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Abstract. A non-interactive zero-knowledge (NIZK) protocol enables a
prover to convince a verifier of the truth of a statement without leak-
ing any other information by sending a single message. The main focus
of this work is on exploring short pairing-based NIZKs for all NP lan-
guages based on standard assumptions. In this regime, the seminal work
of Groth, Ostrovsky, and Sahai (J.LACM’12) (GOS-NIZK) is still consid-
ered to be the state-of-the-art. Although fairly efficient, one drawback of
GOS-NIZK is that the proof size is multiplicative in the circuit size com-
puting the NP relation. That is, the proof size grows by O(|C|x), where
C is the circuit for the NP relation and « is the security parameter. By
now, there have been numerous follow-up works focusing on shortening
the proof size of pairing-based NIZKs, however, thus far, all works come
at the cost of relying either on a non-standard knowledge-type assump-
tion or a non-static g-type assumption. Specifically, improving the proof
size of the original GOS-NIZK under the same standard assumption has
remained as an open problem.

Our main result is a construction of a pairing-based NIZK for all of
NP whose proof size is additive in |C|, that is, the proof size only grows
by |C|+poly(x), based on the decisional linear (DLIN) assumption. Since
the DLIN assumption is the same assumption underlying GOS-NIZK, our
NIZK is a strict improvement on their proof size.

As by-products of our main result, we also obtain the following two
results: (1) We construct a perfectly zero-knowledge NIZK (NIPZK) for NP
relations computable in NC' with proof size |w| - poly(x) where |w] is the
witness length based on the DLIN assumption. This is the first pairing-
based NIPZK for a non-trivial class of NP languages whose proof size is
independent of |C| based on a standard assumption. (2) We construct a
universally composable (UC) NIZK for NP relations computable in NC!
in the erasure-free adaptive setting whose proof size is |w| - poly (k) from the
DLIN assumption. This is an improvement over the recent result of Kat-
sumata, Nishimaki, Yamada, and Yamakawa (CRYPTO’19), which gave
a similar result based on a non-static g-type assumption.

The main building block for all of our NIZKSs is a constrained signature
scheme with decomposable online-offline efficiency. This is a property
which we newly introduce in this paper and construct from the DLIN
assumption. We believe this construction is of an independent interest.
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1 Introduction

1.1 Background

Zero-knowledge proof system [26] is an interactive protocol that allows a prover
to convince a verifier about the validity of a statement without revealing anything
beyond the fact that the statement is true. A variant of this, which is both prac-
tically and theoretically important, are non-interactive zero-knowledge (NIZK)
proofs® [6] where the prover is only required to send one message to the verifier
to prove the validity of the statement in question. Not only have NIZKs shown
to be a ubiquitous building block for cryptographic primitives and protocols, but
it has also shown to be a mine of theoretical questions with interesting technical
challenges.

Unfortunately, it is known that NIZKs for non-trivial languages (i.e., NP) do
not exist in the plain model where there is no trusted setup [25]. Therefore, NIZKs
for non-trivial languages are typically constructed in the common reference string
(CRS) model where the prover and verifier have access to a CRS generated by a
trusted entity. We will call such NIZKs in the CRS model simply as NIZKs.

The most successful NIZK for all of NP is arguably the pairing-based NIZK of
Groth, Ostrovsky, and Sahai [30] (GOS-NIZK). GOS-NIZKs are based on the stan-
dard decisional linear (DLIN) or the subgroup decision (SD) assumptions. Due to
its simplicity and efficiency, pairing-based NIZKs have flourished into a research
topic on its own, and the original GOS-NIZK has been followed by many subse-
quent works trying to improve on it through various approaches. For example,
many works such as [31,37,38,42] aim to make GOS-NIZK more efficient by limit-
ing the language to very specific pairing induced languages, while other works such
as [14,20,28,29,45] aim to gain efficiency by relying on a much stronger assump-
tion known as knowledge assumptions (i.e., a type of non-falsifiable [23, 48] assump-
tion). In fact, all works that achieve any notion of “better efficiency” compared to
GOS-NIZK only succeeds by either restricting the language or by resorting to use
stronger assumptions compared to DLIN or SD.

Similarly with many prior works, the main focus of “efficiency” in our work
will be the proof size of the NIZK. Denoting C as the circuit computing the
NP relation, GOS-NIZK requires a proof size as large as O(|C|k), where & is
the security parameter. Borrowing terminology from the recent work of Kat-
sumata et al. [40,41], what we would like instead is a more compact proof size,
that is, a proof size with only an additive overhead |C| + poly(x) rather than
a multiplicative overhead. For instance, the above latter approach using knowl-
edge assumptions are known to achieve pairing-based NIZKs for NP with a
significantly short proof size that only depends on the security parameter; in
particular, the proof size does not even depend on the witness size. However,
unfortunately, it is known that NIZKs with such an unusually short proof (i.e.,
proof size poly(k) - (|| + |w|)°™) where z is the statement and w is the witness)
inevitably require strong non-falsifiable assumptions [23]. The most compact

! In the introduction, we do not distinguish between proofs and arguments for sim-
plicity.
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NIZK based on any falsifiable assumption is due to [21,22] which achieves proof
size |w| + poly(k). However, since it uses (circular secure) fully homomorphic
encryption (FHE) its instantiation is solely limited to lattice-based assumptions.
Other than lattice-based constructions, Groth [27] proposed a NIZK based on the
security of Naccache-Stern public key encryption scheme [47] with a proof size
|C| - polylog(k), which is asymptotically shorter than that of GOS-NIZK. Very
recently, Katsumata et al. [41] provided the first compact NIZK based on any
falsifiable pairing-based assumption achieving a proof size of |C|+ poly(x). Their
construction relies on a new primitive called homomorphic equivocal commit-
ment (HEC), and they instantiate HEC using a non-static Diffie-Hellman type
assumption recently introduced in [40]. Unfortunately, the construction of HEC
seems to be tailored to their specific non-static assumption, and it seems quite
difficult to construct HEC based on a clean static assumption such as DLIN.

In summary, despite the considerable work that has been put into paring-
based NIZKs, improving the proof size of GOS-NIZK while simultaneously main-
taining the language and assumption has shown to be elusive. Therefore, in this
work, the main question we ask is:

Can we construct compact NIZKs for all of NP based on standard assump-
tions over a pairing group?

1.2 Our Result

In this work, we present the first compact pairing-based NIZK for all of NP with
proof size |C| + poly(x) based on the DLIN assumption.? Along the way, we also
obtain several interesting compact variants of our NIZK such as non-interactive
perfect zero-knowledge (NIPZK) and universally composable NIZK (UC-NIZK)
[30] from the DLIN assumption. We provide a list of NIZKs which we achieve
below and refer to Tables 1 and 2 for comparison between prior works. We note
that the table only includes NIZKs for NP based on falsifiable assumptions.

1. We construct a compact NIZK for all of NP languages with proof size
|C| 4+ poly(x) based on the DLIN assumption. This is the first NIZK to achieve
a proof size shorter than that of GOS-NIZK under the same assumption
required by GOS-NIZK. Moreover, if we assume the NP relation to be com-
putable in NC', the proof size can be made as small as |w| + poly(x), which
matches the state-of-the-art of compact NIZKs from any primitive based
on (possibly non-pairing) falsifiable assumptions, e.g., fully-homomorphic
encryption [22]. Our NIZK can also be seen as an improvement of the recently
proposed compact NIZK of Katsumata et al. [41] in the following two aspects.
First, our construction relies on a standard assumption, whereas theirs rely
on a non-static g-type assumption. Second, our construction is fairly efficient
since we only use pairing group operations in a black-box manner, whereas
their construction is highly inefficient since they require pairing group oper-
ations in a non-black-box way.

2 More precisely, we can base it on the weaker MDDH assumption, which includes
the DLIN and symmetric external Diffie-Hellman (SXDH) assumptions as a special
case.
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2. We construct NIPZKs for NP languages that are computable in NC' with
proof size |w| - poly(k) from the DLIN assumption. This is the first pairing-
based perfectly zero-knowledge NIZK for a non-trivial class of NP languages
whose proof size is independent of |C| based on a standard assumption.

3. We construct UC-NIZKs for NP languages that are computable in NC! with
proof size |w| - poly(x) from the DLIN assumption. This is an improvement
over the recent result of Katsumata et al. [41], which gave a similar result
based on a non-static ¢-type assumption.

The main building block for all of our NIZKs is a constrained signature
scheme with decomposable online-offiline efficiency. This is a property which we

Table 1. Comparison of CRS-NIZKs for NP.

