
Anne Canteaut
Yuval Ishai (Eds.)

LN
CS

 1
21

07

39th Annual International Conference on the Theory
and Applications of Cryptographic Techniques
Zagreb, Croatia, May 10–14, 2020, Proceedings, Part III

Advances in Cryptology –
EUROCRYPT 2020

Lecture Notes in Computer Science 12107

Founding Editors

Gerhard Goos
Karlsruhe Institute of Technology, Karlsruhe, Germany

Juris Hartmanis
Cornell University, Ithaca, NY, USA

Editorial Board Members

Elisa Bertino
Purdue University, West Lafayette, IN, USA

Wen Gao
Peking University, Beijing, China

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Gerhard Woeginger
RWTH Aachen, Aachen, Germany

Moti Yung
Columbia University, New York, NY, USA

https://orcid.org/0000-0001-9619-1558
https://orcid.org/0000-0001-8816-2693

More information about this series at http://www.springer.com/series/7410

http://www.springer.com/series/7410

Anne Canteaut • Yuval Ishai (Eds.)

Advances in Cryptology –

EUROCRYPT 2020
39th Annual International Conference on the Theory
and Applications of Cryptographic Techniques
Zagreb, Croatia, May 10–14, 2020
Proceedings, Part III

123

Editors
Anne Canteaut
Équipe-projet COSMIQ
Inria
Paris, France

Yuval Ishai
Computer Science Department
Technion
Haifa, Israel

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-030-45726-6 ISBN 978-3-030-45727-3 (eBook)
https://doi.org/10.1007/978-3-030-45727-3

LNCS Sublibrary: SL4 – Security and Cryptology

© International Association for Cryptologic Research 2020
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, expressed or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://orcid.org/0000-0002-6292-8336
https://doi.org/10.1007/978-3-030-45727-3

Preface

Eurocrypt 2020, the 39th Annual International Conference on the Theory and Appli-
cations of Cryptographic Techniques, was held in Zagreb, Croatia, during May 10–14,
2020.1 The conference was sponsored by the International Association for Cryptologic
Research (IACR). Lejla Batina (Radboud University, The Netherlands) and Stjepan
Picek (Delft University of Technology, The Netherlands) were responsible for the local
organization. They were supported by a local organizing team consisting of Marin
Golub and Domagoj Jakobovic (University of Zagreb, Croatia). Peter Schwabe acted as
the affiliated events chair and Simona Samardjiska helped with the promotion and local
organization. We are deeply indebted to all of them for their support and smooth
collaboration.

The conference program followed the now established parallel-track system where
the works of the authors were presented in two concurrently running tracks. The invited
talks and the talks presenting the best paper/best young researcher spanned over both
tracks.

We received a total of 375 submissions. Each submission was anonymized for the
reviewing process and was assigned to at least three of the 57 Program Committee
(PC) members. PC members were allowed to submit at most two papers. The reviewing
process included a rebuttal round for all submissions. After extensive deliberations the
PC accepted 81 papers. The revised versions of these papers are included in these three
volume proceedings, organized topically within their respective track.

The PC decided to give the Best Paper Award to the paper “Optimal Broadcast
Encryption from Pairings and LWE” by Shweta Agrawal and Shota Yamada and the
Best Young Researcher Award to the paper “Private Information Retrieval with
Sublinear Online Time” by Henry Corrigan-Gibbs and Dmitry Kogan. Both papers,
together with “Candidate iO from Homomorphic Encryption Schemes” by Zvika
Brakerski, Nico Döttling, Sanjam Garg, and Giulio Malavolta, received invitations for
the Journal of Cryptology.

The program also included invited talks by Alon Rosen, titled “Fine-Grained
Cryptography: A New Frontier?”, and by Alice Silverberg, titled “Mathematics and
Cryptography: A Marriage of Convenience?”.

We would like to thank all the authors who submitted papers. We know that the
PC’s decisions can be very disappointing, especially rejections of very good papers
which did not find a slot in the sparse number of accepted papers. We sincerely hope
that these works eventually get the attention they deserve.

We are also indebted to the members of the PC and all external reviewers for their
voluntary work. The PC work is quite a workload. It has been an honor to work with

1 This preface was written before the conference took place, under the assumption that it will take
place as planned in spite of travel restrictions related to the coronavirus.

everyone. The PC’s work was simplified by Shai Halevi’s submission software and his
support, including running the service on IACR servers.

Finally, we thank everyone else – speakers, session chairs, and rump-session
chairs – for their contribution to the program of Eurocrypt 2020. We would also like to
thank the many sponsors for their generous support, including the Cryptography
Research Fund that supported student speakers.

May 2020 Anne Canteaut
Yuval Ishai

vi Preface

Eurocrypt 2020

The 39th Annual International Conference
on the Theory and Applications of Cryptographic Techniques

Sponsored by the International Association for Cryptologic Research (IACR)

May 10–14, 2020
Zagreb, Croatia

General Co-chairs

Lejla Batina Radboud University, The Netherlands
Stjepan Picek Delft University of Technology, The Netherlands

Program Co-chairs

Anne Canteaut Inria, France
Yuval Ishai Technion, Israel

Program Committee

Divesh Aggarwal National University of Singapore, Singapore
Benny Applebaum Tel Aviv University, Israel
Fabrice Benhamouda Algorand Foundation, USA
Elette Boyle IDC Herzliya, Israel
Zvika Brakerski Weizmann Institute of Science, Israel
Anne Broadbent University of Ottawa, Canada
Nishanth Chandran MSR India, India
Yilei Chen Visa Research, USA
Aloni Cohen Boston University, USA
Ran Cohen Boston University and Northeastern University, USA
Geoffroy Couteau CNRS, IRIF, Université de Paris, France
Joan Daemen Radboud University, The Netherlands
Luca De Feo IBM Research Zurich, Switzerland
Léo Ducas CWI Amsterdam, The Netherlands
Maria Eichlseder Graz University of Technology, Austria
Thomas Eisenbarth University of Lübeck and WPI, Germany
Thomas Fuhr ANSSI, France
Romain Gay Cornell Tech, USA
Benedikt Gierlichs KU Leuven, Belgium
Rishab Goyal UT Austin, USA

Vipul Goyal Carnegie Mellon University, USA
Tim Güneysu Ruhr-Universität Bochum and DFKI, Germany
Jian Guo Nanyang Technological University, Singapore
Mohammad Hajiabadi UC Berkeley, USA
Carmit Hazay Bar-Ilan University, Israel
Susan Hohenberger Johns Hopkins University, USA
Pavel Hubáček Charles University Prague, Czech Republic
Abhishek Jain Johns Hopkins University, USA
Marc Joye Zama, France
Bhavana Kanukurthi IISc Bangalore, India
Nathan Keller Bar-Ilan University, Israel
Susumu Kiyoshima NTT Research, USA
Eyal Kushilevitz Technion, Israel
Gregor Leander Ruhr-Universität Bochum, Germany
Tancrède Lepoint Google, USA
Tal Malkin Columbia University, USA
Alexander May Ruhr-Universität Bochum, Germany
Bart Mennink Radboud University, The Netherlands
Kazuhiko Minematsu NEC Corporation, Japan
María Naya-Plasencia Inria, France
Ryo Nishimaki NTT Secure Platform Laboratories, Japan
Cécile Pierrot Inria and Université de Lorraine, France
Sondre Rønjom University of Bergen, Norway
Ron Rothblum Technion, Israel
Alessandra Scafuro North Carolina State University, USA
Peter Schwabe Radboud University, The Netherlands
Adam Smith Boston University, USA
François-Xavier Standaert KU Leuven, Belgium
Yosuke Todo NTT Secure Platform Laboratories, Japan
Gilles Van Assche STMicroelectronics, Belgium
Prashant Nalini Vasudevan UC Berkeley, USA
Muthuramakrishnan

Venkitasubramaniam
University of Rochester, USA

Frederik Vercauteren KU Leuven, Belgium
Damien Vergnaud Sorbonne Université and Institut Universitaire

de France, France
Eylon Yogev Technion, Israel
Yu Yu Shanghai Jiao Tong University, China
Gilles Zémor Université de Bordeaux, France

viii Eurocrypt 2020

External Reviewers

Aysajan Abidin
Ittai Abraham
Thomas Agrikola
Navid Alamati
Nils Albartus
Martin Albrecht
Ghada Almashaqbeh
Joël Alwen
Miguel Ambrona
Ghous Amjad
Nicolas Aragon
Gilad Asharov
Tomer Ashur
Thomas Attema
Nuttapong Attrapadung
Daniel Augot
Florian Bache
Christian Badertscher
Saikrishna

Badrinarayanan
Shi Bai
Josep Balasch
Foteini Baldimtsi
Marshall Ball
Zhenzhen Bao
James Bartusek
Lejla Batina
Enkhtaivan Batnyam
Carsten Baum
Gabrielle Beck
Christof Beierle
Amos Beimel
Sebastian Berndt
Dan J. Bernstein
Francesco Berti
Ward Beullens
Rishabh Bhadauria
Obbattu Sai Lakshmi

Bhavana
Jean-Francois Biasse
Begül Bilgin
Nina Bindel
Nir Bitansky

Olivier Blazy
Naresh Boddu
Koen de Boer
Alexandra Boldyreva
Xavier Bonnetain
Carl Bootland
Jonathan Bootle
Adam Bouland
Christina Boura
Tatiana Bradley
Marek Broll
Olivier Bronchain
Ileana Buhan
Mark Bun
Sergiu Bursuc
Benedikt Bünz
Federico Canale
Sébastien Canard
Ran Canetti
Xavier Caruso
Ignacio Cascudo
David Cash
Gaëtan Cassiers
Guilhem Castagnos
Wouter Castryck
Hervé Chabanne
André Chailloux
Avik Chakraborti
Hubert Chan
Melissa Chase
Cong Chen
Hao Chen
Jie Chen
Ming-Shing Chen
Albert Cheu
Jérémy Chotard
Arka Rai Choudhuri
Kai-Min Chung
Michele Ciampi
Benoit Cogliati
Sandro Coretti-Drayton
Jean-Sébastien Coron
Adriana Suarez Corona

Alain Couvreur
Jan-Pieter D’Anvers
Bernardo David
Thomas Decru
Claire Delaplace
Patrick Derbez
Apoorvaa Deshpande
Siemen Dhooghe
Denis Diemert
Itai Dinur
Christoph Dobraunig
Yevgeniy Dodis
Jack Doerner
Jelle Don
Nico Döttling
Benjamin Dowling
John Schank
Markus Duermuth
Orr Dunkelman
Fréderic Dupuis
Iwan Duursma
Sébastien Duval
Stefan Dziembowski
Aner Moshe Ben Efraim
Naomi Ephraim
Thomas Espitau
Andre Esser
Brett Hemenway Falk
Antonio Faonio
Serge Fehr
Patrick Felke
Rex Fernando
Dario Fiore
Ben Fisch
Marc Fischlin
Nils Fleischhacker
Cody Freitag
Benjamin Fuller
Ariel Gabizon
Philippe Gaborit
Steven Galbraith
Chaya Ganesh
Juan Garay

Eurocrypt 2020 ix

Rachit Garg
Pierrick Gaudry
Nicholas Genise
Essam Ghadafi
Satrajit Ghosh
Kristian Gjøsteen
Aarushi Goel
Junqing Gong
Alonso Gonzalez
Lorenzo Grassi
Jens Groth
Aurore Guillevic
Berk Gulmezoglu
Aldo Gunsing
Chun Guo
Qian Guo
Siyao Guo
Shai Halevi
Shuai Han
Abida Haque
Phil Hebborn
Brett Hemenway
Shoichi Hirose
Dennis Hofheinz
Justin Holmgren
Akinori Hosoyamada
Senyang Huang
Paul Huynh
Kathrin Hövelmanns
Andreas Hülsing
Ilia Iliashenko
Laurent Imbert
Takanori Isobe
Tetsu Iwata
Håkon Jacobsen
Tibor Jager
Aayush Jain
Samuel Jaques
Jéremy Jean
Yanxue Jia
Zhengzhong Jin
Thomas Johansson
Kimmo Järvinen
Saqib Kakvi
Daniel Kales
Seny Kamara

Gabe Kaptchuk
Martti Karvonen
Shuichi Katsumata
Raza Ali Kazmi
Florian Kerschbaum
Dakshita Khurana
Jean Kieffer
Ryo Kikuchi
Eike Kiltz
Sam Kim
Elena Kirshanova
Fuyuki Kitagawa
Dima Kogan
Lisa Kohl
Markulf Kohlweiss
Ilan Komargodski
Yashvanth Kondi
Venkata Koppula
Lucas Kowalczyk
Karel Kral
Ralf Kuesters
Ashutosh Kumar
Ranjit Kumaresan
Srijita Kundu
Peter Kutasp
Thijs Laarhoven
Gijs Van Laer
Russell Lai
Virginie Lallemand
Baptiste Lambin
Julien Lavauzelle
Phi Hung Le
Eysa Lee
Hyung Tae Lee
Jooyoung Lee
Antonin Leroux
Gaëtan Leurent
Xin Li
Xiao Liang
Chengyu Lin
Huijia (Rachel) Lin
Wei-Kai Lin
Eik List
Guozhen Liu
Jiahui Liu
Qipeng Liu

Shengli Liu
Tianren Liu
Pierre Loidreau
Alex Lombardi
Patrick Longa
Sébastien Lord
Julian Loss
George Lu
Atul Luykx
Vadim Lyubashevsky
Fermi Ma
Varun Madathil
Roel Maes
Bernardo Magri
Saeed Mahloujifar
Christian Majenz
Eleftheria Makri
Giulio Malavolta
Mary Maller
Alex Malozemoff
Nathan Manohar
Daniel Masny
Simon Masson
Takahiro Matsuda
Noam Mazor
Audra McMillan
Lauren De Meyer
Peihan Miao
Gabrielle De Micheli
Ian Miers
Brice Minaud
Pratyush Mishra
Ahmad Moghimi
Esfandiar Mohammadi
Victor Mollimard
Amir Moradi
Tal Moran
Andrew Morgan
Mathilde de la Morinerie
Nicky Mouha
Tamer Mour
Pratyay Mukherjee
Marta Mularczyk
Koksal Mus
Pierrick Méaux
Jörn Müller-Quade

x Eurocrypt 2020

Yusuke Naito
Mridul Nandi
Samuel Neves
Ngoc Khanh Nguyen
Anca Nitulescu
Ariel Nof
Sai Lakshmi Bhavana

Obbattu
Maciej Obremski
Tobias Oder
Frédérique Oggier
Miyako Ohkubo
Mateus de Oliveira

Oliveira
Tron Omland
Maximilian Orlt
Michele Orrù
Emmanuela Orsini
Morten Øygarden
Ferruh Ozbudak
Carles Padro
Aurel Page
Jiaxin Pan
Omer Paneth
Lorenz Panny
Anat Paskin-Cherniavsky
Alain Passelègue
Sikhar Patranabis
Michaël Peeters
Chris Peikert
Alice Pellet-Mary
Olivier Pereira
Léo Perrin
Edoardo Persichetti
Thomas Peters
George Petrides
Thi Minh Phuong Pham
Duong-Hieu Phan
Krzysztof Pietrzak
Oxana Poburinnaya
Supartha Podder
Bertram Poettering
Antigoni Polychroniadou
Claudius Pott
Bart Preneel
Robert Primas

Luowen Qian
Willy Quach
Ahmadreza Rahimi
Somindu Ramannai
Matthieu Rambaud
Hugues Randriam
Shahram Rasoolzadeh
Divya Ravi
Mariana P. Raykova
Christian Rechberger
Ling Ren
Joost Renes
Leonid Reyzin
Joao Ribeiro
Silas Richelson
Peter Rindal
Francisco

Rodríguez-Henríquez
Schuyler Rosefield
Mélissa Rossi
Mike Rosulek
Dragos Rotaru
Lior Rotem
Arnab Roy
Paul Rösler
Reihaneh Safavi-Naini
Amin Sakzad
Simona Samardjiska
Antonio Sanso
Yu Sasaki
Pascal Sasdrich
Or Sattath
John Schanck
Sarah Scheffler
Tobias Schneider
Markus Schofnegger
Peter Scholl
Jan Schoone
André Schrottenloher
Sven Schäge
Adam Sealfon
Jean-Pierre Seifert
Gregor Seiler
Sruthi Sekar
Okan Seker
Karn Seth

Yannick Seurin
Ido Shahaf
Ronen Shaltiel
Barak Shani
Sina Shiehian
Omri Shmueli
Jad Silbak
Thierry Simon
Luisa Sinischalchi
Veronika Slivova
Benjamin Smith
Yifan Song
Pratik Soni
Jessica Sorrell
Nicholas Spooner
Akshayaram Srinivasan
Damien Stehlé
Ron Steinfeld
Noah

Stephens-Davidowitz
Martin Strand
Shifeng Sun
Ridwan Syed
Katsuyuki Takashima
Titouan Tanguy
Stefano Tessaro
Enrico Thomae
Jean-Pierre Tillich
Benjamin Timon
Junichi Tomida
Deniz Toz
Rotem Tsabary
Daniel Tschudi
Yiannis Tselekounis
Yi Tu
Dominique Unruh
Bogdan Ursu
Vinod Vaikuntanathan
Kerem Varici
Philip Vejre
Marloes Venema
Daniele Venturi
Fernando Virdia
Vanessa Vitse
Damian Vizár
Chrysoula Vlachou

Eurocrypt 2020 xi

Mikhail Volkhov
Satyanarayana Vusirikala
Hendrik Waldner
Alexandre Wallet
Michael Walter
Haoyang Wang
Meiqin Wang
Weijia Wang
Xiao Wang
Yohei Watanabe
Hoeteck Wee
Mor Weiss
Weiqiang Wen
Benjamin Wesolowski
Jan Wichelmann
Daniel Wichs

Friedrich Wiemer
Christopher Williamson
Jonas Wloka
Wessel van Woerden
Lennert Wouters
David J. Wu
Shai Wyborski
Brecht Wyseur
Keita Xagawa
Xiang Xie
Chaoping Xing
Sophia Yakoubov
Shota Yamada
Takashi Yamakawa
Avishay Yanai
Kang Yang

Kevin Yeo
Arkady Yerukhimovich
Øyvind Ytrehus
Aaram Yun
Mohammad Zaheri
Mark Zhandry
Jiayu Zhang
Liangfeng Zhang
Ren Zhang
Zhenfei Zhang
Zhongxiang Zheng
Hong-Sheng Zhou
Vassilis Zikas
Giorgos Zirdelis
Vincent Zucca

xii Eurocrypt 2020

Contents – Part III

Asymmetric Cryptanalysis

(One) Failure Is Not an Option: Bootstrapping the Search for Failures
in Lattice-Based Encryption Schemes . 3

Jan-Pieter D’Anvers, Mélissa Rossi, and Fernando Virdia

Key Recovery from Gram–Schmidt Norm Leakage in Hash-and-Sign
Signatures over NTRU Lattices. 34

Pierre-Alain Fouque, Paul Kirchner, Mehdi Tibouchi, Alexandre Wallet,
and Yang Yu

An Algebraic Attack on Rank Metric Code-Based Cryptosystems 64
Magali Bardet, Pierre Briaud, Maxime Bros, Philippe Gaborit,
Vincent Neiger, Olivier Ruatta, and Jean-Pierre Tillich

Low Weight Discrete Logarithm and Subset Sum in 20:65n

with Polynomial Memory. 94
Andre Esser and Alexander May

Verifiable Delay Functions

Continuous Verifiable Delay Functions . 125
Naomi Ephraim, Cody Freitag, Ilan Komargodski, and Rafael Pass

Generic-Group Delay Functions Require Hidden-Order Groups. 155
Lior Rotem, Gil Segev, and Ido Shahaf

Signatures

Sigma Protocols for MQ, PKP and SIS, and Fishy Signature Schemes. 183
Ward Beullens

Signatures from Sequential-OR Proofs . 212
Marc Fischlin, Patrick Harasser, and Christian Janson

Attribute-Based Encryption

Compact Adaptively Secure ABE from k-Lin: Beyond NC1

and Towards NL . 247
Huijia Lin and Ji Luo

Adaptively Secure ABE for DFA from k-Lin and More 278
Junqing Gong and Hoeteck Wee

Side-Channel Security

Tornado: Automatic Generation of Probing-Secure Masked
Bitsliced Implementations . 311

Sonia Belaïd, Pierre-Évariste Dagand, Darius Mercadier,
Matthieu Rivain, and Raphaël Wintersdorff

Side-Channel Masking with Pseudo-Random Generator 342
Jean-Sébastien Coron, Aurélien Greuet, and Rina Zeitoun

Non-Interactive Zero-Knowledge

Compact NIZKs from Standard Assumptions on Bilinear Maps 379
Shuichi Katsumata, Ryo Nishimaki, Shota Yamada,
and Takashi Yamakawa

New Constructions of Statistical NIZKs: Dual-Mode
DV-NIZKs and More . 410

Benoît Libert, Alain Passelègue, Hoeteck Wee, and David J. Wu

Non-interactive Zero-Knowledge in Pairing-Free Groups
from Weaker Assumptions . 442

Geoffroy Couteau, Shuichi Katsumata, and Bogdan Ursu

Public-Key Encryption

Everybody’s a Target: Scalability in Public-Key Encryption 475
Benedikt Auerbach, Federico Giacon, and Eike Kiltz

Security Under Message-Derived Keys: Signcryption in iMessage 507
Mihir Bellare and Igors Stepanovs

Double-Base Chains for Scalar Multiplications on Elliptic Curves 538
Wei Yu, Saud Al Musa, and Bao Li

Zero-Knowledge

Stacked Garbling for Disjunctive Zero-Knowledge Proofs 569
David Heath and Vladimir Kolesnikov

Which Languages Have 4-Round Fully Black-Box Zero-Knowledge
Arguments from One-Way Functions? . 599

Carmit Hazay, Rafael Pass,
and Muthuramakrishnan Venkitasubramaniam

xiv Contents – Part III

Statistical ZAPR Arguments from Bilinear Maps. 620
Alex Lombardi, Vinod Vaikuntanathan, and Daniel Wichs

Statistical ZAP Arguments . 642
Saikrishna Badrinarayanan, Rex Fernando, Aayush Jain,
Dakshita Khurana, and Amit Sahai

Statistical Zaps and New Oblivious Transfer Protocols. 668
Vipul Goyal, Abhishek Jain, Zhengzhong Jin, and Giulio Malavolta

Quantum II

Measure-Rewind-Measure: Tighter Quantum Random Oracle Model
Proofs for One-Way to Hiding and CCA Security . 703

Veronika Kuchta, Amin Sakzad, Damien Stehlé, Ron Steinfeld,
and Shi-Feng Sun

Secure Multi-party Quantum Computation with a Dishonest Majority 729
Yfke Dulek, Alex B. Grilo, Stacey Jeffery, Christian Majenz,
and Christian Schaffner

Efficient Simulation of Random States and Random Unitaries 759
Gorjan Alagic, Christian Majenz, and Alexander Russell

Quantum-Access-Secure Message Authentication via Blind-Unforgeability . . . 788
Gorjan Alagic, Christian Majenz, Alexander Russell, and Fang Song

Author Index . 819

Contents – Part III xv

Asymmetric Cryptanalysis

(One) Failure Is Not an Option:
Bootstrapping the Search for Failures
in Lattice-Based Encryption Schemes

Jan-Pieter D’Anvers1(B), Mélissa Rossi2,3,4,5(B), and Fernando Virdia6(B)

1 imec-COSIC, KU Leuven, Leuven, Belgium
janpieter.danvers@esat.kuleuven.be

2 ANSSI, Paris, France
3 ENS Paris, CNRS, PSL University, Paris, France

melissa.rossi@ens.fr
4 Thales, Gennevilliers, France

5 Inria, Paris, France
6 Information Security Group, Royal Holloway,

University of London, Egham, UK
fernando.virdia.2016@rhul.ac.uk

Abstract. Lattice-based encryption schemes are often subject to
the possibility of decryption failures, in which valid encryptions are
decrypted incorrectly. Such failures, in large number, leak informa-
tion about the secret key, enabling an attack strategy alternative to
pure lattice reduction. Extending the “failure boosting” technique of
D’Anvers et al. in PKC 2019, we propose an approach that we call “direc-
tional failure boosting” that uses previously found “failing ciphertexts”
to accelerate the search for new ones. We analyse in detail the case
where the lattice is defined over polynomial ring modules quotiented
by 〈XN + 1〉 and demonstrate it on a simple Mod-LWE-based scheme
parametrized à la Kyber768/Saber. We show that for a given secret key
(single-target setting), the cost of searching for additional failing cipher-
texts after one or more have already been found, can be sped up dra-
matically. We thus demonstrate that, in this single-target model, these
schemes should be designed so that it is hard to even obtain one decryp-
tion failure. Besides, in a wider security model where there are many tar-
get secret keys (multi-target setting), our attack greatly improves over
the state of the art.

J.-P. D’Anvers—The research of D’Anvers was supported the European Commis-
sion through the Horizon 2020 research and innovation programme Cathedral ERC
Advanced Grant 695305, by the CyberSecurity Research Flanders with reference num-
ber VR20192203 and by the Semiconductor Research Corporation (SRC), under task
2909.001.
M. Rossi—The research of Rossi was supported by the European Union’s H2020 Pro-
gramme under PROMETHEUS project (grant 780701). It was also supported by the
French Programme d’Investissement d’Avenir under national project RISQ P14158.
F. Virdia—The research of Virdia was supported by the EPSRC and the UK govern-
ment as part of the Centre for Doctoral Training in Cyber Security at Royal Holloway,
University of London (EP/P009301/1).

c© International Association for Cryptologic Research 2020
A. Canteaut and Y. Ishai (Eds.): EUROCRYPT 2020, LNCS 12107, pp. 3–33, 2020.
https://doi.org/10.1007/978-3-030-45727-3_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-45727-3_1&domain=pdf
https://doi.org/10.1007/978-3-030-45727-3_1

4 J.-P. D’Anvers et al.

Keywords: Cryptanalysis · Lattice-based cryptography · Reaction
attacks · Decryption errors

1 Introduction

Algebraic lattices are a powerful tool in cryptography, enabling the many
sophisticated constructions such as digital signatures [6,36], zero-knowledge
proofs [38,42], FHE [25] and others. Applications of main interest are public-key
encryptions (PKE) [37,43] and key encapsulation mechanisms (KEM).

The computational problems defined over lattices are believed to be hard
to solve, even with access to large-scale quantum computers, and hence many
of these constructions are considered to be quantum-safe. As industry starts to
make steps forward into the concrete development of small quantum computers,
the US National Institute of Standards and Technology (NIST) begun an open
standardization effort, with the aim of selecting quantum-safe schemes for public-
key encryption and digital signatures [40]. At the time of writing, the process
is in its second round, and 9 out of 17 candidates for PKE or KEM base their
security on problems related to lattices, with or without special structure.

One commonly occurring characteristic of lattice-based PKE or KEM
schemes is that of lacking perfect correctness. This means that sometimes, cipher-
texts generated honestly using a valid public key may lead to decryption failures
under the corresponding private key. Throughout this paper we’ll refer to such
ciphertexs as “failures”, “decryption failures”, or “failing ciphertexts”. While in
practice, schemes are parametrised in such a way that decryption failures do
not undermine overall performance, these can be leveraged as a vehicle for key
recovery attacks against the key pair used to generate them. Such an attack was
described by Jaulmes and Joux [30] against NTRU, after which is was extended
in [29] and [24]. A similar attack on Ring-LWE based schemes was later presented
by Fluhrer [22] and extended by Băetu et al. [5].

However, the aforementioned attacks all use specially crafted ciphertexts and
can therefore be prevented with a transformation that achieves chosen cipher-
text security. This can for example be obtained by means of an off-the-shelf
compiler [23,28] that stops the adversary from being able to freely malleate
honestly generated ciphertexts.

The NIST Post-Quantum Standardization Process candidate Kyber [8] noted
that it was possible to search for ciphertexts with higher failure probability than
average. D’Anvers et al. [16] extended this idea to an attack called “failure boost-
ing”, where ciphertexts with higher failure probability are generated to speedup
the search for decryption failures, and provided an analysis of the effectiveness
of the attack on several NIST candidates. At the same time, Guo et al. [27]
described an adaptive attack against the IND-CCA secure ss-ntru-pke variant
of NTRUEncrypt [10], which used an adaptive search for decryption failures
exploiting information from previously collected ciphertexts.

Our Contributions. In this paper, we present a novel attack technique called
“directional failure boosting”, aimed at enhancing the search for decryp-
tion failures in public-key encryption schemes based on the protocol by

(One) Failure Is Not an Option 5

Lyubashevsky et al. [37], in the single-target setting. Our technique is an
improvement of the “failure boosting” technique of D’Anvers et al. [16].

We consider a simple (but realistically parametrized) scheme based on the
Mod-LWE problem as a case study and make some necessary orthogonality and
independance assumptions that are reasonable in our range of parameters. We
show that in this setting, the work and number of decryption queries needed to
obtain multiple failing ciphertexts is only marginally larger than those neces-
sary to obtain the first decryption failure. For example, obtaining 30 decryption
failures requires only 25% more quantum work and only 58% more queries than
obtaining one decryption failure. As previously shown in [16] and [27], we recall
that having many decryption failures enables more efficient lattice reduction
which leads to key recovery attacks. As a result, we conclude that when pro-
tecting against decryption failure attacks, in the single target setting, designers
should make sure that an adversary can not feasibly obtain even a single decryp-
tion failure.

Our attack outperforms previously proposed attacks based on decryption
failures. In particular, it improves over the multitarget attack of Guo et al. [27]
on ss-ntru-pke, lowering the attack’s quantum complexity from 2139.5 to 296.6.

Paper Outline. In Sect. 2, we introduce some preliminaries about notation and
structures. In Sect. 3, we describe the general idea of lattice-based encryption and
how decryption failures are generated. In Sect. 4, we recall the original failure
boosting technique from [12]. In Sect. 5, we describe our directional failure boost-
ing technique. In Sect. 6, we show1 how this method impacts the total work and
queries overhead. Finally in Sect. 7, we discuss the results by comparing them
with the literature and conclude with possible future work.

2 Preliminaries

Let Zq be the ring of integers modulo q. For N a power of 2, we define Rq the
ring Zq[X]/(XN +1), and Rl1×l2

q the ring of l1× l2 matrices over Rq. Vectors and
polynomials will be indicated with bold lowercase letters, eg. v, while matrices
will be written in bold uppercase letters, eg. M. Denote with �·� flooring to
the nearest lower integer, and with �·� rounding to the nearest integer. These
operations are extended coefficient-wise for vectors and polynomials. Through-
out, we abuse notation and identify elements in Zq with their representatives in
[−q/2, q/2), and elements in Rq with their representatives of degree < N , with
index i indicating the coefficient of Xi. This allows us to define the �2-norm
‖x‖2 of a polynomial x ∈ Rq, so that ‖x‖2 =

√∑
i x

2
i where xi ∈ [−q/2, q/2),

and extend this to vectors of polynomials y ∈ Rl×1
q as ‖y‖2 =

√∑
i ‖yi‖22.

Identically, we define and extend the �∞-norm.
Let x ← X denote sampling x according to the probability distribution X.

We extend this notation for coefficient-wise sampling of a vector x ∈ Rl×1
q as x ←

1 The software is available at: https://github.com/KULeuven-COSIC/PQCRYPTO-
decryption-failures.

https://github.com/KULeuven-COSIC/PQCRYPTO-decryption-failures
https://github.com/KULeuven-COSIC/PQCRYPTO-decryption-failures

6 J.-P. D’Anvers et al.

X(Rl×1
q), and similarly for a matrix. We denote with x ← X(Rl×1

q ; r) sampling
x ∈ Rl×1

q pseudorandomly from the seed r with each coefficient following the
distribution X. In algorithms, we also use x ← Alg() to mean that the value x
is assigned to be the output of a probabilistic algorithm Alg.

Let U be the uniform distribution over Zq and let Nμ,σ be the normal distri-
bution with mean μ and standard deviation σ, so that the probability density
function of x ← Nμ,σ is defined as:

fNμ,σ
(x) =

1
σ
√

2π
e−(x−μ)2/2σ2

. (1)

The discrete Gaussian distribution Dμ,σ is a discrete restriction to Zq of Nμ,σ,
so that an integer x is sampled with a probability proportional to e−(x−μ)2/2σ2

and its remainder modulo q in [−q/2, q/2) is returned.
For an event A we define P [A] as its probability. For an element which does

not correspond to an event, a ciphertext ct for example, we abusively write
P [ct] to denote the probability of the event ct′ = ct where ct′ is drawn from a
distribution which will be clear in the context. We will denote with E[A] the
expected value of a variable drawn from a distribution A.

Security Definitions. Let Π = (KeyGen,Enc,Dec) be a public-key encryption
scheme, with message space M, and let K = (KeyGen,Encaps,Decaps) be a key
encapsulation mechanism (KEM). When a decapsulation or a decryption oracle
is provided, we assume that the maximum number of ciphertexts that can be
queried to it for each key pair is 2K ; in practice, K = 64 is often considered [40,
§4.A.2]. In this work, we keep the maximum number of queries as a parameter
with no specific value, in order to provide a better granularity in the security
assessement. Indeed, to mount an attack, the adversary trades off between num-
ber of queries and the work.

Definition 1 (IND-CPAA,Π(k) game [33]). Let A be an adversary and
Π = (KeyGen,Enc,Dec) be a public-key encryption scheme. The experiment
IND-CPAA,Π(1k) runs as follows:

1. (pk, sk) ← KeyGen(1k)
2. A is given pk. After evaluating Enc(pk, ·) as desired, it outputs

(m0,m1) ∈ M × M.
3. A random bit b ←$ {0, 1} is sampled, and c ← Enc(pk,mb) is passed to A.
4. A keeps evaluating Enc(pk, ·) as desired, until it returns a bit b′.
5. The experiment outputs 1 if b = b′ and 0 otherwise.

Definition 2 (IND-CCAA,K(k) game [33]). Let A be an adversary and
K = (KeyGen,Encaps,Decaps) be a key encapsulation mechanism. The exper-
iment IND-CCAA,K(1k) runs as follows:

1. (pk, sk) ← KeyGen(1k)
2. (c, k) ← Encaps(pk)
3. b ←$ {0, 1}. If b = 0, set k̂ = k, else let k̂ ← {0, 1}n.

(One) Failure Is Not an Option 7

4. A is given (pk, c, k̂), and access to a decapsulation oracle Decaps(sk, ·). After
evaluating Encaps(pk, ·) and querying Decaps(sk, ·) as desired (except for
decapsulation queries on c), it returns b′ ∈ {0, 1}.

5. The experiment outputs 1 if b = b′ and 0 otherwise.

Definition 3 (PKE and KEM security [23]). A public-key encryption
scheme Π (resp. a key encapsulation mechanism K) is (t, ε)-GAME secure if
for every t-time adversary A, we have that
∣∣
∣∣Pr[GAMEA,Π(k) = 1] − 1

2

∣∣
∣∣ ≤ ε

(
resp.

∣∣
∣∣Pr[GAMEA,K(k) = 1] − 1

2

∣∣
∣∣ ≤ ε

)

For a security parameter 1k, we usually mean t ≈ poly(k) and ε ≤ negl(k). If
GAME is IND-CPA (resp. IND-CCA) we say that Π (resp. K) is (t, ε)-secure
against chosen-plaintext attacks (resp. (t, ε)-secure against adaptive chosen-
ciphertext attacks).

3 Lattice-Based Encryption

The Module-LWE (or Mod-LWE) problem [34] is a mathematical problem that
can be used to build cryptographic primitives such as encryption [7,13], key
exchange [13] and signatures [20]. It is a generalization of both the Learning
With Errors (or LWE) problem [43], and the Ring-LWE problem [37,47].

Definition 4 (Mod-LWE [34]). Let n, q, k be positive integers, χ be a proba-
bility distribution on Z and s be a secret module element in Rk

q . We denote by L
the probability distribution on Rk

q × Rq obtained by choosing a ∈ Rk
q uniformly

at random, choosing e ∈ R by sampling each of its coefficients according to χ
and considering it in Rq, and returning (a, c) = (a, 〈a, s〉 + e) ∈ Rk

q × Rq.
Decision-Mod-LWE is the problem of deciding whether pairs (a, c) ∈ Rk

q × Rq

are sampled according to L or the uniform distribution on Rk
q × Rq.

Search-Mod-LWE is the problem of recovering s from (a, c) = (a, 〈a, s〉 + e) ∈
Rk

q × Rq sampled according to L.

3.1 Passively and Actively Secure Encryption

Lyubashevsky et al. [37] introduced a simple protocol to build passively
secure encryption from the Ring-LWE problem, inspired by Diffie-Hellman key
exchange [19] and ElGamal public-key encryption [21]. Naturally, the protocol
can also be adapted to work based on plain and Module LWE assumptions. A
general extension of the protocol for all aforementioned assumptions is described
in Algorithms 1, 2, and 3, where r ∈ R = {0, 1}256, and where the message space
is defined as M = {polynomials in Rq with coefficients in {0, 1}}.

In order to obtain active security, designers usually use an off-the-shelf CCA
compiler, usually a (post-quantum) variant [18,28,31,44,48] of the Fujisaki-
Okamoto transform [23] (FO). These come with proofs of security in the

8 J.-P. D’Anvers et al.

Algorithm 1: PKE.KeyGen()

1 A ← U(Rl×l
q)

2 s, e ← D0,σs(Rl×1
q) × D0,σe(Rl×1

q)
3 b := As + e
4 return (pk = (b,A), sk = s)

Algorithm 2: PKE.Enc(pk =
(b,A),m ∈ M; r)

1 s′, e′ ← D0,σs(Rl×1
q ; r) × D0,σe(Rl×1

q ; r)
2 e′′ ← D0,σe(Rq; r)

3 b′ := AT s′ + e′

4 v′ := bT s′ + e′′ + �q/2� · m
5 return ct = (v′,b′)

Algorithm 3: PKE.Dec(sk = s, ct = (v′,b′))

1 m′ := ��2/q�(v′ − b′T s)�
2 return m′

Algorithm 4: KEM.Encaps(pk)

1 m ← U({0, 1}256)

2 (K, r) := G(pk, m)
3 ct := PKE.Enc(pk, m, r)

4 K := H(K, r)
5 return (ct, K)

(quantum) random oracle model, with explicit bounds about the loss of security
caused by the transformation. We show such transformed KEM Decapsulation
and Encapsulation in Algorithms 4 and 5.

In the case of FO for lattice-based schemes, the randomness used during the
encryption is generated by submitting the message (and sometimes also the pub-
lic key) to a random oracle. As this procedure is repeatable with knowledge of the
message, one can check the validity of ciphertexts during decapsulation. Hence,
an adversary wanting to generate custom ephemeral secrets s′, e′, e′′ in order to
fabricate weak ciphertexts, would need to know a preimage of the appropriate
random coins for the random oracle. Therefore, their only option is to mount a
(Grover’s) search by randomly generating ciphertexts corresponding to different
messages m, and testing if their predicted failure probability is above a certain
threshold.

Remark 1. Several lattice-based candidates submitted to the NIST Post-
Quantum Cryptography Standardization Process use a variant of the protocol
by Lyubashevsky et al. [37]. Deviating from the original design, most candidates
perform an additional rounding of the ciphertext v′, in order to reduce band-
width. The designers of New Hope [3] and LAC [35] choose to work directly over
rings (or equivalently, they choose a module of rank l = 1) and add error correc-
tion on the encapsulated message, while the designers of Kyber [7] and Saber [13]
choose a module of rank l > 1 and perform an additional rounding of b′ (and b
in case of Saber). We here focus on the basic version given in Algorithms 1 to 3
and leave the study of the effect of compression to further work.

(One) Failure Is Not an Option 9

Algorithm 5: KEM.Decaps(sk, pk, ct,K)

1 m′ := PKE.Dec(sk, ct)

2 (K, r′) := G(pk, m′)
3 ct′ := PKE.Enc(pk, m′; r′)
4 if ct = ct′ then
5 return K := (K, r′)
6 else
7 return K :=⊥ // Could return a pseudo-random string to

implicitly reject

Table 1. Comparison between our target scheme and Saber and Kyber 768, as
parametrised in Round 2 of the NIST PQC standardization process. The classical
(resp. quantum) security is evaluated using the Core-SVP [3] methodology, assuming
the cost of BKZ with block size β to be 20.292β (resp. 20.265β).

l N q σs σe P [F] Classical Quantum

Chosen parameters 3 256 8192 2.00 2.00 2−119 2195 2177

Saber 3 256 8192 1.41 2.29 2−136 2203 2185

Kyber 768 3 256 3329 1.00 1.00/1.38† 2−164 2181 2164

†Standard deviation of the error term in the public key and ciphertext respectively

We selected the parameters of the studied encryption scheme to ensure a
similar failure probability and security to Kyber and Saber. These parameters
can be found in Table 1. The security estimates are generated using the Core-
SVP methodology [3] and the LWE estimator2 [2], while the failure probability
of Kyber and Saber is given as reported in their respective the NIST round
2 documentations [14,46]. The failure probability of our chosen parameters is
determined by calculating the variance of the error term and assuming the dis-
tribution to be Gaussian.

Remark 2. We do not consider the case of “plain” LWE based schemes like
FrodoKEM [39] or Round5 [4]. Nonetheless, we believe that the attack method-
ology would easily translate to the LWE setting as the failure condition and the
failure probabilities are similar to the investigated case.

3.2 Decryption Failures

Following the execution of the protocol, both messages m′ and m are the same if
the coefficients of the error term eT s′ −sT e′ +e′′ are small enough; more exactly
if ‖eT s′ − sT e′ + e′′‖∞ ≤ q/4. This expression can be simplified by defining
the vector S as the vertical concatenation of −s and e, the vector C as the
concatenation of e′ and s′, and by replacing e′′ with G, as shown below:

2 The estimator can be found at https://bitbucket.org/malb/lwe-estimator/.

https://bitbucket.org/malb/lwe-estimator/

10 J.-P. D’Anvers et al.

S =
[−s

e

]
C =

[
e′

s′

]
G = e′′. (2)

Here, S contains the secret elements of the secret key, and C and G consist
of elements used to construct the ciphertexts3. Using these vectors, the error
expression can be rewritten: a failure occurs when ‖ST C + G‖∞ > q/4.

The standard deviation of the terms in the polynomial ST C equals
√

2Nσsσe,
versus a standard deviation of σe for the terms of G. Therefore, the influence
of G on the failure rate is limited, i.e. ‖ST C + G‖∞ ≈ ‖ST C‖∞. Let qt := q/4
denote the failure threshold, we will use

‖ST C‖∞ > qt (3)

as an approximation of the failure expression throughout our analysis. However,
with some extra work, one can rewrite a more accurate Eq. 3 as ‖ST C‖∞ >
qt − ‖G‖∞, and instead of considering qt to be fixed, taking the distribution
of qt − ‖G‖∞ as shown in [16]. For the ease of the implementation and due to
the low influence of G on the failure rate, we prefer to stick with Eq. 3. We
now introduce a more handy way of writing the failure condition (Eq. 3) by only
using vectors in Zq.

Definition 5 (Coefficient vector). For S ∈ Rl×1
q , we denote by S ∈ Z

lN×1
q ,

the representation of S where each polynomial is decomposed as a list of its
coefficients in4

Zq.

Definition 6 (Rotations). For r ∈ Z and C ∈ Rl×1
q , we denote by C(r) ∈

Rl×1
q , the following vector of polynomials

C(r) := Xr · C(X−1) mod XN + 1.

Correspondingly, C(r) ∈ Z
lN×1
q denotes its coefficient vector.

It is easy to show that C(r) is constructed as to ensure that for r ∈ [0, ..., N −
1], the rth coordinate of ST C is given by the scalar product S

T
C(r). In other

words, one is now able to decompose ST C as a sum of scalar products:

ST C =
∑

r∈[0,N−1]

S
T
C(r) · Xr. (4)

One can observe that this construction is only valid for the modulo XN + 1
ring structure, but it could be adapted for other ring structures. Note that for
any r ∈ Z, C(r+N) = −C(r) and C(r+2N) = C(r). Besides, taking into account
the extension of the norms to vectors of polynomials (defined in Sect. 2), one can
make the following remark.
3 When talking about ciphertexts throughout the paper, we will sometimes refer to

their underlying elements C and G.
4 Recall that, in this paper, all the elements in Zq are represented as integers belonging

in [−q/2, q/2].

(One) Failure Is Not an Option 11

Remark 3. Note that for any r ∈ Z, ‖C(r)‖2 = ‖C‖2 = ‖C‖2 and ‖C(r)‖∞ =
‖C‖∞ = ‖C‖∞.

The decomposition in Eq. 4 will allow a geometric interpretation of the fail-
ures as it will be shown in the rest of the paper. First, let us introduce a brief
example to illustrate Definitions 5 and 6.

Example 1. For a secret S and a ciphertext C in Z
2×1
q [X]/(X3 + 1):

S =
[
s0,0 + s0,1X + s0,2X

2

s1,0 + s1,1X + s1,2X
2

]
, C =

[
c0,0 + c0,1X + c0,2X

2

c1,0 + c1,1X + c1,2X
2

]
(5)

we get the following vectors:

S =

⎡
⎢⎢⎢⎢⎢⎢⎣

s0,0

s0,1

s0,2

s1,0

s1,1

s1,2

⎤
⎥⎥⎥⎥⎥⎥⎦

, C(0) =

⎡
⎢⎢⎢⎢⎢⎢⎣

c0,0

−c0,2

−c0,1

c1,0

−c1,2

−c1,1

⎤
⎥⎥⎥⎥⎥⎥⎦

C(1) =

⎡
⎢⎢⎢⎢⎢⎢⎣

c0,1

c0,0

−c0,2

c1,1

c1,0

−c1,2

⎤
⎥⎥⎥⎥⎥⎥⎦

C(2) =

⎡
⎢⎢⎢⎢⎢⎢⎣

c0,2

c0,1

c0,0

c1,2

c1,1

c1,0

⎤
⎥⎥⎥⎥⎥⎥⎦

C(3) =

⎡
⎢⎢⎢⎢⎢⎢⎣

−c0,0

c0,2

c0,1

−c1,0

c1,2

c1,1

⎤
⎥⎥⎥⎥⎥⎥⎦

. . .

In case of a failure event, ST C satisfies Eq. 3. Therefore, at least one element
among all the coefficients

S
T · C(0) , . . . , S

T · C(2N−1)

is larger than qt.

Definition 7 (Failure event). A failure event will be denoted with F , while
we use S to indicate a successful decryption.
More precisely, for r ∈ [0, 2N − 1], we denote by Fr the failure event where

S
T · C(r) > qt.

The event Fr gives a twofold information: it provides the location of the failure
in the ST C polynomial and it also provides the sign of the coefficient that caused
the failure.

An Assumption on the Failing Ciphertexts. In the rest of the paper, in order
to predict the results of our attack, we will make the following orthogonality
assumption.

Assumption 1. Let n
 2Nl, and C0, · · · ,Cn be ciphertexts that lead to fail-

ure events Fr0 , · · · , Frn
. The vectors C(r0)

0 , · · · ,C(rn)
n are considered orthogonal

when projected on the hyperplane orthogonal to S.

This assumption is an approximation that is supported by the fact that
vectors in high dimensional space have a strong tendency towards orthogonality,
as can be seen in Fig. 2.

12 J.-P. D’Anvers et al.

4 Failure Boosting Attack Technique

Failure boosting is a technique introduced in [16] to increase the failure rate
of (Ring/Mod)-LWE/LWR based schemes by honestly generating ciphertexts
and only querying weak ones, i.e. those that have a failure probability above a
certain threshold ft > 0. This technique is especially useful in combination with
Grover’s algorithm [26], in which case the search for weak ciphertexts can be
sped up quadratically. Failure boosting consists of two phases: a precomputation
phase, and a phase where the decryption oracle is queried.

Precomputation Phase. The adversary does an offline search for weak ciphertexts
with the following procedure:

1. Generate a key encapsulation (see Footnote 3) ct = (C,G).
2. If P [F | ct] ≥ ft, keep ct in a weak ciphertext list, otherwise go to Step 1.

In Step 2, P [F | ct] is defined as the failure probability given a certain cipher-
text ct. It is computed as follows.

P [F | ct] :=
∑

S

P
[∥∥ST C + G

∥
∥

∞ > qt | S
] · P [S] (6)

Given the probability of generating ciphertexts P [ct] = P [C,G], the proba-
bility of finding such a weak ciphertext can be expressed as follows:

αft
=

∑

∀ct:P [F |ct]>ft

P [ct]. (7)

An adversary thus needs to perform on average α−1
ft

work to obtain one weak

ciphertext, or
√

α−1
ft

assuming Grover’s search achieves a full speed-up.

Decryption Oracle Query Phase. After the precomputation phase, an adversary
has a probability βft

that a weak ciphertext results in a failure, where βft
can be

calculated as a weighted average of the failure probabilities of weak ciphertexts:

βft
=

∑
∀ct:P [F |ct]>ft

P [ct] · P [F |ct]
∑

∀ct:P [F |ct]>ft
P [ct]

. (8)

Thus to obtain one decryption failure with probability 1− e−1, an adversary
needs to perform approximately β−1

ft
queries and therefore α−1

ft
β−1

ft
work (or

√
α−1

ft
β−1

ft
using a quantum computer).

The better an adversary can predict P [F |ct], the more efficient failure boost-
ing will be. Having no information about the secret except its distribution, an
adversary is bound to standard failure boosting, where the failure probability
is estimated based on ‖C‖2 and ‖G‖2. For a graphical intuition, a two dimen-
sional toy example is depicted in Fig. 1a below, where the red arrow represents
the secret vector S. Ciphertexts with C that lie in the dashed area will provoke

(One) Failure Is Not an Option 13

(a) Without directional information, as
in [16], the weak ciphertexts (in blue)
are defined as the ciphertexts with a
probability higher than ft.

(b) With directional information, the
weak ciphertexts (in blue) are found ac-
cording to a refined acceptance criterion,
here represented as an ellipse.

Fig. 1. Simplified diagram trying to provide an intuition on the effect of directional
failure boosting. The red arrow represents the secret vector S. Ciphertexts with C that
lie in the dashed area will provoke a failure as the inner product with S will exceed
the threshold qt. Ciphertexts outside the blue circle are considered weak. (Color figure
online)

a failure as the inner product with S will exceed the threshold qt. The blue circle
is a circle of ciphertexts that have a certain failure probability ft as estimated by
an adversary who does not know the secret. During the failure boosting proce-
dure, we will generate random ciphertexts, and only select the ciphertexts with
a higher failure probability than ft, i.e. that are outside the blue circle. One
can graphically see in Fig. 1a that these ciphertexts will have a higher failure
probability and a higher norm. We refer to [16] for a full description of the
failure boosting technique. Note that Fig. 1a is an oversimplified 2-dimension
example that does not take into account the polynomial structure and the high
dimensionality of the space.

5 Directional Failure Boosting

Once n ≥ 1 decryption failures C0, . . . ,Cn−1 are found, additional information
about the secret key S becomes available, and can be used to refine the fail-
ure estimation for new ciphertexts and thus speed up failure boosting. We now
introduce an iterative two-step method to perform directional failure boosting.

Step 1. An estimate, denoted E, of the ‘direction’ of the secret S in Z
lN
q is

obtained from C0, . . . ,Cn−1.
Step 2. The estimate E is used to inform the search for weak ciphertexts and

improve the failure probability prediction for a new ciphertext Cn. One
is able to refine the criterion P [F | ct] ≥ ft with computing P [F | ct,E] ≥
ft instead.

14 J.-P. D’Anvers et al.

Once new failing ciphertexts are found in step 2, one can go back to step 1 and
improve the estimate E and thus bootstrap the search for new failures.

To give an intuition, a two dimensional toy representation can be found in
Fig. 1b. Like in the classical failure boosting technique, the red arrow depicts the
secret S, while the additional blue arrow marks estimate E (as calculated in step
1, see Sect. 5.2). Using this estimate, we can refine the acceptance criterion to
the depicted ellipse to better reflect our knowledge about the secret (step 2, see
Sect. 5.3). Ciphertexts outside this ellipse will be flagged as weak ciphertexts,
and while the probability of finding such a ciphertext is the same, the failure
probability of weak ciphertexts is now higher. As in, more of the blue zone lies
in the dashed area.

5.1 Distributions

We now introduce some probability distributions that will be useful in following
sections.

Scaled χ-distribution. The scaled χ-distribution χn,σ is the distribution of the
�2-norm of a vector with n coefficients, each following the normal distribution
N0,σ. Denoting with Γ the gamma function, the probability density function of
χn,σ is given by:

fχn,σ
(x) =

(
x
σ

)n−1
e− x2

2σ2

2(n
2 −1)Γ

(
n
2

) for x ≥ 0, (9)

which has mean [32, §18.3] Eχ[x] =
√

2Γ ((n+1)/2)
Γ (n/2) σ ≈ √

nσ.
We will approximate the probability distribution of ‖x‖2 where x ←

D0,σ(Rl×1
q) with a discretized version of the χ(l·N),σ-distribution, which will be

denoted with χD
(l·N),σ. Using this distribution, the probability density function

of ‖x‖2 is calculated as:

P [‖x‖2 = x] = C ·
(x

σ

)l·N−1

e− x2

2σ2 for x ∈
{

0, . . . ,
⌊q

2

√
lN

⌋}
, (10)

with C a normalization constant.

Angle Distribution. The distribution of angles between n-dimensional vectors
in R

n with coefficients drawn from a normal distribution N0,σ can be modelled
using the following probability density function [9]:

fΘn
(θ) = sinn−2(θ)/

∫ π

0

sinn−2(t)dt, for θ ∈ [0, π]. (11)

Due to the high dimensionality of the vector space used in this paper, vectors
will have a very strong tendency towards orthogonality, i.e. θ is close to π/2, as
can be seen in Fig. 2.

For computational reasons, we will use a discretized version ΘD
n of this dis-

tribution to model the distribution of the angles between discrete vectors, if no

(One) Failure Is Not an Option 15

1
4

π
1
2

π
3
4

π
π

θ
5
10
15

fΘn

Fig. 2. Probability density function (pdf) of the angle between two random vectors in
1536-dimensional space. As the dimension increases, the pdf tends to the Dirac delta
function centered at π

2
.

extra directional information is present. Given a uniformly spaced list of angles
between 0 and π, we assign to each angle a probability

P [θ] = C sinn−2(θ) (12)

with C a normalization constant. The higher the number of angles in this list,
the better this distribution approximates the continuous distribution Θn.

Order Statistics. The maximal order statistic of a distribution X in n dimen-
sions, is the distribution of the maximum of n samples drawn from this distribu-
tion. We will denote this distribution with M(X,n). For a discrete distribution
X, the probability mass function of M(X,n) can be computed as:

fM(X,n)(x) = P [x ≥ y|y ← X]n − P [x > y|y ← X]n (13)

≈ n · P [x = y|y ← X] · P [x > y|y ← X]n−1, (14)

where the latter approximation gets better for smaller probabilities.

5.2 Step 1: Estimating the Direction E

Informally, E should be a vector that has approximately the same direction as
S. Denoting the angle between E and S as θES , the bigger | cos(θES)|, the closer
our estimate is to ±S and the better our estimate of failure probability will be.
Since we focus on estimating the direction of S, E will always be normalized.

In this section, we derive an estimate E of the direction of the secret S given
n ≥ 1 ciphertexts C0, . . . ,Cn−1. Our goal is to find E such that | cos(θES)| is
as big as possible. We will first discuss the case where the adversary has one
ciphertext, then the case where she has two, followed by the more general case
where she has n ciphertexts.

One Ciphertext. Assume that a unique failing ciphertext C is given. For a failure
event Fr, E = C(r)/

∥
∥∥C(r)

∥
∥∥
2

is a reasonable choice as cos(θES) is bigger than
average. This can be seen as follows:

|cos(θES)| =

∣
∣
∣S

T ·E
∣
∣
∣

‖S‖2‖E‖2

=

∣
∣
∣S

T ·C(r)
∣
∣
∣

‖S‖2

∥
∥
∥C(r)

∥
∥
∥
2

> qt

‖S‖2

∥
∥
∥C(r)

∥
∥
∥
2

. (15)

16 J.-P. D’Anvers et al.

Keep in mind that the cosine of angles between random vectors strongly
tend to zero in high dimensional space, so that even a relatively small value of
|cos(θES)| might be advantageous.

One can argue that it is not possible to compute C(r) without knowledge
of r; whereas in the general case, the failure location is unknown. However,
E = C(0)/

∥
∥∥C(0)

∥
∥∥
2

is an equally good estimate regardless of the value of r.

Indeed, C(0) approximates a rotation of the secret S′ := X−r · S instead of S,
which can be seen using the equality A

T · B = XiA
T · XiB:

S
T · C(r) = X−r · ST · X−rXrC(0)

= X−r · ST · C(0).
(16)

Furthermore, multiplicating a polynomial in Rq with a power of X does not
change its infinity norm, as the multiplication only results in the rotation or
negation of coefficients. Thus, using an estimate of the direction of X−r · S is as
good as an estimate of the direction of S when predicting the failure probability
of ciphertexts, and we can use E = C(0)/

∥∥
∥C(0)

∥∥
∥
2
.

Two Ciphertexts. Now, assume that two linearly independent failing ciphertexts
C0 and C1, resulting from failure events Fr0 and Fr1 respectively, are given.

Taking E as the normalized version of an average Cav =
(
C(0)

0 + C(0)
1

)
/2 may

not necessarily result in a good estimate. For example, if C0 comes from a failure
event F0 and C1 from a failure event FN , the two directions cancel each other

out as the ciphertexts C(0)
0 and C(0)

1 are in opposite directions.

Keeping the convention that C(0)
0 approximates a rotation of the secret S′ =

X−r0 · S, we will compute the relative error position δ1,0 = r1 − r0 and show
that is enough to build a correct estimate E as E = Crav/

∥∥Crav

∥∥
2

where:

Crav :=
(
C(0)

0 + C(δ1,0)
1

)
/2. (17)

The reason why such E is a good estimator of S′ can be seen as follows:

cos(θES′) = 1

2‖Crav‖2‖S′‖2

·
(
X−r0 · ST · C(0)

0 + X−r0 · ST · Xr1−r0C(0)
1

)

= 1

2‖Crav‖2‖S′‖2

·
(
S

T · C(r0)
0 + S

T · C(r1)
1

)
> qt

‖Crav‖2‖S′‖2

.

Remark 4. In practice ciphertexts with smaller norm will on average be bet-
ter aligned with the secret, as cos(θCS′) > qt/(

∥∥C
∥∥
2

∥∥S′∥∥
2
). Therefore they

carry more information than ciphertexts with larger norm. To compensate for

this effect we will calculate Crav as :=
(
C(0)

0 /
∥∥∥C(0)

0

∥∥∥
2

+ C(δ1,0)
1 /

∥∥∥
∥C

(δ1,0)
1

∥∥∥
∥
2

)
/2.

While it is possible to further refine the calculation of E using extra directional
information, this heuristic is good enough for our purposes.

(One) Failure Is Not an Option 17

Computation of the Relative Position δ1,0. One can use the fact that both C(0)
0

and C(δ1,0)
1 are expected to be directionally close to S′. Thus, the cosine of the

angle between C(0)
0 and C(δ1,0)

1 should be larger than usual. Therefore, δ1,0 can
be estimated with the following distinguisher:

δ′
1,0 := argmax

r∈[0,2N−1]

C(r) where C(r) :=
C(0)

0

T

· C(r)
1∥∥∥C(0)

0

∥∥∥
2

∥∥∥C(r)
1

∥∥∥
2

. (18)

The next paragraph estimates the efficiency of using Eq. 18 as a distinguisher
for deriving δ1,0. We will show that, for Table 1 parameters, we expect

P [δ′
1,0 = δ1,0] ≈ 89%. (19)

Experiments run by simulating the sampling 104 failing ciphertexts (refer
to the full version of our paper [15] for the generation technique), and using
Eq. 18 for finding δ1,0 between pairs of them, return PExp[δ′

1,0 = δ1,0] ≈ 84.8%,
in sufficiently good agreement.

To obtain the value (19), the idea is to estimate the distribution of a correct
guess C(δ1,0) and an incorrect guess maxr �=δ1,0 C(r) and quantify the discrepancy.
First, we decompose the ciphertexts in a component parallel to S′, denoted with
‖, and a component orthogonal, denoted with ⊥, we rewrite C(r) as follows:

C(r) =
C(0)

0,‖ · C(r)
1,‖ + C(0)

0,⊥ · C(r)
1,⊥∥∥∥C(0)

0

∥∥∥
2

∥∥∥C(r)
1

∥∥∥
2

(20)

In the first term, the scalar product of two parallel elements equals the product of
their norms (up to their sign). For the second term, we apply the scalar product

definition and intoduce t as the angle between C(0)
0,⊥ and C(r)

1,⊥.

C(r) = ±

∥
∥∥C(0)

0,‖
∥
∥∥
2∥∥∥C(0)

0

∥∥∥
2

·

∥
∥∥C(r)

1,‖
∥
∥∥
2∥∥∥C(r)

1

∥∥∥
2

±

∥
∥∥C(0)

0,⊥
∥
∥∥
2∥∥∥C(0)

0

∥∥∥
2

·

∥
∥∥C(r)

1,⊥
∥
∥∥
2∥∥∥C(r)

1

∥∥∥
2

· cos(t) (21)

= cos
(
θ

S′C(0)
0

)
cos

(
θ

S′C(r)
1

)
+ sin

(
θ

S′C(0)
0

)
sin

(
θ

S′C(r)
1

)
cos(t) (22)

The vectors C(0)
0,⊥ and C(r)

1,⊥ are orthogonal to S′. This means that they live in
the 2Nl−1 dimensional space orthogonal to S′. The high dimension of the space
will strongly drive the vectors towards orthogonality as can be seen in Fig. 2.

Using Assumption 1, the angle t between C(0)
0,⊥ and C(r)

1,⊥ is then assumed to
follow the distribution of random angles between vectors in a 2Nl−1 dimensional
space (See Eq. 11).

Now, let us study the distribution of C(r) depending of the value r ∈ [0, 2N −
1]. One can refer to Fig. 3 for a graphical interpretation based on the parameters
of Table 1.

18 J.-P. D’Anvers et al.

Fig. 3. Distributions used for finding δ1,0 (Color figure online)

– If r = δ1,0, the expected value of C(r) will be higher than average. Indeed, by
definition of Fr1 and Fr0 the cosines forming the first term are positive. The
distribution of C(r) can then be estimated using Eq. 22 (blue curve).

– If r = δ1,0 + N mod 2N , the distribution of C(r) is equal to the distribution
of −C(δ1,0) and will be closer to −1 (orange curve).

– If r �= δ1,0 mod N , C(r) can be assumed to follow the distribution of random
angles in a 2Nl dimensional space Θ2Nl, as given in Eq. 11 (green curve).

– The pdf of maxr �=δ1,0 C(r) is then calculated as M(Θ2Nl, 2N −1) by definition
of the maximal order statistic (red curve).

Figure 3 assembles the probability density functions of the above distributions
in a plot. The probability of selecting the correct δ′

1,0 using argmax
r∈[0,2N−1]

C(r), can

then be computed as:

P [δ′
1,0 = δ1,0] = P

[
max

r �=δ1,0
C(r) < C(δ1,0)

]
.

For our toy scheme’s parameters, this results in Eq. 19.

Multiple Ciphertexts. In this section, we assume that n linearly independent
failing ciphertexts C0, . . . ,Cn−1, resulting from failure events Fr0 , . . . , Frn−1

respectively, are given. We introduce a generalized method to recover the rel-
ative positions δ1,0, . . . , δn−1,0, based on “loopy belief propagation” [41]. Once
these relative positions are found, they can be combined in an estimate E with
E = Crav/

∥∥Crav

∥∥
2

where

Crav :=

⎛

⎝C(0)
0 /

∥∥
∥C(0)

0

∥∥
∥
2

+
∑

i∈[1,n−1]

C(δi,0)
i /

∥∥∥
∥C

(δi,0)
i

∥∥∥
∥
2

⎞

⎠ /n. (23)

To find the correct rotations, we construct a weighted graph that models the
probability of different relative rotations, and we will use loopy belief propagation
to obtain the most probable set of these rotations:

(One) Failure Is Not an Option 19

– The nodes represent the obtained failing ciphertexts: (Ci)i∈[0,n−1]. In total,
there are n nodes.

– Each node Ci where i �= 0 is associated a list with 2N probability values called
beliefs and denoted (bi(0), · · · , bi(2N − 1)) that together define a probability
distribution over [0, 2N − 1]. The rth item in the list represents our belief
that the correct relative position δ0,1 equals r. The correct rotation of the 0th

node will be fixed to 0 (i.e. b0(0) = 1 and b0(i) = 0 for all other i) as only
the relative rotations of the ciphertexts is important. These node weights are
initialized as follows:

bi(r) := P [δi,0 = r] (= P [Fr for Ci|F0 for C0])

– For two nodes Ci and Cj , the value of the vertex called message, models
the influence of the beliefs in the rotations s of node j towards the beliefs in
rotation r of node i, which can be formalized as follows:

mi,j(r, s) := P [δi,j = r − s] (= P [Fr−s for Ci|F0 for Cj])

Loopy belief propagation tries to find the node values r for each node, so
that the probabilities over the whole graph are maximized. This is done in an
iterative fashion by updating the node beliefs according to the messages coming
from all other nodes. Our goal is eventually to find r = δi,0 for each node i.

Example 2. For example, with N = 3 and n = 3, the graph contains the nodes
C0, C1, and C2. In Fig. 4, we represent how such a graph could look like where
we arbitrarly instantiate the messages and beliefs. We can see that if one chooses
the ri = argmaxrbi(r) for each node, one would have chosen r1 = 1 and r2 = 3.
Nevertheless, we notice that the influence of the other probabilities allows for a
better choice (underlined in blue in the figure): r1 = 2, r2 = 3.

C0

C1

C2

b1(r = 0) = 0.1
b1(r = 1) = 0.4
b1(r = 2) = 0.3
b1(r = 3) = 0
b1(r = 4) = 0.2
b1(r = 5) = 0

b2(r = 0) = 0.1
b2(r = 1) = 0.1
b2(r = 2) = 0.2
b2(r = 3) = 0.4
b2(r = 4) = 0.1
b2(r = 5) = 0.1

m1,2(1,3) = 0.2

m1,2(2,3) = 0.4
b0(r = 0) = 1
b0(r = 1) = 0
b0(r = 2) = 0
b0(r = 3) = 0
b0(r = 4) = 0
b0(r = 5) = 0

m0,1(0,1) = 0.4
m0,1(0,2) = 0.3

m0,2(0,3) = 0.4

⋮

⋮

⋮

⋮

⋮

⋮

⋮

Fig. 4. Example of the graph for finding the relative rotations where N = 3 and n = 3.
The beliefs are in the rectangles, the circles represent the nodes and some messages are
represented between the nodes. (Color figure online)

20 J.-P. D’Anvers et al.

Algorithm 6: GetRotation()

1 for i ∈ [1, n − 1] do // initialization

2 foreach r do
3 bi(r) := P [δ0,i = r]

4 for # of iterations do // update phase

5 for i ∈ [1, n) do
6 for j ∈ [1, n) if i
= j do
7 foreach r do
8 inflji(r) :=

∑
s mi,j(r, s) · bj(s) // influence of node j on

node i

9 normalize(inflji)

10 foreach r do
11 bi(r) :=

∏n
j=0,j �=i inflji(r) // calculate new belief

12 normalize(bi)

13 for i ∈ [1, n) do // finally

14 ri := argmaxr∈[0,2N−1] bi(r) // pick the ri with highest belief

15 return (ri)i∈[1,n−1])

Table 2. Probability of finding the correct relative rotations and thus building the
correct estimate E with the knowledge of 2, 3, 4 and 5 failing ciphertexts.

2 ciphertexts 3 ciphertexts 4 ciphertexts 5 ciphertexts

P [ri = δi,0 ∀i ∈ [1, n − 1]] 84.0% 95.6% >99.0% >99.0%

Vertex Probabilities. As discussed, the edge between two nodes Ci with rotation
r and Cj with rotation s is weighted with P [δi,j = r − s]. This probability can
be computed using a generalization of the distinguisher technique used for two
ciphertexts as detailed in the full version of our paper [15].

Loopy Belief Propagation. This technique looks for the best set (r1, . . . , rn−1) by
iteratively correcting the beliefs using messages from other nodes. This procedure
is detailed in Algorithm 6, where normalize(f) normalizes the list b() so that∑

x∈supp(b) b(x) = 1. In each iteration, the belief of each node Ci is updated
according to the messages of the other nodes Cj . For each i the belief is updated
as follows:

bi(r) =
n∏

j=0,j �=i

inflji(r) (24)

where inflji(r) captures the influence of the value of the node Cj to node Ci.
This influence can be calculated as inflji(r) ← C

∑
x mi,j(r, x) · bj(x), with C as

normalizing constant.

Experimental Verification. With Table 1 parameters, we obtained the correct
values ri = δi,0 for all i ∈ [1, n − 1] after 3 iterations with the probabilities as

(One) Failure Is Not an Option 21

reported in Table 2, by generating 1000 times each number of ciphertexts and
trying to find the correct values of the ri.

Remark 5 (Consistency with the previous section). Note that this procedure also
incorporates the setting where one has only 2 failing ciphertexts, which would
yield exactly the same results as in the previous paragraph.

Finally, once all the rotations are found, recall that the estimate is obtained
by E = Crav/

∥∥Crav

∥∥
2

where

Crav =

⎛

⎝C(0)
0 /

∥∥∥C(0)
0

∥∥∥
2

+
∑

i∈[1,n−1]

C(ri)
i /

∥∥∥C(ri)
i

∥∥∥
2

⎞

⎠ /n. (25)

5.3 Step 2: Finding Weak Ciphertexts

In this section, we are given an estimate E and we refine the acceptance criterion.
Instead of accepting if P [F | ct] ≥ ft, our condition is slightly changed.

1. Generate a key encapsulation ct = (C,G) with derived key K.
2. If P [F |E, ct] ≥ ft, keep ct in a weak ciphertext list, otherwise go to to Step 1.

In Step 2, P [F |E, ct] is defined as the failure probability, given a certain
ciphertext ct and a certain estimate E. In the following, we explain a way to
compute it.

First, for r ∈ [0, 2N − 1], we will estimate the probability that a ciphertext
leads to an error in the rth location. Decomposing the vectors S and C in a
component orthogonal to E, denoted with subscript ⊥, and a component parallel
to E, denoted with subscript ‖, we obtain the failure expression:

P [Fr |E,C] = P [S
T · C(r) > qt |E,C] = P [S‖

T · C(r)
‖ + S⊥

T · C(r)
⊥ > qt |E,C]

= P

⎡

⎣

⎛

⎝

∥∥S
∥∥
2

∥∥∥C(r)
∥∥∥
2
cos(θSE) cos(θC(r)E) +

‖S‖2
∥∥∥C(r)

∥∥∥
2
sin(θSE) sin(θC(r)E) cos(t)

⎞

⎠ > qt |E,C

⎤

⎦

= P

⎡

⎣cos(t) >
qt − ∥∥S

∥∥
2

∥∥
∥C(r)

∥∥
∥
2
cos(θSE) cos(θCrE)

∥∥S
∥∥
2

∥∥∥C(r)
∥∥∥
2
sin(θSE) sin(θCrE)

|E,C

⎤

⎦

where θSE and θC(r)E are the angles of S and C(r) with the estimate E respec-

tively, and where t is the angle between S⊥ and C(r)
⊥ . We assume no other

knowledge about the direction of the secret apart from the directional estimate
E. In this case, using Assumption 1, t can be estimated as a uniform angle
in a 2Nl − 1 dimensional space. Then t is assumed to follow the probability
distribution Θ2Nl−1 (defined in Eq. 11).

The values E, ‖C‖2 and cos(θC(r)E) are known, meanwhile the values ‖S‖
and θSE can be modelled using their probability distribution. Thus, we can
approximate P [Fi|E,C] with P [Fi |E, ‖C‖2, cos(θC(r)E)].

22 J.-P. D’Anvers et al.

Assumption 2. We assume that failures at different locations are independent.

Assumption 2 is a valid assumption for schemes without error correcting
codes, as discussed in [17]. We can then calculate the failure probability of a
certain ciphertext as:

P [F |E,C] = 1 −
2N∏

r=0

(
1 − P [Fr |E, ‖C‖2, cos(θC(r)E)]

)
(26)

As this expression gives us a better prediction of the failure probability of
ciphertexts by using the information embedded in E, we can more accurately
(Grover) search for weak ciphertexts and thus reduce the work to find the next
decryption failure. Moreover, the better E approximates the direction of S, the
easier it becomes to find a new decryption failure.

5.4 Finalizing the Attack with Lattice Reduction

Once multiple failures are found, the secret key can be recovered with lattice
reduction techniques as presented in [17, §4] and in [27, Step 3 of the attack].
The following Section simply outlines how their technique transposes to our
framework. As shown in Sect. 5, an estimate E of the direction of a rotated
version of S′ = XrS with an unknown value r is provided. Therefore, similarly
to [27], an attacker can obtain an estimation of S′ (and not only its direction)
by rescaling

E′ := E · nqt ·
⎛

⎝

∥∥∥∥∥
∥
C(0)

0 +
∑

i∈[1,n−1]

C(ri)
i

∥∥∥∥∥
∥
2

⎞

⎠

−1

,

using the approximation E′T · 1/n
(
C(0)

0 +
∑

i∈[1,n−1] C
(ri)
i

)
≈ qt.

Then, for each possible r ∈ [0, 2N − 1], an attacker can perform lattice
reduction and recover candidates for s, e that are accepted if they verify b =
As + e. One caveat is that an attacker may have to run a lattice reduction
up to 2N times. Since E′ −S′ is small, the attacker can construct an appropriate
lattice basis encoding E′ − S′ as a unique shortest target vector, and solves the
corresponding Unique-SVP problem with the BKZ algorithm [1,3,11,45]. The
block size of BKZ will depend on the accuracy of the estimate E. Indeed, the
standard deviation of E′

i−S′
i is of the order of σs ·sin(θS′E) (assuming that θS′E

is small and ‖S′‖2 ≈ ‖E′‖2). Thus, when many decryption failures are available,
sin(θS′E) gets very small and the complexity of this step is dominated by the
work required for constructing E. For example, in the case of our toy scheme, if
cos(θS′E) > 0.985, using [2], the BKZ block size becomes lower than 363 which
leads to less than 2100 quantum work (in the Core-SVP [3] 0.265β model). As
we will see in Sect. 6.3, this is less than the work required to find the first failure.

Remark 6. One can think that the failures obtained by directional failure boost-
ing will not be totally independent. It is true that the failing ciphertexts are
roughly following the same direction. But applying our Assumption 1, in high

(One) Failure Is Not an Option 23

dimensions, for a reasonable number n of failures (n
 2lN), the hypercone in
which the failures belong is large enough that linear dependency will happen
with very low probability.

6 Efficiency of Directional Failure Boosting

In this section, we experimentally verify the efficiency of the directional failure
boosting technique. We first quantify the accuracy of the estimate E computed
according to Sect. 5.2. We then derive the necessary work required to run the
directional failure boosting technique and the optimal number of queries. For
the rest of the section, we focus on minimizing the total work for finding failures
and we will assume there is no upper limit to the number of decryption queries.

Our key takeaway is that, for Table 1 parameters, the more failing ciphertexts
have been found, the easier it becomes to obtain the next one, and that most of
the effort is concentrated in finding the first failure. The final work and query
overheads are stored in Table 4.

6.1 Accuracy of the Estimate

Let C0, ...,Cn−1 be n previously found failing ciphertexts and we take the esti-
mate defined according to Eq. 25. Similarly to Sect. 5.2, we define S′ = X−r0 · S
as the secret vector for an unknown Fr0 . To estimate the accuracy of E, we
compute cos(θS′E) = S′T ·E

‖S′‖2

= S′T ·Crav

‖S′‖2‖Crav‖2

as

cos(θS′E) =

S′T ·
⎛

⎝ C
(0)
0∥

∥
∥
∥
C

(0)
0

∥
∥
∥
∥
2

+
∑n−1

i=1
C

(ri)
i∥

∥
∥
∥
C

(ri)
i

∥
∥
∥
∥
2

⎞

⎠

n
∥∥S′∥∥

2

∥∥Crav

∥∥
2

(27)

=
cos

(
θ

C
(0)
0 S′

)
+

∑n−1
i=1 cos

(
θ

C
(ri)
i S′

)

∥∥∥
∥∥∥

C
(0)
0∥

∥
∥
∥
C

(0)
0

∥
∥
∥
∥
2

+
∑n−1

i=1
C

(ri)
i∥

∥
∥
∥
C

(ri)
i

∥
∥
∥
∥
2

∥∥∥
∥∥∥
2

(28)

First, we make the following approximation.

Approximation 1. We approximate the cosine with the secret S′ by its expected
value denoted cos(θCS′) := E

[
cos

(
θ

C
(ri)
i S′

)]
. In other words, for all i ∈ [1, n−1]

we assume
cos(θCS′) = cos

(
θ

C
(ri)
i S′

)
= cos

(
θ

C
(0)
0 S′

)
.

To estimate the denominator of Eq. 28, we split the ciphertexts in a compo-

nent parallel to the secret C(ri)
i,‖ and a component orthogonal C(ri)

i,⊥ to the secret.

Following Assumption 1, we will assume orthogonality between the various C(ri)
i,⊥ .

As the norm of the sum of parallel vectors is the sum of their norm, and the norm

24 J.-P. D’Anvers et al.

Table 3. Accuracy of the estimate derived from several failures. Expected value of
cos(θS′E) according to Eq. 29. The closer to 1, the more accurate E is.

n 1 2 3 5 10 20 30 50 100

Theoretical 0.328 0.441 0.516 0.613 0.739 0.841 0.885 0.926 0.961

Experimental 0.318 0.429 0.502 0.600 0.727 0.832 0.878 0.921 0.958

of the sum of orthogonal vectors can be calculated using Pythagoras’ theorem,
we can approximate cos(θS′E) as follows:

cos(θS′E) ≈ n cos(θCS′)
√

n2 cos(θCS′)2 + n sin(θCS′)2
=

cos(θCS′)
√

cos(θCS′)2 + sin(θCS′)2/n
(29)

One can see from this equation that cos(θS′E) gets closer to 1 when n
increases.

Experimental Verification. The first line of Table 3 gives the expected val-
ues of cos(θS′E) for various n, according to Eq. 29, with cos(θCS′) set to
qt/E[‖S‖]E[‖C(0)‖], which is a good approximation of cos(θCS′) as cos(θCS′) >

qt/‖S‖‖C(0)‖ and because angles tend to orthogonality in high dimensional
space.

Then, to verify the theory, we implemented a method to simulate the distribu-
tion of random failing ciphertexts. This technique is described in the full version
of our paper [15]. Once the simulated failing ciphertexts are found, we combine
them to build E using their correct rotations, and we compute cos(θS′E). The
latter experiment was repeated 100 times and the average values are reported in
line two of Table 3.

6.2 Estimating αi,ft
and βi,ft

To estimate the effectiveness of directional failure boosting given a certain num-
ber i of previously collected failing ciphertexts, we need to find the optimal weak
ciphertext threshold ft for each i. This corresponds to considering how much time
to spend for one precalculation

√
α−1

i,ft
and the average failure probability of weak

ciphertexts βi,ft
after the precalculation. Let us recall the definition of αn,ft

and
βn,ft

, derived from Eqs. 7 and 8, where C0, ...,Cn−1 are the n previously found
failing ciphertexts.

αi,ft
=

∑

∀ct:P [F |ct,C0,...,Cn−1]>ft

P [ct] (30)

βi,ft
=

∑
∀ct:P [F |ct,C0,...,Cn−1]>ft

P [ct] · P [F |ct,C0, ...,Cn−1] > ft]
∑

∀ct:P [F |ct,C0,...,Cn−1]>ft
P [ct]

. (31)

(One) Failure Is Not an Option 25

To find the optimal values, we need to calculate Eqs. 30 and 31 as functions
of ft. This requires us to list the probability of all ciphertexts ct := (C,G), and
their failure probability P [F |ct,C0, ...,Ct−1]. As discussed in [16], exhaustively
computing both values is not practically feasible, and therefore we will make
some assumptions to get an estimate.

A first simplification is to cluster ciphertexts that have similar ‖C‖2 and
|θC(0)E | · · · |θC(N−1)E | and thus a similar failure probability. To further reduce
the list size, we only take into account the largest value of | cos(θC(i)E)| denoted

maxcos(θCE) := max
i

(| cos(θC(i)E)|,

which results in a slight underestimation of the effectiveness of the attack. In
other words,

P [ct] becomes P [‖C‖2,maxcos(θCE)] ,
P [F |ct,C0, ...,Cn−1] becomes P [F | ‖C‖2,maxcos(θCE)] .

Assuming independence between the norm of C and its angle with E,
P [‖C‖2,maxcos(θCE))] can be estimated using the distributions defined with
Eqs. 10 and 13 as follows:

P [‖C‖2,maxcos(θCE)] = P [‖C‖2]︸ ︷︷ ︸
χNl,σ

·P [maxcos(θCE)]
︸ ︷︷ ︸

M(Θ2Nl,2N)

. (32)

Denoting with r the position of the maximum angle, we can rewrite
P [F | ‖C‖2,maxcos(θCE)] as follows:

P [F | ‖C‖2,maxcos(θCE)] = 1 −
∏

i

(
1 − P

[
Fi | ‖C‖2, | cos(θC(r)E)|]

)
, (33)

= 1 −
⎛

⎝

(
1 − P

[
Fr | ‖C‖2, | cos(θC(r)E)|]

)
·

∏
i�=r

(
1 − P

[
Fi | ‖C‖2, | cos(θC(i)E)| ≤ | cos(θC(r)E)|]

)

⎞

⎠ , (34)

where 1 − P
[
Fr | ‖C‖2, | cos(θC(r)E)|] can be estimated using Eq. 26, and

P
[
Fi | ‖C‖2, | cos(θC(i)E)| ≤ | cos(θC(r)E)|] using an integral over Eq. 26. The

estimated failure probability of ciphertexts given ‖C‖2 and cos(θCE) for the
parameters listed in Table 1 is depicted in Fig. 5a.

Verification Experiment. We verified these results experimentally by generating
5 · 106 failing ciphertexts and 5 · 106 successful ciphertexts, and calculating their
norm and angle with 1000 estimates, or in this case other ciphertexts. The failing
ciphertexts were produced using the methodology detailed in the full version of
our paper [15]. Once they are generated, we estimate their failure probability
with a procedure also detailed in the full version of our paper [15]. We combined
these results into Fig. 5b. These experimental results confirm our theoretical
estimates given in Fig. 5a.

26 J.-P. D’Anvers et al.

(a) Theoretical (b) Experimental

Fig. 5. Failure probability of ciphertexts as a function of ‖C‖2 and cos(θCE). A zoomed
version of (a) for easier comparison can be found the full version of our paper [15].

With the estimation of P [F | ‖C‖2,maxcos(θCE)] and P [‖C‖2,maxcos(θCE)],
αi,ft

and βi,ft
can be estimated as functions of i and ft. Let us now define the

optimal threshold ft as a function of i as :

fi := argminft

(√
αi,ft

· βi,ft

)−1
.

6.3 Total Amount of Work and Queries

In this section, we will derive the optimal work and queries for an adversary to
perform, in order to obtain n ciphertexts with probability 1−e−1. We introduce
the following notation: to find the (i + 1)th ciphertext, the adversary performs
Qi queries. Using a Poisson distribution, the success probability of finding the
(i + 1)th ciphertext in Qi queries is 1 − e−Qiβi,fi . The probability of obtaining
n failures can then be calculated as the product of the success probabilities of
finding ciphertexts 0 to n − 1:

Pn =
n−1∏

i=0

(1 − e−Qiβi,fi). (35)

This is a slight underestimation of the success probability of the attack,
because if an adversary finds a failing ciphertext in less than Qi samples, she
can query more ciphertexts in the next stages i + 1, . . . , n. However, this effect
is small due to the large value of Qi.

The total amount of precomputation quantum work, and the total amount
of queries to obtain the n failing ciphertexts by performing Qi tries for each
ciphertext, can be expressed as

Wtot
n :=

n−1∑

i=0

Qi√
αi,fi︸ ︷︷ ︸

:=Wi

Qtot
n :=

n−1∑

i=0

Qi. (36)

(One) Failure Is Not an Option 27

Table 4. Quantum work Wtot
n and queries Qtot

n required to find n failing ciphertexts
with probability 1 − e−1. Finding the first ciphertext requires the heaviest amount of
computation. After the third failing ciphertext is found, the following ones are essen-
tially for free.

Ciphertexts n 1 2 3 5 10 20 30

log2(Wtot
n) 112.45 112.77 112.78 112.78 112.78 112.78 112.78

log2(Wtot
n /Wtot

1) — 0.32 0.33 0.33 0.33 0.33 0.33

log2(Qtot
n) 102.21 102.86 102.87 102.87 102.87 102.87 102.87

log2(Qtot
n /Qtot

1) — 0.65 0.66 0.66 0.66 0.66 0.66

Recall that for now we assume there is no upper limit to the number of
decryption queries that can be made, and we focus on minimizing the amount
of work. The values of Qi that minimizes the total quantum work Wtot

n can
be found using the following Lagrange multiplier, minimizing the total amount
of work to find n failures with probability 1 − e−1 using the above probability
model:

L(Q0, · · · , Qn−1, λ) =
n−1∑

t=0

Qi√
αi,fi

+ λ

(

(1 − e−1) −
n−1∏

i=0

(1 − e−Qiβi,fi)

)

(37)

By equating the partial derivative of L in Q0, · · · , Qn−1 and λ to zero
and solving the resulting system of equations, we obtain the optimal values
of Q0, · · · , Qn−1 to mount our attack.

The resulting total work and queries of obtaining n ciphertext using direc-
tional failure boosting are given in Table 4 and Fig. 6. One can see that the
majority of the work lies in obtaining the first ciphertext, and that obtaining
more than one ciphertext can be done in less than double the work and queries, or
less than one extra bit of complexity. For schemes with a lower failure probability,
failing ciphertexts will be more correlated to the secret, so that the directional
information is higher and directional failure boosting will be more effective.

In conclusion, the security of a scheme with low failure probability under
a single target decryption failure attack can be approximated by the amount
of work and queries that an adversary needs to do in order to obtain the first
decryption failure. We emphasize the fact that obtaining many failures for a low
overhead threatens the security of the scheme (See Sect. 5.4).

7 Discussion and Variants

7.1 Comparison with D’Anvers et al. [16]

In Fig. 7, the total work and queries needed to obtain n ciphertexts with proba-
bility 1 − e−1 is plotted for both the traditional failure boosting, and our direc-
tional failure boosting approach. For a fair comparison between both results, we
adapted the method for estimating the total work and queries with success prob-
ability 1−e−1 using the traditional failure boosting of [16]. For more information
about our method, we refer to the full version of our paper [15].

28 J.-P. D’Anvers et al.

Fig. 6. Quantum work Wi and number of decryption queries Qi required to find a new
failing ciphertext, given the i failing ciphertexts found previously.

(a) Quantum work Wtot
n (b) Queries Qtot

n

Fig. 7. Quantum work Wtot
n and number of decryption queries Qtot

n required to obtain
n failing ciphertexts with probability 1 − e−1, given the number of previously found
failing ciphertexts.

7.2 Minimizing the Number of Queries Instead

In case there is a maximal number of decryption queries is imposed, say 2K , the
same attack strategy can be followed. However, to limit the number of queries
Qtot

n necessary in the attack, a stronger preprocessing
√

α−1
i,ft

might be necessary

to increase the failure probability βi,ft
of weak ciphertexts over 2−K . The only

change to accomplish this is selecting the threshold ft for each i appropriately.
Note that for most practical schemes (e.g. Kyber, Saber, New Hope), increasing
the failure probability β0,ft

over 2−K is not practically feasible or would require

too much preprocessing
√

α−1
0,ft

.

Figure 8 depicts the amount of work
√

α−1
i,ft

β−1
i,ft

needed to increase the failure

probability βi,ft
to a certain failure probability (e.g. 2−K) for the parameters

given in Table 1. The various curves correspond to different numbers of available

(One) Failure Is Not an Option 29

failing ciphertexts. From this figure, one can see that also in this case, the work is
dominated by finding the first decryption failure. Another observation is that the
attack gets much more expensive as the maximal number of decryption queries
2K gets smaller.

Fig. 8. Quantum work Wtot
n required to find a new failing ciphertext, as a function of

the decryption failure probability of a Mod-LWE scheme.

7.3 Application to ss-ntru-pke and Improvement of Guo et al. [27]

In [27], an adaptive multitarget attack is proposed on the ss-ntru-pke version of
NTRUEncrypt [10], a Ring-LWE based encryption scheme that claims security
against chosen ciphertext attacks. The parameters of this scheme are given in
Table 5. The attack performs at most 264 queries on at most 264 targets and has
a classical cost of 2216 work, and a quantum cost of 2140 when speeding up the
offline phase with Grover’s search. We adapt directional failure boosting to this
attack model and propose both a single and multitarget attack.

For the single target attack, our proposed methodology in Subsect. 6.3 needs
more than 264 queries to obtain a ciphertext. To mitigate this, we increase the
precomputational work

√
α−1 so that the failure probability of weak ciphertexts

β increases over a certain ft, which is chosen as 2−57 to make sure the total
queries are below 264. The effect is a bigger overall computation, but a reduction
in the number of necessary decryption queries. The rest of the attack proceeds
as discussed in Subsect. 6.3. The work or queries needed to obtain an extra
ciphertexts with n ciphertexts can be seen in Fig. 9a. The cost of this single
target attack is 2139.6, which is close to the cost of their multitarget attack
2139.5, as can be seen in Table 6.

Table 5. Parameters of the ss-ntru-pke [10] scheme.

l N q σs σe P [F] Claimed security

ss-ntru-pke 1 1024 230 + 213 + 1 724 724 >2−80 2198

30 J.-P. D’Anvers et al.

Table 6. Comparison of costs for different attacks against ss-ntru-pke [10].

Scheme Claimed
security

Multitarget
attack [27]

Our single target
attack

Our multitarget
attack

ss-ntru-pke 2198 2139.5 2139.6 296.6

In the multitarget case, we can use a maximum of 264 ·264 queries to find the
first failing ciphertext, after which we use the methodology of the single target
attack to obtain further ciphertext with limited amount of queries. In practice
we stay well below the query limit to find the first failure. In this case, the work
is dominated by finding the second decryption failure, as we need to do this in
under 264 queries. The resulting work to obtain an extra ciphertext is depicted
in Fig. 9b. The cost of this attack is 296.6, which is well below the cost of 2139.5

reported by Guo et al.

(a) Single target attack (b) Multitarget attack

Fig. 9. Quantum work Wtot
n and number of decryption queries Qtot

n required to find a
new failing ciphertext for ss-ntru-pke, given the ones found previously.

Acknowledgements. We thank Henri Gilbert and Alessandro Budroni for the inter-
esting discussions about decryption errors, and for providing advice during the writeup
of this paper.

References

1. Albrecht, M.R., Göpfert, F., Virdia, F., Wunderer, T.: Revisiting the expected
cost of solving uSVP and applications to LWE. In: Takagi, T., Peyrin, T. (eds.)
ASIACRYPT 2017, Part I. LNCS, vol. 10624, pp. 297–322. Springer, Cham (2017).
https://doi.org/10.1007/978-3-319-70694-8 11

2. Albrecht, M.R., Player, R., Scott, S.: On the concrete hardness of learning with
errors. JMC 9(3), 169–203 (2015)

3. Alkim, E., Ducas, L., Pöppelmann, T., Schwabe, P.: Post-quantum key exchange
– a New Hope. In: USENIX Security 2016 (2016)

https://doi.org/10.1007/978-3-319-70694-8_11

(One) Failure Is Not an Option 31

4. Baan, H., et al.: Round2: KEM and PKE based on GLWR. IACR ePrint 2017/1183
(2017)

5. Băetu, C., Durak, F.B., Huguenin-Dumittan, L., Talayhan, A., Vaudenay, S.: Mis-
use attacks on post-quantum cryptosystems. In: Ishai, Y., Rijmen, V. (eds.) EURO-
CRYPT 2019, Part II. LNCS, vol. 11477, pp. 747–776. Springer, Cham (2019).
https://doi.org/10.1007/978-3-030-17656-3 26

6. Bai, S., Galbraith, S.D.: An improved compression technique for signatures based
on learning with errors. In: Benaloh, J. (ed.) CT-RSA 2014. LNCS, vol. 8366, pp.
28–47. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-04852-9 2

7. Bos, J., et al.: CRYSTALS - Kyber: a CCA-secure module-lattice-based KEM.
IACR ePrint 2017/634 (2017)

8. Bos, J., et al.: CRYSTALS – Kyber: a CCA-secure module-lattice-based KEM
(2017)

9. Cai, T., Fan, J., Jiang, T.: Distributions of angles in random packing on spheres.
J. Mach. Learn. Res. 14(1), 1837–1864 (2013)

10. Chen, C., Hoffstein, J., Whyte, W., Zhang, Z.: NTRUEncrypt. Technical report,
NIST (2017)

11. Chen, Y., Nguyen, P.Q.: BKZ 2.0: better lattice security estimates. In: Lee, D.H.,
Wang, X. (eds.) ASIACRYPT 2011. LNCS, vol. 7073, pp. 1–20. Springer, Heidel-
berg (2011). https://doi.org/10.1007/978-3-642-25385-0 1

12. D’Anvers, J.-P., Guo, Q., Johansson, T., Nilsson, A., Vercauteren, F., Ver-
bauwhede, I.: Decryption failure attacks on IND-CCA secure lattice-based schemes.
In: Lin, D., Sako, K. (eds.) PKC 2019, Part II. LNCS, vol. 11443, pp. 565–598.
Springer, Cham (2019). https://doi.org/10.1007/978-3-030-17259-6 19

13. D’Anvers, J.-P., Karmakar, A., Sinha Roy, S., Vercauteren, F.: Saber: module-LWR
based key exchange, CPA-secure encryption and CCA-secure KEM. In: Joux, A.,
Nitaj, A., Rachidi, T. (eds.) AFRICACRYPT 2018. LNCS, vol. 10831, pp. 282–305.
Springer, Cham (2018). https://doi.org/10.1007/978-3-319-89339-6 16

14. D’Anvers, J.-P., Karmakar, A., Roy, S.S., Vercauteren, F.: SABER, Round 2 sub-
mission. Technical report, NIST (2019)

15. D’Anvers, J.-P., Rossi, M., Virdia, F.: (one) failure is not an option: bootstrap-
ping the search for failures in lattice-based encryption schemes. Cryptology ePrint
Archive, Report 2019/1399 (2019). https://eprint.iacr.org/2019/1399

16. D’Anvers, J.-P., Vercauteren, F., Verbauwhede, I.: On the impact of decryption
failures on the security of LWE/LWR based schemes. IACR ePrint 2018/1089
(2018)

17. D’Anvers, J.-P., Vercauteren, F., Verbauwhede, I.: The impact of error dependen-
cies on Ring/Mod-LWE/LWR based schemes. IACR ePrint 2018/1172 (2018)

18. Dent, A.W.: A designer’s guide to KEMs. In: Paterson, K.G. (ed.) Cryptogra-
phy and Coding 2003. LNCS, vol. 2898, pp. 133–151. Springer, Heidelberg (2003).
https://doi.org/10.1007/978-3-540-40974-8 12

19. Diffie, W., Hellman, M.: New directions in cryptography. IEEE Trans. Inf. Theory
22(6), 644–654 (1976)

20. Ducas, L., et al.: CRYSTALS-dilithium: a lattice-based digital signature scheme.
TCHES 2018(1), 238–268 (2018)

21. ElGamal, T.: A public key cryptosystem and a signature scheme based on discrete
logarithms. IEEE Trans. Inf. Theory 31(4), 469–472 (1985)

22. Fluhrer, S.: Cryptanalysis of ring-LWE based key exchange with key share reuse.
IACR ePrint 2016/085 (2016)

23. Fujisaki, E., Okamoto, T.: Secure integration of asymmetric and symmetric encryp-
tion schemes. J. Cryptol. 26(1), 80–101 (2013)

https://doi.org/10.1007/978-3-030-17656-3_26
https://doi.org/10.1007/978-3-319-04852-9_2
https://doi.org/10.1007/978-3-642-25385-0_1
https://doi.org/10.1007/978-3-030-17259-6_19
https://doi.org/10.1007/978-3-319-89339-6_16
https://eprint.iacr.org/2019/1399
https://doi.org/10.1007/978-3-540-40974-8_12

32 J.-P. D’Anvers et al.

24. Gama, N., Nguyen, P.Q.: New chosen-ciphertext attacks on NTRU. In: Okamoto,
T., Wang, X. (eds.) PKC 2007. LNCS, vol. 4450, pp. 89–106. Springer, Heidelberg
(2007). https://doi.org/10.1007/978-3-540-71677-8 7

25. Gentry, C., Boneh, D.: A Fully Homomorphic Encryption Scheme. Stanford Uni-
versity, Stanford (2009)

26. Grover, L.K.: A fast quantum mechanical algorithm for database search. In: Pro-
ceedings of the Twenty-Eighth Annual ACM Symposium on Theory of Computing,
STOC 1996. ACM, New York (1996)

27. Guo, Q., Johansson, T., Nilsson, A.: A Generic Attack on Lattice-based Schemes
using Decryption Errors with Application to ss-ntru-pke. IACR ePrint 2019/043
(2019)

28. Hofheinz, D., Hövelmanns, K., Kiltz, E.: A modular analysis of the Fujisaki-
Okamoto transformation. In: Kalai, Y., Reyzin, L. (eds.) TCC 2017, Part I. LNCS,
vol. 10677, pp. 341–371. Springer, Cham (2017). https://doi.org/10.1007/978-3-
319-70500-2 12

29. Howgrave-Graham, N., et al.: The impact of decryption failures on the security
of NTRU encryption. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp.
226–246. Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-540-45146-
4 14

30. Jaulmes, É., Joux, A.: A chosen-ciphertext attack against NTRU. In: Bellare, M.
(ed.) CRYPTO 2000. LNCS, vol. 1880, pp. 20–35. Springer, Heidelberg (2000).
https://doi.org/10.1007/3-540-44598-6 2

31. Jiang, H., Zhang, Z., Chen, L., Wang, H., Ma, Z.: Post-quantum IND-CCA-secure
KEM without additional hash. IACR ePrint 2017/1096

32. Johnson, N.L., Kotz, S., Balakrishnan, N.: Continuous Univariate Distributions.
Houghton Mifflin, Boston (1970)

33. Katz, J., Lindell, Y.: Introduction to Modern Cryptography, 2nd edn. Chapman
& Hall/CRC, Boca Raton (2014)

34. Langlois, A., Stehlé, D.: Worst-case to average-case reductions for module lat-
tices. Des. Codes Crypt. 75(3), 565–599 (2014). https://doi.org/10.1007/s10623-
014-9938-4

35. Lu, X., Liu, Y., Jia, D., Xue, H., He, J., Zhang, Z.: LAC. Technical report, NIST
(2017)

36. Lyubashevsky, V.: Fiat-Shamir with aborts: applications to lattice and factoring-
based signatures. In: Matsui, M. (ed.) ASIACRYPT 2009. LNCS, vol. 5912, pp.
598–616. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-10366-
7 35

37. Lyubashevsky, V., Peikert, C., Regev, O.: On ideal lattices and learning with errors
over rings. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 1–23.
Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13190-5 1

38. Micciancio, D., Vadhan, S.P.: Statistical zero-knowledge proofs with efficient
provers: lattice problems and more. In: Boneh, D. (ed.) CRYPTO 2003. LNCS,
vol. 2729, pp. 282–298. Springer, Heidelberg (2003). https://doi.org/10.1007/978-
3-540-45146-4 17

39. Naehrig, M., et al.: FrodoKEM. Technical report, NIST (2017)
40. NIST: Submission requirements and evaluation criteria for the Post-Quantum

Cryptography standardization process (2016)
41. Pearl, J.: Probabilistic Reasoning in Intelligent Systems: Networks of Plausible

Inference. Elsevier, Amsterdam (2014)

https://doi.org/10.1007/978-3-540-71677-8_7
https://doi.org/10.1007/978-3-319-70500-2_12
https://doi.org/10.1007/978-3-319-70500-2_12
https://doi.org/10.1007/978-3-540-45146-4_14
https://doi.org/10.1007/978-3-540-45146-4_14
https://doi.org/10.1007/3-540-44598-6_2
https://doi.org/10.1007/s10623-014-9938-4
https://doi.org/10.1007/s10623-014-9938-4
https://doi.org/10.1007/978-3-642-10366-7_35
https://doi.org/10.1007/978-3-642-10366-7_35
https://doi.org/10.1007/978-3-642-13190-5_1
https://doi.org/10.1007/978-3-540-45146-4_17
https://doi.org/10.1007/978-3-540-45146-4_17

(One) Failure Is Not an Option 33

42. Peikert, C., Vaikuntanathan, V.: Noninteractive statistical zero-knowledge proofs
for lattice problems. In: Wagner, D. (ed.) CRYPTO 2008. LNCS, vol. 5157, pp.
536–553. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-85174-
5 30

43. Regev, O.: On lattices, learning with errors, random linear codes, and cryptogra-
phy. In: STOC. ACM (2005)

44. Saito, T., Xagawa, K., Yamakawa, T.: Tightly-Secure Key-Encapsulation Mecha-
nism in the Quantum Random Oracle Model. IACR ePrint 2017/1005 (2017)

45. Schnorr, C.-P., Euchner, M.: Lattice basis reduction: improved practical algo-
rithms and solving subset sum problems. Math. Program. 66(1–3), 181–199 (1994).
https://doi.org/10.1007/BF01581144

46. Schwabe, P., et al.: Crystals-Kyber, Round 2 submission. Technical report, NIST,
Post-Quantum Standardization Process Round 2 (2019)

47. Stehlé, D., Steinfeld, R., Tanaka, K., Xagawa, K.: Efficient public key encryp-
tion based on ideal lattices. In: Matsui, M. (ed.) ASIACRYPT 2009. LNCS, vol.
5912, pp. 617–635. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-
642-10366-7 36

48. Targhi, E.E., Unruh, D.: Post-quantum security of the Fujisaki-Okamoto and
OAEP transforms. In: Hirt, M., Smith, A. (eds.) TCC 2016, Part II. LNCS, vol.
9986, pp. 192–216. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-
662-53644-5 8

https://doi.org/10.1007/978-3-540-85174-5_30
https://doi.org/10.1007/978-3-540-85174-5_30
https://doi.org/10.1007/BF01581144
https://doi.org/10.1007/978-3-642-10366-7_36
https://doi.org/10.1007/978-3-642-10366-7_36
https://doi.org/10.1007/978-3-662-53644-5_8
https://doi.org/10.1007/978-3-662-53644-5_8

Key Recovery from Gram–Schmidt Norm
Leakage in Hash-and-Sign Signatures

over NTRU Lattices

Pierre-Alain Fouque1, Paul Kirchner1, Mehdi Tibouchi2(B),
Alexandre Wallet2, and Yang Yu1(B)

1 Univ Rennes, CNRS, IRISA, Rennes, France
pa.fouque@gmail.com, paul.kirchner@irisa.fr, yang.yu0986@gmail.com

2 NTT Corporation, Tokyo, Japan
{mehdi.tibouchi.br,alexandre.wallet.th}@hco.ntt.co.jp

Abstract. In this paper, we initiate the study of side-channel leakage
in hash-and-sign lattice-based signatures, with particular emphasis on
the two efficient implementations of the original GPV lattice-trapdoor
paradigm for signatures, namely NIST second-round candidate Falcon
and its simpler predecessor DLP. Both of these schemes implement the
GPV signature scheme over NTRU lattices, achieving great speed-ups
over the general lattice case. Our results are mainly threefold.

First, we identify a specific source of side-channel leakage in most
implementations of those schemes, namely, the one-dimensional Gaussian
sampling steps within lattice Gaussian sampling. It turns out that the
implementations of these steps often leak the Gram–Schmidt norms of
the secret lattice basis.

Second, we elucidate the link between this leakage and the secret key,
by showing that the entire secret key can be efficiently reconstructed
solely from those Gram–Schmidt norms. The result makes heavy use of
the algebraic structure of the corresponding schemes, which work over a
power-of-two cyclotomic field.

Third, we concretely demonstrate the side-channel attack against DLP
(but not Falcon due to the different structures of the two schemes). The
challenge is that timing information only provides an approximation of
the Gram–Schmidt norms, so our algebraic recovery technique needs to
be combined with pruned tree search in order to apply it to approximate
values. Experimentally, we show that around 235 DLP traces are enough
to reconstruct the entire key with good probability.

1 Introduction

Lattice-Based Signatures. Lattice-based cryptography has proved to be a
versatile way of achieving a very wide range of cryptographic primitives with
strong security guarantees that are also believed to hold in the postquantum
setting. For a while, it was largely confined to the realm of theoretical cryp-
tography, mostly concerned with asymptotic efficiency, but it has made major
c© International Association for Cryptologic Research 2020
A. Canteaut and Y. Ishai (Eds.): EUROCRYPT 2020, LNCS 12107, pp. 34–63, 2020.
https://doi.org/10.1007/978-3-030-45727-3_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-45727-3_2&domain=pdf
https://doi.org/10.1007/978-3-030-45727-3_2

Key Recovery from Gram–Schmidt Norm Leakage 35

strides towards practicality in recent years. Significant progress has been made
in terms of practical constructions, refined concrete security estimates and fast
implementations. As a result, lattice-based schemes are seen as strong contenders
in the NIST postquantum standardization process.

In terms of practical signature schemes in particular, lattice-based construc-
tions broadly fit within either of two large frameworks: Fiat–Shamir type con-
structions on the one hand, and hash-and-sign constructions on the other.

Fiat–Shamir lattice based signatures rely on a variant of the Fiat–
Shamir paradigm [16] developed by Lyubashevsky, called “Fiat–Shamir with
aborts” [31], which has proved particularly fruitful. It has given rise to numer-
ous practically efficient schemes [2,8,23] including the two second round NIST
candidates Dilithium [10,33] and qTESLA [5].

The hash-and-sign family has a longer history, dating back to Goldreich–
Goldwasser–Halevi [22] signatures as well as NTRUSign [24]. Those early pro-
posals were shown to be insecure [12,19,21,40], however, due to a statistical
dependence between the distribution of signatures and the signing key. That
issue was only overcome with the development of lattice trapdoors by Gentry,
Peikert and Vaikuntanathan [20]. In the GPV scheme, signatures follow a distri-
bution that is provably independent of the secret key (a discrete Gaussian sup-
ported on the public lattice), but which is hard to sample from without knowing
a secret, short basis of the lattice. The scheme is quite attractive from a theoret-
ical standpoint (for example, it is easier to establish QROM security for it than
for Fiat–Shamir type schemes), but suffers from large keys and a potentially
costly procedure for discrete Gaussian sampling over a lattice. Several follow-
up works have then striven to improve its concrete efficiency [13,34,37,42,49],
culminating in two main efficient and compact implementations: the scheme
of Ducas, Lyubashevsky and Prest (DLP) [11], and its successor, NIST sec-
ond round candidate Falcon [47], both instantiated over NTRU lattices [24] in
power-of-two cyclotomic fields. One can also mention NIST first round candi-
dates pqNTRUSign [52] and DRS [44] as members of this family, the latter of
which actually fell prey to a clever statistical attack [51] in the spirit of those
against GGH and NTRUSign.

Side-Channel Analysis of Lattice-Based Signatures. With the NIST
postquantum standardization process underway, it is crucial to investigate the
security of lattice-based schemes not only in a pure algorithmic sense, but
also with respect to implementation attacks, such as side-channels. For lattice-
based signatures constructed using the Fiat–Shamir paradigm, this problem
has received a significant amount of attention in the literature, with numer-
ous works [4,6,7,14,43,50] pointing out vulnerabilities with respect to tim-
ing attacks, cache attacks, power analysis and other types of side-channels.
Those attacks have proved particularly devastating against schemes using dis-
crete Gaussian sampling, such as the celebrated BLISS signature scheme [8]. In
response, several countermeasures have also been proposed [27,28,39], some of
them provably secure [3,4], but the side-channel arms race does not appear to
have subsided quite yet.

36 P.-A. Fouque et al.

In contrast, the case of hash-and-sign lattice-based signatures, including DLP
and Falcon, remains largely unexplored, despite concerns being raised regarding
their vulnerability to side-channel attacks. For example, the NIST status report
on first round candidates, announcing the selection of Falcon to the second
round, notes that “more work is needed to ensure that the signing algorithm
is secure against side-channel attacks”. The relative lack of cryptanalytic works
regarding these schemes can probably be attributed to the fact that the relation-
ship between secret keys and the information that leaks through side-channels
is a lot more subtle than in the Fiat–Shamir setting.

Indeed, in Fiat–Shamir style schemes, the signing algorithm uses the secret
key very directly (it is combined linearly with other elements to form the signa-
ture), and as a result, side-channel leakage on sensitive variables, like the random
nonce, easily leads to key exposure. By comparison, the way the signing key is
used in GPV type schemes is much less straightforward. The key is used to con-
struct the trapdoor information used for the lattice discrete Gaussian sampler; in
the case of the samplers [13,20,30] used in GPV, DLP and Falcon, that infor-
mation is essentially the Gram–Schmidt orthogonalization (GSO) of a matrix
associated with the secret key. Moreover, due to the way that GSO matrix is
used in the sampling algorithm, only a small amount of information about it is
liable to leak through side-channels, and how that small amount relates to the
signing key is far from clear. To the best of our knowledge, neither the problem of
identifying a clear side-channel leakage, nor that of relating that such a leakage
to the signing key have been tackled in the literature so far.

Our Contributions. In this work, we initiate the study of how side-channel
leakage impacts the security of hash-and-sign lattice-based signature, focusing
our attention to the two most notable practical schemes in that family, namely
DLP and Falcon. Our contributions towards that goal are mainly threefold.

First, we identify a specific leakage of the implementations of both DLP and
Falcon (at least in its original incarnation) with respect to timing side-channels.
As noted above, the lattice discrete Gaussian sampler used in signature genera-
tion relies on the Gram–Schmidt orthogonalization of a certain matrix associated
with the secret key. Furthermore, the problem of sampling a discrete Gaussian
distribution supported over the lattice is reduced to sampling one-dimensional
discrete Gaussians with standard deviations computed from the norms of the
rows of that GSO matrix. In particular, the one-dimensional sampler has to
support varying standard deviations, which is not easy to do in constant time.
Unsurprisingly, the target implementations both leak that standard deviation
through timing side-channels; specifically, they rely on rejection sampling, and
the acceptance rate of the corresponding loop is directly related to the standard
deviation. As a result, timing attacks will reveal the Gram–Schmidt norms of
the matrix associated to the secret key (or rather, an approximation thereof, to
a precision increasing with the number of available samples).

Key Recovery from Gram–Schmidt Norm Leakage 37

Second, we use algebraic number theoretic techniques to elucidate the link
between those Gram–Schmidt norms and the secret key. In fact, we show that
the secret key can be entirely reconstructed from the knowledge of those Gram–
Schmidt norms (at least if they are known exactly), in a way which crucially
relies on the algebraic structure of the corresponding lattices.

Since both DLP and Falcon work in an NTRU lattice, the signing key can
be expressed as a pair (f, g) of small elements in a cyclotomic ring R = Z[ζ] (of
power-of-two conductor, in the case of those schemes). The secret, short basis
of the NTRU lattice is constructed by blocks from the multiplication matrices
of f and g (and related elements F,G) in a certain basis of R as a Z-algebra
(DLP uses the usual power basis, whereas Falcon uses the power basis in bit-
reversed order ; this apparently small difference interestingly plays a crucial role
in this work). It is then easily seen that the Gram matrix of the first half of the
lattice basis is essentially the multiplication matrix associated with the element
u = ff̄ + gḡ, where the bar denotes the complex conjugation ζ̄ = ζ−1. From
that observation, we deduce that knowing the Gram–Schmidt norms of lattice
basis is essentially equivalent to knowing the leading principal minors of the
multiplication matrix of u, which is a real, totally positive element of R.

We then give general efficient algorithms, both for the power basis (DLP
case) and for the bit-reversed order power basis (Falcon case), which recover
an arbitrary totally positive element u (up to a possible automorphism of the
ambient field) given the leading principal minors of its multiplication matrix. The
case of the power basis is relatively easy: we can actually recover the coefficients
iteratively one by one, with each coefficient given as a solution of quadratic
equation over Q depending only on the minors and the previous coefficients.
The bit-reversed order power basis is more contrived, however; recovery is then
carried out recursively, by reduction to the successive subfields of the power-of-
two cyclotomic tower.

Finally, to complete the recovery, we need to deduce f and g from u. We
show that this can be done using the public key h = g/f mod q: we can use it to
reconstruct both the relative norm ff̄ of f , and the ideal (f) ⊂ R. That data can
then be plugged into the Gentry–Szydlo algorithm [21] to obtain f in polynomial
time, and hence g. Those steps, though simple, are also of independent interest,
since they can be applied to the side-channel attack against BLISS described
in [14], in order to get rid of the expensive factorization of an algebraic norm,
and hence make the attack efficient for all keys (instead of a small percentage of
weak keys as originally stated).

Our third contribution is to actually collect timing traces for the DLP scheme
and mount the concrete key recovery. This is not an immediate consequence
of the previous points, since our totally positive element recovery algorithm
a priori requires the exact knowledge of Gram–Schmidt norms, whereas side-
channel leakage only provides approximations (and since some of the squared
Gram–Schmidt norms are rational numbers of very large height, recovering them
exactly would require an unrealistic number of traces). As a result, the recovery
algorithm has to be combined with some pruned tree search in order to account

38 P.-A. Fouque et al.

for approximate inputs. In practice, for the larger parameters of DLP signatures
(with a claimed security level of 192 bits), we manage to recover the key with
good probability using 233 to 235 DLP timing traces.

Carrying out such an experiment in the Falcon setting, however, is left
as a challenging open problem for further work. This is because adapting the
bit-reversed order totally positive recovery algorithm to deal with approximate
inputs appears to be much more difficult (instead of sieving integers whose square
lies in some specified interval, one would need to find the cyclotomic integers
whose square lies in some target set, which does not even look simple to describe).

The source code of the attack is available at https://github.com/yuyang-
crypto/Key Recovery from GSnorms.

Related Work. As noted above, the side-channel security of Fiat–Shamir
lattice-based signature has been studied extensively, including in [4,6,7,14,43,
50]. However, the only implementation attacks we are aware of against hash-
and-sign schemes are fault analysis papers [15,35]: side-channel attacks have not
been described so far to the best of our knowledge.

Aside from the original implementations of DLP and Falcon, which are
the focus of this paper, several others have appeared in the literature. However,
they usually do not aim for side-channel security [36,41] or only make the base
discrete Gaussian sampler (with fixed standard deviation) constant time [29],
but do not eliminate the leakage of the varying standard deviations. As a result,
those implementations are also vulnerable to the attacks of this paper.

This is not the case, however, for Pornin’s very recent, updated implementa-
tion of Falcon, which uses a novel technique proposed by Prest, Ricosset and
Rossi [48], combined with other recent results on constant time rejection sam-
pling for discrete Gaussian distribution [4,53] in order to eliminate the timing
leakage of the lattice discrete Gaussian sampler. This technique applies to dis-
crete Gaussian sampling over Z with varying standard deviations, when those
deviations only take values in a small range. It is then possible to eliminate
the dependence on the standard deviation in the rejection sampling by scaling
the target distribution to match the acceptance rate of the maximal possible
standard deviation. The small range ensures that the overhead of this coun-
termeasure is relatively modest. Thanks to this countermeasure, we stress that
the most recent official implementation of Falcon is already protected against
the attacks of this paper. Nevertheless, we believe our results underscore the
importance of applying such countermeasures.

Organization of the Paper. Following some preliminary material in Sect. 2,
Sect. 3 is devoted to recalling some general facts about signature generation
for hash-and-sign lattice-based schemes. Section 4 then gives a roadmap of our
attack strategy, and provides some details about the final steps (how to deduce
the secret key from the totally positive element u = ff̄ + gḡ. Section 5 describes
our main technical contribution: the algorithms that recover u from the Gram–
Schmidt norms, both in the DLP and in the Falcon setting. Section 6 delves
into the details of the side-channel leakage, showing how the implementations of

https://github.com/yuyang-crypto/Key_Recovery_from_GSnorms
https://github.com/yuyang-crypto/Key_Recovery_from_GSnorms

Key Recovery from Gram–Schmidt Norm Leakage 39

the Gaussian samplers of DLP and Falcon do indeed reveal the Gram–Schmidt
norms through timing side-channels. Finally, Sect. 7 presents our concrete exper-
iments against DLP, including the tree search strategy to accommodate approx-
imate Gram–Schmidt norms and experimental results in terms of timing and
number of traces.

Notation. We use bold lowercase letters for vectors and bold uppercase for
matrices. The zero vector is 0. We denote by N the non-negative integer set
and by log the natural logarithm. Vectors are in row form, and we write B =
(b0, . . . ,bn−1) to denote that bi is the i-th row of B. For a matrix B ∈ R

n×m,
we denote by Bi,j the entry in the i-th row and j-th column of B, where i ∈
{0, . . . , n − 1} and j ∈ {0, . . . , m − 1}. For I ⊆ [0, n), J ⊆ [0,m), we denote by
BI×J the submatrix (Bi,j)i∈I,j∈J . In particular, we write BI = BI×I . Let Bt

denote the transpose of B.
Given u = (u0, . . . , un−1) and v = (v0, . . . , vn−1), their inner product is

〈u,v〉 =
∑n−1

i=0 uivi. The �2-norm of v is ‖v‖ =
√〈v,v〉 and the �∞-norm is

‖v‖∞ = maxi |vi|. The determinant of a square matrix B is denoted by det(B),
so that det

(
B[0,i]

)
is the i-th leading principal minor of B.

Let D be a distribution. We write z ←↩ D when the random variable z is
sampled from D, and denote by D(x) the probability that z = x. The expectation
of a random variable z is E[z]. We write N (μ, σ2) the normal distribution of mean
μ and variance σ2. We let U(S) be the uniform distribution over a finite set S.
For a real-valued function f and any countable set S in the domain of f , we
write f(S) =

∑
x∈S f(x).

2 Preliminaries

A lattice L is a discrete additive subgroup of Rm. If it is generated by B ∈ R
n×m,

we also write L := L(B) = {xB | x ∈ Z
n}. If B has full row rank, then we call

B a basis and n the rank of L.

2.1 Gram–Schmidt Orthogonalization

Let B = (b0, . . . ,bn−1) ∈ Q
n×m of rank n. The Gram-Schmidt orthogonaliza-

tion of B is B = LB∗, where L ∈ Q
n×n is lower-triangular with 1 on its diagonal

and B∗ = (b∗
0, . . . ,b

∗
n−1) is a matrix with pairwise orthogonal rows. We call ‖b∗

i ‖
the i-th Gram-Schmidt norm of B, and let ‖B‖GS = maxi ‖b∗

i ‖.
The Gram matrix of B is G = BBt, and satisfies G = LDLt where D =

diag
(‖b∗

i ‖2
)
. This is also known as the Cholesky decomposition of G, and such

a decomposition exists for any symmetric positive definite matrix. The next
proposition follows from the triangular structure of L.

Proposition 1. Let B = Q
n×m of rank n and G its Gram matrix. Then for all

integer 0 ≤ k ≤ n − 1, we have det
(
G[0,k]

)
=

∏k
i=0 ‖b∗

i ‖2.

40 P.-A. Fouque et al.

Let M =
(
A B
C D

)

, where A ∈ R
n×n, D ∈ R

m×m are invertible matrices,

then M/A = D − CA−1B ∈ R
m×m is called the Schur complement of A. It

holds that
det(M) = det(A) det(M/A). (1)

2.2 Parametric Statistics

Let Dp be some distribution determined by parameter p. Let X = (X1, . . . , Xn)
be a vector of observed samples of X ←↩ Dp. The log-likelihood function with
respect to X is

�X(p) =
n∑

i=1

log(Dp(Xi)).

Provided the log-likelihood function is bounded, a maximum likelihood estimator
for samples X is a real MLE(X) maximizing �X(p). The Fisher information is

I(p) = −E

[
d2

dp2
�X(p)

]

.

Seen as a random variable, it is known (e.g. [26, Theorem 6.4.2]) that√
n(MLE(X) − p) converges in distribution to N (0, I(p)−1). When the target

distribution is a geometric, maximum likelihood estimators and the Fisher infor-
mation are well-known. The second statement of the next lemma directly comes
from a Gaussian tail bound.

Lemma 1. Let Geop denote a geometric distribution with parameter p, and X =
(X1, · · · ,Xn) be samples from Geop. Then we have MLE(X) = n∑n

i=1 Xi
and√

n(MLE(X) − p) converges in distribution to N (0, p2(1 − p)). In particular,

when N is large, then for any α ≥ 1, we have |MLE(X)− p| ≤ α · p
√

1−p
N except

with probability at most 2 exp(−α2/2).

2.3 Discrete Gaussian Distributions

Let ρσ,c(x) = exp
(
−‖x−c‖2

2σ2

)
be the n-dimensional Gaussian function with cen-

ter c ∈ R
n and standard deviation σ. When c = 0, we just write ρσ(x). The

discrete Gaussian over a lattice L with center c and standard deviation param-
eter σ is defined by the probability function

DL,σ,c(x) =
ρσ,c(x)
ρσ,c(L)

,∀x ∈ L.

In this work, the case L = Z is of particular interest. It is well known that∫ ∞
−∞ ρσ,c(x)dx = σ

√
2π. Notice that DZ,σ,c is equivalent to i + DZ,σ,c−i for an

Key Recovery from Gram–Schmidt Norm Leakage 41

arbitrary i ∈ Z, hence it suffices to consider the case where c ∈ [0, 1). The half
discrete integer Gaussian, denoted by D+

Z,σ,c, is defined by

D+
Z,σ,c(x) =

ρσ,c(x)
ρσ,c(N)

,∀x ∈ N.

We again omit the center when it is c = 0. For any ε > 0, the (scaled)1 smoothing
parameter η′

ε(Z) is the smallest s > 0 such that ρ1/s
√
2π(Z) ≤ 1 + ε. In practice,

ε is very small, say 2−50. The smoothing parameter allows to quantify precisely
how the discrete Gaussian differs from the standard Gaussian function.

Lemma 2 ([38], implicit in Lemma 4.4). If σ ≥ η′
ε(Z), then ρσ(c + Z) ∈

[1−ε
1+ε , 1]ρσ(Z) for any c ∈ [0, 1).

Corollary 1. If σ ≥ η′
ε(Z), then ρσ(Z) ∈ [1, 1+ε

1−ε]
√

2πσ.

Proof. Notice that
∫ 1

0
ρσ(Z + c)dc =

∫ ∞
−∞ ρσ(x)dx =

√
2πσ, the proof is com-

pleted by Lemma 2.
�

2.4 Power-of-Two Cyclotomic Fields

For the rest of this article, we let n = 2� for some integer � ≥ 1. We let ζn be a
2n-th primitive root of 1. Then Kn = Q(ζn) is the n-th power-of-two cyclotomic
field, and comes together with its ring of algebraic integers Rn = Z[ζn]. It is
also equipped with n field automorphisms forming the Galois group which is
commutative in this case. It can be seen that Kn/2 = Q(ζn/2) is the subfield of
Kn fixed by the automorphism σ(ζn) = −ζn of Kn, as ζ2n = ζn/2. This leads to
a tower of field extensions and their corresponding rings of integers

Kn ⊇ Kn/2 ⊇ · · · ⊇ K1 = Q

∪ ∪ · · · ∪
Rn ⊇ Rn/2 ⊇ · · · ⊇ R1 = Z

Given an extension Kn|Kn/2, the relative trace Tr : Kn → Kn/2 is the Kn/2-linear
map given by Tr(f) = f +σ(f). Similarly, the relative norm is the multiplicative
map N(f) = f ·σ(f) ∈ Kn/2. Both maps send integers in Kn to integers in Kn/2.
For all f ∈ Kn, it holds that f = (Tr(f) + ζnTr(ζ−1

n f))/2.
We are also interested in the field automorphism ζn �→ ζ−1

n = ζ̄n, which
corresponds to the complex conjugation. We call adjoint the image f̄ of f under
this automorphism. The fixed subfield K+

n := Q(ζn +ζ−1
n) is known as the totally

real subfield and contains the self-adjoint elements, that is, such that f = f̄ .
Another way to describe self-adjoint elements is to say that all their complex
embeddings2 are in fact reals. Elements whose embeddings are all positive are
called totally positive elements, and we denote their set by K++

n . A standard
example of such an element is given by ff̄ for any f ∈ Kn. It is well-known that
the Galois automorphisms act as permutation of these embeddings, so that a
totally positive element stays positive under the action of the Galois group.
1 The scaling factor is (

√
2π)−1 before the smoothing parameter ηε(Z) in [38].

2 Each root of xn + 1 describes one complex embedding by mean of evaluation.

42 P.-A. Fouque et al.

Representation of Cyclotomic Numbers. We also have Kn � Q[x]/(xn + 1) and
Rn � Z[x]/(xn + 1), so that elements in cyclotomic fields can be seen as poly-
nomials. In this work, each f =

∑n−1
i=0 fiζ

i
n ∈ Kn is identified with its coefficient

vector (f0, · · · , fn−1). Then the inner product of f and g is 〈f, g〉 =
∑n−1

i=0 figi,
and we write ‖f‖, resp. ‖f‖∞, the �2-norm, resp. �∞-norm, of f . In this represen-
tation, it can be checked that f̄ = (f0,−fn−1, . . . ,−f1) and that 〈f, gh〉 = 〈fḡ, h〉
for all f, g, h ∈ Kn. In particular, the constant coefficient of fḡ is 〈f, g〉 = 〈fḡ, 1〉.
A self-adjoint element f has coefficients (f0, f1, . . . , fn/2−1, 0,−fn/2−1, . . . ,−f1).

Elements in Kn can also be represented by their matrix of multiplication in
the basis 1, ζn, . . . , ζn−1

n . In other words, the map An : Kn → Q
n×n defined by

An(f) =

⎛

⎜
⎜
⎜
⎝

f0 f1 · · · fn−1

−fn−1 f0 · · · fn−2

...
...

. . .
...

−f1 −f2 · · · f0

⎞

⎟
⎟
⎟
⎠

=

⎛

⎜
⎜
⎜
⎝

f
ζn · f

...
ζn−1
n · f

⎞

⎟
⎟
⎟
⎠

is a ring isomorphism. We have fg = g · An(f). We can also see that An(f̄) =
An(f)t which justifies the term “adjoint”. We deduce that the matrix of a self-
adjoint element is symmetric. It can be observed that a totally positive element
A ∈ Kn corresponds to the symmetric positive definite matrix An(A).

For efficiency reasons, the scheme Falcon uses another representation cor-
responding to the tower structure. If f = (f0, . . . , fn−1) ∈ Kn, we let fe =
Tr(f)/2 = (f0, f2, . . . , fn−2) and fo = Tr(ζ−1

n f)/2 = (f1, f3, . . . , fn−1). Let
Pn ∈ Z

n×n be the permutation matrix corresponding to the bit-reversal order.
We define Fn(f) = PnAn(f)Pt

n. In particular, it is also symmetric positive
definite when f is a totally positive element. As shown in [13], it holds that

Fn(f) =
(Fn/2(fe) Fn/2(fo)

Fn/2(ζn/2fo) Fn/2(fe)

)

. (2)

2.5 NTRU Lattices

Given f, g ∈ Rn such that f is invertible modulo some q ∈ Z, we let
h = f−1g mod q. The NTRU lattice determined by h is LNTRU = {(u, v) ∈
R2

n : u + vh = 0 mod q}. Two bases of this lattice are of particular interest for
cryptography:

BNTRU =
(

q 0
−h 1

)

and Bf,g =
(

g − f
G − F

)

,

where F,G ∈ Rn such that fG−gF = q. Indeed, the former basis acts usually as
the public key, while the latter is the secret key, also called the trapdoor basis,
when f, g, F,G are short vectors. In practice, these matrices are represented
using either the operator An [11] or Fn [47]:

BA
f,g =

(An(g) An(−f)
An(G) An(−F)

)

and BF
f,g =

(Fn(g) Fn(−f)
Fn(G) Fn(−F)

)

.

Key Recovery from Gram–Schmidt Norm Leakage 43

3 Hash-and-Sign over NTRU Lattices

Gentry, Peikert and Vaikuntanathan introduced in [20] a generic and provably
secure hash-and-sign framework based on trapdoor sampling. This paradigm
has then been instantiated over NTRU lattices giving rise to practically efficient
cryptosystems: DLP [11] and Falcon [47] signature schemes.

In the NTRU-based hash-and-sign scheme, the secret key is a pair of short
polynomials (f, g) ∈ R2

n and the public key is h = f−1g mod q. The trapdoor
basis Bf,g (of LNTRU) derives from (f, g) by computing F,G ∈ Rn such that
fG − gF = q. In both the DLP signature and Falcon, the trapdoor basis has
a bounded Gram-Schmidt norm: ‖Bf,g‖GS ≤ 1.17

√
q for compact signatures.

The signing and verification procedure is described on a high level as follows:

Sign(m, sk = Bf,g)
Compute c = hash(m) ∈ Rn;
Using sk, sample a short (s1, s2)
such that s1 + s2h = c mod q;
Return s = s2.

Verify(m, s, pk = h)
Compute c = hash(m) ∈ Rn;
Compute s = (c − sh mod q, s);
If ‖s‖ is not small enough, reject.
Accept.

Lattice Gaussian samplers [20,42] are nowadays a standard tool to generate
signatures provably statistically independent of the secret basis. However, such
samplers are also a notorious target for side-channel attacks. This work makes no
exception and attacks non constant-time implementations of the lattice Gaussian
samplers at the heart of both DLP and Falcon, that are based on the KGPV
sampler [30] or its ring variant [13]. Precisely, while previous attacks target to
Gaussian with public standard deviations, our attack learns the secret-dependent
Gaussian standard deviations involved in the KGPV sampler.

3.1 The KGPV Sampler and Its Variant

The KGPV sampler is a randomized variant of Babai’s nearest plane algo-
rithm [1]: instead of rounding each center to the closest integer, the KGPV
sampler determines the integral coefficients according to some integer Gaus-
sians. It is shown in [20] that under certain smoothness condition, the algorithm
outputs a sample from a distribution negligibly close to the target Gaussian. Its
formal description is illustrated in Algorithm 3.1.

Note that in the KGPV sampler (or its ring variant), the standard deviations
of integer Gaussians are inversely proportional to the Gram-Schmidt norms of the
input basis. In the DLP scheme, B is in fact the trapdoor basis BA

f,g ∈ Z
2n×2n.

The Ducas–Prest Sampler. Falcon uses a variant of the KGPV algorithm which
stems naturally from Ducas–Prest’s fast Fourier nearest plane algorithm [13]. It
exploits the tower structure of power-of-two cyclotomic rings. Just like the KGPV
sampler, the Ducas-Prest sampler fundamentally relies on integer Gaussian sam-
pling to output Gaussian vectors. We omit its algorithmic description, as it is not
needed in this work. Overall, what matters is to understand that the standard

44 P.-A. Fouque et al.

Algorithm 3.1. The KGPV algorithm KGPV(σ,B, c)
Input: a basis B = (b0, · · · ,bn−1) of a lattice L, c ∈ Q

n and σ ≥ ‖B‖GS · ηε(Z).
Output: z ∈ Z

n such that zB follows a distribution close to DL,σ,cB∗ .
Precomputation:

1: compute B = LB∗

2: (µ0, · · · ,µn−1) ← L − In

3: for i = n − 1, · · · , 0 do
4: σi ← σ/‖b∗

i ‖
5: end for

Sampling:
6: z ← 0, c′ ← c
7: for i = n − 1, · · · , 0 do
8: zi ← GaussianIntegerSampler(σi, c

′
i)

9: c′ ← c′ − ziµi

10: end for
11: return z

deviations of involved integer Gaussians are also in the form σi = σ/‖b∗
i ‖, but

that B = BF
f,g in this context.

4 Side-Channel Attack Against Trapdoor Samplers:
A Roadmap

Our algorithm proceeds as follows:

1. Side-channel leakage: extract the ‖b∗
i ‖’s associated to BA

f,g, resp. BF
f,g via the

timing leakage of integer Gaussian sampler in the DLP scheme, reps. Falcon.
2. Totally positive recovery: from the given ‖b∗

i ‖’s, recover a Galois conjugate
u of ff + gg ∈ K++

n .
3. Final recovery: compute f from u and the public key g/f mod q.

Steps 1 and 2 of the attack are the focus of Sects. 6 and 5 respectively. Below
we describe how the third step is performed. First we recover the element fg,
using the fact that it has small coefficients. More precisely, the jth coefficient is
〈f, ζj

ng〉 where f and ζj
ng are independent and identically distributed according

to DZn,r, with r = 1.17
√

q
2n . By [32, Lemma 4.3], we know that all these coef-

ficients are of size much smaller than q/2 with high probability. Now, we can
compute v = uh(1 + hh)−1 mod q, where h = f−1g mod q is the public verifica-
tion key. We readily see that v = fg mod q if and only if u = ff + gg. If u is a
conjugate of ff + gg, then most likely the coefficients of v will look random in
(−q/2, q/2]. This can mostly be interpreted as the NTRU assumption, that is, h
being indistinguishable from a random element modulo q. When this happens,
we just consider another conjugate of u, until we obtain a distinguishably small
element, which must then be fg (not just in reduction modulo q, but in fact over
the integers).

Key Recovery from Gram–Schmidt Norm Leakage 45

Once this is done, we can then deduce the reduction modulo q of ff̄ ≡ fḡ/h̄
(mod q), which again coincides with ff̄ over the integers with high probability
(if we again lift elements of Zq to (−q/2, q/2], except for the constant coeffi-
cient, which should be lifted positively). This boils down to the fact that with
high probability ff has its constant coefficient in (0, q) and the others are in
(−q/2, q/2). Indeed, the constant coefficient of ff is ‖f‖2, and the others are
〈f, ζj

nf〉’s with j ≥ 1. By some Gaussian tail bound, we can show ‖f‖2 ≤ q with
high probability. As for 〈f, ζj

nf〉’s, despite the dependency between f and ζj
nf ,

we can still expect |〈f, ζj
nf〉| < q/2 for all j ≥ 1 with high probability. We leave

details in the full version [17] for interested readers.
Next, we compute the ideal (f) from the knowledge of ff and fg. Indeed,

as f and g are co-prime from the key generation algorithm, we directly have
(f) = (ff) + (fg). At this point, we have obtained both the ideal (f) and
the relative norm ff̄ of f on the totally real subfield. That data is exactly
what we need to apply the Gentry–Szydlo algorithm [21], and finally recover f
itself in polynomial time. Note furthermore that the practicality of the Gentry–
Szydlo algorithm for the dimensions we consider (n = 512) has been validated
in previous work [14].

Comparison with Existing Method. As part of their side-channel analysis of the
BLISS signature scheme, Espitau et al. [14] used the Howgrave-Graham–Szydlo
algorithm to recover an NTRU secret f from ff . They successfully solved a
small proportion (≈7%) of NTRU instances with n = 512 in practice. The
Howgrave-Graham–Szydlo algorithm first recovers the ideal (f) and then calls
the Gentry–Szydlo algorithm as we do above. The bottleneck of this method is
in its reliance on integer factorization for ideal recovery: the integers involved
can become quite large for an arbitrary f , so that recovery cannot be done in
classical polynomial time in general. This is why only a small proportion of
instances can be solved in practice.

However, the technique we describe above bypasses this expensive factor-
ization step by exploiting the arithmetic property of the NTRU secret key. In
particular, it is immediate to obtain a two-element description of (f), so that
the Gentry-Szydlo algorithm can be run as soon as ff̄ and fḡ are computed.
This significantly improves the applicability and efficiency of Espitau et al.’s
side-channel attack against BLISS [14]. The question of avoiding the reliance on
Gentry–Szydlo algorithm by using the knowledge of fg and ff remains open,
however.

5 Recovering Totally Positive Elements

Totally positive elements in Kn correspond to symmetric positive definite matri-
ces with an inner structure coming from the algebra of the field. In particular,
it is enough to know only one line of the matrix to recover the corresponding
field element. Hence it can be expected that being given the diagonal part of the
LDL decomposition also suffices to perform a recovery. In this section, we show
that this is indeed the case provided we know exactly the diagonal.

46 P.-A. Fouque et al.

Recall on the one hand that the An representation is the skew circulant
matrix in which each diagonal consists of the same entries. On the other hand,
the Fn representation does not follow the circulant structure, but it is compatible
with the tower of rings structure, i.e. its sub-matrices are the Fn/2 representa-
tions of elements in the subfield Kn/2. Each operator leads to a distinct approach,
which is described in Sects. 5.1 and 5.2 respectively.

While the algorithms of this section can be used independently, they are
naturally related to hash-and-sign over NTRU lattices. Let B be a matrix rep-
resentation of some secret key (g,−f), and G = BBt. Then the diagonal part of
G’s LDL decomposition contains the ‖b∗

i ‖’s, and G is a matrix representation
of ff + gg ∈ K++

n . As illustrated in Sect. 4, the knowledge of u = ff + gg allows
to recover the secret key in polynomial time. Therefore results in this section
pave the way for a better use of secret Gram-Schmidt norms.

In practice however, we will obtain only approximations of the ‖b∗
i ‖’s. The

algorithms of this section must then be tweaked to handle the approximation
error. The case of An is dealt with in Sect. 7.1. While we do not solve the
“approximate” case of Fn, we believe our “exact” algorithms to be of indepen-
dent interest to the community.

5.1 Case of the Power Basis

The goal of this section is to obtain the next theorem. It involves the heuristic
argument that some rational quadratic equations always admits exactly one inte-
ger root, which will correspond to a coefficient of the recovered totally positive
element. Experimentally, when it happens that there are two integer roots and
the wrong one is chosen, the algorithm “fails” with overwhelming probability at
the next step: the next discriminant does not lead to integer roots.

Theorem 1. Let u ∈ Rn ∩ K++
n . Write An(u) = L · diag(λi)i · Lt. There is a

(heuristic) algorithm RecoveryA that, given λi’s, computes u or σ(u). It runs in
Õ(n3 log ‖u‖∞).

The complexity analysis is given in the full version [17]. In Sect. 7.2, a version
tweaked to handle approximations of the λi’s is given, and may achieve quasi-
quadratic complexity. It is in any case very efficient in practice, and it is used in
our attack against DLP signature.

We now describe Algorithm 5.1. By Proposition 1,
∏i

j=0 λi = det
(An(u)[0,i]

)

is an integer, thus we take mi =
∏i

j=0 λi instead of λi as input for integrality. It
holds that u0 = det

(An(u)[0,0]

)
= λ0. By the self-adjointness of u, we only need

to consider the first n/2 coefficients. For any 0 ≤ i < n/2 − 1, we have

An(u)[0,i+1] =

⎛

⎜
⎜
⎜
⎝

ui+1

An(u)[0,i]

...
u1

ui+1 . . . u1 u0

⎞

⎟
⎟
⎟
⎠

.

Key Recovery from Gram–Schmidt Norm Leakage 47

Algorithm 5.1. RecoveryA(m0, . . . , mn−1)
Input: m0, . . . , mn−1 ∈ Z+.
Output: u ∈ Rn such that u is totally positive and the principal minors of Fn(u) are

mi’s (0 ≤ i < n).
1: u0 ← m0

2: u1 ← any root of u0 − m1
m0

− X2

u0
3: for i = 1 to n/2 − 2 do
4: Build An(u)[0,i] from ui, . . . , u0

5: vi ← (X, ui, . . . , u1)
6: Solve An(u)[0,i] · wt

i = vt
i for wi

7: E ← u0 − mi+1/mi − vi · wt
i .

8: Compute the roots {r1, r2} of E
9: ui+1 ← {r1, r2} ∩ Z

10: end for
11: return (u0, u1, . . . , un/2−1, 0, −un/2−1, . . . , −u1).

Let vi = (ui+1, . . . , u1). By the definition of the Schur complement and Propo-
sition 1, we see that

det
(An(u)[0,i+1]

)

det
(An(u)[0,i]

) = u0 − viAn(u)−1
[0,i]v

t
i ,

where the left-hand side is actually λi+1, and the right-hand side gives a
quadratic equation in ui+1 with rational coefficients that can be computed
from the knowledge of (u0, . . . , ui). When i = 0, the equation is equivalent to
λ0λ1 = u2

0 −u2
1: there are two candidates of u1 up to sign. Once u1 is chosen, for

i ≥ 1, the quadratic equation should have with very high probability a unique
integer solution, i.e. the corresponding ui+1. This leads to Algorithm 5.1. Note
that the sign of u1 determines whether the algorithm recovers u or σ(u). This
comes from the fact that An(u) = diag((−1)i)i≤n · An(σ(u)) · diag((−1)i)i≤n.

5.2 Case of the Bit-Reversed Order Basis

In this section, we are given the diagonal part of the LDL decomposition Fn(u) =
L′diag(λi)L′t, which rewrites as (L′−1Pn)An(u)(L′−1Pn)t = diag(λi). Since the
triangular structure is shuffled by the bit-reversal representation, recovering u
from the λi’s is not as straightforward as in the previous section. Nevertheless,
the compatibility of the Fn operator with the tower of extension can be exploited.
It gives a recursive approach that stems from natural identities between the
trace and norm maps relative to the extension Kn | Kn/2, crucially uses the self-
adjointness and total positivity of u, and fundamentally relies on computing
square roots in Rn.

Theorem 2. Let u ∈ Rn ∩ K++
n . Write Fn(u) = L′ · diag(λi)i · L′t. There is a

(heuristic) algorithm that, given the λi’s, computes a conjugate of u. It runs in
Õ(n3 log ‖u‖∞).

48 P.-A. Fouque et al.

The recursiveness of the algorithm and its reliance on square roots will force
it to always work “up to Galois conjugation”. In particular, at some point we
will assume heuristically that only one of the conjugates of a value computed
within the algorithm is in a given coset of the subgroup of relative norms in the
quadratic subfield. Since that constraint only holds with negligible probability
for random values, the heuristic is essentially always verified in practice. Recall
that we showed in Sect. 4 how to recover the needed conjugate in practice by a
distinguishing argument.

The rest of the section describes the algorithm, while the complexity analysis
is presented in the full version [17]. First, we observe from

Tr(u) + ζnTr(ζ−1
n u) = 2u = 2ū = Tr(u) + ζ−1

n Tr(ζ−1
n u)

that Tr(u) is self-adjoint. The positivity of u implies that Tr(u) ∈ K++
n/2.

From Eq. (2), we know that the n/2 first minors of Fn(u) are the minors of
Fn/2(Tr(u)/2). The identity above also shows that Tr(ζ−1

n u) is a square root of

the element ζ−1
n/2Tr(ζ−1

n u)Tr(ζ−1
n u) in Kn/2. Thus, if we knew Tr(ζ−1

n u)Tr(ζ−1
n u),

we could reduce the problem of computing u ∈ Kn to computations in Kn/2, more
precisely, recovering a totally positive element from “its minors” and a square
root computation.

It turns out that Tr(ζ−1
n u)Tr(ζ−1

n u) can be computed by going down the
tower as well. One can see that

Tr(u)2 − 4N(u) = Tr(ζ−1
n u)Tr(ζ−1

n u), (3)

where N(u) is totally positive since u (and therefore σ(u)) is. This identity3 can
be thought as a “number field version” of the Fn representation. Indeed, recall
that ue = (1/2)Tr(u) and uo = (1/2)Tr(ζ−1

n u). Then by block determinant
formula and the fact that Fn is a ring isomorphism, we see that

detFn(u) =
n−1∏

i=0

λi = det(Fn/2(ue)2 − Fn/2(uouo)).

This strongly suggests a link between the successive minors of Fn(u) and the ele-
ment N(u). The next lemma makes this relation precise, and essentially amounts
to taking Schur complements in the above formula.

Lemma 3. Let u ∈ K++
n and û = 2N(u)

Tr(u) ∈ K++
n/2. Then for 0 < k < n/2, we

have
det

(
Fn(u)[0,k+n

2)

)
= det

(Fn/2(ue)
)
det

(Fn/2(û)[0,k)

)
.

Proof. Let G = Fn(u) and B = Fn/2(uo)[0, n
2)×[0,k) in order to write

G[0, n
2 +k) =

(Fn/2(ue) B
Bt Fn/2(ue)[0,k)

)

,

3 This describes the discriminant of T 2 − Tr(u)T + N(u) whose roots are u and σ(u)

in Kn. It is then not surprising that Tr(ζ−1
n u)Tr(ζ−1

n u) is a square only in Kn.

Key Recovery from Gram–Schmidt Norm Leakage 49

Algorithm 5.2. TowerRecoveryF (m0, . . . , mn−1)
Input: m0, . . . , mn−1.
Output: u ∈ Rn such that u is totally positive and the principal minors of Fn(u) are

mi’s (0 ≤ i < n).
1: if n = 2 then
2: return m0.
3: end if
4: u+ ← TowerRecoveryF (m0, . . . , m n

2 −1) {u+ is Tr(u)/2}
5: ũ ← TowerRecoveryF (

mn/2
mn/2−1

, . . . ,
mn−1

mn/2−1
) {ũ is a conjugate of û = 2N(u)

Tr(u)
}

6: Find τ such that u+ · τ(ũ) is a relative norm.
7: û ← τ(ũ)
8: s ← u+ · (u+ − û)
9: u− ← TowerRoot(ζ−1

n/2s) {u− is a conjugate of ±Tr(ζ−1
n u)/2}

10: return u+ + ζnu−

with Bt = Fn/2(uo)[0,k)×[0, n
2). Let S = G[0, n

2 +k)/Fn/2(ue) = Fn/2(ue)[0,k) −
BFn/2(ue)−1Bt. Since Fn is a ring isomorphism, a routine computation shows
that S = Fn/2(û)[0,k). The proof follows from Eq. (1).
�

Lemma 3 tells us that knowing Tr(u) and the principal minors of Fn(u) is
enough to recover those of Fn/2(û), so that the computations in Kn are again
reduced to computing a totally positive element in Kn/2 from its minors. Then

from Eq. (3), we can obtain Tr(ζ−1
n u)Tr(ζ−1

n u). The last step is then to com-
pute a square root of ζ−1

n/2Tr(ζ−1
n u)Tr(ζ−1

n u) in Kn/2 to recover ±Tr(ζ−1
n u). In

particular, this step will lead to u or its conjugate σ(u). As observed above, this
translates ultimately in recovering only a conjugate of u.

Lastly, when n = 2, that is, when we work in Q(i), a totally positive element
is in fact in Q+. This leads to Algorithm 5.2, which is presented in the general
context of Kn to fit the description above, for the sake of simplicity. The algo-
rithm TowerRoot of Step 9 computes square roots in Kn and a quasi-quadratic
version for integers is presented and analyzed in the next section.

The whole procedure is constructing a binary tree as illustrated in Fig. 1.
The algorithm can be made to rely essentially only on algebraic integers, which
also helps in analyzing its complexity. This gives the claim of Theorem 2 (see
the full version [17] for details). At Step 6, the algorithm finds the (heuristically
unique) conjugate û of ũ such that û · u+ is a relative norm (since we must
have û · u+ = N(u) by the above). In practice, in the integral version of this
algorithm, we carry out this test not by checking for being a norm, but as an
integrality test.

5.2.1 Computing Square Roots in Cyclotomic Towers
In this section, we will focus on computing square roots of algebraic integers:
given s = t2 ∈ Rn, compute t. The reason for focusing on integers is that both
our Algorithm 5.2 and practical applications deal only with algebraic integers.

50 P.-A. Fouque et al.

u

Tr(u) u

...
. . .

u u

Tr(u) u Tr(u) u

λ0 λ1 λ2 λ3 · · · λn−4 λn−3 λn−2 λn−1

Fig. 1. Binary tree built by TowerRecoveryF .

A previous approach was suggested in [25], relying on finding primes with small
splitting pattern in Rn, computing square roots in several finite fields and brute-
forcing to find the correct candidate. A hassle in analyzing this approach is to first
find a prime larger enough than an arbitrary input, and that splits in, say, two
factors in Rn. Omitting the cost of finding such a prime, this algorithm can be
shown to run in Õ(n2(log ‖s‖∞)2). Our recursive approach does not theoretically
rely on finding a correct prime, and again exploits the tower structure to achieve
the next claim.

Theorem 3. Given a square s in Rn, there is a deterministic algorithm that
computes t ∈ Rn such that t2 = s in time Õ(n2 log ‖s‖∞).

Recall that the subfield Kn/2 is fixed by the automorphism σ(ζn) = −ζn. For
any element t in Rn, recall that t = 1

2 (Tr(t)+ ζnTr(ζ−1
n t)), where Tr is the trace

relative to this extension. We can also see that

Tr(t)2 = Tr(t2) + 2N(t) = Tr(s) + 2N(t),

Tr(ζ−1
n t)2 = ζ−2

n (Tr(t2) − 2N(t)) = ζ−1
n/2(Tr(s) − 2N(t)), (4)

for the relative norm. Hence recovering Tr(t) and Tr(ζ−1
n t) can be done by com-

puting the square roots of elements in Rn/2 determined by s and N(t). The fact
that N(s) = N(t)2 leads to Algorithm 5.3.

Notice that square roots are only known up to sign. This means that an algo-
rithm exploiting the tower structure of fields must perform several sign checks to
ensure that it will lift the correct root to the next extension. For our algorithm,
we only need to check for the sign of N(t) (the signs of Tr(t) and Tr(ζ−1

n t) can
be determined by checking if their current values allow to recover s). This veri-
fication happens at Step 6 of Algorithm 5.3, where after computing the square
root of N(s), we know (−1)bN(t) for some b ∈ {0, 1}. It relies on noticing that
from Eq. (4), Tb := Tr(s) + 2 · (−1)bN(t) is a square in Kn/2 if and only if b = 0,
in which case Tb = Tr(t)2. (Else, ζ−2

n Tb is the square Tr(ζ−1
n t)2 in Kn/2.) This

observation can be extended to a sign check that runs in Õ(n · log ‖s‖∞). The
detailed analysis is given in the full version [17].

Key Recovery from Gram–Schmidt Norm Leakage 51

Algorithm 5.3. TowerRoot(s)
Input: s = t2 for some t ∈ Rn.
Output: t ∈ Rn.
1: if s ∈ Z then
2: return IntegerSqrt(s)
3: end if
4: S ← N(s) and S′ ← Tr(s)
5: T ← TowerRoot(S) {T = (−1)bN(t)}
6: if CheckSqr(S′ + 2T) = False then
7: T ← −T
8: end if
9: T+ ← TowerRoot(S′ + 2T) {T+ = (−1)b0Tr(t)}

10: T − ← TowerRoot(ζ−1
n/2(S

′ − 2T)) {T − = (−1)b1Tr(ζ−1
n t)}

11: if (1/4)(T+ + ζnT −)2 = s then
12: return (1/2)(T+ + ζnT −)
13: else
14: return (1/2)(T+ − ζnT −)
15: end if

In practice, we can use the following approach: since n is small, we can easily
precompute a prime integer p such that p − 1 ≡ n mod 2n. For such a prime,
there is a primitive nth root ω of unity in Fp, and such a root cannot be a square
in Fp (else 2n would divide p−1). Checking squareness then amounts to checking
which of Tb(ω) or ω−2Tb(ω) is a square mod p by computing a Legendre symbol.
While we need such primes for any power of 2 that is smaller than n, in any
case, this checks is done in quasi-linear time. Compared to [25], the size of p here
does not matter.

Let us denote by SQRT(n, S) the complexity of Algorithm 5.3 for an input s ∈
Rn with coefficients of size S = log ‖s‖∞. Using e.g. FFT based multiplication of
polynomials, N(s) can be computed in Õ(nS), and has bitsize at most 2S+log n.
Recall that the so-called canonical embedding of any s ∈ Kn is the vector τ(s) of
its evaluations at the roots of xn + 1. It is well-known that it satisfies ‖τ(s)‖ =√

n‖s‖, so that ‖τ(s)‖∞ ≤ n‖s‖∞ by norm equivalence. If s = t2 we see that
‖τ(s)‖∞ = ‖τ(t)‖2∞. Using again norm equivalence, we obtain ‖t‖∞ ≤ √

n‖s‖1/2
∞ .

In the case of N(s) = N(t)2, we obtain that N(t) has size at most S + log n. The
cost of CheckSqr is at most Õ(nS), so we obtain

SQRT(n, S) = SQRT
(n

2
, 2S + log n

)
+ 2SQRT

(n

2
, S + log n

)
+ Õ(nS).

A tedious computation (see the full version [17] for details) gives us Theorem 3.

6 Side-Channel Leakage of the Gram–Schmidt Norms

Our algorithms in Sect. 5 rely on the knowledge of the exact Gram-Schmidt
norms ‖b∗

i ‖. In this section, we show that in the original implementations of

52 P.-A. Fouque et al.

DLP and Falcon, approximations of ‖b∗
i ‖’s can be obtained by exploiting the

leakage induced by a non constant-time rejection sampling.
In previous works targeting the rejection phase, the standard deviation of

the sampler was a public constant. This work deals with a different situation, as
both the centers and the standard deviations used by the samplers of DLP and
Falcon are secret values determined by the secret key. These samplers output
Gaussian vectors by relying on an integer Gaussian sampler, which performs
rejection sampling. The secret standard deviation for the ith integer Gaussian is
computed as σi = σ/‖b∗

i ‖ for some fixed σ, so that exposure of the σi’s means
the exposure of the Gram-Schmidt norms. The idea of the attack stems from the
simple observation that the acceptance rate of the sampler is essentially a linear
function of its current σi. In this section, we show how, by a timing attack, one
may recover all acceptance rates from sufficiently many signatures by computing
a well-chosen maximum likelihood estimator. Recovering approximations of the
‖b∗

i ‖’s then follows straightforwardly.

6.1 Leakage in the DLP Scheme

We first target the Gaussian sampling in the original implementation [46],
described in Algorithms 6.1 and 6.2. It samples “shifted” Gaussian integers by
relying on three layers of Gaussian integer sampling with rejection. More pre-
cisely, the target Gaussian distribution at the “top” layer has a center which
depends on secret data and varies during each call. To deal with the varying
center, the “shifted” sample is generated by combining zero-centered sampler
and rejection sampling. Yet the zero-centered sampler has the same standard
deviation as the “shifted” one, and the standard deviation depends on the secret
key. At the “intermediate” layer, also by rejection sampling, the sampler rectifies
a public zero-centered sample to a secret-dependent one.

At the “bottom” layer, the algorithm IntSampler actually follows the BLISS
sampler [8] that is already subject to side-channel attacks [7,14,43]. We stress
again that our attack does not target this algorithm, so that the reader can
assume a constant-time version of it is actually used here. The weakness we
are exploiting is a non constant-time implementation of Algorithm 6.2 in the
“intermediate” layer. We now describe how to actually approximate the σi’s
using this leakage.

Algorithm 6.1. DLP base sampler DLPIntSampler(σi, c)
Input: c ∈ [0, 1) and σi ≥ ηε(Z).
Output: z ∈ Z following DZ,σi,c.
1: z ← DLPCenteredIntSampler(σi)
2: b ← U({0, 1})
3: z ← z + b
4: return z with probability

ρσi,c(z)

ρσi
(z)+ρσi

(z−1)
, otherwise restart.

Key Recovery from Gram–Schmidt Norm Leakage 53

Algorithm 6.2. DLP centered base sampler DLPCenteredIntSampler(σi)
Input: σi ≥ ηε(Z).
Output: z ∈ Z following DZ,σi .

1: k ← 	σi
σ̂

 where σ̂ =
√

1
2 log(2)

2: z ← IntSampler(kσ̂)

3: return z with probability
ρσi

(z)

ρkσ̂(z)
, otherwise restart.

Let σ̂ =
√

1
2 log(2) be the standard deviation of the Gaussian at the “bottom”

layer and ki = �σi

σ̂ �. It can be verified that the average acceptance probability

of Algorithm 6.2 is AR(σi) = ρσi
(Z)

ρkσ̂(Z)
. As required by the KGPV algorithm, we

know that kiσ̂ ≥ σi ≥ η′
ε(Z) and by Corollary 1 we have AR(σi) ∈ σi

kiσ̂
·
[
1−ε
1+ε , 1

]
.

Since ε is very small in this context, we do not lose much by assuming that
AR(σi) = σi

kiσ̂
.

Next, for a given σi, the number of trials before Algorithm 6.2 outputs its
result follows a geometric distribution GeoAR(σi). We let ARi be maximum like-
lihood estimators for the AR(σi)’s associated to N executions of the KGPV
sampler, that we compute using Lemma 1. We now want to determine the ki’s
to compute σi = kiσ̂ARi. Concretely, for the suggested parameters, we can set
ki = 3 for all i at the beginning and measure ARi. Because the first half of the
σi’s are in a small interval and increase slowly, it may be the case at some step
that ARi+1 is significantly smaller than ARi (say, 1.1 · ARi+1 < ARi). This
means that ki+1 = ki + 1, and we then increase by one all the next ki’s. This
approach can be done until ARn is obtained, and works well in practice. Lastly,
Lemma 1 tells us that for large enough α and p, taking N ≥ 22(p+log α) implies
|σi − σi| ≤ 2−p · σi for all 0 ≤ i < 2n with high probability.

From [11], the constant σ is publicly known. This allows us to have approxi-
mations bi = σ

σi
, which we then expect are up to p bits of accuracy on ‖b∗

i ‖.

6.2 Leakage in the Falcon Scheme

We now describe how the original implementation of Falcon presents a sim-
ilar leakage of Gram–Schmidt norms via timing side-channels. In contrast to
the previous section, the integer sampler of Falcon is based on one public
half-Gaussian sampler and some rejection sampling to reflect sensitive standard
deviations and centers. The procedure is shown in Algorithm 6.3.

Our analysis does not target the half-Gaussian sampler D+
Z,σ̂ where σ̂ = 2, so

that we omit its description. It can be implemented in a constant-time way [29],
but this has no bearing on the leakage we describe.

We first consider ci and σi to be fixed. Following Algorithm 6.3, we let
p(z, b) = exp

(
z2

2σ̂2 − (b+(2b−1)z−ci)
2

2σ2
i

)
be the acceptance probability and note

that

54 P.-A. Fouque et al.

Algorithm 6.3. Falcon base sampler FalconIntSampler(σi, c)
Input: c ∈ [0, 1) and σi ≥ ηε(Z).
Output: z′ ∈ Z following DZ,σi,c.
1: z ←↩ D+

Z,σ̂ where σ̂ = 2
2: b ←↩ U({0, 1})

3: return z′ = b + (2b − 1)z with probability exp
(

z2

2σ̂2 − (b+(2b−1)z−c)2

2σ2
i

)

, otherwise

restart.

p(z, 0) =
1

ρσ̂(z)
exp

(

− (−z − c)2

2σ2
i

)

and p(z, 1) =
1

ρσ̂(z)
exp

(

− (z + 1 − c)2

2σ2
i

)

.

Then the average acceptance probability for fixed c and σi satisfies

Ez,b

[
p(z, b)] =

1
2ρσ̂(N)

∑

z∈N

(

exp
(

− (−z − c)2

2σ2
i

)

+ exp
(

− (z + 1 − c)2

2σ2
i

))

=
ρσi

(Z − c)
2ρσ̂(N)

.

As σ̂ ≥ σi ≥ η′
ε(Z) for a very small ε, we can again use Lemma 2 to have that

ρσi
(Z−c) ≈ ρσi

(Z). This allows us to consider the average acceptance probability
as a function AR(σi), independent of c. Using that 2ρ+σ̂ (N) = ρσ̂(Z)+1 combined
with Corollary 1, we write AR(σi) = σi

√
2π

1+2
√
2π

. Then an application of Lemma 1
gives the needed number of traces to approximate σi up to a desired accuracy.

7 Practical Attack Against the DLP Scheme

For the methods in Sect. 6, measure errors seem inevitable in practice. To mount
a practical attack, we have to take into account this point. In this section, we
show that it is feasible to compute a totally positive element even with noisy
diagonal coefficients of its LDL decomposition.

First we adapt the algorithm RecoveryA (Algorithm 5.1) to the noisy input
in Sect. 7.1. To determine each coefficient, we need to solve a quadratic inequal-
ity instead of an equation due to the noise. As a consequence, each quadratic
inequality may lead to several candidates of the coefficient. According to if there
is a candidate or not, the algorithm extends prefixes hopefully extending to a
valid solution or eliminates wrong prefixes. Thus the algorithm behaves as a tree
search.

Then we detail in Sect. 7.2 some implementation techniques to accelerate the
recovery algorithm in the context of the DLP scheme. While the algorithm is
easy to follow, adapting it to practical noisy case is not trivial.

At last, we report experimental results in Sect. 7.3. As a conclusion, given
the full timing leakage of about 234 signatures, one may practically break the
DLP parameter claimed for 192-bit security with a good chance. We bring some
theoretical support for this value in Sect. 7.4.

Key Recovery from Gram–Schmidt Norm Leakage 55

Algorithm 7.1. RecoveryA(δ, {di}i, prefix)

Input: δ ∈ [

0, 1
2

)

, prefix =
(

A0, · · · , Al−1

) ∈ Z
l and for all i

di = di + εi where di = det
(An(A)[0,i]

)

/ det
(An(A)[0,i−1]

)

and |εi| ≤ δ.
Output: a list of candidates of A in which each candidate A′

(1) takes prefix as the first l coefficients;
(2) satisfies |di − d′

i| < δ where d′
i = det

(An(A′)[0,i]

)

/ det
(An(A′)[0,i−1]

)

.
1: S ← ∅
2: if l = n

2
then

3: S ← {A0 +
∑

n
2 −1

i=1 Ai(X
i + X−i)}

4: else
5: T ← (A|i−j|)i,j∈[0,l), t ← (

0, Al−1, · · · , A1

)

6: Qa ← T−1
0,0, Qb ← ∑l−1

i=1 T
−1
0,i ti, Qc ← ttT−1t − A0 + dl

7: Sl ← {x ∈ Z : |Qax2 + 2Qbx + Qc| < δ} {all possible Al}
8: for a ∈ Sl do
9: prefix′ ← (prefix, a) ∈ Z

l+1

10: S ← S
⋃

RecoveryA(δ, {di}i, prefix
′)

11: end for
12: end if
13: return S

7.1 Totally Positive Recovery with Noisy Inputs

Section 5.1 has sketched the exact recovery algorithm. To tackle the measure
errors, we introduce a new parameter to denote the error bound. The modified
algorithm proceeds in the same way: given a prefix (A0, · · · , Al−1), it computes
all possible Al’s satisfying the error bound condition and extends or eliminates
the prefix according to if it can lead to a valid solution. A formal algorithmic
description is provided in Algorithm 7.1. For convenience, we use the (noisy)
diagonal coefficients (i.e. secret Gram-Schmidt norms) of the LDL decomposition
as input. In fact, Proposition 1 has shown the equivalence between the diagonal
part and principal minors. In addition, we include prefix in the input for ease of
description. The initial prefix is prefix = A0 = �d0�. Clearly, the correct A must
be in the final candidate list.

7.2 Practical Tweaks in the DLP Setting

Aiming at the DLP signature, we implemented our side-channel attack. By the
following techniques, one can boost the practical performance of the recovery
algorithm significantly and reduce the number of required signatures.

Fast Computation of the Quadratic Equation. Exploiting the Toeplitz
structure of An(A), we propose a fast algorithm to compute the quadratic
equation, i.e. (Qa, Qb, Qc), that requires only O(l) multiplications and addi-
tions. The idea is as follows. Let Ti = An(A)[0,i]. Let ui = (A1, · · · , Ai) and
vi = (Ai, · · · , A1), then

56 P.-A. Fouque et al.

Ti =
(
Ti−1 vt

i

vi A0

)

=
(

A0 ui

ut
i Ti−1

)

.

Let ri = viT−1
i−1, si = uiT−1

i−1 which is the reverse of ri and di = A0 − 〈vi, ri〉 =
A0 − 〈ui, si〉. A straightforward computation leads to that

T−1
i =

(
T−1

i−1 + rt
iri/di −rt

i/di

−ri/di 1/di

)

.

Let fi = 〈ri,ui〉 = 〈si,vi〉, then the quadratic equation of Ai is

di = A0 − 〈vi, ri〉 = A0 − (Ai − fi−1)2/di−1 − 〈vi−1, ri−1〉.

Remark that di is the square of the last Gram-Schmidt norm. Because di, a
noisy di, is the input, combining fi−1,vi−1, ri−1 would determine all possible
Ai’s. Once Ai is recovered, one can then compute ri, si according to

si =
(

−Ai−fi−1
di−1

ri−1 + si−1,
Ai−fi−1

di−1

)

and further compute di, fi. As the recovery algorithm starts with i = 1 (i.e.
prefix = A0), we can compute the sequences {di}, {fi}, {ri}, {si} on the fly.

Remark 1. The input matrix is very well conditioned, so we can use a precision
of only O(log n) bits.

Remark 2. The above method implies an algorithm of complexity Õ(n2) for the
exact case (Sect. 5.1).

Pruning. We expect that when a mistake is made in the prefix, the error com-
mitted in the Gram-Schmidt will be larger. We therefore propose to prune pre-
fixes when

∑j
k=i e2k/σ2

k ≥ Bj−i for some i, j where ek is the difference between
the measured k-th squared Gram-Schmidt norm and the one of the prefix. The
bound Bl is selected so that for ek a Gaussian of standard deviation σk, the
condition is verified except with probability τ/

√
l. The failure probability τ is

geometrically decreased until the correct solution is found.

Verifying Candidates. Let A = ff + gg, then ff = A(1 + hh) mod q. As
mentioned in Sect. 4, all coefficients except the constant one of ff would be
much smaller the modulus q. This can be used to check if a candidate is correct.
In addition, both A(x) and A(−x) are the final candidates, we also check A(1 +
h(−x)h(−x)) to ensure that the correct A(−x) will not to be eliminated. Once
either A(x) or A(−x) is found, we terminate the algorithm.

The Use of Symplecticity. As observed in [18], the trapdoor basis Bf,g is
q-symplectic and thus ‖b∗

i ‖ · ‖b∗
2n−1−i‖ = q. Based on that, we combine the

samples of the i-th and (2n − 1 − i)-th Gaussians to approximate ‖b∗
i ‖. This

helps to refine the approximations and thus to reduce the number of signatures
enabling a practical attack.

Key Recovery from Gram–Schmidt Norm Leakage 57

7.3 Experimental Results

We validate the recovery algorithm on practical DLP instances. Experiments are
conducted on the parameter set claimed for 192-bit security in which

n = 512, q ≈ 210, σ = 2.2358
√

q, ‖b∗
i ‖ ≤ 1.17

√
q.

The leakage data we extracted is the number of iterations of centered Gaus-
sian samplings (Algorithm 6.2). To obtain it, we added some instrumentation to
Prest’s C++ implementation [46]. The centered Gaussian samplings only depend
on the secret key itself not the hashed message. Hence, instead of executing com-
plete signing, we only perform centered Gaussian samplings. We mean by sample
size the number of collected Gaussian samples. In fact, considering the rejection
sampling in Algorithm 6.1, one requires about N/2 signatures to generate N
samples per centered Gaussian.

We tested our algorithm on ten instances, and result is shown in Table 1.
Producing the dataset of 236.5 samples for a given key took about 36 hours on
our 48-core machine (two weeks for all 10 distinct keys).

In one instance, the recovery algorithm found millions of candidate solutions
with Gram-Schmidt norms closer to the noisy ones than the correct solution, in
the sense that they had a larger τ . This indicates that the recovery algorithm is
relatively close to optimality.

Table 1. Experimental validation of the recovery of ff + gg. The first column and
row indicate the time limit and the logarithm of used sample size respectively. The
remaining data shows how many instances out of 10 are solved correctly within the
time limit and with given number of samples.

36.5 36.0 35.5 35.0 34.5 34.0

<1 s 8 7 4 3 0 0

<10 s 9 8 6 4 1 0

<102 s 10 9 7 4 3 1

<103 s 10 10 8 4 4 1

<104 s 10 10 8 5 4 1

<105 s 10 10 8 6 4 2

<5 · 105 s 10 10 9 7 4 3

7.4 Precision Required on the Gram–Schmidt Norms

We try here to give a closed formula for the number of samples needed. We
recall that the relative error with respect to the Gram-Schmidt norm (squared)
is Θ(1/

√
N) where N is the number of samples.

58 P.-A. Fouque et al.

A fast recovery corresponds to the case where only one root is close to an
integer; and in particular increasing by one the new coefficient must change by
Ω(1/

√
N) the Gram-Schmidt norm. This is not an equivalence because there is

another root of the quadratic form, but we will assume this is enough.
Let b1 be the first row of

(An(f) An(g)
)
, and bi the i-th row for i ≥ 2. We

define pbi as the projection of b1 orthogonally to b2, . . . , bi−1. We expect that

‖pbi‖ ≈
√

2n−i+2
2n ‖b1‖. Consider the Gram matrix of the family b1, . . . , bi−1, bi ±

pb
‖b1‖2 . We have indeed changed only the top right/bottom left coefficients by
±1, beside the bottom right coordinate. Clearly this does not change the i-th
Gram-Schmidt vector; so the absolute change in the i-th Gram-Schmidt norm
squared is ∥

∥
∥
∥bi ± pbi

‖b1‖2
∥
∥
∥
∥

2

− ‖bi‖2 ≈ ±〈bi, pbi〉
‖b1‖2 .

The Gram-Schmidt norm squared is roughly ‖pbi‖2.
Getting only one solution at each step with constant probability corresponds

to

〈bi, pbi〉 ≥ ‖bi‖‖pbi‖√
2n − i + 2

(assuming the scalar product is distributed as a Gaussian) which means a total
number of samples of

N = Θ

(√
2n − i + 2‖pbi‖‖b1‖2

‖bi‖‖pbi‖
)2

= Θ(n‖b1‖2) = Θ(nq2).

This gives roughly 229 samples, which is similar to what the search algorithm
requires.

Getting only one solution at each step with probability 1 − 1/n corresponds
to

〈bi, pbi〉 ≥ ‖bi‖‖pbi‖
n
√

2n − i + 2

and N = Θ(n3q2). This would be 257 samples.

8 Conclusion and Future Work

In this paper, we have investigated the side-channel security of the two main effi-
cient hash-and-sign lattice-based signature schemes: DLP and Falcon (focusing
on their original implementations, although our results carry over to several later
implementations as well). The two main takeaways of our analysis are that:

1. the Gram–Schmidt norms of the secret basis leak through timing side-
channels; and

2. knowing the Gram–Schmidt norms allows to fully recover the secret key.

Key Recovery from Gram–Schmidt Norm Leakage 59

Interestingly, however, there is a slight mismatch between those two results:
the side-channel leakage only provides approximate values of the Gram–Schmidt
norms, whereas secret key recovery a priori requires exact values. We are able
to bridge this gap in the case of DLP by combining the recovery algorithm with
a pruned tree search. This lets us mount a concrete attack against DLP that
recovers the key from 233 to 235 DLP traces in practice for the high security
parameters of DLP (claiming 192 bits of security).

However, the gap remains in the case of Falcon: we do not know how to
modify our recovery algorithm so as to deal with approximate inputs, and as a
result apply it to a concrete attack. This is left as a challenging open problem
for future work.

Also left for future work on the more theoretical side is the problem of giving
an intrinsic description of our recovery algorithms in terms of algebraic quanti-
ties associated with the corresponding totally positive elements (or equivalently,
to give an algebraic interpretation of the LDL decomposition for algebraically
structured self-adjoint matrices). In particular, in the Falcon case, our app-
roach shows that the Gram–Schmidt norms characterize the Galois conjugacy
class of a totally positive element. This strongly suggests that they should admit
a nice algebraic description, but it remains elusive for now.

The final recovery in our attack, that is computing f from ff̄ + gḡ, heavily
relies on the property of NTRU. We need further investigations to understand
the impact of Gram-Schmidt norm leakage in hash-and-sign schemes over other
lattices. But for non-structured lattices, there appears to be a strong obstruc-
tion to at least a full key recovery attack, simply due to the dimension of the
problem: there are only n Gram-Schmidt norms but O(n2) secret coefficients to
be recovered.

On a positive note, we finally recall that the problem of finding countermea-
sures against the leakage discussed in this paper is fortunately already solved,
thanks to the recent work of Prest, Ricosset and Rossi [48]. And that counter-
measure has very recently been implemented into Falcon [45], so the leak can
be considered as patched! The overhead of that countermeasure is modest in
the case of Falcon, thanks to the small range in which the possible standard
deviations occur; however, it could become more costly for samplers that need
to accommodate a wider range of standard deviations.

An alternate possible countermeasure could be to use Peikert’s convolution
sampling [42] in preference to the KGPV approach, as it eliminates the need for
varying standard deviations, and is easier to implement even without floating
point arithmetic [9]. It does have the drawback of sampling wider Gaussians,
however, and hence leads to less compact parameter choices.

Acknowledgements. This work is supported by the European Union Horizon 2020
Research and Innovation Program Grant 780701 (PROMETHEUS). This work has
also received a French government support managed by the National Research Agency
in the “Investing for the Future” program, under the national project RISQ P141580-
2660001/DOS0044216, and under the project TYREX granted by the CominLabs excel-
lence laboratory with reference ANR-10-LABX-07-01.

60 P.-A. Fouque et al.

References

1. Babai, L.: On Lovász’ lattice reduction and the nearest lattice point problem.
Combinatorica 6(1), 1–13 (1986)

2. Bai, S., Galbraith, S.D.: An improved compression technique for signatures based
on learning with errors. In: Benaloh, J. (ed.) CT-RSA 2014. LNCS, vol. 8366, pp.
28–47. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-04852-9 2

3. Barthe, G., et al.: Masking the GLP lattice-based signature scheme at any order. In:
Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT 2018, Part II. LNCS, vol. 10821, pp.
354–384. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-78375-8 12

4. Barthe, G., Beläıd, S., Espitau, T., Fouque, P.A., Rossi, M., Tibouchi, M.: GALAC-
TICS: Gaussian sampling for lattice-based constant-time implementation of cryp-
tographic signatures, revisited. In: Cavallaro, L., Kinder, J., Wang, X., Katz, J.
(eds.) ACM CCS 2019, pp. 2147–2164. ACM Press (2019)

5. Bindel, N., et al.: qTESLA. Technical report, National Institute of Standards and
Technology (2019). https://csrc.nist.gov/projects/post-quantum-cryptography/
round-2-submissions

6. Bootle, J., Delaplace, C., Espitau, T., Fouque, P.-A., Tibouchi, M.: LWE without
modular reduction and improved side-channel attacks against BLISS. In: Peyrin,
T., Galbraith, S. (eds.) ASIACRYPT 2018, Part I. LNCS, vol. 11272, pp. 494–524.
Springer, Cham (2018). https://doi.org/10.1007/978-3-030-03326-2 17

7. Groot Bruinderink, L., Hülsing, A., Lange, T., Yarom, Y.: Flush, gauss, and reload
– a cache attack on the BLISS lattice-based signature scheme. In: Gierlichs, B.,
Poschmann, A.Y. (eds.) CHES 2016. LNCS, vol. 9813, pp. 323–345. Springer, Hei-
delberg (2016). https://doi.org/10.1007/978-3-662-53140-2 16

8. Ducas, L., Durmus, A., Lepoint, T., Lyubashevsky, V.: Lattice signatures and
bimodal Gaussians. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013, Part I.
LNCS, vol. 8042, pp. 40–56. Springer, Heidelberg (2013). https://doi.org/10.1007/
978-3-642-40041-4 3

9. Ducas, L., Galbraith, S., Prest, T., Yu, Y.: Integral matrix gram root and lattice
Gaussian sampling without floats. In: Canteaut, A., Ishai, Y. (eds.) EUROCRYPT
2020. LNCS, vol. 12107, pp. 608–637. Springer, Cham (2020)

10. Ducas, L., et al.: CRYSTALS-Dilithium: a lattice-based digi-
tal signature scheme. IACR TCHES 2018(1), 238–268 (2018).
https://tches.iacr.org/index.php/TCHES/article/view/839

11. Ducas, L., Lyubashevsky, V., Prest, T.: Efficient identity-based encryption over
NTRU lattices. In: Sarkar, P., Iwata, T. (eds.) ASIACRYPT 2014, Part II. LNCS,
vol. 8874, pp. 22–41. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-
662-45608-8 2

12. Ducas, L., Nguyen, P.Q.: Learning a zonotope and more: cryptanalysis of
NTRUSign countermeasures. In: Wang, X., Sako, K. (eds.) ASIACRYPT 2012.
LNCS, vol. 7658, pp. 433–450. Springer, Heidelberg (2012). https://doi.org/10.
1007/978-3-642-34961-4 27

13. Ducas, L., Prest, T.: Fast Fourier orthogonalization. In: ISSAC, pp. 191–198 (2016)
14. Espitau, T., Fouque, P.A., Gérard, B., Tibouchi, M.: Side-channel attacks on BLISS

lattice-based signatures: exploiting branch tracing against strongSwan and elec-
tromagnetic emanations in microcontrollers. In: Thuraisingham, B.M., Evans, D.,
Malkin, T., Xu, D. (eds.) ACM CCS 2017, pp. 1857–1874. ACM Press, Octo-
ber/November 2017

https://doi.org/10.1007/978-3-319-04852-9_2
https://doi.org/10.1007/978-3-319-78375-8_12
https://csrc.nist.gov/projects/post-quantum-cryptography/round-2-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-2-submissions
https://doi.org/10.1007/978-3-030-03326-2_17
https://doi.org/10.1007/978-3-662-53140-2_16
https://doi.org/10.1007/978-3-642-40041-4_3
https://doi.org/10.1007/978-3-642-40041-4_3
https://tches.iacr.org/index.php/TCHES/article/view/839
https://doi.org/10.1007/978-3-662-45608-8_2
https://doi.org/10.1007/978-3-662-45608-8_2
https://doi.org/10.1007/978-3-642-34961-4_27
https://doi.org/10.1007/978-3-642-34961-4_27

Key Recovery from Gram–Schmidt Norm Leakage 61

15. Espitau, T., Fouque, P., Gérard, B., Tibouchi, M.: Loop-abort faults on lattice-
based signature schemes and key exchange protocols. IEEE Trans. Comput. 67(11),
1535–1549 (2018). https://doi.org/10.1109/TC.2018.2833119

16. Fiat, A., Shamir, A.: How to prove yourself: practical solutions to identification and
signature problems. In: Odlyzko, A.M. (ed.) CRYPTO 1986. LNCS, vol. 263, pp.
186–194. Springer, Heidelberg (1987). https://doi.org/10.1007/3-540-47721-7 12

17. Fouque, P.A., Kirchner, P., Tibouchi, M., Wallet, A., Yu, Y.: Key Recovery from
Gram-Schmidt Norm Leakage in Hash-and-Sign Signatures over NTRU Lattices.
IACR Cryptology ePrint Archive, report 2019/1180 (2019)

18. Gama, N., Howgrave-Graham, N., Nguyen, P.Q.: Symplectic lattice reduction and
NTRU. In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 233–253.
Springer, Heidelberg (2006). https://doi.org/10.1007/11761679 15

19. Gentry, C., Jonsson, J., Stern, J., Szydlo, M.: Cryptanalysis of the NTRU signature
scheme (NSS) from Eurocrypt 2001. In: Boyd, C. (ed.) ASIACRYPT 2001. LNCS,
vol. 2248, pp. 1–20. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-
45682-1 1

20. Gentry, C., Peikert, C., Vaikuntanathan, V.: Trapdoors for hard lattices and new
cryptographic constructions. In: Ladner, R.E., Dwork, C. (eds.) 40th ACM STOC,
pp. 197–206. ACM Press, May 2008

21. Gentry, C., Szydlo, M.: Cryptanalysis of the revised NTRU signature scheme. In:
Knudsen, L.R. (ed.) EUROCRYPT 2002. LNCS, vol. 2332, pp. 299–320. Springer,
Heidelberg (2002). https://doi.org/10.1007/3-540-46035-7 20

22. Goldreich, O., Goldwasser, S., Halevi, S.: Public-key cryptosystems from lattice
reduction problems. In: Kaliski Jr., B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294,
pp. 112–131. Springer, Heidelberg (1997). https://doi.org/10.1007/BFb0052231

23. Güneysu, T., Lyubashevsky, V., Pöppelmann, T.: Practical lattice-based cryptog-
raphy: a signature scheme for embedded systems. In: Prouff, E., Schaumont, P.
(eds.) CHES 2012. LNCS, vol. 7428, pp. 530–547. Springer, Heidelberg (2012).
https://doi.org/10.1007/978-3-642-33027-8 31

24. Hoffstein, J., Howgrave-Graham, N., Pipher, J., Silverman, J.H., Whyte, W.:
NTRUSign: digital signatures using the NTRU lattice. In: Joye, M. (ed.) CT-RSA
2003. LNCS, vol. 2612, pp. 122–140. Springer, Heidelberg (2003). https://doi.org/
10.1007/3-540-36563-X 9

25. Hoffstein, J., Lieman, D., Silverman, J.H.: Polynomial rings and efficient public
key authentication (1999)

26. Hogg, R.V., McKean, J.W., Craig, A.T.: Introduction to Mathematical Satistics,
8th edn. Pearson, London (2018)

27. Hülsing, A., Lange, T., Smeets, K.: Rounded Gaussians - fast and secure constant-
time sampling for lattice-based crypto. In: Abdalla, M., Dahab, R. (eds.) PKC
2018, Part II. LNCS, vol. 10770, pp. 728–757. Springer, Cham (2018). https://doi.
org/10.1007/978-3-319-76581-5 25

28. Karmakar, A., Roy, S.S., Reparaz, O., Vercauteren, F., Verbauwhede, I.: Constant-
time discrete Gaussian sampling. IEEE Trans. Comput. 67(11), 1561–1571 (2018)

29. Karmakar, A., Roy, S.S., Vercauteren, F., Verbauwhede, I.: Pushing the speed limit
of constant-time discrete Gaussian sampling. A case study on the Falcon signature
scheme. In: DAC 2019 (2019)

30. Klein, P.N.: Finding the closest lattice vector when it’s unusually close. In: Shmoys,
D.B. (ed.) 11th SODA, pp. 937–941. ACM-SIAM, January 2000

https://doi.org/10.1109/TC.2018.2833119
https://doi.org/10.1007/3-540-47721-7_12
https://doi.org/10.1007/11761679_15
https://doi.org/10.1007/3-540-45682-1_1
https://doi.org/10.1007/3-540-45682-1_1
https://doi.org/10.1007/3-540-46035-7_20
https://doi.org/10.1007/BFb0052231
https://doi.org/10.1007/978-3-642-33027-8_31
https://doi.org/10.1007/3-540-36563-X_9
https://doi.org/10.1007/3-540-36563-X_9
https://doi.org/10.1007/978-3-319-76581-5_25
https://doi.org/10.1007/978-3-319-76581-5_25

62 P.-A. Fouque et al.

31. Lyubashevsky, V.: Fiat-Shamir with aborts: applications to lattice and factoring-
based signatures. In: Matsui, M. (ed.) ASIACRYPT 2009. LNCS, vol. 5912, pp.
598–616. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-10366-
7 35

32. Lyubashevsky, V.: Lattice signatures without trapdoors. In: Pointcheval, D.,
Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp. 738–755. Springer,
Heidelberg (2012). https://doi.org/10.1007/978-3-642-29011-4 43

33. Lyubashevsky, V., et al.: CRYSTALS-DILITHIUM. Technical report, National
Institute of Standards and Technology (2019). https://csrc.nist.gov/projects/post-
quantum-cryptography/round-2-submissions

34. Lyubashevsky, V., Prest, T.: Quadratic time, linear space algorithms for Gram-
Schmidt orthogonalization and Gaussian sampling in structured lattices. In:
Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015, Part I. LNCS, vol. 9056, pp.
789–815. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46800-
5 30

35. McCarthy, S., Howe, J., Smyth, N., Brannigan, S., O’Neill, M.: BEARZ attack
FALCON: implementation attacks with countermeasures on the FALCON signa-
ture scheme. In: Obaidat, M.S., Samarati, P. (eds.) SECRYPT, pp. 61–71 (2019)

36. McCarthy, S., Smyth, N., O’Sullivan, E.: A practical implementation of identity-
based encryption over NTRU lattices. In: O’Neill, M. (ed.) IMACC 2017. LNCS,
vol. 10655, pp. 227–246. Springer, Cham (2017). https://doi.org/10.1007/978-3-
319-71045-7 12

37. Micciancio, D., Peikert, C.: Trapdoors for lattices: simpler, tighter, faster, smaller.
In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp.
700–718. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-29011-
4 41

38. Micciancio, D., Regev, O.: Worst-case to average-case reductions based on Gaussian
measures. SIAM J. Comput. 37(1), 267–302 (2007)

39. Micciancio, D., Walter, M.: Gaussian sampling over the integers: efficient, generic,
constant-time. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017, Part II. LNCS,
vol. 10402, pp. 455–485. Springer, Cham (2017). https://doi.org/10.1007/978-3-
319-63715-0 16

40. Nguyen, P.Q., Regev, O.: Learning a parallelepiped: cryptanalysis of GGH and
NTRU signatures. In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004,
pp. 271–288. Springer, Heidelberg (2006). https://doi.org/10.1007/11761679 17

41. Oder, T., Speith, J., Höltgen, K., Güneysu, T.: Towards practical microcontroller
implementation of the signature scheme Falcon. In: Ding, J., Steinwandt, R. (eds.)
PQCrypto 2019. LNCS, vol. 11505, pp. 65–80. Springer, Cham (2019). https://doi.
org/10.1007/978-3-030-25510-7 4

42. Peikert, C.: An efficient and parallel Gaussian sampler for lattices. In: Rabin, T.
(ed.) CRYPTO 2010. LNCS, vol. 6223, pp. 80–97. Springer, Heidelberg (2010).
https://doi.org/10.1007/978-3-642-14623-7 5

43. Pessl, P., Bruinderink, L.G., Yarom, Y.: To BLISS-B or not to be: attacking
strongSwan’s implementation of post-quantum signatures. In: Thuraisingham,
B.M., Evans, D., Malkin, T., Xu, D. (eds.) ACM CCS 2017, pp. 1843–1855. ACM
Press, October/November 2017

44. Plantard, T., Sipasseuth, A., Dumondelle, C., Susilo, W.: DRS. Technical report,
National Institute of Standards and Technology (2017). https://csrc.nist.gov/
projects/post-quantum-cryptography/round-1-submissions

45. Pornin, T.: New Efficient, Constant-Time Implementations of Falcon, August 2019.
https://falcon-sign.info/falcon-impl-20190802.pdf

https://doi.org/10.1007/978-3-642-10366-7_35
https://doi.org/10.1007/978-3-642-10366-7_35
https://doi.org/10.1007/978-3-642-29011-4_43
https://csrc.nist.gov/projects/post-quantum-cryptography/round-2-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-2-submissions
https://doi.org/10.1007/978-3-662-46800-5_30
https://doi.org/10.1007/978-3-662-46800-5_30
https://doi.org/10.1007/978-3-319-71045-7_12
https://doi.org/10.1007/978-3-319-71045-7_12
https://doi.org/10.1007/978-3-642-29011-4_41
https://doi.org/10.1007/978-3-642-29011-4_41
https://doi.org/10.1007/978-3-319-63715-0_16
https://doi.org/10.1007/978-3-319-63715-0_16
https://doi.org/10.1007/11761679_17
https://doi.org/10.1007/978-3-030-25510-7_4
https://doi.org/10.1007/978-3-030-25510-7_4
https://doi.org/10.1007/978-3-642-14623-7_5
https://csrc.nist.gov/projects/post-quantum-cryptography/round-1-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-1-submissions
https://falcon-sign.info/falcon-impl-20190802.pdf

Key Recovery from Gram–Schmidt Norm Leakage 63

46. Prest, T.: Proof-of-concept implementation of an identity-based encryption scheme
over NTRU lattices (2014). https://github.com/tprest/Lattice-IBE

47. Prest, T., et al.: FALCON. Technical report, National Institute of Standards and
Technology (2019). https://csrc.nist.gov/projects/post-quantum-cryptography/
round-2-submissions

48. Prest, T., Ricosset, T., Rossi, M.: Simple, fast and constant-time Gaussian sam-
pling over the integers for Falcon. In: Second PQC Standardization Conference
(2019)

49. Stehlé, D., Steinfeld, R.: Making NTRU as secure as worst-case problems over ideal
lattices. In: Paterson, K.G. (ed.) EUROCRYPT 2011. LNCS, vol. 6632, pp. 27–47.
Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-20465-4 4

50. Tibouchi, M., Wallet, A.: One bit is all it takes: a devastating timing attack on
BLISS’s non-constant time sign flips. Cryptology ePrint Archive, Report 2019/898
(2019). https://eprint.iacr.org/2019/898

51. Yu, Y., Ducas, L.: Learning strikes again: the case of the DRS signature scheme. In:
Peyrin, T., Galbraith, S. (eds.) ASIACRYPT 2018, Part II. LNCS, vol. 11273, pp.
525–543. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-03329-3 18

52. Zhang, Z., Chen, C., Hoffstein, J., Whyte, W.: pqNTRUSign. Technical report,
National Institute of Standards and Technology (2017). https://csrc.nist.gov/
projects/post-quantum-cryptography/round-1-submissions

53. Zhao, R.K., Steinfeld, R., Sakzad, A.: FACCT: FAst, Compact, and Constant-Time
Discrete Gaussian Sampler over Integers. IACR Cryptology ePrint Archive, report
2018/1234 (2018)

https://github.com/tprest/Lattice-IBE
https://csrc.nist.gov/projects/post-quantum-cryptography/round-2-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-2-submissions
https://doi.org/10.1007/978-3-642-20465-4_4
https://eprint.iacr.org/2019/898
https://doi.org/10.1007/978-3-030-03329-3_18
https://csrc.nist.gov/projects/post-quantum-cryptography/round-1-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-1-submissions

An Algebraic Attack on Rank Metric
Code-Based Cryptosystems

Magali Bardet1,2, Pierre Briaud2, Maxime Bros3, Philippe Gaborit3,
Vincent Neiger3(B), Olivier Ruatta3, and Jean-Pierre Tillich2(B)

1 LITIS, University of Rouen Normandie, Mont-Saint-Aignan, France
2 Inria, 2 rue Simone Iff, 75012 Paris, France

jean-pierre.tillich@inria.fr
3 Univ. Limoges, CNRS, XLIM, UMR 7252, 87000 Limoges, France

vincent.neiger@unilim.fr

Abstract. The Rank metric decoding problem is the main problem con-
sidered in cryptography based on codes in the rank metric. Very efficient
schemes based on this problem or quasi-cyclic versions of it have been
proposed recently, such as those in the submissions ROLLO and RQC
currently at the second round of the NIST Post-Quantum Cryptography
Standardization Process. While combinatorial attacks on this problem
have been extensively studied and seem now well understood, the sit-
uation is not as satisfactory for algebraic attacks, for which previous
work essentially suggested that they were ineffective for cryptographic
parameters. In this paper, starting from Ourivski and Johansson’s alge-
braic modelling of the problem into a system of polynomial equations,
we show how to augment this system with easily computed equations
so that the augmented system is solved much faster via Gröbner bases.
This happens because the augmented system has solving degree r, r + 1
or r +2 depending on the parameters, where r is the rank weight, which
we show by extending results from Verbel et al. (PQCrypto 2019) on
systems arising from the MinRank problem; with target rank r, Verbel
et al. lower the solving degree to r + 2, and even less for some favorable
instances that they call “superdetermined”. We give complexity bounds
for this approach as well as practical timings of an implementation using
magma. This improves upon the previously known complexity estimates
for both Gröbner basis and (non-quantum) combinatorial approaches,
and for example leads to an attack in 200 bits on ROLLO-I-256 whose
claimed security was 256 bits.

Keywords: Post-quantum cryptography · NIST-PQC candidates ·
Rank metric code-based cryptography · Gröbner basis

1 Introduction

Rank Metric Code-Based Cryptography. In the last decade, rank metric
code-based cryptography has proved to be a powerful alternative to more tradi-
tional code-based cryptography based on the Hamming metric. This thread of
c© International Association for Cryptologic Research 2020
A. Canteaut and Y. Ishai (Eds.): EUROCRYPT 2020, LNCS 12107, pp. 64–93, 2020.
https://doi.org/10.1007/978-3-030-45727-3_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-45727-3_3&domain=pdf
https://doi.org/10.1007/978-3-030-45727-3_3

An Algebraic Attack on Rank Metric Code-Based Cryptosystems 65

research started with the GPT cryptosystem [37] based on Gabidulin codes [36],
which are rank metric analogues of Reed-Solomon codes. However, the strong
algebraic structure of those codes was successfully exploited for attacking the
original GPT cryptosystem and its variants with the Overbeck attack [53] (see
for example [51] for one of the latest related developments). This has to be traced
back to the algebraic structure of Gabidulin codes that makes masking extremely
difficult; one can draw a parallel with the situation in the Hamming metric where
essentially all McEliece cryptosystems based on Reed-Solomon codes or variants
of them have been broken. However, recently a rank metric analogue of the
NTRU cryptosystem from [44] has been designed and studied, starting with the
pioneering paper [38]. Roughly speaking, the NTRU cryptosystem relies on a
lattice that has vectors of rather small Euclidean norm. It is precisely those
vectors that allow an efficient decoding/deciphering process. The decryption of
the cryptosystem proposed in [38] relies on LRPC codes that have rather short
vectors in the dual code, but this time for the rank metric. These vectors are
used for decoding in the rank metric. This cryptosystem can also be viewed as
the rank metric analogue of the MDPC cryptosystem [50] that relies on short
vectors in the dual code for the Hamming metric.

This new way of building rank metric code-based cryptosystems has led to a
sequence of proposals [5,6,38,40], culminating in submissions to the NIST post-
quantum competition [1,2], whose security relies solely on the decoding problem
in rank metric codes with a ring structure similar to the ones encountered right
now in lattice-based cryptography. Interestingly enough, one can also build sig-
nature schemes using the rank metric; even though early attempts which relied
on masking the structure of a code [9,41] have been broken [24], a promising
recent approach [8] only considers random matrices without structural masking.

Decoding in Rank Metric. In other words, in rank metric code-based cryp-
tography we are now only left with assessing the difficulty of the decoding prob-
lem for the rank metric. The rank metric over F

N
q , where Fq is the finite field of

cardinality q and N = mn is a composite integer, consists in viewing elements
in this ambient space as m × n matrices over Fq and considering the distance
d(X,Y) between two such matrices X and Y as

d(X,Y) = Rank (Y − X) .

A (linear matrix) code C in F
m×n
q is simply a Fq-linear subspace in F

m×n
q , gen-

erated by K matrices M1, . . . ,MK . The decoding problem for the rank metric
at distance r is as follows: given a matrix Y in F

m×n
q at distance ≤ r from

C, recover an element M in C at distance ≤ r from Y . This is precisely the
MinRank problem given as input Y and M1, . . . ,MK :

Problem 1 (MinRank).
Input : an integer r ∈ N and K + 1 matrices Y ,M1, . . . ,MK ∈ F

m×n
q .

Output : field elements x1, x2, . . . , xK ∈ Fq such that

66 M. Bardet et al.

Rank

(
Y −

K∑
i=1

xiM i

)
≤ r.

As observed in [20], the MinRank problem is NP-complete and the best known
algorithms solving it have exponential complexity bounds.

Matrix Codes Specified as Fqm -Linear Codes. However, the trend in rank
metric code-based cryptography has been to consider a particular form of linear
matrix codes: they are linear codes of length n over an extension Fqm of degree m
of Fq, that is, Fqm-linear subspaces of Fn

qm . In the rest of this section, we fix a basis
(β1, . . . , βm) of Fqm an Fq-vector space. Then such codes can be interpreted as
matrix codes over Fm×n

q by viewing a vector x = (x1, . . . , xn) ∈ F
n
qm as a matrix

Mat(x) = (Xij)i,j in F
m×n
q , where (Xij)1≤i≤m is the column vector formed by

the coordinates of xj in the basis (β1, . . . , βm), that is, xj = X1jβ1+· · ·+Xmjβm.
Then the “rank” metric d on F

n
qm is the rank metric on the associated matrix

space, namely

d(x,y) := |y − x| , where we define |x| := Rank (Mat(x)) .

An Fqm-linear code C of length n and dimension k over Fqm specifies a matrix
code Mat(C) := {Mat(c) : c ∈ C} in F

m×n
q of dimension K := mk

over Fq: it is readily verified that a basis of this Fq-subspace is given by
(Mat(βicj))1≤i≤m,1≤j≤k where (c1, . . . , ck) is a basis of C over Fqm .

There are several reasons for this trend. On the one hand, the families of
matrix codes for which an efficient decoding algorithm is known are families
of Fqm -linear codes. On the other hand, Fqm-linear codes have a much shorter
description than general matrix codes. Indeed, a matrix code in F

m×n
q of dimen-

sion K = km can be specified by a basis of it, which uses Kmn log(q) =
km2n log(q) bits, whereas a matrix code obtained from an Fqm-linear code of
dimension k over Fqm can be specified by a basis (c1, . . . , ck) of it, which uses
kmn log(q) bits and thus saves a factor m.

Progress in the design of efficient algorithms for decoding Fqm-linear codes
suggests that their additional structure may not have a significant impact on
the difficulty of solving the decoding problem. For instance, a generic matrix
code over F

m×n
q of dimension K = mk can be decoded using the information

set decoder of [39] within a complexity of the order of qkr when the errors
have rank at most r and m ≥ n, compared to qkr−m for the decoding of a
linear code over Fn

qm in the same regime, using a similar decoder [10]. Moreover,
even if the decoding problem is not known to be NP-complete for these Fqm-
linear codes, there is a randomised reduction to an NP-complete problem [42]
(namely to decoding in the Hamming metric). Hereafter, we will use the following
terminology.

Problem 2 ((m,n, k, r)-decoding problem).
Input : an Fqm -basis (c1, . . . , ck) of a subspace C of F

n
qm , an integer r ∈ N, a

vector y ∈ F
n
qm at distance at most r of C (i.e. |y − c| ≤ r for some c ∈ C).

Output : c ∈ C and e ∈ F
n
qm such that y = c + e and |e| ≤ r.

An Algebraic Attack on Rank Metric Code-Based Cryptosystems 67

The region of parameters which is of interest for the NIST submissions corre-
sponds to m = Θ (n), k = Θ (n) and r = Θ (

√
n).

Gröbner Basis Techniques for Decoding in the Rank Metric. The afore-
mentioned algorithm from [10] for solving the decoding problem follows a combi-
natorial approach pioneered in [52], which is related to decoding techniques for
the Hamming metric. Another approach consists in viewing the decoding prob-
lem as a particular case of MinRank and using the algebraic techniques designed
for this problem; namely these techniques use a suitable algebraic modelling of a
MinRank instance into a system of multivariate polynomial equations, and then
solve this system with Gröbner basis techniques. Several modellings have been
considered, such as the Kipnis-Shamir modelling [45] and the minors modelling
(described for example in [34]); the complexity of solving MinRank using these
modellings has been investigated in [33,34]. The Kipnis-Shamir modelling boils
down to a polynomial system which is affine bilinear. This means that each equa-
tion has degree at most 2 and the set of variables can be partitioned into two
sets {x1, . . . , xs} ∪ {y1, . . . , yt} such that all monomials of degree 2 involved in
the equations are of the form xiyj ; in other words, the equations are formed by
a quadratic part which is bilinear plus an affine part. Although the complexity
of solving this system can be bounded by that of solving bilinear systems, which
is studied in [35], the complexity estimates thus obtained are very pessimistic,
as observed experimentally in [21]. A theoretical explanation of why Gröbner
basis techniques perform much better on the Kipnis-Shamir modelling than on
generic bilinear systems was later given in [56]. It was also demonstrated there
that the Kipnis-Shamir approach is more efficient than the minors approach on
several multivariable encryption or signature schemes relying on the MinRank
problem. However, the speed-up obtained for the Kipnis-Shamir modelling in
the latter reference mostly comes from the “superdetermined” case considered
therein. When applied to the (m,n, k, r)-decoding problem, this corresponds to
the case where m = n and km < nr; this condition is not met in the decoding
problem instances we are interested in.

Another algebraic approach to solve the (m,n, k, r)-decoding problem was
suggested in [39, §V.]. It is based on a new modelling specific to Fqm-linear
codes which fundamentally relies on the underlying Fqm -linear structure and
on q-polynomials. Also, it results in a system of polynomial equations that are
sparse and have large degree. This approach seems to be efficient only if rk is
not much larger than n.

Our Contribution. If one compares the best known complexity estimates, the
algebraic techniques appear to be less efficient than the combinatorial ones, such
as [39,52], and [10] for the parameters of the rank metric schemes proposed to
the NIST [3,7] or of other rank metric code-based cryptosystems [49]. In [55],
Levy-dit-Vehel and Perret pioneered the use of Gröbner basis techniques to solve
the polynomial system arising in the Ourivski-Johansson algebraic modelling [52],
with promising practical timings. In this paper, we follow on from this approach

68 M. Bardet et al.

and show how this polynomial system can be augmented with additional equa-
tions that are easy to compute and bring on a substantial speed-up in the Gröbner
basis computation for solving the system. This new algebraic algorithm results
in the best practical efficiency and complexity bounds that are currently known
for the decoding problem; in particular, it significantly improves upon the above-
mentioned combinatorial approaches.

There are several reasons why the Ourivski-Johansson algebraic modelling
improves upon the Kipnis-Shamir one. First, it has the same affine bilinear
structure and a similar number of equations, but it involves much fewer vari-
ables. Indeed, for the case of interest to us where m and k are in Θ(n) and r is in
Θ(n1/2), the Kipnis-Shamir modelling involves Θ(n2) equations and variables,
while the Ourivski-Johansson one involves Θ(n2) equations and Θ(n3/2) vari-
ables. Second, this modelling naturally leads to what corresponds to reducing
by one the value of r, as explained in Sect. 3. Third, and most importantly, the
main properties that ensure that the Kipnis-Shamir modelling behaves much
better with respect to Gröbner basis techniques than generic bilinear systems
also hold for the Ourivski-Johansson modelling. In essence, this is due to a solv-
ing degree which is remarkably low: at most r + 2 for the former modelling and
at most r + 1 for the latter. Recall that the solving degree indicates the max-
imum degree reached during a Gröbner basis computation; it is known to be a
strong predictor of the complexity of the most expensive step in a Gröbner basis
computation and has been widely used for this purpose with confirmations via
numerical experiments, see for instance [26–29,43,56].

To prove the third point, we start from the result about degree falls at the
core of [56], which is based on work from [35], and we extend it to a more
general setting which includes the Ourivski-Johansson modelling. In our case,
these degree falls mean that from the initial system of quadratic equations fi = 0
of the Ourivski-Johansson modelling, we are able to build many new equations
of degree r that are combinations

∑
i figij = 0 where the gij ’s are polynomials

of degree r − 1 involved in the j-th new equation. We also prove that, when the
parameters satisfy the condition

m

(
n − k − 1

r

)
≥
(

n

r

)
− 1, (1)

by using that these polynomials
∑

i figij can be expressed as linear combinations
of only a few other polynomials, we can perform suitable linear combinations of
the equations

∑
i figij = 0’s giving

(
n−1
r−1

) − 1 equations of degree r − 1. All
these polynomial combinations are easily computed from the initial quadratic
equations. By adding these equations and then performing Gröbner basis com-
putations on the augmented system, we observe that experimentally the Gröbner
basis algorithm behaves as expected from the degree fall heuristic:

– if (1) holds, this degree is r and the overall complexity is O
((

((m+n)r)r

r!

)ω)
operations in Fq.

An Algebraic Attack on Rank Metric Code-Based Cryptosystems 69

– if (1) does not hold, the maximum degree reached in the Gröbner basis com-
putation is r + 1 (in some intermediate cases), or r + 2, leading to an overall

complexity of at most O
((

((m+n)r)r+1

(r+1)!

)ω)
(resp. O

((
((m+n)r)r+2

(r+2)!

)ω)
) oper-

ations in Fq, where ω is the exponent of matrix multiplication.

Note that for a majority of parameters proposed in [3,7], the condition (1) holds.
Taking for ω the smallest value currently achievable in practice, which is ω ≈ 2.8
via Strassen’s algorithm, this leads to an attack on the cryptosystems proposed
in the aforementioned NIST submissions which is in all cases below the claimed
classical security levels.

2 Notation

In the whole paper, we use the following notation and definitions:

– Matrices and vectors are written in boldface font M .
– For a matrix M its entry in row i and column j is denoted by M [i, j].
– The transpose of a matrix M is denoted by MT.
– For a given ring R, the space of matrices with m rows and n columns and

coefficients in R is denoted by Rm×n.
– For M ∈ Rm×n, we denote by vecrow(M) the column vector formed by

concatenating the rows of M , i.e. vecrow(M) =
(
M{1},∗ . . . M{n},∗

)T.
– For M ∈ Rm×n, we denote by veccol(M) the column vector formed by

concatenating the columns of M , i.e. veccol(M) = vecrow(MT).
– {1..n} stands for the set of integers from 1 to n, and for any subset J ⊂

{k + 1..n}, we denote by J − k the set J − k = {j − k : j ∈ J} ⊂ {1..n − k}.
– For two subsets I ⊂ {1..m} and J ⊂ {1..n}, we write M I,J for the submatrix

of M formed by its rows (resp. columns) with index in I (resp. J).
– We use the shorthand notation M∗,J = M{1..m},J and M I,∗ = M I,{1..n},

where M has m rows and n columns.
– Fq is a finite field of size q, and α ∈ Fqm is a primitive element, so that

(1, α, . . . , αm−1) is a basis of Fqm as an Fq-vector space. For β ∈ Fqm , we
denote by [αi−1]β its ith coordinate in this basis.

– For v = (v1, . . . , vn) ∈ F
n
qm . The support of v is the Fq-vector subspace of Fqm

spanned by the vectors v1, . . . , vn. Thus this support is the column space of
the matrix Mat(v) associated to v (for any choice of basis), and its dimension
is precisely Rank(Mat(v)).

– An [n, k] Fqm-linear code is an Fqm-linear subspace of F
n
qm of dimension k

endowed with the rank metric.

3 Algebraic Modellings of the Decoding Problem

In what follows, parameters are chosen in the cryptographically relevant region
mentioned in the introduction, say m = Θ (n), k = Θ (n) and r = Θ (

√
n).

Decoding instances will then have a single solution e. For simplicity, we assume

70 M. Bardet et al.

that the rank of e is exactly r; in general one can run the algorithm for increas-
ing values of the target rank up to r, until a solution is found, and the most
expensive step will correspond to the largest considered rank. We consider here
the (m,n, k, r)-decoding problem for the code C and assume we have received
y ∈ F

n
qm at distance r from C and look for c ∈ C and e such that y = c+ e and

|e| = r.

3.1 Solving the MinRank Instance Using Kipnis-Shamir’s Modelling

As explained in Sect. 1, a possible approach to perform the decoding is to solve
the underlying MinRank instance with km+1 matrices in F

m×n
q ; this is done by

introducing M0 := Mat(y) and M1, . . . ,Mkm which is an Fq-basis of Mat(C).
Several methods have been developed, and so far the Kipnis-Shamir modelling
[45] seems to be the most efficient to solve this MinRank instance. We want to
find (z0, . . . , zkm) in F

mk+1
q such that Rank(

∑km
i=0 ziM i) = r. (z0, z1, . . . , zkm) is

a solution to the MinRank problem if and only if the right kernel of
∑km

i=0 ziM i

contains a subspace of dimension n − r of F
n
q . With high probability, a basis

of such a space can be written in systematic form, that is, in the form
(
In−r

K

)
.

Thus we have to solve the system(
km∑
i=0

ziM i

)(
In−r

K

)
= 0, (2)

over Fq, where K is an r×(n−r) matrix of indeterminates. This system is affine
bilinear and has m(n − r) equations and km + 1 + r(n − r) variables, which are
z0, z1, . . . , zkm and the r(n − r) entries of K; each equation has a bilinear part
as well as a linear part which only involves the variables zi.

3.2 Syndrome Modelling

We recall here the modelling considered in [2,7]. Let H be a parity-check matrix
of C, i.e.

C = {c ∈ F
n
qm : cHT = 0}.

The (m,n, k, r)-decoding problem can be algebraically described by the system
eHT = s where e ∈ F

n
qm has rank r and s ∈ F

(n−k)
qm is given by s := yHT. Let

(S1, . . . , Sr) ∈ F
r
qm be a basis of the support of e; then, e = (S1 · · · Sr)C,

where C ∈ F
r×n
q is the matrix of the coordinates of e in the basis (S1, . . . , Sr).

Then expressing the elements Si in the basis (1, α, . . . , αm−1) of Fqm over Fq

yields (S1 · · · Sr) = (1 α · · · αm−1)S for some matrix S ∈ F
m×r
q . Thus, the

system is rewritten as(
1 α · · · αm−1

)
SCHT = s, over Fqm with solutions in Fq. (3)

This polynomial system, that we refer to as the syndrome modelling, has m(n−k)
equations and mr + nr variables when it is written over Fq. It is affine bilinear

An Algebraic Attack on Rank Metric Code-Based Cryptosystems 71

(without terms of degree 1) with respect to the two sets of variables coming
from the support and from the coordinates of the error. Besides, this system
admits (qr − 1)(qr − q) · · · (qr − qr−1) solutions since this is the number of bases
of the support. These solutions to the system all correspond to the same unique
solution e of the initial decoding problem. We can easily impose a unique solution
by fixing some of the unknowns as in the Kipnis-Shamir modelling, or as has
been done in the Ourivski-Johansson modelling that we will present next. It
is worthwhile to note that this kind of modelling has, as the Kipnis-Shamir
modelling, Θ

(
n2
)

equations for our choice of parameters but significantly fewer
variables since we now have only Θ

(
n3/2

)
unknowns. The Ourivski-Johansson’s

modelling will be a related modelling that gives a further improvement.

3.3 Ourivski-Johansson’s Modelling

We now describe the algebraic modelling considered in the rest of this paper,
which is basically Ourivski and Johansson’s one [52]. It can be viewed as an
homogenising trick. Instead of looking for c ∈ C and e of rank r that satisfy
y = c+ e, or what is the same for c ∈ C such that |c+y| = r, we look for c ∈ C
and λ ∈ Fqm such that

|c + λy| = r. (4)

It is precisely here that the Fqm-linearity of C is used in a crucial way. Once we
have found such a c and λ, we have found a c + λy such that c + λy = μe for
some non-zero μ ∈ Fqm from which we deduce easily e. The point of proceeding
this way is that there are qm − 1 solutions to (4) and that this allows us to fix
more unknowns in the algebraic system. Another point of view [52, Sec. 2] is to
say that we introduce the code C̃ := C + 〈y〉 and that we look for a rank r word
in C̃, since all such words are precisely the multiples λe for nonzero λ ∈ Fqm of
the error e we are looking for. Let G̃ =

(
Ik+1 R

)
(resp. H̃ =

(−RT In−k−1

)
)

be the generator matrix in systematic form (resp. a parity-check matrix) of
the extended code C̃; note that for a vector v, we have v ∈ C̃ if and only if
vH̃

T
= 0. Using the notation e = (1 α · · · αm−1)SC as above, and writing

C = (C1 C2) with C1 ∈ F
r×(k+1)
q and C2 ∈ F

r×(n−k−1)
q , the fact that e ∈ C̃

yields the system(
1 α · · · αm−1

)
S (C2 − C1R) = 0, over Fqm with solutions in Fq. (5)

Since all multiples λe are solutions of this system, we can specify the first column
of C to (1 0 · · · 0)T. In this way, there is a single λe satisfying these constraints:
the one where λ is the inverse of the first coordinate of e (assuming it is nonzero,
see below). The system still admits several solutions which correspond to dif-
ferent bases of the support of λe. To fix one basis of this support, similarly to
what is done in [52, Sec. 3], we can specify S1 = 1, or equivalently, set the first
column of S to be (1 0 · · · 0)T, and take an r × r invertible submatrix of S and
specify it to be the identity matrix; thus the system has a single solution.

Doing so, the resulting system is affine bilinear (without constant term), with
(n − k − 1)m equations and (m − 1)r + nr variables, and has a unique solution.

72 M. Bardet et al.

For the sake of presentation, in Sect. 5 we present our results assuming that
the first coordinate of e is nonzero and that the top r×r block of S is invertible;
these results are easily extended to the general case. Under these assumptions,
our system can be rewritten as follows:

F =
{(

1 α · · · αm−1
)(Ir

0 S′

)(
C2 −

(
1
0 C ′

1

)
R

)}
, (6)

where S′ is the (m − r) × (r − 1) submatrix S{r+1..m},{2..r} and C ′
1 is the r × k

submatrix C∗,{2..k+1}. We call the entries of S′ the support variables whereas
the entries of C′

1 and C2 are called the coefficient variables. In Sect. 6.2 we give
a procedure to handle the general case, by making several attempts to find the
invertible block of S and a nonzero component of e.

4 Gröbner Bases and Degree Falls

We refer to [23] for basic definitions and properties of monomial orderings and
Gröbner bases.

Field Equations and Monomial Ordering. Since we are looking for solu-
tions in Fq, we augment the polynomial system we want to solve with the field
equations, that is, the equation xq

i − xi = 0 for each variable xi arising in the
system. In our case, as the system we consider in practice has mainly only one
solution in Fq (see Sect. 6), the ideal of the system with the field equations is
radical, and for any monomial ordering the reduced Gröbner basis is the set
of linear polynomials {xi − ai}i, where {xi}i are the variables and ai ∈ Fq is
the i-th coordinate of the solution. The classical approach consists in computing
the Gröbner basis with respect to a degree-reverse lexicographic order (grevlex),
that will keep the degree of the polynomials as small as possible during the com-
putation, and behaves usually better than other monomial orderings in terms of
complexity.

Generic Gröbner Bases Algorithms and Their Link with Linear Alge-
bra. Since the first descriptions of algorithms to compute Gröbner bases [18],
far more efficient algorithms have been developed. On the one hand, substantial
practical speed-ups were achieved by incorporating and accelerating fast lin-
ear algebra operations such as Gaussian elimination on the Macaulay matrices,
which are sparse and structured (see Faugère’s F4 algorithm [31], variants of the
XL algorithm [22], and for instance GBLA [17]). We recall that the Macaulay
matrix in degree d of a homogeneous system (fi)i is the matrix whose columns
correspond to the monomials of degree d sorted in descending order w.r.t. a
chosen monomial ordering, whose rows correspond to the polynomials tfi for all
i where t is a monomial of degree d − deg(fi), and whose entry in row tfi and
column u is the coefficient of the monomial u in the polynomial tfi. In the case
of a system containing field equations, we consider compact Macaulay matrices,
where all monomials are reduced w.r.t. the field equations. For an affine system,

An Algebraic Attack on Rank Metric Code-Based Cryptosystems 73

the Macaulay matrix in degree d contains all polynomials {tfi} for deg(tfi) ≤ d
and the columns are the monomials of degree less than or equal to d.

The approaches from F4 or XL are similar in that they both compute row
echelon forms of some submatrices of Macaulay matrices for some given degree;
in fact, it was proven in [11] that the XL algorithm computes a so-called d-
Gröbner basis, which is a basis of the initial system where all computations in
degree larger than d are ignored, and that one can rephrase the original XL
algorithm in terms of the original F4 algorithm.

Now, many variants of these algorithms have been designed to tackle spe-
cific families of polynomial systems, and it seems that none of them performs
always better than the others. In our experimental considerations, we rely on the
implementation of the F4 algorithm which is available in magma V2.22-2 and is
recognised for its efficiency.

On the other hand, improvements have been obtained by refining criteria
which allow one to avoid useless computations (avoiding to consider monomi-
als that cannot appear, a priori detection of reductions to zero as in the F5
algorithm [32] and other signature-based algorithms that followed, see [30] for a
survey).

Complexity Analysis for Homogeneous Systems. For homogeneous sys-
tems, and for a graded monomial ordering, the complexity of these algorithms
in terms of arithmetic operations is dominated by the cost of the row echelon
forms on all Macaulay matrices up to degree d, where d is the largest degree of a
polynomial in the reduced Gröbner basis1. This degree d is bounded by the index
of regularity, or degree of regularity, which only depends on the ideal generated
by the system, not on the specific generators forming the system. Some algo-
rithms may need to go beyond degree d to check that no new polynomials will
be produced, like the XL Algorithm or the F4 Algorithm without the F5 criteria,
but those computations may be avoided if one knows in advance the degree of
regularity of the system. This parameter can be precisely estimated for different
families of generic systems, using the notions of regularity, of semi-regularity in
the over-determined case, and of bi-regularity in the bilinear case [12,14,15,35].
However, those bounds may be very pessimistic for other specific (sub-)families
of systems, and deriving estimations in this situation is difficult a priori, in par-
ticular for affine systems.

Definition 1. Let (fi)i be (non necessarily homogeneous) polynomials in a poly-
nomial ring R. A syzygy is a vector (si)i, si ∈ R such that

∑
i sifi = 0. The

degree of the syzygy is defined as maxi(deg(fi)+deg(si)). The set of all syzygies
of (fi)i is an R-module called the syzygy module of (fi)i.

For a given family of systems, there are syzygies that occur for any system
in the family. For instance, for any system (fi)i, the syzygy module contains the

1 If the system contains redundant polynomials of degree larger than d, additional
operations are needed to check that those polynomials reduce to zero w.r.t. the
Gröbner basis, but this has usually a negligible cost.

74 M. Bardet et al.

R-module spanned by the so-called trivial syzygies (ejfi − eifj)i,j , where ei is
the coordinate vector with 1 at index i. A system is called regular if its syzygy
module is generated by these trivial syzygies.

Let us consider the particular case of a zero-dimensional system (fi)i of
homogeneous polynomials, generating an ideal I. As the system is homogenous
and has a finite number of solutions, then it must have only 0 as a solution
(with maybe some multiplicities). In this case, the degree of regularity of the
system is the lowest integer dreg such that all monomials of degree dreg are in
the ideal of leading terms of I (see [12,15]). Such a system is called semi-regular
if the set of its syzygies of degree less than dreg(I) is exactly the set of trivial
syzygies of degree less than dreg(I). Note that there may be non-trivial syzygies
in degree dreg(I), which may be different for each system. As a consequence, all
polynomials occurring in the computation of a Gröbner basis have degree ≤ dreg

and the arithmetic complexity is bounded by the cost of the row echelon form
on the Macaulay matrices in degree ≤ dreg.

Complexity Analysis for Affine Systems. For affine systems, things are
different. The degree of regularity can be defined in the same way w.r.t. the
Gröbner basis for a grevlex ordering. But it is not any more related to the
complexity of the computation: for instance, a system with only one solution
will have a degree of regularity equal to 1. We need another parameter to control
the complexity of the computation.

Let (fi)i be a system of affine polynomials, and fh
i the homogeneous part of

highest degree of fi. Let I = 〈{fi}i〉 and Ih = 〈{fh
i }i〉, and let dh

reg be the degree
of regularity of Ih. What may happen is that, during the computation of the
basis in some degree d, some polynomials of degree less than d may be added to
the basis. This will happen any time a syzygy (sh

i)i for (fh
i)i of degree d is such

that there exists no syzygy (si)i for (fi)i where sh
i is the homogeneous part of

highest degree of si. In that case,
∑

i sh
i fi is a polynomial of degree less than d

(the homogeneous part of highest degree cancels), that will not be reduced to
zero during the Gröbner basis computation since this would give a syzygy (si)i

for (fi)i with homogeneous part (sh
i)i. This phenomenon is called a degree fall

in degree d, and we will call such syzygies (sh
i) that cannot be extended to syzy-

gies for (fi)i in the same degree partial syzygies; the corresponding polynomial∑
i sh

i fi is called the residue.
In cryptographic applications, the first degree fall dff has been widely used as

a parameter controlling the complexity in algebraic cryptanalysis, for instance
in the study of some HFE-type systems [25,29,43] and Kipnis-Shamir systems
[56]. This first degree fall is simply the smallest d such that there exists a degree
fall in degree d on (fi)i, and this quantity does depend on (fi)i: it might be
different for another set of generators of the same ideal. Still, this notion takes
on its full meaning while computing a Gröbner basis for a graded ordering, if we
admit that the algorithm terminates shortly after reaching the first degree fall
and without considering polynomials of higher degree. This can happen for some
families of systems, as explained in the next paragraph, but there are examples
of systems where the first degree fall dff is not the maximal degree reached

An Algebraic Attack on Rank Metric Code-Based Cryptosystems 75

during the computation, in which case it is not related to the complexity of the
computation.

If the system (fh
i)i is semi-regular, then the computation in degree less than

dh
reg will act as if the polynomials where homogeneous: there cannot be degree

falls, as they would correspond to syzygies for the system (fh
i)i that is assumed

to be semi-regular. In degree dh
reg, degree falls will occur for the first time, but at

this point the remainder of the computation is negligible compared to the previ-
ous ones: by definition of dh

reg, all monomials of degree dh
reg are leading terms of

polynomials in the basis, and the remaining steps in the computation will nec-
essarily deal with polynomials of degree at most dh

reg. Hence, the computations
are almost the same as the ones for (fh

i)i, and the complexity is controlled by
dh
reg, which is here the first degree fall for the system (fi)i.

The behavior of the computation may be very different if degree falls occur in
a much smaller degree. A good example of what may happen for particular fami-
lies of systems is the affine bilinear case. It is proven in [35, Prop. 5] that a generic
affine bilinear system of m equations (f1, . . . , fm) ∈ K[x1, . . . , xnx

, y1, . . . , yny
]

in nx + ny ≥ m variables is regular. In particular, the Macaulay bound
dreg ≤ nx + ny + 1 applies [46]. However, it was also proven in [35, Thm. 6]
that for a zero-dimensional affine bilinear system (m = nx + ny), dreg satisfies a
much sharper inequality dreg ≤ min(nx +1, ny +1). The reason is that (homoge-
neous) bilinear systems are not regular, but the syzygy module of those systems
is well understood [35]. In particular, there are syzygies for (fh

i)i coming from
Jacobian matrices, that are partial syzygies for (fi)i and produce degree falls.

For affine systems, that are mainly encountered in cryptographic applica-
tions, and in particular for systems coming from a product of matrices whose
coefficients are the variables of the system, the Jacobian matrices have a very
particular shape that is easily described, and leads to a series of degree falls that
reduces the degree of regularity of those systems. This is explained in detail in
Sect. 5.

5 Degree Falls and Low Degree Equations

5.1 Degree Falls from the Kernel of the Jacobian

Fundamental Results from [35,56]. It has been realized in [56] that the first
degree fall in the Kipnis and Shamir modelling can be traced back to partial
syzygies obtained from low degree vectors in the kernel of the Jacobian of the
bilinear part of a system either with respect to the kernel variables or the linear
variables. This argument can also be adapted to our case and Jacobians with
respect to the support variables are relevant here. To understand the relevance
of the Jacobians for bilinear affine systems over some field K in general, con-
sider a bilinear affine system F = {f1, . . . , fM} ⊂ K[s1, . . . , sts , c1, . . . , ctc] of M
equations in ts variables s and tc variables c. We denote by Fh := {fh

1 , . . . , fh
M}

the bilinear part of these equations. In other words each fi can be written as

fi = fh
i + ri,

76 M. Bardet et al.

where each ri is affine and fi
h is bilinear with respect to {s1, . . . , sts} ∪

{c1, . . . , ctc}. We define the Jacobian matrices associated to Fh as

JacS (Fh) =

⎛
⎜⎜⎝

∂fh
1

∂s1
. . .

∂fh
1

∂sts

...
...

...
∂fh

M

∂s1
. . .

∂fh
M

∂sts

⎞
⎟⎟⎠ and JacC (Fh) =

⎛
⎜⎜⎝

∂fh
1

∂c1
. . .

∂fh
1

∂ctc
...

...
...

∂fh
M

∂c1
. . .

∂fh
M

∂ctc

⎞
⎟⎟⎠ .

Note that JacS (Fh) is a matrix with linear entries in K[c1, . . . , ctc] whereas
JacC (Fh) is a matrix with linear entries in K[s1, . . . , sts]. As shown in [56][Prop.
1 & 2] vectors in the left kernel of these Jacobians yield partial syzygies. This is
essentially a consequence of the following identities that are easily verified:

JacS (Fh)

⎛
⎜⎝

s1

...
sts

⎞
⎟⎠ =

⎛
⎜⎝

fh
1
...

fh
M

⎞
⎟⎠ and JacC (Fh)

⎛
⎜⎝

c1

...
ctc

⎞
⎟⎠ =

⎛
⎜⎝

fh
1
...

fh
M

⎞
⎟⎠ .

For instance, a vector (g1, . . . , gM) in the left kernel of JacC (Fh) is a syzygy for
Fh, as it satisfies

M∑
i=1

gif
h
i = (g1 · · · gM)

⎛
⎜⎝

fh
1
...

fh
M

⎞
⎟⎠ = (g1 · · · gM)JacC (Fh)

⎛
⎜⎝

c1

...
ctc

⎞
⎟⎠ = 0.

This gives typically a degree fall for F at degree 2 + max(deg gi), with the
corresponding residue given by

M∑
i=1

gifi =
M∑
i=1

gif
h
i +

M∑
i=1

giri =
M∑
i=1

giri.

These Jacobians are matrices with entries that are linear forms. The kernel of
such matrices is well understood as shown by the next result.

Theorem 1 ([35]). Let M be an M × t matrix of linear forms in K[s1, . . . , sts].
If t < M , then generically the left kernel of M is generated by vectors whose
coefficients are maximal minors of M, specifically vectors of the form

V J = (. . . , 0︸︷︷︸
j /∈J

, . . . , (−1)l+1 det(MJ\{j},∗)︸ ︷︷ ︸
j∈J,j=jl

, . . .)1≤j≤M

where J = {j1 < j2 < · · · < jt+1} ⊂ {1, . . . ,M},#J = t + 1.

A direct use of this result however yields degree falls that occur for very
large degrees, namely at degrees ts +2 or tc +2. In the case of the Kipnis-Shamir
modelling, the syndrome modelling or the Ourivski-Johansson modelling, due to
the particular form of the systems, degree falls occur at much smaller degrees

An Algebraic Attack on Rank Metric Code-Based Cryptosystems 77

than for generic bilinear affine systems. Roughly speaking, the reason is that the
Jacobian of a system coming from a matrix product splits as a tensor product, as
we now explain. This has been realized in [56] for the Kipnis-Shamir modelling,
and here we slightly generalize this result in order to use it for more general
modellings, and in particular for the Ourivski-Johansson modelling.

Jacobian Matrices of Systems Coming from Matrix Products. Consider
a system AXY = 0 where A = (ai,s)1≤i≤m,1≤s≤p, X = (xs,t)1≤s≤p,1≤t≤r and
Y = (yt,j)1≤t≤r,1≤j≤n. The variables considered for this Jacobian matrix are
the xs,t. The matrices A and Y may have polynomial coefficients, but they
do not involve the xs,t variables. Below, we use the Kronecker product of two
matrices, for example A ⊗ Y T =

(
ai,sY

T
)
1≤i≤m,1≤s≤p

. We use the notations

vecrow(A) =
(
A{1},∗ . . . A{n},∗

)T and veccol(A) = vecrow(AT).

Lemma 1. The Jacobian matrix of the system AXY = 0m×n with respect to
the variables X can be written, depending on the order of the equations and
variables:

Jacveccol(X)(veccol(AXY)) = Y T ⊗ A ∈ K[A,Y]nm×rp

Jacvecrow(X)(vecrow(AXY)) = A ⊗ Y T ∈ K[A,Y]nm×rp.

Proof. For 1 ≤ i ≤ m, 1 ≤ j ≤ n, the equation in row i and column j of AXY
is

fi,j =
p∑

s=1

r∑
t=1

ai,sxs,tyt,j .

We then have, for 1 ≤ s ≤ p and 1 ≤ t ≤ r, ∂fi,j

∂xs,t
= ai,syt,j so that in row order,

Jacxs,1,...,xs,r
({fi,1, . . . , fi,n}) =

(
∂fi,j

∂xs,t

)
1≤j≤n
1≤t≤r

= ai,s (yt,j)1≤j≤n
1≤t≤r

= ai,sY
T.

The result follows from the definition of the Kronecker product of matrices. The
proof when the equations and variables are in column order is similar. �

Application to the Kipnis-Shamir Modelling. Recall the system:(
km∑
i=1

xiM i

)(
In−r

K

)
= 0m,n−r, (7)

where M i ∈ F
m×n
q and K is an r × (n− r) matrix of indeterminates. If we write

each M i = (M ′
i M ′′

i) with M ′
i ∈ F

m×(n−r)
q and M ′′

i ∈ F
m×r
q , then we have

km∑
i=1

xi

(
M ′

i + M ′′
i K

)
= 0m,n−r (KS)

78 M. Bardet et al.

The bilinear and linear parts of the system are respectively
∑km

i=1 xiM
′′
i K and∑km

i=1 xiM
′
i. Using Lemma 1 (with equations in column order), when we compute

the Jacobian with respect to the entries of K (the so-called kernel variables in
[56]), we obtain

Jacveccol(K)(veccol(
km∑
i=1

xiM
′′
i K)) =

km∑
i=1

xi(In−r ⊗ M ′′
i) = In−r ⊗

(
km∑
i=1

xiM
′′
i

)
.

The kernel of Jacveccol(K) is generated by the vectors (v1, . . . ,vn−r) with vl in
the left kernel of M =

∑km
i=1 xiM

′′
i , that should be generated by

(
m

r+1

)
vectors

of minors, according to Theorem 1. Hence the kernel of Jacveccol(K) is generated
by

(
m

r+1

)
(n − r) vectors. It is here that we see the point of having this tensor

product form. These kernel vectors have entries that are polynomials of degree
r by using Theorem1. This gives degree falls at degree r + 2 and yields partial
syzygies that have degree r +1. These considerations are a slightly different way
of understanding the results given in [56, §3]. The syndrome modelling displays
a similar behavior, i.e. a degree fall at r + 2 for the very same reason as can be
readily verified. Let us apply now Lemma1 to the Ourivski-Johansson modelling.

Application to the Ourivski-Johansson Modelling. The system here is

F =
{(

1 α · · · αm−1
)(Ir

0 S′

)(
C2 −

(
1
0 C ′

1

)
R

)}
, (8)

where S′ is the (m − r) × (r − 1) matrix S{r+1..m},{2..r} and C ′
1 is the r × k

matrix C∗,{2..k+1}. We add to F the field equations Fq = {sq
i,j − si,j , r + 1 ≤

i ≤ m, 2 ≤ j ≤ r, cq
i,j − ci,j , 1 ≤ i ≤ r, 2 ≤ j ≤ n}.

With high probability, this system has a unique solution. As we used the
field equations, the ideal 〈F ,Fq〉 is radical. The system has nS = (m − r)(r − 1)
variables S, nC = (n−1)r variables C, and n−k −1 equations over Fqm , hence
neq = (n − k − 1)m equations over Fq, plus the field equations.

Consider the system Fh formed by the bilinear parts of the equations in F .
A simple computation shows that

Fh =
{
αr

(
1 α · · · αm−r−1

)
S′(C ′′

2 − C ′′
1R

′)
}

,

where C′′
2 = C{2..r},{k+2..n}, C

′′
1 = C{2..r},{2..k+1} and R′ = R{2..k+1},∗.

If we take the equations and variables in row order, and use Lemma1, then

Jacvecrow(S)(vecrow(Fh)) = αr
(
1 α · · · αm−r−1

) ⊗ (
C ′′

2 − C ′′
1R

′)T (9)

The elements in the left kernel of Jacvecrow(S)(vecrow(Fh)) are those in the
right kernel of C ′′

2 −C ′′
1R

′, and applying Theorem1, they belong to the module
generated by the vectors V J for any J = {j1 < j2 < · · · < jr} ⊂ {1, . . . , n−k−1}
of size r defined by

V J = (. . . , 0︸︷︷︸
j /∈J

, . . . , (−1)l+1 det(C ′′
2 − C ′′

1R
′
∗,J\{j})︸ ︷︷ ︸

j=jl∈J

, . . .)1≤j≤n−k−1.

