
Everybody’s a Target:
Scalability in Public-Key Encryption

Benedikt Auerbach1(B) , Federico Giacon2(B), and Eike Kiltz3

1 IST Austria, Klosterneuburg, Austria
benedikt.auerbach@ist.ac.at

2 Gnosis Service GmbH, Berlin, Germany
federico.giacon@rub.de

3 Ruhr-Universität Bochum, Bochum, Germany
eike.kiltz@rub.de

Abstract. For 1 ≤ m ≤ n, we consider a natural m-out-of-n multi-
instance scenario for a public-key encryption (PKE) scheme. An adver-
sary, given n independent instances of PKE, wins if he breaks at least
m out of the n instances. In this work, we are interested in the scaling
factor of PKE schemes, SF, which measures how well the difficulty of
breaking m out of the n instances scales in m. That is, a scaling factor
SF = � indicates that breaking m out of n instances is at least � times
more difficult than breaking one single instance. A PKE scheme with
small scaling factor hence provides an ideal target for mass surveillance.
In fact, the Logjam attack (CCS 2015) implicitly exploited, among other
things, an almost constant scaling factor of ElGamal over finite fields
(with shared group parameters).

For Hashed ElGamal over elliptic curves, we use the generic group
model to describe how the scaling factor depends on the scheme’s granu-
larity. In low granularity, meaning each public key contains its indepen-
dent group parameter, the scheme has optimal scaling factor SF = m;
In medium and high granularity, meaning all public keys share the
same group parameter, the scheme still has a reasonable scaling fac-
tor SF =

√
m. Our findings underline that instantiating ElGamal over

elliptic curves should be preferred to finite fields in a multi-instance
scenario.

As our main technical contribution, we derive new generic-group lower
bounds of Ω(√mp) on the complexity of both the m-out-of-n Gap Dis-
crete Logarithm and the m-out-of-n Gap Computational Diffie-Hellman
problem over groups of prime order p, extending a recent result by Yun
(EUROCRYPT 2015). We establish the lower bound by studying the
hardness of a related computational problem which we call the search-
by-hypersurface problem.

c© International Association for Cryptologic Research 2020
A. Canteaut and Y. Ishai (Eds.): EUROCRYPT 2020, LNCS 12107, pp. 475–506, 2020.
https://doi.org/10.1007/978-3-030-45727-3_16

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-45727-3_16&domain=pdf
http://orcid.org/0000-0002-7553-6606
http://orcid.org/0000-0003-1178-048X
https://doi.org/10.1007/978-3-030-45727-3_16

476 B. Auerbach et al.

1 Introduction

For integers 1 ≤ m ≤ n, consider the following natural m-out-of-n multi-instance
attack scenario for a public-key encryption scheme PKE1. An attacker is given
n independent instances (public keys) of PKE and would like to simultaneously
break semantic security at least m out of n instances. Note that this is a dif-
ferent setting from the standard, well studied, multi-user attack scenario by
Bellare et al. [7]. In the (security-wise) best possible scenario, running an m-out-
of-n multi-instance attack is m times more difficult compared to a (standard)
single-instance attack. However, there is no guarantee that breaking m-out-of-n
instances is more difficult than breaking a single instance.

This motivates the following question:

How well does the difficulty of breaking m out of n instances of
PKE scale with m?

In order to give a quantitative answer to this question, we define the scaling
factor (relative to a fixed security notion) of PKE as

SFm,n
PKE = resources necessary to break m out of n instances

resources necessary to break 1 instance , (1)

where “resources” refers to the running time to break PKE in the studied security
notion. Clearly, the larger SFPKE, the better are the security guarantees in the
multi-instance setting. The best we can hope for is SFm,n

PKE = m, meaning that
breaking m out of n instances amounts to breaking m times a single instance of
PKE.

Scaling Factor and Mass Surveillance. In 2012, James Bamford wrote in
Wired:

According to another top official also involved with the program, the NSA
made an enormous breakthrough several years ago in its ability to crypt-
analyze, or break, unfathomably complex encryption systems employed by
not only governments around the world but also many average computer
users in the US. The upshot, according to this official: “Everybody’s a
target; everybody with communication is a target.”

This statement should appear as a surprise to the cryptographic community:
Parameters for cryptographic schemes are usually chosen to make even compro-
mising a single user a daunting challenge, meaning multi-instance attacks seem
out of scope even for adversaries with nation-state capabilities. Unfortunately,
the use of outdated parameters is a widespread occurrence in practice [2,19],
either as a consequence of legacy infrastructure or hardware restrictions. In this
case, a bad scaling factor would tip the scale from single compromised users
to full-scale mass surveillance. Even more so, the hardness of several common
number-theoretic problems is known to scale sub-optimally in the number of
1 Formally, in this work we consider key-encapsulation mechanisms.

Everybody’s a Target: Scalability in Public-Key Encryption 477

Table 1. Shared public system parameters and individual public keys for schemes
HEG[GGenE(F�), gran] and HEG[GGenF∗

�
, gran] at different granularities. Here g gener-

ates a subgroup of prime order p of either an elliptic curve E(F�) or a finite field F
∗
�

and � is a prime.

PKE Setting Shared param. Public key pki

HEG[GGenE(F�), high] Elliptic curve E(F�), p, g gxi

HEG[GGenE(F�), med] Elliptic curve E(F�), p gi, gxi
i

HEG[GGenE(F�), low] Elliptic curve – Ei(F�i), pi, gi, gxi
i

HEG[GGenF∗
�
, high] Finite field F

∗
� , p, g gxi

HEG[GGenF∗
�
, med] Finite field F

∗
� , p gi, gxi

i

HEG[GGenF∗
�
, low] Finite field – F�i , pi, gi, gxi

i

instances. Examples are factoring [11] and computing discrete logarithms in the
finite-field [4,5] and elliptic-curve [18,20,22] setting. This sub-optimal scaling
is typically inherited by the corresponding cryptographic schemes. It has been
exploited in practice by the famous Logjam attack [2], where the authors break
many Diffie-Hellman instances in TLS with nearly the same resources as to break
a single Diffie-Hellman instance. Concretely, the Logjam attack could success-
fully break multiple 512-bit finite-field instances, and the authors also speculate
about the feasibility of breaking 1024-bit instances. With our work we aim to
deliver positive results by computing (non-trivial lower bounds on) the scaling
factors of concrete encryption schemes that are currently employed in practice,
thereby providing bounds on the hardness of performing mass surveillance.

Considered Encryption Schemes. We are able to provide non-trivial
bounds on the scaling factor for Hashed ElGamal (HEG), also known
as DHIES [1], in the elliptic curve (HEG[GGenE(F�)]) and the finite
field (HEG[GGenF∗

�
]) setting, the arguably most widely used discrete-

logarithm-type encryption schemes. Here GGenE(F�) and GGenF∗
�

are group-
generating algorithms that generate prime-order subgroups of elliptic curves
and finite fields respectively. In both cases, � denotes randomly cho-
sen primes of appropriate size. We consider both schemes instantiated in
three different granularity settings (low, medium, and high), leading to
six schemes, HEG[GGenE(F�), low], HEG[GGenE(F�), med], HEG[GGenE(F�), high],
HEG[GGenF∗

�
, low], HEG[GGenF∗

�
, med], and HEG[GGenF∗

�
, high], which offer dif-

ferent trade-offs between public key sizes and scalability. The term granularity
specifies which parts of the scheme’s parameters belong to the global system
parameters (shared among all n users), and which parts belong to the individ-
ual, user-specific public keys. Table 1 depicts the shared public system param-
eters and individual keys in a multi-instance setting with n parties for HEG at
different granularities.

478 B. Auerbach et al.

1.1 Our Results

Formal Definitions: Multi-Instance Security. The notion of n-out-of-n
multi-instance security for any n ≥ 1 was first considered and formally defined
by Bellare et al. [8] in the setting of secret-key encryption. As our first contribu-
tion, we extend their notion to m-out-of-n multi-instance security for public-key
encryption, for arbitrary 1 ≤ m ≤ n. In fact, we give two different notions,
modeling (m, n)-CPA (passive) and (m, n)-CCA (active) security.

Our (m, n)-CPA experiment provides the adversary with n independent pub-
lic keys pk[1], . . . , pk[n]. Next, it picks n independent challenge bits b[1], . . . , b[n]
and grants the adversary access to oracle Enc(·, ·, ·) which, given i, M0, M1,
returns an encryption of message Mb[i] under pk[i]. The adversary outputs a
single bit b′ together with a list L ⊆ {1, . . . , n} of cardinality at least m. The
advantage function is defined as

Adv(m,n)-cpa
PKE = Pr

[
b′ =

⊕
i∈L

b[i]
]

− 1
2 .

That is, the adversary wins if it guesses correctly the XOR of at least m (out of
n) challenge bits. (Note that the standard multi-user security notion for PKE [7]
is different: Most importantly, multi-user security involves only a single challenge
bit, in particular limiting this notion to the case of m = 1.) Why using XOR
for defining the winning condition? Bellare et al. [8] argue that this is a natural
metric because its well-known “sensitivity” means that as long as at least one
of the challenge bits looks random to the adversary so does their XOR. They
further argue that other possible winning conditions such as using AND2 are less
natural and lead to inconsistencies. We refer to Bellare et al. [8] for an extensive
discussion. In (m, n)-CCA security, the adversary is furthermore provided with a
decryption oracle Dec(·, ·) which given i, c returns a decryption of c under sk[i].
To expand on the characteristics of the multi-instance setting, we determine the
relations between the security notions (m, n)-CPA and (m, n)-CCA for different
values of m and n. The natural results we are able to show in this regard (among
others, the intuitive idea that a single-instance adversary of advantage ε and
running time t can be extended to an m-out-of-n adversary of advantage εm and
running time mt; see Theorem 1) give us further confidence on the significance of
the chosen multi-instance security definition, and enable us to present a formally
sound definition of the scaling factor.

Scaling Factor of HEG[GGenE(F�), ·] and HEG[GGenF∗
�
, ·]. In order to give a

lower bound on SFm,n
PKE as defined in Eq. (1), we need to lower bound the numera-

tor (i.e., resources required to break m out of n instances) for all possible adver-
saries and upper bound the denominator (i.e., resources needed to break one
instance) by specifying a concrete adversary. Unfortunately, unless the famous
P vs. NP problem is settled, all meaningful lower bounds on the resources will

2 I.e., by letting the adversary output a vector b′[1], . . . , b′[n] and a set I and defining
the advantage function as Adv(m,n)-cpa

PKE = Pr[
∧

i∈I
b[i] = b′[i]] − 1/2m.

Everybody’s a Target: Scalability in Public-Key Encryption 479

Table 2. Lower bounds on the scaling factor SFm,n
HEG relative to (m, n)-CCA security.

L�(1/3, c) is defined as exp((c + o(1))(log �)1/3(log log �)2/3). In the finite field case
m = L�(1/3, δ) for some δ ≥ 0.