Reference CRS size Proof size Assumption (Misc.)
FLS [16] poly(x, |C]) poly(k, |C|) trapdoor permutation’
C| + ktpm - polyl C| + ktpm - polyl
Groth [27] |1+ kipm - polylog(x) |1+ ktpm - polylog(x) trapdoor permutation’
+ poly(x) + poly(r)
Groth [27] |C| - polylog(x) + poly(x) |C] - polylog(x) + poly(x) Naccache-Stern PKE
GOS [30] poly (k) O(|Clk) DLIN/SD (Perfect ZK)
CHK, Abusalah CDH
poly(x, |C1) poly(, |C1) -
[1,11] (pairing group)
FHE and CRS-NIZK
GGIPSS [22]  poly(k) [w| + poly(x) an

(circular security)
KNYY [41] poly(x, |C]) |C| + poly(x) (n, m)-CDHER
(n, m)-CDHER
(limited to NC* relation)
LFE and CRS-NIZK
KNYY [41] poly(k, |z|, |w]|, d) poly(k, |z|, |w]|, d) (prover-efficient,
implied by sub-exp. LWE)
LFE and CRS-NIZK*
KNYY [41] (lz] + |w]) - poly(x, d) O(|z| + |w]) - poly(, d) (prover-efficient,
implied by adaptive LWE)

KNYY [41] poly(x, |Cl,2%) [w] + poly(x)

Sect. 5.1 poly(x, |C|) |C| + poly(k) DLIN
DLIN
Sect. 5.1 poly(k, |C|, 2¢ w| + poly(k
y(, 101, 2%) Il y() (limited to NC! relation)
DLIN
Sect. 5.2 poly(x, |C|, 2%) |w] - poly (k) (perfect ZK,

limited to NC* relation)

In column “CRS size” and “Proof size”, k is the security parameter, |z|, |w| is the statement and
witness size, |C| and d are the size and depth of the circuit computing the NP relation, and kepm
is the length of the domain of the trapdoor permutation. In column “Assumption”, (n, m)-CDHER
stands for the (parameterized) computational DH exponent and ratio assumption, LFE stands for
laconic functional evaluation, and sub-exp. LWE stands for sub-exponentially secure learning with
errors (LWE).

1If the domain of the permutation is not {0,1}", we further assume they are doubly enhanced [24].
fWe additionally require a mild assumption that the prover run time is linear in the size of the
circuit computing the NP relation.
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newly introduce in this paper and construct from the DLIN assumption. We
believe this construction is of independent interest.

Table 2. Comparison of UC-NIZKs for NP.

Security

Reference CRS size Proof size Assumption (Misc.)

(erasure-free)
GOS [30] adaptive (v') poly(k) O(|Clk) DLIN/SD
FHE and UC-NIZK
(circular security)
CsW [13] adaptive (v') poly(k,d) |w]| - poly(x,d) HTDF and UC-NIZK
(n, m)-CDHER and UC-NIZK
(limited to NC! relation)
DLIN
(limited to NC! relation)

GGIPSS [22] adaptive (X) poly(k) |w] + poly(x)

KNYY [41] adaptive (v) poly(k,|C|) |w|- poly(k)

Sect. 5.2 adaptive (v') poly(k, |C|) |w]| - poly(x)

In column “CRS size” and “Proof size”, k is the security parameter, |w| is the
witness size, |C| and d are the size and depth of circuit computing the NP relation.
In column “Assumption”, DLIN stands for the decisional linear assumption, SD
stands for the subgroup decision assumption, HTDF stands for homomorphic trap-
door functions, and (n,m)-CDHER stands for the (parameterized) computational
DH exponent and ratio assumption.

1.3 Technical Overview

Reviewing Previous Results. Here, we review definitions and previous
results that are required for explaining our approach. We remark that we explain
previous works [40,41,43] in terms of constrained signatures (CS) instead of
homomorphic signatures, even though they are based on the latter primitive.
This is because these primitives are actually equivalent as shown by Tsabary
[52] and explaining in this way allows us to ignore small differences between
our approach and previous ones that stem from the syntactic difference between
them.

DP-NIZK and CS: We first explain the notion of designated prover NIZK (DP-
NIZK), which is a relaxed notion of the standard notion of NIZK. In order to
differentiate them, we call the latter CRS-NIZK in the following. In DP-NIZK,
only a prover who possesses a secret proving key can generate a proof for an
NP statement, and the verification can be done publicly by any entity. Here,
the secret proving key is generated along with the CRS by a trusted entity.
We require that soundness holds against a malicious prover who possesses the
secret proving key and that zero-knowledge holds against a malicious verifier
who only accesses the CRS and the proofs, but not the secret proving key.
We then explain the notion of CS, which is a slightly simplified version of
attribute-based signature [46]. CS is an advanced form of signature where a
signing key is associated with some circuit C : {0,1}* — {0,1} and using the
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signing key, one can sign on a message x if C(z) = 1. The signature can be ver-
ified by a public verification key. As for security, we require unforgeability and
privacy. The former requires that one cannot forge a valid signature on a mes-
sage z if it only has a signing key CS.sk¢ for C such that C(z) = 0. The latter
requires that an honestly generated signature reveals nothing about the circuit
C associated with the signing key that is used for generating the signature. In
addition to the above security notions, we also require CS to have compact sig-
natures in the sense that the size of the signatures is a fixed polynomial that is
independent of the size of the circuit C' and the length of the message x.

DP-NIZK from CS [43]: We then explain the generic construction of DP-NIZK
from CS shown by Kim and Wu [43]. This will serve as a good starting point for
us because their conversion allows us to convert a compact CS into a compact
DP-NIZK as we will see. Let us fix an NP language L that is verified by a circuit R
that takes as input a statement = and a witness w and outputs R(z,w) € {0, 1}.
In their construction, they set the CRS of the DP-NIZK to be a verification key
of the CS. Furthermore, they set the secret proving key for the DP-NIZK to be
a secret key K of an SKE and a CS signing key CS.sk¢, for circuit Cg. Here,
Ck is a circuit that takes as input an SKE ciphertext SKE.ct and a statement x
and outputs 1 if R(z,SKE.Dec(K,SKE.ct)) = 1 and 0 otherwise. To generate a
proof for an NP statement = corresponding to a witness w, the prover encrypts
the witness w by the SKE to obtain SKE.ct = SKE.Enc(K,w) and then signs on
the message (x, SKE.ct) using the CS signing key for Cx. By the correctness of
the SKE, we have Ck (x,SKE.ct) = R(z,w) = 1, which implies the completeness
of the DP-NIZK. The soundness of the protocol follows from the unforgeability
of the underlying CS. This is because any valid proof for an invalid statement
x* ¢ L is a valid signature on (z*,SKE.ct*) for some SKE.ct*, for which we
have Ck (z*,SKE.ct*) = R(x*,SKE.Dec(K,SKE.ct*)) = 0. The zero-knowledge
property of the protocol follows from the following intuition. From the privacy
of the CS, information of K hardwired into the circuit C'x is not leaked from
the CS signature. We, therefore, can use the security of SKE to conclude that
SKE.ct leaks no information of the witness w.

We now focus on the efficiency of the resultant DP-NIZK. If we instantiate the
DP-NIZK with an SKE with additive ciphertext overhead and a CS with compact
signatures, this gives us a compact DP-NIZK. Note that an SKE scheme with
additive ciphertext overhead can be realized from very mild assumptions such as
CDH. Therefore, their result suggests that it suffices to construct compact CS
in order to construct a compact DP-NIZK.

Overview of Our Approach. Here, we provide an overview of our approach.
In high level, we follow the same approach as Katsumata et al. [40,41], who
constructed a compact CRS-NIZK from a non-static assumption over bilinear
maps. Specifically, we will first construct a CS, then convert it into a DP-NIZK,
and then modify it into a CRS-NIZK. However, our approach significantly differs
from theirs in low level details. We will provide a comparison with their work
after describing our approach in the following.
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Compact DP-NIZK from a Standard Assumption: We set the construction of
compact DP-NIZK from a static assumption as an intermediate goal. Thanks to
the Kim-Wu conversion, the problem is reduced to the construction of a CS scheme
with compact signatures from a static assumption. To achieve the goal, we fol-
low the folklore conversion that converts an attribute-based encryption (ABE)
into a CS that is somewhat reminiscent of the Naor conversion [7] (See e.g., [49]).
In order to obtain the CS scheme with the desired properties, it turns out that
we need to construct an adaptively secure ABE scheme whose ciphertext size is
bounded by some fixed polynomial. Although there is no ABE scheme with the
required properties from a static assumption in the literature, we are able to con-
struct it by modifying the very recent ABE scheme proposed by Kowalczyk and
Wee [44], who resolved the long-standing open problem of constructing adaptively
secure ABE for NC! whose ciphertext length is independent of the circuit size
from a static assumption by cleverly adapting the piecewise guessing frameworks
[17,18,32,35,36,44] to the setting of ABE. We modify their scheme so that it has
even shorter ciphertexts by aggregating the ciphertext components and adding
extra components to the secret keys as was done in previous works on ABE with
short ciphertexts [2,33]. The security proof for the scheme is again similar to that
of Kowalczyk and Wee, where we decompose the secret keys into smaller pieces
and gradually randomize them via carefully chosen sequence of hybrid games.
The additional challenge for the proof in our setting is to deal with the extra
components in the secret keys. We handle this by observing that the originally
proof strategy by Kowalczyk and Wee for randomizing the secret keys works even
with these extra components. From this ABE scheme, we can obtain a CS scheme
with the desired properties. Furthermore, by applying the Kim-Wu conversion to
the CS scheme, we obtain a new compact DP-NIZK from a static assumption.
Although this is not our main goal, we note that this improves the compact DP-
NIZK scheme from a non-static assumption by Katsumata et al. [40].