An Algebraic Attack on Rank Metric Code-Based Cryptosystems 79

Each VJ gives a syzygy for Fh and when applying it to F it yields a degree
fall in degree r + 1 because the entries of V J are homogeneous polynomials of
degree r − 1. The inner product of V J with the vector of the equations gives an
equation of degree ≤ r since the homogeneous part of highest degree cancels, as
has been observed at the beginning of this section. Now the affine part of the
equations F is

(
1 α · · · αr−1

)
(C2 − C1R).

Writing H̃ =
(−RT In−k−1

)
, then

det(C ′′
2 − C ′′

1R
′
∗,J\{j}) = det((CH̃

T
){2..r},J\{j}).

Using the reverse of Laplace’s formula expressing a determinant in terms of
minors, we can compute the inner product of the vector V J with the ith row of
C2 − C1R = CH̃

T
, that is 0 for 2 ≤ i and det((CH̃

T
)∗,J) for i = 1.

The product gives

V J

((
1 α · · · αr−1

)
(C2 − C1R)

)T = V J (C2 − C1R)T
(
1 α · · · αr−1

)T
= det(C2 − C1R)∗,J . (10)

This yields a corresponding equation that will be reduced to zero by a degree-
(r + 1) Gröbner basis of F . Hence the partial syzygies of degree r coming from
the degree fall in the (r + 1)-Macaulay matrix are exactly the maximal minors
of C2 − C1R. We have thus proven that

Theorem 2. The equations MaxMinors(C2 −C1R) = 0, that are the maximal
minors of the matrix C2 −C1R, belong to the ideal 〈F ,Fq〉. Moreover, they are
reduced to zero by a degree (r + 1)-Gröbner basis of {F ,Fq}.
Remark 1. If we are only interested in the first part of the theorem about the
maximal minors, then there is a simple and direct proof which is another illus-
tration of the role of the matrix form of the system. Indeed, let (S∗,C∗) be a
solution of {F ,Fq}, then the nonzero vector

(
1 S∗

2 · · · S∗
m

)
=
(
1 α · · · αm−1

)
S∗

belongs to the left kernel of the matrix C∗
2 − C∗

1R. Hence this matrix has rank
less than r, and the equations MaxMinors(C2 − C1R) = 0 are satisfied for any
solution of the system {F ,Fq}, which means that the equations belong to the
ideal 〈F ,Fq〉 as this ideal is radical.

5.2 Analysis of the Ideal MaxMinors(C2 − C1R)

The previous theorem allows us to obtain directly degree r equations without
having to compute first the Macaulay matrix in degree r + 1. This is a signifi-
cant saving when performing the Gröbner basis computation. A nice feature of
these equations is that they only involve one part of the unknowns, namely the
coefficient variables.

Moreover all these equations can be expressed by using a limited number of
polynomials as we now show. Some of them will be of degree r, some of them
will be of degree r−1. If we perform Gaussian elimination on these equations by

80 M. Bardet et al.

treating these polynomials as variables and trying to eliminate the ones corre-
sponding to the polynomials of degree r first, then if the number of equations we
had was greater than the number of polynomials of degree r, we would expect to
find equations of degree r − 1. Roughly speaking, when this phenomenon hap-
pens we just have to add all the equations of degree r − 1 we obtain in this way
to the Ourivski-Johansson modelling and the Gröbner basis calculation will not
go beyond degree r.

Let us analyse precisely the behavior we just sketched. The shape of the
equations MaxMinors(C2 − C1R) = 0 is given by the following proposition,
where by convention det(M∅,∅) = 1 and the columns of R are indexed by {k +
2..n}:

Proposition 1. MaxMinors(C2 − C1R) is a set of
(
n−k−1

r

)
polynomials PJ ,

indexed by J ⊂ {k + 2..n} of size r:

PJ =
∑

T1⊂{1..k+1},T2⊂J
such that T = T1 ∪ T2 has size #T = r

(−1)σJ (T2) det(RT1,J\T2) det(C∗,T).

where σJ(T2) is an integer depending on T2 and J .
If 1 /∈ T , the polynomial det(C∗,T) is homogeneous of degree r and contains

r! monomials; if 1 ∈ T , det(C∗,T) is homogeneous of degree r − 1 and contains
(r − 1)! monomials.

Proof. The matrix C2 −C1R has size r × (n − k − 1), hence there are
(
n−k−1

r

)
different minors PJ = det(C(−R

In−k−1
)∗,J). To compute them, we use the Cauchy-

Binet formula for the determinant of a product of non-square matrices:

det(AB) =
∑

T⊂{1..p},#T = r

det(A∗,T) det(BT,∗)

where A ∈ K
r×p, B ∈ K

p×r, and p ≥ r. We apply this formula to PJ , and use
the fact that, for T = T1 ∪ T2 with T1 ⊂ {1..k + 1} and T2 ⊂ {k + 2..n},

det

((−R
In−k−1

)
T1∪T2,J

)
= 0 if T2 �⊂ J

= (−1)σJ (T2) det(RT1,J\T2) if T2 ⊂ J,

using the Laplace expansion of this determinant along the last rows, with
σJ(T2) = d(k + r)+ (d−1)d/2+

∑
t∈T2

Pos(t, J) where Pos(t, J) is the position
of t in J , and d = #J − #T2. �

Each polynomial PJ can be expanded into m equations over Fq, the polynomial
PJ [i] being the coefficient of PJ in αi−1. When computing a grevlex Gröbner
basis of the system of the PJ [i]’s over Fq, with an algorithm like F4 using linear
algebra, the first step consists in computing a basis of the PJ [i]’s over Fq.

An Algebraic Attack on Rank Metric Code-Based Cryptosystems 81

It appears that there may be a degree fall in this first step, in degree r, that
produces equations of degree r − 1. The following heuristic explains when this
degree fall occurs.

Heuristic 1 – Overdetermined case: when m
(
n−k−1

r

) ≥ (
n
r

)− 1, generically, a
degree-r Gröbner basis of the projected system MaxMinors(C2 − C1R) = 0
of m

(
n−k−1

r

)
equations over Fq contains

(
n−1
r−1

)− 1 equations of degree r − 1,
that are obtained by linear combinations of the initial equations.

– Intermediate case: when
(
n
r

)− 1 > m
(
n−k−1

r

)
>
(
n−1

r

)
, generically a degree-r

Gröbner basis of the projected system MaxMinors(C2 − C1R) = 0 con-
tains m

(
n−k−1

r

)− (
n−1

r

)
equations of degree r − 1, that are obtained by linear

combinations of the initial equations.
– Underdetermined case: When m

(
n−k−1

r

) ≤ (
n−1

r

)
, then generically a degree-r

Gröbner basis of the system contains m
(
n−k−1

r

)
polynomials that are all of

degree r.

Remark 2. Here overdetermined/underdetermined refers to the system of max-
imal minors given by the set of equations MaxMinors(C2 − C1R) = 0

Remark 3. The degree-r Gröbner bases also contain polynomials of degree r in
the overdetermined and intermediate cases, but we will not compute them, as
experimentally they bring no speed-up to the computation, see Sect. 6.1.

Proposition 2. Computing the polynomials in a degree-r Gröbner basis of
the projected equations MaxMinors amounts to solving a linear system with
ν = m

(
n−k−1

r

)
equations in μ =

(
n
r

)
variables, which costs O(min(μ, ν)ω−2μν)

operations in the base field, where ω is the exponent of matrix multiplication (see
Sect. 6.2).

Proof. It is possible to view the system MaxMinors(C2−C1R) projected over Fq

as a linear system of μ = m
(
n−k−1

r

)
equations, whose variables are the ν =

(
n
r

)
unknowns xT = det(C∗,T) for all T ⊂ {1..n} of size r. The matrix associated to
this linear system is a matrix M of size μ×ν whose coefficient in row (i, J) : i ∈
{1..m}, J ⊂ {k + 2..n},#J = r, and column xT is, with T2 = T ∩ {k + 2..n}:

M [(i, J), xT] =

{
[αi−1](−1)σJ (T2) det(RT∩{1..k+1},J\T2) if T2 ⊂ J,

0 otherwise.
(11)

where [αi−1]β is the ith component of β ∈ Fqm viewed in the vector space F
m
q

with generator basis
(
1 α . . . αm−1

)
.

A basis of the vector space generated by the equations MaxMinors(C2 −
C1R) = 0 is given by M̃ · T where M̃ is the row echelon form of M and T is
the column vector formed by the polynomials det(C∗,T) : #T = r. As we are
searching for equations of degree r − 1, we order the variables xT such that the
ones with 1 ∈ T that correspond to polynomials det(C∗,T) of degree r − 1 are
the rightmost entries of the matrix. �

82 M. Bardet et al.

Heuristic 1 can be stated in terms of the matrix M . In the overdetermined
case, that is when m

(
n−k−1

r

) ≥ (
n
r

)−1, we expect matrix M to have rank
(
n
r

)−1
with high probability. This rank can not be larger, as the (left) kernel space of
the matrix has dimension 1 (this comes from the fact that the equations are
homogeneous). Hence, M̃ ·T produces

(
n−1

r

)
equations of degree r, and

(
n−1
r−1

)−1
equations of degree r − 1, that have all the shape det(C∗,T) or det(C∗,T) −
det(C∗,T0) where T0 corresponds to the free variable xT0 of the linear system,
1 ∈ T0. In the intermediate and underdetermined cases, we also expect matrix M
to be full rank in general, and to be also full rank on the columns corresponding
to the cT ’s of degree r.

6 Experimental Results, Complexity Bounds,
and Security

6.1 Experimental Results

We did various computations for different values of the parameters (m,n, k, r).
We got our best complexity results by doing the following steps:

1. compute the set of equations F which comes from(
1 α · · · αm−1

)
S (C2 − C1R) specialised as in (6),

2. compute the system MaxMinors(C2 − C1R),
3. compute the matrix M from (11) and its echelon form M̃ , let J be the set

of the resulting equations of degree r − 1 in the C variables,
4. if J is empty, then let J be the set of equations coming from M̃ of degree r

in the C variables,
5. compute G a reduced degree-d Gröbner basis of the system {F ,J ,Fq}, where

d =

⎧⎪⎨
⎪⎩

r in the overdetermined case,
r or r + 1 in the intermediate case,
r + 2 in the underdetermined case.

The computations are done using magma v2.22-2 on a machine with an Intel R©

Xeon R© 2.00 GHz processor. Here are the notation used in all tables:

• nS = (r − 1)(m − r): the number of variables in S
• nC = r(n − 1): the number of variables in C
• neq = m(n − k − 1): the number of equations in F
• d : nsyz: the number of equations in J , where d denotes the degree of the

equations and nsyz the number of them:
• r − 1 :

(
n−1
r−1

) − 1 in the overdetermined case
• r − 1 : m

(
n−k−1

r

) − (
n−1

r

)
in the intermediate case

• r : m
(
n−k−1

r

)
in the underdetermined case

• Tsyz.: time of computing the nsyz equations of degree r − 1 or r in J

An Algebraic Attack on Rank Metric Code-Based Cryptosystems 83

• TGbsyz: time of the Gröbner basis computation of {J ,Fq}
• TGb: time of the Gröbner basis computation of {F ,J ,Fq}
• dff : the degree where we observe the first degree fall
• dmax: the maximal degree where some new polynomial is produced by the F4

algorithm
• “Max Matrix size”: the size of the largest matrix reduced during the F4

computation, given by magma. We did not take into account the useless steps
(the matrices giving no new polynomials)

Table 1 gives our timings on the parameters proposed in [55]. For each set of
parameters, the first row of the table gives the timing for the direct computation
of a Gröbner basis of {F ,Fq} whereas the second row gives the timings for the
Gröbner basis of {F ,J ,Fq}. We can see that, apart from very small parameters,
the computation of the equations MaxMinors(C2 −C1R) is negligible compared
to the time of the Gröbner basis computation.

Among the proposed parameters, only the (15, 15, 8, 3) was in the case where
the system MaxMinors is underdetermined. In that case, the most consuming
part of the computation is the Gröbner basis of the system MaxMinors, that
depends only on the C variables. Once this computation is done, the remaining
Gröbner basis of {F ,J ,Fq} has a negligible cost.

Table 2 gives timing for different values of k and r, with m = 14 and n = 18
fixed. For r = 2, the values k ∈ {1..11} correspond to the overdetermined case,
the value k = 12 to the intermediate one, and k = 13 to the underdetermined
case. The values k ∈ {1..11} behave all like k = 11. As for the parameters
from [55], the hardest cases are the ones when the system MaxMinors is under-
determined, where the maximal degree reached during the computation is r +2.
For the overdetermined cases, the maximal degree is r, and for the intermediate
cases, it may be r or r + 1.

For r = 3, the overdetermined cases are k ∈ {1..8}, k = 9 is intermediate
and k ∈ {10..11} are underdetermined. Values of k ≥ 12 do not allow a unique
decoding for r = 3, the Gilbert-Varshamov bound being 2 for those values.

For r = 4 the tradeoffs are 1 ≤ k ≤ 6, k = 7 and 8 ≤ k ≤ 9 for the three
cases, and for r = 5, 1 ≤ k ≤ 5, k = 6 and 7 ≤ k ≤ 8. We could not perform the
computations for the intermediate and underdetermined cases, due to a lack of
memory. We also observe that the first degree fall (dff) does not always predict
the complexity of the computation.

Table 3 gives the timings for a fixed r = 3, a ratio n = 2k and various values
of k. Again, we can observe that for defavorable cases (k = 6, 7) the maximal
degree is r + 2 or r + 1 rather than r, making the computation harder for small
values of k than for larger.

84 M. Bardet et al.

Table 1. We compare the behavior of the Gröbner basis computation for the param-
eters considered in [48], with and without adding to the system the equations J .

m n k r nS nC neq nsyz Tsyz TGbsyz TGb dff dmax Max Mat Size

25 30 15 2 23 58 350 0.4 s 3 3 18550 ×19338

1:28 0.4 s 0.02 s 2 2 1075 × 749

30 30 16 2 28 58 390 0.5 s 3 3 22620 × 25288

1:28 0.4 s 0.02 s 2 2 1260 × 899

30 50 20 2 28 98 870 2.2 s 3 3 67860 × 57898

1:48 3.8 s 0.07 s 2 2 2324 × 1499

50 50 26 2 48 98 1150 7.4 s 3 3 112700 × 120148

1:48 3.5 s 0.2 s 2 2 3589 × 2499

15 15 7 3 24 42 105 60.1 s 4 4 77439 × 153532

2:90 0.2 s 0.06 s 3 3 8860 × 13658

15 15 8 3 24 42 90 – 4 ≥5 –

3:300 0.3 s 162 s 0.2 s 4 5 191515 × 457141

20 20 10 3 34 57 180 450 s 4 4 233672 × 543755

2:170 1.0 s 0.2 s 3 3 22124 × 35087

Table 2. m = 14 and n = 18.

k r nsyz nS nC neq TSyz. TGbsyz TGb dff dmax Max Matrix size Mem

11 2 1:16 12 34 84 <0.1s <0.1s 2 2 322 × 251 34 Mo

12 2 1:4 12 34 70 <0.1s <0.1s 3 3 1820 × 2496 34 Mo

13 2 2:84 12 34 56 <0.1s 32 s 0 s 3 4 231187 × 141064 621 Mo

8 3 2:135 22 51 126 0.6 s 0.1 s 3 3 13179 × 18604 34 Mo

9 3 2:104 22 51 112 0.5 s 0.7 s 3 3 10907 × 18743 67 Mo

4 4 3:679 30 68 182 12.1 s 53.7 s 2 4 314350 × 650610 1.3 Go

5 4 3:679 30 68 168 9.4 s 59.3 s 4 4 314350 × 650610 2.0 Go

6 4 3:679 30 68 154 7.1 s 69.4 s 4 4 281911 × 679173 3.6 Go

2 5 4:2379 36 85 210 138.8 s 27.5 s 2 4 416433 × 669713 1.1 Go

5 5 4:2379 36 85 196 44.8 s 5h08 2 5 7642564 × 30467163 253.6 Go

Table 3. The parameters are r = 3, m = n, k = n
2
.

k nsyz nS nC neq Tsyz TGbsyz TGb dmax Memory

6 3:120 18 33 60 0.2 s 117 s 0.02 s 5 4.9 Go

7 3:280 22 39 84 0.1 s 9.7 s 0.1 s 4 0.3 Go

8 2:104 26 45 112 0.2 s 0.1 s 3 .04 Go

17 2:527 62 99 544 34.3 s 4.7s 3 0.3 Go

27 2:1377 102 159 1404 650.2 s 161.3 s 3 2.7 Go

37 2:2627 142 219 2664 5603.6 s 3709.4 s 3 15.0 Go

47 2:4277 182 279 4324 26503.9 s 26022.6 s 3 83.0 Go

An Algebraic Attack on Rank Metric Code-Based Cryptosystems 85

6.2 Complexity Analysis and Security over F2

Now, we give an upper bound on the complexity of our algebraic approach
to solve the (m,n, k, r)-decoding problem using the modelling of Sect. 3.3. The
complexity is estimated in terms of the number of operations in F2 that the
algorithm uses. This allows us to update the number of bits of security for
several cryptosystems, as showed in Table 4: Loidreau’s one [49], ROLLO [7],
and RQC [3]. Note that the restriction to F2 is only there because we want to
derive security values. If one works over a larger field Fq, a similar analysis can
be derived. The only change in this case is to consider the relevant number of
monomials. Note also that even if Algorithm 1 works over any field, its success
probability given in Proposition 3 depends on q.

Remark that, in Table 4, for the sets of parameters which do not satisfy
Eq. (1), which correspond to underdetermined instances, we assume that the
system can be solved at d = r +1. It is a conservative choice: in the experiments
of Sect. 6.1, the maximal degree is often r for the underdetermined cases.

The complexity bound follows from the fact that the Gröbner basis algo-
rithm works with Macaulay matrices of degree δ for increasing values of δ up to
d, the degree for which the Gröbner basis is found (see Sect. 4 for a more detailed
description). At each of these steps, the algorithm performs a Gaussian elimi-
nation algorithm on a Macaulay matrix which has at most

(
(m−r)(r−1)+(n−1)r

δ

)
columns and fewer rows than columns. The number of columns is the number of
squarefree monomials of degree δ in (m − r)(r − 1) + (n − 1)r variables.

Table 4. Security in bits for several cryptosystems with respect to our attack, com-
puted using Eq. (12) with ω = 2.807, d = r or d = r +1. The values in bold correspond
the most likely maximal degree, i.e. r if Eq. (1) holds and r + 1 otherwise. The last
column gives the previous best known security values, based on the attack in [10].

Cryptosystem Parameters (m, n, k, r) d = r d = r + 1 Previous

Loidreau (128, 120, 80, 4) 96.3 117.1 256

ROLLO-I-128 (79, 94, 47, 5) 114.9 134.5 128

ROLLO-I-192 (89, 106, 53, 6) 142.2 162.5 192

ROLLO-I-256 (113, 134, 67, 7) 174.0 195.3 256

ROLLO-II-128 (83, 298, 149, 5) 132.3 155.4 128

ROLLO-II-192 (107, 302, 151, 6) 161.5 185.0 192

ROLLO-II-256 (127, 314, 157, 7) 191.6 215.4 256

ROLLO-III-128 (101, 94, 47, 5) 117.1 137.2 128

ROLLO-III-192 (107, 118, 59, 6) 145.7 166.6 192

ROLLO-III-256 (131, 134, 67, 7) 175.9 197.5 256

RQC-I (97, 134, 67, 5) 121.1 142.0 128

RQC-II (107, 202, 101, 6) 154.2 176.5 192

RQC-III (137, 262, 131, 7) 188.4 211.9 256

86 M. Bardet et al.

In general, Gaussian elimination of a μ × ν matrix of rank ρ over a field has
a complexity of O(ρω−2μν) ⊆ O(max(μ, ν)ω) operations in that field [19,54].
Here, ω is the exponent of matrix multiplication, with naive bounds 2 ≤ ω ≤ 3.
The best currently known value for ω is ω ≈ 2.37 [47], by an improvement of
Coppersmith-Winograd’s algorithm. In terms of practical performances, the best
known method is based on Strassen’s algorithm, which allows one to take ω ≈
2.807, and when the base field is a finite field, this exponent is indeed observed
in practice for matrices with more than a few hundreds rows and columns.

The Macaulay matrices encountered in the Gröbner basis computations we
consider are usually very sparse and exhibit some structure. Some Gaussian
elimination algorithms have been designed specifically for matrices over F2 [4],
also for sparse matrices [16], and even to take advantage of the specific structure
of Macaulay matrices (see [17]; we expect Magma’s closed-source implementation
of F4 to use similar techniques). However, none of these optimized algorithms
has been proven to reach a complexity which is asymptotically better than the
one mentioned above, apart from speed-ups by constant factors.

As a result, we bound the complexity of the step of degree δ in the Gröbner
basis computation by that of performing Gaussian elimination on a μ×ν matrix
over F2, with μ ≤ ν =

(
(m−r)(r−1)+(n−1)r

δ

)
; the overall computation then costs

O
((

d∑
δ=0

(
(m − r)(r − 1) + (n − 1)r

δ

))ω)
(12)

operations in F2. Let us now focus on the case m = n = 2k and r ≈ √
n. Then

the complexity of our approach is as in Eq. (12) with d = r. Using a similar
analysis, the approach based on Kipnis-Shamir’s modelling has a complexity of

O
((

r+2∑
δ=0

(
km + r(n − r)

δ

))ω)

operations. Asymptotically, the dominant term in the former bound is of the
order of 2

3
2ωr log2(n), to be compared to 22ωr log2(n) in the Kipnis-Shamir bound.

Also, the aforementioned combinatorial attacks ([10]) would have a complexity
of the order of 2

1
2 rn when m = n = 2k.

Finally, note that the complexity bound stated above was derived under
assumptions: in Sect. 3.3, we presented the modelling along with some assump-
tions which allowed us to specialize variables a priori and still ensure that the
algorithm of Sect. 5 yields the solution λe. In general, the assumption might not
hold, that is, the specific specialization made in Sect. 3.3 could be wrong. We use
Algorithm 1 in order to specialize more variables: it first uses the specialization
detailed in Sect. 3.3, and if that one fails, follows on with other similar specializa-
tions. This algorithm uses the subroutine Solve(S,C,R), which augments the
system as explained in Sect. 5 and returns a solution to Eq. (5) if one is found
and ∅ otherwise.

An Algebraic Attack on Rank Metric Code-Based Cryptosystems 87

Input: Matrix R
Output: A solution to the system in (5) or ∅
S = m × r matrix of variables
C = r × n matrix of variables
Set the first column and the first row of S to [1 0 · · · 0]

Set a randomly selected column of C to [1 0 · · · 0]T

Choose at random �m−1
r−1

� disjoint subsets Ti ⊆ {2, . . . , m} of cardinality r − 1

for i ← 1 to �m−1
r−1

� do

Set the (r − 1) × (r − 1) submatrix STi,{2,...,r} to Ir−1

sol = Solve(S,C ,R)
if sol �= ∅ then return sol

return ∅
Algorithm 1: (m,n, k, r)-Decoding

For positive integers a and b with a ≤ b, we denote by pq,a,b :=∏a−1
i=0

(
1 − qi−b

)
the probability that a uniformly random matrix in F

a×b
q has

full rank.

Proposition 3. Fix integers m,n, k, r, and let c ∈ {1, . . . , �m−1
r−1 �}. Suppose that

a (m,n, k, r)-rank decoding instance is chosen uniformly at random, and that the
input matrix R is built from this instance. Then, the probability that Algorithm1
makes at most c calls to Solve(S,C,R) before finding a solution is greater than

1 − q−r

1 − q−n

(
1 − (1 − pq,r−1,r−1)

c

pq,r−1,m−1

)
.

The proof is differed to Appendix.
If one applies this proposition to the cryptosystems mentioned in Table 4,

with at most 5 calls to Solve(S,C,R), Algorithm 1 will return a solution with
a probability always greater than 0.8; note that for these instances the quantity
�m−1

r−1 � is greater than 15, and around 20 for most of them.
In the event where Algorithm 1 returns ∅ after �m−1

r−1 � calls to Solve(S,C,R),
one can run it again until a solution is found. The probabilities mentioned in
the previous paragraph show that for parameters of interest a second run of the
algorithm is very rarely needed.

7 Conclusion

In this paper we introduce a new approach for solving the Rank Metric Decoding
problem with Gröbner basis techniques. Our approach is based on adding partial
syzygies to a newer version of a modelling due to Ourivski and Johansson.

Overall our analysis shows that our attack, for which we give a general esti-
mation, clearly outperforms all previous attacks in rank metric for a classical
(non quantum) attacker. In particular we obtain an attack below the claimed
security level for all rank-based schemes proposed to the NIST Post-Quantum

88 M. Bardet et al.

Cryptography Standardization Process. Note that there has been some very
recent progress [13] on the modelling and the attack proposed here. This results
in even less complex attacks and in the removal of the Gröbner basis compu-
tation step: it is replaced by solving a linear system. Although our attack and
its recent improvement really improve on previous attacks for rank metric, they
meanwhile suffer from two limitations.

First these attacks do not benefit from a direct Grover quantum speed-
up, unlike combinatorial attacks. For the NIST parameters (with the excep-
tion of Rollo-I-192 for the latest attack [13]) the best quantum attacks still
remain quantum attacks based on combinatorial attacks, because of the Grover
speed-up. Second, these attacks need an important amount of memory for large
parameters.

Acknowledgements. This work has been supported by the French ANR projects
CBCRYPT (ANR-17-CE39-0007) and the MOUSTIC project with the support from
the European Regional Development Fund (ERDF) and the Regional Council of Nor-
mandie. The authors would like to thank the anonymous reviewers for their valu-
able comments and suggestions, as well as Ray Perlner and Daniel Smith for useful
discussions.

Appendix: Proof of Proposition 3

Let n,m, k, r be positive integers such that n and m are both greater than r.
Let E be a Fq-vector space of Fqm of dimension r spanned by {E1, E2, . . . , Er}
and let e ∈ F

n
qm whose components generate E. By definition, there exists a

non-zero coordinate ej of e, and hereafter one focuses on the vector space λE =
〈λE1, λE2, . . . , λEr〉 where λ = e−1

j .
Given a basis (1, α, . . . , αm−1) of Fqm over Fq, one can write a basis of λE as

a matrix S ∈ F
m×r
q . By construction, 1 ∈ λE, so that we can set the first column

and the first row of S to the vectors [1 0 · · · 0]T and [1 0 · · · 0]. We write Ŝ
for the remaining (m − 1) × (r − 1) block of S. One can also express the coordi-
nates of the components of λe (with respect to the basis {λE1, λE2, . . . , λEr})
as a matrix C ∈ F

r×n
q . By construction, the j-th column of C is the vector

[1 0 · · · 0]T.
Lemma 2 estimates the probability to come across an index j such that ej is

non-zero. Once such an index is found, Lemma3 computes the probability that
Algorithm 1 succeeds in finding a non-singular block in Ŝ.

Lemma 2. With the same notation and hypotheses as above, if an index j is
chosen uniformly at random in {1, . . . , n}, then ej will be non-zero with proba-
bility (1 − q−r)/(1 − q−n).

Proof. A component ej of e will be non-zero if and only if its corresponding
column of coordinates in the matrix C is non-zero. If the components of e were
chosen uniformly at random in the vector space E of dimension r, the probability

An Algebraic Attack on Rank Metric Code-Based Cryptosystems 89

for a random component to be equal to zero would be exactly q−r. This is not
the case since there is a constraint on C, more precisely it has to be of rank r.

Taking this into account, we can count the number of full rank matrices in
F

r×n
q that have a zero column. The ratio between those matrices and all the full

rank matrices in F
r×n
q is exactly the probability for a column chosen at random

in C to be zero:
r−1∏
i=0

qn−1 − qi

qn − qi
=

qn−r − 1
qn − 1

.

One concludes the proof by taking the complementary event. �

Lemma 3. Let c ∈ {1, . . . , �m−1

r−1 �}; with the same notation and hypotheses as
above, if E and e are chosen uniformly at random, and if the inverse of a non-
zero coordinate of e, λ, is given, then at least one of the c disjoint blocks Bi in
Ŝ is not singular with probability greater than

1 − (1 − pq,r−1,r−1)c

pq,r−1,m−1

Proof. Since λ is a fixed nonzero element in Fqm and since E is uniformly random,
the vector space λE is also uniformly random. Therefore Ŝ is a matrix chosen
uniformly at random among all the full rank matrices in F

(m−1)×(r−1)
q . The

probability that all the c blocks Bi in Ŝ are singular is then bounded from
above by (

q(r−1)2 − q(r−1)2pq,r−1,r−1

)c

q(r−1)(m−1−c(r−1))

q(m−1)(r−1)pq,r−1,m−1
, (13)

which is the ratio between the number of matrices in F
(m−1)×(r−1)
q with c singular

disjoint blocks and the total amount of full rank matrices in F
(m−1)×(r−1)
q . It is

an upper bound since the number of matrices with c singular blocks includes
matrices that are not of full rank.

The reader can check that the term (13) is equal to

(1 − pq,r−1,r−1)
c

pq,r−1,m−1
.

The probability that at least one of the Bi’s is non-singular is obtained using
the complementary probability. �

In Algorithm 1, the first requirement not to return fail is to find an index j such
that ej is non-zero; Lemma 3 gives the probability of this event, that is to say
(1 − q−r)/(1 − q−n). Once this index is found, the associated vector space λE is
distributed uniformly among all the vector spaces of Fqm of dimension r since E
is chosen at random. Using Lemma 2, one has a lower bound on the probability
that at least one of the c block Bi’s is non singular. Thus the probability of
Proposition 3 is

1 − q−r

1 − q−n

(
1 − (1 − pq,r−1,r−1)

c

pq,r−1,m−1

)
.

�

90 M. Bardet et al.

References

1. Aguilar Melchor, C., et al.: Ouroboros-R. First round submission to the NIST
post-quantum cryptography call, November 2017. https://pqc-ouroborosr.org

2. Aguilar Melchor, C., et al.: Rank quasi cyclic (RQC). First round submission to
the NIST post-quantum cryptography call, November 2017. https://pqc-rqc.org

3. Aguilar Melchor, C., et al.: Rank quasi cyclic (RQC). Second round submission to
the NIST post-quantum cryptography call, April 2019. https://pqc-rqc.org

4. Albrecht, M., Bard, G.: The M4RI Library - Version 20140914. The M4RI Team
(2014). http://m4ri.sagemath.org

5. Aragon, N., et al.: LAKE - Low rAnk parity check codes Key Exchange.
First round submission to the NIST post-quantum cryptography call, November
2017. https://csrc.nist.gov/CSRC/media/Projects/Post-Quantum-Cryptography/
documents/round-1/submissions/LAKE.zip

6. Aragon, N., et al.: LOCKER - LOw rank parity ChecK codes EncRyption.
First round submission to the NIST post-quantum cryptography call, November
2017. https://csrc.nist.gov/CSRC/media/Projects/Post-Quantum-Cryptography/
documents/round-1/submissions/LOCKER.zip

7. Aragon, N., et al.: ROLLO (merger of Rank-Ouroboros, LAKE and LOCKER).
Second round submission to the NIST post-quantum cryptography call, March
2019. https://pqc-rollo.org

8. Aragon, N., Blazy, O., Gaborit, P., Hauteville, A., Zémor, G.: Durandal: a rank
metric based signature scheme. In: Ishai, Y., Rijmen, V. (eds.) EUROCRYPT 2019.
LNCS, vol. 11478, pp. 728–758. Springer, Cham (2019). https://doi.org/10.1007/
978-3-030-17659-4 25

9. Aragon, N., Gaborit, P., Hauteville, A., Ruatta, O., Zémor, G.: RankSign -
a signature proposal for the NIST’s call. First round submission to the NIST
post-quantum cryptography call, November 2017. https://csrc.nist.gov/CSRC/
media/Projects/Post-Quantum-Cryptography/documents/round-1/submissions/
RankSign.zip

10. Aragon, N., Gaborit, P., Hauteville, A., Tillich, J.P.: A new algorithm for solving
the rank syndrome decoding problem. In: 2018 IEEE International Symposium on
Information Theory, ISIT 2018, Vail, CO, USA, 17–22 June 2018, pp. 2421–2425.
IEEE (2018). https://doi.org/10.1109/ISIT.2018.8437464

11. Ars, G., Faugère, J.-C., Imai, H., Kawazoe, M., Sugita, M.: Comparison between
XL and Gröbner basis algorithms. In: Lee, P.J. (ed.) ASIACRYPT 2004. LNCS,
vol. 3329, pp. 338–353. Springer, Heidelberg (2004). https://doi.org/10.1007/978-
3-540-30539-2 24

12. Bardet, M.: Étude des systèmes algébriques surdéterminés. Applications aux codes
correcteurs et à la cryptographie. Ph.D. thesis, Université Paris VI, December 2004.
http://tel.archives-ouvertes.fr/tel-00449609/en/

13. Bardet, M., et al.: Algebraic attacks for solving the Rank Decoding and MinRank
problems without Gröbner basis. arXiv e-prints arXiv:2002.08322, February 2020

14. Bardet, M., Faugère, J.C., Salvy, B.: On the complexity of the F5 Gröbner basis
algorithm. J. Symb. Comput. 70, 49–70 (2015)

15. Bardet, M., Faugère, J.C., Salvy, B., Yang, B.Y.: Asymptotic expansion of the
degree of regularity for semi-regular systems of equations. In: MEGA 2005 - Effec-
tive Methods in Algebraic Geometry, pp. 1–14 (2005)

https://pqc-ouroborosr.org
https://pqc-rqc.org
https://pqc-rqc.org
http://m4ri.sagemath.org
https://csrc.nist.gov/CSRC/media/Projects/Post-Quantum-Cryptography/documents/round-1/submissions/LAKE.zip
https://csrc.nist.gov/CSRC/media/Projects/Post-Quantum-Cryptography/documents/round-1/submissions/LAKE.zip
https://csrc.nist.gov/CSRC/media/Projects/Post-Quantum-Cryptography/documents/round-1/submissions/LOCKER.zip
https://csrc.nist.gov/CSRC/media/Projects/Post-Quantum-Cryptography/documents/round-1/submissions/LOCKER.zip
https://pqc-rollo.org
https://doi.org/10.1007/978-3-030-17659-4_25
https://doi.org/10.1007/978-3-030-17659-4_25
https://csrc.nist.gov/CSRC/media/Projects/Post-Quantum-Cryptography/documents/round-1/submissions/RankSign.zip
https://csrc.nist.gov/CSRC/media/Projects/Post-Quantum-Cryptography/documents/round-1/submissions/RankSign.zip
https://csrc.nist.gov/CSRC/media/Projects/Post-Quantum-Cryptography/documents/round-1/submissions/RankSign.zip
https://doi.org/10.1109/ISIT.2018.8437464
https://doi.org/10.1007/978-3-540-30539-2_24
https://doi.org/10.1007/978-3-540-30539-2_24
http://tel.archives-ouvertes.fr/tel-00449609/en/
http://arxiv.org/abs/2002.08322

An Algebraic Attack on Rank Metric Code-Based Cryptosystems 91

16. Bouillaguet, C., Delaplace, C.: Sparse Gaussian elimination modulo p: an update.
In: Gerdt, V.P., Koepf, W., Seiler, W.M., Vorozhtsov, E.V. (eds.) CASC 2016.
LNCS, vol. 9890, pp. 101–116. Springer, Cham (2016). https://doi.org/10.1007/
978-3-319-45641-6 8

17. Boyer, B., Eder, C., Faugère, J., Lachartre, S., Martani, F.: GBLA: Gröbner basis
linear algebra package. In: Proceedings of the ACM on International Symposium
on Symbolic and Algebraic Computation, ISSAC 2016, Waterloo, ON, Canada,
19–22 July 2016, pp. 135–142 (2016). https://doi.org/10.1145/2930889.2930914

18. Buchberger, B.: Ein Algorithmus zum Auffinden der Basiselemente des Restk-
lassenringes nach einem nulldimensionalen Polynomideal. Ph.D. thesis, Universitat
Innsbruck (1965)

19. Bunch, J.R., Hopcroft, J.E.: Triangular factorization and inversion by fast matrix
multiplication. Math. Comput. 28(125), 231–236 (1974)

20. Buss, J.F., Frandsen, G.S., Shallit, J.O.: The computational complexity of some
problems of linear algebra. J. Comput. Syst. Sci. 58(3), 572–596 (1999)

21. Cabarcas, D., Smith-Tone, D., Verbel, J.A.: Key recovery attack for ZHFE. In:
Lange, T., Takagi, T. (eds.) PQCrypto 2017. LNCS, vol. 10346, pp. 289–308.
Springer, Cham (2017). https://doi.org/10.1007/978-3-319-59879-6 17

22. Courtois, N., Klimov, A., Patarin, J., Shamir, A.: Efficient algorithms for solving
overdefined systems of multivariate polynomial equations. In: Preneel, B. (ed.)
EUROCRYPT 2000. LNCS, vol. 1807, pp. 392–407. Springer, Heidelberg (2000).
https://doi.org/10.1007/3-540-45539-6 27

23. Cox, D., Little, J., O’Shea, D.: Ideals, Varieties, and Algorithms: An Introduction
to Computational Algebraic Geometry and Commutative Algebra. Undergraduate
Texts in Mathematics. Springer, New York (2001). https://doi.org/10.1007/978-
0-387-35651-8

24. Debris-Alazard, T., Tillich, J.-P.: Two attacks on rank metric code-based schemes:
RankSign and an IBE scheme. In: Peyrin, T., Galbraith, S. (eds.) ASIACRYPT
2018. LNCS, vol. 11272, pp. 62–92. Springer, Cham (2018). https://doi.org/10.
1007/978-3-030-03326-2 3

25. Ding, J., Hodges, T.J.: Inverting HFE systems is quasi-polynomial for all fields.
In: Rogaway, P. (ed.) CRYPTO 2011. LNCS, vol. 6841, pp. 724–742. Springer,
Heidelberg (2011). https://doi.org/10.1007/978-3-642-22792-9 41

26. Ding, J., Kleinjung, T.: Degree of regularity for HFE-. Cryptology ePrint Archive,
Report 2011/570 (2011). http://eprint.iacr.org/2011/570

27. Ding, J., Schmidt, D.: Solving degree and degree of regularity for polynomial sys-
tems over a finite fields. In: Fischlin, M., Katzenbeisser, S. (eds.) Number The-
ory and Cryptography. LNCS, vol. 8260, pp. 34–49. Springer, Heidelberg (2013).
https://doi.org/10.1007/978-3-642-42001-6 4

28. Ding, J., Yang, B.-Y.: Degree of regularity for HFEv and HFEv-. In: Gaborit, P.
(ed.) PQCrypto 2013. LNCS, vol. 7932, pp. 52–66. Springer, Heidelberg (2013).
https://doi.org/10.1007/978-3-642-38616-9 4

29. Dubois, V., Gama, N.: The degree of regularity of HFE systems. In: Abe, M. (ed.)
ASIACRYPT 2010. LNCS, vol. 6477, pp. 557–576. Springer, Heidelberg (2010).
https://doi.org/10.1007/978-3-642-17373-8 32

30. Eder, C., Faugère, J.C.: A survey on signature-based algorithms for com-
puting Gröbner bases. J. Symb. Comput. 80, 719–784 (2017). https://doi.
org/10.1016/j.jsc.2016.07.031. http://www.sciencedirect.com/science/article/pii/
S0747717116300785

31. Faugère, J.C.: A new efficient algorithm for computing Gröbner bases (F4). J. Pure
Appl. Algebra 139(1–3), 61–88 (1999)

https://doi.org/10.1007/978-3-319-45641-6_8
https://doi.org/10.1007/978-3-319-45641-6_8
https://doi.org/10.1145/2930889.2930914
https://doi.org/10.1007/978-3-319-59879-6_17
https://doi.org/10.1007/3-540-45539-6_27
https://doi.org/10.1007/978-0-387-35651-8
https://doi.org/10.1007/978-0-387-35651-8
https://doi.org/10.1007/978-3-030-03326-2_3
https://doi.org/10.1007/978-3-030-03326-2_3
https://doi.org/10.1007/978-3-642-22792-9_41
http://eprint.iacr.org/2011/570
https://doi.org/10.1007/978-3-642-42001-6_4
https://doi.org/10.1007/978-3-642-38616-9_4
https://doi.org/10.1007/978-3-642-17373-8_32
https://doi.org/10.1016/j.jsc.2016.07.031
https://doi.org/10.1016/j.jsc.2016.07.031
http://www.sciencedirect.com/science/article/pii/S0747717116300785
http://www.sciencedirect.com/science/article/pii/S0747717116300785

92 M. Bardet et al.

32. Faugère, J.C.: A new efficient algorithm for computing Gröbner bases without
reduction to zero: F5. In: Proceedings ISSAC 2002, pp. 75–83. ACM Press (2002)

33. Faugère, J.-C., Levy-dit-Vehel, F., Perret, L.: Cryptanalysis of MinRank. In:
Wagner, D. (ed.) CRYPTO 2008. LNCS, vol. 5157, pp. 280–296. Springer,
Heidelberg (2008). https://doi.org/10.1007/978-3-540-85174-5 16

34. Faugère, J., Safey El Din, M., Spaenlehauer, P.: Computing loci of rank defects
of linear matrices using Gröbner bases and applications to cryptology. In: Interna-
tional Symposium on Symbolic and Algebraic Computation, ISSAC 2010, Munich,
Germany, 25–28 July 2010, pp. 257–264 (2010). https://doi.org/10.1145/1837934.
1837984

35. Faugère, J.C., Safey El Din, M., Spaenlehauer, P.J.: Gröbner bases of bihomoge-
neous ideals generated by polynomials of bidegree (1,1): algorithms and complexity.
J. Symb. Comput. 46(4), 406–437 (2011)

36. Gabidulin, E.M.: Theory of codes with maximum rank distance. Problemy
Peredachi Informatsii 21(1), 3–16 (1985)

37. Gabidulin, E.M., Paramonov, A.V., Tretjakov, O.V.: Ideals over a non-
commutative ring and their application in cryptology. In: Davies, D.W. (ed.)
EUROCRYPT 1991. LNCS, vol. 547, pp. 482–489. Springer, Heidelberg (1991).
https://doi.org/10.1007/3-540-46416-6 41

38. Gaborit, P., Murat, G., Ruatta, O., Zémor, G.: Low rank parity check codes
and their application to cryptography. In: Proceedings of the Workshop on Cod-
ing and Cryptography, WCC 2013, Bergen, Norway (2013). www.selmer.uib.no/
WCC2013/pdfs/Gaborit.pdf

39. Gaborit, P., Ruatta, O., Schrek, J.: On the complexity of the rank syndrome decod-
ing problem. IEEE Trans. Inf. Theory 62(2), 1006–1019 (2016)

40. Gaborit, P., Ruatta, O., Schrek, J., Zémor, G.: New results for rank-based cryptog-
raphy. In: Pointcheval, D., Vergnaud, D. (eds.) AFRICACRYPT 2014. LNCS, vol.
8469, pp. 1–12. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-06734-
6 1

41. Gaborit, P., Ruatta, O., Schrek, J., Zémor, G.: RankSign: an efficient signature
algorithm based on the rank metric. In: Mosca, M. (ed.) PQCrypto 2014. LNCS,
vol. 8772, pp. 88–107. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-
11659-4 6. https://arxiv.org/pdf/1606.00629.pdf

42. Gaborit, P., Zémor, G.: On the hardness of the decoding and the minimum distance
problems for rank codes. IEEE Trans. Inf. Theory 62(12), 7245–7252 (2016)

43. Granboulan, L., Joux, A., Stern, J.: Inverting HFE is quasipolynomial. In: Dwork,
C. (ed.) CRYPTO 2006. LNCS, vol. 4117, pp. 345–356. Springer, Heidelberg (2006).
https://doi.org/10.1007/11818175 20

44. Hoffstein, J., Pipher, J., Silverman, J.H.: NTRU: a ring-based public key cryptosys-
tem. In: Buhler, J.P. (ed.) ANTS 1998. LNCS, vol. 1423, pp. 267–288. Springer,
Heidelberg (1998). https://doi.org/10.1007/BFb0054868

45. Kipnis, A., Shamir, A.: Cryptanalysis of the HFE public key cryptosystem by
relinearization. In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 19–30.
Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48405-1 2

46. Lazard, D.: Gröbner bases, Gaussian elimination and resolution of systems of alge-
braic equations. In: van Hulzen, J.A. (ed.) EUROCAL 1983. LNCS, vol. 162, pp.
146–156. Springer, Heidelberg (1983). https://doi.org/10.1007/3-540-12868-9 99

47. Le Gall, F.: Powers of tensors and fast matrix multiplication. In: Proceedings
ISSAC 2014, pp. 296–303. ACM, New York (2014). https://doi.org/10.1145/
2608628.2608664

https://doi.org/10.1007/978-3-540-85174-5_16
https://doi.org/10.1145/1837934.1837984
https://doi.org/10.1145/1837934.1837984
https://doi.org/10.1007/3-540-46416-6_41
www.selmer.uib.no/WCC2013/pdfs/Gaborit.pdf
www.selmer.uib.no/WCC2013/pdfs/Gaborit.pdf
https://doi.org/10.1007/978-3-319-06734-6_1
https://doi.org/10.1007/978-3-319-06734-6_1
https://doi.org/10.1007/978-3-319-11659-4_6
https://doi.org/10.1007/978-3-319-11659-4_6
https://arxiv.org/pdf/1606.00629.pdf
https://doi.org/10.1007/11818175_20
https://doi.org/10.1007/BFb0054868
https://doi.org/10.1007/3-540-48405-1_2
https://doi.org/10.1007/3-540-12868-9_99
https://doi.org/10.1145/2608628.2608664
https://doi.org/10.1145/2608628.2608664

An Algebraic Attack on Rank Metric Code-Based Cryptosystems 93

48. Levy-dit-Vehel, F., Perret, L.: Algebraic decoding of rank metric codes. Talk at
the Special Semester on Gröbner Bases - Workshop D1, pp. 1–19 (2006). https://
ricamwww.ricam.oeaw.ac.at/specsem/srs/groeb/download/Levy.pdf

49. Loidreau, P.: A new rank metric codes based encryption scheme. In: Lange, T.,
Takagi, T. (eds.) PQCrypto 2017. LNCS, vol. 10346, pp. 3–17. Springer, Cham
(2017). https://doi.org/10.1007/978-3-319-59879-6 1

50. Misoczki, R., Tillich, J.P., Sendrier, N., Barreto, P.S.L.M.: MDPC-McEliece: new
McEliece variants from moderate density parity-check codes (2012). http://eprint.
iacr.org/2012/409

51. Otmani, A., Talé-Kalachi, H., Ndjeya, S.: Improved cryptanalysis of rank metric
schemes based on Gabidulin codes. Des. Codes Cryptogr. 86(9), 1983–1996 (2018).
https://doi.org/10.1007/s10623-017-0434-5

52. Ourivski, A.V., Johansson, T.: New technique for decoding codes in the rank met-
ric and its cryptography applications. Probl. Inf. Transm. 38(3), 237–246 (2002).
https://doi.org/10.1023/A:1020369320078

53. Overbeck, R.: A new structural attack for GPT and variants. In: Dawson, E.,
Vaudenay, S. (eds.) Mycrypt 2005. LNCS, vol. 3715, pp. 50–63. Springer, Heidelberg
(2005). https://doi.org/10.1007/11554868 5

54. Storjohann, A.: Algorithms for matrix canonical forms. Ph.D. thesis, Swiss Federal
Institute of Technology - ETH (2000)

55. Lévy-dit Vehel, F., Perret, L.: Algebraic decoding of codes in rank metric. In:
Communication at YACC06, Porquerolles, France, June 2006

56. Verbel, J., Baena, J., Cabarcas, D., Perlner, R., Smith-Tone, D.: On the complex-
ity of “superdetermined” minrank instances. In: Ding, J., Steinwandt, R. (eds.)
PQCrypto 2019. LNCS, vol. 11505, pp. 167–186. Springer, Cham (2019). https://
doi.org/10.1007/978-3-030-25510-7 10

https://ricamwww.ricam.oeaw.ac.at/specsem/srs/groeb/download/Levy.pdf
https://ricamwww.ricam.oeaw.ac.at/specsem/srs/groeb/download/Levy.pdf
https://doi.org/10.1007/978-3-319-59879-6_1
http://eprint.iacr.org/2012/409
http://eprint.iacr.org/2012/409
https://doi.org/10.1007/s10623-017-0434-5
https://doi.org/10.1023/A:1020369320078
https://doi.org/10.1007/11554868_5
https://doi.org/10.1007/978-3-030-25510-7_10
https://doi.org/10.1007/978-3-030-25510-7_10

Low Weight Discrete Logarithm
and Subset Sum in 20.65n

with Polynomial Memory

Andre Esser(B) and Alexander May

Ruhr University Bochum, Bochum, Germany
{andre.esser,alex.may}@rub.de

Abstract. We propose two heuristic polynomial memory collision find-
ing algorithms for the low Hamming weight discrete logarithm problem in
any abelian group G. The first one is a direct adaptation of the Becker-
Coron-Joux (BCJ) algorithm for subset sum to the discrete logarithm
setting. The second one significantly improves on this adaptation for all
possible weights using a more involved application of the representation
technique together with some new Markov chain analysis. In contrast to
other low weight discrete logarithm algorithms, our second algorithm’s

time complexity interpolates to Pollard’s |G| 12 bound for general discrete
logarithm instances.

We also introduce a new heuristic subset sum algorithm with poly-
nomial memory that improves on BCJ’s 20.72n time bound for random
subset sum instances a1, . . . , an, t ∈ Z2n . Technically, we introduce a
novel nested collision finding for subset sum – inspired by the Neste-
dRho algorithm from Crypto ’16 – that recursively produces collisions.
We first show how to instantiate our algorithm with run time 20.649n.
Using further tricks, we are then able to improve its complexity down to
20.645n.

Keywords: Low weight dlog · Subset sum · Representations · Nested
Rho

1 Introduction

The subset sum problem is one of the most fundamental problems in cryptogra-
phy. It was early used in the 80’s for the construction of cryptosystems [8,21],
suffered from lattice-based attacks [18,23], and found a revival in the last two
decades [11,19] since even LWE (SIS) [25] and LPN [2] instances can be formu-
lated as (vectorial) versions of subset sum.

In this paper, we study subset sum instances a1, . . . , an, t ∈ Z2n . These
are known as density-1 instances in the cryptographic literature, and they

A. May—Funded by DFG under Germany’s Excellence Strategy - EXC 2092 CASA -
390781972.

c© International Association for Cryptologic Research 2020
A. Canteaut and Y. Ishai (Eds.): EUROCRYPT 2020, LNCS 12107, pp. 94–122, 2020.
https://doi.org/10.1007/978-3-030-45727-3_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-45727-3_4&domain=pdf
https://doi.org/10.1007/978-3-030-45727-3_4

Low Weight Discrete Logarithms and Subset Sum in 20.65n 95

enjoy some useful hardness properties [16]. The invention of the polynomial
memory 20.72n-algorithm by Becker, Coron and Joux (BCJ) [4] initiated a
renewed interest in the subset sum problem itself [1,3] and its vectorial ver-
sions [5,15]. Polynomial memory algorithms are of crucial importance to crypt-
analysis, since they allow for very efficient implementations, and therefore are
often used for record computations [7,10]. Moreover, if we aim at implementing
cryptanalytic quantum algorithms [6] in the near future, we have to focus on the
development of low memory algorithms.

Our Contributions

Discrete Logarithms. It is not hard to see that also the famous discrete logarithm
problem (DLP) reduces to the subset sum problem. Let gα = β be a discrete
logarithm instance in some abelian group G generated by g with order 2n−1 ≤
|G| < 2n. Then we can easily compute the values ai := g2

i−1
. Any subset I ⊂

{1, . . . , n} of all ai that combines in G to β immediately reveals the bits of the
discrete logarithm α. Moreover, if we know a priori that α has low Hamming
weight ωn, ω ≤ 1

2 , then we have to find some I of small size |I| = ωn, a fact
from which subset sum algorithms usually benefit.

While the security of discrete log-based schemes is usually not directly based
on the hardness of low weight DLP, their side channel resistance is linked to low
weight DLP. Assume that we obtain via some side channel a faulty version α̃ of
a discrete logarithm α. Further assume that α̃ is obtained from α by flipping ωn
one bits to zero, but not flipping any zero bits to one (a quite usual setting for
e.g. cold boot attacks [14]). Then β

gα̃ = gα−α̃ =: gα′
forms a low weight DLP

with wt(α′) = ωn. In this setting, any low weight DLP algorithm serves as an
error correction algorithm for reconstructing α from α̃.

For both DLP settings – the general discrete logarithm problem as well as
its low weight variant – there exist algorithms matching the square root time
lower bound for generic algorithms [26,27]. But only for the general DLP we
have Pollard’s Rho algorithm with polynomial memory that matches the time
lower bound |G| 1

2 . Whether there exists a low memory algorithm for the low
weight DLP was left as an open question by Galbraith and Gaudry [12,13]. We
do a significant step towards answering this question in the affirmative by giving
a heuristic algorithm that achieves the time lower bound |G|H(ω)

2 , where H is the
binary entropy function. While there is a variant of the Baby-Step Giant Step
algorithm, which also achieves time |G|H(ω)

2 , our algorithm consumes way less
memory. To quantify, our algorithm consumes always less than |G|0.23 memory,
while Baby-Step Giant-Step for ω = 1

2 consumes as much as |G| 1
2 memory.

Additionally, we are able to instantiate our algorithm with polynomial memory
only, where it outperforms all other known low-weight DLP algorithms in that
memory regime for the whole range of weights 0 ≤ ω ≤ 1

2 .
In more detail, we show the following discrete log results.

– The BCJ subset sum algorithm works in a more general setting that we call
group subset sum, from which we directly obtain a BCJ adaptation to the

96 A. Esser and A. May

low weight discrete logarithm setting via the above reduction. This adaptation
already improves on the best known folklore low weight discrete log algorithm
(see e.g. Chapter 14.8.1 in [12]), which is an application of van Oorschot-
Wiener’s collision finding [28].

– We introduce an improved low weight discrete logarithm algorithm, inspired
by the BCJ adaptation, that makes use of the special form ai = g2

i−1
of our

subset sum instance. Our idea is to represent weight-ωn discrete logarithms
α as the sum of two integers of smaller weight φ(ω) by exploiting the fact
of carry propagation. Technically, we introduce a Markov chain analysis for
finding the optimal weight φ(ω).

– By not insisting on polynomial memory, we tune our algorithm via Parallel
Collision search [29] to reach the time complexity |G|H(ω)

2 of the low weight
DLP variant of Baby-Step Giant-Step, while consuming only |G|H(ω)−H(φ(ω))

memory.

Our results for polynomial space algorithms are illustrated in Fig. 1.

Fig. 1. Comparison of runtime exponents ϑω for low weight DLP algorithms

Subset Sums. Previous polynomial memory subset sum algorithms based on
collision finding, such as the folklore algorithm or the BCJ algorithm, are non-
optimal in the following sense. In a first step, these algorithms output collisions
that correspond to potential solutions e′ = (e′

1, . . . , e
′
n) ∈ {0, 1}n such that the

subset sum identity
∑

i e′
iai = t holds only for a constant fraction of all n bits. In

a second step, the algorithms brute-force potential solutions e′ until by chance
the identity holds on all bits.

We replace this collision-and-brute-force approach by a two-layer nested col-
lision finding that is inspired by the NestedRho algorithm from Dinur, Dunkel-
man, Keller and Shamir [9], which was introduced in the context of finding the

Low Weight Discrete Logarithms and Subset Sum in 20.65n 97

mode of a distribution. More precisely, we find in layer-1 potential solutions
e′ that satisfy the subset sum identity on n/2 bits, where in layer-2 our algo-
rithm produces only candidates that also satisfy the subset sum identity on the
remaining n/2 bits. Therefore, our algorithm always returns some e′ satisfying∑

i e′
iai = t mod 2n. Moreover, each iteration costs us time roughly 2n/2.

As a collision finding technique this is optimal, since for a search space of
size 2n we need to perform Ω(2n/2) operations to obtain collisions at all (with
good probability). Unfortunately, our collision-finding algorithm does not solve
the subset sum problem in time 2n/2, since it produces potential solutions e′

i ∈
{0, 1, 2, 3, 4}n.

However, we show that after 20.149n iterations of our algorithm we expect
to find some e′

i ∈ {0, 1}n that solves subset sum. This leads to a subset sum
algorithm with complexity 20.649n. Using additional tricks, we further improve
to 20.645n.

One might hope that our improvements for subset sum then in turn lead to
improvements for the low Hamming weight discrete logarithm problem. However,
for instantiating our two-layer subset sum collision finding we make use of the
canonical group homomorphism (Z2n ,+) → (Z2n/2 ,+), a subgroup structure
that usually does not exist for discrete logarithm groups (G, ·) (see [20] for results
in composite groups).

Our paper is organized as follows. In Sect. 3 we introduce the general group
subset sum problem, which we solve via the BCJ algorithm, and derive our first
low weight discrete logarithm algorithm. Our second low weight DLP algorithm
is described, analyzed, and experimentally validated in Sect. 3.1. Our 20.649n

subset sum algorithm is given in Sects. 4 and 4.1, and experimentally verified in
Sect. 4.3, the improvement to 20.645n can be found in Sect. 4.2.

2 Preliminaries

It is well-known that a collision in an n-to-n bit function f can be computed
using roughly 2

n
2 function evaluations and only a polynomial amount of mem-

ory. Common collision search algorithms [17,22,24] achieve this by computing
a chain of invocations of f from a random starting point x, that is the itera-
tion f(x), f2(x) := f(f(x)), f3(x), . . ., until a repetition occurs, which in turn
is found via some cycle finding algorithm (see also Fig. 2). Let f �(x) be the
first repeated value in the chain and f �+μ its second appearance. We denote by
Rho(f, x) the output of some collision search procedure on f started at point x,
that is the pair of colliding inputs. In other words

Rho(f, x) := (f �−1(x), f �+μ−1(x)).

The name Rho stems from the usual illustration from Fig. 2 of a colliding chain’s
shape for iterated collision search.

In [28] van Oorschot and Wiener extended this idea of collision search to
collisions between two functions f1 and f2. The van Oorschot-Wiener construc-
tion defines a new function f̃ that alternates between applications of f1 and

98 A. Esser and A. May

Fig. 2. Application of Rho to function f with starting point x.

f2 depending on the input. The output of a collision search in f̃ yields then
a collision between f1 and f2 with probability 1

2 , whereas with probability 1
2

it produces a collision between the same functions f1 and f1, or f2 and f2. If
we obtain a collision between the same functions, we may (in a deterministic
fashion) manipulate the start point x, until we obtain a collision between f1 and
f2. On expectation, this only doubles the run time (in case that collisions are
independent for different start points, which we address below). Therefore, in the
following we assume without loss of generality that we always obtain collisions
for f1, f2 and define

Rho(f1, f2, x) := (x1, x2) with f1(x1) = f2(x2).

Obviously, by restricting the collision search to the function f̃ not all collisions
between f1 and f2 can be found anymore. However, on expectation this concerns
only a constant fraction of all collision and hence we safely ignore this in our
analysis.

All the algorithms considered in this work perform exponentially many invo-
cations of the Rho algorithm on different starting points using the same func-
tion f . This causes some technical dependency problems. For instance in Fig. 2
Rho(f, ·) produces the same output collision for any start point x, x1, . . . , x�−1.
This problem was already identified in the work of [4,9], who both introduced
similar notions to break dependencies, called flavours in [9]. We adapt this notion
to our purpose.

Definition 2.1 (Flavour of a function). Let f be a function with f : T → T ,
where T ⊆ {0, 1}n. Let Pk : T → T be a family of bijective functions addressed
by k. Then the kth flavour of f is defined as

f [k](x) := Pk(f(x)).

Notice that for all k, a collision (x1,x2) in f [k] satisfies

f [k](x1) = f [k](x2) ⇔ Pk(f(x1)) = Pk(f(x2)) ⇔ f(x1) = f(x2).

Thus, (x1,x2) is also a collision in f itself. However, different flavours f [k] invoke
different function graphs. We use flavours of f to heuristically obtain indepen-
dence of the Rho(f, ·) invocations. Namely, we assume that different Rho(f, ·)

Low Weight Discrete Logarithms and Subset Sum in 20.65n 99

invocations independently produce uniformly distributed collisions in f . A sim-
ilar heuristic was also used in [9], and the authors verified their heuristic exper-
imentally.

We analyze our algorithms in Θ̃-notation, where Θ̃(2n) suppresses polynomial
factors in n. By H(x) we refer to the binary entropy function defined as H(x) :=
−x log(x) − (1 − x) log(1 − x), where all logarithms are base 2. Using Stirling’s
formula, we estimate binomial coefficients as

(
n

m

)

= Θ̃
(
2nH(m

n)
)

.

For a, b ∈ N with 1 ≤ a < b we let [a, b] := {a, a+1, . . . , b} and conveniently write
[b] := [1, b]. For a vector y ∈ {0, 1}n we denote by wt(y) := |{i ∈ [n] | yi = 1}|
the Hamming weight of y while for an integer a ∈ N, wt(a) denotes the Hamming
weight of the binary representation of a.

We denote by ZN the ring of integers modulo N . We call (x1, . . . ,xk) ∈ (Zn)k

a representation of x = x1 + . . . + xk over Z
n.

3 A Generalized View on the BCJ Subset Sum Algorithm

In this section we define a generalized group subset sum problem and show that
the BCJ algorithm also succeeds on this generalization. This abstraction contains
the usual subset sum problem in Z2n as well as our new application, the low
weight discrete logarithm problem (DLP), as special cases. As a first result we
obtain a BCJ-type algorithm solving the low weight DLP using only a polynomial
amount of memory — in any group, generically.

Definition 3.1 (Group Subset Sum). Let (G, ·) be an abelian group with
order |G| satisfying 2n−1 ≤ |G| < 2n. In the group subset sum problem we are
given a1, . . . , an, t ∈ G together with ω, 0 < ω ≤ 1

2 such that there exists some
solution e = (e1, . . . , en) ∈ {0, 1}n satisfying

n∏

i=1

aei
i = t in G with wt(e) = ωn.

Our goal is to recover e (or some other weight-ωn solution e′).

Notice that by Definition 3.1 our group subset sum problem has some desired
solution e. In cryptographic applications, such a solution exists by construc-
tion and is usually unique. Moreover, the weight ω is generally known. If ω
is unknown, one may iterate over all O(n) choices. As the change to target
t′ = t−1 ·

∏n
i=1 ai with complimentary solution (1, . . . , 1) − e yields an instance

with solution weight (1 − ω)n, there is no loss in generality assuming ω ≤ 1
2 .

Additionally, one usually knows the generators of G such that one can define the
ai via generators.

Let us now look at two interesting special cases of group subset sum.

100 A. Esser and A. May

Subset Sum. Let (a1, . . . , an, t) be a subset sum instance. By considering G =
(Z2n ,+) the product

∏n
i=1 aei

i = t in G rewrites directly to the usual subset sum
identity

n∑

i=1

eiai = t mod 2n.

Low Weight DLP. Let (G, ·) be a cyclic group generated by g. Let gα = β be
a discrete logarithm instance in G. Let us define ai = g2

i−1
for 1 ≤ i ≤ n and

t = β. Let e be a solution of the group subset sum problem, that is

t =
n∏

i=1

aei
i =

n∏

i=1

gei2
i−1

= g
∑n

i=1 ei2
i−1

. (1)

Thus, e = (e1, . . . , en) immediately implies a solution α =
∑n

i=1 ei2i−1 to the
DLP. Moreover, low weight group subset sum solutions e imply low weight dis-
crete logarithms α.

Folklore Algorithm. Let us first translate the folklore algorithm for low weight
DLP – as for example described in [12] – into the notion of the group subset sum
problem. We take T := {x ∈ {0, 1}n

2 | wt(x) = ωn
2 } with |T | = Θ̃(|G| 1

2H(ω)).
Let us define a hash function π : G → T . Further, we define functions f , ft as

f, ft : T → T , where

f(x) = π

⎛

⎝

n
2∏

i=1

axi
i

⎞

⎠ and ft(x) = π

⎛

⎝t ·
n
2∏

i=1

a−xi
n
2 +i

⎞

⎠ .

Now we search for collisions (x1,x2) between f and ft until x = x1||x2 solves
the group subset sum problem. Note, that there is a unique decomposition of
the desired solution e = x1||x2 and hence a single collision (x1,x2) giving rise
to e. This in turn requires us to find all collisions between f and ft. However,
we expect f, ft to have |T | collisions, where finding each collision costs Θ̃(|T | 1

2)
function evaluations. In total, we achieve expected runtime

T = Θ̃(|T | 3
2) = Θ̃(|G| 3

4H(ω)). (2)

The runtime exponent 3
4H(ω) is depicted in Fig. 3.

A pseudocode description of the folklore algorithm in the group subset sum
setting is given by Algorithm 1, where we instantiate f1, f2 via their function
definitions f, ft.

Low Weight Discrete Logarithms and Subset Sum in 20.65n 101

Algorithm 1. Group Subset Sum Solver

Input: functions f1, f2 : D → D, group subset sum instance (a1, . . . , an, t) ∈ Gn+1

Output: solution e ∈ {0, 1}n satisfying
∏n

i=1 aei
i = t

1: repeat
2: choose random flavour k
3: choose random starting point s ∈ D
4: (x,y) ← Rho(f

[k]
1 , f

[k]
2 , s)

5: e′ ← x + y

6: until e′ ∈ {0, 1}n and
∏n

i=1 a
e′

i
i = t

7: return e′

Remark 3.1. We find collisions via the Rho procedure defined in Sect. 2 (see
Algorithm 1). To (heuristically) guarantee independence of the collisions, we
choose a random flavour k (see Definition 2.1) each time we invoke Rho. This
means instead of searching for collisions between f and ft themselves, we search
for collisions between their flavoured versions f [k] and f

[k]
t . Analogously, we have

to proceed for the subsequently described algorithms, our BCJ adaptation and
our new algorithm in Sect. 3.1. However, for ease of notation we skip the flavours
in our descriptions.

BCJ Algorithm. The idea of the memoryless BCJ algorithm is to split the
solution vector e with wt(e) = ωn in two vectors e1, e2 ∈ {0, 1}n each of weight
ωn
2 , which add up to e. Let (a, t) be a group subset sum instance and T := {x ∈

{0, 1}n | wt(x) = ωn
2 }, where |T | = Θ̃(2H(ω

2)n) = Θ̃(|G|H(ω
2)).

Let us define a hash function π : G → T and the two functions

f, ft : T → T , where

f(x) = π

(
n∏

i=1

axi
i

)

and ft(x) = π

(

t ·
n∏

i=1

a−xi
i

)

.

Note that any representation (e1, e2) of our desired solution e, i.e. e = e1+e2,
satisfies

n∏

i=1

a
(e1)i

i = t ·
n∏

i=1

a
−(e2)i

i , (3)

and therefore also f(e1) = ft(e2). The algorithm now simply searches for colli-
sions (e′

1, e
′
2) between f and ft, until e′

1 + e′
2 yields a solution to the subset sum

instance. Algorithm 1 provides a pseudocode description of our BCJ adaptation
by using the function definitions of f and ft to instantiate f1 and f2.

Runtime Analysis. Notice that while our hash function π : G → T allows us to
iterate the functions f, ft, it also introduces many useless collisions (x,y) with

π

(
n∏

i=1

axi
i

)

= π

(

t ·
n∏

i=1

a−yi

i

)

but
n∏

i=1

axi
i �= t ·

n∏

i=1

a−yi

i .

102 A. Esser and A. May

However, we already know that any representation (e1, e2) of the desired solution
e satisfies Eq. (3) and thus defines a useful collision. Hence, we can simply
compute the probability p that a randomly drawn collision is useful. We expect
f, ft to have |T | collisions, while the number of representations of e as weight-ω

2 n

vectors e1, e2 ∈ {0, 1}n is
(

ωn
ω
2 n

)
= Θ̃(2ωn) = Θ̃(|G|ω). This implies

p = Θ̃

(
|G|ω
|T |

)

.

Hence, after an expected number of p−1 iterations we find our desired solution e.
Since finding a single collision takes on expectation Θ̃(|T | 1

2) function evaluations
and |T | = Θ̃(|G|H(ω

2)), we obtain a total runtime of

T = Θ̃(|T | 1
2 · p−1) = Θ̃(|T | 3

2 · |G|−w) = Θ̃(|G| 3
2H(ω/2)−ω). (4)

In Fig. 3 we show our new runtime exponent 3
2H(ω/2) − ω (called BCJ

Adaption), which always improves on the folklore algorithm over the whole
range of ω.

Fig. 3. Comparison of runtime exponents ϑω for low weight DLP algorithms

For group subset sum problems of weight n
2 , we achieve runtime

|G| 3
2H(1

4)− 1
2 = |G|0.72. This implies a polynomial-space subset algorithm with

runtime 20.72n, the remarkable result of Becker, Coron and Joux. For the dis-
crete logarithm setting, the result |G|0.72 is less remarkable, since Pollard’s algo-
rithm already achieves runtime |G| 1

2 . However, for weights ω ≤ 0.197 our BCJ
adaption improves on Pollard’s runtime.

Low Weight Discrete Logarithms and Subset Sum in 20.65n 103

In the subsequent Sect. 3.1 we further improve on the BCJ adaptation by
using the special form ai = g2

i−1
in the low weight DLP. Notice that so far

representations (e1, e2) ∈ {0, 1}n of e in the analysis of the BCJ algorithm fulfill
e1 +e2 ∈ {0, 1}n. In other words, in e1, e2 we never have 1-coordinates that add
up. However, we also know by Eq. (1) that the vectors e1, e2 can be treated as
bit-representations of numbers. Hence, if in the ith position, i < n, we have a
1-entry in both vectors, then we obtain

a2
i = (g2

i−1
)2 = g2

i

= ai+1.

That is, we can make good use of carry bits to further increase the number of
representations of our solution by looking at the total number of sums e = e1+e2
not only over {0, 1}n but over the integers (modulo |G|).

3.1 Improved Low Weight DLP Algorithm

Let G be a cyclic group generated by g with order 2n−1 ≤ |G| < 2n. Let gα = β
with wt(α) = ωn ≤ n

2 be a low weight DLP in G. Our idea is to represent
α = α1 + α2 mod |G| with α1, α2 ∈ Z|G| both of a certain weight. For ease of
notation, we will only concentrate on representations (α1, α2) with α1+α2 < |G|
such that we can ignore reductions modulo |G|. With this simplification, we only
lose a constant (namely 1

2) fraction of all representations, which does not affect
asymptotics.

Thus, we first have to determine for which weight of φn = wt(x1) = wt(x2),
x1, x2 ∈ Z|G| we expect that wt(x1+x2) = ωn. This seems to be a rather natural
and fundamental problem to study, but to our surprise we could not find any
treatment in the literature. In the following we provide a (heuristic) Markov
chain analysis for computing φ as a function of ω, which we experimentally
validate.

Computation of φ via Markov Chain. Let us model the bitwise summation
x1 + x2 as a Markov chain. Since in every bit position we also have to take
into account a carry bit, every state of our Markov chain contains three bits
(b1, b2, b3). Here we denote by b1 the carry bit and by b2, b3 the corresponding
bit from x1 respectively x2.

To make ourselves a bit more familiar with the notion, let us look at the
following example from Fig. 4. Let us start in state (0, 0, 0). As 0 + 0 + 0 = 0,
this state produces carry bit 0 and depending on the subsequent bits of x1, x2

we may enter one of the four states (0, 0, 0), (0, 1, 0), (0, 0, 1) or (0, 1, 1).
As x1, x2 are uniformly drawn from the set of vectors with weight φn, a

single bit position in these vectors takes value 1 with probability φ. In our
analysis, we ignore the effect that the random variables for the bit positions
are not independent (since they have to sum to φn). This heuristic should only
insignificantly affect our asymptotic treatment.

Hence, in our example we stay in state (0, 0, 0) with probability (1 − φ)2,
move to either (0, 0, 1) or (0, 1, 0) with probability φ(1−φ), and move to (0, 1, 1)
with probability φ2.

104 A. Esser and A. May

Fig. 4. Possible state transitions from states (0, 0, 0), (0, 1, 1) and (1, 1, 1), where edge
labels are transition probabilities and the first bit indicates the carry. Further state
transitions are omitted for the sake of clarity.

The complete Markov process is defined by the following transition matrix
M = (mi,j)1≤i,j≤8, where mi,j is the transition probability from state i to j,
where the labels i, j are defined in Fig. 4.

M :=

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

(1 − φ)2 φ(1 − φ) φ(1 − φ) φ2 0 0 0 0
(1 − φ)2 φ(1 − φ) φ(1 − φ) φ2 0 0 0 0
(1 − φ)2 φ(1 − φ) φ(1 − φ) φ2 0 0 0 0

0 0 0 0 (1 − φ)2 φ(1 − φ) φ(1 − φ) φ2

(1 − φ)2 φ(1 − φ) (φ)(1 − φ) φ2 0 0 0 0
0 0 0 0 (1 − φ)2 φ(1 − φ) φ(1 − φ) φ2

0 0 0 0 (1 − φ)2 φ(1 − φ) φ(1 − φ) φ2

0 0 0 0 (1 − φ)2 φ(1 − φ) φ(1 − φ) φ2

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

Note that the states 2, 3, 5 and 8 produce a 1 in the corresponding bit of the
sum x1 + x2, while the other states produce a 0. Since wt(x1 + x2) = ωn, we
should (asymptotically) produce a 1 with probability ω. Thus, we should be in
either of the states 2, 3, 5 or 8 with probability ω.

Markov chain theory tells us that M reaches a stationary distribution
π = (π1, . . . , π8) satisfying πM = π. For each 1 ≤ i ≤ 8, the Markov pro-
cess (asymptotically) reaches state i with probability πi. Thus, from the linear
equations

πM = π, π1 + . . . + π8 = 1 and π2 + π3 + π5 + π8 = ω

we obtain an expression for φ as a function of ω. Computing the stationary
distribution yields

π = (−φ4 + 2φ3 − 2φ + 1, φ4 − φ3 − φ2 + φ, φ4 − φ3 − φ2 + φ, −φ4 + φ2,

φ4 − 2φ3 + φ2, −φ4 + φ3, −φ4 + φ3, φ4).

Low Weight Discrete Logarithms and Subset Sum in 20.65n 105

Hence, it follows that ω = 4φ4 − 4φ3 − φ2 + 2φ. Solving for φ yields our desired
function that we illustrate in Fig. 5a. In Fig. 5b we experimentally verify the
accuracy of our asymptotic analysis for concrete sums of 500-bit integers x1, x2.

Fig. 5. Asymptotic estimate and experimentally obtained values for the weight ωn of
the sum of two n-bit numbers with weight φn

Our Low Weight Discrete Logarithm Algorithm. Recall that gα = β with
wt(α) = ω ≤ 1

2 , where g generates a group G of order 2n−1 ≤ |G| < 2n. We
represent α = α1 + α2 with wt(α1) = wt(α2) = φ, where we compute φ as a
function of ω as described in the previous paragraph.

Let us define T := {x ∈ Z2n | wt(x) = φ(ω)n}, where |T | = Θ̃(2H(φ(ω))n) =
Θ̃(|G|H(φ(ω))). Further, we define a hash function π : G → T and the two
functions

f, fβ : T → T , where

f(x) = π (gx) and ft(x) = π
(
βg−x

)
.

Any representation (α1, α2) of our discrete logarithm α, i.e. α = α1 + α2,
satisfies

gα1 = βg−α2 , (5)

and therefore also f(α1) = fβ(α2). Our algorithm searches for collisions (x1, x2)
between f and fβ , until x1 + x2 yields a solution to the discrete logarithm
problem. Algorithm 2 gives a pseudocode description of our new algorithm.

106 A. Esser and A. May

Algorithm 2. Discrete Logarithm Solver

Input: functions f, fβ : T → T , generator g of G, β ∈ G
Output: α = dloggβ satisfying gα = β
1: repeat
2: choose random flavour k
3: choose random starting point s ∈ T
4: (x, y) ← Rho(f [k], f

[k]
β , s)

5: α′ ← x + y
6: until gα′

= β
7: return α′

Heuristic Analysis of Our Algorithm. The hash function π : G → T
produces a lot of useless collisions f(x1) = fβ(x2) for which gx1 �= βg−x2 .
However, for any representation (α1, α2) of α Eq. (5) holds. In order to determine
the probability p of a collision (x1, x2) being useful – which means gx1 = βg−x2

– we compute the number of representations.
We search for our weight-ωn discrete logarithm α by computing sums of

weight-φ(ω)n numbers (x1, x2) ∈ T 2. Let us heuristically assume that the
weights of the resulting sums x1 +x2 concentrate around weight ωn. Namely, we
assume that a polynomial fraction of all sums attains weight ωn. Such concentra-
tion results hold for similar distributions like the binomial distribution, and we
validate our concentration heuristic experimentally. From Fig. 6 we conclude that
quite sharply a 1√

n
-fraction of our experiments hits their expectation, exactly

the same concentration result that we obtain from the binomial distribution.

Fig. 6. Experimentally averaged value c in Pr
[
X = E[X]

]
= 1

nc , when adding two
n-bit numbers of weight �0.3n�, where X is a random variable for the weight of their
sum (sample size per n is 5000).

We further assume that the polynomial fraction of sums x1 + x2 with
weight ωn takes uniformly distributed values among all numbers of weight ωn.
Therefore, any random sum x1 + x2 of weight ωn equals α with probability

Low Weight Discrete Logarithms and Subset Sum in 20.65n 107

(
n

ωn

)−1 = Θ̃(G−H(ω)). This implies that heuristically we obtain Θ̃(|T |2|G|−H(ω))
many representations. As we expect a total of |T | collisions, the probability p of
a useful collision is

p = Θ̃

(
|T |2|G|−H(ω)

|T |

)

= Θ̃(|T | · |G|−H(ω)).

Finding each collision heuristically takes time |T | 1
2 . Since |T | = Θ̃(|G|H(φ(ω))),

we expect to find the low weight discrete logarithm α in time

T = Θ̃(|T | 1
2 · p−1) = Θ̃(|T |− 1

2 |G|H(ω)) = Θ̃(|G|H(ω)− 1
2H(φ(ω))). (6)

The run time exponent of Eq. (6) is depicted in Fig. 3 (as New Alg.). While
our low weight DLP algorithm significantly improves over the folklore algorithm
and the BCJ adaptation, it does not yet achieve the square root of the search
space S. Namely, if S denotes the set of all weight-ωn numbers, i.e. |S| =

(
n

ωn

)
=

Θ̃(|G|H(ω)), then we might hope for a polynomial space algorithm with time
complexity |S| 1

2 , as a possible generalization of Pollard’s algorithm to the low
weight discrete logarithm regime.

In Fig. 7 we illustrate all runtime exponents to the base |S|. That is for
Pollard’s algorithm, the folklore algorithm (Eq. (2)), the BCJ algorithm (Eq.
(4)), and our new algorithm (Eq. (6)) we depict their exponents

1
2H(ω)

,
3
4
,

3
2H(ω/2) − ω

H(ω)
,

H(ω) − 1
2H(φ(ω))

H(ω)
.

Fig. 7. Runtime exponent of the search space for low hamming weight DLP

108 A. Esser and A. May

The folklore algorithm has a constant exponent 3
4 in the search space. Pol-

lard’s algorithm is superior for large weights ω ≥ 0.174, but also gets arbi-
trarily bad in the search space for small ω. Our BCJ adaptation achieves the
first improvement over 3

4 for arbitrary weights ω. However, BCJ only reaches a
minimal exponent of δ = 0.697 (achieved at ω = 0.248). Eventually, our new
algorithm improves on the BCJ algorithm for all weights, where we obtain an
interpolation between 3

4 for arbitrary small weights and the desired optimum 1
2

for ω = 1
2 . Additionally, our new algorithm is superior to Pollard’s algorithm for

all weights ω ≤ 0.225.

Experimental Verification of Our Algorithm. For experimental conve-
nience, we implemented our algorithm in the multiplicative group G = Z

∗
p. We

chose bit-length n = 40, and p as the largest prime smaller than 240. We gener-
ated 40 random small weight DLP instances for each weight ωn ∈ {2, 3, . . . , 20}.
We measured Tf , the amount of calls to our function f , and averaged Tf over
all 40 instances.1

Figure 8 shows the results of our computations. Here the dots are the values
obtained in our experiments, while the dashed line is our asymptotic prediction
40(H(ω) − 1

2H(φ(ω))), shifted by 2.92 to take some (in the analysis neglected)
polynomial run time factor into account.

Fig. 8. Experimentally averaged number of function calls (in logarithmic scale) needed
to solve a 40-bit discrete logarithm problem of weight ωn. Sample size per ωn is 40.

Time-Memory Tradeoff for Reaching the Square Root Bound. Let
|S| =

(
n

ωn

)
= Θ̃(|G|H(ω)) be the low weight DLP search space as defined before.

As we have seen, it remains open to reach square root complexity |S| 1
2 with

a polynomial space algorithm, but our new algorithm makes a significant step
towards this goal.
1 Implementation available at https://github.com/LwDLPandSubsetSum/lwDLP-

and-NestedSubsetSum.

https://github.com/LwDLPandSubsetSum/lwDLP-and-NestedSubsetSum
https://github.com/LwDLPandSubsetSum/lwDLP-and-NestedSubsetSum

Low Weight Discrete Logarithms and Subset Sum in 20.65n 109

Let us at this point forget about our polynomial space restriction (for the
first and only time in this paper). Then Coppersmith’s Baby-Step Giant-Step
variant for low weight DLP(see [12], Chap. 13) achieves both time and space
complexity TBSGS = MBSGS = Θ̃(|S| 1

2).
Fortunately, our BCJ adaption as well as our new algorithm also allow for

a time-memory tradeoff using van Oorschot-Wiener’s Parallel Collision Search
(PCS) [29]. Let C be the time complexity to find a collision with polynomial
memory, then PCS finds 2m collisions in time Θ̃(2

m
2 C) using Θ̃(2m) memory.

In the following, we minimize the run time of BCJ and our new algorithm
by applying PCS.

Fig. 9. Time-memory tradeoffs when applying PCS to our algorithms.

BCJ Tradeoff. From the analysis in Sect. 3, our BCJ adaptation requires to
find an expected number of Θ̃(|G|H(ω/2)−ω) collisions, each at the cost of
Θ̃(|G|H(ω/2)

2). Thus, using memory MBCJ = Θ̃(|G|H(ω/2)−ω) BCJ’s time com-
plexity decreases to

TBCJ = Θ̃(|G|
H(ω/2)−ω

2 · |G|
H(ω/2)

2) = Θ̃(|G|H(ω
2)− ω

2).

The time exponent is illustrated in Fig. 9 as dash-dotted line, the memory
exponent as dotted line, both as a function of ω.

110 A. Esser and A. May

New Algorithm Tradeoff. Following the analysis in Sect. 3.1 our new algorithm
requires to find Θ̃(|G|H(ω)−H(φ(ω))) collisions, each at the cost of Θ̃(|G|H(φ(ω))

2).
Hence, using memory Mnew = Θ̃(|G|H(ω)−H(φ(ω))) via PCS yields a runtime of

Tnew = Θ̃(|G|
H(ω)−H(φ(ω))

2 · |G|
H(φ(ω))

2) = Θ̃(|G|
H(ω)

2) = Θ̃(|S| 1
2).

Therefore – as opposed to the BCJ adaptation – our new low weight DLP
algorithm achieves the optimal time bound Θ̃(|S| 1

2) for collision search algo-
rithms. In comparison to Coppersmith’s Baby-Step Giant-Step algorithm it does
not require full memory Θ̃(|S| 1

2), but only memory Θ̃(|G|H(ω)−H(φ(ω))). We illus-
trate the exponent H(ω) − H(φ(ω)) as a dashed line in Fig. 9.

4 Subset Sum in 20.65n with Polynomial Space

Motivation. Let (a, t) = (a1, . . . , an, t) ∈ (Z2n)n+1 be a weight- 12 instance of
the subset sum problem, i.e., there exists some solution e = (e1, . . . , en) with
wt(e) = n

2 satisfying 〈a, e〉 = t mod 2n. Our algorithm extends to all weights ω,
but for simplicity we analyze in the following only the worst-case ω = 1

2 .
The folklore algorithm from Sect. 3 (also stated explicitly for subset sum in

[4]) has runtime 2
3
4n. This is achieved by choosing T := {x ∈ {0, 1}n

2 | wt(x) =
n
4 } with |T | = Θ̃(2

n
2), defining an injective function h : Z2n/2 → T and searching

for collisions between

f(x) = h(〈(a1, . . . , an/2),x〉 mod 2
n
2) and

ft(x) = h(t − 〈(an/2+1, . . . , an),x〉 mod 2
n
2).

With the notation from Sect. 3 our hash function π first applies the canonical
group homomorphism (Z2n ,+) → (Z2n/2 ,+), followed by an application of h.

Any collision (x1,x2) satisfies

h(〈(a1, . . . , an/2),x1〉 mod 2
n
2) = h(t − 〈(an/2+1, . . . , an),x2〉 mod 2

n
2).

Since h is injective, we conclude that 〈a,x1||x2〉 = t mod 2
n
2 . Thus x = x1||x2

is a potential solution that matches t already on n
2 bits, see also Fig. 10. Any

potential solution can be found in time 2
n
4 via collision search. However, it costs

us on expectation 2
n
2 iterations to find a useful solution that also matches t on

the remaining n
2 bits. Put differently, we use a square-root cycle finding algorithm

to find potential solutions, whereas we use a naive brute-force routine to identify
a useful solution. The conflicting problem is that π hashes down to n

2 bits to
allow for an iterative function application, but thereby inherently introduces 2

n
2

useless collisions.

Our High-Level Idea. Our goal is to use a nested collision search to first find
potential solutions that match on n

2 bits, and then among these collisions use
another collision search for identifying some useful solution. This introduces a

Low Weight Discrete Logarithms and Subset Sum in 20.65n 111

Fig. 10. Basic structure of the folklore and our new algorithm for solving subset sum.

two-layer approach, see also Fig. 10, for which we need to split our solution e
into four summands e = x1 + . . . + x4. Obviously, 〈a, e〉 = t mod 2n implies

〈a,x1 + x2〉 = t − 〈a,x3 + x4〉 mod 2
n
2 .

On layer 1, our algorithm fixes some R ∈ Z2n/2 and finds collisions (x1,x2)
satisfying 〈a,x1+x2〉 = R mod 2

n
2 as well as collisions (x3,x4) satisfying 〈a,x3+

x4〉 = t − R mod 2
n
2 .

On layer 2, we search among the collisions (x1,x2) and (x3,x4) via some
nested collision search for some collision that satisfies the identity 〈a,x1+. . .+x4〉
also on the remaining n

2 bits.

Fig. 11. Structure of the nested Rho algorithm, where different flavours of the function
are represented by different colours. (Color figure online)

112 A. Esser and A. May

Our technique for subset sum induces a giant Rho structure (layer 2 collision
search) over smaller Rho structures (layer 1 collision search), as illustrated in
Fig. 11. Here different colours represent a collision search on different function
flavours, as defined in Sect. 2. The dotted arrows depict the transition from a
collision to a new starting point.

4.1 Nested Collision Subset Sum in 20.649n

To explain our algorithm from Fig. 10 in more detail, we have to first specify the
domains T1, . . . , T4 of the layer-1 functions f1, f2,R, f3, f4,t−R. We illustrate the
domains in Fig. 12.

Let us denote by

B(n, β) := {x ∈ {0, 1}n | wt(x) = βn}

the set of n dimensional vectors with relative (to n) weight β. For some γ ∈ [0, 1]
we define

T1 = 0
1
4 (1−γ)n × 0

1
4 (1−γ)n × 0

1
4 (1−γ)n × B

(
1
4
(1 − γ)n,

1
2

)

× B
(

γn,
1
8

)

T2 = 0
1
4 (1−γ)n × 0

1
4 (1−γ)n × B

(
1
4
(1 − γ)n,

1
2

)

× 0
1
4 (1−γ)n × B

(

γn,
1
8

)

T3 = 0
1
4 (1−γ)n × B

(
1
4
(1 − γ)n,

1
2

)

× 0
1
4 (1−γ)n × 0

1
4 (1−γ)n × B

(

γn,
1
8

)

T4 = B
(

1
4
(1 − γ)n,

1
2

)

× 0
1
4 (1−γ)n × 0

1
4 (1−γ)n × 0

1
4 (1−γ)n × B

(

γn,
1
8

)

.

(7)

Notice that |B(n, β)| =
(

n
βn

)
= Θ̃(2H(β)n). Therefore, all Ti satisfy

|Ti| = Θ̃(2(
1−γ
4 +H(1

8)γ)n).

Since we want to have function domain n
2 for both layers, we set γ as the solution

of 1−γ
4 + H(18)γ = 1

2 , that is
γ ≈ 0.8516. (8)

Recall that we represent our subset sum solution e as e = e1 + . . . + e4 with
(e1, . . . , e4) ∈ T1 × . . . × T4. By our definition of the Ti we may write e ∈
(
{0, 1} (1−γ)n

4

)4

× {0, 1}γn, where each of its 5 parts has relative weight 1
2 . Such

a weight distribution of e can be enforced by an initial permutation on the ai.
Let us fix some R ∈ Z2n/2 , and let hi : Z2n/2 → Ti, i = 1, . . . , 4, be injec-

tive functions. Layer-1 collisions are defined as elements (x1,x2) ∈ T1 × T2 and
(x3,x4) ∈ T3 × T4 satisfying

〈a,x1 + x2〉 = R mod 2
n
2 and 〈a,x3 + x4〉 = t − R mod 2

n
2 . (9)

Low Weight Discrete Logarithms and Subset Sum in 20.65n 113

Fig. 12. Weight distribution of vectors from first level domains. Shaded areas contain
weight, white areas are all zero.

Therefore, we define the following four first layer functions fi,· : Ti → Z2n/2 with

f1(x) = 〈a,x〉 mod 2
n
2 , f2,R(x) = R − 〈a,x〉 mod 2

n
2 and

f3(x) = 〈a,x〉 mod 2
n
2 , f4,t−R(x) = t − R − 〈a,x〉 mod 2

n
2 .

As a consequence, layer-1 collisions f1(x1) = f2,R(x2) and f3(x3) = f4,t−R(x4)
satisfy Eq. (9). Also notice that by Eq. (9) any pair of layer-1 collisions (x1,x2) ∈
T1 × T2, (x3,x4) ∈ T3 × T4 satisfies

〈a,x1 + x2 + x3 + x4〉 = t mod 2
n
2 .

Layer-2 collisions are now defined as pairs of layer-1 collisions (x1,x2) ∈
T1 × T2 and (x3,x4) ∈ T3 × T4 satisfying

〈a,x1 + x2 + x3 + x4〉 = t mod 2n.

Since we already know that by construction layer-1 collisions satisfy the identity
〈a,x1 + x2 + x3 + x4〉 = t on the lower n/2 bits, it suffices to check for layer-2
collisions the identity on the upper n/2 bits, which we denote by

〈a,x1 + x2 + x3 + x4〉[n/2+1,n] = t[n/2+1,n]. (10)

Recall from Sect. 2 that (x1,x2) = Rho(f1, f2,R, x) denotes the application
of a collision finding algorithm on f1, f2 with starting point x. The starting
point x ∈ Z2n/2 fully determines the collision (x1,x2) ∈ T1 × T2 found by Rho.
Before we apply functions f1 respectively f2,R iteratively on x, we map x (and
all function outputs) via h1 respectively h2 to their domains T1 respectively T2.
An analogous mapping is done for the collision search between f3 and f4,t−R.

Let us define the layer-2 functions g1, g2 : Z2n/2 → Z2n/2 as

g1(x) := 〈a,x1 + x2〉[n/2+1,n] , where (x1,x2) = Rho(f1, f2,R, x) and
g2(x) := (t − 〈a,x3 + x4〉)[n/2+1,n], where (x3,x4) = Rho(f3, f4,t−R, x).

114 A. Esser and A. May

Assume that we found a layer-2 collision (s1, s2). We compute from (s1, s2)
the values (x1,x2) = Rho(f1, f2,R, s1) and (x3,x4) = Rho(f3, f4,t−R, s2). Since
(s1, s2) is a layer-2 collision we have g1(s1) = g2(s2) and therefore

〈a,x1 + x2〉[n/2+1,n] = (t − 〈a,x3 + x4〉)[n/2+1,n].

This identity implies Eq. (10). Thus, e = x1 + . . .+x4 is a solution to the subset
sum problem if e ∈ {0, 1}n.

The computation of our layer-2 functions is illustrated in Fig. 13. Our whole
algorithm Nested Collision Subset Sum is summarized in Algorithm 3.

Fig. 13. Computation of layer-2 functions g1(s1) and g2(s2), where (x1,x2) =
Rho(f1, f2,R, s1) and (x3,x4) = Rho(f3, f4,t−R, s2).

Algorithm 3. Nested Collision Subset Sum

Input: subset sum instance (a, t) = (a1, . . . , an, t) ∈ Z
n+1
2n

Output: solution e ∈ {0, 1}n satisfying 〈a, e〉 = t mod 2n

1: repeat
2: Randomly permute the ai.
3: Choose R, z ∈ Z2n/2 randomly.
4: (s1, s2) ← Rho(g1, g2, z)
5: Compute (x1,x2) = Rho(f1, f2,R, s1).
6: Compute (x3,x4) = Rho(f3, f4,t−R, s2).
7: Set e = x1 + x2 + x3 + x4.
8: until e ∈ {0, 1}n

Low Weight Discrete Logarithms and Subset Sum in 20.65n 115

Remark 4.1. We have to guarantee independence of the collisions returned by
Rho on input g1, g2 for different starting points. This can be done (heuristically)
by using flavoured inner functions (see Sect. 2). More formally, we have to change
the definitions to

g1(x) := 〈a,x1 + x2〉[n/2+1,n] , where (x1,x2) = Rho(f [x]
1 , f

[x]
2,R, x) and

g2(x) := (t − 〈a,x3 + x4〉)[n/2+1,n], where (x3,x4) = Rho(f [x]
3 , f

[x]
4,t−R, x).

In the following, we omit flavours for ease of notation.

Run Time Analysis of Nested Collision Subset Sum. The cost of any
iteration of the repeat-loop in Nested Collision Subset Sum is dominated
by the function call to Rho(g1, g2, z), which itself recursively calls Rho(f1, f2,R, ·)
and Rho(f3, f4,t−R, ·). Each invocation of collision finding in the layer-1 functions
costs time |Ti|

1
2 = Θ̃(2

n
4). Since gi : Z

2
n
2

→ Z
2

n
2
, a collision search in the layer-2

functions requires on expectation Θ̃(2
n
4) function evaluations of the gi. Hence

in total each iteration in Nested Collision Subset Sum requires time Θ̃(2
n
2).

Notice that each iteration computes some potential solution e′ satisfying
〈a, e′〉 = t, no matter whether the permutation of the ai induced the correct
weight distribution on e. However, such an e′ is usually not in {0, 1}n, and
therefore does not solve our subset sum instance.

Let us look at some fixed iteration of Nested Collision Subset Sum. Let
E1 be the event that our initial permutation yields the correct weight distribution
in this iteration. Then

p1 := Pr [E1] =

(
(1−γ)n/4
(1−γ)n/8

)4(γn
γn/2

)

(
n

n/2

) =
1

poly(n)
= Θ̃(1). (11)

Let (e1, . . . , e4) be a representation of our subset sum solution e satisfying
〈a, e1 +e2〉 = R mod 2

n
2 (for the choice of R in line 3 of Algorithm 3). Then we

call (e1, e2) a useful collision of f1, f2,R. By construction, (e3, e4) is automatically
a useful collision of f3, f4,t−R satisfying 〈a, e3 +e4〉 = t−R mod 2n/2. Now, for
all useful collisions (e1, e2) of f1, f2,R and (e3, e4) of f3, f4,t−R there exists some
collision (s′

1, s
′
2) of g1, g2 satisfying (e1, e2) = Rho(f1, f2,R, s′

1) and (e3, e4) =
Rho(f3, f4,t−R, s′

2). Thus, useful collisions of f1, f2,R and f3, f4,t−R are in 1:1-
correspondence with the collisions of g1, g2 that yield a representation of the
solution. Hence, we can compute the probability of success in one iteration given
E1 as the fraction of useful collisions with respect to R among all collisions of
g1, g2, where the latter is Θ̃(2

n
2).

Let E2 be the event that there exist useful collisions for our choice of
R. Let E3 be the event that our collision finding yields a representation
(x1, . . . ,x4) of the solution e. Then we succeed in this iteration with probabil-
ity p := Pr [E1 ∩ E2 ∩ E3] = Pr [E1] · Pr [E2 | E1] · Pr [E3 | E2 ∩ E1]. It remains
to compute p2 := Pr [E2 | E1] and p3 := Pr [E3 | E2 ∩ E1]. Let us start with
probability p2.

116 A. Esser and A. May

Let us calculate the number of different R values for which we obtain useful
collisions. We first observe that different representations (e1, . . . , e4) might share
the same value e1 + e2 and hence the same inner product 〈a, e1 + e2〉. Thus, we
have to count the number of distinct representations (e′

1, e
′
2) = (e1 +e2, e3 +e4)

of e. By the definition of our function domains in Eq. (7) and in Fig. 12 this
number is (γn

2
γn
4

)

= Θ̃
(
2

γn
2

)
.

Hence, the probability of choosing an R ∈ Z2n/2 for which useful collisions
exist is

p2 := Θ̃

(
2

γn
2

2
n
2

)

= Θ̃
(
2

(γ−1)n
2

)
.

Note that for a good choice of R there directly exist several useful colli-
sions, since any fixed (e′

1, e
′
2) = (e1 + e2, e3 + e4) is represented via multiple

(e1, . . . , e4). More precisely every e′
1 (resp. e′

2) is represented by
(γn

4
γn
8

)

= Θ̃
(
2

γn
4

)

different (e1, e2) (resp. (e3, e4)). Note that any of these (e1, e2) and (e3, e4)
form useful collisions of f1, f2,R and f3, f4,t−R. Furthermore, any of the 2

γn
2

combinations of (e1, e2) and (e3, e4) is a representation of e. Therefore, we obtain
a total of 2

γn
2 distinct collisions in g1, g2 that represent e. Thus in case that we

made a good choice of R, a random collision is a representation of the solution
with probability

p3 := Θ̃

(
2

γn
2

2
n
2

)

= Θ̃
(
2

(γ−1)n
2

)
.

Eventually, we expect p−1 = (p1p2p3)−1 = 2(1−γ)n = 20.149n iterations with
cost each Θ̃(2

n
2), resulting in total expected runtime

T = Θ̃(2(
3
2−γ)n) = 20.649n.

Alternative Run Time Analysis of Nested Collision Subset Sum. We
already saw that each iteration of Nested Collision Subset Sum takes
time Θ̃(2n/2) and we have to iterate until we find some e ∈ {0, 1}n. We call
(x1,x2,x3,x4) ∈ T1 × . . . × T4 consistent iff e = x1 + x2 + x3 + x4 ∈ {0, 1}n.

Now observe that a random tuple (x1,x2,x3,x4) ∈ T1 × . . .×T4 is consistent
with probability

p =

(
γn

γn/8

)(
7γn/8
γn/8

)(
6γn/8
γn/8

)(
5γn/8
γn/8

)

(
γn

γn/8

)4

= Θ̃

(

2
(

7
8H(1

7)+ 3
4H(1

6)+ 5
8H(1

5)−3H(1
8)

)
γn

)

≥ 2−0.149n.

Low Weight Discrete Logarithms and Subset Sum in 20.65n 117

Let us assume that the representations of e distribute uniformly in T1 × . . . ×T4

and that Nested Collision Subset Sum finds random collisions. Then we
need on expection p−1 iterations until we find e ∈ {0, 1}n, resulting in a total
runtime of

T = p−1 · Θ̃(2n/2) = 20.649n.

This view on the runtime of Nested Collision Subset Sum motivates the
improved algorithm in the subsequent section that increases the probability of
obtaining a consistent vector e at the cost of an initial exponential time permu-
tation step.

4.2 Improved Nested Collision Subset Sum in 20.645n

Recall from Eq. (7) and Fig. 12 that in x1 + . . . + x4 the left-most coordinates
are always in {0, 1}(1−γ)n. In other words, inconsistencies are always due to the
last γn coordinates. Therefore, our goal is to shift less weight in the last γn
coordinates. Namely, we modify the weight distribution of e such that the last
γn coordinates have relative weight β

2 for some 2 − 1
γ ≤ β ≤ 1. We depict our

new weight distribution in Fig. 14. Since we cannot shift arbitrary weight into
the left-most coordinates, the lower bound on β guarantees (1−γ)n

4 ≥ (1−γβ)n
8 .

Fig. 14. Weight distribution of vectors from new layer-1 domains. Shaded areas contain
weight, white areas are all zero.

118 A. Esser and A. May

More formally, we change the layer-1 domains to

T ′
1 = 0

1
4 (1−γ)n × 0

1
4 (1−γ)n × 0

1
4 (1−γ)n × B

(
1
4
(1 − γ)n,

1 − γβ

2(1 − γ)

)

× B
(

γn,
β

8

)

T ′
2 = 0

1
4 (1−γ)n × 0

1
4 (1−γ)n × B

(
1
4
(1 − γ)n,

1 − γβ

2(1 − γ)

)

× 0
1
4 (1−γ)n × B

(

γn,
β

8

)

T ′
3 = 0

1
4 (1−γ)n × B

(
1
4
(1 − γ)n,

1 − γβ

2(1 − γ)

)

× 0
1
4 (1−γ)n × 0

1
4 (1−γ)n × B

(

γn,
β

8

)

T ′
4 = B

(
1
4
(1 − γ)n,

1 − γβ

2(1 − γ)

)

× 0
1
4 (1−γ)n × 0

1
4 (1−γ)n × 0

1
4 (1−γ)n × B

(

γn,
β

8

)

.

This changes the domain sizes to

|T ′
i | =

(
(1 − γ)n/4
(1 − γβ)n/8

)(
γn
γβn
8

)

.

In the analysis from Sect. 4.1, we set γ such that the search space of 2n splits
into 2

n
2 for both layer-1 and layer-2 collisions. However, observe that our new

weight-shifted subset sum problem has no longer search space of size 2n, but only
of size

S =
(

(1 − γ)n/4
(1 − γβ)n/8

)4(
γn
γβn
2

)

= Θ̃
(
2((1−γ)H(1−γβ

2(1−γ))+γH(β
2))n

)
.

Let δ := (1 − γ)H
(

1−γβ
2(1−γ)

)
+ γH

(
β
2

)
be the exponent of S. Thus, computing

〈a, e〉 = t mod 2δn is already sufficient for uniquely determining e. Analogous to
Sect. 4.1 we set |T ′

i | = 2
δ
2n. Hence, each iteration of Nested Collision Subset

Sum costs time Θ̃(2
δ
2 n).

The probability to obtain the correct weight distribution for e is

p1 :=
S

(
n
n
2

) = Θ̃(2(δ−1)n).

Let us look at a fixed iteration of Nested Collision Subset Sum with some
choice of R. Assume that in this iteration e has the correct weight distribution.
Any representation (e1, . . . , e4) of e is useful in this iteration if 〈a, e1 + e2〉 =
R mod 2

δ
2 n. Since we shift less weight into the γn right-most coordinates, the

amount of distinct representations (e′
1, e

′
2) = (e1 + e2, e3 + e4) decreases to

(γβn
2

γβn
4

)

= Θ̃
(
2

γβn
2

)
.

Hence the probability of choosing an R ∈ Z2δn/2 for which useful representations
exist becomes

p2 := Θ̃

(
2

γβn
2

2
δn
2

)

= Θ̃
(
2

(γβ−δ)n
2

)
.

Low Weight Discrete Logarithms and Subset Sum in 20.65n 119

For a good choice of R there exists at least one representation (e′
1, e

′
2) =

(e1 + e2, e3 + e4) of the solution with 〈a, e′
1〉 = R mod 2

δn
2 , and the number of

ways we can represent (e′
1, e

′
2) = (e1 + e2, e3 + e4) is

(γβn
4

γβn
8

)2

= Θ̃
(
2

γβn
2

)
.

Since g has a total of Θ̃(2
δn
2) collisions, a random collision is a representation

of the solution with probability

p3 := Θ̃

(
2

γβn
2

2
δn
2

)

= Θ̃
(
2

(γβ−δ)n
2

)
.

With probability p = p1p2p3 we have the correct weight distribution, choose
a good R, and find a useful representation. Thus, we need on expectation p−1

iterations with running time Θ̃(2
δ
2 n) each. This results in a total run time of

T = Θ̃
(
2(1−δ+δ−γβ+ δ

2)n
)

= Θ̃
(
2(1−γβ+ δ

2)n
)

.

Optimization yields β = 0.964, from which we obtain γ = 0.8832 and δ = 0.9928.
This gives us p1 = 2−0.0072n, p2 = p3 = 2−0.0707n and a total expected run time of

T = 20.645n.

4.3 Experiments for Our 20.649n Subset Sum Algorithm

We implemented our Nested Collision Subset Sum algorithm (Algorithm
3)2 and summarize the results of our experiments in Table 1.

Table 1. Amount of function calls Tf in logarithmic scale to solve a random subset
sum instance in dimension n using our Nested Collision Subset Sum algorithm.
Sample size per n is 30.

n 16 24 32 40 48

log Tf 16.80 21.91 26.97 32.01 37.25

The computed regression line in Fig. 15 is log Tf (n) = 0.637n + 6.678. The
parameter 6.678 shows that the implementation of our algorithm incorporates
some quite large polynomial run time overhead. However, more importantly the
experimental slope 0.637 demonstrates that our asymptotic run time exponent
of 0.649 is already achieved in small dimension.
2 Implementation available at https://github.com/LwDLPandSubsetSum/lwDLP-

and-NestedSubsetSum.

https://github.com/LwDLPandSubsetSum/lwDLP-and-NestedSubsetSum
https://github.com/LwDLPandSubsetSum/lwDLP-and-NestedSubsetSum

120 A. Esser and A. May

Fig. 15. Experimentally averaged number of function calls (in logarithmic scale)
needed to solve a subset sum instance in dimension n of weight n/2. Sample size
per n is 30.

References

1. Abboud, A., Bringmann, K., Hermelin, D., Shabtay, D.: Seth-based lower bounds
for subset sum and bicriteria path. In: Proceedings of the Thirtieth Annual ACM-
SIAM Symposium on Discrete Algorithms, pp. 41–57. Society for Industrial and
Applied Mathematics (2019)

2. Alekhnovich, M.: More on average case vs approximation complexity. In: 44th
Annual Symposium on Foundations of Computer Science, Cambridge, MA, USA,
11–14 October 2003, pp. 298–307. IEEE Computer Society Press (2003)

3. Bansal, N., Garg, S., Nederlof, J., Vyas, N.: Faster space-efficient algorithms for
subset sum and k-sum. In: Hatami, H., McKenzie, P., King, V. (eds.) 49th Annual
ACM Symposium on Theory of Computing, Montreal, QC, Canada, 19–23 June
2017, pp. 198–209. ACM Press (2017)

4. Becker, A., Coron, J.-S., Joux, A.: Improved generic algorithms for hard knap-
sacks. In: Paterson, K.G. (ed.) EUROCRYPT 2011. LNCS, vol. 6632, pp. 364–385.
Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-20465-4 21

5. Becker, A., Joux, A., May, A., Meurer, A.: Decoding random binary linear codes
in 2n/20: how 1 + 1 = 0 improves information set decoding. In: Pointcheval, D.,
Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp. 520–536. Springer,
Heidelberg (2012). https://doi.org/10.1007/978-3-642-29011-4 31

6. Bernstein, D.J., Jeffery, S., Lange, T., Meurer, A.: Quantum algorithms for the
subset-sum problem. In: Gaborit, P. (ed.) PQCrypto 2013. LNCS, vol. 7932, pp.
16–33. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-38616-9 2

7. Bos, J.W., Kaihara, M., Kleinjung, T., Lenstra, A.K., Montgomery, P.L.: Solv-
ing 112-bit prime ECDLP on game consoles using sloppy reduction. Int. J. Appl.
Cryptogr. 2(ARTICLE), 212–228 (2012)

8. Chor, B., Rivest, R.L.: A knapsack type public key cryptosystem based on arith-
metic in finite fields (preliminary draft). In: Blakley, G.R., Chaum, D. (eds.)
CRYPTO 1984. LNCS, vol. 196, pp. 54–65. Springer, Heidelberg (1985). https://
doi.org/10.1007/3-540-39568-7 6

https://doi.org/10.1007/978-3-642-20465-4_21
https://doi.org/10.1007/978-3-642-29011-4_31
https://doi.org/10.1007/978-3-642-38616-9_2
https://doi.org/10.1007/3-540-39568-7_6
https://doi.org/10.1007/3-540-39568-7_6

Low Weight Discrete Logarithms and Subset Sum in 20.65n 121

9. Dinur, I., Dunkelman, O., Keller, N., Shamir, A.: Memory-efficient algorithms for
finding needles in haystacks. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016, Part
II. LNCS, vol. 9815, pp. 185–206. Springer, Heidelberg (2016). https://doi.org/10.
1007/978-3-662-53008-5 7

10. Esser, A., Kübler, R., May, A.: LPN decoded. In: Katz, J., Shacham, H. (eds.)
CRYPTO 2017, Part II. LNCS, vol. 10402, pp. 486–514. Springer, Cham (2017).
https://doi.org/10.1007/978-3-319-63715-0 17

11. Faust, S., Masny, D., Venturi, D.: Chosen-ciphertext security from subset sum. In:
Cheng, C.-M., Chung, K.-M., Persiano, G., Yang, B.-Y. (eds.) PKC 2016, Part I.
LNCS, vol. 9614, pp. 35–46. Springer, Heidelberg (2016). https://doi.org/10.1007/
978-3-662-49384-7 2

12. Galbraith, S.D.: Mathematics of Public Key Cryptography. Cambridge University
Press, Cambridge (2012)

13. Galbraith, S.D., Gaudry, P.: Recent progress on the elliptic curve discrete logarithm
problem. Des. Codes Crypt. 78(1), 51–72 (2015). https://doi.org/10.1007/s10623-
015-0146-7

14. Halderman, J.A., et al.: Lest we remember: cold-boot attacks on encryption keys.
Commun. ACM 52(5), 91–98 (2009)

15. Herold, G., May, A.: LP solutions of vectorial integer subset sums – cryptanalysis
of Galbraith’s binary matrix LWE. In: Fehr, S. (ed.) PKC 2017, Part I. LNCS, vol.
10174, pp. 3–15. Springer, Heidelberg (2017). https://doi.org/10.1007/978-3-662-
54365-8 1

16. Impagliazzo, R., Naor, M.: Efficient cryptographic schemes provably as secure as
subset sum. J. Cryptol. 9(4), 199–216 (1996)

17. Knuth, D.E: The Art of Computer Programming, Volume II: Seminumeri-
cal Algorithms, 3rd edn. Addison-Wesley (1998). http://www.worldcat.org/oclc/
312898417. ISBN: 0201896842

18. Lagarias, J.C., Odlyzko, A.M.: Solving low-density subset sum problems. J. ACM
(JACM) 32(1), 229–246 (1985)

19. Lyubashevsky, V., Palacio, A., Segev, G.: Public-key cryptographic primitives
provably as secure as subset sum. In: Micciancio, D. (ed.) TCC 2010. LNCS,
vol. 5978, pp. 382–400. Springer, Heidelberg (2010). https://doi.org/10.1007/978-
3-642-11799-2 23

20. May, A., Ozerov, I.: A generic algorithm for small weight discrete logarithms in
composite groups. In: Joux, A., Youssef, A. (eds.) SAC 2014. LNCS, vol. 8781, pp.
278–289. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-13051-4 17

21. Merkle, R., Hellman, M.: Hiding information and signatures in trapdoor knapsacks.
IEEE Trans. Inf. Theory 24(5), 525–530 (1978)

22. Nivasch, G.: Cycle detection using a stack. Inform. Process. Lett. 90(3), 135–140
(2004)

23. Odlyzko, A.M.: The rise and fall of knapsack cryptosystems. Cryptol. Comput.
Number Theory 42, 75–88 (1990)

24. Pollard, J.M.: A monte carlo method for factorization. BIT Numer. Math. 15(3),
331–334 (1975). https://doi.org/10.1007/BF01933667

25. Regev, O.: On lattices, learning with errors, random linear codes, and cryptogra-
phy. In: Gabow, H.N., Fagin, R. (eds.) 37th Annual ACM Symposium on Theory
of Computing, Baltimore, MA, USA, 22–24 May 2005, pp. 84–93. ACM Press,
Baltimore (2005)

26. Shanks, D.: Five number-theoretic algorithms. In: Proceedings of the Second Man-
itoba Conference on Numerical Mathematics (Winnipeg), 1973 (1973)

https://doi.org/10.1007/978-3-662-53008-5_7
https://doi.org/10.1007/978-3-662-53008-5_7
https://doi.org/10.1007/978-3-319-63715-0_17
https://doi.org/10.1007/978-3-662-49384-7_2
https://doi.org/10.1007/978-3-662-49384-7_2
https://doi.org/10.1007/s10623-015-0146-7
https://doi.org/10.1007/s10623-015-0146-7
https://doi.org/10.1007/978-3-662-54365-8_1
https://doi.org/10.1007/978-3-662-54365-8_1
http://www.worldcat.org/oclc/312898417
http://www.worldcat.org/oclc/312898417
https://doi.org/10.1007/978-3-642-11799-2_23
https://doi.org/10.1007/978-3-642-11799-2_23
https://doi.org/10.1007/978-3-319-13051-4_17
https://doi.org/10.1007/BF01933667

122 A. Esser and A. May

27. Stinson, D.: Some baby-step giant-step algorithms for the low hamming weight
discrete logarithm problem. Math. Comput. 71(237), 379–391 (2002)

28. Van Oorschot, P.C., Wiener, M.J.: Parallel collision search with application to hash
functions and discrete logarithms. In: Proceedings of the 2nd ACM Conference on
Computer and Communications Security, pp. 210–218. ACM (1994)

29. van Oorschot, P.C., Wiener, M.J.: Parallel collision search with cryptanalytic appli-
cations. J. Cryptol. 12(1), 1–28 (1999)

Verifiable Delay Functions

Continuous Verifiable Delay Functions

Naomi Ephraim1(B), Cody Freitag1(B), Ilan Komargodski2, and Rafael Pass1

1 Cornell Tech, New York, NY 10044, USA
{nephraim,cfreitag,rafael}@cs.cornell.edu
2 NTT Research, Palo Alto, CA 94303, USA
ilan.komargodski@ntt-research.ac.il

Abstract. We introduce the notion of a continuous verifiable delay func-
tion (cVDF): a function g which is (a) iteratively sequential—meaning
that evaluating the iteration g(t) of g (on a random input) takes time
roughly t times the time to evaluate g, even with many parallel proces-
sors, and (b) (iteratively) verifiable—the output of g(t) can be efficiently
verified (in time that is essentially independent of t). In other words, the
iterated function g(t) is a verifiable delay function (VDF) (Boneh et al.,
CRYPTO ’18), having the property that intermediate steps of the com-

putation (i.e., g(t′) for t′ < t) are publicly and continuously verifiable.
We demonstrate that cVDFs have intriguing applications: (a) they can

be used to construct public randomness beacons that only require an ini-
tial random seed (and no further unpredictable sources of randomness),
(b) enable outsourceable VDFs where any part of the VDF computation
can be verifiably outsourced, and (c) have deep complexity-theoretic
consequences: in particular, they imply the existence of depth-robust
moderately-hard Nash equilibrium problem instances, i.e. instances that
can be solved in polynomial time yet require a high sequential running
time.

Our main result is the construction of a cVDF based on the repeated
squaring assumption and the soundness of the Fiat-Shamir (FS) heuris-
tic for constant-round proofs. We highlight that when viewed as a (plain)
VDF, our construction requires a weaker FS assumption than previ-
ous ones (earlier constructions require the FS heuristic for either super-
logarithmic round proofs, or for arguments).

1 Introduction

A fundamental computational task is to simulate “real time” via computation.
This was first suggested by Rabin [42] in 1983, who introduced a notion called
randomness beacon to describe an ideal functionality that publishes unpre-
dictable and independent random values at fixed intervals. This concept has
received a substantial amount of attention since its introduction, and even more
so in recent years due to its many applications to more efficient and reliable
consensus protocols in the context of blockchain technologies.

c© International Association for Cryptologic Research 2020
A. Canteaut and Y. Ishai (Eds.): EUROCRYPT 2020, LNCS 12107, pp. 125–154, 2020.
https://doi.org/10.1007/978-3-030-45727-3_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-45727-3_5&domain=pdf
https://doi.org/10.1007/978-3-030-45727-3_5

126 N. Ephraim et al.

One natural approach, which is the focus of this work, is to implement
a randomness beacon by using an iteratively sequential function.1 An itera-
tively sequential function g inherently takes some time � to compute and has
the property that there are no shortcuts to compute sequential iterations of it.
That is, computing the t-wise composition of g for any t should take roughly
time t · �, even with parallelism. Using an iteratively sequential function g with
an initial seed x, we can construct a randomness beacon where the output at
interval t is computed as the hash of

g(t)(x) = g ◦ g ◦ . . . ◦ g
︸ ︷︷ ︸

t times

(x).

After t · � time has elapsed (at which point we know the first t values), the
beacon’s output should be unpredictable sufficiently far in the future.2 The orig-
inal candidate iteratively sequential function is based on (repeated) squaring in
a finite group of unknown order [13,43]. It is also conjectured that any secure
hash function (such as SHA-256) gives an iteratively sequential function; this
was suggested in [30] and indeed, as shown in [36], a random oracle is itera-
tively sequential.

Continuous VDFs. The downside of using an iteratively sequential function
as a randomness beacon is that to verify the current value of the beacon, one
needs to recompute its entire history which is time consuming by definition. In
particular, a party that joins late will never be able to catch up. Rather, we
would like the output at each step to be both publicly and efficiently verifiable.
It is also desirable for the randomness beacon to be generated without any
private state so that anyone can compute it, meaning that each step can be
computed based solely on the output of the preceding step. Indeed, if we have
an iteratively sequential function that is also (iteratively) verifiable—in the sense
that one can efficiently verify the output of g(t)(x) in time polylog(t)—then such
a function could be used to obtain a public randomness beacon. In this paper, we
introduce and construct such a function and refer to it as a continuous verifiable
delay function (cVDF). As the name suggests, it can be viewed as enabling
continuous evaluation and verification of a verifiable delay function (VDF) [10]
as we describe shortly.3

Continuous VDFs are related to many previously studied time-based primi-
tives. One classical construction is the time-lock puzzle of Rivest, Shamir, and
Wagner [43]. Their construction can be viewed as an iteratively sequential func-
tion that is privately verifiable with a trapdoor—unfortunately, this trapdoor
1 We use the terminology from [10]; these have also been referred to as sequential

functions [36].
2 If g is perfectly iteratively sequential, meaning that t iterations cannot be computed

in time faster than exactly t · �, then after t steps of g the next value would be
unpredictable. However, if t iterations cannot be computed in time faster than (1 −
ε) ·t ·�, we can only guarantee that the (ε ·t)-th value into the future is unpredictable.

3 Our notion of a cVDF (just like the earlier notion of a “plain” VDF) also allows for
the existence of some trusted public parameters.

Continuous Verifiable Delay Functions 127

not only enables quickly verifying the output of iterations of the function, but
in fact also enables quickly computing the iterations. New publicly verifiable
time-based primitives have since emerged, including proofs of sequential work
(PoSW) [18,21,36] and verifiable delay functions (VDF) [10,11,23,40,45]. While
these primitives are enough for many applications, they fall short of implement-
ing a public randomness beacon (on their own). In more detail, a PoSW enables
generating a publicly verifiable proof of some computation (rather than a spe-
cific function with a unique output) that is guaranteed to have taken a long
time. This issue was overcome through the introduction of VDFs [10], which are
functions that require some “long” time T to compute (where T is a parame-
ter given to the function), yet the answer to the computation can be efficiently
verified given a proof that can be jointly generated with the output (with only
small overhead).

In fact, one of the motivating applications for constructing VDFs was to
obtain a public randomness beacon. A natural approach toward this goal is
to simply iterate the VDF at fixed intervals. However, this construction does
not satisfy our desired efficiency for verifiability. In particular, even though the
VDF enables fast verification of each invocation, we still need to store all proofs
for the intermediate values to verify the final output of the iterated function,
and thus the proof size and verification time grow linearly with the number of
invocations t. While a recent construction of Wesolowski [45] enables aggregating
these intermediate proofs to obtain a single short proof, the verification time
still grows linearly with t (in contrast, a cVDF enables continuously iterating a
function such that the output of t iterations can be efficiently verified in time
essentially independent of t, for any t). While a VDF does not directly give
a public randomness beacon, it does, however, enable turning a “high-entropy
beacon” (e.g., continuous monitoring of stock market prices) into an unbiased
and unpredictable beacon as described in [10]. In contrast, using a cVDF enables
dispensing altogether with the high-entropy beacon—we simply need a single
initial seed x.

Continuous VDFs are useful not only for randomness beacons, but also for
standard applications of VDFs. Consider a scenario where some entity is offering
a $5M reward for evaluating a single VDF with time parameter 5 years (i.e., it is
supposed to take five years to evaluate it). Alice starts evaluating the VDF, but
after two years runs out of money and can no longer continue the computation.
Ideally, she would like to sell the work she has completed for $2M. Bob is willing
to buy the intermediate state, verify it, and continue the computation. The
problem, however, is that there is no way for Bob to verify Alice’s internal
state. In contrast, had Alice used a cVDF, she would simply be iterating an
iteratively sequential function, and we would directly have the guarantee that
at any intermediate state of the computation can be verified and Alice can be
compensated for her effort. In other words, cVDF enable verifiably outsourcing
VDF computation.

Finally, as we show, cVDFs are intriguing also from a complexity-theoretic
point of view. The existence of cVDFs imply that PPAD [39] (the class for which

128 N. Ephraim et al.

the task of finding a Nash equilibrium in a two-party game is complete) is hard—
in fact, the existence of cVDFs imply the existence of a relaxed-SVL [5,15]
instance with tight hardness (which yields improved hardness results also for
PPAD). Additionally, the existence of cVDFs imply that there is a constant
d such that for large enough c, there is a distribution over Nash equilibrium
problem instances of size n that can be solved in time nc but cannot be solved
in depth nc/d (and arbitrary polynomial size)—that is, the existence of “easy”
Nash equilibrium problem instances that requires high sequential running time.
In other words, cVDFs imply that it is possible to sample “moderately-hard”
Nash equilibrium problem instances that require a large time to solve, even with
many parallel processors.

1.1 Our Results

Our main result is the construction of a cVDF based on the repeated squar-
ing assumption in a finite group of unknown order and a variant of the Fiat-
Shamir (FS) heuristic for constant-round proof systems. Informally, the itera-
tively sequential property of our construction comes from the repeated squaring
assumption which says that squaring in this setting is an iteratively sequential
function. We use the Fiat-Shamir assumption to obtain the continuous verifi-
ability property of our construction. More precisely, we apply the Fiat-Shamir
heuristic on a constant-round proof system where the verifier may be inefficient.
We note that by the classic results of [26] this holds in the random oracle model.

Theorem 1.1 (Informal, see Corollary 6.3). Under the repeated squaring
assumption and the Fiat-Shamir assumption for constant-round proof systems
with inefficient verifiers, there exists a cVDF.

We remark that to obtain a plain VDF we only need the “standard” Fiat-
Shamir assumption for constant-round proof systems (with efficient verifiers).

A cVDF readily gives a public randomness beacon. As discussed above, the
notions of cVDFs and public randomness beacons are closely related. The main
difference between the two is that the output of a randomness beacon should not
only be unpredictable before a certain time, but should also be indistinguish-
able from random. Thus, we obtain our public randomness beacon by simply
“hashing” the output of the cVDF. We show that this indeed gives a public ran-
domness beacon by performing the hashing using a pseudo-random generators
(PRGs) for unpredictable sources (which exist either in the random oracle model
or from extremely lossy functions [46]).

Theorem 1.2 (Informal). Assuming the existence of cVDFs and PRGs for
unpredictable sources, there exists a public randomness beacon.

Comparison with (Plain) VDFs. The two most related VDF constructions
are that of Pietrzak [40] and that of Wesolowski [45], as these are based on
repeated squaring. In terms of assumptions, Pietrzak’s protocol [40] assumes the
Fiat-Shamir heuristic for a proof system with a super-constant number of rounds

Continuous Verifiable Delay Functions 129

and Wesolowski’s [45] assumes the Fiat-Shamir heuristic for a constant-round
argument system. It is known that, in general, the Fiat-Shamir heuristic is not
true for super-constant round protocols (even in the random oracle model4), and
not true for constant-round arguments [6,27]. As such, both of these construc-
tions rely on somewhat non-standard assumptions. In contrast, our VDF relies
only on the Fiat-Shamir heuristic for a constant-round proof system—no counter
examples are currently known for such proof systems.

We additionally note that before applying the Fiat-Shamir heuristic (i.e.,
a VDF in the random oracle model), our VDF satisfies computational unique-
ness while Pietrzak’s satisfies statistical uniqueness. He achieves this by working
over the group of signed quadratic residues. We note that we can get statistical
uniqueness in this setting using the same idea. Lastly, we emphasize that the
concrete proof length and verification time are polynomially higher in our case
than that of both Pietrzak and Wesolowski. For a detailed comparison of the
parameters, see Sect. 2.3.

PPAD Hardness. PPAD [39] is an important subclass in TFNP [38] (the class
of total search problems), most notably known for its complete problem of find-
ing a Nash equilibrium in bimatrix games [14,19]. Understanding whether PPAD
contains hard problems is a central open problem and the most common app-
roach for proving hardness was pioneered by Abbot, Kane, and Valiant [5]. They
introduced a problem, which [9] termed Sink-of-Verifiable-Line (SVL), and
showed that it reduces to End-Of-Line (EOL), a complete problem for PPAD.
In SVL, one has to present a function f that can be iterated and each interme-
diate value can be efficiently verified, but the output of T iterations (where T is
some super-polynomial value, referred to as the length of the “line”) is hard to
compute in polynomial time.

In a beautiful recent work, Choudhuri et al. [15] defined the relaxed-Sink-
of-Verifiable-Line (rSVL) problem, and showed that it reduces to EOL, as
well. rSVL is a generalization of SVL where one is required to find either the
output after many iterations (as in SVL) or an off-chain value that verifies.
Choudhuri et al. [15] gave a hard rSVL instance assuming the security of the
Fiat-Shamir transformation applied to the sum-check protocol [35] (which is a
polynomial-round protocol).

The notion of an (r)SVL instance is very related to our notion of a cVDF.
The main differences are that a cVDF requires that the gap between the honest
computation and the malicious one is tight and that security holds for adversaries
that have access to multiple processors running in parallel. As such, the existence
of a cVDF (which handles super-polynomially many iterations) directly implies
an rSVL instances with “optimal” hardness—namely, one where the number of
computational steps required to solve an instance of the problem with a “line”
of length T is (1 − ε) · T .

4 Although, [40] shows that it does hold in the random oracle model for his particular
protocol.

130 N. Ephraim et al.

Theorem 1.3 (Informal). The existence of a cVDF supporting superpolyno-
mially many iterations implies an optimally-hard rSVL instance (which in turn
implies that PPAD is hard (on average)).

Theorem 1.1 readily extends to give a cVDF supporting super-polynomially
many iterations by making a Fiat-Shamir assumption for ω(1)-round proof sys-
tems. As a consequence, we get an optimally-hard instance of rSVL based on
this Fiat-Shamir assumption for ω(1)-round proofs5 and the repeated squar-
ing assumption. By following the reductions from rSVL to EOL and to finding a
Nash equilibrium, we get (based on the same assumptions) hard PPAD and Nash
equilibrium instances. We remark that in comparison to the results of Choud-
huri et al., we only rely on the Fiat-Shamir assumption for ω(1)-round protocols,
whereas they rely on it for a polynomial-round, or at the very least an ω(log n)-
round proof systems (if additionally assuming that #SAT is sub-exponentially
hard). On the other hand, we additionally require a computational assumption–
namely, the repeated squaring assumption, whereas they do not.6

Our method yields PPAD instances satisfying another interesting property:
we can generate PPAD (and thus Nash equilibrium problem) instances that can
be solved in polynomial time, yet they also require a high sequential running
time—that is, they are “depth-robust” moderately-hard instances. As far as we
know, this gives the first evidence that PPAD (and thus Nash equilibrium prob-
lems) requires high sequential running time to solve (even for easy instances!).

Theorem 1.4 (Informal). The existence of a cVDF implies a distribution of
depth-robust moderately-hard PPAD instances. In particular, there exists a con-
stant d such that for all sufficiently large constants c, there is a distribution over
Nash equilibrium problem instances of size n that can be solved in time nc but
cannot be solved in depth nc/d and arbitrary polynomial time.7

Combining Theorems 1.1 and 1.4, we get a depth-robust moderately-hard
PPAD instance based on the Fiat-Shamir assumption for constant-round proof
systems with inefficient verifiers and the repeated squaring assumption.

1.2 Related Work

In addition to the time lock puzzle of [43] mentioned above, an alternative
construction is by Bitansky et al. [8] assuming a strong form of randomized
5 As mentioned above, in general, the Fiat-Shamir assumption is false for super-

constant-round proofs. But we state a restricted form of a Fiat-Shamir assump-
tion for super-constant-round proofs with exponentially small soundness error which
holds in the random oracle model, due to the classic reduction from [26].

6 We also note that Choudhuri et al. show how to instantiate the hash function in
their Fiat-Shamir transformation assuming a class of fully homomorphic encryption
schemes has almost-optimal security against quasi-polynomial time adversaries. We
leave such instantiations in our context for future work.

7 If we additionally assume that the repeated squaring assumption is sub-exponentially
hard, then the resulting instance cannot be solved in depth nc/d and sub-exponential
time.

Continuous Verifiable Delay Functions 131

encodings and the existence of inherently sequential functions. While the time-
lock puzzle of [43] is only privately verifiable, Boneh and Naor [12] showed
a method to prove that the time-lock puzzle has a solution. Jerschow and
Mauve [29] and Lenstra and Wesolowski [33] constructed iteratively sequen-
tial functions based on Dwork and Naor’s slow function [22] (which is based on
hardness of modular exponentiations).

PPAD Hardness. The complexity class PPAD (standing for Polynomial Parity
Arguments on Directed graphs), introduced by Papadimitriou [39], is one of the
central classes in TFNP. It contains the problems that can be shown to be total
by a parity argument. This class is famous most notably since the problem of
finding a Nash equilibrium in bimatrix games is complete for it [14,19]. The class
is formally defined by one of its complete problems End-Of-Line (EOL).

Bitansky, Paneth, and Rosen [9] introduced the Sink-of-Verifiable-Line
(SVL) problem and showed that it reduces to the EOL problem (based on Abbot
et al. [5] who adapted the reversible computation idea of Bennet [7]). They
additionally gave an SVL instance which is hard assuming sub-exponentially
secure indistinguishability obfuscation and one-way functions. These underlying
assumptions were somewhat relaxed over the years yet remain in the class of
obfuscation-type assumptions which are still considered very strong [25,31,32].

Hubáček and Yogev [28] observed that the Sink-of-Verifiable-Line actu-
ally reduces to a more structured problem, which they termed End-Of-
Metered-Line (EOML), which in turn resides in CLS (standing for Contin-
uous Local Search), a subclass of PPAD. As a corollary, all of the above hardness
results for PPAD actually hold for CLS.

In an exciting recent work, Choudhuri et al. [15] introduced a relaxation of
SVL, termed relaxed-SVL (rSVL) which still reduces to EOML and therefore
can be used to prove hardness of PPAD and CLS. They were able to give a hard
rSVL instance based on the sum-check protocol of [35] assuming soundness of
the Fiat-Shamir transformation and that #SAT is hard.

Verifiable Delay Functions. VDFs were recently introduced and constructed
by Boneh, Bonneau, Bünz, and Fisch [10]. Following that work, additional
constructions were given in [23,40,45]. The constructions of Pietrzak [40] and
Wesolowski [45] are based on the repeated squaring assumption plus the Fiat-
Shamir heuristic, while the construction of De Feo et al. [23] relies on elliptic
curves and bilinear pairings. We refer to Boneh et al. [11] for a survey.

VDFs have numerous applications to the design of reliable distributed sys-
tems; see [10, Section 2]. Indeed, they are nowadays widely used in the design of
reliable and resource efficient blockchains (e.g., in the consensus mechanism of
the Chia blockchain [1]) and there is a collaboration [4] between the Ethereum
Foundation [2], Protocol Labs [3], and various academic institutions to design
better and more efficient VDFs.

Proofs of Sequential Work. Proofs of sequential work, suggested by Mah-
moody, Moran, and Vadhan [36], are proof systems where on input a random
challenge and time parameter t one can generate a publicly verifiable proof

132 N. Ephraim et al.

making t sequential computations, yet it is computationally infeasible to find
a valid proof in significantly less than t sequential steps. Mahmoody et al. [36]
gave the first construction and Cohen and Pietrzak [18] gave a simple and prac-
tical construction (both in the random oracle model). A recent work of Döttling
et al. [21] constructs an incremental PoSW based on [18]. The techniques under-
lying Döttling et al’s construction are related in spirit to ours though the details
are very different. See Sect. 2 for a comparison. All of the above constructions of
PoSWs do not satisfy uniqueness, which is a major downside for many applica-
tions (see [10] for several examples). Indeed, VDFs were introduced exactly to
mitigate this issue. Since our construction satisfies (computational) uniqueness,
we actually get the first unique incremental PoSW.

Concurrent Works. In a concurrent and independent work, Choudhuri et al.
[16] show PPAD-hardness based on the Fiat-Shamir heuristic and the repeated
squaring assumption. Their underlying techniques are related to ours since they
use a similar tree-based proof merging technique on top of Pietrzak’s proto-
col [40]. However, since they use a ternary tree (while we use a high arity tree)
their construction cannot be used to get a continuous VDF (and its applications).
Also, for PPAD-hardness, their construction requires Fiat-Shamir for protocols
with ω(log λ) rounds (where λ is the security parameter) while we need Fiat-
Shamir for ω(1)-round protocols.

VDFs were also studied in two recent independent works by Döttling
et al. [20] and Mahmoody et al. [37]. Both works show negative results for black-
box constructions of VDFs in certain regimes of parameters in the random oracle
model. The work of Döttling et al. [20] additionally shows that certain VDFs
with a somewhat inefficient evaluator can be generically transformed into VDFs
where the evaluator has optimal sequential running time. Whether such a trans-
formation exists for cVDFs is left for future work.

2 Technical Overview

We start by informally defining a cVDF. At a high level, a cVDF specifies an
iteratively sequential function Eval where each iteration of the function gives a
step of computation. Let x0 be any starting point and xt = Eval(t)(x0) be the
tth step or state given by the cVDF. We let B be an upper bound on the total
number of steps in the computation, and assume that honest parties have some
bounded parallelism polylog(B) while adversarial parties may have parallelism
poly(B). For each step t ≤ B, we require the following properties to hold:

• Completeness: xt can be verified as the tth state in time polylog(t).
• Adaptive Soundness: Any value x′

t �= xt computed by an adversarial party
will not verify as the tth state (even when the starting point x0 is chosen
adaptively). That is, each state is (computationally) unique.

• Iteratively Sequential: Given an honestly sampled x0, adversarial parties
cannot compute xt in time (1 − ε) · t · �, where � is the time for an honest
party to compute a step of the computation.

Continuous Verifiable Delay Functions 133

We require adaptive soundness due to the distributed nature of a cVDF. In
particular, suppose a new party starts computing the cVDF after t steps have
elapsed. Then, xt is the effective starting point for that party, and they may
compute for t′ more steps to obtain a state xt+t′ . We want to ensure that sound-
ness holds for the computation from xt to xt+t′ , so that the next party that
starts at xt+t′ can trust the validity of xt+t′ . Note that the above definition does
not contain any proofs, but instead the states are verifiable by themselves. In
terms of plain VDFs, this verifiability condition is equivalent to the case where
the VDF is unique, meaning that the proofs are empty or included implicitly in
the output.

To construct a cVDF, we start with a plain VDF. For simplicity in this
overview, we assume that this underlying VDF is unique.

A First Attempt. The näıve approach for using a VDF to construct a cVDF
is to iterate the VDF as a chain of computations. For any “base difficulty” T ,
which will be the time to compute a single step, we can use a VDF to do the
computation from x0 to xT with an associated proof of correctness π0→T . Then,
we can start a new VDF instance starting at xT and compute until x2T with a
proof of correctness πT→2T . At this point, anyone can verify that x2T is correct
by verifying both π0→T and πT→2T . We can continue this process indefinitely.

This solution has the property that after t steps, another party can pick
up the current value xt·T , verify it by checking each of the proofs computed so
far, and then continue the VDF chain. In other words, there is no unverified
internal state after t steps of the computation. Still, this näıve solution has the
following major drawback (violating completeness). The final proof π(t−1)·T→t·T
only certifies that computing a step from x(t−1)·T results in xt·T and does not
guarantee anything about the computation from x0 to x(t−1)·T . As such, we need
to retain and check all proofs π0→T , . . . , π(t−1)·T→t·T computed so far to be able
to verify xt·T . Therefore, both the proof size and verification time scale linearly
with t. We note that this idea is not new (e.g., see [10]), but nevertheless it does
not solve our problem. Wesolowski [45] partially addresses this issue by showing
how to aggregate proofs so the proof size does not grow, but the verification
time in his protocol still grows.

One possible idea to overcome the blowup mentioned above is to use generic
proof merging techniques. These can combine two different proofs into one that
certifies both but whose size and verification time are proportional to that of
a single one. Such techniques were given by Valiant [44] and Chung et al. [17].
However, being generic, they rely on strong assumptions and do not give the
properties that we need (for example, efficiency and uniqueness). We next look
at a promising—yet failed—attempt to overcome this.

A Logarithmic Approach. Since we can implement the above iterated strat-
egy for any fixed interval T , we can simply run log B many independent iterated
VDF chains in parallel at the intervals T = 1, 2, 4, . . . , 2log B . Now say that we
want to prove that x11 is the correct value eleven steps from the starting point
x0. We just need to verify the proofs π0→8, π8→10, and π10→11. For any number
of steps t, we can now verify xt by verifying only log(t) many proofs, so we have

134 N. Ephraim et al.

resolved the major drawbacks! Furthermore, the prover can maintain a small
state at each step of the computation by “forgetting” the smaller proofs. For
example, after completing a proof π0→2T of size 2T , the prover no longer needs
to store the proofs π0→T and πT→2T .

Unfortunately, we have given up the distributed nature of a continuous VDF.
Specifically, completeness fails to hold. Each “step” of the computation that the
prover does to compute xt with its associated proofs is no longer an independent
instance of a single VDF computation. Rather, upon computing xt, the current
prover has some internal state for all of the computations which have not yet
completed at step t. Since a VDF only provides a way to prove that the output
of each VDF instance is correct, then a new party who wants to pick up the
computation has no way to verify the internal states of the unfinished VDF
computations. As a result, this solution only works in the case where there is
one trusted party maintaining the state of all the current VDF chains over a
long period of time. In contrast, a cVDF ensures that there is no internal state
at each step of the computation (or equivalently that the internal state is unique
and can be verified as part of the output).

At an extremely high level, our continuous VDF builds off of this failed
attempt when applied to the protocol of Pietrzak [40]. We make use of the alge-
braic structure of the underlying repeated squaring computation to ensure that
the internal state of the prover is verifiable at every step and can be efficiently
continued.

2.1 Adapting Pietrzak’s VDF

We next give a brief overview of Pietrzak’s sumcheck-style interactive protocol
for repeated squaring and the resulting VDF. Let N = p · q where p and q are
safe primes and consider the language

LN,B = {(x, y, t) | x, y ∈ Z
�
N and y = x2t mod N and t ≤ B}

that corresponds to valid repeated squaring instances with at most B exponen-
tiations (where we think of B as smaller than the time to factor N). In order
for the prover to prove that (x, y, t) ∈ LN,B (corresponding to t steps of the
computation), it first computes u = x2t/2 . It is clearly enough to then prove that
u = x2t/2 and that u2t/2 = y. However, recursively proving both statements sepa-
rately is too expensive. The main observation of Pietrzak is that using a random
challenge r from the verifier, one can merge both statements into a single one
ury = (xru)2

t/2
which is true if and only if the original two statements are true

(with high probability over r). We emphasize that proving that ury = (xru)2
t/2

has the same form as our original statement, but with difficulty t/2. This proto-
col readily gives a VDF by applying the Fiat-Shamir heuristic [24] on the log2 B
round interactive proof.

From the above, it is clear that the only internal state that the prover needs
to maintain in Pietrzak’s VDF consists of the midpoint u = x2t/2 and the output
y = x2t . Thus, if we want another party to be able to pick up the computation

Continuous Verifiable Delay Functions 135

at any time, we need to simultaneously prove the correctness of u in addition
to y. Note that proving the correctness of u just requires another independent
VDF instance of difficulty t/2. This results in a natural recursive tree-based
structure where each computation of t steps consists of proving three instances
of size t/2: u = x2t/2 , y = u2t/2 , and ury = (xru)2

t/2
. Consequently, once these

three instances are proven, it directly gives a proof for the “parent” instance
x2t = y. Note that this parent proof only need to consist of u, y, and a proof
that ury = (xru)2

t/2
(in particular, it does not require proofs of the first two

sub-computations, since they are certified by the proof of the third).
This suggests a high-level framework for making the construction continuous:

starting at the root where we want to compute x2t , recursively compute and
prove each of the three sub-instances. Specifically, each step of the cVDF will be
a step in the traversal of this tree. At any point when all three sub-instances of
a node have been proven, merge the proofs into a proof of the parent node and
“forget” the proofs of the sub-instances. This has the two desirable properties
we want for a cVDF—first, at any point a new party can verify the state before
continuing the computation, since the state only contains the nodes that have
been completed; second, due to the structure of the proofs, the proof size at any
node is bounded roughly by the height of the tree and hence avoids a blowup in
verification time.

Proof Merging. The above approach heavily relies on the proof merging tech-
nique discussed above, namely that proofs of sub-instances of a parent node can
be efficiently merged into a proof at that parent node. We obtain this due to the
structure of the proofs in Pietrzak’s protocol. We note that similar proof merg-
ing techniques for specific settings were recently given by Döttling et al. [21] (in
the context of incremental PoSW) and Choudhuri et al. [15] (in the context of
constructing a hard rSVL instance). While their constructions are conceptually
similar to ours, our construction for a cVDF introduces many challenges in order
to achieve both uniquely verifiable states and a tight gap between honest and
malicious evaluation. Döttling et al. [21] build on the Cohen and Pietrzak [18]
PoSW and use a tree-based construction to make it incremental. At a high level,
[18] is a PoSW based on a variant of Merkle trees, where the public verification
procedure consists of a challenge for opening a random path in the tree and
checking consistency. The main idea of Döttling et al. is to traverse the tree in
a certain way and remember a small intermediate state which enables them to
continue the computation incrementally. Moreover, they provide a proof at each
step by creating a random challenge which “merges” previously computed chal-
lenges. The resulting construction is only a PoSW (where neither the output nor
the proof are unique) and therefore does not suffice for our purpose. Choudhuri
et al. [15] show how to merge proofs in the context of the #SAT sum-check proto-
col. There, they modify the #SAT proof system to be incremental by performing
many additional recursive sub-computations, which is sufficient for their setting
but in ours would cause a large gap between honest and malicious evaluation.
We note that our method of combining proofs by proving a related statement is
reminiscent of the approach of [15].

136 N. Ephraim et al.

Before discussing the technical details of our tree-based construction, we first
go over modifications we make to Pietrzak’s interactive protocol. Specifically,
we discuss adaptive soundness, and we show how to achieve tight sequentiality
(meaning that for any T , computing the VDF with difficulty T cannot be done
significantly faster than T) in order to use it for our cVDF.

Achieving Adaptive Soundness. In order to show soundness, we requires the
verifier to be able to efficiently check that the starting point of any computation is
a valid generator of QRN . To achieve this, we use the fact that there is an efficient
way to test if x generates QRN given the square root of x (see Fact 3.6). As a
result, we work with the square roots of elements in our protocol, which slightly
changes the language. Namely, x, y are now square roots and (x, y, t) ∈ LN,B if
(x2)2

t

= y2 mod N .8 We note that, following [40], working in QR+
N , the group of

signed quadratic residues, would also give adaptive soundness (without including
the square roots). This holds as soundness of Pietrzak’s protocol can be based
on the low order assumption, and QR+

N has no low order elements [11].9

Bounding the Fraction of Intermediate Proofs. Recall that to compute
y = x2t using the VDF of Pietrzak for our proposed cVDF, the honest party
recursively proves three different computations of t/2 squarings, so that each
step will be verifiable. This results in computing for at least time tlog2 3, since it
corresponds to computing the leaves of a ternary tree of depth log2(t), and each
leaf requires a squaring. Note that this does not even consider the overhead of
computing each proof, only the squarings. However, an adversary (even without
parallelism) can shortcut this method and compute the underlying VDF to prove
that y = x2t by computing roughly t squarings (and then computing the proof,
which has relatively low overhead).

We deal with this issue by reducing the fraction of generating the interme-
diate proofs in Pietrzak’s protocol. Our solution is to (somewhat paradoxically)
modify Pietrzak’s protocol to keep additional state, which we will need to verify.
Specifically, we observe that t squarings can be split into k different segments.
To prove that y = x2t , the prover splits the computation into k segments each
with difficulty t/k:

x1 = x2t/k , x2 = x22t/k , . . . , xk−1 = x2(k−1)t/k
, xk = x2t = y.

Using a random challenge (r1, . . . , rk) from the verifier, we are able to combine
these k segments into a single statement (

∏k
i=1(xi−1)ri)t/k =

∏k
i=1(xi)ri (where

x0 = x) which is true if and only if all of the segments are true (with high prob-
ability over the challenge). We call the combined statement the sketch.10 Now
8 Giving the square root x is the cause of our computational uniqueness guarantee,

since a different square root for x2 would verify. As mentioned, working over QR+
N

would prevent this attack and give information theoretic uniqueness, as in [40].
9 We thank the anonymous EUROCRYPT reviewers for pointing out that Pietrzak’s

protocol satisfies adaptive soundness using QR+
N .

10 The name sketch is inspired by the notion of a sketch in algorithms, which refers to
a random linear projection.

Continuous Verifiable Delay Functions 137

in the recursive tree-based structure outlined above, a computation of t steps
consists of proving k + 1 instances of size t/k. By choosing k to be proportional
to the security parameter λ, the total fraction of extra proofs in the honest com-
putation of t steps is now sublinear in t. As an additional benefit when k = λ,
we note that the interactive protocol has logλ B ∈ O(1) rounds if B is a fixed
polynomial in λ (as opposed to O(log λ) rounds when k = 2 corresponding to
Pietrzak’s protocol). Applying the Fiat-Shamir heuristic to a constant-round
protocol is a more standard assumption.11

Bounding the Overhead of Each Step. Even though we have bounded the
total fraction of extra nodes that the honest party has to compute, this does
not suffice to achieve the tight gap between honest and adversarial computation
for our proposed cVDF. Specifically, the honest computation has an additive
(fixed) polynomial overhead λd—for example, to check validity of the inputs
and sometimes compute the sketch node—an adversary does not have to do so
at each step. To compensate for this, we make each base step of the cVDF larger:
namely, we truncate the tree. The effect of this is that a single step now takes
time λd′

for d′ > d.

2.2 Constructing a Continuous VDF

As outlined above, our main insight is designing a cVDF based on a tree structure
where each intermediate state of the computation can be verified and proofs of
the computation can be efficiently merged. More concretely, the steps of compu-
tation correspond to a specific traversal of a (k+1)-ary tree of height h = logk B.
Each node in the tree is associated to a statement (x, y, t, π) for the underlying
VDF, where y = x2t and π is the corresponding proof of correctness. We call x
the node’s input, y its output, π the proof, and t the difficulty. The difficulty is
determined by its height in the tree, namely, a node at distance l from the root
has difficulty t = kh−l (so nodes closer to the leaves take less time to compute).

In more detail, the tree is defined as follows. Starting at the root with input
x0 and difficulty t = kh, we divide it into k segments x1, . . . , xk, analogous to our
VDF construction. These form the inputs and outputs of its first k children: its
ith child will have input xi−1 and output xi, and requires a proof that (xi−1)t/k =
xi. Its (k + 1)-st child corresponds to the sketch, namely a node where the
k statements of the siblings are merged into a single statement. Recursively
splitting statements this way gives the statement at each node in the tree, until
reaching the leaves where squaring can be done directly. Note that with this
structure, only the leaves require computation—the statement of nodes at greater
heights can be deduced from the statements of their children (which gives us a
way to efficiently merge proofs “up” the tree as we described above).

As a result, we would like each step of computation in the cVDF to correspond
to computing the statement of a single leaf. Accomplishing this requires being

11 We are talking about an instantiation of the VDF in the plain model using a concrete
hash function. The resulting VDF is provably secure in the random oracle model for
any k.

138 N. Ephraim et al.

able to compute the input x of the leaf from the previous state (from which y
can be computed via squaring). By the structure of our tree, we observe that
this only requires knowing a (small) subset of nodes that were already computed,
which we call the frontier. The frontier of a leaf s, denoted frontier(s), contains all
the left siblings of its ancestors, including the left siblings of s itself.12 Therefore,
a state in the computation contains a leaf label s and the statements associated
with the nodes in frontier(s), which contains at most k · logk(B) nodes. A single
step of our continuous VDF, given a state v = (s, frontier(s)), first verifies v and
then computes the next state v′ = (s′, frontier(s′)) where s′ is the next leaf after
s. See Fig. 1 for an illustration of computing the next state.

This is the basic template for our continuous VDF. Next, we discuss some of
the challenges that come up related to efficiency and security.

Ensuring the Iteratively Sequential Property. Recall that we want to
obtain a tight gap between honest and malicious evaluation of the continuous
VDF for any number of steps. A priori, it seems that computing a sketch for
each node in the tree adds a significant amount of complexity to the honest
evaluation. To illustrate this, suppose a malicious evaluator wants to compute
the statement (x, y, t, π) at the root. This can be done by skipping the sketch
nodes for intermediate states and only computing a proof for the final output
y = x2t , which in total involves t squarings (corresponding to computing the
leaves of a k-ary tree of height logk t) along with the sketch node for the root.
However, for an honest evaluator, this requires computing (k+1)logk t leaf nodes
(corresponding to every leaf in a (k +1)-ary tree of height logk t). Therefore, the
ratio is α = ((k + 1)/k)logk t. In order to get the tight gap, we choose k to be
proportional to the security parameter so that α = (1 + o(1)) · t. This change
is crucial (as we eluded towards above), as otherwise if k is a constant, the
relative overhead would be significant. Indeed, in Pietrzak’s protocol, k = 2 and
computing the sketch node constitutes a constant fraction of the computation.

2.3 The Efficiency of Our Construction

In this section, we briefly compare the efficiency of our constructions to previous
ones which are based on repeated squaring. Specifically, we discuss Wesolowki’s
VDF [45] (denoted WVDF), Pietrzak’s VDF [40] (denoted PVDF), in com-
parison to our cVDF using a tree of arity k (denoted k-cVDF) and the VDF
underlying it (denoted k-VDF), which is simply Pietrzak’s VDF with arity k.

For proof length corresponding to t squares, the WVDF proof is just a single
group element, and the PVDF proof consists of log2(t) group elements. For the
k-VDF, generalizing Pietrzak’s VDF to use a tree with arity k results in a proof
with (k − 1) · logk(t) group elements. Finally, the k-cVDF output consists of a
frontier with at most (k − 1) proofs for a k-VDF in each of logk(t) levels of the
tree, resulting in (k−1)2(logk(t))2 group elements. In all cases, verifying a proof

12 The term frontier is standard in the algorithms literature. Many other names have
been used to describe this notion, such as dangling nodes in [17] and unfinished
nodes in [21].

Continuous Verifiable Delay Functions 139

with n group elements requires doing O(n · λ) squares. For prover efficiency, the
honest prover can compute the proof in the time to do t(1+ o(t)) squares (when
t ∈ poly(λ) and k ∈ Ω(log λ) for the k-cVDF).

In the full cVDF construction, we set k to be equal to λ for simplicity, but as
the above shows, different values of k give rise to different efficiency trade-offs.

3 Preliminaries

In this section, we give relevant definitions and notation. Additional preliminar-
ies, including definitions of interactive protocols and the Fiat-Shamir heuristic,
are deferred to the full version.

3.1 Verifiable, Sequential, and Iteratively Sequential
Functions

In this section, we define different properties of functions which will be useful in
subsequent sections when we define unique VDFs (Definition 5.1) and continuous
VDFs (Definition 6.1). All of our definitions will be in the public parameter
model. We start by defining a verifiable function.

Definition 3.1 (Verifiable Functions). Let B : N → N. A B-sound verifiable
function is a tuple of algorithms (Gen,Eval,Verify) where Gen is PPT, Eval is
deterministic, and Verify is deterministic polynomial-time, satisfying the follow-
ing property:

• Perfect Completeness. For every λ ∈ N, pp ∈ Supp
(

Gen(1λ)
)

, and x ∈
{0, 1}∗, it holds that

Verify(1λ, pp, x,Eval(1λ, pp, x)) = 1.

• B-Soundness. For every non-uniform algorithm A = {Aλ}λ∈N
such that

size(Aλ) ∈ poly(B(λ)) for all λ ∈ N, there exists a negligible function negl
such that for every λ ∈ N it holds that

Pr
[

pp ← Gen(1λ)
(x, y) ← Aλ(pp) : Verify(1λ, pp, x, y) = 1 ∧ Eval(1λ, pp, x) �= y

]

≤ negl(λ).

Next, we define a sequential function. At a high level, this is a function f
implemented by an algorithm Eval that takes input (x, t), such that comput-
ing f(x, t) requires time roughly t, even with parallelism. Our formal definition
is inspired by [10]. Intuitively, it requires that any algorithm A0,λ which first
pre-processes the public parameters cannot output a circuit A1 satisfying the
following. Upon receipt of a freshly sampled input x, A1 outputs a value y and
a difficulty t, where y is the output of Eval on x for difficulty t, where t is suf-
ficiently larger than its depth. This captures the notion that A1 manages to
compute y in less than t time, even with large width.

140 N. Ephraim et al.

(0) (1) (2)

(3) (4) (5)

x, x2D , π

x2D , x22D , π

x, x2D , π

x22D , x23D , π

x2D , x22D , π

x, x2
D
, π

x, x23D , π x, x23D , π

x23D , x24D , π

Fig. 1. The first six states of our continuous VDF with k = 3 and base difficulty
D = kd′

for a constant d′. In each tree, the segment nodes are given by solid lines and
the sketch nodes by dashed lines. The yellow node is the current leaf, and the pink nodes
are its frontier. The values in blue are contain (x, y, π) for the corresponding node. The
proofs π at leaf nodes with input x and output y correspond to the underlying VDF

proof that x2D = y, and the proofs at each higher node consist of its segments (outputs
of k first children) and of the proof of the sketch node (the (k+1)st child). (Color figure
online)

Definition 3.2. Let D,B, � : N → N and let ε ∈ (0, 1). A (D,B, �, ε)-sequential
function is a tuple (Gen,Sample,Eval) where Gen and Sample are PPT, Eval is
deterministic, and the following properties hold:

• Honest Evaluation. There exists a uniform circuit family {Cλ,t}λ,t∈N
such

that Cλ,t computes Eval(1λ, ·, (·, t)), and for all sufficiently large λ ∈ N and
D(λ) ≤ t ≤ B(λ), it holds that depth(Cλ,t) = t · �(λ) and width(Cλ,t) ∈
poly(λ).

• Sequentiality. For all non-uniform algorithms A0 = {A0,λ}λ∈N
such that

size(A0,λ) ∈ poly(B(λ)) for all λ ∈ N, there exists a negligible function negl
such that for every λ ∈ N,

Pr

⎡

⎢

⎢

⎣

pp ← Gen(1λ)
A1 ← A0,λ(pp)
x ← Sample(1λ, pp)
(t, y) ← A1(x)

:
Eval(1λ, pp, (x, t)) = y
∧ depth(A1) ≤ (1 − ε) · t · �(λ)
∧ t ≥ D(λ)

⎤

⎥

⎥

⎦
≤ negl(λ).

Next, we define an iteratively sequential function. This is a function f imple-
mented by an algorithm Eval, such that the t-wise composition of f cannot be
computed faster than computing f sequentially t times, even using parallelism.
We also require that the length of the output of f is bounded, so that it does
not grow with the number of compositions.

Continuous Verifiable Delay Functions 141

Definition 3.3 (Iteratively Sequential Function). Let D,B, � : N → N be
functions and let ε ∈ (0, 1). A tuple of algorithms (Gen,Sample,Eval) is a
(D,B, �, ε)-iteratively sequential function if Gen and Sample are PPT, Eval is
deterministic, and the following properties hold.

• Length Bounded. There exists a polynomial m such that for every λ ∈ N

and x ∈ {0, 1}∗, it holds that
∣

∣Eval(1λ, pp, x)
∣

∣ ≤ m(λ). We define Eval(·) to be
the function that takes as input 1λ, pp, and (x, T) and represents the T -wise
composition given by

Eval(T)(1λ, pp, x) def= Eval(1λ, pp, ·) ◦ . . . ◦ Eval(1λ, pp, ·)
︸ ︷︷ ︸

T times

(x)

and note that this function is also length bounded.
• Iteratively sequential. The tuple (Gen,Sample,Eval(·)) is a (D,B, �, ε)-

sequential function.

Remark 3.4 (Decoupling size and depth). We note that one can also consider a
generalization of a (D,B, �, ε)-sequential function to a (D,U,B, �, ε)-sequential
function (and thus iteratively sequential functions), where the size of A0,λ

remains bounded by poly(B(λ)), but the parameter t output by A1 must be
at most U(λ).

3.2 Repeated Squaring Assumption

The repeated squaring assumption (henceforth, the RSW assumption13) roughly
says that there is no parallel algorithm that can perform t squarings modulo an
RSA integer N significantly faster than just performing t squarings sequentially.
This implicitly assumes that N cannot be factored efficiently. This assumption
has been very useful for various applications (e.g., time-lock puzzles [43], reliable
benchmarking [13], and timed commitments [12,34] and to date there is no
known strategy that beats the naive sequential one.

Define RSW = (RSW.Gen,RSW.Sample,RSW.Eval) as follows.

• N ← RSW.Gen(1λ):
Sample random primes p′, q′ from [2λ, 2λ+1) such that p = 2p′ + 1 and q =
2q′ + 1 are prime, and output N = p · q.

• x ← RSW.Sample(1λ, N):
Sample and output a random element g ← Z

�
N .

• y ← RSW.Eval(1λ, N, g):
Output y = g2 mod N .

Assumption 3.5 (RSW Assumption). Let D,B : N → N. The (D,B)-RSW
assumption is that there exists a polynomial � ∈ N → N and constant ε ∈ (0, 1)
such that RSW is a (D,B, �, ε)-iteratively sequential function.
13 The assumption is usually called the RSW assumption after Rivest, Shamir, and

Wagner who used it to construct time-lock puzzles [43].

142 N. Ephraim et al.

Note that the RSW assumption implies that factoring is hard. Namely, no
adversary can factor an integer N = p · q where p and q are large “safe” primes
(a prime p is safe if p − 1 has two factors, 2 and p′, for some prime number
p′ ∈ [2λ, 2λ+1)).

3.3 Number Theory Facts

For N ∈ N and any x ∈ ZN , we use the notation |x|N to denote min {x,N − x}.
Next, we state three standard useful facts. The proofs are deferred to the full
version.

Fact 3.6. Let N ∈ Supp
(

RSW.Gen(1λ)
)

. Then, for μ ∈ Z
�
N , it holds that

〈μ〉 = QRN if and only if there exists an x ∈ Z
�
N such that μ = x2 and

gcd (x ± 1, N) = 1.

Fact 3.7 ([41]). There exists a polynomial time algorithm A such that for any
λ ∈ N, N in the support of RSW.Gen(1λ), and μ, x, x′ ∈ ZN , if μ = x2 = x′2

and x′ �∈ {x,−x}, then A(1λ, N, (μ, x, x′)) outputs (p, q) such that N = p · q.

Fact 3.8. Let N ∈ Supp
(

RSW.Gen(1λ)
)

and let 〈x〉 = QRN . Then, for any
i ∈ N, it holds that 〈x2i〉 = QRN .

4 Interactive Proof for Repeated Squaring

In this section, we give an interactive proof for a language representing t repeated
squarings. As discussed in Sect. 2, this protocol is based on that of [40]. We
start with an overview. The common input includes an integer t and two values
x̂0, ŷ ∈ Z

�
N , where, for the purpose of this overview, the goal is for the prover to

convince the verifier that ŷ = (x̂0)2
t

mod N . The protocol is defined recursively.
Starting with a statement (x̂0, ŷ, t), where we assume for simplicity that t

is a power of k, the prover splits x0 into k “segments”, where each segment
is t/k “steps” of the computation of (x̂0)2

t

mod N . The ith segment is recur-
sively defined as the value (x̂i−1)2

t/k

. In other words, x̂i = (x̂0)2
i·t/k

for all
i ∈ {0, 1, . . . , k}. If one can verify the values of x̂1, . . . , x̂k, then one can also
readily verify that ŷ = (x̂0)2

t

mod N . To verify the values of x̂1, . . . , x̂k effi-
ciently we rely on interaction and require the prover to convince the verifier that
the values x̂1, . . . , x̂k are consistent (in some sense) under a random linear rela-
tion. To this end, the prover and verifier engage in a second protocol to prove a
modified statement (x̂′

0, ŷ
′, t/k) which combines all the segments and should only

be true if all segments are true (with high probability). The modified statement
is proved in the same way, where the exponent t/k is divided by k with each new
statement. This process is continued logk t times until the statement to verify
can be done by direct computation.

For soundness of our protocol, we need to bound the probability of a cheating
prover jumping from a false statement in the beginning of the protocol to a true

Continuous Verifiable Delay Functions 143

statement in one of the subsequent protocols. One technical point is that to
accomplish this, we work in the subgroup QRN of Z

�
N and thus we want the

starting point x̂0 to generate QRN . To accommodate this, we let the prover
provide a square root of every group element as a witness to the fact that it is
in QRN (actually, by Fact 3.8, this will imply that all group elements generate
QRN). Therefore, rather than working with x̂0 and ŷ directly, we work with
their square roots x0 and y, respectively. Hence, the common input consists of
an integer t and (x0, y), where the goal is actually to prove that y2 = (x2

0)
2t =

x2t+1

0 mod N .
Note that, in general, the square root x0 is not unique in Z

�
N for a given

square x2
0. Indeed, there are 4 square roots ±x0,±x′

0. In our protocol, the com-
putationally bounded prover can compute only two of them, either ±x0 or ±x′

0,
as otherwise, by Fact 3.7 we could use the prover to factor N . Among the two
square roots that the prover can compute, we canonically decide that the prover
must use the smaller one. This gives rise to our definition of a valid element x:
x2 mod N generates QRN and x = |x|N , formally defined in Definition 4.1.

4.1 Protocol

Before presenting the protocol, we first define the language. Toward that goal,
we start with the formal definition of a valid element.

Definition 4.1 (Valid element). For any N ∈ N and x ∈ {0, 1}∗, we say
that x is a valid element if x ∈ Z

�
N , 〈x2〉 = QRN , and x = |x|N . We say that

a sequence of elements (x1, . . . , x�) is a valid sequence if each element xi is a
valid element.

By Fact 3.6, whenever N is in the support of RSW.Gen(1λ), validity can be
tested in polynomial time by verifying that x = |x|N , and that gcd(x±1, N) = 1
(and outputting 1 if and only if all checks pass). This algorithm naturally extends
to one that receives as input a sequence of pairs and verifies each separately.

The language for our interactive proof, LN,B , is parametrized by integers
N ∈ Supp

(

RSW.Gen(1λ)
)

and B = B(λ), and it is defined as:

LN,B =
{

(x0, y, t) : y2 = (x0)2
t+1

mod N if x0 is valid and t ≤ B,
y = ⊥ otherwise

}

.

Intuitively, LN,B should be thought of as the language of elements x0, y where
x0 is valid and x2t+1

0 = y2 mod N . To be well-defined on any possible statement
with x0, y ∈ Z

�
N and t ∈ N, we include statements with invalid elements x0 in

the language. Since the verifier can test validity efficiently, this language still
enforces that valid elements represent repeated squaring.

Our protocol Πλ,k,d, given in Fig. 2, is parametrized by the security parameter
λ, as well as integers k = k(λ) and d = d(λ), where k is the number of segments
into which we split each statement and d is a “cut-off” parameter that defines
the base of the recursive protocol.

144 N. Ephraim et al.

Fig. 2. Interactive proof Πλ,k,d for LN,B

We show the following theorem, stating that Πλ,k,d is an interactive proof
for the language LN,B , by showing completeness and soundness. Furthermore,
we prove an additional property which roughly shows that any cheating prover
cannot deviate in a specific way from the honest prover strategy even for state-
ments in the language. Due to lack of space, the proof is deferred to the full
version.

Theorem 4.2. For any λ ∈ N, k = k(λ), d = d(λ), B = B(λ), and N ∈
Supp

(

RSW.Gen(1λ)
)

, the protocol Πλ,k,d (given in Fig. 2) is a (logk(B) − d) ·
3/2λ-sound interactive proof for LN,B.

5 Unique Verifiable Delay Function

In this section, we use the Fiat-Shamir heuristic to transform the interactive
proof for the language LN,B corresponding to repeated squaring (given in Sect. 4)
into a unique VDF.

Definition 5.1 (Unique Verifiable Delay Function). A (D,B, �, ε)-unique
verifiable delay function (uVDF) is a tuple (Gen,Sample,Eval,Verify) where Eval
outputs a value y and a proof π, such that (Gen,Sample,Eval) is a (D,B, �, ε)-
sequential function and (Gen,Eval,Verify) is a B-sound verifiable function.

Continuous Verifiable Delay Functions 145

5.1 Construction

For parameters k, d we define (PFS, VFS) to be the result of applying the Fiat-
Shamir transformation to the protocol Πλ,k,d for LN,B relative to some hash
family H. At a high level, this construction computes repeated squares and then
uses PFS and VFS to prove and verify that this is done correctly.

We start by defining helper algorithms in Fig. 3 based on the interactive
protocol of Sect. 4. For notational convenience, we explicitly write algorithms
FS-Prove and FS-Verify, which take pp = (N,B, k, d, hash) as input, as well as
((x0, t), y), where (N,B, k, d) correspond to the parameters of the non-interactive
protocol and language, hash is the hash function sampled from the hash family
H when applying the FS transform to Πλ,k,d, and ((x0, t), y) correspond to the
statements of the language. We additionally define an efficient algorithm Sketch
that outputs the statement for the recursive step in the interactive proof Πλ,k,d.

We emphasize that the algorithms in Fig. 3 are a restatement of the interac-
tive protocol from Sect. 4 after applying the FS transform, given here only for
ease of reading.

Fig. 3. Helper algorithms for VDF for pp = (N, B, k, d, hash).

Next, we give a construction uVDF of a unique VDF consisting of algo-
rithms (uVDF.Gen, uVDF.Sample, uVDF.Eval, uVDF.Verify) relative to a function
B : N → N.

146 N. Ephraim et al.

• pp ← uVDF.Gen(1λ):
Sample N ← RSW.Gen(1λ), hash ← H, let k = λ, B = B(λ), and let d be
a constant which will be specified in the proof of sequentiality (in the full
version), and output pp = (N,B, k, d, hash).

• x0 ← uVDF.Sample(1λ, pp):
Sample and output a random element x0 ← Z

�
N such that gcd(x0 ±1, N) = 1

and x0 = |x0|N .14

• (y, π) ← uVDF.Eval(1λ, pp, (x0, t)):
If x0 is an invalid element, output (⊥,⊥). If t ≤ kd, compute y = |x2t

0 |N and
output (y,⊥).
Otherwise, compute xi = |(x0)i·t/k|N for i ∈ [k] and let msg = (x1, . . . , xk−1)
and y = xk. Let (x′

0, y
′) = Sketch(pp, (x0, t), y,msg). Finally, output (y, π)

where π = (msg, π′) and π′ = FS-Prove(pp, (x′
0, t/k), y′).

• b ← uVDF.Verify(1λ, pp, (x0, t), (y, π)):
If x0 is an invalid element or t > B, output 1 if y = π = ⊥ and 0
if this is not the case. If y is invalid, then output 0. Otherwise, output
FS-Verify(pp, (x0, t), y, π).

We prove the following theorem. Due to lack of space, the proof is deferred to
the full version.

Theorem 5.2. Let D,B,α : N → N be functions satisfying D(λ) ∈ ω(λ2),
B(λ) ∈ 2O(λ), and α(λ) ≤
logλ(B(λ))�. Suppose that the α-round strong
FS assumption holds and the (D,B)-RSW assumption holds for polynomial
� : N → N and constant ε ∈ (0, 1). Then, for any constants δ > 0 and ε′ > ε+δ

1+δ
it holds that uVDF is a (D,B, (1 + δ) · �, ε′)-unique verifiable delay function.

6 Continuous Verifiable Delay Function

In this section, we construct a cVDF. Intuitively, this is an iteratively sequential
function where every intermediate state is verifiable. Throughout this section,
we denote by Eval(·) the composed function which takes as input 1λ, pp, and
(x, T), and runs the T -wise composition of Eval(1λ, pp, ·) on input x.

We first give the formal definition of a cVDF. In the following definition,
the completeness requirement says that if v0 is an honestly generated starting
state, then the Verify will accept the state given by Eval(T)(1λ, pp, v0) for any T .
Note that when coupled with soundness, this implies that completeness holds
with high probability for any intermediate state generated by a computationally
bounded adversary.

Definition 6.1 (Continuous Verifiable Delay Function). Let B, � : N → N

and ε ∈ (0, 1). A (B, �, ε)-continuous verifiable delay function (cVDF) is a
14 We note that x0 uniformly from Z

�
N is sufficient due to the following. By Fact 3.6,

it holds that uVDF.Sample will succeed whenever 〈x2
0〉 = QRN . Furthermore, x2

0 is a
random element of QRN , and therefore is a generator with probability 1−(p′+q′)/(p′·
q′) ≥ 1 − 4/2λ. Also note that x0 is distributed according to RSW.Sample(1λ, N).

Continuous Verifiable Delay Functions 147

tuple (Gen,Sample,Eval,Verify) such that (Gen,Sample,Eval) is a (1, B, �, ε)-
iteratively sequential function, (Gen,Eval(·),Verify) is a B-sound function, and
it satisfies the following completeness property:

• Completeness from Honest Start. For every λ ∈ N, pp in the support
of Gen(1λ), v0 in the support of Sample(1λ, pp), and T ∈ N, it holds that
Verify(1λ, pp, (v0, T),Eval(T)(1λ, pp, v0)) = 1.

The main result of this section is stated next.

Theorem 6.2 (Continuous VDF). Let D,B,α : N → N be functions satis-
fying B(λ) ≤ 2λ1/3

, α(λ) =
logλ(B(λ))�, and D(λ) ≥ λd′
for all λ ∈ N and

for a specific constant d′. Suppose that the α-round strong FS assumption holds
and the (D,B)-RSW assumption holds for a polynomial � : N → N and constant
ε ∈ (0, 1). Then, for any constant δ > 0 and ε′ > ε+δ

1+δ , it holds that cVDF is a
(B, (1 + δ) · D(λ) · �, ε′)-cVDF.

In the case where we want to have a fixed polynomial bound on the number
of iterations, we obtain the following corollary.

Corollary 6.3 (Restatement of Theorem 1.1). For any polynomials B,D
where D(λ) ≥ λd′

for a specific constant d′, suppose the O(1)-round strong
FS assumption holds and the (D,B)-RSW assumption holds for a polynomial
� : N → N and constant ε ∈ (0, 1). Then, for any constant δ > 0 and ε′ > ε+δ

1+δ , it
holds that cVDF is a (B, (1 + δ) · D(λ) · �, ε′)-cVDF.

Remark 6.4 (Decoupling size and depth). The definition of a (B, �, ε)-cVDF nat-
urally extends to a (U,B, �, ε)-cVDF, where we require (Gen,Sample,Eval) to be
a (1, U,B, �, ε)-iteratively sequential function; see Remark 3.4. Our construction
will satisfy this for all functions U such that U(λ) ≤ B(λ) for all λ ∈ N More-
over, in this case, the above corollary can be based on the strong Fiat-Shamir
assumption for
logλ(U(λ))� rounds (rather than for
logλ(B(λ))� rounds).

We prove Theorem 6.2 by using the unique VDF uVDF from Sect. 5 as a
building block. We start with some definitions which will be helpful in the con-
struction.

Definition 6.5 (Puzzle tree). A (ppuVDF, d
′, g)-puzzle tree for ppuVDF =

(N,B, k, d, hash) is a (k + 1)-ary tree that has the following syntax.

– Each node is labeled by a string s ∈ {0, 1, . . . , k}∗, where the root is labeled
with the empty string null, and for a node labeled s, its ith child is labeled s||i
for i ∈ {0, 1, . . . , k}. We let [s]i denote the ith character of s for i ∈ N.15

– We define the height of the tree as h =
logk(B)� − d′ which determines
difficulty at each node. Specifically, each node s is associated with the difficulty
t = kh+d′−|s|.16

15 For ease of notation, we store s as a (k + 1)-ary string and when doing integer
operations, they are implicitly done in base (k + 1).

16 Note that since the tree has height h, this implies that each leaf has difficulty t = kd′
.

148 N. Ephraim et al.

– Each node s has a value val(s) = (x, y, π), where we call x the input, y the
output, and π the proof.

The inputs, outputs, and proofs of each node are defined as follows:

– The root has input g. In general, for a node s with input x and difficulty
t, its first k children are called segment nodes and its last child is called a
sketch node. Each segment node s||i has input xi = |x2i·t/k |N and the sketch
node s||k has input x′ where (x′, ∗) = Sketch(ppuVDF, (x, t), xk, (x1, . . . , xk−1))
(given in Fig. 3).

– For a node s with input x and difficulty t, its output and proof are given by
(y, π) = uVDF.Eval(ppuVDF, (x, t)).

We note that whenever we refer to a node s, we mean the node labeled by s,
and when we refer to a pair (s′, value), this corresponds to a node and associated
value (where value may not necessarily be equal to the true value val(s)).

Definition 6.6 (Left/Middle/Right Nodes). For a node with label s in a
(ppuVDF, d

′, g)-puzzle tree with s = s′||i for i ∈ {0, 1, . . . , k}, we call s a leftmost
child if i = 0, a rightmost child if i = k, and a middle child otherwise. Addi-
tionally, we define the left (resp. right) siblings of s to be the set of nodes s′||j
for 0 ≤ j < i (resp. i < j ≤ k).

Next, we define a frontier. At a high level, for a leaf s, the frontier of s will
correspond to the state of the continuous VDF upon reaching s. Specifically, it
will contain all nodes whose values have been computed at that point, but whose
parents’ values have not yet been computed.

Definition 6.7 (Frontier). For a node s in a (ppuVDF, d
′, g)-puzzle tree, the

frontier of s, denoted frontier(s), is the set of pairs (s′, val(s′)) for nodes s′ that
are left siblings of any of the ancestors of s. We note that s is included as one
of its ancestors.17

Next, we define what it means for a set to be consistent. At a high level, for a
set of nodes and values, consistency ensures that the relationship of their given
inputs and outputs across different nodes is in accordance with the definition of
a puzzle tree. If a set is consistent, it does not imply that the input-output pairs
are correct, but it implies that they “fit” together logically. Note that consistency
does not check proofs.

Definition 6.8 (Consistency). Let S be a set of pairs (s, value) for nodes s
and values value in a ((N,B, k, d, hash), d′, g)-puzzle tree. We say that (s′, (x, y))
is consistent with S if the following hold:

17 It may be helpful to observe that for a leaf node s = [s]1||[s]2|| · · · ||[s]h, the frontier
contains [s]i nodes at level i for i ∈ [h].

Continuous Verifiable Delay Functions 149

1. The input x of s′ is (a) the output given for its left sibling if its left sibling is
in S and s′ is a middle child, (b) given by the sketch of its left siblings’ values
if all of its left siblings are in S and s′ is a rightmost child, or (c) defined
recursively as its parent’s input if s′ is a leftmost child (where the base of the
recursion is the root with input g).

2. The output y of s′ is (a) given by the sketch of its left siblings’ values if all
of its left siblings are in S and s′ is a rightmost child, or (b) given recur-
sively by its parent’s output if s′ is a kth child (where, upon reaching the root
recursively, we then accept any output for s′).

We say that S is a consistent set if every node in S is consistent with S.

6.1 Construction

Before giving the cVDF construction, we give a detailed overview. At a high level,
the cVDF will iteratively compute each leaf node in a (ppuVDF, d

′, g)-puzzle tree,
where ppuVDF = (N,B, k, d, hash) are the public parameters of the underlying
uVDF and g is the starting point of the tree given by uVDF.Sample.

The heart of our construction is the cVDF.Eval functionality which takes
a state v corresponding to a leaf s in the tree and computes the next state
v′ corresponding to the next leaf. Each state v will be of the form (g, s, F),
where s is the current leaf in the tree and F is the frontier of s. Then,
cVDF.Eval(1λ, pp, (g, s, frontier(s)) will output (g, s + 1, frontier(s + 1)). There
are three phases of the algorithm cVDF.Eval. First, it checks that its input
is well-formed. It then computes val(s) using frontier(s), and then computes
frontier(s + 1) using both frontier(s) and val(s). These are discussed next.

Checking That v Is Well-Formed. Recall that v = (g, s, F) corresponds to
the node s in the tree. This state v is correct if running cVDF.Eval for s steps
(where s is interpreted as an integer in base (k+1)) starting at the leaf 0h results
in (g, s, frontier(s)). Therefore, before computing the next state, cVDF.Eval needs
to verify that the state it was given is correct. To do this, we run cVDF.Verify
with input state (g, 0h,⊥) and output state (g, s, F), and check that this is s
steps of computation.

Computing the Value of s. To compute val(s), we have the following obser-
vation: for every node, its input is a function of the input of its parent and the
outputs of its left siblings. Indeed, if s is a middle child, its input is the output of
the sibling to its left (given in F). If s is a rightmost child, its input is the sketch
of the values of its left siblings (also given in F). If s is a leftmost child, its input
is input of its parent, defined recursively. Therefore, we compute its input based
on F in this manner. Then, we compute its output by running uVDF.Eval on its
input (Fig. 4).

Computing the Frontier of s + 1. The final phase of cVDF.Eval is to compute
the next frontier using val(s) and frontier(s). To do this, we consider the closest
common ancestor a of s and s + 1 and note that by definition, frontier(a) ⊂
frontier(s+1). Moreover, its straightforward to see that frontier(s+1)\frontier(a)

150 N. Ephraim et al.

a

s s+1

a

· ··

a

s s+1

a

· ··

a

Fig. 4. An example of computing frontier(s + 1) from frontier(s) for k = 2 with nodes
s, s + 1, a�, and a given. In both graphs, the yellow node is the current node at that
point in the computation, and the nodes in gray are those whose proofs have already
been merged to proofs at their parents. In the left graph, the frontier of s is shown in
pink. The right graph is the result of merging values to obtain the frontier of s′, which
is shown in blue. (Color figure online)

only contains a node a� and its left siblings, where a� is the child of a along the
path to s. Note that when s and (s+1) are siblings, then a� = s, and otherwise,
it can be shown that a� is the closest ancestor of s that is not a rightmost child.

Therefore, to compute frontier(s + 1), we start by computing the value of
node a�. If a� = s, then we have already computed it, and otherwise it’s input
and output are known from its children’s values in F . Specifically, its input is
the input of its first child, and its output is the output of its kth child. These are
in F because of the definition of a�, which implies that each of its descendants
along the path to s must be rightmost children. To compute its proof, observe
that the values of s and its siblings are all known, so they can be efficiently
merged into a proof of its parent. If the parent is a�, then we are done. If not, we
can similarly merge values into a proof of the grandparent of s. We can continue
this process until we reach a�. We show how to do this by traversing the path
from s up to a� and by iteratively “merging” values up the tree. An example
depicting s, s + 1, a, a� is given in Fig. 4.

Formal construction. Next, we give the formal details of our construction
cVDF = (cVDF.Gen, cVDF.Sample, cVDF.Eval, cVDF.Verify).

• pp ← cVDF.Gen(1λ):
Sample ppuVDF ← uVDF.Gen(1λ) where ppuVDF = (N,B, k, d, hash). Let d′

be a constant, which will be specified in the proof of iterative sequentiality
(in the full version), and set tree height h =
logk(B)� − d′. Output pp =
(ppuVDF, d

′, h).
• v ← cVDF.Sample(1λ, pp):

Sample g ← uVDF.Sample(1λ, ppuVDF) and output v = (g, 0h, ∅).

Continuous Verifiable Delay Functions 151

• v′ ← cVDF.Eval(1λ, pp, v):

Check that v is well-formed:
1. Parse v as (g, s, F), where s is a leaf label in a (ppuVDF, g)-puzzle tree and

F is a frontier. Output ⊥ if v cannot be parsed this way.
2. Run cVDF.Verify(1λ, pp, ((g, 0h, ∅), s), (g, s, F)) to verify v. Output ⊥ if it

rejects.

Compute the value of s:

1. Compute the input x of node s as the output of the sibling to its left (given
in F) if s is a middle child, a sketch of its left siblings’ values (given in F)
if s is a rightmost child, or recursively as its parent’s input if s is a leftmost
child.

2. Compute its output and proof as (y, π) = uVDF.Eval(1λ, ppuVDF, (x, kd′
)).

Compute the frontier of s + 1:

1. Let a be the closest common ancestor of s and s+1, and let a� be the ancestor
of s that is a child a.

2. If a� = s, compute its value as (x�, y�, π�) = (x, y, π).
3. If a� is a strict ancestor of s, let x� be the input of its leftmost child in F ,

let y� be the output of its kth child in F , and let π� be ⊥ if x� is invalid and
otherwise the outputs of its first k − 1 children in F along with the proof,
computed recursively, of its child along the path to s.

4. Form the next frontier F ′ by removing all descendants of a� from F , and
adding (a�, (x�, y�, π�)).

Finally, output (g, s + 1, F ′).

• b ← cVDF.Verify(1λ, pp, (v, T), v′):
Check that v is well-formed:
Parse v as (g, s, F) where g ∈ Z

�
N , s is a leaf node, and F is a frontier. If v

cannot be parsed this way, then output 1 if v′ = ⊥ and 0 otherwise.
If (g, s, F) �= (g, 0h, ∅), then verify the state v by recursively running this
verification algorithm, i.e., cVDF.Verify(1λ, pp, ((g, 0h, ∅), s), (g, s, F)). If this
rejects, then output 1 if v′ = ⊥ and 0 otherwise.
Check that v′ is correct:
Output 1 if the following checks succeed, and 0 otherwise:
1. Parse v′ as (g, s + T, F ′) where F ′ is a frontier.
2. Check that the set of nodes in F ′ is the set of nodes in frontier(s′) (con-

sidering only node labels and not values).
3. Check that F ′ is a consistent set.18

4. For each element (s′, (x, y, π)) ∈ F ′, check that uVDF.Verify(1λ,

ppuVDF, (x, t), (y, π)) accepts, where t = kh+d′−|s′|.
18 This can be done efficiently, since consistency of every element in F ′ can be checked

by looking at k nodes in each of the h levels of the tree and performing at most one
sketch.

152 N. Ephraim et al.

Theorem 6.9. Let D,B : N → N where B(λ) ≤ 2λ1/3
, D(λ) = λd′

for all λ ∈ N

and specific constant d′. Assume that (1) the (D,B)-RSW assumption holds
for an ε ∈ (0, 1) and a polynomial �, and (2) for any constants ε′, δ ∈ (0, 1),
uVDF (given in Sect. 5) is a (D,B, (1 + δ) · �, ε′)-unique VDF. Then cVDF is a
(B, (1 + δ′) · D · �, ε′′)-cVDF for any ε′′ > ε+δ′

1+δ′ and δ′ > δ.

The proof is deferred to the full version. As a corollary, by combining Theorem5.2
with Theorem 6.9, we obtain Theorem 6.2: a continuous VDF under the Fiat-
Shamir and the repeated squaring assumptions.

Acknowledgements. We thank Ian Miers for suggesting the name continuous VDFs
and Eylon Yogev for discussions regarding our PPAD hardness results.

This work was supported in part by NSF Award SATC-1704788, NSF Award RI-
1703846, AFOSR Award FA9550-18-1-0267, and by NSF Award DGE-1650441. This
research is based upon work supported in part by the Office of the Director of National
Intelligence (ODNI), Intelligence Advanced Research Projects Activity (IARPA), via
2019-19-020700006. The views and conclusions contained herein are those of the authors
and should not be interpreted as necessarily representing the official policies, either
expressed or implied, of ODNI, IARPA, or the U.S. Government. The U.S. Govern-
ment is authorized to reproduce and distribute reprints for governmental purposes
notwithstanding any copyright annotation therein.

References

1. Chia network. https://chia.net/. Accessed 17 May 2019
2. Ethereum foundation. https://www.ethereum.org/. Accessed 17 May 2019
3. Protocol labs. https://protocol.ai/. Accessed 17 May 2019
4. VDF research effort. https://vdfresearch.org/. Accessed 17 May 2019
5. Abbot, T., Kane, D., Valiant, P.: On algorithms for Nash equilibria (2004). http://

web.mit.edu/tabbott/Public/final.pdf. Accessed 18 Sept 2019
6. Barak, B.: How to go beyond the black-box simulation barrier. In: 42nd IEEE

Symposium on Foundations of Computer Science, FOCS, pp. 106–115 (2001)
7. Bennett, C.H.: Time/space trade-offs for reversible computation. SIAM J. Comput.

18(4), 766–776 (1989)
8. Bitansky, N., Goldwasser, S., Jain, A., Paneth, O., Vaikuntanathan, V., Waters,

B.: Time-lock puzzles from randomized encodings. In: Innovations in Theoretical
Computer Science, ITCS, pp. 345–356 (2016)

9. Bitansky, N., Paneth, O., Rosen, A.: On the cryptographic hardness of finding a
Nash equilibrium. In: Guruswami, V. (ed.) IEEE 56th Symposium on Foundations
of Computer Science, FOCS, pp. 1480–1498 (2015)

10. Boneh, D., Bonneau, J., Bünz, B., Fisch, B.: Verifiable delay functions. In:
Shacham, H., Boldyreva, A. (eds.) CRYPTO 2018. LNCS, vol. 10991, pp. 757–
788. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-96884-1 25

11. Boneh, D., Bünz, B., Fisch, B.: A survey of two verifiable delay functions. IACR
Cryptology ePrint Archive 2018, 712 (2018)

12. Boneh, D., Naor, M.: Timed commitments. In: Bellare, M. (ed.) CRYPTO 2000.
LNCS, vol. 1880, pp. 236–254. Springer, Heidelberg (2000). https://doi.org/10.
1007/3-540-44598-6 15

https://chia.net/
https://www.ethereum.org/
https://protocol.ai/
https://vdfresearch.org/
http://web.mit.edu/tabbott/Public/final.pdf
http://web.mit.edu/tabbott/Public/final.pdf
https://doi.org/10.1007/978-3-319-96884-1_25
https://doi.org/10.1007/3-540-44598-6_15
https://doi.org/10.1007/3-540-44598-6_15

Continuous Verifiable Delay Functions 153

13. Cai, J., Lipton, R.J., Sedgewick, R., Yao, A.C.: Towards uncheatable benchmarks.
In: 8th Structure in Complexity Theory Conference, pp. 2–11. IEEE Computer
Society (1993)

14. Chen, X., Deng, X., Teng, S.: Settling the complexity of computing two-player
Nash equilibria. J. ACM 56(3), 14:1–14:57 (2009)

15. Choudhuri, A.R., Hubáček, P., Kamath, C., Pietrzak, K., Rosen, A., Rothblum,
G.N.: Finding a Nash equilibrium is no easier than breaking Fiat-Shamir. In: 51st
ACM SIGACT Symposium on Theory of Computing, STOC, pp. 1103–1114 (2019)

16. Choudhuri, A.R., Hubáček, P., Kamath, C., Pietrzak, K., Rosen, A., Rothblum,
G.N.: PPAD-hardness via iterated squaring modulo a composite. IACR Cryptology
ePrint Archive 2019, 667 (2019)

17. Chung, K., Lin, H., Pass, R.: Constant-round concurrent zero knowledge from
P-certificates. In: 54th IEEE Symposium on Foundations of Computer Science,
FOCS, pp. 50–59 (2013)

18. Cohen, B., Pietrzak, K.: Simple proofs of sequential work. In: Nielsen, J.B., Rijmen,
V. (eds.) EUROCRYPT 2018. LNCS, vol. 10821, pp. 451–467. Springer, Cham
(2018). https://doi.org/10.1007/978-3-319-78375-8 15

19. Daskalakis, C., Goldberg, P.W., Papadimitriou, C.H.: The complexity of computing
a Nash equilibrium. Commun. ACM 52(2), 89–97 (2009)

20. Döttling, N., Garg, S., Malavolta, G., Vasudevan, P.N.: Tight verifiable delay func-
tions. IACR Cryptology ePrint Archive 2019, 659 (2019)

21. Döttling, N., Lai, R.W.F., Malavolta, G.: Incremental proofs of sequential work. In:
Ishai, Y., Rijmen, V. (eds.) EUROCRYPT 2019. LNCS, vol. 11477, pp. 292–323.
Springer, Cham (2019). https://doi.org/10.1007/978-3-030-17656-3 11

22. Dwork, C., Naor, M.: Pricing via processing or combatting junk mail. In: Brick-
ell, E.F. (ed.) CRYPTO 1992. LNCS, vol. 740, pp. 139–147. Springer, Heidelberg
(1993). https://doi.org/10.1007/3-540-48071-4 10

23. De Feo, L., Masson, S., Petit, C., Sanso, A.: Verifiable delay functions from super-
singular isogenies and pairings. IACR Cryptology ePrint Archive 2019, 166 (2019)

24. Fiat, A., Shamir, A.: How to prove yourself: practical solutions to identification and
signature problems. In: Odlyzko, A.M. (ed.) CRYPTO 1986. LNCS, vol. 263, pp.
186–194. Springer, Heidelberg (1987). https://doi.org/10.1007/3-540-47721-7 12

25. Garg, S., Pandey, O., Srinivasan, A.: Revisiting the cryptographic hardness of
finding a nash equilibrium. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016. LNCS,
vol. 9815, pp. 579–604. Springer, Heidelberg (2016). https://doi.org/10.1007/978-
3-662-53008-5 20

26. Goldreich, O., Krawczyk, H.: On the composition of zero-knowledge proof systems.
In: Paterson, M.S. (ed.) ICALP 1990. LNCS, vol. 443, pp. 268–282. Springer, Hei-
delberg (1990). https://doi.org/10.1007/BFb0032038

27. Goldwasser, S., Kalai, Y.T.: On the (in)security of the Fiat-Shamir paradigm. In:
44th IEEE Symposium on Foundations of Computer Science, FOCS, pp. 102–113
(2003)

28. Hubáček, P., Yogev, E.: Hardness of continuous local search: query complexity
and cryptographic lower bounds. In: 28th ACM-SIAM Symposium on Discrete
Algorithms, SODA, pp. 1352–1371 (2017)

29. Jerschow, Y.I., Mauve, M.: Non-parallelizable and non-interactive client puzzles
from modular square roots. In: 6th International Conference on Availability, Reli-
ability and Security, ARES1, pp. 135–142. IEEE Computer Society (2011)

30. Kaliski, B.: PKCS #5: password-based cryptography specification version 2.0
(2000)

https://doi.org/10.1007/978-3-319-78375-8_15
https://doi.org/10.1007/978-3-030-17656-3_11
https://doi.org/10.1007/3-540-48071-4_10
https://doi.org/10.1007/3-540-47721-7_12
https://doi.org/10.1007/978-3-662-53008-5_20
https://doi.org/10.1007/978-3-662-53008-5_20
https://doi.org/10.1007/BFb0032038

154 N. Ephraim et al.

31. Kitagawa, F., Nishimaki, R., Tanaka, K.: Obfustopia built on secret-key functional
encryption. In: Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT 2018. LNCS, vol.
10821, pp. 603–648. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-
78375-8 20

32. Komargodski, I., Segev, G.: From Minicrypt to Obfustopia via private-key func-
tional encryption. In: Coron, J.-S., Nielsen, J.B. (eds.) EUROCRYPT 2017. LNCS,
vol. 10210, pp. 122–151. Springer, Cham (2017). https://doi.org/10.1007/978-3-
319-56620-7 5

33. Lenstra, A.K., Wesolowski, B.: Trustworthy public randomness with sloth, unicorn,
and trx. IJACT 3(4), 330–343 (2017)

34. Lin, H., Pass, R., Soni, P.: Two-round and non-interactive concurrent non-
malleable commitments from time-lock puzzles. In: 58th IEEE Symposium on
Foundations of Computer Science (FOCS), pp. 576–587 (2017)

35. Lund, C., Fortnow, L., Karloff, H.J., Nisan, N.: Algebraic methods for interactive
proof systems. J. ACM 39(4), 859–868 (1992)

36. Mahmoody, M., Moran, T., Vadhan, S.P.: Publicly verifiable proofs of sequential
work. In: Innovations in Theoretical Computer Science, ITCS, pp. 373–388 (2013)

37. Mahmoody, M., Smith, C., Wu, D.J.: A note on the (im)possibility of verifiable
delay functions in the random oracle model. ePrint p. 663 (2019)

38. Megiddo, N., Papadimitriou, C.H.: On total functions, existence theorems and
computational complexity. Theor. Comput. Sci. 81(2), 317–324 (1991)

39. Papadimitriou, C.H.: On the complexity of the parity argument and other ineffi-
cient proofs of existence. J. Comput. Syst. Sci. 48(3), 498–532 (1994)

40. Pietrzak, K.: Simple verifiable delay functions. In: 10th Innovations in Theoretical
Computer Science Conference, ITCS, pp. 60:1–60:15 (2019)

41. Rabin, M.O.: Digitalized signatures and public key functions as intractable as
factoring. Technical report, TR-212, LCS, MIT, Cambridge, MA (1979)

42. Rabin, M.O.: Transaction protection by beacons. J. Comput. Syst. Sci. 27(2),
256–267 (1983)

43. Rivest, R.L., Shamir, A., Wagner, D.A.: Time-lock puzzles and timed-release
crypto (1996, manuscript)

44. Valiant, P.: Incrementally verifiable computation or proofs of knowledge imply
time/space efficiency. In: Canetti, R. (ed.) TCC 2008. LNCS, vol. 4948, pp. 1–18.
Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-78524-8 1

45. Wesolowski, B.: Efficient verifiable delay functions. In: Ishai, Y., Rijmen, V. (eds.)
EUROCRYPT 2019. LNCS, vol. 11478, pp. 379–407. Springer, Cham (2019).
https://doi.org/10.1007/978-3-030-17659-4 13

46. Zhandry, M.: The magic of ELFs. In: Robshaw, M., Katz, J. (eds.) CRYPTO
2016. LNCS, vol. 9814, pp. 479–508. Springer, Heidelberg (2016). https://doi.org/
10.1007/978-3-662-53018-4 18

https://doi.org/10.1007/978-3-319-78375-8_20
https://doi.org/10.1007/978-3-319-78375-8_20
https://doi.org/10.1007/978-3-319-56620-7_5
https://doi.org/10.1007/978-3-319-56620-7_5
https://doi.org/10.1007/978-3-540-78524-8_1
https://doi.org/10.1007/978-3-030-17659-4_13
https://doi.org/10.1007/978-3-662-53018-4_18
https://doi.org/10.1007/978-3-662-53018-4_18

Generic-Group Delay Functions Require
Hidden-Order Groups

Lior Rotem, Gil Segev(B), and Ido Shahaf(B)

School of Computer Science and Engineering, Hebrew University of Jerusalem,
91904 Jerusalem, Israel

{lior.rotem,segev,ido.shahaf}@cs.huji.ac.il

Abstract. Despite the fundamental importance of delay functions,
underlying both the classic notion of a time-lock puzzle and the more
recent notion of a verifiable delay function, the only known delay func-
tion that offers both sufficient structure for realizing these two notions
and a realistic level of practicality is the “iterated squaring” construction
of Rivest, Shamir and Wagner. This construction, however, is based on
rather strong assumptions in groups of hidden orders, such as the RSA
group (which requires a trusted setup) or the class group of an imaginary
quadratic number field (which is still somewhat insufficiently explored
from the cryptographic perspective). For more than two decades, the
challenge of constructing delay functions in groups of known orders,
admitting a variety of well-studied instantiations, has eluded the cryp-
tography community.

In this work we prove that there are no constructions of generic-group
delay functions in cyclic groups of known orders: We show that for any
delay function that does not exploit any particular property of the rep-
resentation of the underlying group, there exists an attacker that com-
pletely breaks the function’s sequentiality when given the group’s order.
As any time-lock puzzle and verifiable delay function give rise to a delay
function, our result holds for these two notions we well, and explains the
lack of success in resolving the above-mentioned long-standing challenge.
Moreover, our result holds even if the underlying group is equipped with
a d-linear map, for any constant d ≥ 2 (and even for super-constant
values of d under certain conditions).

1 Introduction

The classic notion of a time-lock puzzle, introduced by Rivest, Shamir and
Wagner [RSW96], and the recent notion of a verifiable delay function, intro-
duced by Boneh et al. [BBB+18], are instrumental to a wide variety of exciting

L. Rotem, G. Segev and I. Shahaf—Supported by the European Union’s Horizon 2020
Framework Program (H2020) via an ERC Grant (Grant No. 714253).
L. Rotem—Supported by the Adams Fellowship Program of the Israel Academy of
Sciences and Humanities.
I. Shahaf—Supported by the Clore Israel Foundation via the Clore Scholars
Programme.

c© International Association for Cryptologic Research 2020
A. Canteaut and Y. Ishai (Eds.): EUROCRYPT 2020, LNCS 12107, pp. 155–180, 2020.
https://doi.org/10.1007/978-3-030-45727-3_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-45727-3_6&domain=pdf
https://doi.org/10.1007/978-3-030-45727-3_6

156 L. Rotem et al.

applications, such as randomness beacons, resource-efficient blockchains, proofs
of replication and computational timestamping. Underlying both notions is the
basic notion of a cryptographic delay function: For a delay parameter T , eval-
uating a delay function on a randomly-chosen input should require at least T
sequential steps (even with a polynomial number of parallel processors and with
a preprocessing stage), yet the function can be evaluated on any input in time
polynomial in T (e.g., 2T or T 4).1

A delay function can be easily constructed by iterating a cryptographic hash
function, when modeled as a random oracle for proving its sequentiality. How-
ever, the complete lack of structure that is offered by this construction renders
its suitability for realizing time-lock puzzles or verifiable delay functions rather
unclear. Specifically, for time-lock puzzles, iterating a cryptographic hash func-
tion in general does not enable sufficiently fast generation of input-output pairs.
Similarly, for verifiable delay functions, iterating a cryptographic hash function
in general does not able sufficiently fast verification (although, asymptotically,
such verification can be based on succinct non-interactive arguments for NP
languages [Kil92,Mic94,GW11], as suggested by Döttling et al. [DGM+19] and
Boneh et al. [BBB+18]).

The only known construction of a delay function that offers both a useful
structure for realizing time-lock puzzles or verifiable delay functions and a real-
istic level of practicality is the “iterated squaring” construction underlying the
time-lock puzzle of Rivest et al. [RSW96], which was recently elegantly extended
by Pietrzak [Pie19] and Wesolowski [Wes19] to additionally yield a verifiable
delay function. The iterated squaring construction, however, is based on rather
strong assumptions in groups of hidden orders such as the RSA group or the
class group of an imaginary quadratic number field. Unfortunately, RSA groups
require a trusted setup stage as the factorization of the RSA modulus serves as
a trapdoor enabling fast sequential evaluation [RSW96,Pie19,Wes19], and the
class group of an imaginary quadratic number field is not as well-studied from
the cryptographic perspective as other, more standard, cryptographic groups
[BBF18, Sec. 6].

Thus, a fundamental goal is to construct delay functions in groups of known
orders, giving rise to a variety of well-studied instantiations. In such groups,
the security of delay functions can potentially be proved either based on long-
standing cryptographic assumptions or within the generic-group model as a prac-
tical heuristic.

1.1 Our Contributions

In this work we prove that there are no constructions of generic-group delay
functions in cyclic groups of known orders: Roughly speaking, we show that for
any delay function that does not exploit any particular property of the rep-
resentation of the underlying group, there exists an attacker that breaks the

1 We refer the reader to Sect. 2 for a formal definition of a delay function, obtained as
a natural relaxation of both a time-lock puzzle and a verifiable delay function.

Generic-Group Delay Functions Require Hidden-Order Groups 157

function’s sequentiality when given the group’s order. As any time-lock puzzle
and verifiable delay function give rise to a delay function, our result holds for
these two notions as well. Moreover, our impossibility result holds even if the
underlying group is equipped with a d-linear map, for any constant d ≥ 2 and
even for super-constant values of d under certain conditions as discussed below.

Our result: Attacking delay functions in known-order groups. Generic-
group algorithms have access to an oracle for performing the group operation
and for testing whether two group elements are equal, and the efficiency of
such algorithms is measured mainly by the number of oracle queries that they
issue [Nec94,Sho97,BL96,MW98,Mau05]. In the context of generic-group delay
functions, we view generic-group algorithms as consisting of parallel processors,
and we measure the number of such processors together with the number of
sequential queries that are issued by each such processor. In addition, we measure
the amount of any internal computation that is performed by our attacker, and
this enables us to prove an impossibility result that is not only of theoretical
significance in the generic-group model, but is also of practical significance.

The following theorem presents our main result in an informal and simplified
manner that focuses on prime-order groups without d-linear maps, and on delay
functions whose public parameters, inputs and outputs consist only of group
elements2:

Theorem (informal & simplified). Let DF be a generic-group delay function
whose public parameters, inputs and outputs consist of kpp(λ, T), kin(λ, T) and
kout(λ, T) group elements, respectively, where λ ∈ N is the security parameter and
T ∈ N is the delay parameter. Let QeqEval(λ, T) denote the number of equality
queries issued by the function’s honest evaluation algorithm. Then, there exists a
generic-group attacker A that takes as input the λ-bit order p of the group such
that:

– A correctly computes the function on any input.
– A consists of (kpp + kin) · max{kout, QeqEval} parallel processors, each of which

issues at most O((kpp + kin) · log p) sequential oracle queries.

For interpreting our theorem, first note that our attacker does not require a
preprocessing stage, and is able to correctly compute the function on any input
(these rule out even an extremely weak notion of sequentiality).

Second, note that the number (kpp + kin) · max{kout, QeqEval} of parallel pro-
cessors used by our attacker is at most polynomial in the security parameter
λ and in the delay parameter T , and that the number O((kpp + kin) · log p) of
sequential queries issued by each processor is polynomial in λ and essentially
independent of the delay parameter T . Specifically, for delay functions underly-
ing time-lock puzzles and verifiable delay functions, the parameters kpp, kin and

2 As discussed in Sect. 1.3, we prove our result also to groups of composite order, to
groups equipped with a d-linear map, and to delay functions whose public param-
eters, inputs and outputs consist of both group elements and arbitrary additional
values.

158 L. Rotem et al.

kout are all polynomials in λ and log T (for the iterated squaring delay function,
for example, it holds that kpp = QeqEval = 0 and kin = kout = 1).3 Therefore, in
these cases the number of sequential queries issued by each processor is at most
polynomial in λ and log T .

An additional interpretation of our result is as follows. The term max{kout,
QeqEval} lower bounds the time to compute Eval without parallelism (even though
it could be much smaller – as for the iterated squaring function). Optimally, an α
speedup, that is, computing the function α times faster than without parallelism,
is obtained by using α parallel processors. We show that an (at least) α speedup
can be obtained by using O(α · (kpp + kin)2 · log p) parallel processors.

1.2 Related Work

Various cryptographic notions that share a somewhat similar motivation
with delay functions have been proposed over the years, such as the above-
discussed notions of time-lock puzzles and verifiable delay functions (e.g.,
[RSW96,BGJ+16,BBB+18,BBF18,Pie19,Wes19,EFK+19,DMP+19]), as well
as other notions such as sequential functions and proofs of sequential work (e.g.,
[MMV11,MMV13,CP18]). It is far beyond the scope of this work to provide an
overview of these notions, and we refer the reader to the work of Boneh et al.
[BBB+18] for an in-depth discussion of these notions and of the relations among
them.

A generic-group candidate for a function that requires more time to evalu-
ate than to verify was proposed by Dwork and Naor [DN92] based on extract-
ing square roots modulo a prime number p (see also the work of Lenstra and
Wesolowski [LW15] on composing several such functions). However, the time
required to sequentially evaluate this function, as well as the gap between the
function’s sequential evaluation time and its verification time, both seem limited
to O(log p), and thus cannot be flexibly adjusted via a significantly larger delay
parameter T . As noted by Boneh et al. [BBB+18], this does not meet the notion
of a verifiable delay function (or our less-strict notion of a delay function).

In the random-oracle model, Döttling, Garg, Malavolta and Vasudevan
[DGM+19], and Mahmoody, Smith and Wu [MSW19] proved impossibility
results for certain classes of verifiable delay functions (and, thus, in particular,
for certain classes of delay functions). Before describing their results, we note
that whereas Döttling et al. and Mahmoody et al. captured restricted classes of
verifiable delay functions within the random-oracle model, our work captures all
constructions of delay functions (a more relaxed notion) within the incompara-
ble generic-group model. Most importantly, in the random-oracle model a delay
function can be easily constructed by iterating the random oracle (however, as
discussed above, this does not seem practically useful for realizing time-lock
puzzles or verifiable delay functions).
3 For time-lock puzzles this follows from the requirement that an input-output pair can

be generated in time polynomial in λ and log T , and for verifiable delay functions this
follows from the requirement that the verification algorithm runs in time polynomial
in λ and log T .

Generic-Group Delay Functions Require Hidden-Order Groups 159

The work of Döttling et al. rules out constructions of verifiable delay functions
with a tight gap between the assumed lower bound on their sequential evaluation
time and their actual sequential evaluation time. Specifically, they proved that
there is no construction that cannot be evaluated using less than T sequential
oracle queries (even with parallel processors), but can be evaluated using T +
O(T δ) sequential oracle queries (for any constant δ > 0 where T is the delay
parameter). Note, however, that this does not rule out constructions that cannot
be evaluated using less than T sequential oracle queries but can be evaluated, say,
using 4T or T log T sequential oracle queries. In addition to their impossibility
result, Döttling et al. showed that any verifiable delay function with a prover
that runs in time O(T) and has a natural self-composability property can be
generically transformed into a verifiable delay function with a prover that runs
in time T + O(1) based on succinct non-interactive arguments for NP languages
[Kil92,Mic94,GW11].

The work of Mahmoody et al. rules out constructions of verifiable delay
functions that are statistically sound with respect to any oracle4. That is, they
consider verifiable delay functions whose soundness property holds for unbounded
adversaries and holds completely independently of the oracle. As noted by Mah-
moody et al. this suffices, for example, for ruling out verifiable delay functions
that are permutations. However, for such functions that are not permutations,
this strong soundness property does not necessarily hold – as the security of con-
structions in the random-oracle model is on based the randomness of the oracle
(and does not hold with respect to any oracle).

1.3 Overview of Our Approach

In this section we give an informal technical overview of our approach. We start
by reviewing the generic-group model in which our lower bound is proven, and
then move on to describe our attack, first in simplified settings and then gradu-
ally building towards our full-fledged attack. Finally, we illustrate how this attack
can be extended to rule out generic-group delay functions in groups equipped
with multilinear maps.

The Framework. We prove our impossibility result within the generic-group
model introduced by Maurer [Mau05], which together with the incompara-
ble model introduced by Shoup [Sho97], seem to be the most commonly-used
approaches for capturing generic group computations. At a high level, in both
models algorithms have access to an oracle for performing the group operation
and for testing whether two group elements are equal. The difference between
the two models is in the way that algorithms specify their queries to the oracle.
In Maurer’s model algorithms specify their queries by pointing to two group
elements that have appeared in the computation so far (e.g., the 4th and the
7th group elements), whereas in Shoup’s model group elements have an explicit

4 In fact, as pointed out by Mahmoody et al. their impossibility result holds also for
proofs of sequential work.

160 L. Rotem et al.

representation (sampled uniformly at random from the set of all injective map-
pings from the group to sufficiently long strings) and algorithms specify their
queries by providing two strings that have appeared in the computation so far
as encoding of group elements.

Jager and Schwenk [JS08] proved that the complexity of any computational
problem that is defined in a manner that is independent of the representation of
the underlying group (e.g., computing discrete logarithms) in one model is essen-
tially equivalent to its complexity in the other model. However, not all generic
cryptographic constructions are independent of the underlying representation.

More generally, these two generic-group models are rather incomparable. On
one hand, the class of cryptographic schemes that are captured by Maurer’s
model is a subclass of that of Shoup’s model – although as demonstrated by
Maurer his model still captures all schemes that only use the abstract group
operation and test whether two group elements are equal. On the other hand,
the same holds also for the class of adversaries, and thus in Maurer’s model
we have to break the security of a given scheme using an adversary that is
more restricted when compared to adversaries in Shoup’s model. In fact, Shoup’s
model is “sufficiently non-generic” to accommodate delay functions such as the
iterated-hashing construction. Delay functions of such flavor, however, rely on
the randomness of the representation of group elements, which may or may not
be sufficient in specific implementations of concrete groups, and are not based
solely on the underlying algebraic hardness as in Maurer’s model. Furthermore,
as discussed earlier, delay functions that exploit such randomness are some-
what unstructured, and thus seem limited in their applicability to the design of
time-lock puzzles and VDFs (for time-lock puzzles insufficient structure may not
enable sufficiently fast generation of input-output pairs, and for VDFs insuffi-
cient structure may not enable sufficiently fast verification). We refer the reader
to Sect. 2.1 for a formal description of Maurer’s generic-group model.

Generic-group delay functions. A generic-group delay function in a cyclic
group of order N is defined by an evaluation algorithm Eval, which receives the
public parameters pp and an input x, and returns an output y. For the sake
of this overview, we assume that pp, x and y consist of kpp, kin and kout group
elements, respectively (we refer the reader to Sect. 5 for a detailed account of
how we handle additional explicit bit-strings as part of the public parameters,
input and output). As a generic algorithm, Eval’s access to these group elements
is implicit and is provided via oracle access as follows. At the beginning of its
execution, a table B is initialized with ZN elements which correspond to the
elements in pp and in x. Eval can then access the table via two types of queries:
(1) group operation queries, which place the sum of the two ZN elements in the
entries pointed to by Eval in the next vacant entry of the table; and (2) equality
queries, which return 1 if and only if the two ZN elements in the entries pointed
to by Eval are equal. At the end of its execution, in order to implicitly output
group elements, Eval outputs the indices of entries in the table in which the
output group elements are positioned. We refer the reader to Sect. 2.2 for a more
formal presentation of generic-group delay functions.

Generic-Group Delay Functions Require Hidden-Order Groups 161

A simplified warm-up. Our goal is to construct an attacker, which (implicitly)
receives the public parameters pp and an input x, and computes the correspond-
ing output y in a sequentially-fast manner. As a starting point, consider an
oversimplified and hypothetical scenario in which the attacker is provided not
only with oracle access to the table B, but also with the explicit ZN elements
which are in the table and that correspond to pp and to x. In this case, an
attacker can simply emulate the execution of Eval locally without any queries to
the oracle, where instead of the oracle table B, the attacker keeps a local table
of ZN elements: Group oracle queries are emulated via integer addition modulo
N , and equality queries are answered in accordance with integer equality. At
the end of this emulation, the attacker holds the ZN elements that correspond
to the output elements of Eval. A key observation is that translating each of
these ZN elements into the appropriate group element – i.e., placing this ZN

element in the table B – requires only O(log N) = O(λ) oracle queries (e.g., via
the standard square-then-multiply method).5 Moreover, for any number kout of
group elements in the function’s output, the number of sequential oracle queries
remains only O(λ) when using kout parallel processors – one per each output
element.

As an intermediate step towards our full-fledged attack, consider a somewhat
less hypothetical scenario, in which the attacker only gets implicit access to the
group elements in pp and in x, but Eval does not issue any equality queries.
Observe that this setting already captures the widely-used iterated squaring
delay function discussed above. The main idea behind our attack in this setting
is to replace each of the input group elements to Eval with a formal variable,
and then to symbolically compute each output element as a polynomial in these
variables. Note that in general, these are not fixed polynomials, but rather
depend on the equality pattern resulting from Eval’s equality queries. Here, how-
ever, we are assuming that Eval does not issue any such queries. Concretely, when
there are no equality queries, computing the output polynomials does not require
any oracle queries by a similar emulation to the one described above, where values
in the local table are stored as polynomials, and the group operation is replaced
with polynomial addition. Once we have each of the output elements expressed
as a polynomial, we can implicitly evaluate it at (pp,x), starting with implicit
access to the elements in (pp,x), using kpp +kin parallel processors each of which
performing O(log N + log(kpp + kin)) = O(λ) sequential group operations.6

Handling equality queries. On the face of it, the attack described in the
previous paragraph is not applicable when Eval does issue equality queries, since
it is unclear how to answer such queries in the polynomial-based emulation of

5 We assume that the first entry of the table B is always occupied with the number
1, which is always a generator for ZN .

6 Note that implicitly evaluating each monomial using roughly log N sequential group
operations requires knowing the precise order N of the group. Without knowing
N , this polynomial may have coefficients which are exponentially large in the delay
parameter T , and evaluating each monomial can take up to poly(T) sequential group
operations.

162 L. Rotem et al.

Eval. One possibility is to answer each equality query in the affirmative if and
only if the two elements pointed to by Eval are identical as polynomials in the
formal variables replacing the input elements. Indeed, if the two polynomials are
identical, it is necessarily the case that the two elements are equal. Unfortunately,
the opposite is incorrect, and it is possible (and indeed to be expected) that the
two elements will be equal even though their corresponding polynomials are not
identical, resulting in a false negative answer and thus the emulation will deviate
from the true execution of Eval.

The main observation underlying our attack is that even though the number
QeqEval of equality queries that Eval issues might be quite large (potentially as
large as the delay parameter T), at most |factors(N)|·(kpp+kin) of the non-trivial
queries can be affirmatively answered, where factors(N) denotes the multi-set of
prime factors of N (where the number of appearances of each primes factor is
its multiplicity – e.g., factors(100) = {2, 2, 5, 5}), and by trivial queries we mean
queries for which equality or inequality follows from the previous query/answer
pattern. This is the case because at each point during the execution of Eval, the
set of possible values for (pp,x), given the equality pattern so far, is a coset of
some subgroup H ≤ Z

kpp+kin

N relative to (pp,x): The possible values for (pp,x) are
a set of the form {(pp,x) + (pp′,x′)|(pp′,x′) ∈ H}, where initially H = Z

kpp+kin

N .
Moreover, if q is a non-trivial equality query answered affirmatively, H is the
said subgroup before q is issued and H ′ is the subgroup after q is answered, then
due to the non-triviality of q, it is necessarily the case that H ′ < H (i.e., H ′ is a
proper subgroup of H). In particular, the order of H ′ is smaller than the order
of H and divides it. Hence, since |factors(|Zkpp+kin

N |)| = (kpp + kin) · |factors(N)|,
the observation follows by induction.

Utilizing the Power of Parallelism. We translate this observation into an
attack on the sequentiality of any generic-group delay function by carefully utiliz-
ing the power of parallelism in the following manner. Our attacker keeps track of
an initially empty set L of linear equations in the formal variables that replace
pp and x, and runs for (kpp + kin) · |factors(N)| + 1 iterations.7 In each itera-
tion, the attacker runs the polynomial-based emulation described above, with
the exception that now equality queries are answered affirmatively if and only if
equality follows from the equations in L. The attacker then checks, by querying
the oracle, if any of the negatively-answered queries in the emulation should
have been answered affirmatively, and if so, the equality that follows from this
query is added to L – this step can be executed using QeqEval · (kpp +kin) parallel
processors, each of which issuing O(log N + log(kpp + kin)) = O(λ) sequential
queries.

Since we make sure that the true (pp,x) is always in the solution set of L,
there will be no false positive answers, and in each iteration there are only two
possibilities: Either there exists a false negative answer (which we will then add

7 We emphasize that our attack does not require knowing the factorization of N . Since
|factors(N)| ≤ log N , one can replace |factors(N)| with log N when determining the
number of iterations.

Generic-Group Delay Functions Require Hidden-Order Groups 163

to L as an equality) or all queries are answered correctly. On the one hand, if all
queries are answered correctly, then the emulation in this iteration is accurate
and we are done – all that is left is to translate the output polynomials of
this emulation into implicit group elements, which we already discussed how to
do. On the other hand, if there exists a false negative answer, then we learn
a new equation that does not follow from the equations already in L. By our
observation, we can learn at most |factors(N)| · (kpp + kin) new such equations,
so there must be an iteration in which we successfully emulate the execution of
Eval and compute the correct output of the function.

Attacking generic delay functions in multilinear groups. We extend our
attack so that it computes the output of any generic delay function in groups
that are equipped with a d-linear map and on any input, while issuing at most
O((kpp +kin +1)d · |factors(N)| ·λ) sequential queries. In such groups, in addition
to the group operation and equality queries, generic algorithms can also issue
d-linear map queries, supplying (implicitly) d elements in the source group and
receiving as a reply implicit access to the resulting element of the target group.
In our polynomial-based emulation of Eval described above, we replace such
queries with polynomial multiplication, resulting in polynomials of degree at
most d. Since these polynomials may be non-linear, and the analysis of our attack
heavily relied on the fact that the learned equations are linear, this analysis no
longer applies.

We address this situation by carefully employing a linearization procedure.
Roughly speaking, in our polynomial-based emulation of Eval, the attacker now
replaces each possible product of at most d formal variables (out of the formal
variables that replace the group elements in pp and in x) with a single new formal
variable. After applying this linearization procedure, the learned equations are
once again linear (in the new formal variables), but by applying it, we lose
information about the possible set of assignments to the elements in (pp,x),
given the learned equations in L. As a result, it might be that a certain equality
which follows from the equations in L, no longer follows from them after applying
the linearization procedure (to both the equality and the equations in L). The
main observation that makes our attack successful nevertheless is that if a certain
equality follows from L after applying the linearization procedure, it necessarily
followed from L before applying the procedure as well. Hence, it is still the
case that there are no false positive answers in the emulation, and that in each
iteration we either add a new equation to L or compute the correct output.

This linearization procedure comes at a cost. After applying it, we have
(kpp + kin + 1)d different formal variables instead of just kpp + kin as before.
Thus, in order for our analysis from the linear setting to apply, our attacker
needs to run for roughly (kpp + kin + 1)d · |factors(N)| iterations, explaining the
exponential dependency on d in its sequential query complexity. Note however
that the attack still computes the output with less than T sequential queries
as long as d ≤ O(log T/(log λ · log(kpp + kin))), and in particular whenever d is
constant.

164 L. Rotem et al.

Our attacker’s internal computation. In order to rule out constructions of
delay functions whose sequentiality is proven within the generic-group model, it
suffices to present an attacker which is efficient relative to the security param-
eter and the delay parameter in terms of its number of parallel processors and
generic-group operations, regardless of the amount of additional internal compu-
tation required by the attacker. Nevertheless, we show that our attacker requires
an overhead which is only polynomial in terms of its internal computation. Con-
sequently, when our attack is applied to any “heuristically secure” construction
in any cyclic group of known order, the number of sequential group operations
it performs is essentially independent of T , and the additional computation –
which is independent of the specific group in use – is at most poly(λ, T). Put
differently, either this additional computation can be sped-up using parallelism
and then the construction is insecure; or it cannot be sped-up and thus yields an
inherently-sequential computation that does not rely on the underlying group.

Specifically, the most significant operation that is performed by our attacker
which is non-trivial in terms of its computational cost is checking in each iter-
ation whether or not a given linear equation over ZN follows from the linear
equations already in the set L. When considering groups of prime order, this
can be done simply by testing for linear independence among the vectors of
coefficients corresponding to these equations. When considering groups of com-
posite order this is a bit more subtle, and can be done for example by relying on
fast algorithms for computing the Smith normal form of integer matrices (e.g.,
[Sto96]) and without knowing the factorization of the order of the group – see
AppendixA for more details.

1.4 Paper Organization

The remainder of this paper is organized as follows. First, in Sect. 2 we present
the basic notation used throughout the paper, and formally describe the frame-
work we consider for generic-group delay functions. In Sect. 3 we prove our main
impossibility result for generic delay functions, and in Sect. 4 we extend it to
generic multilinear groups. Finally, in Sect. 5 we discuss several additional exten-
sions, and in AppendixA we show that our attacker is efficient not only with
respect to its number of parallel processors and generic group operations, but
also in its additional internal computation.

2 Preliminaries

In this section we present the basic notions and standard cryptographic tools
that are used in this work. For a distribution X we denote by x ← X the process
of sampling a value x from the distribution X. Similarly, for a set X we denote by
x ← X the process of sampling a value x from the uniform distribution over X .
For an integer n ∈ N we denote by [n] the set {1, . . . , n}. A function ν : N → R

+

is negligible if for any polynomial p(·) there exists an integer N such that for all
n > N it holds that ν(n) ≤ 1/p(n).

Generic-Group Delay Functions Require Hidden-Order Groups 165

2.1 Generic Groups and Algorithms

Asdiscussed in Sect. 1.1, we prove our resultswithin the generic-groupmodel intro-
duced by Maurer [Mau05]. We consider computations in cyclic groups of order N
(all of which are isomorphic to ZN with respect to addition modulo N), for a λ-bit
integer N that is generated by a order generation algorithm OrderGen(1λ), where
λ ∈ N is the security parameter (and N may or may not be prime).

When considering such groups, each computation Maurer’s model is associ-
ated with a table B. Each entry of this table stores an element of ZN , and we
denote by Vi the group element that is stored in the ith entry. Generic algo-
rithms access this table via an oracle O, providing black-box access to B as
follows. A generic algorithm A that takes d group elements as input (along with
an optional bit-string) does not receive an explicit representation of these group
elements, but instead, has oracle access to the table B, whose first d entries
store the ZN elements corresponding to the d group element in A’s input. That
is, if the input of an algorithm A is a tuple (g1, . . . , gd, x), where g1, . . . , gd are
group elements and x is an arbitrary string, then from A’s point of view the
input is the tuple (ĝ1, . . . , ĝd, x), where ĝ1, . . . , ĝd are pointers to the group ele-
ments g1, . . . , gd (these group elements are stored in the table B), and x is given
explicitly. All generic algorithms in this paper will receive as their first input a
generator of the group; we capture this fact by always assuming that the first
entry of B is occupied by 1 ∈ ZN , and we will sometimes forgo noting this
explicitly. The oracle O allows for two types of queries:

– Group operation queries: On input (i, j,+) for i, j ∈ N, the oracle checks
that the ith and jth entries of the table B are not empty, computes Vi +
Vj mod N and stores the result in the next available entry. If either the ith
or the jth entries are empty, the oracle ignores the query.

– Equality queries: On input (i, j,=) for i, j ∈ N, the oracle checks that the
ith and jth entries in B are not empty, and then returns 1 if Vi = Vj and
0 otherwise. If either the ith or the jth entries are empty, the oracle ignores
the query.

In this paper we consider interactive computations in which multiple algorithms
pass group elements (as well as non-group elements) as inputs to one another.
This is naturally supported by the model as follows: When a generic algorithm
A outputs k group elements (along with a potential bit-string σ), it outputs
the indices of k (non-empty) entries in the table B (together with σ). When
these outputs (or some of them) are passed on as inputs to a generic algorithm
C, the table B is re-initialized, and these values (and possibly additional group
elements that C receives as input) are placed in the first entries of the table.
Additionally, we rely on the following conventions:

1. Throughout the paper we refer to values as either “explicit” ones or “inex-
plicit” ones. Explicit values are all values whose representation (e.g., binary
strings of a certain length) is explicitly provided to the generic algorithms
under consideration. Inexplicit values are all values that correspond to group
elements and that are stored in the table B – thus generic algorithms can

166 L. Rotem et al.

access them only via oracle queries. We will sometimes interchange between
providing group elements as input to generic algorithms inexplicitly, and pro-
viding them explicitly. Note that moving from the former to the latter is well
defined, since a generic algorithm A that receives some of its input group ele-
ments explicitly can always simulate the computation as if they were received
as part of the table B.

2. For a group element g, we will differentiate between the case where g is
provided explicitly and the case where it is provided implicitly via the table
B, using the notation g in the former case, and the notation ĝ in the latter.

3. As is common in the generic group model, we identify group elements that
are given as input to a generic algorithm with formal variables, the results
of addition queries (i.e., the content of the entries in the table B) with lin-
ear polynomials in these variables, and positively-answered equality queries
between distinct polynomials with linear equations.

2.2 Generic-Group Delay Functions

A generic-group delay function is a triplet DF = (Setup,Sample,Eval) of oracle-
aided algorithms satisfying the following properties:

– Setup is a randomized algorithm that has oracle access to the group oracle O,
receives as input the group order N ∈ N and a sequentiality parameter T ∈ N,
and outputs public parameters pp = (ppG, pps) where ppG is an ordered list
of group elements and pps ∈ {0, 1}∗ is an explicit string.

– Sample is a randomized algorithm that has oracle access to the group oracle
O, receives as input N and T as above, as well as the public parameters pp,
and outputs x = (xG, xs) ∈ Xpp (the domain Xpp may be a function of the
public parameters pp), where xG is an ordered list of group elements and
xs ∈ {0, 1}∗ is an explicit string.

– Eval is a deterministic algorithm that has oracle access to the group oracle
O, receives as input N ,T and pp as above, as well as an input x ∈ Xpp,
and outputs y = (yG, ys), where yG is an ordered list of group elements and
ys ∈ {0, 1}∗ in an explicit string.

Motivated by notions of time-lock puzzles and verifiable delay functions, we
consider delay functions where the lengths of the public parameters, inputs, and
outputs are polynomial in λ and log T . For time-lock puzzles this follows from the
requirement that an input-output pair can be generated in time polynomial in
λ and log T , and for verifiable delay functions this follows from the requirement
that the verification algorithm runs in time polynomial in λ and log T .

In terms of security, we require that for a delay parameter T , no algorithm
should be successful with a non-negligible probability in evaluating a delay func-
tion on a randomly-chosen input – even with any polynomial number of parallel
processors and with a preprocessing stage.

Definition 2.1 (Sequentiality). Let T = T (λ) and p = p(λ) be functions
of the security parameter λ ∈ N. A delay function DF = (Setup,Sample,Eval)
is (T, p)-sequential if for every polynomial q = q(·, ·) and for every pair of

Generic-Group Delay Functions Require Hidden-Order Groups 167

oracle-aided algorithms (A0,A1), where A0 issues at most q(λ, T) oracle queries,
and A1 consists of at most p(λ) parallel processors, each of which issues at most
T oracle queries, there exists a negligible function ν(·) such that

Pr

⎡
⎢⎢⎣y′ = y

∣∣∣∣∣∣∣∣

N ← OrderGen(1λ), pp ← SetupO(N, T)
st ← AO

0 (N, T, pp), x ← SampleO(N, T, pp)
y ← EvalO(N, T, pp, x)
y′ ← AO

1 (st, N, T, pp, x)

⎤
⎥⎥⎦ ≤ ν(λ)

for all sufficiently large λ ∈ N.

3 Our Impossibility Result

In this section we prove our impossibility result for generic-group delay functions
in cyclic groups of known orders. For ease of presentation, here we consider
functions whose public parameters, inputs and outputs consist of group elements
and do not additionally contain any explicit bit-strings (see Sect. 5 for extending
our approach to this case).

In what follows we denote by factors(N) the multi-set of prime factors of the
λ-bit group order N (where the number of appearances of each prime factor is its
multiplicity – e.g., factors(100) = {2, 2, 5, 5}). We prove the following theorem:

Theorem 3.1. Let DF = (Setup,Sample,Eval) be a generic-group delay function
whose public parameters, inputs and outputs consist of kpp(λ, T), kin(λ, T) and
kout(λ, T) group elements, respectively, where λ ∈ N is the security parameter and
T ∈ N is the delay parameter. Let QeqEval(λ, T) denote the number of equality
queries issued by the algorithm Eval. Then, there exists a generic-group algorithm
A that consists of (kpp+kin) ·max{kout, QeqEval} parallel processors, each of which
issues at most O((kpp + kin) · |factors(N)| · λ) sequential oracle queries, such that

Pr

⎡
⎢⎢⎣y′ = y

∣∣∣∣∣∣∣∣

N ← OrderGen(1λ), p̂p ← SetupO(N, T)
x̂ ← SampleO(N, T, p̂p)
ŷ ← EvalO(N, T, p̂p, x̂)

ŷ′ ← AO(N, T, p̂p, x̂)

⎤
⎥⎥⎦ = 1

for all λ ∈ N and T ∈ N, where the probability is taken over the internal ran-
domness of OrderGen, Setup and Sample.

The proof of Theorem3.1 relies on the following notation. We will at times
substitute the group elements p̂p = (p̂p1, . . . , p̂pkpp

) and x̂ = (x̂1, . . . , x̂k) that
are given as input to Eval, with formal variables PP = (PP1, . . . ,PPkpp) and
X = (X1, . . . , Xkin). When this is the case, instead of writing EvalO(N,T, p̂p, x̂)
we will write EvalZN [PP,X]|L(N,T,PP,X), where L is a set of linear equations in
PP and in X. This latter computation is obtained from the original one by the
following emulation:

– Group elements are represented via polynomials in the formal variables PP
and X. The computation keeps track of the elements via a local table, which
replaces the table B of the oracle O (recall Sect. 2). This table isinitialized

168 L. Rotem et al.

so that its first 1 + kpp + kin entries are inhabited with the monomials
1,PP1, . . . ,PPkpp ,X1, . . . , Xkin .

– Group operations are simulated via polynomial addition; i.e., when Eval issues
a group operation query with two elements that are represented in the local
table by two polynomials p1(PP,X) and p2(PP,X), the result is the polyno-
mial p1(PP,X) + p2(PP,X), which is then placed in the next vacant entry of
the table.

– Each equality query is answered affirmatively if and only if equality follows from
the equations in L (in particular, when L = ∅, equality queries are answered
affirmatively if and only if the two polynomials at hand are identical).

– The output y(PP,X) = (y1(PP,X), . . . , ykout(PP,X)) of this computation
is a vector of polynomials in PP and in X. We denote by y(pp,x) =
(y1(pp,x), . . . , ykout(pp,x)) the vector obtained by evaluating each entry of
y(PP,X) at the point (pp,x) ∈ Z

kpp+kin

N .

We now turn to present the proof of Theorem3.1.

Proof. Let DF = (Setup,Sample,Eval) be a generic-group delay function, and
consider the following adversary A:

The adversary A
The adversary A on input (N, T, p̂p, x̂) and oracle access to O is defined as follows:

1. Initialize a set L = ∅ of linear equations in the formal variables PP =
(PP1, . . . ,PPkpp) and X = (X1, . . . , Xkin).

2. Repeat the following steps for t = (kpp + kin) · |factors(N)| + 1 iterations:
(a) Compute y′(PP,X) = EvalZN [PP,X]|L(N, T,PP,X). Let m denote the

number of equality queries that are negatively answered in the com-
putation, and let �1(PP,X), . . . , �m(PP,X) be the linear equations that
would have followed from each of these queries had it been affirmatively
answered.