PKE Setting Scaling factor
HEG[GGenE(F�), {high, med}] Elliptic curve Θ(

√
m)

HEG[GGenE(F�), low] Elliptic curve Θ(m)

HEG[GGenF∗
�

, {high, med}] Finite field

{
1 δ ≤ 0.67
L�(1/3, δ − 0.67) δ > 0.67

HEG[GGenF∗
�

, low] Finite field

{
L�(1/3, δ) 0 ≤ δ < 0.105
L�(1/3, 0.105) 0.105 ≤ δ < 0.368
L�(1/3, −0.263 + δ) 0.368 ≤ δ

require either an unproven complexity assumption or a restricted model of com-
putation. We rely on the generic group model [28] for HEG[GGenE(F�), ·] (which
is considered to be meaningful for elliptic-curve groups) and on a hypothesis on
the running time of variants of the number field sieve for HEG[GGenF∗

�
, ·] based

on the fastest known attacks on finite fields.
Our main results regarding the scaling factor SFm,n

HEG in different granularities
relative to (m, n)-CCA security are summarized in Table 2. In both considered
group instantiations, HEG shows the same asymptotic scaling behavior for high
and medium granularity. In both cases however, HEG scales better in the low-
granularity case. Concretely, Hashed ElGamal over elliptic curves (modeled as
generic groups) scales optimally for low-granularity parameters. For medium and
high granularity, on the other hand, the scaling factor is of order Θ(

√
m), where

the constants hidden by the Θ-notation are small.
Let L�(1/3, c) := exp((c + o(1))(log �)1/3(log log �)2/3). For HEG in the finite

field setting with respect to high and medium granularity, we see that the
scaling factor is roughly 1 for up to m = L�(1/3, 0.67) instances, the point
starting from which the cumulative cost of breaking m individual instances
outweighs the cost of the precomputation. Beyond, the KEM scales linearly
with slope L�(1/3, −0.67). Note that L�(1/3, 0.67) is large for typical values
of �. Concretely, for 512 bit primes we get that L�(1/3, 0.67) ≈ 222 meaning
that the effort of breaking 222 instances roughly equals the effort to break
a single instance. While the concrete number is obtained ignoring the o(1)
terms in L�, it still matches empirical results [2, Table 2]. For low granular-
ity and for up to L�(1/3, 0.105) instances, HEG[GGenF∗

�
, low] scales optimally.

For L�(1/3, 0.105) ≤ m ≤ L�(1/3, 0.368), the scaling factor is roughly constant,
and for larger numbers of instances, it scales linearly with slope L�(1/3, −0.263)
which is far larger than the slope in the case of medium or high granularity.

Summing up, Hashed ElGamal instantiated with elliptic curve groups shows
a better scaling behavior than the corresponding instantiation in the finite-field
setting. Further, in both cases switching from the high granularity setting to
the medium granularity setting does not improve the scaling behavior, while the

480 B. Auerbach et al.

Table 3. Example values of scaling factor SF(m,m)-cca
HEG[GGen,gran] for different values of m and

�, GGen ∈ {GGenE(F�),GGenF∗
�
}, and gran ∈ {high, med, low}.

Elliptic curve Finite field
m � high, med low high, med low
220 512 210 220 1.21 211.26

1024 210 220 1.00 28.26

2048 210 220 1.00 26.64

230 512 215 230 27.73 221.26

1024 215 230 1.85 218.13

2048 215 230 1.00 214.02

use of individual groups, i.e., low-granularity parameters does. To illustrate our
findings we provide example values of the scaling factor for different numbers of
instances m and prime sizes � in Table 3.

While our results imply that the use of low-granularity parameters is prefer-
able with respect to security scaling, we stress that generating cryptographically
secure groups is a hard and error prone process. Delegating this task to the
the individual user as part of the key generation might actually have a negative
impact on the scheme’s security in practice. Further, the use of individual groups
negatively impacts the efficiency of the scheme, as key generation requires the
sampling of secure groups, and key-sizes increase.

Derivation of the Scaling Factors. As we will explain below in more
detail, the bounds from Table 2 are obtained in two steps. In a first step, we
consider an m-out-of-n multi-instance version of the Gap Computational Diffie-
Hellman problem, (m, n)-GapCDH[GGen, gran], where the term “gap” refers to
the presence of a Decisional Diffie-Hellman (DDH) oracle. The following theorem
holds for all GGen ∈ {GGenE(F�),GGenF∗

�
} and gran ∈ {high, med, low}.

Theorem. The (m, n)-CCA security of HEG[GGen, gran] is tightly implied by
the hardness of (m, n)-GapCDH[GGen, gran].

The theorem (described formally in Sect. 4) is a somewhat straightforward gen-
eralization of the single-instance case [1]. We stress that tightness in our previous
theorem is an essential ingredient to obtain overall tight bounds on the scaling
factor.

In a second step, we provide bounds on the (m, n)-GapCDH[GGen, gran]
problem. In the finite field case, we rely on the following hypothesis:

Hypothesis 1. The fastest algorithms to break (m, n)-GapCDH[GGenF∗
�
, gran]

are variants of the number field sieve [4,5] which require running time

T =
{

L�(1/3, 1.902) +m · L�(1/3, 1.232) gran ∈ {high, med}
min{m · L�(1/3, 1.902), L�(1/3, 2.007) +m · L�(1/3, 1.639)} gran = low .

Everybody’s a Target: Scalability in Public-Key Encryption 481

The lower bounds on SFm,n for HEG[GGenF∗
�
, gran] are obtained by combin-

ing the previous theorem and Hypothesis 1. The running times specified in the
hypothesis stem from the multi-field NFS [5] (high/medium granularity) and
the DLOG factory [4] (low granularity). Both variants first require an instance-
independent precomputation. Then instances can be solved with a constant com-
putational effort. The values δ = 0.67 and δ = 0.368 of Table 2 correspond to
the number of instances starting from which the cumulative cost of breaking the
instances outweighs the cost of the precomputation.

In the elliptic-curve case, we make the hypothesis that the fastest adversary
attacking the system is a generic-group adversary. Concretely, we prove the fol-
lowing generic-group lower bounds for (m, n)-GapCDH[GGengg, gran] in different
granularities, where GGengg generates a generic group [28] of prime order p, and
the granularity gran determines how much information about the used group is
shared amongst the challenge instances (see Table 4).

Theorem. The best generic algorithm to break (m, n)-GapCDH[GGengg, gran]
requires running time

T =
{

Θ(√mp) gran ∈ {high, med}
Θ(m√

p) gran = low
,

and the constants hidden by the Θ notation are small (between 0.1 and 6.6).

The lower bounds on SFm,n for HEG[GGenE(F�), gran] are obtained by combin-
ing our previous theorems and assuming that elliptic-curve groups behave like
generic groups.

1.2 Generic Bounds on Multi-Instance GapCDH: Technical Details

We consider multi-instance variants of three different problems: the discrete log-
arithm problem ((m, n)-DL[GGengg, gran]), the gap discrete logarithm problem
((m, n)-GapDL[GGengg, gran]), and the gap computational Diffie-Hellman prob-
lem ((m, n)-GapCDH[GGengg, gran]) in different granularities, see Table 4.

We now discuss the complexity column of Table 4. It is well known that the
running time of solving (m, n)-DL[GGengg, high] is Θ(√mp), the lower bound
being in the generic group model [29,30], the matching upper bound stemming
from a concrete generic algorithm [22]. It is not hard to see that the bounds
on (m, n)-DL[GGengg, med] are basically the same because the generators gi can
be viewed as “high-granularity instances” gxj . Concerning low granularity, it is
noteworthy to mention the bound for the case m = n by Garay et al. [17]. Using
different techniques, we are able to improve their bound from √

mp to m
√

p. In
addition, our bound also holds in the case m < n and in the gap setting.

Our first main technical result (Corollary 1) is a non-trivial extension of
Yun’s generic lower bound [30] to the gap setting, i.e., a new lower bound of
Ω(√mp) on solving (m, m)-GapDL[GGengg, high]. Based on this result, we also
deduce bounds in the case of medium and low granularity.

482 B. Auerbach et al.

Table 4. Definition and generic-group complexity of problems (m, n)-DL[GGen, gran],
(m, n)-GapDL[GGen, gran], and (m, n)-GapCDH[GGen, gran], where gran belongs to
{high, med, low}. G and Gi are generic groups of prime order p and pi, with generators
g and gi, respectively. The third column defines the problem’s winning condition. The
Gap column indicates the presence of a DDH oracle.

m-out-of-n problem Given Break m out of Gap? Complexity Ref.

DL[GGen, high] G, p, g, gx1, . . . , gxn x1, . . . , xn – Θ(√
mp) [22,29,30]

DL[GGen, med] G, p, g1, gx1
1 , . . . , gn, gxn

n
x1, . . . , xn – Θ(√

mp) full version [3]
DL[GGen, low] G1, p1, g1, gx1

1 , . . . , Gn, pn, gn, gxn

n
x1, . . . , xn – Θ(m

√
p) full version [3]

GapDL[GGen, high] G, p, g, gx1, . . . , gxn x1, . . . , xn � Θ(√
mp) §5.2

GapDL[GGen, med] G, p, g1, gx1
1 , . . . , gn, gxn

n
x1, . . . , xn � Θ(√

mp) full version [3]
GapDL[GGen, low] G1, p1, g1, gx1

1 , . . . , Gn, pn, gn, gxn

n
x1, . . . , xn � Θ(m

√
p) full version [3]

GapCDH[GGen, high] G, p, g, gx1, gy1, . . . , gxn, gyn gx1y1, . . . , gxn yn � Θ(√
mp) §6.1

GapCDH[GGen, med] G, p, g1, gx1
1 , gy1

1 , . . . , gn, gxn

n
, gyn

n
gx1y1

1 , . . . , gxn yn

n
� Θ(√

mp) §6.2
GapCDH[GGen, low] G1, p1, g1, gx1

1 , gy1
1 , . . . , Gn, pn, gn, gxn

n
, gyn

n
gx1y1

1 , . . . , gxn yn

n
� Θ(m

√
p) §6.3

Our second main technical result (Theorem 4) states that, in high gran-
ularity, the (m, m)-GapDL and the (m, n)-GapCDH problems are essentially
equally hard in the algebraic group model [16], hence implying the required
bounds in the generic group model. The results in medium and low granularity
follow as in the discrete logarithm setting.

Main Technical Result 1: Lower Bound on (m, m)-GapDL[GGengg,high].
We define a new “hard” problem called the polycheck discrete logarithm prob-
lem: The security game is the same as that of standard multi-instance DL,
but the adversary has additional access to an oracle Eval that behaves as fol-
lows: Given as input to Eval a polynomial f ∈ Zp[X1, . . . , Xk] and group ele-
ments gx1 , . . . , gxk , it returns 1 if and only if gf(x1,...,xk) = 1. This problem is
easier than GapDL: In fact, we can simulate the gap oracle DDH(gx, gy, gz)
by querying Eval(f := X1X2 − X3, gx, gy, gz). In the generic group model,
we can bound the advantage of an adversary against the m-out-of-m poly-
check discrete logarithm problem that queries polynomial of degree at most d
((m, m)-d-PolyDL[GGengg, high]) as

Adv(m,m)-d-polydl �
(

dq2 + dqEval

mp

)m

,

where q bounds the queries to the group-operation oracle, qEval to Eval, and p is
the order of the generic group. The bound for high-granularity GapDL follows
by setting d = 2.

The result is proven by extending the arguments by Yun [30] for the stan-
dard multi-instance DL problem. In line with Yun’s approach, we define the
search-by-hypersurface problem in dimension m (m-SHSd[p]), which requires to
find a uniformly sampled point a ∈ Z

m
p while being able to check whether

a is a zero of adaptively chosen polynomials in Zp[X1, . . . , Xm] of degree at
most d. Notably, Yun’s search-by-hyperplane-queries problem in dimension m is
equivalent to m-SHS1. We stress that the more general case of d ≥ 1 requires

Everybody’s a Target: Scalability in Public-Key Encryption 483

significantly different arguments from commutative algebra/algebraic geometry,
compared to the linear algebra argument used for the DL bound.