Removing Secret Proving Key: We then try to remove the necessity of the secret
proving key from the DP-NIZK described above to obtain a CRS-NIZK. Toward
this goal, our first idea is to make the signing key of the CS scheme public by
including it into the CRS. When we do so, we stop hardwiring the secret key
K of the SKE into the circuit associated with the signing key and change the
circuit so that it takes K as an input. The obvious reason for this is because
we would like to use the security of SKE at some later point. More concretely,
we include CS.sk¢ into the CRS, where C' is a circuit that takes as input the
secret key K of SKE, a statement x, and a ciphertext SKE.ct of SKE and out-
puts R(z,SKE.Dec(K,SKE.ct)). When generating a proof, the prover chooses

a random K on its own, computes SKE.ct <~ SKE.Enc(K,w), and signs on the
message (z, SKE.ct, K) by using CS.sk¢ to obtain a signature CS.o, which is pos-
sible because we have C(z,SKE.ct, K) = 1 by the definition of C. The problem
with this approach is that we do not know what components to publish as the
final proof. More specifically, we run into the following deadlock: If we include
K into the proof, then the scheme is not zero-knowledge anymore because one
can decrypt SKE.ct by using K to retrieve w. On the other hand, if we do not
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include K into the proof, we can no longer verify the validity of CS.o since K,
which is now a part of the message, is required to verify the signature.

Introducing Non-Compact NIZK: We resolve the above issue by using a CRS-
NIZK that is not necessarily compact (non-compact NIZK in the following) and
change the scheme so that it proves the validity of the CS signature without

revealing K nor the signature. In more detail, the prover generates K, SKE.ct &
SKE.Enc(K,w),CS.c & CS.Sign(CS.ske, (2, SKE.ct, K)) as above. It then proves
that there exists (K,CS.o) such that CS.o is a valid signature on a message
(z,SKE.ct, K') under the verification key CS.vk by using the non-compact NIZK.
It then outputs (SKE.ct, CS.o,7) as the final proof, where 7 is the non-compact
proof for the above statement.

We then explain that the scheme satisfies soundness and zero-knowledge. To
see this, we first observe that to break the soundness of the resultant NIZK
scheme, it is necessary to break the soundness of the underlying non-compact
NIZK or generate a valid CS signature on (x*,SKE.ct*, K*) such that z* ¢ L.
By our assumption, the former is impossible. Furthermore, the latter is also
impossible, since we have C(a*,SKE.ct*, K*) = 0 for any choice of K* and
SKE.ct* and thus it implies a forgery against the CS scheme. The zero-knowledge
property of the scheme holds since the proof consists of the SKE ciphertext and
the proof of the non-compact NIZK. Intuitively, since the latter does not leak
the information about K, we can use the security of SKE to conclude that w is
hidden from the adversary.

While this gives a secure construction, it is unclear whether this is a step
forward at this point since we merely constructed a NIZK from a CS by further
assuming a NIZK, which seems to be a vacuous statement. Furthermore, the
construction we described so far is not compact since the relation proven by
the underlying non-compact NIZK is verified by a circuit whose size depends on
|C|. To see this, we recall that the verification circuit for the relation proven by
the non-compact NIZK takes as input the statement «’ = (CS.vk, z, SKE.ct) and
witness w’ = (K, CS.o) and outputs 1 if and only if CS.o is a valid signature on
(z,SKE.ct, K). This circuit is not compact, since it takes as input x, which can
be as large as |C] in general and CS.vk, which is much larger than |C| in our
specific CS scheme.

Ezxploiting the Special Efficiency Property of the CS: We observe that what
should be kept secret in the above construction are K and CS.o,* and (z, SKE.ct)
can be made public without losing the zero-knowledge property. To get a clearer
understanding of the problem, we slightly generalize and simplify the problem as
follows. What we would like to do is to give a compact proof that we have a valid
signature CS.o on a message (y, z) for public y and secret z without revealing z
nor CS.o using a non-compact NIZK. Here, y is not compact while z and CS.o
are compact. In our context, y = (z, SKE.ct) and z = K. In this generalized set-
ting, the above approach is equivalent to proving that CS.o is a valid signature
on (y, z) under the verification key CS.vk. This relation is verified by a circuit

3 Note that CS.o should be kept secret since it reveals partial information of K.
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that directly takes (CS.vk, (y, z), CS.0) as inputs. This approach does not work
simply because the input is not compact.

Our first observation is that if we were somehow able to compress the verifi-
cation circuit size of the relation proven by the non-compact NIZK to be a fixed
polynomial without changing the functionality, then the resultant NIZK scheme
will have compact proofs. Fortunately, our CS scheme has a nice property that
brings us closer to this goal. Namely, in the scheme, the verifier can aggregate
the verification key CS.vk depending on a message m to obtain an aggregated
verification key CS.vk,,, which is of fixed polynomial size. Then, a signature
CS.o can be verified by using only the aggregated verification key CS.vk,,. In
particular, the verification circuit no longer takes m as an input. Typically, the
aggregation of the verification key is done offline, where one is allowed to per-
form heavy computation, and the actual verification step is done online, where
the computation is very fast even if m is a very long string. We call this property
online-offiline efficiency. We note that our CS scheme inherits this property from
the underlying ABE scheme, where secret keys can be aggregated depending on
an attribute in offline phase so that the decryption of a ciphertext corresponding
to the same attribute in the online phase is very fast.

A natural approach to compress the verification circuit (for the non-compact
NIZK) would be to replace the inputs CS.vk and (y, z) with its aggregated version
CS.vk(y,.). In particular, we replace the verification circuit which takes as input
CS.vk, (y, z), and CS.o and verifies the signature with the corresponding online
verification circuit which takes CS.vk, ) and CS.o as inputs. This circuit is com-
pact thanks to the online-offline efficiency of the CS. However, since CS.vk, .)
cannot be publicly computed, we would have to move the term CS.vk(, .) into the
witness. Furthermore, we additionally have to prove that CS.vk, . is honestly
computed from CS.vk and (y, z) using the non-compact NIZK. The problem is
that the resulting proof is not compact since this is a statement that involves
non-compact terms. Put differently, even though we can compactly prove that
we have a signature that passes the online verification under a compressed ver-
ification key, we cannot compactly prove that we honestly execute the offline
phase to compute the compressed verification key.

As we saw above, the idea of compressing CS.vk depending on the entire
string (y, z) does not work. Our idea is to “partially” compress CS.vk depending
on the public part y and then use this compressed version of the verification
key to construct the verification circuit for the non-compact NIZK. To enable
the idea, let us assume that we can compress CS.vk with respect to a string
y and obtain CS.vk,. Then, further assume that we can compress CS.vk, into
CS.vk(y,z) using z, so that the verification of a message (y,z) is possible using
CS.vk(y,.y. Furthermore, we require that the computational cost of compressing
CS.vk, into CS.vk(, ) depends only on |z|, not on |y|. Therefore if z is compact,
we can compute CS.vk(, ) from CS.vk, and z by a compact circuit. Assuming
this property, we can solve the above generalized problem as follows: We first
compress CS.vk depending on y to obtain CS.vk,. We then prove that there exists

CS.o and z such that CS.o is a valid signature under CS.vk(, .y, where CS.vk(, .)
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is obtained by compressing CS.vk, depending on the string z. This statement can
be proven compactly, since both verification under the verification key CS.vk, .)
and the compression of CS.vk, into CS.vk(, .y can be done compactly. Further-
more, unlike the previous attempt, we do not have to prove that we honestly
executed the offline computation. Namely, we do not have to prove the consis-
tency between CS.vk, y, and CS.vk,, since CS.vk, is publicly computable from
CS.vk and y. Therefore, it suffices to show that our CS scheme has the struc-
ture that allows one to compress the verification key in two steps. We name this
property online-offline decomposability and show that our construction indeed
has the property.*

Comparison with Katsumata et al. [41]. Here, we compare our approach
with the one by Katsumata et al. [40,41], who showed a similar result from a non-
static assumption. As we already mentioned, at the highest level, their approach
is the same as ours in that they first construct a CS [40], then convert it into
a DP-NIZK, and then modify it into a CRS-NIZK [41]. However, the way they
obtained the CS, and the way they modify their DP-NIZK into a CRS-NIZK is
significantly different from ours. We elaborate on this below.

Compact CS Scheme by Katsumata et al. [40]: Similarly to us, their approach is
to construct an ABE scheme and then convert it into a CS scheme. However, the
requirements for the ABE are different from ours. For the ABE scheme, they
require short secret keys, whereas we require short ciphertexts. Furthermore,
they require the ABE scheme to be secure following a so-called “single-shot”
reduction, where the reduction algorithm runs the adversary only once and per-
fectly simulates the view of the game. Roughly, this is equivalent to saying that
the proof cannot go through hybrid arguments. Therefore, their approach does
not seem to be promising when we try to construct a compact CS scheme from a
static assumption. Notably, their single-shot reduction requirement excludes the
dual system encryption methodology [54], which is a powerful tool for proving
the security of an ABE scheme from static assumptions. On the other hand, we
manage to employ the dual system encryption methodology to obtain an ABE
scheme with the desired properties from static assumptions.