(b) For each i ∈ [m], if �i(pp,x) holds then add �i(PP,X) to L. If at least
one linear equation was added to L then skip step 2(c) and continue to
the next iteration.

(c) Compute and output ̂y′(pp,x), then terminate.
3. Output ⊥.

Query completed. Steps 1 and 2(a) require no oracle queries. Step 2(b) requires
m · (kpp + kin) parallel processors, each issuing O(log N) sequential queries for
checking whether �i(pp,x) hold for any i ∈ [m] (and it holds that m ≤ QeqEval).
Step 2(c) is executed at most once and requires kout ·(kpp+kin) parallel processors,
each issuing O(log N) queries.

Finally, note that for a composite order N , the attacker A is not required to
compute the factorization of N in order to determine the number of iterations.
Specifically, for a λ-bit modulos N it always holds that |factors(N)| < λ, and
A can use this upper bound for determining an upper bound on the number of
iterations.

Generic-Group Delay Functions Require Hidden-Order Groups 169

Fix an iteration j ∈ [t] where t = (kpp + kin) · |factors(N)| + 1, let Lj denote
the state of the set L of linear equations at the beginning of the jth iteration,
and consider the two computations y = EvalO(N,T, p̂p, x̂) and y′

j(PP,X) =
EvalZN [PP,X]|Lj (N,T,PP,X). By the condition specified in step 2(b) for adding
a linear equation � to L, any � ∈ Lj is satisfied by (pp,x) (i.e., �(pp,x) holds).
Therefore, every equality query that is negatively answered in the computation
of y is also negatively answered in the computation of y′

j(PP,X). Hence, one of
the following two cases must happen:

– Case I: All equality queries in both computations are answered the same way.
In this case, the output of both computations is the same vector of linear
polynomials in terms of the inputs, and it holds that y = y′

j(pp,x). Further-
more, since all negatively answered queries in the computation of y′

j(PP,X)
are also negatively answered in the computation of y, then for all i ∈ [m] the
linear equation �i(pp,x) is not satisfied. Therefore, step 2(c) is reached in this
case and A succeeds in outputting y.

– Case II: There exists an equality query that is positively answered in the
computation of y but is negatively answered in the computation of y′

j(PP,X).
This means that there exists an i ∈ [m] for which �i(pp,x) holds, but �i(PP,X)
is not implied by the linear equations in Lj . Thus, �i is added to L and the
algorithm skips to the next iteration.

So far we have shown that A outputs y (i.e., the correct output) whenever step
2(c) is reached. We now complete the proof by showing that step 3 is never
reached (i.e., that step 2(c) is always reached). Suppose towards contradiction
that t = (kpp + kin) · |factors(N)| + 1 iterations are performed, but none of them
reaches step 2(c). For every j ∈ [t] recall that Lj denotes the state of the set L
at the beginning of the jth iteration, and denote by Lt+1 the state of L when
reaching step 3. Then, it holds that L1 � L2 � · · · � Lt+1, since for every j ∈ [t]
the set Lj+1 contains at least one linear equation that is not implied by Lj .
Also, as already mentioned, for every j ∈ [t + 1] and � ∈ Lj the linear equation
�(pp,x) is satisfied. For a system of linear equations M with k variables over
ZN , if there exists a solution z ∈ Z

k
N to the system M then the set of solutions

forms a coset of a subgroup of Z
k
N . That is, there exists a subgroup H of Z

k
N

such the the set of solutions to M is z + H. Therefore, there exist subgroups
H1, . . . , Ht+1 of Z

kpp+kin

N such that for every j ∈ [t + 1] it holds that
{

(pp′,x′) ∈ Z
kpp+kin

N

∣

∣

∣∀�(PP,X) ∈ Lj : �(pp′,x′) is satisfied
}

= (pp,x) + Hj .

Then, it holds that H1 > H2 > · · · > Ht+1 (i.e., Hj+1 is a proper subgroup of
Hj for every j ∈ [t]). Therefore, the order of every Hj+1 divides that of Hj , and
it holds that

factors(|Ht+1|) � factors(|Ht|) � · · · � factors(|H1|) ⊆ factors(|Zkpp+kin

N |).
Since

|factors(|Zkpp+kin

N |)| = |factors(Nkpp+kin)| = t − 1,

170 L. Rotem et al.

it is impossible to have t proper containments in the above chain and we reach
a contradiction. �

4 Extending Our Impossibility Result to the Multilinear
Setting

In this section we extend our impossibility result to groups that are equipped
with a d-linear map. Similarly to our proof in Sect. 3, once again we begin by con-
sidering functions whose public parameters, inputs and outputs consist of group
elements and do not additionally contain any explicit bit-strings (see Sect. 5 for
extending our proof to this case).

Recall that we denote by factors(N) the multi-set of prime factors of the λ-
bit group order N (where the number of appearances of each prime factor is its
multiplicity – e.g., factors(100) = {2, 2, 5, 5}). We prove the following theorem
(from which Theorem 3.1 follows by setting d = 1):

Theorem 4.1. Let d = d(λ) be a function of the security parameter λ ∈ N,
and let DF = (Setup,Sample,Eval) be a generic d-linear-group delay function
whose public parameters, inputs and outputs consist of kpp(λ, T), kin(λ, T) and
kout(λ, T) group elements, respectively, where T ∈ N is the delay parameter.
Let QeqEval(λ, T) denote the number of equality queries issued by the algorithm
Eval. Then, there exists a generic-group algorithm A that consists of

(

kpp+kin+d
d

) ·
max{kout, QeqEval} parallel processors, each of which issues at most O(

(

kpp+kin+d
d

)·
|factors(N)| · λ) sequential oracle queries, such that

Pr

⎡

⎢

⎢

⎣

y′ = y

∣

∣

∣

∣

∣

∣

∣

∣

N ← OrderGen(1λ), p̂p ← SetupO(N,T)
x̂ ← SampleO(N,T, p̂p)
ŷ ← EvalO(N,T, p̂p, x̂)
̂y′ ← AO(N,T, p̂p, x̂)

⎤

⎥

⎥

⎦

= 1

for all λ ∈ N and T ∈ N, where the probability is taken over the internal random-
ness of OrderGen, Setup and Sample. Moreover, A issues at most O

(

(

kpp+kin+d
d

)

)

multilinear map queries, which may all be issued in parallel.

Theorem 4.1 is in fact identical to Theorem3.1 expect for replacing the term
kpp + kin with the term

(

kpp+kin+d
d

)

, where d is the level of linearity, and note
that

(

kpp+kin+d
d

) ≤ (kpp + kin + 1)d (i.e., the efficiency of our attacker degrades
exponentially with the level of linearity). This shows that there are no construc-
tions of generic-group delay functions in cyclic groups of known orders that are
equipped with a d-linear map, for any d such that

(

kpp+kin+d
d

)

is polynomial in
the security parameter λ ∈ N. For example, this holds for any constant d, and
for functions whose public parameters and inputs consist of a constant number
of group elements this holds for any d = O(log λ).

Generic-Group Delay Functions Require Hidden-Order Groups 171

In what follows we first naturally extend the framework of generic groups
and algorithms, described in Sect. 2.1, to the multilinear setting (see Sect. 4.1),
and then prove Theorem 4.1 (see Sect. 4.2).

4.1 Generic Multilinear Groups

In order to generalize our impossibility result to rule out generic constructions
in groups that are equipped with a multilinear map, we first extend the model
of Maurer [Mau05] (recall Sect. 2.1) to support such groups. For simplicity of
presentation, we start by defining the model and proving our impossibility result
assuming that the multilinear map is symmetric. Then, in Sect. 5 we discuss how
to naturally extend the model and the proof to accommodate asymmetric maps
as well.

Let d = d(λ) be a function of the security parameter λ ∈ N. In what follows,
we consider computations in a source group of order N with a d-linear map into
a target group of the same order, for a λ-bit integer N generated by the order
generation algorithm OrderGen(1λ). For the purpose of capturing generic com-
putations in such groups, we consider a model which is obtained from Maurer’s
model by the following modifications:

1. Each element in the table B is now a pair in {source, target} × ZN ; mean-
ing, it consists of a label which specifies whether this element is from the
source group or from the target group, together with a ZN element as before.
All generic algorithms we consider now receive as input a generator for the
source group; we capture this fact by always initializing B with the element
(source, 1) in its first entry (we will forgo noting this explicitly).8

2. When the oracle receives a group operation query of the form (i, j,+), it first
verifies that the label of the element in the ith entry of the table B is the
same as the label of the element in the jth entry (and that both entries are
non-empty). If that is the case, then the oracle places (label, Vi + Vj) in the
next vacant entry of the table, where label is the label of the elements at hand,
and Vi and Vj are the ZN elements in the ith entry and in the jth entry of
B, respectively.

3. When the oracle receives an equality query of the form (i, j,=), it first verifies
that the label of the element in the ith entry of the table B is the same as the
label of the element in the jth entry (and that both entries are non-empty).
If that is the case, then the oracle returns 1 if Vi = Vj and 0 otherwise.

4. We add a third type of queries, which we refer to as multilinear map queries:
On input (i1, . . . , id,×), the oracle first verifies that for each j ∈ [d] the
ijth entry contains the label source. If so, it places (target,

∏

j∈[d] Vij), where
for every j ∈ [d], Vij is the ZN element in the ijth entry of B and the
multiplication is with respect to addition modulo N .

8 The generator (target, 1) for the target group can be obtained using a single multi-
linear map query, as described below.

172 L. Rotem et al.

The definition of generic-group delay functions remains the same as in
Sect. 2.2, other than the fact that all algorithms (i.e., Setup, Sample and Eval,
as well as the adversarial algorithms A0 and A1 from Definition 2.1) get oracle
access to the extended oracle described in this section, and two additional inputs:
(1) The arity d of the map; and (2) the labels of the group elements that are
placed in the table B when the algorithm starts its execution.

4.2 Proof of Theorem 4.1

We define the computation EvalZN [Lind(PP,X)]|L(N,T,PP,X) to be obtained from
the original computation EvalO(N,T, p̂p, x̂) by a similar emulation to that from
Sect. 3, with the following differences:

– The tuples PP and X consist of pairs of a label and a variable PP =
((grppp1 ,PP1), . . . , (grp

pp
kpp

,PPkpp)) and X = ((grpx1 ,X1), . . . , (grpxkin
,Xkin)),

where each label is either source or target, and is determined according to
the corresponding label of the original input (pp,x).9 We assume without
loss of generality that the source variables in both PP and X appear before
the target variables, denote the number of source variables in these tuples by
ksrc
pp and ksrc

in , respectively, and denote their total number by ksrc = ksrc
pp + ksrc

in .
– We define new variables

Z = Lind(PP,X) = {Zα1,...,αksrc |α1 + · · · + αksrc ≤ d}
∪{

PP1, . . . ,PPkpp ,X1, . . . , Xkin

}

,

where each variable of the form Zα1,...,αksrc is associated with the prod-
uct PPα1

1 · · ·PPαksrc
pp

ksrc
pp

· X
αksrc

pp +1

1 · · · Xαksrc

ksrc
in

. Additionally, for the standard basis
e1, . . . , eksrc we identify the variables Ze1 , . . . , Zeksrc with the source vari-
ables PP1, . . . ,PPksrc

pp
,X1, . . . , Xksrc

in
, respectively (thus, the union in the above

definition of Z is not disjoint). The number of variables in Z is at most
gd(kpp + kin) where gd(k) =

(

k+d
d

)

(the number of non-negative integer solu-
tions to α1 + · · · + αk ≤ d).

– Each entry in the local table maintained by the computation (recall
Sect. 3) includes a label – either source or target – in addition to a for-
mal polynomial as before. The table is initialized so that its first 1 +
kpp + kin entries are inhabited with the pairs (source, 1), (grppp1 ,PP1), . . . ,
(grpppkpp

,PPkpp), (grp
x
1 ,X1), . . . , (grpxkin

,Xkin). These labels are used in accor-
dance with the oracle definition from Sect. 4.1: When group operation or
equality queries are issued, the computation first makes the necessary label
consistency checks; and when a group operation query is executed, the result
polynomial is stored in the local table with the appropriate label.

9 Typically, the labels are predetermined by the scheme, but if this is not the case
then the labels can be recovered from the input.

Generic-Group Delay Functions Require Hidden-Order Groups 173

– Multilinear map queries are simulated as follows. First, we check that all
d polynomials that are the input to the query are stored in the local
table with the label source (otherwise, the query is ignored). If so, then
let p1(Z), . . . , pd(Z) be the polynomials given as input to the query. By the
queries allowed, it is guaranteed that p1, . . . , pd are linear polynomials which
only involve the variables PPsrc = (PP1, . . . ,PPksrc

pp
) and Xsrc = (X1, . . . , Xksrc

in
).

We compute the polynomial p(PPsrc,Xsrc) =
∏

i∈[d] pi(PPsrc,Xsrc), and then

we replace each product of variables PPα1
1 · · ·PPαksrc

pp

ksrc
pp

· X
αksrc

pp +1

1 · · · Xαksrc

ksrc
in

with
the single variable Zα1,...,αksrc to receive a linear polynomial p′(Z). Finally, we
store (target, p′(Z)) in the next vacant entry of the local table.

– Valid equality queries (i.e., when the entries to be compared have the same
label) are answered as in Theorem 4.1. If p1(Z) and p2(Z) are to be compared,
then the query is answered affirmatively if and only if the equality p1(Z) =
p2(Z) follows from the equations in L (which are linear in Z).

– For pp ∈ Z
kpp

N and x ∈ Z
kin

N we define

Products≤d(pp,x) =
{

ppα1
1 · · · ppαksrc

pp

ksrc
pp

· x
αksrc

pp +1

1 · · · xαksrc

ksrc
in

∣

∣

∣α1 + · · · + αksrc ≤ d
}

∪
{

pp1, . . . , ppkpp
, x1, . . . , xkin

}

.

That is, Products≤d(pp,x) contains all elements of (pp,x) and all products
of at most d elements from the source variables of (pp,x). Given point-
ers (p̂p, x̂), we can compute ŵ = {(target, z)

∧

|z ∈ Products≤d(pp,x)} by
using multilinear map queries. Then, given a linear polynomial p(Z), we
can compute (target, p(Products≤d(pp,x)))
∧

using w, and if p(Z) involves
only the source variables PP1, . . . ,PPksrc

pp
,X1, . . . , Xksrc

in
then we can compute

(source, p(Products≤d(pp,x)))
∧

.
– The output of the computation is of the form y′(Z) = ((grp1, y′

1(Z)), . . . ,
(grpkout

, y′
kout

(Z))) where grpi ∈ {source, target} and y′
i(Z) is a linear polyno-

mial for every i ∈ [kout]. Moreover, if grpi = source then y′
i(Z) is guaranteed

to involve only the source variables PP1, . . . ,PPksrc
pp

,X1, . . . , Xksrc
in

. Therefore,

given pointers (p̂p, x̂), for every i ∈ [kout] we can compute (grpi, y
′
i(z))

∧

where
z = Products≤d(pp,x), and we denote

ŷ′(z) = ((grp1, y′
1(z))

∧

, . . . , (grpkout
, y′

kout
(z))

∧

) .

We now turn to present the proof of Theorem4.1.

Proof. Let DF = (Setup,Sample,Eval) be a generic d-linear-group delay func-
tion, and consider the following adversary A:

The adversary A
The adversary A on input (N, T, p̂p, x̂) and oracle access to O is defined as follows:

1. Initialize a set L = ∅ of linear equations in the formal variables Lind(PP,X) =
Z, where PP = (PP1, . . . ,PPkpp) and X = (X1, . . . , Xkin).

2. Compute ŵ = {(target, z)
∧

|z ∈ Products≤d(pp,x)}.

174 L. Rotem et al.

3. Repeat the following steps for t = gd(kpp + kin) · |factors(N)| + 1 iterations:
(a) Compute y′(Z) = EvalZN [Lind(PP,X)]|L(N, T,PP,X). Let m denote the

number of equality queries that are negatively answered in the compu-
tation, and let �1(Z), . . . , �m(Z) be the linear equations that would have
followed from each of these queries had it been affirmatively answered.

(b) For each i ∈ [m], if �i(Products≤d(pp,x)) holds then add �i(Z) to L. If at
least one linear equation was added to L then skip step 3(c) and continue
to the next iteration.

(c) Compute and output y′(Products≤d(pp,x))
∧

, then terminate.
4. Output ⊥.

Query Complexity. Steps 1 and 3(a) require no oracle queries. Step 2 requires
at most gd(kpp + kin) parallel processors, each issuing a single multilinear map
query. Step 3(b) requires m·gd(kpp+kin) parallel processors, each issuing O(log N)
sequential queries for checking whether �i(Products≤d(pp,x)) hold (using the pre-
computed ŵ) for any i ∈ [m] (and it holds that m ≤ QeqEval). Step 3(c) is exe-
cuted at most once and requires kout ·gd(kpp +kin) parallel processors, each issuing
O(log N) queries (using the precomputed ŵ).

Finally, note that for a composite order N , the attacker A is not required to
compute the factorization of N in order to determine the number of iterations.
Specifically, for a λ-bit modulos N it always holds that |factors(N)| < λ, and
A can use this upper bound for determining an upper bound on the number of
iterations.

Fix an iteration j ∈ [t] where t = gd(kpp +kin) · |factors(N)|+1, let Lj denote
the state of the set L of linear equations at the beginning of the jth itera-
tion, and consider the two computations y = EvalO(N,T, p̂p, x̂) and y′

j(Z) =
EvalZN [Lind(PP,X)]|Lj (N,T,PP,X). By the condition specified in step 3(b) for
adding a linear equation � to L, any � ∈ Lj is satisfied by z = Products≤d(pp,x)
(i.e., �(z) holds). Therefore, every equality query that is negatively answered in
the computation of y is also negatively answered in the computation of y′

j(Z).
Hence, one of the following two cases must happen:

– Case I: All equality queries in both computations are answered the same way.
In this case, the output of both computations is the same vector of linear
polynomials in terms of z = Products≤d(pp,x) and Z = Lind(PP,X), respec-
tively, and also each coordinate in the output has the same {source, target}
label, so it holds that y = y′

j(z). Furthermore, since all negatively answered
queries in the computation of y′

j(Z) are also negatively answered in the com-
putation of y, then for all i ∈ [m] the linear equation �i(z) is not satisfied.
Therefore, step 3(c) is reached in this case and A succeeds in outputting y.

– Case II: There exists an equality query that is positively answered in the
computation of y but is negatively answered in the computation of y′

j(Z).
This means that there exists an i ∈ [m] for which �i(z) holds, but �i(Z) is
not implied by the linear equations in Lj . Thus, �i is added to L and the
algorithm skips to the next iteration.

So far we have shown that A outputs y (i.e., the correct output) whenever step
3(c) is reached. We now complete the proof by showing that step 4 is never
reached (i.e., that step 3(c) is always reached). Suppose towards contradiction

Generic-Group Delay Functions Require Hidden-Order Groups 175

that t = gd(kpp+kin) · |factors(N)|+1 iterations are performed, but none of them
reaches step 3(c). For every j ∈ [t] recall that Lj denotes the state of the set L
at the beginning of the jth iteration, and denote by Lt+1 the state of L when
reaching step 4. Then, it holds that L1 � L2 � · · · � Lt+1, since for every j ∈ [t]
the set Lj+1 contains at least one linear equation that is not implied by Lj . Also,
as already mentioned, for every j ∈ [t + 1] and � ∈ Lj the linear equation �(z) is
satisfied. For a system of linear equations M with k variables over ZN , if there
exists a solution z ∈ Z

k
N to the system M then the set of solutions forms a coset

of a subgroup of Z
k
N . That is, there exists a subgroup H of Z

k
N such the the set

of solutions to M is z + H. Therefore, there exist subgroups H1, . . . , Ht+1 of
Z

gd(kpp+kin)
N such that for every j ∈ [t + 1] it holds that

{

z′ ∈ Z
gd(kpp+kin)
N

∣

∣

∣∀�(Z) ∈ Lj : �(z′) is satisfied
}

= z + Hj .

Then, it holds that H1 > H2 > · · · > Ht+1 (i.e., Hj+1 is a proper subgroup of
Hj for every j ∈ [t]). Therefore, the order of every Hj+1 divides that of Hj , and
it holds that

factors(|Ht+1|) � factors(|Ht|) � · · · � factors(|H1|) ⊆ factors(|Zgd(kpp+kin

N)|).
Since

|factors(|Zgd(kpp+kin)
N |)| = |factors(Ngd(kpp+kin))| = t − 1,

it is impossible to have t proper containments in the above chain and we reach
a contradiction. �

5 Additional Extensions

In this section we first discuss two extensions of our results, showing that our
proofs extend to delay functions whose public parameters, inputs and outputs
may include arbitrary bit-strings (in addition to group elements), and to asym-
metric multilinear maps. Then, we pose an open problem regarding incremental
computation of Smith normal forms.

Allowing explicit bit-strings as part of pp, x and y. Our proofs from
Sects. 3 and 4 readily extend to the case where the public parameters pp, the
input x and the output y may include arbitrary bit-strings, in addition to group
elements. We review the necessary adjustments for our proof from Sect. 3, and
note that essentially identical adjustments can be applied to our proof in the
multilinear setting as well. Concretely:

– In addition to N , T , p̂p and x̂, the evaluation algorithm Eval now receives
as input two bit-strings, pps and xs, denoting the bit-string parts of pp and
of the input x, respectively, and outputs a bit-string ys in addition to ŷ.
The computation EvalZN [PP,X]|L (N,T, (PP, pps) , (X, xs)) is then defined via
an emulation of the computation EvalO (N,T, (p̂p, pps) , (x̂, xs)) similarly to
Sect. 3: The local table maintained by the emulation and the way queries

176 L. Rotem et al.

are emulated are defined as in Sect. 3, and the output of this emulation is
now a pair (y(PP,X), ys), where y(PP,X) is a vector of kout polynomials
y1(PP,X), . . . , ykout(PP,X) in PP and in X, and ys is an explicit bit-string.

– The adversary A now receives the bit-strings pps and xs, in addition to its
inputs from Sect. 3. In Step 2(a) it now runs the emulation EvalZN [PP,X]|L(N,
T, (PP, pps) , (X, xs)) to obtain its output (y′(PP,X), y′

s). In Step 2(c) it
computes ̂y′(pp,x) and outputs

(

̂y′(pp,x), y′
s

)

. The main additional obser-
vation is that for each iteration j ∈ [(kpp + kin) · |factors(N)| + 1], if all
equality queries in the emulation EvalZN [PP,X]|L (N,T, (PP, pps) , (X, xs))
in that iteration are answered consistently with the equality pattern in
EvalO (N,T, (p̂p, pps) , (x̂, xs)), then the bit-string component y′

s outputted
by the emulation in this iteration is the same as the bit-string component ys

outputted by the original computation EvalO (N,T, (p̂p, pps) , (x̂, xs)). Hence,
when Case I from our analysis is reached, it is still the case that the adversary
is successful in outputting the correct output.

Asymmetric multilinear maps. Our impossibility result from Sect. 4 can be
adjusted in order to rule out the existence of generic-group delay functions in
groups with asymmetric multilinear maps; i.e., collections of d + 1 groups – d
source groups and a single target group, each of which is of order N – which are
equipped with a d-linear operation mapping d elements, an element from each
source group, into an element in the target group.

First, the model has to be extended to support such groups. This is done in
a natural manner, by considering d+1 labels (instead of 2): source1, . . . , sourced

and target. Now, each entry in the table B is pair of the form (label, a), where
label is one of the aforementioned labels, and a ∈ ZN ; and we assume that the
table B is always initialized with the pairs (source1, 1), . . . , (sourced, 1) in its first
d entries, respectively. Upon receiving a multilinear operation query, the oracle
now verifies that the labels in the entries (implicitly) given as input to the oracle
are indeed source1, . . . , sourced.

The proof is then obtained from the proof of Theorem4.1 by adjusting it
to this generalized generic model. Roughly speaking, the main adjustment is
that now the linearization procedure needs to take into consideration the par-
ticular group of each input element. More concretely, the new formal variables
introduced by this linearization (denoted by Z in the proof of Theorem4.1) do
not include all products of degree at most d of the formal variables replac-
ing the source group elements in the public parameters and in the input.
Instead, they include all products of at most d elements, with distinct labels
from {source1, . . . , sourced}. Hence, the number of new formal variables intro-
duced by the linearization phase is now at most ((kpp + kin) /d + 1)d, rather
than

(

kpp+kin+d
d

)

.

Incremental computation of Smith normal forms. As discussed in Sect. 1.3
and described in detail in AppendixA, our attacker is efficient not only in its
number of parallel processors and generic group operations but also in its addi-
tional internal computation. Specifically, in each iteration our attacker performs

Generic-Group Delay Functions Require Hidden-Order Groups 177

a single invocation of any algorithm for computing Smith normal form. How-
ever, throughout the attack the matrices to which we apply such an algorithm
are not independent of each other, but rather each matrix is obtained from the
previous one by adding one more row and column. Thus, any algorithm that
can compute Smith normal forms in an incremental manner may lead to sub-
stantial improvements in the practical running time of our attacker. Finally, we
note that efficiently realizing our attacker’s internal computation is not essential
for our result in the generic-group model, and that basing our approach on fast
algorithms for Smith normal forms is just one concrete possibility.

A Fast Internal Computation via Smith Normal Forms

As discussed in Sect. 1.3, the most significant operation that is performed by
our attacker which is non-trivial in terms of its computational cost is checking
in each iteration whether or not a given linear equation follows from the linear
equations already in the set L. When considering groups of prime order, this can
be done simply by testing for linear independence among the vectors of coeffi-
cients corresponding to these equations. When considering groups of composite
order, this is a bit more subtle, and in what follows we show that this can be
done for example by relying on fast algorithms for computing the Smith normal
form of integer matrices (e.g., [Sto96]) and without knowing the factorization of
the order of the group.

The Smith normal form. The Smith normal form is a canonical diagonal form
for equivalence of matrices over a principal ideal ring R. For any A ∈ Rn×m there
exist square invertible matrices S and T over R such that D = SAT is the all-
zeros matrix except for the first r terms s1, . . . , sr on its main diagonal, where
si|si+1 for every 0 ≤ i ≤ r − 1. The matrix D is called the Smith normal form
of A and it is unique up to multiplications of its non-zero terms by units. The
Smith normal form was first proven to exist by Smith [Smi61] for matrices over
the integers, and in this case each si is positive, r = rank(A) and |det(S)| =
|det(T)| = 1. For our purposes we consider Smith forms of integer matrices, and
we will not be relying on the fact that si|si+1 for every 0 ≤ i ≤ r − 1.

A fast algorithm for computing Smith normal forms over the integers was pre-
sented by Storjohann [Sto96]. His algorithm requires Õ

(

nω−1m · M (n log ||A||))
bit operations for computing the Smith normal form of a matrix A ∈ Z

n×m,
where ω is the exponent for matrix multiplication over rings (i.e., two n×n matri-
ces can be multiplied in O(nω) ring operations), M(t) bounds the number of bit
operations required for multiplying two �t�-bit integers, and ||A|| = max |Ai,j |.
Efficiently realizing our attacker. Let L be a set of linear equations over
ZN in the formal variables Z = (Z1, . . . , Zk), and let �(Z) be an additional such
linear equation. Then, we would like to determine whether or not there exists
z ∈ Z

k
N such that �′(z) holds for every �′(Z) ∈ L but �(z) does not hold (i.e., �

is not implied by L).
Denote L = {〈a(i),Z〉 = bi mod N : i ∈ [t]}, where t = |L|, a(i) ∈ Z

k and
bi ∈ Z for every i ∈ [t] (that is, we identify ZN with {0, . . . , N − 1} ⊆ Z).

178 L. Rotem et al.

First, we convert our equations to equations over Z by adding new variables
W = (W1, . . . , Wt) and for each i ∈ [t] we convert the equation 〈a(i),Z〉 = bi

mod N into the equation

〈a(i),Z〉 + N · Wi = bi .

In matrix notation we let

A =

⎡

⎢

⎣

a(1)

...
a(t)

N · It×t

⎤

⎥

⎦ ∈ Z
(k+t)×t, b =

⎡

⎢

⎣

b1
...
bt

⎤

⎥

⎦ ∈ Z
t, v =

[

Z
W

]

∈ Z
k+t,

and then our system of linear equations is Av = b. Next, we compute the Smith
normal form of A, that is, we find matrices S ∈ Z

(k+t)×(k+t) and T ∈ Z
t×t that

are invertible over Z (i.e., |detS| = |detT| = 1), such that the matrix D = SAT
is zero everywhere except for the first r terms on its main diagonal for some
0 ≤ r ≤ t. Now, by multiplying from left by S, our system is the same as
SATT−1v = Sb, and denoting u = T−1v and c = Sb, we obtain the equivalent
system Du = c. Let d1, . . . , dr be the non-zero diagonal values of D. If there
exists i ∈ [r] such that di does not divide ci, or r ≤ i ≤ k+t such that ci �= 0 then
the system does not have any solution. Otherwise, the general solution for the
system Du = c is of the form u = (u1, . . . , uk+t) = (c1/d1, . . . , cr/dr, y1, . . . , ys),
where s = k + t − r and the y coordinates can take any value.

Now, let �(Z) be another linear equation in ZN , and denote it by 〈a′,Z〉 = b′

mod N , where a′ ∈ Z
k and b′ ∈ Z (recall that we identify ZN with {0, . . . , N −

1} ⊆ Z as mentioned above). We may substitute Z = T′u, where T′ ∈ Z
k×t con-

sists of the first k rows of T. Then, we obtain the linear equation 〈a′,T′u〉 = b′

mod N . Substituting the general solution u = (c1/d1, . . . , cr/dr, y1, . . . , ys), we
obtain a linear equation of the form

∑s
i=1 αiyi = β mod N . If β = 0 mod N

and αi = 0 mod N for all i ∈ [s] then every z ∈ Z
k satisfying L also sat-

isfies �(Z). Otherwise, if β �= 0 mod N then the solution corresponding to
(y1, . . . , ys) = (0, . . . , 0) satisfies L but does not satisfy �(Z), and if β = 0
mod N but there exists i ∈ [s] such that αi �= 0 mod N then the solution
corresponding to (y1, . . . , ys) = ei satisfies L but does not satisfy �(Z).

References

[BBB+18] Boneh, D., Bonneau, J., Bünz, B., Fisch, B.: Verifiable delay functions.
In: Shacham, H., Boldyreva, A. (eds.) CRYPTO 2018. LNCS, vol. 10991,
pp. 757–788. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-
96884-1 25

[BBF18] Boneh, D., Bünz, B., Fisch, B.: A survey of two verifiable delay functions.
Cryptology ePrint Archive, Report 2018/712 (2018)

[BGJ+16] Bitansky, N., Goldwasser, S., Jain, A., Paneth, O., Vaikuntanathan, V.,
Waters, B.: Time-lock puzzles from randomized encodings. In: Proceedings
of the 7th Conference on Innovations in Theoretical Computer Science, pp.
345–356 (2016)

https://doi.org/10.1007/978-3-319-96884-1_25
https://doi.org/10.1007/978-3-319-96884-1_25

Generic-Group Delay Functions Require Hidden-Order Groups 179

[BL96] Boneh, D., Lipton, R.J.: Algorithms for black-box fields and their appli-
cation to cryptography. In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol.
1109, pp. 283–297. Springer, Heidelberg (1996). https://doi.org/10.1007/
3-540-68697-5 22

[CP18] Cohen, B., Pietrzak, K.: Simple proofs of sequential work. In: Nielsen, J.B.,
Rijmen, V. (eds.) EUROCRYPT 2018. LNCS, vol. 10821, pp. 451–467.
Springer, Cham (2018). https://doi.org/10.1007/978-3-319-78375-8 15

[DGM+19] Döttling, N., Garg, S., Malavolta, G., Vasudevan, P.N.: Tight verifiable
delay functions. Cryptology ePrint Archive, Report 2019/659 (2019)

[DMP+19] De Feo, L., Masson, S., Petit, C., Sanso, A.: Verifiable delay functions from
supersingular isogenies and pairings. Cryptology ePrint Archive, Report
2019/166 (2019)

[DN92] Dwork, C., Naor, M.: Pricing via processing or combatting junk mail. In:
Brickell, E.F. (ed.) CRYPTO 1992. LNCS, vol. 740, pp. 139–147. Springer,
Heidelberg (1993). https://doi.org/10.1007/3-540-48071-4 10

[EFK+19] Ephraim, N., Freitag, C., Komargodski, I., Pass, R.: Continuous verifiable
delay functions. Cryptology ePrint Archive, Report 2019/619 (2019)

[GW11] Gentry, C., Wichs, D.: Separating succinct non-interactive arguments from
all falsifiable assumptions. In: Proceedings of the 43rd Annual ACM Sym-
posium on Theory of Computing, pp. 99–108 (2011)

[JS08] Jager, T., Schwenk, J.: On the equivalence of generic group models. In:
Baek, J., Bao, F., Chen, K., Lai, X. (eds.) ProvSec 2008. LNCS, vol. 5324,
pp. 200–209. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-
540-88733-1 14

[Kil92] Kilian, J.: A note on efficient zero-knowledge proofs and arguments. In:
Proceedings of the 24th Annual ACM Symposium on Theory of Comput-
ing, pp. 723–732 (1992)

[LW15] Lenstra, A.K., Wesolowski, B.: A random zoo: sloth, unicorn, and trx.
Cryptology ePrint Archive, Report 2015/366 (2015)

[Mau05] Maurer, U.: Abstract models of computation in cryptography. In: Smart,
N.P. (ed.) Cryptography and Coding 2005. LNCS, vol. 3796, pp. 1–12.
Springer, Heidelberg (2005). https://doi.org/10.1007/11586821 1

[Mic94] Micali, S.: CS proofs. In: Proceedings of the 35th Annual IEEE Symposium
on the Foundations of Computer Science, pp. 436–453 (1994)

[MMV11] Mahmoody, M., Moran, T., Vadhan, S.: Time-lock puzzles in the ran-
dom oracle model. In: Rogaway, P. (ed.) CRYPTO 2011. LNCS, vol. 6841,
pp. 39–50. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-
642-22792-9 3

[MMV13] Mahmoody, M., Moran, T., Vadhan, S.P.: Publicly verifiable proofs of
sequential work. In: Proceedings of the 4th Conference on Innovations in
Theoretical Computer Science, pp. 373–388 (2013)

[MSW19] Mahmoody, M., Smith, C., Wu, D.J.: A note on the (im)possibility of
verifiable delay functions in the random oracle model. Cryptology ePrint
Archive, Report 2019/663 (2019)

[MW98] Maurer, U., Wolf, S.: Lower bounds on generic algorithms in groups.
In: Nyberg, K. (ed.) EUROCRYPT 1998. LNCS, vol. 1403, pp. 72–84.
Springer, Heidelberg (1998). https://doi.org/10.1007/BFb0054118

[Nec94] Nechaev, V.I.: Complexity of a determinate algorithm for the discrete
logarithm. Math. Notes 55(2), 91–101 (1994). https://doi.org/10.1007/
BF02113297

https://doi.org/10.1007/3-540-68697-5_22
https://doi.org/10.1007/3-540-68697-5_22
https://doi.org/10.1007/978-3-319-78375-8_15
https://doi.org/10.1007/3-540-48071-4_10
https://doi.org/10.1007/978-3-540-88733-1_14
https://doi.org/10.1007/978-3-540-88733-1_14
https://doi.org/10.1007/11586821_1
https://doi.org/10.1007/978-3-642-22792-9_3
https://doi.org/10.1007/978-3-642-22792-9_3
https://doi.org/10.1007/BFb0054118
https://doi.org/10.1007/BF02113297
https://doi.org/10.1007/BF02113297

180 L. Rotem et al.

[Pie19] Pietrzak, K.: Simple verifiable delay functions. In: Proceedings of the 10th
Conference on Innovations in Theoretical Computer Science, pp. 60:1–
60:15 (2019)

[RSW96] Rivest, R.L., Shamir, A., Wagner, D.A.: Time-lock puzzles and timed-
release crypto (1996)

[Sho97] Shoup, V.: Lower bounds for discrete logarithms and related problems.
In: Fumy, W. (ed.) EUROCRYPT 1997. LNCS, vol. 1233, pp. 256–266.
Springer, Heidelberg (1997). https://doi.org/10.1007/3-540-69053-0 18

[Smi61] Smith, H.J.S.: On systems of linear indeterminate equations and congru-
ences. Philos. Trans. R. Soc. 151(1), 293–326 (1861)

[Sto96] Storjohann, A.: Near optimal algorithms for computing Smith normal
forms of integer matrices. In: Proceedings of the International Symposium
on Symbolic and Algebraic Computation, pp. 267–274 (1996)

[Wes19] Wesolowski, B.: Efficient verifiable delay functions. In: Ishai, Y., Rijmen,
V. (eds.) EUROCRYPT 2019. LNCS, vol. 11478, pp. 379–407. Springer,
Cham (2019). https://doi.org/10.1007/978-3-030-17659-4 13

https://doi.org/10.1007/3-540-69053-0_18
https://doi.org/10.1007/978-3-030-17659-4_13

Signatures

Sigma Protocols for MQ, PKP and SIS,
and Fishy Signature Schemes

Ward Beullens(B)

imec-COSIC KU Leuven,
Kasteelpark Arenberg 10 - bus 2452, 3001 Heverlee, Belgium

Ward.Beullens@esat.kuleuven.be

Abstract. This work presents sigma protocols to prove knowledge of:
– a solution to a system of quadratic polynomials,
– a solution to an instance of the Permuted Kernel Problem and
– a witness for a variety of lattice statements (including SIS).

Our sigma protocols have soundness error 1/q′, where q′ is any number
bounded by the size of the underlying finite field. This is much better
than existing proofs, which have soundness error 2/3 or (q′ + 1)/2q′.
The prover and verifier time our proofs are O(q′). We achieve this by
first constructing so-called sigma protocols with helper, which are sigma
protocols where the prover and the verifier are assisted by a trusted
third party, and then eliminating the helper from the proof with a “cut-
and-choose” protocol. We apply the Fiat-Shamir transform to obtain
signature schemes with security proof in the QROM. We show that the
resulting signature schemes, which we call the “MUltivariate quaDratic
FIat-SHamir” scheme (MUDFISH) and the “ShUffled Solution to Homo-
geneous linear SYstem FIat-SHamir” scheme (SUSHSYFISH), are more
efficient than existing signatures based on the MQ problem and the Per-
muted Kernel Problem. Our proof system can be used to improve the
efficiency of applications relying on (generalizations of) Stern’s protocol.
We show that the proof size of our SIS proof is smaller than that of
Stern’s protocol by an order of magnitude and that our proof is more
efficient than existing post-quantum secure SIS proofs.

Keywords: Zero-knowledge · Post-Quantum digital signatures · SIS ·
Multivariate cryptography · Permuted Kernel Problem · Silly acronyms

1 Introduction

Zero-knowledge proofs of knowledge and more specifically Sigma protocols are
a technique in cryptography that allows a prover to prove to a verifier that they
know a value x that satisfies some relation, without revealing any additional
information about x [19]. Sigma protocols are useful to build a wide variety of
cryptographic applications, including digital signatures, group/ring signatures,

c© International Association for Cryptologic Research 2020
A. Canteaut and Y. Ishai (Eds.): EUROCRYPT 2020, LNCS 12107, pp. 183–211, 2020.
https://doi.org/10.1007/978-3-030-45727-3_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-45727-3_7&domain=pdf
https://doi.org/10.1007/978-3-030-45727-3_7

184 W. Beullens

e-voting protocols, and privacy-preserving cryptocurrencies. In some cases these
sigma protocols are not completely sound, meaning that a cheating prover can
convince a verifier he knows some value, without actually knowing it. If a prover
can do this with a probability at most ε, then ε is said to be the soundness error
of the sigma protocol. The soundness of a sigma protocol can be amplified; by
repeating the protocol k times the soundness error of the entire protocol becomes
εk. Therefore, if one repeats a protocol with soundness error ≤1 often enough,
one can obtain a sound protocol. However, if a large number of repetitions is
required, this makes the protocol less efficient and makes applications of the
protocol less practical. This is the case for Stern’s protocol [34] and the sigma
protocols underlying some post-quantum signature schemes [10,12,14]. The goal
of this paper is to develop new variants of these sigma protocols that have a
smaller soundness error, such that fewer repetitions are necessary and such that
the overall efficiency of the protocols is improved.

Zero-Knowledge Based Post-Quantum Signatures. One way to con-
struct a signature scheme is to first construct a zero-knowledge identifica-
tion scheme and then make it into a non-interactive signature scheme with
a transformation such as the Fiat-Shamir transform [17] or the Unruh trans-
form [35]. Looking at the NIST Post-Quantum Standardization project, three
of the Round II signature schemes, MQDSS, Picnic, and Dilithium use this
approach. MQDSS [13] uses a zero-knowledge proof that, given a multivariate
quadratic map P : Fn

q → F
m
q proves knowledge of a solution s ∈ F

n
q such that

P(s) = 0. Picnic [12] uses an identification scheme constructed using the “MPC-
in-the-head” technique [20] that relies on symmetric primitives. Dilithium is a
lattice-based signature scheme that relies on the Fiat-Shamir with aborts tech-
nique [29]. Another example is PKP-DSS [10], which uses a zero-knowledge proof
introduced by Shamir in 1989 for proving knowledge of a solution of an instance
of the Permuted Kernel Problem (PKP) [33]. This means that, given a matrix
A ∈ F

m×n
q and a vector v ∈ F

n
q , the proof system can prove knowledge of a

permutation π ∈ Sn such that Avπ = 0, where vπ is the vector obtained by
permuting the entries of the vector v with the permutation π. A drawback of
these schemes (with exception of Dilithium) is that the underlying identification
schemes have a large soundness error, so a large number of parallel repetitions
are required to get a secure signature scheme. This increases the signature sizes
and the signing and verification times. For example, the protocol underlying the
Picnic signature scheme has a soundness error of 2

3 and hence requires k = 219
repetitions to get the soundness error down to less than 2−128.

Recently, Katz et al. [24] improved on the approach of Picnic by building a
zero-knowledge proof from MPC in the preprocessing model, where the parties
can use some auxiliary data that was generated during a preprocessing phase.
The advantage of moving to the new MPC protocol is that it allows for secure
computation with dishonest majority with an arbitrary number of parties n,
which results in a zero-knowledge proof with a soundness error of 1

n . Hence, fewer

Sigma Protocols for MQ, PKP and SIS, and Fishy Signature Schemes 185

parallel rounds are required to get a secure signature scheme. A “cut-and-choose”
protocol is used to deal with the preprocessing phase, which makes signing and
verification slower compared to the original Picnic scheme. This new signature
scheme is called Picnic2 and is, together with the original Picnic scheme, one of
the Round 2 candidates of the NIST PQC standardization project.

Stern’s Protocol. In 1993, Stern proposed a code based sigma protocol [34].
For a publicly known parity check matrix H ∈ F

m×n
2 , syndrome s ∈ F

m
2 and

weight t, Stern’s zero-knowledge proof can prove knowledge of an error vector
e ∈ F

n
2 with hamming weight t such that He = s. Internally, Stern’s protocol is

very similar to Shamir’s protocol for PKP, and in fact, Stern’s protocol general-
izes easily to proving knowledge of a witness of the inhomogeneous PKP (IPKP)
relation. The motivation behind Stern’s protocol was to obtain a code-based
identification scheme (and hence also a signature scheme with the Fiat-Shamir
transform). However, Stern’s protocol has been used extensively in lattice-based
cryptography, because the IPKP relation can be bootstrapped to prove knowl-
edge of a solution to the SIS problem, knowledge of an LWE secret and more
complex lattice statements such as proving that a given LWE ciphertext is a
valid encryption of a known message satisfying certain constraints [28]. This led
to the construction of many advanced primitives from lattices, such as identity-
based identification schemes, group signatures (with verifier local revocation),
logarithmic size ring signatures and group encryption [25–28]. Improving Stern’s
protocol is an important and long-standing open problem because this would
improve the efficiency of all these constructions.

Contributions. In this paper we generalize the idea behind Picnic2 [24] to
something we call “sigma protocols with helper”. Concretely, a sigma protocol
with helper is a 3-party protocol between a prover, a verifier and a trusted third
party called the “helper”. The protocol begins with the helper who honestly
generates some auxiliary information that he sends to the verifier. The helper also
sends the randomness seed that he used to generate his randomness to the prover.
Then, the protocol resumes like a normal sigma protocol. A sigma protocol
with helper is similar to a sigma protocol in the Common Reference String
(CRS) model, except that the trusted third party sends some secret information
(the randomness seed) to the prover and that the trusted third party needs to
participate in every execution, rather than just doing the trusted setup once.

We then construct a sigma protocol with helper to prove knowledge of a
solution of a system of quadratic equations and a sigma protocol with helper
for proving knowledge of a solution of an inhomogeneous PKP instance (i.e.
the same relation as the Shamir and Stern protocols). Our proofs have sound-
ness error 1

q′ and prover time Θ(q′), where q′ is any number bounded by the
size of the finite fields that are used. This soundness error is much better than
existing proofs which have soundness error 1

2 + 1
2q or soundness error 2/3. We

then show how to remove the helper with a “cut-and-choose” protocol, analo-
gous to the approach used by Katz et al. [24]. This transformation gives rise to

186 W. Beullens

standard sigma protocols (i.e. without helper) which can then be transformed
into signature schemes using the Fiat-Shamir transform or used as a more
efficient variant of Stern’s protocol as a building block for advanced privacy-
preserving constructions.

Note that, even though the soundness error is q′, it is not possible to do
one-shot proofs if the field size is exponential because the prover time is Θ(q′).
However, we can still realize a large practical improvement over existing proofs:
The proof size of existing proofs is O(λX), where λ is the security parameter
and X is the proof size of a single iteration of the protocol. In comparison, the
proof size of our proofs is O(λ

log q′ (X + log q′ ∗ |seed|)), because the number of
iterations is now O(λ

log q′), and each iteration incurs an overhead of log q′|seed| (a
path in a Merkle tree of size q′). In practice, the proof size is often dominated by
the O(λ|seed|) term even for small values of q′. Since X is usually much larger
than |seed| = λ, this gives a large improvement in practice. X and |seed| are
both linear in λ, so the improvement factor remains the same at higher security
levels.

We apply the Fiat-Shamir transform to our Sigma protocol for the MQ rela-
tion to get a signature scheme whose security reduces to the problem of finding
a solution to a random system of multivariate quadratic polynomials. We call
this the “MUltivarite quaDratic FIat-SHamir” scheme (MUDFISH). MUDFISH
is more efficient than MQDSS, the existing signature scheme based on the same
hard problem. At NIST security level 1, the MUDFISH signatures are roughly
half as big as the MQDSS signatures, while our constant-time MUDFISH imple-
mentation is roughly twice as fast as the optimized MQDSS implementation that
was submitted to the NIST PQC standardization project. Using the Fiat-Shamir
transform on our sigma protocol for the PKP relation, we obtain the “ShUf-
fled Solution to Homogeneous linear SYstem FIat-SHamir” scheme (SUSHSY-
FISH), a signature scheme whose security reduces to finding a solution of a
random PKP instance. SUSHSYFISH has smaller signatures than PKP-DSS,
the existing scheme based on the PKP problem while being only slightly slower.
Moreover, unlike MQDSS and PKP-DSS, the MUDFISH and SUSHSYFISH sig-
nature schemes are based on sigma protocols (i.e. 3-round proofs) rather than
5-round proofs, which results in tighter security proofs in the ROM and even
allows us to use the recent results of Don et al. [16] to prove their security in the
QROM. A comparison of the signature sizes and signing speed of MUDFISH and
multiple instantiations of SUSHSYFISH with those of existing Post-Quantum
Fiat-Shamir signatures is given in Fig. 1. Our implementation is available on
GitHub [9].

We can improve the lattice-based constructions such as identity-based iden-
tification schemes, group signatures (with verifier local revocation), logarithmic
size ring signatures and group encryption that rely on Stern’s protocol [25–28],

Sigma Protocols for MQ, PKP and SIS, and Fishy Signature Schemes 187

by replacing Sterns protocol by our more efficient proof for IPKP. In partic-
ular, we make a case study for the SIS problem, where we see that with our
proof system, the proof size is a factor 10 smaller than with Stern’s protocol.
And smaller than proof sizes arising from other post-quantum exact proofs
for SIS, such as using “MPC-in-the-head” techniques [5] or an algebraic app-
roach [11].

Fig. 1. Comparison of MUDFISH and SUSHSYFISH to existing signatures based on
the MQ problem (MQDSS) and PKP problem (PKP-DSS). Cycle counts of picnic and
MQDSS are taken from the NIST Round2 submission packages (the optimized, but not
AVX2 optimized implementations, updated to take the attack of Kales and Zaverucha
into account [23]), cycle counts for PKP-DSS are taken from [10].

Roadmap. In Sect. 2 we lay out some basic preliminaries required for the
remainder of the paper. In Sect. 3 we formalize the notion of a sigma protocol
with helper, then we construct sigma protocols with helper for the MQ problem
and the Permuted Kernel Problem in Sects. 4 and 5. In Sect. 6 we show how to
convert a sigma protocol with helper in a normal zero-knowledge proof (with-
out helper). Then, we convert our zero-knowledge proofs into signature schemes
in Sect. 8, where we also briefly discuss our proof-of-concept implementations.
Finally, in Sect. 9 we show how to use the IPKP proof to construct a zero-
knowledge proof for the SIS relation, and we compare our SIS proof to existing
SIS proofs.

188 W. Beullens

2 Preliminaries

2.1 Hard Problems

We introduce (variants of) the Permuted Kernel Problem (PKP), the Multivari-
ate quadratic problem (MQ) and the Short Integer Solution problem (SIS), three
computationally hard problems that are used in the remainder of the paper.

Permuted Kernel Problem (PKP/IPKP). Given a matrix A ∈ F
m×n
q and

a vector v ∈ F
n
q defined over a finite field Fq, the Permuted Kernel Problem is to

find a permutation π ∈ Sn, such that Avπ = 0, where vπ is the vector obtained
by permuting the entries of v with the permutation π, that is, the vector defined
by (vπ)i = vπ(i). There is also a inhomogeneous version of the problem, where
given A ∈ F

m×n
q , v ∈ F

n
q and a target vector t ∈ F

m
q , the task is to find a

permutation π ∈ Sn, such that Avπ = t.
The permuted kernel problem is a classical NP-Hard problem that was first

introduced in cryptography by Shamir, who designed an identification scheme,
whose security reduces to the problem of solving a random PKP instance [33].
Several works have introduced new algorithms and time-memory trade-offs for
solving the PKP [3,18,21,30], but solving the problem remains prohibitively
difficult, even for small parameters (see Table 3).

Subgroup IPKP. The Subgroup Inhomogeneous Permuted Kernel Problem
(SIPKP) is the same as the IPKP problem, with the additional constraint that
the solution is a member of a certain subgroup of Sn. Concretely, a solution to
the a SIPKP instance (A,v, t,H), with A ∈ F

m×n
q ,v ∈ F

n
q , t ∈ F

m
q and H a

subgroup of Sn is a permutation π ∈ H such that Avπ = t.

Multivariate Quadratic (MQ). Given a multivariate quadratic map P :
F

n
q → F

m
q of m quadratic polynomials in n variables defined over a finite field

Fq, the MQ problem asks to find a solution s ∈ F
n
q such that P(s) = 0. The

best known methods for solving this problem rely on Grobner basis meth-
ods or linearization methods in combination with guessing a number of the
variables [8,22]. This is the central problem underlying most of multivariate
cryptography, and for random systems F , the hardness of the problem is well
understood.

Short Integer Solution (SIS/ISIS). The well known Short Integer Solution
problem, introduced in the seminal work of Ajtai [1] asks to, given a matrix
A ∈ Z

n×m
q , and a bound β, find a vector x, such that Ax = 0 whose norm

is bounded by ||x|| ≤ β. There is also a inhomogeneous version of the problem
(ISIS), where, given A ∈ Z

n×m
q , t ∈ Z

n
q and a bound β the task is to find x ∈ Z

m
q

such that Ax = t, again subject to ||x|| ≤ β. The problem enjoys reductions from
worst case lattice problems, and is one of the fundamental problems underlying
lattice-based cryptography.

Sigma Protocols for MQ, PKP and SIS, and Fishy Signature Schemes 189

2.2 Commitment Schemes

Many sigma protocols, including ours, depend heavily on secure non-interactive
commitment schemes. In the remainder of the paper we assume a non-interactive
commitment function Com : {0, 1}λ × {0, 1}� → {0, 1}2λ, that takes as input λ
uniformly random bits bits, where λ is the security parameter, and a message
m ∈ {0, 1}� and outputs a 2λ bit long commitment Com(bits,m).

Intuitively, the commitment scheme should not reveal anything the message
it commits to, and it should not be possible to open the commitment to some
different message. These properties are formalized as follows:

Definition 1 (Computational binding). For an adversary A we define its
advantage for the commitment binding game as

AdvBindingCom (A) = Pr[Com(bits,m) = Com(bits′,m′)|(bits,m, bits′,m′) ← A(1λ)]

We say that Com is computationally binding if for all polynomial time algorithms
A, the advantage AdvBindingCom (A) is a negligible function of the security parame-
ter λ.

Definition 2 (Computational hiding). For an adversary A we define the
advantage for the commitment hiding game for a pair of messages m,m′ as

AdvHidingCom (A, m, m′) =

∣
∣
∣
∣
∣

Pr
bits←{0,1}λ

[1 = A(Com(bits, m)]− Pr
bits←{0,1}λ

[1 = A(Com(bits, m′)]

∣
∣
∣
∣
∣

We say that Com is computationally hiding if for all polynomial time algorithms
A, and every pair of messages m,m′ the advantage AdvHidingCom (A,m,m′) is a neg-
ligible function of the security parameter λ.

In our implementations, we use SHAKE256 as commitment function. If we
model SHAKE256 as a quantum random oracle, then it satisfies the computa-
tional binding and hiding properties.

3 Sigma Protocols with Helper

This paper introduces two Sigma protocols with helper, which are like normal
sigma protocols, with the addition of a trusted third party (called the helper)
that runs a setup algorithm based on a random seed at the beginning of each
execution of the protocol. The helper then sends some auxiliary information to
the verifier and sends the seed value that was used to seed the setup algorithm
to the prover. A more formal definition is as follows:

190 W. Beullens

Definition 3 (Sigma protocol with helper). A protocol is a sigma protocol
with helper for relation R with challenge space C if it is of the form of Fig. 2 and
satisfies:

– Completeness. If all parties (Helper, Prover and Verifier) follow the protocol
on input (x,w) ∈ R, then the verifier always accepts.

– 2-Special soundness. From an adversary A that outputs with notice-
able probability two valid transcripts (x, aux, com, ch, rsp) and (x, aux, com,
ch′, rsp′) with ch �= ch′ and where aux = Setup(seed) for some seed value
seed (not necessarily known to the extractor) one can efficiently extract a
witness w such that (x,w) ∈ R.

– Special honest-verifier zero-knowledge. There exists a PPT simulator S
that on input x, a random seed value seed and a random challenge ch outputs
a transcript (x, aux, com, ch, rsp) with aux = Setup(seed) that is computation-
ally indistinguishable from the probability distribution of transcripts of honest
executions of the protocol on input (x,w) for some w such that (x,w) ∈ R,
conditioned on the auxiliary information being equal to aux and the challenge
being equal to ch.

4 Proving Knowledge of a Solution to a System
of Quadratic Equations

Two zero-knowledge proofs to prove knowledge of a solution of a system of mul-
tivariate quadratic equations over a finite field Fq were proposed by Sakumoto
et al. [32]. The first proof is a 3-round protocol which has soundness error 2

3 ,
while the second proof is a 5-round protocol with soundness error 1

2 + 1
2q , where q

is the size of the finite field over which the system of polynomials is defined. The
MQDSS [13] signature scheme is obtained by applying the Fiat-Shamir trans-
form to the 5-round protocol of Sakumoto et al. Because the soundness error
of 1

2 + 1
2q is rather big, and because the Fiat-Shamir transformation does not

tightly preserve security for 5-round protocols [23] a large number (e.g. 184 for
the NIST security level I parameter set) of parallel rounds is required to obtain
a secure signature scheme.

In this section, we present a sigma protocol with helper to prove knowledge of
a solution of a system of multivariate quadratic equations. The scheme improves
the knowledge error to only 1/q, but this comes at the cost of having an honest
party that helps the prover and the verifier in their execution of the protocol.
Similar to the schemes of Sakumoto et al. the new protocol relies on the fact that
if F : Fn

q → F
n
q is a multivariate quadratic map of m polynomials in n variables,

then the polar form of F , which is defined as

G(x,y) := F(x + y) − F(x) − F(y) (1)

is linear in both x and y.

Sigma Protocols for MQ, PKP and SIS, and Fishy Signature Schemes 191

Helper(x)

seed
$←− {0, 1}λ

aux ← Setup(seed)
Send seed to the prover and aux to the verifier.

Prover(x, w, seed) Verifier(x, aux)

com,P state ← P1(x, w, seed)

com−−−−→
ch

$←− C

rsp ← P2(P state, ch)

ch←−−−−−

rsp−−−−−→
return V (x, aux, com, ch, rsp)

Fig. 2. The structure of a sigma protocol with trusted setup.

To prove knowledge of a secret s such that F(s) = v the protocol goes as
follows: During the first phase the helper picks a random vector r0 and commits
to linear secret sharings t + tc = cr0, e + ec = cF(r0) for each c ∈ Fq. These
commitments are public auxiliary information which the helper sends to the
verifier. The helper also sends the seed that he used to generate his randomness
to the prover. Then, the prover publishes the masked secret r1 = s − r0 and
commits to the value of e+ G(r1, t). Finally the verifier challenges the prover to
reveal eα and tα for a random choice of α ∈ Fq and checks whether the following
equation, which is equivalent to Eq. 1, holds.

e + G(r1, t) = c (F(s) − F(r1)) − ec − G(r1, tc) , ∀c ∈ Fq (2)

A more detailed version of the protocol is displayed in Fig. 3.

Theorem 1. Suppose the used commitment scheme is computationally binding
and computationally hiding, then the protocol of Fig. 3 is a sigma protocol with
trusted setup as in Definition 3 with challenge space Fq.

Proof. We prove completeness, 2-special soundness and special honest-verifier
zero knowledge separately:

192 W. Beullens

Completeness: The fact that in a honest execution of the protocol x = e +
G(r1, t) follows from Eq. 2, so completeness follows immediately.

2-Special Soundness: Suppose an extractor is given two transcripts
(aux, com, α, (r, rα, r1, eα, tα)), (aux, com, α, (r′, r′α, r′

1, eα′ , tα′)) with α �= α′ that
are accepted by the verifier and such that aux = Setup(seed) (for some seed value
unknown to the extractor). Then we show how to extract a witness s such that
P(s) = v if the binding of the commitments does not fail.

Let x := α(v−F(r1))−eα−G(r1, tα) and x′ := α′(v−F(r′
1))−eα′−G(r′

1, tα′),
then the verifier only accepts if we have com = Com(r, r1,x) = Com(r′, r′

1,x
′),

so the binding property of Com implies that r1 = r′
1 and x = x′.

Even though the extractor does not know e, t, r0 or the commitment random
strings {rc | c ∈ Fq}, the extractor still knows that

aux = {Com(̃rc, (cF(r0) − e, cr0 − t)) | c ∈ Fq}

for some values of e, t, r0 and {r̃c | c ∈ Fq}, because the helper computed aux =
Setup(seed) honestly.

The verifier only accepts both transcripts if Com(̃rα, (αF(r0)−e, αr0 −t)) =
Com(rα, (eα, tα)) and Com(̃rα′ , (α′F(r0) − e, α′r0 − t)) = Com(r′α, (eα′ , tα′)), so
the binding property of Com implies that

αF(r0) − e = eα , αr0 − t = tα ,

α′F(r0) − e = eα′ and α′r0 − t = tα′ .

Substituting this into x = x′ we get

α(v−F(r1)) + e− αF(r0)−G(r1, αr0 − t) = α′(v−F(r1)) + e− α′F(r0)−G(r1, α′r0 − t) ,

which simplifies to

(α − α′) (F(r1) + F(r0) + G(r0, r1) − v) =
(α − α′) (F(r0 + r1) − v)) = 0 ,

so r0 + r1 = tα−tα′
α−α′ + r1 is a solution to F(x) = v. Notice that all the values

on the right hand side of this equation are included in the 2 transcripts, so
extracting the solution from the two transcripts is trivial.

Special Honest-Verifier Zero-Knowledge: Define a simulator S, that on
input v, a random seed value seed and a random challenge α ∈ Fq does the
following things:

Sigma Protocols for MQ, PKP and SIS, and Fishy Signature Schemes 193

1. recompute aux, rα, eα and tα from seed.
2. pick a uniformly random vector u ∈ F

n
q .

3. compute fα,eα,tα
(u), where fα,eα,tα

(x) := α(v − F(x)) − eα − G(x, tα).
4. produce commitment randomness r and a commitment com′ to (u,

fα,eα,tα
(u)) .

5. output (aux, com′, α, (r, rα,u, eα, tα)).

Then the Simulator is identical to an honest prover, except for step 2, where
the honest prover sets u equal to s − r0 rather than a uniformly random value.
It is clear that (α, r, rα,u, eα, tα) and (α, r, rα, s − r0, eα, tα) are both uniformly
distributed in Fq × {0, 1}2λ × (

F
n
q

)3 and hence follow the same distribution.
Since com and comα are completely determined by (α, r, rα, s− r0, eα, tα) it fol-
lows that (comα, com′, α, r, rα,u, eα, tα) and (comα, com, α, r, rα, s − r0, eα, tα)
also follow the same distribution. Finally, since the commitments comc �=α

are never opened, it follows from the hiding property of the commitment
scheme with the standard hybrid argument that (aux, com′, α, r, rα,u, eα, tα) and
(aux, com, α, r, rα, s − r0, eα, tα) are computationally indistinguishable.

5 Proving Knowledge of a Solution to a (inhomogeneous)
PKP Instance

In this section we give a Sigma protocol with helper with challenge space Fp

to prove knowledge of a solution for an inhomogeneous PKP instance, i.e. given
A,v, t our proof system proves knowledge of a permutation π such that Avπ = t.
The soundness error of our proof is only 1/p, which is much better than the 5-
round proof of Shamir, which has a soundness error of 1

2 + 1
2p [33], and Stern’s

3-round protocol, which has a soundness error of 2/3 [34].
To prove knowledge of a solution π to the instance (A,v, t) the protocol goes

as follows: The helper picks a random vector r ∈ F
n
p , and a random permutation

σ ∈ Sn, it then commits to r + cvσ for all values of c ∈ Fp. The helper sends
these commitments as public auxiliary information to the verifier, and he sends
the seed that he used to generate his randomness to the prover. Then the prover
sends ρ = πσ−1 to the verifier and commits to the value of Arπσ−1 . Finally, the
verifier challenges the prover to reveal x = r+αvσ for a random choice of α. Once
the prover reveals x the verifier checks if Axρ − αt = A (rπσ−1 + αvπ) − αt =
Arπσ−1 . For a more detailed description of the protocol we refer to Fig. 4.

Theorem 2. Suppose the used commitment scheme is computationally binding
and computationally hiding, then the protocol of Fig. 4 is a sigma protocol with
trusted setup as in Definition 3 with challenge space Fp.

Proof. We prove completeness, 2-special soundness and special honest-verifier
zero knowledge separately:

194 W. Beullens

Helper()

seed
$←− {0, 1}λ

Generate e ∈ F
m
q and t, r0 ∈ F

n
q from seed.

for each c in Fq do
ec ← c (r0) − e
tc ← cr0 − t
Generate commitment randomness rc ∈ {0, 1}λ from seed.
comc ← Com(rc, (ec, tc))

end for
aux ← [comc| for c ∈ Fq]
Send seed to the prover and aux to the verifier.

Prover(, s, seed) Verifier(,v, aux)

Regenerate e, t, r0 from seed.
r1 ← s − r0
r ← {0, 1}λ

com ← Com(r, (r1, e+ G(r1, t)))
com−−−−→

α
$←− Fq

Recompute rα, eα, tα from seed.
α←−−−−

(r,rα,r1,eα,tα)−−−−−−−−−→
x ← α(v−F(r1))−eα−G(r1, tα)
b1 ← com = Com(r, (r1,x))
b2 ← comα = Com(r, (eα, tα))
return b1 ∧ b2

Fig. 3. A sigma protocol with helper for proving knowledge of a solution to the MQ
problem.

Completeness: In an honest execution of the protocol we have

y = Axρ − αt = A (rπσ−1 + αvπ) − αt,

so if π is a solution to the PKP instance (A,v,t), then Avπ = t, which means
y = Arπσ−1 and hence the completeness follows from the completeness of the
commitment scheme.

Sigma Protocols for MQ, PKP and SIS, and Fishy Signature Schemes 195

2-Special Soundness: Given two transcripts (aux, com, α, (r, rα, ρ,x)) and
(aux, com, α′, (r′, r′α, ρ′,x′)) with α �= α′ that are accepted by the verifier and
such that aux = Setup(seed), for some value of seed (not necessarily known to
the extractor). Then, if the binding of the commitment scheme does not fail
(which, by assumption, happens with overwhelming probability), one can effi-
ciently extract a witness π such that Avπ = t.

Let y := Axρ − αt and y′ := Ax′
ρ′ − α′t, then the verifier only accepts if

we have com = Com(r, (ρ,y)) = Com(r′, (ρ′,y′)), so the binding property of Com
implies that ρ = ρ′ and y = y′.

Note that even though the extractor does not know r, σ or any of the com-
mitment randomness strings rc, he still knows that aux is of the form

aux = {Com(rc, r + cvσ) | c ∈ Fq}
for some values of r, σ and {rc}c∈Fq

, because the helper computed aux =
Setup(seed) honestly.

The verifier only accepts both transcripts if Com(rα, r + αvσ) = Com(rα,x)
and Com(rα′ , r + α′vσ) = Com(rα′ ,x′), so the binding property of Com implies
that x = r + αvσ, and that x′ = r + α′vσ.

Putting everything together we get

A (rρ + αvρσ) − αt = A (rρ + α′vρσ) − α′t

which simplifies to

(α − α′) (Avρσ − t) = 0,

so ρσ is a solution to the instance of the permuted kernel problem. The value
of ρ is known to the extractor because it is included in the transcripts, and the
value of σ can be deduced from α, α′,x,x′ and v, because x − x′ = (α − α′)vσ.
(If the entries of v are not unique, multiple values of σ are possible, but they
will all give valid solutions to the PKP problem.)

Special Honest-Verifier Zero Knowledge: Define a simulator S, that on
input A,v, a random seed value seed and a random challenge α ∈ Fp does the
following things:

1. recompute aux, rα and x = r + αvσ from seed.
2. pick a uniformly random permutation τ ∈ Sn.
3. produce commitment randomness r, and a commitment com′ to (τ,Axτ).
4. output (aux, com′, α, (r, rα, τ,Axτ)).

Then the Simulator is identical to an honest prover, except for step 2,
where the honest prover sets ρ equal to πσ−1 rather than a uniformly ran-
dom value. It is clear that (α, r, rα, τ,Axτ) and (α, r, rα, ρ,Axρ) are both uni-
formly distributed in Fq × {0, 1}2λ × Sn × F

n
q and hence follow the same dis-

tribution. Since com and comα are completely determined by (α, r, rα, ρ,Axρ)
it follows that (comα, com′, α, r, rα, τ,Axτ) and (comα, com, α, r, rα, ρ,Axρ)

196 W. Beullens

also follow the same distribution. Finally, since the commitments comc �=α

are never opened, it follows from the hiding property of the commitment
scheme and the standard hybrid argument that (aux, com′, α, (r, rα, τ,Axτ)) and
(aux, com, α, (r, rα, ρ,Axρ)) are computationally indistinguishable.

6 Removing the Helper

In this section, we show how to transform a Sigma protocol with helper into
a standard zero-knowledge proof of knowledge (without helper). We use the
same “Cut-and-choose” approach that was used by Katz et al. to get rid of the
preprocessing phase [24].

The idea is to let the prover pick k seeds seed1, · · · , seedk and generate k
sets of auxiliary information auxi = Setup (seedi) which the prover sends to the
verifier, along with the first messages of the protocol comi = P1(x,w, seedi) for
all i from 1 to k. The verifier then picks a random index I and a single challenge
ch ∈ C and sends this to the prover. The prover then sends seedi for i �= I as
well as a response rsp to the challenge at index I. Using the seeds, the verifier
then checks if all the auxiliary information auxi�=I was generated properly and
checks if rsp is a correct response to the challenge at index I. The details of
the protocol are displayed in Fig. 5. We prove that this is a honest-verifier zero
knowledge protocol with soundness error max(1

k , 1
|C|).

Theorem 3. Let (Setup, P1, P2, V) be a sigma protocol with helper and chal-
lenge space C, if the used commitment scheme is hiding, then the protocol of
Fig. 5 is an honest-verifier zero knowledge proof of knowledge with challenge
space {1, · · · , k} × C and max(k, |C|) + 1-special soundness (and hence it has
soundness error max(1

k , 1
|C|)).

Proof. We prove completeness, special soundness and special honest-verifier zero
knowledge separately.

Completeness: Follows immediately from the completeness of the underlying
Sigma protocol with trusted setup.

(max(k, |C|) + 1)-special Soundness: If there are max(k, |C|) + 1 valid tran-
scripts then there are at least two valid transcripts with different values of I,
which implies that all k setups were done honestly. The pigeon hole principle
says there are at least two accepted transcripts with the same value of I, but
different ch, so the extractor can use special soundness of the underlying Sigma
protocol with trusted setup to extract a witness w.

Sigma Protocols for MQ, PKP and SIS, and Fishy Signature Schemes 197

Helper(v)

seed
$←− {0, 1}λ

Generate r ∈ F
n
p and σ ∈ Sn from seed.

for each c in Fp do
Generate commitment randomness rc ∈ {0, 1}λ from seed.
comc ← Com(rc, r+ cvσ)

end for
aux ← [comc| for c ∈ Fp]
Send seed to the prover and aux to the verifier.

Prover(A,v, π, seed) Verifier(A,v, t, aux)

Regenerate r, σ from seed.
ρ ← πσ−1

r ← {0, 1}λ

com ← Com(r, (ρ,Arρ))

com−−−−−→
α

$←− Fq

Recompute rα and
x = r+ αvσ from seed.

α←−−−−

(r,rαρ,x)−−−−−→
y ← Axρ − αt
b1 ← com = Com(r, (ρ,y))
b2 ← comα = Com(rα,x)
return b1 ∧ b2

Fig. 4. A sigma protocol with helper for proving knowledge of a solution to the inho-
mogeneous PKP problem.

Special Honest-Verifier Zero-Knowledge: On input (I, ch), the simulator
generates all the setups honestly, and commits to random dummy values to create
the commitments comi�=I . The simulator then uses the simulator of the under-
lying sigma protocol with trusted setup to simulate the transcript at index I.
Indistinguishability follows from the hiding property of the commitment scheme
and the honest-verifier zero-knowledge property of the underlying sigma protocol
with trusted setup.

198 W. Beullens

Prover Verifier

for i ∈ {1, · · · , k} do

seedi
$←− {0, 1}λ

auxi ←Setup(seedi)
comi ← P1(x, w, seedi)

end for

auxi,comi∀i−−−−−−−→
I

$←− {1, · · · , k}
ch

$←− C

rsp ← P2(x, w, seedI , com, ch)

(I,ch)←−−−−−−−

seedi∀i�=I,rsp−−−−−−−−→
if ∃i �= I : auxi �=Setup(seedi)
then

return 0
end if
return V (x, aux, com, ch, rsp)

Fig. 5. A zero knowledge proof (without trusted setup) from a Sigma protocol with
trusted setup.

7 Optimizations

In this section, we describe optimizations for the MQ and PKP zero-knowledge
proofs with trusted setup, as well as for the transformation that removes the
trusted setup. The first two optimizations are applications of standard techniques
and the last optimization was proposed by Katz et al. [24], and proven secure
by Baum and Nof [5].

Hashing and Merkle Trees. In both the MQ proof and the PKP proof the
auxiliary information consists of q commitments comi for i ∈ Fq, but only one of
these commitments, comα, is opened in each honest execution of the protocol.
To reduce the communication cost (and hence the signature size after the Fiat-
Shamir transform) we can build a Merkle tree on these commitments and only
send the root of the tree. Then the prover includes in his response the 	log2(q)

nodes of the Merkle tree required to reconstruct the root of the Merkle tree.

When we are doing the transformation to get rid of the trusted party, we do
not have to send all the k roots separately. Instead, it suffices to send a hash
of all the roots to the verifier. Then, during verification, the verifier recomputes
all the roots (either from seedi if i �= I, or through the verification algorithm if
i = I) and hashes the roots to verify that they were correct.

Sigma Protocols for MQ, PKP and SIS, and Fishy Signature Schemes 199

The prover sends k commitments comi, but only the commitment comI is
used. Therefore, similar to the first optimization, the prover can build a Merkle
tree on his commitments and send the root to the verifier. Then, he includes
comI and some nodes of the Merkle tree in his response, so the verifier can
recompute the root and authenticate comI .

Sending Fewer Seeds. The prover chooses k seed values and sends all but
one of these seeds to the verifier. We can use a tree strategy to reduce the
communication cost. The prover constructs a binary tree of seed values. First,
he picks the value of the root at random. Then, the value of each internal node
is used to seed a PRNG which generates the values of its two children. In the
end, the leaf nodes act as the seedi values. Now, instead of sending k − 1 seed
values, the prover can send 	log2(k)
 node values in the tree and the prover can
recompute the k − 1 seeds himself (but not seedI).

Smaller Challenge Space. For some applications, the finite field Fq is so large
that it would not be practical to compute Merkle trees of size q. In that case, we
can simply reduce the challenge space to some subset of Fq of size q′ ≤ q. The
soundness error of the scheme then becomes 1/q′ instead of 1/q.

Beating Parallel Repetition. The basic scheme has soundness error 1
q′ , so to

reach a soundness error of 2−λ we would need to perform r =
⌈

λ
log2(q′)

⌉
parallel

executions of the protocol. The optimization of Katz et al. [24] gives a more
efficient approach: The idea is that instead of letting the verifier choose 1 out of
k setups to execute, we now let him choose τ out of M setups to execute. Now
suppose a cheating prover does e ≤ τ out of the M setups incorrectly. Since
he cannot produce seedi values for the cheated setups, he can only convince
the verifier if all the setups in which he cheated end up being executed. This
happens with probability

(
M−e
τ−e

) ·(M
τ

)−1
. Then, the prover still needs to generate

responses for τ − e honest setups, which he can do with probability at most(
1
q′

)τ−e

. Therefore the soundness error of the adapted scheme is bounded by

max
0≤e≤τ

(
M−e
τ−e

)

(
M
τ

)
q′τ−e

.

For a more formal proof we refer to [5].

Example 1. Suppose q = 128, then without the optimization, we would need
19 parallel executions of the basic protocol to reach a soundness error of 2−128,
which amounts to 19∗128 = 2432 setups and 19 executions of the protocol. With
the optimization, it turns out that 916 setups and 20 executions are sufficient.
So, in this case, the optimization reduces the number of setups by a factor 2.6
at the cost of a single extra execution.

200 W. Beullens

8 Signature Schemes

In this section, we apply the Fiat-Shamir transformation to the zero-knowledge
proofs for MQ and PKP (after applying the transformation of Sect. 6) to obtain
2 signature schemes. We call these schemes the “MUltivariate quaDratic FIat-
SHamir” scheme (MUDFISH) and the “ShUffled Solution to Homogeneous lin-
ear SYstem FIat-SHamir” scheme (SUSHSYFISH). First, we observe that the
recent results on Post-Quantum Fiat-Shamir by Don et al. [15] apply and thus
that our signature scheme are provably secure in the QROM (with non-tight
reductions). We then give some generic optimizations for the signature scheme
and parameter choices for MUDFISH and SUSHSYFISH. We provide a proof-
of-concept implementation to show that MUDFISH and SUSHSYFISH are more
efficient than existing signature schemes based on the MQ and PKP assumptions
(i.e. MQDSS and PKP-DSS respectively) in terms of signature size and speed
(on the NIST reference platform).

8.1 Fiat-Shamir Transform

The Fiat-Shamir transform allows us to convert the sigma protocols for MQ and
PKP into signatures. The idea is that instead of letting the verifier choose the
challenge at random, we derive the challenge deterministically from the com-
mitment and the message that we want to sign. Concretely, to sign a message
m, the signer executes the first part of the identification scheme to produce a
commitment com, then he derives a challenge ch by applying a random oracle
to com|m. Finally, the signer completes his part of the identification scheme to
produce the response rsp. The signature is then simply (com, resp). To verify a
signature (com, resp) for a message m, the verifier simply computes ch by query-
ing the random oracle at com|m, and then he accepts the signature if and only
if (com, ch, resp) is a valid transcript of the identification protocol. Using the
results of [15], it is straightforward to prove that MUDFISH and SUSHSYFISH
are strongly unforgeable in the QROM.

Theorem 4. Assume that a hash function modeled as a Quantum Random Ora-
cle is used as commitment scheme and that a Quantum random oracle model is
used as PRG, then the non-optimized variants of MUDFISH and SUSHSYFISH
signature schemes are strongly existentially unforgeable in the QROM.

Proof. (The argument is similar to the proof for the FS variant of Picnic, see
Sect. 6.1 of [15].) First, we prove that the Setup function is collapsing: If we
model the commitment functions as Quantum random oracles, then they are
collapsing [36]. In both the MUDFISH and SUSHYFISH schemes, the Setup
algorithm consists of expanding a randomness seed, computing some values based
on the output of the PRG, and committing to them. In both cases, the PRG
output is more than three times longer than the input, so this function is injective
with overwhelming probability. Also, it is easily verified that the computing
of the values from the output of the PRG is injective. Since the concurrent

Sigma Protocols for MQ, PKP and SIS, and Fishy Signature Schemes 201

composition of collapsing functions is collapsing [16] and composing a collapsing
function with an injective function preserves collapsingness, it follows that the
entire Setup algorithm is collapsing.

Since the responses of the sigma protocol only consist of openings of com-
mitments (which are preimages to Com), and preimages to the Setup function
it follows from the collapsingness of Com and Setup that the MUDFISH and
SUSHSYFISH sigma protocols have quantum computationally unique responses.
Moreover, the protocols have k-special soundness, so theorem 25 of [15] says that
the non-optimized versions of MUDFISH and SUSHSYFISH are quantum com-
putational proofs of knowledge. Together with their theorem 22, this implies
that MUDFISH and SUSHSYFISH are sEUF-CMA secure.

8.2 MUDFISH

Parameter Choices. For ease of implementation, we have chosen to use the
same finite field F4 for all the parameter sets. To have a fair comparison with the
MQDSS scheme, and to avoid the technicalities of choosing secure parameters
for the MQ problem, we use the parameters proposed in the MQDSS submission
to the NIST PQC standardization project. These parameter choices for the MQ
problem are displayed in Table 1.

We still need to pick parameters for the ZK proof (i.e. τ , the number of
executions and M , the number of setups). The choice of τ and M allows for a
trade-off: If one is willing to increase τ , which mainly impacts signature size,
then one can decrease M , which mainly impacts signing and verification time.

Table 1. Parameters for the MQ problem used by MUDFISH, and the complexity of
solving them with the Crossbred algorithm. The parameter sets and the complexity
estimates are taken from Table 8.4 of [14].

NIST PQC
security level

q n = m Best classical attack Best quantum attack

Gates Gates Depth

I 4 88 2156 293 283

III 4 128 2230 2129 2119

V 4 160 2290 2158 2147

Table 2. Parameters for MUDFISH, key and signature sizes and performance mea-
surements (average over 1000 signatures).

NIST PQC
security level

Parameters |pk|
(B)

|sk|
(B)

|sig|
(KB)

KeyGen
(Mc)

Sign
(Mc)

Verify
(Mc)q n M τ

I 4 88 191 68 38 16 14.4 2.3 14.8 15.3

III 4 128 256 111 56 24 32.9 7.2 51.3 49.6

V 4 160 380 136 72 32 55.6 14.2 140.4 139.3

202 W. Beullens

Implementation Results. The signing and verification algorithms require to
do a lot of setups and executions of the ZK proof on independent data. We
take advantage of this by fitting data from 64 independent rounds into one
word. Hence, we can do 64 setups or 64 executions of the protocol in parallel
on a 64-bit machine. Since the MUDFISH algorithm is inherently constant-time,
there was no performance penalty for making the implementation constant-time.
Our proof-of-concept implementation uses SHAKE256 as hash function and to
expand randomness. The performance results of the implementation are dis-
played in Table 2. We see that MUDFISH is more efficient than MQDSS: Com-
paring the parameter sets that achieve NIST security level I, the signatures of
MUDFISH are only half as big as those of MQDSS. At the same time, the signing
and verification speed of our proof-of-concept implementation of MUDFISH is a
factor 2.5 and 1.8 faster than those of the optimized implementation of MQDSS
submitted to the second round of the NIST PQC standardization project. We
leave the task of making an AVX2 optimized implementation of MUDFISH and
comparing its performance to the AVX2 optimized implementation of MQDSS
for future work.

8.3 SUSHSYFISH

Parameter Choices. An advantage of building cryptography on PKP is that
the best attack algorithms are quite simple and easy to analyze. We use the
PKP parameter sets proposed by Faugère et al. [10] to achieve the NIST security
levels 1, 3 and 5. The choice of the remaining parameters q′, τ and M allows for
a trade-off between signature size and signing and verification speed. For each
of the NIST PQC security levels 1, 3 and 5 we propose a parameter set which
aims to be fast (q′ = 4), a parameter sets which aims to have small signatures
q′ = 128 and an intermediate parameter set q′ = 16.

Table 3. Parameters for SUSHSYFISH, key and signature sizes and performance mea-
surements (average over 1000 signatures).

NIST PQC
security level

q n m q′ M τ |pk|
(B)

|sk|
(B)

|sig|
(KB)

KeyGen
(Mc)

Sign
(Mc)

Verify
(Mc)

I Fast 997 61 28 4 191 68 72 16 18.1 0.1 3.6 1.7

Middle 997 61 28 16 250 36 72 16 14.0 0.1 8.6 6.0

Compact 997 61 28 128 916 20 72 16 12.1 0.1 170 169

III Fast 1409 87 42 4 256 111 108 24 43.7 0.1 7.3 3.3

Middle 1409 87 42 16 452 51 108 24 30.8 0.1 22.7 16.5

Compact 1409 87 42 128 1357 30 108 24 27.1 0.1 365 342

V Fast 1889 111 55 4 380 136 142 32 72.8 0.2 12.1 5.8

Middle 1889 111 55 16 643 67 142 32 54.9 0.2 25.7 18.0

Compact 1889 111 55 128 2096 39 142 32 47.5 0.2 602 567

Sigma Protocols for MQ, PKP and SIS, and Fishy Signature Schemes 203

Making the Implementation Constant-Time. Most of the SUSHSYFISH
algorithm is inherently constant-time, except for some operations involving per-
mutations such as composing permutations, applying a permutation to a vector
and sampling random permutations. Naive implementations of these operations
involve accessing memory at secret indices, which could make the implemen-
tation vulnerable to cache timing attacks. In our implementation, we leverage
the djbsort constant-time sorting software library [7] to do these operations in
constant-time. For example, to apply a permutation π ∈ Sn to a vector v ∈ F

n
p

we first construct a list of integers xi, such that the high-order bits of xi corre-
spond to πi, and such that the low-order bits of xi correspond to vi. We then
call the djbsort library to sort this list of integers in constant-time, and we
extract the low-order bits from the sorted list, which correspond to vπ. Since
the performance bottleneck of SUSHSYFISH is hashing, a slight increase in the
cost of the operations involving permutations has a negligible effect on the total
performance of the signature scheme.

Implementation Results. Our implementation uses SHAKE256 as hash func-
tion and to expand randomness. The signing and verification times are domi-
nated by the use of SHAKE256, and hence there is a lot of potential for speedups
by choosing different symmetric primitives or by parallelizing independent calls
of the SHAKE function. The key and signature sizes and the performance mea-
surements for the 9 proposed parameter sets are displayed in Table 3. We see that
SUSHSYFISH has smaller signatures than PKP-DSS while being only slightly
slower. For NIST PQC security level I, the performance of the “Fast” SUSHSY-
FISH parameter set is the close to the performance of PKP-DSS: Signatures are
12% smaller, while with the current implementations signing and verification are
44% and 80% slower respectively. The “Middle” and “Fast” parameter sets offer
more compact signatures at the cost of slower signing and verification.

Comparison to Previous Works. In this section, we compare the MUD-
FISH and SUSHSYFISH non-interactive zero-knowledge proof systems to exist-
ing methods for proving knowledge of a solution to the MQ or PKP problem. We
compare to MQDSS [14] and PKP-DSS [10] that are dedicated proof systems for
MQ and PKP respectively, and we compare to Ligero [2] and Aurora [6], which
are generic ZK-proof systems capable of proving knowledge of a witness for any
NP statement. To compare with generic ZK systems we construct a verification
circuit with a minimal number of multiplication gates (since linear gates are for
free). For the MQ problem, the verification circuit just evaluates the multivariate
system, which requires n(n + 1)/2 secret multiplications. Using a permutation
network [37], we can encode a permutation as a sequence of bits, where each bit
controls if a switch in the network is active or not. With this representation, we
can verify if a permutation is a solution of a PKP problem with a small number of
non-linear gates. If the permutation network has k switches the verification can
be done with 2k non-linear gates; k multiplications for applying the k switches
and an additional k multiplications to verify that the witness consists of bits.

204 W. Beullens

Table 4. Comparison of proof sizes of various ZK-proof systems for proving knowledge
of a solution of an MQ instance. For the MQDSS system the number of iterations is
315, 478 and 637 respectively. At security level λ, the hashes and commitments are 2λ
bits long. The parameter choices do not compensate for the non-tightness of the Fiat-
Shamir transform, instead they only guarantee λ bits of soundness for the interactive
version of the protocols.

Sec.
level

Parameters
F, n

Circuit
size

Proof size (KB)

MQDSS Ligero Aurora Mudfish

128 GF(4), 88 3916 40 199 59 14

192 GF(4), 128 8256 43 421 90 33

256 GF(4), 160 12880 154 721 358 56

Table 5. Comparison of proof sizes of various ZK-proof systems for proving knowledge
of a solution of a PKP instance.

Sec.
level

Parameters
F, n, m

Circuit
size

Proof size (KB)

PKP-DSS Ligero Aurora Sushsyfish

128 GF(997), 61, 28 606 20 251 46 12

192 GF(1409), 87, 42 964 43 385 88 27

256 GF(1889), 111, 55 1300 77 539 239 48

Tables 4 and 5 show that our proof systems have significantly lower proof sizes
compared to existing solutions.

9 Zero Knowledge Proofs for Lattice Statements

Stern’s zero-knowledge protocol has been used extensively in lattice-based cryp-
tography because it can be used to prove a wide variety of statements. It has been
used to construct, among other things, identity-based identification schemes,
group signatures (with verifier local revocation), logarithmic size ring signatures
and group encryption [25–28]. The way this works is to transform the lattice
statement into an instance of the IPKP problem, in such a way that from a
solution to the IPKP instance one can efficiently derive a witness for the lat-
tice statement and conversely, that given a witness for the statement one can
efficiently compute a solution to the IPKP instance. Then, one just uses Stern’s
protocol to prove knowledge of a solution to the IPKP instance, which is equiv-
alent to proving knowledge of a witness of the lattice statement. However, it
is often the case that witnesses for the lattice statement correspond to IPKP
solutions that lie in a certain subgroup H ⊂ Sn. If this is the case, then the
prover needs to prove that he knows a solution π to the IPKP instance subject
to π ∈ H. Luckily, Stern’s protocol (and as we will see also our IPKP proof)
can be easily adapted to prove knowledge of an IPKP solution that lies in any

Sigma Protocols for MQ, PKP and SIS, and Fishy Signature Schemes 205

subgroup H (assuming one can sample uniformly from H and efficiently verify
membership of H).

In the remainder of this section, we prove that our IPKP proof can han-
dle proving that a solution lies in a subgroup H ⊂ Sn, which implies that we
can improve all the applications of Sterns protocol by replacing Stern’s proof
by our more efficient protocol. Then, we will focus on proving knowledge of a
solution to the inhomogeneous SIS problem. We briefly illustrate how the ISIS
problem can be embedded into IPKP with the decomposition-extension tech-
nique of Ling et al. [28]. Then, we compare the efficiency of our IPKP proof
against the efficiency of Stern’s protocol for proving knowledge of a solution of
an ISIS problem. Finally, we compare our approach to some recent works that
use different techniques to prove knowledge of a solution of an ISIS instance.

9.1 Generalizing to Subgroup IPKP

It is trivial to generalize the protocol of Sect. 5 to prove knowledge of a solution π
of an IPKP instance with the additional constraint that π lies in a subgroup H ⊂
Sn, assuming that one can efficiently sample uniformly from H and efficiently
test if a group element is a member of H. The only modification required is that
the prover now samples σ from H instead of from Sn and that the verifier checks
that ρ lies in H.

Theorem 5. The modified version of the protocol for IPKP of Sect. 5 is a sigma
protocol with helper as in Definition 3 with challenge space Fq.

Proof. Completeness. If π is a solution of the IPKP instance, then since the
unmodified protocol is complete, the verifier will accept a transcript unless the
additional check that ρ lies in H fails. However, if π ∈ H, then also ρ = πσ−1

lies in H, because σ is sampled from H. Therefore, the verifier will accept with
probability 1 if π is a solution to the SIPKP problem.

2-Special Soundness. The extractor from the security proof of the IPKP proof
system extracts ρσ, which is a solution to the IPKP problem. We only need to
show that ρσ ∈ H. The verifier only accepts if ρ ∈ H, and we know that σ ∈ H,
because it is sampled from H by the honest helper. Therefore the extracted
solution to the IPKP solution is also a solution to the SIPKP problem.

Honest-Verifier Zero-Knowledge. The proof is the same as in the proof of
Theorem 2, except that the simulator samples τ uniformly from H instead of
from Sn.

Remark 1. The proof of Theorem 2 does not use any specific properties of the
action of Sn apart from the property that vσ +wσ = (v+w)σ, which is required
for correctness. Therefore, it is clear that the proof system generalizes to any
representation of a finite group G on F

n
q . In particular, we can also consider the

group of signed permutations with it natural representation on F
n
q .

206 W. Beullens

9.2 Embedding ISIS into IPKP

To illustrate the embedding first suppose that (A, t) ∈ F
m×n
q ×F

m
q is an instance

of the ISIS problem where a solution is a vector s ∈ F
n
q such that As = t and

the coefficients of s are 0 or 1. In that case we define the extended matrix
A′ =

(
A 0m×n

)
and a vector v ∈ Fq whose first n entries are 1 and whose last

n entries are equal to 0. Then finding a solution to the ISIS instance (A, t) is
equivalent to finding a solution to the IPKP instance (A′,v, t): Given a solution
s to the ISIS instance it is trivial to find a permutation π such that the first half
of vπ equals s, which is then a solution to the IPKP instance. Conversely, if π is
a solution to the IPKP instance, then the first half of vπ is a solution to the ISIS
instance. Therefore, proving knowledge of π is equivalent to proving knowledge
of s.

To improve the efficiency of the proof system we can restrict the IPKP solu-
tions to the subgroup of S2n generated by the transpositions (i i + n) for
0 ≤ i < n. This approach reduces the proof size because elements of the subgroup
can be represented with only n bits, rather than the log2((2n)!) ≈ 2n log2(2n)
bits required to represent an arbitrary permutation of 2n elements.

More generally, if the coefficients of s are required to lie in a range of size B,
one can use the decomposition-extension technique [28] to transform an instance
of the ISIS problem into an equivalent instance of the IPKP with a matrix A′

with 2n	log2 B
 columns [28]. Moreover, we can restrict to a subgroup of size
22�log2 B� to reduce the proof size.

9.3 Concrete Examples and Comparison to Previous Works

To compare the concrete efficiency of our work with the recent work of Bootle
et al. [11] and Baum and Nof [5] we apply our proof system to the following two
SIS parameters sets:

1. q ≈ 232,m = 512, n = 2048, β = 1: This is the parameter set considered by
Bootle et al [11]. This parameter set is relevant for FHE schemes and group
signature schemes.

2. q ≈ 261,m = 1024, n = 4092, binary solution: This is one of the parameter
sets considered by Baum and Nof. [5], they claim that this parameter set is
relevant for applications such as somewhat homomorphic encryption.

Let A ∈ F
512×2048
q be an instance of the SIS problem from the first parameter

set, define the matrix A′ =
(
A 0512×2048

)
and let v ∈ {0, 1}4096 be the vector

whose first 2048 entries are equal to 1 and whose remaining 2048 entries are equal
to 0. Then finding a solution to the SIS instance A is equivalent to finding a
solution to the generalized PKP instance that asks to find a signed permutation
π such that A′vπ = 0. Moreover, this still holds if we restrict the solutions
of the PKP problem to lie in the subgroup H generated by sign swaps and
the transpositions {(i i+2048)| for i from 1 to 2048}. This subgroup has 82048

elements, and we can represent each element by 3 ∗ 2048 bits.

Sigma Protocols for MQ, PKP and SIS, and Fishy Signature Schemes 207

Therefore, to prove knowledge of a short integer solution it suffices to prove
knowledge of a signed permutation π in H such that A′vπ = 0. We choose
parameters τ = 14,M = 4040, q′ = 210 to achieve a soundness error less than
2−128. The proof size is dominated by the vectors and signed permutations in
the proof, of which there is one per execution. A vector can be represented with
4069 log2(q) bits and each permutation in H can be represented with 2048 ∗ 3
bits. Therefore the total proof size is roughly equal to

14 · (4069 · 32 + 2048 · 3) bits = 233 KB.

Observe that (in a field of characteristic > 2) if 1 is the vector with a 1 in
each entry, then

As = t ⇐⇒ A(2s − 1) = 2t + A1,

which means that binary SIS is equivalent to a SIS instance where the entries of s
are restricted to {−1, 1}. Therefore, for the second parameter set, we can embed
the binary SIS problem into a generalized PKP problem of the form A1π = t′

with π in the group with 24092 elements generated by sign flips. If we again pick
τ = 14,M = 4040, q′ = 210 to achieve a soundness error less than 2−128 the total
proof size is approximately

14 · (4092 · 61 + 4092) bits = 444 KB

Comparison to Previous Works. Table 6 makes a comparison of the proof
sizes of our proof system with that of previous works. First of all, an applica-
tion of Stern’s protocol to the generalized PKP problems derived from the two
parameter sets results in proofs of 2.3 MB and 4.3 MB respectively. This is an
order of magnitude larger than our proof system for both parameter sets. The
work of Bootle et al. [11] uses algebraic techniques rather than combinatorial
ones and achieves a proof size of 384 KB for the first parameter set, which is
65% larger than our proofs.

The proof system of Baum and Nof uses MPC-in-the-head techniques and
has a proof size of 4.0 MB for the second parameter set. This is almost an order
of magnitude larger than our proofs. Baum and Nof also include timings of the
implementation of their protocol. An implementation with 80 bits of statistical
security for the second SIS parameter takes 2.4 s, with a proof size of 7.5 MB.
(Note that this proof size is larger than for their 128 bits variant, because this
choice was optimized for speed rather than proof size.) If we choose the param-
eters for our proof scheme as q′ = 24,M = 149, τ = 23 to reach 80 bits of
statistical security and optimize for speed, our proof size would be 1.4 MB (still
5 times smaller). Extrapolating from our SUSHSYFISH measurements, we claim
that with these parameter choices our proof system will be significantly faster
than the system of Baum and Nof.

Compared to the generic sub-linear Zero-Knowledge systems Ligero and
Aurora [6] our proof systems are asymptotically worse, and for the large exam-
ples in Table 6 aiming at applications such as FHE we also perform significantly

208 W. Beullens

worse in terms of concrete proof sizes. However, for smaller applications, such
as proving knowledge of a secret key that corresponds to a MLWE-encryption
public key. (q ≈ 213, n = 1024,m = 512, β = 3) we expect our proof size to
be smaller than those of Ligero and similar to those of Aurora. Moreover, an
important advantage of our proof system, as well as Stern’s protocol and the
method of Baum and Nof is that they do not require Fq (or a field extension
thereof) to be NTT friendly, this is in contrast to Ligero, Aurora and the work
of Bootle et al.

Table 6. Proof sizes of various protocols for our two SIS parameter sets aiming at 128
bits of security. The hashes and commitments are 256 bits long. The parameter choices
do not compensate for the non-tightness of the Fiat-Shamir transform, instead they
only guarantee 128 bits of soundness for the interactive version of the protocols.

q = 232,
m = 512, n = 2048

q = 261,
m = 1024, n = 4096

Ours 233 KB 444 KB

Stern [28,34] 2.3 MB 4.3 MB

Bootle et al. [11] 384 KB /

Baum and Nof [5] / 4.0 MB

Aurora [6] 71 KB 71 KB

Ligero [2] 157 KB 200 KB

The work of Del Pino et al. [31] uses so-called bulletproofs to achieve much
smaller proof sizes for SIS (for example 1.25 KB for q ≈ 213,m = 2048, n =
4096) at the cost of longer running times. However, one cannot make a direct
comparison with our work and the other works in Table 6, because bulletproofs
rely on the discrete logarithm problem and are hence not post-quantum secure.
Also, there has been a lot of work on “relaxed” proofs for SIS, where the extractor
does not output the witness that is known to the prover, but instead some other
solution that is somewhat short, but bigger than the witness [4,29]. For some
applications, such as post-quantum signatures [29], this is not a problem, but
for other applications, exact proofs are required.

Acknowledgements. I would like to thank Simona Samardjiska for helping esti-
mate the complexity of the Joux-Vitse algorithm and Muthu Venkitasubramaniam and
Nicholas Ward for providing proof sizes of the Ligero and Aurora proof systems respec-
tively. I would also like to thank the anonymous reviewer for the suggestion to gener-
alize PKP to signed permutations. This work was supported in part by the Research
Council KU Leuven: C16/15/058. In addition, this work was supported by the Euro-
pean Commission through the Horizon 2020 research and innovation programme under
grant agreement H2020-DS-LEIT-2017-780108 FENTEC, by the Flemish Government
through FWO SBO project SNIPPET S007619N and by the IF/C1 on Cryptanalysis
of post-quantum cryptography. Ward Beullens is funded by an FWO fellowship.

Sigma Protocols for MQ, PKP and SIS, and Fishy Signature Schemes 209

References

1. Ajtai, M.: Generating hard instances of lattice problems. In: Proceedings of the
Twenty-Eighth Annual ACM Symposium on Theory of Computing, pp. 99–108.
ACM (1996)

2. Ames, S., Hazay, C., Ishai, Y., Venkitasubramaniam, M.: Ligero: lightweight sublin-
ear arguments without a trusted setup. In: Proceedings of the 2017 ACM SIGSAC
Conference on Computer and Communications Security, pp. 2087–2104 (2017)

3. Baritaud, T., Campana, M., Chauvaud, P., Gilbert, H.: On the security of the per-
muted kernel identification scheme. In: Brickell, E.F. (ed.) CRYPTO 1992. LNCS,
vol. 740, pp. 305–311. Springer, Heidelberg (1993). https://doi.org/10.1007/3-540-
48071-4 21

4. Baum, C., Bootle, J., Cerulli, A., del Pino, R., Groth, J., Lyubashevsky, V.: Sub-
linear lattice-based zero-knowledge arguments for arithmetic circuits. In: Shacham,
H., Boldyreva, A. (eds.) CRYPTO 2018. LNCS, vol. 10992, pp. 669–699. Springer,
Cham (2018). https://doi.org/10.1007/978-3-319-96881-0 23

5. Baum, C., Nof, A.: Concretely-efficient zero-knowledge arguments for arithmetic
circuits and their application to lattice-based cryptography. Technical report, Cryp-
tology ePrint Archive, Report 2019/532 (2019). https://eprint. iacr. org . . .

6. Ben-Sasson, E., Chiesa, A., Riabzev, M., Spooner, N., Virza, M., Ward, N.P.:
Aurora: transparent succinct arguments for R1CS. In: Ishai, Y., Rijmen, V. (eds.)
EUROCRYPT 2019. LNCS, vol. 11476, pp. 103–128. Springer, Cham (2019).
https://doi.org/10.1007/978-3-030-17653-2 4

7. Bernstein, D.: The djbsort software library for sorting arrays of integers or floating-
point numbers in constant time. https://sorting.cr.yp.to/

8. Bettale, L., Faugere, J.C., Perret, L.: Hybrid approach for solving multivariate
systems over finite fields. J. Math. Cryptol. 3(3), 177–197 (2009)

9. Beullens, W.: FISH (2019). https://github.com/WardBeullens/FISH
10. Beullens, W., Faugère, J.C., Koussa, E., Macario-Rat, G., Patarin, J., Perret, L.:

PKP-based signature scheme. Cryptology ePrint Archive, Report 2018/714 (2018).
https://eprint.iacr.org/2018/714

11. Bootle, J., Lyubashevsky, V., Seiler, G.: Algebraic techniques for short(er) exact
lattice-based zero-knowledge proofs. In: Boldyreva, A., Micciancio, D. (eds.)
CRYPTO 2019. LNCS, vol. 11692, pp. 176–202. Springer, Cham (2019). https://
doi.org/10.1007/978-3-030-26948-7 7

12. Chase, M., et al.: Post-quantum zero-knowledge and signatures from symmetric-
key primitives. In: Proceedings of the 2017 ACM SIGSAC Conference on Computer
and Communications Security, pp. 1825–1842. ACM (2017)

13. Chen, M.-S., Hülsing, A., Rijneveld, J., Samardjiska, S., Schwabe, P.: From 5-
pass MQ-based identification to MQ-based signatures. In: Cheon, J.H., Takagi,
T. (eds.) ASIACRYPT 2016. LNCS, vol. 10032, pp. 135–165. Springer, Heidelberg
(2016). https://doi.org/10.1007/978-3-662-53890-6 5

14. Chen, M.S., Hülsing, A., Rijneveld, J., Samardjiska, S., Schwabe, P.: MQDSS-
submission to the NIST post-quantum cryptography project (2017)

15. Don, J., Fehr, S., Majenz, C., Schaffner, C.: Security of the Fiat-Shamir transfor-
mation in the quantum random-oracle model. In: Boldyreva, A., Micciancio, D.
(eds.) CRYPTO 2019. LNCS, vol. 11693, pp. 356–383. Springer, Cham (2019).
https://doi.org/10.1007/978-3-030-26951-7 13

16. Fehr, S.: Classical proofs for the quantum collapsing property of classical hash
functions. In: Beimel, A., Dziembowski, S. (eds.) TCC 2018. LNCS, vol. 11240, pp.
315–338. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-03810-6 12

https://doi.org/10.1007/3-540-48071-4_21
https://doi.org/10.1007/3-540-48071-4_21
https://doi.org/10.1007/978-3-319-96881-0_23
https://doi.org/10.1007/978-3-030-17653-2_4
https://sorting.cr.yp.to/
https://github.com/WardBeullens/FISH
https://eprint.iacr.org/2018/714
https://doi.org/10.1007/978-3-030-26948-7_7
https://doi.org/10.1007/978-3-030-26948-7_7
https://doi.org/10.1007/978-3-662-53890-6_5
https://doi.org/10.1007/978-3-030-26951-7_13
https://doi.org/10.1007/978-3-030-03810-6_12

210 W. Beullens

17. Fiat, A., Shamir, A.: How to prove yourself: practical solutions to identification and
signature problems. In: Odlyzko, A.M. (ed.) CRYPTO 1986. LNCS, vol. 263, pp.
186–194. Springer, Heidelberg (1987). https://doi.org/10.1007/3-540-47721-7 12

18. Georgiades, J.: Some remarks on the security of the identification scheme based on
permuted kernels. J. Cryptol. 5(2), 133–137 (1992)

19. Goldwasser, S., Micali, S., Rackoff, C.: The knowledge complexity of interactive
proof systems. SIAM J. Comput. 18(1), 186–208 (1989)

20. Ishai, Y., Kushilevitz, E., Ostrovsky, R., Sahai, A.: Zero-knowledge from secure
multiparty computation. In: Proceedings of the Thirty-Ninth Annual ACM Sym-
posium on Theory of Computing, pp. 21–30. ACM (2007)

21. Jaulmes, É., Joux, A.: Cryptanalysis of PKP: a new approach. In: Kim, K. (ed.)
PKC 2001. LNCS, vol. 1992, pp. 165–172. Springer, Heidelberg (2001). https://
doi.org/10.1007/3-540-44586-2 12

22. Joux, A., Vitse, V.: A crossbred algorithm for solving Boolean polynomial sys-
tems. In: Kaczorowski, J., Pieprzyk, J., Pomyka�la, J. (eds.) NuTMiC 2017. LNCS,
vol. 10737, pp. 3–21. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-
76620-1 1

23. Kales, D., Zaverucha, G.: Forgery attacks on MQDSSv2. 0 (2019)
24. Katz, J., Kolesnikov, V., Wang, X.: Improved non-interactive zero knowledge

with applications to post-quantum signatures. In: Proceedings of the 2018 ACM
SIGSAC Conference on Computer and Communications Security, pp. 525–537.
ACM (2018)

25. Langlois, A., Ling, S., Nguyen, K., Wang, H.: Lattice-based group signature
scheme with verifier-local revocation. In: Krawczyk, H. (ed.) PKC 2014. LNCS,
vol. 8383, pp. 345–361. Springer, Heidelberg (2014). https://doi.org/10.1007/978-
3-642-54631-0 20

26. Libert, B., Ling, S., Mouhartem, F., Nguyen, K., Wang, H.: Zero-Knowledge
Arguments for Matrix-Vector Relations and Lattice-Based Group Encryption. In:
Cheon, J.H., Takagi, T. (eds.) ASIACRYPT 2016. LNCS, vol. 10032, pp. 101–131.
Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53890-6 4

27. Libert, B., Ling, S., Nguyen, K., Wang, H.: Zero-knowledge arguments for lattice-
based accumulators: logarithmic-size ring signatures and group signatures without
trapdoors. In: Fischlin, M., Coron, J.-S. (eds.) EUROCRYPT 2016. LNCS, vol.
9666, pp. 1–31. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-
49896-5 1

28. Ling, S., Nguyen, K., Stehlé, D., Wang, H.: Improved zero-knowledge proofs of
knowledge for the ISIS problem, and applications. In: Kurosawa, K., Hanaoka,
G. (eds.) PKC 2013. LNCS, vol. 7778, pp. 107–124. Springer, Heidelberg (2013).
https://doi.org/10.1007/978-3-642-36362-7 8

29. Lyubashevsky, V.: Fiat-Shamir with aborts: applications to lattice and factoring-
based signatures. In: Matsui, M. (ed.) ASIACRYPT 2009. LNCS, vol. 5912, pp.
598–616. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-10366-
7 35

30. Patarin, J., Chauvaud, P.: Improved algorithms for the permuted kernel problem.
In: Stinson, D.R. (ed.) CRYPTO 1993. LNCS, vol. 773, pp. 391–402. Springer,
Heidelberg (1994). https://doi.org/10.1007/3-540-48329-2 33

31. del Pino, R., Lyubashevsky, V., Seiler, G.: Short discrete log proofs for FHE and
ring-LWE ciphertexts. In: Lin, D., Sako, K. (eds.) PKC 2019. LNCS, vol. 11442, pp.
344–373. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-17253-4 12

https://doi.org/10.1007/3-540-47721-7_12
https://doi.org/10.1007/3-540-44586-2_12
https://doi.org/10.1007/3-540-44586-2_12
https://doi.org/10.1007/978-3-319-76620-1_1
https://doi.org/10.1007/978-3-319-76620-1_1
https://doi.org/10.1007/978-3-642-54631-0_20
https://doi.org/10.1007/978-3-642-54631-0_20
https://doi.org/10.1007/978-3-662-53890-6_4
https://doi.org/10.1007/978-3-662-49896-5_1
https://doi.org/10.1007/978-3-662-49896-5_1
https://doi.org/10.1007/978-3-642-36362-7_8
https://doi.org/10.1007/978-3-642-10366-7_35
https://doi.org/10.1007/978-3-642-10366-7_35
https://doi.org/10.1007/3-540-48329-2_33
https://doi.org/10.1007/978-3-030-17253-4_12

Sigma Protocols for MQ, PKP and SIS, and Fishy Signature Schemes 211

32. Sakumoto, K., Shirai, T., Hiwatari, H.: Public-key identification schemes based on
multivariate quadratic polynomials. In: Rogaway, P. (ed.) CRYPTO 2011. LNCS,
vol. 6841, pp. 706–723. Springer, Heidelberg (2011). https://doi.org/10.1007/978-
3-642-22792-9 40

33. Shamir, A.: An efficient identification scheme based on permuted kernels (extended
abstract). In: Brassard, G. (ed.) CRYPTO 1989. LNCS, vol. 435, pp. 606–609.
Springer, New York (1990). https://doi.org/10.1007/0-387-34805-0 54

34. Stern, J.: A new identification scheme based on syndrome decoding. In: Stinson,
D.R. (ed.) CRYPTO 1993. LNCS, vol. 773, pp. 13–21. Springer, Heidelberg (1994).
https://doi.org/10.1007/3-540-48329-2 2

35. Unruh, D.: Non-interactive zero-knowledge proofs in the quantum random oracle
model. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015. LNCS, vol. 9057, pp.
755–784. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46803-
6 25

36. Unruh, D.: Computationally binding quantum commitments. In: Fischlin, M.,
Coron, J.-S. (eds.) EUROCRYPT 2016. LNCS, vol. 9666, pp. 497–527. Springer,
Heidelberg (2016). https://doi.org/10.1007/978-3-662-49896-5 18

37. Waksman, A.: A permutation network. J. ACM (JACM) 15(1), 159–163 (1968)

https://doi.org/10.1007/978-3-642-22792-9_40
https://doi.org/10.1007/978-3-642-22792-9_40
https://doi.org/10.1007/0-387-34805-0_54
https://doi.org/10.1007/3-540-48329-2_2
https://doi.org/10.1007/978-3-662-46803-6_25
https://doi.org/10.1007/978-3-662-46803-6_25
https://doi.org/10.1007/978-3-662-49896-5_18

Signatures from Sequential-OR Proofs

Marc Fischlin, Patrick Harasser(B), and Christian Janson

Cryptoplexity, Technische Universität Darmstadt, Darmstadt, Germany
{marc.fischlin,patrick.harasser,christian.janson}@cryptoplexity.de

Abstract. OR-proofs enable a prover to show that it knows the wit-
ness for one of many statements, or that one out of many statements is
true. OR-proofs are a remarkably versatile tool, used to strengthen secu-
rity properties, design group and ring signature schemes, and achieve
tight security. The common technique to build OR-proofs is based
on an approach introduced by Cramer, Damg̊ard, and Schoenmakers
(CRYPTO’94), where the prover splits the verifier’s challenge into ran-
dom shares and computes proofs for each statement in parallel.

In this work we study a different, less investigated OR-proof technique,
highlighted by Abe, Ohkubo, and Suzuki (ASIACRYPT’02). The differ-
ence is that the prover now computes the individual proofs sequentially.
We show that such sequential OR-proofs yield signature schemes which
can be proved secure in the non-programmable random oracle model.
We complement this positive result with a black-box impossibility proof,
showing that the same is unlikely to be the case for signatures derived
from traditional OR-proofs. We finally argue that sequential-OR signa-
ture schemes can be proved secure in the quantum random oracle model,
albeit with very loose bounds and by programming the random oracle.

Keywords: Sequential-OR proofs · Zero-knowledge · Signatures · Non-
programmable random oracle model · Quantum random oracle model

1 Introduction

In a zero-knowledge Σ-protocol between a prover P and a verifier V, the prover
holds a statement x and a witness w for x, and the verifier only x. Both parties
engage in an interactive execution, resulting in an initial commitment com sent
by the prover, a verifier random challenge ch, and a final response resp computed
by the prover. With such a proof, P shows to V that x is true (in proof systems),
or that it knows a witness w for x (in proofs of knowledge). At the same time, the
zero-knowledge property guarantees that nothing beyond this fact is revealed.

1.1 OR-Proofs

Now assume that one has two interactive proof systems of the above form for two
statements x0 and x1, and a witness wb for xb, b ∈ {0, 1}. The goal is to combine

c© International Association for Cryptologic Research 2020
A. Canteaut and Y. Ishai (Eds.): EUROCRYPT 2020, LNCS 12107, pp. 212–244, 2020.
https://doi.org/10.1007/978-3-030-45727-3_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-45727-3_8&domain=pdf
https://doi.org/10.1007/978-3-030-45727-3_8

Signatures from Sequential-OR Proofs 213

Fig. 1. Description of the prover algorithm Ppar-OR from the parallel-OR construc-
tion by Cramer et al. [23] in the standard model. On the left, generation of the
first message com = (com0, com1). On the right, computation of the final response
resp = (ch0, ch1, resp0, resp1) answering the verifier challenge ch.

them into a single protocol which proves the logical OR of x0 and x1; that is, the
prover should be able to convince a verifier that it holds a witness for one of the
two statements, ideally without revealing which one. The first instantiation of
such general OR-proofs, sometimes called CDS-OR proofs, was given by Cramer,
Damg̊ard, and Schoenmakers [23]. Their construction works under the assump-
tion that the two protocols are special honest-verifier zero-knowledge, meaning
that a simulator S, given x and a random challenge ch at the outset, is able to
generate a verifier view (com, resp, ch) without knowing a witness for x, in such
a way that this view is indistinguishable from a genuine interaction between the
real prover and an honest verifier using the given challenge. The prover in the
CDS-OR protocol from [23] is described in Fig. 1. For reasons that will become
apparent soon, we call such CDS-OR proofs also parallel-OR proofs.

An important observation is that the resulting protocol is witness indistin-
guishable, i.e., it does not reveal for which statement the prover holds a witness.
Moreover, since the resulting protocol is again a Σ-protocol, one can apply the
Fiat-Shamir transform [32] to it and obtain a non-interactive version or a signa-
ture scheme in the random oracle model. Also, the construction easily generalizes
to the case of 1-out-of-n proofs.

1.2 Applications of OR-Proofs

OR-proofs have turned out to be a very powerful tool in the design of efficient
protocols. Early on they have been identified as a means to thwart man-in-the-
middle attacks [22] and, similarly in spirit, to give designated-verifier proofs [43].
The idea in both cases is to have the verifier send its public key to the prover, who
then shows that the statement x it originally wanted to prove is true or that it
knows the verifier’s secret key. This proof is still convincing for the verifier (who
knows it is the only holder of its secret key), but not transferable to other parties.
Garay et al. [38] apply the same idea to make zero-knowledge proofs simulation-
sound and non-malleable, by putting a verification key into a common reference
string (CRS). The prover then shows that the original statement x is true or
that it knows the secret to the verification key in the CRS.

214 M. Fischlin et al.

The idea of giving a valid proof when knowing a witness for only one of several
statements can also be used in the context of group signatures [19] and ring
signatures [56]. Given a set of public keys x1, . . . , xn, where the signer knows only
one witness wi (their own secret key), an OR-proof allows to sign anonymously
on behalf of the entire group, and witness indistinguishability implies that the
identity of the signer remains hidden. This design strategy appears explicitly for
example in the group signature scheme of Camenisch [13].

The OR-technique has also proved very useful in deriving tightly-secure
schemes. This approach has appeared in several works in the literature [6,39,42].
The idea is to first derive tightly-secure signature schemes from the OR-
combination of some Σ-protocols. These schemes are then used within higher-
level solutions (like key exchange protocols), passing on the tight security guar-
antees to these protocols.

1.3 Non-programmable Random Oracles

Another important feature of the OR-technique is that it facilitates the design
of schemes in the non-programmable random oracle model. The general random
oracle model comes with several remarkable technical properties, rooted in the
formalization of the hash function as a truly random, oracle-based function. One
of the most extraordinary consequences of this formalization is the programma-
bility property of the random oracle, saying that one can adaptively choose the
answers to random oracle queries made by the adversary. Indeed, the ability
to change answers on the fly is a necessary feature of security proofs of some
signature schemes [33,35,37,61]. In practice, however, hash functions are not
programmable and their values are fixed. Therefore, one would ideally prefer to
forgo the programming of random oracle replies.

The fact that the OR-technique can be used to bypass the programmabil-
ity issues with the random oracle model can already be observed in the early
constructions of Σ-protocols, namely, the Okamoto variant [52] of the Schnorr
signature scheme [57] and the Guillou-Quisquater variant [41] of the Fiat-Shamir
signature protocol [32]. In these variants, based on number-theoretic specifics,
one uses “embedded” OR-proofs which allow to simulate signatures without hav-
ing to program the random oracle, as opposed to [32,57] and explicitly carried
out in [55]: One can then simply use the known witness to generate signatures.

Unfortunately, the security proofs of the signature schemes in [41,52] still
need programming at another step. Namely, in order to show that the adversary
cannot forge signatures, one rewinds the execution and re-programs the random
oracle in order to extract a witness (a technique called forking in [55]). This
also comes with a loose security bound. Abdalla et al. [1] overcome the fork-
ing technique by considering passively-secure identification schemes, where the
adversary is allowed to see transcripts of honest executions. Still, they program
the random oracle when simulating signatures.

Later, Abdalla et al. [2] used the notion of lossy identification schemes to give
non-forking security proofs for signatures derived via the Fiat-Shamir heuristic.
Lossiness here roughly means that valid statements x are indistinguishable from

Signatures from Sequential-OR Proofs 215

so-called lossy ones, for which it is statistically impossible to find convincing
proofs. This idea has later been adopted by lattice-based and LWE-based sig-
nature schemes such as [7,49] (in the classical random oracle model) or the
TESLA signature scheme [4] (in the quantum random oracle model [10]). Still,
all approaches program the random oracle in order to be able to simulate signa-
tures.

1.4 Sequential-OR Proofs

The above construction is the classical technique to combine Σ-protocols and
prove OR-statements, but it is not the only possible solution. Indeed, there is at
least one other way to prove the disjunction of two or more statements in the
random oracle model, which in its spirit already appears in a work by Rivest,
Shamir, and Tauman [56]. Here, we follow the exposition given by Abe, Ohkubo,
and Suzuki [3] in the context of group signature schemes, and call this approach
the sequential-OR technique.

In this construction, the non-interactive prover computes the individual
proofs sequentially, starting with the commitment comb for the statement xb

for which it knows the witness wb. Next it derives the challenge ch1−b for the
proof of x1−b (with unknown witness) as the hash value of comb. This in turn
allows the OR-prover to simulate a view (com1−b, resp1−b, ch1−b) for x1−b with
this predetermined challenge, as done in parallel-OR proofs. The simulated com-
mitment com1−b again yields the challenge chb for the first proof through the
hash function, which the prover now can answer with a valid response respb since
it knows the witness wb. The details of the prover in the sequential-OR protocol
from [3] are described in Fig. 2.

Note that this technique generalizes to the 1-out-of-n case (we provide all
details in the full version [34]). In fact, Abe et al. [3] and follow-up works like
[8,47], use this more general version of the sequential-OR technique to build
group signature schemes, yet still programming the random oracle to fork and
extract. The paradigm proposed by Abe et al. has also been applied in the area of
cryptocurrencies, in particular Monero [58] and Mimblewimble [44,54]. There, in
order to prevent overflow attacks, it is necessary to prove that committed values
fall within a specific range. One instance of such range proofs uses a special type
of ring signature, called borromean ring signature [50], which is based on ideas
presented in [3]. Observe that, in the aforementioned range proofs, borromean
signatures have since been superseded by more efficient bulletproofs [12].

1.5 Our Results

At first glance, the sequential-OR technique does not seem to give any significant
advantage over the parallel version. Both protocols are based on the idea that
one can easily give a proof for a statement for which the witness is known,
and simulate the proof for the other statement where the challenge is known
in advance. This, however, misses one important point if we combine these two
approaches with the idea of lossy statements as in the work by Abdalla et al. [2]:

216 M. Fischlin et al.

Fig. 2. Description of the prover algorithm Pseq-OR from the sequential-OR construction
by Abe et al. [3] in the random oracle model.

We show that signatures derived from sequential-OR proofs are secure in the non-
programmable random oracle model, whereas those originating from parallel-OR
proofs do not seem to have a security proof in this model.

The signature scheme in the sequential-OR case is based on two valid state-
ments x0 and x1 (the public keys), for which we know one of the two witnesses wb

(one of the secret keys). A signature for a message m is basically a sequential-OR
proof, where m is included in the hash evaluations. In contrast to the proof in [3],
which is based on forking, we can now reduce unforgeability to a decisional prob-
lem about the languages. This allows us to avoid rewinding and re-programming
the random oracle.

The idea of our proof in the sequential-OR case can be illustrated by looking
at the honest signer first. If one was able to observe the signer’s random oracle
queries, then their order reveals which witness the signer is using: The signer
first queries the commitment comb of the instance xb for which it knows the
witness wb. We will use the same idea against the adversary, helping us to decide
if some random input x1−b is in the language or not. If x1−b is not in the
language, and thus does not have a witness, the special soundness of the Σ-
protocol guarantees that the adversary will never make the first query about this
part, since it will then not be able to answer the random challenge.1 Hence, by
merely observing the adversary’s queries, we can decide membership of x1−b. We
use the other part xb in the key and its witness wb to simulate signatures without
programming the random oracle. But we need to make sure that the adversary is
not biased by our signatures. This follows from the witness indistinguishability
of the proofs (against an adversary who cannot observe random oracle queries).

We next argue that it is in general hard to show that the parallel-OR
technique of Cramer et al. [23] yields a secure signature scheme in the non-
programmable random oracle model. Our result assumes a black-box reduction R
transforming any (PPT or unbounded) adversary against the signature scheme
into a solver of some hard problem, and makes a mild assumption about the zero-
knowledge simulators of the languages (namely, that they work independently of

1 One can think of this as a very lossy mode.

Signatures from Sequential-OR Proofs 217

how the statements x are generated). Remarkably, we do not make any stipula-
tions about the reduction’s executions of the adversary instances: The reduction
can run an arbitrary (bounded) number of instances of the adversary, and there
are no restrictions on the inputs of these instances or their scheduling. However,
the reduction R can only use the external random oracle.

Our approach is based on the meta-reduction technique [11,40,53]. That is,
we start with an unbounded adversary A, who breaks the signature scheme easily
with its super-polynomial power by computing a secret key and signing as the
honest prover would. This means that the reduction R also solves the underly-
ing problem when interacting with A. Afterwards, we show how to simulate A
efficiently, resulting in an efficient algorithm solving the problem directly. This
implies that there cannot exist such a reduction R in the first place.

The crucial difference between the sequential and the parallel version of the
OR-technique is that in the latter case observing the random oracle queries of the
adversary does not reveal which witness is being used. By the zero-knowledge
property one cannot distinguish real and simulated sub-proofs in the parallel
case. Indeed, our negative result relies exactly on this zero-knowledge property,
taking advantage of the fact that the random oracle is external to the reduction.

1.6 Further Related Work

The issue of non-programmability of random oracles also appears in recent works
related to Canetti’s universal composability (UC) framework [15]. In this model,
random oracles can be cast as an ideal functionality FRO, and protocols can be
developed in the hybrid setting where FRO is present. A technical consequence
of this design choice is that the random oracle is programmable, and a com-
positional consequence is that one would need a fresh random oracle for each
protocol instance. Therefore, the global random oracle model [18], based on ideas
of global set-ups [16,26], defines a random oracle functionality GsRO which can
be used by all protocols, obliterating also the programmability of the random
oracle in this model.

We stress, however, that protocols designed in the global random oracle model
are not necessarily secure for non-programmable random oracles. The discrep-
ancy lies in the distinction between the model and the security proof: In the
global random oracle model, one may no longer be able to program the ran-
dom oracle when devising a simulator in the model, but a reduction may still
program the random oracle in the security proof showing that the simulator is
good. Indeed, this can be observed in the security reductions in [14] proving
that all signature schemes which have a stand-alone proof of unforgeability in
the “isolated” random oracle model, including schemes with a security reduction
via programming, remain secure in the strict global random oracle model GsRO.

The impossibility of proving the security of specific types of signatures
derived via the Fiat-Shamir transform in the non-programmable random ora-
cle model has already been discussed in prior works, e.g., [33,36]. These works
usually make some restrictions on the reduction being ruled out (like key preser-
vation or being single-instance) , whereas we do not need any such condition. We

218 M. Fischlin et al.

remark here that our impossibility result for parallel-OR signatures does likely
not follow in a general way from these results, since the same approach fails in
the sequential-OR case.

In terms of OR-proofs, Ciampi et al. [20], based on an earlier approach by
Lindell [46], use the OR-technique to build non-interactive zero-knowledge proofs
from Σ-protocols in the non-programmable random oracle model. For technical
reasons they also need a common reference string, which is used to form the OR-
language. Note that this is orthogonal to our goal here, where we aim to build
OR-proofs for two languages in the non-programmable random oracle model. In
another work, Ciampi et al. [21] consider extensions of parallel-OR proofs where
(some of) the languages are not specified yet when the execution starts. This
includes the solution in the common reference string model in [20].

1.7 Extension to the Quantum Random Oracle Model

The results discussed so far are in the classical random oracle model. In terms
of the quantum random oracle model (QROM), introduced by Boneh et al. [10],
the situation regarding OR-proofs is less scrutinized. Our approach in the (clas-
sical) sequential-OR case is based on the observability of queries to the random
oracle, a technique that usually does not carry over to the QROM because of
superposition queries. In the parallel-OR case, we have seen that observability
may not even help in the classical setting.

Fortunately, there have been two recent results regarding the security of
Fiat-Shamir protocols in the QROM [27,48], bypassing previous negative results
concerning the Fiat-Shamir transform in this model [5,24]. These works both
yield a non-tight bound, but give an immediate solution for the parallel-OR
case in the QROM. There, one first combines the two interactive proofs via
the parallel-OR construction to get an interactive Fiat-Shamir proof, and then
applies these techniques. We show in Sect. 6 that one can also prove security of
signatures derived from the sequential-OR construction in the QROM via the
measure-and-reprogram technique described in [27]. The price we pay is that
we inherit the loose security bound from the solution in [27] and we, like all
currently known constructions in the QROM, need to program the quantum
random oracle.

2 Preliminaries

2.1 Basic Notation

We denote by N = Z≥0 the set of non-negative integers, and by λ ∈ N the
security parameter (often written in unary notation as 1λ). A function μ : N → R

is called negligible if, for every constant c ∈ R>0, there exists λc ∈ N such that,
for every λ ∈ N with λ ≥ λc, we have μ(λ) ≤ λ−c. For a random variable X,
we write x←$ X to denote that x is a random variate of X. For a finite set S
of size |S|, we use s←$ S as a shorthand for s←$ US , where US is a random

Signatures from Sequential-OR Proofs 219

variable uniformly distributed over S. The arrow ← will be used for assignment
statements. We denote the length of a string x ∈ {0, 1}∗ by |x|, and we write ε
for the empty string. We consider an injective, efficiently computable, efficiently
reversible, and length-increasing encoding function ({0, 1}∗)∗ → {0, 1}∗. This
allows us to represent sequences of strings again as strings, and will be tacitly
used throughout the paper.

In this work we use the computational model of probabilistic oracle Turing
machines, also called algorithms. We assume that they are equipped with a
separate security parameter tape containing the value 1λ. The running time of
algorithms, which is intended to be bounded by the worst case, is a function of the
security parameter input length only. A uniform algorithm is called probabilistic
polynomial-time (PPT) if its running time is bounded by a polynomial, whereas
a non-uniform algorithm is PPT if it corresponds to an infinite sequence of
Turing machines, indexed by the security parameter λ, whose description sizes
and running times are bounded by a polynomial in λ. Queries to the oracles
always count as one operation each. For an algorithm A, we denote by AO(1λ;x)
the random variable representing the output of A when run on security parameter
λ and input x ∈ {0, 1}∗, with access to oracles O = (O1, . . . ,Ot).

We use ⊥ as a special symbol to denote rejection or an error, and we assume
that ⊥ /∈ {0, 1}∗. Both inputs and outputs of algorithms can be ⊥, and we
convene that if any input to an algorithm is ⊥, then its output is ⊥ as well.
Double square brackets [[·]] enclosing boolean statements return the bit 1 if the
statement is true, and 0 otherwise.

2.2 Random Oracle Model

Let � : N → N be a polynomial-time computable function. For a security param-
eter λ ∈ N, a random oracle (RO) [9,17] is an oracle H that implements a
function randomly chosen from the space of all functions {0, 1}∗ → {0, 1}�(λ), to
which all parties have access. In other words, it is an oracle that answers every
query with a truly random response chosen from the range {0, 1}�(λ). For every
repeated query the random oracle consistently returns the same output.

Constructions established and statements proved in the presence of a RO
are said to hold in the random oracle model (ROM). Throughout the paper,
whenever a security game is set in the ROM, we assume that at the beginning of
the experiment a random oracle is sampled uniformly from the aforementioned
function space, and then used throughout the experiment. In this setting, it will
sometimes be necessary to record queries to the random oracle H, and we will
do so via a set QH: If (i, x) ∈ QH, this means that the i-th query to H was x.

We also define the “zero oracle” as a function Z : {0, 1}∗ → {0, 1}�(λ), with
Z(x) = 0�(λ) for all x ∈ {0, 1}∗. This allows us to state our definitions simulta-
neously in the standard model and in the ROM: Parties will be given access to a
generic oracle O, and it is understood that O := Z if the definition is formulated
in the standard model, and O := H if it is in the ROM.

220 M. Fischlin et al.

The quantum analogue of the above is the so-called quantum random oracle
model (QROM), introduced by Boneh et al. [10]. Here, a quantum algorithm may
query the random oracle H in superposition, i.e., submit superposition queries
of the form

∑
x αx|x〉|0〉 and obtain the output

∑
x αx|x〉|H(x)〉. We refer to [51]

for further background and conventions regarding quantum information.

2.3 Languages and Relations

A language is a subset L ⊆ {0, 1}∗. In this work, we assume that every language L
is equipped with a uniform PPT algorithm GL (called instance generator) which,
on input (1λ; b) with b ∈ {0, 1}, returns an element x ∈ L if b = 1 (yes-instance),
and an element x /∈ L if b = 0 (no-instance). Usually, the complexity of x is
closely related to the security parameter λ, e.g., |x| = λ, but we can allow for
other (polynomial) dependencies as well.

A binary relation is a subset R ⊆ {0, 1}∗ × {0, 1}∗ which is polynomially
bounded, i.e., there exists a polynomial p such that, for every (x,w) ∈ R,
we have |w| ≤ p(|x|). If (x,w) ∈ R, we call x an R-instance and w an R-
witness of x. For every x ∈ {0, 1}∗, we denote the set of all R-witnesses of x by
WR(x) := {w | (x,w) ∈ R} (if x is not an R-instance, then WR(x) = ∅). Note
that every binary relation R defines a language LR := {x | ∃w : (x,w) ∈ R}.
Just like before for languages, we also assume that every binary relation R is
equipped with a uniform PPT algorithm GR (called instance generator) which,
on input (1λ; b) with b ∈ {0, 1}, returns a pair (x,w) ∈ R if b = 1 (yes-instance),
and an element x /∈ LR if b = 0 (no-instance). Observe that from an instance
generator GR for a binary relation R we get an instance generator GLR

for LR

by simply running GR and returning the first component only if b = 1.
An NP-relation is a binary relation that is polynomial-time recognizable,

i.e., R ∈ P. Observe that if R is an NP-relation, then LR ∈ NP, and vice-versa
if L ∈ NP, then the set RL of all string pairs (x,w) ∈ {0, 1}∗×{0, 1}∗ with x ∈ L
and w an NP-witness for x (w.r.t. a fixed polynomial and Turing machine) is
an NP-relation. In this situation, we have of course LRL

= L and RLR
⊇ R.

We next define the OR-combination of two relations and its instance genera-
tor. Here and in the following, we present all definitions and constructions with
respect to the OR of two relations only, but all results extend to the more gen-
eral 1-out-of-n case. A yes-instance of the OR-relation is a pair of values (x0, x1),
each in its respective language, together with a witness w of either value. A no-
instance of the OR-relation is again a pair of values, where at least one is not
in the corresponding language, while the other may or may not belong to its
language. The convention that a yes-instance has both inputs in their respec-
tive languages corresponds to the setting of group signature schemes, where all
parties choose their public keys honestly; only in security reductions one may
diverge from this. It is also in general necessary to ensure completeness of the
OR-protocol, since the simulator for x1−b is only guaranteed to output a valid
transcript for yes-instances.

Signatures from Sequential-OR Proofs 221

Definition 1. Let R0 and R1 be two binary relations. Define the OR-relation
of R0 and R1 as the binary relation

ROR :=
{(

(x0, x1), (b, w)
) ∣

∣ b ∈ {0, 1} ∧ (xb, w) ∈ Rb ∧ x1−b ∈ LR1−b

}
,

equipped with the instance generator GROR
defined in Fig. 3. We denote the cor-

responding OR-language by LOR := LROR
.

Observe that, for binary relations R0 and R1, the relation ROR is indeed a
binary relation, and that LOR = LR0 × LR1 .

We now recall two hardness notions a binary relation R may satisfy. Intu-
itively, R is decisionally hard if no PPT distinguisher can decide if it is given
an R-instance or a no-instance. It is computationally hard if no PPT adversary
can efficiently compute an R-witness w for a given R-instance x.

Definition 2. Let R be a binary relation. We say that R is:

1. Decisionally Hard if, for every PPT distinguisher D, there exists a negligible
function μ : N → R such that, for every λ ∈ N and every z ∈ {0, 1}∗,

∣
∣
∣Pr

[
ExpDHR,0

D,R (λ, z) = 1
]

− Pr
[
ExpDHR,1

D,R (λ, z) = 1
]∣
∣
∣ ≤ μ(λ),

where ExpDHR,0
D,R (λ, z) and ExpDHR,1

D,R (λ, z) are defined in Fig. 3.
2. Computationally Hard if, for every PPT algorithm A, there exists a negligible

function μ : N → R such that, for every λ ∈ N and every z ∈ {0, 1}∗,

Pr
[
ExpCHR

A,R (λ, z) = 1
]

≤ μ(λ),

where ExpCHR
A,R (λ, z) is defined in Fig. 3.

It is readily verified that two binary relations R0 and R1 are computation-
ally hard if and only if ROR is computationally hard. Furthermore, if an NP-
relation R is decisionally hard, it is also computationally hard.

2.4 Interactive Protocols

An interactive protocol Π between two parties, called prover and verifier, is a
pair of uniform algorithms Π = (P,V). We write PO(1λ;x,w) � VO(1λ;x, z)
to denote the interaction between P and V on security parameter λ, common
input x, respective auxiliary inputs w and z, and with access to oracle O.

Algorithms P and V compute the next-message function of the corresponding
party. In more detail, PO(1λ;βi, stP) is the random variable which returns the
prover’s next message αi+1 and its updated state stP, both computed on input
the security parameter λ, the last incoming message βi, and the current state stP.
Here we assume that stP contains all the information necessary for P to perform
its computation, including at least the common input, its auxiliary input, and
the messages exchanged thus far. Similar considerations hold for V.

222 M. Fischlin et al.

Fig. 3. Definition of the instance generator GROR of the relation ROR, and of the exper-
iments ExpDHR,b

D,R (λ, z) and ExpCHR
A,R (λ, z) from Definition 2. Recall that O is either a

random oracle or the trivial all-zero oracle.

We write trans
[
PO(1λ;x,w) � VO(1λ;x, z)

]
= (A1, B1, . . . , At, Bt, At+1)

for the transcript of the interaction between P and V. This is the ran-
dom variable which returns a sequence of messages (α1, β1, . . . , αt, βt, αt+1),
where (αi+1, stP)←$ P

O(1λ;βi, stP) and (βj , stV)←$ V
O(1λ;αj , stV) for every

0 ≤ i ≤ t and 1 ≤ j ≤ t. Here we assume that stP, stV and β0 are initial-
ized to stP ← (x,w), stV ← (x, z) and β0 ← ε. The view of V in the inter-
action with P, denoted viewV

[
PO(1λ;x,w) � VO(1λ;x, z)

]
, is the random vari-

able (A1, A2, . . . , At, At+1, RV), where RV is the random variable representing V’s
random coins.

The interaction between prover and verifier terminates with V computing a
decision v ←$ V

O(1λ;αt+1, stV), where v ∈ {0, 1}, on whether to accept or reject
the transcript. This is also called V’s local output, and the corresponding random
variable will be denoted by outV

[
PO(1λ;x,w) � VO(1λ;x, z)

]
.

We say that a protocol Π = (P,V) is efficient if V is a PPT algorithm. For
a binary relation R, we say that Π has an efficient prover w.r.t. R if P is a
PPT algorithm and, on security parameter λ, it receives common and auxiliary
inputs x and w such that (x,w)←$ GR(1λ; 1). Note that we will only consider
protocols which are efficient, have an efficient prover w.r.t. a specified binary
relation R, and where the honest verifier is independent of its auxiliary input
(we can therefore assume z = ε in this case). We call these protocols w.r.t. R.

We call Π public-coin (PC) if all the messages the honest verifier sends
to P consist of disjoint segments of its random tape, and if V’s local output is
computed as a deterministic function of the common input and the transcript,
that is v ← VO(1λ;x, α1, β1, . . . , αt, βt, αt+1). In this situation we say that a
transcript is accepting for x if v = 1.

Signatures from Sequential-OR Proofs 223

Fig. 4. Definition of the experiments ExpCWI,b
V∗,D,Π(λ, x, w, w′, z, z′) and

ExpSCZK,b
D,Π (λ, x, w, z) from Definitions 3 and 4.

We now recall the notion of computational witness indistinguishability [31],
which is the property of general interactive protocols that is most relevant to our
work. Intuitively, this notion captures the idea that protocol runs for a fixed R-
instance but different witnesses should be indistinguishable. For the sake of com-
pleteness, we state the precise definitions of the completeness, soundness, honest-
verifier zero-knowledge (HVCZK), and computational witness hiding (CWH)
properties in the full version [34].

Definition 3. Let R be a binary relation, and let Π = (P,V) be a protocol
w.r.t. R. We say that Π is Computationally Witness Indistinguishable (CWI) if,
for every uniform PPT algorithm V∗ and every PPT distinguisher D, there exists
a negligible function μ : N → R such that, for every λ ∈ N, every x←$ GLR

(1λ; 1),
every w,w′ ∈ WR(x), and every z, z′ ∈ {0, 1}∗,

∣
∣
∣Pr

[
ExpCWI,0

V∗,D,Π(λ, x,w,w′, z, z′) = 1
]
−

Pr
[
ExpCWI,1

V∗,D,Π(λ, x,w,w′, z, z′) = 1
]∣
∣
∣ ≤ μ(λ),

where ExpCWI,b
V∗,D,Π(λ, x,w,w′, z, z′) is defined in Fig. 4.

Note that we will later require a stronger version of CWI, which we term
multi-query computational witness indistinguishability (mqCWI) and define for-
mally in the full version [34]. This is basically an oracle extension of ordinary
CWI, where the distinguisher can query arbitrarily many protocol executions
before guessing which witness was used to generate them. One can prove via
a simple hybrid argument that CWI and mqCWI are equivalent, albeit with a
polynomial loss in the distinguishing advantage.

224 M. Fischlin et al.

Fig. 5. Representation of a 3PC protocol w.r.t. a binary relation R.

2.5 3PC-Protocols and Σ-Protocols

Let R be a binary relation. We will be mainly interested in so-called 3PC-
protocols w.r.t. R, i.e., protocols w.r.t. R which are public-coin, and where the
two parties exchange exactly three messages. We also assume that, on secu-
rity parameter λ, the only message sent by the verifier to the prover has fixed
length �(λ), for a function � : N → N called the length function associated to the
protocol. A graphical representation of such a protocol is given in Fig. 5.

In this particular context, we call the three messages exchanged between
prover and verifier the commitment, the challenge, and the response, and denote
them by com := α1, ch := β1, and resp :=α2, respectively. Furthermore, we say
that two accepting transcripts (com, ch, resp) and (com′, ch′, resp′) for an ele-
ment x constitute a transcript collision for x if com = com′ and ch �= ch′.

We now recall the critical notion of special computational zero-knowledge.
Intuitively, it means that there exists a simulator which, for any maliciously cho-
sen challenge given in advance, is able to create an authentic-looking transcript.

Definition 4. Let R be a binary relation, and let Π = (P,V) be a 3PC protocol
w.r.t. R. We say that Π is Special Computational Zero-Knowledge (SCZK),
if there exists a uniform PPT algorithm S with the following property: For
every two-stage PPT distinguisher D = (D0,D1), there exists a negligible func-
tion μ : N → R such that, for every λ ∈ N, every (x,w)←$ GR(1λ; 1), and
every z ∈ {0, 1}∗,

∣
∣
∣Pr

[
ExpSCZK,0

D,Π (λ, x,w, z) = 1
]

− Pr
[
ExpSCZK,1

D,Π (λ, x,w, z) = 1
]∣
∣
∣ ≤ μ(λ),

where ExpSCZK,b
D,Π (λ, x,w, z) is defined in Fig. 4.

The definitions of other properties of 3PC protocols, like optimal and special
soundness, are included in the full version [34]. Roughly, optimal soundness says
that for every x /∈ L and every commitment, there is at most one challenge
which can lead to a valid response. Special soundness says that for x ∈ L, any
transcript collision yields a witness, and for x /∈ L no collisions can be found.
We are now in a position to define the notion of a Σ-protocol.

Signatures from Sequential-OR Proofs 225

Fig. 6. Details of the parallel-OR construction by Cramer et al. [23]. Parts specific to
the case where both Π0 and Π1 are SCZK (in comparison to HVCZK) are highlighted
in gray.

Definition 5. Let R be a binary relation. A Σ-protocol w.r.t. R is a 3PC pro-
tocol Π w.r.t. R which is complete, specially sound, and SCZK.

3 Parallel-OR Proofs

In this section we recall the classical parallel-OR construction of Cramer et
al. [23], which works for two arbitrary 3PC HVCZK protocols.

Let R0 and R1 be binary relations, and consider two 3PC HVCZK proto-
cols Π0 = (P0,V0), Π1 = (P1,V1) w.r.t. R0 and R1 (with HVCZK-simulators S0
and S1), such that the two length functions �0 = �1 =: � coincide (this is no
real restriction, as the challenge length of such a protocol can be increased
via parallel repetition). The construction, first presented in [23] and depicted
in Fig. 6, allows to combine Π0 and Π1 into a new 3PC HVCZK protocol
par-OR[Π0,Π1,S0,S1] = (Ppar-OR,Vpar-OR) w.r.t. the binary relation ROR. Note
that the simulators of the two protocols become an integral part of the scheme.

The key idea of the construction is to split the challenge ch sent by Vpar-OR

into two random parts, ch = ch0 ⊕ ch1, and to provide accepting transcripts
for both inputs x0 and x1 with the corresponding challenge share. If the prover
knows a witness w for xb, it can use the HVCZK-simulator S1−b of Π1−b to
generate a simulated view (com1−b, resp1−b, ch1−b) for x1−b, and then compute
a genuine transcript (comb, chb, respb) for xb using the witness w it knows.

226 M. Fischlin et al.

Observe that the same idea works with minor changes if Π0 and Π1 are both
SCZK w.r.t. R0 and R1 (instead of HVCZK). The only difference is that Ppar-OR

must now sample a random challenge ch1−b before running the SCZK-
simulator S1−b in the first step. The main properties of par-OR[Π0,Π1,S0,S1]
are summarized in the following.

Theorem 6. Let R0 and R1 be binary relations, and let Π0 and Π1 be two
3PC HVCZK protocols w.r.t. R0 and R1, such that the length functions satisfy
�0 = �1 =: �. Consider the protocol Π = par-OR[Π0,Π1,S0,S1]. Then:

1. Π is a 3PC CWI HVCZK protocol w.r.t. ROR.
2. If Π0 and Π1 are complete, then Π is also complete.
3. If R0 and R1 are NP-relations and ROR is computationally hard, then Π is

CWH.

Furthermore, if both Π0 and Π1 are SCZK, then Π is SCZK.

The proof of the above can be found in a slightly different syntactical version
in [25], whereas the particular proof of the CWH property can be found in [59].
Note that one can build a secure signature scheme sFS[Π,H] in the ROM from
the protocol Π applying the Fiat-Shamir transform, which we discuss in more
detail in the full version [34].

4 Sequential-OR Proofs

In this section, we discuss an alternative OR-proof technique which we call
sequential-OR. This technique was first used in the context of group signature
schemes by Abe et al. [3]. On a high level, in the sequential-OR variant the
prover derives two sub-proofs, where data from one proof is used to derive the
challenge for the other one.

4.1 Protocol

Similarly to Sect. 3, we denote by R0 and R1 two binary relations, and consider
two 3PC SCZK protocols Π0 = (P0,V0) and Π1 = (P1,V1) w.r.t. R0 and R1

and simulators S0 and S1, such that the two length functions �0 = �1 =: � coin-
cide. Furthermore, let H be a random oracle. The sequential-OR construction
enables one to merge the two protocols Π0 and Π1 into a non-interactive proto-
col seq-OR[Π0,Π1,S0,S1,H] = (Pseq-OR,Vseq-OR) w.r.t. the binary relation ROR.
The formal details of the protocol are summarized in Fig. 7.

The key idea of the construction is to compute the challenge for the instance
the prover indeed does know the witness of, based on the commitment for which
it does not know the witness (derived via the SCZK-simulator). In more detail,
on input the security parameter λ ∈ N, consider a yes-instance for the OR-
relation ((x0, x1), (b, w))←$ GROR

(1λ; 1). The protocol seq-OR[Π0,Π1,S0,S1,H]
starts with the prover Pseq-OR and verifier Vseq-OR receiving (x0, x1) as common

Signatures from Sequential-OR Proofs 227

Fig. 7. Details of the sequential-OR construction by Abe et al. [3].

input. Additionally, Pseq-OR receives the witness (b, w) as auxiliary input. The
protocol then proceeds in the following way:

1. Pseq-OR sets stPb
← (xb, w) and computes (comb, stPb

)←$ Pb(1λ; stPb
).

It then computes the challenge ch1−b evaluating the random oracle H
on the common input (x0, x1) and the previously generated commit-
ment comb. It also includes the bit b from the witness for domain sep-
aration. Next, it runs the SCZK-simulator S1−b to obtain a simulated
view (com1−b, resp1−b, ch1−b)←$ S1−b(1λ;x1−b, ch1−b). It then obtains the
challenge chb for the first proof by evaluating H on the common input (x0, x1),
the commitment com1−b from the simulator, and the bit 1 − b. Finally,
Pseq-OR computes (respb, stPb

)←$ Pb(1λ; chb, stPb
) using the witness for xb, and

sends resp ← (com0, com1, resp0, resp1) to Vseq-OR.
2. Vseq-OR first re-computes both challenge values using the random oracle H.

It then accepts the proof if and only if both transcripts verify correctly,
i.e., V0(1λ;x0, com0, ch0, resp0) = 1 and V1(1λ;x1, com1, ch1, resp1) = 1.

In the following theorem, we establish the main properties of the protocol
seq-OR[Π0,Π1,S0,S1,H].

Theorem 7. Let R0 and R1 be binary relations, and let Π0 and Π1 be two
3PC SCZK protocols w.r.t. R0 and R1, such that the length functions satisfy
�0 = �1 =: �. Consider the protocol Π = seq-OR[Π0,Π1,S0,S1,H]. Then the
following holds in the ROM:

1. Π is a 1-move CWI protocol w.r.t. ROR.
2. If Π0 and Π1 are complete, then Π is also complete.
3. If R0 and R1 are NP-relations and ROR is computationally hard, then Π is

CWH.

A detailed proof of Theorem 7 as well as an extension of the above technique
to the more general 1-out-of-n case can be found in the full version [34].

228 M. Fischlin et al.

Fig. 8. Description of the signature scheme Γ = (KGen, Sign,Verify) obtained from
the protocol seq-OR[Π0, Π1, S0, S1, H] by appending the message m being signed to all
random oracle queries.

4.2 Sequential-OR Signatures

We now show how one can use the sequential-OR proof technique (see Fig. 7)
to build a secure signature scheme Γ = (KGen,Sign,Verify) in the non-
programmable ROM. On a high level, the signer runs a normal execution of
the protocol seq-OR[Π0,Π1,S0,S1,H], but always includes the message m being
signed when it queries the random oracle to obtain the challenges. Signatures
in this scheme consist of the commitments and responses generated during the
protocol execution, and verification can be achieved by re-computing the chal-
lenges (again, including the message) and checking whether the two transcripts
verify. The formal details of the scheme can be found in Fig. 8, and we provide
a detailed description in the following.

The signature scheme’s key generation algorithm runs the instance genera-
tor ((x0, x1), (b, w))←$ GROR

(1λ; 1) of the relation ROR, which returns an ROR-
instance (x0, x1) and a witness w for xb. The pair (x0, x1) then constitutes the
public verification key, and (b, w) is set to be the secret signing key.

Signing a message m starts with running Pb on the instance xb with the
corresponding known witness (contained in the signing key), which results in
a commitment comb. The next step is to compute the challenge ch1−b for the
instance the prover does not know the witness for, and this is done querying
the random oracle H, as done before. The only difference is that now the mes-
sage m is appended to the oracle’s input. Next, the signer runs the SCZK-
simulator of Π1−b on the instance x1−b and this challenge, generating a simulated
view (com1−b, resp1−b, ch1−b). To complete the signature, it is still necessary to
derive the missing response respb. In order to do so, first the random oracle is

Signatures from Sequential-OR Proofs 229

invoked to output chb from com1−b (again, the message m is appended to its
argument), and on input this challenge the prover computes the response respb.
Finally, the signature is (com0, com1, resp0, resp1).

The verification algorithm checks whether the signature is valid for the given
message. The signature is parsed in its components, and the algorithm queries the
random oracle twice (including the message) to obtain the challenges ch0 and ch1,
as computed by the signing algorithm. It then verifies whether (com0, ch0, resp0)
and (com1, ch1, resp1) are accepting transcripts for x0 and x1, respectively. If
both transcripts verify correctly then the verification algorithm accepts the sig-
nature, and rejects otherwise.

Theorem 8. Let R0 and R1 be decisional hard relations, and let Π0 and Π1

be two 3PC optimally sound SCZK protocols w.r.t. R0 and R1, such that the
length functions satisfy �0 = �1 =: �. Consider the signature scheme Γ obtained
from the protocol Π = seq-OR[Π0,Π1,S0,S1,H] as depicted in Fig. 8. Then Γ
is an UF-CMA-secure signature scheme in the non-programmable random oracle
model. More precisely, for any PPT adversary A against the UF-CMA-security
of Γ making at most qH queries to the random oracle H, there exist PPT algo-
rithms C, V∗, D0 and D1 such that

AdvUF-CMA
A,Γ (λ) ≤ AdvmqCWI

V∗,C,Π(λ) + AdvDHR
D0,R0

(λ) + AdvDHR
D1,R1

(λ)

+ 2 · (qH(λ) + 2)2 · 2−�(λ).

In particular, for a perfectly witness indistinguishable proof system, where
AdvmqCWI

V∗,C,Π(λ) ≤ qs(λ) ·AdvCWI
V∗,C,Π(λ) = 0 (here and in the following, qs denotes

the number of queries the adversary makes to the signature oracle), the bound
becomes tightly related to the underlying decisional problem. This holds for
example if we have a perfect zero-knowledge simulator. We remark that our
proof also works if the relations are not optimally sound but instead c-optimally
sound, i.e., for every x /∈ LR and every commitment, there is a small set of at
most c challenges for which a valid response can be found. In this case we get
the term c(λ) · 2−�(λ) in place of 2−�(λ) in the above bound.

The complete proof of Theorem 8 can be found in the full version [34], but
we still give a proof sketch here. We show that the obtained signature scheme Γ
is secure via a sequence of game hops. The general approach is based on the
following idea:

1. Assume that we have an adversary A which creates a forgery (com∗
0, com

∗
1,

resp∗
0, resp

∗
1) for message m∗. We can modify A into an adversary B which will

always query both (0, x0, x1, com
∗
0,m

∗) and (1, x0, x1, com
∗
1,m

∗) to the ran-
dom oracle when computing the forgery, simply by making the two additional
queries if necessary.

2. Since the adversary is oblivious about which witness wb is being used to create
signatures, B will submit the query (1 − b, x0, x1, com

∗
1−b,m

∗) first, before
making any query about (b, x0, x1, com

∗
b ,m

∗), with probability roughly 1/2,
and will still succeed with non-negligible probability.

230 M. Fischlin et al.

3. If we next replace x1−b with a no-instance (which is indistinguishable for B
because R1−b is decisionally hard) we obtain the contradiction that B’s advan-
tage must be negligible now, because finding a forgery when querying com∗

1−b

first should be hard by the optimal soundness property of Π1−b, since x1−b

is a no-instance.

In more detail, in the first step we transition from the classical unforgeabil-
ity game G0 for the signature scheme Γ to a game G1 where the adversary is
additionally required to query both (0, x0, x1, com

∗
0,m

∗) and (1, x0, x1, com
∗
1,m

∗)
to the random oracle. It is always possible to make this simplifying assumption:
Indeed, given any adversary A against the UF-CMA-security of Γ , we can modify
it into an adversary B which works exactly like A, but whose last two operations
before returning the forgery as computed by A (or aborting) are the two required
oracle queries, in the order given above. It is clear that B is a PPT algorithm,
that it makes at most qH + 2 random oracle queries, and that the probabilities
of adversaries A winning game G0 and B winning game G1 are the same.

We remark that it is also possible, albeit a bit lengthy, to prove that a
successful adversary A against G0 would already make both oracle queries with
overwhelming probability, so that one could replace this first step with a more
cumbersome security proof ruling out adversaries that do not make both queries.
We choose here not to do so, because it would make the proof much longer and
worsen the overall bound on the advantage of A.

Next, we define a game G2 which is the same as game G1, with the change
that the adversary is required to query (1− b, x0, x1, com

∗
1−b,m

∗) to the random
oracle before submitting any query of the form (b, x0, x1, com

∗
b ,m

∗). By witness
indistinguishability this should happen with roughly the same probability as the
other case (with the opposite order), because from the adversary’s perspective
the signatures do not reveal which witness wb is used by the signer. Indeed, we
show that the difference between both games is (up to a factor 1

2) negligibly
close. This is shown by building a distinguisher against a multi-query extension
of the CWI property (see the full version [34] for its definition), and proving that
the difference coincides with the distinguishing advantage of this distinguisher
in the mqCWI experiment. As a result, the winning probability of B in game G1

is approximately twice its winning probability in game G2.
Finally, we move to a game G3 which is identical to G2, with the difference

that the (1 − b)-th instance is switched to a no-instance. Since the relations are
decisionally hard, we can build another distinguisher playing the DHR experi-
ment, showing that the winning probabilities are again roughly the same.

To conclude the proof we argue that the probability of the adversary win-
ning game G3 can be bounded using the fact that Π1−b is optimally sound.
Indeed, by the winning condition in the game, the adversary needs to provide
the commitment com∗

1−b early on. By the fact that the (1 − b)-th instance is
a no-instance, we know that for every such commitment there exists at most
one challenge (derived querying H on com∗

b later in the game) for which there
exists a response such that the transcript for x1−b verifies correctly. Since the
adversary must ask com∗

1−b in one of the random oracle queries, there are at

Signatures from Sequential-OR Proofs 231

most qH + 2 commitments com∗
1−b it can check. For every such commitment it

can try at most qH + 2 other oracle queries to find the matching challenge, so
that we can bound B’s winning probability in G3 by (qH(λ) + 2)2 · 2−�(λ)+1.

4.3 Example: Post-Quantum Ring Signatures

We discuss here briefly that our sequential-OR technique can be applied to build
lattice-based ring signatures. We exemplify this for the case of the Dilithium
signature scheme [28]. We stress that our solution may be less efficient than
optimized lattice-based constructions such as [30] (but which, again, relies on
programming the random oracle and yields a loose reduction). Our aim is to
demonstrate that one can use the sequential-OR approach in principle to imme-
diately obtain a solution with security guarantees in the non-programmable clas-
sical ROM (with tight security relative to the underlying lattice problem) and
also in the QROM (with loose security at this point).

We briefly recall the Dilithium signature scheme [29]. The scheme works over
a ring Rq = Zq[X]/(Xn + 1). The public key consists of (a size-reduced version
of) t = As1 + s2, where the matrix A ∈ Rk×�

q and the vectors s1, s2 become part
of the secret key. The signature σ = (z, h, c) of a message m consists of a short
response value z = y + cs1, where y is chosen randomly and c = H(μ,w1) is a
(deterministically post-processed) hash value of a salted hash μ of the message m
and the commitment of w = Ay in form of its higher-order bits w1. The value h
is a hint required for verification. When generating a signature, the process may
not always create a sufficiently short value z, in which case the generation is
started from scratch.

The security proof of Dilithium [45] is based on the presumably hard problem
to distinguish genuine public keys (A,As1 + s2) from (A, t) for random t. As
such we have our required decisional hard relation. Optimal soundness, in the
sense that for random public keys there exists at most one challenge for which
one can find a valid answer for a given commitment, has been also shown to
hold with overwhelming probability in [45]. The zero-knowledge property in [45]
reveals, by inspecting the construction of the simulator, that the construction is
special zero-knowledge with perfectly indistinguishable distribution. The witness
indistinguishability of the sequential-OR protocol hence follows from Theorem 7.

We can now apply Theorem 8 to conclude that the sequential-OR version
is a secure signature scheme (in the non-programmable random oracle model).
Note that it is irrelevant for us how many trials the signature generation takes,
since we are merely interested in the point in time when we actually observe the
right random oracle queries. With Theorem 10 we can also conclude that the
protocol is secure in the quantum random oracle model.

5 Impossibility of Parallel-OR Signatures in the
Non-programmable Random Oracle Model

In this section we show that it may be hard to prove the unforgeability of the
parallel-OR signature scheme Γ = sFS[par-OR[Π0,Π1,S0,S1],H] in the non-

232 M. Fischlin et al.

programmable ROM (all formal details about the definition of Γ can be found
in the full version [34]). On a high level, this means that we must rule out the
existence of an efficient reduction R which has access to a random oracle but is
not allowed to program it, and which transforms any (bounded or unbounded)
successful adversary A against the unforgeability of Γ into an algorithm C solving
some problem G assumed to be hard with non-negligible advantage.

Our proof will proceed in two steps. First, assuming by contradiction that
such a reduction R indeed does exist, we will construct a specific unbounded
adversary A which breaks the unforgeability of Γ with overwhelming probability.
By the properties of R, this means that the unbounded algorithm C resulting from
the interaction between R and A must successfully break instances of G in the
non-programmable ROM with non-negligible probability. Then, we show how
to efficiently simulate to R its interaction with A, thereby yielding an efficient
algorithm B against G in the standard model with roughly the same advantage
as C. This is impossible by the hardness of G, which means that R cannot exist.

In the following paragraphs we discuss which kinds of reductions R we are able
to rule out, define what types of problems G the algorithms B and C play against,
and discuss a pointwise version of zero-knowledge which the base protocols must
satisfy for our result to work. We then come to the main result of this section.

Reduction. The efficient reductions R we consider have oracle access to the ran-
dom oracle H, as well as a (bounded) number of adversary instances Ai which
themselves have oracle access to H. The latter guarantees that the reduction
cannot program the random oracle for the adversarial instances, but we stress
that R gets to see all the queries made by any instance Ai. We let each adversarial
instance be run on the same security parameter λ as the reduction itself.

Recall that, in the first step of our proof, the adversary A is unbounded.
Therefore, we can assume that A incorporates a truly random function which it
uses if random bits are required. With this common derandomization technique,
we can make some simplifying assumptions about the reduction: Without loss
of generality, R runs the instances of the adversary in sequential order, starting
with A1. It also never revisits any of the previous instances A1, . . . ,Ai once it
switches to the next instance Ai+1 by inputting a verification key vki+1. Further-
more, we can disallow any resets of the adversarial instances: The reduction can
simply re-run the next instance up to the desired reset point and then diverge
from there on.

Games. The hard problems that algorithms B and C are trying to solve are non-
interactive (“oracle-free”) problems, like distinguishing between different inputs.
Formally, we consider games of the form G = (I,V, α) consisting of an instance
generation algorithm I and a verification algorithm V, where (inst, st)←$ I(1λ)
generates a challenge inst of the game and some state information st. On input
a potential solution sol computed by some algorithm, the deterministic algo-
rithm V(1λ; inst, sol, st) returns 0 or 1, depending on whether sol is a valid solu-
tion of inst. The constant α allows to measure the advantage of an algorithm

Signatures from Sequential-OR Proofs 233

trying to win the game over some trivial guessing strategy (e.g., α = 1
2 for dis-

tinguishing games). We say that an algorithm B has advantage ε winning the
game G = (I,V, α) if

Pr
[
V(1λ; inst, sol, st) = 1 : (inst, st)←$ I(1λ), sol←$ B(1λ; inst)

] ≥ α + ε(λ).

For us, the canonical problem to reduce security of the signature scheme to would
be the distinguishing game against the hard instance generator for the underlying
language. However, our theorem holds more generally for other problems.

The All-Powerful Adversary. In our setting, the reduction RH,AH
1 ,AH

2 ,...(1λ; inst)
has black-box access to a successful adversary A against Γ , receives as input
some instance inst of a game G = (I,V, α), and is supposed to output a valid
solution sol, winning the game with non-negligible advantage ε, while interacting
with A. Recall that R must be able to convert any (efficient or unbounded)
adversary A into a solver for G; in particular, this must be the case for the
following all-powerful forger A, which we will consider throughout the proof:

1. Upon receiving a verification key vk = (x0, x1) as input, the adversary first
queries its singing oracle for a signature on the message mvk = vk.

2. When receiving the signature σ, adversary A verifies the signature and aborts
if this check fails.

3. Else, adversary A uses its power to compute the lexicographic first witness w
of x0 (if it exists), or of x1 (if it exists, and no witness for x0 has been found).
If no witness can be found, then A aborts. Otherwise, let b ∈ {0, 1} be such
that A has found a witness for xb.

4. Adversary A picks a random λ-bit message m∗ and runs the signing algorithm
with secret key sk = (b, w) to create a signature σ∗. This requires one random
oracle query over the message (x0, x1, com

∗
0, com

∗
1,m

∗). The randomness nec-
essary to create the signature and the message m∗ is computed by applying
the inner random function to (vk, σ).

5. The adversary outputs (m∗, σ∗) as its forgery.

Note that since the adversary includes the public key vk in the messages mvk, our
result would also hold if the signing process itself did not include vk; according
to our specification it currently does.

We observe that A obviously wins the UF-CMA experiment of Γ with over-
whelming probability. We denote by CH(1λ; inst) the adversary against G in the
non-programmable ROM obtained by letting R interact with A (see the left-
hand side of Fig. 9). By the properties of R, the advantage of C against G in the
non-programmable ROM must be non-negligible.

Zero-Knowledge. Recall that we defined the zero-knowledge property for proto-
cols w.r.t. relations R that have an efficient instance generator. Here, we need
a stronger notion: Zero-knowledge must hold pointwise for every (x,w) ∈ R.
The reason is that we will rely on the zero-knowledge property to argue that the
reduction R does not learn any useful information from the signatures created by

234 M. Fischlin et al.

the all-powerful adversary A. The problem here is that the reduction may choose
the instance vki = (x0, x1) in the execution of the i-th adversary adaptively and
in dependence of the behavior of A in previous instances. The reduction may
then also base its final output on this choice.

We therefore say that a protocol Π = (P,V) w.r.t. a relation R is point-
wise HVCZK, if there exist a uniform PPT algorithm S and a polynomial p
with the following property: For every PPT distinguisher D, there exists a
negligible function μ : N → R such that, for every λ ∈ N, every (x,w) ∈ R
with |x| , |w| ≤ p(λ), and every z ∈ {0, 1}∗, D can distinguish verifier views
viewV

[
PO(1λ;x,w) � VO(1λ;x)

]
in the honest interaction between P and V

from the simulator’s output S(1λ;x) with advantage at most μ(λ), even if D
receives z as auxiliary input.

Note that in the definition above, the relation and the language are still fixed,
only the sampling process may vary. This seems to be a reasonable assumption
which applies to known protocols, as the zero-knowledge simulator is usually
independent of the generation process for the statement.

Impossibility Result. We now show that, if there exists a black-box reduction R
as described above, our all-powerful adversary A induces an efficient algorithm B
winning the game directly, such that the advantages of B and C are roughly the
same. This is impossible by the assumed hardness of G, so that R cannot exist.

Theorem 9. Let R0 and R1 be binary relations, and let Π0 and Π1 be two 3PC
optimally sound pointwise HVCZK protocols w.r.t. R0 and R1, such that the
length functions satisfy �0 = �1 =: �. Denote by Π = par-OR[Π0,Π1,S0,S1] the
corresponding parallel-OR protocol, and let Γ = sFS[Π,H] be the parallel-OR
signature scheme derived from Π in the ROM.

Assume that there exists a PPT black-box reduction R from the unforgeability
of Γ to winning a game G = (I,V, α). Then there exists a PPT algorithm B
which wins the game G with non-negligible advantage in the standard model.

The idea is as follows. Algorithm B receives as input a challenge inst of the
game G, and must compute a valid solution sol with non-negligible probability.
The strategy of B is to run the reduction R on inst as a subroutine, and to
efficiently simulate to R its interaction with A. To do so, B must be able to
answer the two types of queries that R can make: Random oracle evaluations and
forgery queries to A. The former are handled via lazy sampling, i.e., B simulates
a random oracle to R. If on the other hand R requests a forgery for a verification
key vk = (x0, x1), B at first follows the definition of A and requests a signature
for mvk. This initial signature request ensures that the verification key vk must
be such that x0 ∈ L0 or x1 ∈ L1 or both. Indeed, the reduction cannot program
the random oracle (which is controlled by B) and, by special soundness of Π0

and Π1, finding a valid signature when both x0 /∈ L0 and x1 /∈ L1 is infeasible
for parallel-OR signatures. Hence, in the original experiment A will always be
able to find a witness (b, w) for vk if it receives a valid signature.

Next, A will compute a forgery for the message m∗. Here B, instead of using w
from the witness (b, w) to run Pb and compute com∗

b and resp∗
b in its forgery,

Signatures from Sequential-OR Proofs 235

Fig. 9. Representation of the reduction R interacting with adversarial instances Ai

in the ROM (left) and of the efficient solver B running R (right). The components
simulated by B are dashed, and the queries of which R gets informed are highlighted
in gray.

uses the zero-knowledge simulator Sb for this part as well. Now both parts of
the signature of m∗ are independent of the actual witness. The algorithm B can
now program the random oracle H it is simulating to R, so that H(vk, com∗,m∗)
matches the XOR of the two challenges obtained from the two simulators.2 By
the strong zero-knowledge property of the base protocols, and since m∗ contains
sufficient randomness to make sure that we can still set the random oracle for R at
this point, this is indistinguishable for the reduction. Finally, if at some point R
returns a solution to the given instance, algorithm B terminates with the same
output. In conclusion, we can now efficiently simulate A’s behavior to R, so
that the reduction together with this simulation technique yields our efficient
algorithm B against game G (see the right-hand side of Fig. 9).

Let us stress that the impossibility result above does not hold for
sequential-OR signatures. The difference lies in the observability of the reduc-
tion in both cases. In the parallel-OR case we still need to tell R which
query H(vk, com∗

0, com
∗
1,m

∗) the adversary has made to compute the forgery.
But we have already argued that the simulated value com∗

b is indistinguishable
from the prover’s value com∗

b in the forgery, so that this query does not give any
additional information to R. In the sequential-OR case, however, we would need
to inform R which query A makes first, revealing which witness it has computed.

2 One could indeed argue why we are here allowed to program the random oracle in
light of the discussion about non-programmability. One may think of this here as
a restriction of the reduction, that it needs to be able to cope with such external
oracles. Technically, it gives the required advantage over the reduction to make the
meta-reduction argument work.

236 M. Fischlin et al.

Proof. Consider an efficient reduction R interacting with instances of our all-
powerful adversary A. Assume that the reduction calls at most qA instances of A
and makes at most qH calls to the random oracle. Since R is polynomial-time,
both parameters are polynomially bounded. We can also assume that R never
runs an instance for the same key vk and then the same signature σ twice,
because it will just receive the same answers as before.

We start by making some simplifying assumptions about the reduction. First,
we can assume that R only provides A with a valid signature to some verification
key vk = (x0, x1) if x0 ∈ L0 or x1 ∈ L1 (or both). Indeed, since Π0 and Π1

are optimally sound, if both values are not in their language, then each com-
mitment com0 for x0 and com1 for x1 only allows for at most one challenge,
ch0 and ch1, to have a valid response. But then, the probability that a random
oracle query H(vk, com0, com1,mvk) matches the unique value ch0 ⊕ ch1 is at
most 2−�(λ). The probability that such a random oracle query exists at all, either
made by R or, if not, later made by any instance of the adversary A when ver-
ifying the signature, is therefore at most (qH(λ) + qA(λ)) · 2−�(λ). Given that A
aborts if the signature it receives is not valid, we can from now on assume that
each public key vk for which R requests a forgery (and must provide a signa-
ture) allows A to compute a witness (b, w), and that R itself leaves the instance
immediately if verification fails.

Second, we may assume that, whenever A creates a forgery for m∗, the ran-
dom oracle has not been queried by any party yet about any value terminating
in m∗. Indeed, since A applies the internal random function to compute m∗

from vk and σ, and we assume that the reduction never runs the adversary twice
on the same values, this can only happen if two random messages m∗ of the
adversary collide, or if the reduction has made such a query by chance. The
probability for this is at most (qH(λ) + qA(λ))2 · 2−λ. Hence, we can from now
on assume that this does not happen. In other words, if R stumbles upon such
a value it immediately aborts.

We now define the algorithm B as explained in the overview above. On
input (1λ; inst), B runs the reduction on security parameter 1λ and instance inst
as a subroutine, and simulates to R its interaction with A. The random oracle
queries made by R are answered via lazy sampling. If on the other hand R calls
an adversarial instance for a forgery under vk = (x0, x1), B does the following:

1. It first requests a signature of mvk = vk under vk to its signature oracle
(provided by the reduction), and checks if the corresponding signature is
valid. If not, it aborts the simulation of the current instance of A.

2. Assuming that R has provided a valid signature of mvk under vk, B does
not compute a witness (b, w) for vk (as A would do). It still picks a random
message m∗ ∈ {0, 1}λ and fresh coins for the signing process, though.

3. To compute the forgery for m∗, instead of invoking Pb(1λ;xb, w) to gener-
ate comb, B now runs the two simulators S0(1λ;x0) and S1(1λ;x1) to compute
simulated views (com∗

0, resp
∗
0, ch

∗
0) and (com∗

1, resp
∗
1, ch

∗
1).

4. Algorithm B saves H(vk, com∗
0, com

∗
1,m

∗) := ch∗
0 ⊕ch∗

1 into the lookup table it
keeps to simulate the random oracle to R, and informs R that the adversary A

Signatures from Sequential-OR Proofs 237

it is simulating has made a query (vk, com∗
0, com

∗
1,m

∗) to the random oracle,
with answer ch∗

0 ⊕ ch∗
1.

5. Finally, B sends m∗ and σ∗ = (com∗
0, com

∗
1, resp

∗
0, resp

∗
1) to R as the forgery

computed by the simulated instance of A.

Note that B is now efficient: The only potentially exponential step involving
the witness search has been eliminated. We must now argue that B’s success
probability in the standard model is close to the one of C in the ROM. This is
done by carrying out a reduction to the pointwise zero-knowledge property of
the protocols Π0 and Π1, where zero-knowledge must hold for every (x,w) ∈ R,
even in the presence of some auxiliary information z ∈ {0, 1}∗ that may contain
further information about (x,w). The proof is done via a hybrid argument for
hybrids Hyb0, . . . ,HybqA

, where Hybi answers R’s forgery requests by running
the (unbounded) algorithm A up to, and including, the i-th adversarial instance
(as C would do), and then efficiently simulates A for the remaining instances (as B
would do). Then the extreme hybrid HybqA

corresponds to the original inefficient
algorithm C, whereas the extreme hybrid Hyb0 coincides with B’s simulation.

The jump from hybrid Hybi−1 to hybrid Hybi substitutes the honestly gener-
ated proof for xb (where xb is the instance that A finds a witness for) in the i-th
adversarial instance with a simulated one, so that we can construct a reduction to
the pointwise HVCZK property of Πb. The main idea is to let the reduction inter-
act with the inefficient forger A for the first i instances, up to the point where Ai

has determined the witness (b, w) for xb, and save all the state information into
the auxiliary input z. This allows us to pick up the reduction later. We then
leverage the pointwise HVCZK property of Πb, with instance (xb, w) ∈ Rb: The
zero-knowledge distinguisher Db receives a genuine or simulated view for xb and
the state information z, and continues to run the reduction, but now using B’s
simulation for the remaining instances (so that Db is efficient).

More formally, we use the pointwise HVCZK property of Πb for the distin-
guisher Db, the instance (xb, w) ∈ Rb, and the auxiliary information z defined
as follows. We let (inst, sol)←$ I(1λ) generate an instance of G, pick a random
tape r for the reduction and a random index i between 1 and qA for the jump in
the hybrids, and then run the reduction (interacting with A) on input inst, up to
the point where A has computed a witness for one of the two instances in the
i-th execution (on input vk = (x0, x1)) and has generated the message m∗. All
random oracle queries are answered via lazy sampling and a table H is main-
tained to record previously answered queries. Let S store all forgery attempts
of A. Then we let (xb, w) ∈ Rb be the instance and the corresponding witness
found by A, and we set z = (inst, st, r, i, x1−b, b, w,m∗,H, S). Note that if no
witness can be found by A, or if A has stopped in this instance prematurely,
then we simply set xb and w to some fixed elements of the relation R0 and the
output z as before. In any case, z is of polynomial size and can be processed by
an efficient distinguisher, because qH and qA are polynomially bounded.

The (efficient) distinguisher Db against the pointwise HVCZK property of Πb

receives xb, a real or simulated view (com∗
b , resp

∗
b , ch

∗
b) for xb, and the auxiliary

information z = (inst, st, r, i, x1−b, b, w,m∗,H, S). With these data Db can re-
run the reduction up to the interaction of R with the i-th adversarial instance

238 M. Fischlin et al.

and then inject the given transcript (com∗
b , ch

∗
b , resp

∗
b) into this instance (the

transcript for x1−b needed to complete the forgery is obtained via the simula-
tor S1−b(1λ;x1−b)). Algorithm Db now completes the execution of the reduction,
using lazy sampling and the table H to continue the consistent simulation of
random oracle queries. In particular, in all subsequent signature forgeries it will
use B’s efficient simulation technique, calling the simulators S0 and S1 to cre-
ate the two transcripts and programming the random oracle accordingly. Note
that the order of execution of these two simulators is irrelevant, because Db only
needs to inform the reduction about a single random oracle query. Finally, Db

takes the reduction’s output sol and returns the decision bit V(1λ; inst, sol, st).
Observe that Db runs in polynomial time, because it does not need

to invoke any super-polynomial subroutines like A. If Db receives a real
view (com∗

b , resp
∗
b , ch

∗
b) in the i-th instance, then ch∗

b is truly random and
independent, and therefore programming the (simulated) random oracle
to H(vk, com∗

0, com
∗
1,m

∗) := ch∗
0 ⊕ ch∗

1 is perfectly sound. Hence, for real tran-
scripts Db simulates the hybrid Hybi with the first i instances according to C’s
strategy, and the following instances with the simulated mode of B.

If on the other hand the transcript is simulated by Sb, then both parts of the
signature are simulated. This means that both ch∗

0 and ch∗
1 are indistinguishable

from random strings to an efficient adversary, which again implies that pro-
gramming H(vk, com∗

0, com
∗
1,m

∗) := ch∗
0 ⊕ ch∗

1 is sound for R. In this case, only
the first i − 1 instances follow C’s method; starting form the i-th adversarial
instance we have two simulated proofs, each simulated individually. Hence, this
corresponds to the (i − 1)-th hybrid Hybi−1.

Let μb : N → R be the negligible function bounding the distinguishing advan-
tage of Db in the pointwise HVCZK experiment of Πb. It follows via a standard
hybrid argument that any change in the reduction’s behavior translates into a
distinguisher against the pointwise HVCZK property of Π0 and Π1 (times the
number of queries qA). The advantage of our algorithm B in breaking the game
is thus at least

ε(λ) − (qH(λ) + qA(λ))2 · 2−λ − (qH(λ) + qA(λ)) · 2−�(λ) − qA(λ)
(
μ0(λ) + μ1(λ)

)
,

where ε is the advantage of C. Since ε is non-negligible by assumption, so must
be B’s advantage. But this contradicts the presumed hardness of G. ��

6 Security in the Quantum Random Oracle Model

In this section we give an outline of the security proof for signatures derived
from the sequential-OR construction in the QROM. More details can be found
in the full version [34].

While treating quantum random oracles is a clear qualitative extension in
terms of the security guarantees (especially if we work with quantum-resistant
primitives), we have to sacrifice two important features of our proof in the classi-
cal case. One is that the bound we obtain is rather loose. The other point is that

Signatures from Sequential-OR Proofs 239

we need to program the random oracle in the security reduction. Both proper-
ties are currently shared by all proofs in the quantum random oracle model, e.g.,
programmability appears in form of using pairwise independent hash functions
or semi-constant distributions (see [60]). Hopefully, progress in this direction will
also carry over to the case of sequential-OR signatures.

Our starting point is the “measure-and-reprogram” technique of Don et
al. [27] for Fiat-Shamir protocols in the QROM. They show that it is possi-
ble to turn a quantum adversary A into an algorithm RA such that RA measures
one of the qH quantum queries of A to the random oracle, yielding some clas-
sical query com′. The choice of this query is made at random. Algorithm RA

returns either correctly H(com′) or an independent and random value Θ to this
now classical query, the choice being made at random. Algorithm RA continues
the execution of A but always returns Θ for com′ from then on. Algorithm RA

eventually returns the output (com, resp) of A.
Don et al. [27] now show that, for any quantum adversary A making at

most qH quantum random oracle queries, there exists a (quantum) algorithm RA

such that, for every fixed com0 and every predicate Λ, there exists a negligible
function μcom0 : N → R such that

Pr
[
com = com0 ∧ Λ(1λ; com, Θ, resp) : (com, resp) ←$ R

A,H(1λ; Θ)
]

≥ 1

O(qH(λ)2)
· Pr

[
com = com0 ∧

Λ(1λ; com, H(com), resp)
: (com, resp) ←$ A

H(1λ)

]
− μcom0(λ),

where
∑

com0
μcom0(λ) = 1

qH(λ)·2�(λ)+1 for the output size � of the random oracle.
We will apply the above measure-and-reprogram technique twice in order

to capture the two (classical) queries in which the adversary asks for the two
commitments com∗

0 and com∗
1 for the forgery. However, we do not know if the

strategy can be safely applied multiple times in general. Fortunately, we can
apply the technique in our setting once without actually reprogramming the
random oracle, only turning one of the queries into a classical one, and then
view this as a special adversary B which still works with the given random
oracle model. In doing so we lose a factor of approximately 1/q2 in the success
probability, where q(λ) = qH(λ) + 2 + 2qs(λ) counts the number of hash queries
made by both the adversary and the signature scheme. Then we can apply the
technique once more to B, losing another factor 1/q2. Finally, we need to take into
account that we actually obtain the matching commitments in the two measured
queries, costing us another factor 1/q. Eventually, we get an algorithm R which
makes two classical queries about the two commitments in the forgery with high
probability, but with a loose factor of 1/q5 compared to the original success
probability of the forger.

Note that we now have a forger making two classical queries about the
commitments com∗

a∗ and com∗
1−a∗ in the forgery in this order, but where we

reprogram the random oracle reply in the second query about com∗
1−a∗ to Θ.

In our sequential-OR construction this value Θ describes the (now repro-
grammed) challenge for the first commitment. In particular, the forgery then
satisfies Va∗(1λ;xa∗ , com∗

a∗ , Θ, resp∗
a∗) = 1 for the commitment com∗

a∗ chosen

240 M. Fischlin et al.

before Θ is determined. If xa∗ was a no-instance, this should be infeasible by the
optimal soundness property. The last step in the argument is then similar to the
classical setting, showing that if R is forced to use the “wrong order” and queries
about a no-instance first with sufficiently high probability, its success probability
will be small by the witness indistinguishability of the protocol and the decisional
hardness of the problems (but this time against quantum algorithms).

Overall, we get:

Theorem 10. Let R0 and R1 be decisional hard relations against quantum algo-
rithms, and let Π0 and Π1 be two 3PC optimally sound SCZK protocols w.r.t. R0

and R1, where zero-knowledge holds with respect to quantum distinguishers, such
that the length functions satisfy �0 = �1 =: �. Consider the signature scheme Γ
obtained from the protocol Π = seq-OR[Π0,Π1,S0,S1,H] as depicted in Fig. 8.
Then Γ is an UF-CMA-secure signature scheme in the quantum random oracle
model. More precisely, for any polynomial-time quantum adversary A against
the UF-CMA-security of Γ making at most qH quantum queries to the ran-
dom oracle H and at most qs signature queries, there exist a negligible func-
tion μ : N → R and polynomial-time quantum algorithms C, V∗, D0 and D1 such
that

AdvUF-CMA
A,Γ (λ) ≤ O((qH(λ) + qs(λ) + 2)5) ·

(
AdvmqCWI

V∗,C,Π(λ) + AdvDHR
D0,R0

(λ)

+ AdvDHR
D1,R1

(λ) + 2−�(λ)+1
)

+ μ(λ).

Acknowledgments. We thank the anonymous reviewers for valuable comments. We
thank Serge Fehr and Tommaso Gagliardoni for helpful discussions. This work was
funded by the Deutsche Forschungsgemeinschaft (DFG) – SFB 1119 – 236615297.

References

1. Abdalla, M., An, J.H., Bellare, M., Namprempre, C.: From identification to sig-
natures via the Fiat-Shamir transform: minimizing assumptions for security and
forward-security. In: Knudsen, L.R. (ed.) EUROCRYPT 2002. LNCS, vol. 2332,
pp. 418–433. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-46035-
7 28

2. Abdalla, M., Fouque, P.-A., Lyubashevsky, V., Tibouchi, M.: Tightly secure signa-
tures from lossy identification schemes. J. Cryptol. 29(3), 597–631 (2016). https://
doi.org/10.1007/s00145-015-9203-7

3. Abe, M., Ohkubo, M., Suzuki, K.: 1-out-of-n signatures from a variety of keys.
In: Zheng, Y. (ed.) ASIACRYPT 2002. LNCS, vol. 2501, pp. 415–432. Springer,
Heidelberg (2002). https://doi.org/10.1007/3-540-36178-2 26

4. Alkim, E., et al.: Revisiting TESLA in the quantum random oracle model. In:
Lange, T., Takagi, T. (eds.) PQCrypto 2017. LNCS, vol. 10346, pp. 143–162.
Springer, Cham (2017). https://doi.org/10.1007/978-3-319-59879-6 9

5. Ambainis, A., Rosmanis, A., Unruh, D.: Quantum attacks on classical proof sys-
tems: the hardness of quantum rewinding. In: 55th FOCS, pp. 474–483 (2014)

https://doi.org/10.1007/3-540-46035-7_28
https://doi.org/10.1007/3-540-46035-7_28
https://doi.org/10.1007/s00145-015-9203-7
https://doi.org/10.1007/s00145-015-9203-7
https://doi.org/10.1007/3-540-36178-2_26
https://doi.org/10.1007/978-3-319-59879-6_9

Signatures from Sequential-OR Proofs 241

6. Bader, C., Hofheinz, D., Jager, T., Kiltz, E., Li, Y.: Tightly-secure authenticated
key exchange. In: Dodis, Y., Nielsen, J.B. (eds.) TCC 2015, Part I. LNCS, vol.
9014, pp. 629–658. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-
662-46494-6 26

7. Bai, S., Galbraith, S.D.: An improved compression technique for signatures based
on learning with errors. In: Benaloh, J. (ed.) CT-RSA 2014. LNCS, vol. 8366, pp.
28–47. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-04852-9 2

8. Baum, C., Lin, H., Oechsner, S.: Towards practical lattice-based one-time linkable
ring signatures. In: Naccache, D., et al. (eds.) ICICS 2018. LNCS, vol. 11149, pp.
303–322. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01950-1 18

9. Bellare, M., Rogaway, P.: Random oracles are practical: a paradigm for designing
efficient protocols. In: ACM CCS, vol. 93, pp. 62–73 (1993)

10. Boneh, D., Dagdelen, Ö., Fischlin, M., Lehmann, A., Schaffner, C., Zhandry, M.:
Random oracles in a quantum world. In: Lee, D.H., Wang, X. (eds.) ASIACRYPT
2011. LNCS, vol. 7073, pp. 41–69. Springer, Heidelberg (2011). https://doi.org/10.
1007/978-3-642-25385-0 3

11. Boneh, D., Venkatesan, R.: Breaking RSA may not be equivalent to factoring.
In: Nyberg, K. (ed.) EUROCRYPT 1998. LNCS, vol. 1403, pp. 59–71. Springer,
Heidelberg (1998). https://doi.org/10.1007/BFb0054117

12. Bünz, B., Bootle, J., Boneh, D., Poelstra, A., Wuille, P., Maxwell, G.: Bulletproofs:
short proofs for confidential transactions and more. In: 2018 IEEE Symposium on
Security and Privacy, pp. 315–334 (2018)

13. Camenisch, J.: Efficient and generalized group signatures. In: Fumy, W. (ed.)
EUROCRYPT 1997. LNCS, vol. 1233, pp. 465–479. Springer, Heidelberg (1997).
https://doi.org/10.1007/3-540-69053-0 32

14. Camenisch, J., Drijvers, M., Gagliardoni, T., Lehmann, A., Neven, G.: The won-
derful world of global random oracles. In: Nielsen, J.B., Rijmen, V. (eds.) EURO-
CRYPT 2018, Part I. LNCS, vol. 10820, pp. 280–312. Springer, Cham (2018).
https://doi.org/10.1007/978-3-319-78381-9 11

15. Canetti, R.: Universally composable security: a new paradigm for cryptographic
protocols. In: 42nd FOCS, pp. 136–145 (2001)

16. Canetti, R., Dodis, Y., Pass, R., Walfish, S.: Universally composable security
with global setup. In: Vadhan, S.P. (ed.) TCC 2007. LNCS, vol. 4392, pp. 61–
85. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-70936-7 4

17. Canetti, R., Goldreich, O., Halevi, S.: The random oracle methodology, revisited
(preliminary version). In: 30th ACM STOC, pp. 209–218 (1998)

18. Canetti, R., Jain, A., Scafuro, A.: Practical UC security with a global random
oracle. In: ACM CCS 2014, pp. 597–608 (2014)

19. Chaum, D., van Heyst, E.: Group signatures. In: Davies, D.W. (ed.) EUROCRYPT
1991. LNCS, vol. 547, pp. 257–265. Springer, Heidelberg (1991). https://doi.org/
10.1007/3-540-46416-6 22

20. Ciampi, M., Persiano, G., Scafuro, A., Siniscalchi, L., Visconti, I.: Improved OR-
composition of sigma-protocols. In: Kushilevitz, E., Malkin, T. (eds.) TCC 2016,
Part II. LNCS, vol. 9563, pp. 112–141. Springer, Heidelberg (2016). https://doi.
org/10.1007/978-3-662-49099-0 5

21. Ciampi, M., Persiano, G., Scafuro, A., Siniscalchi, L., Visconti, I.: Online/offline
OR composition of sigma protocols. In: Fischlin, M., Coron, J.-S. (eds.) EURO-
CRYPT 2016, Part II. LNCS, vol. 9666, pp. 63–92. Springer, Heidelberg (2016).
https://doi.org/10.1007/978-3-662-49896-5 3

https://doi.org/10.1007/978-3-662-46494-6_26
https://doi.org/10.1007/978-3-662-46494-6_26
https://doi.org/10.1007/978-3-319-04852-9_2
https://doi.org/10.1007/978-3-030-01950-1_18
https://doi.org/10.1007/978-3-642-25385-0_3
https://doi.org/10.1007/978-3-642-25385-0_3
https://doi.org/10.1007/BFb0054117
https://doi.org/10.1007/3-540-69053-0_32
https://doi.org/10.1007/978-3-319-78381-9_11
https://doi.org/10.1007/978-3-540-70936-7_4
https://doi.org/10.1007/3-540-46416-6_22
https://doi.org/10.1007/3-540-46416-6_22
https://doi.org/10.1007/978-3-662-49099-0_5
https://doi.org/10.1007/978-3-662-49099-0_5
https://doi.org/10.1007/978-3-662-49896-5_3

242 M. Fischlin et al.

22. Cramer, R., Damg̊ard, I.: Fast and secure immunization against adaptive man-
in-the-middle impersonation. In: Fumy, W. (ed.) EUROCRYPT 1997. LNCS,
vol. 1233, pp. 75–87. Springer, Heidelberg (1997). https://doi.org/10.1007/3-540-
69053-0 7

23. Cramer, R., Damg̊ard, I., Schoenmakers, B.: Proofs of partial knowledge and sim-
plified design of witness hiding protocols. In: Desmedt, Y.G. (ed.) CRYPTO 1994.
LNCS, vol. 839, pp. 174–187. Springer, Heidelberg (1994). https://doi.org/10.1007/
3-540-48658-5 19

24. Dagdelen, Ö., Fischlin, M., Gagliardoni, T.: The Fiat–Shamir transformation in a
quantum world. In: Sako, K., Sarkar, P. (eds.) ASIACRYPT 2013, Part II. LNCS,
vol. 8270, pp. 62–81. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-
642-42045-0 4

25. Damg̊ard, I.: On Σ-protocols. Lecture Notes, Department for Computer Science,
University of Aarhus (2002)

26. Dodis, Y., Shoup, V., Walfish, S.: Efficient constructions of composable commit-
ments and zero-knowledge proofs. In: Wagner, D. (ed.) CRYPTO 2008. LNCS,
vol. 5157, pp. 515–535. Springer, Heidelberg (2008). https://doi.org/10.1007/978-
3-540-85174-5 29

27. Don, J., Fehr, S., Majenz, C., Schaffner, C.: Security of the Fiat-Shamir transfor-
mation in the quantum random-oracle model. In: Boldyreva, A., Micciancio, D.
(eds.) CRYPTO 2019, Part II. LNCS, vol. 11693, pp. 356–383. Springer, Cham
(2019). https://doi.org/10.1007/978-3-030-26951-7 13

28. Ducas, E. et al.: CRYSTALS-Dilithium: a lattice-based digital signature scheme.
IACR TCHES 2018, vol. 1, pp. 238–268 (2018). https://tches.iacr.org/index.php/
TCHES/article/view/839

29. Ducas, L., et al.: Crystals-Dilithium: algorithm specifications and supporting doc-
umentation (2019). https://pq-crystals.org/dilithium/index.shtml

30. Esgin, M.F., Steinfeld, R., Liu, J.K., Liu, D.: Lattice-based zero-knowledge proofs:
new techniques for shorter and faster constructions and applications. In: Boldyreva,
A., Micciancio, D. (eds.) CRYPTO 2019, Part I. LNCS, vol. 11692, pp. 115–146.
Springer, Cham (2019). https://doi.org/10.1007/978-3-030-26948-7 5

31. Feige, U., Shamir, A.: Witness indistinguishable and witness hiding protocols. In:
22nd ACM STOC, pp. 416–426 (1990)

32. Fiat, A., Shamir, A.: How to prove yourself: practical solutions to identification and
signature problems. In: Odlyzko, A.M. (ed.) CRYPTO 1986. LNCS, vol. 263, pp.
186–194. Springer, Heidelberg (1987). https://doi.org/10.1007/3-540-47721-7 12

33. Fischlin, M., Fleischhacker, N.: Limitations of the meta-reduction technique: the
case of Schnorr signatures. In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT
2013. LNCS, vol. 7881, pp. 444–460. Springer, Heidelberg (2013). https://doi.org/
10.1007/978-3-642-38348-9 27

34. Fischlin, M., Harasser, P., Janson, C.: Signatures from sequential-OR proofs. IACR
Cryptology ePrint Archive (2020). https://eprint.iacr.org/2020/271

35. Fischlin, M., Lehmann, A., Ristenpart, T., Shrimpton, T., Stam, M., Tessaro, S.:
Random oracles with(out) Programmability. In: Abe, M. (ed.) ASIACRYPT 2010.
LNCS, vol. 6477, pp. 303–320. Springer, Heidelberg (2010). https://doi.org/10.
1007/978-3-642-17373-8 18

36. Fukumitsu, M., Hasegawa, S.: Impossibility on the provable security of the
Fiat-Shamir-Type signatures in the non-programmable random oracle model. In:
Bishop, M., Nascimento, A.C.A. (eds.) ISC 2016. LNCS, vol. 9866, pp. 389–407.
Springer, Cham (2016). https://doi.org/10.1007/978-3-319-45871-7 23

https://doi.org/10.1007/3-540-69053-0_7
https://doi.org/10.1007/3-540-69053-0_7
https://doi.org/10.1007/3-540-48658-5_19
https://doi.org/10.1007/3-540-48658-5_19
https://doi.org/10.1007/978-3-642-42045-0_4
https://doi.org/10.1007/978-3-642-42045-0_4
https://doi.org/10.1007/978-3-540-85174-5_29
https://doi.org/10.1007/978-3-540-85174-5_29
https://doi.org/10.1007/978-3-030-26951-7_13
https://tches.iacr.org/index.php/TCHES/article/view/839
https://tches.iacr.org/index.php/TCHES/article/view/839
https://pq-crystals.org/dilithium/index.shtml
https://doi.org/10.1007/978-3-030-26948-7_5
https://doi.org/10.1007/3-540-47721-7_12
https://doi.org/10.1007/978-3-642-38348-9_27
https://doi.org/10.1007/978-3-642-38348-9_27
https://eprint.iacr.org/2020/271
https://doi.org/10.1007/978-3-642-17373-8_18
https://doi.org/10.1007/978-3-642-17373-8_18
https://doi.org/10.1007/978-3-319-45871-7_23

Signatures from Sequential-OR Proofs 243

37. Fukumitsu, M., Hasegawa, S.: Black-box separations on Fiat-Shamir-type signa-
tures in the non-programmable random oracle model. IEICE Trans. 101-A(1),
77–87 (2018)

38. Garay, J.A., MacKenzie, P., Yang, K.: Strengthening zero-knowledge protocols
using signatures. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656, pp.
177–194. Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-39200-9 11

39. Gjøsteen, K., Jager, T.: Practical and tightly-secure digital signatures and authen-
ticated key exchange. In: Shacham, H., Boldyreva, A. (eds.) CRYPTO 2018, Part
II. LNCS, vol. 10992, pp. 95–125. Springer, Cham (2018). https://doi.org/10.1007/
978-3-319-96881-0 4

40. Goldwasser, S., Micali, S., Rivest, R.L.: A digital signature scheme secure against
adaptive chosen-message attacks. SIAM J. Comput. 17(2), 281–308 (1988)

41. Guillou, L.C., Quisquater, J.-J.: A practical zero-knowledge protocol fitted to secu-
rity microprocessor minimizing both transmission and memory. In: Barstow, D.,
et al. (eds.) EUROCRYPT 1988. LNCS, vol. 330, pp. 123–128. Springer, Heidelberg
(1988). https://doi.org/10.1007/3-540-45961-8 11

42. Hofheinz, D., Jager, T.: Tightly secure signatures and public-key encryption. In:
Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 590–607.
Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-32009-5 35

43. Jakobsson, M., Sako, K., Impagliazzo, R.: Designated verifier proofs and their
applications. In: Maurer, U. (ed.) EUROCRYPT 1996. LNCS, vol. 1070, pp. 143–
154. Springer, Heidelberg (1996). https://doi.org/10.1007/3-540-68339-9 13

44. Jedusor, T.E.: MimbleWimble (2016). https://download.wpsoftware.net/bitcoin/
wizardry/mimblewimble.txt

45. Kiltz, E., Lyubashevsky, V., Schaffner, C.: A concrete treatment of Fiat-Shamir
signatures in the quantum random-oracle model. In: Nielsen, J.B., Rijmen, V.
(eds.) EUROCRYPT 2018, Part III. LNCS, vol. 10822, pp. 552–586. Springer,
Cham (2018). https://doi.org/10.1007/978-3-319-78372-7 18

46. Lindell, Y.: An efficient transform from sigma protocols to NIZK with a CRS and
non-programmable random oracle. In: Dodis, Y., Nielsen, J.B. (eds.) TCC 2015,
Part I. LNCS, vol. 9014, pp. 93–109. Springer, Heidelberg (2015). https://doi.org/
10.1007/978-3-662-46494-6 5

47. Liu, J.K., Wei, V.K., Wong, D.S.: Linkable spontaneous anonymous group signa-
ture for ad hoc groups (extended abstract). In: Wang, H., Pieprzyk, J., Varadhara-
jan, V. (eds.) ACISP 2004. LNCS, vol. 3108, pp. 325–335. Springer, Heidelberg
(2004). https://doi.org/10.1007/978-3-540-27800-9 28

48. Liu, Q., Zhandry, M.: Revisiting post-quantum Fiat-Shamir. In: Boldyreva, A.,
Micciancio, D. (eds.) CRYPTO 2019, Part II. LNCS, vol. 11693, pp. 326–355.
Springer, Cham (2019). https://doi.org/10.1007/978-3-030-26951-7 12

49. Lyubashevsky, V.: Lattice signatures without trapdoors. In: Pointcheval, D.,
Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp. 738–755. Springer,
Heidelberg (2012). https://doi.org/10.1007/978-3-642-29011-4 43

50. Maxwell, G., Poelstra, A.: Borromean ring signatures (2015). https://pdfs.
semanticscholar.org/4160/470c7f6cf05ffc81a98e8fd67fb0c84836ea.pdf

51. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information:
10th Anniversary Edition, 10th edn. Cambridge University Press, New York (2011)

52. Okamoto, T.: Provably secure and practical identification schemes and correspond-
ing signature schemes. In: Brickell, E.F. (ed.) CRYPTO 1992. LNCS, vol. 740, pp.
31–53. Springer, Heidelberg (1993). https://doi.org/10.1007/3-540-48071-4 3

https://doi.org/10.1007/3-540-39200-9_11
https://doi.org/10.1007/978-3-319-96881-0_4
https://doi.org/10.1007/978-3-319-96881-0_4
https://doi.org/10.1007/3-540-45961-8_11
https://doi.org/10.1007/978-3-642-32009-5_35
https://doi.org/10.1007/3-540-68339-9_13
https://download.wpsoftware.net/bitcoin/wizardry/mimblewimble.txt
https://download.wpsoftware.net/bitcoin/wizardry/mimblewimble.txt
https://doi.org/10.1007/978-3-319-78372-7_18
https://doi.org/10.1007/978-3-662-46494-6_5
https://doi.org/10.1007/978-3-662-46494-6_5
https://doi.org/10.1007/978-3-540-27800-9_28
https://doi.org/10.1007/978-3-030-26951-7_12
https://doi.org/10.1007/978-3-642-29011-4_43
https://pdfs.semanticscholar.org/4160/470c7f6cf05ffc81a98e8fd67fb0c84836ea.pdf
https://pdfs.semanticscholar.org/4160/470c7f6cf05ffc81a98e8fd67fb0c84836ea.pdf
https://doi.org/10.1007/3-540-48071-4_3

244 M. Fischlin et al.

53. Paillier, P., Vergnaud, D.: Discrete-log-based signatures may not be equivalent
to discrete log. In: Roy, B. (ed.) ASIACRYPT 2005. LNCS, vol. 3788, pp. 1–20.
Springer, Heidelberg (2005). https://doi.org/10.1007/11593447 1

54. Poelstra, A.: MimbleWimble (2016). https://download.wpsoftware.net/bitcoin/
wizardry/mimblewimble.pdf

55. Pointcheval, D., Stern, J.: Security arguments for digital signatures and blind signa-
tures. J. Cryptol. 13(3), 361–396 (2000). https://doi.org/10.1007/s001450010003

56. Rivest, R.L., Shamir, A., Tauman, Y.: How to leak a secret. In: Boyd, C. (ed.)
ASIACRYPT 2001. LNCS, vol. 2248, pp. 552–565. Springer, Heidelberg (2001).
https://doi.org/10.1007/3-540-45682-1 32

57. Schnorr, C.-P.: Efficient signature generation by smart cards. J. Cryptol. 4(3),
161–174 (1991). https://doi.org/10.1007/BF00196725

58. van Saberhagen, N.: CryptoNote v 2.0 (2013). https://cryptonote.org/whitepaper.
pdf

59. Venturi, D.: Zero-knowledge proofs and applications (2015). http://wwwusers.di.
uniroma1.it/∼venturi/misc/zero-knowledge.pdf

60. Zhandry, M.: Secure identity-based encryption in the quantum random oracle
model. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol. 7417, pp.
758–775. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-32009-
5 44

61. Zhang, Z., Chen, Y., Chow, S.S.M., Hanaoka, G., Cao, Z., Zhao, Y.: Black-box
separations of hash-and-sign signatures in the non-programmable random oracle
model. In: Au, M.-H., Miyaji, A. (eds.) ProvSec 2015. LNCS, vol. 9451, pp. 435–
454. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-26059-4 24

https://doi.org/10.1007/11593447_1
https://download.wpsoftware.net/bitcoin/wizardry/mimblewimble.pdf
https://download.wpsoftware.net/bitcoin/wizardry/mimblewimble.pdf
https://doi.org/10.1007/s001450010003
https://doi.org/10.1007/3-540-45682-1_32
https://doi.org/10.1007/BF00196725
https://cryptonote.org/whitepaper.pdf
https://cryptonote.org/whitepaper.pdf
http://wwwusers.di.uniroma1.it/~venturi/misc/zero-knowledge.pdf
http://wwwusers.di.uniroma1.it/~venturi/misc/zero-knowledge.pdf
https://doi.org/10.1007/978-3-642-32009-5_44
https://doi.org/10.1007/978-3-642-32009-5_44
https://doi.org/10.1007/978-3-319-26059-4_24

Attribute-Based Encryption

Compact Adaptively Secure ABE
from k-Lin: Beyond NC1 and Towards NL

Huijia Lin(B) and Ji Luo(B)

University of Washington, Seattle, USA
{rachel,luoji}@cs.washington.edu

Abstract. We present a new general framework for constructing com-
pact and adaptively secure attribute-based encryption (ABE) schemes
from k-Lin in asymmetric bilinear pairing groups. Previously, the only
construction [Kowalczyk and Wee, Eurocrypt ’19] that simultaneously
achieves compactness and adaptive security from static assumptions sup-
ports policies represented by Boolean formulae. Our framework enables
supporting more expressive policies represented by arithmetic branching
programs.

Our framework extends to ABE for policies represented by uniform
models of computation such as Turing machines. Such policies enjoy
the feature of being applicable to attributes of arbitrary lengths. We
obtain the first compact adaptively secure ABE for deterministic and
non-deterministic finite automata (DFA and NFA) from k-Lin, previ-
ously unknown from any static assumptions. Beyond finite automata,
we obtain the first ABE for large classes of uniform computation, cap-
tured by deterministic and non-deterministic logspace Turing machines
(the complexity classes L and NL) based on k-Lin. Our ABE scheme has
compact secret keys of size linear in the description size of the Turing
machine M . The ciphertext size grows linearly in the input length, but
also linearly in the time complexity, and exponentially in the space com-
plexity. Irrespective of compactness, we stress that our scheme is the first
that supports large classes of Turing machines based solely on standard
assumptions. In comparison, previous ABE for general Turing machines
all rely on strong primitives related to indistinguishability obfuscation.

1 Introduction

Attribute-based encryption (ABE) [32] is an advanced form of public-key encryp-
tion that enables fine-grained access control. The encryption algorithm using the
master public key mpk can encrypt a message m with a descriptive attribute x,1

producing a ciphertext ctx(m). The key generation algorithm using the master
secret key msk can produce a secret key sky associated with an access policy
y. Decrypting ctx(m) using sky reveals the message m if the attribute x satis-
fies the policy y; otherwise, no information about m is revealed. The security
1 Some works call x a set of attributes, and each bit or component of x an attribute.

We treat the attribute as a single vector.

c© International Association for Cryptologic Research 2020
A. Canteaut and Y. Ishai (Eds.): EUROCRYPT 2020, LNCS 12107, pp. 247–277, 2020.
https://doi.org/10.1007/978-3-030-45727-3_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-45727-3_9&domain=pdf
http://orcid.org/0000-0003-1225-5310
https://doi.org/10.1007/978-3-030-45727-3_9

248 H. Lin and J. Luo

requirement of ABE stipulates resilience to collusion attacks—any group of users
holding secret keys for different policies learn nothing about the plaintext as long
as none of them is individually authorized to decrypt the ciphertext.

A primary goal of research on ABE is designing ABE schemes for expressive
classes of policies, usually defined by computation models or complexity classes.
A beautiful and fruitful line of works have constructed ABE for many different
policy classes. For non-uniform computation, we have ABE for Boolean [32,44]
or arithmetic formulae, branching/span programs [13,23,31,37,45,47,48,53,54],
and circuits [14,19,30]. For uniform computation, we have ABE for determin-
istic finite automata [1,5,12,13,29,58], non-deterministic finite automata [4],
and even Turing machines [3,8]. These constructions, however, achieve different
trade-offs between security, efficiency, and underlying computational assump-
tions. It is rare to have a construction that simultaneously achieves the following
natural desirata on all fronts:

– Security: (full) adaptive security (as opposed to selective or semi-adaptive
security);

– Efficiency: having compact secret key and ciphertext, whose sizes grow lin-
early with the description size of the policy and the length of the attribute,
respectively;

– Assumptions: relying on standard and simple assumptions, such as LWE and
k-Lin or SXDH in bilinear pairing groups (in particular, it is preferable to
avoid the use of strong primitives such as indistinguishability obfuscation, and
instance-dependent assumptions such as q-type assumptions, whose strength
can be weakened by adversarially chosen parameters).

All previous constructions of ABE fail to achieve at least one of the desirable
properties, except for the recent construction of ABE for Boolean formulae from
the k-Lin assumption by Kowalczyk and Wee [44]. This raises the question:

Can we construct ABE schemes with all the desirable properties above
for more expressive classes of policies than Boolean formulae?

When it comes to uniform computation, the state of affairs is even less satisfac-
tory. All constructions of ABE for general Turing machines are based on strong
primitives such as indistinguishability obfuscation and multilinear map. With-
out these powerful tools, existing schemes can only handle the weak computation
model of finite automata.

Can we construct ABE schemes based on standard assumptions
for more expressive uniform computations than finite automata?

Our Result. Via a unified framework, we construct compact and adaptively
secure ABE schemes based on the k-Lin assumption in asymmetric prime-order
bilinear pairing groups for the following classes of policies:

Arithmetic Branching Programs. ABPs capture many functions of interest,
including arithmetic computations like sparse polynomials, mean, and variance,
as well as combinatorial computations like string-matching, finite automata, and

Compact Adaptively Secure ABE from k-Lin: Beyond NC1 and Towards NL 249

decision trees. It is also known that Boolean/arithmetic formulae and Boolean
branching programs can all be converted into ABPs with polynomial blow-up in
description size. Thus, ABPs can be viewed as a more powerful computational
model than them.

Previous ABE schemes for ABPs only provide selective security [30,37] or
do not have compact ciphertexts [23].2 In addition to achieving both adaptive
security and compactness, our scheme is the first one that handles ABPs directly
without converting it to circuits or arithmetic span programs, which leads to an
efficiency improvement in the size of the secret keys from up to quadratic to
linear in the size of the ABP.3

(Non-)Deterministic Logspace Turing Machines (L and NL). Here, a secret key
is associated with a Turing machine M , and the attribute in a ciphertext specifies
an input x, a polynomial time bound T , and a logarithmic space bound S.
Decryption succeeds if and only if M accepts x within time T and space S.
Our scheme is unbounded in the sense that the public parameters do not restrict
the sizes of the Turing machine M and input x, nor the time/space bounds
T, S. Furthermore, it enjoys the advantage of ABE for uniform computation
that a secret key for M can decrypt ciphertexts with arbitrarily long inputs
and arbitrary time/space bounds. This stands in contrast with ABE for non-
uniform computation (like ABPs), where a program or circuit f takes inputs of
a specific length n, and a secret key for f decrypts only ciphertext of length-n
inputs. Achieving this feature is precisely the challenge in constructing ABE for
uniform models of computation.

Our scheme is the first ABE for large classes of Turing machine computation,
captured by the complexity classes L and NL, without using the heavy machiner-
ies of multilinear map, extractable witness encryption, or indistinguishability
obfuscation as in previous works [3,9,27,41]. In addition, our scheme is adap-
tively secure and half-compact. The secret keys are compact, of size O(|M |)
linear in the description size of M , while the ciphertext size depends linearly in
|x|TS2S (both ignoring fixed polynomial factors in the security parameter).

Removing the dependency on 2S or T is an interesting open problem that
requires technical breakthrough. In particular, removing the dependency on 2S

would give an ABE for polynomial-time Turing machine computation from pair-
ing, a long sought-after goal that has remained elusive for more than a decade.
Removing the dependency of encryption time on T even only in the 1-key

2 More precisely, they construct ABE for read-once branching programs. For general
branching programs, one can duplicate each component in the attribute for the
number of times it is accessed [43]. As such, the ciphertext size grows linearly with
the size of the branching program.

3 An ABP is specified by a directed graph, with edges weighted by affine functions
of the input. The size of an ABP is measured by the number of vertices (instead of
edges) in the graph.

250 H. Lin and J. Luo

1-ciphertext setting implies a succinct message-hiding encoding [42],4 which is
only known from strong primitives like indistinguishability obfuscation or func-
tional encryption [18,21,41,42]. Removing the dependency of ciphertext size on
T might be an easier task, but would need new techniques different from ours.

Finite Automata. As a special case of ABE for L and NL, we obtain ABE
for deterministic finite automata (DFA) and non-deterministic finite automata
(NFA).5 This simply follows from the fact that DFA and NFA can be represented
as simple deterministic and non-deterministic Turing machines with space com-
plexity 1 and time complexity N that always move the input tape pointer to the
right and never use the work tape.

Previous schemes for DFA based on pairing either achieve only selective secu-
rity [5,29,58] or rely on q-type assumptions [1,12,13]. The only direct construction
of ABE for NFA [4] based on LWE, however, is symmetric-key and only selectively
secure. We settle the open problem of constructing adaptively secure ABE for DFA
from static assumptions [29] and that of constructing ABE for NFA that is public-
key, adaptively secure, or based on assumptions other than LWE [4].

New Techniques for Constructing Adaptively Secure ABE. Construct-
ing adaptively secure ABE is a challenging task. Roughly speaking, previ-
ous constructions proceed in two steps. First, a secure core secret-key ABE
component for a single ciphertext and a single secret key—termed 1-ABE—is
designed. Then, Dual System Encryption framework, originally proposed in [57]
and refined in [1,12,13,22,59], provides guidance on how to lift 1-ABE to the
public-key and multi-secret-key setting. The main technical challenge lies in the
first step: Adaptively secure schemes prior to that of Kowalczyk and Wee [44]
either impose a read-once restriction on the attribute6 [45,59] or rely on q-type
assumptions [1,12,16,48]. Kowalczyk and Wee [44] elegantly applied the “par-
tial selectivization” framework [6,38] for achieving adaptive security in general
to constructing 1-ABE. In particular, they used a variant of the secret-sharing
scheme for Boolean formulae in [38] whose selective simulation security can be
proven via a sequence of hybrids, each only requiring partial information of the
input to be chosen selectively. Then, to show adaptive security, the reduction can
guess this partial information while incurring only a polynomial security loss.

4 Message-hiding encodings [42] are a weaker variant of randomized encodings that
allow encoding a public computation f, x with a secret message m such that the
encoding reveals m if and only if f(x) = 1. Such encodings are succinct if the time
to encode is much smaller than the running time of the computation. A pair of
ABE secret key for predicate f and ciphertext for attribute x and message m is a
message-hiding encoding.

5 DFA and NFA both characterize regular languages, yet a DFA recognizing a language
could have exponentially more states than an NFA recognizing the same language. In
this work, by ABE for DFA/NFA, we mean ABE schemes that run in time polynomial
in the description size of the finite automata.

6 As mentioned in Footnote 2, read-once restriction can be circumvented by duplicat-
ing attribute components at the cost of losing ciphertext compactness.

Compact Adaptively Secure ABE from k-Lin: Beyond NC1 and Towards NL 251

However, secret-sharing schemes as needed in [44] are only known for Boolean
formulae. When dealing with computation over arithmetic domains of potentially
exponential size, we have the additional challenge that it is hard to guess even
a single component of the input, except with exponentially small probability,
rendering the partial selectivization framework ineffective. When dealing with
uniform computation, we further encounter the challenge that neither the secret
key nor the ciphertext is as large as the secret-sharing, making it impossible to
directly use information-theoretically secure secret-sharing schemes. We develop
new techniques to overcome these challenges.

1. First, we present a generic framework for constructing adaptively secure
1-ABE from (i) an information theoretic primitive called arithmetic key
garbling, and (ii) a computational primitive called function-hiding inner-
product functional encryption (IPFE) [17,40,49,56]. Our arithmetic key gar-
bling schemes are partial garbling schemes [37] with special structures, which
act as the counterpart of secret-sharing schemes for arithmetic computation.
Our framework is modular: It decomposes the task of constructing 1-ABE to
first designing an arithmetic key garbling scheme for the computation class
of interest, and second applying a generic transformation depending solely on
structural properties of the garbling and agnostic of the underlying computa-
tion. In particular, the security proof of the transformation does not attempt
to trace the computation, unlike [29,44].

2. Second, we formulate structural properties of arithmetic key garbling
schemes—called piecewise security—sufficient for achieving adaptive security.
The properties are natural and satisfied by the garbling scheme for ABPs
in [37]. For logspace Turing machine computation, we present a simple arith-
metic key garbling scheme for L and NL, inspired by the garbling schemes
in [11,19].

3. Third, we present a new method of lifting 1-ABE to full-fledged ABE using
function-hiding IPFE. Our method can be cast into the dual system encryp-
tion framework, but is natural on its own, without seeing through the lens of
dual system encryption. One feature of IPFE is that it provides a conceptu-
ally simple abstraction which allows moving information between ABE keys
and ciphertexts easily, and hides away lower-level details on how to guarantee
security. This feature makes it a convenient tool in many other parts of the
security proof as well.

4. Lastly, to overcome the unique challenge related to ABE for uniform com-
putation, we further enhance our generic method to be able to use partial
garbling generated with pseudorandomness so that the total size of the secret
keys and ciphertexts can be smaller than the garbling.

Organization. In Sect. 2, we give an overview of our framework for constructing
compact adaptively secure ABE schemes for ABPs, logspace Turing machines,
and finite automata, using as tools IPFE and arithmetic key garbling schemes
(AKGS, a refinement of partial garbling schemes). After introducing basic nota-
tions and definitions in Sect. 3, we define AKGS and its security in Sect. 4.

252 H. Lin and J. Luo

In Sect. 5, we show how to construct 1-ABE (the core component of our ABE
schemes) for ABPs from an AKGS. Due to space constraints, the security proof
of our 1-ABE for ABPs, the construction of full-fledged ABE for ABPs, and
ABE for L and NL are provided in the full version.

2 Technical Overview

We now give an overview of our technique, starting with introducing the two
key tools arithmetic key garbling schemes and IPFE. Below, by bilinear pairing
groups, we mean asymmetric prime-order bilinear pairing groups, denoted as
(G1, G2, GT, g1, g2, e) and implicitly, gT = e(g1, g2). We use [[a]]b to represent the
encoding ga

b of a in group Gb.

Arithmetic Key Garbling Scheme. We use a refinement of the notion of
partial garbling schemes [37] (which in turn is based on the notion of garbling and
randomized encoding [10,36,61]). An arithmetic key garbling scheme (AKGS) is
an information-theoretic partial garbling scheme for computing αf(x) + β that
hides the secrets α, β ∈ Zp, but not f,x:

– A garbling procedure (L1, . . . ,Lm) ← Garble(f, α, β; r) turns f and two
secrets α, β (using randomness r) into m affine label functions L1, . . . , Lm,
described by their coefficient vectors L1, . . . ,Lm over Zp. The label functions
specify how to encode an input x to produce the labels for computing f(x)
with secrets α, β:

̂f(x)α,β = (�1, . . . , �m), where �j = Lj(x) = 〈Lj , (1,x)〉 over Zp. (1)

– A linear evaluation procedure γ ← Eval(f,x, �1, . . . , �m) recovers the sum
γ = αf(x) + β weighted by the function value f(x).

AKGS is a partial garbling as it only hides information of the secrets α and
β beyond the weighted sum αf(x) + β, and does not hide (f,x), captured by
a simulation procedure (�′

1, . . . , �
′
m) $← Sim(f,x, αf(x) + β) that produces the

same distribution as the honest labels.
Ishai and Wee [37] proposed a partial garbling scheme for ABPs, which

directly implies an AKGS for ABPs. It is also easy to observe that the (fully
secure) garbling scheme for arithmetic formulae in [11] can be weakened [19] to
an AKGS. Later, we will introduce additional structural and security properties
of AKGS needed for our 1-ABE construction. These properties are natural and
satisfied by both schemes [11,37].

Inner-Product Functional Encryption. A function-hiding (secret-key)
inner-product functional encryption (IPFE)7 enables generating many secret
keys isk(vj) and ciphertexts ict(ui) associated with vectors vj and ui such that
decryption yields all the inner products {〈ui,vj〉}i,j (mod p) and nothing else.

7 Some works use “inner-product encryption” (IPE) to refer to IPFE [17,25,49,50]
and some others [24,39,52–55] use it for inner-product predicate encryption.

Compact Adaptively Secure ABE from k-Lin: Beyond NC1 and Towards NL 253

In this work, we need an adaptively secure IPFE, whose security holds even
against adversaries choosing all the vectors adaptively. Such an IPFE scheme can
be constructed based on the k-Lin assumption in bilinear pairing groups [50,60].
The known scheme also has nice structural properties that will be instrumental
to our construction of ABE:

– isk(v) $← IPFE.KeyGen(msk, [[v]]2) operates linearly on v (in the exponent of
G2) and the size of the secret key isk(v) grows linearly with |v|.

– ict(u) $← IPFE.Enc(msk, [[u]]1) also operates linearly on u (in the exponent of
G1) and the size of the ciphertext ict(u) grows linearly with |u|.

– IPFE.Dec(sk(v), ct(u)) simply invokes pairing to compute the inner product
[[〈u,v〉]]T in the exponent of the target group.

2.1 1-ABE from Arithmetic Key Garbling and IPFE Schemes

1-ABE is the technical heart of our ABE construction. It works in the setting
where a single ciphertext ct(x) for an input vector x and a single secret key
sk(f, μ) for a policy y = f�=0 and a secret μ are published. Decryption reveals μ
if f(x) �= 0; otherwise, μ is hidden.8

1-ABE. To hide μ conditioned on f(x) = 0, our key idea is using IPFE to
compute an AKGS garbling ̂f(x)μ,0 of f(x) with secrets α = μ and β = 0. The
security of AKGS guarantees that only μf(x) is revealed, which information
theoretically hides μ when f(x) = 0.

The reason that it is possible to use IPFE to compute the garbling is
attributed to the affine input-encoding property of AKGS—the labels �1, . . . , �m

are the output of affine functions L1, . . . , Lj of x as described in Eq. (1). Since
f, α, β are known at key generation time, the ABE key can be a collection of
IPFE secret keys, each encoding the coefficient vector Lj of one label func-
tion Lj . On the other hand, the ABE ciphertext can be an IPFE ciphertext
encrypting (1,x). When put together for decryption, they reveal exactly the
labels L1(x), . . . , Lm(x), as described below on the left.

Honest Algorithms Hybrid for Selective Security

ct(x): ict((1,x) ‖ 0) ct(x): ict((1,x) ‖ 1 ‖ 0)
sk(f, μ): j ∈ [m]: iskj(Lj ‖ 0) sk(f, μ): j ∈ [m]: iskj(0 ‖ �j ‖ 0)

We note that the positions or slots at the right end of the vectors encoded
in isk and ict are set to zero by the honest algorithms—0 denotes a vector
(of unspecified length) of zeros. These slots provide programming space in the
security proof.

It is extremely simple to prove selective (or semi-adaptive) security, where
the input x is chosen before seeing the sk. By the function-hiding property of
IPFE, it is indistinguishable to switch the secret keys and the ciphertext to
8 We can also handle policies of the form f=0 so that μ is revealed if and only if

f(x) = 0. For simplicity, we focus on one case in this overview.

254 H. Lin and J. Luo

encode any vectors that preserve the inner products. This allows us to hardwire
honestly generated labels ̂f(x)μ,0 = {�j ← 〈Lj , (1,x)〉}j∈[m] in the secret keys
as described above on the right. The simulation security of AKGS then implies
that only μf(x) is revealed, i.e., nothing about μ is revealed.

Achieving Adaptive Security. When it comes to adaptive security, where the
input x is chosen after seeing sk, we can no longer hardwire the honest labels
̂f(x)μ,0 in the secret key, as x is undefined when sk is generated, and hence
cannot invoke the simulation security of AKGS. Our second key idea is relying
on a stronger security property of AKGS, named piecewise security, to hardwire
simulated labels into the secret key in a piecemeal fashion.

Piecewise security of AKGS requires the following two properties: (i) reverse
sampleability—there is an efficient procedure RevSamp that can perfectly
reversely sample the first label �1 given the output αf(x) + β and all the other
labels �2, . . . , �m, and (ii) marginal randomness—each �j of the following labels
for j > 1 is uniformly distributed over Zp even given all subsequent label func-
tions Lj+1, . . . ,Lm. More formally,
{

�1 ← 〈L1, (1,x)〉, L2, . . . ,Lm

}

≡
{

�′
1

$← RevSamp(· · ·), L2, . . . ,Lm

}

, (2)
{

�j ← 〈Lj , (1,x)〉, Lj+1, . . . ,Lm

}

≡
{

�′
j

$← Zp , Lj+1, . . . ,Lm

}

. (3)

In Eq. (2), �′
1

$← RevSamp(f,x, αf(x) + β, �2, . . . , �m). These properties are nat-
ural and satisfied by existing AKGS for ABPs and arithmetic formulae [11,37].

Adaptive Security via Piecewise Security. We are now ready to prove adap-
tive security of our 1-ABE. The proof strategy is to first hardwire �1 in the
ciphertext and sample it reversely as �1

$← RevSamp(f,x, 0, �2, . . . , �m), where
�j = 〈Lj , (1,x)〉 for j > 1 and μf(x) = 0 by the constraint, as described
in hybrid k = 1 below. The indistinguishability follows immediately from the
function-hiding property of IPFE and the reverse sampleability of AKGS. Then,
we gradually replace each remaining label function Lj for j > 1 with a randomly
sampled label �j

$← Zp in the secret key, as described in hybrids 1 ≤ k ≤ m+1. It
is easy to observe that in the final hybrid k = m + 1, where all labels �2, . . . , �m

are random and �1 reversely sampled without μ, the value μ is information-
theoretically hidden.

Hybrid 1 ≤ k ≤ m + 1 Hybrid k : 1 or k : 2

sk(f, μ): isk1(0 ‖ 1 ‖ 0 ‖ 0)
1 < j < k: iskj(0 ‖ 0 ‖ �j ‖ 0)

iskk(Lk ‖ 0 ‖ 0 ‖ 0) iskk(0 ‖ 0 ‖ 0 ‖ 1)
j > k: iskj(Lj ‖ 0 ‖ 0 ‖ 0)

ct(x): ict((1,x) ‖ �1 ‖ 1 ‖ 0) ict((1,x) ‖ �1 ‖ 1 ‖ �k)

�1
$← RevSamp(· · ·), for 1 < j < k: �j

$← Zp �k ← 〈Lk, (1,x)〉 or �k
$← Zp

Compact Adaptively Secure ABE from k-Lin: Beyond NC1 and Towards NL 255

To move from hybrid k to k + 1, we want to switch the kth IPFE secret key
iskk from encoding the label function Lk to a simulated label �k

$← Zp. This
is possible via two moves. First, by the function-hiding property of IPFE, we
can hardwire the honest �k = 〈Lk, (1,x)〉 in the ciphertext as in hybrid k : 1
(recall that at encryption time, x is known). Then, by the marginal randomness
property of AKGS, we switch to sample �k as random in hybrid k : 2. Lastly,
hybrid k : 2 is indistinguishable to hybrid k + 1 again by the function-hiding
property of IPFE.

1-ABE for ABPs. Plugging in the AKGS for ABPs by Ishai and Wee [37], we
immediately obtain 1-ABE for ABPs based on k-Lin. The size of the garbling
grows linearly with the number of vertices |V | in the graph describing the ABP,
i.e., m = O(|V |). Combined with the fact that IPFE has linear-size secret keys
and ciphertexts, our 1-ABE scheme for ABPs has secret keys of size O(m|x|) =
O(|V ||x|) and ciphertexts of size O(|x|). This gives an efficiency improvement
over previous 1-ABE or ABE schemes for ABPs [23,37], where the secret key
size grows linearly with the number of edges |E| in the ABP graph, due to that
their schemes first convert ABPs into an arithmetic span program, which incurs
the efficiency loss.

Discussion. Our method for constructing 1-ABE is generic and modular. In
particular, it has the advantage that the proof of adaptive security is agnostic
of the computation being performed and merely carries out the simulation of
AKGS in a mechanic way. Indeed, if we plug in an AKGS for arithmetic formulae
or any other classes of non-uniform computation, the proof remains the same.
(Our 1-ABE for logspace Turing machines also follows the same blueprint, but
needs additional ideas.) Furthermore, note that our method departs from the
partial selectivization technique used in [44], which is not applicable to arithmetic
computation as the security reduction cannot afford to guess even one component
of the input x. The problem is circumvented by using IPFE to hardwire the labels
(i.e., �1, �k) that depend on x in the ciphertext.

2.2 Full-Fledged ABE via IPFE

From 1-ABE for the 1-key 1-ciphertext setting to full-fledged ABE, we need
to support publishing multiple keys and make encryption public-key. It turns
out that the security of our 1-ABE scheme directly extends to the many-key
1-ciphertext (still secret-key) setting via a simple hybrid argument. Consider
the scenario where a ciphertext ct and multiple keys {skq(fq, μq)}q∈[Q] that are
unauthorized to decrypt the ciphertext are published. Combining the above secu-
rity proof for 1-ABE with a hybrid argument, we can gradually switch each secret
key skq from encoding honest label functions encapsulating μq to ones encapsu-
lating an independent secret μ′

q
$← Zp. Therefore, all the secrets {μq}q∈[Q] are

hidden.
The security of our 1-ABE breaks down once two ciphertexts are released.

Consider publishing just a single secret key sk(f, μ) and two ciphertexts

256 H. Lin and J. Luo

ct1(x1), ct2(x2). Since the label functions L1, . . . , Lm are encoded in sk, decryp-
tion computes two AKGS garblings f̂(x1)μ,0 and f̂(x2)μ,0 generated using the
same label functions. However, AKGS security does not apply when the label
functions are reused.

What we wish is that IPFE decryption computes two garblings f̂(x1)μ,0 =

(L1(x1), . . . , Lm(x1)) and f̂(x2)μ,0 = (L′
1(x2), . . . , L′

m(x2)) using independent
label functions. This can be achieved in a computational fashion relying on the
fact that the IPFE scheme encodes the vectors and the decryption results in
the exponent of bilinear pairing groups. Hence we can rely on computational
assumptions such as SXDH or k-Lin, combined with the function-hiding property
of IPFE to argue that the produced garblings are computationally independent.
We modify the 1-ABE scheme as follows:

– If SXDH holds in the pairing groups, we encode in the ciphertext (1,x)
multiplied by a random scalar s

$← Zp. As such, decryption computes
(sL1(x), . . . , sLm(x)) in the exponent. We argue that the label functions
sL1, . . . , sLm are computationally random in the exponent : By the function-
hiding property of IPFE, it is indistinguishable to multiply s not with the
ciphertext vector, but with the coefficient vectors in the secret key as depicted
below on the right; by DDH (in G2) and the linearity of Garble (i.e., the coef-
ficients Lj depend linearly on the secrets α, β and the randomness r used by
Garble), sLj are the coefficients of pseudorandom label functions.

Algorithms based on SXDH Hybrid

≈L′
j (fresh)

sk(f, μ): j ∈ [m]: iskj(Lj ‖ 0) iskj(Lj ‖ sLj ‖ 0)
ct(x): ict(s(1,x) ‖ 0) ict(0 ‖ (1,x) ‖ 0)

– If k-Lin holds in the pairing groups, we encode in the secret key k inde-
pendent copies of label functions Lt

1, . . . , L
t
m for t ∈ [k], and in the cipher-

texts k copies of (1,x) multiplied with independent random scalars s[t] for
t ∈ [k]. This way, decryption computes a random linear combination of the
garblings (

∑

t∈[k] s[t]L
t
1(x), . . . ,

∑

t∈[k] s[t]L
t
m(x)) in the exponent, which via

a similar hybrid as above corresponds to pseudorandom label functions in the
exponent.

Algorithms based on k-Lin

sk(f, μ): j ∈ [m]: iskj(L1
j ‖ · · · ‖ Lk

j ‖ 0)
ct(x): ict(s[1](1,x) ‖ · · · ‖ s[k](1,x) ‖ 0)

Hybrid
≈ L′

j (fresh)

sk(f, μ): j ∈ [m]: iskj(L1
j ‖ · · · ‖ Lk

j ‖
∑

t∈[k] s[t]L
t
j ‖ 0)

ct(x): ict(0 ‖ · · · ‖ 0 ‖ (1,x) ‖ 0)

Compact Adaptively Secure ABE from k-Lin: Beyond NC1 and Towards NL 257

The above modification yields a secret-key ABE secure in the many-ciphertext
many-key setting. The final hurdle is how to make the scheme public-key, which
we resolve using slotted IPFE.

Slotted IPFE. Proposed in [50], slotted IPFE is a hybrid between a secret-
key function-hiding IPFE and a public-key IPFE. Here, a vector u ∈ Z

n
p is

divided into two parts (upub,upriv) with upub ∈ Z
npub
p in the public slot and

upriv ∈ Z
npriv
p in the private slot (npub+npriv = n). Like a usual secret-key IPFE,

the encryption algorithm IPFE.Enc using the master secret key msk can encrypt
to both the public and private slots, i.e., encrypting any vector u. In addition,
there is an IPFE.SlotEnc algorithm that uses the master public key mpk, but
can only encrypt to the public slot, i.e., encrypting vectors such that upriv = 0.
Since anyone can encrypt to the public slot, it is impossible to hide the public
slot part vpub of a secret-key vector v. As a result, slotted IPFE guarantees
function-hiding only w.r.t. the private slot, and the weaker indistinguishability
security w.r.t. the public slot. Based on the construction of slotted IPFE in [49],
we obtain adaptively secure slotted IPFE based on k-Lin.

The aforementioned secret-key ABE scheme can be easily turned into a
public-key one with slotted IPFE: The ABE encryption algorithm simply uses
IPFE.SlotEnc and mpk to encrypt to the public slots. In the security proof, we
move vectors encrypted in the public slot of the challenge ciphertext to the pri-
vate slot, where function-hiding holds and the same security arguments outlined
above can be carried out.

Discussion. Our method can be viewed as using IPFE to implement dual system
encryption [57]. We believe that IPFE provides a valuable abstraction, making
it conceptually simpler to design strategies for moving information between the
secret key and the ciphertext, as done in the proof of 1-ABE, and for generating
independent randomness, as done in the proof of full ABE. The benefit of this
abstraction is even more prominent when it comes to ABE for logspace Turing
machines.

2.3 1-ABE for Logspace Turing Machines

We now present ideas for constructing 1-ABE for L, and then its extension to NL
and how to handle DFA and NFA as special cases for better efficiency. Moving
to full-fledged ABE follows the same ideas in the previous subsection, though
slightly more complicated, which we omit in this overview.