We show that any generic adversary against (m, m)-d-PolyDL[GGengg, high]
can be transformed into an adversary against m-SHSd, and then proceed to
bound the advantage of an adversary against m-SHSd. The key step is observ-
ing that an adversary can make at most m useful hypersurface queries, that is,
queries that return 1 (hence, identify a hypersurface on which the point a lies)
and whose output is not easy to determine based on previous queries. The key
difference between our result and Yun’s lies in how useful queries are processed
and counted. Since Yun considers only polynomials of degree 1, a hypersurface
defined by a polynomial of degree 1 is a hyperplane of the affine space Z

m
p . Each

useful query identifies another hyperplane on which the sought point lies. When
intersecting another hyperplane with the intersection of the hyperplanes previ-
ously found, the dimension of the intersection as an affine subspace is brought
down by one. The dimension of the full affine space being m, at most m such
queries can be made before identifying a single point (dimension 0). However,
generalizing to hypersurfaces generated by polynomials of degree ≥ 2 requires
to carry over more sophisticated arguments from commutative algebra. Firstly,
intersecting m hypersurfaces does not, in general, identify a single point. Sec-
ondly, intersection of two hypersurfaces might give rise to the union of two or
more irreducible components. Intersecting further with a hypersurface contain-
ing just one of those irreducible components would qualify as a useful query,
however would not bring down the dimension of the intersection by one. This
impasse is overcome by guessing the correct component at each step. Fortunately,
Bézout’s theorem and a discerning choice of the guessing probabilities at each
useful query makes the argument go through with just an additional loss of dm,
which is absorbed by the exponential bound in the dimension.

Main Technical Result 2: (m, m)-GapDL[GGen, high] Hardness Implies

(m, n)-GapCDH[GGen, high]. The algebraic group model [16] is a technique
used to extend existing bounds in the generic group model to different prob-
lems by means of generic reductions. Our second technical result (Theorem 4)
presents a generic reduction between the problems (m, n)-GapCDH[GGen,high]
and (m, m)-GapDL[GGen,high] with a tightness loss of 2m in the algebraic group
model. Combining this with the generic-group lower bound we prove as our first
main technical result, we obtain, in the generic group model:

Adv(m,n)-gcdh
high

Th. 4≤ 2m · Adv(m,m)-gdl
high

Cor. 1
� 2m

(
q2 + qDDH

mp

)m

≈
(

2q2

mp

)m

,

where q bounds the queries to the group-operation oracle, qDDH to the gap oracle,
and p is the order of the generic group. Note that the reduction’s exponential loss
of 2m gets swallowed by the (m, m)-GapDL[GGengg, high] bound. More impor-
tantly, by the above bound one requires q ≥ Ω(√mp) generic-group operations
to break (m, n)-GapCDH[GGengg, high] with overwhelming advantage.

A natural approach to tackle the proof of Theorem 4 would be to adapt the
single-instance proof presented by Fuchsbauer et al. [16] to the multi-instance

484 B. Auerbach et al.

setting. Following this strategy in a reduction, however, one would need to argue
about the size of the solution set of a multivariate system of quadratic equations.
In this work we employ significantly different proof techniques.

The path we pursue maintains, instead, the linear character of the system.
The reduction distributes the i-th DL challenges in either the X or Y components
of the i-th challenges to the CDH adversary. The intuition at the core of the
proof is that an adversary finding the CDH solution for any one instance must
provide the DL of at least one of the two corresponding challenge components
(even if possibly depending on the remaining, unrecovered DLs). If the reduction
manages to embed the m DL challenges at the right spot, then it is able to recover
all logarithms. The reduction loss of 2m is consequence of this guess. Moreover,
expanding the m DL challenges into n CDH challenges adds a further layer of
complexity.

1.3 Related Work and Future Directions

Related Work. Multi-instance security in the sense of breaking m out of m
instances was first formally considered in the setting of symmetric encryption
by Bellare et al. [8]. We point out that the term is sometimes also used to
describe multi-user, multi-challenge generalizations of single-instance security
notions [21].

The (single-instance) GapCDH problem was introduced by Okamoto and
Pointcheval [25]. Boneh et al. [12] and Rupp et al. [26] provide frameworks in
the generic-group model that can be used to derive generic-group lower bounds
on the hardness of many single-instance problems, gapCDH amongst others. The
generic hardness of (m, m)-DL in the high-granularity setting was first analyzed
by Yun [30], the result later generalized to (m, n)-DL by Ying and Kunihiro [29].
Kuhn and Struik [22], and Fouque et al. [15] give generic algorithms matching
the lower bounds. The first bound for (m, m)-DL in the low granularity setting
was derived by Garay et al. [17]. The algebraic-group model was introduced by
Fuchsbauer et al. [16]. Mizuide et al. [24] provide a framework that can be used
to reduce single-instance CDH-type problems to the discrete-logarithm problem
in the algebraic-group model.

Bartusek et al. [6] and Sadeghi et al. [27] discuss differences between DL-type
assumptions depending on whether the used group and group generator are fixed
or sampled at random. We stress that in this work groups and group generators,
while potentially shared amongst different users, are sampled at the beginning
of the game and hence part of its probability space.

Future Directions. Corrigan-Gibbs and Kogan [14] consider the multi-
instance discrete logarithm problem in a setting where the adversary is allowed
to first perform unbounded preprocessing over the group to produce an advice
string of bounded size, which in a second stage is used to solve multiple discrete
logarithm instances. The resulting lower bounds in the generic group model were
also derived by Coretti et al. [13] using a different technique. It would be inter-
esting to compute scaling factors of the considered schemes taking preprocessing
into account. Another possible direction is to derive lower bounds on the scaling

Everybody’s a Target: Scalability in Public-Key Encryption 485

factor for practical encryption schemes in the RSA setting (e.g., RSA-OAEP [9])
and in the post-quantum setting (e.g., based on lattices and codes).

2 Preliminaries

2.1 Notation

Vector Notation. We denote vectors with boldface fonts, for example v. The
number of elements of a vector is represented by |v|. Element indexing starts
from 1, and the entry at position i is accessed through square brackets: v[i]. To
initialize all entries of a vector to some element a we write v[·] ← a. We may
initialize multiple vectors simultaneously, and moreover initialize them through
running some (possibly randomized) routine. As an example, we could initialize
a vector of public and of secret keys as (pk, sk)[·] ←$ Gen to indicate that
for every index i we run Gen with fresh randomness and, denoting the output
with (pk, sk), set pk[i] ← pk and sk[i] ← sk. Given any set of indices I, we
denote with v[I] the vector that contains only the entries indexed with elements
in I. For example, if v = (a, b, c) then v[{1, 3}] = (a, c). We slightly abuse this
notation, writing v[I] ← w when replacing each entry of v whose indices belong
to I by the elements of w in their order. For example, if v = (a, b, c) and we
execute v[{1, 3}] ← (d, e) then v = (d, b, e).

Group Notation. In this paper we consider groups G of prime order p, gen-
erated by g. We call G = (G, p, g) a group representation. A group-generating
algorithm GGen is a randomized algorithm that outputs a group representa-
tion G. We assume that all groups output by GGen are of the same bit length.

In this work we consider two instantiations GGenE(F�) and GGenF∗
�

of group-
generating algorithms. In both cases � denotes a randomly sampled prime of
appropriate size. Group descriptions G output by GGenE(F�) are prime-order p
subgroups of elliptic curves defined over the field F�. Group descriptions output
by the second considered group-generating algorithm GGenF∗

�
are subgroups of

the multiplicative group F
∗
� of sufficiently large prime order.

Except for the group generators, all group elements will be denoted with
uppercase letters, e.g., X. We use vectors and matrices of elements in Zp to
compute with group elements: If Y is a group element and x is a vector of
elements in Zp, we write Y x to denote the group element vector (Y x[1], Y x[2], . . .).
Similarly, given some matrix M = (mij)i,j∈[1 .. n]×[1 .. k] and a vector of group
elements Y of size k, we define Y M to be the n-size vector (Y [1]m11 . . .Y [k]m1k ,
. . . ,Y [1]mn1 . . .Y [k]mnk). Note that if Y = gy then Y M = gMy.

Security Games. We define security notions via code-based games [10]. A
game G consists of a main procedure and zero or more oracles that can be accessed
from within the game. The game is defined with respect to an adversary A, which
is invoked within the main procedure. The adversary may have access to some of
the oracles of the game: The ability to access oracle O is represented by invoking
the adversary as AO. When the game stops, it outputs either a success (1) or a fail-
ure (0) symbol. With Pr[G(A)] we denote the probability that adversary A wins,
i.e., that game G, executed with respect to A, stops with output 1.

486 B. Auerbach et al.

2.2 Generic/Algebraic Group Model

Generic Group Model. Intuitively, the Generic Group Model (GGM) is an
abstraction to study the behavior of adversaries that do not exploit any specific
structure of the group at play, but rather treat the group in a black-box fash-
ion. This is usually modeled by representing group elements exclusively through
“opaque” handles, which hide the structure of the group. These handles are
used as input to a model-bound oracle, the group-operation oracle, which is the
only interface to the group available to the adversary. An algorithm with such
restrictions is referred to as a generic algorithm. The running time of generic
adversaries is normally measured in number of calls to the group-operation ora-
cle. For further details on the GGM we refer to the literature [23,28]. To derive
bounds on the hardness of solving certain computational problems with respect
to GGenE(F�) we model the output elliptic curves as generic groups. For clarity,
in this case we denote the group-generating algorithm by GGengg.
Algebraic Group Model. For every group element Z it returns, an algebraic
algorithm A must present a description of this element in terms of the elements
it has previously seen. That is, if n is the order of the group and X1, . . . , Xk are
the elements that A received so far from the game, then A must return some
elements a1, . . . , ak ∈ Zn such that Z = Xa1

1 . . . Xak

k . We use the algebraic group
model to analyze generic reductions:

Note that a generic reduction executed with respect to a generic adversary
is itself a generic algorithm. Without loss of generality we may assume that
generic adversaries are algebraic, which allows the reduction to exploit the use-
ful algebraic representation of the input group elements. As demonstrated by
Fuchsbauer et al. [16], this idea gives a handy technique for carrying over generic
lower bounds through generic reductions, as seen in the following lemma.

Lemma 1. ([16, Lemma 1]). Let α, Δ be constants and let R be a generic
reduction R from game G1 to G0. Assume that for every generic adversary A
that succeeds with probability ε and makes at most q group-operation queries,
reduction R executed with respect to A makes at most q + Δ group-operation
queries and succeeds with probability of at least αε. If there exists a function f
such that Pr[G1(B)] ≤ f(q) for every generic adversary B making at most q
group-operation queries, then for every generic adversary A making at most q
group-operation queries we obtain Pr[G0(A)] ≤ α−1f(q + Δ).

2.3 Key-Encapsulation Mechanisms

A key-encapsulation mechanism (KEM) KEM specifies the following. Parameter
generation algorithm Par generates public parameters par to be utilized by all
users. Key-generation algorithm Gen gets the parameters as input and outputs a
pair (pk, sk) consisting of a public and a secret key. Encapsulation algorithm Enc
on input of the parameters and a public key outputs a pair (K, c) consisting

Everybody’s a Target: Scalability in Public-Key Encryption 487

of an encapsulated key K belonging to the encapsulated key space KS(par)
and a ciphertext c belonging to the ciphertext space CS(par). Deterministic
decapsulation algorithm Dec receives the parameters, a secret key sk and a
ciphertext c as input and returns either the symbol ⊥ indicating failure or an
encapsulated key K. For correctness we require that for all par output of Par
and for every (pk, sk) output of Gen(par) we obtain K ← Dec(par , sk, c) for
(K, c) ←$ Enc(par , pk).