From DP-NIZK to CRS-NIZK in Katsumata et al. [41]: They construct a DP-
NIZK (as an intermediate goal) by applying the Kim-Wu conversion on their CS
scheme. They then modify their DP-NIZK to a CRS-NIZK scheme by a non-
generic technique. Here, we review their approach and compare it with ours.
Recall that, in general, a DP-NIZK constructed from a CS via the Kim-Wu
conversion, the CRS consists of the verification key of the CS CS.vk, and the
secret proving key consists of the secret key of an SKE K and a signing key of
the CS CS.sk¢, . Their observation was that they can divide the CS verification
key CS.vk into two components CS.vk := (CS.vkg, CSvky) such that CS.vk; is
very short and anyone can compute CS.vk; from CS.ske,, and K. Note that as

4 Actually, the definition of online-offline decomposability is slightly different from the
one in the main body, but the latter implies the former.
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a stand-alone CS scheme, the secret key CS.sk¢, is computed using the master
key of the CS only after CS.vk = (vkg, vky) is defined. What they observe is that
the other direction of the computation is possible using the specific structure of
their CS scheme. In order to construct a CRS-NIZK using this special structure,
they remove CS.vk; from the CRS. Then they let the prover pick K and CS.skc,
on their own and let it compute CS.vk;. At this point, the prover can generate
a proof as in the original DP-NIZK. In order to prevent the adversary to mali-
ciously choose K, CS.sk¢,., and CS.vk;, they let the prover prove consistency
among the components using a non-compact NIZK and outputs the proof along
with CS.vk;. The additional consistency proof by the non-compact NIZK as well
as CS.vk; appended to the final proof does not harm the compactness of the
resulting NIZK, since all parameters involved are compact.

We note that their approach is not applicable to our specific CS scheme. The
reason is that our signing key for the CS is as large as the circuit size and we
cannot prove the consistency between K, CS.sk¢,, and CS.vk; compactly no
matter how we divide the CS verification key. We, therefore, take a different
path from theirs and this entails several challenges that are not present in their
approach.

1.4 Related Work

The first NIZK for NP was given by [16] based on the existence of trapdoor
permutations (whose arguments were later refined by several works [3,24]). The
next generation of NIZK following a completely different set of approaches were
provided by Groth, Ostrovsky, and Sahai [30] (GOS-NIZK) based on pairings.
Due to its simplicity and efficiency, pairing-based NIZKs have flourished into a
research topic on its own, and the original GOS-NIZK has been followed by many
subsequent works [20,27,28,31,45]. More than roughly a decade later, a new type
of NIZKs based on indistinguishable obfuscation (iO) were proposed [4,5,12,51].
Finally, very recently, a different path for designing NIZKs based on correlation
intractable hash functions (CIH) [9,10,39] have gained much attention and has
finally lead to the closing of a long-standing problem of constructing NIZKs
based on lattice-based assumptions [50].

2 Definitions

We omit definitions of standard cryptographic primitives due to limited space.

2.1 Preliminaries on Bilinear Maps

A bilinear group generator GGen takes as input 1* and outputs a group descrip-
tion G = (p, G1,Go, G, e, 91, g2), Where p is a prime such that p > 22, G, Go,
and G are cyclic groups of order ¢, e : G1 X Go — G is a non-degenerate bilin-
ear map, and ¢g; and go are generators of G; and Gs, respectively. We require
that the group operations in G, G2, and G as well as the bilinear map e can be
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efficiently computed. We employ the implicit representation of group elements:
for a matrix A over Z,, we define [A]; := gf, [A]s := g4, [A]r := g4, where
exponentiation is carried out component-wise.

Definition 2.1 (MDDH;, assumption [15]). Let GGen be a group generator.
We say that the matriz DDH (MDDHy, ) assumption holds on Gy with respect to
GGen, if for all PPT adversaries A, we have

AV (V) = [Pr [A(G, [M]y, [Ms]y) — 1] = Pr [A(G, [M]y, [u]:) — 1]]

s negligible, where the probability is taken over the choice of G & GGen(17),
M & ZZ(,]H_UXIC, s & Zlg, and u < Z’;Jrl. We can similarly define MDDHjy
assumption on Gs.

In fact, the above assumption is called MDDH;, assumption for uniform distri-
bution by Escala et al. [15] since M is chosen uniformly at random. As shown
by them, MDDH}, assumptions for uniform distribution is weaker than MDDH},
assumption for all other distributions and in particular is implied by the k-LIN
assumption.

2.2 Non-interactive Zero-Knowledge Arguments

Let R C {0,1}* x {0,1}* be a polynomial time recognizable binary relation.
For (z,w) € R, we call x as the statement and w as the witness. Let £ be the
corresponding NP language £ = {z | Jw s.t. (z,w) € R}. Below, we define
non-interactive zero-knowledge arguments for NP languages.®

Definition 2.2 (NIZK Arguments). A non-interactive zero-knowledge
(NIZK) argument Ilyzk for the relation R consists of PPT algorithms
(Setup, Prove, Verify).

Setup(1®) — crs: The setup algorithm takes as input the security parameter 17
and outputs a common reference string crs.

Prove(crs, x,w) — w: The prover’s algorithm takes as input a common reference
string crs, a statement x, and a witness w and outputs a proof .

Verify(crs,z, ) — T or L: The verifier’s algorithm takes as input a common
reference string, a statement x, and a proof ™ and outputs T to indicate
acceptance of the proof and L otherwise.

We consider the following requirements for a NIZK arqument Tyzk, where the
probabilities are taken over the random choice of the algorithms.

Completeness. For all pairs (x,w) € R, if we run crs & Setup(1¥), then we

have Pr[m < Prove(crs, 2, w) : Verify(crs, z,7) = T] = 1.

5 We say it is a non-interactive zero-knowledge proofs when the soundness property
holds for even unbounded adversaries. In this paper, we will only be interested in
computationally bounded adversaries.



Compact NIZKs from Standard Assumptions on Bilinear Maps 391

Adaptive Soundness. For all PPT adversaries A, if we run crs < Setup(17%),
then we have

Pr[(z, ) < A(1%,crs) : & & L A Verify(crs, 2, m) = T] = negl(k).

Non-Adaptive Soundness. We also consider the slightly weaker variant of
adaptive soundness above. For all PPT adversaries A and for all x & L, if we
run crs <~ Setup(1%), then we have

Pr[r & A(1%, crs, z) : Verify(crs, z,7) = T] = negl(k).

Zero-Knowledge. For all adversaries A, there exists a PPT simulator S =
(81, 82) such that if we run crs & Setup(1%) and (crs, T) & S1(1%), then we have

PrAC€) (17, ers) = 1] — Pr{ACH7) (1%, s) = 1]| = negl(r),

where Og(crs,z,w) outputs Prove(crs, z,w) if (z,w) € R and L otherwise, and
O1(crs, 7, x,w) outputs Sa(Crs, 7, x) if (r,w) € R and L otherwise. We say it
is computational (resp. statistical) zero-knowledge if the adversary is computa-
tionally bounded (resp. unbounded). Moreover, we further say it is perfect zero-
knowledge if the above r.h.s. equals 0 for computationally unbounded adversaries.

We also define a stronger notion of soundness called extractability following
[41].

Definition 2.3 (Extractability). An NIZK argument is said to be extractable
if the following is satisfied:

Extractability. There is a deterministic algorithm Extract (called extractor)
such that for all PPT adversary A, we have

Verify(crs, z,7) = T | crs < Setup(17), (z,7) < A(crs),

Pr
(z,w) ¢ R w & Extract(rsetup, T)

< negl(k).

where rsewp 5 the randomness used in Setup to generate crs.

We can convert any adaptively sound NIZK into an extractable one addi-
tionally assuming the existence of PKE [41].

Lemma 2.1. If there exist an adaptively sound NIZK for all of NP and a CPA-
secure PKFE scheme, then there exists an extractable NIZK for all of NP.
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2.3 NC! Circuits and Monotone Formulae

Here, we define Monotone Boolean formula following Kowalczyk and Wee [44].

Monotone Boolean Formula. A monotone Boolean formula f : {0,1}" —
{0, 1} is specified by a directed acyclic graph (DAG) with three kinds of nodes:
input gate nodes, gate nodes, and a single output node. Input nodes have in-
degree 0 and out-degree 1, AND/OR nodes have in-degree (fan-in) 2 and out-
degree (fan-out) 1, and the output node has in-degree 1 and out-degree 0. We
number the edges (wires) 1,2,...,m, and each gate node is defined by a tuple
(g, aq,bg,cy) where g : {0,1}2 — {0,1} is either AND or OR, a, and b, are the
incoming wires, ¢4 is the outgoing wire and a4, by < c4. The size of a formula m
is the number of edges in the underlying DAG and the depth of a formula d is
the length of the longest path from the output node.