1-ABE for L enables generating a single secret key sk(M,μ) for a Turing
machine M and secret μ, and a ciphertext ct(x, T, S) specifying an input x of
length N , a polynomial time bound T = poly(N), and a logarithmic space bound
S = O(log N) such that decryption reveals μM |N,T,S(x), where M |N,T,S(x) rep-
resents the computation of running M(x) for T steps with a work tape of size S,
which outputs 1 if and only if the computation lands in an accepting state after
T steps and has never exceeded the space bound S. A key feature of ABE for
uniform computation is that a secret key sk(M,μ) can decrypt ciphertexts with
inputs of unbounded lengths and unbounded time/(logarithmic) space bounds.

258 H. Lin and J. Luo

(In contrast, for non-uniform computation, the secret key decides the input
length and time/space bounds.) Our 1-ABE for L follows the same blueprint
of combining AKGS with IPFE, but uses new ideas in order to implement the
unique feature of ABE for uniform computation.

Notations for Turing Machines. We start with introducing notations for
logspace Turing machines (TM) over the binary alphabet. A TM M = (Q, qacc, δ)
consists of Q states, with the initial state being 1 and an accepting state9 qacc ∈
[Q], and a transition function δ. The computation of M |N,T,S(x) goes through
a sequence of T + 1 configurations (x, (i, j,W, q)), where i ∈ [N] is the input
tape pointer, j ∈ [S] the work tape pointer, W ∈ {0, 1}S the content of the
work tape, and q ∈ [Q] the state. The initial internal configuration is thus
(i = 1, j = 1,W = 0S , q = 1), and the transition from one internal configuration
(i, j,W, q) to the next (i′, j′,W′, q′) is governed by the transition function δ and
the input x. Namely, if δ(q,x[i],W[j]) = (q′, w′,Δi,Δj),

(i, j,W, q) → (i′ = i + Δi, j′ = j + Δj, W′ = overwrite(W, j, w′), q′).

In other words, the transition function δ on input state q and bits x[i], W[j]
on the input and work tape under scan, outputs the next state q′, the new bit
w′ ∈ {0, 1} to be written to the work tape, and the directions Δi,Δj ∈ {0,±1}
to move the input and work tape pointers. The next internal configuration is
then derived by updating the current configuration accordingly, where W′ =
overwrite(W, j, w′) is a vector obtained by overwriting the jth cell of W with w′

and keeping the other cells unchanged.

AKGS for Logspace Turing Machines. To obtain an AKGS for L, we repre-
sent the TM computation algebraically as a sequence of matrix multiplications
over Zp, for which we design an AKGS. To do so, we represent each internal
configuration as a basis vector e(i,j,W,q) of dimension NS2SQ with a single 1 at
position (i, j,W, q). We want to find a transition matrix M(x) (depending on
δ and x) such that moving to the next state e(i′,j′,W′,q′) simply involves (right)
multiplying M(x), i.e., eT

(i,j,W,q)M(x) = eT

(i′,j′,W′,q′). It is easy to verify that
the correct transition matrix is

M(x)[(i, j,W, q), (i′, j′,W′, q′)] = CanTransit[(i, j,W), (i′, j′,W′)]
× Mx[i],W[j],W′[j],i′−i,j′−j [q, q′], (4)

CanTransit[(i, j,W), (i′, j′,W′)] = 1 iff W′[�= j] = W[�= j] and
i′ − i, j′ − j ∈ {0,±1},

Mx,w,w′,Δi,Δj [q, q′] = 1 iff δ(q, x, w′) = (q′, w′,Δi,Δj). (5)

Here, CanTransit[(i, j,W), (i′j′,W′)] indicates whether it is possible, irrespective
of δ, to move from an internal configuration with (i, j,W) to one with (i′, j′,W′).
If possible, then Mx[i],W[j],W′[j],Δi,Δj [q, q′] indicates whether δ permits moving

9 For simplicity, in this overview, we assume there is only one accepting state.

Compact Adaptively Secure ABE from k-Lin: Beyond NC1 and Towards NL 259

from state q with current read bits x = x[i], w = W[j] to state q′ with overwriting
bit w′ = W′[j] and moving directions Δi = i′ − i,Δj = j′ − j. Armed with this,
the TM computation can be done by right multiplying the matrix M(x) for
T times with the initial configuration eT

(1,1,0,1), reaching the final configuration
eT

(iT ,jT ,WT ,qT), and then testing whether qT = qacc. More precisely,

M |N,T,S(x) = eT

(1,1,0,1)

(

M(x)
)T

t for t = 1NS2S ⊗ eqacc .

To construct AKGS for L, it boils down to construct AKGS for matrix multi-
plication. Our construction is inspired by the randomized encoding for arithmetic
NC1 scheme of [11] and the garbling mechanism for multiplication gates in [19].
Let us focus on garbling the computation M |N,T,S(x) with secrets α = μ and
β = 0 (the case needed in our 1-ABE). The garbling algorithm Garble produces
the following affine label functions of x:

�init = Linit(x) = eT

(1,1,0,1)r0,

t ∈ [T]: �t = (�t,z) =
(

Lt,z(x)
)

z
= − rt−1 + M(x)rt,

�T+1 = (�T+1,z)z =
(

LT+1,z(x)
)

z
= − rT + μt.

Here, z = (i, j,W, q) runs through all NS2SQ possible internal configurations
and rt

$← Z
[N]×[S]×{0,1}S×[Q]
p . The evaluation proceeds inductively, starting with

�init = eT

(1,1,0,1)r0, going through eT

(it,jt,Wt,qt)
rt for every t ∈ [T] using the iden-

tity below, and completing after T steps by combining eT

(iT ,jT ,WT ,qT)rT with
�T+1 to get eT

(iT ,jT ,WT ,qT)μt = μM |N,T,S(x) as desired:

eT

(it+1,jt+1,Wt+1,qt+1)
rt+1 = eT

(it,jt,Wt,qt)
rt + eT

(it,jt,Wt,qt)
(−rt + M(x)rt+1
︸ ︷︷ ︸

�t+1

).

We now show that the above AKGS is piecewise secure. First, �init is reversely
sampleable. Since Eval is linear in the labels and �init has coefficient 1, given
all but the first label �init, one can reversely sample �init, the value uniquely
determined by the linear equation10 imposed by the correctness of Eval. Second,
the marginal randomness property holds because every label �t is random due
to the random additive term rt−1 that is not used in subsequent label functions
Lt′,z for all t′ > t and z, nor in the non-constant terms of Lt,z’s—we call rt−1

the randomizers of �t (highlighted in the box). Lastly, we observe that the size
of the garbling is (T + 1)NS2SQ + 1.

1-ABE for L. We now try to construct 1-ABE for L from AKGS for L, follow-
ing the same blueprint of using IPFE. Yet, applying the exact same method for
non-uniform computation fails for multiple reasons. In 1-ABE for non-uniform
computation, the ciphertext ct contains a single IPFE ciphertext ict encoding
10 This means RevSamp is deterministic, and we can reversely sample �init in the expo-

nent and when the randomness is not uniform, which is important for our construc-
tion.

260 H. Lin and J. Luo

(1,x), and the secret key sk contains a set of IPFE secret keys iskj encoding
all the label functions. However, in the uniform setting, the secret key sk(M,μ)
depends only on the TM M and the secret μ, and is supposed to work with
ciphertexts ct(x, T, S) with unbounded N = |x|, T, S. Therefore, at key genera-
tion time, the size of the AKGS garbling, (T + 1)NS2SQ + 1, is unknown, let
alone generating and encoding all the label functions. Moreover, we want our
1-ABE to be compact, with secret key size |sk| = O(Q) linear in the number Q of
states and ciphertext size |ct| = O(TNS2S) (ignoring polynomial factors in the
security parameter). The total size of secret key and ciphertext is much smaller
than the total number of label functions, i.e., |sk| + |ct| � (T + 1)NS2SQ + 1.

To overcome these challenges, our idea is that instead of encoding the label
functions in the secret key or the ciphertext (for which there is not enough space),
we let the secret key and the ciphertext jointly generate the label functions. For
this idea to work, the label functions cannot be generated with true random-
ness which cannot be “compressed”, and must use pseudorandomness instead.
More specifically, our 1-ABE secret key sk(M,μ) contains ∼ Q IPFE secret keys
{isk(vj)}j , while the ciphertext ct(x, T, S) contains ∼ TNS2S IPFE ciphertexts
{ict(ui)}i, such that decryption computes in the exponent ∼ TNS2SQ cross
inner products 〈ui,vj〉 that correspond to a garbling of M |N,T,S(x) with secret
μ. To achieve this, we rely crucially on the special block structure of the tran-
sition matrix M (which in turn stems from the structure of TM computation,
where the same transition function is applied in every step). Furthermore, as
discussed above, we replace every truly random value rt[i, j,W, q] with a prod-
uct rx[t, i, j,W]rf [q], which can be shown pseudorandom in the exponent based
on SXDH.11

Block Structure of the Transition Matrix. Let us examine the transition matrix
again (cf. Eqs. (4) and (5)):

M(x)[(i, j,W, q), (i′, j′,W′, q′)] = CanTransit[(i, j,W), (i′, j′,W′)]
× Mx[i],W[j],W′[j],i′−i,j′−j [q, q′].

We see that that every block M(x)[(i, j,W,), (i′, j′,W′,)] either is the Q × Q
zero matrix or belongs to a small set T of a constant number of transition blocks:

T =
{

Mx,w,w′,Δi,Δj

∣

∣ x,w,w′ ∈ {0, 1}, Δi,Δj ∈ {0,±1}
}

.

Moreover, in the i = (i, j,W)th “block row”, M(x)[(i,), (, , ,)], each transi-
tion block Mx,w,w′,Δi,Δj either does not appear at all if x �= x[i] or w′ �= W[j],

11 Our scheme readily extends to be based on k-Lin. However, that makes the scheme
more complex to present. We choose to present this scheme using SXDH in this
paper.

Compact Adaptively Secure ABE from k-Lin: Beyond NC1 and Towards NL 261

or appears once as the block M(x)[(i,), (i′,)], where i′ is the triplet obtained
by updating i appropriately according to (w′,Δi,Δj):

i′ def== i � (w′,Δi,Δj) = (i + Δi, j + Δj, W′ = overwrite(W, j, w′)),
M(x)[(i,), (i′,)] = Mx[i],W[j],w′,Δi,Δj .

Thus we can “decompose” every label �t[i, q] as an inner product 〈ut,i,vq〉 as

�t[i, q] = −rt−1[i, q] + M(x)[(i, q)(, , ,)]rt

= −rt−1[i, q] +
∑

w′,Δi,Δj

(

Mx[i],W[j],w′,Δi,Δjrt[i′,]
)

[q]
(

i′ = i � (w′,Δi,Δj)
)

= −rx[t − 1, i]rf [q] +
∑

w′,Δi,Δj

rx[t, i′]
(

Mx[i],W[j],w′,Δi,Δjrf

)

[q]

= 〈ut,i,vq〉,
↖(

rt′′ [i′′, q′′] = rx[t′′, i′′]rf [q′′]
)

where vectors ut,i and vq are as follows, with 1{· · ·} indicating if the conditions
(its argument) are true:

ut,i = (rx[t − 1, i] ‖ · · · ‖ rx[t, i′] · 1{x = x[i], w = W[j]} ‖ · · · ‖ 0),
vq = (−rf [q] ‖ · · · ‖ (Mx,w,w′,Δi,Δjrf)[q] ‖ · · · ‖ 0).

Similarly, we can “decompose” �init = eT
1,1,0,1r0 as 〈rx[0, 1, 1,0], rf [1]〉. (For sim-

plicity in the discussion below, we omit details on how to handle �T+1.) Given
such decomposition, our semi-compact 1-ABE scheme follows immediately by
using IPFE to compute the garbling:

Honest Algorithms

sk(M,μ): iskinit(rf [1] ‖ 0), ∀q: iskq(ut,i ‖ 0)
ct(x, T, S): ictinit(rx[0, 1, 1,0] ‖ 0), ∀t, i: icti,i(vq ‖ 0)

Decrypting the pair iskinit, ictinit (generated using one master secret key) gives
exactly the first label �init, while decrypting iskq, ictt,i (generated using another
master secret key) gives the label �t[i, q] in the exponent, generated using pseu-
dorandomness rt[i, q] = rx[t, i]rf [q]. Note that the honest algorithms encode rf [q]
(in vq) and rx[t, i] (in ut,i) in IPFE secret keys and ciphertexts that use the two
source groups G1 and G2 respectively. As such, we cannot directly use the SXDH
assumption to argue the pseudorandomness of rt[i, q]. In the security proof, we
will use the function-hiding property of IPFE to move both rx[t, i] and rf [q] into
the same source group before invoking SXDH.

Adaptive Security. To show adaptive security, we follow the same blueprint
of going through a sequence of hybrids, where we first hardcode �init and sample
it reversely using RevSamp, and next simulate the other labels �t[i, q] one by
one. Hardwiring �init is easy by relying on the function-hiding property of IPFE.
However, it is now more difficult to simulate �t[i, q] because (i) before simulating
�t[i, q], we need to switch its randomizer rt−1[i, q] = rx[t − 1, i]rf [q] to truly

262 H. Lin and J. Luo

random rt−1[i, q]
$← Zp, which enables us to simulate the label �t[i, q] as random;

and (ii) to keep simulation progressing, we need to switch the random �t[i, q]
back to a pseudorandom value �t[i, q] = sx[t, i]sf [q], as otherwise, there is not
enough space to store all ∼ TNS2SQ random labels �t[i, q].

We illustrate how to carry out above proof steps in the simpler case where the
adversary queries for the ciphertext first and the secret key second. The other
case where the secret key is queried first is handled using similar ideas, but the
technicality becomes much more delicate.

In hybrid (t, i), the first label �init is reversely sampled and hardcoded in the
secret key iskinit, i.e., ictinit encrypts (1 ‖ 0) and iskinit encrypts (�init ‖ 0) with
�init ← RevSamp(· · ·). All labels �t′ [i′, q] with (t′, i′) < (t, i) have been simulated
as sx[t′, i′]sf [q]—observe that the ciphertext ictt′,i′ encodes only sf [t′, i′] in the
second slot, which is multiplied by sf [q] in the second slot of iskq. On the other
hand, all labels �t′ [i′, q] with (t′, i′) ≥ (t, i) are generated honestly as the honest
algorithms do.

Hybrid (t, i), (t, i) : 1 , and (t, i) + 1

ct(x, T, S): (t′, i′) < (t, i): ictt′,i′(0 ‖ sx[t′, i′] ‖ 0)

(t′, i′) = (t, i): ictt ,i (ut,i 0 0 ‖ 0 0 sx[t, i] ‖ 0 1 0)

(t′, i′) > (t, i): ictt′,i′(ut′,i′ ‖ 0 ‖ 0)

sk(M,μ): q ∈ [Q]: iskq(vq ‖ sf [q] ‖ 0 �t[i, q] 0)

Moving from hybrid (t, i) to its successor (t, i) + 1, the only difference is that
labels �t[i, q] are switched from being honestly generated 〈ut,i,vq〉 to pseudo-
random sx[t, i]sf [q], as depicted above with values in the solid line box (the rest
of the hybrid is identical to hybrid (t, i)). The transition can be done via an
intermediate hybrid (t, i) : 1 with values in the dash line box. In this hybrid,
all labels �t[i, q] produced as inner products of all vq’s and ut,i are temporarily
hardcoded in the secret keys iskq, using the third slot (which is zeroed out in
all the other u(t′,i′) �=(t,i)’s). Furthermore, ut,i is removed from ictt,i. As such,
the random scalar rx[t − 1, i] (formerly embedded in ut,i) no longer appears in
the exponent of group G1, and �init ← RevSamp(· · ·) can be performed using
rx[t − 1, i], rf [q], rt−1[i, q] in the exponent of G2. Therefore, we can invoke the
SXDH assumption in G2 to switch the randomizers rt−1[i, q] = rx[t − 1, i]rf [q]
to be truly random, and hence so are the labels �t[i, q]

$← Zp. By a similar argu-
ment, this intermediate hybrid (t, i) : 1 is also indistinguishable to (t, i) + 1,
as the random �t[i, q] can be switched to sx[t, i]sf [q] in hybrid (t, i) + 1, relying
again on SXDH and the function-hiding property of IPFE. This concludes our
argument of security in the simpler case where the ciphertext is queried first.

AKGS and 1-ABE for NL. Our construction of AKGS and 1-ABE essen-
tially works for NL without modification, because the computation of a non-
deterministic logspace Turing machine M = ([Q], qacc, δ) on an input x can
also be represented as a sequence of matrix multiplications. We briefly describe
how by pointing out the difference from L. The transition function δ of a non-
deterministic TM dost not instruct a unique transition, but rather specifies a set

Compact Adaptively Secure ABE from k-Lin: Beyond NC1 and Towards NL 263

of legitimate transitions. Following one internal configuration (i, j,W, q), there
are potentially many legitimate successors:

(i, j,W, q) →
{

(i′ = i + Δi, j′ = j + Δj,W′ = overwrite(W, j, w′), q′)
∣

∣ (q′, w′,Δi,Δj) ∈ δ(q,x[i],W[j])
}

.

The computation is accepting if and only if there exists a path with T legiti-
mate transitions starting from (1, 1,0, 1), through (it, jt,Wt, qt) for t ∈ [T], and
landing at qT = qacc.

Naturally, we modify the transition matrix as below to reflect all legitimate
transitions. The only difference is that each transition block determined by δ
may map a state q to multiple states q′, as highlighted in the solid line box:

M(x)[(i, j,W, q), (i′, j′,W′, q′)] = CanTransit[(i, j,W), (i′, j′,W′)]
× Mx[i],W[j],W′[j],i′−i,j′−j [q, q′],

Mx,w,w′,Δi,Δj [q, q′] = 1 iff (q′, w′,Δi,Δj) ∈ δ(q, x, w′).

Let us observe the effect of right multiplying M(x) to an ei,q indicating configu-
ration (i, q): eT

i,qM(x) gives a vector c1 such that c1[i′, q′] = 1 if and only if (i′, q′)

is a legitimate next configuration. Multiplying M(x) one more time, eT

i,q

(

M(x)
)2

gives c2 where c2[i′, q′] is the number of length-2 paths of legitimate transitions
from (i, q) to (i′, q′). Inductively, eT

i,q

(

M(x)
)t yields ct that counts the number

of length-t paths from (i, q) to any other internal configuration (i′, q′). Therefore,
we can arithmetize the computation of M on x as

M |N,T,S(x) = eT

(1,1,0,1)

(

M(x)
)T

t for t = 1NS2S ⊗ eqacc . (6)

Right multiplying t in the end sums up the number of paths to (i, qacc) for all i
in cT (i.e., accepting paths).

If the computation is not accepting—there is no path to any (i, qacc)—the final
sum would be 0 as desired. If the computation is accepting—there is a path to some
(i, qacc)—then the sum should be non-zero (up to the following technicality). Now
that we have represented NL computation as matrix multiplication, we immedi-
ately obtain AKGS and 1-ABE for NL using the same construction for L.

A Technicality in the Correctness for NL. The correctness of our scheme relies
on the fact that when the computation is accepting, the matrix multiplication
formula (Eq. (6)) counts correctly the total number of length-T accepting paths.
However, a subtle issue is that in our 1-ABE, the matrix multiplications are
carried out over Zp, where p is the order of the bilinear pairing groups. This
means if the total number of accepting paths happens to be a multiple of p, the
sequence of matrix multiplications mod p carried out in 1-ABE would return
0, while the correct output should be non-zero. This technicality can be cir-
cumvented if p is entropic with ω(log n) bits of entropy and the computation
(M,x, T, S) is independent of p. In that case, the probability that the number of
accepting paths is a multiple of p is negligible. We can achieve this by letting the

264 H. Lin and J. Luo

setup algorithm of 1-ABE sample the bilinear pairing groups from a distribu-
tion with entropic order. Then, we have statistical correctness for computations
(M,x, T, S) chosen statically ahead of time (independent of p). We believe such
static correctness is sufficient for most applications where correctness is meant
for non-adversarial behaviors. However, if the computation (M,x, T, S) is cho-
sen adaptively to make the number of accepting paths a multiple of p, then an
accepting computation will be mistakenly rejected. We stress that security is
unaffected since if an adversary chooses M and (x, T, S) as such, it only learns
less information.

The Special Cases of DFA and NFA. DFA and NFA are special cases of
L and NL, respectively, as they can be represented as Turing machines with a
work tape of size S = 1 that always runs in time T = N , and the transition
function δ always moves the input tape pointer to the right. Therefore, the
internal configuration of a finite automaton contains only the state q, and the
transition matrix M(x) is determined by δ and the current input bit x under
scan. Different from the case of L and NL, here the transition matrix no longer
keeps track of the input tape pointer since its move is fixed—the tth step uses
the transition matrix M(x[t]) depending on x[t]. Thus, the computation can be
represented as follows:

M(x) = eT

1

N
∏

t=1

M(x[t]) · eqacc = eT

1

N
∏

t=1

(

M0(1 − x[t]) + M1x[t]
)

· eqacc ,

Mb[q, q′] = 1{δ(q, b) = q′}.

Our construction of AKGS directly applies:

�init = Linit(x) = eT

1r0,

t ∈ [N]: �t =
(

Lt,q(x)
)

q∈[Q]
= −rt−1 + M(x[t]) rt,

(

rt−1, rt
$← Z

Q
p

)

�N+1 =
(

LN+1,q(x)
)

q∈[Q]
= −rN + μeqacc .

When using pseudorandomness rt[q] = rf [q]rx[t], the labels �t[q] can be com-
puted as the inner products of vq = (−rf [q] ‖ (M0rf)[q] ‖ (M1rf)[q] ‖ 0) and
ut = (rx[t− 1] ‖ (1−x[t])rx[t] ‖ x[t]rx[t] ‖ 0). Applying our 1-ABE construction
with respect to such “decomposition” gives compact 1-ABE for DFA and NFA
with secret keys of size O(Q) and ciphertexts of size O(N).

Discussion. Prior to our work, there have been constructions of ABE for DFA
based on pairing [1,5,12,13,29,58] and ABE for NFA based on LWE [4]. How-
ever, no previous scheme achieves adaptive security unless based on q-type
assumptions [12,13]. The work of [20] constructed ABE for DFA, and that
of [7] for random access machines, both based on LWE, but they only sup-
port inputs of bounded length, giving up the important advantage of uniform
computation of handling unbounded-length inputs. There are also constructions
of ABE (and even the stronger generalization, functional encryption) for Tur-
ing machines [3,9,28,41] based on strong primitives such as multilinear map,

Compact Adaptively Secure ABE from k-Lin: Beyond NC1 and Towards NL 265

extractable witness encryption, and indistinguishability obfuscation. However,
these primitives are non-standard and currently not well-understood.

In terms of techniques, our work is most related to previous pairing-based ABE
for DFA, in particular, the recent construction based on k-Lin [29]. These ABE
schemes for DFA use a linear secret-sharing scheme for DFA first proposed in [58],
and combining the secret key and ciphertext produces a secret-sharing in the expo-
nent, which reveals the secret if and only if the DFA computation is accepting.
Proving (even selective) security is complicated.Roughly speaking, thework of [29]
relies on an entropy propagation technique to trace the DFA computation and prop-
agate a few random masks “down” the computation path, with which they can
argue that secret information related to states that are backward reachable from the
final accepting states is hidden. The technique is implemented using the “nested
two-slot” dual system encryption [23,33,46,47,54,57] combined with a combina-
torial mechanism for propagation.

Our AKGS is a generalization of Waters’ secret-sharing scheme to L and NL,
and the optimized version for DFA is identical to Waters’ secret-sharing scheme.
Furthermore, our 1-ABE scheme from AKGS and IPFE is more modular. In
particular, our proof (similar to our 1-ABE for non-uniform computation) does
not reason about or trace the computation, and simply relies on the structure of
AKGS. Using IPFE enables us to design sophisticated sequences of hybrids with-
out getting lost in the algebra, as IPFE helps separating the logic of changes in
different hybrids from how to implement the changes. For instance, we can eas-
ily manage multiple slots in the vectors encoded in IPFE for holding temporary
values and generating pseudorandomness.

3 Preliminaries

Indexing. Let S be any set, we write SI for the set of vectors whose entries
are in S and indexed by I, i.e., SI = {(v[i])i∈I |v[i] ∈ S}. Suppose s1, s2 are
two index sets with s1 ⊆ s2. For any vector v ∈ Z

s1
p , we write u = v|s2 for its

zero-extension into Z
s2
p , i.e., u ∈ Z

s2
p and u[i] = v[i] if i ∈ s1 and 0 otherwise.

Conversely, for any vector v ∈ Z
s2
p , we write u = v|s1 for its canonical projection

onto Z
s1
p , i.e., u ∈ Z

s1
p and u[i] = v[i] for i ∈ s1. Lastly, let u,v ∈ Z

s
p, denote by

〈u,v〉 their inner product, i.e.,
∑

i∈s u[i]v[i].

Coefficient Vector. We conveniently associate an affine function f : Z
I
p → Zp

with its coefficient vector f ∈ Z
s
p (written as the same letter in boldface) for

s = {const} ∪ {coefi | i ∈ I} such that f(x) = f [const] +
∑

i∈I f [coefi]x[i].

3.1 Bilinear Pairing and Matrix Diffie-Hellman Assumption

Throughout the paper, we use a sequence of bilinear pairing groups

G = {(Gλ,1, Gλ,2, Gλ,T, gλ,1, gλ,2, eλ)}λ∈N,

where Gλ,1, Gλ,2, Gλ,T are groups of prime order p = p(λ), and Gλ,1 (resp. Gλ,2)
is generated by gλ,1 (resp. gλ,2). The maps eλ : Gλ,1 × Gλ,2 → Gλ,T are

266 H. Lin and J. Luo

– bilinear: eλ(ga
λ,1, g

b
λ,2) =

(

eλ(gλ,1, gλ,2)
)ab for all a, b; and

– non-degenerate: eλ(gλ,1, gλ,2) generates Gλ,T.

Implicitly, we set gλ,T = e(gλ,1, gλ,2). We require the group operations as well
as the bilinear maps be efficiently computable.

Bracket Notation. Fix a security parameter, for i = 1, 2,T, we write [[A]]i for
gAλ,i, where the exponentiation is element-wise. When bracket notation is used,
group operation is written additively, so [[A + B]]i = [[A]]i + [[B]]i for matrices
A,B. Pairing operation is written multiplicatively so that [[A]]1[[B]]2 = [[AB]]T.
Furthermore, numbers can always operate with group elements, e.g., [[A]]1B =
[[AB]]1.

Matrix Diffie-Hellman Assumption. In this work, we rely on the MDDH
assumptions defined in [26], which is implied by k-Lin.

Definition 1 (MDDHk [26]). Let k ≥ 1 be an integer constant. For a sequence
of pairing groups G of order p(λ), MDDHk holds in Gi (i = 1, 2,T) if

{([[A]]i, [[s
TA]]i)}λ∈N ≈ {([[A]]i, [[c

T]]i)}λ∈N for A
$← Z

k×(k+1)

p(λ) , s
$← Z

k
p(λ), c

$← Z
k+1
p(λ).

3.2 Attribute-Based Encryption

Definition 2. Let M = {Mλ}λ∈N be a sequence of message sets. Let P = {Pλ}λ∈N

be a sequence of families of predicates, where Pλ = {P : XP × YP → {0, 1}}. An
attribute-based encryption (ABE) scheme for message space M and predicate
space P consists of 4 efficient algorithms:

– Setup(1λ, P ∈ Pλ) generates a pair of master public/secret key (mpk,msk).
– KeyGen(1λ,msk, y ∈ YP) generates a secret key sky associated with y.
– Enc(1λ,mpk, x ∈ XP , g ∈ Mλ) generates a ciphertext ctx,g for g associated

with x.
– Dec(1λ, sk, ct) outputs either ⊥ or a message in Mλ.

Correctness requires that for all λ ∈ N, all P ∈ Pλ, g ∈ Mλ, and all
y ∈ YP , x ∈ XP such that P (x, y) = 1,

Pr

⎡

⎢

⎣

(mpk,msk) $← Setup(1λ, P)

sk
$← KeyGen(1λ,msk, y)

ct
$← Enc(1λ,mpk, x, g)

: Dec(1λ, sk, ct) = g

⎤

⎥

⎦ = 1.

The basic security requirement of an ABE scheme stipulates that no information
about the message can be inferred as long as each individual secret key the
adversary receives does not allow decryption. The adversary is given the master
public key and allowed arbitrarily many secret key and ciphertexts queries. For
the secret key queries, the adversary is given the secret key for a policy of
its choice. For the ciphertext queries, the adversary is either given a correct
encryption to the message or an encryption of a random message. It has to

Compact Adaptively Secure ABE from k-Lin: Beyond NC1 and Towards NL 267

decide whether the encryptions it receives are correct or random. We stress that
in the adaptive setting considered in this work, the secret key and ciphertext
queries can arbitrarily interleave and depend on responses to previous queries.
The definition is standard in the literature, and we refer the readers to [32] or
the full version for details.

3.3 Function-Hiding Slotted Inner-Product Functional Encryption

Definition 3 (pairing-based slotted IPFE). Let G be a sequence of pairing
groups of order p(λ). A slotted inner-product functional encryption (IPFE)
scheme based on G consists of 5 efficient algorithms:

– Setup(1λ, spub, spriv) takes as input two disjoint index sets, the public slot
spub and the private slot spriv, and outputs a pair of master public key and
master secret key (mpk,msk). The whole index set s is spub ∪ spriv.

– KeyGen(1λ,msk, [[v]]2) generates a secret key skv for v ∈ Z
s
p(λ).

– Enc(1λ,msk, [[u]]1) generates a ciphertext ctu for u ∈ Z
s
p(λ) using the master

secret key.
– Dec(1λ, skv, ctu) is supposed to compute [[〈u,v〉]]T.
– SlotEnc(1λ,mpk, [[u]]1) generates a ciphertext ct for u|s when given input u ∈

Z
spub

p(λ) using the master public key.

Decryption correctness requires that for all λ ∈ N, all index set s, and all vectors
u,v ∈ Z

s
p(λ),

Pr

⎡

⎢

⎢

⎣

msk
$← Setup(1λ,s)

sk
$← KeyGen(1λ,msk, [[v]]2)

ct
$← Enc(1λ,msk, [[u]]1)

: Dec(1λ, sk, ct) = [[〈u,v〉]]T

⎤

⎥

⎥

⎦

= 1.

Slot-mode correctness requires that for all λ ∈ N, all disjoint index sets
spub, spriv, and all vector u ∈ Z

spub

p(λ) , the following distributions should be iden-
tical:

{

(mpk,msk) $← Setup(1λ,spub,spriv)

ct
$← Enc(1λ,msk, [[u|s]]1)

: (mpk,msk, ct)

}

,

{

(mpk,msk) $← Setup(1λ,spub,spriv)

ct
$← SlotEnc(1λ,mpk, [[u]]1)

: (mpk,msk, ct)

}

.

Slotted IPFE generalizes both secret-key and public-key IPFEs: A secret-key
IPFE can be obtained by setting spub = ∅ and spriv = s; a public-key IPFE can
be obtained by setting spub = s and spriv = ∅.

We now define the adaptive function-hiding property.

Definition 4 (function-hiding slotted IPFE). Let (Setup,KeyGen,Enc,Dec,
SlotEnc) be a slotted IPFE. The scheme is function-hiding if Exp0

FH ≈ Exp1
FH,

where Expb
FH for b ∈ {0, 1} is defined as follows:

268 H. Lin and J. Luo

– Setup. Run the adversary A(1λ) and receive two disjoint index sets spub, spriv

from A. Let s = spub ∪ spriv. Run (mpk,msk) $← Setup(1λ, spub, spriv) and
return mpk to A.

– Challenge. Repeat the following for arbitrarily many rounds determined by
A: In each round, A has 2 options.

• A can submit [[v0
j]]2, [[v

1
j]]2 for a secret key, where v0

j ,v
1
j ∈ Z

s
p. Upon this

query, run skj
$← KeyGen(1λ,msk, [[vb

j]]2) and return skj to A.
• A can submit [[u0

i]]1, [[u
1
i]]1 for a ciphertext, where u0

i ,u
1
i ∈ Z

s
p. Upon this

query, run cti
$← Enc(1λ,msk, [[ub

i]]1) and return cti to A.
– Guess. A outputs a bit b′. The outcome is b′ if v0

j |spub = v1
j |spub for all j

and 〈u0
i ,v

0
j 〉 = 〈u1

i ,v
1
j 〉 for all i, j. Otherwise, the outcome is 0.

Applying the techniques in [49,50] to the IPFE of [2,60], we obtain adaptively
secure function-hiding slotted IPFE:

Lemma 5 ([2,49,50,60]). Let G be a sequence of pairing groups and k ≥ 1 an
integer constant. If MDDHk holds in both G1, G2, then there is an (adaptively)
function-hiding slotted IPFE scheme based on G.

4 Arithmetic Key Garbling Scheme

Arithmetic key garbling scheme (AKGS) is an information-theoretic primitive
related to randomized encodings [11] and partial garbling schemes [37]. It is the
information-theoretic core in our construction of one-key one-ciphertext ABE
(more precisely 1-ABE constructed in Sect. 5). Given a function f : Z

I
p → Zp and

two secrets α, β ∈ Zp, an AKGS produces label functions L1, . . . , Lm : Z
I
p → Zp

that are affine in x. For any x, one can compute αf(x)+β from L1(x), . . . , Lm(x)
together with f and x, while all other information about α, β are hidden.

Definition 6 (AKGS, adopted from Definition 1 in [37]). An arithmetic key
garbling scheme (AKGS) for a function class F = {f}, where f : Z

I
p → Zp for

some p, I specified by f , consists of two efficient algorithms:

– Garble(f ∈ F , α ∈ Zp, β ∈ Zp) is randomized and outputs m affine functions
L1, . . . , Lm : Z

I
p → Zp (called label functions, which specifies how input is

encoded as labels). Pragmatically, it outputs the coefficient vectors L1, . . . ,Lm.
– Eval(f ∈ F ,x ∈ Z

I
p , �1 ∈ Zp, . . . , �m ∈ Zp) is deterministic and outputs a

value in Zp (the input �1, . . . , �m are called labels, which are supposed to
be the values of the label functions at x).

Correctness requires that for all f : Z
I
p → Zp ∈ F , α, β ∈ Zp,x ∈ Z

I
p ,

Pr

[

(L1, . . . ,Lm) $← Garble(f, α, β)
�j ← Lj(x) for j ∈ [m]

: Eval(f,x, �1, . . . , �m) = αf(x) + β

]

= 1.

We also require that the scheme have deterministic shape, meaning that m is
determined solely by f , independent of α, β, and the randomness in Garble. The
number of label functions, m, is called the garbling size of f under this scheme.

Compact Adaptively Secure ABE from k-Lin: Beyond NC1 and Towards NL 269

Definition 7 (linear AKGS). An AKGS (Garble,Eval) for F is linear if the
following conditions hold:

– Garble(f, α, β) uses a uniformly random vector r $← Z
m′
p as its randomness,

where m′ is determined solely by f , independent of α, β.
– The coefficient vectors L1, . . . ,Lm produced by Garble(f, α, β; r) are linear in

(α, β, r).
– Eval(f,x, �1, . . . , �m) is linear in (�1, . . . , �m).

Later in this paper, AKGS refers to linear AKGS by default.
The basic security notion of AKGS requires the existence of an efficient simu-

lator that draws a sample from the real labels’ distribution given f,x, αf(x)+β.
We emphasize, as it’s the same case in [37], that AKGS does not hide x and
hides all other information about α, β except the value αf(x) + β.

Definition 8 ((usual) simulation security, Definition 1 in [37]). An AKGS
(Garble,Eval) for F is secure if there exists an efficient algorithm Sim such that
for all f : Z

I
p → Zp ∈ F , α, β ∈ Zp,x ∈ Z

I
p , the following distributions are

identical:
{

(L1, . . . ,Lm) $← Garble(f, α, β)
�j ← Lj(x) for j ∈ [m]

: (�1, . . . , �m)

}

,

{ (�1, . . . , �m) $← Sim(f,x, αf(x) + β) : (�1, . . . , �m)}.

As discussed in Sect. 2.1, the usual simulation security suffices for selective (or
semi-adaptive) security. To achieve adaptive security, we need the following
stronger property.

Definition 9 (piecewise security). An AKGS (Garble,Eval) for F is piecewise
secure if the following conditions hold:

– The first label is reversely sampleable from the other labels together with
f and x. This reconstruction is perfect even given all the other label func-
tions. Formally, there exists an efficient algorithm RevSamp such that for all
f : Z

I
p → Zp ∈ F , α, β ∈ Zp,x ∈ Z

I
p , the following distributions are identical:

{

(L1, . . . ,Lm) $← Garble(f, α, β)
�1 ← L1(x)

: (�1,L2, . . . ,Lm)

}

,

⎧

⎪

⎨

⎪

⎩

(L1, . . . ,Lm) $← Garble(f, α, β)
�j ← Lj(x) for j ∈ [m], j > 1
�1

$← RevSamp(f,x, αf(x) + β, �2, . . . , �m)
: (�1,L2, . . . ,Lm)

⎫

⎪

⎬

⎪

⎭

.

– For the other labels, each is marginally random even given all the label func-
tions after it. Formally, this means for all f : Z

I
p → Zp ∈ F , α, β ∈ Zp,x ∈ Z

I
p

270 H. Lin and J. Luo

and all j ∈ [m], j > 1, the following distributions are identical:
{

(L1, . . . ,Lm) $← Garble(f, α, β)
�j ← Lj(x)

: (�j ,Lj+1, . . . ,Lm)

}

,

{

(L1, . . . ,Lm) $← Garble(f, α, β)
�j

$← Zp

: (�j ,Lj+1, . . . ,Lm)

}

.

As piecewise security is stronger, it implies the usual simulation security:

Lemma 10. A piecewise secure AKGS for some function class is also secure
for the same function class.

5 1-ABE for ABPs

Arithmetic branching program (ABP) is a computation model introduced by
Nisan [51] and later studied in [15,34–37]. It is defined by a directed acyclic
graph (V,E) with distinguished vertices s, t ∈ V where every edge e ∈ E is
labeled by an affine function we of the input x, and the output is computed as

f(x) =
∑

s-t path
e1···ei

i
∏

j=1

w(ej)(x).

Our ABE for ABPs relies on an AKGS for ABPs, which we derive as a special
case of the partial garbling scheme for ABPs in [37].

Lemma 11. There is a piecewise secure AKGS for ABPs. Moreover, the gar-
bling size of an ABP coincides with the number of vertices in the graph.

Below, we define and construct 1-ABE, a precursor to our full-fledged ABE,
using a piecewise secure AKGS for the matching function class. It captures
the key ideas for achieving adaptive security using AKGS and function-hiding
IPFE, while keeping the ciphertext compact. (For technical reasons, it is more
convenient to define it as a key encapsulation mechanism.)

Definition 12. Let G be a sequence of pairing groups of order p(λ). A 1-ABE
scheme based on G has the same syntax as an ABE scheme in Definition 2,
except that

– There is no message space M.
– Setup outputs a master secret key msk, without a mpk.
– KeyGen(1λ,msk, y, μ) outputs a secret key sk for policy y that encapsulates a

pad μ ∈ Zp(λ).
– Enc(1λ,msk, x) uses msk and outputs a ciphertext ct for attribute x without

encrypting a message.
– Dec(sk, ct) outputs ⊥ or some [[μ′]]T.

Compact Adaptively Secure ABE from k-Lin: Beyond NC1 and Towards NL 271

– Correctness requires that μ = μ′ if the decapsulation should be successful, i.e.,
P (x, y) = 1.

Such a scheme is 1-key 1-ciphertext secure (or simply secure) if Exp0
1-sk,1-ct ≈

Exp1
1-sk,1-ct, where Expb

1-sk,1-ct is defined as follows:

– Setup. Run the adversary A(1λ) and receive a predicate P from it.
– Query I. A can submit a key query y. Upon this query, sample two random

pads μ0, μ1 $← Zp(λ), run sk
$← KeyGen(1λ,msk, y, μ0), and return (sk, μb) to

A.
– Challenge. A submits a challenge attribute x. Upon the challenge, run ct

$←
Enc(1λ,msk, x), and return ct to A.

– Query II. Same as Query I.
– Guess. A outputs a bit b′. The outcome of the experiment is b′ if the adversary

makes only a single key query for some y and P (x, y) = 0. Otherwise, the
outcome is 0.

For any function class F (e.g., arithmetic branching programs), we show how to
construct a 1-ABE for the class of zero-test predicates in F (i.e., predicates of
form f�=0, f=0 that computes whether f(x) evaluates to zero or non-zero), using
a piecewise secure AKGS for F and a function-hiding secret-key IPFE scheme.

Construction 13 (1-ABE). We describe the construction for any fixed value of
the security parameter λ and suppress the appearance of λ below for simplicity
of notations. Let (Garble,Eval) be an AKGS for a function class F , G pairing
groups of order p, and (IPFE.Setup, IPFE.KeyGen, IPFE.Enc, IPFE.Dec) a secret-
key IPFE based on G. We construct a 1-ABE scheme based on G for the predicate
space P induced by F :

Xn = Z
n
p , Yn = {f�=0, f=0 | f ∈ F , f : Z

n
p → Zp},

P = {Pn : Xn × Yn → {0, 1}, (x, y) �→ y(x) | n ∈ N}.

The 1-ABE scheme (Setup,KeyGen,Enc,Dec) operates as follows:

– Setup(1n) takes the attribute length in unary (i.e., Pn is encoded as 1n) as
input. It generates an IPFE master secret key msk

$← IPFE.Setup(s1-ABE)
for the index set s1-ABE = {const, coef1, . . . , coefn, sim1, sim�}. The algorithm
returns msk as the master secret key.
Note: The positions indexed by const, coef1, . . . , coefn in the secret key encode
the coefficient vectors Lj of the label functions Li produced by garbling f with
secrets α, β, and these positions encode (1,x) in the ciphertext. The positions
indexed by sim1, sim� are set to zero by the honest algorithms, and are only
used in the security proof.

– KeyGen(msk, y ∈ Yn, μ ∈ Zp) samples η
$← Zp and garbles the function f

underlying y as follows:
{

α

α

← μ, β ← 0, if y = f�=0;
← η, β ← μ, if y = f=0;

(L1, . . . ,Lm) $← Garble(f, α, β).

272 H. Lin and J. Luo

It generates an IPFE key iskj
$← IPFE.KeyGen(msk, [[vj]]2) for the following

vector vj encoding each label function Lj :

vector const coefi sim1 sim�

vj Lj [const] Lj [coefi] 0 0

The algorithm returns sky = (y, isk1, . . . , iskm) as the secret key.
– Enc(msk,x ∈ Z

n
p) generates an IPFE ciphertext ict

$← IPFE.Enc(msk, [[u]]1)
encrypting the vector u that contains 1,x:

vector const coefi sim1 sim�

u 1 x[i] 0 0

It returns ct = (x, ict) as the ciphertext.
– Dec(sk, ct) parses sk as (y, isk1, . . . , iskm) and ct as (x, ict), and returns ⊥ if

y(x) = 0. Otherwise, it does the following:

for j ∈ [m]: [[�j]]T ← IPFE.Dec(iskj , ict),

[[μ′]]T ←
{

1
f(x)Eval(f,x, [[�1]]T, . . . , [[�m]]T), if y = f�=0;

Eval(f,x, [[�1]]T, . . . , [[�m]]T), if y = f=0.

The algorithm returns [[μ′]]T as the decapsulated pad.
Note: We show the correctness of the scheme. First, by the correctness of
IPFE and the definition of vectors vj ,u, we have �j = 〈u,vj〉 = Lj(x) for
all j ∈ [m]. Next, by the linearity of Eval in �1, . . . , �m, we can evaluate the
garbling in the exponent of the target group and obtain Eval(f,x, �1, . . . , �m) =
αf(x) + β in the exponent. In the two cases where decapsulation should suc-
ceed, we have

αf(x) + β =

{

μf(x), if y = f�=0 and f(x) �= 0;
μ, if y = f=0 and f(x) = 0.

In both cases, the μ′ above equals to μ. Therefore, Dec correctly decapsulates
the pad.

Theorem 14. Suppose in Construction 13, the AKGS is piecewise secure and
the IPFE scheme is function-hiding, then the constructed 1-ABE scheme is 1-
key 1-ciphertext secure.

We refer the readers to the full version for the formal proof.

Compact Adaptively Secure ABE from k-Lin: Beyond NC1 and Towards NL 273

Acknowledgments. The authors were supported by NSF grants12 CNS-1528178,
CNS-1929901, CNS-1936825 (CAREER). The authors thank Hoeteck Wee for help-
ful discussions and the anonymous reviewers for insightful comments.

References

1. Agrawal, S., Chase, M.: Simplifying design and analysis of complex predicate
encryption schemes. In: Coron, J.-S., Nielsen, J.B. (eds.) EUROCRYPT 2017, Part
I. LNCS, vol. 10210, pp. 627–656. Springer, Cham (2017). https://doi.org/10.1007/
978-3-319-56620-7 22

2. Agrawal, S., Libert, B., Stehlé, D.: Fully secure functional encryption for inner
products, from standard assumptions. In: Robshaw, M., Katz, J. (eds.) CRYPTO
2016, Part III. LNCS, vol. 9816, pp. 333–362. Springer, Heidelberg (2016). https://
doi.org/10.1007/978-3-662-53015-3 12

3. Agrawal, S., Maitra, M.: FE and iO for turing machines from minimal assumptions.
In: Beimel, A., Dziembowski, S. (eds.) TCC 2018, Part II. LNCS, vol. 11240, pp.
473–512. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-03810-6 18

4. Agrawal, S., Maitra, M., Yamada, S.: Attribute based encryption (and more) for
nondeterministic finite automata from LWE. In: Boldyreva, A., Micciancio, D.
(eds.) CRYPTO 2019, Part II. LNCS, vol. 11693, pp. 765–797. Springer, Cham
(2019). https://doi.org/10.1007/978-3-030-26951-7 26

5. Agrawal, S., Maitra, M., Yamada, S.: Attribute based encryption for deterministic
finite automata from DLIN. In: Hofheinz, D., Rosen, A. (eds.) TCC 2019, Part II.
LNCS, vol. 11892, pp. 91–117. Springer, Cham (2019). https://doi.org/10.1007/
978-3-030-36033-7 4

6. Ananth, P., Chen, Y.-C., Chung, K.-M., Lin, H., Lin, W.-K.: Delegating RAM com-
putations with adaptive soundness and privacy. In: Hirt, M., Smith, A. (eds.) TCC
2016, Part II. LNCS, vol. 9986, pp. 3–30. Springer, Heidelberg (2016). https://doi.
org/10.1007/978-3-662-53644-5 1

7. Ananth, P., Fan, X., Shi, E.: Towards attribute-based encryption for RAMs
from LWE: sub-linear decryption, and more. Cryptology ePrint Archive, Report
2018/273 (2018). https://eprint.iacr.org/2018/273

8. Ananth, P., Sahai, A.: Projective arithmetic functional encryption and indistin-
guishability obfuscation from degree-5 multilinear maps. In: Coron, J.-S., Nielsen,
J.B. (eds.) EUROCRYPT 2017, Part I. LNCS, vol. 10210, pp. 152–181. Springer,
Cham (2017). https://doi.org/10.1007/978-3-319-56620-7 6

9. Ananth, P.V., Sahai, A.: Functional encryption for turing machines. In: Kushile-
vitz, E., Malkin, T. (eds.) TCC 2016, Part I. LNCS, vol. 9562, pp. 125–153.
Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-49096-9 6

10. Applebaum, B., Ishai, Y., Kushilevitz, E.: Cryptography in NC0. In: 45th FOCS,
pp. 166–175. IEEE Computer Society Press, October 2004

11. Applebaum, B., Ishai, Y., Kushilevitz, E.: How to garble arithmetic circuits. In:
Ostrovsky, R. (ed.) 52nd FOCS, pp. 120–129. IEEE Computer Society Press, Octo-
ber 2011

12 The views expressed are those of the authors and do not reflect the official policy
or position of the Department of Defense, the National Science Foundation, or the
U.S. Government.

https://doi.org/10.1007/978-3-319-56620-7_22
https://doi.org/10.1007/978-3-319-56620-7_22
https://doi.org/10.1007/978-3-662-53015-3_12
https://doi.org/10.1007/978-3-662-53015-3_12
https://doi.org/10.1007/978-3-030-03810-6_18
https://doi.org/10.1007/978-3-030-26951-7_26
https://doi.org/10.1007/978-3-030-36033-7_4
https://doi.org/10.1007/978-3-030-36033-7_4
https://doi.org/10.1007/978-3-662-53644-5_1
https://doi.org/10.1007/978-3-662-53644-5_1
https://eprint.iacr.org/2018/273
https://doi.org/10.1007/978-3-319-56620-7_6
https://doi.org/10.1007/978-3-662-49096-9_6

274 H. Lin and J. Luo

12. Attrapadung, N.: Dual system encryption via doubly selective security: frame-
work, fully secure functional encryption for regular languages, and more. In:
Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014. LNCS, vol. 8441, pp. 557–
577. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-642-55220-5 31

13. Attrapadung, N.: Dual system encryption framework in prime-order groups via
computational pair encodings. In: Cheon, J.H., Takagi, T. (eds.) ASIACRYPT
2016, Part II. LNCS, vol. 10032, pp. 591–623. Springer, Heidelberg (2016). https://
doi.org/10.1007/978-3-662-53890-6 20

14. Attrapadung, N.: Dual system framework in multilinear settings and applications
to fully secure (compact) ABE for unbounded-size circuits. In: Fehr, S. (ed.) PKC
2017, Part II. LNCS, vol. 10175, pp. 3–35. Springer, Heidelberg (2017). https://
doi.org/10.1007/978-3-662-54388-7 1

15. Beimel, A., Gal, A.: On arithmetic branching programs. In: Proceedings of the
13th Annual IEEE Conference on Computational Complexity, pp. 68–80 (1998)

16. Bethencourt, J., Sahai, A., Waters, B.: Ciphertext-policy attribute-based encryp-
tion. In: 2007 IEEE Symposium on Security and Privacy (SP 2007), pp. 321–334,
May 2007

17. Bishop, A., Jain, A., Kowalczyk, L.: Function-hiding inner product encryption. In:
Iwata, T., Cheon, J.H. (eds.) ASIACRYPT 2015, Part I. LNCS, vol. 9452, pp.
470–491. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-48797-
6 20

18. Bitansky, N., Garg, S., Lin, H., Pass, R., Telang, S.: Succinct randomized encodings
and their applications. In: Servedio, R.A., Rubinfeld, R. (eds.) 47th ACM STOC,
pp. 439–448. ACM Press, June 2015

19. Boneh, D., et al.: Fully key-homomorphic encryption, arithmetic circuit ABE and
compact garbled circuits. In: Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014.
LNCS, vol. 8441, pp. 533–556. Springer, Heidelberg (2014). https://doi.org/10.
1007/978-3-642-55220-5 30

20. Boyen, X., Li, Q.: Attribute-based encryption for finite automata from LWE. In:
Au, M.-H., Miyaji, A. (eds.) ProvSec 2015. LNCS, vol. 9451, pp. 247–267. Springer,
Cham (2015). https://doi.org/10.1007/978-3-319-26059-4 14

21. Canetti, R., Holmgren, J., Jain, A., Vaikuntanathan, V.: Succinct garbling and
indistinguishability obfuscation for RAM programs. In: Servedio, R.A., Rubinfeld,
R. (eds.) 47th ACM STOC, pp. 429–437. ACM Press, June 2015

22. Chen, J., Gay, R., Wee, H.: Improved dual system ABE in prime-order groups via
predicate encodings. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015, Part
II. LNCS, vol. 9057, pp. 595–624. Springer, Heidelberg (2015). https://doi.org/10.
1007/978-3-662-46803-6 20

23. Chen, J., Gong, J., Kowalczyk, L., Wee, H.: Unbounded ABE via bilinear entropy
expansion, revisited. In: Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT 2018, Part
I. LNCS, vol. 10820, pp. 503–534. Springer, Cham (2018). https://doi.org/10.1007/
978-3-319-78381-9 19

24. Chen, J., Gong, J., Wee, H.: Improved inner-product encryption with adaptive
security and full attribute-hiding. In: Peyrin, T., Galbraith, S. (eds.) ASIACRYPT
2018, Part II. LNCS, vol. 11273, pp. 673–702. Springer, Cham (2018). https://doi.
org/10.1007/978-3-030-03329-3 23

25. Datta, P., Dutta, R., Mukhopadhyay, S.: Functional encryption for inner product
with full function privacy. In: Cheng, C.-M., Chung, K.-M., Persiano, G., Yang,
B.-Y. (eds.) PKC 2016, Part I. LNCS, vol. 9614, pp. 164–195. Springer, Heidelberg
(2016). https://doi.org/10.1007/978-3-662-49384-7 7

https://doi.org/10.1007/978-3-642-55220-5_31
https://doi.org/10.1007/978-3-662-53890-6_20
https://doi.org/10.1007/978-3-662-53890-6_20
https://doi.org/10.1007/978-3-662-54388-7_1
https://doi.org/10.1007/978-3-662-54388-7_1
https://doi.org/10.1007/978-3-662-48797-6_20
https://doi.org/10.1007/978-3-662-48797-6_20
https://doi.org/10.1007/978-3-642-55220-5_30
https://doi.org/10.1007/978-3-642-55220-5_30
https://doi.org/10.1007/978-3-319-26059-4_14
https://doi.org/10.1007/978-3-662-46803-6_20
https://doi.org/10.1007/978-3-662-46803-6_20
https://doi.org/10.1007/978-3-319-78381-9_19
https://doi.org/10.1007/978-3-319-78381-9_19
https://doi.org/10.1007/978-3-030-03329-3_23
https://doi.org/10.1007/978-3-030-03329-3_23
https://doi.org/10.1007/978-3-662-49384-7_7

Compact Adaptively Secure ABE from k-Lin: Beyond NC1 and Towards NL 275

26. Escala, A., Herold, G., Kiltz, E., Ràfols, C., Villar, J.: An algebraic framework
for Diffie-Hellman assumptions. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013,
Part II. LNCS, vol. 8043, pp. 129–147. Springer, Heidelberg (2013). https://doi.
org/10.1007/978-3-642-40084-1 8

27. Goldwasser, S., Kalai, Y.T., Popa, R.A., Vaikuntanathan, V., Zeldovich, N.: How
to run turing machines on encrypted data. In: Canetti, R., Garay, J.A. (eds.)
CRYPTO 2013, Part II. LNCS, vol. 8043, pp. 536–553. Springer, Heidelberg (2013).
https://doi.org/10.1007/978-3-642-40084-1 30

28. Goldwasser, S., Kalai, Y.T., Popa, R.A., Vaikuntanathan, V., Zeldovich, N.:
Reusable garbled circuits and succinct functional encryption. In: Boneh, D., Rough-
garden, T., Feigenbaum, J. (eds.) 45th ACM STOC, pp. 555–564. ACM Press, June
2013

29. Gong, J., Waters, B., Wee, H.: ABE for DFA from k -Lin. In: Boldyreva, A., Mic-
ciancio, D. (eds.) CRYPTO 2019, Part II. LNCS, vol. 11693, pp. 732–764. Springer,
Cham (2019). https://doi.org/10.1007/978-3-030-26951-7 25

30. Gorbunov, S., Vaikuntanathan, V., Wee, H.: Attribute-based encryption for cir-
cuits. In: Boneh, D., Roughgarden, T., Feigenbaum, J. (eds.) 45th ACM STOC,
pp. 545–554. ACM Press, June 2013

31. Gorbunov, S., Vinayagamurthy, D.: Riding on asymmetry: efficient ABE for
branching programs. In: Iwata, T., Cheon, J.H. (eds.) ASIACRYPT 2015, Part
I. LNCS, vol. 9452, pp. 550–574. Springer, Heidelberg (2015). https://doi.org/10.
1007/978-3-662-48797-6 23

32. Goyal, V., Pandey, O., Sahai, A., Waters, B.: Attribute-based encryption for fine-
grained access control of encrypted data. In: Juels, A., Wright, R.N., di Vimercati,
S.C. (eds.) ACM CCS 2006, pp. 89–98. ACM Press, October/November 2006.
Available as Cryptology ePrint Archive Report 2006/309

33. Hofheinz, D., Koch, J., Striecks, C.: Identity-based encryption with (almost) tight
security in the multi-instance, multi-ciphertext setting. In: Katz, J. (ed.) PKC
2015. LNCS, vol. 9020, pp. 799–822. Springer, Heidelberg (2015). https://doi.org/
10.1007/978-3-662-46447-2 36

34. Ishai, Y., Kushilevitz, E.: Private simultaneous messages protocols with applica-
tions. In: Proceedings of the 5th ISTCS, pp. 174–183 (1997)

35. Ishai, Y., Kushilevitz, E.: Randomizing polynomials: a new representation with
applications to round-efficient secure computation. In: 41st FOCS, pp. 294–304.
IEEE Computer Society Press, November 2000

36. Ishai, Y., Kushilevitz, E.: Perfect constant-round secure computation via perfect
randomizing polynomials. In: Widmayer, P., Ruiz, F.T., Bueno, R.M., Hennessy,
M., Eidenbenz, S., Conejo, R. (eds.) ICALP 2002. LNCS, vol. 2380, pp. 244–256.
Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-45465-9 22

37. Ishai, Y., Wee, H.: Partial garbling schemes and their applications. In: Esparza, J.,
Fraigniaud, P., Husfeldt, T., Koutsoupias, E. (eds.) ICALP 2014, Part I. LNCS,
vol. 8572, pp. 650–662. Springer, Heidelberg (2014). https://doi.org/10.1007/978-
3-662-43948-7 54

38. Jafargholi, Z., Kamath, C., Klein, K., Komargodski, I., Pietrzak, K., Wichs, D.: Be
adaptive, avoid overcommitting. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017,
Part I. LNCS, vol. 10401, pp. 133–163. Springer, Cham (2017). https://doi.org/
10.1007/978-3-319-63688-7 5

39. Katz, J., Sahai, A., Waters, B.: Predicate encryption supporting disjunctions, poly-
nomial equations, and inner products. J. Cryptol. 26(2), 191–224 (2013)

https://doi.org/10.1007/978-3-642-40084-1_8
https://doi.org/10.1007/978-3-642-40084-1_8
https://doi.org/10.1007/978-3-642-40084-1_30
https://doi.org/10.1007/978-3-030-26951-7_25
https://doi.org/10.1007/978-3-662-48797-6_23
https://doi.org/10.1007/978-3-662-48797-6_23
https://doi.org/10.1007/978-3-662-46447-2_36
https://doi.org/10.1007/978-3-662-46447-2_36
https://doi.org/10.1007/3-540-45465-9_22
https://doi.org/10.1007/978-3-662-43948-7_54
https://doi.org/10.1007/978-3-662-43948-7_54
https://doi.org/10.1007/978-3-319-63688-7_5
https://doi.org/10.1007/978-3-319-63688-7_5

276 H. Lin and J. Luo

40. Kim, S., Lewi, K., Mandal, A., Montgomery, H., Roy, A., Wu, D.J.: Function-
hiding inner product encryption is practical. In: Catalano, D., De Prisco, R. (eds.)
SCN 2018. LNCS, vol. 11035, pp. 544–562. Springer, Cham (2018). https://doi.
org/10.1007/978-3-319-98113-0 29

41. Kitagawa, F., Nishimaki, R., Tanaka, K., Yamakawa, T.: Adaptively secure and
succinct functional encryption: improving security and efficiency, simultaneously.
In: Boldyreva, A., Micciancio, D. (eds.) CRYPTO 2019, Part III. LNCS, vol.
11694, pp. 521–551. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-
26954-8 17

42. Koppula, V., Lewko, A.B., Waters, B.: Indistinguishability obfuscation for turing
machines with unbounded memory. In: Servedio, R.A., Rubinfeld, R. (eds.) 47th
ACM STOC, pp. 419–428. ACM Press, June 2015

43. Kowalczyk, L., Liu, J., Malkin, T., Meiyappan, K.: Mitigating the one-use restric-
tion in attribute-based encryption. In: Lee, K. (ed.) ICISC 2018. LNCS, vol. 11396,
pp. 23–36. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-12146-4 2

44. Kowalczyk, L., Wee, H.: Compact adaptively secure ABE for NC1 from k -Lin. In:
Ishai, Y., Rijmen, V. (eds.) EUROCRYPT 2019, Part I. LNCS, vol. 11476, pp.
3–33. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-17653-2 1

45. Lewko, A., Okamoto, T., Sahai, A., Takashima, K., Waters, B.: Fully secure
functional encryption: attribute-based encryption and (hierarchical) inner prod-
uct encryption. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp.
62–91. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13190-5 4

46. Lewko, A.B., Waters, B.: New techniques for dual system encryption and fully
secure HIBE with short ciphertexts. In: Micciancio, D. (ed.) TCC 2010. LNCS,
vol. 5978, pp. 455–479. Springer, Heidelberg (2010). https://doi.org/10.1007/978-
3-642-11799-2 27

47. Lewko, A., Waters, B.: Unbounded HIBE and attribute-based encryption. In:
Paterson, K.G. (ed.) EUROCRYPT 2011. LNCS, vol. 6632, pp. 547–567. Springer,
Heidelberg (2011). https://doi.org/10.1007/978-3-642-20465-4 30

48. Lewko, A., Waters, B.: New proof methods for attribute-based encryption: achiev-
ing full security through selective techniques. In: Safavi-Naini, R., Canetti, R.
(eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 180–198. Springer, Heidelberg (2012).
https://doi.org/10.1007/978-3-642-32009-5 12

49. Lin, H.: Indistinguishability obfuscation from SXDH on 5-linear maps and locality-
5 PRGs. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017, Part I. LNCS, vol.
10401, pp. 599–629. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-
63688-7 20

50. Lin, H., Vaikuntanathan, V.: Indistinguishability obfuscation from DDH-like
assumptions on constant-degree graded encodings. In: Dinur, I. (ed.) 57th FOCS,
pp. 11–20. IEEE Computer Society Press, October 2016

51. Nisan, N.: Lower bounds for non-commutative computation (extended abstract).
In: 23rd ACM STOC, pp. 410–418. ACM Press, May 1991

52. Okamoto, T., Takashima, K.: Hierarchical predicate encryption for inner-products.
In: Matsui, M. (ed.) ASIACRYPT 2009. LNCS, vol. 5912, pp. 214–231. Springer,
Heidelberg (2009). https://doi.org/10.1007/978-3-642-10366-7 13

53. Okamoto, T., Takashima, K.: Fully secure functional encryption with general rela-
tions from the decisional linear assumption. In: Rabin, T. (ed.) CRYPTO 2010.
LNCS, vol. 6223, pp. 191–208. Springer, Heidelberg (2010). https://doi.org/10.
1007/978-3-642-14623-7 11

https://doi.org/10.1007/978-3-319-98113-0_29
https://doi.org/10.1007/978-3-319-98113-0_29
https://doi.org/10.1007/978-3-030-26954-8_17
https://doi.org/10.1007/978-3-030-26954-8_17
https://doi.org/10.1007/978-3-030-12146-4_2
https://doi.org/10.1007/978-3-030-17653-2_1
https://doi.org/10.1007/978-3-642-13190-5_4
https://doi.org/10.1007/978-3-642-11799-2_27
https://doi.org/10.1007/978-3-642-11799-2_27
https://doi.org/10.1007/978-3-642-20465-4_30
https://doi.org/10.1007/978-3-642-32009-5_12
https://doi.org/10.1007/978-3-319-63688-7_20
https://doi.org/10.1007/978-3-319-63688-7_20
https://doi.org/10.1007/978-3-642-10366-7_13
https://doi.org/10.1007/978-3-642-14623-7_11
https://doi.org/10.1007/978-3-642-14623-7_11

Compact Adaptively Secure ABE from k-Lin: Beyond NC1 and Towards NL 277

54. Okamoto, T., Takashima, K.: Fully secure unbounded inner-product and attribute-
based encryption. In: Wang, X., Sako, K. (eds.) ASIACRYPT 2012. LNCS, vol.
7658, pp. 349–366. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-
642-34961-4 22

55. Shen, E., Shi, E., Waters, B.: Predicate privacy in encryption systems. In: Reingold,
O. (ed.) TCC 2009. LNCS, vol. 5444, pp. 457–473. Springer, Heidelberg (2009).
https://doi.org/10.1007/978-3-642-00457-5 27

56. Tomida, J., Abe, M., Okamoto, T.: Efficient functional encryption for inner-product
values with full-hiding security. In: Bishop, M., Nascimento, A.C.A. (eds.) ISC
2016. LNCS, vol. 9866, pp. 408–425. Springer, Cham (2016). https://doi.org/10.
1007/978-3-319-45871-7 24

57. Waters, B.: Dual system encryption: realizing fully secure IBE and HIBE under
simple assumptions. In: Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 619–
636. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-03356-8 36

58. Waters, B.: Functional encryption for regular languages. In: Safavi-Naini, R.,
Canetti, R. (eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 218–235. Springer, Hei-
delberg (2012). https://doi.org/10.1007/978-3-642-32009-5 14

59. Wee, H.: Dual system encryption via predicate encodings. In: Lindell, Y. (ed.) TCC
2014. LNCS, vol. 8349, pp. 616–637. Springer, Heidelberg (2014). https://doi.org/
10.1007/978-3-642-54242-8 26

60. Wee, H.: Attribute-hiding predicate encryption in bilinear groups, revisited. In:
Kalai, Y., Reyzin, L. (eds.) TCC 2017, Part I. LNCS, vol. 10677, pp. 206–233.
Springer, Cham (2017). https://doi.org/10.1007/978-3-319-70500-2 8

61. Yao, A.C.-C.: How to generate and exchange secrets (extended abstract). In: 27th
FOCS, pp. 162–167. IEEE Computer Society Press, October 1986

https://doi.org/10.1007/978-3-642-34961-4_22
https://doi.org/10.1007/978-3-642-34961-4_22
https://doi.org/10.1007/978-3-642-00457-5_27
https://doi.org/10.1007/978-3-319-45871-7_24
https://doi.org/10.1007/978-3-319-45871-7_24
https://doi.org/10.1007/978-3-642-03356-8_36
https://doi.org/10.1007/978-3-642-32009-5_14
https://doi.org/10.1007/978-3-642-54242-8_26
https://doi.org/10.1007/978-3-642-54242-8_26
https://doi.org/10.1007/978-3-319-70500-2_8

Adaptively Secure ABE for DFA
from k-Lin and More

Junqing Gong1,2(B) and Hoeteck Wee2(B)

1 East China Normal University, Shanghai, China
2 CNRS, ENS and PSL, Paris, France

{jgong,wee}@di.ens.fr

Abstract. In this work, we present:
– the first adaptively secure ABE for DFA from the k-Lin assumption

in prime-order bilinear groups; this resolves one of open problems
posed by Waters [CRYPTO’12];

– the first ABE for NFA from the k-Lin assumption, provided the
number of accepting paths is smaller than the order of the underlying
group; the scheme achieves selective security;

– the first compact adaptively secure ABE (supporting unbounded
multi-use of attributes) for branching programs from the k-Lin
assumption, which generalizes and simplifies the recent result of
Kowalczyk and Wee for boolean formula (NC1) [EUROCRYPT’19].

Our adaptively secure ABE for DFA relies on a new combinatorial mech-
anism avoiding the exponential security loss in the number of states when
naively combining two recent techniques from CRYPTO’19 and EURO-
CRYPT’19. This requires us to design a selectively secure ABE for NFA;
we give a construction which is sufficient for our purpose and of indepen-
dent interest. Our ABE for branching programs leverages insights from
our ABE for DFA.

1 Introduction

Attribute-based encryption (ABE) [12,19] is an advanced form of public-key
encryption that supports fine-grained access control for encrypted data. Here,
ciphertexts are associated with an attribute x and keys with a policy Γ; decryp-
tion is possible only when Γ(x) = 1. One important class of policies we would
like to support are those specified using deterministic finite automata (DFA).
Such policies capture many real-world applications involving simple computa-
tion on data of unbounded size such as network logging application, tax returns
and virus scanners.

Since the seminal work of Waters [21] introducing ABE for DFA and pro-
viding the first instantiation from pairings, substantial progress has been made

J. Gong—Supported by NSFC-ISF Joint Scientific Research Program (61961146004)
and ERC Project aSCEND (H2020 639554).
H. Wee—Supported by ERC Project aSCEND (H2020 639554).

c© International Association for Cryptologic Research 2020
A. Canteaut and Y. Ishai (Eds.): EUROCRYPT 2020, LNCS 12107, pp. 278–308, 2020.
https://doi.org/10.1007/978-3-030-45727-3_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-45727-3_10&domain=pdf
https://doi.org/10.1007/978-3-030-45727-3_10

Adaptively Secure ABE for DFA from k-Lin and More 279

in the design and analysis of ABE schemes for DFA [1–5,11], proving various
trade-offs between security assumptions and security guarantees. However, two
central problems posed by Waters [21] remain open. The first question pertains
to security and assumptions:

Q1 : Can we build an ABE for DFA with adaptive security from static
assumptions in bilinear groups, notably the k-Lin assumption in prime-
order bilinear groups?

From both a practical and theoretical stand-point, we would like to base cryp-
tography on weaker and better understood assumptions, as is the case with
the k-Lin assumption, while also capturing more realistic adversarial models, as
is the case with adaptive security. Prior ABE schemes for DFA achieve either
adaptive security from less desirable q-type assumptions [1,4,5,21], where the
complexity of the assumption grows with the length of the string x, or very
recently, selective security from the k-Lin assumption [2,11]. Indeed, this open
problem was reiterated again in the latter work [11], emphasizing a security loss
that is polynomial (and not exponential) in the size of the DFA.

The next question pertains to expressiveness:

Q2 : Can we build an ABE for nondeterministic finite automata (NFA)
with a polynomial dependency on the NFA size?

The efficiency requirement rules out the naive approach of converting a NFA to
a DFA, which incurs an exponential blow-up in size. Here, we do not know any
construction even if we only require selective security under q-type assumptions.
Partial progress was made very recently by Agrawal et al. [3] in the more limited
secret-key setting, where encryption requires access to the master secret key.
Throughout the rest of this work, we refer only to the standard public-key setting
for ABE, and where the adversary can make an a-priori unbounded number of
secret key queries.

1.1 Our Results

In this work, we address the afore-mentioned open problems:

– We present an adaptively secure ABE for DFA from the k-Lin assumption in
prime-order bilinear groups, which affirmatively answers the first open prob-
lem. Our scheme achieves ciphertext and key sizes with linear complexity, as
well as security loss that is polynomial in the size of the DFA and the num-
ber of key queries. Concretely, over the binary alphabet and under the SXDH
(=1-Lin) assumption, our ABE for DFA achieves ciphertext and key sizes 2–3
times that of Waters’ scheme (cf. Fig. 4), while simultaneously improving on
both the assumptions and security guarantees.

– We present a selectively secure ABE for NFA also from the k-Lin assumption,
provided the number of accepting paths is smaller than p, where p is the order
of the underlying group. We also present a simpler ABE for NFA with the
same restriction from the same q-type assumption used in Waters’ ABE for
DFA. Both ABE schemes for NFA achieve ciphertext and key sizes with linear
complexity.

280 J. Gong and H. Wee

– Finally, we present the first compact adaptively secure ABE for branching
programs from the k-Lin assumption, which generalizes and simplifies the
recent result of Kowalczyk and Wee [15] for boolean formula (NC1). Here,
“compact” is also referred to as “unbounded multi-use of attributes” in [5];
each attribute/input bit can appear in the formula/program an unbounded
number of times. Our construction leverages insights from our ABE for DFA,
and works directly with any layered branching program and avoids both the
pre-processing step in the latter work for transforming boolean formulas into
balanced binary trees of logarithmic depth, as well as the delicate recursive
pebbling strategy for binary trees.

We summarize the state of the art of ABE for DFA, NFA and branching programs
in Figs. 1, 2, 3, respectively.

In the rest of this section, we focus on our three ABE schemes that rely on the
k-Lin assumption, all of which follow the high-level proof strategy in [11,15]. We
design a series of hybrids that traces through the computation, and the analysis
carefully combines (i) a “nested, two-slot” dual system argument [8,13,16–18,20],
(ii) a new combinatorial mechanism for propagating entropy along the NFA com-
putation path, and (iii) the piecewise guessing framework [14,15] for achieving
adaptive security. We proceed to outline and motivate several of our key ideas.
From now on, we use GWW to refer to the ABE for DFA by Gong et al. [11].

Adaptively Secure ABE for DFA. Informally, the piecewise guessing frame-
work [14,15] for ABE adaptive security says that if we have a selectively secure
ABE scheme where proving indistinguishability of every pair of adjacent hybrids
requires only knowing log L bits of information about the challenge attribute x,
then the same scheme is adaptively secure with a security loss of L. Moreover,
when combined with the dual system argument, it suffices to consider selective
security when the adversary only gets a single key corresponding to a single DFA.

In the GWW security proof, proving indistinguishability of adjacent hybrids
requires knowing the subset of DFA states that are reachable from the accept
states by “back-tracking” the computation. This corresponds to log L = Q—we
need Q bits to specify an arbitrary subset of [Q]—and a security loss of 2Q. Our
key insight for achieving adaptive security is that via a suitable transformation
to the DFA, we can ensure that the subset of reachable states per input are
always singleton sets, which corresponds to log L = log Q and a security loss of
Q. The transformation is very simple: run the DFA “in reverse”! That is, start
from the accept states, read the input bits in reverse order and the transitions
also in reverse, and accept if we reach the start state. It is easy to see that this
actually corresponds to an NFA computation, which means that we still need
to design a selectively secure ABE for NFA. Also, back-tracking along this NFA
corresponds to normal computation in the original DFA, and therefore always
reaches singleton sets of states during any intermediate computation.

ABE for NFA. Next, we sketch our ABE for NFA, which uses an asymmetric
bilinear group (G1, G2, GT , e) of prime order p where e : G1 × G2 → GT . As in

Adaptively Secure ABE for DFA from k-Lin and More 281

Waters’ ABE for DFA [21], an encryption of x = (x1, . . . , x�) ∈ {0, 1}� contains
random scalars s0, . . . , s� ← Zp in the exponent in G1. In the secret key, we
pick a random scalar du ← Zp for each state u ∈ [Q]. We can now describe
the invariant used during decryption with g1, g2 being respective generators of
G1, G2:

– In Waters’ ABE for DFA, if the computation reaches a state ui ∈ [Q]
upon reading x1, . . . , xi, decryption computes e(g1, g2)sidui . In particular, the
scheme allows the decryptor to compute the ratios

e(g1, g2)sjdv−sj−1du , ∀j ∈ [�], u ∈ [Q], v = δ(u, xj) ∈ [Q] (1)

where δ : [Q] × {0, 1} → [Q] is the DFA transition function.
– The natural way to extend (1) to account for non-deterministic transitions in

an NFA is to allow the decryptor to compute

e(g1, g2)sjdv−sj−1du , ∀j ∈ [�], u ∈ [Q], v ∈ δ(u, xj) ⊆ [Q] (2)

where δ : [Q] × {0, 1} → 2[Q] is the NFA transition function. As noted by
Waters [21], such an ABE scheme for NFA is broken via a so-called “back-
tracking attack”, which we describe in the full paper.

– In our ABE for NFA, we allow the decryptor to compute

e(g1, g2)
sj(

∑
v∈δ(u,xj) dv)−sj−1du , ∀j ∈ [�], u ∈ [Q] (3)

A crucial distinction between (3) and (2) is that the decryptor can only
compute one quantity for each j, u in the former (as is the case also in (1)), and
up to Q quantities in the latter. The ability to compute multiple quantities
in (2) is exactly what enables the back-tracking attack.

We clarify that our ABE for NFA imposes an extra restriction on the NFA,
namely that the total number of accepting paths1 be non-zero mod p for accept-
ing inputs; we use NFA⊕p to denote such NFAs. In particular, this is satisfied by
standard NFA where the total number of accepting paths is less than p for all
inputs. This is in general a non-trivial restriction since the number of accepting
paths for an arbitrary NFA can be as large as Q�. Fortunately, for NFAs obtained
by running a DFA “in reverse”, the number of accepting paths is always either
0 or 1.

Indeed, the above idea, along with a suitable modification of Waters’ proof
strategy, already yields our selectively secure ABE for NFA⊕p under q-type
assumptions in asymmetric bilinear groups of prime order p. We defer the details
to the full paper.

– To obtain a selectively secure scheme based on k-Lin, we apply the same
modifications as in GWW [11]. For the proof of security, entropy propagation
is defined via back-tracking the NFA computation, in a way analogous to that
for back-tracking the DFA computation.

1 An accepting path on input x ∈ {0, 1}� is described by a sequence of states
u0, . . . , u� ∈ [Q] where u0 is the start state, u� is an accept state and uj ∈ δ(uj−1, xj)
for all j ∈ [�].

282 J. Gong and H. Wee

reference assumption security |sk| |ct|
[21] q-type selective O(Q) O(�)

[5,4,1] q-type + k-Lin adaptive � O(Q) O(�)

[11] k-Lin � selective O(Q) O(�)

[3] k-Lin � selective∗ O(Q2)O(�3)

ours k-Lin � adaptive � O(Q) O(�)

Fig. 1. Summary of ABE schemes for DFA. In the table, Q is the number of states
in the DFA associated with sk and � is the length of x associated with ct, and where
|Σ| = O(1).

reference |sk| |ct| type of NFA public key? assumption
[2] poly(Q)poly(�) standard � LWE �
ours O(Q) O(�) NFA⊕p � q-type

O(Q) O(�) NFA⊕p � k-Lin�

Fig. 2. Summary of ABE schemes for NFA. In the
table, Q is the number of states in the NFA associated
with sk and � is the length of x associated with ct.

reference assumption compact?
[7] k-Lin �
[5] q-type + k-Lin �

k-Lin �
ours k-Lin � �

Fig. 3. Summary of adap-
tively secure ABE schemes for
branching programs (BP). Here
“compact” is also referred to
“unbounded multi-use” in [5].

– To obtain an adaptively secure scheme based on k-Lin, we adapt the selec-
tively secure scheme to the piecewise guessing framework [15]. One naive
approach is to introduce a new semi-functional space. In contrast, we intro-
duce one extra components into master public key, secret key and ciphertext,
respectively. With the extra components, we can avoid adding a new semi-
functional subspace, by reusing an existing subspace as shown in previous
unbounded ABE in [8]. Under k-Lin assumption, our technique roughly saves
k · � elements in the ciphertext and k · (2|Σ| + 2)Q elements in the secret key
over the general approach. This way, we obtain ciphertext and key sizes that
are almost the same as those in the GWW selectively secure scheme.

ABE for Branching Programs. We build our compact adaptively secure
ABE for branching program (BP) in two steps analogous to our adaptively
secure ABE for DFA. In particular, we first show how to transform branch-
ing programs to a subclass of nondeterministic branching programs (NBP) and
construct adaptively secure ABE for such class of NBP. Note that the latter is
sufficient to capture a special BP with permutation transition function (without
transforming BP to NBP) and readily simplify the result of Kowalczyk and Wee
[15] for boolean formula (NC1).

1.2 Technical Overview

We start by recalling the standard definitions of DFA and NFA using vector-
matrix notation: that is, we describe the start and accept states using the

Adaptively Secure ABE for DFA from k-Lin and More 283

reference |ct| |sk| assumption security

[21] (2� + 3)|G1| (3|Σ|Q + 4)|G2| q-type selective
[5] ((2k + 2)� + 6k + 6)|G1| ((3k + 3)|Σ|Q + 5k + 5)|G2| q-type +k-Lin adaptive �

(3� + 12)|G1| (6|Σ|Q + 10)|G2| q-type + SXDHadaptive �
[11] ((3k + 1)� + 4k + 1)|G1| ((4k + 2)|Σ|Q + (3k + 1)Q + 2k + 1)|G2| k-Lin � selective

(4� + 5)|G1| (6|Σ|Q + 4Q + 3)|G2| SXDH� selective
ours ((3k + 1)� + 6k + 2)|G1| ((4k + 2)|Σ|Q + (5k + 2)Q + 2k + 1)|G2| k-Lin � adaptive �

(4� + 8)|G1| (6|Σ|Q + 7Q + 3)|G2| SXDH � adaptive �

Fig. 4. Concrete parameter sizes of pairing-based ABE schemes for DFA. Note that
[11,21] are selectively secure whereas our scheme is adaptively secure; [3] is omitted
from the table since the ciphertext and key sizes are asymptotically larger, see Fig. 1.
In the table, Q is the number of states in the DFA, Σ indicates the alphabet, � is the
length of input x. All the schemes work over bilinear groups (G1, G2, GT , e) of prime
order p where e : G1 × G2 → GT . We note that all the schemes shown in the table
have mpk of O(|Σ|) group elements. In the |ct|-column, we omit one GT element. In
the assumption column, SXDH means 1-Lin.

character vectors, and specify the transition function via a transition matrix.
The use of vector-matrix notation enables a more compact description of our
ABE schemes, and also clarifies the connection to branching programs.

NFA, DFA, NFA⊕p . An NFA Γ is specified using (Q,Σ, {Mσ}σ∈Σ ,u, f) where
Σ is the alphabet and

Q ∈ N; Mσ ∈ {0, 1}Q×Q,∀σ ∈ Σ; u, f ∈ {0, 1}1×Q.

The NFA Γ accepts an input x = (x1, . . . , x�) ∈ Σ�, denoted by Γ(x) = 1, if

fMx�
· · ·Mx2Mx1u

� > 0 (4)

and rejects the input otherwise, denoted by Γ(x) = 0. We will also refer to the
quantity fMx�

· · ·Mx2Mx1u
� as the number of accepting paths for x. The above

relation (4) is equivalent to

uM�
x1
M�

x2
· · ·M�

x�
f� > 0

The unusual choice of notation is to simplify the description of our ABE scheme.
Let EQ be the collection of Q elementary row vectors of dimension Q.

– A DFA Γ is a special case of NFA where u ∈ EQ and each column in every
matrix Mσ is an elementary column vector (i.e., contains exactly one 1).

– An NFA⊕p , parameterized by a prime p, is the same as an NFA except we
change the accept criterion in (4) to:

fMx�
· · ·Mx2Mx1u

� �= 0 mod p

Note that this coincides with the standard NFA definition whenever the total
number of accepting paths for all inputs is less than p.

284 J. Gong and H. Wee

Throughout the rest of this work, when we refer to NFA, we mean NFA⊕p unless
stated otherwise.

ABE for NFA⊕p . Following our overview in Sect. 1.1, an encryption of x =
(x1, . . . , x�) ∈ Σ� contains random scalars s0, . . . , s� in the exponent, where the
plaintext is masked by e(g1, g2)s�α. To generate a secret key for an NFA⊕p Γ, we
first pick d = (d1, . . . , dQ) ← Z

Q
p as before. We allow the decryptor to compute

the following quantities in the exponent over GT :

(i) s�(αf − d) (5)
(ii) sjdMxj

− sj−1d, ∀j ∈ [�] (corresponds to (3))
(iii) s0du�

If we write u�
j,x = Mxj

· · ·Mx1u
� for all j ∈ [�] and u0,x = u, then we have

s�α · fu�
�,x =

(i)
︷ ︸︸ ︷

s�(αf − d) ·u�
�,x +

(�
∑

j=1

(

(ii)
︷ ︸︸ ︷

sjdMxj
− sj−1d) · u�

j−1,x

)

+

(iii)
︷ ︸︸ ︷

s0du�
0,x

This means that whenever fu�
�,x �= 0 mod p, as is the case when Γ(x) = 1, the

decryptor will be able to recover e(g1, g2)s�α.
Indeed, it is straight-forward to verify that the following ABE scheme satisfies

the above requirements, where [·]1, [·]2, [·]T denote component-wise exponentia-
tions in respective groups G1, G2, GT [10].

msk =
(

wstart, wend, z, {wσ}σ∈Σ , α
)

(6)

mpk =
(

[wstart]1, [wend]1, [z]1,
{

[wσ]1
}

σ∈Σ
, [α]T

)

ctx =

⎛

⎜

⎝

[s0]1, [s0wstart]1
{

[sj]1, [sj−1z + sjwxj
]1

}

j∈[�]

[s�]1, [s�wend]1, [s�α]T · m

⎞

⎟

⎠

skΓ =

⎛

⎜

⎝

[du� + wstartru�]2, [ru�]2
{

[−d + zr]2, [dMσ + wσr]2, [r]2
}

σ∈Σ

[αf − d + wendr]2, [r]2

⎞

⎟

⎠ , d, r ← Z
1×Q
p

In the full paper, we prove that this scheme is selectively secure under �-EBDHE
assumption; this is the assumption underlying Waters’ selectively secure ABE
for DFA [21].

Selective Security from k-Lin. Following the GWW proof strategy which in
turn builds on the dual system argument, we design a series of games G0, . . . ,G�

such that in Gi, the quantities si and d have some extra entropy in the so-
called semi-functional space (which requires first modifying the above scheme).
The entropy in d is propagated from G0 to G1, then G2, and finally to G� via
a combination of a computational and combinatorial arguments. In G�, we will
have sufficient entropy to statistically mask α in the secret key, which allows
us to argue that e(g1, g2)s�α statistically masks the plaintext. In this overview,

Adaptively Secure ABE for DFA from k-Lin and More 285

we focus on the novel component, namely the combinatorial argument which
exploits specific properties of our scheme for NFA⊕p ; the computational steps
are completely analogous to those in GWW.

In more detail, we want to replace d with d + d′
i in Gi, where d′

i ∈ Z
Q
p

corresponds to the extra entropy we introduce into the secret keys in the semi-
functional space. Note that d′

i will depend on both the challenge attribute x∗

as well as the underlying NFA⊕p . We have the following constraints on d′
i’s,

arising from the fact that an adversarial distinguisher for G0, . . . ,G� can always
compute what a decryptor can compute in (5):

– to mask α in G�, we set d′
� = Δf where Δ ← Zp, so that

αf − (d + d′
�) = (α − Δ)f − d

perfectly hides α;
– (ii) implies that

Gi−1
︷ ︸︸ ︷

sidMx∗
i

− si−1(d + d′
i−1) ≈s

Gi
︷ ︸︸ ︷

si(d + d′
i)Mx∗

i
− si−1d

=⇒ −si−1d′
i−1 ≈s sid′

iMx∗
i

to prevent a distinguishing attack2 between Gi−1 and Gi by computing
sidMx∗

i
− si−1d in both games;

– (iii) implies that s0(d+d′
0)u

� = s0du�, and therefore, d′
0u

� = 0 mod p. This
is to prevent a distinguishing attack3 between the real keys and those in G0.

In particular, we can satisfy the first two constraints by setting4

d′
i = Δ · fMx∗

�
· · ·Mx∗

i+1
∀i ∈ [0, �]

where ≈s holds over Δ ← Zp, as long as s0, . . . , s� �= 0. Whenever Γ(x∗) = 0, we
have

fMx∗
�
· · ·Mx∗

1
u� = 0 mod p

and therefore the third constraint is also satisfied.
Two clarifying remarks. First, the quantity

fMx∗
�
· · ·Mx∗

i+1

used in defining d′
i has a natural combinatorial interpretation: its u’th coordinate

corresponds to the number of paths from the accept states to u, while back-
tracking along x∗

� , . . . , x
∗
i+1. In the specific case of a DFA, this value is 1 if u is

2 Looking ahead to the proof of security in Sect. 4, this “simplified” attack corresponds
roughly to using cti−1,i

x∗ to distinguish ski−1,i
Γ and ski

Γ; this comes up in the proof of
G2.i.2 ≈c G2.i.3 in Lemma 8.

3 In Sect. 4, this roughly corresponds to distinguish skΓ and sk0
Γ with ct0x∗ ; this comes

up in the proof of G1 ≈c G2.1.0 in Lemma 6.
4 We adopt the standard convention that the product of an empty sequence of matrices

is the identity matrix. This means d′
� = Δ · f .

286 J. Gong and H. Wee

reachable from an accept state, and 0 otherwise. It is then easy to see that our
proof strategy generalizes that of GWW for DFA: the latter adds Δ to du in
Gi whenever u is reachable from accept state while back-tracking along the last
� − i bits of the challenge attribute (cf. [11, Sec. 3.2]). Second, the “naive” (and
insecure) ABE for NFA that captures non-deterministic transitions as in (2)
introduces more equations in (ii) in (5); this in turn yields more –and ultimately
unsatisfiable– constraints on the d′

i’s.
Finally, we remark that our ABE for NFA⊕p (and ABE for DFA from GWW

as well) can be proved in the semi-adaptive model [9], which is weaker than
adaptive security but stronger than both selective and selective* model used
in [3].

Adaptive Security for Restricted NFA⊕p and DFA. Fix a set F ⊆ Z
Q.

We say that an NFA or an NFA⊕p is F-restricted if

∀ � ∈ N, x ∈ Σ�, i ∈ [0, �] : fMx�
· · ·Mxi+1 ∈ F

Note that fMx∗
�
· · ·Mx∗

i+1
corresponding to the challenge attribute x∗ is exactly

what is used to define d′
i in the previous paragraph. Moreover, following GWW,

knowing this quantity is sufficient to prove indistinguishability of Gi−1 and Gi.
This means that to prove selective security for F-restricted NFAs, it suffices to
know log |F| bits about the challenge attribute, and via the piecewise guessing
framework, this yields adaptive security with a security loss of |F|. Unfortu-
nately, |F| is in general exponentially large for general NFAs and DFAs. In par-
ticular, DFAs are {0, 1}Q-restricted, and naively applying this argument would
yield adaptively secure DFAs with a 2Q security loss.

Instead, we show how to transform DFAs into EQ-restricted NFA⊕p , where
EQ ⊂ {0, 1}Q is the collection of Q elementary row vectors of dimension Q;
this yields adaptively secure ABE for DFAs with a security loss of |EQ| = Q.
Concretely, our adaptively secure ABE for DFA uses an adaptively secure ABE
for EQ-restricted NFA⊕p , and proceeds

– to encrypt x = (x1, . . . , x�), use the ABE for NFA to encrypt x� = (x�,
. . . , x1);5

– to generate a secret key for a DFA Γ = (Q,Σ, {Mσ},u, f), use the ABE for
NFA to generate a key for Γ� = (Q,Σ, {M�

σ}, f ,u).

Note that we reversed x during encryption, and transposed Mσ, and switched
u, f during key generation. Correctness essentially follows from the equality

Γ(x)
︷ ︸︸ ︷

fMx�
· · ·Mx1u

� = (fMx�
· · ·Mx1u

�)� =

Γ�(x�)
︷ ︸︸ ︷

uM�
x1

· · ·M�
x�
f� .

Furthermore Γ� = (Q,Σ, {M�
σ}, f ,u) is indeed a EQ-restricted NFA⊕p . This

follows from the fact that for any DFA Γ:

∀ � ∈ N, x ∈ Σ�, i ∈ [0, �] : (Mxi
· · ·Mx1u

�)� ∈ EQ

5 We acknowledge that writing x� constitutes an abuse of notation, but nonetheless
convenient in analogy with M�

σ.

Adaptively Secure ABE for DFA from k-Lin and More 287

policy security decryption proof
direction information direction information

GWW [11] DFA selective forward reachability backward reachability
§ 5 DFA adaptive backward reachability forward reachability
Naive NFA broken forward reachability - -
§ 4 NFA selective forward # paths backward # paths

Fig. 5. Summary of tracing executions underlying GWW, our adaptively secure ABE
for DFA, our selectively secure ABE for NFA⊕p and naive extension of Waters’ ABE
for DFA.

which is implied by the property of DFA: u ∈ EQ and each column in every
matrix Mσ contains exactly one 1. We give an example of reversing DFA in the
full paper.

1.3 Discussion

Tracing Executions. Recall that a DFA is specified using a transition function
δ : [Q] × Σ → [Q]. A forward computation upon reading σ goes from a state
u to v = δ(u, σ), whereas back-tracking upon reading σ goes from v to u if
v = δ(u, σ).

– GWW selective ABE for DFA: Decryption follows normal “forward” com-
putation keeping track of whether a state is reachable from the start state,
whereas the security proof introduces entropy based on whether a state is
reachable from the accept states via “back-tracking”.

– Our adaptive ABE for DFA and branching programs: Decryption uses back-
tracking and keeps track of whether a state is reachable from the accept
states, whereas the security proof introduces entropy based on whether a
state is reachable from the start state via forward computation. To achieve
polynomial security loss, we crucially rely on the fact that when reading i
input bits, exactly one state is reachable from the start state via forward
computation.

– Naive and insecure ABE for NFA⊕p : Decryption follows normal forward com-
putation keeping track of whether a state is reachable from the start state.

– Our selective ABE for NFA⊕p : Decryption follows normal forward compu-
tation keeping track of the number of paths from the start state, whereas
the security proof introduces entropy scaled by the number of paths that are
reachable from the accept states via back-tracking.

We summarize the discussion in Fig. 5.

ABE for DFA vs Branching Programs. Our work clarifies that the same
obstacle (having to guess a large subset of states that are reached upon back-
tracking) arose in constructing adaptive ABE for DFA and compact adaptive
ABE for branching programs from k-Lin, and presents a new technique that
solves both problems simultaneously in the setting of KP-ABE. Furthermore,

288 J. Gong and H. Wee

our results and techniques can carry over to the CP-ABE settings using more-
or-less standard (but admittedly non-black-box) arguments, following e.g. [4,
Sec. 8] and [6, Sec. 4]. See the full paper for adaptively secure CP-ABE for DFA
and branching programs, respectively.

Interestingly, the very recent work of Agrawal et al. [2,3] shows a related
connection: namely that compact and unbounded adaptive KP and CP-ABE
for branching programs6 –for which they do not provide any instantiations–
yields compact adaptive KP-ABE (as well as CP-ABE) for DFA. In particular,
just getting to KP-ABE for DFA already requires both KP and CP-ABE for
branching programs and also incurs a larger polynomial blow-up in the param-
eters compared to our constructions; furthermore, simply getting to compact,
unbounded, adaptive KP-ABE for branching programs would also require most
of the technical machinery used in this work, notably the “nested, two-slot”
dual system argument and the piecewise guessing framework. Nonetheless, there
is significant conceptual appeal to having a generic and modular transformation
that also yields both KP-ABE and CP-ABE schemes. That said, at the core of
our constructions and analysis is a very simple combinatorial object sketched in
Sect. 1.2. We leave the question of properly formalizing this object and build-
ing a generic compiler to full-fledged KP-ABE and CP-ABE schemes to further
work; in particular, such a compiler should (i) match or improve upon the con-
crete efficiency of our schemes, as with prior compilers such as [5,7], and (ii)
properly decouple the combinatorial arguments that are specific to DFA, NFA
and branching programs from the computational arguments that are oblivious
to the underlying computational model.

Organization. The next section gives some background knowledge. Section 3
shows the transformation from DFA to E-restricted NFA⊕p . We show our selec-
tively secure ABE for NFA⊕p in Sect. 4 and upgrade to adaptive security for
EQ-restricted NFA⊕p in Sect. 5. The latter implies our adaptively secure ABE
for DFA. See the full paper for the concrete description and our basic selectively
secure ABE for NFA⊕p from q-type assumption. We also defer our compact
adaptively secure ABE for branching programs to the full paper.

2 Preliminaries

Notation. We denote by s ← S the fact that s is picked uniformly at random
from a finite set S; by U(S), we indicate uniform distribution over finite set S.
We use ≈s to denote two distributions being statistically indistinguishable, and
≈c to denote two distributions being computationally indistinguishable. We use
〈A,G〉 = 1 to denote that an adversary A wins in an interactive game G. We
use lower case boldface to denote row vectors and upper case boldcase to denote
matrices. We use ei to denote the i’th elementary (row) vector (with 1 at the
i’th position and 0 elsewhere) and let EQ denote the set of all elementary vectors

6 The statement in [3] refers to monotone span programs, which is a more powerful
object, but we believe that branching program suffices.

Adaptively Secure ABE for DFA from k-Lin and More 289

of dimension Q. For matrix A, we use span(A) to denote the row span of A and
use basis(A) to denote a basis of column span of A. Throughout the paper, we
use prime number p to denote the order of underlying groups.

2.1 Attribute-Based Encryption

Syntax. An attribute-based encryption (ABE) scheme for some class C consists
of four algorithms:

Setup(1λ, C) → (mpk,msk). The setup algorithm gets as input the security
parameter 1λ and class description C. It outputs the master public key mpk
and the master secret key msk. We assume mpk defines the message space M.

Enc(mpk, x,m) → ctx. The encryption algorithm gets as input mpk, an input
x and a message m ∈ M. It outputs a ciphertext ctx. Note that x is public
given ctx.

KeyGen(mpk,msk,Γ) → skΓ. The key generation algorithm gets as input mpk,
msk and Γ ∈ C. It outputs a secret key skΓ. Note that Γ is public given skΓ.

Dec(mpk, skΓ, ctx) → m. The decryption algorithm gets as input skΓ and ctx
such that Γ(x) = 1 along with mpk. It outputs a message m.

Correctness. For all input x and Γ with Γ(x) = 1 and all m ∈ M, we require

Pr

⎡

⎣Dec(mpk, skΓ, ctx) = m :
(mpk,msk) ← Setup(1λ, C)
skΓ ← KeyGen(mpk,msk,Γ)
ctx ← Enc(mpk, x,m)

⎤

⎦ = 1.

Security Definition. For a stateful adversary A, we define the advantage func-
tion

AdvabeA (λ) := Pr

⎡

⎢

⎢

⎣
β = β′ :

(mpk,msk) ← Setup(1λ, C)
(x∗,m0,m1) ← AKeyGen(mpk,msk,·)(mpk)
β ← {0, 1}; ctx∗ ← Enc(mpk, x∗,mβ)
β′ ← AKeyGen(mpk,msk,·)(ctx∗)

⎤

⎥

⎥

⎦
− 1

2

with the restriction that all queries Γ that A sent to KeyGen(mpk,msk, ·) satisfy
Γ(x∗) = 0. An ABE scheme is adaptively secure if for all PPT adversaries A,
the advantage AdvabeA (λ) is a negligible function in λ. The selective security is
defined analogously except that the adversary A selects x∗ before seeing mpk.
A notion between selective and adaptive is so-called semi-adaptive security [9]
where the adversary A is allowed to select x∗ after seeing mpk but before making
any queries.

2.2 Prime-Order Groups

A generator G takes as input a security parameter 1λ and outputs a description
G := (p,G1, G2, GT , e), where p is a prime of Θ(λ) bits, G1, G2 and GT are

290 J. Gong and H. Wee

cyclic groups of order p, and e : G1 × G2 → GT is a non-degenerate bilinear
map. We require that the group operations in G1, G2, GT and the bilinear
map e are computable in deterministic polynomial time in λ. Let g1 ∈ G1,
g2 ∈ G2 and gT = e(g1, g2) ∈ GT be the respective generators. We employ the
implicit representation of group elements: for a matrix M over Zp, we define
[M]1 := gM1 , [M]2 := gM2 , [M]T := gMT , where exponentiation is carried out
component-wise. Also, given [A]1, [B]2, we let e([A]1, [B]2) = [AB]T . We recall
the matrix Diffie-Hellman (MDDH) assumption on G1 [10]:

Assumption 1 (MDDHd
k,k′ Assumption). Let k′ > k ≥ 1 and d ≥ 1. We say

that the MDDHd
k,k′ assumption holds if for all PPT adversaries A, the following

advantage function is negligible in λ.

Adv
MDDHd

k,k′
A (λ) :=

∣

∣ Pr[A(G, [M]1, [MS]1) = 1] − Pr[A(G, [M]1, [U]1) = 1]
∣

∣

where G := (p,G1, G2, GT , e) ← G(1λ), M ← Z
k′×k
p , S ← Z

k×d
p and U ← Z

k′×d
p .

The MDDH assumption on G2 can be defined in an analogous way. Escala et
al. [10] showed that

k-Lin ⇒ MDDH1
k,k+1 ⇒ MDDHd

k,k′ ∀k′ > k, d ≥ 1

with a tight security reduction. We will use Advk-Lin
A (λ) to denote the advantage

function w.r.t. k-Lin assumption.

3 DFA, NFA, and Their Relationships

Let p be a global parameter and EQ = {e1, . . . , eQ} be the set of all elementary
row vectors of dimension Q. This section describes various notions of DFA and
NFA and studies their relationships.

Finite Automata. We use Γ = (Q,Σ, {Mσ}σ∈Σ ,u, f) to describe determinis-
tic finite automata (DFA for short), nondeterministic finite automata (NFA for
short), p-bounded NFA (NFA<p for short) and mod-p NFA (NFA⊕p for short),
where Q ∈ N is the number of states, vectors u, f ∈ {0, 1}1×Q describe the
start and accept states, a collection of matrices Mσ ∈ {0, 1}Q×Q describe the
transition function. Let x = (x1, . . . , x�) denote an input, then,

– for DFA Γ, we have u ∈ EQ, each column in every matrix Mσ is an elementary
column vector (i.e., contains exactly one 1) and

Γ(x) = 1 ⇐⇒ fMx�
· · ·Mx1u

� = 1;

– for NFA Γ, we have

Γ(x) = 1 ⇐⇒ fMx�
· · ·Mx1u

� > 0;

Adaptively Secure ABE for DFA from k-Lin and More 291

– for NFA<p Γ, we have fMx�
· · ·Mx1u

� < p and

Γ(x) = 1 ⇐⇒ fMx�
· · ·Mx1u

� > 0;

– for NFA⊕p Γ, we have

Γ(x) = 1 ⇐⇒ fMx�
· · ·Mx1u

� �= 0 mod p.

We immediately have: DFA ⊂ NFA<p⊂ NFA ∩ NFA⊕p .

EQ -Restricted NFA⊕p . We introduce the notion of EQ-restricted NFA⊕p

which is an NFA⊕p Γ = (Q,Σ, {Mσ}σ∈Σ ,u, f) with an additional property:
for all � ∈ N and all x ∈ Σ�, it holds that

fi,x := fMx�
· · ·Mxi+1 ∈ EQ, ∀i ∈ [0, �]

Here Mx�
· · ·Mxi+1 for i = � refers to I of size Q × Q.

Transforming DFA to EQ -Restricted NFA⊕p . In general, a DFA is not
necessarily a EQ-restricted NFA⊕p . The next lemma says that we can nonetheless
transform any DFA into a EQ-restricted NFA⊕p :

Lemma 1 (DFA to EQ -restricted NFA⊕p). For each DFA Γ = (Q,Σ,
{Mσ}σ∈Σ ,u, f), we have NFA⊕p Γ� = (Q,Σ, {M�

σ}σ∈Σ , f ,u) such that

1. Γ� is EQ-restricted;
2. for all � ∈ N and x = (x1, . . . , x�) ∈ Σ�, it holds that

Γ(x) = 1 ⇐⇒ Γ�(x�) = 1 where x� = (x�, . . . , x1) ∈ Σ�. (7)

Proof. Recall that the definition of DFA implies two properties:

f ∈ {0, 1}Q (8)
and (Mxi

· · ·Mx1u
�)� ∈ EQ, ∀i ∈ [0, �]. (9)

Property (9) comes from the facts that u ∈ EQ and each column in every matrix
Mσ is an elementary column vector.

We parse x� = (x�
1, . . . , x

�
�) and prove the two parts of the lemma as below.

1. Γ� is EQ-restricted since we have

uM�
x�

�
· · ·M�

x�
i+1

= (Mx�−i
· · ·Mx1u

�)� ∈ EQ, ∀i ∈ [0, �]

where the equality is implied by the structure of Γ�, x� and we use prop-
erty (9).

2. To prove (7), we rely on the fact

Γ(x) = 1 ⇐⇒ fMx�
· · ·Mx1u

� = 1
⇐⇒ fMx�

· · ·Mx1u
� �= 0 mod p

⇐⇒ uM�
x�

�
· · ·M�

x�
1
f� �= 0 mod p

⇐⇒ Γ�(x�) = 1.

The second ⇐⇒ follows from the fact that fMx�
· · ·Mx1u

� ∈ {0, 1} which
is implied by property (8) and (9) while the third ⇐⇒ is implied by the
structure of Γ�, x�. ��

292 J. Gong and H. Wee

4 Semi-adaptively Secure ABE for NFA⊕p

In this section, we present our ABE for NFA⊕p in prime-order groups. The
scheme achieves semi-adaptive security under the k-Lin assumption. Our con-
struction is based on GWW ABE for DFA [11] along with an extension of the key
structure and decryption to NFA; the security proof follows that of GWW with
our novel combinatorial arguments regarding our NFA extension. (See Sect. 1.2
for an overview.) We remark that our scheme and proof work well for a more
general form of NFA⊕p where u, f ,Mσ are over Zp instead of {0, 1}.

4.1 Basis

We will use the same basis as GWW [11]:

A1 ← Z
k×(2k+1)
p , a2 ← Z

1×(2k+1)
p , A3 ← Z

k×(2k+1)
p (10)

and use (A‖
1 | a‖

2 | A‖
3) to denote the dual basis so that AiA

‖
i = I (known as

non-degeneracy) and AiA
‖
j = 0 if i �= j (known as orthogonality). For notational

convenience, we always consider a‖
2 as a column vector. We review SDG1

A1 �→A1,A3

and DDHG2
d,Q assumption from [8] which are parameterized for basis (10) and

tightly implied by k-Lin assumption. By symmetry, we may permute the indices
for A1,a2,A3.

Lemma 2 (MDDHk,2k ⇒ SDG1
A1 �→A1,A3

[8]). Under the MDDHk,2k assump-
tion in G1, there exists an efficient sampler outputting random ([A1]1, [a2]1,
[A3]1) along with base basis(A‖

1), basis(a
‖
2), basis(A

‖
1,A

‖
3) (of arbitrary choice)

such that the following advantage function is negligible in λ.

Adv
SD

G1
A1 �→A1,A3

A (λ) :=
∣

∣ Pr[A(D, [t0]1) = 1] − Pr[A(D, [t1]1) = 1]
∣

∣

where

D := ([A1]1, [a2]1, [A3]1, basis(A
‖
1), basis(a

‖
2), basis(A

‖
1,A

‖
3)),

t0 ← span(A1) , t1 ← span(A1,A3) .

More concretely, we have, for all A, there exists B with Time(B) ≈ Time(A)

such that Adv
SD

G1
A1 �→A1,A3

A (λ) ≤ Adv
MDDHk,2k

A (λ).

Lemma 3 (MDDHd
k,k+d ⇒ DDHG2

d,Q [8]). Let d,Q ∈ N. Under the
MDDHd

k,k+d assumption in G2, the following advantage function is negligible
in λ.

Adv
DDH

G2
d,Q

A (λ) :=
∣

∣ Pr[A([WB]2, [B]2, [WR]2 , [R]2) = 1]

−Pr[A([WB]2, [B]2, [WR + U]2 , [R]2) = 1]
∣

∣

where W ← Z
d×k
p , B ← Z

k×k
p , R ← Z

k×Q
p and U ← Z

d×Q
p . More con-

cretely, we have, for all A, there exists B with Time(B) ≈ Time(A) such that

Adv
DDH

G2
d,Q

A (λ) ≤ O(1) · AdvMDDHd
k,k+d

A (λ).

Adaptively Secure ABE for DFA from k-Lin and More 293

Lemma 4 (statistical lemma [8]). With probability 1 − 1/p over A1,a2,
A3,A

‖
1,a

‖
2,A

‖
3, the following two distributions are statistically identical.
{

A1W,A3W, a2W
}

and
{

A1W,A3W, w
}

where W ← Z
(2k+1)×k
p and w ← Z

1×k
p .

4.2 Scheme

Our ABE for NFA⊕p in prime-order groups is described as follows:

– Setup(1λ, Σ) : Run G = (p,G1, G2, GT , e) ← G(1λ). Sample

A1 ← Z
k×(2k+1)
p ,k ← Z

1×(2k+1)
p , Wstart, Zb, Wσ,b, Wend ← Z

(2k+1)×k
p

for all σ ∈ Σ and b ∈ {0, 1}. Output

mpk =
(
[A1, A1Wstart, {A1Zb, A1Wσ,b }σ∈Σ,b∈{0,1}, A1Wend]1, [A1k

�]T
)

msk =
(
k, Wstart, {Zb, Wσ,b }σ∈Σ,b∈{0,1}, Wend

)
.

– Enc(mpk, x,m) : Let x = (x1, . . . , x�) ∈ Σ� and m ∈ GT . Pick s0, s1, . . . , s� ←
Z

1×k
p and output

ctx =

⎛

⎜

⎝

[s0A1]1, [s0A1Wstart]1
{

[sjA1]1, [sj−1A1Zj mod 2 + sjA1Wxj ,j mod 2]1
}

j∈[�]

[s�A1]1, [s�A1Wend]1, [s�A1k�]T · m

⎞

⎟

⎠ .

– KeyGen(mpk,msk,Γ) : Let Γ = (Q,Σ, {Mσ}σ∈Σ ,u, f). Pick D ← Z
(2k+1)×Q
p ,

R ← Z
k×Q
p and output

skΓ =

⎛

⎜

⎝

[Du� + WstartRu�]2, [Ru�]2
{

[−D + ZbR]2, [DMσ + Wσ,bR]2, [R]2
}

σ∈Σ,b∈{0,1}
[k�f − D + WendR]2, [R]2

⎞

⎟

⎠ .

– Dec(mpk, skΓ, ctx) : Parse ciphertext for x = (x1, . . . , x�) and key for Γ =
(Q,Σ, {Mσ}σ∈Σ ,u, f) as:

ctx =

⎛

⎜

⎝

[c0,1]1, [c0,2]1
{

[cj,1]1, [cj,2]1
}

j

[c�,1]1, [cend]1, C

⎞

⎟

⎠ and skΓ =

⎛

⎜

⎝

[k�
0]2, [r

�
0]2

{

[Kb]2, [Kσ,b]2, [R]2
}

σ,b

[Kend]2, [R]2

⎞

⎟

⎠

We define
u�

j,x = Mxj
· · ·Mx1u

� mod p, ∀j ∈ [0, �] (11)

and proceed as follows:
1. Compute

B0 = e([c0,1]1, [k�
0]2) · e([c0,2]1, [r�

0]2)
−1;

294 J. Gong and H. Wee

2. For all j ∈ [�], compute

[bj]T = e([cj−1,1]1, [Kj mod 2]2)·e([cj,1]1, [Kxj ,j mod 2]2)·e([−cj,2]1, [R]2)

and Bj = [bju�
j−1,x]T ;

3. Compute

[bend]T = e([c�,1]1, [Kend]2) · e([−cend]1, [R]2) and Bend = [bendu�
�,x]T ;

4. Compute

Ball = B0 · ∏�
j=1 Bj · Bend and B = B

(fu�
�,x)−1

all

and output the message m′ ← C · B−1.

Correctness. For x = (x1, . . . , x�) and Γ = (Q,Σ, {Mσ}σ∈Σ ,u, f) such that
Γ(x) = 1, we have:

B0 = [s0A1Du�]T = [s0A1Du�
0,x]T (12)

bj = sjA1DMxj
− sj−1A1D (13)

Bj = [sjA1Du�
j,x − sj−1A1Du�

j−1,x]T (14)
bend = s�A1k�f − s�A1D (15)
Bend = [s�A1k�fu�

�,x − s�A1Du�
�,x]T (16)

Ball = [s�A1k�fu�
�,x]T (17)

B = [s�A1k�]T (18)

Here (16) is trivial; (14) and (18) follow from

u�
j,x = Mxj

u�
j−1,x mod p, ∀j ∈ [�] and Γ(x) = 1 ⇐⇒ fu�

�,x �= 0 mod p (19)

by the definition in (11), the remaining equalities follow [7], more detail can be
found in the full paper.

Security. We have the following theorem stating that our construction is selec-
tively secure. We remark that our construction achieves semi-adaptive security
as is and the proof is almost the same.

Theorem 1 (Selectively secure ABE for NFA⊕p). The ABE scheme for
NFA⊕p in prime-order bilinear groups described above is selectively secure (cf.
Sect. 2.1) under the k-Lin assumption with security loss O(� · |Σ|). Here � is the
length of the challenge input x∗.

4.3 Game Sequence

The proof is analogous to GWW’s proof. We show the proof in the one-key
setting where the adversary asks for at most one secret key; this is sufficient to
motivate the proof in the next section. As in [11], it is straightforward to handle
many keys, see the full paper for more details. Let x∗ ∈ Σ� denote the selective
challenge and let �̄ = � mod 2. Without loss of generality, we assume � > 1. We
begin with some auxiliary distributions.

Adaptively Secure ABE for DFA from k-Lin and More 295

Auxiliary Distributions. We describe the auxiliary ciphertext and key distri-
butions that we use in the proof. Throughout, the distributions are the same as
the original distributions except for the so-called a2-components which is defined
as below.

a2-Components. For a ciphertext in the following form, capturing real and all
auxiliary ciphertexts (defined below):

ctx =

⎛

⎜

⎝

[c0]1, [c0Wstart]1
{

[cjA1]1, [cj−1Zj mod 2 + cjWxj ,j mod 2]1
}

j

[c�]1, [c�Wend]1, [c�k�]T · m

⎞

⎟

⎠ (20)

where cj = sjA1 + sja2 + s̃jA3 with sj , s̃j ∈ Z
k
p and sj ∈ Zp, we define its

a2-components, denoted by ctx[2], as follows:

ctx[2] =

⎛

⎜

⎝

[s0]1, [s0a2Wstart]1
{

[sj]1, [sj−1a2Zj mod 2 + sja2Wxj ,j mod 2]1
}

j

[s�]1, [s�a2Wend]1, [s�a2k�]T · m

⎞

⎟

⎠ .

For a key in the following form, capturing real and all auxiliary keys (defined
below):

skΓ =

⎛

⎜

⎝

[k�
0]2, [r

�
0]2

{

[Kb]2, [Kσ,b]2, [R]2
}

σ,b

[Kend]2, [R]2

⎞

⎟

⎠ (21)

where k0 ∈ Z
1×(2k+1)
p , Kb,Kσ,b,Kend ∈ Z

(2k+1)×Q
p and r0 ∈ Z

1×k
p ,R ∈ Z

k×Q
p ,

we define its a2-components, denoted by skΓ[2], as follows:

skΓ[2] =

⎛

⎜

⎝

[a2k�
0]2, [r

�
0]2

{

[a2Kb]2, [a2Kσ,b]2, [R]2
}

σ,b

[a2Kend]2, [R]2

⎞

⎟

⎠

For notation simplicity of ctx[2] and skΓ[2] with k,D,Wstart,Wend,Zb,Wσ,b,
we write

α = a2k
�, d = a2D, wstart = a2Wstart, wend = a2Wend, zb = a2Zb, wσ,b = a2Wσ,b

and call them the a2-components of k�,D,Wstart,Wend,Zb,Wσ,b, respectively.
We also omit zeroes and adjust the order of terms in ctx[2]. Furthermore, for all
A1,a2,A3, mpk and various forms of ctx, skΓ we will use in the proof, we have

ctx[2], skΓ[2], {Aik
�,AiD,AiWstart,AiWend,AiZb,AiWσ,b }i∈{1,3},σ∈Σ,b∈{0,1}

≈s ctx[2], skΓ[2], {Aik̃
�,AiD̃,AiW̃start,AiW̃end,AiZ̃b,AiW̃σ,b }i∈{1,3},σ∈Σ,b∈{0,1}

where ˜k ← Z
1×(2k+1)
p , ˜D ← Z

(2k+1)×Q
p , ˜Wstart, ˜Wend, ˜Zb, ˜Wσ,b ← Z

(2k+1)×k
p are

fresh. This follows from Lemma 4 and the fact that all matrices W ∈ Z
(2k+1)×k′
p

with k′ ∈ N can be decomposed as

W = A‖
1 · A1W + a‖

2 · a2W + A‖
3 · A3W.

296 J. Gong and H. Wee

The property allows us to simulate mpk, ctx, skΓ from ctx[2], skΓ[2] and A1,a2,A3

so that we can focus on the crucial argument over a2-components in the proofs,
e.g., those in Sects. 4.4, 4.5 and 4.6.

Ciphertext Distributions. We sample s0, s1, . . . , s� ← Zp and define:

– for i ∈ [0, �]: ctix∗ is the same as ctx∗ except we replace siA1 with siA1 +sia2;
– for i ∈ [�]: cti−1,i

x∗ is the same as ctx∗ except we replace si−1A1, siA1 with
si−1A1 + si−1a2, siA1 + sia2.

That is, we have: writing τ = i mod 2,

ctix∗ [2] =

⎧
⎪⎪⎨

⎪⎪⎩

[s0wstart]1, [s0]1, [s0z1]1 if i = 0

[siwx∗
i ,τ]1, [si]1, [siz1−τ]1 if i ∈ [� − 1]

[s�wx∗
�

,�̄]1, [s�]1, [s�wend]1, [s�α]T · mβ if i = �

cti−1,i
x∗ [2] =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[s0wstart]1, [s0]1, [s0z1 + s1wx∗
1 ,1]1, [s1]1, [s1z0]1

if i = 1

[si−1wx∗
i−1,1−τ]1, [si−1]1, [si−1zτ + siwx∗

i ,τ]1, [si]1, [siz1−τ]1

if i ∈ [2, � − 1]

[s�−1wx∗
�−1,1−�̄]1, [s�−1]1, [s�−1z�̄ + s�wx∗

�
,�̄]1, [s�]1, [s�wend]1, [s�α]T · mβ

if i = �

They are exactly the same as those used in GWW’s proof [11].

Secret Key Distributions. Given x∗ ∈ Σ� and Γ = (Q,Σ, {Mσ}σ∈Σ ,u, f), we
define

fi,x∗ = fMx∗
�
· · ·Mx∗

i+1
mod p, ∀i ∈ [0, �]. (22)

For all i ∈ [�], we sample Δ ← Zp and define:

– sk0
Γ is the same as skΓ except we replace D with D + a‖

2 · s−1
0 Δ · f0,x∗ in the

term [Du� + WstartRu�]2;
– ski

Γ is the same as skΓ except we replace D with D + a‖
2 · s−1

i Δ · fi,x∗ in the
term [DMx∗

i
+ Wx∗

i ,i mod 2R]2;
– ski−1,i

Γ is the same as skΓ except we replace −D with −D+a‖
2 ·s−1

i−1Δ · fi−1,x∗

in the term [−D + Zi mod 2R]2;
– sk�,∗

Γ is the same as skΓ except we replace −D with −D + a‖
2 · s−1

� Δ · f�,x∗ in
the term [k�f − D + WendR]2.

Adaptively Secure ABE for DFA from k-Lin and More 297

That is, we have: writing τ = i mod 2,

sk0
Γ[2] =

⎛

⎜

⎝

[(d + s−1
0 Δ · f0,x∗)u� + wstartRu�]2, [Ru�]2

{

[−d + zbR]2, [dMσ + wσ,bR]2, [R]2
}

σ∈Σ,b∈{0,1}
[αf − d + wendR]2, [R]2

⎞

⎟

⎠

ski
Γ[2] =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

[du� + wstartRu�]2, [Ru�]2
{

[−d + zτR]2, [(d + s−1
i Δ · fi,x∗)Mx∗

i
+ wx∗

i ,τR]2, [R]2
}

{

[dMσ + wσ,τR]2
}

σ 	=x∗
i{

[−d + z1−τR]2, [dMσ + wσ,1−τR]2, [R]2
}

σ∈Σ

[αf − d + wendR]2, [R]2

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

ski−1,i
Γ [2] =

⎛

⎜

⎜

⎜

⎝

[du� + wstartRu�]2, [Ru�]2
{

[−d + s−1
i−1Δ · fi−1,x∗ + zτR]2, [dMσ + wσ,τR]2, [R]2

}

σ∈Σ
{

[−d + z1−τR]2, [dMσ + wσ,1−τR]2, [R]2
}

σ∈Σ

[αf − d + wendR]2, [R]2

⎞

⎟

⎟

⎟

⎠

sk�,∗
Γ [2] =

⎛

⎜

⎝

[du� + wstartRu�]2, [Ru�]2
{

[−d + zbR]2, [dMσ + wσ,bR]2, [R]2
}

σ∈Σ,b∈{0,1}
[αf − d + s−1

� Δ · f�,x∗ + wendR]2, [R]2

⎞

⎟

⎠

They are analogous to those used in GWW’s proof [11] with a novel way to
change a2-components7. Following the notations in Sect. 1.2, we use d′

i = s−1
i Δ ·

fi,x∗ rather than d′
i = Δ · fi,x∗ . We remark that they are essentially the same but

the former helps to simplify the exposition of the proof. Also, we note that si

is independent of the challenge input x∗ which will be crucial for the adaptive
security in the next section.

Game Sequence. As in GWW’s proof, we prove Theorem 1 via a series of
games summarized in Fig. 6:

– G0: Identical to the real game.
– G1: Identical to G0 except that the challenge ciphertext is ct0x∗ .
– G2.i.0, i ∈ [�]: In this game, the challenge ciphertext is cti−1

x∗ and the secret
key is ski−1

Γ .
– G2.i.1, i ∈ [�]: Identical to G2.i.0 except that the secret key is ski−1,i

Γ .
– G2.i.2, i ∈ [�]: Identical to G2.i.1 except that the challenge ciphertext is cti−1,i

x∗ .
– G2.i.3, i ∈ [�]: Identical to G2.i.2 except that the secret key is ski

Γ.
– G2.i.4, i ∈ [�]: Identical to G2.i.3 except that the challenge ciphertext is ctix∗ .
– G3: Identical to G2.�.4 except that secret key is sk�,∗

Γ .

Note that G2.1.0 is identical to G1 except that the secret key is sk0
Γ and we have

G2.i.0 = G2.i−1.4 for all i ∈ [2, �]. The remaining of this section will be devoted to
7 We also change the definition of ski

Γ, i ∈ [0, �], with the goal of improving the
exposition.

298 J. Gong and H. Wee

proving the indistinguishability of each pair of adjacent games described above.
The proofs will be analogous to those for GWW, however, crucially use the
property of f0,x∗ , . . . , f�,x∗ . Due to lack of space, we focus on proofs using the
properties; other proofs are completely analogous to GWW and can be found in
the full paper.

Useful Lemmas. Before proceed to the proof, we show the next lemma describ-
ing the property of f0,x∗ , . . . , f�,x∗ .

Lemma 5 (Property of {fi,x∗}i∈[0,�]). For any NFA⊕p Γ = (Q,Σ, {Mσ},u, f)
and input x∗ ∈ Σ�, we have:

1. Γ(x∗) = 0 ⇐⇒ f0,x∗u� = 0 mod p;
2. fi−1,x∗ = fi,x∗Mx∗

i
mod p for all i ∈ [�];

3. f�,x∗ = f .

Proof. The lemma directly follows from the definitions of NFA⊕p in Sect. 3 and
f0,x∗ , . . . , f�,x∗ in (22). ��

4.4 Initializing

It is standard to prove G0 ≈c G1, see the full paper. We only show the proof
sketch for G1 ≈c G2.1.0.

Lemma 6 (G1 = G2.1.0). For all A, we have

Pr[〈A,G1〉 = 1] = Pr[〈A,G2.1.0〉 = 1].

Proof. Roughly, we will prove that
(

mpk, ct0x∗ , skΓ

)

=
(

mpk, ct0x∗ , sk0
Γ

)

where we have

skΓ[2] =

⎛

⎜

⎝

[du� + wstartRu�]2, [Ru�]2
{

[−d + zbR]2, [dMσ + wσ,bR]2, [R]2
}

σ∈Σ,b∈{0,1}
[αf − d + wendR]2, [R]2

⎞

⎟

⎠ ,

sk0
Γ[2] =

⎛

⎜

⎝

[(d + s−1
0 Δ · f0,x∗)u� + wstartRu�]2, [Ru�]2

{

[−d + zbR]2, [dMσ + wσ,bR]2, [R]2
}

σ∈Σ,b∈{0,1}
[αf − d + wendR]2, [R]2

⎞

⎟

⎠ ,

and
ct0x∗ [2] =

(

[s0wstart]1, [s0]1, [s0z1]1
)

.

This follows from the statement:
skΓ[2]

︷ ︸︸ ︷
{

du
�

+ wstartRu
�

,Ru
� } =

sk0Γ[2]
︷ ︸︸ ︷
{

(d + s−1
0 Δ · f0,x∗)u� + wstartRu

�
,Ru

� }
given d,

ct0x∗ [2]
︷ ︸︸ ︷
wstart

which is implied by the fact Γ(x∗) = 0 ⇐⇒ f0,x∗u� = 0 mod p (see Lemma 5).
This is sufficient for the proof. ��

Adaptively Secure ABE for DFA from k-Lin and More 299

G
am

e
ct

x
∗

sk
Γ
[2
]

R
em

ar
k

?
·u

�
+

w
st
ar
tR

u
�

?
·M

x
∗ i
−

1
+

w
x

∗ i
−

1
,1

−
τ
R

?
+

z
τ
R

?
·M

x
∗ i
+

w
x

∗ i
,τ
R

α
f
+

?
+

z
en
dR

0
ct

x
∗

sk
Γ

d
d

−
d

d
−
d

re
al
ga
m
e

1
ct

0 x
∗

sk
Γ

d
d

−
d

d
−
d

SD

2.
1.
0

ct
0 x

∗
sk

0 Γ
d
+

s
−

1
0

Δ
·f

0
,x

∗
d

−
d

d
−
d

Le
m

5
-1

2.
i.
0

ct
i
−

1
x

∗
sk

i
−

1
Γ

d
d
+

s
−

1
i
−

1
Δ

·f
i
−

1
,x

∗
−
d

d
−
d

i
∈

[2
,
�]

2.
i.
1

ct
i
−

1
x

∗
sk

i
−

1
,i

Γ
d

d
−
d
+

s
−

1
i
−

1
Δ

·f
i
−

1
,x

∗
d

−
d

ch
an
ge

of
va
ria

bl
es

+
D
D
H

2.
i.
2

ct
i
−

1
,i

x
∗

sk
i
−

1
,i

Γ
d

d
−
d
+

s
−

1
i
−

1
Δ

·f
i
−

1
,x

∗
d

−
d

sw
itc
hi
ng

le
m
m
a

2.
i.
3

ct
i
−

1
,i

x
∗

sk
i Γ

d
d

−
d

d
+

s
−

1
i

Δ
·f

i
,x

∗
−
d

tra
ns
iti
on

le
m
m
a,
Le

m
5
-2

2.
i.
4

ct
i x

∗
sk

i Γ
d

d
−
d

d
+

s
−

1
i

Δ
·f

i
,x

∗
−
d

sw
itc
hi
ng

le
m
m
a

3
ct

� x
∗

sk
�
,∗ Γ

d
d

−
d

d
−
d
+

s
−

1
�

Δ
·f

�
,x

∗
ch
an
ge

of
va
ria

bl
es

+
D
D
H

F
ig
.
6
.
G

a
m

e
se

q
u
en

ce
fo

r
o
u
r
se

le
ct

iv
el

y
se

cu
re

A
B

E
fo

r
N

F
A

⊕
p

w
h
er

e
i
∈

[�
].

In
th

e
ta

b
le

,
w

e
o
n
ly

sh
ow

th
e
a

2
-c

o
m

p
o
n
en

ts
o
f
se

cr
et

k
ey

.
In

th
e
R
e
m
a
rk

co
lu

m
n
,
“
S
D

”
a
n
d

“
D

D
H

”
in

d
ic

a
te

S
D

G
1

A
1
�→

A
1
,a

2
a
n
d

D
D

H
G

2
1
,Q

a
ss

u
m

p
ti

o
n
,
re

sp
ec

ti
v
el

y
;
sw

it
ch

in
g

le
m

m
a

a
n
d

tr
a
n
si

ti
o
n

le
m

m
a

w
er

e
g
iv

en
in

G
W

W
,
cf

.
L
em

m
a

7
a
n
d

th
e

fu
ll

p
a
p
er

;
“
L
em

m
a

5
-

x
”

re
fe

rs
to

b
u
ll
et

x
in

L
em

m
a

5
.

300 J. Gong and H. Wee

4.5 Switching Secret Keys II

This section proves G2.i.2 ≈c G2.i.3 for all i ∈ [�] using the the transition lemma
from GWW [11].

Lemma 7 ((z,w)-transition lemma [11]). For all si−1, si �= 0 and Δ̄ ∈ Zp,
we have

aux, si−1z + siw, [s−1
i−1Δ̄ + zr�]2, [wr�]2, [r�]2

≈c aux, si−1z + siw, [zr�]2, [s−1
i Δ̄ + wr�]2, [r�]2

where aux = ([zB,wB,B]2) and z,w ← Z
1×k
p , B ← Z

k×k
p , r ← Z

1×k
p . Con-

cretely, the advantage function AdvtransB (λ) is bounded by O(1) ·Advk-Lin
B0

(λ) with
Time(B0) ≈ Time(B).

Lemma 8 (G2.i.2 ≈c G2.i.3). For all i ∈ [�] and all A, there exists B with
Time(B) ≈ Time(A) such that

Pr[〈A,G2.i.2〉 = 1] − Pr[〈A,G2.i.3〉 = 1] ≤ AdvtransB (λ).

Overview. This roughly means
(

mpk, cti−1,i
x∗ , ski−1,i

Γ

) ≈c

(

mpk, cti−1,i
x∗ , ski

Γ

)

;

more concretely, we want to prove the following statement over a2-components:

[−d + s−1
i−1Δ · fi−1,x∗ + zτR]2, [dMx∗

i
+ wx∗

i ,τR]2, [R]2

≈c [−d + zτR]2, [dMx∗
i

+ s−1
i Δ · fi,x∗Mx∗

i
+ wx∗

i ,τR]2, [R]2

given d,Δ, si−1, si, si−1zτ +siwx∗
i ,τ revealed by cti−1,i

x∗ . The first row corresponds
to ski−1,i

Γ [2] while the second corresponds to ski
Γ[2]. This can be handled by the

(zτ ,wx∗
i ,τ)-transition lemma and the fact that fi−1,x∗ = fi,x∗Mx∗

i
mod p (see

Lemma 5).

Proof. Recall that τ = i mod 2. By Lemma 4, it suffices to prove the lemma over
a2-components which roughly means:

ski−1,i
Γ [2] =

⎛

⎜
⎜⎜
⎜
⎜
⎜
⎝

[du� + wstartRu�]2, [Ru�]2

[−d + s−1
i−1Δ · fi−1,x∗ + zτR]2, [dMx∗

i
+ wx∗

i ,τR]2, [R]2
{
[dMσ + wσ,τR]2}σ �=x∗

i{
[−d + z1−τR]2, [dMσ + wσ,1−τR]2, [R]2

}
σ∈Σ

[αf − d + wendR]2, [R]2

⎞

⎟
⎟⎟
⎟
⎟
⎟
⎠

≈c

⎛

⎜
⎜
⎜⎜
⎜
⎝

[du� + wstartRu�]2, [Ru�]2

[−d + zτR]2, [dMx∗
i

+ s−1
i Δ · fi,x∗Mx∗

i
+ wx∗

i ,τR]2, [R]2
{
[dMσ + wσ,τR]2}σ �=x∗

i{
[−d + z1−τR]2, [dMσ + wσ,1−τR]2, [R]2

}
σ∈Σ

[αf − d + wendR]2, [R]2

⎞

⎟
⎟
⎟⎟
⎟
⎠

= ski
Γ[2]

Adaptively Secure ABE for DFA from k-Lin and More 301

in the presence of

cti−1,i
x∗ [2] =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[s0wstart]1, [s0]1, [s0z1 + s1wx∗
1 ,1]1, [s1]1, [s1z0]1

if i = 1

[si−1wx∗
i−1,1−τ]1, [si−1]1, [si−1zτ + siwx∗

i ,τ]1, [si]1, [siz1−τ]1

if i ∈ [2, � − 1]

[s�−1wx∗
�−1,1−�̄]1, [s�−1]1, [s�−1z�̄ + s�wx∗

�
,�̄]1, [s�]1, [s�wend]1, [s�α]T · mβ

if i = �

One can sample basis A1,a2,A3,A
‖
1,a

‖
2,A

‖
3 and trivially simulate mpk, cti−1,i

x∗

and secret key using terms given out above. Furthermore, we prove this using
(zτ ,wx∗

i ,τ)-transition lemma. On input

aux, [Δ̄0 + zτr�]2, [Δ̄1 + wx∗
i ,τr�]2, [r�]2

where (Δ̄0, Δ̄1) ∈ {

(s−1
i−1Δ̄, 0) , (0, s−1

i Δ̄)
}

and

aux = (Δ̄, si−1, si, si−1zτ + siwx∗
i ,τ , [zτB,wx∗

i ,τB,B]2)

with zτ ,wx∗
i ,τ ← Z

1×k
p , B ← Z

k×k
p , r ← Z

1×k
p and Δ̄ ← Zp, we sample α ←

Zp,wstart, z1−τ , wσ,1−τ ,wend ← Z
1×k
p for all σ ∈ Σ and wσ,τ ← Z

1×k
p for all

σ �= x∗
i and proceed as follows:

(Simulating challenge ciphertext) On input (m0,m1), we trivially sim-
ulate cti−1,i

x∗ [2] using si−1, si, si−1zτ + siwx∗
i ,τ in aux and α, wstart, wσ,1−τ ,

z1−τ , wend as well.
(Simulating secret key) On input Γ, we want to return a secret key for Γ
in the form:

⎛

⎜

⎜

⎜

⎜

⎜

⎝

[du� + wstartRu�]2, [Ru�]2
[−d + Δ0 · fi−1,x∗ + zτR]2, [dMx∗

i
+ Δ1 · fi−1,x∗ + wx∗

i ,τR]2 , [R]2
{

[dMσ + wσ,τR]2}σ 	=x∗
i{

[−d + z1−τR]2, [dMσ + wσ,1−τR]2, [R]2
}

σ∈Σ

[αf − d + wendR]2, [R]2

⎞

⎟

⎟

⎟

⎟

⎟

⎠

where (Δ0,Δ1) ∈ {

(s−1
i−1Δ, 0) , (0, s−1

i Δ)
}

. Observe that

– when (Δ0,Δ1) = (s−1
i−1Δ, 0) , the distribution is identical to ski−1,i

Γ [2] ;

– when (Δ0,Δ1) = (0, s−1
i Δ) , the distribution is identical to ski

Γ[2] since
fi−1,x∗ = fi,x∗Mx∗

i
mod p (see Lemma 5).

We sample d ← Z
1×Q
p and ˜R ← Z

k×Q
p and implicitly set

Δ = Δ̄, (Δ0,Δ1) = (Δ̄0, Δ̄1) and R = r� · fi−1,x∗ + B · ˜R.

We then generate the key for Γ as follows:

302 J. Gong and H. Wee

– We simulate [R]2 from [r�]2, [B]2 and fi−1,x∗ , ˜R.
– We rewrite the terms in the dashed box as follows:

[−d + (Δ̄0 + zτr
�

) · fi−1,x∗ + zτB · R̃]2, [dMx∗
i

+ (Δ̄1 + wx∗
i

,τr
�

) · fi−1,x∗ + wx∗
i

,τB · R̃]2

and simulate them using [Δ̄0 + zτr�]2, [Δ̄1 +wx∗
i ,τr�]2, [zτB]2, [wx∗

i ,τB]2 and
d, fi−1,x∗ , ˜R.

– We simulate all remaining terms using [R]2 and α, d, wstart, z1−τ ,
{wσ,τ}σ 	=x∗

i
, {wσ,1−τ}σ∈Σ , wend.

Observe that, when (Δ̄0, Δ̄1) = (s−1
i−1Δ̄, 0) , we have (Δ0,Δ1) = (s−1

i−1Δ, 0) ,

then the secret key is ski−1,i
Γ [2] and the simulation is identical to G2.i.2; when

(Δ̄0, Δ̄1) = (0, s−1
i Δ̄) , we have (Δ0,Δ1) = (0, s−1

i Δ) , then the secret key is

ski
Γ[2] and the simulation is identical to G2.i.3. This completes the proof. ��

4.6 Finalize

We finally prove that the adversary wins G3 with probability 1/2.

Lemma 9. Pr[〈A,G3〉 = 1] ≈ 1/2.

Proof. First, we argue that the secret key sk�,∗
Γ in this game perfectly hides the

a2-component of k�, i.e., α = a2k�. Recall the a2-components of the secret key:

sk�,∗
Γ [2] =

⎛

⎜

⎝

[du� + wstartRu�]2, [Ru�]2
{

[−d + zbR]2, [dMσ + wσ,bR]2, [R]2
}

σ∈Σ,b∈{0,1}
[αf − d + s−1

� Δ · f�,x∗ + wendR]2, [R]2

⎞

⎟

⎠ .

By the property f�,x∗ = f (see Lemma 5), we can see that sk�,∗
Γ [2] can be simulated

using α+s−1
� Δ, which means the secret key perfectly hides α = a2k�. Therefore,

the unique term involving k in ct�x∗ , i.e., [s�A1k� + s�a2k�]T , is independently
and uniformly distributed and thus statistically hides message mβ . ��

5 Adaptively Secure ABE for EQ-Restricted NFA⊕p

and DFA

In this section, we present our adaptively secure ABE for EQ-restricted NFA⊕p .
By our transformation from DFA to EQ-restricted NFA⊕p (cf. Lemma 1), this
readily gives us an adaptively secure ABE for DFA. We defer the concrete con-
struction to the full paper.

Adaptively Secure ABE for DFA from k-Lin and More 303

Overview. Our starting point is the selectively secure ABE scheme in Sect. 4.
To achieve adaptive security, we handle key queries one by one following standard
dual system method [20]; for each key, we carry out the one-key selective proof
in Sect. 4 with piecewise guessing framework [15]. However this does not work
immediately, we will make some changes to the scheme and proof in Sect. 4.

Recall that, in the one-key setting, the (selective) proof in Sect. 4 roughly
tells us

(mpk, skΓ, ctx∗) ≈c (mpk, sk�,∗
Γ , ct�x∗). (23)

The two-key setting, for example, is expected to be handled by hybrid arguments:

(mpk, skΓ1 , skΓ2 , ctx∗) ≈c (mpk, sk�,∗
Γ1

, skΓ2 , ct
�
x∗) ≈c (mpk, sk�,∗

Γ1
, sk�,∗

Γ2
, ct�x∗)

The first step seems to be feasible with some natural extension but the second
one is problematic. Since we can not switch the challenge ciphertext back to ctx∗

due to the presence of sk�,∗
Γ1

, the argument (23) can not be applied to the second
key skΓ2 literally. In more detail, recall that

ct�x∗ [2] =
(

[s�wx∗
� ,�̄]1, [s�]1, [s�wend]1

)

(24)

leaks information of wx∗
� ,�̄ and wend while we need them to be hidden in some

steps of the one-key proof; for example, Lemma in Sect. 4.5 for G2.i.2 ≈c G2.i.3.
We quickly argue that the natural solution of adding an extra subspace for fresh
copies of wx∗

� ,�̄ and wend blows up the ciphertext and key sizes (see Sect. 1.1 for
discussion).

Our approach reuses the existing a2-components as in [8]. Recall that, our
one-key proof (23) uses a series of hybrids with random coins s0, s1, . . . and
finally stops at a hybrid with s� (cf. (23) and (24)). Roughly, we change the
scheme by adding an extra random coin s into the ciphertext and move one
more step in the proof so that we finally stop at a new hybrid with the new s
only. This allows us to release s� and reuse wx∗

� ,�̄,wend for the next key. More
concretely, starting with the scheme in Sect. 4.2, we introduce a new component
[W]1 ∈ G

(2k+1)×k
1 into mpk:

– during encryption, we pick one more random coin s ← Z
1×k
p and replace the

last three components in ctx with

[sA1]1, [s�A1Wend + sA1W]1, [sA1k�]T · m;

this connects the last random coin s� with the newly introduced s; and s
corresponds to s in the proof;

– during key generation, we replace the last two components in skΓ with

[−D + WendR]2, [k�f + WR]2, [R]2;

the decryption will recover [sA1k�f−s�A1D]T instead of [s�A1k�f−s�A1D]T ;

304 J. Gong and H. Wee

– during the proof, we extend the proof in Sect. 4.3 by one more step (see the
dashed box):

(mpk, skΓ, ctx∗)
§4.3≈c (mpk, sk�,∗

Γ , ct�x∗) ≈c (mpk, sk∗
Γ , ct∗x∗)

so that ct∗x∗ [2] is in the following form:

ct∗x∗ [2] =
(

[sw]1, [s]1, [sα]1 · mβ

)

which leaks w = a2W instead of wx∗
� ,�̄,wend; by this, we can carry out the

one-key proof (23) for the next key (with some natural extensions).

Conceptually, we can interpret this as letting the NFA move to a specific
dummy state whenever it accepts the input. Such a modification has been men-
tioned in [4] for simplifying the description rather than improving security and
efficiency. In our formal description below, we will rename Wend,W, s, s as
Zend,Wend, send, send, respectively.

5.1 Scheme

Our adaptively secure ABE for EQ-restricted NFA⊕p in prime-order groups use
the same basis as described in Sect. 4.1 and is described as follows:

– Setup(1λ, Σ) : Run G = (p,G1, G2, GT , e) ← G(1λ). Sample

A1 ← Z
k×(2k+1)
p , k ← Z

1×(2k+1)
p , Wstart,Zb,Wσ,b,Zend,Wend ← Z

(2k+1)×k
p

for all σ ∈ Σ and b ∈ {0, 1}. Output

mpk =
(
[A1,A1Wstart, {A1Zb,A1Wσ,b}σ∈Σ,b∈{0,1},A1Zend,A1Wend]1, [A1k

�]T
)

msk =
(
k,Wstart, {Zb,Wσ,b}σ∈Σ,b∈{0,1},Zend,Wend

)
.

– Enc(mpk, x,m) : Let x = (x1, . . . , x�) ∈ Σ� and m ∈ GT . Pick s0, s1,
. . . , s�, send ← Z

1×k
p and output

ctx =

⎛

⎜

⎝

[s0A1]1, [s0A1Wstart]1
{

[sjA1]1, [sj−1A1Zj mod 2 + sjA1Wxj ,j mod 2]1
}

j∈[�]

[sendA1]1, [s�A1Zend + sendA1Wend]1, [sendA1k�]T · m

⎞

⎟

⎠ .

– KeyGen(mpk,msk,Γ) : Let Γ = (Q,Σ, {Mσ}σ∈Σ ,u, f). Pick D ← Z
(2k+1)×Q
p ,

R ← Z
k×Q
p and output

skΓ =

⎛

⎜

⎝

[Du� + WstartRu�]2, [Ru�]2
{

[−D + ZbR]2, [DMσ + Wσ,bR]2, [R]2
}

σ∈Σ,b∈{0,1}
[−D + ZendR]2, [k�f + WendR]2, [R]2

⎞

⎟

⎠ .

Adaptively Secure ABE for DFA from k-Lin and More 305

– Dec(mpk, skΓ, ctx) : Parse ciphertext for x = (x1, . . . , x�) and key for Γ =
(Q,Σ, {Mσ}σ∈Σ ,u, f) as

ctx =

⎛

⎜

⎝

[c0,1]1, [c0,2]1
{

[cj,1]1, [cj,2]1
}

j

[cend,1]1, [cend,2]1, C

⎞

⎟

⎠ and skΓ =

⎛

⎜

⎝

[k�
0]2, [r

�
0]2

{

[Kb]2, [Kσ,b]2, [R]2
}

σ,b

[Kend,1]2, [Kend,2]2, [R]2

⎞

⎟

⎠

We define u�
j,x for all j ∈ [0, �] as (11) in Sect. 4.2 and proceed as follows:

1. Compute
B0 = e([c0,1]1, [k�

0]2) · e([c0,2]1, [r�
0]2)

−1;

2. For all j ∈ [�], compute

[bj]T = e([cj−1,1]1, [Kj mod 2]2)·e([cj,1]1, [Kxj ,j mod 2]2)·e([−cj,2]1, [R]2)

and Bj = [bju�
j−1,x]T ;

3. Compute

[bend]T = e([c�,1]1, [Kend,1]2) · e([cend,1]1, [Kend,2]2) · e([−cend,2]1, [R]2)

and Bend = [bendu�
�,x]T ;

4. Compute

Ball = B0 · ∏�
j=1 Bj · Bend and B = B

(fu�
�,x)−1

all

and output the message m′ ← C · B−1.

It is direct to verify the correctness as in Sect. 4.2. See the full paper for more
details.

Security. We prove the following theorem stating the adaptive security of the
above ABE for EQ-restricted NFA⊕p . This readily implies our adaptively secure
ABE for DFA thanks to Lemma 1.

Theorem 2 (Adaptively secure ABE for EQ-restricted NFA⊕p). The
ABE scheme for EQ-restricted NFA⊕p in prime-order bilinear groups described
above is adaptively secure (cf. Sect. 2.1) under the k-Lin assumption with secu-
rity loss O(q · � · |Σ|3 · Q2). Here � is the length of the challenge input x∗ and q
is the number of key queries.

5.2 Proof of Main Theorem

From a high level, we employ the standard dual system proof switching the
challenge ciphertext and keys into semi-functional forms in a one-by-one manner.
To switch a secret key, we employ the proof technique for one-key selective setting
in Sect. 4 in the piecewise guessing framework [14,15]. We will capture this by a
core lemma. Let x∗ ∈ Σ� denote the adaptive challenge. We begin with auxiliary
distributions and use the notation for a2-components in Sect. 4.3.

306 J. Gong and H. Wee

Auxiliary Distributions. We sample send ← Zp, Δ ← Zp and define semi-
functional ciphertext and key:

– ct∗x∗ is the same as ctx∗ except we replace sendA1 with sendA1 + senda2;
– sk∗

Γ is the same as skΓ except we replace k� with k� + a‖
2 · s−1

endΔ in the term
[k�f + WendR]2.

That is, we have:

ct∗x∗ [2] =
(

[sendwend]1, [send]1, [sendα]T · mβ

)

sk∗
Γ[2] =

⎛

⎜

⎝

[du� + wstartRu�]2, [Ru�]2
{

[−d + zbR]2, [dMσ + wσ,bR]2, [R]2
}

σ∈Σ,b∈{0,1}
[−d + zendR]2, [αf + s−1

endΔ · f + wendR]2, [R]2

⎞

⎟

⎠

Game Sequence and Core Lemma. We prove Theorem 2 via a series of
games following standard dual system method [20]:

– G0: Identical to the real game.
– G1: Identical to G0 except that the challenge ciphertext is semi-functional,

i.e., ct∗x∗ .
– G2.κ for κ ∈ [0, q]: Identical to G1 except that the first κ secret keys are

semi-functional, i.e., sk∗
Γ.

– G3: Identical to G2.q except that the challenge ciphertext is an encryption of
a random message.

Here we have G2.0 = G1. It is standard to prove G0 ≈c G1, G2.q ≈s G3 and show
that adversary in G3 has no advantage. We sketch the proofs in the full paper.
To prove G2.κ−1 ≈c G2.κ for all κ ∈ [q], we use core lemma:

Lemma 10 (Core lemma). For all A, there exists B with Time(B) ≈ Time(A)
and

AdvcoreA (λ) = Pr[〈A,H0〉 = 1] − Pr[〈A,H1〉 = 1] ≤ O(� · |Σ|3 · Q2) · Advk-Lin
B (λ)

where, for all b ∈ {0, 1}, we define:

〈A,Hb〉 :=
{

b′ ← AOEnc(·),OKey(·)(mpk, aux1, aux2)
}

where

mpk =
(

[A1,A1Wstart, {A1Zb,A1Wσ,b}σ∈Σ,b∈{0,1},A1Zend,A1Wend]1, [A1k
�]T

)

aux1 =
(

[k,B,WstartB, {ZbB,Wσ,bB}σ∈Σ,b∈{0,1},ZendB,WendB]2
)

aux2 =
(

[r�,Wstartr
�, {Zbr

�,Wσ,br
�}σ∈Σ,b∈{0,1},Zendr

�,a‖
2 · s−1

endΔ + Wendr
�]2

)

with Wstart,Z0,Z1,Wσ,0,Wσ,1,Zend,Wend ← Z
(2k+1)×k
p , B ← Z

k×k
p , r ←

Z
1×k
p , send,Δ ← Zp and the two oracles work as follows:

Adaptively Secure ABE for DFA from k-Lin and More 307

– OEnc(x∗,m): output ct∗x∗ using send in aux2;
– OKey(Γ): output skΓ if b = 0; output sk∗

Γ using Δ and send in aux2 if b = 1;

with the restrictions that (1) A makes only one query to each oracle; (2) queries
Γ and x∗ satisfy Γ(x∗) = 0.

It is direct to see that the core lemma implies G2.κ−1 ≈c G2.κ; here aux1 and
aux2 are sufficient to simulate other q − 1 keys which are either skΓ or sk∗

Γ, see
the full paper for more details.

Acknowledgments. We thank Brent Waters for insightful discussions on adaptive
security, as well as the anonymous reviewers for constructive feedback on our write-up.

References

1. Agrawal, S., Chase, M.: Simplifying design and analysis of complex predicate
encryption schemes. In: Coron, J.-S., Nielsen, J.B. (eds.) EUROCRYPT 2017, Part
I. LNCS, vol. 10210, pp. 627–656. Springer, Cham (2017). https://doi.org/10.1007/
978-3-319-56620-7 22

2. Agrawal, S., Maitra, M., Yamada, S.: Attribute based encryption (and more) for
nondeterministic finite automata from LWE. In: Boldyreva, A., Micciancio, D.
(eds.) CRYPTO 2019. LNCS, vol. 11693, pp. 765–797. Springer, Cham (2019).
https://doi.org/10.1007/978-3-030-26951-7 26

3. Agrawal, S., Maitra, M., Yamada, S.: Attribute based encryption for deterministic
finite automata from DLIN. In: Hofheinz, D., Rosen, A. (eds.) TCC 2019. LNCS,
vol. 11892, pp. 91–117. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-
36033-7 4

4. Attrapadung, N.: Dual system encryption via doubly selective security: frame-
work, fully secure functional encryption for regular languages, and more. In:
Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014. LNCS, vol. 8441, pp. 557–
577. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-642-55220-5 31

5. Attrapadung, N.: Dual system encryption framework in prime-order groups via
computational pair encodings. In: Cheon, J.H., Takagi, T. (eds.) ASIACRYPT
2016, Part II. LNCS, vol. 10032, pp. 591–623. Springer, Heidelberg (2016). https://
doi.org/10.1007/978-3-662-53890-6 20

6. Attrapadung, N., Yamada, S.: Duality in ABE: converting attribute based encryp-
tion for dual predicate and dual policy via computational encodings. In: Nyberg, K.
(ed.) CT-RSA 2015. LNCS, vol. 9048, pp. 87–105. Springer, Cham (2015). https://
doi.org/10.1007/978-3-319-16715-2 5

7. Chen, J., Gay, R., Wee, H.: Improved dual system ABE in prime-order groups via
predicate encodings. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015, Part
II. LNCS, vol. 9057, pp. 595–624. Springer, Heidelberg (2015). https://doi.org/10.
1007/978-3-662-46803-6 20

8. Chen, J., Gong, J., Kowalczyk, L., Wee, H.: Unbounded ABE via bilinear entropy
expansion, revisited. In: Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT 2018, Part
I. LNCS, vol. 10820, pp. 503–534. Springer, Cham (2018). https://doi.org/10.1007/
978-3-319-78381-9 19

https://doi.org/10.1007/978-3-319-56620-7_22
https://doi.org/10.1007/978-3-319-56620-7_22
https://doi.org/10.1007/978-3-030-26951-7_26
https://doi.org/10.1007/978-3-030-36033-7_4
https://doi.org/10.1007/978-3-030-36033-7_4
https://doi.org/10.1007/978-3-642-55220-5_31
https://doi.org/10.1007/978-3-662-53890-6_20
https://doi.org/10.1007/978-3-662-53890-6_20
https://doi.org/10.1007/978-3-319-16715-2_5
https://doi.org/10.1007/978-3-319-16715-2_5
https://doi.org/10.1007/978-3-662-46803-6_20
https://doi.org/10.1007/978-3-662-46803-6_20
https://doi.org/10.1007/978-3-319-78381-9_19
https://doi.org/10.1007/978-3-319-78381-9_19

308 J. Gong and H. Wee

9. Chen, J., Wee, H.: Semi-adaptive attribute-based encryption and improved delega-
tion for Boolean formula. In: Abdalla, M., De Prisco, R. (eds.) SCN 2014. LNCS,
vol. 8642, pp. 277–297. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-
10879-7 16

10. Escala, A., Herold, G., Kiltz, E., Ràfols, C., Villar, J.: An algebraic framework
for Diffie-Hellman assumptions. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013,
Part II. LNCS, vol. 8043, pp. 129–147. Springer, Heidelberg (2013). https://doi.
org/10.1007/978-3-642-40084-1 8

11. Gong, J., Waters, B., Wee, H.: ABE for DFA from k -Lin. In: Boldyreva, A., Mic-
ciancio, D. (eds.) CRYPTO 2019, Part II. LNCS, vol. 11693, pp. 732–764. Springer,
Cham (2019). https://doi.org/10.1007/978-3-030-26951-7 25

12. Goyal, V., Pandey, O., Sahai, A., Waters, B.: Attribute-based encryption for fine-
grained access control of encrypted data. In: Juels, A., Wright, R.N., Vimercati, S.
(eds.) ACM CCS 2006, pp. 89–98. ACM Press, October/November 2006. Available
as Cryptology ePrint Archive Report 2006/309

13. Hofheinz, D., Koch, J., Striecks, C.: Identity-based encryption with (almost) tight
security in the multi-instance, multi-ciphertext setting. In: Katz, J. (ed.) PKC
2015. LNCS, vol. 9020, pp. 799–822. Springer, Heidelberg (2015). https://doi.org/
10.1007/978-3-662-46447-2 36

14. Jafargholi, Z., Kamath, C., Klein, K., Komargodski, I., Pietrzak, K., Wichs, D.: Be
adaptive, avoid overcommitting. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017,
Part I. LNCS, vol. 10401, pp. 133–163. Springer, Cham (2017). https://doi.org/
10.1007/978-3-319-63688-7 5

15. Kowalczyk, L., Wee, H.: Compact adaptively secure ABE for NC1 from k -Lin. In:
Ishai, Y., Rijmen, V. (eds.) EUROCRYPT 2019, Part I. LNCS, vol. 11476, pp.
3–33. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-17653-2 1

16. Lewko, A., Waters, B.: New techniques for dual system encryption and fully
secure HIBE with short ciphertexts. In: Micciancio, D. (ed.) TCC 2010. LNCS,
vol. 5978, pp. 455–479. Springer, Heidelberg (2010). https://doi.org/10.1007/978-
3-642-11799-2 27

17. Lewko, A., Waters, B.: Unbounded HIBE and attribute-based encryption. In:
Paterson, K.G. (ed.) EUROCRYPT 2011. LNCS, vol. 6632, pp. 547–567. Springer,
Heidelberg (2011). https://doi.org/10.1007/978-3-642-20465-4 30

18. Okamoto, T., Takashima, K.: Fully secure unbounded inner-product and attribute-
based encryption. In: Wang, X., Sako, K. (eds.) ASIACRYPT 2012. LNCS, vol.
7658, pp. 349–366. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-
642-34961-4 22

19. Sahai, A., Waters, B.: Fuzzy identity-based encryption. In: Cramer, R. (ed.) EURO-
CRYPT 2005. LNCS, vol. 3494, pp. 457–473. Springer, Heidelberg (2005). https://
doi.org/10.1007/11426639 27

20. Waters, B.: Dual system encryption: realizing fully secure IBE and HIBE under
simple assumptions. In: Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 619–
636. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-03356-8 36

21. Waters, B.: Functional encryption for regular languages. In: Safavi-Naini, R.,
Canetti, R. (eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 218–235. Springer, Hei-
delberg (2012). https://doi.org/10.1007/978-3-642-32009-5 14

https://doi.org/10.1007/978-3-319-10879-7_16
https://doi.org/10.1007/978-3-319-10879-7_16
https://doi.org/10.1007/978-3-642-40084-1_8
https://doi.org/10.1007/978-3-642-40084-1_8
https://doi.org/10.1007/978-3-030-26951-7_25
https://doi.org/10.1007/978-3-662-46447-2_36
https://doi.org/10.1007/978-3-662-46447-2_36
https://doi.org/10.1007/978-3-319-63688-7_5
https://doi.org/10.1007/978-3-319-63688-7_5
https://doi.org/10.1007/978-3-030-17653-2_1
https://doi.org/10.1007/978-3-642-11799-2_27
https://doi.org/10.1007/978-3-642-11799-2_27
https://doi.org/10.1007/978-3-642-20465-4_30
https://doi.org/10.1007/978-3-642-34961-4_22
https://doi.org/10.1007/978-3-642-34961-4_22
https://doi.org/10.1007/11426639_27
https://doi.org/10.1007/11426639_27
https://doi.org/10.1007/978-3-642-03356-8_36
https://doi.org/10.1007/978-3-642-32009-5_14

Side-Channel Security

Tornado: Automatic Generation
of Probing-Secure Masked Bitsliced

Implementations

Sonia Belaïd1(B), Pierre-Évariste Dagand2, Darius Mercadier2(B),
Matthieu Rivain1, and Raphaël Wintersdorff1(B)

1 CryptoExperts, Paris, France
{sonia.belaid,matthieu.rivain}@cryptoexperts.com, raphaelwin@hotmail.com

2 Sorbonne Université, Paris, France
{pierre-evariste.dagand,darius.mercadier}@lip6.fr

Abstract. Cryptographic implementations deployed in real world
devices often aim at (provable) security against the powerful class of
side-channel attacks while keeping reasonable performances. Last year
at Asiacrypt, a new formal verification tool named tightPROVE was put
forward to exactly determine whether a masked implementation is secure
in the well-deployed probing security model for any given security order
t. Also recently, a compiler named Usuba was proposed to automatically
generate bitsliced implementations of cryptographic primitives.

This paper goes one step further in the security and performances
achievements with a new automatic tool named Tornado. In a nutshell,
from the high-level description of a cryptographic primitive, Tornado pro-
duces a functionally equivalent bitsliced masked implementation at any
desired order proven secure in the probing model, but additionally in the
so-called register probing model which much better fits the reality of soft-
ware implementations. This framework is obtained by the integration of
Usuba with tightPROVE+, which extends tightPROVE with the ability to
verify the security of implementations in the register probing model and
to fix them with inserting refresh gadgets at carefully chosen locations
accordingly.

We demonstrate Tornado on the lightweight cryptographic primitives
selected to the second round of the NIST competition and which some-
how claimed to be masking friendly. It advantageously displays perfor-
mances of the resulting masked implementations for several masking
orders and prove their security in the register probing model.

Keywords: Compiler · Masking · Automated verification · Bitslice

1 Introduction

Cryptographic implementations susceptible to power and electromagnetic side-
channel attacks are usually protected by masking. The general principle of mask-
ing is to apply some secret sharing scheme to the sensitive variables processed by
c© International Association for Cryptologic Research 2020
A. Canteaut and Y. Ishai (Eds.): EUROCRYPT 2020, LNCS 12107, pp. 311–341, 2020.
https://doi.org/10.1007/978-3-030-45727-3_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-45727-3_11&domain=pdf
https://doi.org/10.1007/978-3-030-45727-3_11

312 S. Belaïd et al.

the implementation in order to make the side-channel information either negligi-
ble or hard to exploit in practice. Many masked implementations rely on Boolean
masking in which a variable x is represented as n random shares x1, . . . , xn sat-
isfying the completeness relation x1 ⊕· · ·⊕xn = x (where ⊕ denotes the bitwise
addition).

The probing model is widely used to analyze the security of masked (software)
implementations vs. side-channel attacks. This model was introduced by Ishai,
Sahai and Wagner in [26] to construct circuits resistant to hardware probing
attacks. It was latter shown that this model and the underlying construction were
instrumental to the design of efficient practically-secure masked cryptographic
implementations [15,18,19,32]. A masking scheme secure against a t-probing
adversary, i.e. who can probe t arbitrary variables in the computation, is indeed
secure by design against the class of side-channel attacks of order t [17].

Most masking schemes consider the implementation to be protected as a
Boolean or arithmetic circuit composed of gates of different natures. These gates
are then replaced by gadgets processing masked variables. One of the important
contributions of [26] was to propose a multiplication gadget secure against t-
probing attacks for any t, based on a Boolean masking of order n = 2t+1. This
was reduced to the tight order n = t + 1 in [32] by constraining the two input
sharings to be independent, which could be ensured by the application of a mask
refreshing gadget when necessary. The design of secure refresh gadgets and, more
generally, the secure composition of gadgets were subsequently subject to many
works [5,6,16,18]. Of particular interest, the notion of Non-Interference (NI) and
Strong Non-Interference (SNI) introduced in [5] provide a practical framework
for the secure composition of gadgets which yields tight probing-secure masked
implementations. In a nutshell, such implementations are composed of ISW mul-
tiplication and refresh gadgets (from the names of their inventors Ishai, Sahai,
and Wagner [26]) achieving the SNI property, and of sharewise addition gad-
gets. The main technical challenge in such a context is to identify the number
of required refresh gadgets and their (optimal) placing in the implementation to
obtain a provable t-probing security. Last year at Asiacrypt, a formal verifica-
tion tool called tightPROVE was put forward by Belaïd, Goudarzi, and Rivain [8]
which is able to clearly state whether a tight masked implementation is t-probing
secure or not. Given a masked implementation composed of standard gadgets
(sharewise addition, ISW multiplication and refresh), tightPROVE either pro-
duces a probing-security proof (valid at any order) or exhibits a security flaw
that directly implies a probing attack at a given order. Although nicely answering
a relevant open issue, tightPROVE still suffers two important limitations. First
it only applies to Boolean circuits and does not straightforwardly generalize to
software implementation processing �-bit registers (for � > 1). Secondly, it does
not provide a method to place the refresh whenever a probing attack is detected.

In parallel to these developments, many works have focused on the efficient
implementation of masking schemes with possibly high orders. For software
implementations, it was recently demonstrated in several works that the use
of bitslicing makes it possible to achieve (very) aggressive performances. In the

Tornado 313

bitsliced higher-order masking paradigm, the ISW scheme is applied to secure
bitwise and instructions which are significantly more efficient than their field-
multiplication counterparts involved in the so-called polynomial schemes [25,27].
Moreover, the bitslice strategy allows to compute several instances of a crypto-
graphic primitive in parallel, or alternatively all the s-boxes in parallel within
an instance of the primitive. The former setting is simply called (full) bitslice
in the present paper while the latter setting is referred to as n-slice. In both
settings, the high degree of parallelization inherited from the bitslice approach
results in important efficiency gains. Verifying the probing security of full bit-
slice masked implementation is possible with tightPROVE since the different bit
slots (corresponding to different instances of the cryptographic primitive) are
mutually independent. Therefore, probing an �-bit register in the bitslice imple-
mentation is equivalent to probing the corresponding variable in � independent
Boolean circuits, and hence tightPROVE straightforwardly applies. For n-slice
implementations on the other hand, the different bit slots are mixed together
at some point in the implementation which makes the verification beyond the
scope of tightPROVE. In practice for masked software implementations, the reg-
ister probing model makes much more sense than the bit probing model because
a software implementation works on �-bit registers containing several bits that
leak all together.

Another limitation of tightPROVE is that it simply verifies an implementation
under the form of an abstract circuit but it does not output a secure implementa-
tion, nor provide a sound placing of refresh gadgets to make the implementation
secure. In practice one could hope for an integrated tool that takes an input
circuit in a simple syntax, determine where to place the refresh gadgets and
compile the augmented circuit into a masked implementation, for a given mask-
ing order on a given computing platform. Usuba, introduced by Mercadier and
Dagand in [29], is a high-level programming language for specifying symmetric
block ciphers. It provides an optimizing compiler that produces efficient bitsliced
implementations. On high-end Intel platforms, Usuba has demonstrated perfor-
mance on par with several, publicly available cipher implementations. As part of
its compilation pipeline, Usuba features an intermediate representation, Usuba0,
that shares many commonalities with the input language of tightPROVE.

It is therefore natural to consider integrating both tools in a single pro-
gramming environment. We aim at enabling cryptographers to prototype their
algorithms in Usuba, letting tightPROVE verify or repair its security and letting
the Usuba back-end perform masked code generation.

Our Contributions. The contributions of our work are threefold:

Extended Probing-Security Verification Tool. We tackle the limitations of
tightPROVE and propose an extended verification tool, that we shall call
tightPROVE+. This tool can verify the security of any masked bitslice imple-
mentation in the register probing model (which makes more sense than the
bit probing model w.r.t. masked software implementations). Given a masked

314 S. Belaïd et al.

bitslice/n-slice implementation composed of standard gadgets for bitwise opera-
tions, tightPROVE+ either produces a probing-security proof or exhibits a prob-
ing attack.

New Integrated Compiler for Masked Bitslice Implementations. We present (and
report on the development of) a new compiler Tornado1 which integrates Usuba
and tightPROVE+ in a global compiler producing masked bitsliced implemen-
tations proven secure in the bit/register probing model. This compiler takes as
input a high-level, functional specification of a cryptographic primitive. If some
probing attacks are detected by tightPROVE+, the Tornado compiler introduces
refresh gadgets, following a sound heuristic, in order to thwart these attacks.
Once a circuit has been identified as secure, Tornado produces bitsliced C code
achieving register probing security at a given input order. To account for the
limited resources available on embedded systems, Tornado exploits a general-
ization of bitslicing – implemented by Usuba – to reduce register pressure and
implements several optimizations specifically tailored for Boolean masking code.

Benchmarks of NIST Lightweight Cryptography Candidates. We evaluate Tor-
nado on 11 cryptographic primitives from the second round of the ongoing NIST
lightweight cryptography standardization process.2 The choice of cryptographic
primitives has been made on the basis that they were self-identified as being
amenable to masking. These implementation results give a benchmark of these
different candidates with respect to masked software implementation for a num-
ber of shares ranging between 1 and 128. The obtained performances are pretty
satisfying. For instance, the n-slice implementations of the tested primitives
masked with 128 shares takes from 1 to a few dozen megacycles on an Cortex-M4
processor.

2 Technical Background

2.1 Usuba

Usuba is a domain-specific language for describing bitsliced algorithms. It has
been designed around the observation that a bitsliced algorithm is essentially a
combinational circuit implemented in software. As a consequence, Usuba’s design
is inspired by high-level synthesis languages, following a dataflow specification
style. For instance, the language offers the possibility to manipulate bit-level
quantities as well as to apply bitwise transformations to compound quantities.
A domain-specific compiler then synthesizes an efficient software implementation
manipulating machine words.

Figure 1 shows the Usuba implementation of the Ascon cipher. To structure
programs, we use node’s (Fig. 1b, c and d), of which table’s (Fig. 1a) are a special

1 Tornado ambitions to be the workhorse of those cryptographers that selflessly protect
their ciphers through provably secure mask ing and precise bitslicing.

2 https://csrc.nist.gov/Projects/lightweight-cryptography/round-2-candidates.

https://csrc.nist.gov/Projects/lightweight-cryptography/round-2-candidates

Tornado 315

case of a node specified through its truth table. A node specifies a set of input
values, output values as well as a system of equations relating these variables. To
streamline the definition of repeating systems (e.g., the 12 rounds of Ascon),
Usuba offers bounded loops, which simply desugar into standalone equations.
A static analysis ensures that the system of equations admits a solution. The
semantics of an Usuba program is thus straightforward: it is the (unique) solution
to the system of equations.

table Sbox(x:v5) returns (y:v5) {
0x4, 0xb, 0x1f, 0x14, 0x1a, 0x15,
0x9, 0x2, 0x1b, 0x5, 0x8, 0x12,
0x1d, 0x3, 0x6, 0x1c, 0x1e, 0x13,
0x7, 0xe, 0x0, 0xd, 0x11, 0x18,
0x10, 0xc, 0x1, 0x19, 0x16, 0xa,
0xf, 0x17

}

(a) S-box specified by its truth table.

node AddConstant(state:u64x5,c:u64)
returns (stateR:u64x5)

let
stateR = (state[0,1], state[2] ^ c,

state[3,4]);
tel

(b) Node manipulating a 5-uple

node LinearLayer(state:u64x5)
returns (stateR:u64x5)

let
stateR[0] = state[0]

^ (state[0] >>> 19)
^ (state[0] >>> 28);

stateR[1] = state[1]
^ (state[1] >>> 61)
^ (state[1] >>> 39);

stateR[2] = state[2]
^ (state[2] >>> 1)
^ (state[2] >>> 6);

stateR[3] = state[3]
^ (state[3] >>> 10)
^ (state[3] >>> 17);

stateR[4] = state[4]
^ (state[4] >>> 7)
^ (state[4] >>> 41);

tel

(c) Node involving rotations and xors

node ascon12(input:u64x5)
returns (output:u64x5)

vars
consts:u64[12],
state:u64x5[13]

let
consts = (0xf0, 0xe1, 0xd2, 0xc3,

0xb4, 0xa5, 0x96, 0x87,
0x78, 0x69, 0x5a, 0x4b);

state[0] = input;
forall i in [0, 11] {

state[i+1] = LinearLayer
(Sbox
(AddConstant
(state[i],consts[i])))

}
output = state[12]

tel

(d) Main node composing the 12 rounds

Fig. 1. Ascon cipher in Usuba

Aside from custom syntax, Usuba features a type system that documents and
enforces parallelization strategies. Traditionally, bitslicing [12] consists in treat-
ing an m-word quantity as m variables, such that a combinational circuit can
be straightforwardly implemented by applying the corresponding bitwise logi-
cal operations over the variables. On a 32-bit architecture, this means that 32
circuits are evaluated “in parallel”: for example, a 32-bit and instruction is seen
as 32 Boolean and gates. To ensure that an algorithm admits an efficient bit-
sliced implementation, Usuba only allows bitwise operations and forbids stateful
computations [30].

However, bitslicing can be generalized to n-slicing [29] (with n > 1). Whereas
bitslicing splits an m-word quantity into m individual bits, we can also treat it at

316 S. Belaïd et al.

a coarser granularity3, splitting it into k variables of n bits each (preserving the
invariant that m = k × n). The register pressure is thus lowered, since we intro-
duce k variables rather than m, and, provided some support from the underlying
hardware or compiler, we may use arithmetic operations in addition to the usual
Boolean operations. Conversely, certain operations become prohibitively expen-
sive in this setting, such as permuting individual bits. The role of Usuba’s type
system is to document the parallelization strategy decided by the programmer
(e.g., u64x5 means that we chose to treat a 320-bit block at the granularity of
64-bit atoms) and ensure that the programmer only used operations that can be
efficiently implemented on a given architecture.

The overall architecture of the Usuba compiler is presented in Fig. 2. It
involves two essential steps. Firstly, normalization expands the high-level con-
structs of the language to a minimal core language called Usuba0. Usuba0 is
the software equivalent of a netlist: it represents the sliced implementation in a
flattened form, erasing tuples altogether. Secondly, optimizations are applied at
this level, taking Usuba0 circuits to (functionally equivalent) Usuba0 circuits. In
particular, scheduling is responsible for ordering the system of equations in such
a way as to enable sequential execution as well as maximize instruction-level
parallelism. To obtain a C program from a scheduled Usuba0 circuit, we merely
have to replace the Boolean and arithmetic operations of the circuit with the
corresponding C operations. The resulting C program is in static single assign-
ment (SSA) form, involving only operations on integer types: we thus solely rely
on the C compiler to perform register allocation and produce executable code.

Usuba Usuba0 C assembly
Normalization

bitslicing/n-slicing

Optimizations
scheduling, inlining, etc.

Vectorization
Transpilation Register

allocation

Fig. 2. High-level view of the Usuba compiler

At compile-time, a specific node is designated as the cryptographic primitive
of interest (here, ascon12): the Usuba compiler is then tasked to produce a C
file exposing a function corresponding to the desired primitive. In this case, the
bitsliced primitive would have type

void Ascon12 (uint32_t plain[320], uint32_t cipher[320])

whereas the 64-sliced primitive would have type

void Ascon12 (uint64_t plain[5], uint64_t cipher[5])

3 The literature [29, Fig. 2] distinguishes vertical from horizontal n-slicing: lacking the
powerful SIMD instructions required by horizontal n-slicing, we focus here solely on
vertical n-slicing, which we abbreviate unambiguously to “n-slicing”.

Tornado 317

Usuba targets C so as to maximize portability: it has been successfully used
to deploy cryptographic primitives on Intel, PowerPC, Arm and Sparc archi-
tectures. However, a significant amount of optimization is carried by the Usuba
compiler: because this programming model is subject to stringent invariants,
the compiler is able to perform far-reaching, whole program optimizations that
a C compiler would shy away from. For example, it features a custom instruc-
tion scheduling algorithm, aimed at minimizing the register pressure of bitsliced
code. On high-end Intel architectures featuring Single Instruction Multiple Data
(SIMD) extensions, Usuba has demonstrated performance on par with hand-
optimized reference implementations [29].

Usuba offers an ideal setting in which to automate Boolean masking. Indeed,
ciphers specified in Usuba are presented at a suitable level of abstraction: they
consist in combinational circuits, by construction. As a result, the Usuba compiler
can perform a systematic source-to-source transformation, automating away the
tedious introduction of masking gadgets and refreshes. Besides, the high-level
nature of the language allows us to extract a model of an algorithm, analyzable
by static analysis tools such as SAT solvers – to check program equivalence, which
is used internally to validate the correctness of optimizations – or tightPROVE
– to verify probing security.

2.2 tightPROVE

tightPROVE is a verification tool which aims to verify the probing security of
a shared Boolean circuit. It takes as input a list of instructions that describes
a shared circuit made of specific multiplication, addition and refresh gadgets
and outputs either a probing security proof or a probing attack. To that end, a
security reduction is made through a sequence of four equivalent games. In each
of them, an adversary A chooses a set of probes P (indices pointing to wires in
the shared circuit) in the target circuit C, and a simulator S wins the game if
it successfully simulates the distribution of the tuple of variables carried by the
corresponding wires without knowledge of the secret inputs.

Game 0 corresponds to the t-probing security definition: the adversary can
choose t probes in a t + 1-shared circuit, on whichever wires she wishes. In
Game 1, the adversary is restricted to only probe gadget inputs: one probe on
an addition or refresh gadget becomes one probe on one input share, one probe
on a multiplication gadget becomes one probe on each of the input sharings. In
Game 2, the circuit C is replaced by another circuit C ′ that has a multiplicative
depth of one, through a transformation called Flatten, illustrated in the original
paper [8]. In a nutshell, each output of a multiplication or refresh gadget in the
original circuit gives rise to a new input with a fresh sharing in C ′. Finally, in
Game 3, the adversary is only allowed to probe pairs of inputs of multiplication
gadgets. The transition between these games is mainly made possible by an
important property of the selected refresh and multiplication gadgets: in addition
to being t-probing secure, they are t-strong non interfering (t-SNI for short) [5].
Satisfying the latter means that t probed variables in their circuit description

318 S. Belaïd et al.

can be simulated with less than t1 shares of each input, where t1 ≤ t denotes
the number of internal probes i.e. which are not placed on output shares.

Game 3 can be interpreted as a linear algebra problem. In the flattened
circuit, the inputs of multiplication gadgets are linear combinations of the circuit
inputs. These can be modelled as Boolean vectors that we call operand vectors,
with ones at indexes of involved inputs. From the definition of Game 3, the 2t
probes made by the adversary all target these operand vectors for chosen shares.
These probes can be distributed into t + 1 matrices M0, . . . ,Mt, where t + 1
corresponds to the (tight) number of shares, such that for each probe targeting
the share i of an operand vector v, with i in {0, . . . , t}, v is added as a row to
matrix Mi. Deciding whether a circuit is t-probing secure can then be reduced to
verifying whether 〈MT

0 〉∩ · · ·∩ 〈MT
t 〉 = ∅ (where 〈·〉 denotes the column space of

a matrix). The latter can be solved algorithmically with the following high-level
algorithm for a circuit with m multiplications:

For each operand vector w,

1. Create a set G1 with all the multiplications for which w is one of the operand
vectors.

2. Create a set O1 with the co-operand vectors of w in the multiplications in
G1.

3. Stop if w ∈ 〈O1〉 (O1’s linear span), that is if w can be written as a linear
combination of Boolean vectors from O1.

4. For i from 2 to m, create new sets Gi and Oi by adding to Gi−1 multiplica-
tions that involve an operand w′ verifying w′ ∈ (w ⊕ 〈Oi−1〉), and adding
to Oi−1 the other operand vectors of these multiplications. Stop whenever
i = m or Gi = Gi−1 or w ∈ 〈Oi〉.

If this algorithm stops when w ∈ 〈Oi〉 for some i, then there is a probing
attack on w, i.e., from a certain t, the attacker can recover information on x ·w
(where x denote the vector of plain inputs), with only t probes on the (t + 1)-
shared circuit. In the other two scenarios, the circuit is proven to be t-probing
secure for any value of t.

3 Extending tightPROVE to the Register-Probing Model

3.1 Model of Computation

Notations. In this paper, we denote by K = F2 the field with two elements
and by V = K

s the vector space of dimension s over K, for some given integer s
(which will be used to denote the register size). Vectors, in any vector space, are
written in bold. �i, j� denotes the integer interval Z∩ [i, j] for any two integers i
and j. For a finite set X , we denote by |X | the cardinality of X and by x ← X
the action of picking x from X independently and uniformly at random. For

Tornado 319

some (probabilistic) algorithm A, we further denote x ← A(in) the action of
running algorithm A on some inputs in (with fresh uniform random tape) and
setting x to the value returned by A.

Basic Notions. We call register-based circuit any directed acyclic graph, whose
vertices either correspond to an input gate, a constant gate outputting an ele-
ment of V or a gate processing one of the following functions:

– XOR and AND, the coordinate-wise Boolean addition and multiplication over
K

s, respectively. For the sake of intelligibility, we write a+b and a ·b instead
of XOR(a,b) and AND(a,b) respectively when it is clear from the context
that we are performing bitwise operations between elements of V.

– (ROTLr)r∈�1,s−1�, the family of vector Boolean rotations. For all r ∈ �1, s−1�,

ROTLr : V → V
(v1, . . . , vs) �→ (vr+1, . . . , vs, v1, . . . , vr)

– (SHIFTLr)r∈�1,s−1� and (SHIFTRr)r∈�1,s−1�, the families of vector Boolean
left and right shifts. For all r ∈ �1, s − 1�,

SHIFTLr : V → V
(v1, . . . , vs) �→ (vr+1, . . . , vs, 0, . . . , 0)

SHIFTRr : V → V
(v1, . . . , vs) �→ (0, . . . , 0, v1, . . . , vs−r)

A randomized circuit is a register-based circuit augmented with gates of fan-
in 0 that output elements of V chosen uniformly at random.

Translation to the Masking World. A d-sharing of x ∈ V refers to any
random tuple [x]d = (x0,x1 . . . ,xd−1) ∈ Vd that satisfies x = x0+x1+· · ·+xd−1.
A d-sharing [x]d is uniform if it is uniformly distributed over the subspace of
tuples satisfying this condition, meaning that for any k < d, any k-tuple of the
shares of x is uniformly distributed over Vk. In the following, we omit the sharing
order d when it is clear from the context, so a d-sharing of x is denoted by [x].
We further denote by Enc a probabilistic encoding algorithm that maps x ∈ V
to a fresh uniform sharing [x].

In this paper, we call a d-shared register-based circuit a randomized register-
based circuit working on d-shared variables as elements of V that takes as inputs
some d-sharings [x1], . . . , [xn] and performs operations on their shares with the
functions described above. Assuming that we associate an index to each edge
in the circuit, a probe refers to a specific edge index. For such a circuit C, we
denote by C([x1], . . . , [xn])P the distribution of the tuple of values carried by
the wires of C of indexes in P when the circuit is evaluated on [x1], . . . , [xn].

We consider circuits composed of subcircuits called gadgets. Gadgets are d-
shared circuits performing a specific operation. They can be seen as building

320 S. Belaïd et al.

blocks of a more complex circuit. We furthermore say that a gadget is sharewise
if each output share of this gadget can be expressed as a deterministic function of
its input shares of the same sharing index. In this paper, we specifically consider
the following gadgets:

– The ISW-multiplication gadget [⊗] takes two d-sharings [a] and [b] as inputs
and outputs a d-sharing [c] such that c = a · b as follows:
1. for every 0 ≤ i < j ≤ d − 1, ri,j ← V;
2. for every 0 ≤ i < j ≤ d − 1, compute rj,i ← (ri,j + ai · bj) + aj · bi;
3. for every 0 ≤ i ≤ d − 1, compute ci ← ai · bi +

∑
j �=i ri,j .

– The ISW-refresh gadget [R] is the ISW-multiplication gadget in which the
second operand [b] is set to the constant sharing (1,0, . . . ,0), where 0 ∈ V
and 1 ∈ V denote the all 0 and all 1 vector respectively.

– The sharewise addition gadget [⊕] computes a d-sharing [c] from sharings [a]
and [b] such that c = a+ b by letting ci = ai + bi for i ∈ �0, d − 1�.

– The sharewise left shift, right shift and rotation gadgets ([
n], [�n] and [≪n]
respectively) take a sharing [a] as input and output a sharing [c] such that
c = f(a) by letting ci = f(ai) for i ∈ �0, d − 1�, f being the corresponding
function described in the section above.

– The sharewise multiplication by a constant [⊗k] takes a sharing [a] and a
constant k ∈ V as inputs and outputs a sharing [c] such that c = k · a by
letting ci = k · ai for i ∈ �0, d − 1�.

– The sharewise addition with a constant [⊕k] takes a sharing [a] and a constant
k ∈ V as input and outputs a sharing [c] such that c = a+ k by letting ci = ai
for i ∈ �0, d − 1� and c0 = a0 + k. The coordinate-wise logical complement
NOT is captured by this definition with k = (1, . . . , 1).

3.2 Security Notions

In this section, we recall the t-probing security originally introduced in [26] as
formalized through a concrete security game in [8]. It is based on two experi-
ments described in Figure 3 from [8] in which an adversary A, modelled as a
probabilistic algorithm, outputs of set of t probes P and n inputs x1, . . . , xn in
a set K. In the first experiment, ExpReal, the inputs are encoded and given as
inputs to the shared circuit C. The experiment then outputs a random evaluation
of the chosen probes (v1, . . . , vt). In the second experiment, ExpSim, the simula-
tor outputs a simulation of the evaluation C([x1], . . . , [xn])P without the input
sharings. It wins the game if and only if the distributions of both experiments
are identical.

Definition 1 ([8]). A shared circuit C is t-probing secure if and only if for
every adversary A, there exists a simulator S that wins the t-probing secu-
rity game defined in Fig. 3, i.e. the random experiments ExpReal(A, C) and
ExpSim(A,S, C) output identical distributions.

Tornado 321

ExpReal(A, C):
1. (P, x1, . . . , xn) ← A()
2. [x1] ← Enc(x1), . . . , [xn] ← Enc(xn)
3. (v1, . . . , vt) ← C([x1], . . . , [xn])P
4. Return (v1, . . . , vt)

ExpSim(A,S, C):

1. (P, x1, . . . , xn) ← A()
2. (v1, . . . , vt) ← S(P)
3. Return (v1, . . . , vt)

Fig. 3. t-probing security game from [8].

In [8], the notion of t-probing security was defined for a Boolean circuit, with
K = F2, that is with x1, . . . , xn ∈ F2 and v1, . . . , vt ∈ F2. We further refer to
this specialized notion as t-bit probing security.

While the notion of t-bit probing security is relevant in a hardware scenario,
in the reality of masked software embedded devices, variables are manipulated
in registers which contain several bits that leak all together. To capture this
model, in this paper, we extend the verification to what we call the t-register
probing model in which the targeted circuit manipulates variables on registers of
size s for some s ∈ N

+ and the adversary is able to choose t probes as registers
containing values in V = F

s
2. Notice that the t-bit probing model can be seen as

a specialization of the t-register probing model with s = 1.

Cautionary Note. In software implementations, we may also face transition leak-
ages, modeled as functions of two �-bit variables when they are successively
stored in the same register. In that scenario, the masking order t might be
halved [2,31]. While specific techniques can be settled to detect and handle such
leakages, we leave it for future work and focus on simple register probing model
in this paper, in which one observation reveals the content of a single register.

3.3 Security Reductions in the Register Probing Model

Just like for the bit-probing version of tightPROVE, the security notions are
formalized through games. Similar notions are used which only differ in the fact
that the probes in the new model now point to wires of register-based circuits,
which carry vectors of V. In this section, we present the differences between the
security games in the bit-probing model and the register-probing model. The
games are still equivalent to one another, and we give a sketch of proof for each
transition (as well as a full proof in the full version). We then give a description
of the linear algebra problem induced by the last game.

Sequence of Games. Similarly to the bit-probing case, Game 0 corresponds
to the probing security definition for a register-based circuit, and still features
an adversary A that chooses a set of probes P in a circuit C, and a simulator
S that wins the game if it successfully simulates C([x1], . . . , [xn])P , for inputs
x1, . . . , xn ∈ V.

322 S. Belaïd et al.

Game 1. In Game 1, the adversary returns a set of probes P ′ = P ′
r ∪ P ′

m ∪
P ′
sw, where |P ′| = t and the sets P ′

r, P ′
m and P ′

sw contain probes pointing
to refresh gadgets’ inputs, pairs of probes pointing to multiplication gadgets’
inputs and probes pointing to sharewise gadgets’ inputs or outputs respectively.
C([x1], . . . , [xn])P′ is then a q-tuple for q = 2|P ′

m| + |P ′
r ∪ P ′

sw|. Besides the
definition set of variables, the only difference with the bit-probing case stands
in the fact that the sharewise gadgets are not restricted to addition gadgets.

Game 2. In Game 2, the circuit C is replaced by an equivalent circuit C ′ of
multiplicative depth 1, just like in the bit-probing case. The Flatten operation
can be trivially adapted to register-based circuits, as the outputs of refresh and
multiplication gadgets can still be considered as uniform sharings.

Game 3. In this last game, the adversary is restricted to only position its t probes
on multiplication gadgets, i.e. A returns a set of probes P ′′ = P ′

r∪P ′
m∪P ′

sw such
that P ′

sw = P ′
r = ∅ and P ′′ = P ′

m. C([x1], . . . , [xn])P′′ thus returns a q-tuple for
q = 2t since all the elements in P ′′ are pairs of inputs of multiplication gadgets.

Theorem 1. Let C be a shared circuit. We have the following equivalences:

∀A0,∃S0,S0 wins Game 0. ⇐⇒ ∀A1,∃S1,S1 wins Game 1.
⇐⇒ ∀A2,∃S2,S2 wins Game 2.
⇐⇒ ∀A3,∃S3,S3 wins Game 3.

For the sake of clarity, we define one lemma per game transition. The correspond-
ing proofs are available in the full version of this paper, but an informal reasoning
that supports these ideas is given in the following, as well as the differences with
the proofs established in [8].

Lemma 1. ∀A0,∃S0,S0 wins Game 0. ⇐⇒ ∀A1,∃S1,S1 wins Game 1.

Proof (sketch). The proof for the first game transition is based on the fact that
multiplication and refresh gadgets are t-SNI gadgets, and that each probe on such
gadgets can be replaced by one probe on each input sharing. The reason why this
still works in the new model is that the ISW multiplication and refresh gadgets
are still SNI for register-based circuits performing bitwise operations on V. This
transition can thus be reduced to the original transition.

Lemma 2. ∀A1,∃S1,S1 wins Game 1. ⇐⇒ ∀A2,∃S2,S2 wins Game 2.

Proof (sketch). The proof for the second game transition relies on the fact that
just as the output of a Boolean multiplication gadget is a random uniform Boolean
sharing, independent of its input sharings, the outputs of the multiplication gad-
gets we consider can be treated as new, fresh input encodings. Thus, a circuit C
is t-probing secure if and only if the circuit C ′ =Flatten(C) is t-probing secure.

Lemma 3. ∀A2,∃S2,S2 wins Game 2. ⇐⇒ ∀A3,∃S3,S3 wins Game 3.

Tornado 323

Proof (sketch). A cross product of shares ai · bj carries informations on both
shares ai and bj, as each of the s slots in the cross product carries information
about each share. Thus, placing probes on multiplication gadgets only is optimal
from the attacker point of view. The complete proof for Lemma3 makes use of
formal notions which are introduced in the next paragraph.

Translation to Linear Algebra. From now on, the column space of a matrix
M is denoted by 〈M〉 and the column space of the concatenation of all the
matrices in a set E is denoted by 〈E〉.

From Lemmas 1 and 2, checking the t-probing security of a shared circuit
C has been reduced to verifying the t-probing security of a shared circuit
C ′ = Flatten(C), for which the attacker is restricted to use probes on its multi-
plication and refresh gadgets’ inputs. We can translate this problem into a linear
algebra problem that we can solve algorithmically. In the following, let us denote
by xi,j ∈ V the jth share of the ith input sharing [xi], so that

∀i ∈ �1, N�, [xi] = (xi,0,xi,1, . . . ,xi,t) ∈ Vt+1

We also denote by x||j the concatenation of the jth shares of the input sharings:

∀j ∈ �0, t�,x||j = x1,j ||x2,j || . . . ||xN,j ∈ K
sN

The probed variables in the flattened circuit C ′ form a q-tuple (v1, . . . ,vq) =
C ′([x1], . . . , [xN])P′ . It can be checked that all these variables are linear combi-
nations of inputs shares’ coordinates since (1) the circuit C ′ has a multiplicative
depth of one, (2) the adversary can only place probes on inputs for multiplication
and refresh gadgets, and (3) other types of gadgets are linear. Since the gadgets
other than multiplication and refresh are sharewise, we can assert that for every
k ∈ �1, q�, there exists a single share index j for which vk only depends on the
jth share of the input sharings and thus only depends on x||j . Therefore there
exists a Boolean matrix Ak ∈ K

sN×s, that we refer to as a block from now on,
such that

vk = x||j · Ak ∈ V.

Let us denote by v||j the concatenation of all nj probed variables vi with i ∈
�1, q� such that vi only depends on share j. Similarly, we denote by Mj ∈
K

sN×snj the matrix obtained from the concatenation of all the corresponding
blocks Ai (in the same order). We can now write

v||0 = x||0 · M0, v||1 = x||1 · M1, . . . , v||t = x||t · Mt

which leads us to the following proposition.

Proposition 1. For any (x1, . . . ,xN) ∈ VN , the q-tuple of probed variables
(v1, . . . ,vq) = C([x1], [x2], . . . , [xN])P′ can be perfectly simulated if and only if
the Mj matrices satisfy

〈M0〉 ∩ 〈M1〉 ∩ · · · ∩ 〈Mt〉 = ∅.

Proof. Let us denote by x = (x1‖x2‖ . . . ‖xN) the concatenation of all the inputs.
We split the proof into two parts to handle both implications.

324 S. Belaïd et al.

From Left to Right. Let us assume that there exist a non-null vector w ∈ K
sN

and vectors u0 ∈ K
sn0 , . . . ,ut ∈ K

snt that verify w = M0 · u0 = · · · = Mt · ut.
This implies the following sequence of equalities:

t∑

j=0

v||j · uj =
t∑

j=0

x||j · Mj · uj =
t∑

j=0

x||j · w = x · w

which implies that the distribution of (v1, . . . ,vq) depends on x, and thus cannot
be perfectly simulated.

From Right to Left. Since the sharings [x1], . . . , [xN] are uniform and indepen-
dent, the vectors x||1, . . . ,x||t are independent uniform random vectors in K

sN ,
and can thus be perfectly simulated without the knowledge of any secret value. As
a direct consequence, the distribution of (v||1, . . . ,v||t) can be simulated. From
the definition v||0 = x||0 · M0, each coordinate of v||0 is the result of a product
x||0 ·c where c is a column of M0. By assumption, there exists j ∈ {1, . . . , t} such
that c /∈ 〈Mj〉. Since x||1, . . . ,x||t are mutually independent, x||j · c is a random
uniform bit independent of x||1 ·M1, . . . ,x||j−1 ·Mj−1,x||j+1 ·Mj+1, . . . ,x||t ·Mt,
and since c /∈ 〈Mj〉, it is also independent of x||j · Mj. This means that x||j · c
is a random uniform bit independent of v||1, . . . ,v||t, and so is x||0 · c, as
x||0 · c = x||j · c+(x||1 · c+ · · ·+x||j−1 · c+x||j+1 · c+ · · ·+x||t · c+x · c). Since
v||0 = x||0 ·M0, we can then perfectly simulate v||0. As a result, (v1, . . . ,vq) can
be perfectly simulated. ��

3.4 Verification in the Register Probing Model

In this section, we present a method based on Proposition 1 that checks whether
a (t + 1)-shared circuit C achieves t-register probing security for every t ∈ N

∗.
We start by introducing some notations and formalizing the problem, then we
give a description of the aforementioned method, along with a pseudocode of the
algorithm. The method is finally illustrated with some examples.

Formal Definitions. Now that the equivalence between the t-register probing
security game was proven to be equivalent to Game 3, in which the adversary
can only probe variables that are inputs of multiplication gadgets in a flattened
circuit C ′, we formally express the verification of the t-register probing security
as a linear algebra problem. For a given multiplication gadget of index g, let us
denote by [ag] and [bg] its input sharings, i.e.

[ag] = (x||0 · Ag, . . . , x||t · Ag) and [bg] = (x||0 · Bg, . . . , x||t · Bg)

for some constant blocks Ag and Bg that we now call operand blocks. The adver-
sary outputs a set of t pairs of probes P = {(p11, p12), (p21, p22), . . . , (pt1, pt2)}, where
for i in {1, . . . , t}, pi1 and pi2 are wire indices corresponding to one element of
each input sharings of the same multiplication. For all j ∈ �0, t�, we define the

Tornado 325

matrix Mj as the concatenation of all the blocks corresponding to probed shares
of share index j.

By Proposition 1, there is a register probing attack on C if and only if⋂t
i=0〈Mj〉 �= ∅. For an attack to exist, the matrices must be non-empty, and

since these matrices contain 2t blocks, at least one of them is made of a single
block D that belongs to the set of operand blocks {Ag, Bg}g. We can now say
that there exists a register probing attack on C if and only if there exists a
non-empty subspace S of K

sN such that S =
⋂t

i=0〈Mj〉 ⊆ 〈D〉. In that case,
there is an attack on the subset S that we now refer to as the attack span.

tightPROVE+. When s = 1 (i.e., in the t-bit probing model case), the dimension
of S =

⋂t
i=0〈Mj〉 is at most 1, so checking whether an operand block W leads

to an attack or not reduces to verifying whether there exists a set of probes for
which S = 〈W 〉. However, for s > 1, there can be many possible subspaces of
〈W 〉 for an operand block W , so that any non-null subspace of 〈W 〉 ∩ S leads
to an attack. That is why the new method not only has to determine whether
there is an attack, but also which subsets of 〈W 〉 could possibly intersect with
the attack span S.

Our method loops over all the operand blocks W ∈ {Ag, Bg}g of multiplica-
tion gadgets and checks whether there is a probing attack on a subset of 〈W 〉.
For each W ∈ {Ag, Bg}g, we create a layered directed acyclic graph GW for
which each node is associated with a permissible attack span that represents the
subspace of 〈W 〉 in which an attack could possibly be found. The permissible
attack span in a node is a subset of the permissible attack span in its parent
node. Each node is indexed by a layer number i and a unique index b. Besides,
the permissible attack span denoted Si,b, the node contains some information in
the form of three additional sets Gi,b, Oi,b and Qi,b. Gi,b is a list of multiplication
gadgets which could be used to find an attack. Qi,b contains the operand blocks
of the multiplications in Gi,b that can be combined with other operands to obtain
elements of 〈W 〉. And then Oi,b, called the set of free operand blocks, contains
the other operand blocks of Gi,b. If there is a way to combine free operands to
obtain an element of 〈W 〉, then a probing attack is found.

We start with the first node root. We assign to S1,root the span 〈W 〉, to
G1,root the set of multiplications for which W is an operand and to Q1,root the
operand W . O1,root can then be deduced from G1,root and Q1,root:

⎧
⎪⎪⎨

⎪⎪⎩

S1,root = 〈W 〉
G1,root = {g | Ag = W} ∪ {g | Bg = W}
O1,root = {Bg | Ag = W} ∪ {Ag | Bg = W}
Q1,root = {W}

At each step i (from i = 1) of the algorithm, for each node b in the ith layer,
if Si,b ∩ 〈Oi,b〉 �= ∅, the method stops and returns False: the circuit is not tight
t-register probing secure for any t. If not, for each node b in the ith layer, for each
operand block A ∈ {Ag, Bg}g\Qi,b, if Si,b∩(〈A〉+〈Oi,b〉) �= ∅ (where 〈A〉+〈Oi,b〉

326 S. Belaïd et al.

denotes the Minkowski sum of 〈A〉 and 〈Oi,b〉), then we connect b to a new node
b′ in the next layer i + 1, containing the following information:
⎧
⎪⎪⎨

⎪⎪⎩

Si+1,b′ = Si,b ∩ (〈A〉 + 〈Oi,b〉)
Gi+1,b′ = Gi,b ∪ {g | A is an operand block of the multiplication gadget g}
Oi+1,b′ = Oi,b ∪ {B | A is a co-operand block of B in a multiplication gadget}
Qi+1,b′ = Qi,b ∪ {A}

If no new node is created at step i, then the algorithm stops and returns True:
the circuit is tight t-register probing secure for any t. The method eventually
stops, as the number of nodes we can create for each graph is finite. Indeed, at
each step i, each node b can only produce |{Ag, Bg}g| − |Qi,b| new nodes, and
for each of them the set Q grows by one. In total, each graph can contain up to
(|{Ag, Bg}g| − 1)! nodes.

The pseudocode of Algorithm 1 gives a high-level description of our method.
In this algorithm, each edge on the graph corresponds to adding an operand
in Q. Multiple operands can be added at once if the corresponding permissible
attack span is the same for all of those operands. For the sake of simplicity, we
decide to omit this optimization in the algorithm.

Proposition 2. Algorithm1 is correct.

Proof (sketch). The proof is organized in two parts. First, we show that there are
no false negatives: if the algorithm returns False, then there is a probing attack
on the input circuit C. This is done with a constructive proof. Assuming that the
algorithm returns False, we construct from the graph a set of matrices (as defined
in Sect. 3.3) such that the intersection of their images is non-empty. Then we
prove that there are no false positives by showing that if there is a probing attack
on a circuit C, then the algorithm cannot stop as long as no attack is found.
Since the algorithm has been proven to terminate, it must return False. ��

The complete proof is provided in the full version.

Complete Characterization. The verification algorithm can be slightly modi-
fied to output all the existing t-register probing attack paths on the input circuit.
This extension mostly amounts to continuing to add new nodes to the graph
even when an attack has been detected until no new node can be added, and
slightly changing the condition to add a node. The new condition can be written
Si,b ∩ (〈A〉∗ + 〈Oi,b〉) �= ∅, where 〈A〉∗ denotes the set of non-null vectors of the
column space of A. And with this, it is possible to determine the least attack
order, which is the least amount of probes tmin that can be used to recover a
secret value in a (tmin + 1)-shared circuit.

Toy Example. We provide in the full version of the paper a comprehensive
illustration of tightPROVE+ on a toy example.

Tornado 327

Algorithm 1. tightPROVE+

input : A description of a circuit C
output: True or False, along with a proof (and possibly a list of attacks)

foreach operand W do
/* create root for the new graph GW */
S1,root = 〈W 〉
G1,root = {g | Ag = W} ∪ {g | Bg = W}
O1,root = {Bg | Ag = W} ∪ {Ag | Bg = W}
Q1,root = {W}
foreach step i do

foreach branch b in layer i do
if Si,b ∩ 〈Oi,b〉 �= ∅ then return False;

end
foreach branch b in layer i do

foreach operand A /∈ Qi,b do
if Si,b ∩ (〈A〉 + 〈Oi,b〉) �= ∅ then

/* add new branch b′ */
Si+1,b′ = Si,b ∩ (〈A〉 + 〈Oi,b〉)
Gi+1,b′ = Gi,b ∪ {g | A is an operand of the mult. gadget g}
Oi+1,b′ = Oi,b ∪ {B | A is an operand of a mult. gadget}
Qi+1,b′ = Qi,b ∪ {A}

end
end

end
end

end
return True

Concrete Example. We now present an example that shows how tightPROVE+

applies to real-life implementations of cryptographic primitives. We take as
example an Usuba implementation of the Gimli [10] cipher, a 384-bit permu-
tation, with 32-bit registers. When applying tightPROVE+ on this circuit, regis-
ter probing attacks are identified. Let us describe one of them and display the
subgraph of the circuit it is based on in Fig. 4.

The subcircuit uses 5 input blocks I1, I2, I3, I4, I5. We denote by [x] the shar-
ing obtained after the rotation of I2 and [y] the one after the rotation of I1. By
probing the multiplication g1, one can get the values x32,0 and y32,1 (the first
index denotes the bit slot in the register and the second one denotes the share).
Due to the left shifts, one can get the values x32,2 and x32,1+y32,1 by probing g2.
The following values can thus be obtained: x32,0, x32,1 = (x32,1 + y32,1) + y32,1,
and x32,2. This implies that x32, the last slot of the secret value x, can be
retrieved with t probes when the circuit is (t + 1)-shared for any t ≥ 2.

328 S. Belaïd et al.

I1 I2 I3 I4 I5

[≪9] [≪24] [�1] [�1] [�2]

[⊗] g1 [⊕]

[⊕] [⊕]

[≪9] [⊕]

[⊗] g2

Fig. 4. Graph representation of a sub-circuit of Gimli.

4 Tornado: Automating Slicing and Masking

Given a high-level description of a cryptographic primitive, Tornado synthesizes a
masked implementation using the ISW-based multiplication and refresh gadgets.
The gadgets are provided as C functions, presented in Fig. 5 and where the macro
MASKING_ORDER is instantiated at compile time to the desired masking order.
The key role of Usuba is to automate the generation of a sliced implementation,
upon which tightPROVE+ is then able to verify either the bit probing or register
probing security, or identify the necessary refreshes. By integrating both tools,
we derive a masked implementation from the sliced one. This is done by mapping
linear operations over all shares, by using isw_mult for bitwise and operations
and by calling isw_refresh where necessary.

static void isw_mult(uint32_t *res,
const uint32_t *op1,
const uint32_t *op2) {

for (int i=0; i<=MASKING_ORDER; i++)
res[i] = 0;

for (int i=0; i<=MASKING_ORDER; i++) {
res[i] ^= op1[i] & op2[i];

for (int j=i+1; j<=MASKING_ORDER; j++) {
uint32_t rnd = get_random();
res[i] ^= rnd;
res[j] ^= (rnd ^ (op1[i] & op2[j]))

^ (op1[j] & op2[i]);
}

}
}

static void isw_refresh(uint32_t *res,
const uint32_t *in) {

for (int i=0; i<=MASKING_ORDER; i++)
res[i] = in[i];

for (int i=0; i<=MASKING_ORDER; i++) {
for (int j=i+1; j<=MASKING_ORDER; j++) {

uint32_t rnd = get_random();
res[i] ^= rnd;
res[j] ^= rnd;

}
}

}

Fig. 5. ISW gadgets.

Tornado 329

Usuba Usuba0 Usuba0 Usuba0 C assembly

tightPROVE+

Normalization
bitslicing/n-slicing

Verification Refresh points

cache hit Masking

Optimizations
loop fusion, mult. by constant,

scheduling, inlining, etc.

Transpilation Register
allocation

Fig. 6. High-level view of the Tornado compiler.

The overall architecture of the Tornado compiler is shown in Fig. 6. It con-
sists essentially in the integration of Usuba and tightPROVE+ within a single,
unified framework. This integration is reasonably simple since the Usuba0 inter-
mediate representation amounts essentially to a register-based circuit extended
with a notion of function node (for code reuse), whereas the input language of
tightPROVE+ consists in unrolled inlined register-based circuits. We therefore
easily obtain an input suitable for tightPROVE+ by inlining all the nodes within
the Usuba0 generated by Usuba. We also need to specify the probing model to
use when carrying the analysis in tightPROVE+: this corresponds exactly to the
typing information specified in Usuba, whether we are considering a bitsliced
implementation (in which case we select the bit probing model), or an n-sliced
implementation (in which case we select the register probing model, registers
whose size is m).

Having sent a register-based circuit to the extended tool tightPROVE+, it may
either be accepted as-is or tightPROVE+ may have identified necessary refresh
points to achieve bit or register probing security. In the latter case, Tornado maps
these refresh points back into the initial, non-inlined Usuba0 code: each refresh
point is turned into a custom refresh operator that is treated specifically by
the Tornado backend (in particular, it cannot be optimized out). Upon emitting
C code, this operator turns into a call to the isw_refresh gadget of Fig. 5.

4.1 Addition of Refresh Gadgets

In order to make the generation of secure masked implementations fully auto-
matic, we use heuristic methods to determine a set of operands to be refreshed
in order to make the resulting circuit secure in the considered probing model.

When a circuit is built from the combination of several instances of the same
subcircuit, the description of the subcircuit is analyzed first, assuming that it
has random, uniform and independent inputs. If probing attacks are found, an
exhaustive search of the placement of refresh gadgets can be done if the size
of the subcircuit is not too big. The same placement of refresh is then applied
every time this subcircuit appears. Doing so is relevant, as any attack that can
be done on a subfunction alone also exists when that subfunction is part of a
wider circuit.

330 S. Belaïd et al.

Then, tightPROVE+ verifies that the resulting circuit is secure. If probing
attacks are still found, then tightPROVE+ is called in full characterization mode
which yields the complete list of multiplications involved in each attack. We
then select an operand of the multiplication that appears the most in that list,
and apply a refresh to this operand. This step is repeated until no more attacks
can be found. This method is bound to stop and yield a secure circuit since,
as proven in the original paper describing tightPROVE, refreshing one input per
multiplication guarantees that the resulting circuit is secure.

We stress that this method is not optimal in the sense that it does not always
find the minimal number of refresh gadgets needed to make a circuit secure, but
it provides a sound heuristic. Finding an optimal and efficient method to place
refresh gadgets is left open for future research.

4.2 Optimizations

Whereas this compilation scheme is functionally sufficient to guarantee security,
further optimizations are beneficial to make it scale to large masking orders
on a typical embedded platform. Tornado therefore integrates a modicum of
optimizations to optimize stack usage (especially for bitsliced implementations),
to reduce the overhead of repeatedly iterating over shares and to minimize the
number of masked multiplications. Note that the objective of the present work is
not to demonstrate best-in-class performance results: we are instead interested
in 1. the asymptotic performance of a given primitive across a sizable choice of
masking orders; and 2. the comparative performance of sizable number primitives
at a given masking order.

To this end, Tornado has proved to be a valuable tool. We enable the first
point by minimizing the impact that the C compiler can have on the quality (or
lack thereof) of the resulting code. For example and as the masking order grows,
the compiler tends to shy away from certain loop-related optimizations that are
beneficial. We therefore systematically carry these optimizations in Tornado. We
enable the second point by subjecting all the primitives to the same, predictable
(even if imperfect) compilation process tailored to the platform of interest.

We have therefore identified two optimizations that are necessary to scale
to large masking orders: aggressive constant propagation for multiplications and
loop fusion. Masked multiplication being expensive, we strive to spot the case
where the operand of a multiplication is in fact a constant value. We do so
through a constant propagation analysis in Usuba0 followed by a specific compi-
lation rule in this case: we directly multiply all the shares with the constant.

To mask a sequence of instructions, Tornado replaces each of them with a
masked gadget. Gadgets for linear operations consist in a loop applying itera-
tively a basic operation over each share, such as

for (int i=0; i<=MASKING_ORDER; i++) A(i);
for (int i=0; i<=MASKING_ORDER; i++) B(i);
for (int i=0; i<=MASKING_ORDER; i++) C(i);

Tornado 331

where A, B and C are linear operations storing their results in a number of vari-
ables linear with MASKING_ORDER. As a result, stack usage increases linearly
with the masking order, which means that, when considering implementations as
register-hungry as bitslicing ones, even small masking orders can be too heavy.
Besides, operating each loop (increment, comparison, branching) impedes an
overhead that the C compiler is something heuristically willing to optimize out
at small orders, leading to confusing threshold effects when benchmarking. To
address both issues, we systematically perform loop fusion, thus obtaining

for (int i=0; i<=MASKING_ORDER; i++) {
A(i); B(i); C(i);

}

on the above example, followed by instruction scheduling, which will strive to
reduce the live range [29] (and thus the number of temporaries) of, for example,
the variables set in A and used in B.

This optimization allows us to reduce stack usage of our bitsliced implemen-
tations by 11 kB on average whereas this saves us, on average, 3 kB of stack for
our n-sliced implementations (recall that our platform offers a measly 96 kB of
SRAM). It also positively impacts performance, with a 16% average speedup for
bitslicing and a 21% average speedup for n-slicing.

5 Evaluation

We evaluated Tornado on 11 cryptographic primitives from the second round of
the NIST lightweight cryptography competition4. The choice of cryptographic
primitives was made on the basis that they were self-identified as being amenable
to masking. We stress that we do not focus on the full authenticated encryp-
tion, message authentication, or hash protocols but on the underlying primitives,
mostly block ciphers and permutations.

Table 1 provides an overview of these primitives. Whenever possible, we
generate both a bitsliced and an n-sliced implementation for each primitive,
which allows us to exercise the bit-probing and the register-probing models of
tightPROVE+. However, 4 primitives do not admit a straightforward n-sliced
implementation. The Subterranean permutation involves a significant amount
of bit-twiddling across its 257-bit state, which makes it a resolutely bitsliced
primitive (as confirmed by its reference implementation). Photon, Skinny,
Spongent rely on lookup tables that would be too expansive to emulate in n-
sliced mode. In bitslicing, these tables are simply implemented by their Boolean
circuit, either provided by the authors (Photon, Skinny) or generated through
SAT [34] with the objective of minimizing multiplicative complexity (Spongent,
with 4 ANDs and 28 XORs). Spook and Elephant respectively rely on the Clyde
and Spongent primitives, which we therefore include in our evaluation.

4 See https://csrc.nist.gov/Projects/lightweight-cryptography/round-2-candidates
for the list of candidates together with specifications and reference implementations.

https://csrc.nist.gov/Projects/lightweight-cryptography/round-2-candidates

332 S. Belaïd et al.

Note that the n-sliced implementations, when they exist, are either 32-sliced
or 64-sliced. This means in particular that, unlike bitslicing that processes mul-
tiple blocks in parallel, these implementations process a single block at once on
our 32-bit Cortex M4.

In Subsect. 5.1, we present the results of tightPROVE+ on the considered
primitives using the refresh placement strategy explained in Subsect. 4.1. Finally,
we benchmark our unmasked implementations against reference implementations
in Subsect. 5.2, and compare their masked versions in Subsect. 5.3.

Table 1. Overview of the selected cryptographic primitives.

primitive state size multiplications mult./bits
n-sliceable slice

(bits) n-slice bitslice n-slice bitslice size
Ace [1] 320 384 12288 1.2 38 ✓ 32

Ascon [23] 320 60 3840 0.19 12 ✓ 64
Clyde [9] 128 48 1536 0.37 12 ✓ 32
Gift [3] 128 160 5120 1.25 40 ✓ 32

Gimli [11] 384 288 9216 0.75 24 ✓ 32
Photon [4] 256 - 3072 - 12 ✗ -

Pyjamask [24] 128 56 1792 0.44 14 ✓ 32
Skinny [7] 128 - 6144 - 48 ✗ -

Spongent [13,14] 160 - 12800 - 80 ✗ -
Subterranean [22] 257 - 2056 - 8 ✗ -
Xoodoo [20,21] 384 144 4608 0.37 12 ✓ 32

5.1 tightPROVE+

Table 2 contains the results of tightPROVE+ for the aforementioned primitives.
We display the output of our algorithm for each circuit, along with the size of
the registers used and the time it takes for tightPROVE+ to output the results.
Table 3 provides additional information about the implementations that are not
secure in the register probing model. This includes the size of the registers, the
time it takes to find the first attack, the time it takes to find all the operands
that can be retrieved, then the least attack order, the optimal number of refresh
gadgets needed to make the implementation secure in the register probing model,
and finally the time tightPROVE+ takes to verify that the refreshed implemen-
tation is indeed secure. All calculations were made on an iMac with an intel
Core i7 processor (4GHz) and 16GB of DDR3 RAM (1600MHz), with parallel
computing on its 8 CPUs.

Following the method described in Sect. 4.1, tightPROVE+ places refresh gad-
gets for the considered implementations of Ace, Clyde and Gimli. For the two
first primitives, there is exactly one subcircuit which is responsible for the iden-
tified register probing attacks, which can be fixed by adding only one refresh
gadget. This gives us a lower bound for the optimal number of refresh gadgets,

Tornado 333

Table 2. Results of tightPROVE+ on all the implementations.

and since tightPROVE+ does not find any further attack after the addition of
refresh gadgets, it is also an upper bound. Gimli, however, is made of 6 sub-
sequent identical subcircuits that are subject to register probing attacks, but
the method uses 20 refresh gadgets per subcircuits to make the implementation
secure. We can thus only conclude that we have an upper bound of 120 for the
optimal number of gadgets, and that it is a multiple of 6, but in the current
method, we cannot ascertain that it is optimal without setting up an exhaustive
search.

5.2 Baseline Performance Evaluation

In the following, we benchmark our implementations – in Usuba and compiled
with Tornado – of the NIST submissions against the reference implementation
provided by the contestants. This allows us to establish a performance baseline
(without masking), thus providing a common frame of reference for the per-
formance of these primitives based on their implementation synthesized from
Usuba. In doing so, we have to bear in mind that the reference implementations

334 S. Belaïd et al.

Table 3. Complementary information on flawed implementations.

primitive
register

first attack all operands
least attack refresh refreshed

size order gadgets needed circuit
Ace 32 10 min 25 min 1 384 70 H
Clyde-128 32 32 s 2 min 10 s 2 6 3 min 10 s
Gimli-36 32 1 H 10 min 66 H 20 min 2 ≤ 120 8 H 50 min

provided by the NIST contestants are of varying quality: some appear to have
been finely tuned for performance while others focus on simplicity, acting as an
executable specification.

In an effort to level the playing field, we ran our benchmark on an Intel
i5-6500 @ 3.20GHz, running Linux 4.15.0-54. The implementations were com-
piled with Clang 7.0.0 with flags -O3 -fno-slp-vectorize -fno-vectorize.
These flags prevent Clang from trying to produce vectorized code, which would
artificially advantage some implementations at the expense of others because of
brittle, hard-to-predict vectorization heuristics. Besides, vectorized instructions
remain an exception in the setting of embedded devices (e.g., Cortex M). At the
exception of Subterranean (which is bitsliced), the reference implementations
follow a n-sliced implementation pattern, representing the state of the primitive
through a matrix of 32-bit values, or 64-bit in the case of Ascon. To evaluate
bitsliced implementations, we simulate a 32-bit architecture, meaning that the
throughput we report corresponds to the parallel encryption of 32 independent
blocks.

The results are shown in Table 4. We notice that Usuba often delivers perfor-
mance that is on par or better than the reference implementations. Note that this
does not come at the expense of intelligibility: our Usuba implementations are
written in a high-level language, which is amenable to formal reasoning thanks
to its straightforward semantic model (unlike any implementation in C). The
reference implementations of Skinny and Photon use lookup tables, which do
not admit a straightforward implementation in terms of constant-time, combi-
national operations. As a result, we are unable to implement a constant-time
n-sliced version in Usuba and to, in Sect. 5.3, mask such an implementation.

We now turn our attention specifically to a few implementations that exhibit
interesting performance with the following observations:

– The reference implementation of Subterranean is an order of magnitude slower
than in Usuba because its implementation is bit-oriented (each bit is stored
in a distinct 8-bit variable) but only a single block is encrypted at a time.
Switching to 32-bit variables and encrypting 32 blocks in parallel, as Usuba
does, significantly improves performance.

– The reference implementation of Spongent is slowed down by a prohibitively
expensive bit-permutation over 160 bits, which is spread across 20 8-bit vari-
ables. Thanks to bitslicing, Usuba turns this permutation into a purely static
renaming of variable, which occurs purely at compile-time.

Tornado 335

– On Ascon, our n-sliced implementation is twice slower than the reference
implementation. Unlike the reference implementation, we have refrained from
performing aggressive function inlining and loop unrolling to keep code size
in check, since we target embedded systems. However, if we instruct the
Usuba compiler to perform these optimizations, the performance of our n-
sliced implementation is on par with the reference one.

– Ace reference implementation suffers from significant performance issues,
relying on an excessive number of temporary variables to store intermediate
results.

– Finally, Gimli offers two reference implementations, one being a high-
performance SSE implementation with the other serving as an executable
specification on general-purpose registers. We chose the general-purpose one
here (which had not been subjected to the same level of optimizations)
because our target architecture (Cortex M) does not provide a vectorized
instruction set.

Table 4. Comparison of Usuba vs reference implementations.

primitive Performances (cycles/bytes)
(lower is better)

Usuba n-slice Usuba bitslice reference
Ace 34.25 55.89 276.53

Ascon 9.84 4.94 5.18
Clyde 33.72 21.99 37.69
Gimli 15.77 5.80 44.35
Gift 565.30 45.51 517.27

Photon - 44.88 214.47
Pyjamask 246.72 131.33 267.35
Skinny - 46.87 207.82

Spongent - 146.93 4824.97
Subterranean - 17.64 355.38

Xoodoo 14.93 6.47 10.14

5.3 Masking Benchmarks

We now turn to the evaluation of the masked implementations produced by
Tornado using the Usuba implementations presented in the previous section. Our
benchmarks are run on a Nucleo STM32F401RE offering an Arm Cortex-M4
with 512Kbytes of Flash memory and 96Kbytes of SRAM. We used the GNU
C compiler arm-none-eabi-gcc version 9.2.0 at optimization level -O3.

We considered two modes regarding the Random Number Generator (RNG):

– Pooling mode: The RNG generates random numbers at a rate of 32 bits every
64 clock cycles. Fetching a random number can thus take up to 65 clock cycles.

336 S. Belaïd et al.

– Fast mode: The RNG only takes a few clock cycles to generate a 32-bit random
word. The RNG routine thus can simply read a register containing this 32-bit
random word without checking for its availability.

Those two modes were chosen because they are the ones used in the submission
of Pyjamask, which is the only submission detailing the question of how to get
random numbers for a masked implementation.

Of these 11 NIST submissions, only Pyjamask provides a masked implemen-
tation. Our implementation is consistently (at every order, and with both the
pooling and fast RNGs) 1.8 times slower than their masked implementation.
The reason is twofold. First, their reference implementation has been heavily
optimized to take advantage of the barrel shifter on the Cortex M4, which we
do not exploit. Second, our implementation uses the generic ISW multiplication
(Fig. 5) whereas the reference implementation employs a specialized, hand-tuned
implementation in assembly.

n-sliced Implementations. Table 5a gives the performances of the n-sliced imple-
mentations produced by Tornado in terms of cycles per byte. Note that these
implementations are provably secure, with refreshing gadgets being inserted if
necessary.

Since masking a multiplication has a quadratic cost in the number of shares,
we expect performance at high orders to be mostly proportional with the number
of multiplications used by the primitives. We thus report the number of multi-
plications involved in our implementation normalized to the block size (in bytes)
of the primitive. This is confirmed by our results with 128 shares (on the Cor-
tex M4). This effect is less pronounced at small orders since the execution time
remains dominated by linear operations. Using the pooling RNG increases the
cost of multiplications compared to the fast RNG, which results in performances
being proportional to the number of multiplications at smaller order than with
the fast RNG.

Pyjamask illustrates the influence of the number of multiplications on scaling.
Because of its use of dense binary matrix multiplications, it involves a significant
number of linear operations for only a few multiplications. As a result, it is slower
than Gimli and Ace at order 3, despite the fact that they use respectively 2×
and 6× more multiplications. With the fast RNG, the inflection point is reached
at order 7 for Ace and order 31 for Gimli, only to improve afterward. Similarly
when compared to Clyde, Pyjamask goes from 5× slower at order 3 to 50%
slower at order 127 with the fast RNG and 20% slower at order 127 with the
pooling RNG. The same analysis applies to Gift and Ace, where the linear
overhead of Gift is only dominated at order 63 with the pooling RNG and at
order 127 with the fast RNG.

One notable exception is Ascon with the fast RNG, compared in particular
to Xoodoo and Clyde. Whereas Ascon uses a smaller number of multiplications,
it involves a 64-sliced implementation (Table 1), unlike its counterparts that are
32-sliced. Running on our 32-bit Cortex-M4 requires GCC to generate 64-bit
emulation code, which induces a significant operational overhead and prevents

Tornado 337

Table 5. Performances of Tornado generated n-sliced masked implementations.

primitive mult./bytes TRNG
Performances (cycles/bytes)

(lower is better)
d = 0 d = 3 d = 7 d = 15 d = 31 d = 63 d = 127

Ascon 1.375 pooling 49 1.34k 4.57k 20.54k 79.24k 324k 1.30m
fast 49 1.05k 3.08k 11.61k 42.48k 163k 640k

Xoodoo 1.5 pooling 63 1.71k 6.96k 29.07k 113k 448k 1.73m
fast 63 889 3.26k 10.84k 39.43k 143k 555k

Clyde 3 pooling 92 1.88k 7.58k 31.43k 121k 483k 1.87m
fast 92 961 3.53k 11.84k 41.88k 161k 653k

Pyjamask 3 pooling 994 5.93k 17.16k 59.66k 194k 646k 2.27m
fast 994 4.97k 12.84k 38.40k 108k 297k 950k

Gimli 6 pooling 56 3.97k 17.35k 73.42k 293k 1.17m 4.56m
fast 56 1.77k 7.14k 24.71k 95.20k 356k 1.40m

Gift 10 pooling 1.12k 15.27k 44.68k 138k 532k 1.82m 6.40m
fast 1.13k 12.53k 32.27k 77.61k 285k 819k 2.64m

Ace 19.2 pooling 92 7.55k 32.94k 114k 495k 1.96m 7.77m
fast 92 3.88k 13.29k 40.06k 190k 746k 2.84m

(a) cycles per byte

primitive mult. TRNG
Performances (cycles)

(lower is better)
d = 0 d = 3 d = 7 d = 15 d = 31 d = 63 d = 127

Clyde 48 pooling 1.47k 30.08k 121.28k 502.88k 1.94m 7.73m 29.92m
fast 1.47k 15.38k 56.48k 189.44k 670.08k 2.58m 10.45m

Pyjamask 56 pooling 15.90k 94.88k 274.56k 954.56k 3.10m 10.34m 36.32m
fast 15.90k 79.52k 205.44k 614.40k 1.73m 4.75m 15.20m

Ascon 60 pooling 1.96k 53.60k 182.80k 821.60k 3.17m 12.96m 52.00m
fast 1.96k 42.00k 123.20k 464.40k 1.70m 6.52m 25.60m

Xoodoo 144 pooling 3.02k 82.08k 334.08k 1.40m 5.42m 21.50m 83.04m
fast 3.02k 42.67k 156.48k 520.32k 1.89m 6.86m 26.64m

Gift 160 pooling 17.92k 244.32k 714.88k 2.21m 8.51m 29.12m 102.40m
fast 18.08k 200.48k 516.32k 1.24m 4.56m 13.10m 42.24m

Gimli 288 pooling 2.69k 190.56k 832.80k 3.52m 14.06m 56.16m 218.88m
fast 2.69k 84.96k 342.72k 1.19m 4.57m 17.09m 67.20m

Ace 384 pooling 3.68k 302.00k 1.32m 4.56m 19.80m 78.40m 310.80m
fast 3.68k 155.20k 531.60k 1.60m 7.60m 29.84m 113.60m

(b) cycles per bloc

further optimization by the compiler. When using the pooling RNG however,
Ascon is faster than both Xoodoo and Clyde at every order, thanks to its
smaller number of multiplications.

For scenarios in which one is not interested in encrypting a lot of data but
rather a single block, possibly short, then it makes more sense to look at the
performances of a single run of a cipher, rather than its amortized performances

338 S. Belaïd et al.

over the amount of bytes it encrypts. This is shown in Table 5b. The ciphers that
use the least amount of multiplications have the upper hand when masking order
increases: Clyde is clearly the fastest primitive at order 127, closely followed by
Pyjamask. Ascon, which is the fastest one when looking at the cycles/bytes
actually owns its performances to his low number of multiplications compared
to its 320-bit block size. Therefore, when looking at a single run, it is actually
1.7× slower than Clyde at order 127. Similarly, Xoodoo performs well on the
cycles/bytes metric, but has a block size of 384 bits, making it 2.5× slower.

Bitsliced Implementations. The key limiting factor to execute bitslice code on
an embedded device is the amount of memory available. Bitsliced programs tend
to be large and to consume a significant amount of stack. Masking such imple-
mentations at high orders becomes quickly impractical because of the quadratic
growth of the stack usage.

To reduce stack usage and allow us to explore high masking orders, our bit-
sliced programs manipulate 8-bit variables, meaning that 8 independent blocks
can be processed in parallel. This trades memory usage for performance, as we
could have used 32-bit variables and improved our throughput by a factor 4.
However, doing so would have put an unbearable amount of pressure on the
stack, which would have prevented us from considering masking orders beyond
7. Besides, it is not clear whether there is a use-case for such a massively parallel
(32 independent blocks) encryption primitive in a lightweight setting. As a result
of our compilation strategy, we have been able to mask all primitives with up to
16 shares and, additionally, reach 32 shares for Photon, Skinny, Spongent
and Subterranean.

As for the n-sliced implementations, we observe a close match between the
asymptotic performance of the primitive and their number of multiplications
per bits (Table 6), which becomes even more prevalent as order increases and the
overhead of linear operations becomes comparatively smaller. Pyjamask remains
a good example to illustrate this phenomenon, the inflection point being reached
at order 15 with respect to Ace (which uses 3× more multiplications).

The performance of Ascon with the fast RNG, which was slowed down by its
suboptimal use of 64-bit registers in n-slicing, is streamlined in bitslicing: here,
it exhibits the same number of multiplication per bits as Xoodoo and, indeed,
their performance match remarkably well.

Finally, we observe that with the pooling RNG, already at order 15, the
performances of our implementations is in accord with their relative number
of multiplications per bits. In bitslicing (more evidently than in n-slicing), the
number of multiplications is performance critical, even at relatively low masking
order.

Tornado 339

Table 6. Performances of Tornado generated bitslice masked implementations.

primitive mult./bits TRNG
Performances (cycles/bytes)

(lower is better)
d = 0 d = 3 d = 7 d = 15 d = 31

Subterranean 8 pooling 94 4.46k 19.13k 79.63k 312k
fast 94 2.15k 7.18k 27.03k 95.19k

Ascon 12 pooling 101 7.33k 30.33k 125k -
fast 101 3.07k 11.45k 42.39k -

Xoodoo 12 pooling 112 6.69k 28.79k 120k -
fast 112 3.12k 10.49k 39.35k -

Clyde 12 pooling 177 7.88k 31.04k 127k -
fast 161 3.44k 13.57k 45.34k -

Photon 12 pooling 193 10.47k 31.77k 126k 476k
fast 193 7.66k 14.28k 44.99k 154k

Pyjamask 14 pooling 1.59k 20.33k 52.81k 193k -
fast 1.59k 16.52k 31.74k 97.88k -

Gimli 24 pooling 127 12.14k 53.64k 236k -
fast 127 5.51k 19.15k 76.91k -

Ace 38 pooling 336 19.94k 89.12k 395k -
fast 336 8.22k 35.29k 123k -

Gift 40 pooling 358 21.38k 93.92k 405k -
fast 358 11.08k 36.79k 136k -

Skinny 48 pooling 441 34.28k 131k 525k 1.97m
fast 441 18.19k 61.75k 200k 664k

Spongent 80 pooling 624 44.04k 188k 816k 3.15m
fast 624 19.45k 64.78k 259k 948k

6 Conclusion

In this paper, we have introduced tightPROVE+, an extension of tightPROVE that
operates on the register-probing model. Stepping beyond the bit-probing model
allows us to establish provable security in a purely software context. By combining
tightPROVE+ with the Usuba programming language, we have obtained an inte-
grated development environment, calledTornado, that streamlines the definition of
symmetric ciphers and automates their compilation into provably-secure masked
implementations. Thanks to this framework, we have been able to systematically
evaluate 11NIST lightweight cryptography round-2 submissions that are amenable
to masking. We have identified 3 ciphers (Ace, Clyde, Gimli) that are not safe in
the register probing model and proposed some refresh points to repair them. We
have also carried out an extensive performance evaluation, studying the asymp-
totic behavior of these ciphers across a large range of masking orders.

As part of future work, we intend to further enrich our compiler backend
with optimizations specific to embedded architectures (Cortex M and/or Risc-V),
systematizing various primitive-specific optimizations documented in the litera-
ture [28,33,35]. Previous results on Intel architecture [29] has demonstrated that
Usuba can produce code whose performance is on par with hand-optimized, assem-
bly implementations.

340 S. Belaïd et al.

Acknowledgments. This work is partly supported by the French FUI-AAP25 VeriS-
iCC project, the Émergence(s) program of the City of Paris and the EDITE doctoral
school.

References

1. Aagaard, M., AlTawy, R., Gong, G., Mandal, K., Rohit, R.: Ace: an authenticated
encryption and hash algorithm (2019)

2. Balasch, J., Gierlichs, B., Grosso, V., Reparaz, O., Standaert, F.-X.: On the cost of
lazy engineering for masked software implementations. Cryptology ePrint Archive,
Report 2014/413 (2014). http://eprint.iacr.org/2014/413

3. Banik, S., et al.: Gift-COFB (2019)
4. Bao, Z., et al.: Photon-Beetle authenticated encryption and hash family (2019)
5. Barthe, G., et al.: Strong non-interference and type-directed higher-order masking.

