A Fast (2 + 2/7)-Approximation Algorithm for Capacitated Cycle Covering
	1 Introduction
	1.1 Our Results and Techniques

	2 Tree Splitting
	3 The Tree Cover LP
	4 Randomized Rounding
	5 A Fast and Deterministic Algorithm
	6 Lower Bounds
	A Sketch of the Proof of Lemma1
	B Sketch of the Proof of Lemma4
	C Sketch of the Proof of Lemma8
	D Proof of Theorem3
	References

	Graph Coloring Lower Bounds from Decision Diagrams
	1 Introduction
	2 Graph Coloring by Independent Sets
	3 Decision Diagrams
	4 Network Flow Model
	5 Iterative Refinement Procedure
	6 Implementation and Experimental Results
	7 Conclusion
	References

	On Convex Hulls of Epigraphs of QCQPs
	1 Introduction
	2 A General Framework
	2.1 Rewriting the SDP in Terms of a Dual Object
	2.2 The Eigenvalue Structure of
	2.3 The Framework

	3 Symmetries in QCQPs
	4 Convex Hull Results
	A Proof Sketch of Lemma4
	References

	On the Convexification of Constrained Quadratic Optimization Problems with Indicator Variables
	1 Introduction
	2 Convex Hull Results
	2.1 Separable Quadratic Function
	2.2 Rank-One Quadratic Function

	3 Computations
	References

	Author Index