NC'! and Boolean Formulae. The following lemma summarizes the well-
known equivalence between the monotone formulae and NC* circuits.

Lemma 2.2. Letd =d(k),n =n(k), and s = s(k) be integers. There exist inte-
ger parameters m = m(d,n,s) and deterministic algorithms Enclnp and EncCir
with the following properties.

— Enclnp(z) — & € {0,1}*", where xz € {0,1}".

- EncCir(C) — f, where C : {0,1}"™ — {0,1} is a circuit with depth and size
bounded by d and s, respectively and f is a monotone Boolean formula of size
m with input space being {0,1}2".

We have f(z) = 1 if and only if C(x) = 1. Furthermore, the running time
of EncCir is poly(n, s,2%). In particular, if C is a polynomial-sized circuit with
logarithmic depth (i.e., if the circuit is in NCl), EncCir runs in polynomial
time and we have m = poly(k). Furthermore, for x € {0,1}", we have & =
T1T1ToTo -+ TnZy, where T; is the flip of ;.

See the full version for the details.

3 KP-ABE with Compact Ciphertexts

In this section, we give the construction of KP-ABE scheme for monotone
Boolean formulae with constant-size ciphertexts by extending the scheme by
Kowalczyk and Wee [44]. The scheme will be used in the construction of com-
pact constrained signature scheme in Sect. 4, which will in turn be used for the
construction of our compact NIZKs in Sect. 5. Our KP-ABE scheme would be of
independent interest, since this is the first KP-ABE scheme for Boolean formulae
with constant-size ciphertexts that is secure under a static assumption (rather
than non-static ¢-type assumption).
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3.1 Preliminaries

First, we review the secret sharing scheme for monotone Boolean formulae used
by Kowalczyk and Wee, which is based on secret sharing schemes in [34,35,53].

Definition 3.1 (Secret Sharing). A secret sharing scheme consists of two
algorithms (share, reconstruct).

share(f, u): This algorithm takes a (monotone) Boolean formula f : {0,1}" —
{0,1} and u € Z,, and outputs shares 1, . . ., fi, € Zyp and a function p : [/m] —
{0,1,...,n}. We assume that p is deterministically determined from f.

reconstruct(f, x, {p; }jes): This algorithms takes an input x € {0,1}" for f, f, and
a subset of shares {p;}jcs where S C [m] and outputs the original value 1.

A secret sharing scheme satisfies the following properties.

Correctness: Forallx € {0,1}", f : {0, 1}" — {0, 1}, u € Zyp, ({145} jepm]s £) —
share(f, ) such that f(x) = 1, it holds that reconstruct(f,z,{1;},(;)=ov
Ty = 1) = p-

Security: For all x € {0,1}", f:{0,1}" — {0,1}, p, i’ € Z,, such that f(z) =
0, the following distributions are the same:

Hritoth=ova, =1 | {1jtiepm)s p) < share(f, 1)}
= {1} p(y=ova, =1 | ({1t }jem)s p) < share(f, u')}

Linearity: The algorithm reconstruct is a linear function of the shares over
Z,. That is, there exists w; € Z, for j € [m] and we can compute p =
Zp(j):ov%(j):l Wikg -

We present their secret sharing scheme (share,reconstruct) in Fig.1 as
it is. The scheme satisfies Definition 3.1. As Kowalczyk and Wee observed,
it is easy to extend the secret sharing scheme to treat vectors of secrets.
That is, for a vector v € ZF, we define share(f,v) = ({v; = (vi,...,
Uk,j) }iepn)> p) Where  ({vij}iemm),p) <« share(f,v;) and reconstruct(f,x,

vj}p(j):O\/.'L'p(j)Zl) = Do) =0va, =1 WiVi where {w; } je[m) is defined as above.

3.2 Construction

Here, we give the construction of KP-ABE with short ciphertext from the
MDDH,, assumption.

Setup(1%,1"): Run G = (p, G1, G2, Gr,e) <~ GGen(1%). Sample A < Z];X(kﬂ)a
W, & ZZ(,kH)Xk for i € [n], v & Z’;“ and output

mpk = ([A]l, [AWl]l, ey [AWn]l,e([A]l, [V]Q)), msk = (V,Wl, AP ,Wn)
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share(f, 1)
Input: A formula f:{0,1}" — {0, 1} of size m (that is, the number of edges in
fis m) and a secret u € Zp.

1. For each non-output wire j = 1,...,m — 1, choose a uniformly random
i & Zyp. For the output wire, set fiy, = p.

2. For each outgoing wire j from input node 4, add p; :== f1; to the output set
of shares and set p(j) := i.

3. For each AND gate g with input wires a,b and output wire ¢, add u. =
fic + fia + fib € Zyp to the output set of shares and set p(c) == 0.

4. For each OR gate g with input wires a,b and output wire ¢, add ., =
fle + fla € Zp and pic, = fic + [y € Zp to the output set of shares and set
p(ca) == 0 and p(cp) = 0.

5. Output ({Mj}je[m]7p)~

reconstruct(f, @, {4;}o(j)=0va,;=1)

Input: A formula f : {0,1}" — {0,1} of size m, =z € {0,1}", and
{Mj}p(j)=0v;rp(j):1~

From the leaves of the formula to the root, we compute the output wire value fi.
at each node.

1. Given fiq, iy associated with the input wires a and b of an AND gate, we
compute fic = pte — fla — flo-

2. Given fi (or fip) associated with the input wires a (or b) of an OR gate, we
compute flc = e, — fla (OF flc = fhe, — fib).

Output p = fim.

Fig. 1. Information-theoretic linear secret sharing for monotone Boolean formulae by
Kowalczyk and Wee [44]

Enc(mpk, z, M): To encrypt a message M € Gy for a string « € {0,1}", sample
s <& Z’; and output

;=1

cty = [cti:=[sT A1, cto= |:ST Z AWi] . ctzi=e([sT A, [v]e) - M
1

KeyGen(msk, f): To generate a secret key for a Boolean formula f, sample
({vitiemp) & share(f,v), rj < Z’; and output sky, which consists of the
following.

({skj = [rjla, skygy,; = [V + Wiz, {ski; = [Wirj]a }iE[n]\{p(j)}}je[m])

where Wy = 0 and 7 is the number of shares. We note that for j such that
p(j) = 0, we have [n]\{p(j)} = [n].
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Dec(mpk, sk, ctx): Compute w; such that v = Zj:p(j):ov%(i):l w;v; and output

-1

wj
ctz-e | cto, H sk;’j -e | cty, H (H Skm’)

J:p(3)=0VE,(5y=1 J:p(§)=0Vz ;=1 \iz;=1

Correctness. The correctness follows since we have

H ( H Ski’j) = [V+ Z Wzr] 5 - H sk;}j = [I‘]27

j:p(j):OVzp(j):l ix,=1 ;=1 =0V, (j)=1

where r = Zj:p(j):OVip(j):l w;r; for honestly generated secret key sk for f such

that f(x) = 1 from the correctness of the secret sharing.

3.3 Security
We prove the following theorem.

Theorem 3.1. The above construction is adaptively secure under the MDDHy,
assumption.

For proving this theorem, we first prove the following lemma.
Lemma 3.1. Under the MDDH;, assumption,
$

p O 1D E 7w =0, W, W, Ly
r 1(_AOF,0(~)7OX('),OE(')('u(o))

— Pr N(O)aﬂ(l)‘iszWO ::07W17"'?Wn(iZ[l§;
]_ «— AOF,l(')voX(')on('v') (H’(O))

Oralf) = <{Nj}j:p(j)_0 N {[rj]2’ s + w52l {[WiTrj]Q}z‘e[n]\{p(j)}}je[m])
where ({11} jepm)» p) < share(f, u?))

Ox(x) == ({Witiw,=1)

Oc() := ([r]z, {[w?r]g}ie[n]) where T < zk

is negligible where A adaptively interacts with three oracles:

with the restriction that (i) only one query is made to each of O g(-) and Ox(-),
and (i) the queries f and x to Of g(-) and Ox(-) respectively, satisfy f(x) = 0.

Note that the statement of the lemma is similar to that of Theorem 2 in [44].
There, Of g(f) returns
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and Og takes as input i € [m] and returns ([r]s, [w, r]2). Since the answers by
the oracles in [44] can be simulated by our oracles by just stripping off appro-
priate components, our statement is stronger than theirs. Nonetheless, we can
prove the above lemma with very similar proof to that of Theorem 2 in [44]. See
the full version for the details.

Then we prove Theorem 3.1. The proof of the theorem is again similar to the
equivalent in [44], but with some appropriate adaptations.

Proof of Theorem 3.1. We prove the theorem by considering a sequence of hybrid
games. To define the hybrid distributions, it would be helpful to first give names
of various forms of ciphertext and secret keys that will be used. A ciphertext (of
message M under attribute ) can be one of the following forms:

Normal: A normal ciphertext is generated as in the scheme.
SF: This is the same as normal ciphertext except that s’ A is replaced by a

$ .
random vector ¢ « ZK+!. That is,

ety = (cn = []1 cty = { 3 W,]l, cts ::e({}l,[kh) -M) .