In: Weippl, E.R., Katzenbeisser, S., Kruegel, C., Myers, A.C., Halevi, S. (eds.)
ACM CCS 2016, pp. 116–129. ACM Press, New York (2016)

6. Battistello, A., Coron, J.-S., Prouff, E., Zeitoun, R.: Horizontal side-channel attacks
and countermeasures on the ISW masking scheme. In: Gierlichs, B., Poschmann,
A.Y. (eds.) CHES 2016. LNCS, vol. 9813, pp. 23–39. Springer, Heidelberg (2016).
https://doi.org/10.1007/978-3-662-53140-2_2

7. Beierle, C., et al.: Skinny-AEDA and Skinny-Hash (2019)
8. Belaïd, S., Goudarzi, D., Rivain, M.: Tight private circuits: achieving probing secu-

rity with the least refreshing. In: Peyrin, T., Galbraith, S. (eds.) ASIACRYPT 2018,
Part II. LNCS, vol. 11273, pp. 343–372. Springer, Cham (2018). https://doi.org/
10.1007/978-3-030-03329-3_12

9. Bellizia, D., et al.: Spook: sponge-based leakage-resilient authenticated encryption
with a masked tweakable block cipher (2019)

10. Bernstein, D.J., et al.: Gimli: a cross-platform permutation. In: Fischer, W.,
Homma, N. (eds.) CHES 2017. LNCS, vol. 10529, pp. 299–320. Springer, Cham
(2017). https://doi.org/10.1007/978-3-319-66787-4_15

11. Bernstein, D.J., et al.: Gimli (2019)
12. Biham, E.: A fast new DES implementation in software. In: Biham, E. (ed.) FSE

1997. LNCS, vol. 1267, pp. 260–272. Springer, Heidelberg (1997). https://doi.org/
10.1007/BFb0052352

13. Bogdanov, A., Knežević, M., Leander, G., Toz, D., Varıcı, K., Verbauwhede, I.:
spongent: a lightweight hash function. In: Preneel, B., Takagi, T. (eds.) CHES
2011. LNCS, vol. 6917, pp. 312–325. Springer, Heidelberg (2011). https://doi.org/
10.1007/978-3-642-23951-9_21

14. Byene, T., Chen, Y.L., Dobraunig, C., Mennink, B.: Elephant v1 (2019)
15. Carlet, C., Goubin, L., Prouff, E., Quisquater, M., Rivain, M.: Higher-order masking

schemes for S-boxes. In: Canteaut, A. (ed.) FSE 2012. LNCS, vol. 7549, pp. 366–384.
Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-34047-5_21

16. Carlet, C., Prouff, E., Rivain, M., Roche, T.: Algebraic decomposition for prob-
ing security. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015, Part I. LNCS,
vol. 9215, pp. 742–763. Springer, Heidelberg (2015). https://doi.org/10.1007/978-
3-662-47989-6_36

17. Coron, J.-S., Prouff, E., Rivain, M.: Side channel cryptanalysis of a higher order
masking scheme. In: Paillier, P., Verbauwhede, I. (eds.) CHES 2007. LNCS, vol.
4727, pp. 28–44. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-
74735-2_3

http://eprint.iacr.org/2014/413
https://doi.org/10.1007/978-3-662-53140-2_2
https://doi.org/10.1007/978-3-030-03329-3_12
https://doi.org/10.1007/978-3-030-03329-3_12
https://doi.org/10.1007/978-3-319-66787-4_15
https://doi.org/10.1007/BFb0052352
https://doi.org/10.1007/BFb0052352
https://doi.org/10.1007/978-3-642-23951-9_21
https://doi.org/10.1007/978-3-642-23951-9_21
https://doi.org/10.1007/978-3-642-34047-5_21
https://doi.org/10.1007/978-3-662-47989-6_36
https://doi.org/10.1007/978-3-662-47989-6_36
https://doi.org/10.1007/978-3-540-74735-2_3
https://doi.org/10.1007/978-3-540-74735-2_3

Tornado 341

18. Coron, J.-S., Prouff, E., Rivain, M., Roche, T.: Higher-order side channel security
and mask refreshing. In: Moriai, S. (ed.) FSE 2013. LNCS, vol. 8424, pp. 410–424.
Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-43933-3_21

19. Coron, J.-S., Roy, A., Vivek, S.: Fast evaluation of polynomials over binary finite
fields and application to side-channel countermeasures. In: Batina, L., Robshaw,
M. (eds.) CHES 2014. LNCS, vol. 8731, pp. 170–187. Springer, Heidelberg (2014).
https://doi.org/10.1007/978-3-662-44709-3_10

20. Daemen, J., Hoert, S., Van Assche, G., Van Keer, R.: Xoodoo cookbook. IACR-
Cryptology ePrint Archive, 2018:767 (2018)

21. Daemen, J., Hoert, S., Peeters, M., Van Assche, G., Van Keer, R.: Xoodyak, a
lightweight cryptographic scheme (2019)

22. Daemen, J., Massolino, P.M.C., Rotella, Y.: The Subterranean 2.0 cipher suite (2019)
23. Dobraunig, C., Eichlseder, M., Mendal, F., Schäffer, M.: The Subterranean 2.0

cipher suite (2019)
24. Goudarzi, D., et al.: Pyjamask (2019)
25. Goudarzi, D., Rivain, M.: How fast can higher-order masking be in software? In:

Coron, J.-S., Nielsen, J.B. (eds.) EUROCRYPT 2017, Part I. LNCS, vol. 10210, pp.
567–597. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-56620-7_20

26. Ishai, Y., Sahai, A., Wagner, D.: Private circuits: securing hardware against prob-
ing attacks. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 463–481.
Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-540-45146-4_27

27. Journault, A., Standaert, F.-X.: Very high order masking: efficient implementation
and security evaluation. In: Fischer, W., Homma, N. (eds.) CHES 2017. LNCS,
vol. 10529, pp. 623–643. Springer, Cham (2017). https://doi.org/10.1007/978-3-
319-66787-4_30

28. Kannwischer, M.J., Rijneveld, J., Schwabe, P., Stoffelen, K.: pqm4: testing and
benchmarking NIST PQC on ARM cortex-M4. IACR Cryptology ePrint Archive
2019:844 (2019)

29. Mercadier, D., Dagand, P.: Usuba: high-throughput and constant-time ciphers, by
construction. In: PLDI, pp. 157–173 (2019)

30. Mercadier, D., Dagand, P., Lacassagne, L., Muller, G.: Usuba: optimizing & trust-
worthy bitslicing compiler. In: Proceedings of the 4th Workshop on Programming
Models for SIMD/Vector Processing, WPMVP@PPoPP 2018, Vienna, Austria, 24
February 2018, pp. 4:1–4:8 (2018)

31. Papagiannopoulos, K., Veshchikov, N.: Mind the gap: towards secure 1st-order
masking in software. In: Guilley, S. (ed.) COSADE 2017. LNCS, vol. 10348, pp.
282–297. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-64647-3_17

32. Rivain, M., Prouff, E.: Provably secure higher-order masking of AES. In: Mangard,
S., Standaert, F.-X. (eds.) CHES 2010. LNCS, vol. 6225, pp. 413–427. Springer,
Heidelberg (2010). https://doi.org/10.1007/978-3-642-15031-9_28

33. Schwabe, P., Stoffelen, K.: All the AES you need on cortex-M3 and M4. In: Avanzi,
R., Heys, H. (eds.) SAC 2016. LNCS, vol. 10532, pp. 180–194. Springer, Cham
(2017). https://doi.org/10.1007/978-3-319-69453-5_10

34. Stoffelen, K.: Optimizing S-box implementations for several criteria using SAT
solvers. In: Peyrin, T. (ed.) FSE 2016. LNCS, vol. 9783, pp. 140–160. Springer,
Heidelberg (2016). https://doi.org/10.1007/978-3-662-52993-5_8

35. Stoffelen, K.: Efficient cryptography on the RISC-V architecture. In: Schwabe, P.,
Thériault, N. (eds.) LATINCRYPT 2019. LNCS, vol. 11774, pp. 323–340. Springer,
Cham (2019). https://doi.org/10.1007/978-3-030-30530-7_16

https://doi.org/10.1007/978-3-662-43933-3_21
https://doi.org/10.1007/978-3-662-44709-3_10
https://doi.org/10.1007/978-3-319-56620-7_20
https://doi.org/10.1007/978-3-540-45146-4_27
https://doi.org/10.1007/978-3-319-66787-4_30
https://doi.org/10.1007/978-3-319-66787-4_30
https://doi.org/10.1007/978-3-319-64647-3_17
https://doi.org/10.1007/978-3-642-15031-9_28
https://doi.org/10.1007/978-3-319-69453-5_10
https://doi.org/10.1007/978-3-662-52993-5_8
https://doi.org/10.1007/978-3-030-30530-7_16

Side-Channel Masking
with Pseudo-Random Generator

Jean-Sébastien Coron1(B), Aurélien Greuet2, and Rina Zeitoun2(B)

1 University of Luxembourg, Esch-sur-Alzette, Luxembourg
jean-sebastien.coron@uni.lu
2 IDEMIA, Courbevoie, France

{aurelien.greuet,rina.zeitoun}@idemia.com

Abstract. High-order masking countermeasures against side-channel
attacks usually require plenty of randomness during their execution.
For security against t probes, the classical ISW countermeasure requires
O(t2s) random bits, where s is the circuit size. However running
a True Random Number Generator (TRNG) can be costly in prac-
tice and become a bottleneck on embedded devices. In [IKL+13] the
authors introduced the notion of robust pseudo-random number gener-
ator (PRG), which must remain secure even against an adversary who
can probe at most t wires. They showed that when embedding a robust
PRG within a private circuit, the number of random bits can be reduced
to Õ(t4), that is independent of the circuit size s (up to a logarithmic
factor). Using bipartite expander graphs, this can be further reduced to
Õ(t3+ε); however the resulting construction is impractical.

In this paper we describe a construction where the number of random
bits is only Õ(t2) for security against t probes, without expander graphs;
moreover the running time of each pseudo-random generation goes down
from Õ(t4) to Õ(t). Our technique consists in using multiple indepen-
dent PRGs instead of a single one. We show that for ISW circuits, the
robustness property of the PRG is not required anymore, which leads to
simple and efficient constructions. For example, for AES we only need 48
bytes of randomness to get second-order security (t = 2), instead of 2880
in the original Rivain-Prouff countermeasure. As a first feasibility result,
we have implemented our countermeasure on an ARM-based embedded
device with a relatively slow TRNG, and obtained a 50% speed-up com-
pared to Rivain-Prouff.

1 Introduction

High-Order Masking. Side-channel analysis is a class of attacks which exploits
the physical environment of a cryptosystem during its execution, to reveal the
secrets being manipulated. The masking countermeasure is an efficient technique
to protect sensitive data against this threat. To protect a sensitive data x, the
masking technique consists in generating a random variable r and manipulating
the masked variable x′ = x⊕ r and the random r separately, instead of x
directly. In that case, every intermediate variable has the uniform distribution
c© International Association for Cryptologic Research 2020
A. Canteaut and Y. Ishai (Eds.): EUROCRYPT 2020, LNCS 12107, pp. 342–375, 2020.
https://doi.org/10.1007/978-3-030-45727-3_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-45727-3_12&domain=pdf
https://doi.org/10.1007/978-3-030-45727-3_12

Side-Channel Masking with Pseudo-Random Generator 343

and any first-order attack is thwarted. However by combining information from
both leakage points x′ and r, a second-order attack can still be feasible (see for
example [OMHT06]).

A natural countermeasure against high-order attacks is to use a high-
order masking, where each variable x is split into n Boolean shares
x = x1 ⊕ x2 ⊕ · · · ⊕ xn, with n > t for security against t probes. Initially the
shares are generated uniformly at random under this condition; for example
one can generate x1, . . . , xn−1 randomly and let xn = x ⊕ x1 ⊕ · · · ⊕ xn−1. The
shares are then processed separately in masked operations (also called gadgets)
that enable to compute the underlying secret variables in a secure way.

The study of circuits resistant against probing attacks was initiated by Ishai,
Sahai and Wagner in [ISW03]. They showed how to transform any circuit of size
s into a circuit of size O(t2s) secure against any adversary who can probe at
most t wires. The ISW construction is based on secret sharing every variable
x into x = x1 ⊕ x2 ⊕ · · · ⊕ xn as above, with n = 2t + 1 shares to guarantee
security against t probes. Processing a XOR gate is straightforward as the shares
can be xored separately. For processing an AND gate z = xy, one computes all
cross-products xiyj in Eq. (1) below, and then uses a randomized algorithm to
recombine the n2 cross-products into an n-sharing of the output z.

z = xy =
(

n⊕
i=1

xi

)
·
(

n⊕
i=1

yi

)
= ⊕

1≤i,j≤n
xiyj (1)

Every AND gate is then expanded into a gadget of size O(t2) and the resulting
circuit has size O(t2s).

The ISW construction was adapted to AES by Rivain and Prouff in [RP10],
by working in F28 instead of F2. The authors observed that the non-linear part
S(x) = x254 of the AES SBox can be efficiently evaluated with only 4 non-linear
multiplications over F28 , and a few linear squarings. Each of those 4 multiplica-
tions can in turn be evaluated with the previous ISW gadget based on Eq. (1),
by working over F28 instead of F2.

Proving Security. The approach initiated in [ISW03] for proving security
against a t-probing adversary is based on simulation; one must show that the
view of an adversary probing at most t wires can be perfectly simulated without
knowing the secret variables from the original circuit. To this aim, one shows
that any set of t probed variables can be perfectly simulated from the knowledge
of at most n−1 input shares. Since any subset of n−1 input shares is uniformly
and independently distributed, this ensures that the adversary learns nothing
from the t probes, since he could simulate them by himself. It was shown in
[DDF14] that security against t probes implies security against noisy leakage,
under the assumption that every variable leaks independently.

Recently, the notions of (Strong) Non-Interference (NI/SNI) were introduced
by Barthe et al. in [BBD+16], to allow easy composition of gadgets. The authors
showed that the ISW multiplication gadget does satisfy the stronger t-SNI secu-
rity definition. They also showed that with some additional mask refreshing, the

344 J.-S. Coron et al.

Rivain-Prouff countermeasure for the full AES can be made secure with n = t+1
shares only, instead of n = 2t + 1 shares in [ISW03].

More recently, a new security notion was introduced by Cassiers and Stan-
daert in [CS18], called PINI, that allows even simpler composition of gadgets.
Namely it suffices to ensure that all gadgets are PINI, and the composite gadget
is then also PINI, which also implies security against t probes. With its power
and simplicity, the PINI definition appears to be the “right” notion for gad-
get security and composition; therefore we will use this definition in this paper,
either by proving the PINI property of a gadget directly, or by first proving the
t-SNI property and then PINI.

Minimizing Randomness Complexity. High-order masking countermea-
sures against side-channel attacks usually require plenty of randomness dur-
ing their execution. The secure AND operation from [ISW03] with t + 1 shares
requires t(t + 1)/2 random bits, and therefore the randomness complexity of the
ISW countermeasure is O(t2s), where s is the circuit size. More concretely, the
evaluation of the AES SBox in Rivain-Prouff [RP10] requires the execution of
4 secure multiplications and 2 mask refreshing; each of those 6 gadgets requires
t(t+1)/2 fresh random bytes. For the 16 SBoxes and the 10 rounds of the AES,
this amounts to generating 6 × 16 × 10 × t(t + 1)/2 = 480t(t + 1) random bytes,
which gives 2880 bytes for second-order security (t = 2).

However running a True Random Number Generator (TRNG) can be costly
in practice and become a major bottleneck on embedded devices such as smart-
cards. Thus, high-order resistant algorithms can rapidly become impractical
when the number of shares grows. The main question is therefore how to mini-
mize the number of TRNG calls while still guaranteeing t-probing security as in
[ISW03].

Several attempts have been made to reduce the randomness complexity of
private circuits. In [BBP+16], the authors showed a variant of the ISW multipli-
cation with roughly t2/4 randoms instead of t2/2 in ISW. In [FPS17], the authors
showed how to re-use randomness within several gadgets, thereby reducing the
total amount of randomness needed, for small values of t (t ≤ 7). However the
two above approaches only reduce the randomness complexity by a constant
factor; that is, their asymptotic complexity is still O(t2s) for circuit size s, as in
the original ISW countermeasure.

A natural idea to reduce the number of calls to the TRNG is to use a
pseudo-random generator (PRG) to generate all randoms in the circuit, while
only a small seed will be generated by the TRNG. Obviously the PRG circuit
should also be secure against probing attacks. We recall below that such app-
roach, initiated by Ishai et al. in [IKL+13] with the concept of robust PRG,
enables to reduce the randomness complexity of t-private circuits from O(t2s)
to O(t4(log s + log t)); with respect to the circuit size s, this is therefore an
exponential improvement. Our main contribution is this paper will be to reduce
this complexity further down to O(t2(log s + log t)), and to describe a concrete
implementation of AES based on this approach. We refer to Table 2 below for the

Side-Channel Masking with Pseudo-Random Generator 345

number of bytes required to protect AES against t-th order attacks; we see that
for small values of t, we obtain almost two orders of magnitude improvement
compared to previous methods.

Robust PRGs and Private Circuits. In [IKL+13], the authors introduced
the notion of robust pseudo-random number generator (PRG). A robust PRG
must remain secure even if an adversary can probe at most t intermediate vari-
ables in the PRG circuit. The authors showed that such robust PRG can be used
in the ISW countermeasure to minimize the randomness complexity. Namely the
resulting circuit uses a short random seed only, and remains secure against t-th
order attacks.

Recall that the original ISW countermeasure requires O(t2s) bits of random-
ness, where s is the circuit size. Following [IKL+13], we first recall how this can
be reduced to O(t4(log t + log s)), using a trivial construction of robust PRG.
More precisely, the construction is based on r-wise independent PRG. A PRG is
said to be r-wise independent if any subset of at most r output bits of the PRG is
uniformly and independently distributed. The authors show that the ISW coun-
termeasure can be adapted so that any wire in the ISW circuit depends on at
most � = O(t2) bits of randomness; such parameter � is called the locality of the
randomness and will play a crucial role in this paper. Since the adversary can
probe at most t wires, the adversary’s side-channel observation can then depend
on at most t ·� = O(t3) bits of randomness. Therefore, instead of using a TRNG,
it is sufficient to use an r-wise independent PRG with parameter r = t·� = O(t3);
if the r-wise PRG is secure against t probes, as shown in [IKL+13] the resulting
circuit will remain secure against t probes.

It is easy to obtain an r-wise independent PRG by evaluating a degree r − 1
polynomial on distinct inputs in a finite field F; the r coefficients of the polyno-
mials are initially generated at random in F; this is the seed of the PRG. From r
fresh randoms in F, one can then obtain m pseudo-randoms with the r-wise inde-
pendence property, as long as m ≤ |F|. To obtain an r-wise independent PRG
with robustness against t probes, as observed in [IKL+13] a trivial construc-
tion consists in xoring the output of t + 1 PRGs, so that at least one PRG has
not been probed. One can therefore obtain an r-wise independent PRG robust
against t probes by using r · (t + 1) = O(t4) fresh randoms in F as input, and
such PRG can then generate m ≤ |F| pseudo-randoms in F. Since the original
ISW countermeasure requires m = O(t2s) randoms (where s is the circuit size),
using F = F2k one can take k = O(log m) = O(log t+log s). One therefore needs
O(t4(log t + log s)) = Õ(t4) bits of randomness1, instead of O(t2s). The number
of input random bits is then independent of the circuit size s (up to some log-
arithmic factor). In summary, any t-private circuit in which each wire depends
on at most � bits of randomness can be converted into a t-private circuit using
roughly t2� bits of randomness via the use of robust r-wise PRGs. As written
by the authors: “Improving the randomness locality � of private circuits would

1 We use the notation f(λ) = Õ(g(λ)) if f(λ) = O(g(λ) logk λ) for some k ∈ N.

346 J.-S. Coron et al.

immediately yield a corresponding improvement [in the number of input random
bits].”.

In [IKL+13], the authors describe an improved construction of robust PRG,
based on unbalanced bipartite expander graphs. Using the Guruswami-Umans-
Vadhan construction of expander graphs [GUV09], they obtain r-wise indepen-
dence and resistance against t = r probes with r1+η bits of true randomness as
input, for any η > 0. In the context of the ISW countermeasure, this enables to
use Õ(t3+ε) random bits as input for any ε > 0, instead Õ(t4).

Our Contribution. Our main contribution is a countermeasure against side-
channel attacks where the number of random bits is only Õ(t2) for security
against t probes, independently of the circuit size (up to a logarithmic fac-
tor), and without using expander graphs. Moreover the running time of pseudo-
random generation goes down from Õ(t4) to Õ(t). We summarize in Table 1
below the asymptotic complexities of existing techniques and our new techniques.
We proceed in two steps.

In the first step, we show how to improve the locality � of private circuits
from � = O(t2) down to � = O(t). As illustrated in the third line of Table 1
below, reducing � from O(t2) to O(t) enables to reduce the r-wise independence
parameter from r = O(t3) down to r = O(t2); the number of input random
bits is then now decreased from Õ(t4) to Õ(t3) with the trivial construction
(and from Õ(t3+ε) to Õ(t2+ε) with expander graphs). Our technique is as fol-
lows. The authors of [IKL+13] obtain � = O(t2) by performing a mask locality
refreshing at the end of each ISW multiplication gadget. Instead we modify the
ISW multiplication by performing a series of internal locality refreshing. For this
we consider successive i×i ISW submatrices and perform a mask refreshing after
the processing of each submatrix; these internal mask refreshing enable to bring
the locality down to � = O(t). We have also performed a formal verification of
our new algorithms, using the CheckMasks tool [Cor18], for both the locality and
the security properties; we provide the source code in [Cor19a]. This first step
is described in Sect. 3.

In the second step, our technique consists in using multiple independent
PRGs instead of a single one. This has two main advantages. The first advantage
is that for ISW circuits, one can show that the robustness property of the PRG is
not required anymore; this implies that we can use a very simple PRG based on
polynomial evaluation as above. The second advantage is that the locality with
respect to each subset of randoms generated by each PRG becomes � = O(1).
Therefore each independent PRG can be r-wise independent with a much smaller
parameter r = O(t) instead of r = O(t3), and therefore requires only r = O(t)
randoms in the finite field (since robustness is not needed). In that case, we need
O(t2) independent PRGs and therefore the size of the input randomness is Õ(t3);
see Line 4 of Table 1. Finally, when using internal locality refreshing as in the first
step above, we only need O(t) independent PRGs, and eventually the number of
input random bits is reduced to Õ(t2), instead of Õ(t3+ε) with expander graphs
in [IKL+13] (see Line 5 of Table 1). We stress that this asymptotic improvement

Side-Channel Masking with Pseudo-Random Generator 347

over [IKL+13] is obtained without using expander graphs, that is we can use a
simple PRG based on polynomial evaluation in a finite field (see Sect. 4).2

As mentioned previously, we found that expander graphs PRG are impracti-
cal for minimizing the amount of input randomness. However expander graphs
can still be useful for optimizing the time generation of each pseudo-random;
namely the output locality of an expander graph PRG (i.e., the number of
inputs on which each output depends) can be at most polylogarithmic in the
seed length (as opposed to linear for a PRG based on polynomial evaluation);
hence in Table 1 the pseudo-random time generation is always Õ(1). In Sect. 2.3
we give an example of a simple construction based on expander graph that
achieves very fast pseudo-random generation, at the cost of significantly more
input randomness.

Table 1. Asymptotic efficiency of various constructions. The Locality Refreshing (LR)
is performed either at the end of each gadget (Line 2 and Line 4), or sequentially within
each gadget (Line 3 and Line 5). The trivial construction of PRG is based on xoring
t + 1 linear PRGs to get robustness against t probes.

#PRG loc. � r-wise PRG TRNG Time PRG

− − − − O(t2s) −ISW without PRG [ISW03]

1 O(t2) O(t3)
Trivial Õ(t4) Õ(t4)

ISW with Final LR, single PRG [IKL+13]
EG Õ(t3+ε) Õ(1)

ISW with Internal LR, single PRG (Sect. 3) 1 O(t) O(t2)
Trivial Õ(t3) Õ(t3)

EG Õ(t2+ε) Õ(1)

ISW with Final LR, multiple PRGs (Sect. 4) O(t2) O(1) O(t)
Linear Õ(t3) Õ(t)

EG Õ(t3+ε) Õ(1)

ISW with Internal LR, multiple PRGs (Sect. 4) O(t) O(1) O(t)
Linear Õ(t2) Õ(t)

EG Õ(t2+ε) Õ(1)

Finally, we describe in Sect. 5 an application of our countermeasure to AES.
We show that for AES we only need 48 bytes of randomness to get second-order
security (t = 2), instead of 2880 in the original Rivain-Prouff countermeasure. We
see in Table 2 below that for small values of t, our construction reduces the ran-
domness complexity of masking AES by almost 2 orders of magnitude. In Sect. 5,
we also provide the results of a concrete implementation. When implemented on
an ARM-based embedded device with a relatively slow TRNG, we obtain a 50%
speed-up compared to Rivain-Prouff for t = 2. We provide the source code in C
in [Cor19b]. Needless to say, we do not claim that in practice our implementation
would be secure against a t-th order attack. Namely the implementation is only
provided for illustrative purpose, and timing comparisons. Obtaining a secure
implementation would require to (at least) carefully examine the assembly code,
and perform a leakage test with concrete acquisitions from an oscilloscope.

2 An earlier version of [AIS18] claimed to achieve randomness complexity O(t1+ε), but
the claim was later retracted in the final version.

348 J.-S. Coron et al.

Table 2. Number of bytes of randomness to get t-th order security for AES.

t = 2 t = 3 t = 4 t = 5 t = 6 t = 7

Rivain-Prouff [RP10] 2880 5760 9600 14400 20160 26880

Beläıd et al. [BBP+16] 2560 5120 8000 13120 18240 24000

Faust et al. [FPS17] 1415 2530 6082 6699 20712 20726

This paper 48 108 192 300 432 588

2 Definitions and Previous Work

2.1 Private Circuits

In 2003, Ishai, Sahai and Wagner [ISW03] initiated the study of securing circuits
against an attacker who can probe a fraction of its wires. They showed how to
transform any circuit of size |C| into a larger circuit of size O(|C| · t2) with the
same functionality but secure against a t-probing adversary, based on splitting
each variable x into n = 2t + 1 shares with x = x1 ⊕ x2 ⊕ · · · ⊕ xn.

Definition 1 (Private circuit). A private circuit for f : {0, 1}ni → {0, 1}no

is a triple (I, C,O) where I : {0, 1}ni → {0, 1}n̂i is a randomized input encoder,
C is a randomized boolean circuit with input ω̂ ∈ {0, 1}n̂i , output ŷ ∈ {0, 1}n̂o ,
and randomness ρ ∈ {0, 1}m, and O : {0, 1}n̂o → {0, 1}no is an output decoder,
such that for any input ω ∈ {0, 1}ni we have Pr[O(C(I(ω), ρ)) = f(ω)] = 1,
where the probability is over the randomness of I and ρ.

For I and O we consider the canonical encoder and decoder: I encodes each
input bit ωi by a vector of 2t + 1 random bits with parity ωi, and O takes the
parity of each block of 2t + 1 bits.

Definition 2 (t-privacy). We say that C is a t-private implementation of
f with encoder I and decoder O is t-private (or t-probing secure) if for any
ω, ω′ ∈ {0, 1}ni and any set P of t wires in C, the distributions CP (I(ω), ρ)
and CP (I(ω′), ρ) are identical, where CP denotes the set of t values on the wires
from P .

2.2 PINI and t-SNI Security

The Probe Isolating Non-Interference (PINI) security notion was introduced in
[CS18] to enable easy composition of gadgets. Let n be the number of shares.
We let x� = (xi)i=1,...n be an n-sharing of x if x =

⊕n
i=1 xi. Given a subset

I ⊂ [1, n] of share indices, we denote by x|I := {xi : i ∈ I} the corresponding
subset of shares. A gadget with m inputs and � outputs is a circuit with mn
input shares grouped into m n-sharings denoted (x�,1, . . . x�,m), and similarly
�n output shares denoted (y�,1, . . . y�,�). For a given share index i, we also use
the notation xi,� = {xi,j : 1 ≤ j ≤ m} to denote all shares with index 1 ≤

Side-Channel Masking with Pseudo-Random Generator 349

i ≤ n; similarly, we also write x|I,� = {xi,� : i ∈ I}. Below we recall the
Probe Isolating Non-Interference (PINI) definition from [CS18]; we actually use
a slightly simplified (and equivalent) definition compared to [CS18]; we explain
the difference in the full version of our paper [CGZ19].

Definition 3 (PINI [CS18] (adapted)). Let G be a gadget with input shares
xi,� and output shares yi,� for 1 ≤ i ≤ n. The gadget G is PINI if for any
t1 ∈ N, any set of t1 intermediate variables and any subset O of output indices,
there exists a subset I ⊂ [1, n] of input indices with |I| ≤ t1 such that the
t1 intermediate variables and the output shares y|O,� can be perfectly simulated
from the input shares x|I∪O,�.

It is straightforward to show that a PINI gadget with n shares is secure
against t = n − 1 probes. We recall the proof of PINI composition (under our
slightly modified definition) in the full version of our paper [CGZ19].

Proposition 1 (PINI security [CS18]). Any PINI gadget with n shares is
(n − 1)-probing secure.

Proposition 2 (PINI composition [CS18]). Any composite gadget made of
PINI composing gadgets is PINI.

Below we recall the SNI security notion introduced in [BBD+15]. We consider
a gadget taking as input two n-tuples (xi)1≤i≤n and (yi)1≤i≤n of shares, and
outputting a single n-tuple (zi)1≤i≤n. As previously, given a subset I ⊂ [1, n],
we denote by x|I all elements xi such that i ∈ I.

Definition 4 (t-SNI security). Let G be a gadget taking as input n shares
(xi)1≤i≤n and n shares (yi)1≤i≤n, and outputting n shares (zi)1≤i≤n. The gadget
G is said to be t-SNI secure if for any set of t1 probed intermediate variables and
any subset O of output indices, such that t1 + |O| ≤ t, there exist two subsets
I and J of input indices which satisfy |I| ≤ t1 and |J | ≤ t1, such that the t1
intermediate variables and the output variables z|O can be perfectly simulated
from x|I and y|J .

Intuitively, the t-SNI security definition provides an “isolation” between the
output shares and the input shares, so that the number of input variables
required for the simulation is upper-bounded by the number of internal probes
t1, and does not depend on the number of output variables that must be simu-
lated, as long as t1 + |O| ≤ t. There is an analogous definition for a gadget with
a single input (xi)1≤i≤n; in that case, the simulation is performed from x|I with
|I| ≤ t1.

It is easy to see that for a single input gadget, (n − 1)-SNI security implies
PINI security. Moreover, for a 2-input (n − 1)-SNI gadget as considered in Defi-
nition 4, as shown in [CS18] we can obtain a PINI gadget by pre-refreshing one of
the inputs with a (n − 1)-SNI mask refreshing algorithm; this is the double-SNI
approach (see Fig. 1). A mask refreshing gadget takes as input the n-sharing of
a value x and outputs a randomized n-sharing of the same value x. Therefore, in

350 J.-S. Coron et al.

this paper, our strategy for proving gadget security is either to directly prove the
PINI property, or to first prove the t-SNI property and then apply the “double-
SNI” strategy. Note that for specific circuits such as the AES SBox, one can use
some optimization; for example the full SBox computation can be proven t-SNI
and therefore PINI with 4 multiplications and 2 mask refreshing only (instead
of 4 mask refreshing as in the naive “double-SNI” strategy).

Proposition 3 (Double-SNI [CS18]). Let G be a (n − 1)-SNI gadget taking
as input (ai)1≤i≤n and (bi)1≤i≤n, and outputting (ci)1≤i≤n. Let R be a (n − 1)-
SNI gadget taking as input (xi)1≤i≤n and outputting (yi)1≤i≤n. The composite
gadget G′ taking as input (xi)1≤i≤n and (bi)1≤i≤n, and outputting (ci)1≤i≤n,
with G′((xi), (bi)) = G(R((xi)), (bi)) is PINI.

G

Rxi

bi
ci

G

Fig. 1. The double-SNI approach: when both gadgets G and R are (n − 1)-SNI, the
composite gadget G′ is PINI.

Finally, we recall in AppendixB the SecMult gadget used in [RP10] for pro-
tecting AES against t-th order attacks. It is an extension to F2k of the original
ISW countermeasure [ISW03] described in F2. The SecMult gadget was proven
t-SNI in [BBD+16]. We also recall in the full version of our paper [CGZ19] the
mask refreshing gadget FullRefresh introduced by Duc et al. in [DDF14], based
on SecMult; it was also proven t-SNI in [BBD+16]. We can therefore use the
FullRefresh gadget to apply the above “double-SNI” strategy. Moreover, in this
paper, when we describe a variant of SecMult, we apply the same modifications
to the FullRefresh gadget; this is straightforward, since the FullRefresh gadget
can be seen as a SecMult with one input equal to (1, 0, . . . , 0).

2.3 r-wise Independent PRG: Definition and Construction

We recall the definition of an r-wise independent pseudo-random generator
(PRG). We denote by Un the uniform distribution in {0, 1}n.

Definition 5 (r-wise independent PRG). A function G : {0, 1}n → {0, 1}m

is an r-wise independent pseudo-random generator if any subset of r bits of G(x)
is uniformly and independently distributed when x ← Un.

We can construct an r-wise independent PRG via polynomial evaluation in
a finite field F. Letting a = (a0, . . . , ar−1) ∈ F

r, we consider the polynomial:

ha(x) =
r−1∑
i=0

aix
i

Side-Channel Masking with Pseudo-Random Generator 351

For any m ≤ |F|, we can define the function G : Fr → F
m by letting:

G(a) = (ha(0), . . . , ha(m − 1))

where we assume that we have some indexing of the field elements in F. The
function G is an r-wise independent PRG because there is a bijection between
the r coefficients of a polynomial of degree at most r − 1 and its evaluation at r
distinct points xi.

For F = F2k , this gives an r-wise independent PRG taking as input rk bits
and outputting at most k ·2k bits. Namely when working over F2k and generating
k-bit pseudo-randoms, we can use each individual bit of the k-bit pseudo-random,
and the PRG function remains r-wise independent. The parameter k determines
the expansion factor of the PRG. For our application to AES in Sect. 5, for
simplicity we will work over F216 , using F28 as a subfield. For a block-cipher using
single bits, one would work in F2k and use each of the k bits of F2k separately.

A Simple 3-wise Independent PRG. We also consider a very simple PRG
that achieves 3-wise independence only. We consider a set of 2d random bits xi

and yi for 1 ≤ i ≤ d. We define the following function G : {0, 1}2d → {0, 1}d2
:

G(x1, . . . , xd, y1, . . . , yd) = (xi ⊕ yj)1≤i,j≤d

The function G can be seen as a PRG based on expander graph; see the full
version of our paper [CGZ19].

Lemma 1. The function G is a 3-wise independent PRG.

Proof. We must show that any 3 variables (xi1 ⊕ yj1), (xi2 ⊕ yj2) and (xi3 ⊕ yj3)
are uniformly and independently distributed.

We distinguish 3 cases. If #{i1, i2, i3} = 3, then the three values are inde-
pendent thanks to randoms xi1 , xi2 and xi3 . If i1 = i2 = i3, then we must have
#{j1, j2, j3} = 3 and the three values are independent thanks to randoms yj1 ,
yj2 and yj3 . Eventually, if exactly two indices among i1, i2 and i3 are equal, say
wlog i1 = i2 �= i3, then we must have j1 �= j2 and the randoms yj1 , yj2 and xi3

ensure the independence of the three values. 	

2.4 Robust PRG: Definition and Trivial Construction

In [IKL+13], the authors introduced the notion of robust pseudo-random number
generator (PRG), which should remain secure even if an adversary can probe
at most k intermediate variables in the PRG circuit. We recall the definition of
(strongly) robust PRG from [IKL+13] below. Under this definition, the output
bits of the PRG must remain r-wise independent outside some set T of bounded
size, conditioned on the values of any set S of at most k probes in the PRG
circuit and the outputs in T .

352 J.-S. Coron et al.

In this paper we actually use a slightly weaker definition of strong robustness
compared to [IKL+13], in which we allow the output bits outside the set T to be
only (r − q|S|)-wise independent, instead of r-wise independent, where |S| ≤ k
is the number of probes and q a parameter. In other words, we allow the r-wise
independence of the PRG to degrade gracefully with the number of probes. This
will give slightly more efficient constructions; in particular, the trivial construc-
tion of xoring k + 1 PRGs will only require the r-wise independence of each
PRG, instead of the (r + k)-wise independence in [IKL+13]. Obviously we need
to ensure that a robust PRG under our definition can still be embedded in a
private circuit with the same parameters as in [IKL+13]; see Theorem 1 below.

Definition 6 (Strong robust PRG [IKL+13] (adapted)). A circuit imple-
mentation C of a PRG G : {0, 1}n → {0, 1}m is strong (r, k, q)-robust if given
Y = G(X) where X ← {0, 1}n, for any set S of at most k probes in C, there
is a set T of at most q|S| output bits such that conditioned on any fixing of the
values CS of the wires in S and of YT , the values YT̄ of the output bits not in T
are (r − q|S|)-wise independent and uniformly distributed.

Trivial Construction. As noted in [IKL+13], we can obtain a strong (r, k, 1)-
robust PRG by taking the xor of k+1 PRGs, each with the r-wise independence
property. More precisely, letting g : {0, 1}n → {0, 1}m, we let G : {0, 1}n·(k+1) →
{0, 1}m:

G(x1, . . . , xk+1) = g(x1) ⊕ g(x2) ⊕ · · · ⊕ g(xk+1)

where the xors are performed from left to right.

Lemma 2 (Strong robustness of G). If g is an r-wise independent PRG,
then G is a strong (r, k, 1)-robust PRG.

Proof. Since there are at most k probes and k + 1 PRGs, there exists an index
i� such that g(xi�) has not been probed. In the following, we fix all inputs xi

except xi� .
Let t ≤ k be the number of probes. We consider the set T of indices j ∈ [1,m]

such that the j-th bit of any partial sum g(x1) ⊕ · · · ⊕ g(xi) is probed. We must
have |T | ≤ t. Since g is an r-wise independent PRG, by definition any set of
r output bits of g(x�

i) is uniformly and independently distributed; this implies
that any set of r − t output bits of g(x�

i) with indices outside T are uniformly
and independently distributed, even conditioned on the output bits in T and the
other probes. Since we have fixed the inputs of all other PRGs, this also applies
for the output of G. Therefore G is a strong (r, k, 1)-robust PRG. 	

Expander Graph Construction. Using an explicit construction of a bipartite
expander graph [GUV09], the authors of [IKL+13] obtain a construction of a
strong (r, k, q)-robust PRG with r, k = n1−η where n is the number of random
input bits, for any η > 0. In the full version of our paper [CGZ19] we provide
a simplified proof of strong robustness for expander graph based PRG, based

Side-Channel Masking with Pseudo-Random Generator 353

on the proof of weak robustness from [IKL+13]. We also argue that for mini-
mizing the amount of input randomness, while asymptotically better than the
trivial construction, expander graph based constructions are actually imprac-
tical. Namely in our analysis the expander graph PRG construction based on
[GUV09] becomes better than the trivial construction only for r ≥ 218 and at
least 236 random input bits.

2.5 Application to Private Circuits

We recall below the main theorem from [IKL+13], showing that we can plug a
robust PRG in a private circuit to generate all randomness from a small random
seed, and the resulting construction remains secure against probing attacks.
Firstly an important parameter is the locality � of the randomness in the circuit.

Definition 7 (Randomness locality [IKL+13]). A circuit C is said to make
an �-local use of its randomness if the value of each of its wires is determined by
its (original, unmasked) input and at most � bits of the randomness used in the
circuit.

Theorem 1 (Private circuit with PRG [IKL+13] (adapted)). Suppose
C(ω̂, ρ) is a qk-private implementation of f with encoder I and decoder O,
where C makes an �-local use of its randomness, and uses at most m bits of
randomness. Let G : {0, 1}n → {0, 1}m be a strong (r, k, q)-robust linear PRG
with r ≥ k · max(�, q). Then, the circuit C ′ defined by C ′(ω̂, ρ′) = C(ω̂, G(ρ′))
is a k-private implementation of f with encoder I and decoder O which uses n
random bits.

The proof of Theorem 1 is based on showing that the view of any adversary
who attacks with t probes an implementation in which the randomness is gen-
erated by a PRG, can be simulated given the view of an adversary with at most
qt probes who attacks an implementation with a true source of randomness; see
Fig. 3 for an illustration.

In the full version of our paper [CGZ19] we provide a proof that is essentially
the same as in [IKL+13, Theorem 30], except that we use our slightly weaker
definition of robustness. We recall the main steps of the proof below. We start
with the following Lemma, which is similar to [IKL+13, Lemma 29]. As illus-
trated in Fig. 2, any output of at most r − q|S| bits of the robust PRG can be
replaced by a TRNG and any set S of at most k probes in the PRG can be per-
fectly simulated using a subset T of the output with |T | ≤ q|S|. This means that
probing |S| probes within the PRG is not better for the adversary than probing
q|S| outputs of the TRNG. To simplify notation, we will use G to denote both
the function computed by a robust PRG and its circuit implementation. For a
set S of k wires in G, we denote by GS the value of these wires; similarly, for a
subset T of output bits of G, we denote by GT the values of these output bits.

354 J.-S. Coron et al.

PRG

X

Y

k ⇐⇒ SIM TRNG

Y

T

k

Fig. 2. With a strong (r, k, q)-robust PRG, any output of at most r − q|S| bits of the
PRG can be replaced by a TRNG and any set S of at most k probes can be perfectly
simulated using a subset T of the output with |T | ≤ q|S|.

Lemma 3 (Robust PRG). Let G : {0, 1}n → {0, 1}m be a strong (r, k, q)-
robust linear PRG with r ≥ kq. Let S be any set of at most k wires in G. Let
L ⊂ [m] be any subset of r − q|S| bits. There exists a subset T with |T | ≤ q|S|
such that the distribution of Y = GL∪T (X) is uniform in {0, 1}|L∪T | when X ←
{0, 1}n and moreover GS(X) can be efficiently simulated given YT only.

Thanks to Lemma 3 we can now prove Theorem 1. As illustrated in Fig. 3,
we can simulate any t probes within the PRG with a simulator SIM that uses
qt random bits from the TRNG (see Fig. 2); these qt random bits can actually
be queried by probing the original circuit C. This shows that when probing the
PRG in C ′ the adversary does not learn more than by probing the circuit C with
true randomness, as required; see the full version of our paper [CGZ19] for the
details.

PRG

C

t

k − t

� (k − t)

C′
SIM TRNG

C

|T |≤qt

t

k − t

SIM TRNG

C

t

k − t

qt

Fig. 3. Security proof when plugging a PRG into a private circuit.

2.6 Locality Refreshing

As recalled in Theorem 1, the r-wise independence parameter r of the PRG
depends on the randomness locality � of the circuit (see Definition 7). The goal
is therefore to minimize the parameter �. In the original ISW construction, the
parameter � would grow linearly with the circuit size; namely some wires can
depend on almost all the randoms used in the circuit. To keep a small � =
O(t2), the authors of [IKL+13] use a mask refreshing at the end of each ISW
gadget. Such locality refreshing, that we denote by LR, proceeds as described in
Algorithm 1; see Fig. 4 for an illustration.

Side-Channel Masking with Pseudo-Random Generator 355

Algorithm 1. Locality refreshing LR
Input: shares x1, . . . , xn,
Output: shares y1, . . . , yn such that

⊕n
i=1 yi =

⊕n
i=1 xi

1: yn ← xn

2: for i = 1 to n − 1 do
3: s ← F2k # referred by si

4: yi ← s
5: yn ← yn ⊕ (xi ⊕ s) # referred by y

(i)
n

6: end for
7: return (y1, . . . , yn)

At the end of the algorithm, we have yi = si for all 1 ≤ i ≤ n − 1, and
yn = x⊕ s1 ⊕· · ·⊕ sn−1 for the secret x = x1 ⊕· · ·⊕xn. Therefore one can show
recursively over the circuit that the internal variables of the ISW multiplication
depend on at most � = O(t2) randoms, and this actually holds for any variable
in the circuit. The following Lemma shows that the LR gadget is PINI, so that
it can be included in a circuit without degrading its security.

x1 x2 xn−1 xn

⊕
⊕

⊕

ynyn−1y2y1

⊕
⊕

⊕

s1

s2

sn−1

Fig. 4. Locality refreshing algorithm.

Lemma 4 (PINI security of LR). Let (xi)1≤i≤n be the input shares of the
mask refreshing Algorithm LR. For any t ∈ N, any set of t intermediate variables
and any subset O of output indices, there exists a subset I ⊂ [1, n] of indices such
the t intermediate variables and the output shares y|O can be perfectly simulated
from the input shares x|I∪O , with |I| ≤ t.

Proof. We consider the following simple gadget G: (x1, xn) → (s1, xn⊕(x1⊕s1)),
where s1 is a random value. We start by showing that in Gadget G, we can always
simulate t probes and |O| output variables from the input shares x|I∪O , with
|I| ≤ t.

If t + |O| ≥ 2, we can let I = {1, n} \ O which gives I ∪ O = {1, n} and
all variables can be simulated from the input shares x|I∪O . Moreover we have
|I| = |{1, n}\O| ≤ 2−|O| ≤ t. If t+ |O| = 1, we distinguish two cases. If |O| = 1

356 J.-S. Coron et al.

and t = 0, then we can simulate either s1 or xn⊕(x1⊕s1) by generating a random
value. If t = 1 and |O| = 0, we can simulate x1 or xn with I = {1} or I = {n};
the other variables can be simulated by a random value.

We now consider the following gadget Gi for 1 ≤ i ≤ n − 1:

Gi : (x1, . . . , xi, . . . , xn) → (x1, . . . , xi−1, si, xi+1, . . . , xn ⊕ (xi ⊕ si))

which is similar to Gadget G, but with n input shares instead of 2, and n − 2
unmodified input shares. As previously, we can always simulate t probes and |O|
output variables from the input shares x|I∪O , with |I| ≤ t. This implies that
the gadget Gi is PINI. Since the LR gadget is the composition of G1, . . . , Gn−1,
from Proposition 2 the LR gadget is also PINI. 	

In [IKL+13] the LR algorithm is then applied after each ISW gadget. In
particular, for the SecMult gadget recalled in AppendixB, we obtain the following
SecMultFLR gadget. Since the original SecMult is t-SNI, the SecMultFLR gadget
is also t-SNI. The same LR algorithm is applied after the Xor gadget and the
FullRefresh gadgets (see the full version of our paper [CGZ19]).

Algorithm 2. SecMultFLR

Input: shares ai satisfying
⊕n

i=1 ai = a, shares bi satisfying
⊕n

i=1 bi = b
Output: shares di satisfying

⊕n
i=1 di = a · b

1: c1, . . . , cn ← SecMult((ai)1≤i≤n, (bi)1≤i≤n)
2: d1, . . . , dn ← LR(c1, . . . , cn)
3: return (d1, . . . , dn)

Application to Private Circuits. We recall Claim 31 and Corollary 32 from
[IKL+13]; we also recall the proof in the full version of our paper [CGZ19].
We use the notation f(λ) = Õ(g(λ)) if f(λ) = O(g(λ) logk λ) for some k ∈ N.
We assume that the circuit size s(λ) and the number of probes t(λ) are both
polynomial in the security parameter λ.

Lemma 5 (Private circuit with PRG [IKL+13]). Any function f with cir-
cuit size s admits a t-private implementation (I, C,O) with the canonical encoder
I and decoder O, where C uses O(t2s) random bits and makes an � = O(t2)-
local use of its randomness. Consequently, f admits a t-private implementation
(I, C ′, O), where C ′ uses Õ(t4) bits of randomness, and runs in time Õ(t6s),
using the trivial construction. Using the expander graph construction, for any
ε > 0, it uses Õ(t3+ε) random bits and runs in time Õ(t2s).

2.7 Composing �-local Gadgets

In this section we provide an explicit definition of locality for a gadget, so that the
locality property can be composed over a full circuit (as for the PINI definition

Side-Channel Masking with Pseudo-Random Generator 357

for security against probing). As in [IKL+13], the basic technique is to perform
a locality refresh (such as Algorithm 1) of the output of each gadget. We say
that a set of wires (yi)1≤i≤n is locality refreshed if yi = si for all 1 ≤ i ≤ n − 1,
for randoms si, and yn = y ⊕ s1 ⊕ · · · ⊕ sn−1, where y is the original unmasked
variable. In the definition below of gadget locality, we take into account the
randomness of the (locality refreshed) inputs.

Definition 8 (�-local gadget). Let G be a gadget whose output is locality
refreshed. Consider the circuit C where G is given locality refreshed inputs x�,�.
Let ρ be the randomness used by C, including the randomness from the inputs.
The gadget G is said to make an �-local use of its randomness if C makes an
�-local use of its randomness ρ.

Theorem 2 (Composition of �-local gadgets). Any composite gadget made
of �-local gadgets is �-local.

Proof. We consider m gadgets G1, · · · , Gm that we order as a direct acyclic
graph from output to input in a reverse topological sort order. We assume that
each gadget Gi makes an �-local use of its randomness, with locality refreshed
outputs. We prove by recurrence on n that the composition of �-local gadgets is
�-local.

If n = 1, then there is only one gadget and this is straightforward since
by assumption the gadget is �-local. Now we assume that the composition of
gadgets G1, · · · , Gn is �-local and we prove that the composition of gadgets
G1, · · · , Gn+1 is still �-local. Since the composition of gadgets G1, · · · , Gn is �-
local, and since by definition the inputs of the gadget Gn are locality refreshed
because they correspond to outputs of Gadget Gn+1 which are locality refreshed,
we get that the composition of both parts Gn+1 and G1, · · · , Gn does not increase
the global locality. Namely, the global locality corresponds to the maximum
locality between both parts. Since the composition of gadgets G1, · · · , Gn is �-
local and since Gadget Gn+1 is also �-local, the maximum locality is � and the
composition of gadgets G1, · · · , Gn+1 is �-local. 	

In the above definition, in order to determine the locality � of a gadget,
we must therefore assume that it receives locality refreshed inputs, and the
randomness from this locality refreshed inputs must be taken into account when
computing �. Below we provide an example with the Xor gadget; the Xor gadget
takes as input ai and bi for 1 ≤ i ≤ n, and returns ci = ai ⊕ bi for all 1 ≤ i ≤ n.

Lemma 6 (Locality of Xor). The Xor gadget followed by a locality refresh
makes an �-local use of its randomness, with � = 2(n − 1).

Proof. The gadget takes as input ai and bi for 1 ≤ i ≤ n, and then computes
ci = ai ⊕ bi for all 1 ≤ i ≤ n, and finally dn,j = cn ⊕ (⊕j

i=1ai ⊕ bi ⊕ si) for
1 ≤ j ≤ n − 1, with outputs di = si for 1 ≤ i ≤ n − 1 and dn = dn,n−1. We
must consider ai = s

(a)
i for 1 ≤ i ≤ n − 1 and an = a ⊕ s

(a)
1 ⊕ · · · ⊕ s

(a)
n−1, and

similarly for bi. Therefore cn depends on 2(n − 1) randoms, while dn,j depends
on 2(n − 1) − j randoms, which proves the lemma. 	

358 J.-S. Coron et al.

We also compute the concrete locality � of the SecMultFLR algorithm intro-
duced above; in [IKL+13] only the asymptotic bound � = O(n2) was proved.
Such concrete locality computations will be important when implementing the
countermeasure for AES in Sect. 5; namely for a locality �, from Theorem 1 the
r-wise independence parameter of the PRG must be set to r = �t for security
against t probes. We refer to the full version of our paper [CGZ19] for the proof.

Lemma 7 (Locality of SecMultFLR). The SecMult algorithm followed by a
final locality refresh (SecMultFLR) is an �-local gadget with � = n2/4 + 5n/2 − c,
where c = 3 for even n, and c = 11/4 for odd n.

3 Improving the Locality of the Multiplication Gadget

In this section we describe two variants of the SecMult algorithm that improve
the randomness locality of t-private circuits from � = O(t2) to � = O(t). We show
that this decreases the randomness complexity of private circuits from Õ(t4) to
Õ(t3) using the trivial robust PRG construction. For our two new algorithms
SecMultILR and SecMultILR2, we summarize in Table 3 below the number of
required randoms and their locality �. Since these randoms are eventually gener-
ated by a PRG, one should minimize their locality �. We introduce SecMultILR
first because the t-SNI proof of SecMultILR2 is significantly more complex.

Table 3. Summary of the multiplication gadgets, their locality and security. We have
c = 3 for even n, and c = 11/4 for odd n.

SecMult [ISW03] SecMultFLR [IKL+13] SecMultILR SecMultILR2

Number of randoms n(n − 1)/2 n(n − 1)/2 + n − 1 n(n − 1) n(n − 1)/2 + n − 1

Locality � − n2/4 + 5n/2 − c 4n − 5 4n − 6

Security t-SNI t-SNI t-SNI t-SNI

3.1 First Construction with Internal Locality Refreshing
(SecMultILR)

We describe below a variant of the SecMultFLR algorithm with locality � = O(t)
instead of � = O(t2). Our new SecMultILR is described below. The idea is to
process the ISW matrix differently. In the original SecMult the final encoding is
obtained by summing over all rows of the n×n ISW matrix. Instead we compute
the partial sums over the rows of the successive j × j submatrices for 2 ≤ j ≤ n.
At each step we perform a locality refreshing of the j shares of the partial sum.
In particular, the output of the algorithm is locality refreshed, so there is no
need to apply the LR algorithm again.

Side-Channel Masking with Pseudo-Random Generator 359

Algorithm 3. SecMultILR

Input: shares ai satisfying
⊕n

i=1 ai = a, shares bi satisfying
⊕n

i=1 bi = b
Output: shares ci satisfying

⊕n
i=1 ci = a · b

1: for i = 1 to n do
2: ci ← ai · bi

3: end for
4: for j = 2 to n do
5: for i = 1 to j − 1 do
6: r ← F2k # referred by ri,j

7: ci ← ci ⊕ r # referred by ci,j

8: r ← (ai · bj ⊕ r) ⊕ aj · bi # referred by rj,i

9: cj ← cj ⊕ r # referred by cj,i

10: end for
11: for i = 1 to j − 1 do
12: s ← F2k # referred by si,j

13: cj ← cj ⊕ (ci ⊕ s) # referred by cj,i

14: ci ← s
15: end for
16: end for
17: return (c1, . . . , cn)

We see that lines 6 to 9 are the same as in the original SecMult (see
AppendixB), except that they are processed in a different order, since the loop
starts with j instead of i. This implies that at Step 10 we have processed the
j×j submatrix of the ISW matrix, and therefore the first j shares ci must satisfy
the equality:

c1 ⊕ · · · ⊕ cj = (a1 ⊕ · · · ⊕ aj) · (b1 ⊕ · · · ⊕ bj) (2)

From lines 11 to 15 we then perform a locality refresh of these j shares (ci)
j
i=1

using new randoms sij ; therefore after the locality refresh the new shares ci

satisfy the same equality (2), but now they only depend on the j − 1 randoms
sij for 1 ≤ i ≤ j − 1, and not on the rij ’s. This implies that at the next
step of the loop (for index j + 1), the shares ci will only depend on a linear
number of randoms rij , instead of quadratic in the original SecMult. Thanks to
these internal locality refreshings, the new locality parameter becomes � = O(t)
instead of � = O(t2).

Lemma 8 (Locality of SecMultILR). The SecMultILR algorithm is an �-local
gadget with � = 4n − 5 for n ≥ 3.

Theorem 3 (Completeness of SecMultILR). The SecMultILR algorithm, when
taking a1, . . . , an and b1, . . . , bn as inputs, outputs c1, . . . , cn such that c1 ⊕ · · ·⊕
cn = (a1 ⊕ . . . ⊕ an) · (b1 ⊕ . . . ⊕ bn).

Theorem 4 (t-SNI of SecMultILR). The SecMultILR algorithm is t-SNI for
any 1 ≤ t ≤ n − 1.

360 J.-S. Coron et al.

One can therefore use a robust PRG with r-wise independence parameter
r = � · t = O(t2) instead of r = O(t3) in [IKL+13]. With the trivial construction
of xoring t + 1 PRGs, the number of input randoms in the finite field becomes
r · (t + 1) = O(t3) instead of O(t4). This gives the following lemma, which
improves over Lemma 5 from [IKL+13].

Lemma 9 (Efficiency properties of SecMultILR). Any function of circuit
size s admits a t-private implementation (I, C,O) with the canonic encoder I and
decoder O, where C uses Õ(t3) bits of randomness using the trivial construction,
and runs in time Õ(s · t5).

3.2 Second Construction with Less Randomness (SecMultILR2)

We describe in the full version of our paper [CGZ19] a variant called SecMultILR2
of the previous algorithm, that achieves the same locality � as SecMultILR but
with roughly half as many randoms. It uses the same number of randoms as
SecMultFLR from [IKL+13], but with locality O(t) instead of O(t2). Therefore
it is strictly better than both SecMultFLR and SecMultILR; see Table 3.

Lemma 10 (Locality of SecMultILR2). The SecMultILR2 gadget uses �-local
randomness, with � = 4n − 6 for n ≥ 3.

Theorem 5 (Completeness of SecMultILR2). The SecMultILR2 algorithm,
when taking a1, . . . , an and b1, . . . , bn as inputs, outputs c1, . . . , cn such that
c1 ⊕ · · · ⊕ cn = (a1 ⊕ . . . ⊕ an) · (b1 ⊕ . . . ⊕ bn).

Theorem 6 (t-SNI of SecMultILR2). The SecMultILR2 is t-SNI for any 1 ≤
t ≤ n − 1.

3.3 Formal Verification of Locality and Security

We have performed a formal verification of the above locality and security lem-
mas, using the CheckMasks tool [Cor18]. We refer to the full version of this paper
[CGZ19] for the details.

4 Private Circuits with Multiple PRGs Without
Robustness

In the previous section we have described two variants of SecMult where following
the [IKL+13] paradigm a single robust PRG is used to generate all the randoms
from the circuit; by improving the locality parameter from � = O(t2) to � =
O(t), we have decreased the number of input random bits from Õ(t4) to Õ(t3),
that is independent of the circuit size s (up to logarithmic factors). In this
section, we show that by using multiple independent PRGs instead of a single
one, the robustness property of the PRG is not required anymore, and therefore

Side-Channel Masking with Pseudo-Random Generator 361

much more efficient PRG constructions can be used; this allows to decrease the
randomness complexity of private circuits down to Õ(t2).

We start with a simple observation. In the security proof of ISW, if the
attacker probes a given random rij in some SecMult gadget, then it is easy to
see that we could give away to the attacker not only the probed rij , but actually
all randoms r

(k)
ij for the same i, j in all other SecMult gadgets k; namely in the

ISW security proof with global index I, one would have i ∈ I, and therefore each
r
(k)
ij would then be simulated by letting r

(k)
ij ← F as in the original circuit, so it

could be given to the attacker without requiring the knowledge of more input
shares.

Now assume that for every pair (i, j) we use an independent PRG to generate
the randoms r

(k)
ij for all gadgets k. In that case the attacker has no advantage

in probing the intermediate variables of the PRG circuit, since in our extended
probing model he could get all corresponding randoms r

(k)
ij with a single probe

anyway. Therefore when each rij has a dedicated PRG (see Fig. 5 for an illus-
tration), the robustness property of the PRG is not required anymore, and we
can use a simple PRG with r-wise independence only, as for example the PRG
based on polynomial evaluation from Sect. 2.3.

r
(1)
ij r

(2)
ij r

(s)
ij

Gij

ρ′
ij

Fig. 5. In Construction 1, each rij has its dedicated PRG across all gadgets, from a
random seed ρ′

ij .

Moreover, if a mask locality refreshing is performed at the end of each multi-
plication gadget, it is easy to see that any intermediate variable of the circuit can
depend on at most a single random r

(k)
ij for a fixed i, j, and therefore the locality

with respect to each randomness subset ρij = {r
(k)
ij : 1 ≤ k ≤ s} is � = 1; this

is because the locality refresh at the end of each multiplication gadget cancels
the dependence on the internal r

(k)
ij . In that case, with t probes on intermediate

variables the adversary can get information on at most t randoms within such
set. Therefore these randoms can be generated by a PRG with r-wise indepen-
dence parameter r = t. Since the robustness property is not required, we can
use a PRG based on polynomial evaluation that requires only r = t coefficients

362 J.-S. Coron et al.

in a finite field, and therefore Õ(t) random bits per PRG. Since there are O(t2)
randoms rij , we need O(t2) independent PRGs to generate all of them, and the
total number of input random bits is therefore Õ(t3), as in our single PRG con-
structions from Sect. 3. Note that the time to generate a pseudo-random is now
Õ(t), instead of Õ(t3) in Sect. 3.

We can improve the above randomness complexity as follows. Firstly, we
observe as previously that in the security proof of ISW, whenever the attacker
probes a random rij , we can actually give to the attacker the complete row of
rij ’s, that is for a given i, all rij with i < j ≤ n; and more generally, for a
fixed i, all randoms r

(k)
ij with i < j ≤ n in all SecMult gadgets k. Therefore as

previously we can use for each 1 ≤ i < n a dedicated PRG to generate all r
(k)
ij for

all i < j ≤ n in all gadgets k, without needing the robustness property. Since we
generate the complete row of rij ’s (see Fig. 8 for an illustration), we only need
O(t) independent PRGs, instead of O(t2).

Moreover, if we perform internal mask refreshing as in the SecMultILR
algorithm from Sect. 3 (instead of only at the end of the SecMult gadget),
then no intermediate variable can depend on two distinct rij ’s in the same
row i. This implies that the locality with respect to the randomness subset
ρi = {r

(k)
ij : i < j ≤ n, 1 ≤ k ≤ s} is still equal to 1. Therefore a PRG can be

used to generate all r
(k)
ij from a given row i in all gadgets k, still with r-wise inde-

pendence parameter r = t. Since we need only O(t) independent PRGs instead
of O(t2) previously, the number of input random bits goes down to Õ(t2), while
the time to generate a pseudo-random is still Õ(t). Asymptotically this is the
most efficient technique (see Table 1), and also the most efficient in practice (see
Sect. 5 for our implementation results on AES).

4.1 Security with Multiple PRGs

The following lemma shows that the PRG robustness is not needed when the
PRG generates only a subset ρ of the randomness, and the adversary can get
ρ with a single probe; the lemma is analogous to Theorem1 for a single robust
PRG. We first consider a circuit C where we split the randomness in two parts
ρ and ρ̄, where only the randomness ρ will be replaced by pseudo-randoms. We
consider an extended security model in which the attacker can get ρ with a single
probe. Intuitively probing the PRG that generates ρ does not help the attacker,
since in the extended security model he can get ρ with a single probe.

Lemma 11 (Security from r-wise independent PRG). Suppose C is a t-
private implementation of f with encoder I and decoder O, where C(ω̂, ρ, ρ̄) uses
m random bits ρ and makes an �-local use of its randomness ρ, and the adversary
can obtain ρ with a single probe. Let G : {0, 1}nr → {0, 1}m be a linear �t-wise
independent PRG. Then, the circuit C ′ defined by C ′(ω̂, ρ′, ρ̄) = C(ω̂, G(ρ′), ρ̄)
is a t-private implementation of f with encoder I and decoder O which uses nr

random bits ρ′ and random ρ̄.

Side-Channel Masking with Pseudo-Random Generator 363

Proof. We show that the view of an adversary A′ who attacks C ′(ω̂, ρ′, ρ̄) by
probing a set S of t′ ≤ t wires in G and a set of P of t − t′ wires in C is
independent of the secret input ω. Since C is t-private, it suffices to show that
the view of A′ can be simulated given the view of an adversary A who probes at
most t wires in C(ω̂, ρ, ρ̄), and who can obtain the randomness ρ with a single
probe.

Since C makes an �-local use of its randomness ρ, the t − t′ probes from
the set P in the circuit C can depend on at most �(t − t′) ≤ �t bits of ρ.
More precisely, for any ω̂ and ρ̄, let Qω̂,ρ̄(ρ) = CP (ω̂, ρ, ρ̄) be the value of these
probes; the function Qω̂,ρ̄ depends on at most �t bits of ρ. Let T ⊂ [1,m] be the
corresponding subset of bits of ρ on which Qω̂,ρ̄ depends, with |T | ≤ �t; we can
write Qω̂,ρ̄(ρ) = Q′(ρT), where ρT is the corresponding subset of ρ.

We now proceed as follows. Instead of generating the PRG seed X ← {0, 1}nr

and then the PRG output GT (X) corresponding to T , we can first generate
the PRG output ρT ← {0, 1}|T | and then sample the PRG seed; this is pos-
sible because G is a linear �t-wise independent PRG, and moreover |T | ≤ �t.
More precisely, since G is a linear �t-wise PRG, there exists a randomized sim-
ulator Sim that can perfectly sample the PRG input and therefore the probes
within the PRG, given at most �t bits of PRG output; formally this means
(GS(X), GT (X)) ≡ (Sim(ρT), ρT) where X ← {0, 1}nr and ρ ← {0, 1}m. We
obtain:

(GS(X), Q′(GT (X))) ≡ (Sim(ρT), Q′(ρT))

We now distinguish two cases. If the number of probes within the PRG is
such that t′ ≥ 1, we let Sim′(ρT , v) = (Sim(ρT), v) and we obtain:

(GS(X), Q′(GT (X))) ≡ (Sim(ρT), Q′(ρT)) ≡ Sim′(ρT , Q′(ρT))

which gives (GS(X), QI(ω),ρ̄(G(X))) ≡ Sim′(ρT , QI(ω),ρ̄(ρ)). In this case, the
distribution to which Sim’ is applied captures the view of an adversary A who
corrupts a set T ∪ P of wires in C, where |P | ≤ t − t′ and by definition ρT can
be obtained with a single probe, which gives a total of at most t − t′ + 1 ≤ t
probes in C. Since by assumption C is t-private, this view is independent of the
secret ω. Since the distribution on the left hand side captures the view of A′, it
follows that the view of A′ is also independent of ω, as required.

In the second case, G is not probed by the adversary A′. Since G is �t-wise
independent and the view of A′ depends on at most �t bits of ρ, the view of A′

is the same as the view of an adversary A probing the same wires in C. More
precisely, we have from GT (X) ≡ ρT :

QI(ω),ρ̄(G(X)) ≡ QI(ω),ρ̄(ρ)

As previously, the right hand side corresponds to the view of an adversary A
who corrupts a set P of at most t wires in C and the distribution of the left
hand side captures the view of A′; therefore the view of A′ is independent of ω
also in the second case. 	

364 J.-S. Coron et al.

We now consider the main theorem where the circuit randomness ρ can be
split into (ρi)k

i=1, and when considering each ρi separately, the circuit C makes
an �-local use of ρi; moreover we assume that C remains t-private even if the
adversary can obtain each ρi with a single probe. The proof follows from a
recursive application of Lemma 11.

Theorem 7 (Security with multiple PRGs). Suppose C is a t-private
implementation of f with encoder I and decoder O, where the circuit
C(ω̂, ρ1, . . . , ρk) uses for each 1 ≤ i ≤ k, m random bits ρi, and makes an
�-local use of ρi, and the adversary can obtain each ρi with a single probe. Let
G : {0, 1}nr → {0, 1}m be a linear �t-wise independent PRG. Then, the circuit
C ′ defined by C ′(ω̂, ρ′

1, . . . , ρ
′
k) = C(ω̂, G(ρ′

1), . . . , G(ρ′
k)) is a t-private imple-

mentation of f with encoder I and decoder O which uses k · nr random bits.

4.2 Extended Security Model: PINI-R

In Theorem 7 above we have considered an extended model of security, where the
adversary can get any randomness subset ρi in the circuit with a single probe.
Therefore, we define a variant of the PINI notion from [CS18], called PINI-R, in
which the adversary can also get access to a subset of the randoms in a gadget,
using a single probe.

Definition 9 (PINI-R). Let G be a gadget with input shares xi,� and output
shares yi,�. Let (ρi)1≤i≤n be a partition of the randoms used by G. The gadget
G is PINI-R if for any t1 ∈ N, any set of t1 intermediate variables, any subset
O of output indices and any subset R ⊂ [1, n], there exists a subset I ⊂ [1, n]
of input indices with |I| ≤ t1 such that the t1 intermediate variables, the output
shares y|O∪R,� and the randoms ρi for i ∈ R can be perfectly simulated from the
input shares x|I∪O∪R,�.

The following proposition is analogous to Proposition 1. It shows that if a
gadget with n = t+1 shares is PINI-R, then a t-probing adversary learns nothing
about the underlying secrets, even in an extended model of security where the
adversary can get each randomness subset ρi with a single probe. We provide
the proof in the full version of our paper [CGZ19].

Proposition 4 (PINI-R security). Let G be a gadget with input shares xi,�

and output shares yi,� for 1 ≤ i ≤ n. Let (ρi)1≤i≤n be a partition of the random-
ness used by G. If G is PINI-R, then G is (n − 1)-probing secure in an extended
model of security where the adversary can get each ρi with a single probe.

In the composition theorem below, the attacker can get the union of all
corresponding subsets of randoms from all gadgets, still with a single probe; see
the full version of our paper [CGZ19] for the proof.

Theorem 8 (Composition of PINI-R). Any composite gadget made of
PINI-R composing gadgets Gi for i ∈ K is PINI-R, where for the composite
gadget we take the randomness partition ρi =

⋃
k∈K ρ

(k)
i for 1 ≤ i ≤ n.

Side-Channel Masking with Pseudo-Random Generator 365

It is straightforward to prove the PINI-R property of the locality refresh-
ing algorithm from Sect. 2.6, with the randomness partition ρi = {si} for
1 ≤ i ≤ n−1. In the full version of our paper [CGZ19] we consider an analogous
extension of the t-SNI property, called t-SNI-R, which we prove for the SecMult
and SecMultILR constructions, and the corresponding FullRefresh. More precisely,
we show that those gadgets remain secure in an extended model of security where
the adversary can get all randoms rij (and all randoms sij for SecMultILR) for a
given i with a single probe. Moreover the “double-SNI” approach still works for
the t-SNI-R and PINI-R notions. This implies that we can base our construction
on t-SNI-R and PINI-R gadgets, and the resulting construction will be PINI-R.
Note that the t-SNI security proof of SecMultILR2 is already complex, so we will
not try to prove the t-SNI-R property of SecMultILR2; therefore we will use the
multiple PRGs approach for SecMultFLR and SecMultILR only.

4.3 Constant Locality with Respect to a Randomness Subset

In this section we show that we can achieve constant locality, even � = 1, when we
consider different subsets of randomness. Therefore we first provide a definition
of gadget locality with respect to a subset of the gadget randomness only (and
excluding the randomness of the inputs, as opposed to Sect. 2.7), and then a
locality composition theorem as in Sect. 2.7.

Definition 10 (�-local gadget with randomness subset). Let G be a gadget
and let ρ be a subset of the randomness used by G. The gadget G is said to make
an �-local use of its randomness ρ if any intermediate variable of G depends on
at most � bits of ρ.

For example, the SecMult gadget makes a 1-local use of its randomness ρ =
{rij} for any 1 ≤ i < j ≤ n; this is obvious, since ρ contains a single random
bit. We can now state our composition theorem for locality with respect to a
randomness subset. It shows that the gadget locality � is kept the same in the
composite gadget, while the locality of the randoms used for output refreshing
is equal to 3 with respect to each subset {s

(k)
i , k ∈ K} for 1 ≤ i ≤ n − 1. We

refer to the full version of our paper [CGZ19] for the proof.

Theorem 9 (Locality composition with randomness subset). Let Gk for
k ∈ K be a set of fan-in 2 gadgets which all make an �-local use of a subset
ρk of their randomness. Consider the gadgets G′

k for k ∈ K where the output
of Gk is locality refreshed with randoms s

(k)
i for 1 ≤ i ≤ n − 1. Any composite

gadget made of G′
k makes an �-local use of the randomness

⋃
k∈K ρk, and for

any 1 ≤ i ≤ n − 1, it makes a 3-local use of the randoms in {s
(k)
i : k ∈ K}.

For example if we compose a number of SecMultFLR gadgets, in the composite
gadget the locality with respect to the randoms r

(k)
ij for fixed i, j is � = 1, while

the locality with respect to the randoms s
(k)
i for fixed i from the output locality

refreshing is � = 3. We stress that in the final implementation all the randomness

366 J.-S. Coron et al.

(including the randomness from the locality refreshing) will be generated by the
PRGs. Finally, we show in the full version of our paper [CGZ19] that the latter
locality can be brought down to 1; for this it suffices to additionally perform
a locality refreshing of the two inputs of each gadget, with independent sets of
PRGs for the two inputs.

4.4 First Construction: Multiple PRGs with SecMultFLR

Our first construction is described in Fig. 6. It consists in using the SecMult
algorithm and perform a locality refresh after each gadget; this includes the
SecMult gadget, the Xor gadget and the FullRefresh gadget. For every 1 ≤ i <

j ≤ n, an independent PRG generates all randoms r
(k)
ij in the SecMult and

FullRefresh gadgets. Similarly, for each 1 ≤ i ≤ n − 1, an independent PRG
generates all randoms s

(k)
i in all locality refreshing gadgets.

Construction 1: multiple PRGs with SecMultFLR

1. Given a circuit C, generate a private circuit (I, C′, O) with
n = t + 1 shares as follows:
- replace every AND gate by the “double-SNI” gadget with
SecMult and FullRefresh. Perform a locality refreshing LR after
SecMult and FullRefresh.
- replace every XOR gate by the Xor gadget. Perform a locality
refreshing LR after each Xor gadget.

2. Initialize n(n − 1)/2 PRG functions Gij for 1 ≤ i < j ≤ n, each
with r-wise independence parameter r = t.

3. Generate all randoms r
(k)
ij in SecMult or FullRefresh gadget k with

the PRG function Gij .
4. Initialize n − 1 PRG functions G′

i for 1 ≤ i < n, each with r-wise
independence parameter r = 3t.

5. Generate all randoms s
(k)
i in the LR algorithm from gadget k

using the PRG function G′
i.

Fig. 6. Private circuit construction with multiple PRGs with SecMultFLR.

From the locality composition theorem (Theorem 9), in the global construc-
tion the locality with respect to the randoms {r

(k)
ij : k ∈ K} is �r = 1, while

the locality with respect to the randoms {s
(k)
i : k ∈ K} is �s = 3. From

the PINI-R property of the gadgets and Theorem8, the full circuit is PINI-
R. Therefore, from Proposition 4, it is secure in an extended model of security
in which the adversary can get the previous randomness subsets with a sin-
gle probe. From Lemma 11, the PRGs for the rij ’s must be t-wise independent,

Side-Channel Masking with Pseudo-Random Generator 367

while the PRGs for the si’s must be 3t-wise independent. Since one requires
n(n− 1)/2 independent PRGs for the rij ’s, and n− 1 independent PRGs for the
si’s, the number of input randoms in the finite field is therefore, with n = t + 1,
nr = n(n − 1) / 2 · t + (n − 1) · 3t = O(t3). Thus we have shown the following
lemma. Compared to Lemma 9 for a single robust PRG with our SecMultILR
algorithm, the randomness complexity is the same but the total running time
goes down from Õ(st5) to Õ(st3).

Lemma 12 (multiple PRGs with SecMultFLR). Any function of circuit size
s admits a t-private implementation (I, C,O) with the canonic encoder I and
decoder O, where C uses O(t3 · log(st)) bits of randomness, and runs in time
O(s · t3 · log2(st)).

4.5 Second Construction: Multiple PRGs with SecMultILR

Our second construction is described in Fig. 7, based on the SecMultILR algo-
rithm. As illustrated in Fig. 8, a dedicated PRG generates the rij ’s for a given
row i, in all gadgets. We first show that the SecMultILR algorithm makes a 1-
local use of each row of randoms rij and a 2-local use of each row of randoms
sij ; see the full version of our paper [CGZ19] for the proof.

Lemma 13 (Locality of SecMultILR). The SecMultILR algorithm makes a 1-
local use of each randomness set ρi = {rij : i < j ≤ n} and a 2-local use of each
randomness set ρ′

i = {sij : i < j ≤ n}.
From Lemma 13 and Theorem 9, in the global construction the locality with

respect to the subsets of randoms ρi = {r
(k)
ij : i < j ≤ n, k ∈ K} is equal

to 1, the locality with respect to the subsets of randoms ρ′
i = {s

(k)
ij : i < j ≤

n, k ∈ K} is equal to 2, and the locality with respect to the subsets of randoms
ρ′′

i = {s
(k)
i : k ∈ K} is still equal to 3, for each 1 ≤ i < n. As previously,

from the PINI-R property of the gadgets and Proposition 8, the full circuit is
PINI-R. Therefore, it is secure in an extended model of security in which the
adversary can get the previous randomness subsets with a single probe. From
Lemma 11, the corresponding PRGs must therefore have r-wise independence
parameter r = t, r = 2t and r = 3t respectively. The main difference is that
now there are only n − 1 independent PRGs to generate the r

(k)
ij (instead of

n(n − 1)/2 previously), because a given PRG generates those randoms for all
indices j. The total number of input randoms in the finite field is therefore
nr = (n − 1) · t + (n − 1) · 2t + (n − 1) · 3t = O(t2). Thus we have shown the
following lemma. Asymptotically this is the most efficient technique (see Table 1
for a comparison), and also the most efficient in practice (see the next section
for our implementation results on AES).

368 J.-S. Coron et al.

Construction 2: multiple PRGs with SecMultILR

1. Given a circuit C, generate a private circuit (I, C′, O) with
n = t + 1 shares as follows:
- replace every AND gate by the “double-SNI” gadget with
SecMultILR and the corresponding FullRefreshILR. Perform a lo-
cality refreshing LR after each SecMultILR and FullRefreshILR.
- replace every XOR gate by the Xor gadget. Perform a locality
refreshing LR after each Xor gadget.

2. Initialize n − 1 PRG functions Gi for 1 ≤ i < n, each with r-wise
independence parameter r = t.

3. Generate all randoms r
(k)
ij in SecMultILR or FullRefreshILR gadget

k with the PRG function Gi.
4. Initialize n − 1 PRG functions G′

i for 1 ≤ i < n, each with r-wise
independence parameter r = 2t.

5. Generate all randoms s
(k)
ij in SecMultILR or FullRefreshILR gadget

k using the PRG function G′
i.

6. Initialize n−1 PRG functions G′′
i for 1 ≤ i < n, each with r-wise

independence parameter r = 3t.
7. Generate all randoms s

(k)
i in the LR algorithm using the PRG

function G′′
i .

Fig. 7. Private circuit construction with multiple PRGs with SecMultILR.

Lemma 14 (multiple PRGs with SecMultILR). Any function of circuit size
s admits a t-private implementation (I, C,O) with the canonic encoder I and
decoder O, where C uses O(t2 · log(st)) bits of randomness, and runs in time
O(s · t3 · log2(st)).

5 Application to AES

In this section we describe a concrete implementation of our techniques for AES;
the goal is to minimize the total amount of randomness used to protect AES
against t-th order attack. We provide the source code in C in [Cor19b].

5.1 The AES Circuit and the Rivain-Prouff Countermeasure

To implement the AES SBox, we need to perform 4 multiplications, and 2 mask
refreshing per byte; see [RP10] for the sequence of operations. For the mask
refreshing, we use the multiplication based refreshing FullRefresh recalled in the
full version of our paper [CGZ19]. We refer to [BBD+16] for the proof that
the x254 gadget is (n − 1)-SNI; this implies that the gadget is PINI. Thus, this
amounts to performing 6 multiplications per byte. Since there are 16 bytes to
process per round, the number of required multiplications is 6 × 16 = 96 per
round. Thus for the 10 rounds of the AES, one will perform 96 × 10 = 960
multiplications.

Side-Channel Masking with Pseudo-Random Generator 369

r
(1)
ij r

(1)
ij′ r

(2)
ij r

(2)
ij′ r

(s)
ij r

(s)
ij′

Gi

ρ′
i

Fig. 8. In Construction 2, a dedicated PRG generates the rij ’s for a given row i in all
gadgets, from a random seed ρ′

i.

5.2 Implementation with Single Robust PRG

We first consider an implementation with a single robust PRG as in Sect. 3,
with 3 possible algorithms: the original [IKL+13] construction with a locality
refresh after each multiplication gadget (SecMultFLR), and our new SecMultILR
and SecMultILR2 algorithms. For those three algorithms, we provide in Table 4
the total number of pseudo-randoms to be generated for the AES circuit, the
corresponding locality parameter �, and the number of 8-bit randoms from the
TRNG to generate the seed of the PRG, as a function of the number of shares
n, for security against t probes with n = t + 1.

Table 4. For AES, total number of pseudo-randoms and number of 8-bit TRNG calls,
for a single robust PRG, as a function of the number of shares n. We have c = 3 for
even n, and c = 11/4 for odd n. We assume that n ≤ 12.

SecMult [RP10] SecMultFLR [IKL+13] SecMultILR SecMultILR2

Mult 480n(n − 1) (480n + 960)(n − 1) 960n(n − 1) (480n + 960)(n − 1)

Xor − 160(n − 1)

Pseudo-rand − (480n + 1120)(n − 1) (960n + 160)(n − 1) (480n + 1120)(n − 1)

Locality � − max(4(n − 1),

n2/4 + 5n/2 − c)

4(n − 1) 4(n − 1)

True-rand 480n(n − 1) 2n(n−1)·max(4(n−1),

n2/4 + 5n/2 − c)

8n(n − 1)2 8n(n − 1)2

We now explain the content of Table 4. For each of the 3 algorithms, the
number of pseudo-randoms is the number of randoms from Table 3 in Sect. 3,
multiplied by 960, since one must perform 960 multiplications. Furthermore, the
MixColumns operation requires 48 xors. Normally we should perform a locality
refresh after each xor, but in the particular case of the AES, we can do the
locality refresh only after the 3 xors of the MixColumns for each byte. In that
case, the locality parameter with respect to MixColumns is then 4(n−1), instead

370 J.-S. Coron et al.

of 2(n − 1) for a single xor. The locality of the global circuit is then the max
of locality parameter � from Table 3 and 4(n − 1). Equivalently, we can perform
such locality refresh as input of the SubByte operation, which enables to keep
the MixColumns unmodified. For the MixColumns, one therefore needs to perform
16 locality refresh per round, which gives a total of 160 locality refresh for the
10 rounds of the AES, which requires 160(n − 1) pseudo-randoms. Finally, we
assume that the round keys are already masked without PRG, and so we don’t
need to perform a locality refreshing after the AddRoundKey.

Let m the total number of pseudo-randoms over F28 that must be generated.
To determine the finite field F = F28k used by the PRG, we must ensure m ≤
k · |F28k | = k · 28k. Namely a single polynomial evaluation over F28k generates k
bytes of pseudo-random. One must then use a PRG with r-wise independence
parameter r = � · (n−1). Using the trivial construction with the xor of n = t+1
polynomial evaluations (to provide resistance against t probes), the total number
of fresh random values over F28 is then nr = k · n · r = k · n(n − 1) · �.

For the three algorithms one can work over F216 for n ≤ 12; therefore for
simplicity we take k = 2 in Table 4. For SecMultILR and SecMultILR2, the total
number of TRNG calls over F28 is then nr = k ·n(n−1) ·4(n−1) = 4k ·n(n−1)2

with k = 2 for n ≤ 12, and k = 3 for 13 ≤ n ≤ 229, instead of 480n(n − 1)
for the original Rivain-Prouff countermeasure; therefore one needs fewer TRNG
calls than Rivain-Prouff for n ≤ 40. We summarize in Table 6 below the number
of input random bytes required for AES for small values of n, compared with
the original Rivain-Prouff countermeasure.

5.3 Implementation with Multiple PRGs

We now consider an implementation of AES with multiple PRGs, as in Sect. 4.
We consider the SecMultFLR algorithm corresponding to Construction 1, and
the SecMultILR algorithm corresponding to Construction 2. As previously, we
provide in Table 5 the total number of pseudo-randoms to be generated for the
AES circuit, and the number of 8-bit randoms from the TRNG.

As previously, we only perform a locality refresh after the 3 xors of the Mix-
Columns (equivalently, before each SubByte). Moreover we don’t perform the LR
algorithm after SecMultILR as in Construction 2, since the output of SecMultILR
is already locality refreshed. Therefore the number of pseudo-randoms is the
same as in the previous section. We use two classes of independent PRGs. The
first class of independent PRGs is used to generate the rij ’s from SecMultFLR
and SecMultILR algorithms, with locality �r = 1; therefore the PRGs must be
�rt-wise independent. We need n(n − 1)/2 such PRGs for SecMultFLR, and only
n − 1 for SecMultILR. Working over F216 , each PRG requires 2�rt = 2(n − 1)
random bytes. Similarly, the second class of PRGs is used to generate randoms
si from the locality refresh, and also the randoms sij for the internal locality
refresh in SecMultILR, with locality �s = 5. Namely we only perform the locality
refresh after the 3 xors of the MixColumns, and therefore the locality is �s = 5
(instead of �s = 3). Note that for SecMultILR we can use the same class of PRGs
to generate the randoms sij ’s from SecMultILR and the randoms si’s from LR,

Side-Channel Masking with Pseudo-Random Generator 371

Table 5. For AES, total number of Pseudo-random and True-random values to gener-
ate with the multiple PRGs approach, as a function of the number of shares n. Values
for the Rivain-Prouff countermeasure are also recalled for comparison.

SecMult [RP10] SecMultFLR SecMultILR

Pseudo-rand − (480n + 1120)(n − 1) (960n + 160)(n − 1)

Locality �r of rij − 1 1

Number of PRGs (rij) − n(n − 1)/2 n − 1

True-rand per PRG (rij) − 2(n − 1) 2(n − 1)

Locality �s of sij and si − 5 5

Number of PRGs (si and sij) − n − 1 n − 1

True-rand per PRG (sij and si) − 10(n − 1) 10(n − 1)

Total True-Rand 480n(n − 1) (n + 10)(n − 1)2 12(n − 1)2

instead of two classes in Construction 2 from Sect. 4; namely it is easy to see that
the locality with respect to the corresponding randomness subsets is still equal
to 5. Therefore the PRGs must be �st-wise independent; working over F216 , each
PRG requires 10(n − 1) bytes of TRNG.

In summary, for SecMultFLR, the total number of 8-bit TRNG calls is there-
fore nr = n(n − 1)/2 · 2(n − 1) + (n − 1) · 10(n − 1) = (n + 10)(n − 1)2 and for
SecMultILR, we get nr = (n − 1) · 2(n − 1) + (n − 1) · 10(n − 1) = 12(n − 1)2

instead of 480n(n − 1) in the original Rivain-Prouff countermeasure.

A Simple 3-wise Independent PRG. Finally, we consider the simple 3-wise
independent PRG from Sect. 2.3:

G(x1, . . . , xd, y1, . . . , yd) = (xi ⊕ yj)1≤i,j≤d

Since the PRG function G expands from 2d to d2 bits (or bytes), the number of
input randoms becomes O(

√
s) instead of O(s), where s is the circuit size. Note

that this is worse than the polynomial-based PRG used previously that requires
only O(log s) randoms, but the above function G is very fast since generating a
pseudo-random only takes a single xor.

Since the above PRG only achieves 3-wise independence, we want to minimize
the locality. Therefore, we perform a locality refresh of the 2 inputs of each gadget
(with two distinct sets of independent PRGs), and we perform a locality refresh of
the outputs of each gadget (SecMult, Xor and FullRefresh), using another distinct
set of independent PRGs. As shown in the full version of our paper [CGZ19], the
locality with respect to each subset of randoms is then always � = 1; therefore,
we can use a PRG with r-wise independence r = t = n − 1. This implies that
this specific PRG only works for n = 3 and n = 4 shares. We argue in the full
version of our paper [CGZ19] that the total number of input bytes for AES is
642 for n = 3 and 1056 for n = 4, instead of 2880 and 5760 respectively for the
original Rivain-Prouff countermeasure.

372 J.-S. Coron et al.

Table 6. For AES, total number of TRNG bytes to generate for single and multiple
PRGs methods, depending of the number of shares n. We also provide the number of
TRNG bytes for the original Rivain-Prouff countermeasure.

Single robust PRG Multiple PRGs

[RP10] SecMultFLR SecMultILR SecMultILR2 SecMultFLR SecMultILR 3-wise SecMultFLR

n = 3 2880 96 96 96 52 48 642

n = 4 5760 288 288 288 126 108 1056

n = 5 9600 640 640 640 240 192 −
n = 6 14400 1260 1200 1200 400 300 −
n = 7 20160 2268 2016 2016 612 432 −
n = 8 26880 3696 3136 3136 882 588 −
n = 9 34560 5760 4608 4608 1216 768 −
n = 10 43200 8460 6480 6480 1620 972 −

Summary. We summarize in Table 6 the number of input random bytes required
for AES for all previous methods, as a function of the number of shares n, in
order to achieve t-th order security, with t = n−1. We see that the most efficient
method (in terms of minimizing the number of TRNG calls) is the SecMultILR
algorithm with multiple PRGs. Namely for small values of t we obtain almost
two orders of magnitude improvement compared to the original Rivain-Prouff
countermeasure. We provide in AppendixA the results of an implementation of
our countermeasure on an ARM-based embedded device. We provide the source
code in [Cor19b].

A Concrete Implementation

We have implemented our constructions for AES in C, on a 44 MHz ARM-
Cortex M3 processor. The processor is used in a wide variety of products such
as passports, bank cards, SIM cards, secure elements, etc. The embedded TRNG
module can run in parallel of the CPU, but it is relatively slow: according to
our measurements on emulator, it outputs 32 bits of random in approximately
6000 cycles. Our results, obtained by running the code on emulator, are given
in Table 7, and are compared with the classical Rivain-Prouff countermeasure.

We see that the most efficient countermeasure is the SecMultFLR algorithm
with multiple PRGs, using the 3-wise independent PRG. For n = 3 and n = 4
we obtain a 52% and 61% speedup respectively, compared to Rivain-Prouff. We
provide the source code in [Cor19b].

Side-Channel Masking with Pseudo-Random Generator 373

Table 7. Smart-card implementation results, on a 44 MHz ARM-Cortex M3 processor,
with an embedded TRNG module. We provide the timings in millions of clock cycles,
and the ratio with respect to the Rivain-Prouff countermeasure.

Single robust PRG Multiple PRGs

[RP10] SecMultFLR SecMultILR SecMultILR2 SecMultFLR SecMultILR 3-wise SecMultFLR

n = 3 Mcycles 20.6 65.6 76.8 65.4 12 14.1 9.8

ratio 1 3.18 3.73 3.17 0.58 0.68 0.48

n = 4 Mcycles 40.2 235.1 425.1 324.9 24.6 34.7 15.5

ratio 1 5.85 10.57 8.08 0.61 0.86 0.39

n = 5 Mcycles 65.8 1100 1541.5 1097.1 42.8 70 −
ratio 1 16.72 23.43 16.67 0.65 1.06 −

n = 6 Mcycles 97.5 3042.1 4278.3 2898.5 67.2 124.1 −
ratio 1 31.20 43.88 29.73 0.69 1.27 −

B The SecMult Gadget

We recall in Algorithm 4 the SecMult gadget used in [RP10] for protecting AES
against t-th order attacks. It is an extension to F2k of the original ISW coun-
termeasure [ISW03] described in F2. The SecMult gadget was proven t-SNI in
[BBD+16].

Algorithm 4. SecMult

Input: shares ai satisfying
⊕n

i=1 ai = a, shares bi satisfying
⊕n

i=1 bi = b
Output: shares ci satisfying

⊕n
i=1 ci = a · b

1: for i = 1 to n do
2: ci ← ai · bi

3: end for
4: for i = 1 to n do
5: for j = i + 1 to n do
6: r ← F2k # referred by ri,j

7: ci ← ci ⊕ r # referred by ci,j

8: r ← (ai · bj ⊕ r) ⊕ aj · bi # referred by rj,i

9: cj ← cj ⊕ r # referred by cj,i

10: end for
11: end for
12: return (c1, . . . , cn)

374 J.-S. Coron et al.

References

[AIS18] Ananth, P., Ishai, Y., Sahai, A.: Private circuits: a modular approach. In:
Shacham, H., Boldyreva, A. (eds.) CRYPTO 2018, Part III. LNCS, vol.
10993, pp. 427–455. Springer, Cham (2018). https://doi.org/10.1007/978-
3-319-96878-0 15. https://eprint.iacr.org/2018/566.pdf

[BBD+15] Barthe, G., Beläıd, S., Dupressoir, F., Fouque, P.-A., Grégoire, B., Strub,
P.-Y.: Verified proofs of higher-order masking. In: Oswald, E., Fischlin, M.
(eds.) EUROCRYPT 2015, Part I. LNCS, vol. 9056, pp. 457–485. Springer,
Heidelberg (2015). https://doi.org/10.1007/978-3-662-46800-5 18

[BBD+16] Barthe, G., et al.: Strong non-interference and type-directed higher-order
masking. In: Proceedings of the 2016 ACM SIGSAC Conference on Com-
puter and Communications Security, Vienna, Austria, 24–28 October 2016,
pp. 116–129 (2016). https://eprint.iacr.org/2015/506.pdf

[BBP+16] Beläıd, S., Benhamouda, F., Passelègue, A., Prouff, E., Thillard, A.,
Vergnaud, D.: Randomness complexity of private circuits for multiplica-
tion. In: Fischlin, M., Coron, J.-S. (eds.) EUROCRYPT 2016, Part II.
LNCS, vol. 9666, pp. 616–648. Springer, Heidelberg (2016). https://doi.
org/10.1007/978-3-662-49896-5 22

[CGZ19] Coron, J.-S., Greuet, A., Zeitoun, R.: Side-channel masking with pseudo-
random generator. Full version of this paper. Cryptology ePrint Archive,
Report 2019/1106 (2019). https://eprint.iacr.org/2019/1106

[Cor18] Coron, J.-S.: Formal verification of side-channel countermeasures via ele-
mentary circuit transformations. In: Preneel, B., Vercauteren, F. (eds.)
ACNS 2018. LNCS, vol. 10892, pp. 65–82. Springer, Cham (2018). https://
doi.org/10.1007/978-3-319-93387-0 4

[Cor19a] Coron, J.-S.: CheckMasks: formal verification of side-channel countermea-
sures (2019). https://github.com/coron/checkmasks

[Cor19b] Coron, J.-S.: Implementation of higher-order countermeasures (2019).
https://github.com/coron/htable/

[CS18] Cassiers, G., Standaert, F.-X.: Trivially and efficiently composing masked
gadgets with probe isolating non-interference. Cryptology ePrint Archive,
Report 2018/438 (2018). https://eprint.iacr.org/2018/438

[DDF14] Duc, A., Dziembowski, S., Faust, S.: Unifying leakage models: from probing
attacks to noisy leakage. In: Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT
2014. LNCS, vol. 8441, pp. 423–440. Springer, Heidelberg (2014). https://
doi.org/10.1007/978-3-642-55220-5 24

[FPS17] Faust, S., Paglialonga, C., Schneider, T.: Amortizing randomness complex-
ity in private circuits. In: Takagi, T., Peyrin, T. (eds.) ASIACRYPT 2017,
Part I. LNCS, vol. 10624, pp. 781–810. Springer, Cham (2017). https://
doi.org/10.1007/978-3-319-70694-8 27

[GUV09] Guruswami, V., Umans, C., Vadhan, S.P.: Unbalanced expanders and ran-
domness extractors from Parvaresh-Vardy codes. J. ACM 56(4), 20:1–20:34
(2009)

[IKL+13] Ishai, Y., et al.: Robust pseudorandom generators. In: Fomin, F.V.,
Freivalds, R., Kwiatkowska, M., Peleg, D. (eds.) ICALP 2013, Part I.
LNCS, vol. 7965, pp. 576–588. Springer, Heidelberg (2013). https://doi.
org/10.1007/978-3-642-39206-1 49

https://doi.org/10.1007/978-3-319-96878-0_15
https://doi.org/10.1007/978-3-319-96878-0_15
https://eprint.iacr.org/2018/566.pdf
https://doi.org/10.1007/978-3-662-46800-5_18
https://eprint.iacr.org/2015/506.pdf
https://doi.org/10.1007/978-3-662-49896-5_22
https://doi.org/10.1007/978-3-662-49896-5_22
https://eprint.iacr.org/2019/1106
https://doi.org/10.1007/978-3-319-93387-0_4
https://doi.org/10.1007/978-3-319-93387-0_4
https://github.com/coron/checkmasks
https://github.com/coron/htable/
https://eprint.iacr.org/2018/438
https://doi.org/10.1007/978-3-642-55220-5_24
https://doi.org/10.1007/978-3-642-55220-5_24
https://doi.org/10.1007/978-3-319-70694-8_27
https://doi.org/10.1007/978-3-319-70694-8_27
https://doi.org/10.1007/978-3-642-39206-1_49
https://doi.org/10.1007/978-3-642-39206-1_49

Side-Channel Masking with Pseudo-Random Generator 375

[ISW03] Ishai, Y., Sahai, A., Wagner, D.: Private circuits: securing hardware against
probing attacks. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp.
463–481. Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-540-
45146-4 27

[OMHT06] Oswald, E., Mangard, S., Herbst, C., Tillich, S.: Practical second-order
DPA attacks for masked smart card implementations of block ciphers.
In: Pointcheval, D. (ed.) CT-RSA 2006. LNCS, vol. 3860, pp. 192–207.
Springer, Heidelberg (2006). https://doi.org/10.1007/11605805 13

[RP10] Rivain, M., Prouff, E.: Provably secure higher-order masking of AES. In:
Mangard, S., Standaert, F.-X. (eds.) CHES 2010. LNCS, vol. 6225, pp.
413–427. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-
15031-9 28

https://doi.org/10.1007/978-3-540-45146-4_27
https://doi.org/10.1007/978-3-540-45146-4_27
https://doi.org/10.1007/11605805_13
https://doi.org/10.1007/978-3-642-15031-9_28
https://doi.org/10.1007/978-3-642-15031-9_28

Non-Interactive Zero-Knowledge

Compact NIZKs from Standard
Assumptions on Bilinear Maps

Shuichi Katsumata1(B), Ryo Nishimaki2, Shota Yamada1(B),
and Takashi Yamakawa2

1 AIST, Tokyo, Japan
{shuichi.katsumata,yamada-shota}@aist.go.jp

2 NTT Secure Platform Laboratories, Tokyo, Japan
{ryo.nishimaki.zk,takashi.yamakawa.ga}@hco.ntt.co.jp

Abstract. A non-interactive zero-knowledge (NIZK) protocol enables a
prover to convince a verifier of the truth of a statement without leak-
ing any other information by sending a single message. The main focus
of this work is on exploring short pairing-based NIZKs for all NP lan-
guages based on standard assumptions. In this regime, the seminal work
of Groth, Ostrovsky, and Sahai (J.ACM’12) (GOS-NIZK) is still consid-
ered to be the state-of-the-art. Although fairly efficient, one drawback of
GOS-NIZK is that the proof size is multiplicative in the circuit size com-
puting the NP relation. That is, the proof size grows by O(|C|κ), where
C is the circuit for the NP relation and κ is the security parameter. By
now, there have been numerous follow-up works focusing on shortening
the proof size of pairing-based NIZKs, however, thus far, all works come
at the cost of relying either on a non-standard knowledge-type assump-
tion or a non-static q-type assumption. Specifically, improving the proof
size of the original GOS-NIZK under the same standard assumption has
remained as an open problem.

Our main result is a construction of a pairing-based NIZK for all of
NP whose proof size is additive in |C|, that is, the proof size only grows
by |C|+poly(κ), based on the decisional linear (DLIN) assumption. Since
the DLIN assumption is the same assumption underlying GOS-NIZK, our
NIZK is a strict improvement on their proof size.

As by-products of our main result, we also obtain the following two
results: (1)We construct a perfectly zero-knowledge NIZK(NIPZK) forNP
relations computable in NC1 with proof size |w| · poly(κ) where |w| is the
witness length based on the DLIN assumption. This is the first pairing-
based NIPZK for a non-trivial class of NP languages whose proof size is
independent of |C| based on a standard assumption. (2) We construct a
universally composable (UC) NIZK for NP relations computable in NC1

in the erasure-free adaptive setting whose proof size is |w|·poly(κ) from the
DLIN assumption. This is an improvement over the recent result of Kat-
sumata, Nishimaki, Yamada, and Yamakawa (CRYPTO’19), which gave
a similar result based on a non-static q-type assumption.

The main building block for all of our NIZKs is a constrained signature
scheme with decomposable online-offline efficiency. This is a property
which we newly introduce in this paper and construct from the DLIN
assumption. We believe this construction is of an independent interest.

c© International Association for Cryptologic Research 2020
A. Canteaut and Y. Ishai (Eds.): EUROCRYPT 2020, LNCS 12107, pp. 379–409, 2020.
https://doi.org/10.1007/978-3-030-45727-3_13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-45727-3_13&domain=pdf
https://doi.org/10.1007/978-3-030-45727-3_13

380 S. Katsumata et al.

1 Introduction

1.1 Background

Zero-knowledge proof system [26] is an interactive protocol that allows a prover
to convince a verifier about the validity of a statement without revealing anything
beyond the fact that the statement is true. A variant of this, which is both prac-
tically and theoretically important, are non-interactive zero-knowledge (NIZK)
proofs1 [6] where the prover is only required to send one message to the verifier
to prove the validity of the statement in question. Not only have NIZKs shown
to be a ubiquitous building block for cryptographic primitives and protocols, but
it has also shown to be a mine of theoretical questions with interesting technical
challenges.

Unfortunately, it is known that NIZKs for non-trivial languages (i.e., NP) do
not exist in the plain model where there is no trusted setup [25]. Therefore, NIZKs
for non-trivial languages are typically constructed in the common reference string
(CRS) model where the prover and verifier have access to a CRS generated by a
trusted entity. We will call such NIZKs in the CRS model simply as NIZKs.

The most successful NIZK for all of NP is arguably the pairing-based NIZK of
Groth, Ostrovsky, and Sahai [30] (GOS-NIZK). GOS-NIZKs are based on the stan-
dard decisional linear (DLIN) or the subgroup decision (SD) assumptions. Due to
its simplicity and efficiency, pairing-based NIZKs have flourished into a research
topic on its own, and the original GOS-NIZK has been followed by many subse-
quent works trying to improve on it through various approaches. For example,
many works such as [31,37,38,42] aim to make GOS-NIZK more efficient by limit-
ing the language to very specific pairing induced languages, while other works such
as [14,20,28,29,45] aim to gain efficiency by relying on a much stronger assump-
tion knownas knowledge assumptions (i.e., a type of non-falsifiable [23,48] assump-
tion). In fact, all works that achieve any notion of “better efficiency” compared to
GOS-NIZK only succeeds by either restricting the language or by resorting to use
stronger assumptions compared to DLIN or SD.

Similarly with many prior works, the main focus of “efficiency” in our work
will be the proof size of the NIZK. Denoting C as the circuit computing the
NP relation, GOS-NIZK requires a proof size as large as O(|C|κ), where κ is
the security parameter. Borrowing terminology from the recent work of Kat-
sumata et al. [40,41], what we would like instead is a more compact proof size,
that is, a proof size with only an additive overhead |C| + poly(κ) rather than
a multiplicative overhead. For instance, the above latter approach using knowl-
edge assumptions are known to achieve pairing-based NIZKs for NP with a
significantly short proof size that only depends on the security parameter; in
particular, the proof size does not even depend on the witness size. However,
unfortunately, it is known that NIZKs with such an unusually short proof (i.e.,
proof size poly(κ) · (|x| + |w|)o(1) where x is the statement and w is the witness)
inevitably require strong non-falsifiable assumptions [23]. The most compact
1 In the introduction, we do not distinguish between proofs and arguments for sim-

plicity.

Compact NIZKs from Standard Assumptions on Bilinear Maps 381

NIZK based on any falsifiable assumption is due to [21,22] which achieves proof
size |w| + poly(κ). However, since it uses (circular secure) fully homomorphic
encryption (FHE) its instantiation is solely limited to lattice-based assumptions.
Other than lattice-based constructions, Groth [27] proposed a NIZK based on the
security of Naccache-Stern public key encryption scheme [47] with a proof size
|C| · polylog(κ), which is asymptotically shorter than that of GOS-NIZK. Very
recently, Katsumata et al. [41] provided the first compact NIZK based on any
falsifiable pairing-based assumption achieving a proof size of |C|+poly(κ). Their
construction relies on a new primitive called homomorphic equivocal commit-
ment (HEC), and they instantiate HEC using a non-static Diffie-Hellman type
assumption recently introduced in [40]. Unfortunately, the construction of HEC
seems to be tailored to their specific non-static assumption, and it seems quite
difficult to construct HEC based on a clean static assumption such as DLIN.

In summary, despite the considerable work that has been put into paring-
based NIZKs, improving the proof size of GOS-NIZK while simultaneously main-
taining the language and assumption has shown to be elusive. Therefore, in this
work, the main question we ask is:

Can we construct compact NIZKs for all of NP based on standard assump-
tions over a pairing group?

1.2 Our Result

In this work, we present the first compact pairing-based NIZK for all of NP with
proof size |C|+poly(κ) based on the DLIN assumption.2 Along the way, we also
obtain several interesting compact variants of our NIZK such as non-interactive
perfect zero-knowledge (NIPZK) and universally composable NIZK (UC-NIZK)
[30] from the DLIN assumption. We provide a list of NIZKs which we achieve
below and refer to Tables 1 and 2 for comparison between prior works. We note
that the table only includes NIZKs for NP based on falsifiable assumptions.

1. We construct a compact NIZK for all of NP languages with proof size
|C|+poly(κ) based on the DLIN assumption. This is the first NIZK to achieve
a proof size shorter than that of GOS-NIZK under the same assumption
required by GOS-NIZK. Moreover, if we assume the NP relation to be com-
putable in NC1, the proof size can be made as small as |w| + poly(κ), which
matches the state-of-the-art of compact NIZKs from any primitive based
on (possibly non-pairing) falsifiable assumptions, e.g., fully-homomorphic
encryption [22]. Our NIZK can also be seen as an improvement of the recently
proposed compact NIZK of Katsumata et al. [41] in the following two aspects.
First, our construction relies on a standard assumption, whereas theirs rely
on a non-static q-type assumption. Second, our construction is fairly efficient
since we only use pairing group operations in a black-box manner, whereas
their construction is highly inefficient since they require pairing group oper-
ations in a non-black-box way.

2 More precisely, we can base it on the weaker MDDH assumption, which includes
the DLIN and symmetric external Diffie-Hellman (SXDH) assumptions as a special
case.

382 S. Katsumata et al.

2. We construct NIPZKs for NP languages that are computable in NC1 with
proof size |w| · poly(κ) from the DLIN assumption. This is the first pairing-
based perfectly zero-knowledge NIZK for a non-trivial class of NP languages
whose proof size is independent of |C| based on a standard assumption.

3. We construct UC-NIZKs for NP languages that are computable in NC1 with
proof size |w| · poly(κ) from the DLIN assumption. This is an improvement
over the recent result of Katsumata et al. [41], which gave a similar result
based on a non-static q-type assumption.

The main building block for all of our NIZKs is a constrained signature
scheme with decomposable online-offline efficiency. This is a property which we

Table 1. Comparison of CRS-NIZKs for NP.

Reference CRS size Proof size Assumption (Misc.)

FLS [16] poly(κ, |C|) poly(κ, |C|) trapdoor permutation†

Groth [27]
|C| · ktpm · polylog(κ)

+ poly(κ)

|C| · ktpm · polylog(κ)

+ poly(κ)
trapdoor permutation†

Groth [27] |C| · polylog(κ) + poly(κ) |C| · polylog(κ) + poly(κ) Naccache-Stern PKE

GOS [30] poly(κ) O(|C|κ) DLIN/SD (Perfect ZK)

CHK, Abusalah

[1,11]
poly(κ, |C|) poly(κ, |C|) CDH

(pairing group)

GGIPSS [22] poly(κ) |w| + poly(κ)
FHE and CRS-NIZK

(circular security)

KNYY [41] poly(κ, |C|) |C| + poly(κ) (n, m)-CDHER

KNYY [41] poly(κ, |C|, 2d) |w| + poly(κ)
(n, m)-CDHER

(limited to NC1 relation)

KNYY [41] poly(κ, |x|, |w|, d) poly(κ, |x|, |w|, d)

LFE and CRS-NIZK

(prover-efficient,

implied by sub-exp. LWE)

KNYY [41] (|x| + |w|) · poly(κ, d) Õ(|x| + |w|) · poly(κ, d)

LFE and CRS-NIZK‡

(prover-efficient,

implied by adaptive LWE)

Sect. 5.1 poly(κ, |C|) |C| + poly(κ) DLIN

Sect. 5.1 poly(κ, |C|, 2d) |w| + poly(κ)
DLIN

(limited to NC1 relation)

Sect. 5.2 poly(κ, |C|, 2d) |w| · poly(κ)

DLIN

(perfect ZK,

limited to NC1 relation)

In column “CRS size” and “Proof size”, κ is the security parameter, |x|, |w| is the statement and
witness size, |C| and d are the size and depth of the circuit computing the NP relation, and ktpm

is the length of the domain of the trapdoor permutation. In column “Assumption”, (n, m)-CDHER
stands for the (parameterized) computational DH exponent and ratio assumption, LFE stands for
laconic functional evaluation, and sub-exp. LWE stands for sub-exponentially secure learning with
errors (LWE).
†If the domain of the permutation is not {0, 1}n, we further assume they are doubly enhanced [24].
‡We additionally require a mild assumption that the prover run time is linear in the size of the
circuit computing the NP relation.

Compact NIZKs from Standard Assumptions on Bilinear Maps 383

newly introduce in this paper and construct from the DLIN assumption. We
believe this construction is of independent interest.

Table 2. Comparison of UC-NIZKs for NP.

Reference
Security

(erasure-free)
CRS size Proof size Assumption (Misc.)

GOS [30] adaptive (�) poly(κ) O(|C|κ) DLIN/SD

GGIPSS [22] adaptive (✗) poly(κ) |w|+ poly(κ)
FHE and UC-NIZK

(circular security)

CsW [13] adaptive (�) poly(κ, d) |w| · poly(κ, d) HTDF and UC-NIZK

KNYY [41] adaptive (�) poly(κ, |C|) |w| · poly(κ) (n, m)-CDHER and UC-NIZK

(limited to NC1 relation)

Sect. 5.2 adaptive (�) poly(κ, |C|) |w| · poly(κ) DLIN

(limited to NC1 relation)

In column “CRS size” and “Proof size”, κ is the security parameter, |w| is the
witness size, |C| and d are the size and depth of circuit computing the NP relation.
In column “Assumption”, DLIN stands for the decisional linear assumption, SD
stands for the subgroup decision assumption, HTDF stands for homomorphic trap-
door functions, and (n, m)-CDHER stands for the (parameterized) computational
DH exponent and ratio assumption.

1.3 Technical Overview

Reviewing Previous Results. Here, we review definitions and previous
results that are required for explaining our approach. We remark that we explain
previous works [40,41,43] in terms of constrained signatures (CS) instead of
homomorphic signatures, even though they are based on the latter primitive.
This is because these primitives are actually equivalent as shown by Tsabary
[52] and explaining in this way allows us to ignore small differences between
our approach and previous ones that stem from the syntactic difference between
them.

DP-NIZK and CS: We first explain the notion of designated prover NIZK (DP-
NIZK), which is a relaxed notion of the standard notion of NIZK. In order to
differentiate them, we call the latter CRS-NIZK in the following. In DP-NIZK,
only a prover who possesses a secret proving key can generate a proof for an
NP statement, and the verification can be done publicly by any entity. Here,
the secret proving key is generated along with the CRS by a trusted entity.
We require that soundness holds against a malicious prover who possesses the
secret proving key and that zero-knowledge holds against a malicious verifier
who only accesses the CRS and the proofs, but not the secret proving key.
We then explain the notion of CS, which is a slightly simplified version of
attribute-based signature [46]. CS is an advanced form of signature where a
signing key is associated with some circuit C : {0, 1}� → {0, 1} and using the

384 S. Katsumata et al.

signing key, one can sign on a message x if C(x) = 1. The signature can be ver-
ified by a public verification key. As for security, we require unforgeability and
privacy. The former requires that one cannot forge a valid signature on a mes-
sage x if it only has a signing key CS.skC for C such that C(x) = 0. The latter
requires that an honestly generated signature reveals nothing about the circuit
C associated with the signing key that is used for generating the signature. In
addition to the above security notions, we also require CS to have compact sig-
natures in the sense that the size of the signatures is a fixed polynomial that is
independent of the size of the circuit C and the length of the message x.

DP-NIZK from CS [43]: We then explain the generic construction of DP-NIZK
from CS shown by Kim and Wu [43]. This will serve as a good starting point for
us because their conversion allows us to convert a compact CS into a compact
DP-NIZK as we will see. Let us fix an NP language L that is verified by a circuit R
that takes as input a statement x and a witness w and outputs R(x,w) ∈ {0, 1}.
In their construction, they set the CRS of the DP-NIZK to be a verification key
of the CS. Furthermore, they set the secret proving key for the DP-NIZK to be
a secret key K of an SKE and a CS signing key CS.skCK

for circuit CK . Here,
CK is a circuit that takes as input an SKE ciphertext SKE.ct and a statement x
and outputs 1 if R(x,SKE.Dec(K,SKE.ct)) = 1 and 0 otherwise. To generate a
proof for an NP statement x corresponding to a witness w, the prover encrypts
the witness w by the SKE to obtain SKE.ct = SKE.Enc(K,w) and then signs on
the message (x,SKE.ct) using the CS signing key for CK . By the correctness of
the SKE, we have CK(x,SKE.ct) = R(x,w) = 1, which implies the completeness
of the DP-NIZK. The soundness of the protocol follows from the unforgeability
of the underlying CS. This is because any valid proof for an invalid statement
x∗ �∈ L is a valid signature on (x∗,SKE.ct∗) for some SKE.ct∗, for which we
have CK(x∗,SKE.ct∗) = R(x∗,SKE.Dec(K,SKE.ct∗)) = 0. The zero-knowledge
property of the protocol follows from the following intuition. From the privacy
of the CS, information of K hardwired into the circuit CK is not leaked from
the CS signature. We, therefore, can use the security of SKE to conclude that
SKE.ct leaks no information of the witness w.

We now focus on the efficiency of the resultant DP-NIZK. If we instantiate the
DP-NIZK with an SKE with additive ciphertext overhead and a CS with compact
signatures, this gives us a compact DP-NIZK. Note that an SKE scheme with
additive ciphertext overhead can be realized from very mild assumptions such as
CDH. Therefore, their result suggests that it suffices to construct compact CS
in order to construct a compact DP-NIZK.

Overview of Our Approach. Here, we provide an overview of our approach.
In high level, we follow the same approach as Katsumata et al. [40,41], who
constructed a compact CRS-NIZK from a non-static assumption over bilinear
maps. Specifically, we will first construct a CS, then convert it into a DP-NIZK,
and then modify it into a CRS-NIZK. However, our approach significantly differs
from theirs in low level details. We will provide a comparison with their work
after describing our approach in the following.

Compact NIZKs from Standard Assumptions on Bilinear Maps 385

Compact DP-NIZK from a Standard Assumption: We set the construction of
compact DP-NIZK from a static assumption as an intermediate goal. Thanks to
the Kim-Wu conversion, the problem is reduced to the construction of a CS scheme
with compact signatures from a static assumption. To achieve the goal, we fol-
low the folklore conversion that converts an attribute-based encryption (ABE)
into a CS that is somewhat reminiscent of the Naor conversion [7] (See e.g., [49]).
In order to obtain the CS scheme with the desired properties, it turns out that
we need to construct an adaptively secure ABE scheme whose ciphertext size is
bounded by some fixed polynomial. Although there is no ABE scheme with the
required properties from a static assumption in the literature, we are able to con-
struct it by modifying the very recent ABE scheme proposed by Kowalczyk and
Wee [44], who resolved the long-standing open problem of constructing adaptively
secure ABE for NC1 whose ciphertext length is independent of the circuit size
from a static assumption by cleverly adapting the piecewise guessing frameworks
[17,18,32,35,36,44] to the setting of ABE. We modify their scheme so that it has
even shorter ciphertexts by aggregating the ciphertext components and adding
extra components to the secret keys as was done in previous works on ABE with
short ciphertexts [2,33]. The security proof for the scheme is again similar to that
of Kowalczyk and Wee, where we decompose the secret keys into smaller pieces
and gradually randomize them via carefully chosen sequence of hybrid games.
The additional challenge for the proof in our setting is to deal with the extra
components in the secret keys. We handle this by observing that the originally
proof strategy by Kowalczyk and Wee for randomizing the secret keys works even
with these extra components. From this ABE scheme, we can obtain a CS scheme
with the desired properties. Furthermore, by applying the Kim-Wu conversion to
the CS scheme, we obtain a new compact DP-NIZK from a static assumption.
Although this is not our main goal, we note that this improves the compact DP-
NIZK scheme from a non-static assumption by Katsumata et al. [40].

Removing Secret Proving Key: We then try to remove the necessity of the secret
proving key from the DP-NIZK described above to obtain a CRS-NIZK. Toward
this goal, our first idea is to make the signing key of the CS scheme public by
including it into the CRS. When we do so, we stop hardwiring the secret key
K of the SKE into the circuit associated with the signing key and change the
circuit so that it takes K as an input. The obvious reason for this is because
we would like to use the security of SKE at some later point. More concretely,
we include CS.skC into the CRS, where C is a circuit that takes as input the
secret key K of SKE, a statement x, and a ciphertext SKE.ct of SKE and out-
puts R(x,SKE.Dec(K,SKE.ct)). When generating a proof, the prover chooses
a random K on its own, computes SKE.ct

$← SKE.Enc(K,w), and signs on the
message (x,SKE.ct,K) by using CS.skC to obtain a signature CS.σ, which is pos-
sible because we have C(x,SKE.ct,K) = 1 by the definition of C. The problem
with this approach is that we do not know what components to publish as the
final proof. More specifically, we run into the following deadlock: If we include
K into the proof, then the scheme is not zero-knowledge anymore because one
can decrypt SKE.ct by using K to retrieve w. On the other hand, if we do not

386 S. Katsumata et al.

include K into the proof, we can no longer verify the validity of CS.σ since K,
which is now a part of the message, is required to verify the signature.

Introducing Non-Compact NIZK: We resolve the above issue by using a CRS-
NIZK that is not necessarily compact (non-compact NIZK in the following) and
change the scheme so that it proves the validity of the CS signature without
revealing K nor the signature. In more detail, the prover generates K,SKE.ct

$←
SKE.Enc(K,w),CS.σ

$← CS.Sign(CS.skC , (x,SKE.ct,K)) as above. It then proves
that there exists (K,CS.σ) such that CS.σ is a valid signature on a message
(x,SKE.ct,K) under the verification key CS.vk by using the non-compact NIZK.
It then outputs (SKE.ct,CS.σ, π) as the final proof, where π is the non-compact
proof for the above statement.

We then explain that the scheme satisfies soundness and zero-knowledge. To
see this, we first observe that to break the soundness of the resultant NIZK
scheme, it is necessary to break the soundness of the underlying non-compact
NIZK or generate a valid CS signature on (x∗,SKE.ct∗,K∗) such that x∗ �∈ L.
By our assumption, the former is impossible. Furthermore, the latter is also
impossible, since we have C(x∗,SKE.ct∗,K∗) = 0 for any choice of K∗ and
SKE.ct∗ and thus it implies a forgery against the CS scheme. The zero-knowledge
property of the scheme holds since the proof consists of the SKE ciphertext and
the proof of the non-compact NIZK. Intuitively, since the latter does not leak
the information about K, we can use the security of SKE to conclude that w is
hidden from the adversary.

While this gives a secure construction, it is unclear whether this is a step
forward at this point since we merely constructed a NIZK from a CS by further
assuming a NIZK, which seems to be a vacuous statement. Furthermore, the
construction we described so far is not compact since the relation proven by
the underlying non-compact NIZK is verified by a circuit whose size depends on
|C|. To see this, we recall that the verification circuit for the relation proven by
the non-compact NIZK takes as input the statement x′ = (CS.vk, x,SKE.ct) and
witness w′ = (K,CS.σ) and outputs 1 if and only if CS.σ is a valid signature on
(x,SKE.ct,K). This circuit is not compact, since it takes as input x, which can
be as large as |C| in general and CS.vk, which is much larger than |C| in our
specific CS scheme.

Exploiting the Special Efficiency Property of the CS: We observe that what
should be kept secret in the above construction are K and CS.σ,3 and (x,SKE.ct)
can be made public without losing the zero-knowledge property. To get a clearer
understanding of the problem, we slightly generalize and simplify the problem as
follows. What we would like to do is to give a compact proof that we have a valid
signature CS.σ on a message (y, z) for public y and secret z without revealing z
nor CS.σ using a non-compact NIZK. Here, y is not compact while z and CS.σ
are compact. In our context, y = (x,SKE.ct) and z = K. In this generalized set-
ting, the above approach is equivalent to proving that CS.σ is a valid signature
on (y, z) under the verification key CS.vk. This relation is verified by a circuit

3 Note that CS.σ should be kept secret since it reveals partial information of K.

Compact NIZKs from Standard Assumptions on Bilinear Maps 387

that directly takes (CS.vk, (y, z),CS.σ) as inputs. This approach does not work
simply because the input is not compact.

Our first observation is that if we were somehow able to compress the verifi-
cation circuit size of the relation proven by the non-compact NIZK to be a fixed
polynomial without changing the functionality, then the resultant NIZK scheme
will have compact proofs. Fortunately, our CS scheme has a nice property that
brings us closer to this goal. Namely, in the scheme, the verifier can aggregate
the verification key CS.vk depending on a message m to obtain an aggregated
verification key CS.vkm, which is of fixed polynomial size. Then, a signature
CS.σ can be verified by using only the aggregated verification key CS.vkm. In
particular, the verification circuit no longer takes m as an input. Typically, the
aggregation of the verification key is done offline, where one is allowed to per-
form heavy computation, and the actual verification step is done online, where
the computation is very fast even if m is a very long string. We call this property
online-offline efficiency. We note that our CS scheme inherits this property from
the underlying ABE scheme, where secret keys can be aggregated depending on
an attribute in offline phase so that the decryption of a ciphertext corresponding
to the same attribute in the online phase is very fast.

A natural approach to compress the verification circuit (for the non-compact
NIZK) would be to replace the inputs CS.vk and (y, z) with its aggregated version
CS.vk(y,z). In particular, we replace the verification circuit which takes as input
CS.vk, (y, z), and CS.σ and verifies the signature with the corresponding online
verification circuit which takes CS.vk(y,z) and CS.σ as inputs. This circuit is com-
pact thanks to the online-offline efficiency of the CS. However, since CS.vk(y,z)

cannot be publicly computed, we would have to move the term CS.vk(y,z) into the
witness. Furthermore, we additionally have to prove that CS.vk(y,z) is honestly
computed from CS.vk and (y, z) using the non-compact NIZK. The problem is
that the resulting proof is not compact since this is a statement that involves
non-compact terms. Put differently, even though we can compactly prove that
we have a signature that passes the online verification under a compressed ver-
ification key, we cannot compactly prove that we honestly execute the offline
phase to compute the compressed verification key.

As we saw above, the idea of compressing CS.vk depending on the entire
string (y, z) does not work. Our idea is to “partially” compress CS.vk depending
on the public part y and then use this compressed version of the verification
key to construct the verification circuit for the non-compact NIZK. To enable
the idea, let us assume that we can compress CS.vk with respect to a string
y and obtain CS.vky. Then, further assume that we can compress CS.vky into
CS.vk(y,z) using z, so that the verification of a message (y, z) is possible using
CS.vk(y,z). Furthermore, we require that the computational cost of compressing
CS.vky into CS.vk(y,z) depends only on |z|, not on |y|. Therefore if z is compact,
we can compute CS.vk(y,z) from CS.vky and z by a compact circuit. Assuming
this property, we can solve the above generalized problem as follows: We first
compress CS.vk depending on y to obtain CS.vky. We then prove that there exists
CS.σ and z such that CS.σ is a valid signature under CS.vk(y,z), where CS.vk(y,z)

388 S. Katsumata et al.

is obtained by compressing CS.vky depending on the string z. This statement can
be proven compactly, since both verification under the verification key CS.vk(y,z)

and the compression of CS.vky into CS.vk(y,z) can be done compactly. Further-
more, unlike the previous attempt, we do not have to prove that we honestly
executed the offline computation. Namely, we do not have to prove the consis-
tency between CS.vk, y, and CS.vky, since CS.vky is publicly computable from
CS.vk and y. Therefore, it suffices to show that our CS scheme has the struc-
ture that allows one to compress the verification key in two steps. We name this
property online-offline decomposability and show that our construction indeed
has the property.4

Comparison with Katsumata et al. [41]. Here, we compare our approach
with the one by Katsumata et al. [40,41], who showed a similar result from a non-
static assumption. As we already mentioned, at the highest level, their approach
is the same as ours in that they first construct a CS [40], then convert it into
a DP-NIZK, and then modify it into a CRS-NIZK [41]. However, the way they
obtained the CS, and the way they modify their DP-NIZK into a CRS-NIZK is
significantly different from ours. We elaborate on this below.

Compact CS Scheme by Katsumata et al. [40]: Similarly to us, their approach is
to construct an ABE scheme and then convert it into a CS scheme. However, the
requirements for the ABE are different from ours. For the ABE scheme, they
require short secret keys, whereas we require short ciphertexts. Furthermore,
they require the ABE scheme to be secure following a so-called “single-shot”
reduction, where the reduction algorithm runs the adversary only once and per-
fectly simulates the view of the game. Roughly, this is equivalent to saying that
the proof cannot go through hybrid arguments. Therefore, their approach does
not seem to be promising when we try to construct a compact CS scheme from a
static assumption. Notably, their single-shot reduction requirement excludes the
dual system encryption methodology [54], which is a powerful tool for proving
the security of an ABE scheme from static assumptions. On the other hand, we
manage to employ the dual system encryption methodology to obtain an ABE
scheme with the desired properties from static assumptions.

From DP-NIZK to CRS-NIZK in Katsumata et al. [41]: They construct a DP-
NIZK (as an intermediate goal) by applying the Kim-Wu conversion on their CS
scheme. They then modify their DP-NIZK to a CRS-NIZK scheme by a non-
generic technique. Here, we review their approach and compare it with ours.
Recall that, in general, a DP-NIZK constructed from a CS via the Kim-Wu
conversion, the CRS consists of the verification key of the CS CS.vk, and the
secret proving key consists of the secret key of an SKE K and a signing key of
the CS CS.skCK

. Their observation was that they can divide the CS verification
key CS.vk into two components CS.vk := (CS.vk0,CSvk1) such that CS.vk1 is
very short and anyone can compute CS.vk1 from CS.skCK

and K. Note that as
4 Actually, the definition of online-offline decomposability is slightly different from the

one in the main body, but the latter implies the former.

Compact NIZKs from Standard Assumptions on Bilinear Maps 389

a stand-alone CS scheme, the secret key CS.skCK
is computed using the master

key of the CS only after CS.vk = (vk0, vk1) is defined. What they observe is that
the other direction of the computation is possible using the specific structure of
their CS scheme. In order to construct a CRS-NIZK using this special structure,
they remove CS.vk1 from the CRS. Then they let the prover pick K and CS.skCK

on their own and let it compute CS.vk1. At this point, the prover can generate
a proof as in the original DP-NIZK. In order to prevent the adversary to mali-
ciously choose K, CS.skCK

, and CS.vk1, they let the prover prove consistency
among the components using a non-compact NIZK and outputs the proof along
with CS.vk1. The additional consistency proof by the non-compact NIZK as well
as CS.vk1 appended to the final proof does not harm the compactness of the
resulting NIZK, since all parameters involved are compact.

We note that their approach is not applicable to our specific CS scheme. The
reason is that our signing key for the CS is as large as the circuit size and we
cannot prove the consistency between K, CS.skCK

, and CS.vk1 compactly no
matter how we divide the CS verification key. We, therefore, take a different
path from theirs and this entails several challenges that are not present in their
approach.

1.4 Related Work

The first NIZK for NP was given by [16] based on the existence of trapdoor
permutations (whose arguments were later refined by several works [3,24]). The
next generation of NIZK following a completely different set of approaches were
provided by Groth, Ostrovsky, and Sahai [30] (GOS-NIZK) based on pairings.
Due to its simplicity and efficiency, pairing-based NIZKs have flourished into a
research topic on its own, and the original GOS-NIZK has been followed by many
subsequent works [20,27,28,31,45]. More than roughly a decade later, a new type
of NIZKs based on indistinguishable obfuscation (iO) were proposed [4,5,12,51].
Finally, very recently, a different path for designing NIZKs based on correlation
intractable hash functions (CIH) [9,10,39] have gained much attention and has
finally lead to the closing of a long-standing problem of constructing NIZKs
based on lattice-based assumptions [50].

2 Definitions

We omit definitions of standard cryptographic primitives due to limited space.

2.1 Preliminaries on Bilinear Maps

A bilinear group generator GGen takes as input 1κ and outputs a group descrip-
tion G = (p,G1, G2, GT , e, g1, g2), where p is a prime such that p > 22κ, G1, G2,
and GT are cyclic groups of order q, e : G1 ×G2 → GT is a non-degenerate bilin-
ear map, and g1 and g2 are generators of G1 and G2, respectively. We require
that the group operations in G1, G2, and GT as well as the bilinear map e can be

390 S. Katsumata et al.

efficiently computed. We employ the implicit representation of group elements:
for a matrix A over Zq, we define [A]1 := gA1 , [A]2 := gA2 , [A]T := gAT , where
exponentiation is carried out component-wise.

Definition 2.1 (MDDHk assumption [15]). Let GGen be a group generator.
We say that the matrix DDH (MDDHk) assumption holds on G1 with respect to
GGen, if for all PPT adversaries A, we have

Advmddh
A (λ) := |Pr [A(G, [M]1, [Ms]1) → 1] − Pr [A(G, [M]1, [u]1) → 1]|

is negligible, where the probability is taken over the choice of G
$← GGen(1κ),

M $← Z
(k+1)×k
p , s $← Z

k
p, and u $← Z

k+1
p . We can similarly define MDDHk

assumption on G2.

In fact, the above assumption is called MDDHk assumption for uniform distri-
bution by Escala et al. [15] since M is chosen uniformly at random. As shown
by them, MDDHk assumptions for uniform distribution is weaker than MDDHk

assumption for all other distributions and in particular is implied by the k-LIN
assumption.

2.2 Non-interactive Zero-Knowledge Arguments

Let R ⊆ {0, 1}∗ × {0, 1}∗ be a polynomial time recognizable binary relation.
For (x,w) ∈ R, we call x as the statement and w as the witness. Let L be the
corresponding NP language L = {x | ∃w s.t. (x,w) ∈ R}. Below, we define
non-interactive zero-knowledge arguments for NP languages.5

Definition 2.2 (NIZK Arguments). A non-interactive zero-knowledge
(NIZK) argument ΠNIZK for the relation R consists of PPT algorithms
(Setup,Prove,Verify).

Setup(1κ) → crs: The setup algorithm takes as input the security parameter 1κ

and outputs a common reference string crs.
Prove(crs, x, w) → π: The prover’s algorithm takes as input a common reference

string crs, a statement x, and a witness w and outputs a proof π.
Verify(crs, x, π) → � or ⊥: The verifier’s algorithm takes as input a common

reference string, a statement x, and a proof π and outputs � to indicate
acceptance of the proof and ⊥ otherwise.

We consider the following requirements for a NIZK argument ΠNIZK, where the
probabilities are taken over the random choice of the algorithms.

Completeness. For all pairs (x,w) ∈ R, if we run crs
$← Setup(1κ), then we

have Pr[π $← Prove(crs, x, w) : Verify(crs, x, π) = �] = 1.

5 We say it is a non-interactive zero-knowledge proofs when the soundness property
holds for even unbounded adversaries. In this paper, we will only be interested in
computationally bounded adversaries.

Compact NIZKs from Standard Assumptions on Bilinear Maps 391

Adaptive Soundness. For all PPT adversaries A, if we run crs
$← Setup(1κ),

then we have

Pr[(x, π) $← A(1κ, crs) : x �∈ L ∧ Verify(crs, x, π) = �] = negl(κ).

Non-Adaptive Soundness. We also consider the slightly weaker variant of
adaptive soundness above. For all PPT adversaries A and for all x �∈ L, if we
run crs

$← Setup(1κ), then we have

Pr[π $← A(1κ, crs, x) : Verify(crs, x, π) = �] = negl(κ).

Zero-Knowledge. For all adversaries A, there exists a PPT simulator S =

(S1,S2) such that if we run crs
$← Setup(1κ) and (crs, τ̄) $← S1(1κ), then we have

∣
∣
∣Pr[AO0(crs,·,·)(1κ, crs) = 1] − Pr[AO1(c̄rs,τ̄ ,·,·)(1κ, crs) = 1]

∣
∣
∣ = negl(κ),

where O0(crs, x, w) outputs Prove(crs, x, w) if (x,w) ∈ R and ⊥ otherwise, and
O1(crs, τ̄ , x, w) outputs S2(crs, τ̄ , x) if (x,w) ∈ R and ⊥ otherwise. We say it
is computational (resp. statistical) zero-knowledge if the adversary is computa-
tionally bounded (resp. unbounded). Moreover, we further say it is perfect zero-
knowledge if the above r.h.s. equals 0 for computationally unbounded adversaries.

We also define a stronger notion of soundness called extractability following
[41].

Definition 2.3 (Extractability). An NIZK argument is said to be extractable
if the following is satisfied:

Extractability. There is a deterministic algorithm Extract (called extractor)
such that for all PPT adversary A, we have

Pr

[

Verify(crs, x, π) = �
(x,w) /∈ R

∣
∣
∣
∣

crs
$← Setup(1κ), (x, π) $← A(crs),

w
$← Extract(rSetup, π)

]

≤ negl(κ).

where rSetup is the randomness used in Setup to generate crs.

We can convert any adaptively sound NIZK into an extractable one addi-
tionally assuming the existence of PKE [41].

Lemma 2.1. If there exist an adaptively sound NIZK for all of NP and a CPA-
secure PKE scheme, then there exists an extractable NIZK for all of NP.

392 S. Katsumata et al.

2.3 NC1 Circuits and Monotone Formulae

Here, we define Monotone Boolean formula following Kowalczyk and Wee [44].

Monotone Boolean Formula. A monotone Boolean formula f : {0, 1}n →
{0, 1} is specified by a directed acyclic graph (DAG) with three kinds of nodes:
input gate nodes, gate nodes, and a single output node. Input nodes have in-
degree 0 and out-degree 1, AND/OR nodes have in-degree (fan-in) 2 and out-
degree (fan-out) 1, and the output node has in-degree 1 and out-degree 0. We
number the edges (wires) 1, 2, . . . ,m, and each gate node is defined by a tuple
(g, ag, bg, cg) where g : {0, 1}2 → {0, 1} is either AND or OR, ag and bg are the
incoming wires, cg is the outgoing wire and ag, bg < cg. The size of a formula m
is the number of edges in the underlying DAG and the depth of a formula d is
the length of the longest path from the output node.

NC1 and Boolean Formulae. The following lemma summarizes the well-
known equivalence between the monotone formulae and NC1 circuits.

Lemma 2.2. Let d = d(κ), n = n(κ), and s = s(κ) be integers. There exist inte-
ger parameters m = m(d, n, s) and deterministic algorithms EncInp and EncCir
with the following properties.

– EncInp(x) → x̂ ∈ {0, 1}2n, where x ∈ {0, 1}n.
– EncCir(C) → f , where C : {0, 1}n → {0, 1} is a circuit with depth and size

bounded by d and s, respectively and f is a monotone Boolean formula of size
m with input space being {0, 1}2n.

We have f(x̂) = 1 if and only if C(x) = 1. Furthermore, the running time
of EncCir is poly(n, s, 2d). In particular, if C is a polynomial-sized circuit with
logarithmic depth (i.e., if the circuit is in NC1), EncCir runs in polynomial
time and we have m = poly(κ). Furthermore, for x ∈ {0, 1}n, we have x̂ =
x1x̄1x2x̄2 · · · xnx̄n, where x̄i is the flip of xi.

See the full version for the details.

3 KP-ABE with Compact Ciphertexts

In this section, we give the construction of KP-ABE scheme for monotone
Boolean formulae with constant-size ciphertexts by extending the scheme by
Kowalczyk and Wee [44]. The scheme will be used in the construction of com-
pact constrained signature scheme in Sect. 4, which will in turn be used for the
construction of our compact NIZKs in Sect. 5. Our KP-ABE scheme would be of
independent interest, since this is the first KP-ABE scheme for Boolean formulae
with constant-size ciphertexts that is secure under a static assumption (rather
than non-static q-type assumption).

Compact NIZKs from Standard Assumptions on Bilinear Maps 393

3.1 Preliminaries

First, we review the secret sharing scheme for monotone Boolean formulae used
by Kowalczyk and Wee, which is based on secret sharing schemes in [34,35,53].

Definition 3.1 (Secret Sharing). A secret sharing scheme consists of two
algorithms (share, reconstruct).

share(f, μ): This algorithm takes a (monotone) Boolean formula f : {0, 1}n →
{0, 1} and μ ∈ Zp and outputs shares μ1, . . . , μm̂ ∈ Zp and a function ρ : [m̂] →
{0, 1, . . . , n}. We assume that ρ is deterministically determined from f .

reconstruct(f, x, {μj}j∈S): This algorithms takes an input x ∈ {0, 1}n for f , f , and
a subset of shares {μj}j∈S where S ⊆ [m̂] and outputs the original value μ.

A secret sharing scheme satisfies the following properties.

Correctness: For all x ∈ {0, 1}n, f : {0, 1}n → {0, 1}, μ ∈ Zp, ({μj}j∈[m̂], ρ) ←
share(f, μ) such that f(x) = 1, it holds that reconstruct(f, x, {μj}ρ(j)=0∨
xρ(j) = 1) = μ.

Security: For all x ∈ {0, 1}n, f : {0, 1}n → {0, 1}, μ, μ′ ∈ Zp such that f(x) =
0, the following distributions are the same:

{{μj}ρ(j)=0∨xρ(j)=1 | ({μj}j∈[m̂], ρ) ← share(f, μ)}
≡ {{μ′

j}ρ(j)=0∨xρ(j)=1 | ({μ′
j}j∈[m̂], ρ) ← share(f, μ′)}

Linearity: The algorithm reconstruct is a linear function of the shares over
Zp. That is, there exists ωj ∈ Zp for j ∈ [m̂] and we can compute μ =
∑

ρ(j)=0∨xρ(j)=1 ωjμj.

We present their secret sharing scheme (share, reconstruct) in Fig. 1 as
it is. The scheme satisfies Definition 3.1. As Kowalczyk and Wee observed,
it is easy to extend the secret sharing scheme to treat vectors of secrets.
That is, for a vector v ∈ Z

k
p, we define share(f,v) := ({vj = (v1,j , . . . ,

vk,j)}j∈[m̂], ρ) where ({vi,j}j∈[m̂], ρ) ← share(f, vi) and reconstruct(f, x,
{vj}ρ(j)=0∨xρ(j)=1) :=

∑

ρ(j)=0∨xρ(j)=1 ωjvj where {ωj}j∈[m̂] is defined as above.

3.2 Construction

Here, we give the construction of KP-ABE with short ciphertext from the
MDDHk assumption.

Setup(1κ, 1n): Run G = (p,G1, G2, GT , e) $← GGen(1κ). Sample A $← Z
k×(k+1)
p ,

Wi
$← Z

(k+1)×k
p for i ∈ [n], v $← Z

k+1
p and output

mpk = ([A]1, [AW1]1, . . . , [AWn]1, e([A]1, [v]2)), msk = (v,W1, . . . ,Wn).

394 S. Katsumata et al.

Fig. 1. Information-theoretic linear secret sharing for monotone Boolean formulae by
Kowalczyk and Wee [44]

Enc(mpk, x,M): To encrypt a message M ∈ GT for a string x ∈ {0, 1}n, sample
s $← Z

k
p and output

ctx =

⎛
⎝ct1 := [s�A]1, ct2 =

[
s� ∑

i:xi=1

AWi

]

1

, ct3 := e([s�A]1, [v]2) · M

⎞
⎠ .

KeyGen(msk, f): To generate a secret key for a Boolean formula f , sample
({vj}j∈[m̂], ρ) $← share(f,v), rj

$← Z
k
p and output skf , which consists of the

following.
({

skj := [rj]2, skρ(j),j := [vj + Wρ(j)rj]2, {ski,j := [Wirj]2 }i∈[n]\{ρ(j)}
}

j∈[m̂]

)

where W0 = 0 and m̂ is the number of shares. We note that for j such that
ρ(j) = 0, we have [n]\{ρ(j)} = [n].

Compact NIZKs from Standard Assumptions on Bilinear Maps 395

Dec(mpk, skf , ctx): Compute ωj such that v =
∑

j:ρ(j)=0∨xρ(j)=1 ωjvj and output

ct3 ·e
⎛

⎝ct2,
∏

j:ρ(j)=0∨xρ(j)=1

sk
ωj

j

⎞

⎠ ·e
⎛

⎝ct1,
∏

j:ρ(j)=0∨xρ(j)=1

(
∏

i:xi=1

ski,j

)ωj
⎞

⎠

−1

.

Correctness. The correctness follows since we have

∏
j:ρ(j)=0∨xρ(j)=1

(∏
i:xi=1

ski,j

)ωj

=

⎡
⎣v +

∑
i:x̂i=1

Wir

⎤
⎦

2

,
∏

j:ρ(j)=0∨xρ(j)=1

sk
ωj

j = [r]2,

where r =
∑

j:ρ(j)=0∨x̂ρ(j)=1 ωjrj for honestly generated secret key sk for f such
that f(x) = 1 from the correctness of the secret sharing.

3.3 Security

We prove the following theorem.

Theorem 3.1. The above construction is adaptively secure under the MDDHk

assumption.

For proving this theorem, we first prove the following lemma.

Lemma 3.1. Under the MDDHk assumption,
∣
∣
∣
∣
∣
Pr

[

μ(0), μ(1) $← Zp;w0 := 0,w1, . . . ,wn
$← Z

k
p;

1 ← AOF,0(·),OX(·),OE(·)(μ(0))

]

−Pr

[

μ(0), μ(1) $← Zp;w0 := 0,w1, . . . ,wn
$← Z

k
p;

1 ← AOF,1(·),OX(·),OE(·,·)(μ(0))

]∣
∣
∣
∣
∣

is negligible where A adaptively interacts with three oracles:

OF,β(f) :=
(

{μj}j:ρ(j)=0 ∪
{

[rj]2, [μj + w�
ρ(j)rj]2,

{

[w�
i rj]2

}

i∈[n]\{ρ(j)}
}

j∈[m̂]

)

where ({μj}j∈[m̂], ρ) ← share(f, μ(β))
OX(x) := ({wi}i:xi=1)

OE() :=
(

[r]2,
{

[w�
i r]2

}

i∈[n]

)

where r $← Z
k
p

with the restriction that (i) only one query is made to each of OF,β(·) and OX(·),
and (ii) the queries f and x to OF,β(·) and OX(·) respectively, satisfy f(x) = 0.

Note that the statement of the lemma is similar to that of Theorem 2 in [44].
There, OF,β(f) returns

(

{μj}j:ρ(j)=0 ∪
{

[rj]2, [μj + wρ(j)rj]2
}

j:ρ(j) �=0

)

396 S. Katsumata et al.

and OE takes as input i ∈ [m] and returns ([r]2, [w�
i r]2).6 Since the answers by

the oracles in [44] can be simulated by our oracles by just stripping off appro-
priate components, our statement is stronger than theirs. Nonetheless, we can
prove the above lemma with very similar proof to that of Theorem 2 in [44]. See
the full version for the details.

Then we prove Theorem 3.1. The proof of the theorem is again similar to the
equivalent in [44], but with some appropriate adaptations.

Proof of Theorem 3.1. We prove the theorem by considering a sequence of hybrid
games. To define the hybrid distributions, it would be helpful to first give names
of various forms of ciphertext and secret keys that will be used. A ciphertext (of
message M under attribute x) can be one of the following forms:

Normal: A normal ciphertext is generated as in the scheme.
SF: This is the same as normal ciphertext except that s�A is replaced by a

random vector c� $← Z
k+1
p . That is,

ctx :=

⎛
⎝ ct1 :=

[
c�

]

1

, ct2 :=

[
c� ∑

i:xi=1

Wi

]

1

, ct3 := e

([
c�

]

1

, [k]2

)
· M

⎞
⎠ .

A secret key (for a Boolean formula f) can be one of the following forms:

Normal: A normal key is generated by KeyGen.
SF: An SF key is sampled as a normal key except that v is replaced by v+δa⊥,

where a fresh δ is chosen per SF key and a⊥ is any fixed a⊥ ∈ Z
k+1
p \{0}.

That is, skf consists of
({

skj := [rj]2, skρ(j),j := [vj + Wρ(j)rj]2, {ski,j := [Wirj]2 }i∈[n]\{ρ(j)}
}

j∈[m̂]

)

where ({vj}j∈[m̂], ρ) $← share(f, v + δa⊥), rj
$← Z

k
p.

We then define the following sequence of games to prove the security. Let the
number of key generation queries made by an adversary be Q.

– H0 : This is the real security game for adaptive security where all ciphertexts
and keys are normal.

– H1 : This game is the same as H0 except that the challenge ciphertext is SF.
– H2,� : This game is the same as H1 except that the first
 keys are SF and the

remaining Q −
 keys are normal. The game is defined for
 = 0, 1, . . . , Q.
– H3 : This is the same as HQ except that the message to be encrypted is

replaced by a random group element M̃ .

6 More accurately, OE takes as input [M]2 ∈ G2 in addition to i in [44]. But we can
ignore the additional input [M]2 without loss of generality.

Compact NIZKs from Standard Assumptions on Bilinear Maps 397

Let us fix a PPT adversary A and denote the advantage of A in Hxx by
Advxx. We can easily see that H1 ≡ H2,0 and Adv3 = 0. Therefore, to complete
the proof of Theorem 3.1, it suffices to prove any neighboring games are compu-
tationally indistinguishable from the adversary’s view. We omit proofs of them
since they are proven similarly to their counterparts in [44] except that we need
some adaptations for the analysis of the game hop from H2,� to H2,�+1 by using
Lemma 3.1. See the full version for the full proof. ��

4 Compact Constrained Signature

4.1 Constrained Signature

We provide definition of a constrained signature (CS) scheme. We also provide
an additional feature (i.e., online/offline efficiency) for CS schemes which will
play a vital role in our compact NIZK construction in Sect. 5.

Definition 4.1 (Constrained Signature). A constrained signature (CS)
scheme with message space {0, 1}n for a circuit class C = {C : {0, 1}n → {0, 1} }
consists of PPT algorithms (CS.Setup,CS.KeyGen,CS.Sign,CS.Vrfy).

CS.Setup(1κ, 1n) → (msk, vk): The setup algorithm on input the security param-
eter 1λ and the input length 1n, outputs a master secret key msk and a veri-
fication key vk.

CS.KeyGen(msk, C) → skC : The key generation algorithm on input a master
secret key msk and a circuit C ∈ C, outputs a signing key skC .

CS.Sign(skC , x) → σ: The signing algorithm on input the signing key skC and
message x ∈ {0, 1}n, outputs a signature σ.

CS.Vrfy(vk, x, σ) → � or ⊥: The verification algorithm on input the verification
key vk, message x, and signature σ, outputs either ⊥ (indicating the signature
is valid) or � (indicating the signature is invalid).

A CS scheme must satisfy the following requirements.

Correctness. For all κ ∈ N, n = n(κ) ∈ N, (msk, vk) $← CS.Setup(1κ, 1n),
x ∈ {0, 1}n, C ∈ C such that C(x) = 1, and skC

$← CS.KeyGen(msk, C), we have

Pr[CS.Vrfy(vk, x,CS.Sign(skC , x)) = �] = 1

Unforgeability. We define (adaptive) unforgeability for a CS scheme. The secu-
rity notion is defined by the following game between a challenger and an adver-
sary A.

Setup: The challenger runs (msk, vk) $← CS.Setup(1κ, 1n) and gives vk to A. It
also prepares an empty list Q.

Key Queries: A can adaptively make key queries unbounded polynomially
many times throughout the game. When A queries C ∈ C, the challenger
runs skC

$← CS.KeyGen(msk, C) and returns skC to A. Finally, the challenger
updates Q ← Q ∪ {C }.

398 S. Katsumata et al.

Forgery: Eventually, A outputs (x∗, σ∗) as the forgery. We say A wins if
CS.Vrfy(vk, x∗, σ∗) = � holds. Furthermore, we say that A is admissible if
C(x∗) = 0 holds for all C ∈ Q at the end of the game.

We say the CS scheme is (adaptively) unforgeable if the winning probability
for all admissible PPT adversaries A in the above game is negl(κ), where the
probability is taken over the randomness of all algorithms.

The following property is optional in the sense that our CS scheme can
achieve the following property, but the property is not strictly necessary for
our application of CS to the construction of compact NIZKs.

Context-Hiding (optional). For all κ, n ∈ N, (mpk,msk) $← Setup(1κ, 1n),

x ∈ {0, 1}n, C0, C1 ∈ C, (msk, vk) $← CS.Setup(1κ, 1n), skC0

$← CS.KeyGen(msk,

C0), and skC1

$← CS.KeyGen(msk, C1), we need that the following distributions
are statistically close:

{σ
$← CS.Sign(skC0 , x)} stat≈ {σ $← CS.Sign(skC1 , x)}

where the probability is only over the randomness used by CS.Sign.
Additionally to the above essential requirements for CS, we introduce a nat-

ural notion of decomposable online-offline efficiency. At a high level, this notion
states that if we (partially) knew the message x to be signed in advance, then we
can modify the verification key vk to a message specific verification key vkx which
allows for an efficient verification of signature σ with running time independent
of |x|. More formally, the notion is defined as follows.

Definition 4.2 (Decomposable Online-Offline Efficiency). A constrained
signature with message space {0, 1}n for a circuit class C = {C : {0, 1}n →
{0, 1}} is said to have decomposable online-offline efficiency if there further exists
PPT algorithms (CS.Aggrgt,CS.VrfyOnL) exhibiting the following properties.

– The verification key vk can be decomposed into vk = (vk0, {vki,b ∈
VK}i∈[n],b∈{0,1}), where VK is a space of verification key component.

– Any component in VK, any honestly generated vk0, and any honestly gener-
ated signature σ can be represented as binary strings of fixed polynomial length
poly(κ). In particular, length of these components are independent from n.

– Algorithm CS.Aggrgt takes as input an element of VK∗ = ∪�∈NVK� and out-
puts an element in VK. We require that for any y, z ∈ {0, 1}∗ such that
x = y‖z ∈ {0, 1}n, we have

CS.Aggrgt
({vki,xi

}i∈[n]

)

=CS.Aggrgt
(

CS.Aggrgt
({vki,yi

}i∈[|y|]
)

,CS.Aggrgt
({vk|y|+i,zi

}i∈[|z|]
))

.

– Algorithm CS.VrfyOnL takes as input vk0, a component in VK and a signature
in σ, and outputs either � or ⊥. We require that for any x ∈ {0, 1}n, for any
honestly generated vk, and for any (possibly maliciously generated) σ, we have

CS.Vrfy(vk, x, σ) = CS.VrfyOnL
(

vk0,CS.Aggrgt
({vki,xi

}i∈[n]

)

, σ
)

.

Compact NIZKs from Standard Assumptions on Bilinear Maps 399

Observe that the input length of CS.VrfyOnL is independent from n, which
follows from the second item of this definition. We require that the running
time of CS.VrfyOnL is independent from n as well.

4.2 Construction and Security

Here, we give the construction of our constrained signature (CS) scheme that
will be used for the construction of the compact NIZK. The CS scheme has very
compact signature size and the decomposable online-offline efficiency defined in
Definition 4.2. In order to get the CS scheme, we apply the folklore conversion
that converts ABE into CS to our compact KP-ABE scheme in Sect. 3, where
the signing key skf for the function f in the CS scheme is the same as the secret
key skf for the same function f in the ABE scheme, and the signature on a
string x in the CS scheme is certain “aggregated form” of the secret key that is
derived when decrypting an ABE ciphertext encrypted for the attribute x. To
verify a signature on x in the CS, we encrypt a random message for x in the
underlying ABE and then see if the message is recovered or not when decrypting
the ciphertext using the signature as an (aggregated form of) secret key.

The CS scheme obtained by the above conversion can only deal with mono-
tone Boolean formulae, since the original ABE is for the same class of functions.
For our purpose, we need CS scheme for NC1 circuits, which is more general
class than monotone Boolean formulae. This gap can be filled using Lemma 2.2.

We then provide the description of the construction.

CS.Setup(1κ, 1n): Run G = (p,G1, G2, GT , e) $← GGen(1κ). Sample A $←
Z

k×(k+1)
p , Wi

$← Z
(k+1)×k
p for i ∈ [2n] and v $← Z

k+1
p and output

vk = ([A]1, [AW1]1, . . . , [AW2n]1, e([A]1, [v]2)), msk = (v,W1, . . . ,W2n).

CS.KeyGen(msk, C): To generate a signing key for a circuit C, run EncCir(C) →
f . Then sample ({vj}j∈[m̂], ρ) $← share(f,v) and rj

$← Z
k
p for j ∈ [m̂] and

output skf , which consists of the following.
({

skj := [rj]2, skρ(j),j := [vj + Wρ(j)rj]2, {ski,j := [Wirj]2 }i∈[2n]\{ρ(j)}
}

j∈[m̂]

)

where W0 = 0 and m̂ is the number of shares that are generated by
share(f,v).

CS.Sign(skf , x): Set x̂ := EncInp(x) and compute ωj such that v =
∑

j:ρ(j)=0∨x̂ρ(j)=1 ωjvj and output

σ =

⎛

⎝σ1 =
∏

j:ρ(j)=0∨x̂ρ(j)=1

(
∏

i:x̂i=1

ski,j

)ωj

, σ2 =
∏

j:ρ(j)=0∨x̂ρ(j)=1

sk
ωj

j

⎞

⎠ .

400 S. Katsumata et al.

CS.Vrfy(vk, x, σ): Parse σ → (σ1, σ2) ∈ Gk
2 × Gk

2 and output ⊥ if the signature
is not in this form. Otherwise, compute x̂ = EncInp(x) and

vk′ =
∏

i:x̂i=1

[AWi]1. (1)

Then output � if the following holds and ⊥ otherwise:

e([A]1, σ1) · e(vk′, σ2)−1 = e([A]1, [v]2).

Correctness. The correctness follows since we have f(x̂) = 1 when C(x) = 1
from Lemma 2.2 and

σ1 =

[

v +
∑

i:x̂i=1

Wir

]

2

, σ2 = [r]2, where r =
∑

j:ρ(j)=0∨x̂ρ(j)=1

ωjrj . (2)

Online-Offline Decomposability

Theorem 4.1. The CS scheme above has decomposable online-offline efficiency
defined as per Definition 4.2.

Proof. To prove the theorem, we define VK, vk0, and vki,b for i ∈ [n], b ∈ {0, 1}
as

VK := Gk×k
1 , vk0 := ([A]1, e([A]1, [v]2)) , vki,b := [AW2i−b]1.

It is easy to see that the first and the second items in Definition 4.2 are satisfied.
We then define additional algorithms CS.VrfyOnL and CS.Aggrgt as follows:

CS.Aggrgt({vki}i∈[n′]): If there exists i ∈ [n′] such that vki �∈ VK = Gk×k
1 ,

output ⊥. Otherwise, output X :=
∏

i∈[n′] vki, where the product represents
the component-wise multiplication in G1.

CS.VrfyOnL(vk0, vk
′, σ): Parse vk0 → (A ∈ G

k×(k+1)
1 , V ∈ Gk

T), vk′ ∈ Gk×k
1 ,

and σ → (σ1, σ2) ∈ Gk
2 × Gk

2 . Then output � if the following holds and ⊥
otherwise:

e(A, σ1) · e(vk′, σ2)−1 = V.

The third item in Definition 4.2 follows from the fact that the following equation
holds for any x = y‖z ∈ {0, 1}n:

∏

i∈[2n]

[AWi,2i−xi
]

︸ ︷︷ ︸

=vki,xi

=
∏

i∈[|y|]
[AWi,2i−xi

] ·
∏

i∈[|y|+1,|y|+|z|]
[AWi,2i−xi

]

=
∏

i∈[|y|]
[AWi,2i−yi

] ·
∏

i∈[|y|+1,|y|+|z|]
[AWi,2i−zi−|y|]

=
∏

i∈[|y|]
[AWi,2i−yi

]
︸ ︷︷ ︸

=vki,yi

·
∏

j∈[|z|]
[AW|y|+j,2(|y|+j)−zj

]
︸ ︷︷ ︸

=vk|y|+j,zj

.

Compact NIZKs from Standard Assumptions on Bilinear Maps 401

To prove the fourth item, it suffices to show that vk′ computed as Eq. 1 equals to
CS.Aggrgt({vki,xi

}i∈[n]). This follows since the former is the product of [AWi]1
over i in S := {i ∈ [2n] : x̂i = 1} and the latter is over i in S′ := {2j − xj : j ∈
[n]}, and we have S = S′ by the definition of x̂ (See Lemma 2.2). ��

Security. In the following, we show that the above construction is unforgeable
and then discuss how to extend the scheme to satisfy context-hiding. While the
latter property is not necessary for our application of CS in Sect. 5, this property
may be useful when we use the CS scheme stand-alone.

Theorem 4.2. The above construction is (adaptively) unforgeable under the
MDDHk assumption.

Proof. For the sake of contradiction, suppose that there exists an adversary A
that breaks unforgeability of the ΠCS with non-negligible probability ε. We then
construct a PPT adversary B that breaks the adaptive security of the ABE with
advantage ε for the attribute length 2n as follows.

B(mpk): It sets vk := mpk and gives the master public key to A. When A
makes a signing key query for a circuit C, B runs EncCir(C) → f and makes
a key generation query for f to obtain skf . Then, B passes skf to A. At
some point, A outputs a forgery (x∗, σ∗). Then, B outputs a random bit and
abort if CS.Vrfy(vk, x∗, σ∗) = ⊥. Otherwise, B samples two random distinctive
messages M0,M1 ∈ GT and makes a challenge query for (x̂∗, (M0,M1)), where
x̂∗ = EncInp(x∗). Given the challenge ciphertext ct, it first parses ct → (ct1 ∈
Gk+1

1 , ct2 ∈ Gk
1 , ct3 ∈ GT) and σ∗ → (σ∗

1 ∈ Gk+1
2 , σ∗

2 ∈ Gk+1
2) and computes

M ′ := e(ct1, σ∗
1)−1 · e(ct2, σ∗

2) · ct3. It outputs 0 if M ′ = M0 and 1 otherwise.

We first check that B is an admissible adversary if so is A, since we have C(x∗) =
0 iff f(x̂∗) = 0 for any C and f = EncCir(C) from Lemma 2.2. We then claim
that whenever CS.Vrfy(vk, x∗, σ∗) = �, we have M ′ = Mcoin. To prove the claim,
let us assume that CS.Vrfy(vk, x̂∗, σ∗) = � holds. Then, we have

e([A]1, σ∗
1) · e(

∏

i:x̂∗
i =1

[AWi]1, σ∗
2)−1 = e([A]1, [v]2)

by the definition of CS.Vrfy. Furthermore, there exists s ∈ Z
k
p such that

ct1 = [s�A]1, ct2 = [s� ∑

i:y∗
i =1 AWi]1, and ct3 = e([s�A]1, [v]2) · Mcoin by

the definition of Enc. Then, the above equation implies e(ct1, σ∗
1) ·e(ct2, σ∗

2)−1 =
e([s�A]1, [v]2) which in turns implies M ′ = Mcoin. Thus, B correctly guesses coin
when A breaks the unforgeability of ΠCS and outputs a random bit otherwise.
This implies that the advantage of B is ε, which is non-negligible as desired. ��
Remark 1 (Adding Context-Hiding for the Scheme). We remark that it is
possible to make the above scheme context-hiding by adding the fol-
lowing modification. Namely, we change the scheme so that it contains
[R]2, [W1R]2, . . . , [W2nR]2, for random R ∈ Z

k×k
p in vk. This modification

402 S. Katsumata et al.

allows us to randomize r in Eq. 2, which makes the scheme context-hiding. The
scheme remains adaptively unforgeable even with this change. For proving this,
it suffices to show that our KP-ABE scheme in Sect. 3 remains adaptively secure
even if we add ([R]2, [W1R]2, . . . , [WnR]2) to the master public key. Although
we need to slightly modify the proof of Theorem 3.1, the proof is not difficult.
We omit it due to limited space. See the full version for the detail.

5 Compact NIZK from Compact Constrained Signatures

5.1 Main Construction

Here, we construct a compact NIZK based on the compact CS scheme which
we constructed in Sect. 4. Let L be an NP language defined by a relation R ⊆
{0, 1}∗ × {0, 1}∗. Let n(κ) and m(κ) be any fixed polynomials. Let C be a
circuit that computes the relation R on {0, 1}n × {0, 1}m, i.e., for (x,w) ∈
{0, 1}n × {0, 1}m, we have C(x,w) = 1 if and only if (x,w) ∈ R.
The construction will be given by combining following ingredients.

– A symmetric key encryption (SKE) scheme ΠSKE = (SKE.KeyGen,SKE.Enc,
SKE.Dec) with message space {0, 1}m, key space {0, 1}� and ciphertext space
{0, 1}|ct|. We require that its decryption circuit can be computed in NC1,
and it has an additive ciphertext overhead (i.e., |ct| = m + poly(κ)).

– A constrained signature scheme (CS.Setup,CS.KeyGen,CS.Sign,CS.Vrfy,
CS.Aggrgt,CS.VrfyOnL) we constructed in Sect. 4. The scheme should sup-
port the circuit f that computes f(K,x, ct) = C(x,SKE.Dec(K, ct)).

– (Not necessarily compact) extractable NIZK scheme
ΠNIZK = (Setup,Prove,Verify) for the language corresponding to the relation
R̃ defined below:
((vk0, {vki,b}i∈[�],b∈{0,1}, Y), (K,σ)) ∈ R̃ if and only if the followings are
satisfied:
1. K ∈ {0, 1}�,
2. CS.VrfyOnL(vk0, Z, σ) = � where Z = CS.Aggrgt

(

CS.Aggrgt

({vki,Ki
}i∈[�]), Y

)

Our compact NIZK is described as follows.

Setup′(1κ):
1. Generate crs

$← Setup(1κ).
2. Generate (vk = (vk0, {vki,b}i∈[�+n+|ct|],b∈{0,1}),msk) $← CS.Setup(1κ,

1�+n+|ct|).
3. Generate skf

$← CS.KeyGen(msk, f).
4. Output crs′ = (crs, vk, skf).

Prove′(crs′, x, w):
1. Abort if R(x,w) = 0. Otherwise, do the following.
2. Parse crs′ → (crs, vk = (vk0, {vki,b}i∈[�+n+|ct|],b∈{0,1}), skf).
3. Generate K

$← SKE.KeyGen(1κ) and ct
$← SKE.Enc(K,w).

Compact NIZKs from Standard Assumptions on Bilinear Maps 403

4. Compute σ
$← CS.Sign(skf , (K,x, ct)).

5. Compute Y := CS.Aggrgt({vk�+i,yi
}i∈[n+|ct|]) where y := (x, ct) ∈

{0, 1}n+|ct|.
6. Compute π

$← Prove((vk0, {vki,b}i∈[�],b∈{0,1}, Y), (K,σ)).
7. Output π′ := (ct, π).

Verify′(crs′, x, π′):
1. Parse π′ → (ct, π). If it is not in this form, reject it. Otherwise, do the

following.
2. Parse crs′ → (crs, vk = (vk0, {vki,b}i∈[�+n+|ct|],b∈{0,1}), skf).
3. Compute Y := CS.Aggrgt({vk�+i,yi

}i∈[n+|ct|]) where y := (x, ct) ∈
{0, 1}n+|ct|.

4. Output � if Verify((vk0, {vki,b}i∈[�],b∈{0,1}, Y), π) = � and otherwise ⊥.

Correctness. Suppose that (ct, π) is an honestly generated proof on
(x,w) ∈ R. Then we have ct

$← SKE.Enc(K,w) and π
$← Prove((vk0,

{vki,b}i∈[�],b∈{0,1}, Y), (K,σ)) where K
$← SKE.KeyGen(1κ), σ

$← CS.Sign(skf ,
(K,x, ct)), and

Y = CS.Aggrgt({vk�+i,yi
}i∈[n+|ct|]).

By the correctness of ΠSKE, we have f(K,x, ct) = 1. Furthermore, by the cor-
rectness of ΠCS, we have CS.Vrfy(vk, (K,x, ct), σ) = �, which is equivalent to

CS.VrfyOnL(vk0, Z, σ) = � where Z = CS.Aggrgt
(
CS.Aggrgt({vki,Ki}i∈[�]), Y

)
.

Therefore we have ((vk0, {vki,b}i∈[�],b∈{0,1}, Y), (K,σ)) ∈ R̃ and thus we have
Verify((vk0, {vki,b}i∈[�],b∈{0,1}, Y), π) = � by the correctness of ΠNIZK.

Efficiency. We first observe that the size of the verification circuit for the rela-
tion R̃ is poly(κ), which is independent of the size of the verification circuit for
R. This is because Z = CS.Aggrgt

(

CS.Aggrgt({vki,Ki
}i∈[�]), Y

)

can be computed
in polynomial time in κ and the length
 = poly(κ) of K and the running time of
CS.VrfyOnL(vk0, Z, σ) does not depend on the length of (x, ct) (and in particular
the complexity of the circuit f) as required in Definition 4.2. Therefore, the size
of π is poly(κ) and independent of |x|, |w|, or |C| even though we do not require
any compactness requirement for the underlying NIZK ΠNIZK. Since we assume
|ct| = m+poly(κ), the total proof size is |w|+poly(κ). We note that this scheme
can be directly implemented only when the relation R can be verified in NC1.
Otherwise, we have to first expand the witness to make the relation verifiable in
NC1 similarly to [19,41]. This is done by considering all values corresponding
to all gates when computing the circuit C on input (x,w) to be the new witness
and have the new circuit verify the consistency of the values for all gates in C.
In this case, the proof size becomes |C| + poly(κ).

Since the relation R̃ is well-suited to be proven by the Groth-Sahai proof,
a fairly efficient instantiation is possible based on the Groth-Sahai proof. Espe-
cially, a proof consists of |C| bits, 6κ+14 elements of G1 and 7κ+25 elements of
G2 when instantiated under the SXDH assumption. See the full version for the

404 S. Katsumata et al.

detail. We also note that if the relation R can be verified by a “leveled circuit”
[8], we can further reduce the proof size to |w| + |C|/ log κ + poly(κ) which is
sublinear in |C| similarly to [41]. (See [41] for details.)

Security. In the following, we prove the soundness and the zero-knowledge prop-
erty of Π′

NIZK.

Theorem 5.1 (Soundness). The above NIZK scheme Π′
NIZK is computation-

ally (adaptive) sound if ΠNIZK satisfies extractability and ΠCS is unforgeable.

Proof. Suppose that there is a PPT adversary A that breaks soundness. Then
we construct a PPT adversary B that breaks the unforgeability of ΠCS as follows.

B(vk): It queries f to the key generation oracle to obtain skf where f is
the circuit as defined in the description of the scheme. Then it generates
crs

$← Setup(1κ; rSetup), runs A(crs′) to obtain (x∗, π′∗ = (ct, π)) where
crs′ := (crs, vk, skf). Then it computes (K,σ) $← Extract(rSetup, π) and outputs
((K,x∗, ct), σ) as a forgery.

This completes the description of B. In the following, we show that B breaks the
unforgeability of ΠCS. Let VK[0,�] := (vk0, {vki,b}i∈[�],b∈{0,1}). Since we assume
A breaks the soundness of Π′

NIZK,

Pr[x∗ /∈ L ∧ Verify((VK[0,�], Y
∗), π) = �]

is non-negligible where Y ∗ = CS.Aggrgt({vk�+i,y∗
i
}i∈[n+|ct|]) and y∗ := (x∗, ct) ∈

{0, 1}n+|ct|. On the other hand, by the extractability of ΠNIZK,

Pr[Verify((VK[0,�], Y
∗), π) = � ∧ ((VK[0,�], Y

∗), (K,σ)) /∈ R̃]

is negligible. Therefore

Pr[x∗ /∈ L ∧ Verify((VK[0,�], Y
∗), π) = � ∧ ((VK[0,�], Y

∗), (K,σ)) ∈ R̃]

is non-negligible. Suppose that this event happens. Since we have x∗ /∈ L, we have
f(K,x∗, ct) = 0. On the other hand, ((VK[0,�], Y

∗), (K,σ)) ∈ R̃ implies that we
have K ∈ {0, 1}� ∧ CS.VrfyOnL(vk0, Z, σ) = � where Z = CS.Aggrgt

(

CS.Aggrgt

({vki,Ki
}i∈[�]), Y ∗), which implies CS.Vrfy(vk, (K,x∗, ct), σ) = �. This means

that B succeeds in breaking the unforgeability of ΠCS. ��
Theorem 5.2 (Zero-Knowledge). The above NIZK scheme Π′

NIZK is compu-
tationally zero-knowledge if ΠNIZK is computationally zero-knowledge and ΠSKE

is CPA-secure.

Proof. Let (S1,S2) be the simulator for ΠNIZK. We describe the simulator (S ′
1,S ′

2)
for Π′

NIZK below.

Compact NIZKs from Standard Assumptions on Bilinear Maps 405

S ′
1(1

κ): It generates (crs, τV) $← S1(1κ), (vk = (vk0,

{vki,b}i∈[�+n+|ct|],b∈{0,1}),msk) $← CS.Setup(1κ, 1�+n+|ct|), and skf
$←

CS.KeyGen(msk, f), and outputs crs′ := (crs, vk, skf) and τ ′
V := τV.

S ′
2(crs

′ := (crs, vk, skf), τ ′
V = τV, x): It picks K

$← SKE.KeyGen(1κ), com-
putes ct

$← SKE.Enc(K, 0m), Y := CS.Aggrgt({vk�+i,yi
}i∈[n+|ct|]) where

y := (x, ct) ∈ {0, 1}n+|ct|, and π
$← S2(crs, τV, (vk0, {vki,b}i∈[�],b∈{0,1}, Y)),

and outputs π′ := (ct, π).

This completes the description of the simulator. We prove that proofs simulated
by the above simulator are computationally indistinguishable from the honestly
generated proofs. To prove this, we consider the following sequence of games
between a PPT adversary A and a challenger.

G0: In this game, proofs are generated honestly. Namely,
1. The challenger generates crs

$← Setup(1κ), (vk = (vk0,

{vki,b}i∈[�+n+|ct|],b∈{0,1}),msk) $← CS.Setup(1κ, 1�+n+|ct|), and skf
$←

CS.KeyGen(msk, f), and gives crs′ := (crs, vk, skf) to A.
2. A is given (1κ, crs′) and is allowed to query O(crs′, ·, ·), which works as fol-

lows. When A queries (x,w), if (x,w) /∈ R, then the oracle returns ⊥. Oth-
erwise, it picks K

$← SKE.KeyGen(1κ), computes ct
$← SKE.Enc(K,w),

σ
$← CS.Sign(skf , (K,x, ct)), Y := CS.Aggrgt({vk�+i,yi

}i∈[n+|ct|]) where
y := (x, ct) ∈ {0, 1}n+|ct|, and π

$← Prove(crs, (vk0, {vki,b}i∈[�],b∈{0,1}, Y),
(K,σ)), and returns a proof π′ := (ct, π).

3. Finally, A returns a bit β.
G1: This game is identical to the previous game except that crs and π

are generated differently. Namely, the challenger generates (crs, τV) $←
S1(1κ) at the beginning of the game, and π is generated as π

$←
S2(crs, τV, (vk0, {vki,b}i∈[�],b∈{0,1}, Y)) for each oracle query.

G2: This game is identical to the previous game except that ct is generated as
ct

$← SKE.Enc(K, 0m) for each oracle query.

Let Ti be the event that A returns 1 in Gi for i = 0, 1, 2. It is easy to see
that proofs are generated by S ′ = (S ′

1,S ′
2) in G2. Thus we have to prove that

|Pr[T0]−Pr[T2]| is negligible. The following lemmas are straightforward to prove.

Lemma 5.1. If ΠNIZK satisfies computational zero-knowledge w.r.t. the simula-
tor S, then |Pr[T0] − Pr[T1]| = negl(κ).

Proof. We observe that every proof π given to A is created for a correct state-
ment in both games. Therefore, the indistinguishability of the games can be
reduced to the zero-knowledge property of ΠNIZK. ��
Lemma 5.2. If ΠSKE is CPA-secure, then |Pr[T1] − Pr[T2]| = negl(κ).

Proof. Due to the change we introduced in G1, the secret key K of SKE that is
used to generate ct is not used anywhere else in both games. therefore, the indis-
tinguishability of these games can be reduced to the CPA security of ΠSKE. ��
This completes the proof of Theorem 5.2. ��

406 S. Katsumata et al.

5.2 Variants of Our NIZK

Perfect Zero-Knowledge Variant. Observe that the assumptions required to
prove the zero-knowledge property of our NIZK was the zero-knowledge property
of the underlying non-compact NIZK and the security of SKE. Therefore if we
assume that the underlying non-compact NIZK is perfect zero-knowledge7 and
modify the scheme somehow so that we do not use an SKE anymore, the resulting
NIZK can be made perfect zero-knowledge. Indeed, the latter can be done by
using the witness w itself in place of the SKE key K in the definition of the circuit
f supported by the CS scheme. By instantiating the non-compact NIZK with
the Groth-Sahai proof, which is perfect zero-knowledge, we obtain the following
theorem. (See the full version for the full detail.)

Theorem 5.3. There exists a NIPZK for NP relations computable in NC1

with proof size |w| · poly(κ) if the DLIN assumption holds.

UC Variant. If we further modify the perfect zero-knowledge variant to have
non-malleability by using one-time signatures and assume that the underlying
non-compact NIZK is a UC-NIZK, then we can show that the resulting scheme
is also UC-NIZK. In particular, we obtain the following theorem. (See the full
version for the full detail.)

Theorem 5.4. There exists a UC-NIZK for NP relations computable in NC1

with proof size |w| · poly(κ) if the DLIN assumption holds.

Acknowledgement. We thank anonymous reviewers of Eurocrypt 2020 for their help-
ful comments. The first and the third authors were supported by JST CREST Grant
Number JPMJCR19F6. The third author was supported by JSPS KAKENHI Grant
Number 16K16068.

References

1. Abusalah, H.: Generic instantiations of the hidden bits model for non-interactive
zero-knowledge proofs for NP. Master’s thesis, RWTH-Aachen University (2013)

2. Attrapadung, N., Libert, B., de Panafieu, E.: Expressive key-policy attribute-based
encryption with constant-size ciphertexts. In: Catalano, D., Fazio, N., Gennaro, R.,
Nicolosi, A. (eds.) PKC 2011. LNCS, vol. 6571, pp. 90–108. Springer, Heidelberg
(2011). https://doi.org/10.1007/978-3-642-19379-8 6

3. Bellare, M., Yung, M.: Certifying permutations: noninteractive zero-knowledge
based on any trapdoor permutation. J. Cryptol. 9(3), 149–166 (1996)

4. Bitansky, N., Paneth, O.: ZAPs and non-interactive witness indistinguishability
from indistinguishability obfuscation. In: Dodis, Y., Nielsen, J.B. (eds.) TCC 2015,
Part II. LNCS, vol. 9015, pp. 401–427. Springer, Heidelberg (2015). https://doi.
org/10.1007/978-3-662-46497-7 16

7 Actually, we have to assume the underlying non-compact NIZK is dual-mode NIZK
for proving the soundness.

https://doi.org/10.1007/978-3-642-19379-8_6
https://doi.org/10.1007/978-3-662-46497-7_16
https://doi.org/10.1007/978-3-662-46497-7_16

Compact NIZKs from Standard Assumptions on Bilinear Maps 407

5. Bitansky, N., Paneth, O., Wichs, D.: Perfect structure on the edge of chaos. In:
Kushilevitz, E., Malkin, T. (eds.) TCC 2016, Part I. LNCS, vol. 9562, pp. 474–502.
Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-49096-9 20

6. Blum, M., Feldman, P., Micali, S.: Non-interactive zero-knowledge and its appli-
cations (extended abstract). In: 20th ACM STOC, pp. 103–112 (1988)

7. Boneh, D., Franklin, M.: Identity-based encryption from the Weil pairing. In: Kil-
ian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 213–229. Springer, Heidelberg
(2001). https://doi.org/10.1007/3-540-44647-8 13

8. Boyle, E., Gilboa, N., Ishai, Y.: Breaking the circuit size barrier for secure compu-
tation under DDH. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016, Part I. LNCS,
vol. 9814, pp. 509–539. Springer, Heidelberg (2016). https://doi.org/10.1007/978-
3-662-53018-4 19

9. Canetti, R., et al.: Fiat-Shamir: from practice to theory. In: 51st ACM STOC, pp.
1082–1090 (2019)

10. Canetti, R., Chen, Y., Reyzin, L., Rothblum, R.D.: Fiat-Shamir and correlation
intractability from strong KDM-secure encryption. In: Nielsen, J.B., Rijmen, V.
(eds.) EUROCRYPT 2018, Part I. LNCS, vol. 10820, pp. 91–122. Springer, Cham
(2018). https://doi.org/10.1007/978-3-319-78381-9 4

11. Canetti, R., Halevi, S., Katz, J.: A forward-secure public-key encryption scheme.
J. Cryptol. 20(3), 265–294 (2007)

12. Canetti, R., Lichtenberg, A.: Certifying trapdoor permutations, revisited. In:
Beimel, A., Dziembowski, S. (eds.) TCC 2018, Part I. LNCS, vol. 11239, pp. 476–
506. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-03807-6 18

13. Cohen, R., Shelat, A., Wichs, D.: Adaptively secure MPC with sublinear commu-
nication complexity. In: Boldyreva, A., Micciancio, D. (eds.) CRYPTO 2019, Part
II. LNCS, vol. 11693, pp. 30–60. Springer, Cham (2019). https://doi.org/10.1007/
978-3-030-26951-7 2

14. Danezis, G., Fournet, C., Groth, J., Kohlweiss, M.: Square span programs with
applications to succinct NIZK arguments. In: Sarkar, P., Iwata, T. (eds.) ASI-
ACRYPT 2014, Part I. LNCS, vol. 8873, pp. 532–550. Springer, Heidelberg (2014).
https://doi.org/10.1007/978-3-662-45611-8 28

15. Escala, A., Herold, G., Kiltz, E., Ràfols, C., Villar, J.: An algebraic framework for
Diffie–Hellman assumptions. J. Cryptol. 30(1), 242–288 (2015). https://doi.org/
10.1007/s00145-015-9220-6

16. Feige, U., Lapidot, D., Shamir, A.: Multiple noninteractive zero knowledge proofs
under general assumptions. SIAM J. Comput. 29(1), 1–28 (1999)

17. Fuchsbauer, G., Jafargholi, Z., Pietrzak, K.: A quasipolynomial reduction for gener-
alized selective decryption on trees. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO
2015, Part I. LNCS, vol. 9215, pp. 601–620. Springer, Heidelberg (2015). https://
doi.org/10.1007/978-3-662-47989-6 29

18. Fuchsbauer, G., Konstantinov, M., Pietrzak, K., Rao, V.: Adaptive security of
constrained PRFs. In: Sarkar, P., Iwata, T. (eds.) ASIACRYPT 2014, Part II.
LNCS, vol. 8874, pp. 82–101. Springer, Heidelberg (2014). https://doi.org/10.1007/
978-3-662-45608-8 5

19. Garg, S., Gentry, C., Halevi, S., Raykova, M., Sahai, A., Waters, B.: Candidate
indistinguishability obfuscation and functional encryption for all circuits. SIAM J.
Comput. 45(3), 882–929 (2016)

20. Gennaro, R., Gentry, C., Parno, B., Raykova, M.: Quadratic span programs and
succinct NIZKs without PCPs. In: Johansson, T., Nguyen, P.Q. (eds.) EURO-
CRYPT 2013. LNCS, vol. 7881, pp. 626–645. Springer, Heidelberg (2013). https://
doi.org/10.1007/978-3-642-38348-9 37

https://doi.org/10.1007/978-3-662-49096-9_20
https://doi.org/10.1007/3-540-44647-8_13
https://doi.org/10.1007/978-3-662-53018-4_19
https://doi.org/10.1007/978-3-662-53018-4_19
https://doi.org/10.1007/978-3-319-78381-9_4
https://doi.org/10.1007/978-3-030-03807-6_18
https://doi.org/10.1007/978-3-030-26951-7_2
https://doi.org/10.1007/978-3-030-26951-7_2
https://doi.org/10.1007/978-3-662-45611-8_28
https://doi.org/10.1007/s00145-015-9220-6
https://doi.org/10.1007/s00145-015-9220-6
https://doi.org/10.1007/978-3-662-47989-6_29
https://doi.org/10.1007/978-3-662-47989-6_29
https://doi.org/10.1007/978-3-662-45608-8_5
https://doi.org/10.1007/978-3-662-45608-8_5
https://doi.org/10.1007/978-3-642-38348-9_37
https://doi.org/10.1007/978-3-642-38348-9_37

408 S. Katsumata et al.

21. Gentry, C.: A fully homomorphic encryption scheme. Ph.D. thesis, Stanford Uni-
versity (2009)

22. Gentry, C., Groth, J., Ishai, Y., Peikert, C., Sahai, A., Smith, A.D.: Using fully
homomorphic hybrid encryption to minimize non-interative zero-knowledge proofs.
J. Cryptol. 28(4), 820–843 (2015)

23. Gentry, C., Wichs, D.: Separating succinct non-interactive arguments from all fal-
sifiable assumptions. In: 43rd ACM STOC, pp. 99–108 (2011)

24. Goldreich, O.: Foundations of Cryptography: Volume 2, Basic Applications (2004)
25. Goldreich, O., Oren, Y.: Definitions and properties of zero-knowledge proof sys-

tems. J. Cryptol. 7(1), 1–32 (1994)
26. Goldwasser, S., Micali, S., Rackoff, C.: The knowledge complexity of interactive

proof systems. SIAM J. Comput. 18(1), 186–208 (1989)
27. Groth, J.: Short non-interactive zero-knowledge proofs. In: Abe, M. (ed.) ASI-

ACRYPT 2010. LNCS, vol. 6477, pp. 341–358. Springer, Heidelberg (2010).
https://doi.org/10.1007/978-3-642-17373-8 20

28. Groth, J.: Short pairing-based non-interactive zero-knowledge arguments. In: Abe,
M. (ed.) ASIACRYPT 2010. LNCS, vol. 6477, pp. 321–340. Springer, Heidelberg
(2010). https://doi.org/10.1007/978-3-642-17373-8 19

29. Groth, J.: On the size of pairing-based non-interactive arguments. In: Fischlin, M.,
Coron, J.-S. (eds.) EUROCRYPT 2016, Part II. LNCS, vol. 9666, pp. 305–326.
Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-49896-5 11

30. Groth, J., Ostrovsky, R., Sahai, A.: New techniques for noninteractive zero-
knowledge. J. ACM 59(3), 1–35 (2012)

31. Groth, J., Sahai, A.: Efficient noninteractive proof systems for bilinear groups.
SIAM J. Comput. 41(5), 1193–1232 (2012)

32. Hemenway, B., Jafargholi, Z., Ostrovsky, R., Scafuro, A., Wichs, D.: Adaptively
secure garbled circuits from one-way functions. In: Robshaw, M., Katz, J. (eds.)
CRYPTO 2016, Part III. LNCS, vol. 9816, pp. 149–178. Springer, Heidelberg
(2016). https://doi.org/10.1007/978-3-662-53015-3 6

33. Hohenberger, S., Waters, B.: Attribute-based encryption with fast decryption.
In: Kurosawa, K., Hanaoka, G. (eds.) PKC 2013. LNCS, vol. 7778, pp. 162–179.
Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-36362-7 11

34. Ishai, Y., Kushilevitz, E.: Perfect constant-round secure computation via perfect
randomizing polynomials. In: Widmayer, P., Eidenbenz, S., Triguero, F., Morales,
R., Conejo, R., Hennessy, M. (eds.) ICALP 2002. LNCS, vol. 2380, pp. 244–256.
Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-45465-9 22

35. Jafargholi, Z., Kamath, C., Klein, K., Komargodski, I., Pietrzak, K., Wichs, D.: Be
adaptive, avoid overcommitting. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017,
Part I. LNCS, vol. 10401, pp. 133–163. Springer, Cham (2017). https://doi.org/
10.1007/978-3-319-63688-7 5

36. Jafargholi, Z., Wichs, D.: Adaptive security of Yao’s garbled circuits. In: Hirt,
M., Smith, A. (eds.) TCC 2016, Part I. LNCS, vol. 9985, pp. 433–458. Springer,
Heidelberg (2016). https://doi.org/10.1007/978-3-662-53641-4 17

37. Jutla, C.S., Roy, A.: Switching lemma for bilinear tests and constant-size NIZK
proofs for linear subspaces. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014,
Part II. LNCS, vol. 8617, pp. 295–312. Springer, Heidelberg (2014). https://doi.
org/10.1007/978-3-662-44381-1 17

38. Jutla, C.S., Roy, A.: Shorter quasi-adaptive NIZK proofs for linear subspaces. J.
Cryptol. 30(4), 1116–1156 (2017)

https://doi.org/10.1007/978-3-642-17373-8_20
https://doi.org/10.1007/978-3-642-17373-8_19
https://doi.org/10.1007/978-3-662-49896-5_11
https://doi.org/10.1007/978-3-662-53015-3_6
https://doi.org/10.1007/978-3-642-36362-7_11
https://doi.org/10.1007/3-540-45465-9_22
https://doi.org/10.1007/978-3-319-63688-7_5
https://doi.org/10.1007/978-3-319-63688-7_5
https://doi.org/10.1007/978-3-662-53641-4_17
https://doi.org/10.1007/978-3-662-44381-1_17
https://doi.org/10.1007/978-3-662-44381-1_17

Compact NIZKs from Standard Assumptions on Bilinear Maps 409

39. Kalai, Y.T., Rothblum, G.N., Rothblum, R.D.: From obfuscation to the security
of Fiat-Shamir for proofs. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017, Part II.
LNCS, vol. 10402, pp. 224–251. Springer, Cham (2017). https://doi.org/10.1007/
978-3-319-63715-0 8

40. Katsumata, S., Nishimaki, R., Yamada, S., Yamakawa, T.: Designated veri-
fier/prover and preprocessing NIZKs from Diffie-Hellman assumptions. In: Ishai,
Y., Rijmen, V. (eds.) EUROCRYPT 2019, Part II. LNCS, vol. 11477, pp. 622–651.
Springer, Cham (2019). https://doi.org/10.1007/978-3-030-17656-3 22

41. Katsumata, S., Nishimaki, R., Yamada, S., Yamakawa, T.: Exploring constructions
of compact NIZKs from various assumptions. In: Boldyreva, A., Micciancio, D.
(eds.) CRYPTO 2019, Part III. LNCS, vol. 11694, pp. 639–669. Springer, Cham
(2019). https://doi.org/10.1007/978-3-030-26954-8 21

42. Kiltz, E., Wee, H.: Quasi-adaptive NIZK for linear subspaces revisited. In: Oswald,
E., Fischlin, M. (eds.) EUROCRYPT 2015, Part II. LNCS, vol. 9057, pp. 101–128.
Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46803-6 4

43. Kim, S., Wu, D.J.: Multi-theo preprocessing NIZKs from lattices. In: CRYPTO
2018, Part II, pp. 733–765 (2018)

44. Kowalczyk, L., Wee, H.: Compact adaptively secure ABE for NC1 from k -Lin. In:
Ishai, Y., Rijmen, V. (eds.) EUROCRYPT 2019, Part I. LNCS, vol. 11476, pp.
3–33. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-17653-2 1

45. Lipmaa, H.: Progression-free sets and sublinear pairing-based non-interactive zero-
knowledge arguments. In: Cramer, R. (ed.) TCC 2012. LNCS, vol. 7194, pp. 169–
189. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-28914-9 10

46. Maji, H.K., Prabhakaran, M., Rosulek, M.: Attribute-based signatures. In: Kiayias,
A. (ed.) CT-RSA 2011. LNCS, vol. 6558, pp. 376–392. Springer, Heidelberg (2011).
https://doi.org/10.1007/978-3-642-19074-2 24

47. Naccache, D., Stern, J.: A new public key cryptosystem based on higher residues.
In: ACM CCS 1998, pp. 59–66 (1998)

48. Naor, M.: On cryptographic assumptions and challenges. In: Boneh, D. (ed.)
CRYPTO 2003. LNCS, vol. 2729, pp. 96–109. Springer, Heidelberg (2003). https://
doi.org/10.1007/978-3-540-45146-4 6

49. Okamoto, T., Takashima, K.: Efficient attribute-based signatures for non-monotone
predicates in the standard model. In: Catalano, D., Fazio, N., Gennaro, R., Nicolosi,
A. (eds.) PKC 2011. LNCS, vol. 6571, pp. 35–52. Springer, Heidelberg (2011).
https://doi.org/10.1007/978-3-642-19379-8 3

50. Peikert, C., Shiehian, S.: Noninteractive zero knowledge for NP from (plain) learn-
ing with errors. In: Boldyreva, A., Micciancio, D. (eds.) CRYPTO 2019, Part I.
LNCS, vol. 11692, pp. 89–114. Springer, Cham (2019). https://doi.org/10.1007/
978-3-030-26948-7 4

51. Sahai, A., Waters, B.: How to use indistinguishability obfuscation: deniable encryp-
tion, and more. In: 46th ACM STOC, pp. 475–484 (2014)

52. Tsabary, R.: An equivalence between attribute-based signatures and homomorphic
signatures, and new constructions for both. In: Kalai, Y., Reyzin, L. (eds.) TCC
2017, Part II. LNCS, vol. 10678, pp. 489–518. Springer, Cham (2017). https://doi.
org/10.1007/978-3-319-70503-3 16

53. Vinod, V., Narayanan, A., Srinathan, K., Rangan, C.P., Kim, K.: On the power of
computational secret sharing. In: Johansson, T., Maitra, S. (eds.) INDOCRYPT
2003. LNCS, vol. 2904, pp. 162–176. Springer, Heidelberg (2003). https://doi.org/
10.1007/978-3-540-24582-7 12

54. Waters, B.: Dual system encryption: realizing fully secure IBE and HIBE under
simple assumptions. In: Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 619–
636. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-03356-8 36

https://doi.org/10.1007/978-3-319-63715-0_8
https://doi.org/10.1007/978-3-319-63715-0_8
https://doi.org/10.1007/978-3-030-17656-3_22
https://doi.org/10.1007/978-3-030-26954-8_21
https://doi.org/10.1007/978-3-662-46803-6_4
https://doi.org/10.1007/978-3-030-17653-2_1
https://doi.org/10.1007/978-3-642-28914-9_10
https://doi.org/10.1007/978-3-642-19074-2_24
https://doi.org/10.1007/978-3-540-45146-4_6
https://doi.org/10.1007/978-3-540-45146-4_6
https://doi.org/10.1007/978-3-642-19379-8_3
https://doi.org/10.1007/978-3-030-26948-7_4
https://doi.org/10.1007/978-3-030-26948-7_4
https://doi.org/10.1007/978-3-319-70503-3_16
https://doi.org/10.1007/978-3-319-70503-3_16
https://doi.org/10.1007/978-3-540-24582-7_12
https://doi.org/10.1007/978-3-540-24582-7_12
https://doi.org/10.1007/978-3-642-03356-8_36

New Constructions of Statistical NIZKs:
Dual-Mode DV-NIZKs and More

Benôıt Libert1,2(B), Alain Passelègue2,3(B), Hoeteck Wee4, and David J. Wu5

1 CNRS, Laboratoire LIP, Lyon, France
2 ENS de Lyon, Laboratoire LIP (U. Lyon, CNRS, ENSL, Inria, UCBL),

Lyon, France
benoit.libert@ens-lyon.fr

3 Inria, Paris, France
alain.passelegue@inria.fr

4 CNRS, ENS, PSL, Paris, France
wee@di.ens.fr

5 University of Virginia, Charlottesville, VA, USA
dwu4@virginia.edu

Abstract. Non-interactive zero-knowledge proofs (NIZKs) are impor-
tant primitives in cryptography. A major challenge since the early
works on NIZKs has been to construct NIZKs with a statistical zero-
knowledge guarantee against unbounded verifiers. In the common refer-
ence string (CRS) model, such “statistical NIZK arguments” are cur-
rently known from k-Lin in a pairing-group and from LWE. In the
(reusable) designated-verifier model (DV-NIZK), where a trusted setup
algorithm generates a reusable verification key for checking proofs, we
also have a construction from DCR. If we relax our requirements to com-
putational zero-knowledge, we additionally have NIZKs from factoring
and CDH in a pairing group in the CRS model, and from nearly all
assumptions that imply public-key encryption (e.g., CDH, LPN, LWE)
in the designated-verifier model. Thus, there still remains a gap in our
understanding of statistical NIZKs in both the CRS and the designated-
verifier models.

In this work, we develop new techniques for constructing statistical
NIZK arguments. First, we construct statistical DV-NIZK arguments
from the k-Lin assumption in pairing-free groups, the QR assumption,
and the DCR assumption. These are the first constructions in pairing-
free groups and from QR that satisfy statistical zero-knowledge. All of
our constructions are secure even if the verification key is chosen mali-
ciously (i.e., they are “malicious-designated-verifier” NIZKs), and more-
over, they satisfy a “dual-mode” property where the CRS can be sam-
pled from two computationally indistinguishable distributions: one dis-
tribution yields statistical DV-NIZK arguments while the other yields

B. Libert—Part of this research was supported by the French ANR ALAMBIC project
(ANR-16-CE39-0006).
H. Wee—Supported in part by ERC Project aSCEND (H2020 639554).
D. J. Wu—Part of this work was done while visiting ENS de Lyon. Supported by NSF
CNS-1917414 and a University of Virginia SEAS Research Innovation Award.

c© International Association for Cryptologic Research 2020
A. Canteaut and Y. Ishai (Eds.): EUROCRYPT 2020, LNCS 12107, pp. 410–441, 2020.
https://doi.org/10.1007/978-3-030-45727-3_14

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-45727-3_14&domain=pdf
https://doi.org/10.1007/978-3-030-45727-3_14

New Constructions of Statistical NIZKs: Dual-Mode DV-NIZKs and More 411

computational DV-NIZK proofs. We then show how to adapt our k-Lin
construction in a pairing group to obtain new publicly-verifiable statisti-
cal NIZK arguments from pairings with a qualitatively weaker assumption
than existing constructions of pairing-based statistical NIZKs.

Our constructions follow the classic paradigm of Feige, Lapidot, and
Shamir (FLS). While the FLS framework has traditionally been used
to construct computational (DV)-NIZK proofs, we newly show that the
same framework can be leveraged to construct dual-mode (DV)-NIZKs.

1 Introduction

Non-interactive zero-knowledge (NIZK) proofs [BFM88,GMR89] allow a prover
to send a single message to convince a verifier that a statement is true
without revealing anything beyond this fact. Although such NIZKs cannot
exist in the plain model, they can be realized in the common reference
string (CRS) model, where a trusted party generates and publishes a com-
mon reference string accessible to the prover and the verifier. Shortly after
the introduction of NIZKs, numerous constructions have been developed in
the CRS model from many classes of cryptographic assumptions such as
factoring [BFM88,DMP87,FLS90,BY92,FLS99,DDO+01,Gro10,Gol11,GR13,
CL18], pairing-based assumptions [CHK03,GOS06], and lattice-based assump-
tions [CCH+19,PS19]. We can also construct NIZKs in the random oracle
model [FS86].

A major open problem since the early works on non-interactive zero-
knowledge has been to construct NIZKs with a statistical zero-knowledge guar-
antee against computationally-unbounded verifiers (i.e., “statistical NIZK argu-
ments”). Here, we only have constructions from the k-Lin family of assump-
tions over pairing groups [GOS06,GOS12] and LWE [PS19] (or circular-secure
FHE [CCH+19]). If we relax the model and consider (reusable) designated-
verifier NIZKs (DV-NIZKs), where the trusted party that generates the CRS also
generates a secret verification key that is used to verify proofs, then the recent
work of Chase et al. [CDI+19] provides an instantiation of a statistical DV-NIZK
from the DCR assumption. In contrast, if we are satisfied with computational
zero-knowledge, then we can additionally construct publicly-verifiable NIZKs
in the CRS model from QR [BFM88], factoring [FLS99], and the CDH assump-
tion over a pairing group [CHK03]. In the designated-verifier model, a recent line
of works [QRW19,CH19,KNYY19a,KNYY19b,LQR+19] has provided construc-
tions of computational DV-NIZKs from essentially all cryptographic assumptions
known to imply public-key encryption. These include assumptions like CDH in a
pairing-free group and LPN. Thus, there is still a gap in our understanding of sta-
tistical NIZKs in the CRS model, and especially in the designated-verifier model.
In this work, we develop new techniques for constructing statistical NIZKs in
both the standard CRS model as well as the (reusable) designated-verifier model,
which we review below.

412 B. Libert et al.

Reusable Designated-Verifier NIZKs. A key focus in this work is the designated-
verifier model [PsV06,DFN06], where a trusted party generates the CRS together
with a secret verification key that is used to verify proofs. In this work,
we focus exclusively on reusable (i.e., multi-theorem) security where sound-
ness holds even against a prover who has oracle access to the verification
algorithm. We also consider the stronger malicious-designated-verifier model
(MDV-NIZKs) introduced by Quach et al. [QRW19], where a trusted party
only samples a common reference string,1 and the verifier is allowed to choose
its public and secret key-pair, which is used to generate and verify proofs,
respectively. Here, we require that zero-knowledge should hold even if the
verifier samples its public key maliciously. As discussed in [QRW19], MDV-
NIZKs are equivalent to 2-round zero-knowledge protocols in the CRS model
where the verifier’s initial message is reusable. A recent line of works have
shown how to construct (M)DV-NIZKs with computational zero-knowledge from
nearly all assumptions known to imply public-key encryption (e.g., CDH, LWE,
LPN) [QRW19,CH19,KNYY19a,KNYY19b,LQR+19].

Several recent works have also explored other relaxations of the stan-
dard notion of publicly-verifiable NIZKs such as the reusable designated-
prover model (where there is a secret proving key and a public verification
key) [KW18,KNYY19a] or the reusable preprocessing model (where both the
proving and verifications keys are secret) [BCGI18,BCG+19]. In this work, our
focus is on reusable designated-verifier NIZKs and publicly-verifiable NIZKs.

Dual-Mode NIZKs. An appealing feature of several existing NIZK construc-
tions [GOS06,GOS12,PS19] is they satisfy a “dual-mode” property. Namely, the
CRS in these schemes can be sampled from one of two computationally indis-
tinguishable distributions. One distribution yields computational NIZK proofs
while the other yields statistical NIZK arguments. Dual-mode NIZKs are pow-
erful primitives and a recent work has also studied generic constructions from
obfuscation [HU19]. Most of the constructions we develop in this work naturally
satisfy this dual-mode property.

1.1 Our Results

In this work, we develop new techniques for constructing statistical NIZKs
for general NP languages that yield new constructions in both the reusable
designated-verifier model and the standard CRS model. Our techniques enable
the following new constructions:

– Under the k-Lin assumption in a pairing-free group (for any k ≥ 1; recall that
1-Lin ≡ DDH), we obtain a statistical MDV-NIZK argument in the common

1 In [QRW19], they require the stronger notion where the CRS is a uniformly random
string. In some of our constructions in this work, the CRS will be a structured string.
We believe that this model is still meaningful as the CRS just needs to be sampled
once and can be reused by arbitrarily many verifiers, and zero-knowledge holds as
long as the CRS is properly sampled.

New Constructions of Statistical NIZKs: Dual-Mode DV-NIZKs and More 413

random string model and a computational MDV-NIZK proof in the common
reference string model.2 This is the first construction of a statistical DV-
NIZK argument (even ignoring malicious security) in a pairing-free group,
and the first construction of a computational MDV-NIZK proof from a static
assumption. Previously, computational MDV-NIZK proofs were only known
from the interactive “one-more CDH” assumption [QRW19].

– Under the k-Lin assumption in G1 and the k-KerLin assumption in G2 of
a pairing group (for any k ≥ 1), we obtain a publicly-verifiable statistical
NIZK argument in the common reference string model. Notably, the k-KerLin
assumption is a search assumption that is implied by the standard k-Lin
assumption [MRV15,KW15]. This is a qualitatively weaker assumption than
existing pairing-based constructions of statistical NIZK arguments which rely
on a decisional assumption (k-Lin) in both G1 and G2 [GOS06,GOS12].

– Under the QR assumption, we obtain a dual-mode MDV-NIZK in the com-
mon reference string model. Previously, we could only construct (publicly-
verifiable) computational NIZKs from the QR assumption [BFM88] (or more
generally, from factoring [FLS90,FLS99]), but nothing was known for statis-
tical NIZKs or DV-NIZKs from these assumptions.

– Under the DCR assumption, we obtain a dual-mode MDV-NIZK in the com-
mon reference string model. This matches the recent construction described
in [CDI+19], which realizes the result through a different approach (via
reusable non-interactive secure computation).

We provide a detailed comparison of our constructions with existing NIZK con-
structions (in both the designated-verifier and the publicly-verifiable models) in
Table 1. We describe the formal instantiations in Sect. 5.

From FLS to Statistical NIZKs. All of our constructions follow the classic
paradigm of Feige, Lapidot, and Shamir (FLS) [FLS99] who provide a general
compiler from a NIZK in an idealized model (i.e., the “hidden-bits” model) to
a computational NIZK proof in the CRS model. To date, all existing instan-
tiations of the [FLS99] paradigm have yielded computational NIZK proofs in
either the CRS model [FLS90,BY92,FLS99,CHK03,Gro10,Gol11,GR13,CL18]
or the designated-verifier model [QRW19,CH19,KNYY19a]. In this work, we
show how to adapt the general FLS paradigm to obtain new constructions of
statistical NIZK arguments and more generally, dual-mode NIZKs. We provide
a general overview of our techniques in Sect. 1.2.

We further note that previous statistical NIZK arguments from pairings,
LWE, and DCR follow very different approaches. Our work can also be viewed
as providing a unified approach to realizing these existing results—both compu-
tational and statistical, with the sole exception of the LWE-based scheme—via
the FLS paradigm, while also improving upon some of these prior results, and
obtaining new ones.

2 This is in fact a dual-mode NIZK, where one of the CRS distributions corresponds
to the uniform distribution.

414 B. Libert et al.

1.2 Technical Overview

We begin with a brief overview of the Feige-Lapidot-Shamir (FLS) framework
[FLS90,FLS99] for constructing NIZK proofs for NP. We then describe how to
adapt the main ideas from the FLS framework to obtain new constructions of
(malicious) designated-verifier dual-mode NIZKs as well as publicly-verifiable
statistical NIZK arguments.

Table 1. Comparison of our construction to existing multi-theorem NIZKs. We
write “public” to denote the standard CRS model (with public proving and public
verification), “DV” to denote the designated-verifier model, and “MDV” to denote
the malicious-designated-verifier model. For soundness and zero-knowledge, we write
“comp.” to denote the computational variant of the property, “stat.” to denote the
statistical variant, and “perf.” to denote the perfect variant. When a scheme supports
a dual-mode CRS, we indicate the two modes by writing “stat./comp.” For the pairing-
based constructions, we list the necessary assumptions needed within each of the base
groups G1 and G2 (assuming an asymmetric pairing).

Construction Model Soundness ZK Assumption

[BFM88] public stat. comp. QR

[FLS90,FLS99] public stat. comp. trapdoor permutation

[SW14] public comp. perf. iO + one-way function

[CHK03]∗ public stat. comp. CDH (G2)

[GOS06,GOS12]∗ public perf./comp. comp./perf. k-Lin (G1,G2)

This work∗ public comp. stat. k-Lin (G1), k-KerLin (G2)
†

[PS19] public stat./comp. comp./stat. LWE

[QRW19,CH19,KNYY19a] DV stat. comp. CDH

[QRW19] MDV stat. comp. one-more CDH

[LQR+19] MDV comp. comp. CDH/LWE/LPN

[CDI+19] MDV stat./comp. comp./stat. DCR

This work MDV stat./comp. comp./stat. k-Lin‡/QR/DCR
∗This is a pairing-based construction. In the assumption column, we enumerate all of the nec-

essary hardness assumptions to instantiate the scheme (in an asymmetric setting).
†The k-KerLin refers to the kernel k-Lin assumption [MRV15,KW15], which can be viewed as

the search analog of the classic k-Lin assumption [BBS04,HK07,Sha07].
‡This is over a pairing-free group. The special case where k = 1 corresponds to the standard

DDH assumption. In addition, if we consider the vanilla DV-NIZK model (without malicious

security), there is a simple instantiation (over elliptic-curve groups) that achieves perfect zero-

knowledge.

The FLS Framework. The starting point of the FLS construction is a NIZK
in an idealized model called the “hidden-bits model.” In this model, a trusted
party generates a string of uniformly random bits r1, . . . , rρ ∈ {0, 1} and gives
them to the prover. The prover then outputs a proof π along with a set of
indices I ⊆ [ρ]. The verifier receives (π, {ri}i∈I) from the trusted party. The
model guarantees that the prover cannot influence the value of any of the ri’s
and the verifier does not learn anything about ri for indices i /∈ I. Feige et
al. [FLS99] showed how to construct a NIZK with statistical soundness and

New Constructions of Statistical NIZKs: Dual-Mode DV-NIZKs and More 415

perfect zero-knowledge in the hidden-bits model by adapting Blum’s Σ-protocol
for graph Hamiltonicity [Blu86]. Next, the FLS construction compiles a NIZK
in the hidden-bits model into one in the CRS model by using the CRS to define
the sequence of hidden bits. We recall the FLS compiler based on trapdoor
permutations:

– The CRS contains the description of a family of trapdoor permutations over
{0, 1}λ together with ρ random strings w1, . . . , wρ ∈ {0, 1}λ that are used to
define a string of ρ hidden bits.

– A hidden-bits string is defined by sampling a permutation σ from the family
of trapdoor permutations specified by the CRS, along with a trapdoor for
computing σ−1. In conjunction with wi in the CRS, the permutation σ defines
a hidden bit ri := hc(σ−1(wi)), where hc(·) is a hard-core bit of σ. We refer
to σ as a “commitment” to the hidden-bits string r ∈ {0, 1}ρ.

– The prover can open a commitment σ to a bit ri by sending (i, ri, ui) where
ui := σ−1(wi). The verifier checks that σ(ui) = wi and that hc(ui) = ri.

The security argument proceeds roughly as follows:

– Since hc is a hard-core bit, the value of any unopened bit ri is computationally
hidden given σ and wi. The resulting NIZK satisfies computational zero-
knowledge.

– The permutation σ and the string wi statistically determine ri, and the prover
cannot open ri to any value other than hc(σ−1(wi)). The resulting NIZK
satisfies statistical soundness. Note that a cheating prover can bias the bit ri

due to the adaptive choice of σ. The FLS construction works around this by
leveraging the fact that if the commitment σ has length �, then a malicious
prover can bias at most � of the ρ bits, and soundness holds as long as � � ρ.

Our Approach. In this work, we start by showing how to realize a dual-mode
variant of the hidden-bits model in the designated-verifier setting where the
underlying commitment to the random bits is either statistically binding or
statistically hiding. This “dual-mode” property yields either a computational
DV-NIZK proof or a statistical DV-NIZK argument depending on how the CRS is
sampled (similar to previous dual-mode NIZKs [GOS06,GOS12,PS19]). We then
show how to extend one of our constructions to the publicly-verifiable setting.

An Instantiation From DDH. We first sketch our construction from the DDH
assumption. Here, we will work with a (multiplicative) group G of prime order
p and generator g. For a vector v = (v1, . . . , vn) ∈ Z

n
p , we write gv to denote a

vector of group elements (gv1 , . . . , gvn). Analogous to the FLS construction from
trapdoor permutations, the CRS contains

– the description gv of a function, where v r← Z
ρ+1
p and gv plays a role similar

to the family of trapdoor permutations in the FLS construction;
– gw1 , . . . , gwρ where each wi ∈ Z

ρ+1
p plays a role similar to wi ∈ {0, 1}λ.

416 B. Libert et al.

In our construction, we will vary the distribution of wi (but not v) as follows:

– If we want statistically-binding “hidden bits,” then we sample wi ← siv,
where si

r← Zp.
– If we want statistically-hiding “hidden bits,” then we sample wi

r← Z
ρ+1
p .

Thanks to the DDH assumption, (gv, gsiv) is pseudorandom, and therefore, these
two CRS distributions are computationally indistinguishable.3 As with the con-
struction from trapdoor permutations, the hidden bit ri is a function of the CRS
components gv, gwi together with an additional message σ from the prover. Con-
cretely, the prover samples a random y r← Z

ρ+1
p and sends σ = gy

Tv ∈ G. In con-
junction with gwi in the CRS, the vector y defines a hidden bit ri := H(gy

Twi),
where H : G → {0, 1} is a universal hash function. Importantly, while the descrip-
tion gv, gw1 , . . . , gwρ in the CRS grows with ρ, the prover’s message σ does not.
Now, observe that:

– In binding mode where wi = siv, we have yTwi = siyTv. Then, ri =
H(gy

Twi) = H(gsiy
Tv) = H(σsi) is fully determined by the commitment

σ = gy
Tv together with gv, gwi in the CRS.

– In hiding mode where wi
r← Z

ρ+1
p , the quantity gy

Twi is completely hidden
given gy

Tv along with gv, gwi in the CRS, provided that v and wi are lin-
early independent. More generally, perfect hiding holds as long as the vectors
v,w1, . . . ,wρ are linearly independent over Z

ρ+1
p .

Next, to open the bit ri, the prover will send along gy
Twi . To ensure that a

cheating prover computes this quantity correctly in the designated-verifier model,
we rely on techniques using the Cramer-Shoup hash-proof system [CS98,CS02,
CKS08] (and also used to construct computational DV-NIZK proofs from CDH
[QRW19,CH19,KNYY19a]):

– The verifier’s public key consists of components gzi := gawi+biv where a, bi
r←

Zp are secret coefficients chosen by the verifier. The secret verification key is
the scalars (a, b1, . . . , bρ).

– The prover sends gui := gy
Tzi ∈ G in addition to σ = gc := gy

Tv ∈ G and
gti := gy

Twi ∈ G.
– The verifier checks that gui = (gti)a(gc)bi using (a, bi).

In the statistically-binding mode where wi = siv, we have zi = (asi + bi)v, so
(a, bi) has (statistical) entropy given v,wi, zi. Roughly speaking, reusable sound-
ness then follows from the analysis of the Cramer-Shoup CCA-secure encryption
scheme [CS98,CS02,CKS08] to enforce the consistency check ti = sic. In con-
junction with a NIZK in the hidden-bits model, we thus obtain a dual-mode

3 This idea of encoding either a full-rank matrix in the exponent or a rank-1 matrix in
the exponent also featured in the construction of lossy public-key encryption from
the Matrix Diffie-Hellman assumptions [HJR16].

New Constructions of Statistical NIZKs: Dual-Mode DV-NIZKs and More 417

DV-NIZK from the DDH assumption. This construction generalizes very natu-
rally to the k-Lin family of assumptions [BBS04,HK07,Sha07,EHK+13] for any
k ≥ 1 (where in particular, 1-Lin is the DDH assumption). Concretely, we make
the following substitutions to the above construction:

v ∈ Z
ρ+1
p 	→ V ∈ Z

(ρ+1)×k
p

si, bi ∈ Zp 	→ si,bi ∈ Z
k
p

ti, ui, c ∈ Zp 	→ ti,ui, c ∈ Z
k
p

We provide the full details and security analysis in the full version.

Extending to QR/DCR. Our DDH construction readily generalizes to the sub-
group indistinguishability family of assumptions [BG10] (which generalize the
QR [GM82] and DCR [Pai99] assumptions). While there are some technical dif-
ferences in our concrete instantiations from QR and DCR, all of the main ideas
can be described via the conceptually-simpler language of subgroup indistin-
guishability. This is the approach we take in this overview, and we refer to the
technical sections for the full details. First, the subgroup indistinguishability
assumption says that the distributions (g, h, gr1) and (g, h, gr1hr2) are compu-
tationally indistinguishable, where g, h generate subgroups of co-prime order
mg,mh, respectively, and r1

r← Zmg
, r2

r← Zmh
.

Similar to the DDH instantiation, the CRS contains a function gv (where
v r← Z

ρ
mgmh

) together with additional components gs1vhŵ1 , . . . , gsρvhŵρ , where
ŵi = 0 in binding mode and ŵi = ei in hiding mode. Here ei is the basis vector
whose ith index is 1. Under the subgroup indistinguishability assumption, these
two distributions are computationally indistinguishable.

Next, the hidden bit ri is a function of the CRS components gv and gsivhŵi

together with an additional commitment σ from the prover. Specifically, the
prover samples a vector y = (y1, . . . , yρ)

r← Z
ρ
mgmh

and computes

σ := gy
Tv and ti := gsiy

TvhyTŵi and ri := H(ti), (1.1)

where H is a hash function. Now, observe that:

– In binding mode where ŵi = 0, then ti = gsiy
Tv = σsi . Thus, ti (and corre-

spondingly, ri) is fully determined by the commitment σ and the components
gv, gsivhŵi = gsiv in the CRS.

– In hiding mode where ŵi = ei, then ti = gsiw
Tyhyi . Since g and h generate

subgroups of co-prime order mg and mh, respectively, we can appeal to the
Chinese remainder theorem to argue that the commitment σ = gy

Tv perfectly
hides the value of y mod mh. Since y is uniform over Zmgmh

, this means
that t1, . . . , ti have at least log mh bits of statistical entropy given σ (and the
components of the CRS).
In the DCR construction, mh = N is a product of two large primes, so we
can use a standard universal hash function to extract a uniformly random
bit [HILL99].

418 B. Libert et al.

In the QR construction, mh = 2, so each component ti contains just one bit
of entropy, and we cannot appeal to the leftover hash lemma. In this case, we
adapt an idea from [DGI+19] (for constructing trapdoor hash functions from
QR) and use a deterministic function to extract the bit from ti.

Finally, to open a bit ri, the prover provides σ, ti, along with a proof that ti and σ
are consistent (i.e., there exists some y such that Eq. (1.1) hold). Here, we use the
same techniques as in the DDH setting (i.e., using the Cramer-Shoup hash-proof
system) to implement this. In the QR setting, we encounter some challenges
because the order of the subgroup generated by h is polynomial-sized, which
allows the adversary to break soundness with noticeable probability. To amplify
soundness, we essentially embed multiple copies of the Cramer-Shoup hash-proof
system and ensure that the proof verifies only if all copies verify (while retaining
reusable soundness). We refer to the full version for the full analysis of the QR
and DCR constructions.

Handling Malicious Verifiers. All of the constructions described thus far are
zero-knowledge only if the verifier samples its public verification key honestly.
However, if the verifier can choose its key arbitrarily, then it can break zero-
knowledge. To see this, consider again the DDH construction (in hiding mode).
There, the CRS contains elements gv, gw1 , . . . , gwρ , and a verifier’s public key is
(gz1 , . . . , gzρ) where zi = awi+biv. To generate a hidden-bits string r, the prover
samples y r← Z

ρ+1
p and sets ri = H(gy

Twi). To open a bit ri, the prover computes
gti = gy

Twi and gui = gy
Tzi . In order to appeal to security of the underlying

NIZK in the hidden-bits model, we require that the commitment σ = gy
Tv, the

value of ri, and the opening (gti , gui) do not leak information about any other
(unopened) bit rj . This is the case when all of the verification key components
zi are generated honestly. In this case, v,w1, . . . ,wρ are linearly independent,
and zi is a function of only v and wi. However, a malicious verifier can choose
zi = wj for some j
= i. Then, if the honest prover computes an opening to ri, it
will also compute gui = gy

Tzi = gy
Twj , which completely leaks the value of rj .

As such, the basic scheme is insecure against a malicious verifier.
This problem where an opening to ri can leak information about the value rj

for j
= i is the same problem encountered in the basic DV-NIZK from [QRW19].
In this work, we adopt the same general strategy as them to defend against mali-
cious verifiers. At a high-level, the approach of [QRW19] for achieving security
against malicious verifiers is to use the basic scheme above to generate a hidden-
bits string r′

1, . . . , r
′
� of length � � ρ. Each of the ρ hidden bits r1, . . . , rρ is

then derived as a sparse pseudorandom combination of the bits r′
1, . . . , r

′
�. More

specifically, the prover chooses a mapping ϕ that maps each index i ∈ [ρ] onto
a set ϕ(i) ⊆ [�]. Each bit ri is a deterministic function of r′

j for j ∈ ϕ(i). To
open a bit ri, the prover instead opens up all bits r′

j for j ∈ ϕ(i). The length �
and the size |ϕ(i)| of the sets are chosen so as to ensure that for all unopened
bits j ∈ [ρ], there is at least one index k ∈ ϕ(j) such that r′

k is hidden from the
verifier, which ideally, is sufficient to mask the value of rj . Quach et al. show

New Constructions of Statistical NIZKs: Dual-Mode DV-NIZKs and More 419

how to implement this idea by relying on a one-more CDH assumption (in con-
junction with somewhere equivocal PRFs [HJO+16]), and a complex rewinding
argument in the security proof. In our setting, the algebraic structure of our
construction enables us to make a conceptually-simpler information-theoretic
argument (and only needing to assume a PRG). As such, we are able to obtain
a dual-mode MDV-NIZK from the DDH (and more generally, k-Lin), QR, and
DCR assumptions.

We give a brief overview of how we extend the basic DDH construction
sketched above to achieve security against malicious verifiers. The same idea
extends to the QR and DCR constructions. Specifically, we use our basic con-
struction to generate a hidden-bits string of length � � ρ as follows:

– The CRS (in hiding mode) consists of group elements gv, gw1 , . . . , gw� , where
v,w1, . . . ,w�

r← Z
�+1
p . With overwhelming probability, these vectors are lin-

early independent.
– The honest verifier’s public key is (gz1 , . . . , gz�), constructed in the usual

manner.
– The prover’s commitment is a vector y ∈ Z

�+1
p as well as a seed s for a PRG.4

The PRG outputs a collection of ρ blocks, where each block consists of a
set Si ⊆ [�] and a vector α ∈ Z

�
p. The hidden bit ri is determined by first

computing gtj = gy
Twj for all j ∈ Si and defining ri := H(

∏
j∈Si

gαjtj).

– The opening for ri consists of gtj = gy
Twj and guj = gy

Tzj for all j ∈ Si.

Our goal is to show that even for an adversarially-chosen verification key, the
commitment σ and the opening ({gtj , guj }j∈Si

) to a bit ri does not leak any
information about rj whenever j
= i.5 By construction, the opening to ri is
determined by yTv, yTwj , and yTzj for j ∈ Si (where the set Si is pseudoran-
dom). Take any index i∗
= i. Then, if there exists j∗ ∈ ϕ(i∗) such that wj∗ is
linearly independent of {v,wj , zj}j∈Si

, then the value of yTwj∗ is independent
and uniformly random given the view of the adversary (since the honest prover
samples y r← Z

�+1
p). In this case, the value gtj∗ = gy

Twj∗ remains uniformly
random and statistically hides ri∗ . Thus, it suffices to set � and |Si| so that there
will always exist j∗ ∈ ϕ(i∗) where wj∗ is linearly independent of {v,wj , zj}j∈Si

with overwhelming probability. In the case of our DDH construction, we can set
|Si| = λ, where λ is a security parameter, and � = 3ρ2λ to satisfy this property.
We provide the details of our DDH (more generally, its generalization to the k-Lin
assumption) in Sect. 4.3 and our QR and DCR constructions in the full version.

4 We require a PRG because the prover’s message needs to be succinct in order to argue
soundness of the resulting NIZK in the FLS paradigm. Thus, we rely on a PRG for
compression. Note that even though we rely on a computational assumption, we
can still show statistical zero-knowledge. The security proof only requires that there
are no efficient statistical tests that can distinguish the output of the PRG from a
random string (which is implied by PRG security).

5 To show adaptive, multi-theorem zero-knowledge, we in fact show an even stronger
simulation property. We refer to Sect. 3 for more details.

420 B. Libert et al.

Public Verifiability via Pairings. All of the constructions we have described so
far operate in the designated-verifier model because our constructions rely on a
Cramer-Shoup-style hash proof system to argue consistency between a commit-
ment and the opening. If we can instead publicly check consistency between a
commitment and its opening, then the resulting scheme becomes publicly verifi-
able. For the DDH construction, we can implement the consistency check using a
pairing (this is the approach taken in [CHK03] to obtain a computational NIZK
proof). In this work, we develop a similar approach to obtain a statistical NIZK
argument from pairings.

In particular, let e : G1 × G2 → GT be an (asymmetric) pairing. Let g1, g2
be generators of G1 and G2, respectively. At a high level, we implement the
DDH scheme in G1 and use G2 for verification. More specifically, the CRS is
gv1 , gw1

1 , . . . , g
wρ

1 , and the verification key is g
(aw1+b1v)
1 , . . . , g

(awρ+bρv)
1 . The com-

mitment, hidden-bits sequence, and openings are defined as before:

σ = gc
1 = gy

Tv
1 , ri = H(gy

Twi

1), gti
1 = gy

Twi

1 and gui
1 = g

yT(awi+biv)
1 .

In the designated-verifier setting, the verifier checks gui
1

?= (gti
1)a(gc

1)
bi . A direct

approach for public verification is to include ga
2 , gb1

2 , . . . , g
bρ

2 as part of the veri-
fication key, and check the following:

e(gui
1 , g2)

?= e(gti
1 , ga

2) · e(gc
1, g

bi
2).

While this approach is correct, it is unclear to argue soundness (even against
computationally-bounded adversaries). In the designated-verifier setting, the
soundness analysis critically relies on the verification coefficients a, bi being hid-
den from the adversary, and it is unclear how to make such an argument when
the adversary is given ga

2 , gbi
2 .

To base hardness on a concrete cryptographic assumption, we leverage a
technique from [KW15], who describe a general method to “securely publish”
the verification key in the exponent (as we hoped to do in our initial attempt
above) with a concrete security reduction to a search assumption in G2. This
yields a general compiler from a designated-verifier scheme with unconditional
soundness to a publicly-verifiable scheme with computational soundness, at the
expense of requiring a pairing and a search assumption in G2. The compiler
preserves zero-knowledge of the underlying scheme.

Concretely, instead of scalar verification coefficients a, bi, we instead sam-
ple vectors a,bi

r← Z
2
p, and publish g

wia
T+vbT

i
1 for each i ∈ [ρ] in the CRS.

The public verification components will consist of gd2 , ga
Td

2 , g
bT

1d
2 , . . . , g

bT
ρd

2 , where
d ∈ Z

2
p. The key observation is that a,b1, . . . ,bρ have statistical entropy even

given the public components gd2 , ga
Td

2 , g
bT

1d
2 , . . . , g

bT
ρd

2 . The commitment, hidden-
bits sequence, and openings are still computed as before, except the verification
component gui

1 is replaced with g
uT

i
1 = g

yT(wia
T+vbT

i)
1 . The verification relation

now checks
e(gu

T
i

1 , gd2) ?= e(gti
1 , ga

Td
2) · e(gc

1, g
bT

i d
2).

New Constructions of Statistical NIZKs: Dual-Mode DV-NIZKs and More 421

Since the verification coefficients a,b1, . . . ,bρ have statistical entropy given the
public key, we can appeal to DDH in G1 and the 1-KerLin assumption (a search
assumption that is weaker than DDH) over G2 to argue soundness of the resulting
construction. This yields a publicly-verifiable statistical NIZK argument in the
common reference string model. We provide the full description and analysis
(generalized to the k-Lin and k-KerLin family of assumptions for any k ≥ 1) in
the full version.

Our pairing-based construction does not appear to have a dual mode and it is
unclear how to modify this construction to obtain computational NIZK proofs.
We do note that computational NIZK proofs can be built directly from pairings
(under the CDH assumption in G1) also by following the FLS paradigm [CHK03].
At the same time, it is also unclear how to adapt the [CHK03] construction to
obtain statistical NIZK arguments.

A Unifying Abstraction: Dual-Mode Hidden-Bits Generators. We unify the dif-
ferent algebraic constructions through the abstraction of a “dual-mode hidden-
bits generator.” Previously, Quach et al. [QRW19] introduced the notion of a
hidden-bits generator (HBG) and showed how to use an HBG to implement the
classic FLS paradigm in both the designated-verifier and the publicly-verifiable
settings. Very briefly, an HBG with output size ρ consists of four main algorithms
(Setup,KeyGen,GenBits,Verify):

– The Setup algorithm outputs a common reference string crs, and KeyGen
generates a public key pk along with a (possibly secret) verification key sk.

– The GenBits algorithm outputs a short commitment σ together with a
sequence of hidden bits r ∈ {0, 1}ρ as well as openings {πi}i∈[ρ].

– The Verify algorithm takes an index i ∈ [ρ], a bit ri ∈ {0, 1}, and an opening
πi and either accepts or rejects the proof.

The main security requirements are statistical binding (i.e., no adversary can
produce a commitment σ and valid openings πi, π

′
i that open to 0 and 1 for the

same index) and computational hiding (i.e., an honestly-generated commitment
σ and set of openings {ri, πi}i∈I should hide all unopened bits rj for j /∈ I from
any computationally-bounded adversary). Quach et al. show that an HBG with
these properties can be combined directly with a NIZK in the hidden-bits model
to obtain a computational NIZK proof in the CRS model. If the HBG is in the
(malicious) designated-verifier model, then so is the resulting NIZK.

In this work, we extend this framework by introducing the notion of a dual-
mode HBG where the CRS can be generated in one of two modes: a binding mode
where the HBG satisfies statistical binding (as in [QRW19]) and a hiding mode
where the HBG satisfies a stronger notion of statistical hiding (i.e., the unopened
bits are statistically hidden given the CRS, the commitment σ and any subset of
opened bits {(ri, πi)}i∈I). In our case, we impose an even stronger equivocation
property in the hiding mode: namely, given any set of indices I ⊆ [ρ] and any
assignment rI ∈ {0, 1}|I| to that set, it is possible to simulate a commitment
σ and a set of openings {πi}i∈I that is statistically indistinguishable from the

422 B. Libert et al.

output of the honest generator. This allows us to directly argue adaptive and
multi-theorem6 statistical zero-knowledge for the resulting NIZK construction.
We give our formal definition in Sect. 3, and describe our construction of dual-
mode (designated-verifier) NIZKs from dual-mode (designated-verifier) HBGs in
Sect. 3.1. In Sect. 4 and the full version, we show how to construct dual-mode
HBGs from the k-Lin, QR, and DCR assumptions.

2 Preliminaries

Throughout this work, we write λ (oftentimes implicitly) to denote the security
parameter. For a positive integer n ∈ N, we write [n] to denote the set {1, . . . , n}.
We will typically use bold lowercase letters (e.g., v,w) to denote vectors and
bold uppercase letters (e.g., A,B) to denote matrices. For a vector v ∈ Z

n
p ,

we will use non-boldface letters to refer to its components; namely, we write
v = (v1, . . . , vn). For a (sorted) set of indices I = {i1, . . . , im} ⊆ [n], we write
vI to denote the sub-vector (vi1 , . . . , vim

).
We say that a function f is negligible in λ, denoted negl(λ), if f(λ) = o(1/λc)

for all c ∈ N. We write poly(λ) to denote a function bounded by a fixed polyno-
mial in λ. We say an event happens with negligible probability if the probability
of the event happening is negligible, and that it happens with overwhelming
probability if its complement occurs with negligible probability. We say that an
algorithm is efficient if it runs in probabilistic polynomial-time in the length
of its inputs. We say that two families of distributions D1 = {D1,λ}λ∈N and
D2 = {D2,λ}λ∈N are computationally indistinguishable if no efficient adversary
can distinguish samples from D1 and D2 except with negligible probability, and
we denote this by writing D1

c≈ D2. For two distributions D1, D2, we write
Δ(D1,D2) to denote the statistical distance between D1 and D2. We write
D1

s≈ D2 to denote that D1 and D2 are statistically indistinguishable: namely,
that Δ(D1,D2) = negl(λ). For a finite set S, we write x

r← S to denote that x is
sampled uniformly at random from S. For a distribution D, we write x ← D to
denote that x is sampled from D. We review additional preliminaries in the full
version.

2.1 NIZKs in the Hidden-Bits Model

In this section, we recall the notion of a NIZK in the hidden-bits model [FLS99].
Our presentation is adapted from the description from [QRW19,CH19,
KNYY19a].

6 We can also use the transformation from [FLS99] to generically go from single-
theorem zero-knowledge to multi-theorem zero-knowledge, but at the expense of
making non-black-box use of a PRG. Our approach yields a direct construction of
multi-theorem zero-knowledge without needing to make non-black-box use of cryp-
tography. We discuss this in greater detail in Remark 2.5.

New Constructions of Statistical NIZKs: Dual-Mode DV-NIZKs and More 423

Definition 2.1 (NIZKs in the Hidden-Bits Model). Let L ⊆ {0, 1}n be an
NP language associated with an NP relation R with n = n(λ). A non-interactive
zero-knowledge proof in the hidden-bits model for L consists of a tuple ΠHBM =
(Prove,Verify) and a parameter ρ = ρ(λ, n) with the following properties:

– Prove(1λ, r, x, w) → (I, π): On input the security parameter λ, a string r ∈
{0, 1}ρ, a statement x ∈ {0, 1}n and a witness w, this algorithm outputs a set
of indices I ⊆ [ρ] and a proof π.

– Verify(1λ, I, rI , x, π) → {0, 1}: On input the security parameter λ, a subset
I ⊆ [ρ], a string rI ∈ {0, 1}|I|, a statement x ∈ {0, 1}n and a proof π, the
verification algorithm outputs a bit b ∈ {0, 1}.

Moreover, ΠHBM satisfies the following properties:

– Completeness: For all (x,w) ∈ R and r ∈ {0, 1}ρ,

Pr[(I, π) ← Prove(1λ, r, x, w) : Verify(1λ, I, rI , x, π) = 1] = 1.

– Statistical soundness: For all unbounded provers P∗, we have that for
r

r← {0, 1}ρ and (x, π, I) ← P∗(1λ, r),

Pr[x /∈ L ∧ Verify(1λ, I, rI , x, π) = 1] = negl(λ).

We will oftentimes refer to the above probability as the soundness error.
– Perfect zero-knowledge: There exists an efficient simulator S such that for

all unbounded verifiers V∗, if we take (x,w) ← V∗(1λ), r
r← {0, 1}ρ, (I, π) ←

Prove(1λ, r, x, w), and (Ĩ , r̃I , π̃) ← S(1λ, x), and moreover if R(x,w) = 1,
then the following two distributions are identically distributed:

(I, rI , π) ≡ (Ĩ , r̃I , π̃).

Theorem 2.2 (NIZKs in the Hidden-Bits Model [FLS99]). For any ε > 0,
every language L ∈ NP has a NIZK in the hidden-bits model with soundness error
ε and relying on a hidden-bits string of length ρ = poly(n, log(1/ε)).

2.2 Designated-Verifier NIZKs and Dual-Mode NIZKs

We now review the notion of a reusable designated-verifier NIZK (DV-NIZK).
Namely, we require that the same common reference string and verification state
can be reused to prove and verify many statements without compromising either
soundness or zero-knowledge. As in [LQR+19], we use the fine-grained notion
with separate setup and key-generation algorithms. The setup algorithm samples
the common reference string (CRS) while the key-generation algorithm gener-
ates a public key (used to generate proofs) along with a secret key (used to verify
proofs). We allow the same CRS to be reusable by many verifiers, who each gen-
erate their own public/secret key-pairs. In the traditional notion of DV-NIZKs,
the setup and key-generation algorithms would be combined into a single algo-
rithm that outputs the CRS (which would include the public proving key) along
with a secret verification key.

424 B. Libert et al.

Definition 2.3 (Designated-Verifier NIZK). Let L ⊆ {0, 1}n be an NP
language associated with an NP relation R with n = n(λ). A reusable designated-
verifier non-interactive zero-knowledge (DV-NIZK) proof for L consists of a tuple
of efficient algorithms ΠdvNIZK = (Setup,KeyGen,Prove,Verify) with the following
properties:

– Setup(1λ) → crs: On input the security parameter λ, this algorithm outputs a
common reference string crs. If Setup outputs a uniformly random string, we
say that the scheme is in the common random string model.

– KeyGen(crs) → (pk, sk): On input the common reference string crs, the key-
generation algorithm outputs a public key pk and a secret key sk.

– Prove(crs, pk, x, w) → π: On input the common reference string crs, a public
key pk, a statement x ∈ {0, 1}n, and a witness w, this algorithm outputs a
proof π.

– Verify(crs, sk, x, π) → {0, 1}: On input the common reference string crs, a
secret verification key sk, a statement x, and a proof π, the verification algo-
rithm outputs a bit b ∈ {0, 1}.

Moreover, ΠdvNIZK should satisfy the following properties:

– Completeness: For all (x,w) ∈ R, and taking crs ← Setup(1λ), (pk, sk) ←
KeyGen(crs),

Pr
[
π ← Prove(crs, pk, x, w) : Verify(crs, sk, x, π) = 1

]
= 1.

– (Statistical) soundness: We consider two variants of soundness:
• Non-adaptive soundness: For all x /∈ L and all polynomials q = q(λ),

and all unbounded adversaries A making at most q verification queries,
and sampling crs ← Setup(1λ), (pk, sk) ← KeyGen(crs), we have that

Pr
[
π ← AVerify(crs,sk,·,·)(1λ, crs, pk, x) : Verify(crs, sk, x, π) = 1

]
= negl(λ).