3 Multi-Instance Security

In this section we investigate the m-out-of-n multi-instance security of key-encap-
sulation mechanisms. After giving security definitions in Sect. 3.1, in Sect. 3.2 we
consider the relation between security notions for varying m and n. In Sect. 3.3
we define the scaling factor, which measures how well the security of KEMs
scales with the number of users. Finally, in Sect. 3.4 we give security definitions
for Diffie-Hellman type problems in the multi-instance setting, which will be
used in the security analysis of the Hashed-ElGamal KEM in the next section.

3.1 Key Encapsulation in the Multi-Instance Setting

Below we give security definitions for key-encapsulation mechanisms in the multi-
instance setting. Our definitions are in the xor metric introduced by Bellare
et al. [8] for symmetric encryption schemes. We target m-out-of-n multi-instance
indistinguishability of encapsulated keys from random against chosen-plaintext
attacks ((m, n)-CPA) or chosen-ciphertext attacks ((m, n)-CCA).

In its most general form, the xor metric models the inability of an adversary
to break m out of n instances of a decisional problem. The adversary receives
as input n challenges, generated independently of each other with respect to n
independent challenge bits b. The adversary’s task is to output a subset L ⊆
[1 .. n] of size at least m (representing the “broken instances”) together with
a guess for

⊕
i∈L b[i]; the intuition being that as long as at least one of the

challenge bits contained in L is hidden to the adversary, so is
⊕

i∈L b[i], reducing
the adversary to guessing the final output.

Formally, let KEM be a KEM and let m, n ∈ N such that 1 ≤ m ≤ n. Consider
games G(m,n)-cpa

KEM (A) and G(m,n)-cca
KEM (A) of Fig. 1 associated with KEM, m, n, and

an adversary A. In both games, b is a vector of n challenge bits, which cor-
responds to vectors pk, sk of public and secret keys, which are set up using
a single set of global parameters par . The adversary has access to a challenge
oracle Enc, which on input of index i ∈ [1 .. n] returns a pair consisting of an
encapsulated key and a ciphertext generated with Enc(par ,pk[i]) if the chal-
lenge bit b[i] equals 1, or, if b[i] equals 0, a ciphertext and a randomly sampled
element of KS(par). At the end of the game, adversary A outputs a list of
indices L ⊆ [1 .. n] and a bit b′. A wins if L contains at least m elements and if
b′ =

⊕
i∈L b[i]. In game G(m,n)-cca

KEM (A) the adversary additionally has access to

488 B. Auerbach et al.

Fig. 1. Games G(m,n)-cpa
KEM and G(m,n)-cca

KEM modeling m-out-of-n multi-instance indistin-
guishability of encapsulated keys from random. We assume that L ⊆ [1 .. n].

a decapsulation oracle Dec, which on input of index i ∈ [1 .. n] and ciphertext c
returns the decapsulation of c under parameters par and secret key sk[i] (unless
c was output as response to a challenge query Enc(i) for index i).

We define A’s advantage in game G(m,n)-cpa
KEM and G(m,n)-cca

KEM respectively as

Adv(m,n)-cpa
KEM (A) = 2 Pr[G(m,n)-cpa

KEM (A)] − 1,

Adv(m,n)-cca
KEM (A) = 2 Pr[G(m,n)-cca

KEM (A)] − 1.

The definition we have just presented lends itself naturally to a comparison
with the standard multi-user security notion of Bellare et al. [7]. We describe
the relationship between multi-user security and (1, n)-CCA in detail in the full
version of the paper [3].

3.2 Advantage Relations for Different m and n

The relations between (m′, n′)-CPA and (m, n)-CPA security are summarized in
Fig. 2. They are stated more formally in the following theorem. Its proof is in
the full version of the paper [3]

Theorem 1. Let m, n, m′, n′ be positive integers such that m ≤ n, m′ ≤
n′, and let KEM be any KEM scheme. Then for every adversary A against
game G(m,n)-cpa

KEM there exists an adversary B against game G(m′,n′)-cpa
KEM such that:

1. If m′ ≤ m and m′n ≤ mn′ then B has roughly the same running time of A
and

Adv(m′,n′)-cpa
KEM (B) ≥ 1

2Adv(m,n)-cpa
KEM (A).

Additionally, if n′−m′ ≥ n−m then the reduction does not lose the factor 1/2.

Everybody’s a Target: Scalability in Public-Key Encryption 489

Fig. 2. Relations between (m′, n′)-CPA and (m, n)-CPA security. Given A against
(m, n)-CPA with advantage ε, one can build B against (m′, n′)-CPA with advantage as
shown in figure, depending on its position on the plane. The constants in the figure are
k = �m′/m� and � = 1

2

(
n′
m′

)(�nm′/m�
m′

)−1. The same result holds for CCA.

2. If m′ ≤ m and m′n > mn′ then B has roughly the same running time of A
and

Adv(m′,n′)-cpa
KEM (B) ≥ 1

2

(
n′

m′

)(
nm′/m�
m′

)−1

Adv(m,n)-cpa
KEM (A).

3. If m′ > m and m′n ≤ mn′ then B has roughly k =
m′/m� times the running
time of A and

Adv(m′,n′)-cpa
KEM (B) ≥ 1

2

(
Adv(m,n)-cpa

KEM (A)
)k

.

Additionally, if m divides m′ then the reduction does not lose the factor 1/2.
4. If m′ > m and m′n > mn′ then B has roughly k =
m′/m� times the running

time of A and

Adv(m′,n′)-cpa
KEM (B) ≥ 1

2

(
n′

m′

)(
nm′/m�
m′

)−1 (
Adv(m,n)-cpa

KEM (A)
)k

.

An analogous statement holds between (m, n)-CCA and (m′, n′)-CCA. If A
queries its decryption oracle q times, then adversary B queries its decryption
oracle at most q, q, kq, and kq times respectively.

3.3 Scaling Factor

We now define the scaling factor of key-encapsulation mechanisms. To be able
to give an intuitive and accessible definition we treat the running time and
advantages of adversaries as if they were elements of R and [0, 1] respectively. A
formal definition that takes the asymptotic nature of running time and advantage

490 B. Auerbach et al.

into account as well as rigorous proofs for the bounds on the scaling factor derived
in this section can be found in the full version of the paper [3]. We start with
a definition for adversaries succeeding with advantage 1 and afterwards give a
generalized version for arbitrary advantages.

We fix a computational model that associates each adversary A with its
running time. Let MinTime(m,n)-cpa

KEM be the minimal time T for which there
exists an adversary A that runs in at most time T and achieves advantage
Adv(m,n)-cpa

KEM (A) = 1.
We define the scaling factor of KEM relative to (m, n)-CPA security as

SF(m,n)-cpa
KEM :=

MinTime(m,n)-cpa
KEM

MinTime(1,1)-cpa
KEM

.

The scaling factor of KEM relative to (m, n)-CCA security, SF(m,n)-cca
KEM , is defined

in the same way relative to advantage Adv(m,n)-cca
KEM (A). By the results of Sect. 3.2

we can give the following bounds on the scaling factor (which also hold in the
CCA setting):

SF(m,n)-cpa
KEM ≤ SF(m,m)-cpa

KEM ≤ m

The lower bound follows since any adversary against (m, m)-CPA is also an
adversary against (m, n)-CPA with the same advantage (Theorem 1, item 1).
The upper bound follows from Theorem 1, item 3. Surprisingly, the scaling factor
can be smaller than 1: Being able to choose which users to attack can make the
task of breaking multiple instances easier than breaking a single one. An artificial
example of a KEM with scaling factor of m/n is sketched in the full version of the
paper [3]. This is, however, a phenomenon limited to the case m �= n: For n = m,
we know that SF(n,m)-cpa

KEM ≥ 1 by Theorem 1, item 1. Importantly, specific KEMs
such as HEG or Cramer-Shoup are known to be “random self-reducible”, which
implies MinTime(1,n)-cpa

KEM = MinTime(1,1)-cpa
KEM , and hence by Theorem 1, item 1:

1 ≤ SF(m,n)-cpa
KEM ≤ m.

The definition given above exclusively considers adversaries that achieve advan-
tage 1. This definition generalizes naturally to encompass adversaries with arbi-
trary advantage as follows. Let MinTime(m,n)-cpa

KEM (ε), associated with 0 ≤ ε ≤ 1,
denote the running time of the fastest adversary achieving advantage at least ε
in game (m, n)-CPA. Intuitively, an optimally scaling scheme requires m inde-
pendent execution of a (1, 1)-CPA adversary in order to break m instances of
the scheme. Hence, the advantage-dependent scaling factor for advantage ε is
defined as

SF(m,n)-cpa
KEM (ε) := MinTime(m,n)-cpa

KEM (εm)/MinTime(1,1)-cpa
KEM (ε).

Again, we can use Theorem 1 to show that, for every 0 ≤ ε ≤ 1,

SF(m,n)-cpa
KEM (ε) ≤ SF(m,m)-cpa

KEM (ε) ≤ m.

Everybody’s a Target: Scalability in Public-Key Encryption 491

3.4 Multi-Instance Diffie-Hellman-Type Problems

Gap Discrete Logarithm Problem. The m-out-of-n multi-instance gap dis-
crete logarithm problem ((m, n)-GapDL) requires to find the discrete logarithms
of at least m out of n input group elements given access to a decisional Diffie-
Hellman oracle. We consider three variants of the problem, which differ in their
granularity. For high granularity all discrete logarithm challenges are sampled
with respect to a fixed group and group generator, while for medium granularity
the challenges are elements of a fixed group but defined with respect to differ-
ent group generators. Finally, in the case of low granularity a fresh group and
generator is used for each challenge.

Formally, let m, n ∈ N such that 1 ≤ m ≤ n and consider game G(m,n)-gdl
GGen,gran(A)

of Fig. 3 associated with adversary A, group-generating algorithm GGen, and
granularity gran ∈ {high, med, low}. In the game, a vector G of n group descrip-
tions is set up according to the desired level of granularity using parameter
generation algorithm PGen[gran]. Each entry of G is of the form (G, p, g) with
G being a group of prime order p generated by g. After the setup of G the three
variants of the game proceed in the same way. A vector x of length n is sampled,
where x[i] is uniformly distributed in Zp[i]. The corresponding challenge vector
contains the group elements X[i] = g[i]x[i]. At the end of the game, adversary A
outputs a list of indices L ⊆ [1 .. n] and a vector x′ of length n, where the i-th
entry is in Zp[i]. The adversary wins if L contains at least m elements and if
the vector x′ coincides with x for all indices in L. Additionally, the adversary
has access to an oracle DDH, which, on input of index i ∈ [1 .. n] and three
group elements X̂, Ŷ , Ẑ, behaves as follows. The game computes the discrete
logarithms x̂, ŷ of input X̂, Ŷ with respect to generator g[i], and then returns 1
if and only if g[i]x̂ŷ = Ẑ.

We define A’s advantage in game G(m,n)-gdl
GGen,gran(A) as

Adv(m,n)-gdl
GGen,gran(A) = Pr[G(m,n)-gdl

GGen,gran(A)].

The m-out-of-n multi-instance discrete logarithm ((m, n)-DL) problem is
defined as (m, n)-GapDL with the restriction that A cannot query DDH.

Gap Computational Diffie-Hellman Problem. The m-out-of-n multi-in-
stance gap computational Diffie-Hellman problem ((m, n)-GapCDH) requires, on
input of vectors gx and gy, to compute at least m elements of the form gx[i]y[i]

for distinct i ∈ [1 .. n]. As in the corresponding DL game, the adversary has
access to an oracle DDH which computes whether three given group elements
are a Diffie-Hellman triple. As in the definition of (m, n)-GapDL, we consider
three variants of the problem, which differ in their granularity.