;=1

A secret key (for a Boolean formula f) can be one of the following forms:

Normal: A normal key is generated by KeyGen.

SF: An SF key is sampled as a normal key except that v is replaced by v+ da™t,
where a fresh § is chosen per SF key and a’ is any fixed at € Zi*1\{0}.
That is, sky consists of

<{Skj = [rjl2, Sk, 1= [V + Wogryle, {skiy = [Wirl2 }ie[nl\{pun}jdm})

where ({v;}jepm): p) < share(f, ), r; < ZE.

We then define the following sequence of games to prove the security. Let the
number of key generation queries made by an adversary be Q.

— Hg : This is the real security game for adaptive security where all ciphertexts
and keys are normal.

— Hj : This game is the same as Hy except that the challenge ciphertext is SF.
— Ha ¢ : This game is the same as H; except that the first ¢ keys are SF and the
remaining ) — ¢ keys are normal. The game is defined for £ =0,1,...,Q.

— Hs : This is the same as Hg except that the message to be encrypted is

replaced by a random group element M.

6 More accurately, Og takes as input [M]z € G2 in addition to 4 in [44]. But we can
ignore the additional input [M]2 without loss of generality.
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Let us fix a PPT adversary A and denote the advantage of A in H,, by
Advy,. We can easily see that Hy = Hz g and Advs = 0. Therefore, to complete
the proof of Theorem 3.1, it suffices to prove any neighboring games are compu-
tationally indistinguishable from the adversary’s view. We omit proofs of them
since they are proven similarly to their counterparts in [44] except that we need
some adaptations for the analysis of the game hop from Hy ¢ to Ha ¢41 by using
Lemma 3.1. See the full version for the full proof. a

4 Compact Constrained Signature

4.1 Constrained Signature

We provide definition of a constrained signature (CS) scheme. We also provide
an additional feature (i.e., online/offline efficiency) for CS schemes which will
play a vital role in our compact NIZK construction in Sect. 5.

Definition 4.1 (Constrained Signature). A constrained signature (CS)
scheme with message space {0,1}™ for a circuit classC = {C : {0,1}" — {0,1} }
consists of PPT algorithms (CS.Setup, CS.KeyGen, CS.Sign, CS.Vrfy).

CS.Setup(1%,1™) — (msk, vk): The setup algorithm on input the security param-
eter 1* and the input length 1™, outputs a master secret key msk and a veri-
fication key vk.

CS.KeyGen(msk,C) — skg: The key generation algorithm on input a master
secret key msk and a circuit C' € C, outputs a signing key skc.

CS.Sign(ske,x) — o: The signing algorithm on input the signing key sko and
message x € {0,1}", outputs a signature o.

CS.Vrfy(vk,z,0) — T or L: The verification algorithm on input the verification
key vk, message x, and signature o, outputs either L (indicating the signature
is valid) or T (indicating the signature is invalid).

A CS scheme must satisfy the following requirements.

Correctness. For all k € N, n = n(k) € N, (msk,vk) < CS.Setup(1%,1"),
x € {0,1}", C € C such that C(z) = 1, and sk < CS.KeyGen(msk, C), we have

Pr[CS.Vrfy(vk, z, CS.Sign(sk¢,x)) = T] =1
Unforgeability. We define (adaptive) unforgeability for a CS scheme. The secu-

rity notion is defined by the following game between a challenger and an adver-
sary A.

Setup: The challenger runs (msk, vk) & CS.Setup(1%,1™) and gives vk to A. It
also prepares an empty list Q.

Key Queries: A can adaptively make key queries unbounded polynomially
many times throughout the game. When A queries C' € C, the challenger
runs sk < CS.KeyGen(msk, C) and returns sk to A. Finally, the challenger
updates Q — QU {C'}.



398 S. Katsumata et al.

Forgery: Eventually, A outputs (z*,0*) as the forgery. We say A wins if
CS.Vrfy(vk,z*,0*) = T holds. Furthermore, we say that A is admissible if
C(z*) = 0 holds for all C € Q at the end of the game.

We say the CS scheme is (adaptively) unforgeable if the winning probability
for all admissible PPT adversaries .4 in the above game is negl(x), where the
probability is taken over the randomness of all algorithms.

The following property is optional in the sense that our CS scheme can
achieve the following property, but the property is not strictly necessary for
our application of CS to the construction of compact NIZKs.

Context-Hiding (optional). For all x,n € N, (mpk, msk) < Setup(1%,1"),
x € {0,1}", Cy,Cy € C, (msk,vk) < CS.Setup(1¥,1™), sk¢, < CS.KeyGen(msk,

Cy), and sko, < CS.KeyGen(msk, C1), we need that the following distributions
are statistically close:

stat

{0 & CS.Sign(skey, )}~ {0 < CS.Sign(ske,, )}

where the probability is only over the randomness used by CS.Sign.

Additionally to the above essential requirements for CS, we introduce a nat-
ural notion of decomposable online-offline efficiency. At a high level, this notion
states that if we (partially) knew the message z to be signed in advance, then we
can modify the verification key vk to a message specific verification key vk, which
allows for an efficient verification of signature ¢ with running time independent
of |z|. More formally, the notion is defined as follows.

Definition 4.2 (Decomposable Online-Offline Efficiency). A constrained
signature with message space {0,1}™ for a circuit class C = {C : {0,1}" —
{0,1}} is said to have decomposable online-offline efficiency if there further exists
PPT algorithms (CS.Aggrgt, CS.VrfyOnL) exhibiting the following properties.

— The wverification key vk can be decomposed into vk = (vko,{vk;p, €
VI}icin)befo,1}), where VK is a space of verification key component.

— Any component in VIC, any honestly generated vkg, and any honestly gener-
ated signature o can be represented as binary strings of fixed polynomial length
poly(k). In particular, length of these components are independent from n.

— Algorithm CS.Aggrgt takes as input an element of VK* = UpenVK: and out-
puts an element in VK. We require that for any y,z € {0,1}* such that
x =y|z € {0,1}", we have

CS'Aggrgt ({Vki,mi}ie[n])
=CS.Aggrgt (CS.Aggrgt ({Vki,yi}ie[\y\]) , CS.Aggrgt ({vk‘y|+i721}i€[‘z‘])) .

— Algorithm CS.VrfyOnL takes as input vkg, a component in VI and a signature
in o, and outputs either T or L. We require that for any x € {0,1}", for any
honestly generated vk, and for any (possibly maliciously generated) o, we have

CS.Vrfy(vk, z,0) = CS.VrfyOnL (vko7 CS.Aggrgt ({Vki7$i}i€[n]) ,0) .
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Observe that the input length of CS.VrfyOnL is independent from n, which
follows from the second item of this definition. We require that the running
time of CS.VrfyOnL is independent from n as well.

4.2 Construction and Security

Here, we give the construction of our constrained signature (CS) scheme that
will be used for the construction of the compact NIZK. The CS scheme has very
compact signature size and the decomposable online-offline efficiency defined in
Definition 4.2. In order to get the CS scheme, we apply the folklore conversion
that converts ABE into CS to our compact KP-ABE scheme in Sect. 3, where
the signing key sky for the function f in the CS scheme is the same as the secret
key sky for the same function f in the ABE scheme, and the signature on a
string x in the CS scheme is certain “aggregated form” of the secret key that is
derived when decrypting an ABE ciphertext encrypted for the attribute z. To
verify a signature on z in the CS, we encrypt a random message for z in the
underlying ABE and then see if the message is recovered or not when decrypting
the ciphertext using the signature as an (aggregated form of) secret key.

The CS scheme obtained by the above conversion can only deal with mono-
tone Boolean formulae, since the original ABE is for the same class of functions.
For our purpose, we need CS scheme for NC! circuits, which is more general
class than monotone Boolean formulae. This gap can be filled using Lemma 2.2.

We then provide the description of the construction.

CS.Setup(17,1"): Run G = (p,Gy1,Ga,Gr,e) < GGen(1%). Sample A &
ZE D Ny, B g DR g € [2n]) and v & 2y and output

vk = ([A]h [AWl]l, ey [AWQn]l, 6([A]1, [V]Q))7 msk = (V,‘Afl7 e ,Wgn).

CS.KeyGen(msk, C'): To generate a signing key for a circuit C, run EncCir(C) —
f. Then sample ({V;};jepm), ) & share(f,v) and r; < Zk for j € [im] and
output sky, which consists of the following.

({skj = [rjla, skygy,; = [Vi + Wyyrjla, {ski; = [Wirj]a }i€[2n]\{p(j)}}je[m])

where Wg = 0 and r is the number of shares that are generated by
share(f,v).
CS.Sign(sky,z): Set & := Enclnp(z) and compute w; such that v =

Zj:p(j):ovip(j>:1 w;Vv; and output

c=|o= H < H Sk@j) , 09 = H sk;’j

§:p(5)=0Vi, (=1 \izi;=1 3:p()=0VE,(5)=1
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CS.Vrfy(vk,z,0): Parse ¢ — (01,02) € G x G5 and output L if the signature
is not in this form. Otherwise, compute & = Enclnp(z) and

W= T] [AW/],. (1)

=1
Then output T if the following holds and | otherwise:

e([A]1,01) - e(vk',02) 7 = e([A]1, [V]2).