• Adaptive soundness: For all polynomials q = q(λ) and all unbounded
adversaries A making at most q verification queries, and sampling crs ←
Setup(1λ), (pk, sk) ← KeyGen(crs), we have that

Pr
[
(x, π) ← AVerify(crs,sk,·,·)(1λ, crs, pk) :

x /∈ L ∧ Verify(crs, sk, x, π) = 1
]

= negl(λ).

We also define the corresponding notions of computational soundness where
the above properties only need to hold against efficient adversaries A.

– (Statistical) zero-knowledge: For all polynomials q = q(λ) and all
unbounded adversaries A making at most q oracle queries, there exists an
efficient simulator S = (S1,S2) such that
∣
∣
∣Pr[AO0(crs,pk,·,·)(crs, pk, sk) = 1] − Pr[AO1(stS ,·,·)(c̃rs, p̃k, s̃k) = 1]

∣
∣
∣ = negl(λ),

New Constructions of Statistical NIZKs: Dual-Mode DV-NIZKs and More 425

where crs ← Setup(1λ), (pk, sk) ← KeyGen(crs) and (stS , c̃rs, p̃k, s̃k) ← S1(1λ),
the oracle O0(crs, pk, x, w) outputs Prove(crs, pk, x, w) if R(x,w) = 1 and
⊥ otherwise, and the oracle O1(stS , x, w) outputs S2(stS , x) if R(x,w) =
1 and ⊥ otherwise. Similar to soundness, we also consider computational
zero-knowledge where the above property only needs to hold against efficient
adversaries A.

Definition 2.4 (Publicly-Verifiable NIZKs). A NIZK ΠNIZK is publicly-
verifiable if the secret key output by KeyGen is empty. In this case, we can com-
bine the Setup and KeyGen algorithms into a single algorithm that just outputs
the CRS, and there is no notion of separate public/secret keys pk and sk. Both
the Prove and Verify algorithms just take crs as input. We can define all of the
properties analogously. In the publicly-verifiable setting, we do not need to pro-
vide the prover a separate verification oracle in the soundness game.

Remark 2.5 (Single-Theorem vs. Multi-Theorem Zero-Knowledge). The zero-
knowledge property in Definition 2.3 is multi-theorem in the sense that the adver-
sary can see proofs of multiple statements. We can consider a weaker notion of
single-theorem zero-knowledge where the adversary can only see a proof on a
single (adaptively-chosen) statement. Previously, Feige et al. [FLS99] showed
how to generically compile a single-theorem NIZK into a multi-theorem NIZK
using a PRG. This transformation also applies in the designated-verifier set-
ting [QRW19,CH19,KNYY19a]. One limitation of the [FLS99] transformation is
that it requires making non-black-box use of a PRG. The constructions we present
in this work directly achieve multi-theorem zero-knowledge without needing to
go through the [FLS99] transformation. As such, our constructions do not require
making non-black-box use of any cryptographic primitives.

Malicious DV-NIZKs. We also consider the notion of a malicious designated-
verifier NIZK (MDV-NIZK) from [QRW19] where zero-knowledge holds even
when the public key pk is chosen maliciously. In this case, the only trusted setup
that we require is generating the common reference string (or, in some cases, a
common random string), which can be reused by many verifiers.

We recall the formal definition in the full version.

Dual-Mode DV-NIZKs. Next, we recall the formal definition of a dual-mode
(DV)-NIZK [GOS06,GOS12].

Definition 2.6 (Dual-Mode Designated-Verifier NIZK). A dual-mode
DV-NIZK ΠdvNIZK = (Setup,KeyGen,Prove,Verify) is a DV-NIZK with the fol-
lowing additional properties:

– Dual-mode: The Setup algorithm takes an additional argument mode ∈
{binding, hiding}, and outputs a common reference string crs.

– CRS indistinguishability: The common reference string output by the two
modes are computationally indistinguishable:

Setup(1λ, binding)
c≈ Setup(1λ, hiding).

426 B. Libert et al.

– Statistical soundness in binding mode: If crs ← Setup(1λ, binding), the
designated-verifier NIZK satisfies statistical soundness.

– Statistical zero-knowledge in hiding mode: If crs ← Setup(1λ, hiding),
the designated-verifier NIZK satisfies statistical zero-knowledge.

We define a dual mode MDV-NIZK analogously by requiring the stronger prop-
erty of statistical zero-knowledge against malicious verifiers in hiding mode.

Remark 2.7 (Dual-Mode Designated-Verifier NIZKs). Let ΠdvNIZK = (Setup,
KeyGen,Prove,Verify) be a dual-mode DV-NIZK for a language L ⊆ {0, 1}n.
Then, the following properties hold:

– When the CRS is generated in binding mode, ΠdvNIZK satisfies statistical
soundness and computational zero-knowledge (i.e., ΠdvNIZK is a “computa-
tional DV-NIZK proof”).

– When the CRS is generated in hiding mode, ΠdvNIZK satisfies non-adaptive
computational soundness and statistical zero-knowledge (i.e., ΠdvNIZK is a
“statistical DV-NIZK argument”).

– If ΠdvNIZK is a dual-mode MDV-NIZK, then the zero-knowledge properties in
each of the above instantiations also hold against malicious verifiers.

The first two properties follow from CRS indistinguishability and the corre-
sponding statistical properties of ΠdvNIZK in the two modes. Note though that
even if ΠdvNIZK satisfies adaptive soundness in binding mode, we do not know
how to argue adaptive soundness for ΠdvNIZK in hiding mode. At a high-level,
this is because in the definition of adaptive soundness, checking whether the
adversary succeeded or not requires deciding whether the statement x output by
the adversary is contained in the language L or not. Unless NP ⊆ P/poly, this
is not an efficiently-checkable property in general, and as such, we are not able
to directly argue adaptive soundness of the construction. We refer to [AF07]
for more discussion on the challenges of using black-box reductions to argue
adaptive soundness for statistical NIZK arguments.

Remark 2.8 (Adaptive Soundness via Complexity Leveraging). Using complexity
leveraging [BB04] and relying on a sub-exponential hardness assumption (as
in [GOS06,GOS12]), we can show that non-adaptive soundness implies adaptive
soundness. A direct application of complexity leveraging to a dual-mode NIZK
yields an adaptively-sound statistical NIZK argument for proving statements of
a priori bounded length n = n(λ). Using the method from [QRW19, §7], we can
also obtain adaptive soundness for statements with arbitrary polynomial length,
but still at the expense of a subexponential hardness assumption.

3 Dual-Mode Hidden-Bits Generators and Dual-Mode
DV-NIZKs

In this section, we formally define a dual-mode hidden-bits generator. Our def-
inition extends the notion of a hidden-bits generator from [QRW19] (and the
similar notion of a designated-verifier PRG from [CH19]). Our definition differs
from that in [QRW19] in the following respects:

New Constructions of Statistical NIZKs: Dual-Mode DV-NIZKs and More 427

– Dual mode: We require that the common reference string for the hidden-bits
generator can be generated in two computationally indistinguishable modes:
a binding mode where the commitment statistically binds to a sequence of
hidden bits, and a hiding mode where the commitment (and the openings to
any subset of the bits) statistically hide the remaining bits.

– Statistical simulation in hiding mode. Minimally, our hiding property
requires that the commitment and openings to any subset of the bits output
by the HBG statistically hide the unopened bits. Here, we require an even
stronger simulation property where there is an efficient simulator that can
simulate the commitment and openings to any (random) string, given only
the values of the opened bits. Moreover, we allow the adversary to adap-
tively choose the subset of bits for which it wants to see openings, and we
also allow multiple interactions with the simulator. This strong simulation
property enables us to directly argue adaptive and multi-theorem statistical
zero-knowledge for our NIZK constructions (Sect. 3.1).7

Definition 3.1 (Dual-Mode Hidden-Bits Generator). Let λ be a secu-
rity parameter and ρ be the output length. Let � = �(λ, ρ) be a polynomial. A
dual-mode (designated-verifier) hidden-bits generator (HBG) with commitments
of length � consists of a tuple of efficient algorithms ΠHBG = (Setup,KeyGen,
GenBits,Verify) with the following properties:

– Setup(1λ, 1ρ,mode) → crs: On input the security parameter λ, a length ρ,
and a mode mode ∈ {binding, hiding}, the setup algorithm outputs a common
reference string crs.

– KeyGen(crs) → (pk, sk): On input a common reference string crs, the key-
generation algorithm outputs a public key pk and a secret key sk.

– GenBits(crs, pk) → (σ, r, {πi}i∈[ρ]): On input a common reference string crs
and a public key pk, the bit-generation algorithm outputs a commitment σ ∈
{0, 1}�, a string r ∈ {0, 1}ρ, and a collection of proofs πi for i ∈ [ρ].

– Verify(crs, sk, σ, i, ri, πi) → {0, 1}: On input a common reference string crs, a
secret key sk, a commitment σ ∈ {0, 1}�, an index i ∈ [ρ], a bit ri ∈ {0, 1},
and a proof πi, the verification algorithm outputs a bit b ∈ {0, 1}.

In addition, we require that ΠHBG satisfy the following properties:

– Correctness: For all integers λ ∈ N, and all polynomials ρ = ρ(λ), all
indices i ∈ [ρ] and both modes mode ∈ {binding, hiding}, and sampling
crs ← Setup(1λ, 1ρ,mode), (pk, sk) ← KeyGen(crs), and (σ, r, {πi}i∈[ρ]) ←
GenBits(crs, pk), we have

Pr[Verify(crs, sk, σ, i, ri, πi) = 1] = 1.

7 The previous notion from [QRW19] was only sufficient for single-theorem non-
adaptive computational zero-knowledge. Extending to adaptive multi-theorem com-
putational zero-knowledge required imposing additional properties on the underlying
NIZK in the hidden-bits model as well as making non-black-box use of cryptographic
primitives [FLS99].

428 B. Libert et al.

– Succinctness: The length � of the commitment depends only on the security
parameter and not the length of the output: namely, � = poly(λ).8

– CRS indistinguishability: For all polynomials ρ = ρ(λ), we have that

Setup(1λ, 1ρ, binding)
c≈ Setup(1λ, 1ρ, hiding).

– Statistically binding in binding mode: There exists a (possibly inef-
ficient) deterministic algorithm Open(crs, σ) such that for all polynomials
ρ = ρ(λ) and q = q(λ) and all unbounded adversaries A making up to q oracle
queries, and sampling crs ← Setup(1λ, 1ρ, binding), (pk, sk) ← KeyGen(crs),
(σ∗, i∗, r∗, π∗) ← AVerify(crs,sk,·,·,·,·)(1λ, 1ρ, crs, pk), r ← Open(crs, σ∗), we have

Pr[ri∗
= r∗ ∧ Verify(crs, sk, σ∗, i∗, r∗, π∗) = 1] = negl(λ).

– Statistical simulation in hiding mode: For all polynomials ρ = ρ(λ),
q = q(λ), and all unbounded adversaries A making up to q queries, there
exists an efficient simulator S = (S1,S2) such that

∣
∣ Pr[ExptHide[A,S, 0](1λ, 1ρ) = 1]

− Pr[ExptHide[A,S, 1](1λ, 1ρ) = 1]
∣
∣ = negl(λ), (3.1)

where for a bit b ∈ {0, 1}, the hiding experiment ExptHide[A,S, b](1λ, 1ρ) is
defined as follows:

• Setup phase: If b = 0, the challenger samples crs ← Setup(1λ, 1ρ, hiding)
and (pk, sk) ← KeyGen(crs), and gives (crs, pk, sk) to A. If b = 1, it sam-
ples (stS , c̃rs, p̃k, s̃k) ← S1(1λ, 1ρ) and gives (c̃rs, p̃k, s̃k) to A.

• Query phase: The adversary A can now make up to q challenge queries.
On each query, the challenger responds as follows:
* If b = 0, the challenger computes (σ, r, {πi}i∈[ρ]) ← GenBits(crs, pk)

and gives r to the adversary. If b = 1, it responds with r̃
r← {0, 1}ρ.

* The adversary specifies a subset I ⊆ [ρ].
* If b = 0, then the challenger replies with the pair (σ, {πi}i∈[I]) it sam-

pled above. If b = 1, it replies to A with (σ̃, {π̃i}i∈I) ← S2(stS , I, r̃I).
• Output phase: At the end of the experiment, the adversary outputs a bit

b ∈ {0, 1}, which is the output of the experiment.
When the difference in Eq. (3.1) is identically zero, we say that ΠHBG satisfies
perfect simulation in hiding mode.

Definition 3.2 (Publicly-Verifiable Dual-Mode HBG). A dual-mode
HBG ΠHBG is publicly-verifiable if the secret key sk output by KeyGen is empty.
In this case, we can combine the Setup algorithm and the KeyGen algorithm into
a single algorithm that just outputs the crs, and there is no notion of separate
8 We remark that this is a stronger requirement than the corresponding requirement

in [QRW19], which also allows � to scale sublinearly with ρ. We use this definition
because it is conceptually simpler and all of our constructions satisfy this stronger
property.

New Constructions of Statistical NIZKs: Dual-Mode DV-NIZKs and More 429

public/secret keys pk and sk. The GenBits and Verify algorithms just take crs as
input. We define all of the other properties analogously. In the publicly-verifiable
setting, we do not need to provide the verification oracle to the adversary in the
statistical binding security definition.

Definition 3.3 (Statistical Simulation for Malicious Keys). Let ΠHBG =
(Setup,KeyGen,GenBits,Verify) be a hidden-bits generator. We say that ΠHBG

satisfies statistical simulation for malicious keys if it satisfies the following sim-
ulation property (where the adversary chooses pk) in hiding mode:

– Statistical simulation for malicious keys: For all polynomials ρ = ρ(λ),
q = q(λ), and all unbounded adversaries A making up to q queries, there
exists an efficient simulator S = (S1,S2) such that

∣
∣ Pr[ExptHide∗[A,S, 0](1λ, 1ρ) = 1]

− Pr[ExptHide∗[A,S, 1](1λ, 1ρ) = 1]
∣
∣ = negl(λ),

where for a bit b ∈ {0, 1}, the hiding experiment ExptHide∗[A,S, b](1λ, 1ρ) is
defined to be ExptHide[A,S, b](1λ, 1ρ) with the following differences:

• Setup phase: If b = 0, the challenger samples crs ← Setup(1λ, 1ρ, hiding)
and gives crs to A. If b = 1, the challenger samples (stS , c̃rs) ← S1(1λ, 1ρ)
and gives c̃rs to A. The adversary then chooses a public key pk.

• Query phase: Same as in ExptHide[A,S, b], except when b = 1, the
challenger also provides the (adversarially-chosen) public key pk to the
simulator. In other words, when b = 1, the challenger’s reply to A is
computed as (σ̃, {π̃i}i∈I) ← S2(stS , pk, I, r̃I).

• Output phase: Same as in ExptHide[A,S, b].

3.1 Dual-Mode DV-NIZK from Dual-Mode HBG

In this section, we give our construction of a dual-mode designated-verifier NIZK
from a dual-mode designated-verifier HBG and a NIZK in the hidden-bits model.
Our generic construction is essentially the same as the corresponding construc-
tion from [QRW19]. We do rely on a different argument to show adaptive, multi-
theorem statistical zero-knowledge, and in particular, we appeal to the statistical
simulation property of our dual-mode HBG that we introduced in Definition 3.1.

Construction 3.4 (Dual-Mode DV-NIZK from Dual-Mode HBG). Let
L ⊆ {0, 1}n be an NP language with associated NP relation R. We rely on the
following building blocks:

– Let ΠHBM = (HBM.Prove,HBM.Verify) be a NIZK in the hidden-bits model
for L, and let ρ = ρ(λ) be the length of the hidden-bits string for ΠHBM.

– Let ΠHBG = (HBG.Setup,HBG.KeyGen,HBG.GenBits,HBG.Verify) be a
hidden-bits generator with commitments of length � = �(λ, ρ), where λ is
the security parameter and ρ is the output length of the generator.

430 B. Libert et al.

We construct a dual-mode DV-NIZK ΠdvNIZK = (Setup,KeyGen,Prove,Verify)
for L as follows:

– Setup(1λ,mode) → crs: On input λ and mode ∈ {binding, hiding}, sample
s

r← {0, 1}ρ. Then, run crsHBG ← HBG.Setup(1λ, 1ρ,mode), and output crs =
(λ, s, crsHBG).

– KeyGen(crs) → (pk, sk): On input crs = (λ, s, crsHBG), the key-generation algo-
rithm runs (pkHBG, skHBG) ← HBG.KeyGen(crsHBG) and outputs pk = pkHBG
and sk = skHBG.

– Prove(crs, pk, x, w) → π: On input crs = (λ, s, crsHBG), pk = pkHBG, x ∈
{0, 1}n, and w, compute (σ, r, {πHBG,i}i∈[ρ]) ← HBG.GenBits(crsHBG, pkHBG),
and an HBM proof (I, πHBM) ← HBM.Prove(1λ, r ⊕ s, x, w). Output π =
(σ, I, rI , {πHBG,i}i∈I , πHBM).

– Verify(crs, sk, x, π): On input crs = (λ, s, crsHBG), sk = skHBG, x ∈ {0, 1}n, and
the proof π = (σ, I, rI , {πHBG,i}i∈I , πHBM), output 1 if HBM.Verify(1λ, I, rI ⊕
sI , x, πHBM) = 1 and HBG.Verify(crsHBG, skHBG, σ, i, ri, πHBG,i) = 1 for all i ∈ I.
Otherwise, output 0.

Theorem 3.5 (Completeness). If ΠHBM is complete and ΠHBG is correct,
then ΠdvNIZK from Construction 3.4 is complete.

Proof. Take any mode ∈ {binding, hiding}, and sample crs ← Setup(1λ,mode),
(pk, sk) ← KeyGen(crs). Here, crs = (λ, s, crsHBG), pk = pkHBG, and sk = skHBG.
Take any statement (x,w) ∈ R, and let π ← Prove(crs, pk, x, w). Then π =
(σ, I, rI , {πHBG,i}i∈I , πHBM). Consider the behavior of Verify(crs, sk, x, π). By cor-
rectness of ΠHBG, HBG.Verify(crsHBG, skHBG, σ, i, ri, πHBG,i) = 1 for all i ∈ I.
By completeness of ΠHBM, HBM.Verify(1λ, I, rI ⊕ sI , x, w) = 1, and the verifier
accepts. ��

Theorem 3.6 (CRS Indistinguishability). If ΠHBG satisfies CRS indistin-
guishability, then ΠdvNIZK from Construction 3.4 satisfies CRS indistinguishabil-
ity.

Proof. The CRS in Construction 3.4 consists of a tuple (λ, s, crsHBG). In both
modes, the first two components are identically distributed, and crsHBG is com-
putationally indistinguishable by CRS indistinguishability of ΠHBG. ��

Theorem 3.7 (Statistical Soundness in Binding Mode). If ΠHBM is sta-
tistically sound with soundness error ε(λ), ΠHBG is statistically binding in bind-
ing mode, and 2� ·ε = negl(λ) then ΠdvNIZK from Construction 3.4 satisfies adap-
tive statistical soundness.

The proof of Theorem 3.7 is very similar to the corresponding proof of adaptive
statistical soundness from [QRW19]. We include it in the full version.

Theorem 3.8 (Statistical Zero-Knowledge in Hiding Mode). If ΠHBM

satisfies statistical (resp., perfect) zero-knowledge and ΠHBG provides statistical
(resp., perfect) simulation in hiding mode, then ΠdvNIZK from Construction 3.4
satisfies statistical (resp., perfect) zero-knowledge in hiding mode.

New Constructions of Statistical NIZKs: Dual-Mode DV-NIZKs and More 431

We give the proof of Theorem 3.8 in the full version.

Theorem 3.9 (Statistical Zero-Knowledge against Malicious Veri-
fiers). If ΠHBM satisfies statistical zero-knowledge and ΠHBG provides statistical
simulation for malicious keys, then Construction 3.4 is a MDV-NIZK. Namely,
Construction 3.4 satisfies statistical zero-knowledge against malicious verifiers in
hiding mode.

The proof of Theorem3.9 follows from a similar argument as Theorem3.8 and
is included in the full version.

4 Dual-Mode HBGs from the k-Lin Assumption

In this section, we show how to construct dual-mode hidden-bits generators from
the k-Lin assumption. We begin with a basic construction from the k-Lin assump-
tion (Sect. 4.1) and then show how to extend it to achieve public verifiability in
a pairing group (Sect. 4.2) as well as how to achieve security against malicious
verifiers in a pairing-free group (Sect. 4.3). In the full version, we also show how
to construct dual-mode HBGs from the QR and DCR assumptions.

4.1 Dual-Mode Hidden-Bits Generator from k-Lin

In this section, we show how to construct a dual-mode hidden-bits generator from
the k-linear (k-Lin) assumption [BBS04,HK07,Sha07,EHK+13] over pairing-free
groups for any k ≥ 1. We note that the 1-Lin assumption is precisely the deci-
sional Diffie-Hellman (DDH) assumption. We begin by recalling some basic nota-
tion.

Notation. Throughout this section, we will work with cyclic groups G of prime
order p. We will use multiplicative notation to denote the group operation. For
x ∈ Zp, we often refer to gx as an “encoding” of x. For a matrix A ∈ Z

n×m
p , we

write gA ∈ G
n×m to denote the matrix of group elements formed by taking the

element-wise encoding of each component of A.

Definition 4.1 (Prime-Order Group Generator). A prime-order group
generator algorithm GroupGen is an efficient algorithm that on input the secu-
rity parameter 1λ outputs a description G = (G, p, g) of a prime-order group
G with order p and generator g. Throughout this work, we will assume that
1/p = negl(λ).

Construction 4.2 (Dual-Mode Hidden-Bits Generator from k-Lin). Let
GroupGen be a prime-order group generator algorithm. We construct a dual-mode
hidden-bits generator (HBG) as follows:

– Setup(1λ, 1ρ,mode) → crs: First, the setup algorithm samples G = (G, p, g) ←
GroupGen(1λ) and a hash function H

r← H, where H is a family of hash
functions with domain G and range {0, 1}. Next, it samples V r← Z

(ρ+k)×k
p

and vectors w1, . . . ,wρ ∈ Z
ρ+k
p as follows:

432 B. Libert et al.

• If mode = hiding, sample wi
r← Z

ρ+k
p for all i ∈ [ρ].

• If mode = binding, sample si
r← Z

k
p and set wi ← Vsi for all i ∈ [ρ].

Output crs = (G,H, gV, gw1 , . . . , gwρ).
– KeyGen(crs) → (pk, sk): On input crs = (G,H, gV, gw1 , . . . , gwρ), the key-

generation algorithm samples a
r← Zp and b1, . . . ,bρ

r← Z
k
p. For each i ∈ [ρ],

it sets zi ← wia + Vbi ∈ Z
ρ+k
p . It outputs

pk = (gz1 , . . . , gzρ) and sk = (a,b1, . . . ,bρ).

– GenBits(crs, pk) → (σ, r, {πi}i∈[ρ]): On input crs = (G,H, gV, gw1 , . . . , gwρ)
and pk = (gz1 , . . . , gzρ), sample y r← Z

ρ+k
p and compute for each i ∈ [ρ],

gti ← gy
Twi and gui ← gy

Tzi .

Next, let σ = gy
TV. For each i ∈ [ρ], set ri ← H(gti) and πi ← (gti , gui), and

output σ, r, and {πi}i∈[ρ].
– Verify(crs, sk, σ, i, ri, πi): On input crs = (G,H, gV, gw1 , . . . , gwρ), the secret

key sk = (a,b1, . . . ,bρ), σ = gc
T

, i ∈ [ρ], ri ∈ {0, 1}, and πi = (gti , gui),
output 1 if gui = (gtia)(gc

Tbi) and ri = H(gti). Otherwise, output 0.

Correctness and Security Analysis. We now state the correctness and security
theorems for Construction 4.2 and give the proofs in the full version.

Theorem 4.3 (Correctness). Construction 4.2 is correct.

Theorem 4.4 (Succinctness). Construction 4.2 is succinct.

Theorem 4.5 (CRS Indistinguishability). Suppose the k-Lin assumption
holds for GroupGen. Then, Construction 3.4 satisfies CRS indistinguishability.

Theorem 4.6 (Statistical Binding in Binding Mode). Construction 4.2
satisfies statistical binding in binding mode.

Theorem 4.7 (Statistical Simulation in Hiding Mode). If H satisfies sta-
tistical uniformity, then Construction 4.2 satisfies statistical simulation in hiding
mode.

Remark 4.8 (Common Random String in Hiding Mode). Construction 4.2 has
the property that in hiding mode, the CRS is a collection of uniformly random
group elements; in other words, the CRS in hiding mode can be sampled as a
common random string. In conjunction with Construction 3.4, we obtain a statis-
tical NIZK argument in the common random string model (and a computational
NIZK proof in the common reference string model).

New Constructions of Statistical NIZKs: Dual-Mode DV-NIZKs and More 433

4.2 Publicly-Verifiable Hidden-Bit Generators from Pairings

In this section, we describe a variant of our dual-mode hidden-bits generator from
Sect. 4.1 to obtain a publicly-verifiable hidden-bits generator from pairings. Our
resulting construction does not give a dual-mode hidden-bits generator. Instead,
we obtain a standard HBG (where there is a single mode) that satisfies statistical
simulation and computational binding. Using an analog of Construction 3.4, this
suffices to construct a publicly-verifiable statistical NIZK argument. We refer
to the full version for the details. Below, we define the computational binding
property we use:

Definition 4.9 (Computational Binding). A publicly-verifiable hidden bits
generator ΠHBG = (Setup,GenBits,Verify) is computationally binding if the fol-
lowing property holds:

– Computational binding: There exists an efficient extractor E = (E1, E2),
where E2 is deterministic, and for all polynomials ρ = ρ(λ), the following two
properties hold:

• CRS indistinguishability: The following distributions are computa-
tionally indistinguishable:

{Setup(1λ, 1ρ)} c≈ {(stE , c̃rs) ← E1(1λ, 1ρ) : c̃rs}.

• Binding: For all efficient adversaries A, and sampling (stE , c̃rs) ←
E1(1λ, 1ρ) followed by (σ∗, i∗, r∗, π∗) ← A(1λ, 1ρ, c̃rs) and r ← E2(stE , σ∗),
we have that

Pr[ri∗
= r∗ ∧ Verify(c̃rs, σ∗, i∗, r∗, π∗) = 1] = negl(λ).

Pairing Groups. In this section, we work in (asymmetric) pairing groups. We
review the notion of a pairing below. We review the kernel k-linear (k-KerLin)
assumption from [MRV15,KW15] in the full version.

Definition 4.10 (Prime-Order Pairing-Group Generator). A prime-
order (asymmetric) pairing group generator algorithm PairingGroupGen is an
efficient algorithm that on input the security parameter 1λ outputs a descrip-
tion G = (G1,G2,GT , p, g1, g2, e) of two base groups G1 (generated by g1), G2

(generated by g2), and a target group GT , all of prime order p, together with an
efficiently-computable mapping e : G1×G2 → GT (called the “pairing”). Finally,
the mapping e is bilinear: for all x, y ∈ Zp, e(gx

1 , gy
2) = e(g1, g2)xy.

Notation. For a matrix A, we continue to write gA1 and gA2 to denote matrices
of group elements (over G1 and G2, respectively). In addition, if we have two
matrices A ∈ Z

m×� and B ∈ Z
�×n, we write e(gA1 , gB2) to denote the operation

that outputs e(g1, g2)AB ∈ G
m×n
T . In particular, the (i, j)th entry of e(gA1 , gB2)

is computed as
[
e(gA1 , gB2)

]
i,j

=
∏

k∈[�]

e(gai,k

1 , g
bk,j

2).

434 B. Libert et al.

Construction 4.11 (Publicly-Verifiable Hidden-Bits Generator from
Pairings). Let PairingGroupGen be a prime-order bilinear group generator algo-
rithm. We construct a publicly-verifiable hidden-bits generator (HBG) as follow:

– Setup(1λ, 1ρ) → crs: The setup algorithm starts by sampling

G = (G1,G2,GT , p, g1, g2, e) ← PairingGroupGen(1λ)

and a hash function H
r← H where H is a family of hash functions with

domain G1 and range {0, 1}. Next, it samples a matrix V r← Z
(ρ+k)×k
p , vectors

w1, . . . ,wk
r← Z

ρ+k
p , and verification components a r← Z

k+1
p , B1, . . . ,Bρ

r←
Z

k×(k+1)
p . In addition, it samples d r← Z

k
p, and constructs the matrix

D =

(
diag(d)

1T

)

∈ Z
(k+1)×k
p . (4.1)

It computes âT ← aTD ∈ Z
k
p, and for each i ∈ [ρ], it computes Zi ← wiaT +

VBi ∈ Z
(ρ+k)×(k+1)
p and B̂i ← BiD ∈ Z

k×k
p . It outputs

crs =
(
G,H, gV1 , gâ

T

2 , gD2 ,
{
gwi
1 , gZi

1 , gB̂i
2

}
i∈[ρ]

)
.

– GenBits(crs) → (σ, r, {πi}i∈[k]): On input

crs =
(
G,H, gV1 , gâ

T

2 , gD2 ,
{
gwi
1 , gZi

1 , gB̂i
2

}
i∈[ρ]

)
,

sample y r← Z
ρ+k
p , and compute for each i ∈ [ρ],

gti
1 ← gy

Twi

1 and g
uT

i
1 ← gy

TZi

1 .

Next, let σ = gy
TV

1 , and for each i ∈ [ρ], set ri ← H(gti
1) and πi = (gti

1 , g
uT

i
1).

Output σ, r, and {πi}i∈[ρ].

– Verify(crs, σ, i, ri, πi): On input crs =
(
G,H, gV1 , gâ

T

2 , gD2 ,
{
gwi
1 , gZi

1 , gB̂i
2

}
i∈[ρ]

)
,

σ = gc
T

1 , i ∈ [ρ], ri ∈ {0, 1}, and πi = (gti
1 , g

uT
i

1), output 1 if

e(gti
1 , gâ

T

2) · e(gc
T

1 , gB̂i
2) = e(gu

T
i

1 , gD2) (4.2)

and ri = H(gti
1). If either check fails, output 0.

Correctness and Security Analysis. We now state the correctness and security
theorems for Construction 4.11 and provide the proofs in the full version.

Theorem 4.12 (Correctness). Construction 4.11 is correct.

Theorem 4.13 (Succinctness). Construction 4.11 is succinct.

New Constructions of Statistical NIZKs: Dual-Mode DV-NIZKs and More 435

Theorem 4.14 (Computational Binding). Suppose PairingGroupGen out-
puts groups (G1,G2,GT) such that the k-Lin assumption holds in G1 and the
k-KerLin assumption holds in G2. Then, Construction 4.11 satisfies computa-
tional binding in binding mode.

Theorem 4.15 (Statistical Simulation). If H satisfies statistical unifor-
mity, then Construction 4.11 satisfies statistical simulation.

4.3 Dual-Mode HBG with Malicious Security from k-Lin

We now show how to modify the k-Lin construction from Sect. 4.1 (Construc-
tion 4.2) to obtain a hidden-bits generator with security against malicious veri-
fiers. Combined with Construction 3.4, this yields a dual-mode MDV-NIZK (The-
orem 3.9). We refer to Sect. 1.2 for a high-level description of our approach.

Construction 4.16 (Dual-Mode HBG with Malicious Security from
k-Lin). Let ρ be the output length of the hidden-bits generator. We require
the following primitives:

– Let GroupGen be a prime-order group generator algorithm.
– Let � = 3ρλ and define Tλ,� := {S ⊆ [�] : |S| = λ} to be the set of all subsets

of [�] that contains exactly λ elements. Let G : {0, 1}κ → T ρ
λ,� ×Z

ρ�
p be a PRG

with seed length κ = κ(λ). Here, p is the order of the group G output by
GroupGen (on input 1λ).

Constructing the PRG G. It is straightforward to construct a PRG with
outputs in T ρ

λ,� × Z
ρ�
p from a PRG with outputs in {0, 1}ρλ�(1+�log p�). To see

this, it suffices to give an efficient algorithm that maps from the uniform
distribution on {0, 1}λ�(1+�log p�) to a distribution that is statistically close to
uniform over Tλ,� × Z

�
p. Take a string γ ∈ {0, 1}λ�(1+�log p�).

• The first λ� bits of γ are interpreted as � blocks of λ-bit indices i1, . . . , i� ∈
{0, 1}λ. These indices specify the set S ⊆ Tλ,� as follows. First, take
S0 ← [�]. For each j ∈ [λ], take sj to be the (ij mod |Sj−1|)th element of
Sj−1 and define Sj ← Sj−1 \ {sj}. Define S ← {s1, . . . , s�} ∈ Tλ,�.

• The remaining λ� �log p� bits of γ are taken to be the binary representa-
tion of a vector α ∈ Z

�, where each component is a λ �log p�-bit integer.
The string γ ∈ {0, 1}λ�(1+�log p�) is mapped onto (S,α mod p) ∈ Tλ,� × Z

�
p.

By construction, this procedure maps from the uniform distribution over
{0, 1}λ�(1+�log p� to a distribution that is statistically uniform over Tλ,� × Z

�
p.

We construct the dual-mode designated-verifier hidden-bits generator with mali-
cious security as follows:

– Setup(1λ, 1ρ,mode) → crs: Let �′ = ρ�. Sample G = (G, p, g) ← GroupGen(1λ)
and H

r← H, where H is a family of hash functions with domain G and range
{0, 1}. Next, it samples V r← Z

(�′+k)×k
p and w1, . . . ,w�′ ∈ Z

�′+k
p as follows:

• If mode = hiding, sample wi
r← Z

�′+k
p for all i ∈ [�′].

436 B. Libert et al.

• If mode = binding, sample si
r← Z

k
p and set wi ← Vsi for all i ∈ [�′].

Output crs = (G,H, gV, gw1 , . . . , gw�′).
– KeyGen(crs) → (pk, sk): On input crs = (G,H, gV, gw1 , . . . , gw�′), sample a

r←
Zp and b1, . . . ,b�′

r← Z
k
p. For each i ∈ [�′], compute zi ← wia +Vbi ∈ Z

�′+k
p

and output

pk = (gz1 , . . . , gz�′) and sk = (a,b1, . . . ,b�′).

– GenBits(crs, pk) → (σ, r, {πi}i∈[ρ]): On input crs = (G,H, gV, gw1 , . . . , gw�′)
and pk = (gz1 , . . . , gz�′), sample y r← Z

�′+k
p and compute for each i ∈ [�′]

gti ← gy
Twi and gui ← gy

Tzi .

Next, sample a PRG seed s
r← {0, 1}κ and compute (Ŝ1, . . . , Ŝρ,α) ← G(s)

where Ŝi ∈ Tλ,� for all i ∈ [ρ] and α ∈ Z
ρ�
p . Compute the shifted sets Si ←

{j + � · (i − 1) | j ∈ Ŝi} for each i ∈ [ρ]. Finally, compute

ri ← H

⎛

⎝
∏

j∈Si

gαjtj

⎞

⎠ and πi ← {(j, gtj , guj)}j∈Si
.

Output σ = (s, gy
TV), r, and {πi}i∈[ρ].

– Verify(crs, sk, σ, i, ri, πi): On input crs = (G,H, gV, gw1 , . . . , gw�′), the secret
key sk = (a,b1, . . . ,b�′), σ = (s, gc

T

), i ∈ [ρ], ri ∈ {0, 1}, and πi =
{(j, gtj , guj)}j∈S for an implicitly-defined set S ⊆ [ρ�], the verification algo-
rithm performs the following checks:

• Compute (Ŝ1, . . . , Ŝρ,α) ← G(s) and the shifted set Si ← {j + � · (i− 1) |
j ∈ Ŝi}. It checks that S = Si and outputs 0 if not.

• It checks that guj = (gtja)(gc
Tbj) for all j ∈ S, and outputs 0 if not.

• It checks that ri = H
(∏

j∈S gαjtj
)

and outputs 0 if not.
If all checks pass, the verification algorithm outputs 1.

Correctness and Security Analysis. We now state the correctness and security
theorems for Construction 4.16 and provide the proofs in the full version.

Theorem 4.17 (Correctness). Construction 4.16 is correct.

Theorem 4.18 (Succinctness). Construction 4.16 is succinct.

Theorem 4.19 (CRS Indistinguishability). Suppose the k-Lin assumption
holds for GroupGen. Then, Construction 4.16 satisfies CRS indistinguishability.

Theorem 4.20 (Statistical Binding in Binding Mode). Construction 4.16
satisfies statistical binding in binding mode.

Theorem 4.21 (Statistical Simulation in Hiding Mode), If G is a secure
PRG and H satisfies statistical uniformity, then Construction 4.16 satisfies sta-
tistical simulation in hiding mode against malicious verifiers.

New Constructions of Statistical NIZKs: Dual-Mode DV-NIZKs and More 437

5 Instantiations and Extensions

In this section, we provide the main implications of our framework for construct-
ing statistical (and more generally, dual-mode) NIZKs. In the full version, we
describe two simple extensions to augment our NIZKs with additional properties.

Dual-Mode MDV-NIZKs. By instantiating Construction 3.4 with a dual-mode
malicious designated-verifier hidden-bits generator, we obtain a dual-mode
MDV-NIZK (Theorems 3.5, 3.7 and 3.9).

Corollary 5.1 (Dual-Mode MDV-NIZK from k-Lin). Under the k-Lin
assumption over pairing-free groups (for any k ≥ 1), there exists a statistical
MDV-NIZK argument (with non-adaptive soundness) in the common random
string model, and a computational MDV-NIZK proof (with adaptive soundness)
for NP in the common reference string model.

Corollary 5.2 (Dual-Mode MDV-NIZK from QR or DCR). Under the
QR or DCR assumptions, there exists a statistical MDV-NIZK argument (with
non-adaptive soundness) and a computational MDV-NIZK proof (with adaptive
soundness) for NP in the common reference string model.

Publicly-Verifiable Statistical NIZK Arguments. In the full version, we show
how to obtain a publicly-verifiable statistical NIZK argument in the common
reference string model using Construction 4.11:

Corollary 5.3 (Publicly-Verifiable Statistical NIZK Argument from
Pairings). Suppose that the k-Lin assumption holds in G1 and the k-KerLin
assumption holds in G2 (for any k ≥ 1) over a pairing group. Then, there exists
a publicly-verifiable statistical NIZK argument for NP (with non-adaptive sound-
ness) in the common reference string model.

Acknowledgments. We thanks the anonymous Eurocrypt reviewers for helpful feed-
back on this work.

References

[AF07] Abe, M., Fehr, S.: Perfect NIZK with adaptive soundness. In: Vadhan,
S.P. (ed.) TCC 2007. LNCS, vol. 4392, pp. 118–136. Springer, Heidelberg
(2007). https://doi.org/10.1007/978-3-540-70936-7 7

[BB04] Boneh, D., Boyen, X.: Efficient selective-ID secure identity-based encryp-
tion without random oracles. In: Cachin, C., Camenisch, J.L. (eds.)
EUROCRYPT 2004. LNCS, vol. 3027, pp. 223–238. Springer, Heidelberg
(2004). https://doi.org/10.1007/978-3-540-24676-3 14

[BBS04] Boneh, D., Boyen, X., Shacham, H.: Short group signatures. In: Franklin,
M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 41–55. Springer, Heidelberg
(2004). https://doi.org/10.1007/978-3-540-28628-8 3

https://doi.org/10.1007/978-3-540-70936-7_7
https://doi.org/10.1007/978-3-540-24676-3_14
https://doi.org/10.1007/978-3-540-28628-8_3

438 B. Libert et al.

[BCG+19] Boyle, E., Couteau, G., Gilboa, N., Ishai, Y., Kohl, L., Scholl, P.: Efficient
pseudorandom correlation generators: silent OT extension and more. In:
Boldyreva, A., Micciancio, D. (eds.) CRYPTO 2019. LNCS, vol. 11694,
pp. 489–518. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-
26954-8 16

[BCGI18] Boyle, E., Couteau, G., Gilboa, N., Ishai, Y.: Compressing vector OLE.
In: ACM CCS (2018)

[BFM88] Blum, M., Feldman, P., Micali, S.: Non-interactive zero-knowledge and its
applications (extended abstract). In: STOC (1988)

[BG10] Brakerski, Z., Goldwasser, S.: Circular and leakage resilient public-key
encryption under subgroup indistinguishability (or: quadratic residuos-
ity strikes back). In: Rabin, T. (ed.) CRYPTO 2010. LNCS, vol. 6223,
pp. 1–20. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-
642-14623-7 1

[Blu86] Blum, M.: How to prove a theorem so no one else can claim it. In: Pro-
ceedings of the International Congress of Mathematicians, vol. 1 (1986)

[BY92] Bellare, M., Yung, M.: Certifying cryptographic tools: the case of trapdoor
permutations. In: Brickell, E.F. (ed.) CRYPTO 1992. LNCS, vol. 740,
pp. 442–460. Springer, Heidelberg (1993). https://doi.org/10.1007/3-540-
48071-4 31

[CCH+19] Canetti, R., et al.: Fiat-Shamir: from practice to theory. In: STOC (2019)
[CDI+19] Chase, M., et al.: Reusable non-interactive secure computation. In:

Boldyreva, A., Micciancio, D. (eds.) CRYPTO 2019. LNCS, vol. 11694,
pp. 462–488. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-
26954-8 15

[CH19] Couteau, G., Hofheinz, D.: Designated-verifier pseudorandom generators,
and their applications. In: Ishai, Y., Rijmen, V. (eds.) EUROCRYPT
2019. LNCS, vol. 11477, pp. 562–592. Springer, Cham (2019). https://
doi.org/10.1007/978-3-030-17656-3 20

[CHK03] Canetti, R., Halevi, S., Katz, J.: A forward-secure public-key encryp-
tion scheme. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656,
pp. 255–271. Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-
39200-9 16

[CKS08] Cash, D., Kiltz, E., Shoup, V.: The twin Diffie-Hellman problem and
applications. In: Smart, N. (ed.) EUROCRYPT 2008. LNCS, vol. 4965,
pp. 127–145. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-
540-78967-3 8

[CL18] Canetti, R., Lichtenberg, A.: Certifying trapdoor permutations, revisited.
In: Beimel, A., Dziembowski, S. (eds.) TCC 2018. LNCS, vol. 11239,
pp. 476–506. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-
03807-6 18

[CS98] Cramer, R., Shoup, V.: A practical public key cryptosystem provably
secure against adaptive chosen ciphertext attack. In: Krawczyk, H. (ed.)
CRYPTO 1998. LNCS, vol. 1462, pp. 13–25. Springer, Heidelberg (1998).
https://doi.org/10.1007/BFb0055717

[CS02] Cramer, R., Shoup, V.: Universal hash proofs and a paradigm for adaptive
chosen ciphertext secure public-key encryption. In: Knudsen, L.R. (ed.)
EUROCRYPT 2002. LNCS, vol. 2332, pp. 45–64. Springer, Heidelberg
(2002). https://doi.org/10.1007/3-540-46035-7 4

https://doi.org/10.1007/978-3-030-26954-8_16
https://doi.org/10.1007/978-3-030-26954-8_16
https://doi.org/10.1007/978-3-642-14623-7_1
https://doi.org/10.1007/978-3-642-14623-7_1
https://doi.org/10.1007/3-540-48071-4_31
https://doi.org/10.1007/3-540-48071-4_31
https://doi.org/10.1007/978-3-030-26954-8_15
https://doi.org/10.1007/978-3-030-26954-8_15
https://doi.org/10.1007/978-3-030-17656-3_20
https://doi.org/10.1007/978-3-030-17656-3_20
https://doi.org/10.1007/3-540-39200-9_16
https://doi.org/10.1007/3-540-39200-9_16
https://doi.org/10.1007/978-3-540-78967-3_8
https://doi.org/10.1007/978-3-540-78967-3_8
https://doi.org/10.1007/978-3-030-03807-6_18
https://doi.org/10.1007/978-3-030-03807-6_18
https://doi.org/10.1007/BFb0055717
https://doi.org/10.1007/3-540-46035-7_4

New Constructions of Statistical NIZKs: Dual-Mode DV-NIZKs and More 439

[DDO+01] De Santis, A., Di Crescenzo, G., Ostrovsky, R., Persiano, G., Sahai, A.:
Robust non-interactive zero knowledge. In: Kilian, J. (ed.) CRYPTO 2001.
LNCS, vol. 2139, pp. 566–598. Springer, Heidelberg (2001). https://doi.
org/10.1007/3-540-44647-8 33

[DFN06] Damg̊ard, I., Fazio, N., Nicolosi, A.: Non-interactive zero-knowledge from
homomorphic encryption. In: Halevi, S., Rabin, T. (eds.) TCC 2006.
LNCS, vol. 3876, pp. 41–59. Springer, Heidelberg (2006). https://doi.org/
10.1007/11681878 3

[DGI+19] Döttling, N., Garg, S., Ishai, Y., Malavolta, G., Mour, T., Ostrovsky, R.:
Trapdoor hash functions and their applications. In: Boldyreva, A., Mic-
ciancio, D. (eds.) CRYPTO 2019. LNCS, vol. 11694, pp. 3–32. Springer,
Cham (2019). https://doi.org/10.1007/978-3-030-26954-8 1

[DMP87] De Santis, A., Micali, S., Persiano, G.: Non-interactive zero-knowledge
proof systems. In: Pomerance, C. (ed.) CRYPTO 1987. LNCS, vol. 293,
pp. 52–72. Springer, Heidelberg (1988). https://doi.org/10.1007/3-540-
48184-2 5

[EHK+13] Escala, A., Herold, G., Kiltz, E., Ràfols, C., Villar, J.: An algebraic
framework for Diffie-Hellman assumptions. In: Canetti, R., Garay, J.A.
(eds.) CRYPTO 2013. LNCS, vol. 8043, pp. 129–147. Springer, Heidel-
berg (2013). https://doi.org/10.1007/978-3-642-40084-1 8

[FLS90] Feige, U., Lapidot, D., Shamir, A.: Multiple non-interactive zero knowl-
edge proofs based on a single random string (extended abstract). In: FOCS
(1990)

[FLS99] Feige, U., Lapidot, D., Shamir, A.: Multiple non-interactive zero knowl-
edge proofs under general assumptions. SIAM J. Comput. 29(1), 1–28
(1999)

[FS86] Fiat, A., Shamir, A.: How to prove yourself: practical solutions to identi-
fication and signature problems. In: Odlyzko, A.M. (ed.) CRYPTO 1986.
LNCS, vol. 263, pp. 186–194. Springer, Heidelberg (1987). https://doi.
org/10.1007/3-540-47721-7 12

[GM82] Goldwasser, S., Micali, S.: Probabilistic encryption and how to play men-
tal poker keeping secret all partial information. In: STOC (1982)

[GMR89] Goldwasser, S., Micali, S., Rackoff, C.: The knowledge complexity of inter-
active proof systems. SIAM J. Comput. 18(1), 186–208 (1989)

[Gol11] Goldreich, O.: Basing non-interactive zero-knowledge on (enhanced) trap-
door permutations: the state of the art. In: Goldreich, O. (ed.) Studies
in Complexity and Cryptography. Miscellanea on the Interplay between
Randomness and Computation. LNCS, vol. 6650, pp. 406–421. Springer,
Heidelberg (2011). https://doi.org/10.1007/978-3-642-22670-0 28

[GOS06] Groth, J., Ostrovsky, R., Sahai, A.: Perfect non-interactive zero knowl-
edge for NP. In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol.
4004, pp. 339–358. Springer, Heidelberg (2006). https://doi.org/10.1007/
11761679 21

[GOS12] Groth, J., Ostrovsky, R., Sahai, A.: New techniques for noninteractive
zero-knowledge. J. ACM 59(3), 1–35 (2012)

[GR13] Goldreich, O., Rothblum, R.D.: Enhancements of trapdoor permutations.
J. Cryptol. 26(3), 484–512 (2013)

[Gro10] Groth, J.: Short non-interactive zero-knowledge proofs. In: Abe, M. (ed.)
ASIACRYPT 2010. LNCS, vol. 6477, pp. 341–358. Springer, Heidelberg
(2010). https://doi.org/10.1007/978-3-642-17373-8 20

https://doi.org/10.1007/3-540-44647-8_33
https://doi.org/10.1007/3-540-44647-8_33
https://doi.org/10.1007/11681878_3
https://doi.org/10.1007/11681878_3
https://doi.org/10.1007/978-3-030-26954-8_1
https://doi.org/10.1007/3-540-48184-2_5
https://doi.org/10.1007/3-540-48184-2_5
https://doi.org/10.1007/978-3-642-40084-1_8
https://doi.org/10.1007/3-540-47721-7_12
https://doi.org/10.1007/3-540-47721-7_12
https://doi.org/10.1007/978-3-642-22670-0_28
https://doi.org/10.1007/11761679_21
https://doi.org/10.1007/11761679_21
https://doi.org/10.1007/978-3-642-17373-8_20

440 B. Libert et al.

[HILL99] H̊astad, J., Impagliazzo, R., Levin, L.A., Luby, M.: A pseudorandom gen-
erator from any one-way function. SIAM J. Comput. 28(4), 1364–1396
(1999)

[HJO+16] Hemenway, B., Jafargholi, Z., Ostrovsky, R., Scafuro, A., Wichs, D.: Adap-
tively secure garbled circuits from one-way functions. In: Robshaw, M.,
Katz, J. (eds.) CRYPTO 2016. LNCS, vol. 9816, pp. 149–178. Springer,
Heidelberg (2016). https://doi.org/10.1007/978-3-662-53015-3 6

[HJR16] Hofheinz, D., Jager, T., Rupp, A.: Public-key encryption with simulation-
based selective-opening security and compact ciphertexts. In: Hirt, M.,
Smith, A. (eds.) TCC 2016. LNCS, vol. 9986, pp. 146–168. Springer, Hei-
delberg (2016). https://doi.org/10.1007/978-3-662-53644-5 6

[HK07] Hofheinz, D., Kiltz, E.: Secure hybrid encryption from weakened key
encapsulation. In: Menezes, A. (ed.) CRYPTO 2007. LNCS, vol. 4622,
pp. 553–571. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-
540-74143-5 31

[HU19] Hofheinz, D., Ursu, B.: Dual-mode NIZKs from obfuscation. In: Galbraith,
S.D., Moriai, S. (eds.) ASIACRYPT 2019. LNCS, vol. 11921, pp. 311–341.
Springer, Cham (2019). https://doi.org/10.1007/978-3-030-34578-5 12

[KNYY19a] Katsumata, S., Nishimaki, R., Yamada, S., Yamakawa, T.: Designated ver-
ifier/prover and preprocessing NIZKs from Diffie-Hellman assumptions.
In: Ishai, Y., Rijmen, V. (eds.) EUROCRYPT 2019. LNCS, vol. 11477,
pp. 622–651. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-
17656-3 22

[KNYY19b] Katsumata, S., Nishimaki, R., Yamada, S., Yamakawa, T.: Exploring con-
structions of compact NIZKs from various assumptions. In: Boldyreva,
A., Micciancio, D. (eds.) CRYPTO 2019. LNCS, vol. 11694, pp. 639–669.
Springer, Cham (2019). https://doi.org/10.1007/978-3-030-26954-8 21

[KW15] Kiltz, E., Wee, H.: Quasi-adaptive NIZK for linear subspaces revisited.
In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015. LNCS, vol. 9057,
pp. 101–128. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-
662-46803-6 4

[KW18] Kim, S., Wu, D.J.: Multi-theorem preprocessing NIZKs from lattices. In:
Shacham, H., Boldyreva, A. (eds.) CRYPTO 2018. LNCS, vol. 10992,
pp. 733–765. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-
96881-0 25

[LQR+19] Lombardi, A., Quach, W., Rothblum, R.D., Wichs, D., Wu, D.J.: New
constructions of reusable designated-verifier NIZKs. In: Boldyreva, A.,
Micciancio, D. (eds.) CRYPTO 2019. LNCS, vol. 11694, pp. 670–700.
Springer, Cham (2019). https://doi.org/10.1007/978-3-030-26954-8 22

[MRV15] Morillo, P., Ràfols, C., Villar, J.L.: Matrix computational assumptions in
multilinear groups. IACR Cryptology ePrint Archive (2015)

[Pai99] Paillier, P.: Public-key cryptosystems based on composite degree resid-
uosity classes. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592,
pp. 223–238. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-
48910-X 16

[PS19] Peikert, C., Shiehian, S.: Noninteractive zero knowledge for NP from
(plain) learning with errors. In: Boldyreva, A., Micciancio, D. (eds.)
CRYPTO 2019. LNCS, vol. 11692, pp. 89–114. Springer, Cham (2019).
https://doi.org/10.1007/978-3-030-26948-7 4

https://doi.org/10.1007/978-3-662-53015-3_6
https://doi.org/10.1007/978-3-662-53644-5_6
https://doi.org/10.1007/978-3-540-74143-5_31
https://doi.org/10.1007/978-3-540-74143-5_31
https://doi.org/10.1007/978-3-030-34578-5_12
https://doi.org/10.1007/978-3-030-17656-3_22
https://doi.org/10.1007/978-3-030-17656-3_22
https://doi.org/10.1007/978-3-030-26954-8_21
https://doi.org/10.1007/978-3-662-46803-6_4
https://doi.org/10.1007/978-3-662-46803-6_4
https://doi.org/10.1007/978-3-319-96881-0_25
https://doi.org/10.1007/978-3-319-96881-0_25
https://doi.org/10.1007/978-3-030-26954-8_22
https://doi.org/10.1007/3-540-48910-X_16
https://doi.org/10.1007/3-540-48910-X_16
https://doi.org/10.1007/978-3-030-26948-7_4

New Constructions of Statistical NIZKs: Dual-Mode DV-NIZKs and More 441

[PsV06] Pass, R., Shelat, A., Vaikuntanathan, V.: Construction of a non-malleable
encryption scheme from any semantically secure one. In: Dwork, C. (ed.)
CRYPTO 2006. LNCS, vol. 4117, pp. 271–289. Springer, Heidelberg
(2006). https://doi.org/10.1007/11818175 16

[QRW19] Quach, W., Rothblum, R.D., Wichs, D.: Reusable designated-verifier
NIZKs for all NP from CDH. In: Ishai, Y., Rijmen, V. (eds.) EURO-
CRYPT 2019. LNCS, vol. 11477, pp. 593–621. Springer, Cham (2019).
https://doi.org/10.1007/978-3-030-17656-3 21

[Sha07] Shacham, H.: A Cramer-Shoup encryption scheme from the linear assump-
tion and from progressively weaker linear variants. IACR Cryptology
ePrint Archive (2007)

[SW14] Sahai, A., Waters, B.: How to use indistinguishability obfuscation: deni-
able encryption, and more. In: STOC (2014)

https://doi.org/10.1007/11818175_16
https://doi.org/10.1007/978-3-030-17656-3_21

Non-interactive Zero-Knowledge
in Pairing-Free Groups from Weaker

Assumptions

Geoffroy Couteau1(B), Shuichi Katsumata2, and Bogdan Ursu3

1 CNRS, IRIF, Université de Paris, Paris, France
geoffroy.couteau@irif.fr

2 AIST, Tokyo, Japan
shuichi.katsumata@aist.go.jp

3 ETH Zürich, Zürich, Switzerland
bogdan.ursu@inf.ethz.ch

Abstract. We provide new constructions of non-interactive zero-
knowledge arguments (NIZKs) for NP from discrete-logarithm-style
assumptions over cyclic groups, without relying on pairings. A previous
construction from (Canetti et al., Eurocrypt’18) achieves such NIZKs
under the assumption that no efficient adversary can break the key-
dependent message (KDM) security of (additive) ElGamal with respect
to all (even inefficient) functions over groups of size 2λ, with probabil-
ity better than poly(λ)/2λ. This is an extremely strong, non-falsifiable
assumption. In particular, even mild (polynomial) improvements over
the current best known attacks on the discrete logarithm problem would
already contradict this assumption. (Canetti et al. STOC’19) describe
how to improve the assumption to rely only on KDM security with
respect to all efficient functions, therefore obtaining an assumption that
is (in spirit) falsifiable.

Our first construction improves this state of affairs. We provide a
construction of NIZKs for NP under the CDH assumption together with
the assumption that no efficient adversary can break the key-dependent
message one-wayness of ElGamal with respect to efficient functions over
groups of size 2λ, with probability better than poly(λ)/2cλ (denoted 2−cλ-
OW-KDM), for a constant c = 3/4. Unlike the previous assumption, our
assumption leaves an exponential gap between the best known attack
and the required security guarantee.

We also analyse whether we could build NIZKs when CDH does not
hold. As a second contribution, we construct an infinitely often NIZK
argument system for NP (where soundness and zero-knowledge are only
guaranteed to hold for infinitely many security parameters), under the
2−cλ-OW-KDM security of ElGamal with c = 28/29+o(1), together with
the existence of low-depth pseudorandom generators.

Keywords: Non-interactive zero-knowledge arguments · Pairing-free
groups · KDM security

c© International Association for Cryptologic Research 2020
A. Canteaut and Y. Ishai (Eds.): EUROCRYPT 2020, LNCS 12107, pp. 442–471, 2020.
https://doi.org/10.1007/978-3-030-45727-3_15

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-45727-3_15&domain=pdf
https://doi.org/10.1007/978-3-030-45727-3_15

NIZK in Pairing-Free Groups from Weaker Assumptions 443

1 Introduction

Zero-knowledge proof systems, introduced in [21], are a fundamental crypto-
graphic primitive, allowing a prover to convince a verifier of the veracity of a
statement, while not divulging anything beyond whether the statement is true.
When the proof consists of a single message from prover to the verifier, this
results in a non-interactive zero-knowledge proof system (NIZK) [5]. Due to their
large number of applications in cryptography, NIZKs enjoy particular interest,
ranging from efficient implementations to feasibility results.

On Building NIZKs from Concrete Assumptions. While one-way func-
tions are known to be necessary [36] and sufficient [20] for zero-knowledge proof
systems, the exact relation of NIZKs to other cryptographic assumptions and
primitives is considerably less clear. NIZKs are known to exist in the plain model
only for trivial languages [35]. To circumvent this issue, cryptographers design
NIZKs in the common reference string (CRS) model, where a common reference
string is honestly generated beforehand in a setup phase and is given to both
prover and verifier. A large body of work has been dedicated to the construc-
tion of NIZKs in the CRS model from various cryptographic assumptions. As a
result, NIZKs are known to exist from a wide range of assumptions, from pairing
groups [22,23], factorization assumptions [5,13], and indistinguishability obfus-
cation [40], to circularly-secure LWE [6] and plain LWE [37]. Yet, in spite of
three decades of efforts, it remains an intriguing open question whether one can
construct NIZKs from discrete-logarithm-style assumptions (without relying on
pairing groups), which are among the most well-established assumptions in cryp-
tography. Here, the only known result is the recent work of [7], which constructs
NIZKs under the exponential key-dependent message security of ElGamal with
respect to all (even inefficient) functions. While this is a remarkable stepping
stone, it remains an extremely strong and non-standard assumption. Therefore,
an important question remains open:

“Is it possible to build NIZKs from (weaker) discrete-logarithm-style
assumptions?”

NIZKs from Correlation Intractability. Our work follows the blueprint
of a recent line of research, which seeks to compile interactive protocols into
NIZKs using the Fiat-Shamir paradigm [15], by instantiating the underlying hash
function by a correlation-intractable hash function. Informally, a correlation-
intractable hash function (CIH) with respect to a relation R is a hash function
such that it is infeasible to find an input x satisfying (x,H(x)) ∈ R. CIH have
been introduced in [8], where it was also shown that correlation-intractability
for all sparse relations suffices to instantiate the Fiat-Shamir paradigm. Despite
some impossibility results [4], a recent line of work has shown how to construct
CIH for various sparse relations of interest [6,7,24,25,37], obtaining NIZKs from
new assumptions. Out of these works, [7] relies on the exponential key-dependent
messages (KDM) security for all (even inefficient) functions of an encryption
scheme with universal ciphertexts, which can be instantiated over pairing-free
groups with a suitable variant of ElGamal; unfortunately, this is an extremely

444 G. Couteau et al.

strong assumption, which has several undesirable features. In this paper, we seek
to improve the result of [7] and to construct NIZKs for NP from weaker assump-
tions over pairing-free groups.

On the Strong-KDM Security Assumption of [7]. The construction of [7]
relies on the following assumption over cyclic groups: let G be a group of order
p ≈ 2λ with a generator g. Then, for any probabilistic polynomial time adversary
A, any (possibly inefficient) function f : Zp �→ Zp, and any superpolynomial
function s, it holds that

Pr
[
(a, k) ←r Z

2
p : A

(
ga, gak+f(k)

)
= k

]
≤ s(λ)

2λ
.

While this assumption is not contradicted by known attacks on the discrete log-
arithm over suitably chosen elliptic curves, it is an extremely strong assumption,
with several undesirable features:

– Optimality. Optimal security means that every PPT adversary has advan-
tage at most λO(1)/2λ.1 The above assumption requires optimal security,
which is equivalent to assuming that no improvement (by more than poly-
nomial factors) to the best known existing attack will ever be found. Hence,
even mild cryptanalytic improvements would already contradict the above
assumption.

– Non-falsifiablity. The above assumption is not falsifiable, in the sense
of [17,33], since it might not be possible to efficiently check whether an adver-
sary breaks the assumption with respect to some specific inefficient function.
However, [6] notes that it is possible to construct NIZKs even when the func-
tions f considered in the assumption are efficient.

Insecurity with Auxiliary Inputs. In the same spirit as knowledge of expo-
nent assumptions, which are known to become insecure (under obfuscation-style
assumptions) when auxiliary inputs are allowed, unfalsifiable flavors of KDM
security have been recently shown to be insecure as soon as auxiliary inputs
are allowed, assuming that LWE is hard and one-way permutations exist [16].
While this does not directly contradict the unfalsifiable flavour of the assump-
tion above, it makes it very sensitive to any side information an adversary might
have access to when it is used in a higher-level application.

1.1 Our Contribution

We propose new constructions of NIZKs, improving over the NIZK of [7] in terms
of the underlying assumption. As noted in [6], the assumption in [7] can be
1 In the case of DDH groups, the best known generic PPT adversary is Pollard’s rho

algorithm [38], which runs in time O(2λ/2) and has constant success probability.
However, restricted to polynomial time, it only provides a polynomial advantage
over randomly guessing the discrete logarithm. Moreover, it is known [41] that no
generic algorithm with T oracle queries can have better success probability than

O
(

T2

2λ

)
.

NIZK in Pairing-Free Groups from Weaker Assumptions 445

improved to consider only efficient functions and thus construct NIZKs based on
a falsifiable-style notion of KDM-security2. In this work, we remove the need of
relying on optimal security of the underlying assumption, while maintaining the
falsifiable flavor of KDM security.

We note that our second construction satisfies a weaker notion of security,
infinitely-often security, where soundness and zero-knowledge are only required
to hold for infinitely many security parameters. For a discussion on the notion
of infinitely-often security and its usage in cryptography, please refer to the full
version of the paper.

In more detail, the assumption at the core of our new construction is a
strong flavor of the OW-KDM security of ElGamal: given a group G of size ≈ 2λ

with generator g, the 2−cλ-OW-KDM assumption states that for a family of
(randomized) efficient functions F , any PPT adversary receiving an ElGamal
ciphertext encrypting F (k) (in the exponent) with the key k is unable to recover
the plaintext with advantage greater than s(λ)/2cλ, for any superpolynomial
function s:

Pr
(k,a)←rZ

2
q

m←rF (k)

[A(ga, gak+m) = m] ≤ s(λ)/2cλ for some c ∈ [0, 1].

The value c determines the strength of the assumption: c = 1 corresponds to
assuming optimal security (as in [7]), while smaller values of c leave a gap between
the success probability of the best known attacks and the success probability that
can be tolerated by the assumption. In particular, a constant c < 1 indicates
that the assumption can stand even exponential improvements in the success
probability of the best known attacks.

1. Assuming the hardness of CDH and the 2−cλ-OW-KDM security of ElGamal
with c = 3/4, we propose an adaptively-sound multi-theorem NIZK for all
of NP. Both soundness and zero knowledge are computational, the first is
implied by OW-KDM, while the second is implied by CDH.

2. Our second construction aims at analysing the complementary landscape.
More precisely, we investigate the possibility of building NIZKs in groups
where CDH does not hold, building upon the fact that this implies (using
known results) the existence of a self-bilinear map. We leverage this self-
bilinear map to obtain an adaptively-sound, adaptively multi-theorem zero-
knowledge (infinitely often) NIZK for all of NP, under the 2−cλ-OW-KDM
security of ElGamal with c = 28/29 + o(1), together with the assumption
that Goldreich’s PRG [18] instantiated under the Lombardi-Vaikuntanathan
predicate [29] is secure up to some (arbitrarily small) polynomial stretch.3

Combining this result with our first construction, we obtain a construction of
(infinitely-often) NIZKs for NP under the same assumptions, independently
of whether CDH holds.

2 More precisely, these assumptions are falsifiable in spirit in the sense that they can
be modeled as an efficient game with a challenger, but the winning condition can
occur with exponentially small probability.

3 The security of Goldreich’s PRG is a well-established and widely studied assumption,
which provably resists large classes of attacks [2,3,10,32,34].

446 G. Couteau et al.

In both constructions, an important effort is devoted to obtaining the smallest
possible constant c, to minimize the strength of the underlying assumption.
We view it as an interesting open problem to further minimize the value of c,
especially in our second construction.

1.2 Our Techniques – First Construction

Both our constructions follow a similar footprint: we start from a Σ-protocol
for a carefully chosen, but limited language. We compile this Σ-protocol using
a correlation-intractable (CI) hash function into a NIZK for the same limited
language. Then we use different techniques to bootstrap this restricted NIZK to
NIZK for all of NP, by using them to build a verifiable pseudorandom gener-
ator (VPRG) [11,26,39], which in turns leads to NIZKs for NP. Our approach
is inspired by [7], their strategy is to design a correlation-intractable (CI) hash
function based on a scheme with universal ciphertexts, which they use to trans-
form an underlying sigma protocol into a NIZK. In their case, the interactive
protocol is the one in [14, Section 2.1]. We diverge from this approach by apply-
ing the CI hash function to a sigma protocol for a more restricted, but still
expressive enough language (which we bootstrap later to a fully-fledged NIZK
through VPRGs). Looking ahead, the parameters of the KDM security assump-
tion are intrinsically tied to the ratio between the size of the first flow of the sigma
protocol and its adaptive soundness. By allowing the underlying sigma protocol
to support only a more restricted language, we expand the field of potential
candidates and eventually identify a protocol with a better first flow/soundness
ratio. Our initial attempt is to start with the standard Σ-protocol for the Diffie-
Hellman relation LDH, described in Fig. 1. Choose a cyclic group G of prime
order p, along with two generators g and h. The relation consists of all pairs
of group elements of the form (gx, hx). To transform the sigma protocol into a
NIZK for LDH, the idea of the CI framework is to apply the Fiat-Shamir trans-
form, but instead of using random oracles, the random oracle is replaced with a
CI hash function.

Prover Verifier
r ←r Zp and

set (R,S) = (gr, hr) e ←r Zp

d = e · x+ r Check gd = Xe · R
and hd = Y e · S

(R,S)

e

d

Fig. 1. Σ-protocol for the Diffie-Hellman language for the word (g, h, X = gx, Y = gy).
This is a variant of a protocol from [1]

CI Hash Functions. A CI hash function H for a specific relation R is a function
for which it is hard to find an input α, such that (α,H(α)) ∈ R. Consider the
case where the initial relation is sparse, meaning that for every α, the number of

NIZK in Pairing-Free Groups from Weaker Assumptions 447

potential β’s satisfying (α, β) ∈ R is negligible. Then, the sigma protocol can be
transformed into a NIZK by asking the prover to generate the second flow himself,
by running e = H(R,S). The verifier will only accept if the resulting transcript
is accepting and also e = H(R,S). From the correlation intractability of H, even
a malicious prover will be unable to cheat by finding a properly chosen initial
flow (R,S), such that ((R,S),H(R,S)) ∈ R (this also holds because the sparsity
of the relation R is bounded by the soundness error of the sigma protocol, which
is negligible).

Choice of H. To construct the hash, we choose a function closely related to
the one used in [7], where H(x,K) interprets the input x as a decryption key,
and the key K as a ciphertext, end returns Decx(K). For our instantiation, we
crucially rely on a specific property of the additive variant of ElGamal (which
is, informally, that keys and plaintexts are “interchangeable”). Since additive
ElGamal does not provide efficient decryption (the decryption procedure recovers
only G̃m, and we cannot guarantee that m will be small in our construction),
we modify the CI hash of [7] so that it returns Trunc(G̃m), where Trunc is some
function that parses its input as a bitstring and truncates it appropriately. More
precisely, we pick a second cyclic group G̃ of order q, generated by G̃ (�log q	 =
2�log p). The CI function is keyed by key C̃ = (C̃0, C̃1), where (C̃0, C̃1) ←r G̃

2.
Then, we define:

H(C̃0,C̃1)
(α) ← first �log p	 bits of C̃1/C̃α

0 .

Parameters. This protocol has 1
p soundness and the size of the first flow is

2�log p	, which translates into a 2−λ/2-KDM assumption for the CI hash func-
tion. Unfortunately, this Σ-protocol does not satisfy adaptive soundness (given
an honestly-generated first flow and challenge, there always exist words that are
not in the relation, for which there exists an accepting third flow). Adaptive
soundness is a crucial requirement for bootstrapping our first NIZK to cover all
NP statements. Fortunately, performing a parallel repetition of the Σ-protocol
yields adaptive soundness, albeit at the cost of worse parameters in our assump-
tion (c = 3/4).

Reduction to KDM for Efficient Functions. The above construction
reduces to the KDM security of ElGamal, but only with respect to an ineffi-
cient function f , which maps first flows to accepting challenges. From there, we
leverage the fact that an ElGamal encryption (G̃r, G̃kr+m) of a plaintext m with
key k, with respect to a generator G̃, can be equivalently seen as an ElGamal
encryption of k with the key m with respect to the generator G̃r. Building upon
this observation and the fact that f−1 is efficient, we show that the security of
our NIZK for the DDH language can in fact be reduced to the KDM security of
ElGamal with respect to the efficient function f−1.

From NIZKDH for LDH to a NIZK for all of NP. In this step, we use an idea
implicitly employed in [11,26,39]. We use the NIZKDH for the LDH relation to
construct a verifiable pseudo-random generator (VPRG), which we then in turn
use to instantiate the hidden bits model of [14], to obtain NIZKs for all of NP.

448 G. Couteau et al.

Intuitively, a VPRG is a pseudo-random generator with the additional property
that one can compute proofs for any individual bit of the output, certifying
that the bit is consistent with a commitment of the initial seed. Let G be a
cyclic group of order p, the VPRG public parameters will consist of m + 1 group
elements (g, h1, . . . , hm). Seeds are elements τ ←r Zp, and commiting to a seed
is Commit(τ) = gτ . The ith output bit of the VPRG is of the form B(gτ , hτ

i),
where B is the Goldreich-Levin hardcore bit. Now notice than we can actually
certify this as a correctly computed bit, by noticing that (gτ , hτ

i) ∈ LDH and
computing a proof using our NIZKDH. (additionally, we need to output hτ

i as
well, so that the verifier can compute B(gτ , hτ

i) itself). Intuitively, this VPRG
satisfies the following security properties:

1. Binding: If xi is the ith output of the VPRG with respect to a seed τ , one
should not be able to certify bit 1 − xi. This is implied in our construction
by the soundness of NIZKDH.

2. Hiding: An adversary should not be able to recover the ith output of the
VPRG, even if it received all the other output bits and proofs certifying
that they are correct. In our construction, this property reduces to the CDH
assumption.

NIZK for all of NP Through the Hidden-Bit Model. In this model [14],
the prover and the verifier benefit from having access to a common reference
string with special properties. The bits of the common reference string are ini-
tially hidden from the verifier. When proving a statement, the prover can decide
to selectively reveal some bits of the common reference string, which allows
the verifier to check the proof. The work of [14] has showed that NIZKs exist
unconditionally in this model. The VPRG we construct allows us to simulate the
hidden-bits model on the prover side. Initially, all bits are hidden from the veri-
fier from the hiding property of the VPRG. Subsequently, the prover can decide
to reveal several bits, which corresponds to computing VPRG proofs.

1.3 Our Techniques – Second Construction

The previous construction relies on the CDH assumption. In our second con-
struction, we take the complementary road: we seek to construct NIZKs for NP
(under the strong KDM security of ElGamal assuming that CDH does not hold.
Together with our first construction, this implies a NIZK for NP that does not
rely on the CDH assumption (albeit with an infinitely-often security notion). To
this end, we also seek to build a VPRG.

Self-pairing. First, we notice that if CDH does not hold, there exists an efficient
adversary solving it with non-negligible advantage. We use previous results by
[31,41] to amplify the success probability of this adversary to obtain a self-
pairing map. Since from the definition of CDH, the adversary is only guaranteed
to succeed on infinitely-many security parameters, our NIZK will be secure only
on infinitely-many security parameters. This self-pairing will allow us to perform

NIZK in Pairing-Free Groups from Weaker Assumptions 449

homomorphic computations and to evaluate bounded integer arithmetic circuits
in the exponent. Our core idea, informally, is to rely on this self-pairing to let the
parties homomorphically evaluate a pseudorandom generator in the exponent:
at a high level, given a (bit-by-bit) commitment c to the seed, the parties can
homomorphically compute, using the self-pairing, a commitment ci to the i-th
output bit of the PRG (for all i). Then, the prover will open a given PRG value
by providing a NIZK proof of correct opening.

A Commitment from Short-Exponent Discrete Logarithm. To instanti-
ate this idea, we introduce a new commitment scheme which is perfectly bind-
ing, and which is hiding under the short-exponent discrete logarithm assump-
tion (which states that given gx for a random but short x, it is infeasible to
retrieve x). This does not introduce any new assumption, as we further show
that the short-exponent discrete logarithm assumption is implied by the strong
OW-KDM security of ElGamal. Furthermore, we carefully design this commit-
ment scheme so that it suffices, to convince the verifier that the opening was
correct, to demonstrate that the randomness r of the commitment is almost
short. By almost short, we mean that there exists short values (u, v) such that
v · r = u mod p. This turns out to be a crucial property, since the language of
group elements with almost-short exponents is precisely one for which we are
able to build a NIZK under the 2−cλ-OW-KDM security of ElGamal, for some
c < 1.

A Σ-Protocol for Almost-Short Exponents. Let G be a cyclic group of p
elements. We consider a simple Σ-protocol for proving that a word gx has a short
exponent, i.e. writing x as an integer yields a number ≤ 2�, for some carefully
chosen � < �log p	. Our protocol has a similar shape to the sigma protocol used
in the previous construction, and is described in Fig. 3. However, we are unable
to directly prove soundness, meaning that a malicious prover can convince the
verifier of the validity of words gx, where x is not short. Fortunately, we are able
to ensure that if gx is accepted, then x = u · v−1, where u and v are themselves
short. We denote this as the language Lα,β of (α, β)-almost-short elements:

Lα,β = {gx | x = u · v−1 ∈ Zp, u ∈ [−2α, 2α], v ∈ [0, 2β]}.

Our Σ-protocol is somewhat atypical, in the honest run the prover must start
with a word of the form gx and a short witness x (notice that if x is short it
belongs to the almost-short language). However, when proving soundness, we
only safeguard membership to the larger almost-short set of words; therefore,
there is a gap between the correctness requirement, and the soundness guarantees
(this is similar to some lattice constructions, for example [30]).

NIZKAS for the Language of Almost-Short Exponents. We will design
another CI hash function, closely related to the one we built for the first con-
struction, to transform the Σ-protocol above into a NIZK for the almost-short
exponent language. This CI hash function will additionally employ a 2-universal
hash function, which we use to reduce the security loss in our security analysis

450 G. Couteau et al.

and achieve a better parameter c for the OW-KDM assumption. Now, equipped
with our NIZKAS, we only need one final tool before moving on to our VPRG.

A Low-Depth Local PRG. Equipped with the above tools, it remains to find a
suitable PRG to be used in our construction. For correctness, we need to ensure
that no overflow occurs during the homomorphic operations in the exponent;
therefore, we must pick the group size large enough so that the homomorphic
PRG evaluation does not cause an overflow. Since picking a larger group trans-
lates into a larger security loss in our reduction, we seek to rely on a PRG (with
some arbitrary small polynomial stretch) that has a minimal arithmetic degree.
Fortunately, such PRGs were recently studied in [29], which exhibits a PRG with
arithmetic degree 3 which provably resists a large class of attacks for a stretch up
to 1.25 − ε. Combining this low-degree PRG with our new commitment scheme
and our NIZK for the almost-short language yields a VPRG in groups where CDH
does not hold, hence NIZKs for NP.

Wrapping Up. Combining our first and second construction, we get the follow-
ing: assume that ElGamal is 2−cλ-OW-KDM secure with respect to efficient func-
tions (with c = 28/29 + o(1)), and that the previous PRG is secure. Then either
CDH holds, in which case our first construction implies a NIZK for NP, or CDH
does not hold, in which case our second construction implies an (infinitely-often)
NIZK for NP. Therefore, under a PRG assumption and the strong OW-KDM secu-
rity of ElGamal, we prove the existence of an infinitely-often NIZK for NP (but
our proof is non-constructive, in that it does not tell which of the two candidate
constructions is actually secure; only that one is).

1.4 Organization

Section 2 introduces necessary preliminaries. Section 3 presents our first NIZK
construction and Sect. 4 contains our second construction. Please consult the
full version for supplementary material, on how to construct an algorithm for
evaluating an arithmetic circuit in the exponent from groups where CDH is
insecure, with bounds on the parameter growth when manipulating bounded-
size exponents. The full version also contains all missing proofs of our theorems
and a discussion on the notion of infinitely-often security.

2 Preliminaries

Notation. Throughout this paper, λ denotes the security parameter. A proba-
bilistic polynomial time algorithm (PPT, also denoted efficient algorithm) runs
in time polynomial in the (implicit) security parameter λ. A function f is negli-
gible if for any positive polynomial p there exists a bound B > 0 such that, for
any integer k ≥ B, |f(k)| ≤ 1/|p(k)|. We will write f(λ) ≈ 0 to indicate that
f is a negligible function of λ; we also write f(λ) ≈ g(λ) for |f(λ) − g(λ)| ≈ 0.
An event occurs with overwhelming probability p when p ≈ 1. Given a finite set
S, the notation x ←r S means a uniformly random assignment of an element
of S to the variable x. For a positive integer n,m such that n < m, we denote

NIZK in Pairing-Free Groups from Weaker Assumptions 451

by [n] the set {1, · · · , n}, by [±n] the set {−n, · · · , n}, and by [n,m) the set
{n, n + 1, · · · ,m − 1}. Given an element x of a set Zp, we denote by int(x) the
integer x′ ∈ [±p/2] such that x = x′ mod p. When manipulating elements (x, y)
of Zp, we will generally abuse the notation and write x ≤ y for int(x) ≤ int(y).

The Computational Diffie-Hellman Assumption. Let DHGen be a deter-
ministic algorithm that on input 1λ returns a description G = (G, p) where G is
a cyclic group of prime order p. Then the computational Diffie-Hellman assump-
tion is defined as follows.

Definition 1 (CDH Assumption). We say that the computational Diffie-
Hellman (CDH) assumption holds relative to DHGen if for all PPT adver-
saries A,

Pr
[
G ← DHGen(1λ), g ←r G, α, β ←r Zp : gαβ ←r A(1λ, G, g, gα, gβ)

]
≤ negl(λ).

Here, note that DHGen outputs a fixed group G per security parameter.

2.1 Non-interactive Zero-Knowledge

A (publicly-verifiable) non-interactive zero-knowledge (NIZK) argument system
for an NP relation R, with associated language L (R) = {x | ∃w, (x,w) ∈ R}
is a 3-tuple of efficient algorithms (Setup,Prove,Verify), where Setup outputs a
common reference string, Prove(crs, x, w), given the crs, a word x, and a witness
w, outputs a proof π, and Verify(crs, x, π), on input the crs, a word x, and a
proof π, outputs a bit indicating whether the proof is accepted or not. A NIZK
argument system satisfies the following: completeness, adaptive soundness, and
selective single-theorem zero-knowledge properties: (we let Rλ denote the set
R ∩ ({0, 1}λ × {0, 1}∗)).

– A non-interactive argument system (Setup,Prove,Verify) for an NP relation
R satisfies completeness if for every (x,w) ∈ R,

Pr[crs ←r Setup(1|x|),π ← Prove(crs, x, w) : Verify(crs, x,π) = 1] ≈ 1.

– A non-interactive argument system (Setup,Prove,Verify) for an NP relation
R satisfies adaptive soundness if for any PPT A,

Pr
[
crs ←r Setup(1λ), (x,π) ←r A(crs) :
Verify(crs, x,π) = 1 ∧ x /∈ L

]
≈ 0.

– A non-interactive argument system (Setup,Prove,Verify) for an NP relation R
satisfies (computational, statistical) selective single-theorem zero-knowledge
if there exists a PPT simulator Sim such that for every (x,w) ∈ R, the
distribution {(crs,π) : crs ←r Setup(1λ),π ← Prove(crs, x, w)} and
{(crs,π) : (crs,π) ←r Sim(x)} are (computationally, statistically) indis-
tinguishable.

452 G. Couteau et al.

Furthermore, we say that a NIZK for an NP relation R satisfies (computational,
statistical) adaptive multi-theorem zero-knowledge if for all (computational, sta-
tistical) A, there exists a PPT simulator Sim = (Sim1,Sim2) such that if we
run crs ←r Setup(1λ) and crs ←r Sim1(1λ), then we have |Pr[AO0(crs,·,·)(crs)
= 1] − Pr[AO1(crs,·,·)(crs) = 1]| ≈ 0, where O0(crs, x, w) outputs Prove(crs, x, w)
if (x,w) ∈ R and ⊥ otherwise, and O1(crs, x, w) outputs Sim2(crs, x) if (x,w) ∈ R
and ⊥ otherwise.

We use the following result regarding the existence of NIZKs in the hidden-
bits model (HBM). Since the full definition of NIZK in the HBM will not be
required in our work, we refer the readers to [13] for more details.

Theorem 2 (NIZK for all of NP in the HBM). Let λ denote the security
parameter and let k = k(λ) be any positive integer-valued function. Then, uncon-
ditionally, there exists NIZK proof systems for any NP language L in the HBM
that uses hb = k · poly(λ) hidden bits with soundness error ε ≤ 2−k·λ, where
λ denotes the security parameter and poly is a function related to the NP lan-
guage L .

2.2 Verifiable Pseudorandom Generators

Definition 3 (Verifiable Pseudorandom Generator). Let δ(λ) and s(λ)
be positive valued polynomials. A (δ(λ), s(λ))-verifiable pseudorandom generator
(VPRG) is a four-tuple of efficient algorithms (Setup,Stretch,Prove,Verify) such
that

– Setup(1λ,m), on input the security parameter (in unary) and a polynomial
bound m(λ) ≥ s(λ)1+δ(λ), outputs a set of public parameters pp (which con-
tains 1λ);

– Stretch(pp), on input the public parameters pp, outputs a triple (pvk, x, aux),
where pvk is a public verification key of length s(λ), x is an m-bit pseudoran-
dom string, and aux is an auxiliary information;

– Prove(pp, aux, i), on input the public parameters pp, auxiliary informations
aux, an index i ∈ [m], outputs a proof π;

– Verify(pp, pvk, i, b, π), on input the public parameters pp, a public verification
key pvk, an index i ∈ [m], a bit b, and a proof π, outputs a bit β;

which is in addition complete, hiding, and binding, as defined below.

Definition 4 (Completeness of a VPRG). For any i ∈ [m], a complete
DVPRG scheme (Setup,Stretch,Prove,Verify) satisfies:

Pr

⎡
⎣
pp ←r Setup(1λ,m),
(pvk, x, aux) ←r Stretch(pp), : Verify(pp, pvk, i, xi, π) = 1
π ←r Prove(pp, aux, i),

⎤
⎦ ≈ 1.

Note that our definition of VPRG is slightly relaxed than what is considered
in [11,12,39], in that, we do not require the size of s(λ) to be independent of
m(λ). This relaxation still allows us to construct NIZKs for NP as long as the
stretch δ(λ) is larger than some positive constant.

NIZK in Pairing-Free Groups from Weaker Assumptions 453

Definition 5 (Binding Property of a VPRG). Let (Setup,Stretch,Prove,
Verify) be a VPRG. A VPRG is binding if there exists a (possibly inefficient)
extractor Ext such that for any PPT A, it holds that

Pr

⎡
⎣
pp ←r Setup(1λ,m),
(pvk, i, π) ←r A(pp), : Verify(pp, pvk, i, 1 − xi, π) = 1
x ← Ext(pp, pvk)

⎤
⎦ ≈ 0.

Note that, following [11,26,39], we consider a significantly weaker flavor of
binding compared to [12], which still allows to construct NIZKs for NP.

Definition 6 (Hiding Property of a VPRG). A VPRG scheme (Setup,
Stretch,Prove,Verify) is hiding if for any i ∈ [m] and any PPT adversary A
that outputs bits, it holds that:

Pr

⎡
⎣
pp ←r Setup(1λ,m),
(pvk, x, aux) ←r Stretch(pp), : A(pp, pvk, i, (xj , πj)j �=i) = xi

(πj ←r Prove(pp, aux, j))j

⎤
⎦ ≈ 1/2.

The following shows that VPRG with a sufficient stretch is sufficient to con-
struct NIZKs for all of NP.

Theorem 7 ((δ, s)-VPRGs ⇒ NIZKs for all of NP). Fix an NIZK proof system
for any NP language L in the HBM that uses hb = hb(λ) hidden bits with
soundness error ε ≤ 2−λ where hb ≥ λ w.l.o.g. Suppose that a (δ(λ), s(λ))-
verifiable pseudorandom generator where s(λ) ≥ max{λ, (hb2/λ)1/δ(λ)} exits.
Then, there exist adaptively sound and adaptively multi-theorem zero-knowledge
NIZK arguments for the NP relation L .

We provide a proof sketch in the full version. Since existence of an NIZK in the
HBM for any NP language L is implied by Theorem 2, the above shows that
VPRGs with some mild condition on δ(λ) and s(λ) implies existence of an NIZK
for any NP language L .

2.3 Correlation-Intractable Hash Functions

We recall the definition of correlation intractability [9].

Definition 8 (Correlation Intractable Hash Function). A collection H =
{Hλ : Kλ × Iλ �→ Oλ}λ∈N of (efficient) keyed hash functions is a R-correlation
intractable hash (CIH) family, with respect to a relation ensemble R = {Rλ ⊆
Iλ × Oλ}, if for every (non-uniform) PPT adversary A, it holds that

Pr
k←rKλ

x←rA(k)

[(x,Hλ(K,x)) ∈ Rλ] = negl(λ).

For CIH to be useful as a building block for NIZK, we require an additional
property referred to as programmability [6].

454 G. Couteau et al.

Definition 9 (Programmability). A collection H = {Hλ : Kλ×Iλ �→ Oλ}λ∈N

of (efficient) keyed hash functions is called programmable if there exists an effi-
cient algorithm, which given x ∈ Iλ and y ∈ Oλ, outputs a uniformly random
key k from Kλ, such that H(k, x) = y.

Finally, we define the standard notion of sparsity.

Definition 10 (Sparsity). For any relation ensemble R = {Rλ ⊆ Iλ × Oλ},
we say that R is ρ(·)-sparse if for λ ∈ N and any x ∈ Iλ, Pry←rOλ

[(x, y) ∈
Rλ] ≤ ρ(λ). When ρ(λ) = negl(λ), we simply say it is sparse.

2.4 Σ-Protocol

We recall the definition of Σ-protocols from [28]. A Σ-protocol is a three-move
interactive proof between a prover P and a verifier V for a language L , where the
prover sends an initial message α, the verifier responds with a random β ←r Sλ

for some challenge space Sλ, and the prover concludes with a message γ. Lastly,
the verifier outputs 1, if it accepts and 0 otherwise. Three properties we require
from a Σ-protocol are completeness, special honest-verifier zero-knowledge, and
adaptive soundness.

Definition 11 (Completeness). A Σ-protocol for a relation R with prover P
and verifier V is complete, if Pr[out〈P(x,w),V(x)〉 = 1|(x,w) ∈ R] = 1.

Definition 12 (Special honest-verifier zero-knowledge). A Σ-protocol
for a relation R is special honest-verifier zero-knowledge, if there exists
a polynomial-time simulator Sim such that the distributions Sim(x, β) and
〈P(x,w),V(x)〉 are statistically close for (x,w) ∈ R, β ∈ Sλ.

Definition 13 (Adaptive soundness). A Σ-protocol for a relation R is ρ(·)-
adaptive sound, if for any (possibly inefficient) cheating prover P∗ and any first
flow α, it holds that Pr[β ←r Sλ; (x, γ) ←r P∗(α, β) : ∃x �∈ L ∧ V (x, α, β, γ) =
1] ≤ ρ(λ). When ρ(λ) = negl(λ), we simply say it is adaptive sound.

In the above notion, when the cheating P∗ does not have the freedom to
choose the word x, we say it is selectively sound. Note that a selective soundness
is implied by the standard notion of special soundness of the Σ-protocol. The
following lemma is due to [25], which at a high level claims that any adaptive
sound Σ-protocol induces a natural sparse relation.

Lemma 14. Let Π be an arbitrary ρ(·)-adaptive sound Σ-protocol for a lan-
guage L . Then, the following relation induced by the Σ-protocol Π is ρ(·)-parse:

Rsparse = {(α, β) : ∃x, γ s.t. x �∈ L ∧ V (x, α, β, γ) = 1}.

NIZK in Pairing-Free Groups from Weaker Assumptions 455

2.5 Secret Key Variant of ElGamal

Definition 15 (Secret Key ElGamal). Let G̃ = {G̃λ}λ∈N be an ensemble of
groups where each group G̃λ is of order q such that �log q	 = λ. The natural
(secret-key) variant of additive ElGamal with message space Zq consists of the
following three PPT algorithms.

– Setup(1λ) : output public-parameter G̃ ←r G̃λ and secret key k ←r Zq.
– EncG̃(k,m) : pick R̃ ←r G̃ and output C̃ = (R̃, R̃k · G̃m).
– HalfDec(k, C̃) : parse C̃ as (C̃0, C̃1) and output C̃1/C̃

k
0 .

Throughout the paper, we omit the subscript when the meaning is clear. Note
that the scheme does not allow for full decryption, but only for decryption “up to
discrete logarithm”: for every (G̃, k,m), it holds that HalfDec(k,EncG̃(k,m)) =
G̃m. One important property of the scheme is that it enjoys the notion of uni-
versality. Informally, the notion claims that the ciphertexts are not associated
with a specific key, but rather, could have been an output of any key.

Definition 16 (Universality). For all λ ∈ N, G̃ ∈ G̃λ, and k∗ ∈ Zq, the
ciphertexts of ElGamal satisfies

{C̃ : (k, m) ←r Z
2
q, C̃ ←r EncG̃(k, m)} = {C̃ : m ←r Zq, C̃ ←r EncG̃(k∗, m)} = U

G̃2 .

Definition 17 (OW-KDM Security). Let F = {Fλ}λ∈N be an ensemble of
sets of functions where each Fλ = {Fu}u is a family of (possibly randomized)
efficiently-computable functions. We say that ElGamal satisfies (one-query) δ-
OW-KDM security with respect to F if for every Fu ∈ Fλ, every superpolynomial
function s, and every (non-uniform) PPT adversary A, it holds that

Pr
(G̃,k)←rG̃λ×Zq

m←Fu(G̃,k)

C̃←rEncG̃(k,m)

[A(G̃, C̃) = m] ≤ s(λ) · δ(λ).

If ElGamal satisfies δ-OW-KDM security with δ(λ) = 2−cλ for some constant
c ∈ (0, 1], then we say it is strong OW-KDM secure.

2.6 Low-Depth Pseudorandom Generators

Definition. A pseudorandom generator is a deterministic process that expands
a short random seed into a longer sequence, so that no efficient adversary can
distinguish this sequence from a uniformly random string of the same length:

Definition 18 (Pseudorandom Generator). A m(n)-stretch pseudorandom
generator, for a polynomial m , is a pair of PPT algorithms (PRG.Setup,PRG.
Eval) where PRG.Setup(1n) outputs some public parameters pp, which are implic-
itly given as input to PRG.Eval, and PRG.Eval(x), on input a seed x ∈ {0, 1}n,
outputs a string y ∈ {0, 1}m(n). It satisfies the following security notion: for any
probabilistic polynomial-time adversary A and every large enough n,

456 G. Couteau et al.

Pr[pp ←r PRG.Setup(1n), y ←r {0, 1}m(n) : A(pp, y) = 1]
≈ Pr[pp ←r PRG.Setup(1n), x ←r {0, 1}n, y ← PRG.Eval(x) : A(pp, y) = 1]

A pseudorandom generator PRG is d-local (for a function d) if for any n ∈ N,
every output bit of PRG.Eval on input a seed x ∈ {0, 1}n depends on at most
d(n) input bits.

Goldreich’s Pseudorandom Generator. Goldreich’s candidate local PRGs
form a family FG,P of local PRGs: PRGG,P : {0, 1}n �→ {0, 1}m, parametrized
by an (n,m, d)-hypergraph G = (σ1, . . . , σm) (where m = m(n) is polynomial in
n), and a predicate P : {0, 1}d �→ {0, 1}, defined as follows: on input x ∈ {0, 1}n,
PRGG,P returns the m-bit string (P (xσ1

1
, . . . , xσ1

d
), . . . , P (xσm

1
, · · · , xσm

d
)).

The Lombardi-Vaikuntanathan (LV) Predicate. For concreteness, we will
rely on Goldreich PRG instantiated with the following predicate:

PLV(x1, x2, x3, x4, x5) = x1 ⊕ x2 ⊕ (x1 ⊕ x3)(x2 ⊕ x4) ⊕ x5 .

This predicate leads to a PRG with locality five. This predicate was intro-
duced and studied in [29], were it was shown that it provably resists all F2-linear
attacks, as well as all attacks using the SDP hierarchies (such as the Lassere-
Parrilo sum-of-squares hierarchy), when stretching n bits to n1.25−ε bits. In
addition, this predicate enjoys an optimaly low arithmetic degree, since it can
be computed by the following degree 3 polynomial over the integers:

PLV(x1, x2, x3, x4, x5) = x5 + (x1(x4 − 1) + x2(x1 + x3 − 1) − x3x4) · (2x5 − 1) .

3 NIZK Based on the Security of CDH and Strong
OW-KDM Security of ElGamal

In this section, we describe a construction of a NIZK from the strong OW-KDM
security of ElGamal with respect to efficient functions by assuming the CDH
problem is hard to solve. We first provide a NIZK for the specific language of the
Diffie-Hellman (DH) language. This is done by constructing a CIH based on the
strong OW-KDM security of ElGamal for the natural sparse relation induced by
the Σ-protocol for DH languages. We then show that such a NIZK for the DH
language allows us to construct a VPRG, which in return, allows us to construct
a NIZK for all of NP by Theorem 7.

3.1 Σ-Protocol for the Diffie-Hellman Language

Definition 19 (Diffie-Hellman Language). Let G be a group with prime
order p. We define the Diffie-Hellman (DH) language LDH,t parameterized by
t ∈ Z

∗
p as LDH,t = {(g, h, gx, hx) : g, h ∈ G, x ∈ Zp, dloggh = t}.

NIZK in Pairing-Free Groups from Weaker Assumptions 457

Prover Verifier
(r1, r2) ←r Z

2
p and

set (R1, S1) = (gr1 , hr1)
(R2, S2) = (gr2 , hr2)

(e1, e2) ←r (Z∗
p)2

d1 = e1 · x+ r1
d2 = e2 · x+ r2

Check gdi = Xei · Ri

and hdi = Y ei · Si, for i ∈ {1, 2}

(R1, S1, R2, S2)

e1, e2

d1, d2

Fig. 2. Σ-protocol for the Diffie-Hellman language for the word (g, h, X = gx, Y = gy).

Below we recall the standard Σ-protocol for the DH relation (with parallel
repetition). Here, the word is (g, h,X, Y) ∈ LDH,t where (X,Y) = (gx, hx).

The above Σ-protocol achieves the standard notion of correctness and special
honest-verifier zero-knowledge. Adaptive soundness is covered by the following
lemma, the proof is standard and provided for completeness in the full version
of the paper.

Lemma 20 (Adaptive Soundness). The Σ-protocol in Fig. 2 satisfies 1
p−1 -

adaptive soundness.

3.2 Correlation-Intractable Hash Function H

Let λ be a security parameter. We consider a group G̃ of order q(λ) with �log q	 ≈
λ. Let Trunc : G̃ �→ {0, 1}λ/2 be the function which, on input a group element
G̃ ∈ G̃, parses it as a �log q	-bit string and returns the first λ/2 bits of its input.
We consider the following hash function H : G̃2 × Zq �→ {0, 1}λ/2:

– Sampling the key: pick (G̃, k,m) ←r G̃×Z
2
q and set C̃ ←r EncG̃(k,m). Note

that the key distribution is exactly the uniform distribution over G̃
2.

– Evaluating H(C̃, ·) : H(C̃, x) = Trunc(HalfDec(x, C̃)).

Correlation-Intractability of H. Consider a group G of order p(λ) with
�log p	 ≈ λ/4. Then the output of H can be interpreted as two elements of G.
Fix a parameter t ∈ Z

∗
p. Define Rλ,t to be the natural sparse relation associated

to the language LDH,t (see Lemma 14). That is,

Rλ,t = {(α, β) ∈ G
4 × (Z∗

p)
2 : ∃x, γ s.t. x /∈ LDH,t ∧ V (x, α, β, γ) = accept}.

Here, the above relation can also be described alternatively using the following
(inefficient) randomized function:

ft(a; z) :

{
G

4 × Z
∗
p �→ (Z∗

p)
2

(R1, S1, R2, S2) × z → (z, log(Rt
1/S1)(R

t
2/S2) · z)

.

The following is the main contribution of this section.

458 G. Couteau et al.

Theorem 21. Assume that ElGamal satisfies 2−3λ/4-OW-KDM security with
respect to efficient functions. Then the hash family {H : H : G̃

2 × Zq �→
{0, 1}λ/2}λ is correlation-intractable with respect to RH := {Rλ := {Rλ,t}t}λ.

Proof. We prove the theorem in two steps. We first show that an adversary
against the correlation intractability of H can be shown to be an adversary
against the OW-KDM security of ElGamal with respect to inefficient functions.
We then show via the symmetry of messages and secret keys of ElGamal to
conclude that such an adversary can indeed be used to break OW-KDM security
of ElGamal with respect to efficient functions. The first step is summarized in
the following lemma.

Lemma 22. Let A be an adversary against the RH-correlation intractability of
H with (non-negligible) advantage ε(λ). Then, for some t ∈ Z

∗
p, it holds that:

Pr
(G̃,a∗,m)←rG̃×Z

2
q

C̃←rEncG̃(a∗,m)

[A(G̃, C̃) = a∗|(a∗,H(C̃, a∗)) ∈ Rλ,t] ≥ ε(λ)
23λ/4

.

The proof follows closely the approach of [7], but simplifies some steps of the
proof and makes the exact security loss explicit. We provide it in the full version
of the paper. Given Lemma 22, it remains to show that this implies a contra-
diction to the OW-KDM security of ElGamal for efficient functions. The main
difficulty here is that the above can be rewritten as

Pr
(G̃,a∗)←rG̃×Zq

m←rαt(G̃,a∗)
C̃←rEncG̃(a∗,m)

[A(G̃, C̃) = a∗] ≥ ε(λ)
23λ/4

. (1)

with αt : G̃ × Zq × {0, 1}λ/2 × Z
∗
p �→ Zq, such that αt(G̃, a; z1, z2) =

dlogG̃(ft(a; z2)||z1). which naturally translates to an adversary against the KDM
security of ElGamal where m is sampled as αt(G̃, a∗; z1, z2), which is not an effi-
ciently computable function. We show below how to get around this apparent
issue. Define the (randomized) efficiently computable function f−1

t as follows:

f−1
t (e1, e2; r1, r2, s1) :=

{
(Z∗

p)
2 × G

3 �→ G
4

(e1, e2; r1, r2, s1) → (gr1 , gs1 , gr2 , g
e2(t·r1−s1)

e1
−t·r2).

Furthermore, define Ft to be the following (efficient, randomized) function:

Ft :

{
G̃ × Zq × {0, 1}λ/2 �→ Zq

(G̃,m; z) → f−1
t (Trunc(G̃m); z),

.

where we assume in case the first λ/4-bits of Trunc(G̃m) corresponds to 0 ∈
Zp, then it outputs some fixed element in Zq. Consider now the distribution
obtained by sampling (G̃, a∗) ←r G̃ × Zq, m ←r αt(G̃, a∗), and outputting

NIZK in Pairing-Free Groups from Weaker Assumptions 459

C̃ ←r EncG̃(a∗,m). Observe that we obtain the same distribution (up to some
negligible difference) by first sampling (G̃,m) ←r G̃×Zq, setting k ←r Ft(G̃,m),
and outputting C̃ ←r EncG̃(k,m). We build upon this observation to construct,
using A, an adversary against the one-query OW-KDM security of ElGamal
with respect to the class of (efficient, randomized) functions {Ft}t. Let A be the
previous adversary, which satisfies Eq. 1. By our observation above, this can be
rewritten as

Pr
(G̃,k)←rG̃×Zq

a∗←rFt(G̃,k)

C̃←rEncG̃(a∗,k)

[A(G̃, C̃) = a∗] ≥ ε(λ)
23λ/4

.

We build an adversary B against the OW-KDM security of ElGamal as follows: on
input (G̃, C̃), B parses C̃ as (C̃0, C̃1). B sets G̃′ ← C̃0 and C̃′ ← (G̃, C̃1). Then, B
runs A(G̃′, C̃′) and outputs whatever A outputs. Observe that the distributions

{(G̃, C̃) : (G̃, k) ←r G̃ × Zq, a
∗ ←r Ft(G̃, k), C̃ ←r EncG̃(a∗, k)},

which corresponds to the experiment in the previous probability, and

{(C̃0, (G̃, C̃1)) : (G̃, k) ←r G̃ × Zq, a
∗ ←r Ft(G̃, k), (C̃0, C̃1) ←r EncG̃(k, a∗)}

are identical. Therefore,

Pr
(G̃,k)←rG̃×Zq

a∗←rFt(G̃,k)

C̃←rEncG̃(k,a∗)

[B(G̃, C̃) = a∗] ≥ ε(λ)
23λ/4

,

which contradicts the (one-query) 2−3λ/4-OW-KDM security of ElGamal with
respect to the family of (efficient, randomized) functions {Ft}t.

3.3 NIZK for LDH via RH-Correlation-Intractability

Lemma 23. Our RH-correlation intractable hash function family is pro-
grammable.

The proof is given in the full version.

Theorem 24 (NIZK for LDH). Assume there exists a programmable corre-
lation intractable hash family for relation RH. Then, there exists an adaptively
sound and selective single-theorem zero-knowledge NIZK argument system for the
Diffie-Hellman language LDH,t for any t ∈ Z

∗
p. Moreover, our NIZK is indepen-

dent of the value t and all algorithms can be run oblivious of the value t.

The proof follows in a relatively natural way by compiling the Σ-protocol for
DDH with the correlation-intractable hash function H. We provide an explicit
description of the proof system and a security analysis in the full version. As
stated in Theorem 24, our NIZK for LDH,t is agnostic of the value of t ∈ Z

∗
p, since

the value of t is only significant during the security proof. Therefore, whenever
the meaning is clear, we will drop the subscript t and simply state it as an NIZK
for LDH. The important thing to keep in mind is that for each crs generated by
SetupDH, it is only adaptive secure for LDH,t with a fixed t.

460 G. Couteau et al.

3.4 VPRG from NIZK for LDH

Our construction relies on the CDH assumption and the NIZK argument system
(SetupDH,ProveDH,VerifyDH) for LDH from the previous section. We prepare a
predicate B : G2 �→ {0, 1} satisfying the following property: given (ga, gb), com-
puting B(gb, gab) should be as hard (up to polynomial factors) as computing
(gb, gab). Note that this implies that distinguishing B(gb, gab) from a random bit
given random tuple (ga, gb) is as hard as solving CDH. One way to instantiate
such a predicate is to use the Goldreich-Levin hard-core predicate [19].

Construction. Let m := m(λ) be an arbitrary polynomial. Our construction of
VPRG proceeds as follows:

– Setup(1λ,m) : run G = (G, p) ←r DHGen(1λ) and sample g ←r G. Further,
for i = 1 to m, pick hi ←r G and generate crsi ←r SetupDH(1λ). Finally,
output pp = (g, (hi, crsi)i≤m).

– Stretch(pp) : pick τ ←r Zp, set pvk ← gτ , and for i = 1 to m, set xi ←
B(pvk, hτ

i). Output (pvk, x = (xi)i≤m, aux = τ).
– Prove(pp, aux, i) : set τ := aux and run πDH

i ←r ProveDH(crsi, (g, hi, pvk,
hτ

i), τ). Output π = (hτ
i ,πDH

i).
– Verify(pp, pvk, i, b, π) : parse (u,πDH) ← π. If b = B(pvk, u), then return

VerifyDH(crsi, (g, hi, pvk, u),πDH). Otherwise, return 0.

Security Analysis. Correctness of the VPRG follows from the correctness of
the underlying NIZK. In addition, the size of the verification key gτ is p, and in
particular, is independent of m. Hence, we can set the stretch δ := δ(λ) to be
an arbitrary polynomial, where we can set m = s1+δ by definition.

Theorem 25. If the CDH assumption holds relative to DHGen and the NIZK
argument system for the Diffie-Hellman language LDH is adaptive sound and
selective single-theorem, then the above construction provides a (δ, s)-VPRG that
is binding and hiding, where δ is an arbitrary polynomial in the security param-
eter λ and s = |G|.

The binding property is shown by guessing the position where the adversary
forges an opening, and showing that this implies an adversary against the adap-
tive soundness of the NIZK for DDH. Hiding relies on a careful modification of
the CRS generation, together with the zero-knowledge property of the NIZK for
DDH. We provide a complete proof in the full version of the paper. As a direct
consequence of Theorems 7, 31, 33, and 38, the following is obtained.

Theorem 26. Assume that the CDH assumption holds relative to DHGen and
that ElGamal satisfies 2−3λ/4-OW-KDM security with respect to efficient func-
tions, then there exists an adaptive sound and adaptive multi-theorem NIZK for
all of NP.

NIZK in Pairing-Free Groups from Weaker Assumptions 461

4 NIZK from Insecurity of CDH and Strong OW-KDM
Security of ElGamal

In this section, we describe a construction of an infinitely often NIZK from the
strong OW-KDM security of ElGamal with respect with efficient functions by
assuming that the CDH problem is easy to solve. We first provide a NIZK for
the specific language of the almost-short language. This is done by constructing
a CIH based on the strong OW-KDM security of ElGamal for the natural sparse
relation induced by the Σ-protocol for the almost-short language. We then show
that such a NIZK for the almost-short language along with the short-exponent
discrete-log (SEDL) assumption allows us to construct a VPRG, which in return,
allows us to construct an (infinitely often) NIZK for all of NP by Theorem 7.
Note that, as we will show, SEDL is not an extra assumption since it follows
from the strong OW-KDM security of ElGamal.

4.1 Σ-Protocol for the Language of Almost-Short Elements

In this section, we introduce the language Lα,β of elements of G with (α, β)-
almost-short exponents to be the subset of G containing elements of the form
gx where x is almost-short. We say that x is (α, β)-almost-short if there exists a
short value v ≤ 2β such that vx is short as well: vx ∈ [±2α]. More formally:

Definition 27 ((α, β)-Almost-Shortness). Let G be a group of prime order
p. We define Lα,β over G with respect to the generator g ∈ G to be the language
of (α, β)-almost-short elements as:

Lα,β = {gx | x = u · v−1 ∈ Zp, int(u) ∈ [±2α], int(v) ∈ [2β]}.

A Σ-Protocol for the Almost-Short Language. We start by introducing a
simple Σ-protocol for proving membership of an element gx ∈ G to Lα,β . The
protocol satisfies the following relaxed notion of correctness: an honest prover
is guaranteed to produce an accepting proof if the input word gx is such that
x ≤ 2� (with log p � �), but soundness only guarantees that the word actually
belongs to L�′,c, where c is the challenge length, and �′ > c + � + κ, for some
statistical security parameter κ.4 The protocol is represented on Fig. 3. Note
that it only satisfies selective soundness.

In the full version, we prove the following lemmas:

Lemma 28 (Correctness). If x ∈ [0, 2�], and �′ > max{c, �} + κ, then the
Σ-protocol from Fig. 3 is correct (and the verifier accepts with probability greater
than 1 − 1

2κ).

4 This is similar in spirit to various Σ-protocols for lattice-based relations, where the
Σ-protocol proves knowledge of a short preimage, but the protocol has some slack-
ness, i.e., a gap between the shortness needed for the honest proof to be accepted,
and the shortness actually guaranteed by the soundness property; here, we have an
additional “slackness” in that x is only guaranteed to be the product of a short value
with the inverse of another short value.

462 G. Couteau et al.

Prover Verifier

r ←r [±2�′−1] e ←r [2c]

d = e · x+ r
Check gd = gr · (gx)e

and int(d) ∈ [±2�′−1]

gr

e

d

Fig. 3. Σ-protocol for the almost-shortness language, for the word gx. In a honest run,
the prover posseses a short witness x ∈ [0, 2�]

Lemma 29 (Selective Soundness). If X /∈ L�′,c, then the probability that
the verifier accepts is at most 1

2c .

Lemma 30 (Honest-Verifier Zero-Knowledge). When �′ > c + � + κ and
x ∈ [0, 2�), the Σ-protocol in Fig. 3 is honest-verifier zero-knowledge for words
in x ∈ [0, 2�]. In particular, the statistical distance between honest transcripts
and those produced by the simulator described in the full version is 1

2κ .5

Adaptive Soundness. The above protocol only enjoys selective soundness,
which does not suffice in our context. As for our previous construction, however,
adaptive soundness can be obtained using sufficiently many parallel repetitions
of the underlying Σ-protocol, via standard complexity leveraging: since there
are p possible words gx, if the above Σ-protocol is amplified N -times with N ≥
�log p	/c, then it is p/2N ·c-adaptively sound. We denote ΠN (p, �, κ, c) the Σ-
protocol obtained by repeating N times in parallel the above Σ-protocol for
L�′,c, with �′ = � + c + κ + 1. When (p, �, κ, c) are clear from the context, we
simply denote it ΠN .

Admissible First Flow. Given a Σ-protocol for a language L , we say that a
candidate first flow a is (adaptively) admissible if there exists a word X /∈ L ,
a challenge e, and an answer d, such that (a, e, d) form an accepting transcript
for X. Note that in ΠN , there are pN possible first flows, but only p · 2N(�′+c)

admissible first flows, since an admissible first flow is of the form (gdi/(gx)ei)i≤N ,
for some di ∈ [±2�′−1], ei ∈ [2c], and gx ∈ G.

4.2 Correlation-Intractable Hash Function

Let λ be a security parameter and fix parameters (N(λ), c(λ), p(λ), �(λ), κ(λ)).
We consider a group G̃ of order q(λ) with �log q	 ≈ λ, and a group G of order
p(λ). Let Trunc′ : G̃ �→ {0, 1}N ·c be the function which, on input a group element
G̃ ∈ G̃, parses it as a �log q	-bit string and returns the first N · c bits of its
input. Let h : G

N → {0, 1}λ be a 2-universal hash function, for a security

5 To be precise, this does not meet the definition of our honest-verifier zero-knowledge
since we only consider a small set of L�′,c. However, this notion suffices for our
application.

NIZK in Pairing-Free Groups from Weaker Assumptions 463

parameter λ which will be defined afterward. We consider the following hash
function H′

λ : G̃2 × G
N �→ {0, 1}N ·c:

– Sampling the key: pick (G̃, k,m) ←r G̃×Z
2
q and set C̃ ←r EncG̃(k,m). Note

that the key distribution is exactly the uniform distribution over G̃
2.

– Evaluating H′
λ(C̃, ·) : H′

λ(C̃, x) = Trunc′(HalfDec(h(x), C̃)).

Setting the Security Parameter λ. Let Rλ(N, c, p, �, κ) = Rλ be the natural
sparse relation associated to the language L�′,c over G with respect to a generator
g ∈ G, where �′ = � + c + κ (see Lemma 14). That is,

Rλ = {(a, b) ∈ G
N × {0, 1}N ·c : ∃X, d s.t. X /∈ L�′,c ∧ V (X, a, b, c) = accept},

where V is the verifier from the Σ-protocol for the language L�′,c in Fig. 3. The
purpose of the 2-universal hash function h in our correlation-intractable hash H′

λ

is to compress the size of the first flow to λ bits, without significantly decreasing
the winning probability of the adversary. The core observation is that when the
adversary manages to output a such that (a,H′

λ(C̃, a)) ∈ Rλ, then a must at
least be an admissible first flow. Since there are at most p · 2N(�′+c) admissible
first flows, we set λ ← �log p	+N(�′ +c)+κ, where κ is some statistical security
parameter. Then, the 2-universality of h guarantees that, except with probability
at most 2−κ over the random choice of the hash key, all possible λ-bit strings
will have at most a single admissible preimage a. In the following, we denote
by Invh the (inefficient) function which, on input a λ-bit string s, outputs the
unique admissible preimage of s (or ⊥ if s has no admissible preimage).

Correlation-Intractability of H′

Theorem 31. Fix parameters (N(λ), c(λ), p(λ), �(λ), κ(λ)). Assume that ElGa-
mal satisfies p−1 · 2Nc−λ-OW-KDM security with respect to efficient functions.
Then the hash family {H′

λ : G̃2 × G
N �→ {0, 1}N ·c}λ is correlation-intractable

with respect to RH′
:= {Rλ(N, c, p, �, κ)}λ = {Rλ}λ.

The structure of the proof is similar to the proof of Theorem 21, the core
difference being that we rely on a 2-universal hash function to compress the size
of the first flow, and only guess the compressed hash; then, we rely on the fact
the 2-universal hash is injective with high probability over the set of admissible
first flow. We provide a detailed proof in the full version.

4.3 NIZK for the Almost-Short Language via RH′
-Correlation-

Intractability

Lemma 32. Our RH′
-correlation intractable hash function family is pro-

grammable.

The proof is essentially identical to the proof for RH.

464 G. Couteau et al.

Theorem 33 (NIZK for the almost-short language L�′,c). Assume there
exists a programmable correlation intractable hash family for the relation RH′

.
Then, there exists an adaptive sound and selective single-theorem zero-knowledge
NIZK argument system for the almost-short language L�′,c.

The proof of adaptive soundness and selective single-theorem zero-knowledge
are essentially identical to the proof of Theorem 24. We provide an explicit
description of the NIZK proof system in the full version.

4.4 A Commitment Scheme from the Short-Exponent Discrete
Logarithm Assumption

Before providing our VPRG construction, we introduce one last set of tools. We
first introduce the T -short-exponent discrete-logarithm (T -SEDL) assumption
and then provide a simple commitment scheme based on T -SEDL.

Definition 34. The T -SEDL assumption over an Abelian group G of order p
with respect to the generator g states that for every PPT A,

Pr[x ←r [p/T], h ← gx : A(h) = x] ≈ 0.

It is well known that under the T -SEDL assumption, it is infeasible to dis-
tinguish {gx | x ←r [p/T]} from the uniform distribution over G [27].

A Commitment from T -SEDL. A commitment scheme is a pair of algorithms
(Commit,Open) such that given (c, d) ←r Commit(m), c hides m (more for-
mally, no adversary can distinguish whether c was output by Commit(m) or
Commit(m′), for two messages (m,m′) of their choice), but d binds the com-
mitter to m (more formally, no adversary can find (c, d, d′,m,m′) with m �= m′

such that Open(c, d,m) = Open(c, d′,m′) = 1). We now introduce the bit com-
mitment scheme that will underly our construction. Let G be a group of order
p. Fix some integers (�, k). Commit(b), on input a bit b, picks w ←r {0, 1}� and
outputs com = gw+2kb. Opening the commitment is done by revealing w. The
commitment is perfectly binding, and hiding under the p/2�-SEDL assumption.

From T -SEDL to Strong OW-KDM Security of ElGamal. In the full version
of the paper, we show the following, which states that T -SEDL will be redundant
with our other assumptions:

Lemma 35. Assume that ElGamal satisfies (1/T)-OW-KDM security with
respect to efficient functions. Then the T -SEDL assumption holds.

Binding Property with Almost-Short Randomness. A useful property of
the above commitment, which will play a crucial role in our construction, is that
it remains computationally binding if instead of revealing w, the opener reveals
b and proves (using any computationally binding argument) that com · g−2kb ∈
Lα,β , provided that k ≥ α + 2 and under some condition on the size p of the
group. We elaborate below.

NIZK in Pairing-Free Groups from Weaker Assumptions 465

Lemma 36. Let com = gw+2α+2b be a commitment to b, where gw ∈ Lα,β.
Further assume that p > 2α+2β+4. Then no computationally bounded prover can
produce an accepting argument that gw+2α+2 ∈ Lα,β.

Looking ahead, we will use this lemma together with a NIZK with relaxed
correctness for the language Lα,β to guarantee correct opening of the above
commitment. The relaxed correctness requirement is the same as in Sect. 4.1
and will be satisfied when the commitment is constructed honestly.

Proof. Let com ∈ G be any group element. We prove that it can never simultane-
ously hold that com ∈ Lα,β and com·g2α+2 ∈ Lα,β . Assume toward contradiction
that both com and com · g2

α+2
belong to Lα,β . Let x ← dlogg(com). Then we

have:

x = u · v−1 mod p for some u ∈ [±2α], v ∈ [2β],

x + 2α+2 = u′ · (v′)−1 mod p for some u′ ∈ [±2α], v′ ∈ [2β].

Hence, uv−1 + 2α+2 = u′(v′)−1 mod p, which gives v′(u + 2α+2v) = u′v mod p.
However, since p > 2α+2β+4, we have that this equation holds over the integers as
well. This implies (still using the bound on p) that v′(u + 2α+2v) = u′v ≤ 2αv.
However, u + 2α+2v ≥ 2α+2v − 2α > 2αv (since v ≥ 1). Therefore, we also
get 2αv < v′(u + 2α+2v) (since v′ ≥ 1), which is a contradiction. Therefore, no
bounded prover can provide an accepting argument of membership in Lα,β (with
any computationally sound argument system) for both com and com · g2

α+2
.

4.5 A VPRG from NIZK for the Almost Short Language
and the SEDL Assumption

With the tools we introduced, we are now ready to present our construction of
a VPRG in a group where CDH is insecure.

Intuition of the Construction. Let DHGen be a deterministic algorithm that,
on input 1λ, returns a description G = (G, p) where G is a cyclic group of prime
order p. Assume that CDH does not hold with respect to DHGen. In the full ver-
sion, we show that this means that there exists a strong CDH solver that allows
to compute “self-pairings” over (G, p) = DHGen(1λ) with negligible error proba-
bility, for infinitely many security parameters λ. We denote (EvalCom,EvalOpen)
the self-pairing algorithm, which evaluates integer arithmetic circuits (IAC) in
the exponent, together with the evaluation algorithm “in the clear” EvalOpen,
satisfying the following:

Theorem 37. Let {Cλ}λ∈N be an ensemble of sets of IAC (with gates (+,×,−))
where each circuit in Cλ has input length n = n(λ) and size L = L(λ). Let the
CDH assumption relative to DHGen be easy. Moreover, let S ⊂ N be the infinite
set of security parameters for which a strong CDH solver exists. Then there exists
a PPT algorithm EvalCom and a deterministic polytime algorithm EvalOpen with
the following properties for all λ ∈ S:

466 G. Couteau et al.

– EvalCom(C, g1, · · · , gn) → h: on input an IAC C ∈ Cλ and (g1, · · · , gn) ∈ G,
it outputs h ∈ G.

– EvalOpen(C, z1, b1, · · · , zn, bn) → z: on input an IAC C ∈ Cλ and ((z1, b1),
· · · , (zn, bn)) ∈ (Z × {0, 1})n, it outputs z ∈ Z.

– Let (�, t) ∈ N
2 such that � + t > 2L2. Further, assume p = |G| to be greater

than L(� + t) · log2 B where B = maxC∈Cλ,(bi∈{0,1})i
C(b1, · · · , bn). Let bi ∈

{0, 1} and wi ∈ [−2�, 2�] for all i ∈ [n]. Then, for any C ∈ Cλ with degree
D and gi = gwi+2�+tbi , if we run h ←r EvalCom(C, g1, · · · , gn), we have
dloggh = w∗ + 2(D+1)(�+t) · C(b1, · · · , bn), where w∗ ∈ [±(2D(�+L+t+2))] and
EvalOpen(C, (wi, bi)i≤n) = w∗, except with negligible probability 2−λ.

We will use this strong CDH solver to build a VPRG over DHGen, which will
satisfy correctness, binding, and hiding for infinitely many security parameters.
We set (PRG.Setup,PRG.Eval) to be Goldreich’s PRG instantiated with the LV
predicate; let PRGi be IAC that computes, given a seed (s1, · · · , sn) as input,
the i-th output bit of PRG.Eval(s1, · · · , sn). Observe that PRGi is a degree-3
integer arithmetic circuit with 9 gates (ignoring the subtractions by a constant,
which are “for free”), where all intermediate values belong to [±1] provided
that the inputs to the IAC are bits. We fix an arbitrary small positive constant
δPRG < 0.25, such that Goldreich’s PRG instantiated with the LV predicate is
conjectured to be secure when stretching n bits to m = n1+δPRG bits.

Fix integers (l, t, κ, c). The high-level intuition of our VPRG is relatively
simple. The commitment to the seed (s1, · · · , sn) is a bit-by-bit commitment
(com1, · · · , comn), with the commitment scheme given in Sect. 4.4, which
computationally hides the seed under the short-exponent discrete logarithm
assumption. The pseudorandom string is simply PRG.Eval(pp, (s1, · · · , sn)).
Given the commitment to the seed, both parties will use the strong CDH
solver, which exists since we assume that CDH does not hold over G. In the
full version, we prove a theorem that shows that the parties can both use
EvalCom(PRGi, com1, · · · , comn) for i = 1 to m = n1+δPRG . For each such i,
denoting comi = gwi+2l+tsi with wi ∈ [±2l] and si ∈ {0, 1}, the parties get

com∗
i ← EvalCom(PRGi, (gwj+2l+tsj)j≤n) = gw∗

i +23(l+t)PRGi(s1,··· ,sn),

with w∗
i ∈ [±(23l+2t+31)]. Let � ← 3l + 2t + 31 and �′ ← � + κ + c + 1. Let

bi ← PRGi(s1, · · · , sn). We set t = 34 + κ + c, which guarantees that �′ + 2 =
3(l + t). Therefore, we have com∗

i = gw∗
i +2�′+2bi . To provably open the i-th

bit of the pseudorandom string to the bit bi, the prover reveals bi, and both
parties homomorphically compute gw∗

i from com∗
i . It remains for the prover to

demonstrate that he revealed the right value bi, which he does using a NIZK
to prove that gw∗

i belongs to L�′,c (which he can do since w∗
i ∈ [±2�]). More

precisely, we will use the CIH from Sect. 4.2 to compile the Σ-protocol for
the language L�′,c from Sect. 4.1, with challenge length c, into a NIZK. Since
�′ + 2 = 3(l + t), and using Lemma 36 from Sect. 4.4, this uniquely binds the
prover to bi.

NIZK in Pairing-Free Groups from Weaker Assumptions 467

Parameters and Assumptions. To apply Lemma 36, we must pick p such
that log p > �′ + 2c + 4 = 3l + 5c + 3κ + 104, where l is such that the p/2l-SEDL
assumption holds over G, and κ is a statistical security parameter. Choosing c
to be polynomially larger than l + κ, we have �′ = 3c + o(c), and we can set p
such that log p = 5c + o(c). Therefore, setting the number of parallel repetitions
of the Σ-protocol for L�′,c to N = 6, we get λ = 5c+6(�′ +c)+o(c) = 29c+o(c).
In turns, this gives p−1 · 2Nc−λ = 2−28c−o(c) = 2−(28/29+o(1))λ. Therefore, the
adaptive soundness of our NIZK for L�′,c reduces to the 2−(28/29+o(1))λ-OW-KDM
security of ElGamal (over the group G̃ of size q ≈ 2λ) w.r.t. efficient functions.
Observe that with this choice of parameters, it holds that p/2l = 2O(

√
log p),

hence the p/2l-SEDL assumption is implied by the 2−O(
√
log p)-OW-KDM security

of ElGamal over G, which is clearly implied by the 2−(28/29+o(1)) log p-OW-KDM
security of ElGamal over G. Due to the large number of parameters involved in
our construction, and to make it more readable, we summarize our parameters
and the constraints they must satisfy in the full version.

Construction. Let NIZKAS = (SetupAS,ProveAS,VerifyAS) be a NIZK for the
almost-short language L�′,c over the group generator DHGen where the CDH
problem is insecure. Given a security parameter n for the VPRG, we set l(n) =
κ(n) = n and c(n) = n2 (so that κ + l = o(c)). We set (�(n), �′(n), λ(n), p(n))
as described previously, and s(n) = n · �log p	. Let m = m(n) be n1+δPRG . Our
construction of VPRG proceeds as follows:

– Setup(1n,m) : run G = (G, p) ←r DHGen(1λ(n)) and sample g ←r G.6

Further, for i = 1 to m, generate crsi ←r SetupAS(1λ(n)) and ppPRG ←r

PRG.Setup(1n). Finally, output pp = (g, (crsi)i≤m, ppPRG).
– Stretch(pp) : pick a seed seed = (s1, · · · , sn) ←r {0, 1}n for PRG. For i = 1 to

n, pick wi ←r [2l] and compute comi ← gwi+2l+tsi . Output pvk ← (com1, · · · ,
comn), x = PRG.Eval(seed), and aux ← (seed, w1, · · · , wn).

– Prove(pp, aux, i) : compute com∗
i ← EvalCom(PRGi, (com1, · · · , comn)) and

w∗
i ← EvalOpen(PRGi, (w1, s1), · · · , (wn, sn)).

Set xi = PRGi(seed), Xi = com∗
i /g2

l+txi and run πAS
i ← ProveAS(crsi,Xi, w

∗
i).

Output π = πAS
i .

– Verify(pp, pvk, i, b, π) : compute com∗
i ← EvalCom(PRGi, (com1, · · · , comn))

and set X = com∗
i /g2

l+tb. Output VerifyAS(crsi,X, π).

Setting (δ(n), s(n)) for VPRG. Before going into the security proofs, let us
assess the parameter values of δ(n) and s(n) of our VPRG. First, we have
m(n) = n1+δPRG where the constant δPRG is the stretch of the underlying
PRG that can be set arbitrary within 0 < δPRG < 0.25. The size of the ver-
ification key is s(n) := n · �log p	, and in particular, s(n) ≤ n1+δPRG/2 for

6 We remark that we assume the CDH problem is insecure over the group G for the
specific parameter λ(n).

468 G. Couteau et al.

all sufficiently large n. Therefore, by setting δ(n) := δPRG/3, we conclude
s(n)1+δ(n) ≤ (n1+δPRG/2)1+δPRG/3 = n1+δPRG = m(n). Specifically, we have a
(s(n) = n · �log p	, δ(n) = δPRG/3)-VPRG.

Theorem 38. If the p/2l-SEDL assumption holds relative to DHGen, CDH does
not hold relative to DHGen, PRG is a secure pseudorandom generator stretch-
ing n bits to n1+δPRG bits for some arbitrarily small positive constant δPRG, and
the NIZK argument system for the almost language L�′(n),c(n) is adaptive sound
and selective single-theorem zero-knowledge, where �′(n) and c(n) are chosen as
described above, then our construction provides an (s(n), δPRG/3)-VPRG (with
s(n) = n · �log p) that is binding and hiding.

The proof of binding is very similar to the proof of Theorem 25. For the
hiding property, in a first hybrids, we first simulate all NIZK proofs, still providing
correct openings. Then, we replace the commitment to the seed by random group
elements, which is indistinguishable from the previous hybrids under the short-
exponent discrete logarithm assumption. Eventually, we replace the PRG values
by random bits, which is indistinguishable under the pseudorandomness of the
PRG. In the last game, the value of all opened bits is perfectly independent
of the value of the unopened bit, hence the advantage of the adversary is 0.
We provide a the full version. Since the above is an (s(n), δ(n))-VPRG for a
constant δ(n) = δPRG/3, by setting n large enough, we can satisfy the condition
required in Theorem 7 for constructing NIZKs for all of NP. In particular, as a
consequence of Theorems 7, 21, 24, and 25, the following is obtained.

Theorem 39. Assume that the CDH assumption does not hold relative to
DHGen, that ElGamal satisfies 2−(28/29+o(1))λ-OW-KDM security with respect
to efficient functions, and that Goldreich’s PRG instantiated with the LV predi-
cate is secure for some (arbitrarily small) polynomial stretch. Then there exists
an infinitely often adaptive sound and adaptive multi-theorem NIZK for all of
NP.

In the full version, we show that combining the results of Sect. 3 with the
results of this section gives us the following theorem.

Theorem 40. Assume that ElGamal satisfies 2−(28/29+o(1))λ-OW-KDM secu-
rity with respect to efficient functions, and that Goldreich’s PRG instantiated
with the LV predicate is secure for some (arbitrarily small) polynomial stretch.
Then there exists an adaptively sound and adaptive multi-theorem infinitely-often
NIZK for NP, whose multi-theorem zero-knowledge property holds against uni-
form adversaries.

Acknowledgements. Shuichi Katsumata was supported by JST CREST Grant Num-
ber JPMJCR19F6. Geoffroy Couteau and Bogdan Ursu were supported by ERC PREP-
CRYPTO Grant Agreement ID 724307. We would like to thank Dennis Hofheinz for
valuable discussions and contributions to the early stages of this work. We are also
grateful for the comments received from the anonymous reviewers of this paper.

NIZK in Pairing-Free Groups from Weaker Assumptions 469

References

1. Abdalla, M., Fouque, P.A., Lyubashevsky, V., Tibouchi, M.: Tightly-secure signa-
tures from lossy identification schemes. In: Pointcheval, D., Johansson, T. (eds.)
EUROCRYPT 2012. LNCS, vol. 7237, pp. 572–590. Springer, Heidelberg (2012).
https://doi.org/10.1007/978-3-642-29011-4 34

2. Alekhnovich, M., Hirsch, E.A., Itsykson, D.: Exponential lower bounds for the
running time of DPLL algorithms on satisfiable formulas. J. Autom. Reason. 35(1–
3), 51–72 (2005)

3. Applebaum, B., Lovett, S.: Algebraic attacks against random local functions and
their countermeasures. In: Wichs, D., Mansour, Y. (eds.) 48th ACM STOC, pp.
1087–1100. ACM Press, New York (2016)

4. Bitansky, N., et al.: Why “Fiat-Shamir for proofs” lacks a proof. In: Sahai, A. (ed.)
TCC 2013. LNCS, vol. 7785, pp. 182–201. Springer, Heidelberg (2013). https://
doi.org/10.1007/978-3-642-36594-2 11

5. Blum, M., Feldman, P., Micali, S.: Non-interactive zero-knowledge and its appli-
cations (extended abstract). In: 20th ACM STOC, pp. 103–112. ACM Press, May
1988

6. Canetti, R., et al.: Fiat-Shamir: from practice to theory. In: Charikar, M., Cohen,
E. (eds.) 51st ACM STOC, pp. 1082–1090. ACM Press, New York (2019)

7. Canetti, R., Chen, Y., Reyzin, L., Rothblum, R.D.: Fiat-Shamir and correlation
intractability from strong KDM-secure encryption. In: Nielsen, J.B., Rijmen, V.
(eds.) EUROCRYPT 2018, Part I. LNCS, vol. 10820, pp. 91–122. Springer, Cham
(2018). https://doi.org/10.1007/978-3-319-78381-9 4

8. Canetti, R., Goldreich, O., Halevi, S.: The random oracle methodology, revisited.
Cryptology ePrint Archive, Report 1998/011 (1998). http://eprint.iacr.org/1998/
011

9. Canetti, R., Goldreich, O., Halevi, S.: The random oracle methodology, revisited.
J. ACM 51(4), 557–594 (2004)

10. Couteau, G., Dupin, A., Méaux, P., Rossi, M., Rotella, Y.: On the concrete security
of Goldreich’s pseudorandom generator. In: Peyrin, T., Galbraith, S. (eds.) ASI-
ACRYPT 2018, Part II. LNCS, vol. 11273, pp. 96–124. Springer, Cham (2018).
https://doi.org/10.1007/978-3-030-03329-3 4

11. Couteau, G., Hofheinz, D.: Designated-verifier pseudorandom generators, and their
applications. In: Ishai, Y., Rijmen, V. (eds.) EUROCRYPT 2019, Part II. LNCS,
vol. 11477, pp. 562–592. Springer, Cham (2019). https://doi.org/10.1007/978-3-
030-17656-3 20

12. Dwork, C., Naor, M.: Zaps and their applications. In: 41st FOCS, pp. 283–293.
IEEE Computer Society Press, November 2000

13. Feige, U., Lapidot, D., Shamir, A.: Multiple non-interactive zero knowledge proofs
based on a single random string (extended abstract). In: 31st FOCS, pp. 308–317.
IEEE Computer Society Press, October 1990

14. Feige, U., Lapidot, D., Shamir, A.: Multiple noninteractive zero knowledge proofs
under general assumptions. SIAM J. Comput. 29(1), 1–28 (1999). https://doi.org/
10.1137/S0097539792230010

15. Fiat, A., Shamir, A.: How to prove yourself: practical solutions to identification and
signature problems. In: Odlyzko, A.M. (ed.) CRYPTO 1986. LNCS, vol. 263, pp.
186–194. Springer, Heidelberg (1987). https://doi.org/10.1007/3-540-47721-7 12

16. Freitag, C., Komargodski, I., Pass, R.: Impossibility of strong KDM security with
auxiliary input. Cryptology ePrint Archive, Report 2019/293 (2019). https://
eprint.iacr.org/2019/293

https://doi.org/10.1007/978-3-642-29011-4_34
https://doi.org/10.1007/978-3-642-36594-2_11
https://doi.org/10.1007/978-3-642-36594-2_11
https://doi.org/10.1007/978-3-319-78381-9_4
http://eprint.iacr.org/1998/011
http://eprint.iacr.org/1998/011
https://doi.org/10.1007/978-3-030-03329-3_4
https://doi.org/10.1007/978-3-030-17656-3_20
https://doi.org/10.1007/978-3-030-17656-3_20
https://doi.org/10.1137/S0097539792230010
https://doi.org/10.1137/S0097539792230010
https://doi.org/10.1007/3-540-47721-7_12
https://eprint.iacr.org/2019/293
https://eprint.iacr.org/2019/293

470 G. Couteau et al.

17. Gentry, C., Wichs, D.: Separating succinct non-interactive arguments from all fal-
sifiable assumptions. In: Fortnow, L., Vadhan, S.P. (eds.) 43rd ACM STOC, pp.
99–108. ACM Press, New York (2011)

18. Goldreich, O.: Candidate one-way functions based on expander graphs. Cryptology
ePrint Archive, Report 2000/063 (2000). http://eprint.iacr.org/2000/063

19. Goldreich, O., Levin, L.A.: A hard-core predicate for all one-way functions. In:
21st ACM STOC, pp. 25–32. ACM Press, May 1989

20. Goldreich, O., Micali, S., Wigderson, A.: Proofs that yield nothing but their validity
and a methodology of cryptographic protocol design (extended abstract). In: 27th
FOCS, pp. 174–187. IEEE Computer Society Press, October 1986

21. Goldwasser, S., Micali, S., Rackoff, C.: The knowledge complexity of interactive
proof systems. SIAM J. Comput. 18(1), 186–208 (1989)

22. Groth, J., Ostrovsky, R., Sahai, A.: Perfect non-interactive zero knowledge for NP.
In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 339–358. Springer,
Heidelberg (2006). https://doi.org/10.1007/11761679 21

23. Groth, J., Sahai, A.: Efficient non-interactive proof systems for bilinear groups.
In: Smart, N. (ed.) EUROCRYPT 2008. LNCS, vol. 4965, pp. 415–432. Springer,
Heidelberg (2008). https://doi.org/10.1007/978-3-540-78967-3 24

24. Holmgren, J., Lombardi, A.: Cryptographic hashing from strong one-way functions
(or: one-way product functions and their applications). In: Thorup, M. (ed.) 59th
FOCS, pp. 850–858. IEEE Computer Society Press, October 2018

25. Kalai, Y.T., Rothblum, G.N., Rothblum, R.D.: From obfuscation to the security
of Fiat-Shamir for proofs. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017, Part II.
LNCS, vol. 10402, pp. 224–251. Springer, Cham (2017). https://doi.org/10.1007/
978-3-319-63715-0 8

26. Katsumata, S., Nishimaki, R., Yamada, S., Yamakawa, T.: Designated veri-
fier/prover and preprocessing NIZKs from Diffie-Hellman assumptions. In: Ishai,
Y., Rijmen, V. (eds.) EUROCRYPT 2019, Part II. LNCS, vol. 11477, pp. 622–651.
Springer, Cham (2019). https://doi.org/10.1007/978-3-030-17656-3 22

27. Koshiba, T., Kurosawa, K.: Short exponent Diffie-Hellman problems. In: Bao, F.,
Deng, R., Zhou, J. (eds.) PKC 2004. LNCS, vol. 2947, pp. 173–186. Springer,
Heidelberg (2004). https://doi.org/10.1007/978-3-540-24632-9 13

28. Lindell, Y.: An efficient transform from sigma protocols to NIZK with a CRS and
non-programmable random oracle. In: Dodis, Y., Nielsen, J.B. (eds.) TCC 2015,
Part I. LNCS, vol. 9014, pp. 93–109. Springer, Heidelberg (2015). https://doi.org/
10.1007/978-3-662-46494-6 5

29. Lombardi, A., Vaikuntanathan, V.: Minimizing the complexity of Goldreich’s pseu-
dorandom generator. Cryptology ePrint Archive, Report 2017/277 (2017). http://
eprint.iacr.org/2017/277

30. Lyubashevsky, V., Neven, G.: One-shot verifiable encryption from lattices. In:
Coron, J.-S., Nielsen, J.B. (eds.) EUROCRYPT 2017, Part I. LNCS, vol. 10210, pp.
293–323. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-56620-7 11

31. Maurer, U.M., Wolf, S.: Diffie-Hellman oracles. In: Koblitz, N. (ed.) CRYPTO
1996. LNCS, vol. 1109, pp. 268–282. Springer, Heidelberg (1996). https://doi.org/
10.1007/3-540-68697-5 21

32. Mossel, E., Shpilka, A., Trevisan, L.: On e-biased generators in NC0. In: 44th
FOCS, pp. 136–145. IEEE Computer Society Press, October 2003

33. Naor, M.: On cryptographic assumptions and challenges. In: Boneh, D. (ed.)
CRYPTO 2003. LNCS, vol. 2729, pp. 96–109. Springer, Heidelberg (2003). https://
doi.org/10.1007/978-3-540-45146-4 6

http://eprint.iacr.org/2000/063
https://doi.org/10.1007/11761679_21
https://doi.org/10.1007/978-3-540-78967-3_24
https://doi.org/10.1007/978-3-319-63715-0_8
https://doi.org/10.1007/978-3-319-63715-0_8
https://doi.org/10.1007/978-3-030-17656-3_22
https://doi.org/10.1007/978-3-540-24632-9_13
https://doi.org/10.1007/978-3-662-46494-6_5
https://doi.org/10.1007/978-3-662-46494-6_5
http://eprint.iacr.org/2017/277
http://eprint.iacr.org/2017/277
https://doi.org/10.1007/978-3-319-56620-7_11
https://doi.org/10.1007/3-540-68697-5_21
https://doi.org/10.1007/3-540-68697-5_21
https://doi.org/10.1007/978-3-540-45146-4_6
https://doi.org/10.1007/978-3-540-45146-4_6

NIZK in Pairing-Free Groups from Weaker Assumptions 471

34. ODonnell, R., Witmer, D.: Goldreich’s PRG: evidence for near-optimal polynomial
stretch. In: 2014 IEEE 29th Conference on Computational Complexity (CCC), pp.
1–12. IEEE (2014)

35. Oren, Y.: On the cunning power of cheating verifiers: some observations about
zero knowledge proofs (extended abstract). In: 28th FOCS, pp. 462–471. IEEE
Computer Society Press, October 1987

36. Ostrovsky, R., Wigderson, A.: One-way functions are essential for non-trivial zero-
knowledge. In: Proceedings of the 2nd Israel Symposium on the Theory and Com-
puting Systems, pp. 3–17. IEEE (1993)

37. Peikert, C., Shiehian, S.: Noninteractive zero knowledge for NP from (plain) learn-
ing with errors. In: Boldyreva, A., Micciancio, D. (eds.) CRYPTO 2019, Part I.
LNCS, vol. 11692, pp. 89–114. Springer, Cham (2019). https://doi.org/10.1007/
978-3-030-26948-7 4

38. Pollard, J.M.: A Monte Carlo method for factorization. BIT Numer. Math. 15(3),
331–334 (1975). https://doi.org/10.1007/BF01933667

39. Quach, W., Rothblum, R.D., Wichs, D.: Reusable designated-verifier NIZKs for
all NP from CDH. In: Ishai, Y., Rijmen, V. (eds.) EUROCRYPT 2019, Part II.
LNCS, vol. 11477, pp. 593–621. Springer, Cham (2019). https://doi.org/10.1007/
978-3-030-17656-3 21

40. Sahai, A., Waters, B.: How to use indistinguishability obfuscation: deniable encryp-
tion, and more. In: Shmoys, D.B. (ed.) 46th ACM STOC, pp. 475–484. ACM Press,
New York (2014)

41. Shoup, V.: Lower bounds for discrete logarithms and related problems. In: Fumy,
W. (ed.) EUROCRYPT 1997. LNCS, vol. 1233, pp. 256–266. Springer, Heidelberg
(1997). https://doi.org/10.1007/3-540-69053-0 18

https://doi.org/10.1007/978-3-030-26948-7_4
https://doi.org/10.1007/978-3-030-26948-7_4
https://doi.org/10.1007/BF01933667
https://doi.org/10.1007/978-3-030-17656-3_21
https://doi.org/10.1007/978-3-030-17656-3_21
https://doi.org/10.1007/3-540-69053-0_18

Public-Key Encryption

Everybody’s a Target:
Scalability in Public-Key Encryption

Benedikt Auerbach1(B) , Federico Giacon2(B), and Eike Kiltz3

1 IST Austria, Klosterneuburg, Austria
benedikt.auerbach@ist.ac.at

2 Gnosis Service GmbH, Berlin, Germany
federico.giacon@rub.de

3 Ruhr-Universität Bochum, Bochum, Germany
eike.kiltz@rub.de

Abstract. For 1 ≤ m ≤ n, we consider a natural m-out-of-n multi-
instance scenario for a public-key encryption (PKE) scheme. An adver-
sary, given n independent instances of PKE, wins if he breaks at least
m out of the n instances. In this work, we are interested in the scaling
factor of PKE schemes, SF, which measures how well the difficulty of
breaking m out of the n instances scales in m. That is, a scaling factor
SF = � indicates that breaking m out of n instances is at least � times
more difficult than breaking one single instance. A PKE scheme with
small scaling factor hence provides an ideal target for mass surveillance.
In fact, the Logjam attack (CCS 2015) implicitly exploited, among other
things, an almost constant scaling factor of ElGamal over finite fields
(with shared group parameters).

For Hashed ElGamal over elliptic curves, we use the generic group
model to describe how the scaling factor depends on the scheme’s granu-
larity. In low granularity, meaning each public key contains its indepen-
dent group parameter, the scheme has optimal scaling factor SF = m;
In medium and high granularity, meaning all public keys share the
same group parameter, the scheme still has a reasonable scaling fac-
tor SF =

√
m. Our findings underline that instantiating ElGamal over

elliptic curves should be preferred to finite fields in a multi-instance
scenario.

As our main technical contribution, we derive new generic-group lower
bounds of Ω(√mp) on the complexity of both the m-out-of-n Gap Dis-
crete Logarithm and the m-out-of-n Gap Computational Diffie-Hellman
problem over groups of prime order p, extending a recent result by Yun
(EUROCRYPT 2015). We establish the lower bound by studying the
hardness of a related computational problem which we call the search-
by-hypersurface problem.

c© International Association for Cryptologic Research 2020
A. Canteaut and Y. Ishai (Eds.): EUROCRYPT 2020, LNCS 12107, pp. 475–506, 2020.
https://doi.org/10.1007/978-3-030-45727-3_16

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-45727-3_16&domain=pdf
http://orcid.org/0000-0002-7553-6606
http://orcid.org/0000-0003-1178-048X
https://doi.org/10.1007/978-3-030-45727-3_16

476 B. Auerbach et al.

1 Introduction

For integers 1 ≤ m ≤ n, consider the following natural m-out-of-n multi-instance
attack scenario for a public-key encryption scheme PKE1. An attacker is given
n independent instances (public keys) of PKE and would like to simultaneously
break semantic security at least m out of n instances. Note that this is a dif-
ferent setting from the standard, well studied, multi-user attack scenario by
Bellare et al. [7]. In the (security-wise) best possible scenario, running an m-out-
of-n multi-instance attack is m times more difficult compared to a (standard)
single-instance attack. However, there is no guarantee that breaking m-out-of-n
instances is more difficult than breaking a single instance.

This motivates the following question:

How well does the difficulty of breaking m out of n instances of
PKE scale with m?

In order to give a quantitative answer to this question, we define the scaling
factor (relative to a fixed security notion) of PKE as

SFm,n
PKE = resources necessary to break m out of n instances

resources necessary to break 1 instance , (1)

where “resources” refers to the running time to break PKE in the studied security
notion. Clearly, the larger SFPKE, the better are the security guarantees in the
multi-instance setting. The best we can hope for is SFm,n

PKE = m, meaning that
breaking m out of n instances amounts to breaking m times a single instance of
PKE.

Scaling Factor and Mass Surveillance. In 2012, James Bamford wrote in
Wired:

According to another top official also involved with the program, the NSA
made an enormous breakthrough several years ago in its ability to crypt-
analyze, or break, unfathomably complex encryption systems employed by
not only governments around the world but also many average computer
users in the US. The upshot, according to this official: “Everybody’s a
target; everybody with communication is a target.”

This statement should appear as a surprise to the cryptographic community:
Parameters for cryptographic schemes are usually chosen to make even compro-
mising a single user a daunting challenge, meaning multi-instance attacks seem
out of scope even for adversaries with nation-state capabilities. Unfortunately,
the use of outdated parameters is a widespread occurrence in practice [2,19],
either as a consequence of legacy infrastructure or hardware restrictions. In this
case, a bad scaling factor would tip the scale from single compromised users
to full-scale mass surveillance. Even more so, the hardness of several common
number-theoretic problems is known to scale sub-optimally in the number of
1 Formally, in this work we consider key-encapsulation mechanisms.

Everybody’s a Target: Scalability in Public-Key Encryption 477

Table 1. Shared public system parameters and individual public keys for schemes
HEG[GGenE(F�), gran] and HEG[GGenF∗

�
, gran] at different granularities. Here g gener-

ates a subgroup of prime order p of either an elliptic curve E(F�) or a finite field F
∗
�

and � is a prime.

PKE Setting Shared param. Public key pki

HEG[GGenE(F�), high] Elliptic curve E(F�), p, g gxi

HEG[GGenE(F�), med] Elliptic curve E(F�), p gi, gxi
i

HEG[GGenE(F�), low] Elliptic curve – Ei(F�i), pi, gi, gxi
i

HEG[GGenF∗
�
, high] Finite field F

∗
� , p, g gxi

HEG[GGenF∗
�
, med] Finite field F

∗
� , p gi, gxi

i

HEG[GGenF∗
�
, low] Finite field – F�i , pi, gi, gxi

i

instances. Examples are factoring [11] and computing discrete logarithms in the
finite-field [4,5] and elliptic-curve [18,20,22] setting. This sub-optimal scaling
is typically inherited by the corresponding cryptographic schemes. It has been
exploited in practice by the famous Logjam attack [2], where the authors break
many Diffie-Hellman instances in TLS with nearly the same resources as to break
a single Diffie-Hellman instance. Concretely, the Logjam attack could success-
fully break multiple 512-bit finite-field instances, and the authors also speculate
about the feasibility of breaking 1024-bit instances. With our work we aim to
deliver positive results by computing (non-trivial lower bounds on) the scaling
factors of concrete encryption schemes that are currently employed in practice,
thereby providing bounds on the hardness of performing mass surveillance.

Considered Encryption Schemes. We are able to provide non-trivial
bounds on the scaling factor for Hashed ElGamal (HEG), also known
as DHIES [1], in the elliptic curve (HEG[GGenE(F�)]) and the finite
field (HEG[GGenF∗

�
]) setting, the arguably most widely used discrete-

logarithm-type encryption schemes. Here GGenE(F�) and GGenF∗
�

are group-
generating algorithms that generate prime-order subgroups of elliptic curves
and finite fields respectively. In both cases, � denotes randomly cho-
sen primes of appropriate size. We consider both schemes instantiated in
three different granularity settings (low, medium, and high), leading to
six schemes, HEG[GGenE(F�), low], HEG[GGenE(F�), med], HEG[GGenE(F�), high],
HEG[GGenF∗

�
, low], HEG[GGenF∗

�
, med], and HEG[GGenF∗

�
, high], which offer dif-

ferent trade-offs between public key sizes and scalability. The term granularity
specifies which parts of the scheme’s parameters belong to the global system
parameters (shared among all n users), and which parts belong to the individ-
ual, user-specific public keys. Table 1 depicts the shared public system param-
eters and individual keys in a multi-instance setting with n parties for HEG at
different granularities.

478 B. Auerbach et al.

1.1 Our Results

Formal Definitions: Multi-Instance Security. The notion of n-out-of-n
multi-instance security for any n ≥ 1 was first considered and formally defined
by Bellare et al. [8] in the setting of secret-key encryption. As our first contribu-
tion, we extend their notion to m-out-of-n multi-instance security for public-key
encryption, for arbitrary 1 ≤ m ≤ n. In fact, we give two different notions,
modeling (m, n)-CPA (passive) and (m, n)-CCA (active) security.

Our (m, n)-CPA experiment provides the adversary with n independent pub-
lic keys pk[1], . . . , pk[n]. Next, it picks n independent challenge bits b[1], . . . , b[n]
and grants the adversary access to oracle Enc(·, ·, ·) which, given i, M0, M1,
returns an encryption of message Mb[i] under pk[i]. The adversary outputs a
single bit b′ together with a list L ⊆ {1, . . . , n} of cardinality at least m. The
advantage function is defined as

Adv(m,n)-cpa
PKE = Pr

[
b′ =

⊕
i∈L

b[i]
]

− 1
2 .

That is, the adversary wins if it guesses correctly the XOR of at least m (out of
n) challenge bits. (Note that the standard multi-user security notion for PKE [7]
is different: Most importantly, multi-user security involves only a single challenge
bit, in particular limiting this notion to the case of m = 1.) Why using XOR
for defining the winning condition? Bellare et al. [8] argue that this is a natural
metric because its well-known “sensitivity” means that as long as at least one
of the challenge bits looks random to the adversary so does their XOR. They
further argue that other possible winning conditions such as using AND2 are less
natural and lead to inconsistencies. We refer to Bellare et al. [8] for an extensive
discussion. In (m, n)-CCA security, the adversary is furthermore provided with a
decryption oracle Dec(·, ·) which given i, c returns a decryption of c under sk[i].
To expand on the characteristics of the multi-instance setting, we determine the
relations between the security notions (m, n)-CPA and (m, n)-CCA for different
values of m and n. The natural results we are able to show in this regard (among
others, the intuitive idea that a single-instance adversary of advantage ε and
running time t can be extended to an m-out-of-n adversary of advantage εm and
running time mt; see Theorem 1) give us further confidence on the significance of
the chosen multi-instance security definition, and enable us to present a formally
sound definition of the scaling factor.

Scaling Factor of HEG[GGenE(F�), ·] and HEG[GGenF∗
�
, ·]. In order to give a

lower bound on SFm,n
PKE as defined in Eq. (1), we need to lower bound the numera-

tor (i.e., resources required to break m out of n instances) for all possible adver-
saries and upper bound the denominator (i.e., resources needed to break one
instance) by specifying a concrete adversary. Unfortunately, unless the famous
P vs. NP problem is settled, all meaningful lower bounds on the resources will

2 I.e., by letting the adversary output a vector b′[1], . . . , b′[n] and a set I and defining
the advantage function as Adv(m,n)-cpa

PKE = Pr[
∧

i∈I
b[i] = b′[i]] − 1/2m.

Everybody’s a Target: Scalability in Public-Key Encryption 479

Table 2. Lower bounds on the scaling factor SFm,n
HEG relative to (m, n)-CCA security.

L�(1/3, c) is defined as exp((c + o(1))(log �)1/3(log log �)2/3). In the finite field case
m = L�(1/3, δ) for some δ ≥ 0.

PKE Setting Scaling factor
HEG[GGenE(F�), {high, med}] Elliptic curve Θ(

√
m)

HEG[GGenE(F�), low] Elliptic curve Θ(m)

HEG[GGenF∗
�

, {high, med}] Finite field

{
1 δ ≤ 0.67
L�(1/3, δ − 0.67) δ > 0.67

HEG[GGenF∗
�

, low] Finite field

{
L�(1/3, δ) 0 ≤ δ < 0.105
L�(1/3, 0.105) 0.105 ≤ δ < 0.368
L�(1/3, −0.263 + δ) 0.368 ≤ δ

require either an unproven complexity assumption or a restricted model of com-
putation. We rely on the generic group model [28] for HEG[GGenE(F�), ·] (which
is considered to be meaningful for elliptic-curve groups) and on a hypothesis on
the running time of variants of the number field sieve for HEG[GGenF∗

�
, ·] based

on the fastest known attacks on finite fields.
Our main results regarding the scaling factor SFm,n

HEG in different granularities
relative to (m, n)-CCA security are summarized in Table 2. In both considered
group instantiations, HEG shows the same asymptotic scaling behavior for high
and medium granularity. In both cases however, HEG scales better in the low-
granularity case. Concretely, Hashed ElGamal over elliptic curves (modeled as
generic groups) scales optimally for low-granularity parameters. For medium and
high granularity, on the other hand, the scaling factor is of order Θ(

√
m), where

the constants hidden by the Θ-notation are small.
Let L�(1/3, c) := exp((c + o(1))(log �)1/3(log log �)2/3). For HEG in the finite

field setting with respect to high and medium granularity, we see that the
scaling factor is roughly 1 for up to m = L�(1/3, 0.67) instances, the point
starting from which the cumulative cost of breaking m individual instances
outweighs the cost of the precomputation. Beyond, the KEM scales linearly
with slope L�(1/3, −0.67). Note that L�(1/3, 0.67) is large for typical values
of �. Concretely, for 512 bit primes we get that L�(1/3, 0.67) ≈ 222 meaning
that the effort of breaking 222 instances roughly equals the effort to break
a single instance. While the concrete number is obtained ignoring the o(1)
terms in L�, it still matches empirical results [2, Table 2]. For low granular-
ity and for up to L�(1/3, 0.105) instances, HEG[GGenF∗

�
, low] scales optimally.

For L�(1/3, 0.105) ≤ m ≤ L�(1/3, 0.368), the scaling factor is roughly constant,
and for larger numbers of instances, it scales linearly with slope L�(1/3, −0.263)
which is far larger than the slope in the case of medium or high granularity.

Summing up, Hashed ElGamal instantiated with elliptic curve groups shows
a better scaling behavior than the corresponding instantiation in the finite-field
setting. Further, in both cases switching from the high granularity setting to
the medium granularity setting does not improve the scaling behavior, while the

480 B. Auerbach et al.

Table 3. Example values of scaling factor SF(m,m)-cca
HEG[GGen,gran] for different values of m and

�, GGen ∈ {GGenE(F�),GGenF∗
�
}, and gran ∈ {high, med, low}.

Elliptic curve Finite field
m � high, med low high, med low
220 512 210 220 1.21 211.26

1024 210 220 1.00 28.26

2048 210 220 1.00 26.64

230 512 215 230 27.73 221.26

1024 215 230 1.85 218.13

2048 215 230 1.00 214.02

use of individual groups, i.e., low-granularity parameters does. To illustrate our
findings we provide example values of the scaling factor for different numbers of
instances m and prime sizes � in Table 3.

While our results imply that the use of low-granularity parameters is prefer-
able with respect to security scaling, we stress that generating cryptographically
secure groups is a hard and error prone process. Delegating this task to the
the individual user as part of the key generation might actually have a negative
impact on the scheme’s security in practice. Further, the use of individual groups
negatively impacts the efficiency of the scheme, as key generation requires the
sampling of secure groups, and key-sizes increase.

Derivation of the Scaling Factors. As we will explain below in more
detail, the bounds from Table 2 are obtained in two steps. In a first step, we
consider an m-out-of-n multi-instance version of the Gap Computational Diffie-
Hellman problem, (m, n)-GapCDH[GGen, gran], where the term “gap” refers to
the presence of a Decisional Diffie-Hellman (DDH) oracle. The following theorem
holds for all GGen ∈ {GGenE(F�),GGenF∗

�
} and gran ∈ {high, med, low}.

Theorem. The (m, n)-CCA security of HEG[GGen, gran] is tightly implied by
the hardness of (m, n)-GapCDH[GGen, gran].

The theorem (described formally in Sect. 4) is a somewhat straightforward gen-
eralization of the single-instance case [1]. We stress that tightness in our previous
theorem is an essential ingredient to obtain overall tight bounds on the scaling
factor.

In a second step, we provide bounds on the (m, n)-GapCDH[GGen, gran]
problem. In the finite field case, we rely on the following hypothesis:

Hypothesis 1. The fastest algorithms to break (m, n)-GapCDH[GGenF∗
�
, gran]

are variants of the number field sieve [4,5] which require running time

T =
{

L�(1/3, 1.902) +m · L�(1/3, 1.232) gran ∈ {high, med}
min{m · L�(1/3, 1.902), L�(1/3, 2.007) +m · L�(1/3, 1.639)} gran = low .

Everybody’s a Target: Scalability in Public-Key Encryption 481

The lower bounds on SFm,n for HEG[GGenF∗
�
, gran] are obtained by combin-

ing the previous theorem and Hypothesis 1. The running times specified in the
hypothesis stem from the multi-field NFS [5] (high/medium granularity) and
the DLOG factory [4] (low granularity). Both variants first require an instance-
independent precomputation. Then instances can be solved with a constant com-
putational effort. The values δ = 0.67 and δ = 0.368 of Table 2 correspond to
the number of instances starting from which the cumulative cost of breaking the
instances outweighs the cost of the precomputation.

In the elliptic-curve case, we make the hypothesis that the fastest adversary
attacking the system is a generic-group adversary. Concretely, we prove the fol-
lowing generic-group lower bounds for (m, n)-GapCDH[GGengg, gran] in different
granularities, where GGengg generates a generic group [28] of prime order p, and
the granularity gran determines how much information about the used group is
shared amongst the challenge instances (see Table 4).

Theorem. The best generic algorithm to break (m, n)-GapCDH[GGengg, gran]
requires running time

T =
{

Θ(√mp) gran ∈ {high, med}
Θ(m√

p) gran = low
,

and the constants hidden by the Θ notation are small (between 0.1 and 6.6).

The lower bounds on SFm,n for HEG[GGenE(F�), gran] are obtained by combin-
ing our previous theorems and assuming that elliptic-curve groups behave like
generic groups.

1.2 Generic Bounds on Multi-Instance GapCDH: Technical Details

We consider multi-instance variants of three different problems: the discrete log-
arithm problem ((m, n)-DL[GGengg, gran]), the gap discrete logarithm problem
((m, n)-GapDL[GGengg, gran]), and the gap computational Diffie-Hellman prob-
lem ((m, n)-GapCDH[GGengg, gran]) in different granularities, see Table 4.

We now discuss the complexity column of Table 4. It is well known that the
running time of solving (m, n)-DL[GGengg, high] is Θ(√mp), the lower bound
being in the generic group model [29,30], the matching upper bound stemming
from a concrete generic algorithm [22]. It is not hard to see that the bounds
on (m, n)-DL[GGengg, med] are basically the same because the generators gi can
be viewed as “high-granularity instances” gxj . Concerning low granularity, it is
noteworthy to mention the bound for the case m = n by Garay et al. [17]. Using
different techniques, we are able to improve their bound from √

mp to m
√

p. In
addition, our bound also holds in the case m < n and in the gap setting.

Our first main technical result (Corollary 1) is a non-trivial extension of
Yun’s generic lower bound [30] to the gap setting, i.e., a new lower bound of
Ω(√mp) on solving (m, m)-GapDL[GGengg, high]. Based on this result, we also
deduce bounds in the case of medium and low granularity.

482 B. Auerbach et al.

Table 4. Definition and generic-group complexity of problems (m, n)-DL[GGen, gran],
(m, n)-GapDL[GGen, gran], and (m, n)-GapCDH[GGen, gran], where gran belongs to
{high, med, low}. G and Gi are generic groups of prime order p and pi, with generators
g and gi, respectively. The third column defines the problem’s winning condition. The
Gap column indicates the presence of a DDH oracle.

m-out-of-n problem Given Break m out of Gap? Complexity Ref.

DL[GGen, high] G, p, g, gx1, . . . , gxn x1, . . . , xn – Θ(√
mp) [22,29,30]

DL[GGen, med] G, p, g1, gx1
1 , . . . , gn, gxn

n
x1, . . . , xn – Θ(√

mp) full version [3]
DL[GGen, low] G1, p1, g1, gx1

1 , . . . , Gn, pn, gn, gxn

n
x1, . . . , xn – Θ(m

√
p) full version [3]

GapDL[GGen, high] G, p, g, gx1, . . . , gxn x1, . . . , xn � Θ(√
mp) §5.2

GapDL[GGen, med] G, p, g1, gx1
1 , . . . , gn, gxn

n
x1, . . . , xn � Θ(√

mp) full version [3]
GapDL[GGen, low] G1, p1, g1, gx1

1 , . . . , Gn, pn, gn, gxn

n
x1, . . . , xn � Θ(m

√
p) full version [3]

GapCDH[GGen, high] G, p, g, gx1, gy1, . . . , gxn, gyn gx1y1, . . . , gxn yn � Θ(√
mp) §6.1

GapCDH[GGen, med] G, p, g1, gx1
1 , gy1

1 , . . . , gn, gxn

n
, gyn

n
gx1y1

1 , . . . , gxn yn

n
� Θ(√

mp) §6.2
GapCDH[GGen, low] G1, p1, g1, gx1

1 , gy1
1 , . . . , Gn, pn, gn, gxn

n
, gyn

n
gx1y1

1 , . . . , gxn yn

n
� Θ(m

√
p) §6.3

Our second main technical result (Theorem 4) states that, in high gran-
ularity, the (m, m)-GapDL and the (m, n)-GapCDH problems are essentially
equally hard in the algebraic group model [16], hence implying the required
bounds in the generic group model. The results in medium and low granularity
follow as in the discrete logarithm setting.

Main Technical Result 1: Lower Bound on (m, m)-GapDL[GGengg,high].
We define a new “hard” problem called the polycheck discrete logarithm prob-
lem: The security game is the same as that of standard multi-instance DL,
but the adversary has additional access to an oracle Eval that behaves as fol-
lows: Given as input to Eval a polynomial f ∈ Zp[X1, . . . , Xk] and group ele-
ments gx1 , . . . , gxk , it returns 1 if and only if gf(x1,...,xk) = 1. This problem is
easier than GapDL: In fact, we can simulate the gap oracle DDH(gx, gy, gz)
by querying Eval(f := X1X2 − X3, gx, gy, gz). In the generic group model,
we can bound the advantage of an adversary against the m-out-of-m poly-
check discrete logarithm problem that queries polynomial of degree at most d
((m, m)-d-PolyDL[GGengg, high]) as

Adv(m,m)-d-polydl �
(

dq2 + dqEval

mp

)m

,

where q bounds the queries to the group-operation oracle, qEval to Eval, and p is
the order of the generic group. The bound for high-granularity GapDL follows
by setting d = 2.

The result is proven by extending the arguments by Yun [30] for the stan-
dard multi-instance DL problem. In line with Yun’s approach, we define the
search-by-hypersurface problem in dimension m (m-SHSd[p]), which requires to
find a uniformly sampled point a ∈ Z

m
p while being able to check whether

a is a zero of adaptively chosen polynomials in Zp[X1, . . . , Xm] of degree at
most d. Notably, Yun’s search-by-hyperplane-queries problem in dimension m is
equivalent to m-SHS1. We stress that the more general case of d ≥ 1 requires

Everybody’s a Target: Scalability in Public-Key Encryption 483

significantly different arguments from commutative algebra/algebraic geometry,
compared to the linear algebra argument used for the DL bound.

We show that any generic adversary against (m, m)-d-PolyDL[GGengg, high]
can be transformed into an adversary against m-SHSd, and then proceed to
bound the advantage of an adversary against m-SHSd. The key step is observ-
ing that an adversary can make at most m useful hypersurface queries, that is,
queries that return 1 (hence, identify a hypersurface on which the point a lies)
and whose output is not easy to determine based on previous queries. The key
difference between our result and Yun’s lies in how useful queries are processed
and counted. Since Yun considers only polynomials of degree 1, a hypersurface
defined by a polynomial of degree 1 is a hyperplane of the affine space Z

m
p . Each

useful query identifies another hyperplane on which the sought point lies. When
intersecting another hyperplane with the intersection of the hyperplanes previ-
ously found, the dimension of the intersection as an affine subspace is brought
down by one. The dimension of the full affine space being m, at most m such
queries can be made before identifying a single point (dimension 0). However,
generalizing to hypersurfaces generated by polynomials of degree ≥ 2 requires
to carry over more sophisticated arguments from commutative algebra. Firstly,
intersecting m hypersurfaces does not, in general, identify a single point. Sec-
ondly, intersection of two hypersurfaces might give rise to the union of two or
more irreducible components. Intersecting further with a hypersurface contain-
ing just one of those irreducible components would qualify as a useful query,
however would not bring down the dimension of the intersection by one. This
impasse is overcome by guessing the correct component at each step. Fortunately,
Bézout’s theorem and a discerning choice of the guessing probabilities at each
useful query makes the argument go through with just an additional loss of dm,
which is absorbed by the exponential bound in the dimension.

Main Technical Result 2: (m, m)-GapDL[GGen, high] Hardness Implies

(m, n)-GapCDH[GGen, high]. The algebraic group model [16] is a technique
used to extend existing bounds in the generic group model to different prob-
lems by means of generic reductions. Our second technical result (Theorem 4)
presents a generic reduction between the problems (m, n)-GapCDH[GGen,high]
and (m, m)-GapDL[GGen,high] with a tightness loss of 2m in the algebraic group
model. Combining this with the generic-group lower bound we prove as our first
main technical result, we obtain, in the generic group model:

Adv(m,n)-gcdh
high

Th. 4≤ 2m · Adv(m,m)-gdl
high

Cor. 1
� 2m

(
q2 + qDDH

mp

)m

≈
(

2q2

mp

)m

,

where q bounds the queries to the group-operation oracle, qDDH to the gap oracle,
and p is the order of the generic group. Note that the reduction’s exponential loss
of 2m gets swallowed by the (m, m)-GapDL[GGengg, high] bound. More impor-
tantly, by the above bound one requires q ≥ Ω(√mp) generic-group operations
to break (m, n)-GapCDH[GGengg, high] with overwhelming advantage.

A natural approach to tackle the proof of Theorem 4 would be to adapt the
single-instance proof presented by Fuchsbauer et al. [16] to the multi-instance

484 B. Auerbach et al.

setting. Following this strategy in a reduction, however, one would need to argue
about the size of the solution set of a multivariate system of quadratic equations.
In this work we employ significantly different proof techniques.

The path we pursue maintains, instead, the linear character of the system.
The reduction distributes the i-th DL challenges in either the X or Y components
of the i-th challenges to the CDH adversary. The intuition at the core of the
proof is that an adversary finding the CDH solution for any one instance must
provide the DL of at least one of the two corresponding challenge components
(even if possibly depending on the remaining, unrecovered DLs). If the reduction
manages to embed the m DL challenges at the right spot, then it is able to recover
all logarithms. The reduction loss of 2m is consequence of this guess. Moreover,
expanding the m DL challenges into n CDH challenges adds a further layer of
complexity.

1.3 Related Work and Future Directions

Related Work. Multi-instance security in the sense of breaking m out of m
instances was first formally considered in the setting of symmetric encryption
by Bellare et al. [8]. We point out that the term is sometimes also used to
describe multi-user, multi-challenge generalizations of single-instance security
notions [21].

The (single-instance) GapCDH problem was introduced by Okamoto and
Pointcheval [25]. Boneh et al. [12] and Rupp et al. [26] provide frameworks in
the generic-group model that can be used to derive generic-group lower bounds
on the hardness of many single-instance problems, gapCDH amongst others. The
generic hardness of (m, m)-DL in the high-granularity setting was first analyzed
by Yun [30], the result later generalized to (m, n)-DL by Ying and Kunihiro [29].
Kuhn and Struik [22], and Fouque et al. [15] give generic algorithms matching
the lower bounds. The first bound for (m, m)-DL in the low granularity setting
was derived by Garay et al. [17]. The algebraic-group model was introduced by
Fuchsbauer et al. [16]. Mizuide et al. [24] provide a framework that can be used
to reduce single-instance CDH-type problems to the discrete-logarithm problem
in the algebraic-group model.

Bartusek et al. [6] and Sadeghi et al. [27] discuss differences between DL-type
assumptions depending on whether the used group and group generator are fixed
or sampled at random. We stress that in this work groups and group generators,
while potentially shared amongst different users, are sampled at the beginning
of the game and hence part of its probability space.

Future Directions. Corrigan-Gibbs and Kogan [14] consider the multi-
instance discrete logarithm problem in a setting where the adversary is allowed
to first perform unbounded preprocessing over the group to produce an advice
string of bounded size, which in a second stage is used to solve multiple discrete
logarithm instances. The resulting lower bounds in the generic group model were
also derived by Coretti et al. [13] using a different technique. It would be inter-
esting to compute scaling factors of the considered schemes taking preprocessing
into account. Another possible direction is to derive lower bounds on the scaling

Everybody’s a Target: Scalability in Public-Key Encryption 485

factor for practical encryption schemes in the RSA setting (e.g., RSA-OAEP [9])
and in the post-quantum setting (e.g., based on lattices and codes).

2 Preliminaries

2.1 Notation

Vector Notation. We denote vectors with boldface fonts, for example v. The
number of elements of a vector is represented by |v|. Element indexing starts
from 1, and the entry at position i is accessed through square brackets: v[i]. To
initialize all entries of a vector to some element a we write v[·] ← a. We may
initialize multiple vectors simultaneously, and moreover initialize them through
running some (possibly randomized) routine. As an example, we could initialize
a vector of public and of secret keys as (pk, sk)[·] ←$ Gen to indicate that
for every index i we run Gen with fresh randomness and, denoting the output
with (pk, sk), set pk[i] ← pk and sk[i] ← sk. Given any set of indices I, we
denote with v[I] the vector that contains only the entries indexed with elements
in I. For example, if v = (a, b, c) then v[{1, 3}] = (a, c). We slightly abuse this
notation, writing v[I] ← w when replacing each entry of v whose indices belong
to I by the elements of w in their order. For example, if v = (a, b, c) and we
execute v[{1, 3}] ← (d, e) then v = (d, b, e).

Group Notation. In this paper we consider groups G of prime order p, gen-
erated by g. We call G = (G, p, g) a group representation. A group-generating
algorithm GGen is a randomized algorithm that outputs a group representa-
tion G. We assume that all groups output by GGen are of the same bit length.

In this work we consider two instantiations GGenE(F�) and GGenF∗
�

of group-
generating algorithms. In both cases � denotes a randomly sampled prime of
appropriate size. Group descriptions G output by GGenE(F�) are prime-order p
subgroups of elliptic curves defined over the field F�. Group descriptions output
by the second considered group-generating algorithm GGenF∗

�
are subgroups of

the multiplicative group F
∗
� of sufficiently large prime order.

Except for the group generators, all group elements will be denoted with
uppercase letters, e.g., X. We use vectors and matrices of elements in Zp to
compute with group elements: If Y is a group element and x is a vector of
elements in Zp, we write Y x to denote the group element vector (Y x[1], Y x[2], . . .).
Similarly, given some matrix M = (mij)i,j∈[1 .. n]×[1 .. k] and a vector of group
elements Y of size k, we define Y M to be the n-size vector (Y [1]m11 . . .Y [k]m1k ,
. . . ,Y [1]mn1 . . .Y [k]mnk). Note that if Y = gy then Y M = gMy.

Security Games. We define security notions via code-based games [10]. A
game G consists of a main procedure and zero or more oracles that can be accessed
from within the game. The game is defined with respect to an adversary A, which
is invoked within the main procedure. The adversary may have access to some of
the oracles of the game: The ability to access oracle O is represented by invoking
the adversary as AO. When the game stops, it outputs either a success (1) or a fail-
ure (0) symbol. With Pr[G(A)] we denote the probability that adversary A wins,
i.e., that game G, executed with respect to A, stops with output 1.

486 B. Auerbach et al.

2.2 Generic/Algebraic Group Model

Generic Group Model. Intuitively, the Generic Group Model (GGM) is an
abstraction to study the behavior of adversaries that do not exploit any specific
structure of the group at play, but rather treat the group in a black-box fash-
ion. This is usually modeled by representing group elements exclusively through
“opaque” handles, which hide the structure of the group. These handles are
used as input to a model-bound oracle, the group-operation oracle, which is the
only interface to the group available to the adversary. An algorithm with such
restrictions is referred to as a generic algorithm. The running time of generic
adversaries is normally measured in number of calls to the group-operation ora-
cle. For further details on the GGM we refer to the literature [23,28]. To derive
bounds on the hardness of solving certain computational problems with respect
to GGenE(F�) we model the output elliptic curves as generic groups. For clarity,
in this case we denote the group-generating algorithm by GGengg.
Algebraic Group Model. For every group element Z it returns, an algebraic
algorithm A must present a description of this element in terms of the elements
it has previously seen. That is, if n is the order of the group and X1, . . . , Xk are
the elements that A received so far from the game, then A must return some
elements a1, . . . , ak ∈ Zn such that Z = Xa1

1 . . . Xak

k . We use the algebraic group
model to analyze generic reductions:

Note that a generic reduction executed with respect to a generic adversary
is itself a generic algorithm. Without loss of generality we may assume that
generic adversaries are algebraic, which allows the reduction to exploit the use-
ful algebraic representation of the input group elements. As demonstrated by
Fuchsbauer et al. [16], this idea gives a handy technique for carrying over generic
lower bounds through generic reductions, as seen in the following lemma.

Lemma 1. ([16, Lemma 1]). Let α, Δ be constants and let R be a generic
reduction R from game G1 to G0. Assume that for every generic adversary A
that succeeds with probability ε and makes at most q group-operation queries,
reduction R executed with respect to A makes at most q + Δ group-operation
queries and succeeds with probability of at least αε. If there exists a function f
such that Pr[G1(B)] ≤ f(q) for every generic adversary B making at most q
group-operation queries, then for every generic adversary A making at most q
group-operation queries we obtain Pr[G0(A)] ≤ α−1f(q + Δ).

2.3 Key-Encapsulation Mechanisms

A key-encapsulation mechanism (KEM) KEM specifies the following. Parameter
generation algorithm Par generates public parameters par to be utilized by all
users. Key-generation algorithm Gen gets the parameters as input and outputs a
pair (pk, sk) consisting of a public and a secret key. Encapsulation algorithm Enc
on input of the parameters and a public key outputs a pair (K, c) consisting

Everybody’s a Target: Scalability in Public-Key Encryption 487

of an encapsulated key K belonging to the encapsulated key space KS(par)
and a ciphertext c belonging to the ciphertext space CS(par). Deterministic
decapsulation algorithm Dec receives the parameters, a secret key sk and a
ciphertext c as input and returns either the symbol ⊥ indicating failure or an
encapsulated key K. For correctness we require that for all par output of Par
and for every (pk, sk) output of Gen(par) we obtain K ← Dec(par , sk, c) for
(K, c) ←$ Enc(par , pk).

3 Multi-Instance Security

In this section we investigate the m-out-of-n multi-instance security of key-encap-
sulation mechanisms. After giving security definitions in Sect. 3.1, in Sect. 3.2 we
consider the relation between security notions for varying m and n. In Sect. 3.3
we define the scaling factor, which measures how well the security of KEMs
scales with the number of users. Finally, in Sect. 3.4 we give security definitions
for Diffie-Hellman type problems in the multi-instance setting, which will be
used in the security analysis of the Hashed-ElGamal KEM in the next section.

3.1 Key Encapsulation in the Multi-Instance Setting

Below we give security definitions for key-encapsulation mechanisms in the multi-
instance setting. Our definitions are in the xor metric introduced by Bellare
et al. [8] for symmetric encryption schemes. We target m-out-of-n multi-instance
indistinguishability of encapsulated keys from random against chosen-plaintext
attacks ((m, n)-CPA) or chosen-ciphertext attacks ((m, n)-CCA).

In its most general form, the xor metric models the inability of an adversary
to break m out of n instances of a decisional problem. The adversary receives
as input n challenges, generated independently of each other with respect to n
independent challenge bits b. The adversary’s task is to output a subset L ⊆
[1 .. n] of size at least m (representing the “broken instances”) together with
a guess for

⊕
i∈L b[i]; the intuition being that as long as at least one of the

challenge bits contained in L is hidden to the adversary, so is
⊕

i∈L b[i], reducing
the adversary to guessing the final output.

Formally, let KEM be a KEM and let m, n ∈ N such that 1 ≤ m ≤ n. Consider
games G(m,n)-cpa

KEM (A) and G(m,n)-cca
KEM (A) of Fig. 1 associated with KEM, m, n, and

an adversary A. In both games, b is a vector of n challenge bits, which cor-
responds to vectors pk, sk of public and secret keys, which are set up using
a single set of global parameters par . The adversary has access to a challenge
oracle Enc, which on input of index i ∈ [1 .. n] returns a pair consisting of an
encapsulated key and a ciphertext generated with Enc(par ,pk[i]) if the chal-
lenge bit b[i] equals 1, or, if b[i] equals 0, a ciphertext and a randomly sampled
element of KS(par). At the end of the game, adversary A outputs a list of
indices L ⊆ [1 .. n] and a bit b′. A wins if L contains at least m elements and if
b′ =

⊕
i∈L b[i]. In game G(m,n)-cca

KEM (A) the adversary additionally has access to

488 B. Auerbach et al.

Fig. 1. Games G(m,n)-cpa
KEM and G(m,n)-cca

KEM modeling m-out-of-n multi-instance indistin-
guishability of encapsulated keys from random. We assume that L ⊆ [1 .. n].

a decapsulation oracle Dec, which on input of index i ∈ [1 .. n] and ciphertext c
returns the decapsulation of c under parameters par and secret key sk[i] (unless
c was output as response to a challenge query Enc(i) for index i).

We define A’s advantage in game G(m,n)-cpa
KEM and G(m,n)-cca

KEM respectively as

Adv(m,n)-cpa
KEM (A) = 2 Pr[G(m,n)-cpa

KEM (A)] − 1,

Adv(m,n)-cca
KEM (A) = 2 Pr[G(m,n)-cca

KEM (A)] − 1.

The definition we have just presented lends itself naturally to a comparison
with the standard multi-user security notion of Bellare et al. [7]. We describe
the relationship between multi-user security and (1, n)-CCA in detail in the full
version of the paper [3].

3.2 Advantage Relations for Different m and n

The relations between (m′, n′)-CPA and (m, n)-CPA security are summarized in
Fig. 2. They are stated more formally in the following theorem. Its proof is in
the full version of the paper [3]

Theorem 1. Let m, n, m′, n′ be positive integers such that m ≤ n, m′ ≤
n′, and let KEM be any KEM scheme. Then for every adversary A against
game G(m,n)-cpa

KEM there exists an adversary B against game G(m′,n′)-cpa
KEM such that:

1. If m′ ≤ m and m′n ≤ mn′ then B has roughly the same running time of A
and

Adv(m′,n′)-cpa
KEM (B) ≥ 1

2Adv(m,n)-cpa
KEM (A).

Additionally, if n′−m′ ≥ n−m then the reduction does not lose the factor 1/2.

Everybody’s a Target: Scalability in Public-Key Encryption 489

Fig. 2. Relations between (m′, n′)-CPA and (m, n)-CPA security. Given A against
(m, n)-CPA with advantage ε, one can build B against (m′, n′)-CPA with advantage as
shown in figure, depending on its position on the plane. The constants in the figure are
k = �m′/m� and � = 1

2

(
n′
m′

)(�nm′/m�
m′

)−1. The same result holds for CCA.

2. If m′ ≤ m and m′n > mn′ then B has roughly the same running time of A
and

Adv(m′,n′)-cpa
KEM (B) ≥ 1

2

(
n′

m′

)(
nm′/m�
m′

)−1

Adv(m,n)-cpa
KEM (A).

3. If m′ > m and m′n ≤ mn′ then B has roughly k =
m′/m� times the running
time of A and

Adv(m′,n′)-cpa
KEM (B) ≥ 1

2

(
Adv(m,n)-cpa

KEM (A)
)k

.

Additionally, if m divides m′ then the reduction does not lose the factor 1/2.
4. If m′ > m and m′n > mn′ then B has roughly k =
m′/m� times the running

time of A and

Adv(m′,n′)-cpa
KEM (B) ≥ 1

2

(
n′

m′

)(
nm′/m�
m′

)−1 (
Adv(m,n)-cpa

KEM (A)
)k

.

An analogous statement holds between (m, n)-CCA and (m′, n′)-CCA. If A
queries its decryption oracle q times, then adversary B queries its decryption
oracle at most q, q, kq, and kq times respectively.

3.3 Scaling Factor

We now define the scaling factor of key-encapsulation mechanisms. To be able
to give an intuitive and accessible definition we treat the running time and
advantages of adversaries as if they were elements of R and [0, 1] respectively. A
formal definition that takes the asymptotic nature of running time and advantage

490 B. Auerbach et al.

into account as well as rigorous proofs for the bounds on the scaling factor derived
in this section can be found in the full version of the paper [3]. We start with
a definition for adversaries succeeding with advantage 1 and afterwards give a
generalized version for arbitrary advantages.

We fix a computational model that associates each adversary A with its
running time. Let MinTime(m,n)-cpa

KEM be the minimal time T for which there
exists an adversary A that runs in at most time T and achieves advantage
Adv(m,n)-cpa

KEM (A) = 1.
We define the scaling factor of KEM relative to (m, n)-CPA security as

SF(m,n)-cpa
KEM :=

MinTime(m,n)-cpa
KEM

MinTime(1,1)-cpa
KEM

.

The scaling factor of KEM relative to (m, n)-CCA security, SF(m,n)-cca
KEM , is defined

in the same way relative to advantage Adv(m,n)-cca
KEM (A). By the results of Sect. 3.2

we can give the following bounds on the scaling factor (which also hold in the
CCA setting):

SF(m,n)-cpa
KEM ≤ SF(m,m)-cpa

KEM ≤ m

The lower bound follows since any adversary against (m, m)-CPA is also an
adversary against (m, n)-CPA with the same advantage (Theorem 1, item 1).
The upper bound follows from Theorem 1, item 3. Surprisingly, the scaling factor
can be smaller than 1: Being able to choose which users to attack can make the
task of breaking multiple instances easier than breaking a single one. An artificial
example of a KEM with scaling factor of m/n is sketched in the full version of the
paper [3]. This is, however, a phenomenon limited to the case m �= n: For n = m,
we know that SF(n,m)-cpa

KEM ≥ 1 by Theorem 1, item 1. Importantly, specific KEMs
such as HEG or Cramer-Shoup are known to be “random self-reducible”, which
implies MinTime(1,n)-cpa

KEM = MinTime(1,1)-cpa
KEM , and hence by Theorem 1, item 1:

1 ≤ SF(m,n)-cpa
KEM ≤ m.

The definition given above exclusively considers adversaries that achieve advan-
tage 1. This definition generalizes naturally to encompass adversaries with arbi-
trary advantage as follows. Let MinTime(m,n)-cpa

KEM (ε), associated with 0 ≤ ε ≤ 1,
denote the running time of the fastest adversary achieving advantage at least ε
in game (m, n)-CPA. Intuitively, an optimally scaling scheme requires m inde-
pendent execution of a (1, 1)-CPA adversary in order to break m instances of
the scheme. Hence, the advantage-dependent scaling factor for advantage ε is
defined as

SF(m,n)-cpa
KEM (ε) := MinTime(m,n)-cpa

KEM (εm)/MinTime(1,1)-cpa
KEM (ε).

Again, we can use Theorem 1 to show that, for every 0 ≤ ε ≤ 1,

SF(m,n)-cpa
KEM (ε) ≤ SF(m,m)-cpa

KEM (ε) ≤ m.

Everybody’s a Target: Scalability in Public-Key Encryption 491

3.4 Multi-Instance Diffie-Hellman-Type Problems

Gap Discrete Logarithm Problem. The m-out-of-n multi-instance gap dis-
crete logarithm problem ((m, n)-GapDL) requires to find the discrete logarithms
of at least m out of n input group elements given access to a decisional Diffie-
Hellman oracle. We consider three variants of the problem, which differ in their
granularity. For high granularity all discrete logarithm challenges are sampled
with respect to a fixed group and group generator, while for medium granularity
the challenges are elements of a fixed group but defined with respect to differ-
ent group generators. Finally, in the case of low granularity a fresh group and
generator is used for each challenge.

Formally, let m, n ∈ N such that 1 ≤ m ≤ n and consider game G(m,n)-gdl
GGen,gran(A)

of Fig. 3 associated with adversary A, group-generating algorithm GGen, and
granularity gran ∈ {high, med, low}. In the game, a vector G of n group descrip-
tions is set up according to the desired level of granularity using parameter
generation algorithm PGen[gran]. Each entry of G is of the form (G, p, g) with
G being a group of prime order p generated by g. After the setup of G the three
variants of the game proceed in the same way. A vector x of length n is sampled,
where x[i] is uniformly distributed in Zp[i]. The corresponding challenge vector
contains the group elements X[i] = g[i]x[i]. At the end of the game, adversary A
outputs a list of indices L ⊆ [1 .. n] and a vector x′ of length n, where the i-th
entry is in Zp[i]. The adversary wins if L contains at least m elements and if
the vector x′ coincides with x for all indices in L. Additionally, the adversary
has access to an oracle DDH, which, on input of index i ∈ [1 .. n] and three
group elements X̂, Ŷ , Ẑ, behaves as follows. The game computes the discrete
logarithms x̂, ŷ of input X̂, Ŷ with respect to generator g[i], and then returns 1
if and only if g[i]x̂ŷ = Ẑ.

We define A’s advantage in game G(m,n)-gdl
GGen,gran(A) as

Adv(m,n)-gdl
GGen,gran(A) = Pr[G(m,n)-gdl

GGen,gran(A)].

The m-out-of-n multi-instance discrete logarithm ((m, n)-DL) problem is
defined as (m, n)-GapDL with the restriction that A cannot query DDH.

Gap Computational Diffie-Hellman Problem. The m-out-of-n multi-in-
stance gap computational Diffie-Hellman problem ((m, n)-GapCDH) requires, on
input of vectors gx and gy, to compute at least m elements of the form gx[i]y[i]

for distinct i ∈ [1 .. n]. As in the corresponding DL game, the adversary has
access to an oracle DDH which computes whether three given group elements
are a Diffie-Hellman triple. As in the definition of (m, n)-GapDL, we consider
three variants of the problem, which differ in their granularity.

Formally, for m, n ∈ N s.t. 1 ≤ m ≤ n consider game G(m,n)-gcdh
GGen,gran (A) of Fig. 4

associated with adversary A, group-generating algorithm GGen, and granular-
ity gran ∈ {high, med, low}. In the game, a vector G of n group descriptions is
set up according to parameter generation algorithm PGen[gran]. After the setup
of G the three variants of the game proceed in the same way. Two vectors x,
y of length n are sampled, where x[i], y[i] are uniformly distributed in Zp[i].

492 B. Auerbach et al.

Fig. 3. Security game G(m,n)-gdl
GGen,gran (A) for gran ∈ {high, med, low} modeling the m-out-

of-n multi-instance gap discrete logarithm problem.

Fig. 4. Security game G(m,n)-gcdh
GGen,gran (A) for gran ∈ {high, med, low} modeling the m-

out-of-n multi-instance gap computational Diffie-Hellman problem. PGen is defined in
Fig. 3.

The corresponding challenge vectors contain the group elements X[i] = g[i]x[i]
and Y [i] = g[i]y[i]. Additionally, the adversary has access to an oracle DDH,
which behaves as described for G(m,n)-gdl

GGen,gran(A). At the end of the game, adver-
sary A outputs a list of indices L ⊆ [1 .. n] and a vector Z′ of length n, where
the i-th entry is an element of the group represented by G[i]. The adversary wins
if L contains at least m elements and if the vector Z′ coincides with Z for all
indices in L. We define A’s advantage in game G(m,n)-gcdh

GGen,gran (A) as

Adv(m,n)-gcdh
GGen,gran (A) = Pr[G(m,n)-gcdh

GGen,gran (A)].

The m-out-of-n multi-instance computational Diffie-Hellman ((m, n)-CDH)
problem is defined as (m, n)-GapCDH with the restriction that A cannot query
oracle DDH.

Everybody’s a Target: Scalability in Public-Key Encryption 493

4 Hashed ElGamal in the Multi-Instance Setting

We investigate the multi-instance security of the well-known Hashed-ElGamal
key-encapsulation mechanism [1]. We consider three variants, HEG[GGen, high],
HEG[GGen, med], and HEG[GGen, low], corresponding to high, medium, and low
granularity respectively. After giving formal definitions of these variants in
Sect. 4.1, in Sect. 4.2 we prove the main result of this section: The multi-instance
security of each variant of the KEM in the random oracle model is tightly implied
by the hardness of (m, n)-GapCDH[GGen, gran] for the corresponding granu-
larity. Finally, in Sect. 4.3 we compute lower bounds on the scaling factor of
HEG[GGen, gran] for GGen ∈ {GGenF∗

�
,GGenE(F�)} and gran ∈ {high, med, low}.

4.1 Hashed-ElGamal Key Encapsulation

We consider three variants of the Hashed-ElGamal KEM, defined relative to a
hash function H and differing in the way parameters and key pairs are generated.
For high granularity the parameters specify a group description G = (G, p, g)
with a fixed generator g. Key pairs (pk, sk) are of the form pk = X = gx and sk =
x, where x is randomly sampled in Zp. For medium granularity the parameters
consist of a group G of order p, but no fixed generator. In this case pk = (g, gx)
and sk = (g, x), where g is a randomly chosen generator of the group G. Finally,
for low granularity empty parameters are used. Correspondingly, in this case
public keys are of the form pk = (G, gx) and secret keys of the form sk = (G, x),
where G = (G, p, g) is a freshly sampled group description.

Note that in all three cases the parameters par and a key pair (pk, sk) gen-
erated with respect to par determine a group description (G, p, g) as well as x
and X. In all three variants encapsulated keys are of the form H(pk, gy, Xy)
with corresponding ciphertext gy, where the y is sampled at random in Zp. The
decapsulation of a ciphertext c is given by H(pk, c, cx). A formal description
of the algorithms describing the Hashed-ElGamal key-encapsulation mechanism
for each of the three considered variants can be found in Fig. 5.

4.2 Multi-Instance Security of Hashed ElGamal

The following theorem shows that (m, n)-GapCDH tightly reduces to the security
against chosen-ciphertext attacks of HEG in the multi-instance setting for the
corresponding granularity3. Its proof is a generalization of the single-instance
version [1] and can be found in the full version of the paper [3].

Theorem 2. Let m, n ∈ N with 1 ≤ m ≤ n, let gran ∈ {high, med, low}, let
GGen be a group-generating algorithm, and let HEG[GGen, gran] be the Hashed-
ElGamal KEM of Fig. 5 relative to hash function H. If H is modeled as a
random oracle and if the (m, n)-GapCDH[GGen, gran] problem is hard, then

3 The same result holds under the multi-instance version of the strong Diffie-Hellman
assumption [1], a falsifiable assumption that is implied by (m, n)-GapCDH.

494 B. Auerbach et al.

Fig. 5. Variants of Hashed-ElGamal KEM HEG[GGen, high], HEG[GGen, med], and
HEG[GGen, low] relative to hash function H and group-generating algorithm GGen.
The KEMs share the same encapsulation and decapsulation algorithms. Note that
both (par , pk) or (par , sk) determine group description (G, p, g) and key pk.

HEG[GGen, gran] is (m, n)-CCA secure. Formally, for every adversary A against
game G(m,n)-cca

HEG[GGen,gran] making at most q queries to random oracle RO there exists
an adversary B against game G(m,n)-gcdh

GGen,gran that makes at most q queries to DDH
and runs in essentially the same time as A and satisfies

Adv(m,n)-gcdh
GGen,gran (B) ≥ Adv(m,n)-cca

HEG[GGen,gran](A).

4.3 Scaling Factor of Hashed ElGamal for Different Parameters

Below we compute the scaling factor of Hashed-ElGamal key encapsulation for
different parameter choices. Recall that the scaling factor is given by

SF(m,n)-cca
HEG[GGen,gran] = MinTime(m,n)-cca

HEG[GGen,gran]/MinTime(1,1)-cca
HEG[GGen,gran].

Note that the multi-instance security of HEG can be broken by computing
m public keys, which corresponds to computing m DL instances. On the other
hand, from Theorem 2 we know that the (m, n)-CCA-security of HEG is tightly
implied by (m, n)-GapCDH. Thus,

MinTime(m,n)-gcdh
GGen,gran ≤ MinTime(m,n)-cca

HEG[GGen,gran] ≤ MinTime(m,n)-dl
GGen,gran.

Hence, we can bound the scaling factor of Hashed ElGamal as

SF(m,n)-cca
HEG[GGen,gran] ≥ MinTime(m,n)-gcdh

GGen,gran /MinTime(1,1)-dl
GGen,gran.

Everybody’s a Target: Scalability in Public-Key Encryption 495

Below we consider two instantiations of group-generating algorithms: GGenF∗
�

and GGenE(F�). Due to either Hypothesis 1 from the introduction or the results
of Sects. 5 and 6 respectively, for both instantiations solving (m, n)-GapCDH is
as hard as (m, n)-GapDL. Thus, the lower bounds on the scaling factor derived
below are sharp.

Hashed ElGamal in the Finite-Field Setting. Assuming the correct-
ness of Hypothesis 1, we conclude that MinTime(m,n)-gcdh

F
∗
�

,gran = MinTime(m,n)-dl
F

∗
�

,gran is
given by

L�(1/3, 1.902) + m · L�(1/3, 1.232) for gran ∈ {high, med}, and
min{m · L�(1/3, 1.902), L�(1/3, 2.007) + m · L�(1/3, 1.639)} for gran = low.

We obtain the scaling factor by dividing by MinTime(1,1)-dl
F

∗
�

,gran = L�(1/3, 1.902).
Defining δ via m = L�(1/3, δ) we can rewrite m · L�(1/3, 1.232) as L�(1/3, δ +
1.232). For δ ≤ 0.67 we get L�(1/3, 1.902) ≥ L�(1/3, δ + 1.232). Hence for these
values of δ the scaling factor for medium and high granularity is roughly 1. For
larger m, on the other hand, it is of order L�(1/3, δ − 0.67).

Summing up for gran ∈ {med, high} we obtain

SF(m,n)-cca
HEG[GGenF∗

�
,gran] =

{
1 δ ≤ 0.67
L�(1/3, δ − 0.67) δ > 0.67

.

Further, we get L�(1/3, δ + 1.902) ≤ L�(1/3, 2.007) for δ ≤ 0.105. Hence in this
case for low granularity the scaling factor is given by m = L�(1/3, δ). Moreover,
we obtain L�(1/3, δ + 1.639) = L(1/3, 2.007) for δ = 0.368 implying that for
0.105 ≤ δ ≤ 0.368 the scaling factor is of order L�(1/3, 2.007 − 1.902) and of
order L�(1/3, δ + 1.639 − 1.902) for larger values of δ. Summing up:

SF(m,n)-cca
HEG[GGenF∗

�
,low] =

⎧
⎪⎨
⎪⎩

L�(1/3, δ) 0 ≤ δ < 0.105
L�(1/3, 0.105) 0.105 ≤ δ < 0.368
L�(1/3, −0.263 + δ) 0.368 ≤ δ

.

Formally, the asymptotic behavior of the scaling factor computed above is linear4
in m and hence, at first glance, seems optimal. However, as discussed in the
introduction, the numbers of L�(1/3, 0.67) or L�(1/3, 0.368) instances starting
from which the cumulative cost of breaking the instances outweighs the cost of
the precomputation are typically large.

Hashed ElGamal in the Elliptic-Curve Setting. Recall that GGenE(F�)
generates elliptic curves of size p ≈ � defined over the field F� for randomly chosen
�. If we model elliptic curves as generic groups we can derive the scaling factor
as follows. Ignoring constants, a single DL instance can be solved in time O(√p).

4 For fixed � and very large values of m and n generic attacks start to outperform the
NFS and the scaling factor actually becomes Θ(

√
m).

496 B. Auerbach et al.

The lower bounds derived in Sect. 6 (Corollaries 2 and 3 and Theorem 5) imply
the following: A generic algorithm solving (m, n)-GapCDH for high and medium
granularity performs at least Ω(√mp) group operations; the low-granularity case
requires at least Ω(m√

p) group operations. (In the low-granularity case we for-
mally consider n groups of differing group orders p1, . . . , pn, where all pi are
roughly of size p.) Summing up, we obtain

SF(m,n)-cca
HEG[GGenE(F�),gran] =

{
Θ(√mp/

√
p) = Θ(

√
m) gran ∈ {high, med}

Θ(m√
p/

√
p) = Θ(m) gran = low

.

(The constants hidden within the Θ notation can be made explicit from our
results, and are between 0.1 and 6.6.) In the full version of the paper [3] we
additionally illustrate how the scaling factors computed above could be taken
into account when choosing parameters for HEG.

5 Generic Hardness of the Multi-Instance Gap Discrete
Logarithm Problem

In this section we define a new hard problem, namely the polycheck discrete
logarithm problem (PolyDL), in the multi-instance setting. Then, we proceed to
show a concrete bound on its security in the generic group model (Theorem 3).
Most notably, from this bound we present a concrete bound on the security
of GapDL. To prove the bound we define an additional problem, the search-by-hy-
persurface problem (SHS). In Sect. 5.1 we define the PolyDL and SHS problems.
In Sect. 5.2 we derive the bound on the security of GapDL in the high granularity
setting, and further argue that it is optimal. Bounds for the cases of medium
and low granularity can be found in the full version of the paper [3].

5.1 Polycheck Discrete Logarithm and Search-by-Hypersurface
Problem

Polycheck Discrete Logarithm Problem. The m-out-of-n multi-instance
polycheck discrete logarithm problem ((m, n)-d-PolyDL) for polynomials of
degree at most d requires to find the discrete logarithms of at least m out of n
input group elements given access to a decisional oracle Eval which behaves as
follows. Eval takes as input a polynomial f ∈ Zp[X1, . . . , Xk] of degree at most d
and a list of group elements (gx̂1 , . . . , gx̂k), where k is an arbitrary integer, and
returns 1 if and only if gf(x̂1,...,x̂k) = 1. As usual, we consider three variants of
the problem, which differ in their granularity.

Formally, let m, n, d ∈ N such that 1 ≤ m ≤ n, d ≥ 1, and consider
game G(m,n)-d-polydl

GGen,gran (A) of Fig. 6 associated with adversary A and granular-
ity gran ∈ {high, med, low}. In the game, a vector G of n group descriptions
is set up according to the desired level of granularity using PGen[gran]. After
the setup of G the three variants of the game proceed in the same way. A
vector x of length n is sampled, where x[i] is uniformly distributed in Zp[i].

Everybody’s a Target: Scalability in Public-Key Encryption 497

Fig. 6. Security game G(m,n)-d-polydl
GGen,gran (A) relative to GGen, gran, modeling the m-out-

of-n multi-instance polycheck discrete logarithm problem for polynomials of degree at
most d. We assume that polynomial f input to Eval has |X̂| indeterminates. PGen is
defined in Fig. 3.

The corresponding challenge vector contains the group elements X[i] = g[i]x[i].
At the end of the game, adversary A outputs a list of indices L ⊆ [1 .. n] and
a vector x′ of length n, where the i-th entry is in Zp[i]. The adversary wins
if L contains at least m elements and if the vector x′ coincides with x for all
indices in L. Additionally, the adversary has access to an evaluation oracle Eval,
which on input of an index i ∈ [1 .. n], a polynomial f ∈ Zp[X1, . . . , Xk], and
a list of group elements X̂ = (X̂[1], . . . , X̂[k]), where k is an arbitrary integer
which might be different on different calls, behaves as follows. If deg f > d, then
Eval returns 0. Otherwise, the game computes the discrete logarithms x̂ of the
input elements X̂ with respect to generator g[i], and then returns 1 if and only
if g[i]f(x̂[1],...,x̂[k]) = 1.

We define the advantage of A in game G(m,n)-d-polydl
GGen,gran (A) as

Adv(m,n)-d-polydl
GGen,gran (A) = Pr[G(m,n)-d-polydl

GGen,gran (A)].

The next definition extends the search-by-hyperplane-query problem (SHQ)
by Yun [30].

Search-by-Hypersurface Problem. The search-by-hypersurface problem in
dimension n for polynomials of degree at most d (n-SHSd) requires to find a
randomly sampled point a of the space by adaptively checking whether point a
is contained in the queried hypersurface (i.e., the set of zeroes of a polynomial).

Formally, let n, d, p ∈ N such that p is prime and d, n ≥ 1, and consider
game Gn-shsd

p (A) of Fig. 7 associated with adversary A. In the game, a vector a
of length n is sampled, where a[i] is uniformly distributed in Zp. At the end of
the game, adversary A outputs a vector a′ ∈ Z

n
p . The adversary wins if a′ = a.

Additionally, the adversary has access to an evaluation oracle Eval, which on
input of a polynomial f ∈ Zp[X1, . . . , Xn] behaves as follows. If deg f > d, then
Eval returns 0. Otherwise, the oracle returns 1 if and only if f(a) = 0.

We define the advantage of A in game Gn-shsd
p (A) as

Advn-shsd
p (A) = Pr[Gn-shsd

p (A)].

498 B. Auerbach et al.

Fig. 7. Security game Gn-shsd
p (A) with respect to integer d and prime p modeling the

search-by-hypersurface problem on dimension n for polynomials of degree at most d.
All inputs f to oracle Eval are elements of the polynomial ring Zp[X1, . . . , Xn].

5.2 Generic Hardness of High-Granularity (m,n)-d-PolyDL

Below, we state the main result of this section, an explicit upper bound on the
security of high-granularity (n, n)-d-PolyDL in the generic group model.

Note that this bound is of particular interest in the context of generic bilin-
ear (or even multilinear) maps. In fact, a d-linear map yields a natural way to
compute any answer of oracle Eval for polynomials of degree at most d in the
base group.

Theorem 3. Let n, d be positive integers and p a prime number. Let GGengg be a
group-generating algorithm that generates generic groups of exactly size p. Then
for every generic adversary A against (n, n)-d-PolyDL[GGengg, high] that makes
at most q queries to the group-operation oracle and qEval queries to oracle Eval:

Adv(n,n)-d-polydl
GGengg,high (A) ≤

(
d

p

)n

+ 1
2

(
ed(q + n + 1)2 + 2edqEval

2np

)n

.

This extends [30, Corollary 2] from standard DL to the polycheck case. Most
importantly, it allows us to prove the following corollary.

Corollary 1. Let n be any positive integer and GGengg be a group-generating
algorithm that generates generic groups of at least size p. Then for every generic
adversary A against (n, n)-GapDL[GGengg, high] that makes at most q queries
to the group-operation oracle and qDDH queries to the DDH oracle:

Adv(n,n)-gdl
GGengg,high(A) ≤

(
2
p

)n

+ 1
2

(
e(q + n + 1)2 + 2eqDDH

np

)n

≈
(

q2

np

)n

.

Proof (Corollary 1). Note that oracle DDH of game (n, n)-GapDL can be sim-
ulated using oracle Eval from game (n, n)-2-PolyDL. In fact, gxy = gz if and
only if gf(x,y,z) = 1, with f(X1, X2, X3) := X1X2 − X3. Then apply Theorem 3
with d = 2.
�

The result is optimal. Concretely, in the full version of the paper [3] we
construct an algorithm that solves (n, n)-GapDL[GGengg, high] in q group oper-
ations with success probability (q2/4np)n. Thus, for large p the fastest generic
adversary solving (n, n)-GapDL[GGengg, high] with overwhelming success prob-
ability requires

√
np/e ≤ q ≤ 2√

np group operations.

Everybody’s a Target: Scalability in Public-Key Encryption 499

The proof of Theorem 3 follows a structure similar to Yun [30]. First we prove
the equivalence of n-SHSd[p] and (n, n)-d-PolyDL[GGengg, high], and then we
bound the success probability of an adversary against n-SHSd[p]. The equivalence
of the two problems corresponds to the lemma below.

Statement and proof closely follow [30, Theorem 1] while additionally han-
dling Eval queries. The proof can be found the full version of the paper [3].

Lemma 2. Let n, d be positive integers and p a prime number. Let GGengg be a
group-generating algorithm that generates generic groups of exactly size p. Then
for every adversary A against game (n, n)-d-PolyDL[GGengg, high] there exists
an adversary B against n-SHSd[p] such that

Advn-shsd
p (B) ≥ Adv(n,n)-d-polydl

GGengg,high (A).

Moreover, if A makes q group-operation queries and qEval queries to Eval, then
B makes at most qEval + (n + q)(n + q + 1)/2 queries to Eval.

We start working on n-SHSd[p] with the next lemma. Here we express that,
up to a loss of dn, an adversary against n-SHSd[p] does not need more than n
hypersurface queries which return 1 to identify a solution.

Importantly, observe how we limit the resources of an adversary against
n-SHSd[p] exclusively in terms of its queries to Eval. Our adversaries are other-
wise unbounded. For this reason, the following reduction does not consider the
computational resources needed by the adversary to perform its operations. The
proof is in the full version of the paper [3].

Lemma 3. Let n, d be positive integers and p a prime number. For every adver-
sary A against n-SHSd[p] that makes at most q queries to Eval there exists an
adversary B against n-SHSd[p] that makes at most q queries to Eval such that
at most n of them return 1 and

Advn-shsd
p (B) ≥ d−nAdvn-shsd

p (A).

Proof Idea. Intuition for the proof is simple for the case n = 1: All queries of A
to SimEval are forwarded to Eval. The first time Eval(g) returns 1, we know that
the secret a must be a zero of g. Since g has degree at most d, there can be at
most d distinct zeroes. The reduction guesses which zero is the correct one (this
is the reduction loss) and then simulates the remaining queries of A to SimEval
accordingly. The proof is similar for n > 1. We know that, in general, n polyno-
mials in Zp[X1, . . . , Xn] of degree d have at most dn zeroes in common, one of
which the reduction can use to simulate remaining queries to SimEval. However,
the n queried polynomials must be in general position: For example, the zeroes
of x1 + x2 are the same as those of 2x1 + 2x2, and querying both polynomials
would not help the reduction. To resolve this issue, the reduction keeps a set Z
of common zeroes to all polynomials seen so far which, when forwarded to Eval,
make the oracle return 1 (i.e., polynomials which vanish on a). This set has a
rich structure: In fact, the study of zero sets of polynomial is the raison d’être

500 B. Auerbach et al.

of the field of algebraic geometry. If the polynomial g queried by A carries no
new information (i.e., g(Z) = {0}) then the simulated oracle returns 1 without
forwarding. Otherwise, the polynomial is forwarded. If the answer is 1, then the
reduction updates the set Z and then guesses which one of its irreducible compo-
nents contains a, which becomes the updated Z. The identification of irreducible
components is made possible by the underlying structure of the set Z. Select-
ing an irreducible component guarantees that, on a following evaluation query,
intersecting the now irreducible Z with another hypersurface not containing Z
brings down the dimension of Z by 1. Since the dimension of Z

n
p is n, we can

have at most n such queries. With a careful choice of the guessing probability
of each irreducible component, Bézout’s theorem ensures that the probability of
always making the right guess is again d−n.
�
Remark 1. The bound on the advantage against (n, n)-d-PolyDL[GGengg, high]
of Theorem 3 extends to (m, n)-d-PolyDL[GGengg, high], for m � n. This is done
by a simple tight reduction between problems (m, n)-d-PolyDL[GGengg, high]
and (m, m)-d-PolyDL[GGengg, high]. The reduction extends the one for standard
multi-instance discrete logarithm [29, Section 3] by also simulating oracle Eval:
It simply forwards every query to its own oracle.

6 Generic Hardness of the Multi-Instance Gap
Computational Diffie-Hellman Problem

In this section we derive lower bounds on the hardness of the m-out-of-n gap
computational Diffie-Hellman problem in the generic group model for different
granularities. We further argue that all derived bounds are optimal. Section 6.1
covers high, Sect. 6.2 medium, and Sect. 6.3 low granularity.

6.1 Generic Hardness of High-Granularity (m,n)-GapCDH

We work in the algebraic group model to show that the generic lower bound on
the hardness of high-granularity (m, m)-GapDL carries over to high-granularity
(m, n)-GapCDH. Concretely, in Theorem 4 we provide a generic reduction from
(m, n)-GapCDH[GGen, high] to (m, m)-GapDL[GGen, high]. Then, an applica-
tion of Corollary 1 establishes the desired bound on (m, n)-GapCDH.

In this section we work with high-granularity problems, in which the group
description G = (G, p, g) is shared by all instances. For ease of notation, we
treat G as an implicit parameter of the system until the end of this section.

The generic reduction from (m, n)-GapCDH to (m, m)-GapDL in the high-
granularity setting is sketched below. The full proof can be found in the full
version of the paper [3].

Theorem 4. Let GGen be a group-generating algorithm that generates groups of
at least size p, and let m, n be two positive integers such that m ≤ n ≤ p. Then

Everybody’s a Target: Scalability in Public-Key Encryption 501

there exists a generic reduction that constructs from any algebraic adversary A
against game G(m,n)-gcdh

GGen,high an algebraic adversary B against G(m,m)-gdl
GGen,high such that

Adv(m,m)-gdl
GGen,high (B) ≥ 2−mAdv(m,n)-gcdh

GGen,high (A).

Moreover, B makes at most 2n(m + 2)(log p + 1) group operations in addition to
those made by A, and the same amount of queries to DDH.

Despite the seemingly sizeable reduction loss of 2m, we argue that the factor
is small in the context of the final security bounds. In fact, as seen in Sect. 5,
the advantage in breaking (m, m)-GapDL decreases exponentially with m. This
renders the exponential contribution of the factor 2m irrelevant, as the follow-
ing concrete bound on the hardness of (m, n)-GapCDH[GGengg, high] shows. Its
proof can be found in the full version of the paper [3].

Corollary 2. Let GGengg be a group-generating algorithm that generates groups
of at least size p, and let m, n be two positive integers such that m ≤ n ≤ p.
Then for every generic adversary A against (m, n)-GapCDH[GGengg, high] that
makes at most q queries to the group-operation oracle and qDDH queries to the
gap oracle:

Adv(m,n)-gcdh
GGengg,high(A) ≤

(
2e(q + 12mn log p)2 + 4eqDDH

mp

)m

≈
(

q2

mp

)m

.

Similarly to the bound for computing discrete logarithms, this result is opti-
mal. Namely, problem (m, n)-GapCDH[GGengg, high] can be solved computing q
group operations with success probability (q2/4mp)m by using the generic adver-
sary against high-granularity DL provided in the full version [3]. Thus, for large p
the fastest generic adversary solving (m, n)-GapCDH[GGengg, high] with over-
whelming success probability requires

√
mp/2e ≤ q ≤ 2√

mp group operations.

Proof Idea of Theorem 4. This proof extends the following simple single-
instance reduction B, in turn built from two reductions B∅ and B{1}. The reduc-
tions build upon a CDH adversary A. Adversary A receives X = gx and Y = gy,
and is tasked with computing W = gxy. In the algebraic group model, A must
return a representation of the output as a combination of its input, i.e., some
elements a, b, c ∈ Zp such that W = XaY bgc. Rewriting this expression in the
exponents, we obtain that, if A wins,

xy = ax + by + c.

Given a DL challenge Z = gz, reduction B∅ embeds the challenge as X = Z
and generates Y = gy by picking a random y. Then, B∅ can compute the DL
as z = x = (y − a)−1(by + c). However, y − a might not be invertible. In this
case, adversary B{1} would be successful: It embeds the challenge as Y = Z and
returns a, which is a correct solution if y − a is not invertible. Reduction B picks
one of the two subsets I ⊆ {1} at random and runs BI . If the CDH adversary is
successful, then B has at least probability 1/2 of succeeding.

502 B. Auerbach et al.

Case n = m > 1 is approached as follows. Again the reduction B is com-
posed of components BI , where I ⊆ [1 .. n]. The DL challenge Z[i] is distributed
as either X[i] or Y [i] according to whether i ∈ I, and all remaining values
are picked by the reduction. The CDH adversary—if successful—returns square
matrices A, B and vector c such that diag(y)x = Ax + By + c, where diag(y)
is the diagonal matrix with the elements of y on the diagonal. Rearranging, we
obtain

(diag(y) − A)x = By + c.

Our goal is to iteratively decrease the dimension of this matrix equation. If n /∈ I
adversary BI expresses x[n] in terms of x[1 .. n − 1]. On the other hand, if n ∈ I
then it computes y[n]. Whether this computation is correct depends on whether
I is the right choice for A, B, and c. More explicitly, from the last row of the
previous matrix equation we get the expression

x[n](y[n] − Ann) = (An1, . . . , An(n−1))x[1 .. n − 1] +
+ (Bn1, . . . , Bn(n−1))y[1 .. n − 1] + Bnny[n] + c[n].

If the number y[n] − Ann is not invertible (case n ∈ I), then adversary BI can
set y[n] = Ann. In the other case (case n /∈ I) the adversary can replace the
expression for x[n] into the remaining n−1 rows of the matrix. In this case, y[n]
is known, and calling x′ = (x[1], . . . ,x[n − 1]), y′ = (y[1], . . . ,y[n − 1]), we have
recovered again a matrix equation of the form

diag(y′)x′ = A′x′ + B′y′ + c′

of decreased dimension n−1. Repeating this argument, we arrive at an equation
of dimension 1. At this point all elements of y are known to BI , which is then
able to recover the elements of x.

Note that there always exists, for every possible A, B, and c, a set I for which
the above procedure is successful, i.e., a set I such that, for every i ∈ [1 .. n],
the expression i ∈ I is satisfied exactly if y[i] = (A(i))ii, where A(i) is the i-th
update of matrix A. Since adversary B picks I ⊆ [1 .. n] at random and runs BI ,
the reduction loses a factor of 2n.

The case n �= m adds more complexity to the proof. The reduction first
expands the m DL challenges Ẑ to a vector Z = Ẑ

V
(plus some rerandomization)

of length n. Here V is a n × m matrix for which each m × m submatrix is
invertible.5 This has two important consequences: Firstly, we can express any
element of Z as a combination of any other fixed m elements of Z. Secondly,
retrieving any m DLs of Z allows the reduction to compute the DLs of the
original Ẑ. This has, however, an unintended side effect: We can still obtain an
equation of the form diag(y)x = Ax + By + c, where all terms are of size m
(this is the role, in the reduction code, of the function reduceMatrices), but
now A, B, c depend on the distribution of the challenges to X and Y , that is, on
the set I. This means that the reduction cannot simply compute the element y[i]
5 This expansion technique is originally from the work of Ying and Kunihiro [29].

Everybody’s a Target: Scalability in Public-Key Encryption 503

as Aii at each step. It has to answer the question: “Assuming the reduction was
not trying to compute y[m], what would be the value for y[m] which would make
it unable to compute x[m]?” (In the reduction code, the answer is yielded by
the function computeDlog.)

In the proof, the gap oracle of A is simply simulated by forwarding all queries
to DDH.
�
Remark 2. Note that using Corollary 2 with qDDH = 0 yields a generic lower
bound on the hardness of the “standard” multi-instance CDH problem.

Further, oracle DDH plays a modest role in the proof of Theorem 4. One could
define a “polycheck CDH” problem in the same fashion as it is done for discrete
logarithm in Sect. 5 (in short, (m, n)-d-PolyCDH). It is then immediate to extend
Theorem 4 to show the equivalence of games (m, n)-d-PolyCDH[GGen, high] and
(m, n)-d-PolyDL[GGen, high] in the algebraic group model with the same loss
of 2m. Hence, with an additional multiplicative factor of (d/2)m the advantage
of any adversary against game (m, n)-d-PolyCDH[GGengg, high] can be bounded
as in Corollary 2.

6.2 Generic Hardness of Medium-Granularity (m,n)-GapCDH

We present an explicit bound on the concrete security of m-out-of-n gap com-
putational Diffie-Hellman in the generic group model in the medium-granularity
setting. The main result of this section is similar to that in Section 6.1. The bound
follows from observing that we can simulate the medium-granularity game start-
ing from the high-granularity one. Then, we can apply Corollary 2 after counting
the additional group queries by the simulation. For more details, we refer to the
full version of the paper [3].

Corollary 3. Let GGengg be a group-generating algorithm that generates generic
groups of at least size p, and let m, n be two positive integers such that m ≤
n ≤ p. Then for every generic adversary A against (m, n)-GapCDH[GGengg, med]
that makes at most q queries to the group-operation oracle and qDDH queries to
oracle DDH:

Adv(m,n)-gcdh
GGengg,med (A) ≤

(
2e(q + 6(qDDH + 5mn) log p)2

mp

)m

≈
(

q2

mp

)m

.

Similarly to the previous concrete bounds, this result is optimal, namely
there exists a generic adversary against (m, n)-GapCDH[GGengg, med] which
needs 2

√
2mp group operations and achieves success probability 1. In fact,

we can build an adversary against (m, n)-GapCDH[GGengg, med] starting from
an adversary against (2m, 2m)-DL[GGengg, high] that requires about the
same amount of oracle queries. Summing up, we obtain that for large p
the fastest generic adversary achieving overwhelming success probability in
game (m, n)-GapCDH[GGengg, med] requires

√
mp/(2e) ≤ q ≤ 2

√
2mp group

operations.

504 B. Auerbach et al.

6.3 Generic Hardness of Low-Granularity (m,n)-GapCDH

In this section we present an explicit bound on the concrete security of m-
out-of-n gap computational Diffie-Hellman in the generic group model in the
low-granularity setting. The bound is stated in the following theorem and is
computed directly. The proof can be found in the full version of the paper [3].

Theorem 5. Let GGengg be a group-generating algorithm that generates generic
groups of at least size p, and let m, n, q, qDDH and qi, i ∈ [1 .. n], be integers
such that 1 ≤ m ≤ n, q = q1 + . . . + qn, and qi is large (qi ≥ 60 log p and 4q2i ≥
qDDH). Then for every generic adversary A against the low-granularity m-out-
of-n multi-instance computational Diffie-Hellman problem that makes at most qi

queries to the i-th group-operation oracle and qDDH queries to the gap oracle:

Adv(m,n)-gcdh
GGengg,low (A) ≤

(
4eq2

m2p

)m

.

Since the number of group operations performed by a (m, n)-GapCDH adversary
is typically large, we reckon the requirements qi ≥ 60 log p and 4q2i ≥ qDDH are
rather mild.

We argue that this result is optimal. In fact, each of the first m instances can
be solved in time q/m with success probability (q/m)2/4p using the algorithm
provided in the full version of the paper [3]. Thus, (m, n)-GapCDH[GGengg, low]
can be solved in time q by independently running the single-instance adversary
on the first m instances which results in a success probability of (q2/4m2p)m.
Further, for large p the fastest generic adversary achieving overwhelming suc-
cess probability in game (m, n)-GapCDH[GGengg, low] requires m

√
p/8e ≤ q ≤

2m
√

p group operations.

Acknowledgments. The authors are grateful to Masayuki Abe, Razvan Barbulescu,
Mihir Bellare, Dan Boneh, Nadia Heninger, Tanja Lange, Alexander May, Bertram
Poettering, Maximilian Rath, Sven Schäge, Nicola Turchi, and Takashi Yamakawa for
their helpful comments. Benedikt Auerbach was supported by the European Research
Council, ERC consolidator grant (682815-TOCNeT), and conducted part of this work
at Ruhr University Bochum, supported by the ERC Project ERCC (FP7/615074) and
the NRW Research Training Group SecHuman. Federico Giacon conducted part of this
work at Ruhr University Bochum, supported by the ERC Project ERCC (FP7/615074).
Eike Kiltz was supported by the ERC Project ERCC (FP7/615074), DFG SPP 1736
Big Data, and the DFG Cluster of Excellence 2092 CASA.

References

1. Abdalla, M., Bellare, M., Rogaway, P.: The Oracle Diffie-Hellman assumptions and
an analysis of DHIES. In: Naccache, D. (ed.) CT-RSA 2001. LNCS, vol. 2020, pp.
143–158. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-45353-9 12

2. Adrian, D., et al.: Imperfect forward secrecy: how Diffie-Hellman fails in practice.
In: Ray, I., Li, N., Kruegel, C. (eds.) ACM CCS 2015, pp. 5–17. ACM Press,
October 2015

https://doi.org/10.1007/3-540-45353-9_12

Everybody’s a Target: Scalability in Public-Key Encryption 505

3. Auerbach, B., Giacon, F., Kiltz, E.: Everybody’s a target: scalability in public-key
encryption. Cryptology ePrint Archive, Report 2019/364 (2019). https://eprint.
iacr.org/2019/364

4. Barbulescu, R.: Algorithms for discrete logarithm in finite fields. Ph.D. thesis,
University of Lorraine, Nancy, France (2013)

5. Barbulescu, R., Pierrot, C.: The multiple number field sieve for medium- and high-
characteristic finite fields. LMS J. Computa. Math. 17(A), 230–246 (2014)

6. Bartusek, J., Ma, F., Zhandry, M.: The distinction between fixed and random
generators in group-based assumptions. In: Boldyreva, A., Micciancio, D. (eds.)
CRYPTO 2019, Part II. LNCS, vol. 11693, pp. 801–830. Springer, Cham (2019).
https://doi.org/10.1007/978-3-030-26951-7 27

7. Bellare, M., Boldyreva, A., Micali, S.: Public-key encryption in a multi-user setting:
security proofs and improvements. In: Preneel, B. (ed.) EUROCRYPT 2000. LNCS,
vol. 1807, pp. 259–274. Springer, Heidelberg (2000). https://doi.org/10.1007/3-
540-45539-6 18

8. Bellare, M., Ristenpart, T., Tessaro, S.: Multi-instance security and its application
to password-based cryptography. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO
2012. LNCS, vol. 7417, pp. 312–329. Springer, Heidelberg (2012). https://doi.org/
10.1007/978-3-642-32009-5 19

9. Bellare, M., Rogaway, P.: Optimal asymmetric encryption. In: De Santis, A. (ed.)
EUROCRYPT 1994. LNCS, vol. 950, pp. 92–111. Springer, Heidelberg (1995).
https://doi.org/10.1007/BFb0053428

10. Bellare, M., Rogaway, P.: The security of triple encryption and a frame-
work for code-based game-playing proofs. In: Vaudenay, S. (ed.) EUROCRYPT
2006. LNCS, vol. 4004, pp. 409–426. Springer, Heidelberg (2006). https://doi.org/
10.1007/11761679 25

11. Bernstein, D.J., Lange, T.: Batch NFS. In: Joux, A., Youssef, A. (eds.) SAC 2014.
LNCS, vol. 8781, pp. 38–58. Springer, Cham (2014). https://doi.org/10.1007/978-
3-319-13051-4 3

12. Boneh, D., Boyen, X., Goh, E.-J.: Hierarchical identity based encryption with con-
stant size ciphertext. In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494,
pp. 440–456. Springer, Heidelberg (2005). https://doi.org/10.1007/11426639 26

13. Coretti, S., Dodis, Y., Guo, S.: Non-uniform bounds in the random-permutation,
ideal-cipher, and generic-group models. In: Shacham, H., Boldyreva, A. (eds.)
CRYPTO 2018, Part I. LNCS, vol. 10991, pp. 693–721. Springer, Cham (2018).
https://doi.org/10.1007/978-3-319-96884-1 23

14. Corrigan-Gibbs, H., Kogan, D.: The discrete-logarithm problem with preprocess-
ing. In: Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT 2018, Part II. LNCS, vol.
10821, pp. 415–447. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-
78375-8 14

15. Fouque, P.-A., Joux, A., Mavromati, C.: Multi-user collisions: applications to dis-
crete logarithm, even-Mansour and PRINCE. In: Sarkar, P., Iwata, T. (eds.) ASI-
ACRYPT 2014, Part I. LNCS, vol. 8873, pp. 420–438. Springer, Heidelberg (2014).
https://doi.org/10.1007/978-3-662-45611-8 22

16. Fuchsbauer, G., Kiltz, E., Loss, J.: The algebraic group model and its applications.
In: Shacham, H., Boldyreva, A. (eds.) CRYPTO 2018, Part II. LNCS, vol. 10992,
pp. 33–62. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-96881-0 2

17. Garay, J.A., Johnson, D.S., Kiayias, A., Yung, M.: Resource-based corruptions
and the combinatorics of hidden diversity. In: Kleinberg, R.D. (ed.) ITCS 2013,
pp. 415–428. ACM, January 2013

https://eprint.iacr.org/2019/364
https://eprint.iacr.org/2019/364
https://doi.org/10.1007/978-3-030-26951-7_27
https://doi.org/10.1007/3-540-45539-6_18
https://doi.org/10.1007/3-540-45539-6_18
https://doi.org/10.1007/978-3-642-32009-5_19
https://doi.org/10.1007/978-3-642-32009-5_19
https://doi.org/10.1007/BFb0053428
https://doi.org/10.1007/11761679_25
https://doi.org/10.1007/11761679_25
https://doi.org/10.1007/978-3-319-13051-4_3
https://doi.org/10.1007/978-3-319-13051-4_3
https://doi.org/10.1007/11426639_26
https://doi.org/10.1007/978-3-319-96884-1_23
https://doi.org/10.1007/978-3-319-78375-8_14
https://doi.org/10.1007/978-3-319-78375-8_14
https://doi.org/10.1007/978-3-662-45611-8_22
https://doi.org/10.1007/978-3-319-96881-0_2

506 B. Auerbach et al.

18. Guillevic, A., Morain, F.: Discrete logarithms. In: Mrabet, N.E., Joye, M. (eds.)
Guide to pairing-based cryptography. CRC Press/Taylor and Francis Group,
December 2016

19. Heninger, N., Durumeric, Z., Wustrow, E., Halderman, J.A.: Mining your Ps and
Qs: detection of widespread weak keys in network devices. In: 21st USENIX Secu-
rity Symposium (2012)

20. Hitchcock, Y., Montague, P., Carter, G., Dawson, E.: The efficiency of solving mul-
tiple discrete logarithm problems and the implications for the security of fixed ellip-
tic curves. Int. J.Inf. Secur. 3(2), 86–98 (2004). https://doi.org/10.1007/s10207-
004-0045-9

21. Hofheinz, D., Nguyen, N.K.: On tightly secure primitives in the multi-instance
setting. In: Lin, D., Sako, K. (eds.) PKC 2019, Part I. LNCS, vol. 11442, pp.
581–611. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-17253-4 20

22. Kuhn, F., Struik, R.: Random walks revisited: extensions of Pollard’s Rho algo-
rithm for computing multiple discrete logarithms. In: Vaudenay, S., Youssef, A.M.
(eds.) SAC 2001. LNCS, vol. 2259, pp. 212–229. Springer, Heidelberg (2001).
https://doi.org/10.1007/3-540-45537-X 17

23. Maurer, U.: Abstract models of computation in cryptography. In: Smart, N.P. (ed.)
Cryptography and Coding 2005. LNCS, vol. 3796, pp. 1–12. Springer, Heidelberg
(2005). https://doi.org/10.1007/11586821 1

24. Mizuide, T., Takayasu, A., Takagi, T.: Tight reductions for Diffie-Hellman variants
in the algebraic group model. In: Matsui, M. (ed.) CT-RSA 2019. LNCS, vol. 11405,
pp. 169–188. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-12612-4 9

25. Okamoto, T., Pointcheval, D.: The gap-problems: a new class of problems for the
security of cryptographic schemes. In: Kim, K. (ed.) PKC 2001. LNCS, vol. 1992,
pp. 104–118. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-44586-
2 8

26. Rupp, A., Leander, G., Bangerter, E., Dent, A.W., Sadeghi, A.-R.: Sufficient con-
ditions for intractability over black-box groups: generic lower bounds for gener-
alized DL and DH Problems. In: Pieprzyk, J. (ed.) ASIACRYPT 2008. LNCS,
vol. 5350, pp. 489–505. Springer, Heidelberg (2008). https://doi.org/10.1007/978-
3-540-89255-7 30

27. Sadeghi, A.-R., Steiner, M.: Assumptions related to discrete logarithms: why sub-
tleties make a real difference. In: Pfitzmann, B. (ed.) EUROCRYPT 2001. LNCS,
vol. 2045, pp. 244–261. Springer, Heidelberg (2001). https://doi.org/10.1007/3-
540-44987-6 16

28. Shoup, V.: Lower bounds for discrete logarithms and related problems. In: Fumy,
W. (ed.) EUROCRYPT 1997. LNCS, vol. 1233, pp. 256–266. Springer, Heidelberg
(1997). https://doi.org/10.1007/3-540-69053-0 18

29. Ying, J.H.M., Kunihiro, N.: Bounds in various generalized settings of the discrete
logarithm problem. In: Gollmann, D., Miyaji, A., Kikuchi, H. (eds.) ACNS 2017.
LNCS, vol. 10355, pp. 498–517. Springer, Cham (2017). https://doi.org/10.1007/
978-3-319-61204-1 25

30. Yun, A.: Generic hardness of the multiple discrete logarithm problem. In: Oswald,
E., Fischlin, M. (eds.) EUROCRYPT 2015, Part II. LNCS, vol. 9057, pp. 817–836.
Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46803-6 27

https://doi.org/10.1007/s10207-004-0045-9
https://doi.org/10.1007/s10207-004-0045-9
https://doi.org/10.1007/978-3-030-17253-4_20
https://doi.org/10.1007/3-540-45537-X_17
https://doi.org/10.1007/11586821_1
https://doi.org/10.1007/978-3-030-12612-4_9
https://doi.org/10.1007/3-540-44586-2_8
https://doi.org/10.1007/3-540-44586-2_8
https://doi.org/10.1007/978-3-540-89255-7_30
https://doi.org/10.1007/978-3-540-89255-7_30
https://doi.org/10.1007/3-540-44987-6_16
https://doi.org/10.1007/3-540-44987-6_16
https://doi.org/10.1007/3-540-69053-0_18
https://doi.org/10.1007/978-3-319-61204-1_25
https://doi.org/10.1007/978-3-319-61204-1_25
https://doi.org/10.1007/978-3-662-46803-6_27

Security Under Message-Derived Keys:
Signcryption in iMessage

Mihir Bellare1(B) and Igors Stepanovs2(B)

1 Department of Computer Science and Engineering, University of California
San Diego, San Diego, USA

mihir@eng.ucsd.edu
2 Department of Computer Science, ETH Zürich, Zürich, Switzerland

istepanovs@inf.ethz.ch

Abstract. At the core of Apple’s iMessage is a signcryption scheme that
involves symmetric encryption of a message under a key that is derived
from the message itself. This motivates us to formalize a primitive we call
Encryption under Message-Derived Keys (EMDK). We prove security of
the EMDK scheme underlying iMessage. We use this to prove security of
the signcryption scheme itself, with respect to definitions of signcryption
we give that enhance prior ones to cover issues peculiar to messaging
protocols. Our provable-security results are quantitative, and we discuss
the practical implications for iMessage.