Formally, for m, n ∈ N s.t. 1 ≤ m ≤ n consider game G(m,n)-gcdh
GGen,gran (A) of Fig. 4

associated with adversary A, group-generating algorithm GGen, and granular-
ity gran ∈ {high, med, low}. In the game, a vector G of n group descriptions is
set up according to parameter generation algorithm PGen[gran]. After the setup
of G the three variants of the game proceed in the same way. Two vectors x,
y of length n are sampled, where x[i], y[i] are uniformly distributed in Zp[i].

492 B. Auerbach et al.

Fig. 3. Security game G(m,n)-gdl
GGen,gran (A) for gran ∈ {high, med, low} modeling the m-out-

of-n multi-instance gap discrete logarithm problem.

Fig. 4. Security game G(m,n)-gcdh
GGen,gran (A) for gran ∈ {high, med, low} modeling the m-

out-of-n multi-instance gap computational Diffie-Hellman problem. PGen is defined in
Fig. 3.

The corresponding challenge vectors contain the group elements X[i] = g[i]x[i]
and Y [i] = g[i]y[i]. Additionally, the adversary has access to an oracle DDH,
which behaves as described for G(m,n)-gdl

GGen,gran(A). At the end of the game, adver-
sary A outputs a list of indices L ⊆ [1 .. n] and a vector Z′ of length n, where
the i-th entry is an element of the group represented by G[i]. The adversary wins
if L contains at least m elements and if the vector Z′ coincides with Z for all
indices in L. We define A’s advantage in game G(m,n)-gcdh

GGen,gran (A) as

Adv(m,n)-gcdh
GGen,gran (A) = Pr[G(m,n)-gcdh

GGen,gran (A)].

The m-out-of-n multi-instance computational Diffie-Hellman ((m, n)-CDH)
problem is defined as (m, n)-GapCDH with the restriction that A cannot query
oracle DDH.

Everybody’s a Target: Scalability in Public-Key Encryption 493

4 Hashed ElGamal in the Multi-Instance Setting

We investigate the multi-instance security of the well-known Hashed-ElGamal
key-encapsulation mechanism [1]. We consider three variants, HEG[GGen, high],
HEG[GGen, med], and HEG[GGen, low], corresponding to high, medium, and low
granularity respectively. After giving formal definitions of these variants in
Sect. 4.1, in Sect. 4.2 we prove the main result of this section: The multi-instance
security of each variant of the KEM in the random oracle model is tightly implied
by the hardness of (m, n)-GapCDH[GGen, gran] for the corresponding granu-
larity. Finally, in Sect. 4.3 we compute lower bounds on the scaling factor of
HEG[GGen, gran] for GGen ∈ {GGenF∗

�
,GGenE(F�)} and gran ∈ {high, med, low}.

4.1 Hashed-ElGamal Key Encapsulation

We consider three variants of the Hashed-ElGamal KEM, defined relative to a
hash function H and differing in the way parameters and key pairs are generated.
For high granularity the parameters specify a group description G = (G, p, g)
with a fixed generator g. Key pairs (pk, sk) are of the form pk = X = gx and sk =
x, where x is randomly sampled in Zp. For medium granularity the parameters
consist of a group G of order p, but no fixed generator. In this case pk = (g, gx)
and sk = (g, x), where g is a randomly chosen generator of the group G. Finally,
for low granularity empty parameters are used. Correspondingly, in this case
public keys are of the form pk = (G, gx) and secret keys of the form sk = (G, x),
where G = (G, p, g) is a freshly sampled group description.

Note that in all three cases the parameters par and a key pair (pk, sk) gen-
erated with respect to par determine a group description (G, p, g) as well as x
and X. In all three variants encapsulated keys are of the form H(pk, gy, Xy)
with corresponding ciphertext gy, where the y is sampled at random in Zp. The
decapsulation of a ciphertext c is given by H(pk, c, cx). A formal description
of the algorithms describing the Hashed-ElGamal key-encapsulation mechanism
for each of the three considered variants can be found in Fig. 5.

4.2 Multi-Instance Security of Hashed ElGamal

The following theorem shows that (m, n)-GapCDH tightly reduces to the security
against chosen-ciphertext attacks of HEG in the multi-instance setting for the
corresponding granularity3. Its proof is a generalization of the single-instance
version [1] and can be found in the full version of the paper [3].

Theorem 2. Let m, n ∈ N with 1 ≤ m ≤ n, let gran ∈ {high, med, low}, let
GGen be a group-generating algorithm, and let HEG[GGen, gran] be the Hashed-
ElGamal KEM of Fig. 5 relative to hash function H. If H is modeled as a
random oracle and if the (m, n)-GapCDH[GGen, gran] problem is hard, then

3 The same result holds under the multi-instance version of the strong Diffie-Hellman
assumption [1], a falsifiable assumption that is implied by (m, n)-GapCDH.

494 B. Auerbach et al.

Fig. 5. Variants of Hashed-ElGamal KEM HEG[GGen, high], HEG[GGen, med], and
HEG[GGen, low] relative to hash function H and group-generating algorithm GGen.
The KEMs share the same encapsulation and decapsulation algorithms. Note that
both (par , pk) or (par , sk) determine group description (G, p, g) and key pk.

HEG[GGen, gran] is (m, n)-CCA secure. Formally, for every adversary A against
game G(m,n)-cca

HEG[GGen,gran] making at most q queries to random oracle RO there exists
an adversary B against game G(m,n)-gcdh

GGen,gran that makes at most q queries to DDH
and runs in essentially the same time as A and satisfies

Adv(m,n)-gcdh
GGen,gran (B) ≥ Adv(m,n)-cca

HEG[GGen,gran](A).

4.3 Scaling Factor of Hashed ElGamal for Different Parameters

Below we compute the scaling factor of Hashed-ElGamal key encapsulation for
different parameter choices. Recall that the scaling factor is given by

SF(m,n)-cca
HEG[GGen,gran] = MinTime(m,n)-cca

HEG[GGen,gran]/MinTime(1,1)-cca
HEG[GGen,gran].

Note that the multi-instance security of HEG can be broken by computing
m public keys, which corresponds to computing m DL instances. On the other
hand, from Theorem 2 we know that the (m, n)-CCA-security of HEG is tightly
implied by (m, n)-GapCDH. Thus,

MinTime(m,n)-gcdh
GGen,gran ≤ MinTime(m,n)-cca

HEG[GGen,gran] ≤ MinTime(m,n)-dl
GGen,gran.

Hence, we can bound the scaling factor of Hashed ElGamal as

SF(m,n)-cca
HEG[GGen,gran] ≥ MinTime(m,n)-gcdh

GGen,gran /MinTime(1,1)-dl
GGen,gran.

Everybody’s a Target: Scalability in Public-Key Encryption 495

Below we consider two instantiations of group-generating algorithms: GGenF∗
�

and GGenE(F�). Due to either Hypothesis 1 from the introduction or the results
of Sects. 5 and 6 respectively, for both instantiations solving (m, n)-GapCDH is
as hard as (m, n)-GapDL. Thus, the lower bounds on the scaling factor derived
below are sharp.

Hashed ElGamal in the Finite-Field Setting. Assuming the correct-
ness of Hypothesis 1, we conclude that MinTime(m,n)-gcdh

F
∗
�

,gran = MinTime(m,n)-dl
F

∗
�

,gran is
given by

L�(1/3, 1.902) + m · L�(1/3, 1.232) for gran ∈ {high, med}, and
min{m · L�(1/3, 1.902), L�(1/3, 2.007) + m · L�(1/3, 1.639)} for gran = low.

We obtain the scaling factor by dividing by MinTime(1,1)-dl
F

∗
�

,gran = L�(1/3, 1.902).
Defining δ via m = L�(1/3, δ) we can rewrite m · L�(1/3, 1.232) as L�(1/3, δ +
1.232). For δ ≤ 0.67 we get L�(1/3, 1.902) ≥ L�(1/3, δ + 1.232). Hence for these
values of δ the scaling factor for medium and high granularity is roughly 1. For
larger m, on the other hand, it is of order L�(1/3, δ − 0.67).

Summing up for gran ∈ {med, high} we obtain

SF(m,n)-cca
HEG[GGenF∗

�
,gran] =

{
1 δ ≤ 0.67
L�(1/3, δ − 0.67) δ > 0.67

.

Further, we get L�(1/3, δ + 1.902) ≤ L�(1/3, 2.007) for δ ≤ 0.105. Hence in this
case for low granularity the scaling factor is given by m = L�(1/3, δ). Moreover,
we obtain L�(1/3, δ + 1.639) = L(1/3, 2.007) for δ = 0.368 implying that for
0.105 ≤ δ ≤ 0.368 the scaling factor is of order L�(1/3, 2.007 − 1.902) and of
order L�(1/3, δ + 1.639 − 1.902) for larger values of δ. Summing up:

SF(m,n)-cca
HEG[GGenF∗

�
,low] =

⎧
⎪⎨
⎪⎩

L�(1/3, δ) 0 ≤ δ < 0.105
L�(1/3, 0.105) 0.105 ≤ δ < 0.368
L�(1/3, −0.263 + δ) 0.368 ≤ δ

.

Formally, the asymptotic behavior of the scaling factor computed above is linear4
in m and hence, at first glance, seems optimal. However, as discussed in the
introduction, the numbers of L�(1/3, 0.67) or L�(1/3, 0.368) instances starting
from which the cumulative cost of breaking the instances outweighs the cost of
the precomputation are typically large.

Hashed ElGamal in the Elliptic-Curve Setting. Recall that GGenE(F�)
generates elliptic curves of size p ≈ � defined over the field F� for randomly chosen
�. If we model elliptic curves as generic groups we can derive the scaling factor
as follows. Ignoring constants, a single DL instance can be solved in time O(√p).

4 For fixed � and very large values of m and n generic attacks start to outperform the
NFS and the scaling factor actually becomes Θ(

√
m).

496 B. Auerbach et al.

The lower bounds derived in Sect. 6 (Corollaries 2 and 3 and Theorem 5) imply
the following: A generic algorithm solving (m, n)-GapCDH for high and medium
granularity performs at least Ω(√mp) group operations; the low-granularity case
requires at least Ω(m√

p) group operations. (In the low-granularity case we for-
mally consider n groups of differing group orders p1, . . . , pn, where all pi are
roughly of size p.) Summing up, we obtain

SF(m,n)-cca
HEG[GGenE(F�),gran] =

{
Θ(√mp/

√
p) = Θ(

√
m) gran ∈ {high, med}

Θ(m√
p/

√
p) = Θ(m) gran = low

.

(The constants hidden within the Θ notation can be made explicit from our
results, and are between 0.1 and 6.6.) In the full version of the paper [3] we
additionally illustrate how the scaling factors computed above could be taken
into account when choosing parameters for HEG.

5 Generic Hardness of the Multi-Instance Gap Discrete
Logarithm Problem

In this section we define a new hard problem, namely the polycheck discrete
logarithm problem (PolyDL), in the multi-instance setting. Then, we proceed to
show a concrete bound on its security in the generic group model (Theorem 3).
Most notably, from this bound we present a concrete bound on the security
of GapDL. To prove the bound we define an additional problem, the search-by-hy-
persurface problem (SHS). In Sect. 5.1 we define the PolyDL and SHS problems.
In Sect. 5.2 we derive the bound on the security of GapDL in the high granularity
setting, and further argue that it is optimal. Bounds for the cases of medium
and low granularity can be found in the full version of the paper [3].