Correctness. The correctness follows since we have f(#) = 1 when C(x) =1
from Lemma 2.2 and

Online-Offline Decomposability

Theorem 4.1. The CS scheme above has decomposable online-offline efficiency
defined as per Definition 4.2.

Proof. To prove the theorem, we define VK, vkg, and vk, for i € [n], b € {0,1}
as
VI = G}{:Xk, VkQ = ([A}]_,@([A]l, [V]Q)), Vki7b = [Aw2ifb]l-

It is easy to see that the first and the second items in Definition 4.2 are satisfied.
We then define additional algorithms CS.VrfyOnL and CS.Aggrgt as follows:

CS.Aggrgt({vki}icin1): If there exists i € [n'] such that vk; & VK = Gh*k,
output L. Otherwise, output X := Hie[n,] vk;, where the product represents
the component-wise multiplication in Gj.

CS.VrfyOnL(vkg, vk',0): Parse vkg — (A € Glfx(kﬂ),V € GE), vk € Gh*k,
and o — (01,02) € G5 x G%. Then output T if the following holds and L

otherwise:
e(A,01)-e(vk',o0) "t = V.

The third item in Definition 4.2 follows from the fact that the following equation
holds for any = = y||z € {0,1}™:

H [AW, 9;_5,] = H [AW, 2i_5,] - H [AW, 2;_4,]
el " il ielly+1Llyl+=)
=[] IAWi2i—y ] [ [AWigi—._ ]
i€[|yl] i€lly|+1,|yl+]=(]
= 11 AWioiy]- TT [AWiss20u14)-5] -
el el
nYi lyl+3d,25
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To prove the fourth item, it suffices to show that vk’ computed as Eq. 1 equals to
CS.Aggrgt({vkiz; }ie[n))- This follows since the former is the product of [AW,];
over ¢ in S := {i € [2n] : &; = 1} and the latter is over ¢ in S’ :={2j —x; : j €
[n]}, and we have S = S by the definition of & (See Lemma 2.2). O

Security. In the following, we show that the above construction is unforgeable
and then discuss how to extend the scheme to satisfy context-hiding. While the
latter property is not necessary for our application of CS in Sect. 5, this property
may be useful when we use the CS scheme stand-alone.

Theorem 4.2. The above construction is (adaptively) unforgeable under the
MDDH,, assumption.

Proof. For the sake of contradiction, suppose that there exists an adversary A
that breaks unforgeability of the IIcs with non-negligible probability e. We then
construct a PPT adversary B that breaks the adaptive security of the ABE with
advantage € for the attribute length 2n as follows.

B(mpk): It sets vk := mpk and gives the master public key to A. When A
makes a signing key query for a circuit C, B runs EncCir(C) — f and makes
a key generation query for f to obtain sky. Then, B passes sky to A. At
some point, A outputs a forgery (z*,0*). Then, B outputs a random bit and
abort if CS.Vrfy(vk, z*,0*) = L. Otherwise, B samples two random distinctive
messages My, M, € Gt and makes a challenge query for (Z*, (Mg, M;)), where
Z* = Enclnp(z*). Given the challenge ciphertext ct, it first parses ct — (ct; €
G cty € G¥ ct3 € Gr) and 0* — (0} € GAT1 05 € GE*1) and computes
M’ = e(cty,07)7 1 - e(cta, 03) - cts. It outputs 0 if M’ = My and 1 otherwise.

We first check that B is an admissible adversary if so is A, since we have C'(z*) =
0 iff f(2*) =0 for any C and f = EncCir(C) from Lemma 2.2. We then claim
that whenever CS.Vrfy(vk, z*,0*) = T, we have M’ = Mcu,. To prove the claim,
let us assume that CS.Vrfy(vk,4*,0*) = T holds. Then, we have

c([Ali,01) - e( [] [AWi]1,03)7" = e([A], [V]2)

sk
wy=1

by the definition of CS.Vrfy. Furthermore, there exists s € Z’; such that
cty = [sTA]y, cty = [sT Zi:y;‘:l AW,];, and ctz = e([s" Ay, [v]2) - Mcoin by
the definition of Enc. Then, the above equation implies e(cty, 07) - e(cta, 05) 71 =
e([sT Aly, [v]2) which in turns implies M’ = M. Thus, B correctly guesses coin
when A breaks the unforgeability of Ilcs and outputs a random bit otherwise.
This implies that the advantage of B is €, which is non-negligible as desired. O

Remark 1 (Adding Context-Hiding for the Scheme). We remark that it is
possible to make the above scheme context-hiding by adding the fol-
lowing modification. Namely, we change the scheme so that it contains
[R]2, [W1iR]2,...,[W2,R]s, for random R € Z’;Xk in vk. This modification
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allows us to randomize r in Eq. 2, which makes the scheme context-hiding. The
scheme remains adaptively unforgeable even with this change. For proving this,
it suffices to show that our KP-ABE scheme in Sect. 3 remains adaptively secure
even if we add ([R]z, [W1R]a,...,[W,R]2) to the master public key. Although
we need to slightly modify the proof of Theorem 3.1, the proof is not difficult.
We omit it due to limited space. See the full version for the detail.

5 Compact NIZK from Compact Constrained Signatures

5.1 Main Construction

Here, we construct a compact NIZK based on the compact CS scheme which
we constructed in Sect. 4. Let £ be an NP language defined by a relation R C
{0,1}* x {0,1}*. Let n(k) and m(x) be any fixed polynomials. Let C' be a
circuit that computes the relation R on {0,1}" x {0,1}™, i.e., for (z,w) €
{0,1}"™ x {0,1}"™, we have C(xz,w) = 1 if and only if (z,w) € R.

The construction will be given by combining following ingredients.

— A symmetric key encryption (SKE) scheme IIskg = (SKE.KeyGen, SKE.Enc,
SKE.Dec) with message space {0,1}™, key space {0,1}¢ and ciphertext space
{0, 1}l We require that its decryption circuit can be computed in NC*,
and it has an additive ciphertext overhead (i.e., |ct| = m + poly(k)).

— A constrained signature scheme (CS.Setup,CS.KeyGen, CS.Sign, CS.Vrfy,
CS.Aggrgt, CS.VrfyOnL) we constructed in Sect.4. The scheme should sup-
port the circuit f that computes f(K,z,ct) = C(x, SKE.Dec(K,ct)).

— (Not necessarily compact) extractable NIZK scheme
TInizx = (Setup, Prove, Verify) for the language corresponding to the relation
R defined below: B
((vko, {vkip}icipefo,1}, Y), (K,0)) € R if and only if the followings are
satisfied:

1. K €{0,1},
2. CS.VrfyOnL(vke,Z,0) = T where Z = CS.Aggrgt(CS.Aggrgt
({vki,x, }iei),Y)

Our compact NIZK is described as follows.

Setup’(1%):
1. Generate crs <~ Setup(1%).
2. Generate (Vk = (VkOa{Vki,b}ie[é+n+\ct|],be{O,l})7mSk) S CS.Setup(l“,
1Z+n+|ct\).

3. Generate sk; < CS.KeyGen(msk, f).
4. Output crs’ = (crs, vk, sky).
Prove'(crs’, x,w):
1. Abort if R(z,w) = 0. Otherwise, do the following,.
2. Parse crs’ — (crs, vk = (Vko, {VKi b }ic[e-tntict])bef0,1})s SKy)-
3. Generate K < SKE.KeyGen(17) and ct < SKE.Enc(K, w).
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4. Compute o < CS.Sign(sky, (K, ,ct)).
5. Compute Y := CS.Aggrgt({vkeiiy, tic[n+|ct))) Where y = (z,ct) €
{07 1}n+|ct|.

6. Compute T < Prove((vko, {Vkib}icia pefo,13, Y), (K, 0)).
7. Output 7’ := (ct, 7).
Verify'(crs’, x, 7'):

1. Parse 7’ — (ct, 7). If it is not in this form, reject it. Otherwise, do the
following.

2. Parse crs’ — (CFS, vk = (Vko7 {Vki7b}i€[Z+n+|ctH,b€{0,1})a Skf).

3. Compute Y := CS.Aggrgt({vkeiiy, fien+lct))) Where y := (z,ct) €
{0, 1}n+|ct|'

4. Output T if Verify((vko, {vki}ici,pefo,1},Y),m) = T and otherwise L.

Correctness. Suppose that (ct,m) is an honestly generated proof on
(z,w) € R. Then we have ct < SKE.Enc(K,w) and m < Prove((vko,
{vkib}icpefo,1},Y), (K, 0)) where K & SKE.KeyGen(1%), ¢ <= CS.Sign(sk;,
(K, z,ct)), and

Y = CS.Aggrgt({vkz+i7yi}ie[antH).