1 Introduction

Apple’s iMessage app works across iOS (iPhone, iPad) and OS X (MacBook)
devices. Laudably, it aims to provide end-to-end security. At its heart is a sign-
cryption scheme.

The current scheme—we refer to the version in iOS 9.3 onwards, revised
after the attacks of GGKMR [26] on the iOS 9.0 version—is of interest on two
fronts. (1) Applied : iMessage encrypts (according to an Internet estimate) 63
quadrillion messages per year. It is important to determine whether or not the
scheme provides the security expected by its users. (2) Theoretical : The scheme
involves (symmetric) encryption of a message under a key that is derived from
the message itself, an uncommon and intriguing technique inviting formalization
and a foundational treatment.

Contributions in brief. Signcryption theory : We extend the prior Signcryp-
tion definitions of ADR [3] to capture elements particular to messaging systems,
and give general results that simplify the analysis of the candidate schemes.
EMDK : We introduce, and give definitions (syntax and security) for, Encryption
under Message Derived Keys. iMessage EMDK scheme: We extract from iMes-
sage an EMDK scheme and prove its security in the random-oracle model. Com-
position and iMessage Signcryption: We give a way to compose EMDK, PKE and
signatures to get signcryption, prove it works, and thereby validate the iMessage
signcryption scheme for appropriate parameter choices.
c© International Association for Cryptologic Research 2020
A. Canteaut and Y. Ishai (Eds.): EUROCRYPT 2020, LNCS 12107, pp. 507–537, 2020.
https://doi.org/10.1007/978-3-030-45727-3_17

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-45727-3_17&domain=pdf
https://doi.org/10.1007/978-3-030-45727-3_17

508 M. Bellare and I. Stepanovs

iMsg1.Enc(pkr , sks, M)

1. K ←$ {0, 1}128

2. C1 ← AES-CTR.Enc(K, M)
3. C2 ← RSA-OAEP.Enc(pkr , K)
4. H ← SHA1(C1‖C2)
5. S ← EC-DSA.Sign(sks, H)
6. Return ((C1, C2), S)

iMsg2.Enc(pkr , sks, M)

1. L ←$ {0, 1}88

2. h ← HMAC(L, pks‖pkr‖M)[1..40]
3. K ← L‖h

4. C1 ← AES-CTR.Enc(K, M)
5. C2 ← RSA-OAEP.Enc(pkr , K)
6. H ← SHA1(C1‖C2)
7. S ← EC-DSA.Sign(sks, H)
8. Return ((C1, C2), S)

Fig. 1. Encryption in iMsg1 (left) and iMsg2 (right). Here pkr is the recipient’s pub-
lic RSA encryption key, sks is the sender’s ECDSA secret signing key and pks is
the sender’s ECDSA public verification key. Our analysis and proofs consider gen-
eral schemes of which the above emerge as instantiations corresponding to particular
choices of primitives and parameters.

Background. By default, the iMessage chatting app encrypts communications
between any two iMessage users. The encryption is end-to-end, under keys stored
on the devices, meaning Apple itself cannot decrypt. In this way, iMessage joins
Signal, WhatsApp and other secure messaging apps as a means to counter mass
surveillance, but the cryptography used is quite different, and while the cryp-
tography underlying Signal and WhatsApp, namely ratcheting, has received an
extensive theoretical treatment [2,12,19,22,28,29,33], that underlying iMessage
has not.

In 2016, Garman, Green, Kaptchuk, Miers and Rushanan (GGKMR) [26]
gave chosen-ciphertext attacks on the then current, iOS 9 version, of iMessage
that we will denote iMsg1. Its encryption algorithm is shown on the left in
Fig. 1. In response Apple acknowledged the attack as CVE-2016-1788 [20], and
revised the protocol for iOS 9.3. We’ll denote this version iMsg2, its encryption
algorithm is shown on the right in Fig. 1. It has been stable since iOS 9.3. It was
this revision that, for the specific purpose of countering the GGMKR attack,
introduced (symmetric) encryption with message-derived keys: message M at
line 4 is encrypted under a key K derived, via lines 1–3, from M itself. The
question we ask is, does the fix work?

Identifying the goal. To meaningfully answer the above question we must
first, of course, identify the formal primitive and security goal being targeted.
Neither Apple’s iOS Security Guide [4], nor GGKMR [26], explicitly do so. We
suggest that it is signcryption. Introduced by Zheng [36], signcryption aims
to simultaneously provide privacy of the message (under the receiver’s public
encryption key) and authenticity (under the sender’s secret signing key), and
can be seen as the asymmetric analogue of symmetric authenticated encryption.
A formalization was given by An, Dodis and Rabin (ADR) [3]. They distinguish
between outsider security (the adversary is not one of the users) and the stronger
insider security (the adversary could be a sender or receiver).

Signcryption in iMessage 509

Identifying the iMessage goal as signcryption gives some perspective on, and
understanding of, the schemes and history. The iMessage schemes can be seen as
using some form of ADR’s Encrypt-then-Sign (EtS) method. The iMsg1 scheme
turns out to be a simple scheme from ADR [3]. It may be outsider-secure, but
ADR give an attack that shows it is not insider secure. (The adversary queries
the sender encryption oracle to get a ciphertext ((C1, C2), S), substitutes S with
a signature S′ of H = SHA1(C1‖C2) under its own signing key, which it can do
as an insider, and then queries this modified ciphertext to the recipient decryp-
tion oracle to get back the message underlying the original ciphertext.) The
GGKMR [26] attack on iMsg1 is a clever improvement and real-world rendition
of the ADR attack. That Apple acknowledged the GGKMR attack, and modified
the scheme to protect against it, indicates that they want insider security, not
just outsider security, for their modified iMsg2 scheme. So the question becomes
whether this goal is achieved.

Signcryption theory extended. We could answer the above question rel-
ative to ADR’s (existing) definitions of insider-secure signcryption, but we do
more, affirming the iMsg2 signcryption scheme under stronger definitions that
capture elements particular to messaging systems, making our results of more
applied value.

When you send an iMessage communication to Alice, it is encrypted to all her
devices (her iPhone, MacBook, iPad, ...), so that she can chat seamlessly across
them. To capture this, we enhance signcryption syntax, making the encryption
algorithm multi-recipient. (It takes not one, but a list of receiver public encryp-
tion keys.) We also allow associated data as in symmetric authenticated encryp-
tion [35].

We give, like in prior work [3], a privacy definition (priv) and an authenticity
definition (auth); but, unlike prior work, we also give a strong, unified defini-
tion (sec) that implies auth+priv. We show that (under certain conditions) sec
is implied by auth+priv, mirroring analogous results for symmetric authenti-
cated encryption [9,15]. Proving that a scheme satisfies sec (the definition more
intuitively capturing the practical setting) now reduces to the simpler tasks of
separately showing it satisfies auth and priv. These definitions and results are
for both insider and outsider security, and parameterized by choices of relaxing
relations that allow us to easily capture variants reflecting issues like plaintext
or ciphertext integrity [8], gCCA2 [3] and RCCA [18].

EMDK definitions. Recall that a scheme for conventional symmetric encryp-
tion specifies a key-generation algorithm that is run once, a priori, to return a key
k; the encryption algorithm then takes k and message m to return a ciphertext.
In our definition of a scheme for (symmetric) Encryption under Message-Derived
Keys (EMDK), there is no dedicated key-generation algorithm. Encryption algo-
rithm EMDK.Enc takes only a message m, returning both a key k and a cipher-
text c, so that k may depend on m. Decryption algorithm EMDK.Dec takes
k—in the overlying signcryption scheme, this is communicated to the receiver
via asymmetric encryption—and c to return either m or ⊥.

510 M. Bellare and I. Stepanovs

We impose two security requirements on an EMDK scheme. (1) The first,
called ae, adapts the authenticated encryption requirement of symmetric encryp-
tion [35]. (Our game formalizing ae is in Fig. 8.) (2) The second, called rob, is a
form of robustness or wrong-key detection [1,17,23,24]. (Our game formalizing
rob is also in Fig. 8.) Of course one may define many other and alternative secu-
rity goals for EMDK, so why these? We have focused on these simply because
they suffice for our results.

EMDK is different from both (Symmetric) Encryption of Key-Dependent
Messages (EKDM) [14,16] and (Symmetric) Encryption secure against Related-
Key Attack (ERKA) [7]. To begin with, these definitions apply to syntactically
different objects. Namely, both EKDM and ERKA are security metrics for the
standard symmetric encryption syntax where the encryption algorithm takes a
key and message as input and returns a ciphertext, while in EMDK the encryp-
tion algorithm takes only a message and itself produces a key along with the
ciphertext. (Note that the latter is also different from the syntax of a Key-
Encapsulation mechanism, where encryption does produce a key and ciphertext,
but takes no input message.) These syntactic differences make comparison moot,
but one can still discuss intuitively how the security requirements relate. In the
security games for EKDM there is an honestly and randomly chosen target key
k, and challenge messages to be encrypted may depend on k, but in our security
games for EMDK, the key is not chosen honestly and could depend on the mes-
sage being encrypted. In ERKA also, like EKDM but unlike EMDK, a target
key k is chosen honestly and at random. One can now have the game apply the
encryption algorithm under a key k′ derived from k, but this does not capture
the encryption algorithm not taking a key as input but itself producing it as a
function of the message, as in EKDM.

Deconstructing iMessage. Equipped with the above, we show how to cast
the iMsg2 signcryption scheme as the result of a general transform (that we
specify and call IMSG-SC) on a particular EMDK scheme (that we specify) and
some standard auxiliary primitives (that we also specify). In Sect. 5, we prove
that IMSG-SC works, reducing insider security (priv, auth, sec) of the signcryp-
tion scheme to the security of the constituents, leaving us with what is the main
technical task, namely showing security of the EMDK scheme.

In more detail, IMSG-SC takes a scheme EMDK for encryption under message-
derived keys, a public-key encryption scheme PKE and a digital signature scheme
DS to return a signcryption scheme SC = IMSG-SC[EMDK,PKE,DS]. (In the
body of the paper, this is done in two steps, with a multi-recipient public-key
encryption scheme [6] as an intermediate point, but for simplicity we elide this
here.) Both iMessage signcryption schemes (i.e. iMsg1 and iMsg2) can be seen as
results of this transform. The two make the same choices of PKE and DS, namely
RSA-OAEP and EC-DSA respectively, differing only in their choice of EMDK,
which for iMsg1 is a trivial scheme that we call the basic scheme, and for iMsg2
a more interesting scheme that we denote IMSG-EMDK[F,SE] and discuss below.
Our Sect. 5 result is that signcryption scheme SC = IMSG-SC[EMDK,PKE,DS]

Signcryption in iMessage 511

8 24 40 56 72 88 104 120 136 152 168 184 200 216 232 248
0

10
20
30
40
50
60
70
80

(40, 39)

(48, 45)

(72, 66)

(96, 79)

Length of HMAC authentication tag

B
it
-s
ec
ur
it
y
of

pr
iv
ac
y 256-bit AES key

192-bit AES key
128-bit AES key

Fig. 2. Lower bounds for the bit-security of privacy achieved by iMessage, depending
on the key size of AES-CTR and the length of the authentication tag returned by
HMAC. iMessage 10 uses 128-bit AES key and 40-bit long HMAC authentication tag,
and hence guarantees at least 39 bits of security for privacy. (Any choice of parameters
guarantees 71 bits of security for authenticity.)

provides insider security (priv, auth, sec) assuming ae- and rob-security of EMDK
and under standard assumptions on PKE and DS.

EMDK results. In Fig. 10 we specify an EMDK scheme IMSG-EMDK[F,SE]
constructed from a given function family F and a given, ordinary one-time
(assumed deterministic) symmetric encryption scheme SE. Setting F to HMAC
and SE to AES-CTR recovers the EMDK scheme underlying iMsg2 signcryption.
This EMDK scheme captures the heart of iMsg2 signcryption, namely lines 1–4
of the right side of Fig. 1.

The security analysis of IMSG-EMDK[F,SE] is somewhat complex. We prove
ae-security of this EMDK scheme assuming F is a random oracle and SE has
the following properties: one-time IND-CPA privacy, a property we define called
uniqueness, and partial key recovery security. The latter strengthens key recovery
security to say that, not only is it hard to recover the key, but it is hard to recover
even a prefix, of a certain prescribed length, of this key. We prove rob-security
of the EMDK scheme assuming F is a random oracle and SE satisfies uniqueness
and weak robustness. The properties assumed of SE appear to be true for the
AES-CTR used in iMessage, and could be shown in idealized models.

Practical implications for iMessage. What we have proved is that iMsg2
signcryption is secure in principle, in the sense that the underlying template is
sound. (That is, the signcryption scheme given by our IMSG-SC transform is
secure assuming the underlying primitives are secure.) For the practical impli-
cations, we must consider the quantitative security guaranteed by our theorems
based on the particular choices of parameters and primitives made in iMsg2 sign-
cryption scheme. Here, things seem a bit borderline, because iMsg2 signcryption
has made some specific parameter choices that seem dangerous. Considering
again the right side of Fig. 1, the 128-bit AES key K at line 3 has only 88 bits

512 M. Bellare and I. Stepanovs

of entropy—all the entropy is from the choice of L at line 1—which is not only
considered small in practice but also is less than for iMsg1. (On the left side
of the Figure we see that line 1 selects an AES key K with the full 128 bits of
entropy.) Also the tag h produced at line 2 of the right-hand-side of the Figure
is only 40 bits, shorter than recommended lengths for authentication tags. To
estimate the impact of these choices, we give concrete attacks on the scheme.
They show that the bounds in our theorems are tight, but do not contradict our
provable-security results.

Numerical estimates based on our provable-security results say that iMessage
10 guarantees at least 39 bits of security for privacy, and 71 bits of security for
authenticity, if HMAC and AES are modeled as ideal primitives. Figure 2 shows
the guaranteed bit-security of privacy for different choices of AES key length and
HMAC tag length. For the small parameter choices made in iMsg2 signcryption,
the attacks do approach feasibility in terms of computational effort, but we
wouldn’t claim they are practical, for two reasons. First, they only violate the
very stringent security goals that are the target of our proofs. Second, following
the GGKMR [26] attacks, Apple has implemented decryption-oracle throttling
that will also curtail our attacks.

Still, ideally, a practical scheme would implement cryptography that meets
even our stringent security goals without recourse to extraneous measures like
throttling. We suggest that parameter and primitive choices in iMessage sign-
cryption be revisited, for if they are chosen properly, our results do guarantee
that the scheme provides strong security properties.

Discussion. When a new primitive (like EMDK) is defined, the first question
of a theoretical cryptographer is often, does it exist, meaning, can it be built,
and under what assumptions? At least in the random-oracle model [10] in which
our results are shown, it is quite easy to build, under standard assumptions, an
EMDK scheme that provides the ae+rob-security we define, and we show such
a scheme in Fig. 9. The issue of interest for us is less existence (to build some
secure EMDK scheme) and more the security of the particular IMSG-EMDK[F,
SE] scheme underlying iMsg2 signcryption. The motivation is mainly applied,
stemming from this scheme running in security software (iMessage) that is used
by millions.

But, one may then ask, WHY did Apple use their (strange) EMDK scheme
instead of one like that in Fig. 9, which is simpler and provable under weaker
assumptions? We do not know. In that vein, one may even ask, why did Apple use
EMDK at all? The literature gives Signcryption schemes that are efficient and
based on standard assumptions. Why did they not just take one of them? Again,
we do not know for sure, but we can speculate. The EMDK-based template that
we capture in our IMSG-SC transform provides backwards decryption compati-
bility ; an iMsg1 implementation can decrypt an iMsg2 ciphertext. (Of course,
security guarantees revert to those of the iMsg1 scheme under such usage, but
this could be offset by operational gains.) Moving to an entirely new signcryption
scheme would not provide this backwards compatibility. But we stress again that
this is mere speculation; we did not find any Apple documents giving reasons
for their choices.

Signcryption in iMessage 513

Related work. We have discussed some related work above. However, sign-
cryption is a big research area with a lot of work. We overview this in [13].

2 Preliminaries

In [13] we provide the following standard definitions. We state syntax, correct-
ness and security definitions for function families, symmetric encryption, digital
signatures, public-key encryption, and multi-recipient public-key encryption. We
define the random oracle model, the ideal cipher model, and provide the birthday
attack bounds. In this section we introduce the basic notation and conventions
we use throughout the paper.

Basic notation and conventions. Let N = {1, 2, . . .} be the set of positive
integers. For i ∈ N we let [i] denote the set {1, . . . , i}. If X is a finite set, we
let x ←$ X denote picking an element of X uniformly at random and assigning
it to x. Let ε denote the empty string. By x ‖ y we denote the concatenation of
strings x and y. If x ∈ {0, 1}∗ is a string then |x| denotes its length, x[i] denotes
its i-th bit, and x[i..j] = x[i] . . . x[j] for 1 ≤ i ≤ j ≤ |x|. If mem is a table, we
use mem[i] to denote the element of the table that is indexed by i. We use a
special symbol ⊥ to denote an empty table position; we also return it as an error
code indicating an invalid input to an algorithm or an oracle, including invalid
decryption. We assume that adversaries never pass ⊥ as input to their oracles.

Uniquely decodable encoding. We write 〈a, b, . . .〉 to denote a string that
is a uniquely decodable encoding of a, b, . . ., where each of the encoded ele-
ments can have an arbitrary type (e.g. string or set). For any n ∈ N let
x1, . . . , xn and y1, . . . , yn be two sequences of elements such that for each
i ∈ [n] the following holds: either xi = yi, or both xi and yi are strings of
the same length. Then we require that |〈x1, . . . , xn〉| = |〈y1, . . . , yn〉|, and that
〈x1, . . . , xi−1, xi, xi+1, . . . , xn〉 ⊕ 〈x1, . . . , xi−1, yi, xi+1, . . . , xn〉 = 〈x1, . . . , xi−1,
(xi ⊕ yi), xi+1, . . . , xn〉 for all i ∈ [n].

Algorithms and adversaries. Algorithms may be randomized unless oth-
erwise indicated. Running time is worst case. If A is an algorithm, we let
y ← A(x1, . . . ; r) denote running A with random coins r on inputs x1, . . .
and assigning the output to y. We let y ←$ A(x1, . . .) be the result of pick-
ing r at random and letting y ← A(x1, . . . ; r). We let [A(x1, . . .)] denote the set
of all possible outputs of A when invoked with inputs x1, Adversaries are
algorithms.

Security games and reductions. We use the code based game playing
framework of [11]. (See Fig. 5 for an example.) We let Pr[G] denote the probabil-
ity that game G returns true. In the security reductions, we omit specifying the
running times of the constructed adversaries when they are roughly the same as
the running time of the initial adversary.

Implicit initialization values. In algorithms and games, uninitialized inte-
gers are assumed to be initialized to 0, Booleans to false, strings to the empty
string, sets to the empty set, and tables are initially empty.

514 M. Bellare and I. Stepanovs

Bit-security of cryptographic primitives. Let prim be any cryptographic
primitive, and let sec be any security notion defined for this primitive. We say
that prim has n bits of security with respect to sec (or n bits of sec-security) if for
every adversary A that has advantage εA and runtime TA against sec-security
of prim it is true that εA/TA < 2−n. In other words, if there exists an adversary
A with advantage εA and runtime TA against sec-security of prim, then prim has
at most − log2(εA/TA) bits of security with respect to sec. This is the folklore
definition of bit-security for cryptographic primitives. Micciancio and Walter [31]
recently proposed an alternative definition for bit-security.

Bit-security lower bounds. Let BS(prim, sec) denote the bit-security of
cryptographic primitive prim with respect to security notion sec. Consider any
security reduction showing Advsecprim(A) ≤ ∑

i Adv
seci
primi

(BA
i) by constructing for

any adversary A and for each i a new adversary BA
i with runtime roughly TA.

Then we can lower bound the bit-security of prim with respect to sec as

BS(prim, sec) = min
∀A

− log2

(
εA
TA

)

≥ min
∀A

− log2

(∑
i Adv

seci
primi

(BA
i)

TA

)

≥ − log2

(
∑

i

2−BS(primi,seci)

)

.

3 Signcryption

In this section we define syntax, correctness and security notions for multi-
recipient signcryption schemes. We assume that upon generating any signcryp-
tion key pair (pk, sk), it gets associated to some identity id. This captures a
system where users can independently generate their cryptographic keys prior
to registering them with a public-key infrastructure. We require that all iden-
tities are distinct values in {0, 1}∗. Depending on the system, each identity id
serves as a label that uniquely identifies a device or a user. Note that pk cannot
be used in place of the identity, because different devices can happen to use the
same public keys (either due to generating the same key pairs by chance, or
due to maliciously claiming someone’s else public key). We emphasize that our
syntax is not meant to capture identity-based signcryption, where a public key
would have to depend on the identity. In [13] we provide an extensive summary
of prior work on signcryption.

We focus on authenticity and privacy of signcryption in the insider setting,
meaning that the adversary is allowed to adaptively compromise secret keys of
any identities as long as that does not enable the adversary to trivially win the
security games. Our definitions can also capture the outsider setting by consider-
ing limited classes of adversaries. We define our security notions with respect to
relaxing relations. This allows us to capture a number of weaker security notions
in a fine-grained way, by choosing an appropriate relaxing relation in each case.

Signcryption in iMessage 515

π ←$ SC.Setup
(pk, sk) ←$ SC.Kg(π)
C ←$ SC.SigEnc(π, ids,pks, sks,R, m, ad)
m ← SC.VerDec(π, ids,pks, idr ,pkr , skr , c, ad)

Fig. 3. Syntax of the constituent algorithms of signcryption scheme SC.

Rm.Vf(z0, z1)

(x0, y0) ← z0 ; (x1, y1) ← z1
Return x0 = x1

Rid.Vf(z0, z1)

Return z0 = z1

Fig. 4. Relaxing relations Rm and Rid.

In [13] we define a combined security notion for signcryption that simultane-
ously encompasses authenticity and privacy, and prove that it is equivalent to
the separate notions under certain conditions.

Multi-recipient signcryption schemes. A multi-recipient signcryption
scheme SC specifies algorithms SC.Setup, SC.Kg, SC.SigEnc, SC.VerDec, where
SC.VerDec is deterministic. Associated to SC is an identity space SC.ID. The
setup algorithm SC.Setup returns public parameters π. The key generation algo-
rithm SC.Kg takes π to return a key pair (pk, sk), where pk is a public key
and sk is a secret key. The signcryption algorithm SC.SigEnc takes π, sender’s
identity ids ∈ SC.ID, sender’s public key pks, sender’s secret key sks, a set R
of pairs (idr ,pkr) containing recipient identities and public keys, a plaintext
m ∈ {0, 1}∗, and associated data ad ∈ {0, 1}∗ to return a set C of pairs (idr , c),
each denoting that signcryption ciphertext c should be sent to the recipient with
identity idr . The unsigncryption algorithm SC.VerDec takes π, sender’s identity
ids, sender’s public key pks, recipient’s identity idr , recipient’s public key pkr ,
recipient’s secret key skr , signcryption ciphertext c, and associated data ad to
return m ∈ {0, 1}∗ ∪ {⊥}, where ⊥ indicates a failure to recover plaintext. The
syntax used for the constituent algorithms of SC is summarized in Fig. 3.

Correctness of signcryption. The correctness of a signcryption scheme SC
requires that for all π ∈ [SC.Setup], all n ∈ N, all (pk0, sk0), . . . , (pkn, skn)
∈ [SC.Kg(π)] all id0 ∈ SC.ID, all distinct id1, . . . , idn ∈ SC.ID, all m ∈ {0, 1}∗,
and all ad ∈ {0, 1}∗ the following conditions hold. Let R = {(idi,pki)}1≤i≤n. We
require that for all C ∈ [SC.SigEnc(π, id0,pk0, sk0,R,m, ad)]: (i) |C| = |R|; (ii)
for each i ∈ {1, . . . , n} there exists a unique c ∈ {0, 1}∗ such that (idi, c) ∈ C;
(iii) for each i ∈ {1, . . . , n} and each c such that (idi, c) ∈ C we have m =
SC.VerDec(π, id0,pk0, idi,pki, ski, c, ad).

Relaxing relations. A relaxing relation R ⊆ {0, 1}∗ ×{0, 1}∗ is a set contain-
ing pairs of arbitrary strings. Associated to a relaxing relation R is a membership

516 M. Bellare and I. Stepanovs

Games Gauth
SC,R,

π ←$ SC.Setup ; NewH,NewC,Exp,SigEnc,VerDec(π) ; Return win

NewH(id)
If initialized[id] then return ⊥
initialized[id] ← true ; (pk, sk) ←$ SC.Kg(π) ; pk[id] ← pk ; sk[id] ← sk ; Return pk

NewC(id, pk , sk)
If initialized[id] then return ⊥
initialized[id] ← true ; exp[id] ← true ; pk[id] ← pk ; sk[id] ← sk ; Return true

Exp(id)
If not initialized[id] then return ⊥
exp[id] ← true ; Return sk[id]

SigEnc(ids, I, m, ad)
If (not initialized[ids]) or (∃id ∈ I : not initialized[id]) then return ⊥
R ← ∅ ; For each id ∈ I do R ← R ∪ {(id, pk[id])}
C ←$ SC.SigEnc(π, ids, pk[ids], sk[ids], R, m, ad)
For each (idr , c) ∈ C do Q ← Q ∪ {((ids, idr , m, ad), c)}
Return C
VerDec(ids, idr , c, ad)
If (not initialized[ids]) or (not initialized[idr]) then return ⊥
m ← SC.VerDec(π, ids, pk[ids], idr , pk[idr], sk[idr], c, ad) ; If m =⊥ then return ⊥
z0 ← ((ids, idr , m, ad), c) ; If ∃z1 ∈ Q : R.Vf(z0, z1) then return m

cheated ← exp[ids] ; If not cheated then win ← true

Return m

Fig. 5. Game defining authenticity of signcryption scheme SC with respect to relaxing
relation R.

verification algorithm R.Vf that takes inputs z0, z1 ∈ {0, 1}∗ to return a decision
in {true, false} such that ∀z0, z1 ∈ {0, 1}∗ : R.Vf(z0, z1) = true iff (z0, z1) ∈ R. We
will normally define relaxing relations by specifying their membership verifica-
tion algorithms. Two relaxing relations that will be used throughout the paper
are defined in Fig. 4.

We define our security notions for signcryption with respect to relaxing rela-
tions. Relaxing relations are used to restrict the queries that an adversary is
allowed to make to its unsigncryption oracle. The choice of different relaxing rela-
tions can be used to capture a variety of different security notions for signcryp-
tion in a fine-grained way. We will use relaxing relations Rid and Rm to capture
strong vs. standard authenticity (or unforgeability) of signcryption, and IND-
CCA vs. RCCA [18,27] style indistinguishability of signcryption. In Sect. 5.3
we will also define unforgeability of digital signatures with respect to relaxing
relations, allowing to capture standard and strong unforgeability notions in a
unified way.

Signcryption in iMessage 517

Authenticity of signcryption. Consider game Gauth of Fig. 5 associated to
a signcryption scheme SC, a relaxing relation R and an adversary F . The advan-
tage of adversary F in breaking the AUTH-security of SC with respect to R is
defined as AdvauthSC,R(F) = Pr[Gauth

SC,R,F]. Adversary F has access to oracles NewH,
NewC, Exp, SigEnc, and VerDec. The oracles can be called in any order.
Oracle NewH generates a key pair for a new honest identity id. Oracle NewC
associates a key pair (pk, sk) of adversary’s choice to a new corrupted identity id;
it permits malformed keys, meaning sk should not necessarily be a valid secret
key that matches with pk. Oracle Exp can be called to expose the secret key
of any identity. The game maintains a table exp to mark which identities are
exposed; all corrupted identities that were created by calling oracle NewC are
marked as exposed right away. The signcryption oracle SigEnc returns cipher-
texts produced by sender identity ids to each of the recipient identities contained
in set I, encrypting message m with associated data ad. Oracle VerDec returns
the plaintext obtained as the result of unsigncrypting the ciphertext c sent from
sender ids to recipient idr , with associated data ad. The goal of adversary F is
to forge a valid signcryption ciphertext, and query it to oracle VerDec. The
game does not let adversary win by querying oracle VerDec with a forgery that
was produced for an exposed sender identity ids, since the adversary could have
trivially produced a valid ciphertext due to its knowledge of the sender’s secret
key. Certain choices of relaxing relation R can lead to another trivial attack.

A choice of relaxing relation for authenticity. When adversary F in
game Gauth

SC,R,F calls oracle SigEnc on inputs ids, I,m, ad, then for each ciphertext
c produced for a recipient idr ∈ I the game adds a tuple ((ids, idr ,m, ad), c) to
set Q. This set is then used inside oracle VerDec. Oracle VerDec constructs
z0 = ((ids, idr ,m, ad), c) and prevents the adversary from winning the game if
R.Vf(z0, z1) is true for any z1 ∈ Q. If the relaxing relation is empty (meaning
R = ∅ and hence R.Vf(z0, z1) = false for all z0, z1 ∈ {0, 1}∗) then an adversary is
allowed to trivially win the game by calling oracle SigEnc and claiming any of
the resulting ciphertexts as a forgery (without changing the sender and recipient
identities). Let us call this a “ciphertext replay” attack.

In order to capture a meaningful security notion, the AUTH-security of SC
should be considered with respect to a relaxing relation that prohibits the above
trivial attack. The strongest such security notion is achieved by considering
AUTH-security of SC with respect to the relaxing relation Rid that is defined in
Fig. 4; this relaxing relation prevents only the ciphertext replay attack. The
resulting security notion captures the strong authenticity (or unforgeability)
of signcryption. Alternatively, one could think of this notion as capturing the
ciphertext integrity of signcryption.

Note that a relaxing relation R prohibits the ciphertext replay attack iff
Rid ⊆ R. Now consider the relaxing relation Rm as defined in Fig. 4; it is a
proper superset of Rid. The AUTH-security of SC with respect to Rm captures the
standard authenticity (or unforgeability, or plaintext integrity) of signcryption.
The resulting security notion does not let adversary win by merely replaying an

518 M. Bellare and I. Stepanovs

encryption of (m, ad) from ids to idr for any fixed (ids, idr ,m, ad), even if the
adversary can produce a new ciphertext that was not seen before.

Capturing outsider authenticity. Game Gauth
SC,R,F captures the authentic-

ity of SC in the insider setting, because it allows adversary to win by produc-
ing a forgery from an honest sender identity to an exposed recipient identity.
This, in particular, implies that SC assures non-repudiation, meaning that the
sender cannot deny the validity of a ciphertext it sent to a recipient (since the
knowledge of the recipient’s secret key does not help to produce a forgery). In
contrast, the outsider authenticity only requires SC to be secure when both the
sender and the recipient are honest. Our definition can capture the notion of
outsider authenticity by considering a class of outsider adversaries that never
query VerDec(ids, idr , c, ad) when exp[idr] = true.

Privacy of signcryption. Consider game Gpriv of Fig. 6 associated to a sign-
cryption scheme SC, a relaxing relation R and an adversary D. The advantage
of adversary D in breaking the PRIV-security of SC with respect to R is defined
as AdvprivSC,R(D) = 2Pr[Gpriv

SC,R,D] − 1. The game samples a challenge bit b ∈ {0, 1},
and the adversary is required to guess it. Adversary D has access to oracles
NewH, NewC, Exp, LR, and VerDec. The oracles can be called in any order.
Oracles NewH, NewC, and Exp are the same as in the authenticity game (with
the exception of oracle Exp also checking table ch, which is explained below).
Oracle LR encrypts challenge message mb with associated data ad, produced by
sender identity ids to each of the recipient identities contained in set I. Oracle
LR aborts if m0 �= m1 and if the recipient set I contains an identity idr that
is exposed. Otherwise, the adversary would be able to trivially win the game by
using the exposed recipient’s secret key to decrypt a challenge ciphertext pro-
duced by this oracle. If m0 �= m1 and none of the recipient identities is exposed,
then oracle LR uses table ch to mark each of the recipient identities; the game
will no longer allow to expose any of these identities by calling oracle Exp. Ora-
cle VerDec returns the plaintext obtained as the result of unsigncrypting the
ciphertext c sent from ids to idr with associated data ad. We discuss the choice
of a relaxing relation R below. However, note that oracle LR updates the set Q
(used by relaxing relation) only when m0 �= m1. This is because the output of
LR does not depend on the challenge bit when m0 = m1, and hence such queries
should not affect the set of prohibited queries to oracle VerDec.

Outputs of oracle VerDec. The output of oracle VerDec in game Gpriv

is a pair containing the plaintext (or the incorrect decryption symbol ⊥) as its
first element, and the status message as its second element. This ensures that
the adversary can distinguish whether VerDec returned ⊥ because it failed to
decrypt the ciphertext (yields error message “dec”), or because the relaxing rela-
tion prohibits the query (yields error message “priv”). Giving more information
to the adversary results in a stronger security definition, and will help us prove
equivalence between the joint and separate security notions of signcryption in
[13]. Note that an adversary can distinguish between different output branches
of all other oracles used in our authenticity and privacy games.

Signcryption in iMessage 519

Fig. 6. Games defining privacy of signcryption scheme SC with respect to relaxing
relation R.

A choice of relaxing relation for privacy. Consider relaxing relations
Rid and Rm that are defined in Fig. 4. We recover IND-CCA security of SC as
the PRIV-security of SC with respect to Rid. And we capture the RCCA security
of SC as the PRIV-security of SC with respect to Rm. Recall that the intuition
behind the RCCA security [18,27] is to prohibit the adversary from querying its
decryption oracle with ciphertexts that encrypt a previously queried challenge
message. In particular, this is the reason that two elements are added to set Q
during each call to oracle LR, one for each of m0 and m1. Our definition of RCCA
security for SC is very similar to that of IND-gCCA2 security as proposed by An,
Dodis and Rabin [3]. The difference is that our definition passes the decrypted

520 M. Bellare and I. Stepanovs

Fig. 7. Constituent algorithms of encryption scheme under message derived keys
EMDK.

message as input to the relation, whereas IND-gCCA2 instead allows relations
that take public keys of sender and recipient as input. It is not clear that having
the relation take the public key would make our definition meaningfully stronger.

Capturing outsider privacy. Game Gpriv
SC,R,D captures the privacy of SC in

the insider setting, meaning that the adversary is allowed to request challenge
encryptions from ids to idr even when ids is exposed. This implies some form of
forward security because exposing the sender’s key does not help the adversary
win the indistinguishability game. To recover the notion of outsider privacy,
consider a class of outsider adversaries that never query LR(ids, I,m0,m1, ad)
when exp[ids] = true.

4 Encryption Under Message Derived Keys

We now define Encryption under Message Derived Keys (EMDK). It can be
thought of as a special type of symmetric encryption allowing to use keys that
depend on the messages to be encrypted. This type of primitive will be at the
core of analyzing the security of iMessage-based signcryption scheme. In Sect. 4.1
we define syntax, correctness and basic security notions for EMDK schemes. In
Sect. 4.2 we define the iMessage-based EMDK scheme and analyse its security.

4.1 Syntax, Correctness and Security of EMDK

We start by defining the syntax and correctness of encryption schemes under
message derived keys. The interaction between constituent algorithms of EMDK
is shown in Fig. 7. The main security notions for EMDK schemes are AE (authen-
ticated encryption) and ROB (robustness). We also define the IND (indistin-
guishability) notion that will be used in Sect. 4.2 for an intermediate result
towards showing the AE-security of the iMessage-based EMDK scheme.

Encryption schemes under message derived keys. An encryption sch-
eme under message derived keys EMDK specifies algorithms EMDK.Enc and
EMDK.Dec, where EMDK.Dec is deterministic. Associated to EMDK is a key
length EMDK.kl ∈ N. The encryption algorithm EMDK.Enc takes a message
m ∈ {0, 1}∗ to return a key k ∈ {0, 1}EMDK.kl and a ciphertext c ∈ {0, 1}∗. The
decryption algorithm EMDK.Dec takes k, c to return message m ∈ {0, 1}∗ ∪{⊥},
where ⊥ denotes incorrect decryption. Decryption correctness requires that
EMDK.Dec(k, c) = m for all m ∈ {0, 1}∗, and all (k, c) ∈ [EMDK.Enc(m)].

Signcryption in iMessage 521

Game Gind
EMDK,D

b ←$ {0, 1} ; b′ ←$ DLR

Return b = b′

LR(m0, m1)
If |m0| 	= |m1| then

return ⊥
(k, c) ←$ EMDK.Enc(mb)
Return c

Game Gae
EMDK,D

b ←$ {0, 1} ; b′ ←$ DLR,Dec

Return b = b′

LR(m0, m1)
If |m0| 	= |m1| then return ⊥
n ← n + 1
(k[n], c[n]) ←$ EMDK.Enc(mb)
Return (n, c[n])

Dec(i, c)
If i 	∈ [n] or c[i] = c then

return ⊥
m ← EMDK.Dec(k[i], c)
If b = 1 then return m

Else return ⊥

Game Grob
EMDK,G

(i, k) ←$ GEnc

If i 	∈ [n] then return false

m ← EMDK.Dec(k, c[i])
win1 ← (m 	=⊥)
win2 ← (m 	= m[i])
Return win1 and win2

Enc(m)
(k, c) ←$ EMDK.Enc(m)
n ← n + 1 ; m[n] ← m ;
c[n] ← c

Return (k, c)

Fig. 8. Games defining indistinguishability, authenticated encryption security, and
robustness of encryption scheme under message derived keys EMDK.

Indistinguishability of EMDK. Consider game Gind of Fig. 8, associated to
an encryption scheme under message derived keys EMDK, and to an adversary
D. The advantage of D in breaking the IND security of EMDK is defined as
AdvindEMDK(D) = 2 · Pr[Gind

EMDK,D] − 1. The game samples a random challenge bit b
and requires the adversary to guess it. The adversary has access to an encryp-
tion oracle LR that takes two challenge messages m0,m1 to return an EMDK
encryption of mb.

Authenticated encryption security of EMDK. Consider game Gae of
Fig. 8, associated to an encryption scheme under message derived keys EMDK,
and to an adversary D. The advantage of D in breaking the AE security of EMDK
is defined as AdvaeEMDK(D) = 2 ·Pr[Gae

EMDK,D]−1. Compared to the indistinguisha-
bility game from above, game Gae saves the keys and ciphertexts produced by
oracle LR, and also provides a decryption oracle Dec to adversary D. The
decryption oracle allows to decrypt a ciphertext with any key that was saved by
oracle Enc, returning either the actual decryption m (if b = 1) or the incorrect
decryption symbol ⊥ (if b = 0). To prevent trivial wins, the adversary is not
allowed to query oracle Dec with a key-ciphertext pair that were produced by
the same LR query.

Robustness of EMDK. Consider game Grob of Fig. 8, associated to an encryp-
tion scheme under message derived keys EMDK, and to an adversary G.
The advantage of G in breaking the ROB security of EMDK is defined as
AdvrobEMDK(G) = Pr[Grob

EMDK,G]. To win the game, adversary G is required to find
(c, k0, k1,m0,m1) such that c decrypts to m0 under key k0, and c decrypts to
m1 under key k1, but m0 �= m1. Furthermore, the game requires that the cipher-
text (along with one of the keys) was produced during a call to oracle Enc that
takes a message m as input to return the output (k, c) of running EMDK.Enc(m)

522 M. Bellare and I. Stepanovs

EMDK.EncRO(m)

k ←$ {0, 1}EMDK.kl ; � ← |m|
x ← m ⊕ RO(k, �)
h ← RO(k ‖ m, �)
c ← (x, h)
Return (k, c)

EMDK.DecRO(k, c)

(x, h) ← c ; � ← |x|
m ← x ⊕ RO(k, �)
h′ ← RO(k ‖ m, �)
If h 	= h′ then return ⊥
Else return m

RO(z, �)

If T [z, �] = ⊥ then
T [z, �] ←$ {0, 1}�

Return T [z, �]

Fig. 9. Sample EMDK scheme EMDK = SIMPLE-EMDK in the ROM.

EMDK.Enc(m)

r0 ←$ {0, 1}F.kl ; r1 ← F.Ev(r0, m)
k ← r0 ‖ r1 ; cse ←$ SE.Enc(k, m)
Return (k, cse)

EMDK.Dec(k, cse)

m ← SE.Dec(k, cse) ; If m =⊥ then return ⊥
r0 ← k[1 . . .F.kl] ; r1 ← k[F.kl+ 1 . . . SE.kl]
If r1 	= F.Ev(r0, m) then return ⊥
Return m

Fig. 10. iMessage-based EMDK scheme EMDK = IMSG-EMDK[F, SE].

with honestly generated random coins. The other key can be arbitrarily chosen
by the adversary. In the symmetric encryption setting, a similar notion called
wrong-key detection was previously defined by Canetti et al. [17]. The notion of
robustness for public-key encryption was formalized by Abdalla et al. [1] and
further extended by Farshim et al. [23].

Sample EMDK scheme SIMPLE-EMDK. It is easy to build an EMDK scheme
that is both AE-secure and ROB-secure. One example of such scheme is the
construction SIMPLE-EMDK in the random oracle model (ROM) that is defined
in Fig. 9. In the next section we will define the EMDK scheme used iMessage;
it looks convoluted, and its security is hard to prove even in the ideal models.
In [13] we define the EMDK scheme that was initially used in iMessage; it was
replaced with the current EMDK scheme in order to fix a security flaw in the
iMessage design. We believe that the design of the currently used EMDK scheme
was chosen based on a requirement to maintain backward-compatibility across
the initial and the current versions of iMessage protocol.

4.2 iMessage-Based EMDK Scheme

In this section we define the EMDK scheme IMSG-EMDK that is used as the core
building block in the construction of iMessage (we use it to specify the iMessage-
based signcryption scheme in Sect. 5). We will provide reductions showing the
AE-security and the ROB-security of IMSG-EMDK. These security reductions
will first require us to introduce two new security notions for symmetric encryp-
tion schemes: partial key recovery and weak robustness.

EMDK scheme IMSG-EMDK. Let SE be a symmetric encryption scheme. Let
F be a function family with F.In = {0, 1}∗ such that F.kl + F.ol = SE.kl. Then

Signcryption in iMessage 523

Game Gpkr
SE,�,P

PEnc,GuessKey ; Return win

Enc(m)

k ←$ {0, 1}SE.kl ; c ←$ SE.Enc(k, m)
n ← n + 1 ; k[n] ← k[1 . . . �] ; Return c

GuessKey(p)
If ∃i ∈ [n] : k[i] = p then win ← true

Game Gwrob
SE,�,G

GEnc ; Return win

Enc(r0, m)

r1 ←$ {0, 1}� ; k ← r0 ‖ r1
c ← SE.Enc(k, m)
If ∃(m′, c) ∈ W : m′ 	= m then

win ← true

W ← W ∪ {(m, c)} ; Return r1

Fig. 11. Games defining partial key recovery security of symmetric encryption scheme
SE with respect to prefix length �, and weak robustness of deterministic symmetric
encryption scheme SE with respect to randomized key-suffix length �.

EMDK = IMSG-EMDK[F,SE] is the EMDK scheme as defined in Fig. 10, with
key length EMDK.kl = SE.kl.

Informally, the encryption algorithm EMDK.Enc(m) samples a hash func-
tion key r0 and computes hash r1 ←$ F.Ev(r0,m). It then encrypts m by run-
ning SE.Enc(k,m), where k = r0 ‖ r1 is a message-derived key. The decryp-
tion algorithm splits k into r0 and r1 and – upon recovering m – checks that
r1 = F.Ev(r0,m). In the iMessage construction, SE is instantiated with AES-CTR
using 128-bit keys and a fixed IV=1, whereas F is instantiated with HMAC-
SHA256 using F.kl = 88 and F.ol = 40.

Partial key recovery security of SE. Consider game Gpkr of Fig. 11,
associated to a symmetric encryption scheme SE, a prefix length � ∈ N and
an adversary P. The advantage of P in breaking the PKR-security of SE with
respect to � is defined as AdvpkrSE,�(P) = Pr[Gpkr

SE,�,P]. The adversary P has access
to oracle Enc that takes a message m and encrypts it under a uniformly random
key k (independently sampled for each oracle call). The goal of the adversary is
to recover the first � bits of any secret key that was used in prior Enc queries.

Weak robustness of deterministic SE. Consider game Gwrob of Fig. 11,
associated to a deterministic symmetric encryption scheme SE, a randomized
key-suffix length � ∈ N, and an adversary G. The advantage of G in breaking the
WROB-security of SE with respect to � is defined as AdvwrobSE,� (G) = Pr[Gwrob

SE,�,G].
The adversary has access to oracle Enc. The oracle takes a prefix of an encryp-
tion key r0 ∈ {0, 1}SE.kl−� and message m as input. It then randomly samples
the suffix of the key r1 ∈ {0, 1}� and returns it to the adversary. The adver-
sary wins if it succeeds to query Enc on some inputs (r0,m) and (r′

0,m
′) such

that m �= m′ yet the oracle mapped both queries to the same ciphertext c.
In other words, the goal of the adversary is to find k0,m0, k1,m1 such that
SE.Enc(k0,m0) = SE.Enc(k1,m1) and m0 �= m1 (which also implies k0 �= k1),
and the adversary has only a partial control over the choice of k0 and k1. Note
that this assumption can be validated in the ideal cipher model.

524 M. Bellare and I. Stepanovs

Security reductions for IMSG-EMDK. We now provide the reductions for
AE-security and ROB-security of IMSG-EMDK. The former is split into Theo-
rems 1 and 2, whereas the latter is provided in Theorem 3. Note that in [13]
we provide the standard definitions for the random oracle model, the UNIQUE-
security and the OTIND-security of symmetric encryption, and the TCR-security
of function families. The proofs of Theorems 1, 2 and 3 are in the full version [13].

Theorem 1. Let SE be a symmetric encryption scheme. Let F be a func-
tion family with F.In = {0, 1}∗, such that F.kl + F.ol = SE.kl. Let EMDK =
IMSG-EMDK[F,SE]. Let DAE be an adversary against the AE-security of EMDK.
Then we build an adversary U against the UNIQUE-security of SE, an adver-
sary H against the TCR-security of F, and an adversary DIND against the IND-
security of EMDK such that

AdvaeEMDK(DAE) ≤ 2 · AdvuniqueSE (U) + 2 · AdvtcrF (H) + AdvindEMDK(DIND).

Theorem 2. Let SE be a symmetric encryption scheme. Let F be a function
family with F.In = {0, 1}∗ and F.kl + F.ol = SE.kl, defined by F.EvRO(r,m) =
RO(〈r,m〉,F.ol) in the random oracle model. Let EMDK = IMSG-EMDK[F,SE].
Let DEMDK be an adversary against the IND-security of EMDK that makes qLR
queries to its LR oracle and qRO queries to random oracle RO. Then we build
an adversary P against the PKR-security of SE with respect to F.kl, and an
adversary DSE against the OTIND-security of SE, such that

AdvindEMDK(DEMDK) ≤ 2 · γ + 2 · AdvpkrSE,F.kl(P) + AdvotindSE (DSE),

where

γ =
(2 · qRO + qLR − 1) · qLR

2F.kl+1
.

Theorem 3. Let SE be a deterministic symmetric encryption scheme. Let F
be a function family with F.In = {0, 1}∗ and F.kl + F.ol = SE.kl, defined by
F.EvRO(r,m) = RO(〈r,m〉,F.ol) in the random oracle model. Let EMDK =
IMSG-EMDK[F,SE]. Let GEMDK be an adversary against the ROB-security of
EMDK. Then we build an adversary U against the UNIQUE-security of SE, and
an adversary GSE against the WROB-security of SE with respect to F.ol such that

AdvrobEMDK(GEMDK) ≤ AdvuniqueSE (U) + AdvwrobSE,F.ol(GSE).

5 Design and Security of iMessage

In this section we define a signcryption scheme that models the current design
of iMessage protocol for end-to-end encrypted messaging, and we analyze its
security. All publicly available information about the iMessage protocol is pro-
vided by Apple in iOS Security Guide [4] that is regularly updated but is very
limited and vague. So in addition to the iOS Security Guide, we also reference
work that attempted to reverse-engineer [32,34] and attack [26] the prior ver-
sions of iMessage. A message-recovery attack against iMessage was previously

Signcryption in iMessage 525

Scheme Construction Figure
EMDK IMSG-EMDK[F, SE] 10
MRPKE IMSG-MRPKE[EMDK,PKE] 14
SC IMSG-SC[MRPKE,DS] 13

Scheme Instantiation
F HMAC-SHA256 (F.kl = 88, F.ol = 40)
SE AES-CTR with 128-bit key and IV=1
PKE RSA-OAEP with 1280-bit key
DS ECDSA with NIST P-256 curve

Fig. 12. Modular design of iMessage-based signcryption scheme. The boxed nodes in
the diagram denote transforms that build a new cryptographic scheme from two under-
lying primitives.

found and implemented by Garman et al. [26] in 2016, and subsequently fixed
by Apple starting from version 9.3 of iOS, and version 10.11.4 of Mac OS X.
The implemented changes to the protocol prevented the attack, but also made
the protocol design less intuitive. It appears that one of the goals of the updated
protocol design was to preserve backward-compatibility, and that could be the
reason why the current design is a lot more more sophisticated than otherwise
necessary. Apple has not formalized any claims about the security achieved by
the initial or the current iMessage protocol, or the assumptions that are required
from the cryptographic primitives that serve as the building blocks. We fill in
the gap by providing precise claims about the security of iMessage design when
modeled by our signcryption scheme. In this section we focus only on the current
protocol design of iMessage. In [13] we provide the design of the initial iMessage
protocol, we explain the attack proposed by Garman et al. [26], and we introduce
the goal of backward-compatibility for signcryption schemes.

5.1 iMessage-Based Signcryption Scheme IMSG-SC

Identifying signcryption as the goal. The design of iMessage combines
multiple cryptographic primitives to build an end-to-end encrypted messaging
protocol. It uses HMAC-SHA256, AES-CTR, RSA-OAEP and ECDSA as the
underlying primitives. Apple’s iOS Security Guide [4] and prior work on reverse-
engineering and analysis of iMessage [26,32,34] does not explicitly indicate what
type of cryptographic scheme is built as the result of combining these primitives.
We identify it as a signcryption scheme. We define the iMessage-based signcryp-
tion scheme IMSG-SC in a modular way that facilitates its security analysis.
Figure 12 shows the order in which the underlying primitives are combined to
build IMSG-SC, while also providing intermediate constructions along the way.
We now explain this step by step.

526 M. Bellare and I. Stepanovs

SC.Setup

π ← MRPKE.Setup ; Return π

SC.SigEnc(π, ids, pks, sks, R, m, ad)

I ← ∅ ; Rpke ← ∅ ; C ← ∅
For each (idr , pkr) ∈ R do

(vkr , ekr) ← pkr
I ← I ∪ {idr}
Rpke ← Rpke ∪ {(idr , ekr)}

mpke ← 〈m, ids, I〉
Cpke ←$ MRPKE.Enc(π, Rpke , mpke)
(tks, dks) ← sks

For each (idr , cpke) ∈ Cpke do
σ ←$ DS.Sig(tks, 〈cpke , ad〉)
c ← (cpke , σ) ; C ← C ∪ {(idr , c)}

Return C

SC.Kg(π)

(vk, tk) ←$ DS.Kg
(ek, dk) ←$ MRPKE.Kg(π)
pk ← (vk, ek) ; sk ← (tk, dk)
Return (pk, sk)

SC.VerDec(π, ids, pks, idr , pkr , skr , c, ad)

(cpke , σ) ← c ; (vks, eks) ← pks
(vkr , ekr) ← pkr ; (tkr , dkr) ← skr

d ← DS.Ver(vks, 〈cpke , ad〉, σ)
If not d then return ⊥
mpke ← MRPKE.Dec(π, ekr , dkr , cpke)
If mpke =⊥ then return ⊥
〈m, id∗

s , I〉 ← mpke

If ids 	= id∗
s or idr I∈	 then return ⊥

Return m

Fig. 13. Signcryption scheme SC = IMSG-SC[MRPKE,DS].

Modular design of IMSG-SC. Our construction starts from choosing a func-
tion family F and a symmetric encryption scheme SE (instantiated with HMAC-
SHA256 and AES-CTR in iMessage). It combines them to build an encryp-
tion scheme under message derived keys EMDK = IMSG-EMDK[F,SE]. The
resulting EMDK scheme is combined with public-key encryption scheme PKE
(instantiated with RSA-OAEP in iMessage) to build a multi-recipient public-
key encryption scheme MRPKE = IMSG-MRPKE[EMDK,PKE] (syntax and cor-
rectness of MRPKE schemes is defined in [13]). Finally, MRPKE and digital
signature scheme DS (instantiated with ECDSA in iMessage) are combined to
build the iMessage-based signcryption scheme SC = IMSG-SC[MRPKE,DS]. The
definition of IMSG-EMDK was provided in Sect. 4.2. We now define IMSG-SC and
IMSG-MRPKE.

Signcryption scheme IMSG-SC. Let MRPKE be a multi-recipient public-
key encryption scheme. Let DS be a digital signature scheme. Then SC =
IMSG-SC[MRPKE,DS] is the signcryption scheme as defined in Fig. 13, with
SC.ID = {0, 1}∗. In order to produce a signcryption of message m with asso-
ciated data ad, algorithm SC.SigEnc performs the following steps. It builds a
new message mpke = 〈m, ids, I〉 as the unique encoding of m, ids, I, where I
is the set of recipients. It then calls MRPKE.Enc to encrypt the same message
mpke for every recipient. Algorithm MRPKE.Enc returns a set Cpke containing
pairs (idr , cpke), each indicating that an MRPKE ciphertext cpke was produced
for recipient idr . For each recipient, the corresponding ciphertext cpke is then
encoded with the associated data ad into 〈cpke , ad〉 and signed using the signing

Signcryption in iMessage 527

MRPKE.Setup

π ← ε ; Return π

MRPKE.Enc(π, R, m)

C ← ∅ ; (k, cse) ←$ EMDK.Enc(m)
For each (idr , ekr) ∈ R do

cpke ←$ PKE.Enc(ekr , k)
c ← (cse , cpke) ; C ← C ∪ {(idr , c)}

Return C

MRPKE.Kg(π)

(ek, dk) ←$ PKE.Kg ; Return (ek, dk)

MRPKE.Dec(π, ek, dk, c)

(cse , cpke) ← c
k ← PKE.Dec(ek, dk, cpke)
If k =⊥ then return ⊥
m ← EMDK.Dec(k, cse)
Return m

Fig. 14. Multi-recipient public-key encryption scheme MRPKE = IMSG-MRPKE
[EMDK,PKE].

key tks of sender identity ids, producing a signature σ. The pair (idr , (cpke , σ)) is
then added to the output set of algorithm SC.SigEnc. When running the unsign-
cryption of ciphertext c sent from ids to idr , algorithm SC.VerDec ensures that
the recovered MRPKE plaintext mpke = 〈m, id∗

s , I〉 is consistent with ids = id∗
s

and idr ∈ I.

Multi-recipient public-key encryption scheme IMSG-MRPKE.LetEMDK
be an encryption scheme under message derived keys. Let PKE be a public-
key encryption scheme with PKE.In = {0, 1}EMDK.kl. Then MRPKE =
IMSG-MRPKE[EMDK,PKE] is the multi-recipient public-key encryption scheme
as defined in Fig. 14. Algorithm MRPKE.Enc first runs (k, cse) ←$ EMDK.Enc(m)
to produce an EMDK ciphertext cse that encrypts m under key k. The obtained
key k is then independently encrypted for each recipient identity idr using its
PKE encryption key ekr , and the corresponding tuple (idr , (cse , cpke)) is added
to the output set of algorithm MRPKE.Enc.

Combining everything together. Let SC be the iMessage-based signcryp-
tion scheme that is produced by combining all of the underlying primitives
described above. Then the data flow within the fully expanded algorithms
SC.SigEnc and SC.VerDec is schematically displayed in Fig. 15. For simplicity,
the diagrams show the case when a message m is sent to a single recipient idr .

5.2 Parameter-Choice Induced Attacks on Privacy of iMessage

The iMessage-based signcryption scheme SC uses the EMDK scheme EMDK =
IMSG-EMDK[F,SE] as one of its underlying primitives. Recall that in order to
encrypt a payload m′ = 〈m, ids, I〉, the EMDK scheme samples a function key
r0 ←$ {0, 1}F.kl, computes a hash of m′ as r1 ← F.Ev(r0,m′), sets the encryption
key k ← r0 ‖ r1, and produces a ciphertext as cse ←$ SE.Enc(k,m′). The imple-
mentation of iMessage uses parameters F.kl = 88 and F.ol = 40. In this section
we provide three adversaries against the privacy of SC whose success depends on
the choice of F.kl and F.ol. In next sections we will provide security proofs for SC.

528 M. Bellare and I. Stepanovs

Fig. 15. Algorithms SC.SigEnc (left panel) and SC.VerDec (right panel) for SC =
IMSG-SC[MRPKE,DS], where MRPKE = IMSG-MRPKE[EMDK,PKE] and EMDK =
IMSG-EMDK[F, SE]. For simplicity, we let idr be the only recipient, and we do not
show how to parse inputs and combine outputs for the displayed algorithms. The
dotted lines inside SC.VerDec denote equality check, and the dotted arrow denotes
membership check.

We will show that each adversary in this section arises from an attack against a
different step in our security proofs. We will be able to conclude that these are
roughly the best attacks that arise from the choice of EMDK parameters. We will
also explain why it is hard to construct any adversaries against the authenticity
of SC. Now consider the adversaries of Fig. 16. The full version of this paper [13]
provides a detailed explanation for each adversary.

Formal claims and analysis. We provide the number of queries, the runtime
complexity and the advantage of each adversary in Fig. 17. The assumptions
necessary to prove the advantage are stated in Lemma 4 below. Note that Dbirthday

represents a purely theoretical attack, but both Dexhaustive and DADR02 can lead
to practical message-recovery attacks (the latter used by Garman et al. [26]).

Let EMDK = IMSG-EMDK[F,SE]. Adversary DADR02 shows that EMDK can
have at most F.ol bits of security with respect to PRIV, and adversary Dbirthday

shows that EMDK can have at most ≈ F.kl/2 + log2 F.kl bits of security with
respect to PRIV. It follows that setting F.ol ≈ F.kl/2 is a good initial guideline,
and roughly corresponds to the parameter choices made in iMessage. We will
provide a more detailed analysis in Sect. 5.5. The proof of Lemma 4 is in the full
version [13].

Signcryption in iMessage 529

DNewH,NewC,Exp,LR,VerDec
exhaustive,n (π)

ids ← “send” ; pks ←$ NewH(ids)
idr ← “recv” ; pkr ←$ NewH(idr)
I ← {idr} ; ad ← ε
m0 ← 0n ; m1 ←$ {0, 1}n

C ←$ LR(ids, I, m0, m1, ad)
{(idr , c)} ← C ; ((cse , cpke), σ) ← c
m′

1 ← 〈m1, ids, I〉
For each r0 ∈ {0, 1}F.kl do

r1 ← F.Ev(r0, m′
1) ; k ← r0 ‖ r1

If SE.Dec(k, cse) = m′
1 then return 1

Return 0

DNewH,NewC,Exp,LR,VerDec
birthday (π)

ids ← “send” ; pks ←$ NewH(ids)
idr ← “recv” ; pkr ←$ NewH(idr)
I ← {idr} ; ad ← ε
S ← ∅ ; p ←
F.kl/2� ; m1 ← 0p

For each m0 ∈ {0, 1}p do
C ←$ LR(ids, I, m0, m1, ad)
{(idr , c)} ← C ; ((cse , cpke), σ) ← c
If cse ∈ S then return 1
S ← S ∪ {cse}

Return 0

DNewH,NewC,Exp,LR,VerDec
ADR02 (π)

ids ← 0128 ; pks ←$ NewH(ids) ; idr ← 1128 ; pkr ←$ NewH(idr)
I ← {idr} ; m0 ← 0128 ; m1 ← 1128 ; ad ← ε
C ←$ LR(ids, I, m0, m1, ad) ; {(idr , c)} ← C ; ((cse , cpke), σ) ← c
idc ← 064164 ; (pkc , skc) ←$ SC.Kg(π) ; NewC(idc , pkc , skc) ; (tkc , dkc) ← skc

m′
1 ← 〈m1, ids, {idr}〉 ; m′′

1 ← 〈m1, idc , {idr}〉 ; c′
se ← cse ⊕ (m′

1 ⊕ m′′
1)

σ′ ←$ DS.Sig(tkc , 〈(c′
se , cpke), ad〉) ; c′ ← ((c′

se , cpke), σ′)
(m, err) ← VerDec(idc , idr , c

′, ad) ; If m = m1 then return 1 else return 0

Fig. 16. The resources used by adversaries Dexhaustive,n, Dbirthday and DADR02, and the
advantage achieved by each of them. Columns labeled qO denote the number of queries
an adversary makes to oracle O. All adversaries make 2 queries to oracle NewH, and
0 queries to oracle Exp. See Lemma 4 for necessary assumptions.

Adversary qLR qNewC qVerDec Runtime complexity Advantage
Dexhaustive,n 1 0 0 2F.kl evaluations of F.Ev, SE.Enc ≥ 1 − 2SE.kl−n

Dbirthday 2�F.kl/2� 0 0 2p · p for p =
F.kl/2� > 1/8 − 2F.kl−128

DADR02 1 1 1 1 evaluation of SC.Kg, DS.Sig = 2−F.ol

Fig. 17. Adversaries Dexhaustive,n, Dbirthday and DADR02 against the PRIV-security of SC =
IMSG-SC[MRPKE,DS], where MRPKE = IMSG-MRPKE[EMDK,PKE] and EMDK =
IMSG-EMDK[F, SE]. Adversary DADR02 requires that SE is AES-CTR with a fixed IV.

Lemma 4. Let SE be a symmetric encryption scheme. Let F be a function
family with F.In = {0, 1}∗ such that F.kl + F.ol = SE.kl. Let EMDK =
IMSG-EMDK[F,SE]. Let PKE be a public-key encryption scheme with PKE.In =
{0, 1}SE.kl. Let MRPKE = IMSG-MRPKE[EMDK,PKE]. Let DS be a digital signa-
ture scheme. Let SC = IMSG-SC[MRPKE,DS]. Let R ⊆ {0, 1}∗ × {0, 1}∗ be any
relaxing relation. Then for any n > SE.kl,

AdvprivSC,R(Dexhaustive,n) ≥ 1 − 2SE.kl−n.

530 M. Bellare and I. Stepanovs

Furthermore, for any 1 ≤ F.kl ≤ 124, if SE is AES-CTR with a fixed IV, and if
AES is modeled as the ideal cipher, then

AdvprivSC,R(Dbirthday) > 1/8 − 2F.kl−128.

Let Rm be the relaxing relation defined in Fig. 4. If SE is AES-CTR with a fixed
IV, and if F is defined as F.EvRO(r,m) = RO(〈r,m〉,F.ol) in the random oracle
model, then

AdvprivSC,Rm
(DADR02) = 2−F.ol.

5.3 Authenticity of iMessage

In this section we reduce the authenticity of the iMessage-based signcryption
scheme SC to the security of its underlying primitives. First we reduce the
authenticity of SC = IMSG-SC[MRPKE,DS] to the unforgeability of DS and
to the robustness of MRPKE. And then we reduce the robustness of MRPKE =
IMSG-MRPKE[EMDK,PKE] to the robustness of either PKE or EMDK; it is suf-
ficient that only one of the two is robust.

Reduction showing authenticity of IMSG-SC. Recall that an SC cipher-
text is a pair (cpke , σ) that consists of an MRPKE ciphertext cpke (encrypting
some 〈m, ids, I〉) and a DS signature σ of 〈cpke , ad〉. Intuitively, the authentic-
ity of SC requires some type of unforgeability from DS in order to prevent the
adversary from producing a valid signature on arbitrary cpke and ad of its own
choice. However, the unforgeability of DS is not a sufficient condition, because
the adversary is allowed to win the game Gauth by forging an SC ciphertext
for a corrupted recipient identity that uses maliciously chosen SC keys. So an
additional requirement is that the adversary should not be able to find an SC
key pair (pk, sk) that successfully decrypts an honestly produced SC ciphertext
(cpke , σ) to an unintended message. To ensure this, we require that MRPKE is
robust (as defined in the full version of this paper [13]). Note that finding a new
key pair that decrypts the ciphertext to the original message will not help the
adversary to win the game because then the decryption will fail by not finding
the corrupted recipient’s identity in recipient set I.

We define unforgeability UF of a digital signature scheme with respect
to a relaxing relation R, such that the standard unforgeability is captured
with respect to Rm and the strong unforgeability is captured with respect
to Rid. The formal definition is in the full version [13]. We show that if
DS is UF-secure with respect to a relaxing relation R∗ ∈ {Rm,Rid} then
SC is AUTH-secure with respect to the corresponding parameterized relax-
ing relation IMSG-AUTH-REL[R∗], which we define below. ECDSA signatures
are not strongly unforgeable [25], so iMessage is AUTH-secure with respect to
IMSG-AUTH-REL[Rm].

Relaxing relation IMSG-AUTH-REL. Let Rm and Rid be the relaxing rela-
tions defined in Sect. 3. Let R∗ ∈ {Rm,Rid}. Then IMSG-AUTH-REL[R∗] is the
relaxing relation as defined in Fig. 18. Note that

Rid = IMSG-AUTH-REL[Rid] ⊂ IMSG-AUTH-REL[Rm] ⊂ Rm,

Signcryption in iMessage 531

IMSG-AUTH-REL[R∗].Vf(z, z∗)

((ids, idr , m, ad), (cpke , σ)) ← z ; z0 ← ((ids, idr , m, ad, cpke), σ)
((id∗

s , id∗
r , m

∗, ad∗), (c∗
pke , σ

∗)) ← z∗ ; z1 ← ((id∗
s , id∗

r , m
∗, ad∗, c∗

pke), σ
∗)

Return R∗.Vf(z0, z1)

Fig. 18. Relaxing relation IMSG-AUTH-REL[R∗].

where AUTH-security with respect to Rid captures the stronger security defini-
tion due to imposing the least number of restrictions regarding which queries
are permitted to oracle VerDec. Relaxing relation IMSG-AUTH-REL[Rm] does
not allow adversary to win the authenticity game by only mauling the signature
σ and not changing anything else.

Theorem 5. Let MRPKE be a multi-recipient public-key encryption scheme. Let
DS be a digital signature scheme. Let SC = IMSG-SC[MRPKE,DS]. Let R∗ ∈
{Rm,Rid}. Let FSC be an adversary against the AUTH-security of SC with respect
to relaxing relation R = IMSG-AUTH-REL[R∗]. Then we build an adversary FDS

against the UF-security of DS with respect to R∗, and an adversary G against
the ROB-security of MRPKE such that

AdvauthSC,R(FSC) ≤ AdvufDS,R∗(FDS) + AdvrobMRPKE(G).

The proof of Theorem 5 is in the full version [13].

Reduction showing robustness of MRPKE. The ciphertext of MRPKE =
IMSG-MRPKE[EMDK,PKE] is a pair (cse , cpke), where cse is an EMDK ciphertext
encrypting some m∗ = 〈m, ids, I〉, and cpke is a PKE ciphertext encrypting the
corresponding EMDK key k. The decryption algorithm of MRPKE first uses the
PKE key pair (ek,dk) to decrypt cpke , and then uses the recovered EMDK key k to
decrypt cse . We show that just one of PKE and EMDK being robust implies that
MRPKE is also robust. Our definition of robustness for public-key encryption
requires that it is hard to find a key pair (ek,dk) that decrypts an honestly
produced ciphertext to a plaintext that is different from the originally encrypted
message. If this condition holds for PKE, then clearly MRPKE is robust regardless
of whether EMDK is robust. On the other hand, if PKE is not robust, then the
robustness of EMDK (as defined in Sect. 4) would guarantee that the adversary
is unlikely to decrypt cse to a message other than m∗ even if it has full control
over the choice of EMDK key k. It is not known whether RSA-OAEP is robust,
so our concrete security analysis of iMessage in Sect. 5.5 will rely entirely on
the robustness of EMDK = IMSG-EMDK. The formal definition of robustness for
PKE and the proof of Theorem 6 are in the full version [13].

Theorem 6. Let EMDK be an encryption scheme under message derived keys.
Let PKE be a public-key encryption scheme with PKE.In = {0, 1}EMDK.kl. Let

532 M. Bellare and I. Stepanovs

IMSG-PRIV-REL.Vf(z, z∗)

((ids, idr , m, ad), (cpke , σ)) ← z ; ((id∗
s , id∗

r , m
∗, ad∗), (c∗

pke , σ
∗)) ← z∗

Return (ids, idr , m, cpke) = (id∗
s , id∗

r , m
∗, c∗

pke)

Fig. 19. Relaxing relation IMSG-PRIV-REL.

MRPKE = IMSG-MRPKE[EMDK,PKE]. Let GMRPKE be an adversary against the
ROB-security of MRPKE. Then we build an adversary GEMDK against the ROB-
security of EMDK such that

AdvrobMRPKE(GMRPKE) ≤ AdvrobEMDK(GEMDK),

and an adversary GPKE against the ROB-security of PKE such that

AdvrobMRPKE(GMRPKE) ≤ AdvrobPKE(GPKE).

5.4 Privacy of iMessage

In this section we reduce the PRIV-security of SC = IMSG-SC[MRPKE,DS]
to the INDCCA-security of MRPKE, then reduce the INDCCA-security of
MRPKE = IMSG-MRPKE[EMDK,PKE] to the AE-security of EMDK and the
INDCCA-security of PKE. The reductions are straightforward.

An adversary attacking the PRIV-security of SC is allowed to query oracle
LR and get a challenge ciphertext from an exposed sender as long as the recipient
is honest. This means that the adversary can use the sender’s DS signing key to
arbitrarily change associated data ad and signature σ of any challenge ciphertext
prior to querying it to oracle VerDec. Our security reduction for PRIV-security
of SC will be with respect to a relation that prohibits the adversary from trivially
winning this way. Note that if IMSG-SC was defined to instead put ad inside
〈m, ids, I〉, then our security reduction would be able to show the PRIV-security
of SC with respect to Rid assuming DS had unique signatures. However, ECDSA
does not have this property (for the same reason it is not strongly unforgeable,
as explained in [25]).

Relaxing relation IMSG-PRIV-REL. Let IMSG-PRIV-REL be the relaxing
relation defined in Fig. 19. It first discards the associated data ad and the signa-
ture σ, and then compares the resulting tuples against each other. This reflects
the intuition that an adversary can trivially change the values of ad and σ in
any challenge ciphertext when attacking the PRIV-security of IMSG-SC.

Theorem 7. Let MRPKE be a multi-recipient public-key encryption scheme. Let
DS be a digital signature scheme. Let SC = IMSG-SC[MRPKE,DS]. Let DSC be an
adversary against the PRIV-security of SC with respect to the relaxing relation
R = IMSG-PRIV-REL. Then we build an adversary DMRPKE against the INDCCA-
security of MRPKE such that

AdvprivSC,R(DSC) ≤ AdvindccaMRPKE(DMRPKE).

Signcryption in iMessage 533

Theorem 8. Let EMDK be an encryption scheme under message derived keys.
Let PKE be a public-key encryption scheme with input set PKE.In = {0, 1}EMDK.kl.
Let MRPKE = IMSG-MRPKE[EMDK,PKE]. Let DMRPKE be an adversary against
the INDCCA-security of MRPKE. Then we build an adversary DPKE against the
INDCCA-security of PKE, and an adversary DEMDK against the AE-security of
EMDK such that

AdvindccaMRPKE(DMRPKE) ≤ 2 · AdvindccaPKE (DPKE) + AdvaeEMDK(DEMDK).

The proofs of Theorems 7 and 8 are in the full version [13].

5.5 Concrete Security of iMessage

In this section we summarize the results concerning the security of our iMes-
sage-based signcryption scheme. For simplicity, we use the constructions and
primitives from all across our work without formally redefining each of them.

Corollary for abstract schemes. Let SC be the iMessage-based signcryp-
tion scheme, defined based on the appropriate underlying primitives. Let Rauth =
IMSG-AUTH-REL[R∗] and Rpriv = IMSG-PRIV-REL. Then for any adversary FSC

attacking the AUTH-security of SC we can build new adversaries such that:

AdvauthSC,Rauth
(FSC) ≤ AdvufDS,R∗(FDS) + min(AdvrobPKE(GPKE), α),

where
α = AdvuniqueSE (U0) + AdvwrobSE,F.ol(GSE).

For any adversary DSC attacking the PRIV-security of SC, making qLR queries
to LR oracle and qRO queries to RO oracle, we build new adversaries such that:

AdvprivSC,Rpriv
(DSC) ≤ 2 · (β + γ) + AdvotindSE (DSE),

where

β = AdvindccaPKE (DPKE) + AdvuniqueSE (U1) + AdvtcrF (H) + AdvpkrSE,F.kl(P),

γ =
(2 · qRO + qLR − 1) · qLR

2F.kl+1
.

Bit-security of iMessage. We now assess the concrete security of iMessage
when the abstract schemes that constitute SC are instantiated with real-world
primitives. First, note that AdvuniqueSE (U) = 0 for any U when SE is AES-CTR.
We will approximate the bit-security of SC based on the other terms above.

We assume that ECDSA with 256-bit keys (on the NIST P-256 curve) has
128 bits of UF-security with respect to Rm [5,21]. We assume that RSA-OAEP
with 1280-bit keys has 80 bits of INDCCA-security [21,30]. SE is AES-CTR with
key length SE.kl; we assume that SE has SE.kl bits of OTIND-security.

For every other term used above, we approximate the corresponding bit-
security based on the advantage ε and the runtime T of the best adversary we

534 M. Bellare and I. Stepanovs

SE.kl F.kl F.ol PRIV bit-security AUTH bit-security

128
88 40 39

71

80 48 45
72 56 41

192
128 64 63
120 72 66
112 80 62

256
168 88 79
160 96 79

Fig. 20. Lower bounds for bit-security of SC across different parameter choices.

can come up with. For simplicity, we model F as the random oracle and we model
SE as the ideal cipher. This simplifies the task of finding the “best possible”
adversary against each security notion and then calculating its advantage. In each
case we consider either a constant-time adversary making a single guess in its
security game (achieving some advantage ε in time T ≈ 1), or an adversary that
runs a birthday attack (achieving advantage ε ≥ 0.3 · q·(q−1)

N in time T ≈ q · log2 q

for q =
√

2N). We use the following adversaries:

(i) Assume SE is AES-CTR where AES modeled as the ideal cipher with block
length 128. In game Gwrob

SE,F.ol,G consider an adversary G that repeatedly
queries its oracle Enc on inputs (r0,m) where all r0 ∈ {0, 1}F.kl are dis-
tinct and all m ∈ {0, 1}128 are distinct. The adversary wins if a collision
occurs across the 128-bit outputs of SE.Enc. Then ε = AdvwrobSE,F.ol(GSE) ≥
0.3 · qEnc∗(qEnc−1)

2128 and T = qEnc · log2 qEnc for qEnc =
√

2128+1.
(ii) In game Gtcr

F,H consider an adversary H that queries its oracle NewKey(x0)
for any x0 ∈ {0, 1}∗ and then makes a guess (1, x1) for any x0 �= x1. Then
ε = AdvtcrF (H) = 2−F.ol and T ≈ 1 in the random oracle model.

(iii) In game Gpkr
SE,F.kl,P consider an adversary P that makes a single call to

Enc and then randomly guesses any key prefix p ∈ {0, 1}F.kl. Then ε =
AdvpkrSE,F.kl(P) = 2−F.kl and T ≈ 1 in the ideal cipher model.

(iv) The term γ upper bounds the probability of an adversary finding a col-
lision when running the birthday attack (in the random oracle model).
The corresponding lower bound (for qRO = 0) is ε ≥ 0.3 · qLR·(qLR−1)

2F.kl
with

T = qLR · log2 qLR and qLR =
√

2F.kl+1.

We wrote a script that combines all of the above to find the lower bound for
the bit-security of SC (with respect to PRIV and AUTH security notions) for
different choices of SE.kl, F.kl and F.ol. This assumes that the above adversaries
are optimal, and computes the lower bound according to Sect. 2. Figure 2 (in
Sect. 1) shows the bit-security lower bounds with respect to privacy, depending
on the choice of symmetric key length SE.kl and authentication tag length F.ol.
Figure 20 shows the choices of F.kl and F.ol that yield the best lower bounds
for the bit-security of PRIV for each SE.kl ∈ {128, 192, 256}. According to our

Signcryption in iMessage 535

results, the security of the iMessage-based signcryption scheme would slightly
improve if the value of F.ol was chosen to be 48 instead of 40. The bit-security
of SC with respect to AUTH is constant because it does not depend on the
values of SE.kl, F.kl, F.ol. The assumption that RSA-OAEP with 1280-bit long
keys has 80 bits of INDCCA-security limits the bit-security that can be achieved
when SE.kl = 256; otherwise, the PRIV bit-security for SE.kl = 256 would allow
a lower bound of 86 bits. But note that using SE.kl ∈ {192, 256} is likely not
possible while maintaining the backward-compatibility of iMessage.

Acknowledgments. The authors were supported in part by NSF grant CNS-1717640
and a gift from Microsoft. Igors Stepanovs’s work was done while at UCSD. We thank
Adina Wollner, Wei Dai and Joseph Jaeger for discussions and insights.

References

1. Abdalla, M., Bellare, M., Neven, G.: Robust encryption. In: Micciancio, D. (ed.)
TCC 2010. LNCS, vol. 5978, pp. 480–497. Springer, Heidelberg (2010). https://
doi.org/10.1007/978-3-642-11799-2 28

2. Alwen, J., Coretti, S., Dodis, Y.: The double ratchet: security notions, proofs, and
modularization for the signal protocol. In: Ishai, Y., Rijmen, V. (eds.) EURO-
CRYPT 2019. LNCS, vol. 11476, pp. 129–158. Springer, Cham (2019). https://
doi.org/10.1007/978-3-030-17653-2 5

3. An, J.H., Dodis, Y., Rabin, T.: On the security of joint signature and encryp-
tion. In: Knudsen, L.R. (ed.) EUROCRYPT 2002. LNCS, vol. 2332, pp. 83–107.
Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-46035-7 6

4. Apple. iOS security: iOS 12.3. Technical whitepaper, May 2019. https://www.
apple.com/business/docs/site/iOS Security Guide.pdf

5. Barker, E.: Recommendation for key management part 1: general (revision 5).
NIST special publication, 800(57), 1–174 (2019)

6. Bellare, M., Boldyreva, A., Kurosawa, K., Staddon, J.: Multirecipient encryption
schemes: how to save on bandwidth and computation without sacrificing security.
IEEE Trans. Inf. Theory 53(11), 3927–3943 (2007)

7. Bellare, M., Kohno, T.: A theoretical treatment of related-key attacks: RKA-PRPs,
RKA-PRFs, and applications. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS,
vol. 2656, pp. 491–506. Springer, Heidelberg (2003). https://doi.org/10.1007/3-
540-39200-9 31

8. Bellare, M., Namprempre, C.: Authenticated encryption: relations among notions
and analysis of the generic composition paradigm. In: Okamoto, T. (ed.) ASI-
ACRYPT 2000. LNCS, vol. 1976, pp. 531–545. Springer, Heidelberg (2000).
https://doi.org/10.1007/3-540-44448-3 41

9. Bellare, M., Ng, R., Tackmann, B.: Nonces are noticed: AEAD revisited. In:
Boldyreva, A., Micciancio, D. (eds.) CRYPTO 2019. LNCS, vol. 11692, pp. 235–
265. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-26948-7 9

10. Bellare, M., Rogaway, P.: Random oracles are practical: a paradigm for designing
efficient protocols. In: ACM CCS (1993)

11. Bellare, M., Rogaway, P.: The security of triple encryption and a frame-
work for code-based game-playing proofs. In: Vaudenay, S. (ed.) EUROCRYPT
2006. LNCS, vol. 4004, pp. 409–426. Springer, Heidelberg (2006). https://doi.org/
10.1007/11761679 25

https://doi.org/10.1007/978-3-642-11799-2_28
https://doi.org/10.1007/978-3-642-11799-2_28
https://doi.org/10.1007/978-3-030-17653-2_5
https://doi.org/10.1007/978-3-030-17653-2_5
https://doi.org/10.1007/3-540-46035-7_6
https://www.apple.com/business/docs/site/iOS_Security_Guide.pdf
https://www.apple.com/business/docs/site/iOS_Security_Guide.pdf
https://doi.org/10.1007/3-540-39200-9_31
https://doi.org/10.1007/3-540-39200-9_31
https://doi.org/10.1007/3-540-44448-3_41
https://doi.org/10.1007/978-3-030-26948-7_9
https://doi.org/10.1007/11761679_25
https://doi.org/10.1007/11761679_25

536 M. Bellare and I. Stepanovs

12. Bellare, M., Singh, A.C., Jaeger, J., Nyayapati, M., Stepanovs, I.: Ratcheted
encryption and key exchange: the security of messaging. In: Katz, J., Shacham,
H. (eds.) CRYPTO 2017. LNCS, vol. 10403, pp. 619–650. Springer, Cham (2017).
https://doi.org/10.1007/978-3-319-63697-9 21

13. Bellare, M., Stepanovs, I.: Security under message-derived keys: signcryption in
imessage. Cryptology ePrint Archive, Report 2020/224 (2020)

14. Black, J., Rogaway, P., Shrimpton, T.: Encryption-scheme security in the presence
of key-dependent messages. In: Nyberg, K., Heys, H. (eds.) SAC 2002. LNCS,
vol. 2595, pp. 62–75. Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-
36492-7 6

15. Bose, P., Hoang, V.T., Tessaro, S.: Revisiting AES-GCM-SIV: multi-user secu-
rity, faster key derivation, and better bounds. In: Nielsen, J.B., Rijmen, V. (eds.)
EUROCRYPT 2018. LNCS, vol. 10820, pp. 468–499. Springer, Cham (2018).
https://doi.org/10.1007/978-3-319-78381-9 18

16. Camenisch, J., Lysyanskaya, A.: An efficient system for non-transferable anony-
mous credentials with optional anonymity revocation. In: Pfitzmann, B. (ed.)
EUROCRYPT 2001. LNCS, vol. 2045, pp. 93–118. Springer, Heidelberg (2001).
https://doi.org/10.1007/3-540-44987-6 7

17. Canetti, R., Tauman Kalai, Y., Varia, M., Wichs, D.: On symmetric encryption
and point obfuscation. In: Micciancio, D. (ed.) TCC 2010. LNCS, vol. 5978, pp.
52–71. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-11799-2 4

18. Canetti, R., Krawczyk, H., Nielsen, J.B.: Relaxing chosen-ciphertext security. In:
Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 565–582. Springer, Heidel-
berg (2003). https://doi.org/10.1007/978-3-540-45146-4 33

19. Cohn-Gordon, K., Cremers, C., Dowling, B., Garratt, L., Stebila, D.: A formal
security analysis of the Signal messaging protocol. In: Proceedings of the IEEE
European Symposium on Security and Privacy (EuroS&P) (2017)

20. Common Vulnerabilities and Exposures system. Cve-2016-1788. https://cve.mitre.
org/cgi-bin/cvename.cgi?name=CVE-2016-1788

21. Damien, G.: Cryptographic key length recommendation. https://www.keylength.
com

22. Durak, F.B., Vaudenay, S.: Bidirectional asynchronous ratcheted key agreement
with linear complexity. In: Attrapadung, N., Yagi, T. (eds.) IWSEC 2019. LNCS,
vol. 11689, pp. 343–362. Springer, Cham (2019). https://doi.org/10.1007/978-3-
030-26834-3 20

23. Farshim, P., Libert, B., Paterson, K.G., Quaglia, E.A.: Robust encryption, Revis-
ited. In: Kurosawa, K., Hanaoka, G. (eds.) PKC 2013. LNCS, vol. 7778, pp. 352–
368. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-36362-7 22

24. Farshim, P., Orlandi, C., Roşie, R.: Security of symmetric primitives under incor-
rect usage of keys. IACR Trans. Symm. Cryptol. 2017(1), 449–473 (2017)

25. Fersch, M., Kiltz, E., Poettering, B.: On the provable security of (EC)DSA signa-
tures. In: ACM CCS (2016)

26. Garman, C., Green, M., Kaptchuk, G., Miers, I., Rushanan, M.: Dancing on the
lip of the volcano: chosen ciphertext attacks on Apple iMessage. USENIX Security
(2016)

27. Groth, J.: Rerandomizable and replayable adaptive chosen ciphertext attack secure
cryptosystems. In: Naor, M. (ed.) TCC 2004. LNCS, vol. 2951, pp. 152–170.
Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24638-1 9

https://doi.org/10.1007/978-3-319-63697-9_21
https://doi.org/10.1007/3-540-36492-7_6
https://doi.org/10.1007/3-540-36492-7_6
https://doi.org/10.1007/978-3-319-78381-9_18
https://doi.org/10.1007/3-540-44987-6_7
https://doi.org/10.1007/978-3-642-11799-2_4
https://doi.org/10.1007/978-3-540-45146-4_33
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2016-1788
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2016-1788
https://www.keylength.com
https://www.keylength.com
https://doi.org/10.1007/978-3-030-26834-3_20
https://doi.org/10.1007/978-3-030-26834-3_20
https://doi.org/10.1007/978-3-642-36362-7_22
https://doi.org/10.1007/978-3-540-24638-1_9

Signcryption in iMessage 537

28. Jaeger, J., Stepanovs, I.: Optimal channel security against fine-grained state com-
promise: the safety of messaging. In: Shacham, H., Boldyreva, A. (eds.) CRYPTO
2018. LNCS, vol. 10991, pp. 33–62. Springer, Cham (2018). https://doi.org/10.
1007/978-3-319-96884-1 2

29. Jost, D., Maurer, U., Mularczyk, M.: Efficient ratcheting: almost-optimal guar-
antees for secure messaging. In: Ishai, Y., Rijmen, V. (eds.) EUROCRYPT 2019.
LNCS, vol. 11476, pp. 159–188. Springer, Cham (2019). https://doi.org/10.1007/
978-3-030-17653-2 6

30. Lenstra, A.K.: Key length. Contribution to the handbook of information security
(2004)

31. Micciancio, D., Walter, M.: On the bit security of cryptographic primitives. In:
Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT 2018. LNCS, vol. 10820, pp. 3–28.
Springer, Cham (2018). https://doi.org/10.1007/978-3-319-78381-9 1

32. OpenIM wiki. iMessage. https://wiki.imfreedom.org/wiki/IMessage
33. Poettering, B., Rösler, P.: Towards bidirectional ratcheted key exchange. In:

Shacham, H., Boldyreva, A. (eds.) CRYPTO 2018. LNCS, vol. 10991, pp. 3–32.
Springer, Cham (2018). https://doi.org/10.1007/978-3-319-96884-1 1

34. Quarkslab. iMessage privacy, October 2013. https://blog.quarkslab.com/imessage-
privacy.html

35. Rogaway, P.: Authenticated-encryption with associated-data. In: ACM CCS (2002)
36. Zheng, Y.: Digital signcryption or how to achieve cost(signature & encryption)

� cost(signature) + cost(encryption). In: Kaliski, B.S. (ed.) CRYPTO 1997.
LNCS, vol. 1294, pp. 165–179. Springer, Heidelberg (1997). https://doi.org/10.
1007/BFb0052234

https://doi.org/10.1007/978-3-319-96884-1_2
https://doi.org/10.1007/978-3-319-96884-1_2
https://doi.org/10.1007/978-3-030-17653-2_6
https://doi.org/10.1007/978-3-030-17653-2_6
https://doi.org/10.1007/978-3-319-78381-9_1
https://wiki.imfreedom.org/wiki/IMessage
https://doi.org/10.1007/978-3-319-96884-1_1
https://blog.quarkslab.com/imessage-privacy.html
https://blog.quarkslab.com/imessage-privacy.html
https://doi.org/10.1007/BFb0052234
https://doi.org/10.1007/BFb0052234

Double-Base Chains for Scalar
Multiplications on Elliptic Curves

Wei Yu1,2(B), Saud Al Musa3, and Bao Li1,4

1 State Key Laboratory of Information Security, Institute of Information
Engineering, Chinese Academy of Sciences, Beijing 100093, China

{yuwei,libao}@iie.ac.cn, yuwei 1 yw@163.com
2 Data Assurance and Communications Security Research Center,

Chinese Academy of Sciences, Beijing 100093, China
3 College of Computer Science and Engineering, Taibah University,

Medina, Saudi Arabia
smusa@taibahu.edu.sa

4 School of Cyber Security, University of Chinese Academy of Sciences,
Beijing 100049, China

Abstract. Double-base chains (DBCs) are widely used to speed up
scalar multiplications on elliptic curves. We present three results of
DBCs. First, we display a structure of the set containing all DBCs and
propose an iterative algorithm to compute the number of DBCs for a pos-
itive integer. This is the first polynomial time algorithm to compute the
number of DBCs for positive integers. Secondly, we present an asymp-
totic lower bound on average Hamming weights of DBCs log n

8.25
for a posi-

tive integer n. This result answers an open question about the Hamming
weights of DBCs. Thirdly, we propose a new algorithm to generate an
optimal DBC for any positive integer. The time complexity of this algo-
rithm is O

(
(log n)2 log log n

)
bit operations and the space complexity is

O
(
(log n)2

)
bits of memory. This algorithm accelerates the recoding pro-

cedure by more than 6 times compared to the state-of-the-art Bernstein,
Chuengsatiansup, and Lange’s work. The Hamming weights of optimal
DBCs are over 60% smaller than those of NAFs. Scalar multiplication
using our optimal DBC is about 13% faster than that using non-adjacent
form on elliptic curves over large prime fields.

Keywords: Elliptic curve cryptography · Scalar multiplication ·
Double-base chain · Hamming weight

1 Introduction

A double-base chain (DBC), as a particular double-base number system (DBNS)
representation, represents an integer n as

∑l
i=1 ci2bi3ti where ci ∈ {±1}, bi, ti

are non-increasing sequences. It is called an unsigned DBC when ci ∈ {1}. A
DBC was first used in elliptic curve cryptography for its sparseness by Dimitrov,

c© International Association for Cryptologic Research 2020
A. Canteaut and Y. Ishai (Eds.): EUROCRYPT 2020, LNCS 12107, pp. 538–565, 2020.
https://doi.org/10.1007/978-3-030-45727-3_18

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-45727-3_18&domain=pdf
https://doi.org/10.1007/978-3-030-45727-3_18

Double-Base Chains for Scalar Multiplications on Elliptic Curves 539

Imbert, and Mishra [1], and Ciet, Joye, Lauter, and Montgomery [2]. Scalar mul-
tiplication is the core operation in elliptic curve cryptosystems. A DBC allows
one to represent an integer in a Horner-like fashion to calculate scalar multipli-
cation such that all partial results can be reused. In the last decade, DBCs were
widely investigated to speed up scalar multiplications [3–5] and pairings [6,7].
The generalizations of DBCs were also applied to the arithmetics of elliptic
curves. The generalizations include simultaneously representing a pair of num-
bers to accelerate multi-scalar multiplications [8–10], using double-base repre-
sentation to speed up scalar multiplication on Koblitz curves [11], and represent-
ing an integer in a multi-base number system to promote scalar multiplications
[12–14].

Dimitrov, Imbert, and Mishra pointed out that DBC is highly redundant,
and counting the exact number of DBCs is useful to generate optimal DBCs [1].
A precise estimate of the number of unsigned DBNS representation of a given
positive integer was presented in [15]. 100 has exactly 402 unsigned DBNS repre-
sentations and 1000 has 1295579 unsigned DBNS representations. For unsigned
DBC, Imbert and Philippe [4] introduced an efficient algorithm to compute the
number of unsigned DBCs for a given integer. By their algorithm, 100 has 7
unsigned DBCs and 1000 has 30 unsigned DBCs. DBCs are more redundant
than unsigned DBCs. For a given integer n, Doche [16] proposed a recursion
algorithm to calculate the number of DBCs with a leading term dividing 2b3t.
His algorithm is efficient to find the number of DBCs with a leading term dividing
2b3t for integers less than 270 and b, t < 70. But it does not work for calculating
the number of DBCs of a positive integer used in elliptic curve cryptography.
We will show how to calculate the number of DBCs of a 256-bit integer or even
a larger integer.

The Hamming weight is one of the most important factors that affect the effi-
ciency of scalar multiplications. Dimitrov, Imbert, and Mishra proved an asymp-
totic upper bound O

(
log n

log log n

)
on the Hamming weight of DBNS representation

by a greedy approach [15]. Every integer n has a DBC with Hamming weight
O (log n). The upper bounds of DBNS representations and DBCs have been well
investigated, in contrast, the precise lower bounds of DBCs can not be found in
any literature. Doche and Habsieger [3] showed that the DBCs produced by the
tree approach is shorter than those produced by greedy approach [1] for integers
with several hundreds of bits experimentally. They observed that the average
Hamming weight of the DBCs produced by the tree approach is log n

4.6419 . They
also posed an open question that the average Hamming weight of DBCs gener-
ated by the greedy approach may be not O

(
log n

log log n

)
. We will give affirmation

to this question.
Canonic DBCs are the DBCs with the lowest Hamming weight for a positive

integer and were introduced by Dimitrov, Imbert, and Mishra [1]. Several algo-
rithms were designed to produce near canonic DBCs such as greedy algorithm [1],
binary/ternary approach [2], multi-base non-adjacent form (mbNAF)[13], and
tree approach [3]. In Asiacrypt 2014, Doche proposed an algorithm to produce a
canonic DBC [16]. As Doche’s algorithm was in exponential time, Capuñay and

540 W. Yu et al.

Thériault [7] improved Doche’s algorithm to generate a canonic DBC or an opti-
mal DBC. This is the first algorithm to generate an optimal DBC in polynomial
time, explicitly O

(
(log n)4

)
bit operations and O

(
(log n)3

)
bits of memory.

Bernstein, Chuengsatiansup, and Lange [17] presented a directed acyclic graph
algorithm (DAG) to produce a canonic DBC or an optimal DBC. Their algo-
rithm takes time O

(
(log n)2.5

)
bit operations and O

(
(log n)2.5

)
bits of memory.

As scalar multiplication requires O
(
(log n)2 log log n

)
when field multiplications

use FFTs, we will focus on producing a canonic DBC or an optimal DBC in the
same order of magnitude.

In this paper, we are concerned with the theoretical aspects of DBCs arising
from their study to speed up scalar multiplication and producing a canonic DBC
or an optimal DBC efficiently. The main contributions are detailed as follows.

1. As Doche’s algorithm is in exponential time to compute the number of DBCs
with a leading term dividing 2b3t [16], we propose an iterative algorithm
in O

(
(log n)3

)
bit operations and in O

(
(log n)2

)
bits of memory. Our algo-

rithm is based on our new structure of the set containing all DBCs. It requires
10 milliseconds for 256-bit integers and 360 milliseconds for 1024-bit integers.
Using the iterative algorithm, 100 has 2590 DBCs with a leading term divid-
ing 23034 and 1000 has 28364 DBCs with a leading term dividing 23036. These
results show that DBCs are redundant. We show that the number of DBCs
with a leading term dividing 2b3t is the same when t ≥ tτ for some tτ . The
number of DBCs with a leading term dividing 2b3t minus the number of DBCs
with a leading term dividing 2bτ 3t is (b − bτ) Cτ when b ≥ bτ for some bτ and
Cτ . We also present that the number of DBCs with a leading term dividing
2b3t is O (log n)-bit when both b and t are O (log n).

2. Doche and Habsieger posed an open question to decide whether the average
Hamming weight of DBCs produced by the greedy approach is O

(
log n

log log n

)

or not [3]. We show that an asymptotic lower bound of the average Hamming
weight of the DBCs returned by any algorithm for a positive integer n is
log n
8.25 . This theoretical result answers their open question. Experimental results
show that the Hamming weight of canonic DBCs is 0.179822log n for 3000-bit
integers. It still has a distance from the theoretical bound.

3. We propose a dynamic programming algorithm to generate an optimal DBC.
We introduce an equivalent representative for large integers to improve the
efficiency of the dynamic programming algorithm. Our dynamic programming
algorithm using equivalent representatives requires O

(
(log n)2 log log n

)
bit

operations and O
(
(log n)2

)
bits of memory. It accelerates the recoding pro-

cedure by over 6 times compared to Bernstein, Chuengsatiansup, and Lange’s
algorithm. Many researches [1–3,6,7,16,17] indicate that the leading term of
an optimal DBC is greater than n

2 and less than 2n. We will prove it in this
work.

Double-Base Chains for Scalar Multiplications on Elliptic Curves 541

4. Capuñay and Thériault’s algorithm [7], Bernstein, Chuengsatiansup, and
Lange’s DAG algorithm [17], and our algorithms (Algorithms 2–4) can gen-
erate the same optimal DBC for a given integer. Using optimal DBCs to
speed up pairing computations has been fully investigated by Capuñay and
Thériault’s algorithm in [7]. Using optimal DBCs to speed up scalar multipli-
cation on Edwards curves has been studied by Bernstein, Chuengsatiansup,
and Lange in [17]. We will study scalar multiplication on Weierstrass curves
using optimal DBCs. Over large prime fields, both theoretical analyses and
experimental results show that scalar multiplication protecting against sim-
ple side-channel attack using our optimal DBC is about 13% faster than that
using NAF.

This paper is organized as follows. In Sect. 2, we present background of ellip-
tic curves and DBCs. In Sect. 3, we show the structure of the set containing
all DBCs, and give an iterative algorithm to compute the number of DBCs. In
Sect. 4, we show an asymptotic lower bound of the average Hamming weights
of DBCs. Section 5 shows a dynamic programming algorithm. Section 6 presents
equivalent representatives for large numbers to improve our dynamic program-
ming algorithm and presents the comparisons of several algorithms. Section 7
gives some comparisons of scalar multiplications. Finally, we conclude this work
in Sect. 8.

2 Preliminaries

We give some basics about elliptic curves and DBCs.

2.1 Elliptic Curves

In what follows, point doubling (2P), tripling (3P), and mixed addition [18]
(P + Q) are denoted by D, T , and A respectively where P and Q are ratio-
nal points on an elliptic curve. Cost of scalar multiplications are expressed in
terms of field multiplications (M) and field squarings (S). To allow easy compar-
isons, we disregard field additions/subtractions and multiplications/divisions by
small constants. Moreover, we assume that S = 0.8M as customary of software
implementation (different CPU architectures usually imply different S and M
ration) and that S = M in the case of implementations on a hardware platform
or protecting scalar multiplications against some simple side channel attack by
side-channel atomicity [19].

Let EW be an elliptic curve over a large prime field Fp defined by the Weier-
strass equation in Jacobian projective coordinate: Y 2 = X3+aXZ4+bZ6, where
a = −3, b ∈ Fp, and 4a3 + 27b2 �= 0. The respective cost of a doubling, a mixed
addition, and a tripling are 3M+5S, 7M+4S, and 7M+7S on EW respectively
[20,21]. More about Weierstrass elliptic curves please refer to [22].

The cost of point operations on EW are summarized in Table 1. EW with
S= 0.8M and EW with S=M are denoted by EW 0.8 and EW 1 respectively.

542 W. Yu et al.

Table 1. Cost of elliptic curve point operations
operation EW 0.8 EW 1

A 7M+4S(10.2M) 11M
D 3M+5S(7M) 8M
T 7M+7S(12.6M) 14M

2.2 DBCs

DBNS represents an integer as
∑l

i=1 ci2bi3ti where ci ∈ {±1}, and bi, ti are non-
negative integers. It was first used in elliptic curve cryptography by Dimitrov,
Imbert, and Mishra [1]. Meloni and Hasan proposed new algorithms using DBNS
representation to speed up scalar multiplications [23,24]. The drawback of DBNS
representation to compute scalar multiplication is that it requires many pre-
computations and space to compute scalar multiplication. A DBC is a special
case of DBNS representations. It allows us to represent n in a Horner-like fashion
such that all partial results can be reused. It is defined as follows.

Definition 1 (DBC [1]). A DBC represents an integer n as
∑l

i=1 ci2bi3ti

where ci ∈ C = {±1}, bl ≥ bl−1 ≥ . . . ≥ b1 ≥ 0 and tl ≥ tl−1 ≥ . . . ≥ t1 ≥ 0.
We call 2bi3ti a term of the DBC, 2bl3tl the leading term of the DBC, and l the
Hamming weight of the DBC.

If C = {1}, the DBC is called an unsigned DBC. Since computing the negative
of a point P can be done virtually at no cost, we usually set C = {±1}. The
leading term of a DBC encapsulates the total number of point doublings and
that of point triplings necessary to compute scalar multiplication nP whose total
cost is (l − 1) · A + bl · D + tl · T .

The number 0 has only one DBC that is 0. If a DBC does not exist, we denote
it by NULL. We set the Hamming weight of 0 as 0 and that of NULL as a negative
integer. A DBC for a negative integer is the negative of the DBC of its absolute
value. Therefore, we usually investigate the DBCs of a positive integer.

Some properties of DBCs are useful. Let n =
∑l

i=1 ci2bi3ti be a DBC with
ci ∈ {±1}, bl ≥ bl−1 ≥ . . . ≥ b1 and tl ≥ tl−1 ≥ . . . ≥ t1. We have

1. 2bk3tk is a factor of
l0∑

i=k

ci2bi3ti , when k ≤ l0 ≤ l;

2.
l0∑

i=k

ci2bi3ti is not equal to 0 when 0 < k ≤ l0 ≤ l;

3. 2bk+ς 3tk+ς

2ς−1 >
k∑

i=1

ci2bi3ti > − 2bk+ς 3tk+ς

2ς−1 , when 1 ≤ ς ≤ l − k;

4. 2bl3tl > n
2 [25];

5.
∑ς

i=1 ci2bi3ti > 0 if and only if cς = 1, when 1 ≤ ς ≤ l.

Following from Dimitrov, Imbert, and Mishra’s definition of canonic DBC,

Definition 2 (Canonic DBC [15]). The canonic DBCs of a positive integer
n are the ones with minimal Hamming weight.

The canonic DBCs of a positive integer have the same Hamming weight. When
we perform scalar multiplication using a DBC, its Hamming weight is not the

Double-Base Chains for Scalar Multiplications on Elliptic Curves 543

only factor affecting the efficiency of scalar multiplication. The cost of point oper-
ations should also be considered. The works in [7,16,17] indicate the definition
of an optimal DBC as follows.

Definition 3 (Optimal DBC). Let w be a DBC of a positive integer n whose
leading term is 2bl3tl and its Hamming weight is l, and the value function of w
is defined by val(w) = (l −1) ·A+ bl ·D + tl ·T for given numbers A > 0, D ≥ 0,
and T ≥ 0. An optimal DBC of n is the DBC with the smallest value in the set
{val(w)|w ∈ X} where X is the set containing all DBCs of n.

Let minL {w1,w2, . . . ,wm} be a DBC with the smallest Hamming weight
among these DBCs. If the Hamming weight of w is the smallest in a correspond-
ing set, we say w is “minimal”. Let minV{w1,w2, . . . ,wm} be a DBC with the
smallest val(wi) in the set {val(w1), val(w2), . . . , val(wm)}. If more than one
DBC has the same Hamming weight or the same value of its value function, we
choose the one with the smallest position index i where i is the position index
of wi in the set of {w1,w2, . . . ,wm}. minL is used to generate canonic DBCs,
and minV is used to generate optimal DBCs.

An optimal DBC is associated with an elliptic curve. Let log denote binary
logarithm. If the value of T

D is log 3, then the optimal DBC is a canonic DBC.
In this case, we usually set D = T = 0. For canonic DBCs of a positive integer,
our concern is their Hamming weight.

3 The Number of DBCs

DBCs are special cases of DBNS representations. In 2008, Dimitrov, Imbert,
and Mishra showed an accurate estimate of the number of unsigned DBNS
representations for a given positive integer [15]. The number of signed DBNS
representation is still an open question.

Dimitrov, Imbert, and Mishra pointed out that counting the exact number of
DBCs is useful to show DBC is redundant [1] and to generate an optimal DBC.
Dimitrov, Imbert, and Mishra [1] and Imbert and Philippe [4] both noticed
that each positive integer has at least one DBC such as binary representation.
Imbert and Philippe [4] proposed an elegant algorithm to compute the number
of unsigned DBCs for a given integer and presented the first 400 values. These
values behave rather irregularly. To determine the precise number of DBCs for
a positive integer is usually hard, but we are convinced that this number is
infinity. The number of DBCs with a leading term dividing 2b3t for a positive
integer was first investigated by Doche [16]. His algorithm is very efficient for
less than 70-bit integers with a leading term dividing 2b3t for the most b and t.
The algorithm requires exponential time. Before we present a polynomial time
algorithm to calculate the number of DBCs of large integers, a structure of the
set containing all DBCs is introduced.

3.1 The Structure of the Set Containing All DBCs

Let Φ(b, t, n) be the set containing all DBCs of an integer n ≥ 0 with a leading
term strictly dividing 2b3t. “Strictly” indicates that the leading term of a DBC

544 W. Yu et al.

2bl3tl divides 2b3t but is not equal to 2b3t. Let Φ̄(b, t, n) be the set containing
all DBCs of an integer n ≤ 0 with a leading term strictly dividing 2b3t. Both
definitions of Φ(b, t, n) and Φ̄(b, t, n) arise from Imbert and Philippe’s structure of
unsigned DBCs [4] and Capuñay and Thériault’s definition of the set containing
all DBCs (see Definition 5 of [7]).

Let z be 2b′
3t′

or −2b′
3t′

with integers b′ ≥ 0 and t′ ≥ 0. The set {w + z|
w ∈ Φ} is denoted by zΦ (the similar is for Φ̄). zΦ is inspired by Imbert and
Philippe’s mark [4]. If 2b3t|z, zΦ(b, t, n) are the DBCs of n + z. Let z1,z2Φ =
z1 (z2Φ). Take Φ(1, 4, 100) = {34 + 33 − 32 + 1} for example, 2·34Φ(1, 4, 100) =
{2 · 34 + 34 + 33 − 32 + 1}.

Some properties of Φ and Φ̄ are given.

1. If Φ = ∅, then zΦ = ∅; if Φ̄ = ∅, then zΦ̄ = ∅.
2. If Φ = {0}, then zΦ = {z}; if Φ̄ = {0}, then zΦ̄ = {z}.
3. If n < 0 or n ≥ 2b3t or b < 0 or t < 0, then Φ(b, t, n) = Φ̄(b, t,−n) = ∅.
4. Φ(0, 0, 0) = Φ̄(0, 0, 0) = {0}.
5. A DBC 0 plus z equals to z.
6. A DBC NULL plus z equals to NULL.

Imbert and Philippe’s structure of the set containing unsigned DBCs [4] can
be used to calculate the number of unsigned DBCs. Since the terms of DBCs
of n may be larger than n, calculating the number of DBCs is usually difficult.
Following from Capuñay and Thériault’s definition [7],

nb,t ≡ n (mod 2b3t) where 0 ≤ nb,t < 2b3t.

We redefine
n̄b,t = nb,t − 2b3t.

To calculate the number of DBCs, Φ(b, t) and Φ̄(b, t) are introduced to
describe the structure of the set containing DBCs shown as Lemma 1 where
Φ(b, t) and Φ̄(b, t) represent Φ(b, t, nb,t) and Φ̄(b, t, n̄b,t) respectively.

Lemma 1. Let n be a positive integer, b ≥ 0, t ≥ 0, and b+t > 0. The structure
of Φ(b, t) and that of Φ̄(b, t) are described as follows.

1. If nb,t < 2b3t−1, i.e., nb,t = nb−1,t = nb,t−1, then

Φ(b, t) = Φ(b − 1, t)
⋃ (

2b−13t

Φ̄(b − 1, t)
) ⋃

Φ(b, t − 1)
⋃ (

2b3t−1
Φ̄(b, t − 1)

)
,

Φ̄(b, t) =
(

−2b−13t

Φ̄(b − 1, t)
)

.

2. If 2b3t−1 ≤ nb,t < 2b−13t, i.e., nb,t = nb−1,t = nb,t−1 + 2b3t−1, then

Φ(b, t) = Φ(b − 1, t)
⋃ (

2b−13t

Φ̄(b − 1, t)
) ⋃ (

2b3t−1
Φ(b, t − 1)

)
,

Φ̄(b, t) =
(

−2b−13t

Φ̄(b − 1, t)
) ⋃ (

−2b3t−1
Φ̄(b, t − 1)

)
.

3. If 2b−13t ≤ nb,t < 2 · 2b3t−1, i.e., nb,t = nb−1,t + 2b−13t = nb,t−1 + 2b3t−1,
then

Double-Base Chains for Scalar Multiplications on Elliptic Curves 545

Φ(b, t) =
(
2b−13t

Φ(b − 1, t)
) ⋃(

2b3t−1
Φ(b, t − 1)

)
,

Φ̄(b, t) =
(

−2b−13t

Φ(b − 1, t)
) ⋃

Φ̄(b − 1, t)
⋃ (

−2b3t−1
Φ̄(b, t − 1)

)
.

4. If nb,t ≥ 2 · 2b3t−1, i.e., nb,t = nb−1,t + 2b−13t = nb,t−1 + 2 × 2b3t−1, then

Φ(b, t) =
(
2b−13t

Φ(b − 1, t)
)

,

Φ̄(b, t) =
(

−2b−13t

Φ(b − 1, t)
) ⋃

Φ̄(b − 1, t)
⋃ (

−2b3t−1
Φ(b, t − 1)

) ⋃
Φ̄(b, t − 1).

The proofs, examples, and remarks can be found in the full version of this paper
[26].

The definitions of nb,t and n̄b,t indicate that both nb,t = nb−1,t = nb,t−1 +
2b+13t−1 and nb,t = nb−1,t + 2b−13t = nb,t−1 are impossible. From Lemma 1,
Φ(b, t) and Φ̄(b, t) only rely on Φ(b − 1, t), Φ̄(b − 1, t), Φ(b, t − 1) and Φ̄(b, t − 1).
By the definitions of nb,t and n̄b,t, the structure of Φ(b, t) and that of Φ̄(b, t) still
work for nb,t = 0 in Case 1, nb,t = 2b3t−1 in Case 2, nb,t = 2b−13t in Case 3, and
nb,t = 2 · 2b3t−1 in Case 4.

This is the first structure of the set containing all DBCs with a leading term
strictly dividing 2b3t in the literature. Based on this structure, we will show the
number of DBCs with a leading term dividing 2b3t for a positive integer n.

3.2 The Number of DBCs

Let |S | be the cardinality of the set S . The number of DBCs with a leading
term dividing 2b3t for representing nb,t is |Φ(b, t)| + |Φ̄(b, t)|. We will provide
some initial values of |Φ| and |Φ̄|. If n < 0 or n ≥ 2b3t or b < 0 or t < 0,
|Φ(b, t, n)| = |Φ̄(b, t,−n)| = 0. |Φ(0, 0, 0)| = |Φ̄(0, 0, 0)| = 1.

Based on Lemma 1, the cardinality of Φ(b, t) and that of Φ̄(b, t) are shown as
Theorem 1.

Theorem 1. Let n be a positive integer, b ≥ 0, t ≥ 0, and b + t > 0. We have

1. If nb,t < 2b−13t−1, then

|Φ(b, t)| = |Φ(b − 1, t)| + |Φ̄(b − 1, t)| + |Φ(b, t − 1)| + |Φ̄(b, t − 1)|
− |Φ(b − 1, t − 1)| − |Φ̄(b − 1, t − 1)|,

|Φ̄(b, t)| = |Φ̄(b − 1, t)|.
2. If 2b−13t−1 ≤ nb,t < 2b3t−1, then

|Φ(b, t)| = |Φ(b − 1, t)| + |Φ̄(b − 1, t)| + |Φ(b, t − 1)|
+ |Φ̄(b, t − 1)| − |Φ(b − 1, t − 1)|,

|Φ̄(b, t)| = |Φ̄(b − 1, t)|.
3. If 2b3t−1 ≤ nb,t < 2b−13t, then

|Φ(b, t)| = |Φ(b − 1, t)| + |Φ̄(b − 1, t)| + |Φ(b, t − 1)|,
|Φ̄(b, t)| = |Φ̄(b − 1, t)| + |Φ̄(b, t − 1)|.

546 W. Yu et al.

4. If 2b−13t ≤ nb,t < 2 · 2b3t−1, then

|Φ(b, t)| = |Φ(b − 1, t)| + |Φ(b, t − 1)|,
|Φ̄(b, t)| = |Φ(b − 1, t)| + |Φ̄(b − 1, t)| + |Φ̄(b, t − 1)|.

5. If 2 · 2b3t−1 ≤ nb,t < 5 · 2b−13t−1, then

|Φ(b, t)| = |Φ(b − 1, t)|,
|Φ̄(b, t)| = |Φ(b − 1, t)| + |Φ̄(b − 1, t)| + |Φ(b, t − 1)|

+ |Φ̄(b, t − 1)| − |Φ̄(b − 1, t − 1)|.

6. If nb,t ≥ 5 · 2b−13t−1, then

|Φ(b, t)| = |Φ(b − 1, t)|,
|Φ̄(b, t)| = |Φ(b − 1, t)| + |Φ̄(b − 1, t) + |Φ(b, t − 1)|

+ |Φ̄(b, t − 1)| − |Φ̄(b − 1, t − 1)| − |Φ(b − 1, t − 1)|.
Based on Theorem 1, we have

Corollary 1. 1. If b ≥ 0 and t ≥ 0, then |Φ(b, t)| ≥ |Φ(b − 1, t)|, |Φ(b, t)| ≥
|Φ(b, t − 1)|, |Φ̄(b, t)| ≥ |Φ̄(b − 1, t)|, and |Φ̄(b, t)| ≥ |Φ̄(b, t − 1)|.

2. If b ≥ 0 and t ≥ 0, then |Φ(b, t)| ≤ 4b+t and |Φ̄(b, t)| ≤ 4b+t.

By Corollary 1, |Φ(b, t)| and |Φ̄(b, t)| are both O(log n)-bit integers when both
b and t are O(log n).

Based on Theorem 1, we employ an iterative algorithm to compute the num-
ber of DBCs with a leading term strictly dividing 2b3t for nb,t and n̄b,t shown
as Algorithm 1. The number of DBCs with a leading term dividing 2b3t for n is

1. |Φ(b, t)| + |Φ̄(b, t)| when 2b3t > n;
2. |Φ(b, t)| when n

2 < 2b3t ≤ n;
3. 0 when 2b3t ≤ n

2 .

Algorithm 1. Iterative algorithm to compute the number of DBCs
Input: A positive integer n, b ≥ 0, and t ≥ 0
Output: The number of DBCs with a leading term strictly dividing 2b3t for nb,t and
n̄b,t

1. |Φ(0, 0)| ← 1, |Φ̄(0, 0)| ← 0
2. For i from 0 to b, |Φ(i, −1)| = |Φ̄(i, −1)| ← 0
3. For j from 0 to t, |Φ(−1, j)| = |Φ̄(−1, j)| ← 0
4. For j from 0 to t
5. For i from 0 to b
6. If i + j > 0, using Theorem 1 to compute |Φ(i, j)| and |Φ̄(i, j)|
7. return |Φ(b, t)|, |Φ̄(b, t)|

Double-Base Chains for Scalar Multiplications on Elliptic Curves 547

Table 2. Cost of Algorithm 1
bits of n 256 512 768 1024

b, t 128, 81 256, 161 384, 242 512, 323
cost(million cpu cycles) 34 177 551 1184

Algorithm 1 terminates in O
(
(log n)3

)
bit operations and O

(
(log n)2

)
bits

of memory when b and t are both in O (log n).
Miracl lib [27] is used to implement big number arithmetic. Our experiments

in this paper are compiled and executed on Intel� CoreTM i7−6567U 3.3 GHZ
with Skylake architecture (our algorithms may have different running time on
other architectures). Algorithm 1 requires 34, 177, 551, and 1184 million cpu
cycles (10, 50, 170, and 360 ms) for 256-bit, 512-bit, 768-bit, and 1024-bit integers
respectively. The details are shown in Table 2.

By Algorithm 1, the number of DBCs of
⌊
π × 10120

⌋
with a leading term divid-

ing 22403120 is 405694512689803328570475272448020332384436179545046727328
115784 3672719846213086211542270726702592261797036105303878574879. The
number of DBCs with a leading term dividing 2b3t for 100 when b < 50 and
t < 50 is shown as Table 3. There exist 405 DBCs with a leading term dividing
2734 for representing 100. These results all show a redundance of DBCs for a
positive integer. The number of DBCs with a leading term dividing 2b3t of 100
is the same for 4 ≤ t < 50. For the same b, we guess the number is the same
when t ≥ 50. For each 8 ≤ b < 50, the number of DBCs with a leading term
dividing 2b3t of 100 minus the number of DBCs with a leading term dividing
2b−13t of 100 is 7. We guess this result is still true for b ≥ 50.

Table 3. Number of DBCs with a leading term dividing 2b3t for 100
t = 0 t = 1 t = 2 t = 3 t < 50

b = 0 0 0 0 0 1
b = 1 0 0 0 0 7
b = 2 0 0 0 11 24
b = 3 0 0 18 51 70
b = 4 0 0 57 112 137
b = 5 0 13 111 188 219
b = 6 3 35 174 273 310
b = 7 10 61 241 362 405
b < 50 10 + 7 ∗ (b − 7) 61 + 26 ∗ (b − 7) 241 + 67 ∗ (b − 7) 362 + 89 ∗ (b − 7) 405 + 95 ∗ (b − 7)

3.3 The Number of DBCs for Large b or t

If b or t is large, the number of DBCs are shown as Corollary 2.

Corollary 2. Let n be a given positive integer, tτ be a positive integer satisfying
3tτ −1 > n and 3tτ −2 ≤ n, and bτ be a positive integer satisfying 2bτ > 3n and
2bτ −1 ≤ 3n. Then

1. If t ≥ tτ and b ∈ Z, then |Φ(b, t)| = |Φ(b, tτ)|.
2. If b ≥ bτ and t ∈ Z, then |Φ(b, t)| = |Φ(bτ , t)| + (b − bτ)Cτ where Cτ =∑t

i=0 |Φ̄(bτ , i)|.

548 W. Yu et al.

3. If b ≥ bτ and t ≥ tτ , then |Φ(b, t)| = |Φ(bτ , t)| + (b − bτ)Cτ where Cτ =∑tτ

i=0 |Φ̄(bτ , i)|.
These three properties of Corollary 2 are used to compute the number of

DBCs with a leading term dividing 2b3t for some large b and t. The number of
DBCs with a leading term dividing 2b3t is a constant when t > tτ . The number
of DBCs with a leading term dividing 2b3t adds a constant

∑t
i=0 |Φ̄(bτ , i)| is

the number of DBCs with a leading term dividing 2b+13t when b > bτ . Take
100 for example, 100 has 137 DBCs with a leading term dividing 243t for each
t ≥ tτ , and has 405+95∗(b−7) DBCs with a leading term dividing 2b3t for each
b ≥ 9 and t ≥ 6. These results may be associated with that 1 = 2b − ∑b−1

i=0 2i

as b becomes larger and that 1 = 30 can not be represented as other ternary
representation with its coefficients in {±1}.

4 Hamming Weight of DBCs

For a positive integer n, Chalermsook, Imai, and Suppakitpaisarn [28] showed
that the Hamming weight of unsigned DBNS representations obtained from the
greedy approach proposed by Dimitrov, Imbert, and Mishra [1] is θ

(
log n

log log n

)
.

And they showed that the Hamming weight of unsigned DBCs produced by
greedy approach [1] is θ (log n).

For the Hamming weights of (signed) DBNS representations and DBCs, Dim-
itrov, Imbert, and Mishra [1] showed that every integer n has a DBNS repre-
sentation with Hamming weight O

(
log n

log log n

)
. Every integer n has a DBC with

Hamming weight O(log n). These are upper bounds on the Hamming weight of
DBNS representations and DBCs. The number of DBCs of a positive integer is
infinite and the leading term of its DBC may be infinite. The range of the lead-
ing term of canonic DBCs is useful to show the lower bounds of the Hamming
weight of DBCs.

4.1 The Range of the Leading Term of Optimal DBCs and Canonic
DBCs

Doche [16] proved that a DBC with leading term 2b3t belongs to the interval[
3t+1
2 , 2b+13t − 3t+1

2

]
. His result showed the range of integers for a leading term.

The leading term of a DBC 2bl3tl for a positive integer does not have an upper
bound for 1 = 2bl − 2bl−1 − . . . − 2 − 1 where bl is an arbitrary positive integer.
We will show the range of the leading term of optimal DBCs and that of canonic
DBCs for a given integer in Lemma2.

Lemma 2. Let n be a positive integer represented as w :
∑l

i=1 ci2bi3ti , cl =
1, ci ∈ {±1} for 1 ≤ i ≤ l−1. Then n

2 < 2bl3tl < 2n when w is an optimal DBC,
and 16n

21 < 2bl3tl < 9n
7 when w is a canonic DBC.

Double-Base Chains for Scalar Multiplications on Elliptic Curves 549

The range of the leading term of optimal DBCs is useful to prove that the
DBC produced by Capuñay and Thériault’s algorithm [7] and that produced by
Bernstein, Chuengsatiansup, and Lange’s algorithm [17] both are optimal DBCs.
The leading term of canonic DBCs of n is in the interval

(
16n
21 , 9n

7

)
. It is useful

to prove that the DBCs generated by Doche’s algorithm is a canonic DBC [16],
and to prove the asymptotic lower bound on the Hamming weights of DBCs in
the following.

4.2 A Lower Bound on the Hamming Weights of DBCs

Dimitrov and Howe proved that there exist infinitely many integers n whose
shortest DBNS representations have Hamming weights Ω

(
log n

log log n log log log n

)

[29]. The minimum Hamming weight of DBCs for a positive integer n is also
called Kolmogorov complexity [30] of a DBC of n, i.e., the Hamming weight
of canonic DBCs of n. Lou, Sun, and Tartary [5] proved a similar result for
DBCs: there exists at least one 	log n
-bit integer such that any DBC represent-
ing this integer needs at least Ω (log n
) terms. We will give a stronger result
in Lemma 3.

Lemma 3. For arbitrary α ∈ (0, 1) and 0 < C < α2

8.25 , more than n−nα integers
in [1, n] satisfy that the Hamming weight of the canonic DBCs of each integer is
greater than C log n when n > N (N is some constant shown as Claim 1).

For convenience, we first give some conventions and definitions. s(m) denotes
the Hamming weight of canonic DBCs of m, and e is the base of the natural
logarithm. Let ϕl be the number of DBCs

∑l
i=1 ci2bi3ti with 2bl3tl < 9n

7 , ci ∈
{±1}, and cl = 1.

Definition 4 (ϕ(L)). For a given positive integer n and a constant L, ϕ(L) =
∑L

l=1 ϕl, i.e., ϕ(L) is the number of DBCs
∑l

i=1 ci2bi3ti with 2bl3tl < 9n
7 , 1 ≤

l ≤ L.

By Lemma 2, in a canonic DBC, 16n
21 < 2bl3tl < 9n

7 . Then, the number of
integers of m in [1, n] represented as a canonic DBC with Hamming weight no
greater than L is not more than the number of integers of m in [1, n] represented
as a DBC with a leading term dividing 2bl3tl < 9n

7 , l ≤ L. Since every DBC
corresponds to only one integer and each integer has at least one DBC, the
number of integers in [1, n] represented as a canonic DBC with Hamming weight
no greater than L is no greater than ϕ(L).

An outline of the proof of Lemma3 is as follows. The number of integers of
m in [1, n] can not be represented as a DBC of Hamming weight j, 0 < j ≤ L is
equal to n minus the number of integers of m in [1, n] represented in that way.
There are at least n − ϕ(L) integers of m in [1, n] can not be represented as a
DBC of Hamming weight j with 2bj 3tj ≤ 9n

7 , 0 < j ≤ L. Thus there are at least
n − ϕ(L) integers of m in [1, n] satisfying s(m) > L. Hence, ϕ(C log n) < nα is
enough to prove Lemma 3.

550 W. Yu et al.

Since ϕj where 0 < j ≤ C log n is the number of DBCs of Hamming weight
j with 2bl3tl < 9n

7 , we have

ϕj ≤ 2j−1
∑

α+γ log 3<log 9n
7

(
α + j
j − 1

)(
γ + j
j − 1

)

.

Then

ϕ(C log n) =
C log n∑

j=1

ϕj ≤
C log n∑

j=1

⎛

⎝2j−1
∑

α+γ log 3<log 9n
7

(
α + j
j − 1

)(
γ + j
j − 1

)
⎞

⎠ . (1)

For this estimate of ϕ(C log n) is too complex to be dealt with, we simplify its
estimate by Claim 1 and its proof requires the tools of Pascal’s triangle and
Stirling’s formula.

Claim 1. For any 0 < C < 1, when n > N where N satisfies that N >
210000·(3−0.5 log3 7) and log N < 1.0001C log N ,

C log n∑

j=1

⎛

⎝2j−1
∑

α+γ log2 3<log 9n
7

(
α + j
j − 1

) (
γ + j
j − 1

)
⎞

⎠ < n
C log

(
2.0002e2(0.5001 log3 2+C)2

C2

)
.

According to Eq. (1) and Claim 1, we have

ϕ(C log n) < n
C log

(
2.0002e2 log 3·(0.5001 log3 2+C)2

C2

)
.

For some larger N , the coefficients of log3 2 and e2 will be smaller than 0.50001
and 2.0002 respectively in this inequation, and for some smaller N , the coef-
ficients of log3 2 and e2 will be larger than 0.50001 and 2.0002. The proof of
Lemma 3 is as follows.

Proof. To prove Lemma 3, it is sufficient to show that the number of integers of
m in [1, n], represented as a DBC of Hamming weight j with j ≤ C log n and
2bj 3tj < 9n

7 , is no greater than nα.
The number of integers of m in [1, n] can be represented as DBCs of Hamming

weight j with 2bj 3tj < 9n
7 , 0 < j ≤ C log n is no greater than ϕ(C log n). This

result is sufficient to show that ϕ(C log n) < nα, i.e., the number of DBCs of
Hamming weight j with j ≤ C log n is less than nα.

Since ϕ(C log n) < n
C log

(
2.0002e2 log 3·(0.5001 log3 2+C)2

C2

)
, then

n
C log

(
2.0002e2 log 3·(0.5001 log3 2+C)2

C2

)
< nα. We have

2.0002e2 log 3 · (0.5001 log3 2 + C)2

C2
< 2

α
C .

When 0 < C < α2

8.25 , this inequality holds.
Thus, for any real numbers α and C with 0 < α < 1 and 0 < C < α2

8.25 , when
n > N , at least n − nα integers of m in [1, n] satisfy s(m) > C log n.

Double-Base Chains for Scalar Multiplications on Elliptic Curves 551

As a corollary of Lemma 3, for any given positive number α < 1, there exist
two efficiently computable constants C and N , such that when n > N , there are
at least n − nα integers m in [1, n] satisfying s(m) > C log n > C log m. This
result is easy to understand and more advanced than Lou, Sun, and Tartary’s
result [5].

Doche and Habsieger [3] showed that the DBC produced by the tree approach
is shorter than that produced by greedy approach experimentally. The average
Hamming weight of the DBCs produced by the tree approach is log n

4.6419 . Then they
posed an open question that the average Hamming weight of DBCs generated
by the greedy approach may be not O

(
log n

log log n

)
. Lemma 3 is sufficient to solve

this question.
The average Hamming weight of DBCs of (log n)-bit integers is the average

value of the Hamming weights of the DBCs of all (log n)-bit integers where we
choose one DBC for each integer. An asymptotic lower bound of the Hamming
weights of DBCs is shown in Theorem 2.

Theorem 2. An asymptotic lower bound of the average Hamming weights of
canonic DBCs for (log n)-bit integers is log n

8.25 .

All existing algorithms confirm the asymptotic lower bound of Theorem2.
The average Hamming weight of binary representation is 0.5 log n, that of NAF
is log n

3 , that of the DBC produced by binary/ternary approach is 0.2284 log n
[2], and that of the DBC produced by tree approach is 0.2154 log n [3]. The
Hamming weights of the DBCs produced by these algorithms are still a long
way from the lower bound log n

8.25 in Theorem 2.

0 100 200 300 400 500 600 700 800 9001,000
0.18

0.19

0.2

bits of integers (logn)

H
am

m
in
g
w
ei
gh

td
iv
id
ed

b
y
lo
g
n

Fig. 1. The Hamming weight of canonic DBCs of integers

552 W. Yu et al.

The average Hamming weight of canonic DBCs of integers is shown as Fig. 1.
The data is gained by Algorithm 3 which will be given in Section 6 for 1000 ran-
dom integers for each size. It is 0.19713 log n for 100-bit integers, 0.190165 log n
for 200-bit integers, 0.18773 log n for 300-bit integers, 0.186158 log n for 400-
bit integers, 0.185124 log n for 500-bit integers, 0.184568 log n for 600-bit
integers, 0.183913 log n for 700-bit integers, 0.183579 log n for 800-bit inte-
gers, 0.183153 log n for 900-bit integers, 0.182887 log n for 1000-bit inte-
gers, 0.181867 log n for 1500-bit integers, 0.181101 log n for 2000-bit integers,
0.180495 log n for 2500-bit integers, and 0.179822 log n for 3000-bit integers. This
value of the Hamming weight given for 3000-bit integers still has a distance from
the lower bound given in Theorem 2. The Hamming weight divided by log n is
decreased as the integers become larger.

Our method of calculating the asymptotic lower bound of the average Ham-
ming weight of DBCs may be useful to calculate the asymptotic lower bound of
the average Hamming weight of extended DBCs [31] where C = {±1,±3, . . .}.

We will propose an efficient algorithm to generate optimal DBCs.

5 Dynamic Programming Algorithm to Produce Optimal
DBCs

Several algorithms were designed to produce near optimal DBCs such as greedy
approach [1], binary/ternary approach [2], tree approach [3], and mbNAF [13].
Doche [16] generalized Erdös and Loxton’s recursive equation of the number of
unsigned chain partition [32] and presented an algorithm to produce a canonic
DBC. As Doche’s algorithm requires exponential time, in 2015, Capuñay and
Thériault [7] generalized tree approach and improved Doche’s algorithm to
produce a canonic DBC or an optimal DBC in polynomial time, explicitly
in O

(
(log n)4

)
bit operations and O

(
(log n)3

)
bits of memory. This is the

first polynomial algorithm to compute an optimal DBC. In 2017, Bernstein,
Chuengsatiansup, and Lange [17] presented a DAG algorithm to produce an
optimal DBC in O

(
(log n)2.5

)
bit operations and O

(
(log n)2.5

)
bits of mem-

ory. Bernstein, Chuengsatiansup, and Lange’s algorithm was the state-of-the-art.
We will employ dynamic programming [33] to produce an optimal DBC.

5.1 Basics for Dynamic Programming Algorithm

Dynamic programming [33] solves problems by combining the solutions of sub-
problems. Optimal substructure and overlapping subproblems are two key char-
acteristics that a problem must have for dynamic programming to be a viable
solution technique.

Optimal Substructure. We will show our problem has optimal substructure,
i.e., an optimal solution to a problem contains optimal solutions to subproblems.
First, we define sub-chain.

Double-Base Chains for Scalar Multiplications on Elliptic Curves 553

Definition 5 (Sub-chain). A DBC
l∑

i=1

ci2bi3ti is a sub-chain of a DBC

l0∑

j=1

aj2dj 3ej , if it satisfies both of the following conditions:

1. bl ≤ dl0 , tl ≤ el0 , and l ≤ l0;
2. For each i satisfies 1 ≤ i ≤ l, there exists one j satisfying ci = aj , bi = dj,

and ti = ej.

Let w(b, t) (resp. w̄(b, t)) be one of the DBCs in Φ(b, t) (resp. Φ̄(b, t)) with the
smallest Hamming weight. The optimal substructure of the problem of finding
w(b, t) (resp. w̄(b, t)) is shown in Lemma 4.

Lemma 4. Let w(b, t) be a minimal chain for nb,t in Φ(b, t) and w̄(b, t) be a
minimal chain for n̄b,t in Φ̄(b, t). If w(b, t) or w̄(b, t) contains a sub-chain w(i, j)
for ni,j, then w(i, j) is minimal for ni,j in Φ(i, j); If w(b, t) or w̄(b, t) contains
a sub-chain w̄(i, j) for n̄i,j, then w̄(i, j) is minimal for n̄i,j in Φ̄(i, j).

Lemma 4 shows that the problem of finding a minimal chain has optimal sub-
structure. We can partition this problem into subproblems. These subproblems
may share the same new problems. For example, subproblems for nb,t−1 and
subproblems for nb−1,t share the same problems for nb−1,t−1 and for n̄b−1,t−1.

Overlapping Subproblems. When a recursive algorithm revisits the same
problem over and over again rather than always generating new problems, we
say that the optimization problem has overlapping subproblems. Dynamic pro-
gramming algorithms typically take advantage of overlapping subproblems by
solving each subproblem once and then storing the solution in a table where it
can be looked up when needed.

Based on Lemma 1, using the range of the leading term of a canonic DBC
in Lemma 2, we simplify the possible sources of w(b, t) and w̄(b, t) shown as
Lemma 5.

Lemma 5. Let n be a positive integer, b ≥ 0, t ≥ 0, and b + t > 0.

1. If nb,t

2b−13t−1 < 2, then

w(b, t) = minL
{
w(b − 1, t),w(b, t − 1), 2b3t−1 + w̄(b, t − 1)

}
,

w̄(b, t) = −2b−13t + w̄(b − 1, t).

2. If 2 ≤ nb,t

2b−13t−1 < 3, then

w(b, t) = minL
{
w(b − 1, t), 2b−13t + w̄(b − 1, t), 2b3t−1 + w(b, t − 1)

}
,

w̄(b, t) = −2b−13t + w̄(b − 1, t).

3. If 3 ≤ nb,t

2b−13t−1 < 4, then

w(b, t) = 2b−13t + w(b − 1, t),

w̄(b, t) = minL
{−2b−13t + w(b − 1, t), w̄(b − 1, t),−2b3t−1 + w̄(b, t − 1)

}
.

554 W. Yu et al.

4. If nb,t

2b−13t−1 ≥ 4, then

w(b, t) = 2b−13t + w(b − 1, t),

w̄(b, t) = minL
{
w̄(b − 1, t),−2b3t−1 + w(b, t − 1), w̄(b, t − 1)

}
.

We give some conventions for initial values of w(b, t) and w̄(b, t). If b < 0 or
t < 0, w(b, t) = w̄(b, t) = NULL. If b ≥ 0, t ≥ 0, and nb,t = 0, then w(b, t) = {0}
and w̄(b, t) = NULL.

Lemma 5 reveals the relationship between problems of finding w(b, t) and
w̄(b, t) and problems of finding their subproblems. Dynamic programming is
efficient when a given subproblem may arise from more than one partial set of
choices. Each problem of finding w(b, t) and w̄(b, t) has at most 4 partial sets
of choices. The key technique in the overlapping subproblems is to store the
solution of each such subproblem in case it should reappear.

5.2 Dynamic Programming to Compute an Optimal DBC

The main blueprint of our dynamic programming algorithm to produce an opti-
mal DBC contains four steps.

1. Characterize the structure of an optimal solution whose two key ingredients
are optimal substructure and overlapping subproblems.

2. Recursively define the value of an optimal solution by minL.
3. Compute a DBC with the smallest Hamming weight and its leading term

dividing 2b3t for each nb,t and n̄b,t in a bottom-up fashion.
4. Construct an optimal DBC from computed information.

The dynamic programming algorithm to compute an optimal DBC is shown
as Algorithm 2. In Algorithm 2, set B = 2n in general cases, and set B = 9n

7 in
the case D = T = 0 by Lemma 2.

Algorithm 2. Dynamic programming to compute an optimal DBC
Input: a positive integer n, its binary representation nbinary, three non-negative
constants A > 0, D ≥ 0, T ≥ 0
Output: an optimal DBC for n
1. If D = 0 and T = 0, B ← 9n

7
, else B ← 2n. w(0, 0) ← 0, w̄(0, 0) ← NULL,

wmin ← nbinary

2. For b from 0 to �log B�, w(b, −1) ← NULL, w̄(b, −1) ← NULL
3. For t from 0 to �log3 B�, w(−1, t) ← NULL, w̄(−1, t) ← NULL,
bBound[t] ← ⌊

log B
3t

⌋

4. For t from 0 to �log3 B�
5. For b from 0 to bBound[t]
6. If b + t > 0, compute w(b, t) and w̄(b, t) using Lemma 5
7. If n > nb,t, wmin ← minV

{
2b3t + w(b, t), wmin

}

8. else if n = nb,t, wmin ← minV
{
w(b, t), 2b3t + w̄(b, t), wmin

}

9. return wmin

Double-Base Chains for Scalar Multiplications on Elliptic Curves 555

In Lines 1 − 3 of Algorithm 2, the initial values of w(0, 0), w̄(0, 0), wmin,
w(b,−1), w̄(b,−1), w(−1, t) and w̄(−1, t) are given. wmin stores the resulting
DBC for n whose initial value is nbinary, i.e., the binary representation of n.

In the Lines 4 − 8 of Algorithm 2, a two-layer cycle computes a DBC wmin.
Line 6 shows that the problem of computing w(b, t) and w̄(b, t) are partitioned
into subproblems of computing w(b− 1, t), w̄(b− 1, t), w(b, t− 1), and w̄(b, t− 1)
using Lemma 5. This is a bottom-up fashion. For the same t, we compute w(0, t)
(the same for w̄(0, t)); next, compute w(1, t), . . ., w

(⌊
log B

3t

⌋
, t

)
. Since w(b, t−1)

and w̄(b, t − 1) have been computed by Lines 4 and 6 in the last loop of t and
w(b − 1, t) and w̄(b − 1, t) have been computed by Lines 5 and 6 in the last loop
of b, we compute w(b, t) and w̄(b, t) successfully. Using these results to solve the
subproblems recursively, we can avoid calculating a problem twice or more.

By Lemma 4 and the bottom-up fashion, w(b, t) and w̄(b, t) have been com-
puted by Algorithm2 for all b and t satisfying 2b3t < B. We will show that the
DBC returned by Algorithm 2 is an optimal DBC in Theorem 3.

Theorem 3. Algorithm2 produces a canonic DBC when D = T = 0, and an
optimal DBC when D + T > 0.

If one wants to generate a different optimal DBC or canonic DBC, one pos-
sibility is to adjust the function minL and minV when two or more DBCs have
the same value. Doing this, we can favor doubling or tripling. In our algorithm,
we favor tripling.

Optimal DBCs are usually varied with Hamming weight by different costs
of point operations. Canonic DBCs returned by Algorithm2 are with the same
Hamming weight and are not affected by the cost of point operations. Take a
positive integer

⌊
π × 1020

⌋
= 314159265358979323846 for example. Its optimal

DBC returned by Algorithm 2 is 23033 + 22832 + 22032 − 21731 − 21630 − 2830 +
2330 − 2030 with Hamming weight 8 for EW 0.8. The value of the cost of this
DBC is 319.2. Its optimal DBC returned by Algorithm 2 is 219310 + 213310 −
21238 + 2936 + 2635 + 2332 − 2030 with Hamming weight 7 for EW 1. The value
of the cost of this DBC is 358. This DBC with Hamming weight 7 is one of the
canonic DBCs of

⌊
π × 1020

⌋
.

5.3 The Time Complexity and Space Complexity of Algorithm2

The running time of a dynamic programming algorithm depends on the product
of two factors: the number of subproblems overall and how many choices we
look at for each subproblem. Our dynamic programming algorithm has (log n +
1)(log3 n + 1) subproblems. If we store the value of nb,t and n/(2b3t) for the use
of next cycle, each subproblems requires O (log n) bit operations. Algorithm2
terminates in O

(
(log n)3

)
bit operations. The details are illustrated by Fig. 2.

Each node (b, t) of computing
⌊ nb,t

2b−13t−1

⌋
, w(b, t), and w̄(b, t) requires O (log n)

bit operations.

556 W. Yu et al.

b

t

1

2

3

...

log3 n 1

log3 n

log3 n 1

0 1 2 3 4 5 6 7 8 . . .
logn

b log3 t logB

requires logn bit operations

+ =

Fig. 2. The procedure of our dynamic programming algorithm

If the powers of 2 and 3 are recorded by their differences as Remark 5 of
Capuñay and Thériault’s work [7], our algorithm terminates in O

(
(log n)2

)

bits of memory. The details are shown as follows. The term ci2bi3ti in the chain
is stored as the pair (ci, bi, ti). For example, 1000 = 210 − 25 + 23 is recorded
as (1, 3, 0), (−1, 2, 0), and (1, 5, 0). If DBCs are recorded as their difference with
the previous term, then the memory requirement per chain is O (log n). Thus,
Algorithm 2 requires O

(
(log n)2

)
bits of memory.

We will focus on improving the time complexity of Algorithm2.

6 Equivalent Representatives for Large Numbers

The most time-consuming part of Lemma 5 is to compute nb,t

2b−13t−1 . It can
be improved by reduced representatives for large numbers [17]. Bernstein,
Chuengsatiansup, and Lange [17] noticed that arbitrary divisions of O (log n)-
bit numbers take time (log n)1+o(1) shown in pages 81 − 86 of “on the minimum
computation time of functions” by Cook [34]. Based on this novel representative,
the time complexity of dynamic programming algorithm is shown as Fig. 3. In
Fig. 3, α′ = (log B)0.5 and β′ = (log3 B)0.5. Each node (b, t) satisfying α′|b or
β′|t is named a boundary node in Fig. 3. Each boundary node requires log n bit
operations and each of the other nodes requires (log n)0.5 bit operations. Then
Algorithm 2 terminates in O

(
(log n)2.5

)
bit operations using reduced represen-

tatives.

Double-Base Chains for Scalar Multiplications on Elliptic Curves 557

b

t

0

1

...

1

1

...

2 1

2

2 1

...

log3 n

log3 n 1

1 2 . . . 2 1 1 2 . . . 2 1 2 2 1 . . . logn

b log3 t logB

requires logn bit operations requires logn 0.5 bit operations

Fig. 3. The procedure of our dynamic programming algorithm using the trick in [17]

Motivated by their reduced representatives for large numbers, we will give a
new representative named equivalent representative.

Definition 6 (Equivalent representative). If one expression of an integer
n′ is equal to the value of

⌊ nb,t

2b−13t−1

⌋
in Lemma 5, then n′ is an equivalent rep-

resentative of n.

Our equivalent representative is a generalization of Bernstein, Chuengsa-
tiansup, and Lange’s reduced representative. Reduced representatives for large
numbers do not work for log n + log3 n boundary nodes. Our equivalent repre-
sentatives will solve this problem.

6.1 Use Equivalent Representatives in Algorithm2

We employ equivalent representatives to improve the recode procedure of Algo-
rithm2 shown as Algorithm 3. n1 is an equivalent representative in Algorithm 3
shown by Claim 2.

Claim 2. Let n1
′ =

⌊
6·n

2ii1·α2
13jj1·β2

1

⌋
%

(
2α2

1+13β2
1+1

)
, n1 =

⌊
n1

′

2i1·α13j1·β1

⌋
%

(
2α1+13β1+1

)
, α1 =

⌊
(log B)

1
3

⌋
, β1 =

⌊
(log B)

1
3

⌋
, b = ii1 · α2

1 + i1 · α1 + i,

t = jj1 · β2
1 + j1 · β1 + j, i1 ≥ 0, j1 ≥ 0, 0 ≤ i < α, 0 ≤ j < β shown as

Algorithm3. Then
(⌊

n1
2i3j

⌋
%6

)
=

⌊ nb,t

2b−13t−1

⌋
.

558 W. Yu et al.

Algorithm 3. Dynamic programming to compute an optimal DBC using equiv-
alent representatives once
Input: a positive integer n and its binary representation nbinary, three non-negative
constants A > 0, D ≥ 0, T ≥ 0
Output: an optimal DBC for n
1. Lines 1 − 3 of Algorithm 2

2. α0 ← �log B�, β0 ← �log3 B�, α1 ←
⌊
(log B)

1
3

⌋
, β1 ←

⌊
(log B)

1
3

⌋

3. For jj1 from 0 to
⌊

log3 B

β2
1

⌋
+ 1

4. For ii1 from 0 to
⌊

bBound[j·β2
1]

α2
1

⌋
+ 1

5. n1
′ ←

⌊
6·n

2
ii1·α2

13
jj1·β2

1

⌋
%

(
2α2

1+13β2
1+1

)

6. For j1 from 0 to β1 − 1
7. For i1 from 0 to α1 − 1

8. n1 ←
⌊

n1
′

2i1·α13j1·β1

⌋
%

(
2α1+13β1+1

)

9. For j from 0 to β1 − 1
10. For i from 0 to α1 − 1
11. t ← jj1 · β2

1 + j1 · β1 + j,b ← ii1 · α2
1 + i1 · α1 + i

12. If b + t > 0& b <bBound[t]& t ≤ �log3 B�
13. compute w(b, t), w̄(b, t) using Lemma 5

�
⌊ nb,t

2b−13t−1

⌋
is calculated by

(⌊
n1
2i3j

⌋
%6

)

14. else if b = bBound[t] & t ≤ �log3 B�, Lines 7, 8 of Algorithm 2
15. return wmin

Notice that t = jj1 · β2
1 + j1 · β1 + j, b = ii1 · α2

1 + i1 · α1 + i in Line 11 of
Algorithm 3. Algorithm 3 is similar as Algorithm 2 whose total cycles are at most
log B log3 B.

Algorithm 3 uses a trick of an equivalence representative n1. The mid-
dle variable n′

1 is used to calculate the equivalent representative n1. Each
n′
1 is a O

(
α2
1

)
-bit integers shown as Algorithm 3. There are at most(⌊

log3 B
β2
1

⌋
+ 1

) (⌊
log B
α2

1

⌋
+ 1

)
such numbers n′

1, i.e., O
(
α2
1

)
. Calculating each

n′
1 requires O (log n) bit operations. Calculating all n′

1 requires O
(
(log n)

5
3

)
bit

operations. Calculating each representative n1 requires O
(
α2
1

)
bit operations.

Then calculating equivalent representatives requires O
(
(log n)2

)
bit operations.

Based on equivalent representatives, each node (b, t) requires O (α1) bit oper-
ations. (log B) · (log3 B) nodes requiring O

(
(log n)

7
3

)
bit operations. The time

complexity of Algorithm3 is shown in Lemma 6.

Double-Base Chains for Scalar Multiplications on Elliptic Curves 559

Lemma 6. Algorithm3 terminates in O
(
(log n)2+

1
3

)
bit operations.

The details of the time cost of Algorithm 3 are shown as Fig. 4.

t

0

1

...

1 1

1

1 1

...

2
1 1

2
1

2
1 1

...

log3 n

log3 n 1

...
...

. . .

. . .

1 2 . . .
1 2 1 1 1 1 1 1 2 . . . 2

1 2 2
1 1 2

1
2
1 1 2

1 2
. . .

logn

b log3 t logB

b

requires bit operations requires logn 2/3 bit operations requires logn 1/3 bit operations

Fig. 4. The procedure of Algorithm 3 using equivalent representatives

Based on Algorithm 3, we will use equivalent representatives repeatedly.

6.2 Dynamic Programming Using Equivalent Representatives k-th

We generate Algorithm 3 and use equivalent representatives k-th in Algorithm 2
shown as Algorithm 4.

⌊ nb,t

2b−13t−1

⌋
in Lemma 5 is calculated by

(⌊
nk

2i3j

⌋
%6

)
. Algo-

rithm3 is a special case of Algorithm 4 with k = 1.
The time complexity of Algorithm 4 is shown in Theorem 4.

Theorem 4. Algorithm4 terminates in O
(
(log n)2

(
(log n)

1
3k + k + log log n

))

bit operations. It requires O
(
(log n)2 log log n

)
bit operations when k = log3 log n.

Notice that α2 ≤ 7 when n < 2134217728. Then k in Algorithm 4 is usually
1 or 2. Algorithms 2, 3, and 4 generate the same DBC with the same A, D, T ,
and n.

560 W. Yu et al.

Algorithm 4. Dynamic programming to compute an optimal DBC using equiv-
alent representatives k-th
Input: a positive integer n, a positive integer k, and its binary representation nbinary,
three non-negative constants A > 0, D ≥ 0, T ≥ 0
Output: an optimal DBC for n
1. Lines 1 − 3 of Algorithm 2, n0 ← 6 · n

2. For y from 0 to k, αy ←
⌊
(log B)

1
3y

⌋
,βy ←

⌊
(log3 B)

1
3y

⌋

3. For jjy from 0 to
⌊

βy−1
β2

y

⌋
+ 1

4. For iiy from 0 to
⌊

αy−1
α2

y

⌋
+ 1

5. ny
′ ←

⌊
ny−1

2
iiy·α2

y 3
jjy·β2

y

⌋
%

(
2α2

y+13β2
y+1

)

6. For jy from 0 to βy − 1
7. For iy from 0 to αy − 1

8. ny ←
⌊

ny
′

2iy·αy 3jy·βy

⌋
%

(
2αy+13βy+1

)

� For each y from 1 to k, Lines 3-8 are repeatedly as y is outer loop and y + 1 is
inner loop
9. For j from 0 to βk − 1
10. For i from 0 to αk − 1
11. t ← ∑k

y=1

(
jjy · β2

y + jy · βy

)
+j,b ← ∑k

y=1

(
iiy · α2

y + iy · αy

)
+i

12. If b + t > 0& b < bBound[t]& t ≤ �log3 B�
13. compute w(b, t), w̄(b, t) using Lemma 5

�
⌊ nb,t

2b−13t−1

⌋
is calculated by

(⌊
nk
2i3j

⌋
%6

)

14. else if b = bBound[t] & t ≤ �log3 B�, Lines 7, 8 of Algorithm2

15. return wmin

6.3 Comparison of These Algorithms

The time complexity, space complexity, and method of Doche’s algorithm
[16], Capuñay and Thériault’s algorithm [7], Bernstein , Chuengsatiansup, and
Lange’s algorithm [17], and Algorithms 2–4 are summarized in Table 4. Table 4
shows the advantage of our dynamic programming algorithms.

Table 4. Comparison of algorithms to generate optimal DBCs
algorithm time complexity (O)space complexity (O) method

Doche [16] exponential (log n)2 enumeration

CT [7] (log n)4 (log n)3 two cycles

BCL [17] (log n)2.5 (log n)2.5 DAG

Algorithm 2 (new) (log n)3 (log n)2 dynamic programming

Algorithm 3 (new) (log n)
2+ 1

3 (log n)2 using equivalent representatives

Algorithm 4 (new) (log n)2 log log n (log n)2 using equivalent representatives (log3 log n)−th

From the time costs of different algorithms to generate optimal DBCs in
Table 5, Algorithm 4 is about 20, 25, 28, 32, and 40 times faster than Capuñay and
Thériault’s algorithm and 6.1, 6.6, 7.7, 8.7, and 9.3 times faster than Bernstein,

Double-Base Chains for Scalar Multiplications on Elliptic Curves 561

Chuengsatiansup and Lange’s algorithm for each size ranges in 256, 384, 512, 640,
and 768 respectively. As the integer becomes larger, Algorithm4 will gain more
compared to Bernstein, Chuengsatiansup and Lange’s algorithm.

Table 5. Time Costs of different algorithms to generate optimal DBCs in million cpu
cycles for integers with different size

256-bit 384-bit 512-bit 640-bit 768-bit
CT [7] 41.9 106 217 386 645

BCL [17] 12.1 28.9 60.1 108 164
Algorithm 4 (new) 1.98 4.32 7.72 11.8 18.0

6.4 The Hamming Weights and Leading Terms of Canonic DBCs
and Optimal DBCs

The Hamming weights and leading terms of the DBC produced by greedy app-
roach [1] (greedy-DBC), canonic DBCs, and optimal DBCs are shown in Table 6
for the same 1000 integers by Algorithm 3. The Hamming weight of NAF is log n

3 .
The Hamming weight of mbNAF, that of the DBC produced by binary/ternary
approach(bt-DBC), and that of the DBC produced by tree approach (tree-
DBC) are 0.2637 log n, 0.2284 log n, and 0.2154 log n respectively and the leading
terms are 20.791 log n30.1318 log n, 20.4569 log n30.3427 log n, and 20.5569 log n30.2796 log n

respectively. The Hamming weights of canonic DBCs are usually smaller than
those of optimal DBCs. By Table 6, the Hamming weights of optimal DBCs are
over 60% smaller than those of NAFs. As the integer becomes larger, the Ham-
ming weight dividing log n will be smaller with a limitation 1

8.25 by Theorem 2.
Please refer to Fig. 1 to get more details of the Hamming weight of canonic
DBCs.

Table 6. Hamming weights and leading terms of optimal DBCs on elliptic curves with
different size

256-bit 384-bit 512-bit 640-bit 768-bit
Hamming weight 62.784 94.175 125.48 155.307 188.764

greedy-DBC[1]
leading term(bl, tl)124.282, 82.168183.256, 125.779258.908, 159.309314.954, 204.158384.604, 240.957
Hamming weight 48.319 71.572 94.75 118.108 141.097

canonic DBC
leading term(bl, tl)128.275, 80.316197.183, 117.582261.227, 157.903328.541, 196.231396.162, 234.330

optimal DBC Hamming weight 50.027 74.163 98.234 122.544 146.493
E W 0.8 leading term(bl, tl)176.675, 49.750 265.369, 74.549 353.175, 99.895 444.538, 123.015532.690, 148.162

optimal DBC Hamming weight 49.393 73.210 96.993 121.134 144.684
E W 1 leading term(bl, tl)169.026, 54.578 253.989, 81.731 338.509, 109.154426.218, 134.577509.540, 162.764

We will discuss scalar multiplications using our optimal DBCs.

7 Comparison of Scalar Multiplications

The scalar multiplication algorithm using a DBC is a Horner-like scheme for the
evaluation of nP utilizing the DBC of n =

∑l
i=1 ci2bi3ti as nP =

∑l
i=1 ci2bi3tiP .

Theoretical cost of scalar multiplications on elliptic curves using NAF, greedy-
DBC, bt-DBC, mbNAF, tree-DBC, canonic DBC, and optimal DBC on EW 0.8
and EW 1 are shown in Table 7.

562 W. Yu et al.

Table 7 shows that scalar multiplication using an optimal DBC is more effi-
cient than that using a canonic DBC. Scalar multiplication using an optimal
DBC on EW 0.8 and EW 1 is about 13% and 13% faster than that using NAF,
7.5% and 7.1% faster than that using greedy-DBC, 6.5% and 6% faster than that
using bt-DBC, 7% and 7% faster than that using mbNAF, 4% and 4% faster
than that using a tree-DBC, and 0.9% and 0.7% faster than that using a canonic
DBC respectively. Scalar multiplication using an optimal DBC is usually faster
than that using a canonic DBC. Take

⌊
π × 10240

⌋
on EW 1 for example, scalar

multiplication using our optimal DBC is 14% faster and 3.8% faster than that
using NAF and tree-DBC respectively.

Table 7. Theoretical costs of scalar multiplications on elliptic curves using optimal
DBC, canonic DBC, tree-DBC, and NAF in M
bits of n representation 256-bit 384-bit 512-bit 640-bit 768-bit

NAF 2652 3983 5315 6646 7977
greedy-DBC [1] 2535 3818 5089 6351 7643

bt-DBC [2] 2510 3771 5031 6291 7552
EW 0.8 mbNAF [13] 2521 3787 5052 6318 7583

tree-DBC [3] 2452 3683 4914 6146 7377
canonic DBC(this work) 2393 3582 4774 5967 7155
optimal DBC(this work) 2364 3543 4722 5902 7080

NAF 2976 4469 5962 7456 8949
greedy-DBC [1] 2824 4252 5671 7075 8516

bt-DBC [2] 2796 4200 5603 7007 8410
EW 1 mbNAF [13] 2824 4241 5659 7076 8494

tree-DBC [3] 2738 4113 5488 6862 8237
canonic DBC(this work) 2671 4000 5332 6664 7991
optimal DBC(this work) 2649 3970 5292 6615 7936

In Table 7, the value of T
D on EW 0.8 is greater than that on EW 1. The ratio

of the cost of scalar multiplication using an optimal DBC to that using NAF on
EW 0.8 is greater than that on EW 1 for integers of each size in Table 7. The ratio
of the improvement of scalar multiplication using an optimal DBC compared to
NAF is increasing as the value of T

D becomes larger.
A constant-time software implementation is used to protect the scalar mul-

tiplication algorithms for avoiding some side-channel attacks by side channel
atomicity. Multiplication and squaring are both executed by one multiplication
and two additions. For each size ranges in 256, 384, 512, 640, and 768, we gen-
erate a prime number p with the same size and create a random curve for EW
over a finite field Fp. Scalar multiplications using NAF, greedy-DBC, bt-DBC,
mbNAF, tree-DBC, canonic DBC, and optimal DBC are shown in Table 8.

Experimental results show that scalar multiplication using an optimal DBC
is 13% faster than that using NAF, 7% faster than that using greedy-DBC, 6%
faster than that using bt-DBC, 7% faster than that using mbNAF, and 4.1%
faster than that using a tree-DBC on EW respectively. Within the bounds of the
errors, the practical implementations are consistent with these theoretical anal-
yses. The theoretical analyses and practical implementations both show that the
Hamming weight is not the only factor affecting the efficiency of scalar multipli-
cations and that scalar multiplications using optimal DBCs are the fastest.

Those computations do not take the time of producing the expansions into
account. The recoding of our optimal DBC takes up a small amount of time to

Double-Base Chains for Scalar Multiplications on Elliptic Curves 563

Table 8. Experimental cost of scalar multiplications on elliptic curves using optimal
DBC, canonic DBC, tree-DBC, and NAF on EW in million cpu cycles

representation 256-bit 384-bit 512-bit 640-bit 768-bit
NAF 4.038 8.151 13.94 22.34 34.05

greedy-DBC [1] 3.836 7.751 13.27 21.23 32.43
bt-DBC [2] 3.798 7.656 13.12 21.02 32.03
mbNAF[13] 3.837 7.731 13.25 21.23 32.35
tree-DB [3] 3.734 7.575 12.92 20.68 31.54

canonic DBC(this work) 3.624 7.279 12.44 19.95 30.35
optimal DBC(this work) 3.594 7.168 12.37 19.83 30.17

compute scalar multiplication where both take time O
(
(log n)2 log log n

)
when

field multiplications use FFTs. It can’t be ignored. Optimal DBCs are suitable
for computing scalar multiplications when the multiplier n is fixed.

8 Conclusion

We first proposed a polynomial time algorithm to compute the number of DBCs
for a positive integer with a leading term dividing 2b3t. We showed theoretical
results of the number of DBCs for large b and t and gave an estimate of this
number. The asymptotic lower bound of the Hamming weights of DBCs produced
by any algorithm for n is linear log n

8.25 . This result changed the traditional idea
that the asymptotic lower bound of the Hamming weight of a DBC produced
by any algorithm may be sub-linear log n

log log n . The time complexity and the space
complexity of our dynamic programming algorithm to produce an optimal DBC
were both the state-of-the-art. The recoding procedure of our algorithm was
more than 20 times faster than Capuñay and Thériault’s algorithm and more
than 6 times faster than Bernstein, Chuengsatiansup, and Lange’s algorithm.

Let S(i) denote the smallest positive integer whose Hamming weight of its
canonic DBCs is i. Our dynamic programming algorithm allowed us to find S(i)
for i ≤ 12 immediately where S(1) = 1, S(2) = 5, S(3) = 29, S(4) = 173,
S(5) = 2093, S(6) = 14515, S(7) = 87091, S(8) = 597197, S(9) = 3583181,
S(10) = 34936013, S(11) = 263363789, and S(12) = 1580182733. This numerical
fact provides a good impression about the sparseness of DBCs.

The cost function in this study was associated with P + Q, 2P , and 3P
for scalar multiplications. A direct promotion of the cost function is defined by
P + Q, P − Q, 2P , 2P + Q, 3P , and 3P + Q. As the cost function is defined
more precisely, an optimal DBC will improve scalar multiplications more. The
optimal DBC can be directly generalized to a DBC with a large coefficient set
of integers. Algorithm 1 can be generated to calculate the number of triple-base
chains, and Algorithms 2–4 can be extended to produce optimal extended DBCs
and optimal triple-base chains.

Acknowledgments. The authors would like to thank the anonymous reviewers for
many helpful comments and thank Guangwu Xu, Kunpeng Wang, Song Tian and Bei
Liang for their helpful suggestions, especially for Guangwu Xu’s suggestions on the
parts of “Abstract” and “Introduction”. This work is supported by the National Nat-
ural Science Foundation of China (Grants 61872442, 61502487, and 61772515) and the

564 W. Yu et al.

National Cryptography Development Fund (No. MMJJ20180216). W. Yu is supported
by China Scholarship Council (No. 201804910201) and Study of Practical Cryptanalytic
Approaches based on Combining Information Leakages and Mathematical and Struc-
tural Properties of Real-World Cryptosystems (No.U1936209).

References

1. Dimitrov, V., Imbert, L., Mishra, P.K.: Efficient and secure elliptic curve point
multiplication using double-base chains. In: Roy, B. (ed.) ASIACRYPT 2005.
LNCS, vol. 3788, pp. 59–78. Springer, Heidelberg (2005). https://doi.org/10.1007/
11593447 4

2. Ciet, M., Joye, M., Lauter, K., Montgomery, P.L.: Trading inversions for multipli-
cations in elliptic curve cryptography. Designs, Codes Crypt. 39(6), 189–206 (2006)

3. Doche, C., Habsieger, L.: A tree-based approach for computing double-base chains.
In: Mu, Y., Susilo, W., Seberry, J. (eds.) ACISP 2008. LNCS, vol. 5107, pp. 433–446.
Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-70500-0 32

4. Imbert, L., Philippe, F.: Strictly chained (p, q)-ary partitions. Contrib. Discrete
Math. 2010, 119–136 (2010)

5. Lou, T., Sun, X., Tartary, C.: Bounds and trade-offs for double-base number sys-
tems. Inf. Process. Lett. 111(10), 488–493 (2011)

6. Zhao, C.A., Zhang, F.G., Huang, J.W.: Efficient Tate pairing computation using
double-base chains. Sci. China Ser. F 51(8), 1096–1105 (2008)

7. Capuñay, A., Thériault, N.: Computing optimal 2-3 chains for pairings. In: Lauter,
K., Rodŕıguez-Henŕıquez, F. (eds.) LATINCRYPT 2015. LNCS, vol. 9230, pp. 225–
244. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-22174-8 13

8. Doche, C., Kohel, D.R., Sica, F.: Double-base number system for multi-scalar mul-
tiplications. In: Joux, A. (ed.) EUROCRYPT 2009. LNCS, vol. 5479, pp. 502–517.
Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-01001-9 29

9. Adikari, J., Dimitrov, V.S., Imbert, L.: Hybrid binary ternary number system for
elliptic curve cryptosystems. IEEE Trans. Comput. 60, 254–265 (2011)

10. Doche, C., Sutantyo, D.: New and improved methods to analyze and compute
double-scalar multiplications. IEEE Trans. Comput. 63(1), 230–242 (2014)

11. Avanzi, R., Dimitrov, V., Doche, C., Sica, F.: Extending scalar multiplication using
double bases. In: Lai, X., Chen, K. (eds.) ASIACRYPT 2006. LNCS, vol. 4284, pp.
130–144. Springer, Heidelberg (2006). https://doi.org/10.1007/11935230 9

12. Mishra, P.K., Dimitrov, V.: Efficient quintuple formulas for elliptic curves and effi-
cient scalar multiplication using multibase number representation. In: Garay, J.A.,
Lenstra, A.K., Mambo, M., Peralta, R. (eds.) ISC 2007. LNCS, vol. 4779, pp. 390–
406. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-75496-1 26

13. Longa, P., Gebotys, C.: Fast multibase methods and other several optimizations
for elliptic curve scalar multiplication. In: Jarecki, S., Tsudik, G. (eds.) PKC 2009.
LNCS, vol. 5443, pp. 443–462. Springer, Heidelberg (2009). https://doi.org/10.
1007/978-3-642-00468-1 25

14. Yu, W., Wang, K., Li, B., Tian, S.: Triple-base number system for scalar multipli-
cation. In: Youssef, A., Nitaj, A., Hassanien, A.E. (eds.) AFRICACRYPT 2013.
LNCS, vol. 7918, pp. 433–451. Springer, Heidelberg (2013). https://doi.org/10.
1007/978-3-642-38553-7 26

15. Dimitrov, V.S., Imbert, L., Mishra, P.K.: The double-base number system and
its application to elliptic curve cryptography. Math. Comput. 77(262), 1075–1104
(2008)

https://doi.org/10.1007/11593447_4
https://doi.org/10.1007/11593447_4
https://doi.org/10.1007/978-3-540-70500-0_32
https://doi.org/10.1007/978-3-319-22174-8_13
https://doi.org/10.1007/978-3-642-01001-9_29
https://doi.org/10.1007/11935230_9
https://doi.org/10.1007/978-3-540-75496-1_26
https://doi.org/10.1007/978-3-642-00468-1_25
https://doi.org/10.1007/978-3-642-00468-1_25
https://doi.org/10.1007/978-3-642-38553-7_26
https://doi.org/10.1007/978-3-642-38553-7_26

Double-Base Chains for Scalar Multiplications on Elliptic Curves 565

16. Doche, C.: On the enumeration of double-base chains with applications to ellip-
tic curve cryptography. In: Sarkar, P., Iwata, T. (eds.) ASIACRYPT 2014. LNCS,
vol. 8873, pp. 297–316. Springer, Heidelberg (2014). https://doi.org/10.1007/978-
3-662-45611-8 16

17. Bernstein, D.J., Chuengsatiansup, C., Lange, T.: Double-base scalar multiplication
revisited. http://eprint.iacr.org/2017/037

18. Cohen, H., Miyaji, A., Ono, T.: Efficient elliptic curve exponentiation using mixed
coordinates. In: Ohta, K., Pei, D. (eds.) ASIACRYPT 1998. LNCS, vol. 1514, pp.
51–65. Springer, Heidelberg (1998). https://doi.org/10.1007/3-540-49649-1 6

19. Chevallier-Mames, B., Ciet, M., Joye, M.: Low-cost solutions for preventing simple
side-channel analysis: side-channel atomicity. IEEE Trans. Comput. 53(6), 760–768
(2004)

20. Longa, P., Miri, A.: Fast and flexible elliptic curve point arithmetic over prime fields.
IEEE Trans. Comput. 57(3), 289–302 (2008)

21. Bernstein, D.J., Lange, T.: Explicit-formulas database. http://www.hyperelliptic.
org/EFD/

22. Renes, J., Costello, C., Batina, L.: Complete addition formulas for prime order
elliptic curves. In: Fischlin, M., Coron, J.-S. (eds.) EUROCRYPT 2016. LNCS,
vol. 9665, pp. 403–428. Springer, Heidelberg (2016). https://doi.org/10.1007/978-
3-662-49890-3 16

23. Méloni, N., Hasan, M.A.: Elliptic curve scalar multiplication combining Yao’s algo-
rithm and double bases. In: Clavier, C., Gaj, K. (eds.) CHES 2009. LNCS, vol.
5747, pp. 304–316. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-
642-04138-9 22

24. Meloni, N., Hasan, M.: Efficient double bases for scalar multiplication. IEEE Trans.
Comput. 64(8), 2204–2212 (2015)

25. Disanto, F., Imbert, L., Philippe, F.: On the maximal weight of (p, q)-ary chain
partitions with bounded parts. https://www.emis.de/journals/INTEGERS/vol14.
html

26. Yu, W., Musa, S., Li, B.: Double-base chains for scalar multiplications on elliptic
curves. http://eprint.iacr.org/2020/144

27. Scott, M.: MIRACL-multiprecision integer and rational arithmetic cryptographic
library, C/C++ Library. ftp://ftp.computing.dcu.ie/pub/crypto/miracl.zip

28. Chalermsook, P., Imai, H., Suppakitpaisarn, V.: Two lower bounds for shortest
double-base number system. IEICE Trans. Fundam. Electron. Commun. Comput.
Sci. 98–A(6), 1310–1312 (2015)

29. Dimitrov, V.S., Howe, E.W.: Lower bounds on the lengths of double-base represen-
tations. Proc. Am. Math. Soc. 139(10), 3423–3430 (2011)

30. Kolmogorov, A.N.: On tables of random numbers. Theor. Comput. Sci. 207, 387–
395 (1998)

31. Doche, C., Imbert, L.: Extended double-base number system with applications to
elliptic curve cryptography. In: Barua, R., Lange, T. (eds.) INDOCRYPT 2006.
LNCS, vol. 4329, pp. 335–348. Springer, Heidelberg (2006). https://doi.org/10.
1007/11941378 24

32. Erdös, P., Loxton, J.H.: Some problems in partitio numerorum. J. Aust. Math. Soc.
Ser. A 27(3), 319–331 (1979)

33. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms,
3rd edn. The MIT Press, Cambridge (2009)

34. Cook, S.A.: On the minimum computation time of functions. Harvard University,
Department of Mathematics (1966). https://cr.yp.to/bib/1966/cook.html

https://doi.org/10.1007/978-3-662-45611-8_16
https://doi.org/10.1007/978-3-662-45611-8_16
http://eprint.iacr.org/2017/037
https://doi.org/10.1007/3-540-49649-1_6
http://www.hyperelliptic.org/EFD/
http://www.hyperelliptic.org/EFD/
https://doi.org/10.1007/978-3-662-49890-3_16
https://doi.org/10.1007/978-3-662-49890-3_16
https://doi.org/10.1007/978-3-642-04138-9_22
https://doi.org/10.1007/978-3-642-04138-9_22
https://www.emis.de/journals/INTEGERS/vol14.html
https://www.emis.de/journals/INTEGERS/vol14.html
http://eprint.iacr.org/2020/144
ftp://ftp.computing.dcu.ie/pub/crypto/miracl.zip
https://doi.org/10.1007/11941378_24
https://doi.org/10.1007/11941378_24
https://cr.yp.to/bib/1966/cook.html

Zero-Knowledge

Stacked Garbling for Disjunctive
Zero-Knowledge Proofs

David Heath(B) and Vladimir Kolesnikov(B)

Georgia Institute of Technology, Atlanta, GA, USA
{heath.davidanthony,kolesnikov}@gatech.edu

Abstract. Zero-knowledge (ZK) proofs (ZKP) have received wide
attention, focusing on non-interactivity, short proof size, and fast ver-
ification time. We focus on the fastest total proof time, in particular
for large Boolean circuits. Under this metric, Garbled Circuit (GC)-
based ZKP (Jawurek et al., [JKO], CCS 2013) remained the state-of-
the-art technique due to the low-constant linear scaling of computing the
garbling.

We improve GC-ZKP for proof statements with conditional clauses.
Our communication is proportional to the longest branch rather than to
the entire proof statement. This is most useful when the number m of
branches is large, resulting in up to factor m× improvement over JKO.

In our proof-of-concept illustrative application, prover P demon-
strates knowledge of a bug in a codebase consisting of any number of
snippets of actual C code. Our computation cost is linear in the size
of the codebase and communication is constant in the number of snip-
pets. That is, we require only enough communication for a single largest
snippet!

Our conceptual contribution is stacked garbling for ZK, a privacy-
free circuit garbling scheme that can be used with the JKO GC-ZKP
protocol to construct more efficient ZKP. Given a Boolean circuit C and
computational security parameter κ, our garbling is L ·κ bits long, where
L is the length of the longest execution path in C. All prior concretely
efficient garbling schemes produce garblings of size |C| ·κ. The computa-
tional cost of our scheme is not increased over prior state-of-the-art.

We implement our GC-ZKP and demonstrate significantly improved
(m× over JKO) ZK performance for functions with branching factor m.
Compared with recent ZKP (STARK, Libra, KKW, Ligero, Aurora, Bul-
letproofs), our scheme offers much better proof times for larger circuits
(35-1000× or more, depending on circuit size and compared scheme).

For our illustrative application, we consider four C code snippets, each
of about 30–50 LOC; one snippet allows an invalid memory dereference.
The entire proof takes 0.15 s and communication is 1.5 MB.

Keywords: Garbled circuits · Inactive branch elimination · ZK ·
Proof of C bugs

Electronic supplementary material The online version of this chapter (https://
doi.org/10.1007/978-3-030-45727-3 19) contains supplementary material, which is
available to authorized users.

c© International Association for Cryptologic Research 2020
A. Canteaut and Y. Ishai (Eds.): EUROCRYPT 2020, LNCS 12107, pp. 569–598, 2020.
https://doi.org/10.1007/978-3-030-45727-3_19

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-45727-3_19&domain=pdf
https://doi.org/10.1007/978-3-030-45727-3_19
https://doi.org/10.1007/978-3-030-45727-3_19
https://doi.org/10.1007/978-3-030-45727-3_19

570 D. Heath and V. Kolesnikov

1 Introduction

Zero-knowledge (ZK) proofs (ZKP) have a number of practical applica-
tions; reducing their cost is an active research direction. Many efficient
schemes were recently proposed, focusing on small proofs and fast verifica-
tion. These works are largely motivated by blockchain applications [AHIV17,
BCR+19,BBB+18,WTs+18,XZZ+19,BBHR19, etc.] and also by post-quantum
signatures [CDG+17,KKW18].

Our focus, in contrast, is on the classical setting of fastest total proof time,
including (possibly interactive) proof generation, transmission, and verification.
In this total-time metric, Yao’s garbled circuits (GC) is the fastest and one of
the most popular techniques for proving general NP statements (expressed as
Boolean circuits) in ZK. GC offers low-overhead linear prover complexity, while
other techniques’ provers are either superlinear or have high constants.

[JKO13] and [FNO15] demonstrate how to use GC for ZK without the costly
cut-and-choose technique, while [ZRE15] proposes an efficient garbling technique
that requires only 1 cryptographic ciphertext per AND gate in the ZK setting.
As a result, GC-ZKP can process 20 million AND gates per second or more on a
regular laptop (XOR gates are essentially free [KS08]). Unfortunately, while the
computational cost of GC-ZKP is low, the communication is high. Even a fast
1 Gbps LAN can support only ≈6 million AND gates per second (XOR gates are
free in communication). While this rate is higher than all recent NIZK systems,
further communication improvements would make the approach even stronger.

In this work we achieve such a communication improvement. We reduce the
cost of sending a GC when the proof statement contains logically disjoint clauses
(i.e. conditional branches in if or switch constructs). In particular, if a logical
statement contains disjoint clauses, then the cost to transmit the GC is bounded
by the size of the largestclause rather than the total size of all clauses.

Our key idea is that the proof verifier (who is the GC generator) garbles
from seeds all the clauses and then XORs together, or stacks, the garblings
before sending them to the prover for evaluation. The prover receives via OT
the seeds for the inactive clauses, reconstructs their garblings, and then XORs
them out to obtain the target clause’s garbling. By stacking the garblings, we
decrease the cost to transmit the GC from the verifier to the prover.

In Sect. 3, we formally present our approach as a garbling scheme, which we
call Privacy-Free Stacked (PFS) garbling. Accompanying proofs are in Sect. 4.
We implement our approach in C++ and evaluate its performance against state-
of-the-art techniques in Sect. 6 (see also discussion in Sect. 1.6).

1.1 Use Cases: Hash Trees and Existence of Bugs in Program Code

Our technique is useful for proving in ZK one of several statements.
Consider proving arbitrary statements in ZK, represented as Boolean circuits.

These can be straightline programs or, more generally and quite typically, will
include logical combinations of basic clauses. Several lines of work consider ZK of
general functions, including MPC-in-the-head, SNARKs/STARKs, JKO, Sigma

Stacked Garbling for Disjunctive Zero-Knowledge Proofs 571

protocols [CDS94]; the latter specifically emphasizes proving disjoint statements,
e.g., [Dam10,CDS94,CPS+16,GK14].

We now briefly present our two main applications (cf. Sects. 6 and 7):

App 1: Existence of Bugs. Our most exciting application allows a prover P to
demonstrate knowledge of a bug in a potentially large codebase. We stress that
ours is not a full-strength automated application, but rather a proof of concept.
Still, we are able to handle C code with pointers, standard library calls, and
simple data structures (see Sect. 7).

We consider a number of code snippets motivated by real code used in operat-
ing systems, standard algorithms, etc. The snippets we consider contain between
30 and 50 lines of code, but this number can be easily increased. We manually
instrument each snippet with program assertions. Each snippet outputs a single
bit that indicates if any assertion failed, and hence whether there is a bug.

We used and extended the EMP toolkit [WMK16] to compile instrumented
snippets to Boolean circuits. Now, P can demonstrate she knows an input to a
snippet, resulting in output 1. We envision that the mechanical tasks of instru-
menting a codebase and splitting it into snippets will be automated in a practical
tool; we leave further development as important and imminent future work.

Our approach excels in this use case because it features (1) high concrete
performance and (2) communication that is constant in the number of code
snippets. We further elaborate on this use case in Sect. 7.

App 2: Merkle Tree Membership. We wish to compare the performance
of our PFS garbling to recent ZKP systems. We therefore consider a typical
application considered in the literature: proof of membership in a Merkle tree.

Specifically, Alice wishes to assert properties of her record R embedded in
a certificate signed by one of several acceptable authorities (CAs). Each CA Ai

includes a number of different players’ records Ri
1, ..., R

i
n in a Merkle tree, and

securely publishes its root. Alice receives her record Rk
j (which may embed a

secret) and the Merkle tree hashes on the path to root. Now, Alice can prove
statements in ZK about Rk

j with respect to any set of the published roots. CAs
may use different hash functions for Merkle trees, or, in general, differ in other
aspects of the proof, thus creating a use case for proving one of many clauses.
In Sect. 6, we compare our performance to recent work based on this use case.

1.2 Key Contributions

• Conceptual contribution: A novel GC technique, which we call stacked, or
PFS, garbling, requiring garbled material linear in the longest execution path,
rather than in the full size of the circuit. Specifically, the same material sent
from the verifier to the prover can represent the execution of any of the
disjoint clauses. Note, Free IF technique [Kol18] does not work in our setting.

• High concrete performance, improving over the state-of-the art baseline
(JKO+half-gates) approximately by the function branching factor; improve-
ment over recent SNARKs is 35× – 1000× or more, depending on function
size, branching, and compared scheme. Our technique has low RAM require-
ments (146 MB for 7M gate circuit).

572 D. Heath and V. Kolesnikov

• A proof of concept system that allows proving knowledge of a bug in C code.
We use realistic C code snippets, which include pointers and standard library
calls, and prove a bug related to incorrect use of sizeof() on a pointer.

1.3 Preliminaries

Free IF review: First, we review Kolesnikov’s Free IF approach [Kol18]. Free IF
decouples circuit topology (i.e. wire connections among the gates) from cryp-
tographic material used to evaluate gates (i.e. encrypted gate tables). While a
topology is needed to evaluate a circuit, it is assumed to be conveyed to the eval-
uator, Eval, separately from the garbled tables, or by implicit agreement between
the participants Eval and GC generator Gen.

Let S = {C1, ..., Cm} be a set of Boolean circuits. Let (only) Gen know which
circuit in S is evaluated, and let Ct be this target circuit. The key idea of [Kol18]
is that Gen constructs cryptographic material for Ct, but does not construct
material for the other circuits. Let ̂C be the constructed cryptographic material.
The circuits in S may have varying topologies, but ̂C is a collection of garbled
tables that can be interpreted as the garbling of any of these topologies. Eval
knows S, but does not know which circuit is the target. For each Ci ∈ S, Eval
interprets ̂C as cryptographic material for Ci and evaluates, obtaining garbled
output. Only the output labels of Ct encrypt truth values; the other output labels
are garbage. Eval cannot distinguish the garbage labels from the valid labels, and
hence cannot distinguish which of the circuits in S is the target circuit Ct.

Next, Eval obliviously propagates (only) the target output labels to Gen via
an output selection protocol. As input to the protocol, Eval provides all out-
put labels (including the garbage outputs), and Gen provides the index t as
well as Ct’s zero labels on output wires. The output selection protocol outputs
(re-encoded) labels corresponding to the output of Ct.

While our technique is different, PFS garbling is inspired by the key ideas
from Free IF: (1) Separating the topology of a circuit from its garbled tables and
(2) using the same garbling to securely evaluate several topologies.

Superficially, both [Kol18] and we omit inactive clauses when one of the
players (Gen in [Kol18] and Eval in our work) knows the target clause. Indeed, in
GC ZK, Gen must not know the evaluated branch. This is a critical distinction
that requires a different approach. We present this new approach in this work.

Garbled Circuits for Zero Knowledge: Until the work of Jawurek et al. [JKO13],
ZK research focused on proofs of algebraic statements. Generic ZKP techniques
were known, but were based on generic NP reductions and were inefficient.
[JKO13] provides an efficient generic ZKP technique based on garbled circuits.

The construction works as follows: The Verifier, V, and the Prover, P, run a
passively-secure Yao’s GC protocol, where V acts as the circuit generator and P
acts as the circuit evaluator. The agreed upon Boolean circuit, C, is an encoding
of the proof relation where (1) the input is a witness supplied by P, (2) the
output is a single bit, and (3) if the output bit is 1, then the witness satisfies
the relation. V garbles C and sends the garbling to P. P evaluates the GC and
sends V the output label. The security of Yao’s protocol (namely the authenticity

Stacked Garbling for Disjunctive Zero-Knowledge Proofs 573

property [BHR12]) ensures that a computationally bounded P can only produce
the correct output label by running the circuit with a valid witness as input. By
computing C, P and V have achieved a ZK proof in the honest verifier setting.

A malicious V can violate ZK security by sending an invalid circuit or invalid
OT inputs, which can leak P’s inputs. [JKO13] solves this as follows: P does not
immediately send the output label to V, but instead commits to it. Then V sends
the seed used to generate the GC. P uses the seed to verify that the GC was hon-
estly constructed. If so, P can safely open the commitment to the output label,
completing the proof. [JKO13] consider a generalization of the above that does not
require V to construct GCs from seeds. Instead, they define the notion of verifiable
garbling. Verifiability prevents V from distinguishing different witnesses used by
the prover, and therefore from learning something about P’s input. Specifically,
a garbling scheme is verifiable if there is a verification procedure such that even
a malicious V cannot create circuits that both (1) satisfy the procedure and (2)
output different values depending on the evaluator’s witness.

In this work, we deal with explicit randomness and generate GCs from seeds.
It is possible to generalize our work to the verifiable formulation of [JKO13].

Subsequent to the [JKO13] work, [FNO15] observes that weaker privacy-free
garbling schemes are sufficient for the ZK construction of [JKO13]. [FNO15]
construct a more efficient privacy-free garbling, whose cost is between 1 and
2 ciphertexts per AND gate. Zahur et al. [ZRE15] present a privacy-free vari-
ant of their half gates scheme, which requires only 1 ciphertext per AND gate,
and is compatible with the JKO/FNO schemes. In our implementation, we use
these state-of-the-art constructions. Because our work leverages the protocol
from [JKO13], we will include their protocol in the full version of this paper.

1.4 High-Level Approach

Our main contribution is a new ZKP technique in the [JKO13] paradigm. The
key characteristic of our construction is that for proof relations with disjoint
clauses (i.e. conditional branches), communication is bounded by the size of the
largest clause rather than the total size of the clauses. In Sect. 3, we present our
approach in technical detail as a garbling scheme which can be plugged into the
[JKO13] protocol. For now, we explain our approach at a high level.

Consider the proof of a statement represented by a Boolean circuit C with
conditional evaluation of one of several clauses. In Sect. 1.3, we reviewed exist-
ing work that demonstrates how to efficiently evaluate C if the circuit generator
knows the active clause. However, the [JKO13] ZK approach requires the gen-
erator to be V. Unfortunately, V has no input and therefore does not know the
target clause. Instead, P must select the target clause.

As a näıve first attempt, P can select 1-out-of-m garbled circuits via OT.
However, this involves transferring all GC clauses, resulting in no improvement.

Instead, we propose the following idea, inspired by a classic two-server private
information retrieval approach [CGKS95].1 Let S = {C1, .., Cm} be the set of
1 [CGKS95] includes a PIR protocol where two non-colluding servers separately

respond to a client’s two random, related queries by XORing elements of their result
sets (and the client XORs out the true answer).

574 D. Heath and V. Kolesnikov

circuits implementing clauses of the ZK relation. Let Ct ∈ S be the target clause
that P wants to evaluate. For simplicity, suppose all clauses Ci are of the same
size, meaning that they each generate GCs of equal size. Our approach naturally
generalizes to clauses of different sizes (we discuss this in more detail in Sect. 3.7).
The players proceed as follows.

V generates m random seeds s1..sm and generates from them m GCs, ̂C1..̂Cm.
V then computes ̂C =

⊕

̂C1..̂Cm and sends ̂C to P. Informally, computing ̂C can
be understood as stacking the different garbled circuits for space efficiency.

The key idea is that we will allow P to reconstruct (from seeds received via
OT) all but one of the stacked GCs and then XOR these reconstructions out to
retrieve the target GC, which P can evaluate with the witness she has. We must
prevent P from receiving all m GCs and thus forging the proof. To do so, we
introduce the notion of a ‘proof of retrieval’ string por. P receives por via OT
only when she does not choose to receive a clause seed. P proves that she has not
forged the proof by showing that she knows por. This is put together as follows.

V generates a random proof of retrieval string por. For each i ∈ {1..m},
the players run 1-out-of-2 OT, where V is the sender and P is the receiver.
Players use committing OT for this phase [KS06]. For the ith OT, V’s input
is a pair (si,por). P selects 0 as her input in all instances, except for instance
t, where she selects 1. Therefore P receives por and seeds si�=t, from which P

can reconstruct all GCs ̂Ci�=t. P reconstructs the garbled material for the target
clause by computing ̂Ct = ̂C ⊕ (

⊕

i�=t
̂Ci).

Now, P received the garbling of the target clause, but we have not yet
described how P receives input encodings for the target clause. We again simplify
by specifying that each clause must have the same number, n, of input bits. Our
approach generalizes to clauses with different numbers of inputs, as we discuss
in Sect. 3.7. V’s random seed si is used to generate the n pairs of input labels for
each corresponding clause ̂Ci. Let Xi be the vector of n label pairs used to encode
the input bits for clause i. V generates m such vectors, X1..Xm. As an optimiza-
tion similar to stacking the garbled circuits, V computes X =

⊕

X1..Xm. V and
P now perform n committing 1-out-of-2 OTs, where in each OT V provides the
two (stacked) possible input labels for a bit (a label corresponding to 0 and to
a 1) and P provides the bit for that input. P uses the seeds obtained in the first
step to reconstruct each Xi�=t and computes Xt = X ⊕ (

⊕

i�=t Xi).
P now has the garbling ̂Ct and appropriate input labels Xt. Therefore, P

can evaluate ̂Ct with the input labels and receive a single output label Yt. For
security, we must prevent V from learning t, so we must hide which clause P
received output from. We accomplish this by allowing P to compute the correct
output label for every clause. Recall that P has the seeds for every non-target
clause. P can use the garblings constructed from these seeds to obtain the output
labels Yi�=t. P computes Y = por ⊕ (

⊕

Y1..Ym) and commits to this value (as
suggested in [JKO13]). Next, V opens all commitments made during rounds of
OT. From this, P checks that por is consistent across all seed OTs and obtains
the final seed st. P checks that the circuits are properly constructed by regarbling
them from the seeds (and checking the input labels and garbled material) and,
if so, completes the proof by opening the output commitment.

Stacked Garbling for Disjunctive Zero-Knowledge Proofs 575

1.5 Generality of Top-Level Clauses

Our approach optimizes for top-level clauses. That is, possible execution paths
of the proof relation must be represented by separate clauses. Top-level clauses
are general: Even nested conditionals can be represented by performing program
transformations that lift inner conditionals into top-level conditionals.

Unfortunately, over-optimistically lifting conditionals can sometimes lead to
an exponential number of clauses. In particular, if two conditionals occur sequen-
tially in the relation, then the number of possible execution paths is the product
of the number of paths through both conditionals. Of course, it is not neces-
sary to fully lift all conditionals in a program; individual clauses can include
(unstacked) conditional logic. Our approach will yield improvement for any sep-
aration of top level clauses. Improving the described protocol to handle nested
and sequential conditionals directly is a potential direction for improvement.

We emphasize that the notion of top-level clauses matches nicely with the
target use case of proving the existence of program bugs: Programs can be split
into various snippets, each of which may contain a bug. Each snippet can then
be presented as a top-level proof clause.

1.6 Related Work

Our work is a novel extension of GC-based ZK [JKO13] which we reviewed
in Sect. 1.3. Here we review other related work and provide brief comparisons
in Sect. 1.7. We focus on recent concrete-efficiency protocols.

ZK. ZKP [GMR85,GMW91] is a fundamental cryptographic primitive. ZK
proofs of knowledge (ZKPoKs) [GMR85,BG93,DP92] allow a prover to convince
a verifier, who holds a circuit C, that the prover knows an input, or witness, w
for which C(w) = 1. There are several flavors of ZK proofs. In this work we
do not distinguish between computational and information-theoretic soundness,
and thus refer to both arguments and proofs simply as ‘proofs.’

ZK proofs were investigated both theoretically and practically in largely non-
intersecting bodies of work. Earlier practical ZK protocols focused on algebraic
relations, motivated mainly by signatures and identification schemes, e.g. [Sch90,
CDS94]. More recently, these two directions have merged. Today, ZKPoKs and
non-interactive ZKPoK (NIZKPoK) for arbitrary circuits are efficient in practice.
Two lines of work stand out:

Garbled RAM combines GC with ORAM to repeatedly perform individual pro-
cessor cycles instead of directly computing the program as a circuit [LO13].
Because the circuit needed to handle a cycle has fixed size, this groundbreaking
technique has cost proportional to the program execution rather than to the
full program. Garbled RAM must interface the GC with ORAM, making it not
concretely efficient. While our approach is not as general as Garbled RAM, we
achieve high concrete efficiency for conditions.

576 D. Heath and V. Kolesnikov

Efficient ZK from MPC. Ishai et al. (IKOS) [IKOS07], introduced the ‘MPC-in-
the-head’ approach. Here, the prover emulates MPC evaluation of C(w) among
several virtual players, where w is secret-shared among the players. The verifier
checks that the evaluation outputs 1 and asks the prover to open the views of
some virtual players. A prover who does not have access to w must cheat to
output 1; opening random players ensures a cheating prover is caught with some
probability. At the same time, ZK is preserved because (1) not all virtual players
are opened, (2) the witness is secret shared among the virtual players, and (3)
MPC protects the inputs of the unopened virtual players.

Based on the IKOS approach, Giacomelli et al. [GMO16] implemented a pro-
tocol called ZKBoo that supports efficient NIZKPoKs for arbitrary circuits. Con-
currently, Ranellucci et al. [RTZ16] proposed a NIZKPoK with similar asymp-
totics. Chase et al. [CDG+17] introduced ZKB++, which improves the per-
formance of ZKBoo; they also showed that ZKB++ could be used to con-
struct an efficient signature scheme based on symmetric-key primitives alone.
Katz et al. [KKW18] further improved the performance of this approach by
using MPC with precomputation. A version of the [CDG+17] scheme called Pic-
nic [ZCD+17] was submitted to the NIST post-quantum standardization effort.
The Picnic submission was since updated and is now based on [KKW18].

Ligero [AHIV17] offers proofs of length O(
√|C|), and asymptotically outper-

forms ZKBoo, ZKB++ and [KKW18] in communication. The break-even point
between [KKW18] and Ligero depends on function specifics, and is estimated in
[KKW18] to be ≈100K gates.

SNARKs/STARKs. Succinct non-interactive arguments of knowledge (SNARK)
[GGPR13,PHGR13,BCG+13,CFH+15,Gro16] offer proofs that are particularly
efficient in both communication and verification time. They construct proofs
that are shorter than the input itself. Prior work demonstrated the feasibility
of ZK proofs with size sublinear in the input [Kil92,Mic94], but were concretely
inefficient. Earlier SNARKs require that their public parameters be generated
and published by some semi-trusted party. This disadvantage motivated devel-
opment of STARKs (succinct transparent arguments of knowledge) [BBHR18].
STARKs do not require trusted set up and rely on more efficient primitives.
STARKs are succinct ZKP, and thus are SNARKs. In this work, we do not sep-
arate them; rather we see them as a body of work focused on sublinear proofs.
Thus, Ligero [AHIV17], which is an MPC-in-the-head ZKP, is a SNARK.

In our comparisons, we focus on JKO, [KKW18], and recent SNARKs Ligero,
Aurora, Bulletproofs [BBB+18], STARK [BBHR19], and Libra [XZZ+19].

1.7 Comparison with Prior Work

We present detailed experiment results in Sect. 6; here we reiterate that our focus
and the main metric is fastest total proof time, including (possibly interactive)
proof generation, transmission and verification. In this total-time metric, GC
is the fastest technique for proving statements expressed as Boolean circuits.
This is because GC offers low-overhead linear prover complexity, while other
techniques’ provers are superlinear, have high constants, or both.

Stacked Garbling for Disjunctive Zero-Knowledge Proofs 577

In Sect. 1.1, we presented an exciting application where a prover demon-
strates knowledge of a program bug. However, for comparison with prior work,
the Merkle hash tree evaluation is most convenient, since many other works
report on it. In Sect. 6, we implement our GC-ZK of Merkle hash tree and com-
pare the results to JKO (which we reimplement as JKO was measured on older
hardware), as well as to a variety of modern ZKP systems: KKW, Ligero, Aurora,
Bulletproofs, STARK, and Libra.

As expected, our total time is improved over [JKO13] by a factor approxi-
mately equal to the branching factor. Indeed, our communication cost is linear
in the longest execution path, while [JKO13,KKW18] are linear in |C|, and our
constants are similar to that of [JKO13] and significantly smaller than [KKW18].

Our total time outperforms current SNARKS by 35× – 1, 000× or more. Like
JKO, and unlike KKW and SNARKs, our technique is interactive and requires
higher bandwidth.

2 Notation

The following are variables related to a given disjoint proof statement:

• t is the target index. It specifies the clause for which the prover has a witness.
• m is the number of clauses.
• n is the number of inputs. Unless stated otherwise, each clause has n inputs.

We simplify much of our notation by using ⊕ to denote a slight generalization
of XOR: Specifically, if one of the inputs to XOR is longer than the other, the
shorter input is padded by appending 0s until both inputs have the same length.
We use

⊕

xi..xj as a vectorized version of this length-aware XOR:
⊕

xi..xj = xi ⊕ xi+1 ⊕ . . . xj−1 ⊕ xj

We discuss in Sect. 3.7 that this generalization is not detrimental to security in
the context of our approach.

x || y refers to the concatenation of strings x and y. We use κ as the compu-
tational security parameter. We use V , he, him, his, etc. to refer to the verifier
and P , she, her, etc. to refer to the prover. We use . for namespacing; pack.proc
refers to a procedure proc defined as part of the package pack.

3 Our Privacy-Free Stacked Garbling Construction

We optimize the performance of ZK proofs for circuits that include disjoint
clauses. In this section, we present our approach in technical detail.

We present our approach as a verifiable garbling scheme [BHR12,JKO13].
A verifiable garbling scheme is a tuple of functions conforming to a specific
interface and satisfying certain properties such that protocols can be defined
with the garbling scheme left as a parameter. Thus, new garbling schemes can

578 D. Heath and V. Kolesnikov

Fig. 1. PFS garbling scheme Stack. Stack is defined as six procedures: Stack.Gb,
Stack.Ev, Stack.ev, Stack.En, Stack.De, and Stack.Ve.

be easily plugged into existing protocols. That is, a garbling scheme does not
specify a protocol. Instead, it specifies a modular building block.

We specify an efficient verifiable garbling scheme, where the function encod-
ing, F , is proportional to the longest program execution path, rather than to the
entire program2. Our scheme satisfies the security properties required by existing

2 To be more precise, in the notation of Kolesnikov [Kol18], the function encoding
F = (T, E) consists of function topology T (thought of as the Boolean circuit)
and cryptographic material E (e.g., garbled tables). In our work, the cryptographic
material E is proportional to the longest execution path.

For the reader familiar with the BHR notation, we provide the following discus-
sion. In BHR, the function encoding F must (implicitly) include a full description
of the function, i.e., it must include a description of each clause. In this sense, F is
also proportional to the full size of the function. However, compared to the crypto-
graphic material needed for the longest clause, this function description (which can
be thought of as a Boolean circuit C computing f) is small. Formally, the size of the
circuit description is constant in κ. Most importantly, implementations can assume
that circuit descriptions are known to both players, and therefore need not transmit
them (or treat them separately).

Stacked Garbling for Disjunctive Zero-Knowledge Proofs 579

ZK constructions [JKO13,FNO15]. This results in an efficient ZK scheme whose
communication is proportional to the longest program execution path.

A verifiable garbling scheme is a tuple of six algorithms:

(ev,Gb,En,Ev,De,Ve)

The first five algorithms define a garbling scheme [BHR12], while the sixth adds
verifiability [JKO13]. In the ZK context, a garbling scheme can be seen as a
specification of the functionality computed by V and P. Loosely speaking, V
uses Gb to construct the garbled circuit sent to P. V defines input labels by
using En, and decodes the output label received from P by using De. P uses
Ev to compute the garbled circuit with encrypted inputs and uses Ve to check
that the circuit was honestly constructed. Finally, ev provides a reference against
which the other algorithms can be compared. The key idea is that if (1) a garbling
is constructed using Gb, (2) the inputs are encoded using En, (3) the encoded
output is computed using Ev, and (4) the output is decoded using De, then the
resulting bit should be the same as calling ev directly.

A verifiable garbling scheme must satisfy the formal definitions of correct-
ness, soundness, and verifiability. We present these definitions, as well as
formal proofs that our scheme satisfies these properties in Sect. 4.

Since we are primarily concerned with reducing the cost of disjoint clauses,
we can offload the remaining work (i.e. processing a single clause) to another
garbling scheme. Therefore, our scheme is parameterized over another garbling
scheme, Base. We place the following requirements on this underlying scheme:

• The scheme must be correct and sound.
• The scheme must be projective [BHR12]. In a projective garbling scheme, each

bit of the prover’s input is encoded by one of two cryptographic labels. The
truth value of that bit is used to decide which label the prover will receive.
Projectivity allows us to stack input labels from different clauses. We can
lift this requirement by compromising on efficiency: The verifier can send an
input encoding for each clause rather than a stacked encoding.

• The scheme must output a single cryptographic label and decoding must be
based on an equality check of this label. This property is important because it
allows us to stack the output labels from each clause. Again, we can lift this
requirement by compromising efficiency: The prover can send each output
label rather than the stacked value.

These requirements are reasonable and are realized by existing schemes, includ-
ing state-of-the-art privacy-free half gates [ZRE15].

In the following text, we describe our construction, the PFS verifiable garbling
scheme Stack. Pseudocode for each of our algorithms is given in Fig. 1.

3.1 Reference Evaluation

ev maps the computed function f and an input x to an output bit. Informally,
ev provides a specification that the garbled evaluation can be compared to: The

580 D. Heath and V. Kolesnikov

garbled evaluation should yield the same output as running ev. In our setting,
the input can be split into a clause selection index t and the remaining input.
Stack.ev delegates to Base.ev on the t-th clause. For many practical choices of
Base (including privacy-free half gates) the procedure Base.ev simply applies the
function to the input: That is, it returns f(x).

3.2 Garble

Gb maps the given function, f , to a garbled function F , an encoding string e,
and a decoding string d. At a high level, Gb corresponds to the actions taken
by V to construct the proof challenge for P. Typically, e contains input labels
(conveyed to P via OT), F contains cryptographic material needed to evaluate
the individual logic gates, and in the ZK setting d contains a single label corre-
sponding to a secret that will convince the verifier that the prover has a witness.
The objective of the prover is to use her witness to construct d.

Gb is usually described as an algorithm with implicit randomness. However,
for the purposes of our scheme it is important that Gb is explicitly parameterized
over its randomness. Gb takes as parameters the unary string 1κ, the desired
function f , and a random string, R. It generates a three-tuple of strings, (F, e, d).

At a high level, Stack.Gb (Fig. 1) delegates to Base.Gb for each clause and
XORs3 the obtained garbling strings, thus reducing the GC length to that of
a single (largest) clause. First, it deconstructs f into its various clauses and
extracts from the randomness (1) m different random seeds and (2) the random
string por which we refer to as the proof of retrieval. The proof of retrieval is
a security mechanism that allows our approach to cleanly interact with existing
MPC protocols. Later, in Sect. 3.3 we will see that the prover receives via OT
the garbling seed for each of m clauses, except for the target clause. por prevents
P from simply taking all m seeds and trivially constructing a proof (we enforce
that if P takes all seeds, then she will not obtain por). Next, each seed is used
to garble its respective clause using the underlying scheme (Stack.Gb line 5).
The cryptographic material from each clause is XORed together and concate-
nated with the function description4 (Stack.Gb line 6). This is a key step in our
approach: Since the cryptographic material has been XORed together, we have
reduced the cost of sending the garbling F compared to sending each garbling
separately. Similarly, the output labels from each clause are XORed together.
The por string is also XORed onto the latter value. Finally, the encoding string
e contains por, each random string si, and each encoding string ei.

3 As discussed in Sect. 2, by XOR we mean length-aware XOR, where shorter clauses
are padded with zeros so that all clauses are bitstrings of the same length.

4 Including the function description f is a formality to fit the BHR interface. In prac-
tice, f is often known to both parties and need not be explicitly handled/transmitted.

Stacked Garbling for Disjunctive Zero-Knowledge Proofs 581

3.3 Encode

En maps the encoding string, e, and the function input, x, to an encoded input,
X. En describes which input encoding the verifier should send to the prover.
Typically, En is implemented by OT.

Stack.En ensures that the prover receives (1) the proof of retrieval string por,
(2) each random seed si�=t, and (3) stacked garbled inputs for the target clause.
Section 3.2 described how e contains por, s1..sm, and e1..em.

First, Stack.En deconstructs e into the above parts. It also deconstructs the
circuit input into t (the target clause index) and xt (the input for the target
clause). Next, a vector of secrets, r1..rm is constructed. This vector contains
por and si�=t. Finally, we use the underlying scheme to construct m encodings
of xt and XOR the encodings together (Stack.En line 10). Stack.En outputs the
vector of secrets and the stacked input encodings.

We remark that Stack.En defines the encoding functionality, not an imple-
mentation. As mentioned earlier, Stack.En is implemented using OT. Our imple-
mentation realizes this functionality in the following way:

• For each clause, V generates n pairs of labels, one pair for each bit and one
label for each configuration of that bit.5

• V stacks these labels, yielding n pairs of stacked labels.
• For each i ∈ 1..m, V constructs the pair (si,por).
• Now, P and V participate in m + n executions of 1-out-of-2 OT, such that P

receives por, non-target seeds, and stacked garbled inputs according to En.

By running this protocol, V obliviously transfers encoded input, including the
seeds and por, to P.

3.4 Evaluate

Ev maps an encoded function, F , and encoded inputs, X, to the encoded output,
Y . In the ZK setting we (as do [JKO13] and [FNO15]) allow Ev to take the
unencoded input, x, as a parameter (in practice Ev is run by P who knows the
witness). Informally, Ev describes the actions of the prover to construct a proof
string, given the garbling of the function and input labels.

The bulk of the work done by Stack.Ev is concerned with ‘undoing’ the stack-
ing of the encoded functions F1..Fm and of the encoded inputs X1..Xm, in order
to extract the encoded function Ft, and inputs Xt for the target clause. First,
Stack.Ev deconstructs all inputs into their constituent parts. It then uses the ran-
dom strings included in the encoded input to re-garble each non-target clause by
calling Base.Gb (Stack.Ev line 7). Note that since Base.Gb is called with the same
random strings in both Stack.Ev and Stack.Gb, the resulting encodings are the

5 In fact, since we use half gates we can use the Free XOR extension [KS08]. Therefore,
each clause has only one label for each input bit and one global Δ value that separates
0 bit labels from 1 bit labels. Our implementation stacks the Δ from each clause as
part of the stacked projective garbling.

582 D. Heath and V. Kolesnikov

same. Stack.Ev cannot call Base.Gb on the target clause because the input encod-
ing does not include the corresponding random string. Instead, rt is the proof
of retrieval por. Stack.Ev XORs out the garblings of the non-target clauses to
obtain the encoded function (Stack.Ev line 11) and encoded input (Stack.Ev line
12) for the target clause. Now, the prover can use Ft and Xt to compute the
output Yt by calling Base.Ev. Finally, the prover XORs together Yt, d1..dm, and
por and returns the result.

3.5 Decode

De maps an encoded output, Y , and an output encoding string, d, to an unen-
coded output. In the ZK setting, both Y and d are labels encoding a single bit.
Stack.De checks that the values are the same, and if so returns 1 (and 0 if not).

3.6 Verify

Ve maps an input function f , the garbled function F , and the encoding string e
to a bit. Informally, the function should return 1 if (F, e) is correctly constructed.

Stack.Ve extracts the proof of retrieval por and input seeds s1..sm from e.
It uses these strings to garble the computed functions and checks that it indeed
matches the provided garbling.

In our implementation, we take advantage of an optimization available in
Stack.Ve. To verify V’s messages, the prover must reconstruct the garbling of
each clause. However, the prover already garbled each circuit except the target
while computing Ev, so we simply reuse these already computed values and only
garble the target during verification. This is noteworthy because our approach
not only transmits less information, it involves less computation on the part of
P as well: Under previously defined ZK garbling schemes (e.g. [ZRE15]), P must
both garble and evaluate every clause. Under our scheme the prover needs to
garble every clause, but need only evaluate the target clause.

3.7 Generalizing to Diverse Clauses

In Sect. 1.4, we simplified the discussion by presenting our approach as handling
clauses of the same size and with the same number of inputs. However, our formal
presentation does not need these simplifications. Here, we discuss generalization
to clauses with different sizes and numbers of inputs.

Our approach supports clauses of various sizes. The only implementation
detail that relates to the size of the clauses is the XOR stacking of the garbled
material from each clause (Stack.Gb line 6 and Stack.Ev line 11). In Sect. 2,
we describe how we use ⊕ to denote a length-aware variant of XOR (i.e. the
shorter string is padded with 0 s). Therefore, there is no correctness concern with
stacking mismatched length of material. The only potential concern is security.
Our proofs formally alleviate this concern; informally, stacking material is secure
because we can safely allow the prover to obtain material for each clause Fi.

Stacked Garbling for Disjunctive Zero-Knowledge Proofs 583

Indeed, even sending each clause Fi separately is secure, although inefficient.
Giving P access to the garbled material provides no aid in constructing a proof.
Specifically, only having a witness and running the garbled circuit will allow P
to construct the correct Yt. Therefore, clause stacking does not hinder security.

We support clauses with different numbers of inputs. Regardless of her clause
choice t, the prover will append the input string xt with 0 s until xt is appropriate
for an input of length n. This is secure for a similar reason as having crypto-
graphic material of different lengths. Our technique allows P to learn every input
encoding Xi�=t and therefore to learn Xt. This is desirable: We must allow P to
learn Xt in order to evaluate the target clause on their input.

4 Proofs of Security

Jawurek et al. [JKO13] introduced a methodology for using garbling schemes
to build maliciously secure ZKP protocols. In this section, we prove that our
construction satisfies the [JKO13] requirements. Thus, we can directly leverage
the work of [JKO13] to construct a maliciously secure ZKP scheme with efficient
disjoint clause handling.

[JKO13] requires the garbling scheme to be correct, sound, and verifiable.
We use slightly simpler formulations of these definitions presented in [FNO15],
a follow-up work on [JKO13].

We now explicitly state the definitions of these properties in our notation.
We prove our garbling scheme Stack (Fig. 1) satisfies each property (Theorems
1 to 3) if the underlying scheme Base is correct and sound (We do not require
Base to be verifiable, since we explicitly manage the scheme’s randomness).

4.1 Correctness

Correctness ensures that the prover can construct a valid proof if she, in fact, has
a valid witness. More precisely, Definition 1 states that if a garbling is constructed
by calling Gb, then Ev will always6 yield the correct output label, d, when called
with the encoding of a valid witness. Recall, we work with explicit randomness.
Thus, Gb takes a random string R as an additional input.

Definition 1 (Correctness). A garbling scheme is correct if for all n =
poly(κ), all functions f : {0, 1}n → {0, 1}, all inputs x ∈ {0, 1}n such that
ev (f, x) = 1, and all random strings R ∈R {0, 1}κ:

(F, e, d) = Gb (1κ, f, R) ⇒ Ev (F,En (e, x) , x) = d

Theorem 1. If the underlying garbling scheme Base is correct, then the garbling
scheme Stack (Fig. 1) is correct (Definition 1).

6 In the full version of this paper, we will discuss probabilistic correctness and the
changes to our approach that are necessary to account for this probabilistic notion.

584 D. Heath and V. Kolesnikov

Proof. By correctness of the underlying garbling scheme. Stack.Gb constructs
the output label d by XORing together the output label of each clause, di, and
the proof of retrieval string, por. Therefore, it suffices to show that a prover, P ,
with satisfying input obtains each di and por. Recall that P ’s input includes the
bits that select a clause, t, concatenated with her remaining input x. We show
that she obtains each output label di and por in three steps:

1. P obtains di for all i �= t by garbling fi. This is immediate from the fact that
P receives every seed si for i �= t as a part of her encoded input (Stack.En,
line 6). P garbles clause fi with seed si and obtains di (Stack.Ev, line 7).

2. P obtains dt by evaluating ft on her input x. We show this in three parts:
(1) P obtains the garbling of the selected clause, Ft, (2) P obtains encoded
inputs for the selected clause, Xt, and (3) P computes dt.
First, Stack.Gb constructs the XOR sum of the garbling of each clause, Fi

(Stack.Gb, line 6). Therefore, to show that P obtains Ft, it suffices to show
that she obtains Fi for all i �= t and F . F is given as a parameter to Stack.Ev
and so is trivially available. P obtains the garblings of all clauses Fi by calling
Stack.Gb with the seeds in her encoded input.
Second, Stack.En constructs X by XORing together the encodings of each
clause Xi (Stack.En, line 10). Similar to the previous step, P computes each
Xi by garbling clause i with si. She then uses the encoding ei to compute
Xi = Base.En (ei, x) (Stack.Ev, line 8). She XORs these encodings with X to
get the appropriate input for clause t, Xt.
Finally, P computes Yt = Base.Ev(Ft,Xt, x). The underlying garbing scheme
is correct by assumption. Therefore, Yt = dt.

3. P obtains por. This string is immediately available as rt (Stack.En line 8).

P XORs together each of these elements (Stack.Ev line 14), obtaining the output
Y which has the same value as d. That is, Stack.Ev (F,Stack.En (e, x) , x) = d.
Therefore, Stack is correct. �	

4.2 Soundness

Definition 2 (Soundness). A garbling scheme is sound if for all n = poly(κ),
all functions f : {0, 1}n → {0, 1}, all inputs x ∈ {0, 1}n such that ev (f, x) = 0,
and all probabilistic polynomial time adversaries A the following probability is
negligible in κ:

Pr (A (F,En (e, x) , x) = d : (F, e, d) ← Gb (1κ, f))

Soundness is a more succinct version of authenticity [BHR12], restricted to the
ZK setting. Informally, soundness ensures that a prover who does not have a
valid witness cannot convince the verifier otherwise. More specifically, we require
that no malicious evaluator can extract the garbling scheme’s secret d unless she
knows an input x such that f(x) = 1.

In our garbling scheme, d combines 1-labels of all clauses and the proof of
retrieval por. We show that an adversarial P who is given (F,Stack.En (e, x) , x),

Stacked Garbling for Disjunctive Zero-Knowledge Proofs 585

such that Stack.ev (f, x) = 0, cannot obtain at least one of the components of d
and hence cannot output d, except with negligible probability.

Theorem 2. If the underlying garbling scheme Base is sound, then the garbling
scheme Stack (Fig. 1) is sound (Definition 2).

Proof. By soundness of the underlying garbling scheme. Recall that d =
(
⊕

d1..dm) ⊕ por. That is, the output label is the XOR sum of the output
labels for each clause and the proof of retrieval. Consider an arbitrary input
(t || xt) ← x, such that Stack.ev (f, x) = 0. We proceed by case analysis on t.

Suppose t is invalid (i.e., t �∈ [1..m]) and thus Stack.En(x) outputs all seeds
s1..sm. Then by the definition of Stack.En, A will not receive por and hence
cannot construct d (except with negligible probability).

Suppose that t ∈ [1..m], i.e. t is valid. Because Stack.ev (f, x) = 0, it must be
that Base.ev (ft, xt) = 0. Now, A’s input includes the proof of retrieval por, as
well as the seeds for each clause except for clause t. Therefore, an adversary can
easily obtain each output label except dt. We must therefore demonstrate that
our scheme prevents an adversary without a witness from successfully construct-
ing dt, and thereby prevent construction of d. dt is independent of all values in
the scheme except for the values related to the clause itself: st, ft, Ft, Xt, and et.
By assumption, Base is sound. Therefore, since xt is not a witness for clause t, the
adversary cannot obtain dt (except with negligible probability), and therefore
cannot construct d (except with negligible probability).

Therefore Stack is sound. �	

4.3 Verifiability

Definition 3 (Verifiability). A garbling scheme is verifiable if there exists
an expected polynomial time algorithm Ext such that for all x where f(x) = 1,
the following probability is negligible in κ:

Pr (Ext(F, e) �= Ev(F,En(e, x), x) : (F, e, ·) ← A(1κ, f),Ve(f, F, e) = 1)

Informally, verifiability prevents even a malicious verifier from learning the
prover’s inputs. In the ZK protocol, the prover checks the construction of the
garbling via Ve. Verifiability ensures that this check is reliable. That is, it guar-
antees that if f(x) = 1, then the output value Ev (F,En (e, x) , x) is unique and
moreover can be efficiently extracted given the encoding. This implies that the
verifier has access to the secret d ahead of time. Therefore, V learns nothing by
receiving d from the prover, except for the fact that f(x) = 1. This holds also for
maliciously generated circuits, as long as they pass the verification procedure.

Theorem 3. If the underlying garbling scheme Base is correct, then the garbling
scheme Stack is verifiable (Definition 3).

Proof. By correctness of Stack. Let (F ′, e′) be a garbling of f constructed by A.
Let x satisfy f(x) = 1. Let Y be the value obtained by evaluating this garbling:

586 D. Heath and V. Kolesnikov

Fig. 2. The Stack.Ext algorithm that demonstrates verifiability of Stack.

Y = Ev (F ′,En (e′, x) , x)

Let R be the randomness included in e′ (i.e. R = por || s1..sm). Let (F, e, d) be
the result of calling Stack.Gb on this randomness:

(F, e, d) = Stack.Gb (1κ, f, R)

We first claim that Y must be equal to d.
Suppose not, i.e. suppose Y �= d. By correctness (Theorem 1), Ev always

returns d; therefore it must be the case that (F ′, e′) is different from (F, e), i.e.
either F ′ �= F or e′ �= e. But if so, Stack.Ve would have returned 0 (Stack.Ve line
4). Verifiability assumes that Stack.Ve returns 1, so we have a contradiction.
Therefore Y = d.

Now, we must prove that there exists a poly-time extraction algorithm
Stack.Ext, which probabilistically extracts the output label from (F ′, e′). This
construction and proof is immediate: Stack.Ext delegates to Stack.Gb. Namely
(see Fig. 2 for full description of Stack.Ext), on input (F, e), Stack.Ext parses
(R, ·) ← e′, runs (·, ·, d) ← Stack.Gb (1κ, f, R) and outputs d. We have already
shown that d constructed this way satisfies Y = d.

Therefore Stack is verifiable. �	

5 Instantiating Our Scheme

We built our implementation on the publicly available EMP-Toolkit [WMK16].
We use privacy-free half gates as the underlying garbling scheme [ZRE15]. That
is, XOR gates are free (requiring no cryptographic material or operations) and
all AND gates are implemented using fixed-key AES [BHKR13]. Each AND gate
costs 1 ciphertext in cryptographic material, 2 AES encryptions to garble, and
1 AES encryption to evaluate. We use security parameter κ = 128.

We instantiate all [JKO13] ingredients, including committing OT. We use
the maliciously-secure OT extension of [ALSZ15] in our implementation both
because it is efficient and because an implementation with support for commit-
ting OT is available in EMP.

6 Performance Evaluation

Recent advances in non-interactive ZK proofs (NIZK) are astounding. The
blockchain use case motivates intense focus on small proof size (as short as

Stacked Garbling for Disjunctive Zero-Knowledge Proofs 587

Fig. 3. Experimental performance of our approach compared to state-of-the-art ZKP
systems. 1. We compare circuit C from Fig. 4 which makes calls to AES, SHA-1
and SHA-256 and has 7,088,734 gates (1,887,628 AND). 2. We compare based on
an experiment from [XZZ+19] where the prover builds a depth 8 Merkle tree from
the leaves. The circuit invokes SHA-256 511 times. Resulting timings include prover
computation, verifier computation, and all communication. For our and the [JKO13]
GC-based approaches we separate timing results for LAN, Shared LAN, and WAN
networks. Results for works other than ours and [JKO13] are either approximate inter-
polations from related works [KKW18,BBHR19] or taken directly from the reporting
of [XZZ+19].

several hundred bytes!) and fast verifier computation time. Prover computation
time is usually superlinear (O(|C| log |C|) or higher in most schemes, with Libra
and Bulletproofs offering linear time) with relatively large constants. As proof
circuits grow larger, the high constants and superlinear computational scaling
becomes burdensome and GC-based proof systems become more efficient thanks
to linear computation scaling with small constants.

We focus our performance comparison on JKO and the fastest NIZK sys-
tems, such as [KKW18,BBHR19], Bulletproofs [BBB+18], Ligero [AHIV17],
Aurora [BCR+19], and Libra [XZZ+19]. Figure 3 shows that GC-based
approaches (Stack and JKO) scale better than current NIZKs at the cost of
interactivity, and Fig. 5 shows how Stack improves on JKO w.r.t. the branching
factor.

A reader familiar with recent GC research and related work discussed
in Sect. 1.6 may already have a very good sense for the performance of our
scheme Stack, both in computation and communication. Indeed, Stack simply
calls privacy-free half gates and XORs the results. Compared to Free IF [Kol18]
(a GC protocol using topology-decoupling, not a ZK scheme), our communica-
tion is 2× smaller, since we use 1-garbled-row privacy free garbling.

Our and the Baseline Systems. We implemented and ran our scheme Stack
and [JKO13] instantiated with privacy-free half gates [ZRE15], as the state-
of-the-art baseline. Most of the code (except for handling stacking) is shared

588 D. Heath and V. Kolesnikov

between the two systems. By comparing the performance of these two proto-
cols, we isolate the effect of stacking garbled material. In addition, we include
detailed comparison to performance numbers reported by other state-of-the-art
systems [BBB+18,KKW18,AHIV17,BCR+19,BBHR19,XZZ+19] in Sect. 6.2.

Boolean vs Arithmetic/R1CS representations are difficult to compare.
Arithmetic operations are costly in Boolean world; program control flow and
other operations (e.g., bit operations in hash functions and ciphers) often can-
not be done in arithmetic, and a costly bit decomposition is required. Because
of this, we focus on the benchmark that emerged as universal in recent litera-
ture: SHA-256 evaluations. We use standard SHA-256 Boolean circuits available
as part of EMP, and other works use R1CS representations optimized for their
work.

System and Experiment Setup. We implemented our and JKO protocols
based on EMP [WMK16]. We ran both P and V single-threaded on the same
machine, a ThinkPadTM Carbon X1 laptop with an IntelR© CoreTM i7-6600U
CPU @ 2.60 GHz and 16 GB of RAM. We record the total communication and
the total wall clock time. Each experimental result was averaged over 5 runs.
We use the Linux command tc to simulate three network settings (shared LAN
models the setting where LAN is shared with other traffic):

Network Setting bandwidth (mbps) latency (ms)

LAN 1000 2
Shared LAN 50 2
WAN 100 100

RAM and CPU Consumption. GC-based ZK proofs can be performed with
very low RAM and CPU. This is because GC generation and evaluation is a
highly serializable and streamlined process: Gen only needs to keep in RAM the
amount of material proportional to the largest cross-section of the GC. Wire
labels and garbled gates can be discarded once they no longer appear in future
gates. Further, each AND gate garbling requires only 2 AES calls.

In contrast, recent NIZK systems are resource-hungry. They execute their
experiments on high-end machines with very high RAM. For example, STARK
was run on a powerful server with 32 3.2 GHz AMD cores and 512 GB
RAM. In Experiment 2, Libra uses 24.7 GB of RAM while running on 64 GB
machine [Zha19].

We execute all our experiments on a standard laptop with 16 GB RAM (of
which 146 MB is used in Experiment 1, as reported by Linux time command).
We do not adjust our numbers to account for the hardware differences.

6.1 Experiment 1: Merkle Tree Proof (JKO Comparison Focus)

We first evaluate our approach against prior work using a Merkle tree member-
ship benchmark, discussed in Sect. 1.1. This experiment is designed to show how
our scheme compares to JKO. We include comparison to state-of-the-art NIZK
as an additional point of reference.

Stacked Garbling for Disjunctive Zero-Knowledge Proofs 589

Fig. 4. Clause and circuit sizes in our experiment. Clauses are defined in Sect. 6.1.

For the sake of concreteness, we constructed a scenario whereby P’s record is
certified by inclusion in a Merkle tree whose root is published by an authority.
There are several such roots published, and P wishes to hide which root certifies
her. P’s record, in addition to arbitrary data fields, contains a 128-bit secret
key, which P may use as a witness to prove statements about its record.In our
experiment, P wishes to prove membership of her record in one of three Merkle
trees, as well as properties of her record. We will explain the exact details of this
benchmark in the full version of this paper.

The resulting circuit C (cf. Fig. 4) consists of three conditional branches, each
clause corresponding to a proof for a specific Merkle tree. The clauses execute
various combinations of calls to SHA256, SHA-1 and AES. Total circuit size (i.e.
what JKO and other ZK systems would evaluate) is over 7 million gates.

Figure 3 tabulates results and includes the estimated performance of the
NIZK systems [BBB+18,KKW18,AHIV17,BCR+19,BBHR19,XZZ+19]. The
larger proof statement sizes we consider were not reported in prior works (e.g.,
[KKW18,BCR+19]); we estimate their performance by considering their asymp-
totic complexity and extrapolating their reported numbers. The tabulation
includes 4 metrics. This experiment explores JKO comparison, and below we
discuss metrics w.r.t. JKO. (We discuss at length other NIZKs in Sect. 6.2.)

• Total communication (in MB). Our reported communication includes per-
forming commitments, OTs, and sending the circuit garbled material.
Discussion. Stacking yields a 2.3× improvement over JKO. This is optimal
for stacked garbling: total circuit size is 2.3× larger than the largest clause.

• Total LAN wall clock time used to complete each protocol in a simulated
LAN setting. The simulated LAN has 1 gbps bandwidth and 2 ms latency.
Discussion. Our approach yields a 2.0× speedup over JKO, due to reduced
communication. Our total speedup does not quite match the 2.3× proof size
improvement because our computation cost is same as JKO. As 1 gbps is
extremely fast, computation takes a noticeable portion of the overall time.

• Total shared LAN wall clock time in a setting where LAN is shared with
other traffic and approximately 50 Mbps of bandwidth is available.
Discussion. Our approach yields a 2.25× speedup, close to the optimal 2.3×.
In shared LAN the cost of computation becomes less important.

• Total WAN wall clock time with 100 mbps bandwidth and 100 ms latency.
Discussion. Our approach yields a 1.76× speedup. As network latency
increases, the number of rounds becomes important. Both [JKO13] and
our approach have the same number of rounds, and hence our performance
improvement is less pronounced than in the shared LAN setting.

590 D. Heath and V. Kolesnikov

6.2 Experiment 2: Merkle Tree Building (NIZK Comparison Focus)

As discussed above, Boolean/arithmetic/R1CS representations each have their
advantages, and their comparison is highly nuanced. SHA-256 evaluation has
become an informal standard by which recent NIZKs compare their performance.
We use a standard Boolean circuit for SHA-256 that is included with EMP.

Libra [XZZ+19] includes a benchmark where P computes the root of a depth-
8 Merkle tree (256 leaves; total 511 SHA-256 evaluations) as part of a proof.
When compiled as a Boolean circuit, this benchmark includes ≈60 million gates.
Figure 3 includes results for this benchmark; our focus is on the relative efficiency
of our approach against Libra and other state-of-the-art NIZKs. Performance
numbers for NIZKs were obtained from [XZZ+19], except in the case of [KKW18]
and [BBHR19] which were not tabulated by [XZZ+19]. The numbers for these
two works were extrapolated based on their reported performance.

Discussion. This experiment does not present an opportunity to take advantage
of stacking since there is no conditional branching. Therefore, our approach
reduces to [JKO13] equipped with privacy-free half gates. Still, this helps to
demonstrate the high concrete efficiency of the GC-based ZKP approach. We
(and [JKO13]) are several orders of magnitude faster (over LAN; one or more
orders over WAN) in this second benchmark than each reported NIZKs except
Libra. We outperform Libra by 6× over WAN and nearly 50× over LAN.

We now present more detailed comparison of Fig. 3 results with the individual
NIZK schemes, each of which offers different advantages and trade offs.

• Ligero, Aurora and STARK are NIZK proof systems in the ‘interactive ora-
cle proof’ paradigm (IOP). Among these three superlinear-runtime works,
STARK is most competitive in total runtime due to better constants. Our
work outperforms STARK by 10–100×, depending on the network. Our
advantage would be higher for cases with branching (cf. Sects. 6.1 and 6.3).

• [KKW18] is linear both in computation and proof size with moderate con-
stants. It may be preferable for smaller-size statements ([KKW18] suggest
their scheme can be used as a signature scheme based on AES or LowMC
cipher), or for proofs of very large statements due to linear scaling of the
prover work. Our work outperforms [KKW18] in the proof time metric
because [KKW18] has constants much higher than us: [KKW18] simulates 40-
100-player MPC and also repeats the proof multiple times. We are two orders
of magnitude faster than [KKW18]. Further, our approach yields smaller proof
size in Experiment 1 due to our ability to stack the three clauses.

• Bulletproofs [BBB+18] features linear proof time and staggeringly small
proofs, logarithmic in the size of the witness! It has high constants due the
use of public key operations. We are 1,000 s of times faster than Bulletproofs.

• Libra [XZZ+19] not only constructs small proofs (with size second only to
Bulletproofs amongst the considered works), but also features linear prover
time with low-moderate constants. Notably (and unlike all other considered
works), Libra requires one time trusted setup, which somewhat limits its
applicability. We outperform Libra by 6× over WAN and nearly 50× over
LAN. Our advantage will increase as the branching increases.

Stacked Garbling for Disjunctive Zero-Knowledge Proofs 591

Fig. 5. Plotted results of Experiment 2, evaluating 1-out-of-n randomly generated
clauses each of size 500K AND/2M total gates. Each data point plots the total wall
clock time needed to perform a proof.

6.3 Experiment 3: Scaling to Many Clauses

We explore how our approach scales in overall proof time as the number of proof
disjuncts increases. This metric helps quantify our advantage over [JKO13]. In
this experiment, we measure performance of proof statements with different num-
bers of disjoint clauses and plot total proof times in Fig. 5. To ensure there are
no shortcuts in proofs (e.g. exploiting common subcircuits across the branches),
we generate all clauses randomly (details will be included in the full version of
this paper). Each circuit has 500,000 AND gates and 2 million total gates. We
focus on total proof time, and compare our performance to [JKO13].

Discussion. This experiment shows the benefit of reduced communication and
its relative cost to computation. In a single-thread execution on a LAN, our app-
roach can complete the 1-out-of-15 clause proof (8M AND gates and 30M total
gates) in 1 s. This is less than 15× communication improvement over [JKO13]
due to relatively high computation cost. As we scale up computation relative
to communication (by multi-threading, or, as in our experiment, by consuming
only 50 Mbps bandwidth on a shared LAN), our performance relative to [JKO13]
increases. In single-threaded execution on shared LAN we are 10× faster than
[JKO13] with 15× smaller communication.

7 Proving Existence of Bugs in Program Code

We present a compelling application where our approach is particularly effective:
P can demonstrate in ZK the existence of a bug in V’s program code. In par-
ticular, V can arrange a corpus of C code into various snippets, annotated with
assertions. Some assertions, such as array bounds checks and division by zero
checks can be automatically inserted. In general, assertions can include arbitrary
Boolean statements about the program state. Once the program is annotated,
P can demonstrate that she knows an input that causes a program assertion in
a snippet to fail. We stress that the instrumentation alone, which can be auto-
mated, does not help V to find the bug. P’s secret is the snippet ID and input
which exercises the error condition caught by an assertion.

592 D. Heath and V. Kolesnikov

Fig. 6. An example C snippet that the prover can demonstrate has a bug. Lines 5 and
11 contain inconsistent string comparisons that can cause undefined behavior.

As a simple example, consider the following piece of C code:
1: char example(const char* s) { return s[1]; }

Once the program has been instrumented to detect invalid memory dereferences,
the prover can submit the input "" (the empty string) as proof that this program
has a bug: The input is empty, but the program attempts to access index 1.

Ours is the best-in-class ZK approach to this application for two reasons:

1. Common programs contain seemingly innocuous constructs, such as pointer
dereferences and array accesses, that compile to very large circuits and hence
result in very large proof statements. As we have demonstrated, the JKO
paradigm, and hence our proof system, is particularly well suited for proving
large statements as quickly as possible.

2. Many organizations have truly enormous repositories of code. This is prob-
lematic even for fast interactive techniques like JKO because larger code bases
require more communication.
In contrast, our approach remains realistic as the repository grows larger:
Communication is constant in the number of snippets (it is proportional to
the maximum snippet length). We believe that this advantage opens the pos-
sibility of implementing this application in industrial settings.

We include a proof of concept of this use case. Further expanding this is
an exciting direction for future work, both in the area of cryptography and of
software engineering/compiler design.

Stacked Garbling for Disjunctive Zero-Knowledge Proofs 593

Fig. 7. Results for running Stack for the bug proving application with 4 and 1,000
snippets. We record LAN and WAN time to complete the proof, total communication,
and the time to compile all snippets to Boolean circuits.

At the same time, we can already handle relatively complex code. One of the
snippets we implemented (Fig. 6) contains a mistake inspired by a real-world bug
in the in MITRE Common Weakness Enumeration (CWE) CWE-467 [cwe19].
This bug is potentially dangerous: For example, MITRE illustrates how it can
lead to overly permissive password checking code. We implemented this C code
snippet and three others that range between 30 and 50 lines of code.

Consider Fig. 6 Lines 5 and 11. These two lines both perform string compar-
isons using strncmp. However, Line 5 incorrectly compares the first n characters
where n is the result of the sizeof call. This call returns the size of a pointer
(8 on 64 bit systems) rather than the length of the string. The comparison should
have used strlen in place of sizeof. An observant prover can notice that a
malicious input like "small boERROR" will cause inconsistent behavior that
leads to a dereference of unallocated memory.

We instrumented this snippet and three others. Together, these four snip-
pets exercise everyday programming tasks such as user input validation, string
parsing, nontrivial memory allocation, and programming against a specification.
We will include the source code for all four snippets in the full version of this
paper. When compiled to Boolean circuits, these four snippets range between
70,000 and 90,000 AND gates. The number of AND gates is largely determined
by the operations performed; e.g. dereferencing memory (array lookup) is expen-
sive while adding integers is cheap. We use the snippets to exercise Stack in
two experiments:

1 First, we had P demonstrate that she knows a bug in at least 1 out of the
4 snippets. In particular, her input is the string "small boERROR" and
triggers an assertion in the code shown in Fig. 6.

2 Second, we simulated a larger code base with 1,000 snippets of 30-50 LOC.
Ideally, this code base would contain 1,000 or more unique snippets, but
since in this work we hand-code instrumentations, this would be an unreal-
istic effort. We approximate real performance by including multiple copies
of each of our four snippets (250 copies each) in the proof disjunction and
carefully ensuring that we don’t take replication-related shortcuts. P proves
the existence of the bug in the first copy of the snippet from Fig. 6.