5.1 Polycheck Discrete Logarithm and Search-by-Hypersurface
Problem

Polycheck Discrete Logarithm Problem. The m-out-of-n multi-instance
polycheck discrete logarithm problem ((m, n)-d-PolyDL) for polynomials of
degree at most d requires to find the discrete logarithms of at least m out of n
input group elements given access to a decisional oracle Eval which behaves as
follows. Eval takes as input a polynomial f ∈ Zp[X1, . . . , Xk] of degree at most d
and a list of group elements (gx̂1 , . . . , gx̂k), where k is an arbitrary integer, and
returns 1 if and only if gf(x̂1,...,x̂k) = 1. As usual, we consider three variants of
the problem, which differ in their granularity.

Formally, let m, n, d ∈ N such that 1 ≤ m ≤ n, d ≥ 1, and consider
game G(m,n)-d-polydl

GGen,gran (A) of Fig. 6 associated with adversary A and granular-
ity gran ∈ {high, med, low}. In the game, a vector G of n group descriptions
is set up according to the desired level of granularity using PGen[gran]. After
the setup of G the three variants of the game proceed in the same way. A
vector x of length n is sampled, where x[i] is uniformly distributed in Zp[i].

Everybody’s a Target: Scalability in Public-Key Encryption 497

Fig. 6. Security game G(m,n)-d-polydl
GGen,gran (A) relative to GGen, gran, modeling the m-out-

of-n multi-instance polycheck discrete logarithm problem for polynomials of degree at
most d. We assume that polynomial f input to Eval has |X̂| indeterminates. PGen is
defined in Fig. 3.

The corresponding challenge vector contains the group elements X[i] = g[i]x[i].
At the end of the game, adversary A outputs a list of indices L ⊆ [1 .. n] and
a vector x′ of length n, where the i-th entry is in Zp[i]. The adversary wins
if L contains at least m elements and if the vector x′ coincides with x for all
indices in L. Additionally, the adversary has access to an evaluation oracle Eval,
which on input of an index i ∈ [1 .. n], a polynomial f ∈ Zp[X1, . . . , Xk], and
a list of group elements X̂ = (X̂[1], . . . , X̂[k]), where k is an arbitrary integer
which might be different on different calls, behaves as follows. If deg f > d, then
Eval returns 0. Otherwise, the game computes the discrete logarithms x̂ of the
input elements X̂ with respect to generator g[i], and then returns 1 if and only
if g[i]f(x̂[1],...,x̂[k]) = 1.

We define the advantage of A in game G(m,n)-d-polydl
GGen,gran (A) as

Adv(m,n)-d-polydl
GGen,gran (A) = Pr[G(m,n)-d-polydl

GGen,gran (A)].

The next definition extends the search-by-hyperplane-query problem (SHQ)
by Yun [30].

Search-by-Hypersurface Problem. The search-by-hypersurface problem in
dimension n for polynomials of degree at most d (n-SHSd) requires to find a
randomly sampled point a of the space by adaptively checking whether point a
is contained in the queried hypersurface (i.e., the set of zeroes of a polynomial).

Formally, let n, d, p ∈ N such that p is prime and d, n ≥ 1, and consider
game Gn-shsd

p (A) of Fig. 7 associated with adversary A. In the game, a vector a
of length n is sampled, where a[i] is uniformly distributed in Zp. At the end of
the game, adversary A outputs a vector a′ ∈ Z

n
p . The adversary wins if a′ = a.

Additionally, the adversary has access to an evaluation oracle Eval, which on
input of a polynomial f ∈ Zp[X1, . . . , Xn] behaves as follows. If deg f > d, then
Eval returns 0. Otherwise, the oracle returns 1 if and only if f(a) = 0.

We define the advantage of A in game Gn-shsd
p (A) as

Advn-shsd
p (A) = Pr[Gn-shsd

p (A)].

498 B. Auerbach et al.

Fig. 7. Security game Gn-shsd
p (A) with respect to integer d and prime p modeling the

search-by-hypersurface problem on dimension n for polynomials of degree at most d.
All inputs f to oracle Eval are elements of the polynomial ring Zp[X1, . . . , Xn].

5.2 Generic Hardness of High-Granularity (m,n)-d-PolyDL

Below, we state the main result of this section, an explicit upper bound on the
security of high-granularity (n, n)-d-PolyDL in the generic group model.

Note that this bound is of particular interest in the context of generic bilin-
ear (or even multilinear) maps. In fact, a d-linear map yields a natural way to
compute any answer of oracle Eval for polynomials of degree at most d in the
base group.

Theorem 3. Let n, d be positive integers and p a prime number. Let GGengg be a
group-generating algorithm that generates generic groups of exactly size p. Then
for every generic adversary A against (n, n)-d-PolyDL[GGengg, high] that makes
at most q queries to the group-operation oracle and qEval queries to oracle Eval:

Adv(n,n)-d-polydl
GGengg,high (A) ≤

(
d

p

)n

+ 1
2

(
ed(q + n + 1)2 + 2edqEval

2np

)n

.

This extends [30, Corollary 2] from standard DL to the polycheck case. Most
importantly, it allows us to prove the following corollary.

Corollary 1. Let n be any positive integer and GGengg be a group-generating
algorithm that generates generic groups of at least size p. Then for every generic
adversary A against (n, n)-GapDL[GGengg, high] that makes at most q queries
to the group-operation oracle and qDDH queries to the DDH oracle:

Adv(n,n)-gdl
GGengg,high(A) ≤

(
2
p

)n

+ 1
2

(
e(q + n + 1)2 + 2eqDDH

np

)n

≈
(

q2

np

)n

.

Proof (Corollary 1). Note that oracle DDH of game (n, n)-GapDL can be sim-
ulated using oracle Eval from game (n, n)-2-PolyDL. In fact, gxy = gz if and
only if gf(x,y,z) = 1, with f(X1, X2, X3) := X1X2 − X3. Then apply Theorem 3
with d = 2. �

The result is optimal. Concretely, in the full version of the paper [3] we
construct an algorithm that solves (n, n)-GapDL[GGengg, high] in q group oper-
ations with success probability (q2/4np)n. Thus, for large p the fastest generic
adversary solving (n, n)-GapDL[GGengg, high] with overwhelming success prob-
ability requires

√
np/e ≤ q ≤ 2√

np group operations.

Everybody’s a Target: Scalability in Public-Key Encryption 499

The proof of Theorem 3 follows a structure similar to Yun [30]. First we prove
the equivalence of n-SHSd[p] and (n, n)-d-PolyDL[GGengg, high], and then we
bound the success probability of an adversary against n-SHSd[p]. The equivalence
of the two problems corresponds to the lemma below.

Statement and proof closely follow [30, Theorem 1] while additionally han-
dling Eval queries. The proof can be found the full version of the paper [3].

Lemma 2. Let n, d be positive integers and p a prime number. Let GGengg be a
group-generating algorithm that generates generic groups of exactly size p. Then
for every adversary A against game (n, n)-d-PolyDL[GGengg, high] there exists
an adversary B against n-SHSd[p] such that

Advn-shsd
p (B) ≥ Adv(n,n)-d-polydl

GGengg,high (A).

Moreover, if A makes q group-operation queries and qEval queries to Eval, then
B makes at most qEval + (n + q)(n + q + 1)/2 queries to Eval.

We start working on n-SHSd[p] with the next lemma. Here we express that,
up to a loss of dn, an adversary against n-SHSd[p] does not need more than n
hypersurface queries which return 1 to identify a solution.

Importantly, observe how we limit the resources of an adversary against
n-SHSd[p] exclusively in terms of its queries to Eval. Our adversaries are other-
wise unbounded. For this reason, the following reduction does not consider the
computational resources needed by the adversary to perform its operations. The
proof is in the full version of the paper [3].

Lemma 3. Let n, d be positive integers and p a prime number. For every adver-
sary A against n-SHSd[p] that makes at most q queries to Eval there exists an
adversary B against n-SHSd[p] that makes at most q queries to Eval such that
at most n of them return 1 and

Advn-shsd
p (B) ≥ d−nAdvn-shsd

p (A).

Proof Idea. Intuition for the proof is simple for the case n = 1: All queries of A
to SimEval are forwarded to Eval. The first time Eval(g) returns 1, we know that
the secret a must be a zero of g. Since g has degree at most d, there can be at
most d distinct zeroes. The reduction guesses which zero is the correct one (this
is the reduction loss) and then simulates the remaining queries of A to SimEval
accordingly. The proof is similar for n > 1. We know that, in general, n polyno-
mials in Zp[X1, . . . , Xn] of degree d have at most dn zeroes in common, one of
which the reduction can use to simulate remaining queries to SimEval. However,
the n queried polynomials must be in general position: For example, the zeroes
of x1 + x2 are the same as those of 2x1 + 2x2, and querying both polynomials
would not help the reduction. To resolve this issue, the reduction keeps a set Z
of common zeroes to all polynomials seen so far which, when forwarded to Eval,
make the oracle return 1 (i.e., polynomials which vanish on a). This set has a
rich structure: In fact, the study of zero sets of polynomial is the raison d’être

500 B. Auerbach et al.

of the field of algebraic geometry. If the polynomial g queried by A carries no
new information (i.e., g(Z) = {0}) then the simulated oracle returns 1 without
forwarding. Otherwise, the polynomial is forwarded. If the answer is 1, then the
reduction updates the set Z and then guesses which one of its irreducible compo-
nents contains a, which becomes the updated Z. The identification of irreducible
components is made possible by the underlying structure of the set Z. Select-
ing an irreducible component guarantees that, on a following evaluation query,
intersecting the now irreducible Z with another hypersurface not containing Z
brings down the dimension of Z by 1. Since the dimension of Z

n
p is n, we can

have at most n such queries. With a careful choice of the guessing probability
of each irreducible component, Bézout’s theorem ensures that the probability of
always making the right guess is again d−n. �
Remark 1. The bound on the advantage against (n, n)-d-PolyDL[GGengg, high]
of Theorem 3 extends to (m, n)-d-PolyDL[GGengg, high], for m � n. This is done
by a simple tight reduction between problems (m, n)-d-PolyDL[GGengg, high]
and (m, m)-d-PolyDL[GGengg, high]. The reduction extends the one for standard
multi-instance discrete logarithm [29, Section 3] by also simulating oracle Eval:
It simply forwards every query to its own oracle.

6 Generic Hardness of the Multi-Instance Gap
Computational Diffie-Hellman Problem

In this section we derive lower bounds on the hardness of the m-out-of-n gap
computational Diffie-Hellman problem in the generic group model for different
granularities. We further argue that all derived bounds are optimal. Section 6.1
covers high, Sect. 6.2 medium, and Sect. 6.3 low granularity.

6.1 Generic Hardness of High-Granularity (m,n)-GapCDH

We work in the algebraic group model to show that the generic lower bound on
the hardness of high-granularity (m, m)-GapDL carries over to high-granularity
(m, n)-GapCDH. Concretely, in Theorem 4 we provide a generic reduction from
(m, n)-GapCDH[GGen, high] to (m, m)-GapDL[GGen, high]. Then, an applica-
tion of Corollary 1 establishes the desired bound on (m, n)-GapCDH.

In this section we work with high-granularity problems, in which the group
description G = (G, p, g) is shared by all instances. For ease of notation, we
treat G as an implicit parameter of the system until the end of this section.

The generic reduction from (m, n)-GapCDH to (m, m)-GapDL in the high-
granularity setting is sketched below. The full proof can be found in the full
version of the paper [3].