By the correctness of Ilskg, we have f(K,xz,ct) = 1. Furthermore, by the cor-
rectness of Il¢cs, we have CS.Vrfy(vk, (K, z,ct),o) = T, which is equivalent to

CS.VrfyOnL(vko, Z,0) = T where Z = CS.Aggrgt(CS.Aggrgt({vki k, }icg),Y)-

Therefore we have ((vko, {Vkis}ic[g.pefo,1},Y), (K, 0)) € R and thus we have
Verify((vko, {Vki}icle,pef0,1}, Y ), ™) = T by the correctness of TInizk-

Efficiency. We first observe that the size of the verification circuit for the rela-
tion R is poly(k), which is independent of the size of the verification circuit for
R. This is because Z = CS.Aggrgt(CS.Aggrat({vki i, }icpg),Y) can be computed
in polynomial time in x and the length ¢ = poly(x) of K and the running time of
CS.VrfyOnL(vko, Z, o) does not depend on the length of (x,ct) (and in particular
the complexity of the circuit f) as required in Definition 4.2. Therefore, the size
of 7 is poly(x) and independent of |z|, |w|, or |C| even though we do not require
any compactness requirement for the underlying NIZK Ilyjzk. Since we assume
|ct| = m+ poly(k), the total proof size is |w| + poly(x). We note that this scheme
can be directly implemented only when the relation R can be verified in NC!.
Otherwise, we have to first expand the witness to make the relation verifiable in
NC' similarly to [19,41]. This is done by considering all values corresponding
to all gates when computing the circuit C' on input (z,w) to be the new witness
and have the new circuit verify the consistency of the values for all gates in C.
In this case, the proof size becomes |C| + poly(x).

Since the relation R is well-suited to be proven by the Groth-Sahai proof,
a fairly efficient instantiation is possible based on the Groth-Sahai proof. Espe-
cially, a proof consists of |C| bits, 6x+ 14 elements of G; and 7k + 25 elements of
Go when instantiated under the SXDH assumption. See the full version for the
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detail. We also note that if the relation R can be verified by a “leveled circuit”
[8], we can further reduce the proof size to |w| 4+ |C|/log k + poly(x) which is
sublinear in |C| similarly to [41]. (See [41] for details.)

Security. In the following, we prove the soundness and the zero-knowledge prop-
erty of Iy, ,-

Theorem 5.1 (Soundness). The above NIZK scheme II\zx is computation-
ally (adaptive) sound if Tinizk satisfies extractability and Tlcs is unforgeable.

Proof. Suppose that there is a PPT adversary A that breaks soundness. Then
we construct a PPT adversary B that breaks the unforgeability of I1cs as follows.

B(vk): It queries f to the key generation oracle to obtain sky where f is
the circuit as defined in the description of the scheme. Then it generates
crs < Setup(1%;7setup), runs A(crs’) to obtain (z*,7'* = (ct, 7)) where
crs’ := (crs, vk, sk ). Then it computes (K, o) <= Extract(rsetup, 7) and outputs
((K,z*,ct),o) as a forgery.

This completes the description of B. In the following, we show that B breaks the
unforgeability of Ilcs. Let VKo g := (vko, {Vkib}ic[e,be{o,1})- Since we assume
A breaks the soundness of Iy,

Pr[z* & L A Verify((VK[g,g, Y ™), 7) = T]

is non-negligible where Y = CS.Aggrgt({Vketiy }ic[n+|ct)) and y* := (z*,ct) €
{0,1}*1<tl, On the other hand, by the extractability of TIyzk,

Pr[verify((VK[O,E]a Y*)a ﬂ-) =TA ((VK[O,Z]7Y*)7 (Ka U)) ¢ 7’5’]
is negligible. Therefore
Priz™ ¢ L A Verify((VKjo,¢, Y "), 7) = T A ((VK[o,, Y ™), (K, 0)) € 75]

is non-negligible. Suppose that this event happens. Since we have x* ¢ £, we have
(K, z*,ct) = 0. On the other hand, ((VKjoq,Y™),(K,0)) € R implies that we
have K € {0, 1} A CS.VrfyOnL(vko, Z,0) = T where Z = CS.Aggrgt(CS.Aggrgt
({vki,k, Yiep) Y*), which implies CS.Vrfy(vk, (K, x*,ct),o0) = T. This means
that B succeeds in breaking the unforgeability of Ilcs. O

Theorem 5.2 (Zero-Knowledge). The above NIZK scheme II\ 5 is compu-
tationally zero-knowledge if lnizk is computationally zero-knowledge and Ilske
1s CPA-secure.

Proof. Let (S1,82) be the simulator for ITyjzk. We describe the simulator (S7, S%)
for TIy,,« below.
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S1(1%): It  generates  (crs,7y) & S1(17),  (vk = (vko,
{Vki,b}ie[é-‘rn-‘r\ctl],be{O,l})7mSk) & CS'Setup(1H71Z+n+|Ctl)7 and Skf &
CS.KeyGen(msk, f), and outputs crs’ := (crs, vk, sk¢) and 7, := 7v.

Sh(crs’ = (crs,vk,sks), ™, = 7v,x): It picks K < SKE.KeyGen(1%), com-
putes ct < SKE.Enc(K,0™), Y := CS.Aggrgt({vke iy, bicnt|ct]) Where
y = (z,ct) € {0,1}"+ and 7 <& Sy(crs, 7v, (vko, {Vkip ticpgbefo,11, )
and outputs 7’ := (ct, 7).

This completes the description of the simulator. We prove that proofs simulated

by the above simulator are computationally indistinguishable from the honestly

generated proofs. To prove this, we consider the following sequence of games
between a PPT adversary A and a challenger.

Go: In this game, proofs are generated honestly. Namely,

1. The challenger generates crs <  Setup(1®), (vk =  (vko,
{Vkib}iceanticlbe(o,1}), msk) < CS.Setup(1%,1¢+nFletl) " and sky &
CS.KeyGen(msk, f), and gives crs’ := (crs, vk, sky) to A.

2. Ais given (1%, crs’) and is allowed to query O(crs’, -, ), which works as fol-
lows. When A queries (z, w), if (z, w) ¢ R, then the oracle returns L. Oth-
erwise, it picks K < SKE.KeyGen(1%), computes ct < SKE.Enc(K,w),
o <& CS.Sign(sky, (K, z,ct)), Y := CS.Aggrgt({vKke+i.y, bicint|ce))) Where
y:= (z,ct) € {0,1}*Fl¢ and 7 & Prove(crs, (vko, {Vki b }icia bef0.13, Y),
(K,0)), and returns a proof #’ := (ct, 7).

3. Finally, A returns a bit £.

Gy: This game is identical to the previous game except that crs and =
are generated differently. Namely, the challenger generates (crs,7v) &
S1(1%) at the beginning of the game, and 7 is generated as = &
Sa(crs, 7v, (Vko, {Vki b }ie[g,pef0,1},Y)) for each oracle query.

Go: This game is identical to the previous game except that ct is generated as
ct < SKE.Enc(K,0™) for each oracle query.

Let T; be the event that A returns 1 in G; for ¢ = 0,1,2. It is easy to see

that proofs are generated by &’ = (8],85) in Go. Thus we have to prove that
| Pr[To]—Pr[T2]| is negligible. The following lemmas are straightforward to prove.

Lemma 5.1. If IIyzk satisfies computational zero-knowledge w.r.t. the simula-
tor S, then |Pr[To] — Pr[T1]| = negl(x).

Proof. We observe that every proof 7 given to A is created for a correct state-
ment in both games. Therefore, the indistinguishability of the games can be
reduced to the zero-knowledge property of IIyjzk. a

Lemma 5.2. If lskg is CPA-secure, then |Pr[T1] — Pr[T3]| = negl(x).

Proof. Due to the change we introduced in Gy, the secret key K of SKE that is
used to generate ct is not used anywhere else in both games. therefore, the indis-
tinguishability of these games can be reduced to the CPA security of Ilskg. O

This completes the proof of Theorem 5.2. O
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5.2 Variants of Our NIZK

Perfect Zero-Knowledge Variant. Observe that the assumptions required to
prove the zero-knowledge property of our NIZK was the zero-knowledge property
of the underlying non-compact NIZK and the security of SKE. Therefore if we
assume that the underlying non-compact NIZK is perfect zero-knowledge” and
modify the scheme somehow so that we do not use an SKE anymore, the resulting
NIZK can be made perfect zero-knowledge. Indeed, the latter can be done by
using the witness w itself in place of the SKE key K in the definition of the circuit
f supported by the CS scheme. By instantiating the non-compact NIZK with
the Groth-Sahai proof, which is perfect zero-knowledge, we obtain the following
theorem. (See the full version for the full detail.)

Theorem 5.3. There exists a NIPZK for NP relations computable in NC*
with proof size |w| - poly(k) if the DLIN assumption holds.

UC Variant. If we further modify the perfect zero-knowledge variant to have
non-malleability by using one-time signatures and assume that the underlying
non-compact NIZK is a UC-NIZK, then we can show that the resulting scheme
is also UC-NIZK. In particular, we obtain the following theorem. (See the full
version for the full detail.)

Theorem 5.4. There exists a UC-NIZK for NP relations computable in NC*
with proof size |w| - poly(k) if the DLIN assumption holds.
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