Theorem 4. Let GGen be a group-generating algorithm that generates groups of
at least size p, and let m, n be two positive integers such that m ≤ n ≤ p. Then

Everybody’s a Target: Scalability in Public-Key Encryption 501

there exists a generic reduction that constructs from any algebraic adversary A
against game G(m,n)-gcdh

GGen,high an algebraic adversary B against G(m,m)-gdl
GGen,high such that

Adv(m,m)-gdl
GGen,high (B) ≥ 2−mAdv(m,n)-gcdh

GGen,high (A).

Moreover, B makes at most 2n(m + 2)(log p + 1) group operations in addition to
those made by A, and the same amount of queries to DDH.

Despite the seemingly sizeable reduction loss of 2m, we argue that the factor
is small in the context of the final security bounds. In fact, as seen in Sect. 5,
the advantage in breaking (m, m)-GapDL decreases exponentially with m. This
renders the exponential contribution of the factor 2m irrelevant, as the follow-
ing concrete bound on the hardness of (m, n)-GapCDH[GGengg, high] shows. Its
proof can be found in the full version of the paper [3].

Corollary 2. Let GGengg be a group-generating algorithm that generates groups
of at least size p, and let m, n be two positive integers such that m ≤ n ≤ p.
Then for every generic adversary A against (m, n)-GapCDH[GGengg, high] that
makes at most q queries to the group-operation oracle and qDDH queries to the
gap oracle:

Adv(m,n)-gcdh
GGengg,high(A) ≤

(
2e(q + 12mn log p)2 + 4eqDDH

mp

)m

≈
(

q2

mp

)m

.

Similarly to the bound for computing discrete logarithms, this result is opti-
mal. Namely, problem (m, n)-GapCDH[GGengg, high] can be solved computing q
group operations with success probability (q2/4mp)m by using the generic adver-
sary against high-granularity DL provided in the full version [3]. Thus, for large p
the fastest generic adversary solving (m, n)-GapCDH[GGengg, high] with over-
whelming success probability requires

√
mp/2e ≤ q ≤ 2√

mp group operations.

Proof Idea of Theorem 4. This proof extends the following simple single-
instance reduction B, in turn built from two reductions B∅ and B{1}. The reduc-
tions build upon a CDH adversary A. Adversary A receives X = gx and Y = gy,
and is tasked with computing W = gxy. In the algebraic group model, A must
return a representation of the output as a combination of its input, i.e., some
elements a, b, c ∈ Zp such that W = XaY bgc. Rewriting this expression in the
exponents, we obtain that, if A wins,

xy = ax + by + c.

Given a DL challenge Z = gz, reduction B∅ embeds the challenge as X = Z
and generates Y = gy by picking a random y. Then, B∅ can compute the DL
as z = x = (y − a)−1(by + c). However, y − a might not be invertible. In this
case, adversary B{1} would be successful: It embeds the challenge as Y = Z and
returns a, which is a correct solution if y − a is not invertible. Reduction B picks
one of the two subsets I ⊆ {1} at random and runs BI . If the CDH adversary is
successful, then B has at least probability 1/2 of succeeding.

502 B. Auerbach et al.

Case n = m > 1 is approached as follows. Again the reduction B is com-
posed of components BI , where I ⊆ [1 .. n]. The DL challenge Z[i] is distributed
as either X[i] or Y [i] according to whether i ∈ I, and all remaining values
are picked by the reduction. The CDH adversary—if successful—returns square
matrices A, B and vector c such that diag(y)x = Ax + By + c, where diag(y)
is the diagonal matrix with the elements of y on the diagonal. Rearranging, we
obtain

(diag(y) − A)x = By + c.

Our goal is to iteratively decrease the dimension of this matrix equation. If n /∈ I
adversary BI expresses x[n] in terms of x[1 .. n − 1]. On the other hand, if n ∈ I
then it computes y[n]. Whether this computation is correct depends on whether
I is the right choice for A, B, and c. More explicitly, from the last row of the
previous matrix equation we get the expression

x[n](y[n] − Ann) = (An1, . . . , An(n−1))x[1 .. n − 1] +
+ (Bn1, . . . , Bn(n−1))y[1 .. n − 1] + Bnny[n] + c[n].

If the number y[n] − Ann is not invertible (case n ∈ I), then adversary BI can
set y[n] = Ann. In the other case (case n /∈ I) the adversary can replace the
expression for x[n] into the remaining n−1 rows of the matrix. In this case, y[n]
is known, and calling x′ = (x[1], . . . ,x[n − 1]), y′ = (y[1], . . . ,y[n − 1]), we have
recovered again a matrix equation of the form

diag(y′)x′ = A′x′ + B′y′ + c′

of decreased dimension n−1. Repeating this argument, we arrive at an equation
of dimension 1. At this point all elements of y are known to BI , which is then
able to recover the elements of x.

Note that there always exists, for every possible A, B, and c, a set I for which
the above procedure is successful, i.e., a set I such that, for every i ∈ [1 .. n],
the expression i ∈ I is satisfied exactly if y[i] = (A(i))ii, where A(i) is the i-th
update of matrix A. Since adversary B picks I ⊆ [1 .. n] at random and runs BI ,
the reduction loses a factor of 2n.

The case n �= m adds more complexity to the proof. The reduction first
expands the m DL challenges Ẑ to a vector Z = Ẑ

V
(plus some rerandomization)

of length n. Here V is a n × m matrix for which each m × m submatrix is
invertible.5 This has two important consequences: Firstly, we can express any
element of Z as a combination of any other fixed m elements of Z. Secondly,
retrieving any m DLs of Z allows the reduction to compute the DLs of the
original Ẑ. This has, however, an unintended side effect: We can still obtain an
equation of the form diag(y)x = Ax + By + c, where all terms are of size m
(this is the role, in the reduction code, of the function reduceMatrices), but
now A, B, c depend on the distribution of the challenges to X and Y , that is, on
the set I. This means that the reduction cannot simply compute the element y[i]
5 This expansion technique is originally from the work of Ying and Kunihiro [29].

Everybody’s a Target: Scalability in Public-Key Encryption 503

as Aii at each step. It has to answer the question: “Assuming the reduction was
not trying to compute y[m], what would be the value for y[m] which would make
it unable to compute x[m]?” (In the reduction code, the answer is yielded by
the function computeDlog.)

In the proof, the gap oracle of A is simply simulated by forwarding all queries
to DDH. �
Remark 2. Note that using Corollary 2 with qDDH = 0 yields a generic lower
bound on the hardness of the “standard” multi-instance CDH problem.

Further, oracle DDH plays a modest role in the proof of Theorem 4. One could
define a “polycheck CDH” problem in the same fashion as it is done for discrete
logarithm in Sect. 5 (in short, (m, n)-d-PolyCDH). It is then immediate to extend
Theorem 4 to show the equivalence of games (m, n)-d-PolyCDH[GGen, high] and
(m, n)-d-PolyDL[GGen, high] in the algebraic group model with the same loss
of 2m. Hence, with an additional multiplicative factor of (d/2)m the advantage
of any adversary against game (m, n)-d-PolyCDH[GGengg, high] can be bounded
as in Corollary 2.

6.2 Generic Hardness of Medium-Granularity (m,n)-GapCDH

We present an explicit bound on the concrete security of m-out-of-n gap com-
putational Diffie-Hellman in the generic group model in the medium-granularity
setting. The main result of this section is similar to that in Section 6.1. The bound
follows from observing that we can simulate the medium-granularity game start-
ing from the high-granularity one. Then, we can apply Corollary 2 after counting
the additional group queries by the simulation. For more details, we refer to the
full version of the paper [3].

Corollary 3. Let GGengg be a group-generating algorithm that generates generic
groups of at least size p, and let m, n be two positive integers such that m ≤
n ≤ p. Then for every generic adversary A against (m, n)-GapCDH[GGengg, med]
that makes at most q queries to the group-operation oracle and qDDH queries to
oracle DDH:

Adv(m,n)-gcdh
GGengg,med (A) ≤

(
2e(q + 6(qDDH + 5mn) log p)2

mp

)m

≈
(

q2

mp

)m

.

Similarly to the previous concrete bounds, this result is optimal, namely
there exists a generic adversary against (m, n)-GapCDH[GGengg, med] which
needs 2

√
2mp group operations and achieves success probability 1. In fact,

we can build an adversary against (m, n)-GapCDH[GGengg, med] starting from
an adversary against (2m, 2m)-DL[GGengg, high] that requires about the
same amount of oracle queries. Summing up, we obtain that for large p
the fastest generic adversary achieving overwhelming success probability in
game (m, n)-GapCDH[GGengg, med] requires

√
mp/(2e) ≤ q ≤ 2

√
2mp group

operations.

504 B. Auerbach et al.

6.3 Generic Hardness of Low-Granularity (m,n)-GapCDH

In this section we present an explicit bound on the concrete security of m-
out-of-n gap computational Diffie-Hellman in the generic group model in the
low-granularity setting. The bound is stated in the following theorem and is
computed directly. The proof can be found in the full version of the paper [3].

Theorem 5. Let GGengg be a group-generating algorithm that generates generic
groups of at least size p, and let m, n, q, qDDH and qi, i ∈ [1 .. n], be integers
such that 1 ≤ m ≤ n, q = q1 + . . . + qn, and qi is large (qi ≥ 60 log p and 4q2i ≥
qDDH). Then for every generic adversary A against the low-granularity m-out-
of-n multi-instance computational Diffie-Hellman problem that makes at most qi

queries to the i-th group-operation oracle and qDDH queries to the gap oracle:

Adv(m,n)-gcdh
GGengg,low (A) ≤

(
4eq2

m2p

)m

.

Since the number of group operations performed by a (m, n)-GapCDH adversary
is typically large, we reckon the requirements qi ≥ 60 log p and 4q2i ≥ qDDH are
rather mild.

We argue that this result is optimal. In fact, each of the first m instances can
be solved in time q/m with success probability (q/m)2/4p using the algorithm
provided in the full version of the paper [3]. Thus, (m, n)-GapCDH[GGengg, low]
can be solved in time q by independently running the single-instance adversary
on the first m instances which results in a success probability of (q2/4m2p)m.
Further, for large p the fastest generic adversary achieving overwhelming suc-
cess probability in game (m, n)-GapCDH[GGengg, low] requires m

√
p/8e ≤ q ≤

2m
√

p group operations.

Acknowledgments. The authors are grateful to Masayuki Abe, Razvan Barbulescu,
Mihir Bellare, Dan Boneh, Nadia Heninger, Tanja Lange, Alexander May, Bertram
Poettering, Maximilian Rath, Sven Schäge, Nicola Turchi, and Takashi Yamakawa for
their helpful comments. Benedikt Auerbach was supported by the European Research
Council, ERC consolidator grant (682815-TOCNeT), and conducted part of this work
at Ruhr University Bochum, supported by the ERC Project ERCC (FP7/615074) and
the NRW Research Training Group SecHuman. Federico Giacon conducted part of this
work at Ruhr University Bochum, supported by the ERC Project ERCC (FP7/615074).
Eike Kiltz was supported by the ERC Project ERCC (FP7/615074), DFG SPP 1736
Big Data, and the DFG Cluster of Excellence 2092 CASA.

References

1. Abdalla, M., Bellare, M., Rogaway, P.: The Oracle Diffie-Hellman assumptions and
an analysis of DHIES. In: Naccache, D. (ed.) CT-RSA 2001. LNCS, vol. 2020, pp.
143–158. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-45353-9 12

2. Adrian, D., et al.: Imperfect forward secrecy: how Diffie-Hellman fails in practice.
In: Ray, I., Li, N., Kruegel, C. (eds.) ACM CCS 2015, pp. 5–17. ACM Press,
October 2015

https://doi.org/10.1007/3-540-45353-9_12

Everybody’s a Target: Scalability in Public-Key Encryption 505

3. Auerbach, B., Giacon, F., Kiltz, E.: Everybody’s a target: scalability in public-key
encryption. Cryptology ePrint Archive, Report 2019/364 (2019). https://eprint.
iacr.org/2019/364

4. Barbulescu, R.: Algorithms for discrete logarithm in finite fields. Ph.D. thesis,
University of Lorraine, Nancy, France (2013)

5. Barbulescu, R., Pierrot, C.: The multiple number field sieve for medium- and high-
characteristic finite fields. LMS J. Computa. Math. 17(A), 230–246 (2014)

6. Bartusek, J., Ma, F., Zhandry, M.: The distinction between fixed and random
generators in group-based assumptions. In: Boldyreva, A., Micciancio, D. (eds.)
CRYPTO 2019, Part II. LNCS, vol. 11693, pp. 801–830. Springer, Cham (2019).
https://doi.org/10.1007/978-3-030-26951-7 27

7. Bellare, M., Boldyreva, A., Micali, S.: Public-key encryption in a multi-user setting:
security proofs and improvements. In: Preneel, B. (ed.) EUROCRYPT 2000. LNCS,
vol. 1807, pp. 259–274. Springer, Heidelberg (2000). https://doi.org/10.1007/3-
540-45539-6 18

8. Bellare, M., Ristenpart, T., Tessaro, S.: Multi-instance security and its application
to password-based cryptography. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO
2012. LNCS, vol. 7417, pp. 312–329. Springer, Heidelberg (2012). https://doi.org/
10.1007/978-3-642-32009-5 19

9. Bellare, M., Rogaway, P.: Optimal asymmetric encryption. In: De Santis, A. (ed.)
EUROCRYPT 1994. LNCS, vol. 950, pp. 92–111. Springer, Heidelberg (1995).
https://doi.org/10.1007/BFb0053428

10. Bellare, M., Rogaway, P.: The security of triple encryption and a frame-
work for code-based game-playing proofs. In: Vaudenay, S. (ed.) EUROCRYPT
2006. LNCS, vol. 4004, pp. 409–426. Springer, Heidelberg (2006). https://doi.org/
10.1007/11761679 25

11. Bernstein, D.J., Lange, T.: Batch NFS. In: Joux, A., Youssef, A. (eds.) SAC 2014.
LNCS, vol. 8781, pp. 38–58. Springer, Cham (2014). https://doi.org/10.1007/978-
3-319-13051-4 3

12. Boneh, D., Boyen, X., Goh, E.-J.: Hierarchical identity based encryption with con-
stant size ciphertext. In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494,
pp. 440–456. Springer, Heidelberg (2005). https://doi.org/10.1007/11426639 26

13. Coretti, S., Dodis, Y., Guo, S.: Non-uniform bounds in the random-permutation,
ideal-cipher, and generic-group models. In: Shacham, H., Boldyreva, A. (eds.)
CRYPTO 2018, Part I. LNCS, vol. 10991, pp. 693–721. Springer, Cham (2018).
https://doi.org/10.1007/978-3-319-96884-1 23

14. Corrigan-Gibbs, H., Kogan, D.: The discrete-logarithm problem with preprocess-
ing. In: Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT 2018, Part II. LNCS, vol.
10821, pp. 415–447. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-
78375-8 14

15. Fouque, P.-A., Joux, A., Mavromati, C.: Multi-user collisions: applications to dis-
crete logarithm, even-Mansour and PRINCE. In: Sarkar, P., Iwata, T. (eds.) ASI-
ACRYPT 2014, Part I. LNCS, vol. 8873, pp. 420–438. Springer, Heidelberg (2014).
https://doi.org/10.1007/978-3-662-45611-8 22

16. Fuchsbauer, G., Kiltz, E., Loss, J.: The algebraic group model and its applications.
In: Shacham, H., Boldyreva, A. (eds.) CRYPTO 2018, Part II. LNCS, vol. 10992,
pp. 33–62. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-96881-0 2

17. Garay, J.A., Johnson, D.S., Kiayias, A., Yung, M.: Resource-based corruptions
and the combinatorics of hidden diversity. In: Kleinberg, R.D. (ed.) ITCS 2013,
pp. 415–428. ACM, January 2013

https://eprint.iacr.org/2019/364
https://eprint.iacr.org/2019/364
https://doi.org/10.1007/978-3-030-26951-7_27
https://doi.org/10.1007/3-540-45539-6_18
https://doi.org/10.1007/3-540-45539-6_18
https://doi.org/10.1007/978-3-642-32009-5_19
https://doi.org/10.1007/978-3-642-32009-5_19
https://doi.org/10.1007/BFb0053428
https://doi.org/10.1007/11761679_25
https://doi.org/10.1007/11761679_25
https://doi.org/10.1007/978-3-319-13051-4_3
https://doi.org/10.1007/978-3-319-13051-4_3
https://doi.org/10.1007/11426639_26
https://doi.org/10.1007/978-3-319-96884-1_23
https://doi.org/10.1007/978-3-319-78375-8_14
https://doi.org/10.1007/978-3-319-78375-8_14
https://doi.org/10.1007/978-3-662-45611-8_22
https://doi.org/10.1007/978-3-319-96881-0_2

506 B. Auerbach et al.

18. Guillevic, A., Morain, F.: Discrete logarithms. In: Mrabet, N.E., Joye, M. (eds.)
Guide to pairing-based cryptography. CRC Press/Taylor and Francis Group,
December 2016

19. Heninger, N., Durumeric, Z., Wustrow, E., Halderman, J.A.: Mining your Ps and
Qs: detection of widespread weak keys in network devices. In: 21st USENIX Secu-
rity Symposium (2012)

20. Hitchcock, Y., Montague, P., Carter, G., Dawson, E.: The efficiency of solving mul-
tiple discrete logarithm problems and the implications for the security of fixed ellip-
tic curves. Int. J.Inf. Secur. 3(2), 86–98 (2004). https://doi.org/10.1007/s10207-
004-0045-9

21. Hofheinz, D., Nguyen, N.K.: On tightly secure primitives in the multi-instance
setting. In: Lin, D., Sako, K. (eds.) PKC 2019, Part I. LNCS, vol. 11442, pp.
581–611. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-17253-4 20

22. Kuhn, F., Struik, R.: Random walks revisited: extensions of Pollard’s Rho algo-
rithm for computing multiple discrete logarithms. In: Vaudenay, S., Youssef, A.M.
(eds.) SAC 2001. LNCS, vol. 2259, pp. 212–229. Springer, Heidelberg (2001).
https://doi.org/10.1007/3-540-45537-X 17

23. Maurer, U.: Abstract models of computation in cryptography. In: Smart, N.P. (ed.)
Cryptography and Coding 2005. LNCS, vol. 3796, pp. 1–12. Springer, Heidelberg
(2005). https://doi.org/10.1007/11586821 1

24. Mizuide, T., Takayasu, A., Takagi, T.: Tight reductions for Diffie-Hellman variants
in the algebraic group model. In: Matsui, M. (ed.) CT-RSA 2019. LNCS, vol. 11405,
pp. 169–188. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-12612-4 9

25. Okamoto, T., Pointcheval, D.: The gap-problems: a new class of problems for the
security of cryptographic schemes. In: Kim, K. (ed.) PKC 2001. LNCS, vol. 1992,
pp. 104–118. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-44586-
2 8

26. Rupp, A., Leander, G., Bangerter, E., Dent, A.W., Sadeghi, A.-R.: Sufficient con-
ditions for intractability over black-box groups: generic lower bounds for gener-
alized DL and DH Problems. In: Pieprzyk, J. (ed.) ASIACRYPT 2008. LNCS,
vol. 5350, pp. 489–505. Springer, Heidelberg (2008). https://doi.org/10.1007/978-
3-540-89255-7 30

27. Sadeghi, A.-R., Steiner, M.: Assumptions related to discrete logarithms: why sub-
tleties make a real difference. In: Pfitzmann, B. (ed.) EUROCRYPT 2001. LNCS,
vol. 2045, pp. 244–261. Springer, Heidelberg (2001). https://doi.org/10.1007/3-
540-44987-6 16

28. Shoup, V.: Lower bounds for discrete logarithms and related problems. In: Fumy,
W. (ed.) EUROCRYPT 1997. LNCS, vol. 1233, pp. 256–266. Springer, Heidelberg
(1997). https://doi.org/10.1007/3-540-69053-0 18

29. Ying, J.H.M., Kunihiro, N.: Bounds in various generalized settings of the discrete
logarithm problem. In: Gollmann, D., Miyaji, A., Kikuchi, H. (eds.) ACNS 2017.
LNCS, vol. 10355, pp. 498–517. Springer, Cham (2017). https://doi.org/10.1007/
978-3-319-61204-1 25

30. Yun, A.: Generic hardness of the multiple discrete logarithm problem. In: Oswald,
E., Fischlin, M. (eds.) EUROCRYPT 2015, Part II. LNCS, vol. 9057, pp. 817–836.
Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46803-6 27

https://doi.org/10.1007/s10207-004-0045-9
https://doi.org/10.1007/s10207-004-0045-9
https://doi.org/10.1007/978-3-030-17253-4_20
https://doi.org/10.1007/3-540-45537-X_17
https://doi.org/10.1007/11586821_1
https://doi.org/10.1007/978-3-030-12612-4_9
https://doi.org/10.1007/3-540-44586-2_8
https://doi.org/10.1007/3-540-44586-2_8
https://doi.org/10.1007/978-3-540-89255-7_30
https://doi.org/10.1007/978-3-540-89255-7_30
https://doi.org/10.1007/3-540-44987-6_16
https://doi.org/10.1007/3-540-44987-6_16
https://doi.org/10.1007/3-540-69053-0_18
https://doi.org/10.1007/978-3-319-61204-1_25
https://doi.org/10.1007/978-3-319-61204-1_25
https://doi.org/10.1007/978-3-662-46803-6_27

	Everybody's a Target: Scalability in Public-Key Encryption
	1 Introduction
	1.1 Our Results
	1.2 Generic Bounds on Multi-Instance GapCDH: Technical Details
	1.3 Related Work and Future Directions

	2 Preliminaries
	2.1 Notation
	2.2 Generic/Algebraic Group Model
	2.3 Key-Encapsulation Mechanisms

	3 Multi-Instance Security
	3.1 Key Encapsulation in the Multi-Instance Setting
	3.2 Advantage Relations for Different m and n
	3.3 Scaling Factor
	3.4 Multi-Instance Diffie-Hellman-Type Problems

	4 Hashed ElGamal in the Multi-Instance Setting
	4.1 Hashed-ElGamal Key Encapsulation
	4.2 Multi-Instance Security of Hashed ElGamal
	4.3 Scaling Factor of Hashed ElGamal for Different Parameters

	5 Generic Hardness of the Multi-Instance Gap Discrete Logarithm Problem
	5.1 Polycheck Discrete Logarithm and Search-by-Hypersurface Problem
	5.2 Generic Hardness of High-Granularity (m,n)-d-PolyDL

	6 Generic Hardness of the Multi-Instance Gap Computational Diffie-Hellman Problem
	6.1 Generic Hardness of High-Granularity (m,n)-GapCDH
	6.2 Generic Hardness of Medium-Granularity (m,n)-GapCDH
	6.3 Generic Hardness of Low-Granularity (m,n)-GapCDH

	References