In both experiments we recorded (1) the total LAN proof time, (2) the total
WAN proof time, (3) the total message transmission, and (4) the total time
to compile each snippet to a Boolean circuit using the EMP toolkit [WMK16].
The results reflect our expectations and are tabulated in Fig. 7. Note, the 1, 000

594 D. Heath and V. Kolesnikov

snippet experiment is less than 250× slower than the 4 snippet experiment due
to constant costs such as setting up a channel and evaluating OTs.

Communication stays nearly constant between the two experiments despite
a large increase in the size of the proof challenge. This is a direct result of our
contribution of clause stacking. The small change in communication is a result
of additional OTs needed for P to select 1 target out of 1,000. Because of the
relatively small proof size, both experiments run fast, even on our modest hard-
ware: The 4-snippet proof takes a tenth of a second and the 1,000 snippet proof
takes fewer than 5 s. We also ran the same two experiments against [JKO13].
In the 4 snippet experiment, JKO took 0.2211 s on LAN and 3.056 s on WAN,
consuming 5.253 MB of communication. The 1,000 snippet experiment crashed
our modest hardware as JKO tried to allocate an enormous piece of memory to
hold the garblings of the large circuit. Therefore, we tried again with only 500
snippets. Here, JKO took 13.868 s on LAN and 86.356 s on WAN, using 645.9 MB
of communication. Again, our approach significantly outperforms [JKO13] due
to clause stacking. Performance may already be realistic for some use cases and
will likely improve through future work.

Compiling C programs into Boolean circuits is currently the slowest part
of our proof. Compilation speed has largely been ignored in prior work; it is
unsurprising that the EMP-toolkit is not heavily optimized for it. We believe
future work will significantly improve compilation.

7.1 Snippet Instrumentation

We instrument the snippets by extending EMP [WMK16] with pointers (and
arrays to facilitate pointers) and implementations of C standard library func-
tions. These features are critical to handling realistic program code and Fig. 6
prominently uses them. We briefly discuss how these features are implemented.

First, we examine pointers and arrays. Our implementation of pointers is
greatly simplified, and we leave more general and efficient handling of pointers
for future work. In our implementation, a pointer consists of a triple of:

1. A cleartext pointer to an array. This array is allocated to a fixed publicly
known size by calls to our instrumentation of malloc.

2. An encrypted index into the array. Pointer operations (e.g., pointer offset by
an integer) operate over this index. Calls to malloc set this index to 0.

3. An encrypted maximum index. malloc determines this maximum value
based on the size argument.

Pointer dereferences contain an instrumented assertion that checks that the pri-
vate index is ≥0 and is less than the maximum index. It is this assertion that
allows the prover to demonstrate Fig. 6 has a bug: The dereference on Line 14
triggers this assertion on particular inputs. After this assertion is checked, the
pointer dereference is implemented as a linear scan over the array. For each index
of the array, we perform an equality check against the encrypted index. We multi-
ply the output of each equality check by the array entry at that index. Therefore,

Stacked Garbling for Disjunctive Zero-Knowledge Proofs 595

the result of each multiplication is 0, except for at the target index, where the
result is the dereferenced value. We add all multiplication results together using
XOR, which returns the dereferenced value.

This pointer handling is limited. For example, we cannot handle a program
that conditionally assigns a pointer to one of two different memory locations
constructed by different calls to malloc: Each pointer can only hold one clear-
text array pointer. Additionally, it is likely possible to concretely improve over
linearly scanning the entire cleartext array.

Second, we discuss C standard library functions. In fact, with the availability
of pointers this instrumentation is mostly uninteresting. The implementations
are relatively straightforward pieces of C code that we instrument in a manner
similar to the snippets. For example, our instrumentation of strlen takes an
instrumented pointer as an argument. It walks the cleartext array of the pointer
and increments an encrypted counter until the null character is reached.

Notably, we allow functions to contain loops, but place hard-coded upper
bounds on the number of allowed iterations for any loop.

Acknowledgment. This work was supported in part by NSF award #1909769 and
by the Office of the Director of National Intelligence (ODNI), Intelligence Advanced
Research Projects Activity (IARPA), via 2019-1902070008. The views and conclusions
contained herein are those of the authors and should not be interpreted as necessarily
representing the official policies, either expressed or implied, of ODNI, IARPA, or the
U.S. Government. The U.S. Government is authorized to reproduce and distribute
reprints for governmental purposes notwithstanding any copyright annotation therein.
This work was also supported in part by Sandia National Laboratories, a multi-mission
laboratory managed and operated by National Technology and Engineering Solutions
of Sandia, LLC., a wholly owned subsidiary of Honeywell International, Inc., for the
U.S. Department of Energy’s National Nuclear Security Administration under contract
DE-NA-0003525.

References

[AHIV17] Ames, S., Hazay, C., Ishai, Y., Venkitasubramaniam, M.: Ligero: lightweight
sublinear arguments without a trusted setup. In: Bhavani, M.T., Evans,
D., Malkin, T., Xu, D. (ed.) ACM CCS 2017, pp. 2087–2104. ACM Press,
October/November 2017

[ALSZ15] Asharov, G., Lindell, Y., Schneider, T., Zohner, M.: More efficient
oblivious transfer extensions with security for malicious adversaries. In:
Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015. LNCS, vol. 9056, pp.
673–701. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-
46800-5 26

[BBB+18] Bünz, B., Bootle, J., Boneh, D., Poelstra, A., Wuille, P., Maxwell, G.:
Bulletproofs: short proofs for confidential transactions and more. In: 2018
IEEE Symposium on Security and Privacy, pp. 315–334. IEEE Computer
Society Press, May 2018

[BBHR18] Ben-Sasson, E., Bentov, I., Horesh, Y., Riabzev, M.: Scalable, transpar-
ent, and post-quantum secure computational integrity. Cryptology ePrint
Archive, Report 2018/046 (2018). https://eprint.iacr.org/2018/046

https://doi.org/10.1007/978-3-662-46800-5_26
https://doi.org/10.1007/978-3-662-46800-5_26
https://eprint.iacr.org/2018/046

596 D. Heath and V. Kolesnikov

[BBHR19] Ben-Sasson, E., Bentov, I., Horesh, Y., Riabzev, M.: Scalable zero knowl-
edge with no trusted setup. In: Boldyreva, A., Micciancio, D. (eds.)
CRYPTO 2019. LNCS, vol. 11694, pp. 701–732. Springer, Cham (2019).
https://doi.org/10.1007/978-3-030-26954-8 23

[BCG+13] Ben-Sasson, E., Chiesa, A., Genkin, D., Tromer, E., Virza, M.: SNARKs
for C: verifying program executions succinctly and in zero knowledge. In:
Canetti, R., Garay, J.A. (eds.) CRYPTO 2013. LNCS, vol. 8043, pp. 90–108.
Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40084-1 6

[BCR+19] Ben-Sasson, E., Chiesa, A., Riabzev, M., Spooner, N., Virza, M., Ward,
N.P.: Aurora: transparent succinct arguments for R1CS. In: Ishai, Y.,
Rijmen, V. (eds.) EUROCRYPT 2019. LNCS, vol. 11476, pp. 103–128.
Springer, Cham (2019). https://doi.org/10.1007/978-3-030-17653-2 4

[BG93] Bellare, M., Goldreich, O.: On defining proofs of knowledge. In: Brick-
ell, E.F. (ed.) CRYPTO 1992. LNCS, vol. 740, pp. 390–420. Springer,
Heidelberg (1993). https://doi.org/10.1007/3-540-48071-4 28

[BHKR13] Bellare, M., Hoang, V.T., Keelveedhi, S., Rogaway, P.: Efficient garbling
from a fixed-key blockcipher. In: 2013 IEEE Symposium on Security and
Privacy, pp. 478–492. IEEE Computer Society Press, May 2013

[BHR12] Bellare, M., Hoang, V.T., Rogaway, P.: Foundations of garbled circuits. In:
Yu, T., Danezis, G., Gligor, V.D. (eds.) ACM CCS 2012, pp. 784–796. ACM
Press, October 2012

[CDG+17] Chase, M., et al.: Post-quantum zero-knowledge and signatures from
symmetric-key primitives. In: Thuraisingham, B.M., Evans, D., Malkin,
T., Xu, D. (eds.) ACM CCS 2017, pp. 1825–1842. ACM Press,
October/November 2017

[CDS94] Cramer, R., Damgαrd, I., Schoenmakers, B.: Proofs of partial knowledge
and simplified design of witness hiding protocols. In: Desmedt, Y.G. (ed.)
CRYPTO 1994. LNCS, vol. 839, pp. 174–187. Springer, Heidelberg (1994).
https://doi.org/10.1007/3-540-48658-5 19

[CFH+15] Costello, C., et al.: Geppetto: versatile verifiable computation. In: 2015
IEEE Symposium on Security and Privacy, pp. 253–270. IEEE Computer
Society Press, May 2015

[CGKS95] Chor, B., Goldreich, O., Kushilevitz, E., Sudan, M.: Private information
retrieval. In: 36th FOCS, pp. 41–50. IEEE Computer Society Press, October
1995

[CPS+16] Ciampi, M., Persiano, G., Scafuro, A., Siniscalchi, L., Visconti, I.: Improved
OR-composition of sigma-protocols. In: Kushilevitz, E., Malkin, T. (eds.)
TCC 2016. LNCS, vol. 9563, pp. 112–141. Springer, Heidelberg (2016).
https://doi.org/10.1007/978-3-662-49099-0 5

[cwe19] Common weakness enumeration (2019). https://cwe.mitre.org/
[Dam10] Damgαrd, I.: On Σ-protocols (2010). http://www.cs.au.dk/∼ivan/Sigma.

pdf. Accessed 11 May 2019
[DP92] De Santis, A., Persiano, G.: Zero-knowledge proofs of knowledge without

interaction (extended abstract). In: 33rd FOCS, pp. 427–436. IEEE Com-
puter Society Press, October 1992

[FNO15] Frederiksen, T.K., Nielsen, J.B., Orlandi, C.: Privacy-free garbled circuits
with applications to efficient zero-knowledge. In: Oswald, E., Fischlin,
M. (eds.) EUROCRYPT 2015. LNCS, vol. 9057, pp. 191–219. Springer,
Heidelberg (2015). https://doi.org/10.1007/978-3-662-46803-6 7

https://doi.org/10.1007/978-3-030-26954-8_23
https://doi.org/10.1007/978-3-642-40084-1_6
https://doi.org/10.1007/978-3-030-17653-2_4
https://doi.org/10.1007/3-540-48071-4_28
https://doi.org/10.1007/3-540-48658-5_19
https://doi.org/10.1007/978-3-662-49099-0_5
https://cwe.mitre.org/
http://www.cs.au.dk/~ivan/Sigma.pdf
http://www.cs.au.dk/~ivan/Sigma.pdf
https://doi.org/10.1007/978-3-662-46803-6_7

Stacked Garbling for Disjunctive Zero-Knowledge Proofs 597

[GGPR13] Gennaro, R., Gentry, C., Parno, B., Raykova, M.: Quadratic Span programs
and succinct NIZKs without PCPs. In: Johansson, T., Nguyen, P.Q. (eds.)
EUROCRYPT 2013. LNCS, vol. 7881, pp. 626–645. Springer, Heidelberg
(2013). https://doi.org/10.1007/978-3-642-38348-9 37

[GK14] Groth, J., Kohlweiss, M.: One-out-of-many proofs: or how to leak a secret
and spend a coin. Cryptology ePrint Archive, Report 2014/764 (2014).
http://eprint.iacr.org/2014/764

[GMO16] Giacomelli, I., Madsen, J., Orlandi, C.: ZKBoo: faster zero-knowledge for
Boolean circuits. In: Holz, T., Savage, S. (eds.) USENIX Security 2016, pp.
1069–1083. USENIX Association, August 2016

[GMR85] Goldwasser, S., Micali, S., Rackoff, C.: The knowledge complexity of inter-
active proof-systems (extended abstract). In: 17th ACM STOC, pp. 291–
304. ACM Press, May 1985

[GMW91] Goldreich, O., Micali, S., Wigderson, A.: Proofs that yield nothing but their
validity or all languages in NP have zero-knowledge proof systems. J. ACM
38(3), 690–728 (1991)

[Gro16] Groth, J.: On the size of pairing-based non-interactive arguments. In:
Fischlin, M., Coron, J.-S. (eds.) EUROCRYPT 2016. LNCS, vol. 9666, pp.
305–326. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-
49896-5 11

[IKOS07] Ishai, Y., Kushilevitz, E., Ostrovsky, R., Sahai, A.: Zero-knowledge from
secure multiparty computation. In: Johnson, D.S., Feige, U. (eds.) 39th
ACM STOC, pp. 21–30. ACM Press, June 2007

[JKO13] Jawurek, M., Kerschbaum, F., Orlandi, C.: Zero-knowledge using garbled cir-
cuits: how to prove non-algebraic statements efficiently. In: Sadeghi, A.-R.,
Gligor, V.D., Yung, M., (eds.) ACM CCS 2013, pp. 955–966. ACM Press,
November 2013

[Kil92] Kilian, J.: A note on efficient zero-knowledge proofs and arguments
(extended abstract). In: 24th ACM STOC, pp. 723–732. ACM Press, May
1992

[KKW18] Katz, J., Kolesnikov, V., Wang, X.: Improved non-interactive zero knowl-
edge with applications to post-quantum signatures. In: Lie, D., Mannan,
M., Backes, M., Wang, X. (eds.) ACM CCS 2018, pp. 525–537. ACM Press,
October 2018

[Kol18] Kolesnikov, V.: Free IF: how to omit inactive branches and implement
S-universal garbled circuit (almost) for free. In: Peyrin, T., Galbraith, S.
(eds.) ASIACRYPT 2018. LNCS, vol. 11274, pp. 34–58. Springer, Cham
(2018). https://doi.org/10.1007/978-3-030-03332-3 2

[KS06] Kiraz, M.S., Schoenmakers, B.: A protocol issue for the malicious case of
Yao’s garbled circuit construction. In: Proceedings of 27th Symposium on
Information Theory in the Benelux, pp. 283–290 (2006)

[KS08] Kolesnikov, V., Schneider, T.: Improved garbled circuit: free XOR gates
and applications. In: Aceto, L., Damgαrd, I., Goldberg, L.A., Halldórsson,
M.M., Ingólfsdóttir, A., Walukiewicz, I. (eds.) ICALP 2008. LNCS, vol.
5126, pp. 486–498. Springer, Heidelberg (2008). https://doi.org/10.1007/
978-3-540-70583-3 40

[LO13] Lu, S., Ostrovsky, R.: How to garble RAM programs? In: Johansson, T.,
Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS, vol. 7881, pp. 719–734.
Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-38348-9 42

[Mic94] Micali, S.: CS proofs (extended abstracts). In: 35th FOCS, pp. 436–453.
IEEE Computer Society Press, November 1994

https://doi.org/10.1007/978-3-642-38348-9_37
http://eprint.iacr.org/2014/764
https://doi.org/10.1007/978-3-662-49896-5_11
https://doi.org/10.1007/978-3-662-49896-5_11
https://doi.org/10.1007/978-3-030-03332-3_2
https://doi.org/10.1007/978-3-540-70583-3_40
https://doi.org/10.1007/978-3-540-70583-3_40
https://doi.org/10.1007/978-3-642-38348-9_42

598 D. Heath and V. Kolesnikov

[PHGR13] Parno, B., Howell, J., Gentry, C., Raykova, M.: Pinocchio: nearly practical
verifiable computation. In: 2013 IEEE Symposium on Security and Privacy,
pp. 238–252. IEEE Computer Society Press, May 2013

[RTZ16] Ranellucci, S., Tapp, A., Zakarias, R.: Efficient generic zero-knowledge
proofs from commitments (extended abstract). In: Nascimento, A.C.A.,
Barreto, P. (eds.) ICITS 2016. LNCS, vol. 10015, pp. 190–212. Springer,
Cham (2016). https://doi.org/10.1007/978-3-319-49175-2 10

[Sch90] Schnorr, C.-P.: Efficient identification and signatures for smart cards. In:
Brassard, G. (ed.) CRYPTO 1989. LNCS, vol. 435, pp. 239–252. Springer,
New York (1990). https://doi.org/10.1007/0-387-34805-0 22

[WMK16] Wang, X., Malozemoff, A.J., Katz, J.: EMP-toolkit: efficient multiparty
computation toolkit (2016). https://github.com/emp-toolkit

[WTs+18] Wahby, R.S., Tzialla, I., Shelat, A., Thaler, J., Walfish, M.: Doubly-efficient
zkSNARKs without trusted setup. In: 2018 IEEE Symposium on Security
and Privacy, pp. 926–943. IEEE Computer Society Press, May 2018

[XZZ+19] Xie, T., Zhang, J., Zhang, Y., Papamanthou, C., Song, D.: Libra: succinct
zero-knowledge proofs with optimal prover computation. In: Boldyreva,
A., Micciancio, D. (eds.) CRYPTO 2019. LNCS, vol. 11694, pp. 733–764.
Springer, Cham (2019). https://doi.org/10.1007/978-3-030-26954-8 24

[ZCD+17] Zaverucha, G., et al.: Picnic. Technical report, National Institute of
Standards and Technology (2017). https://csrc.nist.gov/projects/post-
quantum-cryptography/round-1-submissions

[Zha19] Zhang, Y.: Personal communication (2019)
[ZRE15] Zahur, S., Rosulek, M., Evans, D.: Two halves make a whole. In: Oswald,

E., Fischlin, M. (eds.) EUROCRYPT 2015. LNCS, vol. 9057, pp. 220–250.
Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46803-6 8

https://doi.org/10.1007/978-3-319-49175-2_10
https://doi.org/10.1007/0-387-34805-0_22
https://github.com/emp-toolkit
https://doi.org/10.1007/978-3-030-26954-8_24
https://csrc.nist.gov/projects/post-quantum-cryptography/round-1-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-1-submissions
https://doi.org/10.1007/978-3-662-46803-6_8

Which Languages Have 4-Round Fully
Black-Box Zero-Knowledge Arguments

from One-Way Functions?

Carmit Hazay1(B), Rafael Pass2,
and Muthuramakrishnan Venkitasubramaniam3(B)

1 Bar-Ilan University, Ramat Gan, Israel
carmit.hazay@biu.ac.il

2 Cornell Tech, New York, USA
3 University of Rochester, Rochester, USA

muthuv@cs.rochester.edu

Abstract. We prove that if a language L has a 4-round fully black-box
zero-knowledge argument with negligible soundness based on one-way
functions, then L ∈ MA. Since coNP ⊆ MA implies that the polyno-
mial hierarchy collapses, our result implies that NP-complete languages
are unlikely to have 4-round fully black-box zero-knowledge arguments
based on one-way functions. In TCC 2018, Hazay and Venkitasubrama-
niam, and Khurana, Ostrovsky, and Srinivasan demonstrated 4-round
fully black-box zero-knowledge arguments for all languages in NP based
on injective one-way functions. Their results also imply a 5-round proto-
col based on one-way functions. In essence, our result resolves the round
complexity of fully black-box zero-knowledge arguments based on one-
way functions.

Keywords: One-way functions · Zero-knowledge arguments ·
Black-box constructions

1 Introduction

Zero-knowledge (ZK) interactive proofs [11] are paradoxical constructs that allow
one player (called the prover) to convince another player (called the verifier) of
the validity of a mathematical statement x ∈ L, while providing zero additional
knowledge to the verifier. Security against a cheating prover is formalized via
soundness, which bounds its success probability to convince of the truthfulness
of an incorrect statement. Whereas the zero-knowledge property is formalized by
requiring that the view of every “efficient” adversary verifier V∗ interacting with
the honest prover P be simulated by an “efficient” machine S (a.k.a. the simu-
lator). The idea behind this definition is that whatever V∗ might have learned
from interacting with P, it could have actually learned by itself (by running the
simulator S). As “efficient” adversaries are typically modeled as probabilistic
polynomial-time machines (PPT), the traditional definition of ZK models both
the verifier and the simulator as PPT machines.
c© International Association for Cryptologic Research 2020
A. Canteaut and Y. Ishai (Eds.): EUROCRYPT 2020, LNCS 12107, pp. 599–619, 2020.
https://doi.org/10.1007/978-3-030-45727-3_20

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-45727-3_20&domain=pdf
https://doi.org/10.1007/978-3-030-45727-3_20

600 C. Hazay et al.

Several different flavors of ZK systems have been studied in the literature. In
this work, we are interested in computational ZK argument systems with black-
box simulation, where the soundness is required to hold only against non-uniform
PPT provers whereas the zero-knowledge property holds against PPT verifiers
which get an auxiliary input. Such systems are referred to as computational zero-
knowledge argument systems. We will further focus on the case of fully black-box
constructions1 and black-box simulation.2 The main question we are interested
in this work is the round-complexity of computational zero-knowledge argument
systems based on minimal assumptions via a fully black-box construction.

We begin with a survey of prior work in this area. Goldreich, Micali and
Wigderson [9] constructed the first zero-knowledge proof system for all of NP
based on any commitment scheme (which can be instantiated via a 2-round
protocol based on one-way functions [12,19]), where they required polynomially
many rounds to achieve negligible soundness. For arguments, Feige and Shamir
[6] provided a 4-round zero-knowledge system based on algebraic assumptions.
In [3], Bellare, Jackobson and Yung, showed how to achieve the same assuming
only one-way functions.

In this work, we are interested in fully black-box constructions based on
the underlying assumptions. Pass and Wee [21] provided the first black-box
construction of a 6-round zero-knowledge argument for NP based on one-way
permutations,3 and seven rounds based argument on one-way functions. Ishai,
Mahmoody and Sahai provided the first black-box zero-knowledge arguments
based on collision-resistant hash-functions that has total sublinear communica-
tion complexity [15]. Ostrovsky, Richelson and Scafuro [20] showed how to con-
struct black-box two-party secure computation protocols in four rounds where
only one party receives the output, based on enhanced trapdoor permutations.
More recently, in two independent works by Hazay and Venkitasubramaniam
[13] and Khurana, Ostrovsky and Srinivasan [17], 4-round fully black-box zero-
knowledge arguments based on injective one-way function were demonstrated
for all of NP.

On the negative side, Goldreich and Oren [10] demonstrated that three
rounds are necessary for designing zero-knowledge arguments for any non-trivial
language (i.e. outside BPP) against non-uniform verifiers. When further restrict-
ing to black-box simulation, Goldreich and Krawczyk [8] showed that four rounds
are necessary for achieving zero-knowledge arguments of non-trivial languages.
For the specific case of proofs, Katz [16] showed that only languages in MA
can have 4-round zero-knowledge proof systems. As such, the works of [3] and
[8] identify the round-complexity of zero-knowledge arguments as four, when
restricting to black-box simulation. The sequence of prior works leaves the fol-
lowing fundamental question regarding zero-knowledge arguments open:

1 Where the construction is agnostic of the specific implementation and relies only on
its input/output behavior.

2 Where the simulator is only allowed to make black-box use of the verifier’s code.
3 Where injective one-way functions are sufficient.

Which Languages Have 4-Round Fully Black-Box Zero-Knowledge 601

What is the weakest hardness assumption for a fully black-box construction
of a 4-round zero-knowledge argument system for all of NP?
or
Is there an inherent black-box barrier to design 4-round ZK arguments for
all of NP based on one-way functions?

We remark that when considering non-black-box simulation, a recent work
due to Bitansky, Tauman Kalai and Paneth [5] demonstrated how to obtain 3-
round zero-knowledge arguments for NP based on multi-collision resistant hash
functions. On the negative side, Fleischhacker, Goyal and Jain [7] proved that 3-
round private-coin ZK proofs for NP do not exist, even with respect to non-black-
box simulation assuming the existence of certain program obfuscation primitives.

Our Results. In this work we prove the infeasibility of 4-round black-box ZK
arguments for all of NP from one-way functions. More formally, the main theorem
we prove in this work is:

Theorem 11 (Main result). If L has a fully black-box construction of 4-round
computational zero-knowledge argument for L with negligible soundness based on
one-way functions, then L ∈ MA.

We remark that our result is essentially optimal on several fronts. In particu-
lar, if we relax the requirement of a black-box construction, then the work of [3]
showed how to construct 4-round ZK argument based on one-way functions. If we
only required inverse polynomial soundness (as opposed to negligible soundness),
then the classic GMW protocol [9] when repeated in parallel a logarithmic num-
ber of times gives a 4-round ZK proof based on one-way functions with inverse
polynomial soundness. If we relaxed one-way functions to injective one-way func-
tions, then the works of [13,17] demonstrates a 4-round zero-knowledge argu-
ments for all of NP that is fully black-box based on one-way permutations. We
highlight here that our impossibility result only requires that the zero-knowledge
property holds w.r.t. one-way functions. In other words, we can show L ∈ MA
even if the soundness of the underlying argument is based on one-way permuta-
tions. This matches the construction of [13]. Finally, we cannot hope to improve
the theorem from MA to BPP as there exist languages (that are believed to be)
outside of BPP (e.g., graph non-isomorphism) that have unconditional 4-round
ZK proofs.

1.1 Our Techniques

On a high-level, our technique follows very closely the lower bound result of Katz
[16]. In this work, Katz proves that if a language L has a 4-round black-box zero-
knowledge proof, then L ∈ MA. As a warmup, we begin with an overview of this
proof.

Suppose that we have a 4-round zero-knowledge proof for a language L.
The main idea is to design a malicious verifier V∗ that satisfies the following
properties:

602 C. Hazay et al.

– On a true statement x ∈ L, SV∗
will output an accepting transcript with high

probability, where S is the simulator for this argument system.
– On a false statement x �∈ L, SV∗

outputs an accepting transcript with a small
probability.

Given such an algorithm V∗, one can consider the following procedure to
decide L: Run SV∗

. Then, reject if it outputs an accepting transcript and accept
otherwise. If this procedure can be carried out via a PPT algorithm then it
would imply L ∈ BPP. Since we know there are languages outside BPP which
have 4-round zero-knowledge proofs (e.g., languages in SZKP), it is unlikely
that we will be able to construct a V∗ for which this decision procedure will
be efficiently computable. Indeed, the algorithm V∗ that is constructed in [16]
cannot be sampled via a PPT algorithm. Recall that the goal is to design an MA
proof system for L. Katz shows that with some limited help from an unbounded
Merlin, Arthur will be able to run the decision procedure, namely SV∗

. More
concretely, Merlin will sample a string m from a prescribed distribution and
send it to Arthur. Using m, Arthur will be able to run SV∗

. On a true statement
(i.e. x ∈ L), Merlin will (honestly) provide the single message with the right
distribution and Arthur will be able to decide correctly. Soundness, on the other
hand, will require to argue that, for any arbitrary message sent by Merlin, Arthur
rejects the statement with high probability. If the underlying zero-knowledge
argument system admits perfect completeness then it becomes easy to argue
that Merlin cannot provide “bad” messages that will make Arthur accept a
false statement. The imperfect completeness case is more challenging. To make
the proof system sound in the case of imperfect completeness, Katz showed a
mechanism for Arthur to discard “bad” messages from Merlin. We now proceed
to describe in more detail the lower bound in the case of imperfect completeness
as we follow the ideas in this case closely.

We begin with a description of the malicious verifier V∗ and then give our
MA proof system. Roughly speaking, the malicious verifier V∗ generates the first
message according to the honest verifier V and will generate the third message
depending on the second message of the prover by randomly sampling a random
tape consistent with its first message. In more detail, we will consider V∗ that
takes as an auxiliary input random strings r1, . . . , rs under the promise that for
every i, V(x; ri) generates the same first message α. V∗ then sends α as the first
message and upon receiving the second message β from the prover, applies a
pseudo-random function (a poly-wise independent hash-function is sufficient) on
β to obtain an index i ∈ [s]. Finally, V∗ uses ri to generate the third message γ
by running V with random tape ri and the partial transcript so far.

We will need a procedure to sample a uniform α that is in the support of
the verifier’s first messages and then sample r1, . . . , rs uniformly over all consis-
tent random tapes. This procedure will not be PPT computable (as otherwise,
it would imply SV∗

is efficiently computable and consequently L ∈ BPP). As
we only need to design an MA proof system, we will have Merlin (who is com-
putationally unbounded) sample r1, . . . , rs and send these to Arthur. Before we
describe the MA proof system, we first argue two properties:

Which Languages Have 4-Round Fully Black-Box Zero-Knowledge 603

1. If α is distributed according to the honest verifier algorithm with a uni-
form random tape, and ri’s are uniformly sampled conditioned on α, then
the marginal distribution of any ri will be uniform. This implies that, for
x ∈ L, if the ri’s were sampled correctly then for any i, SV(x;ri) will output
an accepting transcript with high probability. We show below that by the
zero-knowledge property of the proof system, this implies that SV∗(x,r1,...,rs)

outputs an accepting transcript with high probability.
2. For x �∈ L and ri’s sampled correctly, SV∗

does not output an accepting tran-
script with high probability. This is argued by showing that if SV∗(x,r1,...,rs)

outputs an accepting transcript with high probability, then there exists a
cheating prover P∗ that can break soundness on input x with non-negligible
probability. The idea here is, P∗ will emulate SV∗(x,r1,...,rs) internally and
forward the outside execution inside in one of the rewinding sessions made
by S. In more detail, upon receiving the first message α from the verifier, P∗

first samples r1, . . . , rs that are consistent with α as explained above. Next,
it internally emulates SV∗(x,r1,...,rs), with the exception that it forwards the
messages of a random rewinding session to an external verifier. Now, if the
chosen session is an accepting session then P∗ convinces the external verifier to
accept. Specifically, the analysis shows that P∗ will convince the external ver-
ifier with probability at least μ/s where μ is the probability that SV∗(x,r1,...,rs)

outputs an accepting transcript.

Now consider the following MA proof system for L: Merlin samples a random
first message α for the honest verifier and then samples several consistent ran-
dom tapes r1 . . . , rs, and sends them to Arthur. Arthur will run SV∗(x,r1,...,rs). If
S outputs an accepting transcript, Arthur rejects and accepts otherwise. Com-
pleteness follows directly from Item 2, as Merlin will follow its actions honestly,
making Arthur accept. Soundness, as mentioned before, requires that r1 . . . , rs

are generated with the right distribution. If the underlying zero-knowledge pro-
tocol had perfect completeness, then arguing soundness becomes easy because for
any set of random tapes r1, . . . , rs sent by Merlin, if they all are consistent with
the same first message for the verifier, then by perfect completeness we will have
that SV∗

will output an accepting transcript with high probability. We discuss
the case of imperfect completeness as it is more relevant to our techniques.

Handling Imperfect Completeness. If the original zero-knowledge system
has imperfect completeness, then Merlin could select random tapes r1 . . . , rs

that makes SV∗
not output an accepting transcript, causing Arthur to accept.

To tackle this issue, as mentioned before, Katz introduces a procedure with
which Arthur checks whether the ri values are “good”. First, we observe that
if these strings were sampled correctly, then the marginal distribution of any of
the ri’s will be uniform (Item 1). This implies that when running the simulator
with the honest verifier with random tape ri on a true statement, the simulator
is expected to output an accepting transcript with high-probability.

604 C. Hazay et al.

Second, from the zero-knowledge property we have that for every set of ran-
dom tapes r1, . . . , rs:

{i ← [t] : SV(x;ri)} ≈ {i ← [t] : 〈P(x),V(x; ri)〉} and,

{SV∗(x,r1,...,rs)} ≈ {〈P(x),V∗(x, r1, . . . , rs)〉}.

Since the Verifier chooses ri in its second round via pseudo-random function, we
have that:4

{i ← [t] : 〈P(x),V(x; ri)〉} ≈ {〈P(x),V∗(x, r1, . . . , rs)〉
This implies that, for any message r1, . . . , rs received from Merlin, if SV(x;ri)

outputs an accepting transcript for a randomly chosen i with high-probability,
then SV∗(x,r1,...,rs) must output an accepting transcript with high-probability.
This gives rise to a checking procedure that can now be incorporated into the
MA proof system. In more detail, the MA proof system is modified by asking
Arthur to first check if SV(x;ri) outputs an accepting transcript for a random
i and reject otherwise. Only if the check passes, namely SV(x;ri) outputs an
accepting transcript, Arthur runs SV∗(x,r1,...,rs) and decides accordingly. This
gives an MA proof system that is sound. However, this modification alters the
completeness of the proof system, as x �∈ L could imply that SV(x;ri) might not
output an accepting transcript causing Arthur to reject immediately. This can be
fixed by having Arthur first check if the simulator outputs an accepting transcript
with the honest verifier on a uniformly sampled random tape by Arthur. More
precisely, the final MA proof system has Arthur perform the following:

1. Run SV(x;r) several times. If S fails to output an accepting transcript with
high probability where r is uniformly chosen in each trial, then accept and
halt. Otherwise, proceed to the next step.

2. Pick a random index i and run SV(x;ri). If S does not output an accepting
transcript then reject and halt. Otherwise, proceed to the next step.

3. Run SV∗(x,r1,...,rs). If S outputs an accepting transcript with high probability
then reject, otherwise accept.

Our Approach. We now discuss how we extend this lower bound to our set-
ting where we have a fully black-box construction of a 4-round zero-knowledge
argument for L. First, we observe that to consider the malicious verifier V∗ as
in Katz’s proof, we need to provide r1, . . . , rs consistent with the first message
in the presence of a one-way function oracle. Given an arbitrary oracle, we will
not be able to sample randomness r1, . . . , rs even in unbounded time, if we are
only allowed to make polynomially many queries to the oracle (which will be
required as eventually, we want to use V∗ to break soundness which is computa-
tional based on the one-wayness of the oracle). Instead, we will prescribe a joint
distribution over r1, . . . , rs and random oracles for which we can carry out the
4 In fact, the distibutions are identical if the verifier uses poly-wise independent hash-

functions.

Which Languages Have 4-Round Fully Black-Box Zero-Knowledge 605

proof. More precisely, given a statement x, we will specify a joint distribution
over random oracles O and r1, . . . , rs such that for all i, VO(x; ri) will output
the same message and the following two properties hold:

Property P1. On a true statement x, SO,V∗O(x,r1,...,rs) will output an accepting
transcript with high probability, where S is the simulator for this argument
system.

Property P2. On a false statement x, SO,V∗O(x,r1,...,rs) outputs an accepting
transcript with negligible probability.

Description of a Malicious Verifier Strategy V∗. We now proceed to
describe our malicious verifier strategy and the corresponding random oracle
distribution.

1. Run VO(x; r) where we emulate O as a random oracle and choose the verifier’s
random tape uniformly at random. Let α be the message output by V. Discard
r and the oracle O.

2. Consider the oracle PPT algorithm A• that on random tape (r, r′) outputs
whatever S•,V•(x;r)(x; r′) outputs. We will next rely on the “heavy-query”
learning procedure due to Barak and Mahmoody [2] who give a procedure to
identify the most frequent queries made by an algorithm to the random oracle
conditioned on its output being fixed to a particular message. We apply the
heavy query learning procedure to the honest verifier algorithm V subject to
the condition that it outputs α as its first message. Let Q be the set of queries
output by this procedure for some oracle O′ sampled as a random oracle.

3. Let Rα be the set that contains all the pairs (r′,Q′) such that V(x; r′) outputs
α as its first message while making queries only in Q ∪ Q′ (where Q′ are
the non-frequent queries). Now, sample s elements {(ri,Qi)}i∈[s] from Rα

uniformly at random.
4. Output (r1, . . . , rs) and (Q,Q1, . . . ,Qs).

Given a sample (r1, . . . , rs) and (Q,Q1, . . . ,Qs), the distribution of oracles
will be random oracles whose queries in (Q,Q1, . . . ,Qs) are fixed and set to
be random on all other points. Such oracles were previously considered in [18]
and referred to as partially-fixed random oracles. The malicious verifier V∗ is
specified as a PPT algorithm that takes as auxiliary information (r1, . . . , rs) and
proceeds as follows. For the first message, it runs V(x; r1) and outputs whatever
V does, say α. Given a second message β sent by the prover V∗ applies a poly-
wise independent hash function (also supplied as auxiliary information) h(β) to
a chosen index i ∈ [s]. Then it runs V(x; ri) on the partial transcript α, β to
output the third message δ and forwards that to the prover. Any oracle query
made by V is forwarded to the oracle attached to V∗.

Proving P1 follows essentially the same way as in [16]. So we argue P2 next.

Proving P2. Just as in [16], we will show that if the simulator can simulate V∗

on a false statement with non-negligible probability, then there exists a cheating
prover P∗ that can break the soundness of the zero-knowledge argument, which,

606 C. Hazay et al.

in turn, establishes the property P2 specified at the beginning of the outline.
As before, in the security reduction, P∗ will internally emulate the simulator
with V∗ and forward the message from the external interaction inside, for one of
the random rewindings made by the simulator. Recall that P∗ and the external
verifier are equipped with an oracle O (for the one-way function).

Observe that P∗ will not be able to use O for internally emulating SV∗
,

as in the internal execution P∗ it needs to run S and V∗ from a prescribed
distribution over r1, . . . , rs and random oracles. By applying the same learning
heavy-query algorithm we can show that P∗ will be able to sample Q,Q1, . . . ,Qs

and r1, . . . , rs and an oracle O′ where

– Q is consistent with O.
– O′ is consistent with Q ∪ Q1 ∪ · · · ∪ Qs and with O everywhere else.
– If O is sampled according to a random oracle, then the distribution of O′ and

r1, . . . , rs is identical to the prescribed distribution.

Next, if the random rewinding chosen by P∗ is the one that the simulator
outputs as an accepting transcript, then we want to conclude that P∗ succeeds
in convincing the external verifier. There are two (related) issues to make this
argument work:

– First, forwarding the messages from the external verifier internally in a ran-
dom rewinding session could result in skewing the distribution internally sim-
ulated by P∗.

– Second, the external oracle O and the internally emulated oracle O′ are not
identical. In particular, they could be different on Q1, . . . ,Qs.

We argue that the first item is not an issue and the distribution is, in fact,
correct because we can view the random tape and queries made by the outside
verifier as one of the elements in Rα. The second issue is problematic because
if the messages generated by the simulator in the forwarded session makes the
external verifier make one of the conflicting queries (namely a query on Q1∪· · ·∪
Qs), then we cannot claim that the external verifier will accept if the internal
emulation results in an accepting transcript on that session. To resolve this issue,
we weaken property P2 as follows:

P2’ On a false statement x, SO,V∗O(x,r1,...,rs) outputs an accepting transcript
while not making conflicting queries with negligible probability. In partic-
ular, if a particular rewinding session (where rj was used as the random
tape) is the accepting transcript then the verifier on that transcript should
not make any query to Qi for i �= j.

This modification will be the crux of making our MA proof system work.

MA Proof System. Upon receiving r1, . . . , rs,Q,Q1, . . . ,Qs, Arthur continues
as follows:

Which Languages Have 4-Round Fully Black-Box Zero-Knowledge 607

1. Emulate SO,VO(x;r) where r is chosen at random and O according to the
random oracle. If it does not output an accepting transcript, then accept and
halt. Otherwise proceed.

2. Pick a random i ← [s] and emulate SO,VO(x;ri) where O is sampled according
to a partially fixed random oracle, fixed on the set Q∪Q1∪· · ·∪Qs. If it either
does not output an accepting transcript or outputs an accepting transcript
with conflicting queries, then reject and halt. Otherwise, proceed.

3. Emulate SO,V∗O(x,r1,...,rs). If it either does not output a transcript or an
accepting transcript is output with conflicting queries then accept. Otherwise,
reject.

2 Preliminaries

Basic Notations. We denote the security parameter by n. We say that a func-
tion μ : N → N is negligible if for every positive polynomial p(·) and all sufficiently
large n it holds that μ(n) < 1

p(n) . We use the abbreviation PPT to denote prob-
abilistic polynomial-time. We further denote by a ← A the random sampling of
a from a distribution A, and by [n] the set of elements {1, . . . , n}. For an NP
relation R, we denote by Rx the set of witnesses of x and by LR its associated
language. That is, Rx = {ω | (x, ω) ∈ R} and LR = {x | ∃ ω s.t. (x, ω) ∈ R}.
We specify next the definition of computationally indistinguishable.

Definition 21. Let X = {X(a, n)}a∈{0,1}∗,n∈N and Y = {Y (a, n)}a∈{0,1}∗,n∈N

be two distribution ensembles. We say that X and Y are computationally indis-
tinguishable, denoted X

c≈ Y , if for every PPT machine D, every a ∈ {0, 1}∗,
every positive polynomial p(·) and all sufficiently large n:

∣
∣Pr [D(X(a, n), 1n, a) = 1] − Pr [D(Y (a, n), 1n, a) = 1]

∣
∣ <

1
p(n)

.

We assume familiarity with the basic notions of an Interactive Turing
Machine (ITM for brevity) and a protocol (in essence a pair of ITMs). We
denote by PPT the class of probabilistic polynomial-time Turing machines. We
denote by M• an oracle machine; we sometimes drop • when it is clear from the
context. As usual, if M• is an oracle machine, MO denotes the joint execution
of M with oracle access to O.

Definition 22 (Random Oracle). A random oracle RO is a randomized
stateful oracle that given a query x ← {0, 1}n outputs y if the pair (x, y) is
stored or outputs a random element y′ from {0, 1}|x| and stores (x, y′).

Following [4,18], we use randomized oracles as opposed to fixing a random oracle
by sampling it once as in [14] as this is sufficient for refuting black-box construc-
tions.

We recall the properties of the “heavy-query” learning algorithm (verbatim)
from [2] that have typically been used in separation from one-way functions
[14,18].

608 C. Hazay et al.

Lemma 21 (Learning Heavy Queries Efficiently [2]). Let A be a random-
ized oracle algorithm which asks up to m oracle queries, denoted by Q(AO) and
outputs some message C. Let 0 < ε < 1 be a given parameter. There is a learning
algorithm G in PSPACE (in fact, BPPNP) which learns a list of Y of query-answer
pairs from the oracle O such that:

1. |Y| ≤ 10m/ε2.
2. With probability at least 1− ε over the choice of O from RO and the random

coins of A and G, for every u that is not part of any query-answer pair in
Y,it holds that Pr[u ∈ Q(A)|(C,Y)] < ε where the latter probability is over
the remaining randomness of RO and A conditioned on (C,Y).

Next, we recall the property about random oracles that they cannot be
inverted by any oracle algorithm (possibly unbounded) that makes only polyno-
mially many queries to the oracle. The following is repeated verbatim from [18].

Definition 23 (Security Threshold). A primitive P has security threshold
τP if an adversary “breaking” P has to “win” in the security game of P with
probability τP + ε for a non-negligible ε.

Lemma 22 ([2,18]). Let P and Q be two cryptographic primitives and P has
security threshold zero. For a randomized oracle O, suppose one can break the
black-box security of any implementation QO of Q with non-negligible probability
and asking poly(n) oracle queries to O. Suppose also that there exists a black-box
secure implementation PO of P from O. Then there is no black-box construction
of Q from P .

Definition 24 (Partially-Fixed Random Oracles). We call a randomized
function f a k(n)-partially-fixed random oracle if it is fixed over some sub-
domain S and chooses its answers similarly to the random oracle RO at any
point q out of S and it holds that |S ∩ {0, 1}n| ≤ k(n) for every n. We simply
call f partially-fixed random if it is 2o(n)-partially-fixed random.

Lemma 23 ([18]). One-way functions can be black-box securely realized from
all partially-fixed random oracles.

2.1 Fully Black-Box Constructions

Following the terminology of [22], we consider fully black-box constructions of
zero-knowledge arguments from the underlying primitive.

Definition 25 (Fully black-box construction). A black-box implementation
of a primitive Q from a primitive P is an oracle algorithm Q (referred to as
the implementation) such that QP is an implementation of Q whenever P is
an implementation of P. QP is said to have a black-box proof of security, if
there exists an efficient machine R such that for any oracle P implementing P
and machine A that breaks QP with non-negligible advantage for some security
parameter n, then RP,A breaks the security of P over some security parameter
n′ = poly(n). A black-box construction Q from P requires a black-box implemen-
tation Q and a black-box proof of security R.

Which Languages Have 4-Round Fully Black-Box Zero-Knowledge 609

2.2 Interactive Systems

We denote by 〈A(ω), B(z)〉(x) the random variable representing the (local) out-
put of machine B when interacting with machine A on common input x, when
the random-input to each machine is uniformly and independently chosen, and
A (resp., B) has auxiliary input ω (resp., z).

A round of an interactive proof system consists of a message sent from one
party to the other, and we assume that the prover and the verifier speak in
alternating rounds. Following [1], we let MA denote the class of languages having
a 1-round proof system and in this case refer to the prover as Merlin and the
verifier as Arthur; that is:

Definition 26 (MA). L ∈ MA if there exists a probabilistic polynomial-time
verifier V, a non-negative function s, and a polynomial p such that the following
hold for all sufficiently-long x:

– If x ∈ L then there exists a string w (that can be sent by Merlin) such that

Pr[V(x,w) = 1] ≥ s(|x|) + 1/p(|x|).
– If x /∈ L then for all w (sent by a cheating Merlin) it holds that

Pr[V(x,w) = 1] ≤ s(|x|).
Definition 27 (Interactive argument system). A pair of PPT interactive
machines (P,V) is called an interactive proof system for a language L if there
exists a negligible function μ(·) such that the following two conditions hold:

1. Completeness: For every x ∈ L there exists a string ω such that for every
z ∈ {0, 1}∗,

Pr[〈P(ω),V(z)〉(x) = 1] ≥ c(|x|)
where c is the acceptance probability.

2. Soundness: For every x /∈ L, every interactive PPT machine P∗, and every
ω, z ∈ {0, 1}∗

Pr[〈P∗(ω),V(z)〉(x) = 1] ≤ s(|x|).
where s is the soundness error and will be negligible in this paper.

Definition 28 (Computational zero-knowledge (CZK)). Let (P,V) be an
interactive proof system for some language L. We say that (P,V) is a com-
putational zero-knowledge with respect to an auxiliary input if for every PPT
interactive machine V∗ there exists a PPT algorithm S, running in time polyno-
mial in the length of its first input, such that

{〈P(ω),V∗(z)〉(x)}x∈L,ω∈Rx,z∈{0,1}∗
c≈ {〈S〉(x, z)}x∈L,z∈{0,1}∗

(when the distinguishing gap is considered as a function of |x|). Specifically, the
left term denotes the output of V∗ after it interacts with P on common input x
whereas, the right term denotes the output of S on x.

610 C. Hazay et al.

Black-Box Construction of Zero-Knowledge Arguments

Definition 29. A black-box construction of a zero-knowledge argument system
for a language L from one-way functions is a tuple of oracle algorithms (P,V,S)
such that for any oracle f = {fm : {0, 1}m → {0, 1}m}, P,V and S are oracle
algorithms where completeness holds w.r.t to any oracle O and the soundness and
zero-knowledge property are proved via a reduction to the underlying function f
as follows:

Soundness: There is an efficient oracle reduction algorithm Rs, such that for
every oracle f , every malicious prover P∗ (that could arbitrarily depend on
f), if P∗ convinces the verifier on input x ∈ {0, 1}n\L with probability 1/p(n)
for some polynomial p(·), Rf,P∗f

s inverts f with probability 1/q(m) for some
polynomial q(·) over a polynomially related m = nθ(1), namely,

Pr[y ← f(Um) : Rf,P∗f

s (y) ∈ f−1(y)] ≥ 1
q(m)

Zero Knowledge: This is defined analogously to the soundness property. There
is an efficient oracle reduction algorithm Rzk, such that for every oracle f ,
every malicious verifier V∗ (that could arbitrarily depend on f), if V∗ dis-
tinguishes the real execution from the simulation on input x ∈ L ∩ {0, 1}n

with probability 1
p(n) for some polynomial p(·), Rf,V∗f

zk inverts f with proba-
bility 1/q(m) for some polynomial q(·) over a polynomially related m = nθ(1),
namely,

Pr[y ← f(Um) : Rf,V∗f

zk (y) ∈ f−1(y)] ≥ 1
q(m)

We remark that, by view of the verifier we include the transcript of the messages,
random tape and the query and answers obtained by the verifier from its oracle.

Terminology. We will be concerned with 4-round CZK argument systems,
where the verifier sends the first message and the prover sends the final mes-
sage. We use α, β, γ, δ to denote the first, second, third, and fourth messages,
respectively. We let P (resp., V) denote the honest prover (resp., honest verifier)
algorithm when the common input is x.

3 Implausibility of 4-Round BB ZK Arguments
from OWFs

We begin with an outline of the proof. Recall that any separation cannot rule
out the existence of 4-round arguments with a random oracle, as a random
oracle with high probability acts as a “one-way permutation” and we do know
4-round arguments based on one-way permutations [13,17]. Instead, we follow
the approach of [18], by considering partially-fixed random oracles that crucially
rely on the fact that the distribution of oracles is not a permutation. A partially
fixed random oracle behaves essentially as a random oracle with the exception
that for a pre-specified subset F of its domain the answers are fixed.

Which Languages Have 4-Round Fully Black-Box Zero-Knowledge 611

3.1 Main Result

We are ready to prove our main result.

Theorem 31. If L has a fully black-box construction of 4-round computational
zero-knowledge argument for L with negligible soundness based on one-way func-
tions, then L ∈ MA.

Proof. Assume for contradiction, there is a fully black-box construction of a 4-
round ZK argument (P,V) from a one-way function with black-box simulator S.

In the proof system, Merlin (namely, the prover) and Arthur (namely, the
verifier) share in advance an input x of length n. Let c(·) be the completeness
of 〈P,V〉. The soundness of 〈P,V〉 is negligible. Let Ts(n) be a bound on the
expected running time of the simulator. Let m(n) be the total number of queries
made by the prover and the verifier on inputs of length n. Let Tv(n) be a bound
on the runtime of the honest verifier. Let η(n) denote the length of the prover’s
second message. We set ε(n) = c(n)/20, and s′(n) = 4(Ts(n))2(ε)−3. For sake of
succinctness, we define m = m(n), c = c(n), T = Ts(n),
 = Tv(n), η = η(n),
ε = ε(n) and s = s′(n). Finally, let S̃ be the algorithm that proceeds identically
to S with the exception that it halts after 2T/ε steps on inputs of length n.

We will first describe a distribution of a malicious verifier V∗ and oracles O
and then describe and analyze the MA proof system.

Specifying the Distribution of Malicious Verifier and the Oracle.

1. Run VO(x; r) where we emulate O as a random oracle and choose the verifier’s
random tape uniformly at random. Let α be the message output by V. Discard
r and the oracle O.

2. Consider the oracle PPT algorithm A that on random tape (r, r′) outputs
what S•,V•(x;r)(x; r′) outputs. We execute the heavy-query learning procedure
for the algorithm A from Lemma 21 with parameter ε

(2s2·�) subject to the
condition that the output contains the view of the verifier where the first
message generated by V is α. Let Q be the set of queries output by this
procedure.

3. Let Rα be the set that contains all the pairs (r′,Q′) such that V(x; r′) outputs
α as its first message while only making oracle queries inside Q ∪ Q′. Now
sample s elements {(ri,Qi)}i∈[s] from Rα uniformly at random.

4. Output (r1, . . . , rs) and (Q,Q1, . . . ,Qs).

Description of a Malicious Verifier Strategy V∗: Given r1, . . . , rs from
the distribution above, we consider an oracle PPT algorithm V∗, that given an
input x and auxiliary input r1, . . . , rs, h, where ri represents random coins for
the honest verifier algorithm and h is a hash function, proceeds as follows:

1. V∗ internally emulates the honest verifier oracle algorithm V on input x and
random tape r1 to generate its first message α which it forwards externally
to the prover. If at any point during the emulation, V makes a query to its
oracle, V∗ forwards that query to its oracle and the response back to V.

612 C. Hazay et al.

2. Upon receiving a message β from the prover, the verifier computes i = h(β)
and emulates V on input x with random tape ri. It obtains α as V’s first
message and feeds β as the prover’s message. It then obtains γ as the third
message and V∗ forwards γ to the external prover.

3. V∗ receives the last message δ from the prover. Finally, V∗ outputs its view.

Description of the Family of Oracles. Given Q,Q1, . . . ,Qs, we consider a
partially-fixed random oracle Õ that is defined as follows. It contains oracles
that are fixed over the queries in Q ∪ Q1 ∪ . . . ∪ Qs and chooses its answers
similarly to the random oracle RO at any point q not in the subdomain defined
by Q∪Q1 ∪ . . .∪Qs. We remark that such a family is well defined only if no two
sets among Q,Q1, . . . ,Qs have conflicting queries, where a query u is conflicting
for query-answer sets A and B, if there exists v1, v2 (possibly equal) such that
(u, v1) ∈ A and (u, v2) ∈ B. Looking ahead, by the properties of the learning
algorithm employed in the sampling procedure described above, we will have
that there will be no conflicting queries with high probability.

Before proceeding with the proof we introduce some notation, borrowed ver-
batim from [16]. For a given randomized experiment Expt that can be run in
polynomial-time and outputs a bit, we let Estimateε(Pr[Expt]) denote a proce-
dure that outputs an estimate to the given probability (taken over randomness
used in the Expt) to within an additive factor of ε, except with probability at
most ε. That is:

|Pr
[

Estimateε(Pr[Expt = 1]) − Pr[Expt = 1]| ≥ ε
] ≤ ε.

This can be done in the standard way using Θ(ε−2 log 1
ε) independent executions

of Expt. Observe that if ε is non-negligible then the estimation runs in polynomial
time whenever Expt is a polynomial-time sampleable.

Description of the MA Proof System: We are now ready to describe an
MA proof for L. On input x, Arthur proceeds as follows:

1. Upon receiving Merlin’s first message, Arthur interprets the message as
strings r1, . . . , rs ∈ {0, 1}� and sets of query-answer pairs Q,Q1, . . . ,Qs. Next,
it proceeds as follows:
(a) Estimate the probability:

p1 = Estimateε

(
Pr

r′,r,O

[
S̃O,VO(x;r′)(x; r) outputs an accepting transcript

])

where r and r′ are chosen uniformly at random from {0, 1}T and
{0, 1}� respectively, and O is sampled according to RO. We remark
that the estimation procedure requires sampling a random execution of
S̃O,VO(x;r′)(x; r) and this can be done in polynomial time by emulating O
distributed according to a random oracle RO. If p1 < c − 2ε then accept
and halt. Otherwise, proceed to the next step.

Which Languages Have 4-Round Fully Black-Box Zero-Knowledge 613

(b) If any pair of the sets Q,Q1, . . . ,Qs have conflicting queries then reject
and halt. Else, emulate the honest verifier algorithm V on input x and
random tape r1 until it generates its first message α. In this emulation, if
V makes a query inside Q∪Q1 we respond with the corresponding answer
from the set. If V makes a query outside Q∪Q1, then Arthur rejects. For
every i ∈ [s], internally emulate V(x; ri) and reject if it does not output
the same α as its first message or makes a query outside Q ∪ Qi.

(c) Denote by Õ the distribution of partially-fixed random oracles fixed on
the set Q ∪ Q1 ∪ · · · ∪ Qs. Let E(v) denote the event when a view v
of the verifier is consistent with V(x; ri) for some i ∈ [s] and contains
no query from Qj for any j �= i (where consistent with V(x; ri) means
that transcript in v can be regenerated when the prover messages in v
are fed to the honest verifier’s code on input x and randomness ri). Pick
a random i ∈ [s] and emulate S̃O,VO(x;ri)(x; r) where the oracle O is
emulated according to Õ. Such an oracle can be emulated by answering
all queries in the fixed set according to the query-answer pair and any
other query randomly (but consistently). If either S̃ does not output an
accepting transcript or E(v) does not hold for the view v output by S̃,
then reject.

(d) Let H denote a family of 2T/ε-wise independent hash function h :
{0, 1}η → {1, . . . , s}. We next estimate:

p2 =

Estimateε

(
Pr

r,h,O

[
v ← S̃O,V∗O(x,r1,...,rs,h)(x; r) : v is accepting ∧ E(v)

])
,

where r ← {0, 1}T , h ← H and O ← Õ. If p2 < c − 10ε accept, otherwise
reject.

We now proceed to proving the completeness and soundness arguments of the
above proof.

Lemma 31. For any x �∈ L ∩ {0, 1}n and sufficiently large n, and any message
r1, . . . , rs,Q,Q1, . . . ,Qs sent by Merlin, the probability that Arthur accepts is at
most c − 6ε.

Proof: In this case, we have x ∈ L, so it must hold that for any oracle O that
the probability with which the honest prover convinces the honest verifier on
input x and oracle O is at least c. From the zero-knowledge property we have
that, for sufficiently large n, x ∈ {0, 1}n ∩ L, we have

Pr
r,r′,O

[

S̃O,VO(x;r′)(x; r) outputs an accepting transcript
]

≥ c − ε

This means that with probability at most ε, the estimate p1 obtained by Arthur
will be smaller than c − 2ε. In other words, Arthur accepts the statement with
probability at most ε in Step 1a.

614 C. Hazay et al.

Next recall that if the message sent by Merlin does not meet the conditions
in Step 1b, then it rejects. Thus we will assume that these conditions hold. Now
consider the following probability

p̂ = Pr
i,r,h,O

[

v ← S̃O,VO(x;ri)(x; r) : v is accepting ∧ E(v)
]

where i ← [s], r ← {0, 1}T , h ← H and O ← Õ. Recall that if p2 < c− 10ε then
Arthur accepts, and otherwise rejects. There are two cases depending on p̂.

Case p̂ < c − 7ε: Recall that, in Step 1c, Arthur picks a random i, emulates
S̃O,VO(x;ri)(x; r) and rejects if the simulator does not output an accepting
transcript. Therefore, in this case, the probability with which Arthur accepts
is at most the probability that Arthur proceeds beyond Step 1c which is at
most c − 7ε.

Case p̂ ≥ c − 7ε: In this case, by the zero-knowledge property, we have that the
probability that the honest prover convinces the verifier with O and E does
not occur, is at least c − 8ε. In other words,

Pr
i,O

[

v ← ViewV(〈PO,VO(ri)〉(x)) : v is accepting ∧ E(v)
] ≥ c − 8ε.

where i ← [s] and O ← Õ. Recall that Õ is partially-fixed random oracle
fixed over a polynomial-sized subdomain and from Lemma 23 (as shown in
[18]) we know it implies one-way functions. We remark that here we rely on
the fact that the zero-knowledge property holds w.r.t such one-way functions.
By our construction of V∗ and 2T/ε-wise independence of H, it holds that

Pr
h,O

[

v ← ViewV∗(〈PO,V∗O(r1, . . . , rs, h)〉(x) : v is accepting ∧ E(v)
]

= Pr
i,O

[

v ← ViewV(〈PO,VO(ri)〉(x)) : v is accepting ∧ E(v)
]

where i ← [s], h ← H and O ← Õ.
Using the zero-knowledge property again, but, with V∗ this time we have
that

Pr
r,h,O

[

v ← S̃O,V∗O(x,r1,...,rs,h)(x; r) : v is accepting ∧ E(v)
]

≥ c − 9ε

where r ← {0, 1}T , h ← H and O ← Õ. This means that the probability
with which Arthur accepts in Step 1d is at most ε.

Overall, the probability with which Arthur accepts is at most ε + max{c −
7ε, ε} = c − 6ε and this concludes the proof of the lemma. ��
Lemma 32. For any x ∈ L ∩{0, 1}n and sufficiently large n, there is a strategy
for Merlin that makes Arthur accept with probability is at least c − 5ε.

Which Languages Have 4-Round Fully Black-Box Zero-Knowledge 615

Proof: We first define Merlin’s strategy. Merlin will internally maintain the state
of an oracle O that is sampled according to RO. It chooses r̃ ← {0, 1}� uniformly
at random and emulates VO(x; r̃) and computes the verifier’s first message α.
Next, it runs the simulator with the honest verifier and tries to learn all the
heavy queries made by the algorithm S̃•,V•(x;r′)(x; r) subject to the verifier’s
first message being α and the oracle being O where the learning parameter is set
to ε

(2s2·�) . Let Q be the set of the queries that Merlin learns. Let Rα be the set

that contains all the pairs (r′,Q′) such that VQ∪Q′
(x; r′) outputs α as its first

message. Then Merlin samples s elements {(ri,Qi)}i∈[s] from Rα uniformly at
random and sends r1, . . . , rs,Q,Q1, . . . ,Qs to the Arthur.

We now proceed to analyze the probability Arthur accepts. Recall that in
Step 1a, Arthur accepts if the estimate p1 < c − 2ε. Let

p̂ = Pr
r,r′,O

[

S̃O,VO(x;r′)(x; r) outputs an accepting transcript
]

where r ← {0, 1}T , r′ ← {0, 1}�, O ← RO. We consider two cases:

Case p̂ < c − 3ε: In this case, by our estimation algorithm, we have that except
with probability ε, Arthur will accept at the end of Step 1a.

Case p̂ ≥ c − 3ε: In this case, we consider Step 1b, where Arthur checks if
there are no conflicting queries. Since Merlin honestly samples from the right
distribution, we have that for each i ∈ [s], the Verifier V outputs α with
random tape ri while making queries only in Q ∪ Qi where Q and Qi dont
have any conflicting queries. Second, it follows from the properties of the
learning algorithm as stated in Lemma 21 and the parameters that was set,
that the probability that any query from Qi occurs in Qj for j �= i with
probability at most ε

(2s2·�) . Using a union bound we have that the probability
that some two sets in Q1, . . . ,Qs have conflicting queries can be bounded by
s × (|Qi| × s × ε

2s2·�) < ε
2 . Therefore, the probability that Arthur rejects in

Step 1b is at most ε
2 .

In Step 1c, Arthur emulates S̃O,VO(x;ri) for a randomly chosen i and aborts if
it either does not output a transcript or the E(v) holds for the view output by
the simulator.

First, we observe that, from Merlin’s algorithm, the following two distribu-
tions are identical:

– {S̃O,VO(x;ri)(x; r)} where r1, . . . , rs,Q,Q1, . . . ,Qs are sampled according to
Merlin’s algorithm, i ← [s], O ← Õ, r ← {0, 1}T

– {S̃O,VO(x;r′)(x; r)} where r ← {0, 1}T , r′ ← {0, 1}�, and O ← RO

This implies that

Pr
i,r,O

[v ← S̃O,VO(x;ri)(x; r) : v is accepting] = p̂

where r1, . . . , rs,Q,Q1, . . . ,Qs are sampled according to Merlin’s algorithm, i ←
[s], O ← Õ, r ← {0, 1}T .

616 C. Hazay et al.

Next, we compute the probability E(v) holds, namely, the probability
S̃O,VO(x;ri) makes no query in Qj for j �= i. From Lemma 21, we have that
each query in Qj could occur in an emulation of S̃O,VO(x;ri)(x; r) with prob-
ability at most ε

(2s2·�) . Therefore, applying a union bound, we have that the
probability E(v) does not hold is at most ε

(2s2·�) · | ∪j∈[s]/i Qj | < ε
2 .

This means that the probability with which Arthur rejects in Steps 1b or 1c is
at most 1 − p̂ + ε

2 + ε
2 ≤ 1 − c + 3ε + ε = 1 − c + 4ε.

Next, we compute the probability with which it rejects in Step 1d. Recall that,
this happens if the final estimate exceeds c − 10ε. We will show that the real
probability is at most c − 11ε, which means the estimate fails with probability
at most ε and Arthur therefore rejects with probability at most ε. This means
the overall probability Arthur rejects in this case is at most 1 − c + 4ε + ε =
1 − c + 5ε. Therefore, Arthur accepts with probability at least c − 5ε and con-
cludes the proof of the Lemma.
It only remains to show that

Pr
[

v ← S̃O,V∗O(x,r1,...,rs,h)(x; r) : v is accepting ∧ E(v)
]

< c − 11ε (1)

where r1, . . . , rs,Q,Q1, . . . ,Qs is sampled according to Merlin’s algorithm, r ←
{0, 1}T , h ← H and O ← Õ. In fact, we will show this is at most ε which is less
than c − 11ε as ε was chosen to be less than c/20.
First, we consider the event coll if in the simulation by S̃ for two different rewind-
ings (α, βi) and (α, βj) it holds that h(βi) = h(βj). Since S̃ makes at most s
queries and H is a family of 2T/ε-wise independent hash functions, we have

Pr[coll] <

(
2T/ε

2

)

· 1
s

< (2T/ε)2/(2s) = ε/2.

where the last equality follows from the fact that s = 4T 2/ε3. We can now upper
bound the probability in Eq. 1 by

Pr
[

v ← S̃O,V∗O(x,r1,...,rs,h)(x; r) : v is accepting ∧ E(v)|coll
]

+ Pr[coll]

Next, we will show that the probability of the first term in the above expression
is at most ε/2. Then we can conclude the proof of completeness as it implies
Eq. 1. More formally we prove the following claim.

Claim 33

Pr
[

v ← S̃O,V∗O(x,r1,...,rs,h)(x; r) : v is accepting ∧ E(v)|coll
]

<
ε

2

Proof: We begin by defining,

Pr
[

v ← S̃O,V∗O(x,r1,...,rs,h)(x; r) : v is accepting ∧ E(v)|coll
]

= μ

Which Languages Have 4-Round Fully Black-Box Zero-Knowledge 617

where the probability is over r1, . . . , rs,Q,Q1, . . . ,Qs are sampled according to
Merlin’s algorithm, r ← {0, 1}T , h ← H and O ← Õ.
On a high-level, we will construct a cheating unbounded prover P∗ that makes
at most polynomially many queries to the oracle and convinces an honest verifier
with probability at least μ

T when the oracle is sampled according to RO. Since
we have a black-box reduction from a cheating prover to inverting the oracle,
we have from Lemma 22 and Lemma 23 that μ

T must be negligible. This means
that for sufficiently large n, it will be at most ε

2 and concludes the proof of the
Claim.

We now proceed to describe our malicious prover P∗. On input x, P∗ proceeds
as follows:

1. P∗ will internally begin an emulation of S̃ with V∗. Externally P∗ interacts
with the honest verifier. Both P∗ and the external verifier are equipped with
an oracle O.

2. Upon receiving the first message α from the external verifier, P∗ uses a
PSPACE algorithm to learn all the heavy queries made by the algorithm
S̃•,V•(x;r′)(x; r) conditioned on the verifier’s first message in the transcript
output being α where P∗ uses its oracle O to learn the responses of the
heavy queries. Let Q be the set of queries P∗ learns.

3. Next, using a PSPACE algorithm it samples ri,Qi for i ∈ [s] from Rα similar
to Merlin’s algorithm. Namely, it samples t views for V from the distribution
where it outputs α as its first message and oracle queries are consistent with
Q. Let ri be the verifier’s random tape and Qi be the query-answer pairs
made in this view. By construction, we have that Q is consistent with the
oracle O, however, Qi might not be consistent with O.

4. Next, P∗ continues the emulation of S̃ where it feeds α as V∗’s first mes-
sage and internally emulates a random oracle O′ which answers according to
Q1 ∪ · · · ∪ Qs for the queries in this set of query-answer pairs and according
to O otherwise. P∗ picks a random index j from [s] to forward the exter-
nal execution internally in the jth rewinding session. More precisely, in the
internal emulation, P∗ follows V∗ strategy of selecting i = h(β) and using
ri to generate the third message in all rewindings except the jth rewinding.
In the jth rewinding, it sends β externally to V and the forwards γ received
from V internally in that rewinding. If S̃ concludes its simulation outputting
a transcript that does not corresponds to the jth rewinding, then P∗ halts.
Otherwise, P∗ takes the fourth message δ generated in that rewinding session
and forwards externally to V.

We will now argue that the probability with which P∗ succeeds is at least μ/T .

1. Recall that, each of (ri,Qi) were uniformly sampled from Rα. Let r′ be the
external verifier’s random tape and Q′ be the set of query-answer pairs made
to generate α. By construction, we have that (r′,Q′/Q) is an element of Rα.
This means that, unless the event coll occurs (i.e. for some two rewinding
sessions i and i′, we have h(βi) = h(βi′)), the distribution of V∗’s messages

618 C. Hazay et al.

emulated internally by P ∗ is identically distributed to

{S̃O′,V∗O′
(x,r1,...,rs,h)}

where r1, . . . , rs,Q,Q1, . . . ,Qs sampled according to Merlin’s algorithm and
oracle O′ is according to the partially-fixed random oracle fixed on Q ∪ Q1 ∪
· · · ∪ Qs. This means that the probability that the simulator outputs the jth

rewinding session as the accepting transcript is 1
T .

2. Whenever E(v) occurs, it means that on the accepting transcript the honest
verifier will not query any Qi for i �= j. This means that the only queries
made by the verifier will be consistent with O.

Therefore, we have that, P∗ succeeds in convincing the external verifier with the
probability at least μ as long as its guess for the accepting session j is correct.
Therefore, the overall probability P∗ succeeds is at least μ

T . ��

Acknowledgements. The first author is supported by the BIU Center for Research
in Applied Cryptography and Cyber Security in conjunction with the Israel National
Cyber Bureau in the Prime Minister’s Office, and by ISF grant 1316/18. The sec-
ond author is supported in part by NSF Award SATC-1704788, NSF Award RI-
1703846, and AFOSR Award FA9550-18-1-0267, and in part by the Office of the Direc-
tor of National Intelligence (ODNI), Intelligence Advanced Research Projects Activity
(IARPA), via 2019-19-020700006. The views and conclusions contained herein are those
of the authors and should not be interpreted as necessarily representing the official poli-
cies, either expressed or implied, of ODNI, IARPA, or the U.S. Government. The U.S.
Government is authorized to reproduce and distribute reprints for governmental pur-
poses notwithstanding any copyright annotation therein. The third author is supported
by Google Faculty Research Grant and NSF Award CNS-1618884. The views expressed
are those of the authors and do not reflect the official policy or position of Google, the
Department of Defense, the National Science Foundation, or the U.S. Government.

References

1. Babai, L., Moran, S.: Arthur-Merlin games: a randomized proof system, and a
hierarchy of complexity classes. J. Comput. Syst. Sci. 36(2), 254–276 (1988)

2. Barak, B., Mahmoody-Ghidary, M.: Lower bounds on signatures from symmetric
primitives. In: FOCS, pp. 680–688 (2007)

3. Bellare, M., Jakobsson, M., Yung, M.: Round-optimal zero-knowledge arguments
based on any one-way function. In: Fumy, W. (ed.) EUROCRYPT 1997. LNCS,
vol. 1233, pp. 280–305. Springer, Heidelberg (1997). https://doi.org/10.1007/3-
540-69053-0 20

4. Bellare, M., Rogaway, P.: Random oracles are practical: a paradigm for designing
efficient protocols. In: CCS, pp. 62–73 (1993)

5. Bitansky, N., Kalai, Y.T., Paneth, O.: Multi-collision resistance: a paradigm for
keyless hash functions. In: STOC (2018)

6. Feige, U., Shamir, A.: Zero knowledge proofs of knowledge in two rounds. In:
Brassard, G. (ed.) CRYPTO 1989. LNCS, vol. 435, pp. 526–544. Springer, New
York (1990). https://doi.org/10.1007/0-387-34805-0 46

https://doi.org/10.1007/3-540-69053-0_20
https://doi.org/10.1007/3-540-69053-0_20
https://doi.org/10.1007/0-387-34805-0_46

Which Languages Have 4-Round Fully Black-Box Zero-Knowledge 619

7. Fleischhacker, N., Goyal, V., Jain, A.: On the existence of three round zero-
knowledge proofs. In: Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT 2018. LNCS,
vol. 10822, pp. 3–33. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-
78372-7 1

8. Goldreich, O., Krawczyk, H.: On the composition of zero-knowledge proof systems.
SIAM J. Comput. 25(1), 169–192 (1996)

9. Goldreich, O., Micali, S., Wigderson, A.: Proofs that yield nothing but their validity
for all languages in NP have zero-knowledge proof systems. J. ACM 38(3), 691–729
(1991)

10. Goldreich, O., Oren, Y.: Definitions and properties of zero-knowledge proof sys-
tems. J. Cryptol. 7(1), 1–32 (1994). https://doi.org/10.1007/BF00195207

11. Goldwasser, S., Micali, S., Rackoff, C.: The knowledge complexity of interactive
proof systems. SIAM J. Comput. 18(1), 186–208 (1989)

12. H̊astad, J., Impagliazzo, R., Levin, L.A., Luby, M.: A pseudorandom generator
from any one-way function. SIAM J. Comput. 28(4), 1364–1396 (1999)

13. Hazay, C., Venkitasubramaniam, M.: Round-optimal fully black-box zero-
knowledge arguments from one-way permutations. In: Beimel, A., Dziembowski, S.
(eds.) TCC 2018. LNCS, vol. 11239, pp. 263–285. Springer, Cham (2018). https://
doi.org/10.1007/978-3-030-03807-6 10

14. Impagliazzo, R., Rudich, S.: Limits on the provable consequences of one-way per-
mutations. In: STOC, pp. 44–61 (1989)

15. Ishai, Y., Mahmoody, M., Sahai, A.: On efficient zero-knowledge PCPs. In: Cramer,
R. (ed.) TCC 2012. LNCS, vol. 7194, pp. 151–168. Springer, Heidelberg (2012).
https://doi.org/10.1007/978-3-642-28914-9 9

16. Katz, J.: Which languages have 4-round zero-knowledge proofs? J. Cryptol. 25(1),
41–56 (2012). https://doi.org/10.1007/s00145-010-9081-y

17. Khurana, D., Ostrovsky, R., Srinivasan, A.: Round optimal black-box “commit-
and-prove”. In: Beimel, A., Dziembowski, S. (eds.) TCC 2018. LNCS, vol. 11239,
pp. 286–313. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-03807-
6 11

18. Mahmoody, M., Pass, R.: The curious case of non-interactive commitments – on
the power of black-box vs. non-black-box use of primitives. In: Safavi-Naini, R.,
Canetti, R. (eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 701–718. Springer, Hei-
delberg (2012). https://doi.org/10.1007/978-3-642-32009-5 41

19. Naor, M.: Bit commitment using pseudorandomness. J. Cryptol. 4(2), 151–158
(1991). https://doi.org/10.1007/BF00196774

20. Ostrovsky, R., Richelson, S., Scafuro, A.: Round-optimal black-box two-party
computation. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015. LNCS, vol.
9216, pp. 339–358. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-
662-48000-7 17

21. Pass, R., Wee, H.: Black-box constructions of two-party protocols from one-way
functions. In: Reingold, O. (ed.) TCC 2009. LNCS, vol. 5444, pp. 403–418. Springer,
Heidelberg (2009). https://doi.org/10.1007/978-3-642-00457-5 24

22. Reingold, O., Trevisan, L., Vadhan, S.: Notions of reducibility between crypto-
graphic primitives. In: Naor, M. (ed.) TCC 2004. LNCS, vol. 2951, pp. 1–20.
Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24638-1 1

https://doi.org/10.1007/978-3-319-78372-7_1
https://doi.org/10.1007/978-3-319-78372-7_1
https://doi.org/10.1007/BF00195207
https://doi.org/10.1007/978-3-030-03807-6_10
https://doi.org/10.1007/978-3-030-03807-6_10
https://doi.org/10.1007/978-3-642-28914-9_9
https://doi.org/10.1007/s00145-010-9081-y
https://doi.org/10.1007/978-3-030-03807-6_11
https://doi.org/10.1007/978-3-030-03807-6_11
https://doi.org/10.1007/978-3-642-32009-5_41
https://doi.org/10.1007/BF00196774
https://doi.org/10.1007/978-3-662-48000-7_17
https://doi.org/10.1007/978-3-662-48000-7_17
https://doi.org/10.1007/978-3-642-00457-5_24
https://doi.org/10.1007/978-3-540-24638-1_1

Statistical ZAPR Arguments
from Bilinear Maps

Alex Lombardi1(B), Vinod Vaikuntanathan1(B), and Daniel Wichs2,3

1 MIT, Cambridge, MA, USA
{alexjl,vinodv}@mit.edu

2 Northeastern University, Boston, MA, USA
wichs@ccs.neu.edu

3 NTT Research Inc., Palo Alto, CA, USA

Abstract. Dwork and Naor (FOCS ’00) defined ZAPs as 2-message
witness-indistinguishable proofs that are public-coin. We relax this to
ZAPs with private randomness (ZAPRs), where the verifier can use pri-
vate coins to sample the first message (independently of the statement
being proved), but the proof must remain publicly verifiable given only
the protocol transcript. In particular, ZAPRs are reusable, meaning that
the first message can be reused for multiple proofs without compromising
security.

Known constructions of ZAPs from trapdoor permutations or bilin-
ear maps are only computationally WI (and statistically sound).
Two recent results of Badrinarayanan-Fernando-Jain-Khurana-Sahai and
Goyal-Jain-Jin-Malavolta [EUROCRYPT ’20] construct the first statis-
tical ZAP arguments, which are statistically WI (and computationally
sound), from the quasi-polynomial LWE assumption. Here, we construct
statistical ZAPR arguments from the quasi-polynomial decision-linear
(DLIN) assumption on groups with a bilinear map. Our construction
relies on a combination of several tools, including the Groth-Ostrovsky-
Sahai NIZK and NIWI [EUROCRYPT ’06, CRYPTO ’06, JACM ’12],
“sometimes-binding statistically hiding commitments” [Kalai-Khurana-
Sahai, EUROCRYPT ’18] and the “MPC-in-the-head” technique [Ishai-
Kushilevitz-Ostrovsky-Sahai, STOC ’07].

A. Lombardi—Research supported in part by an NDSEG fellowship. Research sup-
ported in part by NSF Grants CNS-1350619 and CNS-1414119, and by the Defense
Advanced Research Projects Agency (DARPA) and the U.S. Army Research Office
under contracts W911NF-15-C-0226 and W911NF-15-C-0236.
V. Vaikuntanathan—Research was supported in part by NSF Grants CNS-1350619
and CNS-1414119, an NSF-BSF grant CNS-1718161, the Defense Advanced Research
Projects Agency (DARPA) and the U.S. Army Research Office under contracts
W911NF-15-C-0226 and W911NF-15-C-0236, an IBM-MIT grant and a Microsoft
Trustworthy and Robust AI grant.
D. Wichs—Research supported by NSF grants CNS-1314722, CNS-1413964, CNS-
1750795 and the Alfred P. Sloan Research Fellowship.

c© International Association for Cryptologic Research 2020
A. Canteaut and Y. Ishai (Eds.): EUROCRYPT 2020, LNCS 12107, pp. 620–641, 2020.
https://doi.org/10.1007/978-3-030-45727-3_21

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-45727-3_21&domain=pdf
https://doi.org/10.1007/978-3-030-45727-3_21

Statistical ZAPR Arguments from Bilinear Maps 621

1 Introduction

Zero-Knowledge and Witness-Indistinguishability. Zero-knowledge (ZK) proofs,
introduced in the ground-breaking paper of Goldwasser, Micali, and Rackoff
[GMR85], have found countless uses in cryptography. Unfortunately, such pro-
tocols are known to require at least 3 rounds of interaction [GO94] in the plain
model without additional setup, which is the model that we consider throughout
this work. Witness indistinguishable (WI) proofs [FS90] are a natural relaxation
of zero-knowledge, which has turned out to be extremely useful. A WI proof gen-
erated using any witnesses w for an NP statement x is indistinguishable from a
proof generated with any other possible witness w′ for x. Unlike in the case of
ZK, there are no lower bounds on the round complexity of WI proofs.

ZAPs and Non-Interactive WI (NIWI). The work of Dwork and Naor [DN00,
DN07] constructed two-message public-coin WI proofs, which they called ZAPs.
By now, we have constructions of ZAPs under any of: trapdoor permuta-
tions (factoring) [FLS99,DN00]; the decision-linear assumption (DLIN) in bilin-
ear maps [GOS06a]; indistinguishability obfuscation [BP15]; or learning with
errors [BFJ+20,GJJM20,LVW19]. In fact, we can even get completely non-
interactive WI proofs (NIWI) assuming either trapdoor permutations and a mild
complexity-theoretic derandomization assumption [BOV03] or the bilinear DLIN
assumption [GOS06a].

ZAPs and ZAPRs. The original definition of ZAPs from [DN00,DN07] required
that they are public coin, meaning that the first message from the verifier to the
prover consists of uniform randomness. The main advantage of such protocols
is that they are publicly verifiable, meaning that anybody can decide whether
the proof is accepting or rejecting by only looking at the protocol transcript.
Moreover, in such publicly verifiable protocols, the first message is inherently
reusable for multiple different proofs of different statements, and security holds
even if the cheating prover learns whether the verifier accepts or rejects various
proofs with the same first message (since this decision only depends on the public
transcript). This is in contrast to secret-coin two-message WI proofs, which may
be insecure under such reuse.

In this work, we introduce an intermediate notion that we call ZAPs with
private randomness (ZAPRs). ZAPRs allow the verifier to use secret coins to
generate the first message, but we still require the proofs to be publicly verifiable,
and we require that the first message is sampled independently of the statement
being proved. Therefore, ZAPRs have essentially the same advantages as ZAPs,
and the two can be used interchangeably in most applications.1

Statistical WI. Most prior constructions of ZAPs (and 2-message WI protocols in
general) only achieve computational WI security, often with statistical soundness
[DN00,GOS06a,BP15]. However, it is arguably more important for WI security

1 One notable exception where the “public coin” nature of ZAPs is used essentially is
for derandomization of the verifier message [BOV03]; however, this seems to require
ZAPs satisfying statistical soundness, while we focus on computationally sound,
statistically WI protocols in this work.

622 A. Lombardi et al.

to hold statistically than it is for soundness. In particular, we want privacy
to be preserved long into the future after the protocols have finished executing,
despite the potential that computational assumptions may become broken in the
long term. On the other hand, soundness is only relevant during the protocol
execution itself and, even if the underlying assumptions are broken after the
protocol finished executing, it is too late for the adversary to take advantage
of this.

Interestingly, 2-message statistically WI protocols were unknown until
recently. The first progress on this problem was only made by Kalai, Khurana and
Sahai [KKS18], who constructed a secret-coin 2-message statistical WI protocol
under standard quasi-polynomial assumptions (DDH or QR or Nth residuosity).
Unfortunately, their protocol is not publicly verifiable and the first message is
not reusable (a simple attack breaks soundness under such reuse). Even more
recently, Badrinarayanan et al. [BFJ+20] along with Goyal et al. [GJJM20]2 con-
structed the first statistical ZAP arguments under the quasi-polynomial LWE
assumption. These last two results rely on recent constructions of NIZKs from
LWE [CLW18,CCH+19,PS19] via correlation-intractable hash functions, which
in turn rely on fully homomorphic encryption/commitments from LWE. This left
open the question of whether we can achieve such statistical ZAP or ZAPR argu-
ments under other assumptions, without relying on LWE or “fully homomorphic
cryptography”.

Our Results. In this work, we construct statistical ZAPR arguments from the
quasi-polynomial decision-linear (DLIN) assumption in groups with a bilin-
ear map. More generally, we construct ZAPR arguments using three generic
ingredients:

– Non-interactive statistical ZK (NISZK) arguments in the common-reference
string (CRS) model. We need the scheme to have the additional property
that every valid CRS in the support of the setup algorithm ensures that the
resulting arguments are statistically WI. This is guaranteed, for example, if
the NISZK argument system satisfies perfect zero knowledge, as in [GOS06b,
GOS12]. One can think of this property as ensuring WI security even if the
CRS is chosen “semi-maliciously” using adversarial randomness but still from
the support of the setup algorithm.

– Non-interactive WI proofs (NIWI) in the plain model, where the WI property
is computational and soundness is statistical. As mentioned above, we know
how to construct such NIWI proofs assuming either trapdoor permutations
and a mild complexity-theoretic derandomization assumption [BOV03] or the
bilinear DLIN assumption [GOS06a].

– Sometimes binding, statistically hiding (SBSH) commitments. This is a relax-
ation of a notion introduced recently by [KKS18].3 It is a 2-round commitment
protocol where the receiver chooses a random α in the first round, and the

2 The conference paper [GJJM20] subsumes the construction of statistical ZAP argu-
ments in a preprint of Jain and Jin [JJ19].

3 The main difference is that their commitment needed to be “sometimes extractable”
whereas ours only needs to be “sometimes statistically binding”.

Statistical ZAPR Arguments from Bilinear Maps 623

sender sends a random β and uses ck = (α, β) as a commitment key to cre-
ate a commitment Com(ck,m) to his message m in the second round. Even
if the receiver chooses α maliciously, the commitment key ck is statistically
hiding with overwhelming probability over a random choice of β. However,
there is some inverse quasi-polynomial probability ε such that, even if the
sender chooses β maliciously after seeing α, the commitment key ck = (α, β)
makes the commitment statistically binding. Furthermore, the sender cannot
tell whether this rare event occurs or not.

The first two primitives can be constructed under the bilinear DLIN assump-
tion using the techniques of [GOS06a]. (We will require that the primitives sat-
isfy quasi-polynomial security and therefore need to rely on quasi-polynomial
DLIN.) The last primitive can be constructed under a variety of quasi-polynomial
assumptions such as DDH or QR or N ’th residuosity [KKS18], and we show it
can also be done under quasi-polynomial DLIN.

Our construction broadens the set of assumptions from which we can build
statistical ZAPR arguments (previously only quasi-polynomial LWE was known)
and gives an alternate approach for achieving them without relying on correlation
intractability.

What About Adaptive Soundness? We show that our statistical ZAPR argu-
ments, under the quasi-polynomial bilinear DLIN assumption, satisfy non-
adaptive soundness : for any false statement x, a (quasi-poly time) cheating
prover P ∗ cannot find proof π∗ for x that the verifier would accept. One could
potentially ask for the stronger security notion of adaptive soundness : infor-
mally, a protocol is adaptively sound if a cheating prover P ∗ cannot find any
false statement x∗ �∈ L along with an accepting proof π∗ for x∗.

As is standard for adaptive security notions, if we strengthen our assumption
to the subexponential security of bilinear DLIN, we can make use of complexity
leveraging [BB04] and obtain a statistical ZAPR argument that is adaptively
sound for statements of a priori bounded length. More formally, for every length
�(λ), there is a statistical ZAPR argument Π(�) that is adaptively sound for
statements of length �(λ).

One would ideally hope for a protocol satisfying adaptive soundness for
unbounded (poly-length) statements. However, there is some evidence that such
a protocol would be difficult to obtain. In particular, in the context of NISZK
arguments, a result of Pass [Pas16] shows that there is no black-box reduction
from the adaptive soundness of a NISZK protocol to a “falsifiable assumption”
[Nao03]. There is additionally no known non-black-box construction overcoming
this impossibility result (without relying on non-falsifiable assumptions, as in
[AF07]).

Given the similarity between NISZK arguments and statistical ZAPR argu-
ments (if anything, the latter seem harder to achieve), we consider this to be a
barrier to constructing adaptively sound statistical ZAPR arguments. However,
no formal impossibility result is known; indeed, we do not even know how to

624 A. Lombardi et al.

rule out the existence of statistical ZAP proofs (ZAPs satisfying both statistical
soundness and statistical WI) for all of NP.

1.1 Technical Overview

We now describe our construction using the above primitives. We start with a
very simple construction, which already gives a 2-message (publicly verifiable)
statistical WI protocol for NP ∩ coNP and conveys some of the intuition.

Interestingly, our warm-up protocol relies on only the polynomial hardness
of bilinear DLIN (rather than quasi-polynomial hardness), yielding a 2-message
statistical WI protocol for a broad class of languages without relying on super-
polynomial assumptions.

We then describe our more complex construction, which works for all of NP.

Warm-Up: A Simple Protocol for NP∩ coNP. As a warm up, we describe
a very simple 2-message statistical WI argument for languages L ∈ NP ∩ coNP.
In this warm-up construction, the first message depends on the statement x
being proved, but we remove this in the full construction. The construction
makes use of NISZK arguments and NIWI as above (but does not require SBSH
commitments). The main ideas behind the construction are that:

1. The prover uses the [GOS12] NISZK argument system to prove that x ∈
L, where we let the verifier chooses the CRS. This already provides “semi-
malicious” WI security. To get full WI, we need to ensure that the CRS is
valid (in the support of the setup algorithm).

2. The verifier uses a NIWI to prove that the CRS is valid. The challenge is to
only rely on WI security rather than full ZK. To do so, we let the verifier
prove that either the CRS is valid or x �∈ L.

In more detail, the protocol proceeds as follows.

Verifier → Prover: The verifier samples a CRS of a NISZK argument. He then
uses a NIWI to prove that either the CRS is valid (i.e., in the support of the
setup algorithm, using the random coins of the setup algorithm as a witness)
or x �∈ L. The first message consists of the CRS along with the NIWI proof.

Prover → Verifier: The prover verifies the NIWI proof (aborting if it does not
accept) and then uses the NISZK argument with the received CRS to prove
that x ∈ L.

For x ∈ L, the statistical WI security of the ZAPR follows from the statistical
soundness of the NIWI, which ensures that the CRS is valid, together with the
statistical WI of the NISZK, which holds for all valid CRS.

For x �∈ L, the computational soundness of the ZAPR follows by first relying
on the computational WI security of the NIWI to argue that the prover cannot
notice if we modify the NIWI proof to use the witness for x �∈ L instead of
the randomness of the setup algorithm. With this change, we can then rely on
the computational soundness of the NISZK argument to argue that the prover
cannot produced a valid NISZK proof for x ∈ L.

Statistical ZAPR Arguments from Bilinear Maps 625

The Full Construction. The full construction is more involved. In addition
to the three primitives mentioned previously (NISZK, NIWI, and SBSH com-
mitments), we also rely on an additional information-theoretic tool that we now
describe.

Locally-ZK Proofs (LZK) via “MPC in the Head”. We introduce a new tool
called locally ZK proofs (LZK). An LZK proof consists of a probabilistic encod-
ing that maps a witness w for a statement x into a proof string π ∈ Σ� for
some alphabet Σ. There is also a polynomial size set {S1, . . . , SQ} of “queries”
Si ⊆ [�] and a verification algorithm Verify(x, i, π[Si]) that locally verifies that
π is consistent on the positions Si. The proof satisfies two statistical security
properties:

– Global Soundness: If there exists some proof π ∈ Σ� such that Verify(x, i,
π[Si]) = 1 for all i ∈ [Q] then x ∈ L.

– t-Local-ZK: For any t queries Sa1 , . . . , Sat
the values π[Sa1], . . . , π[Sat

] can be
simulated without knowing the witness.

We can think of LZK proofs as a relaxation of ZK-PCPs [KPT97] where the
verifier needs to make all the queries to be convinced of soundness but ZK holds
locally. We construct such LZK proofs for any Q and t < Q/2 using the “MPC
in the head” technique [IKOS07]. In particular, to construct the proof π, the
encoding algorithm runs a (semi-honest information-theoretic) MPC protocol
with Q parties and security against t corruptions. Each party has as input a
secret share (in an additive secret sharing) of the witness w and the MPC outputs
1 to each party iff the shares add up to a valid witness for x. The proof π is
of length � = Q + Q(Q − 1)/2 and contains the view of each party i ∈ [Q] in
the protocol, as well as the contents of the Q(Q − 1)/2 communication channels
between each pair of parties {i, j}. Each query set Si contains locations that
correspond to the view of party i and all of the communication channels that
involve party i. The verification algorithm for i checks that the view of the party
i and the communication channels involving party i correspond to an honest
execution of the protocol and that the output of the protocol is 1. It is easy to
check that this satisfies global soundness and t-local ZK.

ZAPR Construction. We now describe our ZAPR construction using NIWIs,
NISZKs, sometimes binding statistically hiding commitments, and LZK proofs.
To rely on quasi-polynomial assumptions, we choose the parameter Q of the
LZK proof to be poly(log λ).

Verifier → Prover: The verifier samples 3Q CRS’s of the NISZK. We interpret
this as Q bundles of 3 CRS’s each. The verifier then gives a NIWI proof
that, in each bundle, at least 2 out of 3 of the CRS’s are valid. He does
so by choosing a random 2 of the 3 CRS’s in each bundle and using the
corresponding randomness of the setup algorithm for them as the witness.
Lastly, the verifier also sends the first message α of the SBSH commitment
scheme.

626 A. Lombardi et al.

Prover → Verifier: The prover verifier the NIWI proofs and aborts if any
of them do not accept. The prover then samples an LZK proof π ∈ Σ� for
the statement x ∈ L. It samples the SBSH commitment component β and
uses the commitment key ck = (α, β) to commit to each of the � blocks of
π separately. Lastly, it chooses a random CRS in each bundle i ∈ [Q] and
uses it to give an NISZK argument showing that the LZK verifier outputs
Verify(x, i, π[Si]) = 1, where π[Si] is contained in the committed values. It
sends back β, all the commitments, and the NISZK arguments.

We first argue that the above construction is statistically WI. By the statisti-
cal hiding of the commitment scheme, the commitments do not reveal anything
about the committed values. By the statistical soundness of the NIWI, we know
that at least 2 of the 3 CRS’s in each bundle are valid. Since the prover chooses
a random CRS in each bundle, on expectation at least 2Q/3 of the chosen CRS’s
are valid and, by Chernoff, at least Q/2 of them are valid with overwhelmingly
probability. The NISZK arguments for the valid CRS’s are statistically WI and
hence do not reveal any information about the committed values. The remaining
t < Q/2 NISZK arguments may reveal some information about the committed
values π[Si]. But, by the locally-ZK property of the proof π, this does not reveal
anything about w.

Next, we argue that the construction is computationally sound. Assume that
the adversarial prover succeeds in proving a false statement with non-negligible
probability δ. The commitment scheme ensures that there is a ε probability that
ck = (α, β) is binding and, because the prover cannot tell whether this occurred
or not, the probability that (1) the commitment is binding and (2) the prover
succeeds in proving a false statement is ε · δ, which is inverse quasi-polynomial.
Next, we rely on the (quasi-polynomial) computational WI security of the NIWI
argument to argue that the prover cannot learn which 2 of the 3 CRS’s in each
bundle had their setup randomness used as a witness in the NIWI. Therefore,
even if we condition on (1) and (2), there is an inverse quasi-polynomial (1/3)Q

chance that (3) in each bundle, the prover chooses the one CRS whose setup
randomness was not used in the NIWI. Altogether there is an inverse quasi-poly
probability of (1), (2) and (3) occurring simultaneously. But if this happens,
then (as guaranteed by the global soundness of the LZK proof) at least one of
the statements proved via the NISZK is false and therefore the prover breaks
the (quasi-polynomial) soundness of the NISZK arguments.

In our presentation, we assume quasi-polynomial hardness of the underlying
primitives, but only ensure that the statistical WI holds with a quasi-polynomial
error. We could analogously assume sub-exponential hardness and ensure that
statistical WI holds with a sub-exponentially small error.

1.2 Organization

The rest of the paper is organized as follows. In Sect. 2, we describe basic pre-
liminaries on witness indistinguishability and ZAPRs. In Sect. 3, we introduce
and discuss some of the main tools used in our construction: NISZK arguments,

Statistical ZAPR Arguments from Bilinear Maps 627

locally zero knowledge proofs, and sometimes-binding statistically hiding com-
mitments. Finally, in Sect. 4, we present our construction of statistical ZAPR
arguments from these building blocks.

2 Preliminaries

We say that a function μ(λ) is negligible if μ(λ) = O(λ−c) for every constant
c, and that two distribution ensembles X = {Xλ} and Y = {Yλ} are computa-
tionally indistinguishable (X ≈c Y) if for all polynomial-sized circuit ensembles
{Aλ},

∣
∣
∣ Pr [Aλ(Xλ) = 1] − Pr [Aλ(Yλ) = 1]

∣
∣
∣ = negl(λ).

More generally, for any function δ(λ), we say that X and Y are δ-computationally
indistinguishable (X ≈c,δ Y) if for all polynomial-sized circuit ensembles {Aλ},

∣
∣
∣ Pr [Aλ(Xλ) = 1] − Pr [Aλ(Yλ) = 1]

∣
∣
∣ = O(δ(λ)).

2.1 Witness Indistinguishable Arguments

Definition 1. A witness indistinguishable arugment system Π for an NP relation
R consists of ppt interactive algorithms (P, V) with the following syntax.

– P (x,w) is an interactive algorithm that takes as input an instance x and
witness w that (x,w) ∈ R.

– V (x) is an interactive algorithm that takes as input an instance x. At the
end of an interaction, it outputs a bit b. If b = 1, we say that V accepts, and
otherwise we say that V rejects.

The proof system Π must satisfy the following requirements for every polynomial
function n = n(λ). Recall that L(R) denotes the language {x : ∃w s.t. (x,w) ∈
R} and Rn denotes the set R ∩ ({0, 1}n × {0, 1}∗).

– Completeness. For every (x,w) ∈ R, it holds with probability 1 that V
accepts at the end of an interaction 〈P (x,w), V (x)〉.

– Soundness. For every
{

xn(λ) ∈ {0, 1}n(λ)\L(R)
}

λ
and every polynomial size

P ∗ = {P ∗
λ}, there is a negligible function ν such that V accepts with probability

ν(λ) at the end of an interaction 〈P ∗(x), V (x)〉.
– Witness Indistinguishability. For every ppt (malicious) verifier V ∗ and

every ensemble
{

(xn, (w0,n, w1,n), zn) : (xn, w0,n), (xn, w1,n) ∈ Rn

}

λ
, the dis-

tribution ensembles

viewV ∗〈P (x,w0), V ∗(x,w0, w1, z)〉
and

viewV ∗〈P (x,w1), V ∗(x,w0, w1, z)〉
are computationally indistinguishable.

628 A. Lombardi et al.

In the work, we focus on obtaining two message WI arguments for NP. A (two
message) WI argument system can also satisfy various stronger properties. We
describe the variants relevant to this work below.

– Public Verification: A WI argument system is publicly verifiable if the
verifier’s accept/reject algorithm is an efficiently computable function of the
transcript (independent of the verifier’s internal state).

– Delayed Input: A two-message WI argument system is delayed input if the
(honestly sampled) verifier message α ← V (1λ, x) = V (1λ, 1n) depends only
on the length n = |x|.

– Statistical Soundness. For every
{

xn ∈ {0, 1}n\L(R)
}

and every
(unbounded) P ∗ = {P ∗

λ}, there is a negligible function ν such that V accepts
with probability ν(λ) at the end of an interaction 〈P ∗(x), V (x)〉.

– Statistical Witness Indistinguishability. For every polynomial func-
tion n(λ), every (unbounded) (malicious) verifier V ∗, and every ensemble
{

(xn, (w0,n, w1,n), zn) : (xn, w0,n), (xn, w1,n) ∈ Rn

}

λ
, the distribution ensem-

bles
viewV ∗〈P (x,w0), V ∗(x,w0, w1, z)〉

and
viewV ∗〈P (x,w1), V ∗(x,w0, w1, z)〉

are statistically indistinguishable.

Our goal is to construct a 2-message argument system that is publicly verifiable,
delayed input, and satisfies statistical witness indistinguishability. We call such
protocols statistical ZAPR arguments.

Definition 2 (Statistical ZAPR Arguments). A 2-message argument sys-
tem (P, V) is a statistical ZAPR argument system if it is a delayed-input, publicly
verifiable protocol satisfying statistical witness indistinguishability.

As a tool towards our construction, we make use of another variant of WI
arguments: non-interactive witness indistinguishable proofs (NIWIs).

Definition 3 (NIWI Proofs). A one-message proof system is a non-interactive
witness indistinguishable proof system if it satisfies statistical soundness and (com-
putational) witness indistinguishability.

By [GOS06a], we know that NIWIs exist based on the decision linear assump-
tion on groups with bilinear maps.

Lemma 1 ([GOS06a]). Under the DLIN assumption, there exists a NIWI proof
system for NP.

Statistical ZAPR Arguments from Bilinear Maps 629

3 Tools for the Main Construction

3.1 Non-Interactive Statistical Zero Knowledge Arguments

We make use of non-interactive statistical zero knowledge arguments in the
common reference string model, as constructed by [GOS06b] under the DLIN
assumption on bilinear groups. Moreover, we make use of the fact that the GOS
protocol satisfies statistical witness indistinguishability in the presence of semi-
malicious setup, which we describe below.

Definition 4. A non-interactive statistical zero knowledge (NISZK) argument sys-
tem Π for an NP relation R consists of three ppt algorithms (Setup, P, V) with
the following syntax.

– Setup(1n, 1λ) takes as input a statement length n and a security parameter λ.
It outputs a common reference string crs.

– P (crs, x, w) takes as input the common reference string, as well as x and w
such that (x,w) ∈ R. It outputs a proof π.

– V (crs, x, π) takes as input the common reference string, a statement x, and a
proof π. It outputs a bit b. If b = 1, we say that V accepts, and otherwise we
say that V rejects.

The proof system Π must satisfy the following requirements for every polynomial
function n = n(λ).

– Completeness. For every (x,w) ∈ R, it holds with probability 1 that V (crs, x,
π) = 1 in the probability space defined by sampling crs ← Setup(1|x|, 1λ) and
π ← P (crs, x, w).

– (Non-adaptive) Soundness. For every
{

xn ∈ {0, 1}n\L(R)
}

and every
polynomial size P ∗ = {P ∗

λ}, there is a negligible function ν such that

Pr
crs←Setup(1n,1λ)

π←P ∗
λ (crs)

[

V (crs, xn, π) = 1
] ≤ ν(λ).

– Statistical Zero Knowledge. There is a ppt simulator Sim such that for
every ensemble

{

(xn, wn) ∈ Rn

}

, the distribution ensembles
{(

crsλ,n, P (crsλ,n, xn, wn)
)}

λ

and
{

Sim(xn, 1λ)
}

λ

are statistically indistinguishable in the probability space defined by sampling
crsλ,n ← Setup(1n, 1λ) (and evaluating P and Sim with independent and uni-
form randomness).

In this work, we consider a strengthening of statistical zero knowledge4 to a
setting where the CRS is chosen in a semi-malicious way.
4 Technically, it is only a strengthening of witness indistinguishability.

630 A. Lombardi et al.

Definition 5 (Semi-Malicious StatisticalWitness Indistinguishability).
We say that a NISZK argument system (Setup, P, V) is statistically wit-
ness indistinguishable in the presence of semi-malicious setup if for every
polynomial function n(λ) and every ensemble

{

(crsλ,n, xn, (w0,n, w1,n), zn) :

crsλ,n ∈ Supp(Setup(1λ, 1n)) and (xn, w0,n), (xn, w1,n) ∈ Rn

}

λ
, the distribution

ensembles {(

crsλ,n, P (crsn, xn, w0,n)
)

, zn

}

λ

and {(

crsλ,n, P (crsn, xn, w1,n)
)

, zn

}

λ

are statistically indistinguishable.

In other words, witness indistinguishability is guaranteed for any CRS that
can be output by the Setup(1λ, 1n) algorithm. Moreover, we have the following:

Remark 1. Any NISZK argument system satisfying perfect zero knowledge (or
perfect WI) satisfies semi-malicious statistical (and even perfect) WI.

Therefore, we obtain the following conclusion from [GOS12]:

Lemma 2. Under the DLIN assumption on groups with a bilinear map, there
exists an NISZK argument system for NP satisfying semi-malicious statistical
WI.

3.2 Locally Zero Knowledge Proofs

In this section, we define “locally zero knowledge proofs”, which one can think
of as a weak kind of zero-knowledge PCP [KPT97] that captures the “MPC in
the head” paradigm [IKOS07].

Definition 6 (t-Local Zero Knowledge Proof). For an NP language L (with
witness relation R), a t-local zero-knowledge proof lzkp = (Prove,Verify) is a pair
of PPT algorithms with the following syntax.

– Prove(x,w) takes as input a statement x ∈ L and witness w ∈ Rx; it outputs
a proof π = (π1, . . . , π�) ∈ Σ� for some alphabet Σ.

– Queries = {S1, . . . , SQ} ⊂ {0, 1}[�] is a set of “allowable queries”; we require
that it is possible to enumerate Queries in time poly(n,Q).

– Verify(x, i, πSi
) takes as input a statement x, index i (describing some set

Si ∈ Queries), and string πSi
∈ Σ|Si|; it outputs a bit b ∈ {0, 1}.

We say that lzkp has Q = |Queries| possible queries and block length Σ.
Moreover, we require that the following properties hold.

– Completeness: for any valid pair (x,w) and any index i ∈ [Q], we have
that Verify(x, i, πSi

) = 1 with probability 1 over the randomness of π ←
Prove(x,w).

Statistical ZAPR Arguments from Bilinear Maps 631

– Soundness: for any x �∈ L and any proof π, there exists some index i ∈ Q
such that Verify(x, i, πSi

) = 0.
– Perfect Zero Knowledge for t Queries: there exists a PPT simula-

tor Sim(x, i1, . . . , it) → π̃S∗ such that for every valid pair (x,w) and every
collection of t indices i1, . . . , it ∈ [Q], the distribution on π̃S∗ is identical
to the marginal distribution of an honestly generated proof π on the subset
S∗ = Si1 ∪ . . . ∪ Sit

.

Lemma 3. For any t > 0, there exists a t-local zero knowledge proof for Circuit-
SAT with Q = 2t + 1 possible queries.

Proof (sketch). Let Π denote an MPC protocol for distributed Circuit-SAT (that
is, the functionality (w1, . . . , wT) �→ C(

⊕
wi) for an arbitrary input circuit C) for

T = 2t+1 parties satisfying information theoretic security against a collection of
t semi-honest parties. Following [IKOS07], we define the following proof system:

– Prove(x,w): interpret x = C as a circuit; set (wi)T
i=1 to be a T -out-of-T secret

sharing of w, and let π =
(

(viewi)T
i=1, (τij)i�=j

)

denote the following informa-
tion regarding an honest execution of Π (evaluating C(

⊕
wi)): viewi denotes

the view of party i in this execution, and τij denotes the communication
transcript between party i and party j.

– Queries: for every i ∈ [T], we define the set Si ⊂ [T +
(
T
2

)

] to be {viewi} ∪
{τi,j}T

j=1.
– Verify(x, i, πSi

) outputs 1 if and only if (for Si = {viewi} ∪ {τi,j}T
j=1):

• viewi is internally consistent and outputs 1.
• For every j, viewi is consistent with τi,j .

It was implicitly shown in [IKOS07] that this protocol satisfies the desired prop-
erties. Completeness holds assuming that Π is perfectly complete; soundness
holds because if x �∈ L, then there is no valid witness for x, and hence any
consistent collection of views and transcripts

(

(viewi)T
i=1, (τij)i�=j

)

for Π must
correspond to a global execution of Π outputting 0. Perfect zero knowledge for
t joint queries holds by the perfect security of Π against t semi-honest parties.

3.3 Sometimes-Binding Statistically Hiding (SBSH) Commitments

For simplicity, we focus on two-message commitment schemes with the following
form:

– Key Agreement: The sender and receiver execute a two-message protocol
in which they publicly agree on a commitment key ck (the transcript of the
protocol). We require that the sender message be public-coin5 (i.e., it simply
outputs a string β). In other words,

5 Equivalently, we require that the commitment scheme is hiding even given a “partial
opening”, i.e., the randomness used in this phase.

632 A. Lombardi et al.

• The receiver R(ρ) → α outputs a message α using randomness ρ.
• The (honest) sender S samples and sends a uniformly random string

β ← {0, 1}�.
• The commitment key is defined to be ck = (α, β).

– Non-Interactive Commitment: The sender commits to a message m using
a (non-interactive) PPT algorithm Com(ck,m).

We call these schemes “non-interactive commitment schemes with key agree-
ment.” We will denote a transcript of this commitment scheme (α, β, com).

We say that a commitment key ck is binding if the non-interactive commit-
ment scheme Com with hardwired key ck is perfectly binding.

Definition 7 (Sometimes-Binding Statistically Hiding (SBSH) Com-
mitments). A non-interactive commitment scheme with key agreement (R,S,
Com) is a sometimes-binding statistically hiding (SBSH) commitment scheme with
parameters (ε, δ) if the following three properties hold.

– Statistical hiding: for any malicious PPT receiver R∗ (using randomness ρ
and outputting message α), the view of R∗ in an interaction with an honest
sender statistically hides the sender’s message m; that is,

{(ρ, α, β,Com(ck, 0))} ≈s {(ρ, α, β,Com(ck, 1))}
for α = R∗(ρ), β ← {0, 1}�, and ck = (α, β).

– Sometimes statistical binding: for any malicious PPT sender S∗(α) →
(β∗, st) for the key agreement phase, and for any PPT distinguisher D(st) →
b ∈ {0, 1}, we have that

Pr[D(st) = 1 ∧ ck := (α, β∗) is binding] = ε · Pr[D(st) = 1] ± δ · negl(λ),

where the probability is taken over α ← R(1λ), (β∗, st) ← S∗(α), and the
randomness of D.

In other words, it is a statistically hiding commitment scheme such that, even
for malicious PPT senders S∗, the commitment key ck is binding with probabil-
ity roughly ε, and moreover any event that S∗ produces (with sufficiently high
probability) occurs “independently” of the event that ck is binding.

Constructions. The works [KKS18,BFJ+20,GJJM20] construct variants of
SBSH commitment schemes (for ε and δ both inverse quasi-polynomial in
the security parameter) from (quasi-polynomially secure) 2-message OT sat-
isfying IND-based security against PPT senders and statistical sender privacy
against unbounded receivers.6 This leads to instantiations based on DDH [NP05],
QR/DCR [HK12] and LWE [BD18]. In fact, the [NP05] oblivious transfer scheme
can be generalized to a variant that relies on the DLIN assumption (rather
than DDH) on (not necessarily bilinear) cryptographic groups, which then yields
SBSH commitments based on DLIN as well.
6 All three of these works use slightly different security definitions than we use here,

but the [BFJ+20,GJJM20] instantiations can easily be shown to satisfy our variant
of the security property.

Statistical ZAPR Arguments from Bilinear Maps 633

Extending Naor-Pinkas OT to DLIN

Definition 8 (DLIN [BBS04]). Let G a group of prime order q with generator
g (all parametrized by the security parameter λ), where the tuple (G, g, q) is
public. The DLIN assumption states that

(ga, gb, gc, gar1 , gar2 , gc(r1+r2)) : a, b, c, r1, r2 ← Zq

is computationally indistinguishable from a uniformly random distribution over
G

6.

It will be convenient for us to work with “matrix in the exponent” notation,
where for a matrix M ∈ Z

n×m
q we let gM denote the matrix of group elements

(gMi,j). We define the set D of matrices

D =
{[

a 0 c
0 b c

]

: a, b, c ∈ Z
∗
q

}

Then the DLIN assumption can be equivalently written as
(

(gD, grD) : D ← D, r ← Z
2
q

) ≈c

(

(gD, gu) : D ← D,u ← Z
3
q)

)

We also define gD to be the set {gD : D ∈ D}. Membership in gD can be
checked efficiently.

OT Construction and Security. We define a 2-round oblivious transfer scheme
(OT1,OT2,Rec) where the receiver computes (ot1, st) ← OT1(b) with the choice
bit b ∈ {0, 1}, the sender computes ot2 ← OT2(ot1,m0,m1) and receiver recovers
mb = Rec(ot2, st). We define the functions as follows:

– ot1 ← OT1(b): Sample D ← D, r ← Z
2
q and define vb = rD, v1−b = (0, 0, 1)−

vb. Output ot1 = (gD, gv0 , gv1), st = (b, r).
– OT2(ot1,m0,m1): Parse ot1 = (gD, gv0 , gv1) and m0,m1 ∈ G. Check that

gD ∈ gD and that gv0+v1 = g(0,0,1); if not then abort. Sample a0 ← Z
3
q,a1 ←

Z
3
q and output ot2 = (gDaT

0 , gDaT
1 , gv0·aT

0 · m0, g
v1·aT

1 · m1).
– Rec(ot2, st): Parse ot2 = (gz0 , gz1 , h0, h1) and st = (b, r). Output hb · g−r·zT

b .

We now show that this scheme satisfies the same properties as Naor-Pinkas
OT.

– Correctness: For any b,m0,m1 it holds that if (ot1, st) ← OT1(b), ot2 ←
OT2(ot1,m0,m1),m = Rec(ot2, st) then m = mb with probability 1.
Proof. This is because, using the notation of the scheme, we have gvb = grD,
gzb = gDaT

b and hence

hb = gvb·aT
b · mb = grD·aT

b · mb = gr·z
T
b · mb.

So hb · g−r·zT
b = mb.

634 A. Lombardi et al.

– Computational Receiver Security: We have

(ot1 : (ot1, st) ← OT1(0)) ≈ (ot1 : (ot1, st) ← OT1(1)).

Proof. This follows from DLIN. In particular, we can modify the OT1 algo-
rithm to sample vb ← Z

3
q instead of vb ← rD and the distribution of

ot1 is indistinguishable. But in this case the bit b is statistically hidden
since in either case the vectors v0,v1 are just uniformly random subject to
v0 + v1 = (0, 0, 1).

– Statistical Sender Security: There exists an inefficient function Extract such
that, for any ot1, if b = Extract(ot1) then OT2(ot1,m0,m1) statistically hides
m1−b: for any m0,m1,m

′
0,m

′
1 such that mb = m′

b we have OT2(ot1,m0,m1)
is statistically close to OT2(ot1,m′

0,m
′
1).

Proof. We define Extract(ot1 = (gD, gv0 , gv1)) to output 0 if v0 is in the
row-space of D and 1 otherwise. If it does not hold that gD ∈ gD and that
gv0+v1 = g(0,0,1) then OT2(ot1, . . .) aborts and we are done. Otherwise, at
most one of v0,v1 is in the row-space of D since (0, 0, 1) is not in the row
space. Therefore v1−b is not in the row-space of D. But this means that
gDaT

1−b , gv1−b·aT
1−b are mutually random and independent over the choice of

a1−b and therefore the message m1−b is perfectly hidden.

This completes the construction of statistically sender private (2-message) OT
from DLIN. Moreover, quasi-polynomial security of the scheme is inherited from
the (quasi-polynomial) DLIN assumption, so we additionally obtain SBSH com-
mitments from quasi-polynomial DLIN.

SBSH Commitments via NIWI. In this section, we present another con-
struction of SBSH commitments from bilinear DLIN using a proof technique
similar to that of our main construction in Sect. 4.

The OT-based commitment schemes above satisfy a stronger security prop-
erty than “sometimes statistical binding”: informally, they are “sometimes
extractable”. We write down a construction that does not involve any extrac-
tion using two generic building blocks (both instantiable based on DLIN): NIWI
proofs along with a slight strengthening of dual-mode commitments in the CRS
model.

Definition 9 (Semi-Malicious Secure Dual-Mode Commitment). A
non-interactive commitment scheme Com(ck,m) in the CRS model is a semi-
malicious secure dual-mode commitment if there are two additional algorithms
(BindingSetup,HidingSetup) satisfying the following properties.

– BindingSetup(1λ) → ck and HidingSetup(1λ) → ck both output a commitment
key.

– Key Indistinguishability: Commitment keys output by BindingSetup and
HidingSetup are computationally indistinguishable.

Statistical ZAPR Arguments from Bilinear Maps 635

– Honest Binding: (BindingSetup,Com) is a statistically binding commitment
scheme in the CRS model.

– Semi-Malicious Hiding: For any commitment key ck in the support of
HidingSetup, the commitment distribution Com(ck,m) (with ck hardwired)
statistically hides the message m.

That is, a semi-malicious secure dual-mode commitment satisfies the property
that commitments using semi-maliciously chosen “hiding keys” still statistically
hide the underlying message. We say that a key ck “is a hiding key” if ck is in
the support of HidingSetup.

Remark 2. The [GOS06a] homomorphic commitment scheme based on DLIN is
a semi-malicious secure dual-mode commitment scheme. It was explicitly shown
to be a dual-mode commitment, but by inspection, we see that it is statistically
hiding for an arbitrary (hardwired) key from the “hiding” distribution.

We now show how to construct a sometimes-binding statistically hiding com-
mitment scheme using NIWI proofs and a semi-malicious secure dual-mode com-
mitment; this in particular yields such a scheme based on the DLIN assump-
tion on bilinear groups. Our construction is inspired by the construction of
[KKS18,BFJ+20,GJJM20].

Construction 1. Let (BindingSetup,HidingSetup,Com) denote a semi-malicious
secure dual-mode commitment scheme, and let (niwi.Prove, niwi.Verify) denote
a NIWI proof system. We then define the following two-message commitment
scheme:

– Receiver message: for � = log(1ε), the receiver samples a random string
r ← {0, 1}� along with � pairs of commitment keys {cki,b}i∈[�],b∈{0,1}, such
that

• cki,ri
is sampled using BindingSetup(1λ); and

• cki,1−ri
is sampled using HidingSetup(1λ) with randomness tki,1−ri

.
The receiver then outputs {cki,b}i∈[�],b∈{0,1} along with a NIWI proof that for
every i ∈ [�], at least one out of (cki,0, cki,1) is a hiding key (using witness
tki,1−ri

)).
– Sender Key Selection: the sender first verifies the NIWI above and aborts

if the check fails. The sender then samples and outputs a uniformly random
string s ← {0, 1}�.

– Non-Interactive Commitment: to commit to a bit m, the sender sam-
ples 2� uniformly random bits {σi,b}. The sender then outputs {comi,b ←
Com(cki,b, ρi,b)} along with c := m ⊕ ⊕

i σi,si
.

It now remains to show that this commitment scheme satisfies the desired
security properties.

– Statistical hiding: without loss of generality, consider a fixed first message
({cki,b}, π) sent by a (potentially malicious) receiver R∗. In order for hiding to
be broken, this proof π must be accepted by the sender S, so by the soundness

636 A. Lombardi et al.

of our NIWI, we know that there exists a string r∗ such that cki,1−r∗
i

is in
the support of HidingSetup(1λ). Now, we note that if the sender S picks
any s �= r∗, the commitment ({comi,b}, c) statistically hides the underlying
message m; this is because for any i such that si �= r∗

i , we have that comi,si

statistically hides σi,si
and hence c = m⊕⊕

σi,si
statistically hides m. Since S

only picks s = r∗ with probability 2−� = ε, we conclude that this commitment
is statistically hiding.

– Sometimes statistical binding: we claim that (ε, δ) sometimes statistical
binding holds assuming (1) the dual-mode commitment satisfies δ ·negl(λ)-key
indistinguishability, and (2) the NIWI is δ ·negl(λ)-witness indistinguishable.
Equivalently, we want to show that the following two distributions are δ ·
negl(λ)-computationally indistinguishable for any malicious PPT sender S∗:

{(α, S∗(α), r)} ≈c,δ·negl(λ) {(α, S∗(α), r′)}

where r, r′ ← {0, 1}� are i.i.d. and α is computed using r. To prove the above
indistinguishability, consider the following sequence of hybrids.

• H0: This is the LHS, {(α, S∗(α), r)}.
• H1: Same as H0, except that the receiver samples cki,ri

using HidingSetup
(instead of BindingSetup). In other words, in H1, all keys cki,b are sampled
from HidingSetup. We have that H0 ≈c,δ·negl(λ) H1 by the key indistin-
guishability of the dual-mode commitment.

• H2: Same as H1, except that the proof π is sampled using a random
�-tuple of witnesses (as opposed to witnesses {tki,1−ri

}). We have that
H1 ≈c,δ·negl(λ) H2 by the witness indistinguishability of the NIWI.

• H3: Same as H2, except that r is replaced by r′ in the third slot. We
have that H2 ≡ H3 because r and r′ are i.i.d. conditioned on (α, S∗(α))
as computed in H2/H3.

• H4: Same as H3, except that π is sampled using witnesses {tki,1−ri
};

indistinguishability is the same as H1/H2.
• H5: Same as H4, except that the receiver samples cki,ri

using BindingSetup
(instead of HidingSetup); indistinguishability is the same as H0/H1. This
is the RHS.

This completes the proof of indistinguishability.

4 Construction of Statistical ZAPR Arguments

We now give our construction of statistical ZAPR arguments, which are proven
sound under the quasi-polynomial DLIN assumption in bilinear groups.

4.1 Description

Our construction uses the following ingredients. Let ε = ε(λ) denote a fixed
negligible function.

Statistical ZAPR Arguments from Bilinear Maps 637

– Let lzkp = (lzkp.Prove, lzkp.Queries, lzkp.Verify) denote a t-local zero knowl-
edge proof with Q = 2t + 1 = log3(

1
ε).

– Let sbsh = (sbsh.R, sbsh.S, sbsh.Com) denote a SBSH commitment scheme
with parameters (ε, ε2).

– Let niwi = (niwi.Prove, niwi.Verify) denote a NIWI proof system for NP that
satisfies ε(λ)3 · negl(λ)-witness indistinguishability.

– Let niszk = (niszk.Setup, niszk.Prove, niszk.Verify) denote a NISZK argument
system with ε(λ)3 ·negl(λ) (computational) soundness error along with semi-
malicious statistical witness indistinguishability.

Construction 2. With niwi, niszk, lzkp, sbsh as above, we define the following
two-message argument system zapr = (zapr.V, zapr.Prove, zapr.Verify) as follows

– Verifier message: zapr.V (1n, 1λ) does the following.
• Sample a commitment first message α ← sbsh.R(1λ).
• Sample 3Q common reference strings crsi,a ← niszk.Setup(1n, 1λ; ρi,a)

(using randomness ρi,a).
• Sample a random string r ← {0, 1, 2}Q.
• Sample a proof

niwi.π ← niwi.Prove(ϕ, {crsi,a}i∈[Q],a∈[3], {ρi,ri+1, ρi,ri+2}i∈[Q]),

where sums ri + 1, ri + 2 are computed mod 3, and ϕ({crsi,a}i∈[t],a∈[3])
denotes the statement “for every i ∈ [Q], at least two out of {crsi,0, crsi,1,
crsi,2} are in the support of niszk.Setup(1n, 1λ).

• Output (α, {crsi,a}i∈[Q],a∈[3], niwi.π).
– Prover message: Given a verifier message (α, {crsi,a}i∈[Q],a∈[3], niwi.π) and

an instance-witness pair (x,w) ∈ RL, zapr.Prove does the following.
• Verify the proof niwi.π with respect to {crsi,a}i∈[Q],a∈[3] and abort if the

check fails.
• Sample a (uniformly random) sbsh second message β and set ck = (α, β).
• Sample a locally zero knowledge proof

(lzkp.π1, . . . , lzkp.π�) ← lzkp.Prove(x,w).

• For j ∈ [�], sample commitments comj ← sbsh.Com(ck, lzkp.πj);σj) to
the symbol lzkp.πj.

• Sample a random string s ← {0, 1, 2}Q.
• For every i ∈ [Q] sample a NISZK proof

niszk.πi ← niszk.Prove(crsi,si
, ψ, i, ck, comSi

, σSi
)

for the statement ψ(ck, i, comSi
) denoting “comSi

is a commitment (under
ck) to a string πSi

such that lzkp.Verify(x, i, πSi
) outputs 1.”

• Output (β, {comj}j∈[�], s, {niszk.πi}i∈[Q]).

638 A. Lombardi et al.

– Proof Verification: given a statement x and transcript

τ =
(

α, {crsi,a}i∈[Q],a∈[3], niwi.π, β, {comj}j∈[�], s, {niszk.πi}i∈[Q]

)

,

zapr.Verify does the following: for every i ∈ [Q], verify the proof niszk.πi using
crsi,si

; output 1 if all Q proofs are accepted.

We now proceed to prove the following theorem about Construction 2.

Theorem 3. If lzkp, sbsh, niwi, and niszk satisfy the hypotheses stated in
Sect. 4.1, then zapr is a ZAPR argument system with εΩ(1) (computational)
soundness error and εΩ(1)-statistical witness indistinguishability.

This has the following implication for bilinear DLIN-based statistical ZAPR
arguments.

Corollary 1. Under the bilinear DLIN assumption (ruling out inverse quasi-
polynomial advantage), there exist statistical ZAPR arguments for NP with
inverse quasi-polynomial soundness error and satisfying inverse quasi-polynomial
statistical indistinguishability.

Under the (inverse) subexponential bilinear DLIN assumption, there exist
statistical ZAPR arguments for NP with inverse subexponential soundness error
and satisfying inverse subexponential statistical indistinguishability.

4.2 Proof of Theorem 3

Completeness of our protocol follows from the completeness of niwi, niszk, lzkp,
and the correctness of sbsh. Moreover, the protocol is delayed input and publicly
verifiable by construction. In the rest of this section, we prove that the protocol
is computationally sound and statistically witness indistinguishable.

Statistical Witness Indistinguishability. Let (x,w0, w1) denote a state-
ment x along with two witnesses w0, w1 for x ∈ L. Let V ∗ denote a malicious
(unbounded) verifier, which without loss of generality we may assume to be deter-
ministic and outputs a message m1 = (α, {crsi,a}i∈[Q],a∈[3], niwi.π). We want to
show that a proof zapr.Prove(m1, x, w0) is statistically indistinguishable from a
proof zapr.Prove(m1, x, w1).

To do so, we first note that if niwi.Verify(ϕ, {crsi,a}i∈[Q],a∈[3], niwi.π) outputs
0, then the zapr prover aborts and hence indistinguishability trivially holds.
Hence, we assume that the NIWI verification passes.

In this case, the perfect soundness of niwi implies that there exists a string
r∗ ∈ {0, 1, 2}Q such that for all i ∈ [Q], crsi,r∗

i +1 and crsi,r∗
i +2 are in the sup-

port of niszk.Setup(1n, 1λ). Since the prover samples s ← {0, 1, 2}Q uniformly
at random, we know that the agreement between s and r∗ is at most t = Q−1

2

with probability ≥ 1 − 2−Ω(Q) = 1 − εΩ(1) = 1 − negl(λ) by a Chernoff bound.
Therefore, we assume that this event holds in the following analysis.

Statistical ZAPR Arguments from Bilinear Maps 639

We now consider the following sequence of hybrids; let USim denote the
unbounded simulator for niszk corresponding to the semi-malicious witness indis-
tinguishability property. For s ∈ {0, 1, 2}Q, let Good(s) ⊂ [Q] denote the set of
j ∈ [Q] such that sj �= r∗

j , and let Bad(s) denote the remaining set.

– H0,b: this is an honest proof zapr.Prove(m1, x, wb).
– H1,b: this is the same as H0,b, except that for all j ∈ Good(s), we sample

niszk.πi ← USim(crsi,si
, ψ, ck, comSi

). We have that H1,b ≈s H0,b by the semi-
malicious witness indistinguishability of niszk (and the fact that crssi

is in the
support of niszk.Setup(1n, 1λ) for all i ∈ Good(s)).

– H2,b: this is the same as H1,b, except that for all j �∈ ⋃

i∈Bad(s) Si, we sample
comj ← sbsh.Com(ck, 0) to be a commitment to an all 0s string. We have that
H1,b ≈s H2,b by the statistical hiding of sbsh (which can be invoked because
the commitment randomness used to sample comj is not used anywhere in
these hybrids).

– H3,b: this is the same as H2,b, except that for all j ∈ ⋃

i∈Bad(s), we instead
sample lzkp.πj ← lzkp.Sim(x,Bad(s)) using the lzkp simulator. We have that
H2 ≈s H3 by the perfect zero knowledge of lzkp (which can be invoked because
the symbols lzkp.πj for j �∈ ⋃

i∈Bad(s) Si do not appear in these hybrids).

Finally, we note that H3 is defined independently of the bit b; hence, statis-
tical witness indistinguishability holds.

Computational Soundness. We claim that our argument system has compu-
tational soundness error at most ε.

To see this, let x �∈ L be a false statement, and suppose that an efficient
cheating prover P ∗(α, {crsi,a}i∈[Q],a∈[3], niwiπ) successfully breaks the soundness
of zapr with probability at least ε. We then make the following sequence of claims
about P ∗.

– P ∗(α, {crsi,a}i∈[Q],a∈[3], niwiπ) breaks the soundness of zapr and outputs a
message β∗ such that ck = (α, β∗) is binding with probability ε2(1−negl(λ)).
This follows directly from the (ε, ε2 · negl(λ)) “sometimes statistical binding”
property of sbsh.

– P ∗(α, {crsi,a}i∈[Q],a∈[3], niwiπ) simultaneously:
• breaks the soundness of zapr,
• outputs β∗ such that ck is a binding key, and
• outputs s = r (the verifier’s random string)

with probability ε3(1 − negl(λ)). This holds by the ε3 · negl(λ)-witness indis-
tinguishability of niwi, using the following argument. Consider an alternative
experiment in which the verifier samples r, r′ ← {0, 1, 2}Q i.i.d. and uses the
r′-witness when computing niwi.π instead of the r-witness; in this experiment,
P ∗ indeed satisfies the above three conditions with probability ε3(1−negl(λ)),
since here, r is independent of the rest of the experiment (and so s = r with
probability ε conditioned on the rest of the experiment). Then, the same
holds true in the real soundness experiment by the ε3 · negl(λ)-witness indis-
tinguishability of niwi.

640 A. Lombardi et al.

This last claim about P ∗ contradicts the ε3 · negl(λ)-soundness of niszk. This is
because when ck is a binding key, the soundness of lzkp implies that for any col-
lection of commitments (com1, . . . , com�), there exists some index i such that the
statement ψ(ck, i, comSi

) is false. By randomly guessing which of the Q state-
ments is false, P ∗ can therefore be used to contradict the ε3 · negl(λ)-soundness
of niszk.

Acknowledgements. We thank the anonymous reviewers for their helpful comments
and suggestions.

References

[AF07] Abe, M., Fehr, S.: Perfect NIZK with adaptive soundness. In: Vadhan,
S.P. (ed.) TCC 2007. LNCS, vol. 4392, pp. 118–136. Springer, Heidelberg
(2007). https://doi.org/10.1007/978-3-540-70936-7 7

[BB04] Boneh, D., Boyen, X.: Efficient selective-ID secure identity-based encryp-
tion without random oracles. In: Cachin, C., Camenisch, J.L. (eds.) EURO-
CRYPT 2004. LNCS, vol. 3027, pp. 223–238. Springer, Heidelberg (2004).
https://doi.org/10.1007/978-3-540-24676-3 14

[BBS04] Boneh, D., Boyen, X., Shacham, H.: Short group signatures. In: Franklin,
M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 41–55. Springer, Heidelberg
(2004). https://doi.org/10.1007/978-3-540-28628-8 3

[BD18] Brakerski, Z., Döttling, N.: Two-message statistically sender-private OT
from LWE. In: Beimel, A., Dziembowski, S. (eds.) TCC 2018. LNCS, vol.
11240, pp. 370–390. Springer, Cham (2018). https://doi.org/10.1007/978-
3-030-03810-6 14

[BFJ+20] Badrinarayan, S., Fernando, R., Jain, A., Khurana, D., Sahai, A.: Statisti-
cal zap arguments. In: Canteaut, A., Ishai, Y. (eds.) EUROCRYPT 2020.
LNCS, vol. 12107, pp. 642–667. Springer, Cham (2020). https://eprint.iacr.
org/2019/780

[BOV03] Barak, B., Ong, S.J., Vadhan, S.: Derandomization in cryptography. In:
Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 299–315. Springer,
Heidelberg (2003). https://doi.org/10.1007/978-3-540-45146-4 18

[BP15] Bitansky, N., Paneth, O.: ZAPs and non-interactive witness indistinguisha-
bility from indistinguishability obfuscation. In: Dodis, Y., Nielsen, J.B.
(eds.) TCC 2015. LNCS, vol. 9015, pp. 401–427. Springer, Heidelberg
(2015). https://doi.org/10.1007/978-3-662-46497-7 16

[CCH+19] Canetti, R., et al.: Fiat-Shamir: from practice to theory. In: Proceedings
of the 51st Annual ACM SIGACT Symposium on Theory of Computing.
ACM (2019)

[CLW18] Canetti, R., Lombardi, A., Wichs, D.: Fiat-Shamir: from practice to theory,
part II (non-interactive zero knowledge and correlation intractability from
circular-secure FHE). IACR Cryptology ePrint Archive 2018 (2018)

[DN00] Dwork, C., Naor, M.: Zaps and their applications. In: Proceedings of the
41st Annual Symposium on Foundations of Computer Science, pp. 283–
293. IEEE (2000)

[DN07] Dwork, C., Naor, M.: Zaps and their applications. SIAM J. Comput. 36(6),
1513–1543 (2007)

https://doi.org/10.1007/978-3-540-70936-7_7
https://doi.org/10.1007/978-3-540-24676-3_14
https://doi.org/10.1007/978-3-540-28628-8_3
https://doi.org/10.1007/978-3-030-03810-6_14
https://doi.org/10.1007/978-3-030-03810-6_14
https://eprint.iacr.org/2019/780
https://eprint.iacr.org/2019/780
https://doi.org/10.1007/978-3-540-45146-4_18
https://doi.org/10.1007/978-3-662-46497-7_16

Statistical ZAPR Arguments from Bilinear Maps 641

[FLS99] Feige, U., Lapidot, D., Shamir, A.: Multiple noninteractive zero knowledge
proofs under general assumptions. SIAM J. Comput. 29(1), 1–28 (1999)

[FS90] Feige, U., Shamir, A.: Witness indistinguishable and witness hiding proto-
cols. In: Proceedings of the Twenty-Second Annual ACM Symposium on
Theory of Computing, pp. 416–426. Citeseer (1990)

[GJJM20] Goyal, V., Jain, A., Jin, Z., Malavolta, G.: Statistical zaps and new obliv-
ious transfer protocols. In: Canteaut, A., Ishai, Y. (eds.) EUROCRYPT
2020. LNCS, vol. 12107, pp. 668–699. Springer, Cham (2020). Subsumes
[JJ19]

[GMR85] Goldwasser, S., Micali, S., Rackoff, C.: The knowledge complexity of inter-
active proof-systems. In: Proceedings of the Seventeenth Annual ACM
Symposium on Theory of Computing, pp. 291–304. ACM (1985)

[GO94] Goldreich, O., Oren, Y.: Definitions and properties of zero-knowledge
proof systems. J. Cryptology 7(1), 1–32 (1994). https://doi.org/10.1007/
BF00195207

[GOS06a] Groth, J., Ostrovsky, R., Sahai, A.: Non-interactive zaps and new tech-
niques for NIZK. In: Dwork, C. (ed.) CRYPTO 2006. LNCS, vol. 4117, pp.
97–111. Springer, Heidelberg (2006). https://doi.org/10.1007/11818175 6

[GOS06b] Groth, J., Ostrovsky, R., Sahai, A.: Perfect non-interactive zero knowl-
edge for NP. In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol.
4004, pp. 339–358. Springer, Heidelberg (2006). https://doi.org/10.1007/
11761679 21

[GOS12] Groth, J., Ostrovsky, R., Sahai, A.: New techniques for noninteractive zero-
knowledge. J. ACM 59(3), 11:1–11:35 (2012)

[HK12] Halevi, S., Kalai, Y.T.: Smooth projective hashing and two-message obliv-
ious transfer. J. Cryptology 25(1), 158–193 (2012). https://doi.org/10.
1007/s00145-010-9092-8

[IKOS07] Ishai, Y., Kushilevitz, E., Ostrovsky, R., Sahai, A.: Zero-knowledge
from secure multiparty computation. In: Proceedings of the Thirty-Ninth
Annual ACM Symposium on Theory of Computing, pp. 21–30. ACM (2007)

[JJ19] Jain, A., Jin, Z.: Statistical zap arguments from quasi-polynomial LWE.
Cryptology ePrint Archive, Report 2019/839 (2019). https://eprint.iacr.
org/2019/839

[KKS18] Kalai, Y.T., Khurana, D., Sahai, A.: Statistical witness indistinguisha-
bility (and more) in two messages. In: Nielsen, J.B., Rijmen, V. (eds.)
EUROCRYPT 2018. LNCS, vol. 10822, pp. 34–65. Springer, Cham (2018).
https://doi.org/10.1007/978-3-319-78372-7 2

[KPT97] Kilian, J., Petrank, E., Tardos, G.: Probabilistically checkable proofs with
zero knowledge. In: STOC, vol. 97, pp. 496–505. Citeseer (1997)

[LVW19] Lombardi, A., Vaikuntanathan, V., Wichs, D.: 2-message publicly verifi-
able WI from (subexponential) LWE. Cryptology ePrint Archive, Report
2019/808 (2019). https://eprint.iacr.org/2019/808

[Nao03] Naor, M.: On cryptographic assumptions and challenges. In: Boneh, D.
(ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 96–109. Springer, Heidelberg
(2003). https://doi.org/10.1007/978-3-540-45146-4 6

[NP05] Naor, M., Pinkas, B.: Computationally secure oblivious transfer. J. Cryp-
tology 18(1), 1–35 (2005). https://doi.org/10.1007/s00145-004-0102-6

[Pas16] Pass, R.: Unprovable security of perfect NIZK and non-interactive
non-malleable commitments. Comput. Complex. 25(3), 607–666 (2016).
https://doi.org/10.1007/s00037-016-0122-2

[PS19] Peikert, C., Shiehian, S.: Noninteractive zero knowledge for NP from (plain)
learning with errors. Technical report, IACR Cryptology ePrint Archive
(2019)

https://doi.org/10.1007/BF00195207
https://doi.org/10.1007/BF00195207
https://doi.org/10.1007/11818175_6
https://doi.org/10.1007/11761679_21
https://doi.org/10.1007/11761679_21
https://doi.org/10.1007/s00145-010-9092-8
https://doi.org/10.1007/s00145-010-9092-8
https://eprint.iacr.org/2019/839
https://eprint.iacr.org/2019/839
https://doi.org/10.1007/978-3-319-78372-7_2
https://eprint.iacr.org/2019/808
https://doi.org/10.1007/978-3-540-45146-4_6
https://doi.org/10.1007/s00145-004-0102-6
https://doi.org/10.1007/s00037-016-0122-2

Statistical ZAP Arguments

Saikrishna Badrinarayanan1(B), Rex Fernando2(B), Aayush Jain2,
Dakshita Khurana3, and Amit Sahai2

1 VISA Research, Palo Alto, USA
bsaikrishna7393@gmail.com
2 UCLA, Los Angeles, USA

{rex,aayushjain,sahai}@cs.ucla.edu
3 University of Illinois Urbana-Champaign, Champaign, USA

dakshita@illinois.edu

Abstract. Dwork and Naor (FOCS’00) first introduced and constructed
two message public coin witness indistinguishable proofs (ZAPs) for
NP based on trapdoor permutations. Since then, ZAPs have also been
obtained based on the decisional linear assumption on bilinear maps, and
indistinguishability obfuscation, and have proven extremely useful in the
design of several cryptographic primitives.

However, all known constructions of two-message public coin (or even
publicly verifiable) proof systems only guarantee witness indistinguisha-
bility against computationally bounded verifiers. In this paper, we con-
struct the first public coin two message witness indistinguishable (WI)
arguments for NP with statistical privacy, assuming quasi-polynomial
hardness of the learning with errors (LWE) assumption. We also show
that the same protocol has a super-polynomial simulator (SPS), which
yields the first public-coin SPS statistical zero knowledge argument. Prior
to this, there were no known constructions of two-message publicly veri-
fiable WI protocols under lattice assumptions, even satisfying the weaker
notion of computational witness indistinguishability.

1 Introduction

Witness indistinguishability (WI) is one of the most widely used notions of pri-
vacy for proof systems. Informally, WI protocols [13] allow a prover to convince a
verifier that some statement X belongs to an NP language L, with the following
privacy guarantee: if there are two witnesses w0, w1 that both attest to the fact
that X ∈ L, then a verifier should not be able to distinguish an honest prover
using witness w0 from an honest prover using witness w1. WI is a relaxation of
zero-knowledge and has proven to be surprisingly useful. Since WI is a relax-
ation, unlike zero-knowledge, there are no known lower bounds on the rounds of
interaction needed to build WI protocols in the plain model.

Indeed, Dwork and Naor [10,12] introduced the notion of two-message public-
coin witness indistinguishable proofs (ZAPs) without any setup assumptions, and
also constructed it assuming trapdoor permutations. We observe that the public-
coin feature of ZAPs yield public verifiability of the resulting proof system, since
c© International Association for Cryptologic Research 2020
A. Canteaut and Y. Ishai (Eds.): EUROCRYPT 2020, LNCS 12107, pp. 642–667, 2020.
https://doi.org/10.1007/978-3-030-45727-3_22

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-45727-3_22&domain=pdf
https://doi.org/10.1007/978-3-030-45727-3_22

Statistical ZAP Arguments 643

a third party can use the public coins of the verifier to determine whether or not
the prover’s response constitutes a valid proof. Subsequently, Groth et al. [15]
constructed ZAPs assuming the decisional linear assumption, and Bitansky and
Paneth [2] constructed ZAPs from indistinguishability obfuscation and one way
functions.

Our Goal: ZAPs with Statistical Privacy. As originally introduced, ZAPs
satisfied soundness against unbounded provers (i.e. were proofs), and witness
indistinguishability against computationally bounded verifiers. In this work, we
examine whether these requirements can be reversed: can we achieve witness
indistinguishability against computationally unbounded verifiers, while achiev-
ing soundness against computationally bounded cheating provers? We call such
objects statistical ZAP arguments.

An analogue of this question has a long history of study in the context
of zero-knowledge protocols. Indeed, zero-knowledge protocols for NP were
originally achieved guaranteeing privacy to hold only against computationally
bounded verifiers [14]. In the case of zero-knowledge, the notion of statistical
zero-knowledge arguments was achieved soon after [6,8], that strengthened the
privacy requirement to hold against computationally unbounded verifiers, while
requiring soundness to hold only against computationally bounded provers.

Because ZAPs require a single message each from the verifier and the prover,
a better comparison would perhaps be to non-interactive zero-knowledge (NIZK)
[4]. Even in the case of NIZKs, we have had arguments for NP satisfying statis-
tical zero-knowledge since 2006 [15]. And yet, the following natural question has
remained open since the introduction of ZAPs nearly two decades ago.

Do there exist statistical ZAP arguments for NP in the plain model?

Statistical witness indistinguishability, just like its zero-knowledge counterpart,
guarantees everlasting privacy against malicious verifiers, long after protocols
have completed execution. Of course, to achieve statistical privacy, we must nec-
essarily sacrifice soundness against unbounded provers. But such a tradeoff could
often be desirable, since soundness is usually necessary only in an online setting:
in order to convince a verifier of a false statement, a cheating prover must find
a way to cheat during the execution of the protocol.

The Main Challenge: Achieving a Public-coin Protocol. The recent work
of Kalai et al. [20] constructed the first two message statistically witness indistin-
guishable arguments in the plain model under standard sub-exponential assump-
tions. However, their arguments are only privately verifiable.

The blueprint of [20], which builds on other similar approaches in the compu-
tational witness indistinguishability setting [1,18], uses oblivious transfer (OT)
to reduce interaction in a Σ-protocol. In all these approaches, the verifier obtains
the third message of the Σ-protocol via the output of the OT, and therefore
these approaches fundamentally require the use of private coins for verification.
It is also worth noting that these protocols are not sound against provers that
have access to the private coins of the verifier, which restricts their applicability.

644 S. Badrinarayanan et al.

Additionally, the verifier’s message is not reusable, which means that soundness is
not guaranteed if the same verifier message is reused across multiple executions.

On the other hand, a public coin argument, which is the focus of this work,
does not suffer from any of these limitations. In fact, where the verifier’s mes-
sage only needs to be a uniformly random string. Such a string can easily be
generated, for example, via an MPC protocol, and can then be reused across
multiple executions with no loss in soundness.

We stress that prior to our work, even two message statistically witness indis-
tinguishable arguments that were only publicly verifiable (and not necessarily
public coin) were not known.

1.1 Our Results

In this paper, we construct the first two message public coin statistically wit-
ness indistinguishable arguments for NP in the plain model. Our constructions
assume quasi-polynomial hardness of the learning with errors (LWE) problem.
In fact, these are the first known two-message public coin (or even publicly veri-
fiable) arguments based on lattice assumptions, satisfying any notion of witness
indistinguishability (computational/statistical). We provide an informal theorem
below.

Informal Theorem 1. Assuming quasi-polynomial hardness of the learning
with errors (LWE) assumption, there exist two message public-coin statistically
witness indistinguishable arguments for NP in the plain model.

Our results are obtained by combining two recent results in a new way: recent
constructions of correlation-intractable hash functions based on LWE [7] and the
statistically hiding extractable commitments of [20] (which are built upon [21]).
This yields a new method of using correlation intractable hash functions to
instantiate the Fiat-Shamir transform, by extracting messages from statistically
hiding commitments, instead of from statistically binding trapdoor commitments
– that we believe may be of independent interest.

Additionally, we observe that the same protocol has a super-polynomial
zero knowledge simulator assuming subexponential LWE, giving the following
theorem.

Informal Theorem 2. Assuming subexponential hardness of the learning with
errors (LWE) assumption, there exist two message public-coin super-polynomial
simulation statistical zero knowledge arguments for NP in the plain model.

2 Overview of Techniques

In this section, we provide a brief overview of the techniques we use to build
a two message public coin statistical WI argument (henceforth referred to as
a ZAP).

Our starting point is the popular technique to construct ZAPs for NP, due
to Dwork and Naor [11]. Their construction makes use of a statistically sound
NIZK in the common random string model, and can be described as follows.

Statistical ZAP Arguments 645

• In the first round, the verifier picks uniformly random strings crs1,, crsλ,
where λ denotes the security parameter, and sends them to the prover.

• In the second round, the prover samples a uniformly random string crs′. It
computes proofs (π1, ..., π�) where πi is a NIZK proof for the instance x that
verifies under crs′i = crs′ ⊕ crsi The prover sends crs′ along with proof strings
(π1, ..., π�) to the verifier.

The soundness of this protocol can be proven based on the statistical soundness
of NIZK, in the following way. Fix an instance x /∈ L. Statistical soundness of
the NIZK implies that with probability at least 1/2 over the choice of crs from
the domain of the common random string of NIZK, there does not exist a proof
π that verifies for instance x with respect to crs. Put another way, for fixed x,
for at least 1/2 of the strings in the domain of the common random string of
the NIZK, there does not exist a proof for x. One can use this fact to argue
combinatorially that over the choice of random crs1, ..., crsλ, the probability that
there exists crs′ for which there exist proofs with respect to every member of the
set {crs′i = crs′ ⊕ crsi}i∈[�], is negligible.

The proof of witness indistinguishability follows quite simply, by switching
the witness in each of the proofs one by one.

But when applied to our context, this approach immediately encounters the
following problems.

1. The soundness argument outlined above crucially requires that with high
probability over the CRS of the NIZK, there just should not exist a proof for
any fixed false instance. This translates to requiring statistical soundness of
the underlying NIZK.

2. One cannot hope to get a WI argument secure against unbounded verifiers
via this transform, unless the underlying NIZK also satisfies privacy against
unbounded verifiers, i.e. satisfies statistical zero-knowledge.

3. It is believed that statistically sound and statistical zero-knowledge NIZKs for
all of NP cannot exist.

4. Even if we only desired computational witness indistinguishability based on
lattice assumptions, no statistically sound NIZKs in the common random
string model are known from lattice assumptions.

As an intermediate objective, we will first try to tackle problem #4 and build
a publicly verifiable computational WI argument based on LWE.

2.1 A Simple Two-Message Public-Coin Computational WI
Argument

We make a few modifications to the template above so as to obtain a publicly
verifiable computational WI argument based on LWE.

Before we describe these modifications, we list a few ingredients. We will
assume that there exists a dense public key encryption scheme PKE, that is,
a scheme for which every string in {0, 1}|pk| corresponds to a valid public key
(and therefore every string has a valid secret key). We will further assume the

646 S. Badrinarayanan et al.

existence of a correlation intractable hash function family. Informally, a hash
function family H is correlation-intractable for a function family F if:

• Given a fixed function f ∈ F , and a randomly generated key K (that
can depend on f), the probability that an adversary outputs x such that
(x,H(K,x)) = (x, f(x)) is at most ε.

• The hash key K statistically hides the function f , such that adversaries cannot
distinguish a random key from a key for f with advantage better than ε.

We will set ε = 2−2|pk|. We will use Π to denote a parallel repetition of Blum’s Σ-
protocol for Graph Hamiltonicity, represented as {ai = com(âi)}i∈[λ], {ei}i∈[λ],
{zi}i∈[λ]}, where {ai}i∈[λ] represents the first commitments sent by the prover,
{ei}i∈[λ] is a challenge string sent by the verifier and {zi}i∈[λ] represents the
corresponding third message by the prover. Let the instance be x and its witness
be w. Then, the protocol is described as follows.

1. In the first round, the verifier randomly samples a key K for the correlation
intractable hash function H for bounded size NC1 functions.

2. In the second round, the prover picks a key pair (pk, sk) for the scheme PKE.
Then the prover uses PKE.Enc(pk, ·) as a commitment scheme to compute the
commitments {ai}i∈[λ]. Next, the prover computes e = H(K,x, {ai}i∈[λ]) ∈
{0, 1}λ, and uses (x,w, a, e) to compute z = (z1, ..., zλ) according to the
protocol Π. It outputs (pk, {ai = PKE.Enc(pk, âi)}i∈[λ], e, z)

While witness indistinguishability of this protocol is easy to see, arguing
soundness is trickier. In order to argue soundness, the reduction will simple try
to guess the public key pk∗ that the prover will use, and will abort if this guess
is not correct. Note that such a guess is correct with probability at least 2−|pk∗|.

Suppose a cheating prover convinces a verifier to accept false statements with
probability 1

p(λ) for some polynomial p(·). Then, with probability at least 1
p(·) ·

2−|pk∗|, the reduction guesses pk∗ correctly, and the prover provides a convincing
proof of a false statement using pk∗.

In the next hybrid, the challenger guesses pk∗ together with the correspond-
ing secret key sk∗, and then samples a correlation intractable hash key for a
specific function fsk∗(·). The function fsk∗(·) on input x, along with a (the mes-
sages committed in the Σ-protocol), outputs the only possible string ebad for
which there exists a string z such that (a, ebad, z) verifies for x /∈ L.1 Note that
this function is in NC1. By ε-security of the correlation intractable hash family
(where ε = 2−2|pk|), with probability at least

(
1

p(·) − 2−|pk|
)

· 2−|pk|, the reduc-
tion guesses pk∗ correctly, and the prover provides a convincing proof of a false
statement using pk∗.

Finally, since the correlation intractable hash function is ε-secure, in the final
hybrid adversary cannot produce a proof for x with probability greater than ε,
as this will mean that he output a∗, e∗, z∗ such that e∗ = fbad(x, a∗).
1 Note that this property is satisfied by any Σ-Protocol with a 1/2−special soundness

where the bad challenge ebad can be computed efficiently from the precommitted
values {âi}, such as Blum’s Σ-protocol.

Statistical ZAP Arguments 647

The protocol sketched above is public-coin, because when we instantiate the
correlation-intractable hash family with the LWE-based one by [24], the hash
keys are statistically close to uniform.

In the description above, we also relied on a dense public key encryption
scheme, which is unfortunately not known to exist based on LWE. However, we
note that we can instead use a scheme with the property that at least 1/2 of
the strings in {0, 1}�PKE correspond to correct encryption keys with a valid secret
key, and the property that public keys are pseudorandom. Then, the verifier
sends λ public keys pk1, . . . , pkλ, and the prover outputs pk′, and then uses the
public keys {(pk′ ⊕ pki)}i∈[λ] to compute λ proofs. Soundness can be obtained
by arguing that with overwhelming probability, there will exist an index i ∈ [λ]
such that (pk′ ⊕ pki) has a secret key, just like the [11] technique described at
the beginning of this overview.

However, the construction above falls short of achieving statistical witness
indistinguishability against malicious verifiers. The reason is the following: argu-
ing that the construction described above satisfies soundness requires relying on
correlation intractability of the hash function. In order to invoke the correlation
intractable hash function, it is crucial that the prover be “committed” to a well-
defined, unique message {ai}i∈[λ], that can be extracted using the secret key sk∗

of the public key encryption scheme. At first, statistical hiding, together with
such extraction, may appear to be contradictory objectives.

Indeed, we will try obtain a weaker version of these contradictory objectives,
and specifically, we will rely on a two-message statistically hiding extractable
commitment scheme [20].

2.2 Using Correlation-Intractable Hashing with Statistically Hiding
Extractable Commitments

In the recent exciting work on using LWE-based correlation-intractable hash-
ing [7,24] for achieving soundness, as well as in the “warm up” ZAP protocol
described above, the correlation-intractable hash function is used as follows.
Because the LWE-based CI-hash function is designed to avoid an efficiently
computable function f of the prover’s first message, it is used together with a
public-key encryption scheme: the prover’s first message is encrypted using the
public key, and the function f is built to contain the secret key of the encryption
scheme, so that it can decrypt the prover’s first message in order to calculate
the challenge that must be avoided.

Our work imagines a simple modification of this strategy of using correlation-
intractable hashing for arguing soundness. The main idea is that we want to
replace the encryption scheme (which necessarily can only at most provide com-
putational hiding) with an extractable statistically hiding commitment scheme.
We will describe what this object entails in more detail very shortly, but the
main observation is that such an extractable commitment in fact reveals the
value being committed to with a tiny (but tunable) probability – crucially in a
way that prevents a malicious prover from learning whether the commitment will
reveal the committed value or not. With such a commitment scheme, the efficient

648 S. Badrinarayanan et al.

function f underlying the correlation-intractable hash function will only “work”
in the rare case that the commitment reveals the value being committed. But
since a cheating prover can’t tell whether its committed values will be revealed
or not, soundness will still hold overall, even though the actual guarantee of the
correlation-intractable hash function is only invoked with a tiny probability in
the proof of soundness. We now elaborate.

2.3 Statistically Hiding Extractable Commitments

Any statistically hiding commitment must lose all information about the com-
mitted message, except with negligible probability. This makes it challenging to
define notions of extraction for statistically hiding commitments. In 4 rounds
or more, this notion is easier to define, as extraction is possible even from
statistically hiding commitments, simply by rewinding the adversary. However,
traditional rewinding techniques break down completely when considering two-
message commitments.

Nevertheless, the recent work of [20], building on [21], defined and constructed
two-message statistically hiding extractable commitments, which they used to
construct two-message statistical WI arguments, that were privately verifiable. In
what follows, we abstract out the properties of a statistically hiding extractable
commitment. A more formal description can be found in Sect. 5. We point out
that we only need to rely on significantly simpler definitions than the ones in [20],
and we give much simpler proofs that the constructions in [20] according to our
new definitions. This may be of independent interest.

Defining Statistically Hiding Extractable Commitments. We start with
an important observation about statistically hiding commitments, which gives a
hint about how one can possibly define (and construct) two-message statistically
hiding extractable commitments. Namely, any statistically hiding commitment
must lose all information about the committed message, but may retain this
information with some small negligible probability. Specifically,

• A commitment that leaks the committed message with probability ε (where ε
is a fixed negligible function in the security parameter) and statistically hides
the message otherwise, will continue to be statistically hiding.

• At the same time, one could ensure that no matter the behavior of the com-
mitter, the message being committed does get leaked to the honest receiver
with probability at least ε.

• Moreover, the committer does not know whether or not the committed mes-
sage was leaked to the receiver. This property is important and will be cru-
cially used in our proofs.

In spirit, this corresponds to establishing an erasure channel over which the com-
mitter transmits his message to the receiver. This channel almost always erases
the committed message, but is guaranteed to transmit the committed message
with a very small probability (ε). Moreover, just like cryptographic erasure chan-
nels, the committer does not know whether or not his message was transmitted.

Statistical ZAP Arguments 649

Additionally, because this is a commitment, we require computational binding:
once the committer transmits his message (that is, commits), he should not
be able to change his mind about the message, even if the message did not get
transmitted. Finally, we say that “extraction occurs” whenever the message does
get transmitted, and we require that extraction occur with probability at least
ε, even against a malicious committer.

Next, we describe how we interface these commitments with correlation
intractable hash functions to obtain two-message statistical ZAP arguments.

2.4 Statistical ZAP Arguments

With this tool in mind, we make the following observations:

1. We would like to replace the encryption scheme used for generating the first
message a for the sigma protocol, sent by the prover in the second round,
with a statistically hiding commitment.

2. The first message of this commitment will be generated by the verifier. Fur-
thermore, because we want a public coin protocol, we require this message to
be pseudorandom.

3. We will require that with some small probability (say λ−ω(log λ)), all mes-
sages committed by the prover get transmitted to the verifier, that is with
probability λ−ω(log λ), the verifier can recover all the messages committed by
the prover in polynomial time given his secret state. Next, using an insight
from the simple protocol in Sect. 2.1, we will set the security of the correlation
intractable hash function, so that it is infeasible for any polynomially sized
adversary to break correlation intractability with probability λ−ω(log λ).

The protocol is then as follows:

• In the first round, the verifier samples a hash key K for the correlation
intractable hash function H, for the same function family F as Sect. 2.1.
The verifier also samples strings q = {c1,j}j∈[poly(λ)] uniformly at random,
where poly is a polynomial denoting the number of commitments made by
the prover. The verifier sends q and K over to the prover.

• In the second round, the prover computes the first message of the sigma
protocol a (where the number of parallel repetitions equals the output length
of correlation intractable hash function). This message a is generated using
the statistically hiding extractable commitment scheme com with q as the
first message. The prover computes e = H(K,x, q, a) and uses e to compute
the third message z of the sigma protocol, by opening some subset of the
commitments made by the prover. The prover outputs (a, e, z).

We now provide some intuition for the security of this protocol.

• Soundness: To argue soundness, we follow an approach that is similar to the
soundness proof for the computational ZAP argument described in Sect. 2.1
(although with some additional technical subtleties). We discuss one such
subtlety here:

650 S. Badrinarayanan et al.

Let � = |e|. Then, the correlation-extractable hash function can be at most
2−�δ

-secure2. For this reason, we require the commitments to be jointly
extractable in polynomial time with probability at least 2−�δ

. Note that the
total number of commitments is N = � · poly(λ).
However, statistically hiding commitments, as originally constructed in [20],
are such that if a single commitment can be extracted with probability ε,
then N commitments can be extracted with probability roughly εN . Setting
N = � · poly(λ) as above implies that trivially, the probability of extraction
will be roughly O(2−�·poly(λ)), which is smaller than the required probability
2−�δ

.
However, we observe that the commitments constructed in [20] can be mod-
ified very slightly so that the probability of extraction can be 2−g(λ) for any
efficiently computable function g that is bounded by any polynomial in λ.
Thus, for example, the probability of extraction can be made to be λ− log(λ).
In other words, this extraction probability can be made to be independent
of the total number of commitments, N . We describe this modification in
additional detail in Sect. 4.2.
Using commitments that satisfy the property stated above, we observe that
we can switch to a hybrid where the challenger samples the commitment mes-
sages on behalf of the verifier, and hardwires the secret state used for extrac-
tion inside the hash key. The function is defined such that in the event that
extraction occurs (given the secret state), the verifier can use the extracted
values to compute the bad challenge ebad (just as in Sect. 2.1), by evaluating
a depth bounded function fbad on the extracted values, and otherwise ebad is
set to 0. If the adversary breaks soundness with noticeable probability ε, then
with probability roughly at least 2−g(λ) ·ε, the outputs of the adversary satisfy
H(K,x, q, a) = ebad. As already alluded to previously, we set the function g
and the (quasi-polynomial) security of the hash function such that the event
above suffices to contradict correlation intractability.

• Statistical Witness Indistinguishability: Statistical witness indistin-
guishability composes under parallel repetition, and therefore can be proven
index-by-index based on the statistical hiding property of the commitment.
Additional details about the construction and the proof can be found in
Sect. 5.

Super-Polynomial Simulation (SPS) Zero Knowledge. We show that the
protocol above has a super-polynomial simulator which provides statistical zero
knowledge. At a very high level, we do this by showing that the extractable
commitment scheme can be equivocated in exponential time, and then by using
complexity leveraging. We refer to the full version of the paper for details.

Concurrent and Independent Works. In a concurrent and indepen-
dent work, [17] also constructed a 2-message public-coin statistically witness
2 More formally, if the output of the hash function is � bits long, then even if we rely

on sub-exponential assumptions, we cannot hope to have the guessing advantage be

smaller than 2−�δ

for a small positive constant δ < 1.

Statistical ZAP Arguments 651

indistinguishable argument from quasipolynomial LWE. Another concurrent and
independent work is that of [22], who construct a 2-message computationally
witness indistinguishable public-coin argument from subexponential LWE.

2.5 Organization

The rest of this paper is organized as follows. In Sect. 3, we describe some of
the preliminaries such as correlation intractability, oblivious transfer and proof
systems. In Sect. 4, we define a simplified variant and present a slightly modified
construction of extractable statistically hiding commitments, first proposed by
[20]. Finally, in Sect. 5, we construct and prove the security of our statistical
ZAP argument.

3 Preliminaries

Notation. Throughout this paper, we will use λ to denote the security parame-
ter, and negl(λ) to denote any function that is asymptotically smaller than 1

poly(λ)

for any polynomial poly(·).
The statistical distance between two distributions D1,D2 is denoted by

Δ(D1,D2) and defined as:

Δ(D1,D2) =
1
2
Σv∈V |Prx←D1 [x = v] − Prx←D2 [x = v]|.

We say that two families of distributions D1 = {D1,λ},D2 = {D2,λ} are statis-
tically indistinguishable if Δ(D1,λ,D2,λ) = negl(λ). We say that two families of
distributions D1 = {D1,λ},D2 = {D2,λ} are computationally indistinguishable
if for all non-uniform probabilistic polynomial time distinguishers D,

∣∣Prr←D1,λ
[D(r) = 1] − Prr←D2,λ

[D(r) = 1]
∣∣ = negl(λ).

Let Π denote an execution of a protocol. We use ViewA(Π) denote the view,
including the randomness and state of party A in an execution Π. We also use
OutputA(Π) denote the output of party A in an execution of Π.

Remark 1. In what follows we define several 2-party protocols. We note that in
all these protocols both parties take as input the security parameter 1λ. We omit
this from the notation for the sake of brevity.

Definition 1 (Σ-protocols). Let L ∈ NP with corresponding witness relation
RL. A protocol Π = 〈P, V 〉 is a Σ-protocol for relation RL if it is a three-round
public-coin protocol which satisfies:

• Completeness: For all (x,w) ∈ RL, Pr[OutputV 〈P (x,w), V (x)〉 = 1] =
1 − negl(λ), assuming P and V follow the protocol honestly.

• Special Soundness: There exists a polynomial-time algorithm A that given
any x and a pair of accepting transcripts (a, e, z), (a, e′, z′) for x with the same
first prover message, where e �= e′, outputs w such that (x,w) ∈ RL.

652 S. Badrinarayanan et al.

• Honest verifier zero-knowledge: There exists a probabilistic polyno-
mial time simulator SΣ such that for all (x,w) ∈ RL, the distributions
{SΣ(x, e)} and {ViewV 〈P (x,w(x)), V (x, e)〉} are statistically indistinguish-
able. Here SΣ(x, e) denotes the output of simulator S upon input x and e,
such that V ’s random tape (determining its query) is e.

3.1 Correlation Intractable Hash Functions

We adapt definitions of a correlation intractable hash function family from [7,24].

Definition 2. For any polynomials k, (·), s(·) = ω(k(·)) and any λ ∈ N, let
Fλ,s(λ) denote the class of NC1 circuits of size s(λ) that on input k(λ) bits
output λ bits. Namely, f : {0, 1}k(λ) → {0, 1}λ is in Fλ,s if it has size s(λ) and
depth bounded by O(log λ).

Definition 3. [Quasi-polynomially Correlation Intractable Hash Function Fam-
ily] A hash function family H = (Setup,Eval) is quasi-polynomially correlation
intractable (CI) with respect to F = {Fλ,s(λ)}λ∈N as defined in Definition 2, if
the following two properties hold:

• Correlation Intractability: For every f ∈ Fλ,s, every non-uniform
polynomial-size adversary A, every polynomial s, and every large enough
λ ∈ N,

PrK←H.Setup(1λ,f)

[
A(K) → x such that (x, H.Eval(K, x)) = (x, f(x))

]
≤ 1

λlog λ
.

• Statistical Indistinguishability of Hash Keys: Moreover, for every f ∈
Fλ,s, for every unbounded adversary A,and every large enough λ ∈ N,

∣∣∣PrK←H.Setup(1λ,f)[A(K) = 1] − PrK←{0,1}� [A(K) = 1]
∣∣∣ ≤ 2−λΩ(1)

,

where � denotes the size of the output of H.Setup(1λ, f).

The work of [24] gives a construction of correlation intractable hash func-
tions with respect to F = {Fλ,s(λ)}λ∈N, based on polynomial LWE with poly-
nomial approximation factors. We observe that their construction also satisfies
Definition 3, assuming quasi-polynomial LWE with polynomial approximation
factors.

3.2 Oblivious Transfer

Definition 4 (Oblivious Transfer). Oblivious transfer is a protocol between
two parties, a sender S with input messages (m0,m1) and receiver R with input
a choice bit b. The correctness requirement is that R obtains output mb at the end
of the protocol (with probability 1). We let 〈S(m0,m1), R(b)〉 denote an execution
of the OT protocol with sender input (m0,m1) and receiver input bit b. We require
OT that satisfies the following properties:

Statistical ZAP Arguments 653

• Computational Receiver Security. For any non-uniform PPT sender S∗

and any (b, b′) ∈ {0, 1}, the views ViewS∗(〈S∗, R(b)〉) and ViewS∗(〈S∗, R(b′)〉)
are computationally indistinguishable.
We say that the OT scheme is T -secure if all PPT malicious senders have
distinguishing advantage less than 1

T .
• Statistical Sender Security. This is defined using the real-ideal paradigm,

and requires that for any distribution on the inputs (m0,m1) and any
unbounded adversarial receiver R∗, there exists a (possibly unbounded) sim-
ulator SimR∗ that interacts with an ideal functionality Fot on behalf of R∗.
Here Fot is an oracle that obtains the inputs (m0,m1) from S and b from
SimR∗ (simulating the malicious receiver), and outputs mb to SimR∗ . Then
SimFot

R∗ outputs a receiver view that is statistically indistinguishable from the
real view of the malicious receiver ViewR∗(〈S(m0,m1), R∗〉). We say that the
OT protocol satisfies (1−δ) statistical sender security if the statistical distance
between the real and ideal distributions is at most δ.

We use the following sender security property in our protocols (which follows
from the definition of sender security in Definition 4 above).

Claim. For any two-message OT protocol satisfying Definition 4, for every mali-
cious receiver R∗ and every first message mR∗ generated by R∗, we require that
there exists an unbounded machine E which extracts b such that either of the
following statements is true:

• For all m0,m1,m2, ViewR∗〈S(m0,m1), R∗〉 and ViewR∗〈S(m0,m2), R∗〉 are
statistically indistinguishable and b = 0, or,

• For all m0,m1,m2, ViewR∗〈S(m0,m1), R∗〉 and ViewR∗〈S(m2,m1), R∗〉 are
statistically indistinguishable and b = 1.

Proof. From the (unbounded) simulation property of the two-message OT, there
exists a simulator that extracts a receiver input bit b from the first message
of R∗, sends it to the ideal functionality, obtains mb and generates an indis-
tinguishable receiver view. Then, by the definition of sender security, when
b = 0, the simulated view must be close to both ViewR∗〈S(m0,m1), R∗〉, and
ViewR∗〈S(m0,m2), R∗〉. Similarly, when b = 1, the simulated view must be sta-
tistically close to both ViewR∗〈S(m0,m1), R∗〉, and ViewR∗〈S(m2,m1), R∗〉.

Throughout the paper, we focus on two-message oblivious transfer. We now
discuss an additional specific property of two-message OT protocols.

Property 1. The message sent by the receiver is pseudorandom - in particular,
this means that the receiver can just sample and send a uniformly random string
as a valid message to the sender.

Such two-message OT protocols with this additional property have been con-
structed based on the DDH assumption [23], LWE assumption [5], and a stronger
variant of smooth-projective hashing, which can be realized from DDH as well as
the N th-residuosity and Quadratic Residuosity assumptions [16,19]. Such two-
message protocols can also be based on witness encryption or indistinguishability
obfuscation (iO) together with one-way permutations [25].

654 S. Badrinarayanan et al.

3.3 Proof Systems

An n-message interactive protocol for deciding a language L with associated
relation RL proceeds in the following manner:

• At the beginning of the protocol, P and V receive the size of the instance
and security parameter, and execute the first n − 1 messages.

• At some point during the protocol, P receives input (x,w) ∈ RL. P sends x
to V together with the last message of the protocol. Upon receiving the last
message from P , V outputs 1 or 0.

An execution of this protocol with instance x and witness w is denoted
by 〈P (x,w), V (x)〉. One can consider both proofs – with soundness against
unbounded provers, and arguments – with soundness against computationally
bounded provers.

Definition 5 (Two-Message Interactive Arguments). A two-message
delayed-input interactive protocol (P, V) for deciding a language L is an inter-
active argument for L if it satisfies the following properties:

• Completeness: For every (x,w) ∈ RL, Pr
[
OutputV 〈P (x,w), V (x)〉 = 1

]
=

1 − negl(λ), where the probability is over the random coins of P and V , and
where in the protocol P receives (x,w) right before computing the last message
of the protocol, and V receives x together with the last message of the protocol.

• Non-adaptive Soundness: For every (non-uniform) PPT prover P ∗

that on input 1λ (and without access to the verifier’s message) outputs a
length 1p(λ) and x ∈ {0, 1}p(λ) \ L, Pr

[
OutputV 〈P ∗, V 〉(x) = 1

]
= negl(λ),

where the probability is over the random coins of V .

Witness Indistinguishability. A proof system is witness indistinguishable if
for any statement with at least two witnesses, proofs computed using different
witnesses are indistinguishable. In this paper, we only consider statistical witness
indistinguishability, which we formally define below.

Definition 6 (Statistical Witness Indistinguishability). A delayed-input
interactive argument (P, V) for a language L is said to be statistical witness-
indistinguishable if for every unbounded verifier V ∗, every polynomially bounded
function n = n(λ) ≤ poly(λ), and every (xn, w1,n, w2,n) such that (xn, w1,n) ∈
RL and (xn, w2,n) ∈ RL and |xn| = n, the following two ensembles are statisti-
cally indistinguishable:

{
ViewV ∗〈P (xn, w1,n), V ∗(xn)〉} and

{
ViewV ∗〈P (xn, w2,n), V ∗(xn)〉}

Definition 7 (TSim-Statistical Zero Knowledge). A delayed-input interac-
tive argument (P, V) for a language L is said to be a TSim-super-polynomial simu-
lation (SPS) statistical zero-knowledge argument for L if there exists a (uniform)
simulator Sim that runs in time TSim, such that for every x, every unbounded
verifier V ∗, the two distributions ViewV ∗ [〈P, V ∗〉(x,w)] and SV ∗

(x, z) are sta-
tistically close.

Statistical ZAP Arguments 655

4 Extractable Commitments

4.1 Definitions

We take the following definition of statistically hiding extractable commitments
from [20]. As before, we use λ to denote the security parameter, and we let
p = poly(λ) be an arbitrary fixed polynomial such that the message space is
{0, 1}p(λ).

We restrict ourselves to commitments with non-interactive decommitment,
and where the (honest) receiver is not required to maintain any state at the end of
the commit phase in order to execute the decommit phase. Our construction will
satisfy this property and this will be useful in our applications to constructing
statistically private arguments.

Definition 8 (Statistically Hiding Commitment Scheme). A commit-
ment 〈C,R〉 is a two-phase protocol between a committer C and receiver R,
consisting of algorithms Commit,Decommit and Verify. At the beginning of the
protocol, C obtains as input a message M ∈ {0, 1}p. Next, C and R execute the
commit phase, and obtain a commitment transcript, denoted by τ , together with
private states for C and R, denoted by stateC,τ and stateR,τ respectively. We use
the notation

(τ, stateC,τ , stateR,τ) ← Commit〈C(M),R〉.
Later, C and R possibly engage in a decommit phase, where the committer

C computes and sends message y = Decommit(τ, stateC,τ) to R. At the end, R
computes Verify(τ, y) to output ⊥ or a message M̃ ∈ {0, 1}p.3

A statistically hiding commitment scheme is required to satisfy three prop-
erties: perfect completeness, statistical hiding and computational binding. We
formally define these in the full version of the paper.

We also define an extractor E that given black-box access to C∗, and then
without executing any decommitment phase with C∗, outputs message M̃ com-
mitted by C∗ with probability at least ε: we require “correctness” of this extracted
message M̃ . We also require that no PPT adversary can distinguish transcripts
where extraction is successful from those where it is unsuccessful. This is formally
described in Definition 9.

Definition 9 (ε-Extractable Statistically Hiding Commitment). We say
that a statistically hiding commitment scheme is ε-extractable if the following
holds: Denote (τ, stateC,τ , stateR,τ) ← Commit〈C∗,R〉. We require that there
exists a deterministic polynomial time extractor E that on input (τ, stateR,τ)
outputs M̃ such that the following properties hold.

3 We note that in our definition, R does not need to use private state stateR,τ from the
commitment phase in order to execute the Verify algorithm in the decommitment
phase.

656 S. Badrinarayanan et al.

• Frequency of Extraction. For every PPT committer C∗,

Pr[E(τ, stateR,τ) �= ⊥] = ε

where the probability is over (τ, stateC,τ , stateR,τ) ← Commit〈C∗,R〉.
• Correctness of Extraction. For every PPT committer C∗, every execution

(τ, stateC,τ , stateR,τ) ∈ Supp(Commit〈C∗,R〉), and every y, denoting M̃ =
E(τ, stateR,τ) and M = Verify(τ, y), if M̃ �= ⊥ and M �= ⊥, then M̃ = M .

• Indistinguishability of Extractable Transcripts. For every C∗,
∣∣Pr[C∗(τ) = 1 | E(τ, stateR,τ) �= ⊥] − Pr[C∗(τ) = 1 | E(τ, stateR,τ) = ⊥]

∣∣ = negl(λ)

where the probability is over (τ, stateR,τ) ← Commit〈C∗,R〉.
We also consider a stronger definition, of ε-extractable statistically hiding �

multi-commitments, where we require that an entire sequence of � commitments
can be extracted with probability ε, that is independent of �. We will also modify
the Verify algorithm so that it obtains as input the transcript τ := (τ1, τ2, . . . τ�)
of all � commitments, together with an index i ∈ [�] and the decommitment
stateC,τ,i to a single commitment. We defer their formal description to the full
version of the paper.

4.2 Protocol

In this section, we construct two-message statistically hiding, extractable com-
mitments according to Definition 9 assuming the existence of two message obliv-
ious transfer (OT). Our construction is described in Fig. 1.

Primitives Used. Let OT = (OT1,OT2) denote a two-message string oblivi-
ous transfer protocol according to Definition 4, also satisfying Property 1. Let
OT1(b; r1) denote the first message of the OT protocol with receiver input b and
randomness r1, and let OT2(M0,M1; r2) denote the second message of the OT
protocol with sender input strings M0,M1 and randomness r2.4

Observe that the protocol satisfies the property mentioned in the definition
that the verify algorithm in the decommitment phase does not require the private
randomness used by the receiver in the commit phase. Further, observe that if
the oblivious transfer protocol satisfies Property 1, the receiver’s message can
alternately be generated by just sampling a uniformly random string. Thus, this
would give an extractable commitment protocol where the receiver’s algorithms
are public coin.

We will now prove the following main theorem.

Theorem 1. Assuming that the underlying OT protocol is λ− log λ-secure
against malicious senders, (1−δOT) secure against malicious receivers according
to Definition 4, and satisfies Property 1, there exists a setting of m = O(log2 λ)
4 Note that OT2 also depends on OT1. We omit this dependence in our notation for

brevity.

Statistical ZAP Arguments 657

Extraction parameter: m.
Committer Input: Message M ∈ {0, 1}p.
Commit Stage:
Receiver Message.

1. Pick challenge string ch
$ {0, 1}m.

2. Sample uniform randomness {r1,i}i∈[m].
3. Compute and send {OT1(chi, r1,i)}i∈[m] using m instances of two-message

OT.

Committer Message.

1. Sample a random string r
$ {0, 1}m.

For every i ∈ [m] and every b ∈ {0, 1}, sample Mb
i

$ {0, 1}p subject to⊕
i∈[m] M

ri
i = M .

2. For every i ∈ [m] compute o2,i = OT2(M0
i , M1

i ; r2,i) with uniform random-
ness r2,i.

3. Send (r, {o2,i}i∈[m]).

Reveal Stage: The committer reveals M , and all values {M0
i , M1

i }i∈[m] as well
as the randomness r2,i. The receiver accepts the decommitment to message M if
and only if:

1. For all i ∈ [m], o2,i = OT2(M0
i , M1

i ; r2,i),
2. i∈[m] M

ri
i = M .

Fig. 1. Extractable commitments

for which the scheme in Fig. 1 is a (1−2−m−δOT) statistically hiding, λ− log1/2 λ-
extractable commitment scheme according to Definition 9. Further, the receiver’s
algorithms are public coin.

We relegate the proof of Theorem 1 to the full version of the paper.

5 Our Statistical WI Protocol

5.1 Modified Blum Protocol

We begin by describing a very simple modification to the Blum Σ-protocol for
Graph Hamiltonicity. The protocol we describe will have soundness error 1

2 −
negl(λ) against adaptive PPT provers, and will satisfy statistical zero-knowledge.
Since Graph Hamiltonicity is NP-complete, this protocol can also be used to
prove any statement in NP via a Karp reduction. This protocol is described in
Fig. 2.

We give an overview of the protocol here. Note that the only modification to
the original protocol of Blum [3] is that we use two message statistically hiding,

658 S. Badrinarayanan et al.

Modified Blum Argument

1. Verifier Message: The verifier does the following:
◦ Sample the first message extcom1,i,j for independent instances of the ex-

tractable commitment, where i, j ∈ [p(λ)]× [p(λ)], uniformly at random.
◦ Send an additional first message extcom1,P for another independent in-

stance of the extractable commitment, again sampled uniformly at ran-
dom.

2. Prover Message: The prover gets input graph G ∈ {0, 1}p(λ)×p(λ) repre-
sented as an adjacency matrix, with (i, j)th entry denoted by G[i][j]), Hamil-
tonian cycle H ⊆ G. Here p(·) is an a-priori fixed polynomial. The prover
does the following:

◦ Sample a random permutation π on p(λ) nodes, and compute cP =
extcom2,P (π) as a commitment to π using extcom.

◦ Compute π(G), which is the adjacency matrix corresponding to the
graph G when its nodes are permuted according to π. Compute ci,j =
extcom2,i,j(π(G)[i][j]) for (i, j) ∈ [p(λ)] × [p(λ)].

◦ Send G, cP , ci,j for (i, j) ∈ [p(λ)] × [p(λ)].
3. Verifier Message: Sample and send c

$← {0, 1} to the prover.
4. Prover Message: The prover does the following:

◦ If c = 0, send π and the decommitments of extcomP , extcomi,j for (i, j) ∈
[p(λ)] × [p(λ)].

◦ If c = 1, send the decommitment of extcomi,j for all (i, j) such that
π(H)[i][j] = 1.

5. Verifier Output: The verifier does the following:
◦ If c = 0, accept if and only if all extcom openings were accepted and

π(G) was computed correctly by applying π on G.
◦ If c = 1, accept if and only if all extcom openings were accepted and all

the opened commitments form a Hamiltonian cycle.

Remark: Observe that since the receiver’s algorithms in the extractable com-
mitment scheme are public coin, the above protocol is also public coin.

Fig. 2. Modified blum SZK argument

extractable commitments instead of non-interactive statistically binding commit-
ments. The proofs of soundness and statistical honest-verifier zero-knowledge are
fairly straightforward. They roughly follow the same structure as [3], replacing
statistically binding commitments with statistically hiding commitments.

Lemma 1. Assuming that extcom is computationally binding, the protocol in
Fig. 2 satisfies soundness against PPT provers that may choose x adaptively in
the second round of the protocol.

Proof. The proof of soundness follows by the computational binding property of
extcom and the soundness of the (original) Blum protocol.

Let L denote the language consisting of all graphs that have a Hamiltonian
cycle. Consider a cheating prover P ∗ that convinces a malicious verifier about a

Statistical ZAP Arguments 659

statement x �∈ L with probability 1
2 + h(n), where h(·) > 1

poly(·) for some poly-
nomial poly(·). By an averaging argument, this means that there exists at least
one transcript prefix τ consisting of the first two messages of the protocol, where
for G �∈ L sent by the prover in the third message, Pr[V accepts|τ,G �∈ L] > 1

2 .
This implies that there exists a cheating prover that generates a transcript prefix
τ , for which it provides an accepting opening corresponding to both b = 0 and
b = 1, with probability at least h(n). Next, we argue that such a cheating prover
must break the (computational) binding of com.

Since G �∈ L, it is information theoretically impossible for any cheating prover
to generate a commitment to a unique string π, π(G) such that there exists a
Hamiltonian cycle in π(G). Therefore, any prover that opens a transcript prefix
τ,G corresponding to both b = 0 and b = 1 for G �∈ L, must open at least one
commitment in the set {extcomP , {extcomi,j}i,j∈p×p} to two different values,
thereby giving a contradiction to the binding of the commitment scheme. ��
Lemma 2. Assuming that extcom is statistically hiding, the protocol in Fig. 2
satisfies honest-verifier statistical zero-knowledge.

Proof. The simulation strategy is identical to that of [3]. The simulator Sim first
guesses the challenge bit c′. It begins an interaction with the malicious veri-
fier. On obtaining the first message from the verifier, if c′ = 0, it samples π
uniformly at random and generates a commitment to π, π(G) following honest
prover strategy to generate the commitment. If c′ = 1, it samples π,H ′ uniformly
at random where H ′ is an arbitrary hamiltonian cycle, and generates a commit-
ment to π, π(H ′) following honest prover strategy to generate the commitment.
Next, it waits for the verifier to send c, and if c �= c′, it aborts and repeats the
experiment. If c = c′, then it decommits to the commitments according to honest
prover strategy.

Note that when c = c′ = 1, the resulting simulation is perfect zero-knowledge
since the simulated view of the verifier is identical to the view generated by an
honest prover. On the other hand when c = c′ = 0, it follows from the statistical
hiding property of the commitment extcom that the verifier cannot distinguish
the case where extcom is a commitment to π, π(G) and a hamiltonian cycle is
opened in π(G), from the case where extcom is not a commitment to π(G), but
instead to some π(H ′) for a hamiltonian cycle H ′. ��

Since honest-verifier zero-knowledge composes under parallel repetition, we
can repeat the protocol several times in parallel to get negligible soundness error.
Formally, we have the following lemma:

Lemma 3. Assuming that extcom is statistically hiding, the protocol in Fig. 2
satisfies honest verifier statistical zero-knowledge under parallel repetition.

Finally, Cramer et al. [9] showed that honest verifier zero knowledge where
the receiver’s algorithms are public coin implies witness indistinguishability even
against malicious verifiers. As a result, we get the following lemma:

Lemma 4. Assuming that extcom is statistically hiding, the protocol in Fig. 2
satisfies statistical witness indistinguishability under parallel repetition.

660 S. Badrinarayanan et al.

5.2 Statistical ZAPs

In this section, we prove the following theorem:

Theorem 2. There exists a two message public-coin statistical witness indistin-
guishable argument system for NP in the plain model assuming that the following
primitives exist:

• Two-message oblivious transfer (OT) that is quasi-polynomially secure
against malicious senders, satisfying Definition 4 and Property 1, and,

• Quasi-polynomially correlation intractable hash functions.

Recall from previous sections that we can use the above OT to build the
extractable commitment which is then used to build a four message Σ-protocol
that is a modification to Blum’s protocol. As mentioned before, we can instan-
tiate both the OT and the correlation intractable hash function assuming the
learning with errors (LWE) assumption. Therefore, instantiating both the prim-
itives in the above theorem gives us the following:

Theorem 3. Assuming quasi-polynomially secure LWE, there exists a two mes-
sage public-coin statistical witness indistinguishable argument system for NP in
the plain model.

Notations and Primitives Used

• Let λ be the security parameter.
• Let Σ := (Σ1, . . . , Σλ) denote λ parallel repetitions of the modified Blum

Sigma protocol constructed in Sect. 5.1, where for i ∈ [�], Σi = (qi, ai, ei, zi).
Let the underlying commitment scheme be instantiated with extraction suc-
cess probability ε = λ− log1/2 λ.

• Let H be a correlation intractable hash function with respect to {Fλ,s(λ)}λ∈N

according to Definition 3 that outputs strings of length λ, where s(λ) = 2s1(λ)
where s1 is the size of the extractor E used in the commitment scheme and
F denotes the class of all NC1 circuits of size s(λ) as defined in Definition
2. Recall the correlation-intractability advantage is assumed to be at most

1
λlog λ .

Construction. Let x be any instance in {0, 1}λ and let w be the corresponding
witness for the statement x ∈ L.

1. Verifier’s message to the Prover:
• Sample q := {qi}i∈[λ].
• Sample K ← H.Setup(1λ, 0�).
• Output (q,K).

2. Prover’s message to the Verifier:
• Compute {ai}i∈[λ] as a response to {qi}i∈[λ].
• Compute e ← H.Eval(K,x, (q, a)).
• Compute {zi}i∈[λ] with respect to the challenge string e.
• Output (x, a, e, z).

Statistical ZAP Arguments 661

3. Verification: The verifier does the following:
• If H.Eval(K,x, a) �= e, output reject.
• Else if (x, q, a, e, z) does not verify according to the Σ protocol, output

reject.
• Else output accept.

Completeness. Completeness of the protocol can be easily observed from the
correctness of the underlying primitives: the protocol Σ and the hash function H.

Public Coin. Recall from the statistical indistinguishability of hash keys prop-
erty that an honest verifier can just sample a uniformly random string as the
hash key K. This, along with the fact that the underlying protocol Σ is public
coin results in the above protocol also being public coin.

Soundness. We now prove computational soundness of the protocol above.
Towards a contradiction, fix any adversary A that breaks soundness of the pro-
tocol with probability 1

p(λ) for some polynomial p(·).
We consider a sequence of hybrids where the first hybrid corresponds to the

real soundness experiment.

• Hybrid0 : This hybrid corresponds to the experiment where the challenger
behaves identically to the verifier in the actual protocol.

• Hybrid1: In this hybrid, instead of generating the verifier’s first message as
uniformly random string, the challenger Ch now computes the first message
of the extractable commitment scheme used in the underlying protocol Σ as
done in the protocol description in Fig. 1. In particular, the underlying OT
receiver messages are not sampled as uniformly random strings but instead
are computed by running the OT receiver algorithm. As a result, Ch now has
some internal state rstate as part of the extractable commitment scheme that
is not public.

• Hybrid2: This hybrid is the same as the previous hybrid except that the hash
key K is generated as follows. K ← H.Setup(1λ, R) where the relation R
consists of tuples of the form ((x, q, a), y) where y is computed by an efficient
function fbad described below. fbad has the verifier’s secret state rstate hard-
wired, takes as input the statement x, the verifier’s message q, the prover’s
message a and does the following.
1. Run the extractor algorithm E on input (rstate, τ = (q, a)) to compute m.

Note that E can be represented by an NC1 circuit of size s1(λ) for some
polynomial s1.

2. If m �= ⊥, this means that m is the tuple of messages committed to in the
set of λ commitment tuples (cP , {ci,j}). For each k ∈ [λ], check whether
the message committed to by the tuple {ci,j} is indeed equal to π(G)
where π is the permutation committed to in cP . If so, then set ek = 0
and else set ek = 1. Set y = (e1, . . . , eλ).5

3. If m = ⊥, set y = 0λ.
5 Essentially, since x /∈ L, if the cheating prover has to succeed, it can either generate

a successful response zk for verifier’s query bit ek = 0 or ek = 1 and this function
determines which bit it is.

662 S. Badrinarayanan et al.

Before proving the soundness of the protocol using the hybrids, we define an
event that helps us in the proof.

Event E: Let τ denote the transcript of an execution of the above protocol and
let τC denote the transcript of the commitment scheme in the execution. Let
stateR denote the state of the verifier when it runs the receiver algorithm of
the commitment scheme. We will say that the event E occurs if for any honest
verifier V :

[V (τ) = 1 ∧ E(τC , stateR) �= ⊥].

We now continue the proof of soundness with the following claims.

Lemma 5. Assuming the pseudorandomness of receiver messages of the OT
protocol used in the underlying extractable commitment scheme (Property 1),
|Pr[V (τ) = 1|Hybrid1] − Pr[V (τ) = 1|Hybrid0]| = negl(λ)

Proof. The only difference between the two hybrids is that in Hybrid0, the OT
receiver messages in the extractable commitment scheme used in the underlying
protocol Σ are generated as uniformly random strings while in Hybrid1, they
are generated by running the algorithm OT1 on behalf of the OT receiver. It
is easy to see that if the difference in the adversary’s success probability in
breaking soundness between these two hybrids is non-negligible, we can break the
pseudorandomness of receiver messages property (Property 1) of the underlying
two message OT protocol, which is a contradiction. ��
Lemma 6. Assuming the frequency of extraction property and the indistin-
guishability of extractable transcripts property of the extractable commitment
scheme, there exists a polynomial p(·) such that Pr[E occurs in Hybrid1] ≥ ε· 1

p(λ) ,

where the probability is over the randomness of V , and where ε = λ− log1/2 λ is
the extraction probability of the underlying commitment scheme.

Proof. Fix x �∈ L. We will consider a reduction B that interacts with the adver-
sary and relies on the frequency of extraction property and the indistinguisha-
bility of extractable transcripts property of the extractable commitment scheme
to prove the lemma.

B interacts with a challenger Ch for the commitment scheme and receives
a first round message com1 for the �-extractable commitment scheme. It then
interacts with the adversary A as the verifier in the ZAP protocol, setting com1

as its message on behalf of the receiver in the underlying commitment scheme,
and sampling the hash key K ← H.Setup(1λ, 0�). After completing the protocol
execution with A, B forwards the commitments sent by A as its message com2

of the commitment scheme to the challenger Ch. Further, B outputs 1 in its
interaction with Ch if the proof provided by A verifies, and 0 otherwise.

Let τ denote the transcript of the ZAP protocol and τC the transcript of the
underlying commitment scheme. Let stater be the state of the receiver in the
commitment scheme as sampled by the challenger Ch.

Statistical ZAP Arguments 663

First, we observe that by Lemma 5, there exists a polynomial p(·) such that
adversary A breaks the soundness property in Hybrid1 with non-negligible prob-
ability 1

p(λ) . This implies that Pr[B(τC) = 1] ≥ 1
p(λ) over the random coins of

B,Ch. This gives us the following equation.

Pr[B(τC) = 1] = (Pr[B(τC) = 1 | E(τC , stateR) �= ⊥] · Pr[E(τC , stateR) �= ⊥]

+Pr[B(τC) = 1 | E(τC , stateR) = ⊥] · Pr[E(τC , stateR) = ⊥]) ≥ 1
p(λ)

(1)

From the indistinguishability of extractable transcripts property, we have that:
∣∣Pr[B(τC) = 1 | E(τC , stateR) �= ⊥]−Pr[B(τC) = 1 | E(τC , stateR) = ⊥]

∣∣ = negl(λ)
(2)

From the frequency of extraction property, we have that :

Pr[E(τC , stateR) �= ⊥] ≥ ε (3)

where all equations are over the random coins of the challenger Ch and reduction
B. Combining Eqs. (1) and (2) implies that there exists a polynomial q(·) such
that Pr[B(τC) = 1 | E(τC , stateR) �= ⊥] ≥ 1

q(λ) , which, by Eq. (3), implies that

Pr[B(τ) = 1 ∧E(τC , stateR) �= ⊥]

= Pr[B(τC) = 1 | E(τC , stateR) �= ⊥] · Pr[E(τC , stateR) �= ⊥]

≥ 1

q(λ)
· ε.

Thus we have Pr[E occurs in Hybrid1] ≥ ε · 1
q(λ) . This completes the proof of

the Lemma. ��
Lemma 7. Assuming the statistical indistinguishability of hash keys of the cor-
relation intractable hash function, there exists a polynomial p(·) such that

Pr[Eoccurs in Hybrid2] ≥ ε · 1
p(λ)

,

where the probability is over the randomness of V , and where ε = λ− log1/2 λ is
the extraction probability of the underlying commitment.

Proof. Assume for the sake of contradiction that the lemma is not true. We will
show that we can break the statistical indistinguishability of hash keys property
of the correlation intractable hash function.

We will design a reduction B that interacts with A, where B acts as verifier
in the above ZAP protocol. B interacts with a challenger Ch for the correlation
intractable hash function. Initially, B samples the first round message q for the
underlying Sigma protocol just as in Hybrid1, along with associated receiver state
stateR for the commitment scheme, and sends both to Ch. B obtains a hash key
K sampled either uniformly at random (as in Hybrid1) or by running the setup

664 S. Badrinarayanan et al.

algorithm of the hash function as described in Hybrid2. B uses this key K in its
interaction with the adversary A and completes executing the ZAP protocol.
Observe that if Ch sampled a hash key uniformly at random, the interaction
between A and B is identical to Hybrid1 and if Ch sampled as hash key as
described in Hybrid2, the interaction between A and B is identical to Hybrid2.

Now, B tests if event E occurs. That is, it checks if the ZAP protocol verifies
and if so, runs the extractor E(τC , stateR) using the transcript τC for the com-
mitment scheme. If the extractor cE does not output ⊥, then event E occurs
and B guesses that the hash key was uniformly sampled in its interaction with
the challenger Ch. Otherwise, it guesses that the hash key was not uniformly
sampled. Thus, if the event E occurs with probability ≥ ε · 1

p(λ) in Hybrid1, and
occurs with probability ε ·negl(λ) in Hybrid2, B can distinguish between the hash
keys with advantage ε

q(λ) for some polynomial q. This is a contradiction, and
this completes the proof of the lemma. ��
Lemma 8. Assuming the quasi-polynomial correlation intractable property of
the hash function, the soundness of the underlying protocol Σ and the correctness
of extraction of the extractable commitment scheme,

Pr[E occurs in Hybrid2] ≤ ε · negl(λ).

Proof. Suppose the claim is not true. This implies that Pr[V (τ) = 1 ∧ E(τC ,
stateR) �= ⊥] = ε · 1

p(λ) for some polynomial p. Let us consider any transcript on
which event E occurs. Let (q,K) denote the verifier’s message and (x, a, e, z)
denote the prover’s message. Then, from the correctness of the ZAP proto-
col, it must be the case that (q, a, e, z) verifies according to protocol Σ and
e = H(K, q, x, a). Further, since the extractor E succeeds on this transcript, the
commitment scheme is statistically binding. Therefore, we can invoke the special
soundness of the underlying modified Blum Σ protocol (as in the case of the reg-
ular Blum protocol) to state that for the statement x /∈ L and prefix (q, a) there
can exist at most one pair (e∗, z∗) such that (q, a, e∗, z∗) verifies successfully.
Therefore, the adversary’s message e must be equal to this value e∗.

Now, from the description of the relation R used in defining the hash key K
in Hybrid2, we observe that, by the correctness of extraction, fbad(q, x, a) = e∗ =
H(K, q, x, a). Thus, for any transcript that satisfies the conditions in event E,
fbad(q, x, a) = e∗ = H(K, q, x, a).

Thus, we can build a reduction B that, using the adversary A, produces
(x, q, a) such that fbad(q, x, a) = e∗ = H(K, q, x, a) with probability at least
ε · 1

p(λ) = 1

λlog1/2 λ·p(λ) . Since by Definition 3 the advantage of any polynomial-

time adversary in this game must be at most 1
λlog λ , this yields a contradiction.

��
Note that Lemmas 7 and 8 contradict each other, and therefore the adversary
does not break soundness in the real experiment. This completes the proof of
soundness. ��

Statistical ZAP Arguments 665

Statistical Witness Indistinguishability. Let A denote the unbounded time
adversarial verifier and Ch denote the challenger. Let x be the challenge instance
of length λ and w0 and w1 be a pair of witnesses for x ∈ L. Consider a pair of
hybrids where the first hybrid Hybrid0 corresponds to Ch running the honest
prover algorithm with witness w0 being used and the second hybrid Hybrid1
corresponds to Ch running the honest prover algorithm with witness w1 being
used. We now show that these two hybrids are statistically indistinguishable to
complete the proof.

Claim. Assuming the Σ-protocol is statistically witness indistinguishable,
Hybrid0 is statistically indistinguishable from Hybrid1.

Proof. We now show that if there exists an unbounded time adversary A for
which the two hybrids are not statistically indistinguishable, we can build a
reduction B that can break the witness indistinguishability of the underlying
modified Blum’s Sigma protocol which is a contradiction to Lemma 4. B acts as
the challenger in its interaction with the adversary A that is trying to distinguish
between these two hybrids. Further, B acts as the adversary in its interaction
with a challenger C in trying to break the WI property of the modified Blum
Sigma protocol. Initially, A sends a statement x, a pair of witnesses (w0, w1)
and a first round message (q,K) for the above ZAP construction. B forwards
(x,w0, w1) to the challenger C and sends q as its first message of the underlying
protocol Σ. C responds with its round two message a on behalf of the prover. B
computes e ← H.Eval(K,x, (q, a)) and sends it to C. Finally, C responds with the
last round message z on behalf of the prover. Now, B sends the tuple (x, a, e, z)
to A as the prover message for the above ZAP protocol. Observe that if the chal-
lenger C interacted using witness w0, then the interaction between the reduction
B and the adversary A is identical to Hybrid0 and if the challenger C interacted
using witness w1, then the interaction between the reduction B and the adver-
sary A is identical to Hybrid1. Thus, if these two hybrids are not statistically
indistinguishable to A, B can use the same guess used by A to distinguish them,
to break the statistical witness indistinguishability property of the protocol Σ
which is a contradiction. ��

5.3 Statistical SPS Zero Knowledge

We achieve the following theorem:

Theorem 4. For any c > 0, there exists a two message public-coin TSim-SPS
statistical zero knowledge argument system for NP in the plain model, where
TSim = 2λc

, assuming two-message oblivious transfer (OT) that is subexpo-
nentially secure against malicious senders, and quasi-polynomially correlation
intractable hash functions.

Note that we can instantiate the CI hash function and the OT protocol
assuming subexponential LWE. We refer to the full version of the paper for the
proof of Theorem 4.

666 S. Badrinarayanan et al.

Acknowledgements. Rex Fernando, Aayush Jain and Amit Sahai were supported
in part by the following: a DARPA/ARL SAFEWARE award, NSF Frontier Award
1413955, NSF grants 1619348, 1228984, 1136174, and 1065276, BSF grant 2012378, a
Xerox Faculty Research Award, a Google Faculty Research Award, an equipment grant
from Intel, and an Okawa Foundation Research Grant. Aayush Jain was also supported
by a Google PhD Fellowship (2018) in the area of Privacy and Security. This material
is based upon work supported by the Defense Advanced Research Projects Agency
through the ARL under Contract W911NF-15-C-0205. The views expressed are those
of the authors and do not reflect the official policy or position of the Department of
Defense, the National Science Foundation, the U.S. Government, or Google.

References

1. Badrinarayanan, S., Garg, S., Ishai, Y., Sahai, A., Wadia, A.: Two-message witness
indistinguishability and secure computation in the plain model from new assump-
tions. In: Takagi, T., Peyrin, T. (eds.) ASIACRYPT 2017. LNCS, vol. 10626, pp.
275–303. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-70700-6 10

2. Bitansky, N., Paneth, O.: ZAPs and non-interactive witness indistinguishability
from indistinguishability obfuscation. In: Dodis, Y., Nielsen, J.B. (eds.) TCC 2015.
LNCS, vol. 9015, pp. 401–427. Springer, Heidelberg (2015). https://doi.org/10.
1007/978-3-662-46497-7 16

3. Blum, M.: How to prove a theorem so no one else can claim it. In: Proceedings of
the International Congress of Mathematicians, Berkeley, CA, pp. 1444–1451 (1986)

4. Blum, M., Feldman, P., Micali, S.: Non-interactive zero-knowledge and its appli-
cations (extended abstract). In: STOC, pp. 103–112 (1988)

5. Brakerski, Z., Döttling, N.: Two-message statistically sender-private OT from
LWE. In: Beimel, A., Dziembowski, S. (eds.) TCC 2018. LNCS, vol. 11240, pp.
370–390. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-03810-6 14

6. Brassard, G., Crépeau, C., Robert, J.: Information theoretic reductions among
disclosure problems. In: FOCS (1986)

7. Canetti, R., et al.: Fiat-Shamir: from practice to theory. In: STOC (2019)
8. Chaum, D.: Demonstrating that a public predicate can be satisfied without reveal-

ing any information about how. In: Odlyzko, A.M. (ed.) CRYPTO 1986. LNCS,
vol. 263, pp. 195–199. Springer, Heidelberg (1987). https://doi.org/10.1007/3-540-
47721-7 13

9. Cramer, R., Damg̊ard, I., Schoenmakers, B.: Proofs of partial knowledge and sim-
plified design of witness hiding protocols. In: Desmedt, Y.G. (ed.) CRYPTO 1994.
LNCS, vol. 839, pp. 174–187. Springer, Heidelberg (1994). https://doi.org/10.1007/
3-540-48658-5 19

10. Dwork, C., Naor, M.: Zaps and their applications. In: FOCS (2000)
11. Dwork, C., Naor, M.: Zaps and their applications. Electronic Colloquium on Com-

putational Complexity (ECCC) (001) (2002)
12. Dwork, C., Naor, M.: Zaps and their applications. SIAM J. Comput. 36(6), 1513–

1543 (2007). https://doi.org/10.1137/S0097539703426817
13. Feige, U., Shamir, A.: Witness indistinguishable and witness hiding protocols. In:

STOC (1990)
14. Goldreich, O., Micali, S., Wigderson, A.: Proofs that yield nothing but their validity

and a methodology of cryptographic protocol design (extended abstract). In: FOCS
(1986)

https://doi.org/10.1007/978-3-319-70700-6_10
https://doi.org/10.1007/978-3-662-46497-7_16
https://doi.org/10.1007/978-3-662-46497-7_16
https://doi.org/10.1007/978-3-030-03810-6_14
https://doi.org/10.1007/3-540-47721-7_13
https://doi.org/10.1007/3-540-47721-7_13
https://doi.org/10.1007/3-540-48658-5_19
https://doi.org/10.1007/3-540-48658-5_19
https://doi.org/10.1137/S0097539703426817

Statistical ZAP Arguments 667

15. Groth, J., Ostrovsky, R., Sahai, A.: Non-interactive zaps and new techniques for
NIZK. In: Dwork, C. (ed.) CRYPTO 2006. LNCS, vol. 4117, pp. 97–111. Springer,
Heidelberg (2006). https://doi.org/10.1007/11818175 6

16. Halevi, S., Kalai, Y.T.: Smooth projective hashing and two-message oblivious
transfer. J. Cryptol. 25(1), 158–193 (2012). https://doi.org/10.1007/s00145-010-
9092-8

17. Jain, A., Jin, Z.: Statistical zap arguments from quasi-polynomial LWE. Cryptol-
ogy ePrint Archive, Report 2019/839 (2019). https://eprint.iacr.org/2019/839

18. Jain, A., Kalai, Y.T., Khurana, D., Rothblum, R.: Distinguisher-dependent simula-
tion in two rounds and its applications. In: Katz, J., Shacham, H. (eds.) CRYPTO
2017. LNCS, vol. 10402, pp. 158–189. Springer, Cham (2017). https://doi.org/10.
1007/978-3-319-63715-0 6

19. Kalai, Y.T.: Smooth projective hashing and two-message oblivious transfer. In:
Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 78–95. Springer, Hei-
delberg (2005). https://doi.org/10.1007/11426639 5

20. Kalai, Y.T., Khurana, D., Sahai, A.: Statistical witness indistinguishability (and
more) in two messages. In: Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT 2018.
LNCS, vol. 10822, pp. 34–65. Springer, Cham (2018). https://doi.org/10.1007/978-
3-319-78372-7 2

21. Khurana, D., Sahai, A.: Two-message non-malleable commitments from standard
sub-exponential assumptions. IACR Cryptology ePrint Archive 2017, 291 (2017).
http://eprint.iacr.org/2017/291

22. Lombardi, A., Vaikuntanathan, V., Wichs, D.: 2-message publicly verifiable WI
from (subexponential) LWE. Cryptology ePrint Archive, Report 2019/808 (2019).
https://eprint.iacr.org/2019/808

23. Naor, M., Pinkas, B.: Efficient oblivious transfer protocols. In: SODA (2001)
24. Peikert, C., Shiehian, S.: Noninteractive zero knowledge for NP from (plain) learn-

ing with errors (2019)
25. Sahai, A., Waters, B.: How to use indistinguishability obfuscation: deniable encryp-

tion, and more. In: STOC (2014)

https://doi.org/10.1007/11818175_6
https://doi.org/10.1007/s00145-010-9092-8
https://doi.org/10.1007/s00145-010-9092-8
https://eprint.iacr.org/2019/839
https://doi.org/10.1007/978-3-319-63715-0_6
https://doi.org/10.1007/978-3-319-63715-0_6
https://doi.org/10.1007/11426639_5
https://doi.org/10.1007/978-3-319-78372-7_2
https://doi.org/10.1007/978-3-319-78372-7_2
http://eprint.iacr.org/2017/291
https://eprint.iacr.org/2019/808

Statistical Zaps and New Oblivious
Transfer Protocols

Vipul Goyal1, Abhishek Jain2(B), Zhengzhong Jin2(B), and Giulio Malavolta1,3

1 Carnegie Mellon University, Pittsburgh, PA, USA
vipul@cmu.edu, giulio.malavolta@hotmail.it

2 Johns Hopkins University, Baltimore, MD, USA
abhishek@cs.jhu.edu, zzjin@cs.jhu.edu

3 UC Berkeley, Berkeley, USA

Abstract. We study the problem of achieving statistical privacy in
interactive proof systems and oblivious transfer – two of the most well
studied two-party protocols – when limited rounds of interaction are
available.

– Statistical Zaps: We give the first construction of statistical Zaps,
namely, two-round statistical witness-indistinguishable (WI) proto-
cols with a public-coin verifier. Our construction achieves computa-
tional soundness based on the quasi-polynomial hardness of learning
with errors assumption.

– Three-Round Statistical Receiver-Private Oblivious Trans-
fer: We give the first construction of a three-round oblivious trans-
fer (OT) protocol – in the plain model – that achieves statistical
privacy for receivers and computational privacy for senders against
malicious adversaries, based on polynomial-time assumptions. The
round-complexity of our protocol is optimal.

We obtain our first result by devising a public-coin approach to compress
sigma protocols, without relying on trusted setup. To obtain our second
result, we devise a general framework via a new notion of statistical hash
commitments that may be of independent interest.

1 Introduction

We study the problem of achieving statistical privacy in two-party cryptographic
protocols. Statistical privacy is very appealing in cryptography since it guaran-
tees everlasting security – even if the adversary is computationally unbounded
during the protocol execution and later post-processes the protocol transcript
for as long as it wants, it cannot violate the privacy guarantee. For this reason,
perhaps unsurprisingly, statistical privacy is typically much harder to achieve
than computational privacy. For example, achieving statistical privacy for both
participants in two-party protocols is impossible in general.

Nevertheless, in many scenarios, “one-sided” statistical privacy is possible to
achieve. In other words, it is typically possible to design protocols that guarantee
statistical privacy for one participant and computational privacy for the other. In
c© International Association for Cryptologic Research 2020
A. Canteaut and Y. Ishai (Eds.): EUROCRYPT 2020, LNCS 12107, pp. 668–699, 2020.
https://doi.org/10.1007/978-3-030-45727-3_23

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-45727-3_23&domain=pdf
https://doi.org/10.1007/978-3-030-45727-3_23

Statistical Zaps and New Oblivious Transfer Protocols 669

this work, we investigate the possibility of achieving such asymmetric guarantees
when limited rounds of interaction are available. We narrow the focus of our
study on interactive proof systems [2,24] and oblivious transfer [17,39], two of
the most well-studied two-party protocols in the cryptography literature.

Statistical Zaps. The notion of witness-indistinguishable (WI) proofs [19]
allows a prover to convince a verifier about the validity of a statement (say)
x in a manner such that the proof does not reveal which one of possibly multiple
witnesses that attest to the validity of x was used in the computation. More
specifically, if w1, w2 are both witnesses for x, then the verifier should not be
able to distinguish between an honest prover using w1 from an honest prover
using w2. Despite offering a weaker privacy guarantee than zero-knowledge (ZK)
proofs [24], WI has found wide applications in cryptography. One reason for its
appeal is that most known round-complexity lower bounds for ZK do not apply
to WI.

The seminal work of Dwork and Naor [15] proved that unlike ZK [23], WI
can be achieved in two rounds, without relying on a trusted setup. They con-
structed two-round WI protocols with a public-coin verifier message, which they
termed Zaps, from non-interactive zero-knowledge (NIZK) proofs in the common
random string model [12,18]. By relying on known constructions of such NIZKs,
their methodology can be used to obtain Zaps from quadratic residuosity [12],
trapdoor permutations [18] and the decisional linear assumption over bilinear
groups [26]. More recently, Zaps were also constructed based on indistinguisha-
bility obfuscation [6].

Over the years, Zaps have found numerous applications in cryptography. Part
of their appeal is due to the public-coin verifier property which is crucial to many
applications. In particular, it implies public verifiability, a property which is often
used in the design of round-efficient secure multiparty computation protocols
(see, e.g., [27]). Moreover, it also allows for the verifier message to be reusable
across multiple proofs, a property which is often used, for example, in the design
of resettably-secure protocols (see, e.g., [13]).

Remarkably, all known constructions of Zaps (as well as non-interactive
WI [5,6,25]) only achieve computational WI property. Despite several years of
research, the following fundamental question has remained open:

Do there exist statistical Zaps?

In fact, even two-round statistical WI that only satisfy public-verifiability or
reusability, in isolation, are not known currently. This is in contrast to NIZKs,
which are indeed known with statistical privacy [8,38] or even perfect privacy
[26]. One reason for this disparity is that the methodology of [15] for constructing
Zaps is not applicable in the statistical case.

The recent work of Kalai, Khurana and Sahai [31] comes close to achieving
this goal. They constructed two round statistical WI with private-coin verifier
message based on two round statistical sender-private oblivious transfer (OT)
[1,7,28,30,36]. The use of a private-coin verifier message is, in fact, instrumental

670 V. Goyal et al.

to their approach (which builds on [4,29]). As such, a different approach is
required for constructing statistical Zaps with a public-coin verifier.

Statistical Receiver-Private Oblivious Transfer. An oblivious transfer
(OT) [17,39] protocol allows a “sender” to transfer one of its two inputs to
a “receiver” without learning which of the inputs was obtained by the receiver.
OT is of special importance to the theory and practice of secure computation
[22,41] since OT is both necessary and complete [33].

Nearly two decades ago, the influential works of works of Naor and Pinkas
[36] and Aiello et al. [1] constructed two-round OT protocols that achieve game-
based security against malicious adversaries in the plain model. An important
property of these protocols is that they guarantee statistical privacy for senders
(and computational privacy for receivers). Subsequent to these works, new con-
structions of such protocols were proposed based on a variety of assumptions (see,
e.g., [7,28,30]). Over the years, such OT protocols have found many applications
such as constructions of two-round (statistical) WI [4,29,31], non-malleable com-
mitments [32], and more.

A natural question is whether it is possible to construct such OT protocols
with a “reverse” guarantee, namely, statistical privacy for receivers (and com-
putational privacy for senders). As observed in [31], two rounds are insufficient
for this task: statistical receiver privacy implies that there exists different ran-
domness tapes for receiver that explains a fixed receiver message for both input
bits 0 and 1. Thus, a non-uniform malicious PPT receiver could simply start a
two-round protocol with non-uniform advice that consists of such a message and
randomness tapes, and then use both random tapes to learn both inputs of the
sender, thereby violating sender privacy.

In the same work, [31] also proved that three rounds are sufficient for this
task. Namely, they constructed three round statistical receiver-private OT with
game-based security against malicious adversaries, in the plain model. However,
they achieve this result by relying upon super-polynomial-time hardness assump-
tions. In contrast, two-round statistical sender-private OT protocols are known
from polynomial-time assumptions. This leaves open the following important
question:

Does there exist three-round statistical receiver-private OT in the plain model
based on polynomial-time assumptions?

1.1 Our Results

In this work, we resolve both of the aforementioned questions in the affirmative.

I. Statistical Zap Arguments. We give the first construction of statistical
Zaps with computational soundness, a.k.a. statistical Zap arguments. The sound-
ness of our protocol is based on the quasi-polynomial hardness of the learning
with errors (LWE) assumption. While we focus on achieving statistical privacy,
we note that our construction, in fact, also yields the first computational Zap
argument system based on (quasi-polynomial) LWE.

Statistical Zaps and New Oblivious Transfer Protocols 671

Theorem 1 (Informal). Assuming quasi-polynomial LWE, there exists a sta-
tistical Zap argument system.

In order to obtain our result, we depart significantly from prior approaches
for constructing Zaps. Specifically, our approach combines the recent statistical
NIZK arguments of Peikert and Shiehian [38] in a non-black-box manner with a
two-round public-coin statistically-hiding extractable commitment scheme (see
Sect. 4.1). Previously, such a commitment scheme in the private-coin setting was
constructed by [31].

Roughly speaking, while the work of [38] (following [8]) instantiates the Fiat-
Shamir methodology [19] for compressing sigma protocols [10] into a NIZK
using collision-intractable hash (CIH) functions [9], our approach can be seen
as a way to compress sigma protocols into statistical Zaps using CIH and two-
round public-coin statistically-hiding extractable commitments, without using a
trusted setup. Importantly, while prior approaches for compressing sigma pro-
tocols into two-round WI [4,29,31] lose the public-coin property of the sigma
protocol, our approach retains it. We refer the reader to Sect. 2.1 for more details
on our technical approach.

Related Work. In a concurrent and independent work, Badrinarayanan et al. [3]
also construct statistical Zap arguments from quasi-polynomial LWE. In another
concurrent and independent work, Lombardi et al. [34] construct computational
Zap arguments from quasi-polynomial LWE. In a follow up work, Lombardi
et al. [35] construct statistical Zaps with private verifier randomness from quasi-
polynomial decisional linear assumption over groups with bilinear maps.

II. Three-Round Statistical Receiver-Private Oblivious Transfer. We
devise a general framework for constructing three-round statistical receiver-
private OT via a new notion of statistical hash commitments (SHC). This notion
is inspired by hash proof systems [11] that were previously used to design two-
round statistical sender-private OT [28,30]. Roughly speaking, an SHC scheme
is a two-round statistically hiding commitment scheme where the opening veri-
fication simply involves an equality check with a hash output (computed w.r.t.
a hashing algorithm associated with the scheme).

We devise a generic transformation from any SHC scheme with statistical
hiding property to three-round statistical receiver-private OT. The resulting
OT scheme achieves game-based security against malicious adversaries in the
plain model. For the case of senders, we in fact, achieve a stronger notion of
distinguisher-dependent simulation security [16,29]. Next, we provide two instan-
tiations of an SHC scheme:

– A direct construction based on a search assumption, specifically, the compu-
tational Diffie-Hellman (CDH) problem. This construction, in fact, achieves
perfect hiding property.

– We provide another construction of SHC based on any two-round statistical
sender-private OT. Such schemes are known based on a variety of assump-
tions, including DDH, Quadratic (or N th) Residuosity, and LWE. This yields
a new approach for OT reversal [40] in the context of game-based security.

672 V. Goyal et al.

Putting these together, we obtain the following result:

Theorem 2 (Informal). Assuming the existence of any two-round statistical
sender-private OT (resp., polynomial hardness of CDH), there exists a three-
round statistical (resp., perfect) receiver-private OT in the plain model.

2 Technical Overview

2.1 Statistical Zap Arguments

We now prove a high-level overview of the main ideas underlying our construction
of statistical Zaps. Roughly speaking, we devise a strategy to compress sigma
protocols into statistical Zaps. While the idea of compressing sigma protocols
to two-round WI arguments has been considered before [4,29,31], the resulting
protocol in these works were inherently private coin as they use oblivious transfer
to “hide” the verifier message in the underlying sigma protocol. To obtain a
public-coin protocol, we take a different approach.

Our starting point is the recent construction of NIZKs from LWE [8,38] that
compresses any “trapdoor” sigma protocol into a NIZK by instantiating the
Fiat-Shamir transformation [19] in the CRS model. We start by briefly recalling
these constructions.

Recent Constructions of NIZKs from LWE. The main tool underlying
the constructions of NIZK in [8,38] is the notion of Correlation Intractable Hash
(CIH) functions. Roughly speaking, correlation intractability means that for any
multi-bit-output circuit f , if we sample a hash function Hk(·) from the CIH
function family, it is hard to find an input x such that Hk(x) coincides with
f(x).

The work of [38] construct a NIZK for the Graph Hamiltonian Language1

starting from a sigma protocol for the same language. Recall that the first round
prover message in the sigma protocol consists of commitments to some random
cycle graphs. Let α denote the cycle graphs. The compression strategy works
as follows: first, the prover prepares commitments to α by using a public-key
encryption scheme, where the public-key is a part of the CRS setup. Next, the
prover computes the verifier’s challenge in the sigma protocol by evaluating the
CIH function over the first round message, where the CIH key is also fixed by
the CRS setup. Given this challenge, the prover finally computes the third round
message of the sigma protocol. The NIZK proof simply consists of this transcript.

Roughly speaking, the zero knowledge property of this construction relies on
the semantic security of the public key encryption scheme (used to commit α) as
well as the programmability of the CIH. Moreover, when the public key is lossy,
then the NIZK in fact achieves statistical zero knowledge property.

The soundness property crucially relies upon the ability to extract the values
α from the commitments by using the secret key corresponding to the public-key
fixed by the CRS, as well as the correlation intractability of the CIH. Specifically,
1 Their construction, in fact, works for any trapdoor sigma protocol.

Statistical Zaps and New Oblivious Transfer Protocols 673

for any instance that is not in the language, given the secret key of the public key
encryption, one can extract α from the commitment by decrypting it using the
secret key, and then check if α corresponds to cycle graphs or not. Note that this
checking procedure can be viewed as a function f . Then, if the malicious prover
can find an accepting proof for the false statement, it implies that the output of
the function f (with the secret key hardwired) evaluated over first round prover
message coincides with the verifier’s challenge bits, which are outputted by the
CIH function. However, from the correlation intractability of CIH, such a prover
shouldn’t exist.

Starting Observations. Towards constructing statistical Zaps in the plain
model, a naive first idea would be to simply let the verifier generate and send
the CRS of the (statistical) NIZK in the first round, and then require the prover
to compute and send the NIZK proof based on this CRS in the second round.
This attempt, however, fails immediately since the verifier may use the trap-
door corresponding to the CRS (specifically, the secret key corresponding to the
public-key encryption) to extract the prover’s witness.

One natural idea to address this issue is to replace the public-key encryp-
tion scheme with a two-round statistically-hiding commitment scheme. However,
while this seems to address witness privacy concerns, it is no longer clear how
to argue soundness since the proof of soundness (as discussed above) crucially
requires the ability to extract the α values.

Achieving Weak Privacy. In order to devise a solution to the above prob-
lems, let us first consider a significantly weaker goal of constructing a two-round
protocol that achieves computational soundness but only a very weak form of
privacy guarantee, namely, that the verifier can learn the prover’s witness with
probability at most one-half. Moreover, we do not require the protocol to be
public-coin, but only satisfy the weaker property of public verifiability.

To obtain such a protocol, we rely on a 2-round statistical sender-private
oblivious transfer protocol in plain model [7,28,30,36]. In such an OT scheme,
even if the receiver is malicious, at least one of the sender’s messages remains
statistically hidden from the receiver. Given such an OT scheme, we construct
the desired two-round protocol as follows:

– In the first round, the verifier acts as the OT receiver, and sends a first round
OT message with a random input bit b.

– In the second round, the prover prepares a transcript of the sigma protocol in
the same manner as in the NIZK construction earlier, with the following key
difference: it flips a coin b′ and instead of computing the first round prover
message as encryptions of α values, it computes OT sender messages where
in each message, he uses inputs m0,m1, where mb′ = α and m1−b′ = ⊥.

With probability one-half, the random bit b of the verifier and the random
coin b′ of the prover are different. In this case, the statistical sender-privacy of
the OT ensures that the α values remain hidden from the verifier. As such, the
construction satisfies weak privacy, as required.

674 V. Goyal et al.

For computational soundness, consider any instance that is not in the lan-
guage. Suppose we have an efficient cheating prover that can generate an accept-
ing proof with non-negligible probability. In this case, we can run the cheating
prover multiple times to estimate the distribution of the random coin b′. Note
that at least one side of the random coin appears with probability no less than
half. Without loss of generality, let assume such side is 0. Now we can switch
the verifier’s random hidden bit b in the first round message of OT to 0. Since
the first round message of OT computationally hides b, the efficient cheating
prover should not notice the switch, and hence the two random bits coincide
with constant probability. However, when the two bits coincide, we can extract
α by using the receiver’s trapdoor of the OT. This allows us to contradict the
correlation intractability of CIH, in the same manner as before.

Finally, note that the verifier does not need to use the randomness of the OT
receiver to verify the proof; as such the above construction is publicly verifiable.

Amplifying Privacy. In order to amplify the privacy guarantee of the above
scheme, we consider a modified approach where we replace the random bits b
and b′ – which collide with probability one-half – with random strings of length
� that collide with 1

2� probability. Specifically, consider a two-round protocol
where the receiver’s input is a random string b of length �, while the sender also
chooses a random string b′ of length and “encrypts” some message m. Suppose
that the protocol satisfies the following “extractability” property, namely, if b
and b′ are equal, then the receiver can extract the encrypted message; otherwise,
m remains statistically hidden.

Now consider a modified version of our weakly-private two-round argument
system where we replace the two-round OT with the above “string” variant.
Note that with probability 1−2�, b and b′ chosen by the prover and the verifier
would be different, in which case, the α values would remain statistically hidden.
This observation can, in fact, be turned into a formal proof for statistical witness
indistiguishability.

The proof of computational soundness, however, now requires more work.
Specifically, we now run the cheating prover for ≈ 2� times, and estimate a b′

0

that the cheating prover is most likely to output (with probability ≥ 1/2�). We
then switch b to b′

0. If the first round message of the receiver is secure against 2�-
time adversaries, then the cheating prover would not notice the switch. We can
now extract α values and derive a contradiction in a similar manner as before.

Two Round Public-Coin Statistical-Hiding Extractable Commit-
ments. A two-round protocol that achieves statistical hiding property for the
sender as well as extractability property of the aforementioned form was first
formalized as a statistical-hiding extractable commitment scheme in the work
of [31]. Their construction, however, is private coin for the receiver. Below, we
briefly recall their construction, and then discuss how it can be adapted to the
public-coin setting.
– In the first round, the receiver samples a uniformly random string b of length

�. For each bit of the b, the receiver sends a first round 1-out-of-2 OT message
with the input bit specified by b.

Statistical Zaps and New Oblivious Transfer Protocols 675

– The committer first samples a uniformly random string b′ of length �. To
commit to a message m, the committer firstly uses the xor secret sharing to
share m to � shares. It then generates � second round OT messages: for the
i-th second round OT message, if the i-th bit of b′ is 0, then the committer
puts the share in the first input slot, and puts a random value in the second
slot. Otherwise, the committer puts the share in the second slot, and put a
random value in the first slot.

From statistical sender-privacy of the underlying OT, the above construc-
tion achieves statistically hiding with probability 1 − 2�, even if the first round
messages are maliciously generated.

Let us now explain the extractability property. For any committer, there
exists a string b0 of length �, such that the second string coincides with b0 with
probability no less than 2−�. Therefore, we can switch the first round message
of the commitment to hide b0. If we set � to be sub-linear, and assume the
first round message is secure against sub-exponential-time adversaries, then the
committer would not notice the switching. Hence, when the two strings coincide,
we can extract the committed message.

The aforementioned statistical-hiding extractable commitment scheme is a
private coin scheme. To obtain a public-coin scheme, we rely on the fact that in
many known statistical sender-private OT schemes, the first round message is
pseudorandom. For example, in the recent construction of two-round statistical
sender-private OT from LWE [7], the first round message is either statistical
close to uniformly random, or is an LWE instance, which is computationally
indistinguishable from the uniform distribution.

Putting It All Together. Our final construction combines the above ideas to
obtain a statistical Zap argument system:

– In the first round, the receiver simply sends the first round message of a
two-round public-coin statistical-hiding extractable commitment scheme.

– Next, the prover samples a random string b′ and computes a transcript of
the sigma protocol in the same manner as before, except that it commits to α
values within the second round messages of the public-coin statistical-hiding
extractable commitment scheme.

We argue the statistical WI property by relying on the statistical-hiding
property of the commitment scheme. The proof of soundness relies on the
ideas discussed above. In order to base security on quasi-polynomial hardness
assumptions, we set the parameter � for the commitment scheme to be super-
logarithmic rather than sub-linear. Given any cheating prover with inverse poly-
nomial advantage, we run the cheating prover several times to estimate a string
b0 of length � such that the string chosen by the prover coincides with b0

with some inverse quasi-polynomial probability. This estimation takes quasi-
polynomial time. Next, we switch the first round verifier message to one that is
computed using b0. This switch is not noticeable to the prover since the first
round message hides b0 even from adversaries that run in time 2�. This allows us

676 V. Goyal et al.

to extract the α values and then invoke the correlation intractability of the CIH
function as before. Note that we can construct the function f for CIH explicitly
by using the receiver randomness for the first round message.

2.2 Three Round Statistical Receiver-Private OT

In this section, we describe our main ideas for constructing statistical receiver-
private OT in three rounds in the plain model.

Prior Work Based on Super-Polynomial Time Assumptions. We start
by briefly recalling the recent work of [31] who investigated the problem of
statistical receiver-private OT in three rounds. Since security w.r.t. black-box
polynomial-time simulation is known to be impossible to achieve in three rounds
[20], [31] settled for the weaker goal of achieving security w.r.t. super-polynomial
time simulation [37]. To achieve their goal, [31] implemented an OT reversal app-
roach, starting from a two-round statistical sender-private OT to obtain a three-
round statistical receiver-private OT based on super-polynomial-time hardness
assumptions. In fact, the use of super-polynomial-time hardness assumptions
seems somewhat inherent to their approach.

Motivated by our goal of basing security on standard polynomial-time hard-
ness assumptions, we take a different approach, both in our security definition as
well as techniques. On the definitional side, we consider distinguisher-dependent
simulation security [16,29] for senders. On the technical side, we develop a gen-
eral framework for three round statistical receiver-private OT via a new notion
of statistical hash commitment. We elaborate on both of these aspects below.

Defining Security. In the setting of interactive proof systems, a well-studied
security notion is weak zero-knowledge [16] which relaxes the standard notion
of zero knowledge by reversing the order of quantifiers, namely, by allowing the
simulator to depend upon the distinguisher. A recent work of [29] dubbed this
idea as distinguisher-dependent simulation and studied it for proof systems and
some other two-party functionalities. Following their approach, in this work, we
formalize security for senders in three round OT via distinguisher-dependent
simulation. Roughly speaking, this notion requires that for every malicious PPT
receiver and PPT distinguisher, there must exist a PPT simulator that can
simulate an indistinguishable view of the receiver.

Towards achieving distinguisher-dependent simulation security for senders,
we first consider (computational) game-based security definition for senders.
Interestingly, it is not immediately clear how to define game-based security for
senders when we also require statistical receiver privacy. This is because in any
protocol that achieves statistical receiver privacy, the protocol transcript does
not fix the receiver message in an information-theoretic sense. As such, unlike the
case of two-round computational receiver-private OT (where the receiver’s input
is information-theoretically fixed by the transcript), we cannot simply require
indistinguishability of views generated using (say) sender inputs (mb,m1−b) and
(mb,m

′
1−b), where b is presumably the input bit of the receiver.

Statistical Zaps and New Oblivious Transfer Protocols 677

We resolve this conundrum by using an observation from [29]. In order to
build proof systems with distinguisher-dependent simulation security, the work
of [29] used the following natural property of two-round OT with computational
privacy for senders and receivers – the distribution over receiver views generated
using (say) sender inputs (m0,m1) must be indistinguishable from at least one
of the following:

– Distribution over receiver views generated using sender inputs (m0,m0).
– Distribution over receiver views generated using sender inputs (m1,m1).

Intuitively, the first case corresponds to receiver input bit 0, while the second
case corresponds to receiver input bit 1.

It is not difficult to see that the above stated property is, in fact, meaningful
even when the receiver’s input is only fixed in a computational sense by the pro-
tocol transcript, which is the case in our setting. A recent work of [14] formulated
a game-based security definition for senders that captures the above intuition,
and we adopt it in this work. We also show that for our three round setting,
game-based security for senders can be used to achieve distinguisher-dependent
simulation security for senders.

So far, we have focused on formalizing security for senders. Formalizing secu-
rity for receivers is easier; we consider game-based security that requires statis-
tical/perfect indistinguishability of views generated with receiver inputs 0 and
1, against unbounded-time malicious senders.

In the remainder of this section, we describe our main ideas for constructing
three-round OT with game-based security for senders and receivers.

A General Framework via Statistical Hash Commitment. We introduce
a new notion of an statistical hash commitment (SHC) scheme – a two-round
statistically hiding commitment scheme where the decommitment verification
simply involves an equality check with a hash output (computed w.r.t. a hashing
algorithm associated with the scheme). We start by informally defining this
notion and then discuss how it can be used to construct three-round OT with
our desired security properties.

An SHC scheme is a two-round commitment scheme between a committer C
and a receiver R, that comes equipped with three additional algorithms – a key
generation algorithm KGen, a commitment algorithm Com, and a hash algorithm
H.

– In the first round, the Receiver R samples a key pair (pk, k) ← KGen and
sends pk to the committer C.

– In the second round, to commit a bit b ∈ {0, 1}, the committer C executes
(c, ρ) ← Com(pk, b), and sends c to the receiver R.

– In the opening phase, the committer C sends (b, ρ) to the receiver R.
– The verification algorithm only involves an equality check: R computes the

hash algorithm H using the private key k on input (c, b) and then matches the
resulting value against ρ. If the check succeeds, then R accepts the opening,
else it rejects.

678 V. Goyal et al.

– Computational Binding This property requires that no PPT malicious
committer C can successfully compute a commitment c, and a opening ρ0
and ρ1 for both bits b = 0 and b = 1. Put differently, for an instance x
and a second round message α, a PPT malicious committer cannot compute
H(k, c, b) for both b = 0 and b = 1.

– Statistical (Perfect) Hiding This property requires that, every (possibly
maliciously computed) public key pk, the commitment of 0 and 1 are statis-
tically close.

Looking ahead, we use computational binding property of SHC to achieve
computational game-based security for senders in our construction of three-
round OT. The statistical (resp., perfect) hiding property, on the other hand, is
used to achieve statistical (resp., perfect) game-based security for receivers.

From SHC to Three-Round OT. We next describe a generic transformation
from an SHC scheme statistical/perfect receiver-private OT. In our protocol
design, the OT sender plays the role of the receiver in SHC, while the OT
receiver plays the role of the committer for SHC. In the discussion below, let b
denote the input bit of the OT receiver and let (m0,m1) denote the input bits
of the OT sender.

– In the first round, the sender samples a key pair (pk, k) using the key gener-
ation algorithm KGen for SHC, and sends pk to the sender.

– In the second round, it runs the commitment algorithm Com for SHC on
input (pk, b) to compute a second round message c and an opening ρ, and
sends c to the sender.

– In the last round, the sender samples two random strings (r0, r1) and then
computes two “mask” bits z0 and z1, one each for its inputs m0,m1. The
mask zi (for i ∈ {0, 1}) is computed as hc

(
H(k, c, i), ri

)
, where hc(·, ·) is the

Goldreich-Levin universal hardcore predicate [21].

To argue computational game-based security for senders, we crucially rely
upon the strong soundness of SHC. In particular, the strong soundness of SHC,
coupled with the security of the hardcore predicate ensures that at least one of
the two mask bits zi must be hidden from a malicious PPT receiver when the
instance x is sampled from a hard distribution. Statistical (resp., perfect) security
for receivers, on the other hand, follows from the statistical (resp., perfect) hiding
property of the commitment.

We next discuss two different constructions of SHC.

Instantiating SHC from CDH. We first describe a construction of SHC that
achieves perfect hiding property, based on CDH.

Let M =
(

1 0
y 1

)
, which must be full rank. Note that gM can be computed

using gy.

– In the first round, the receiver R samples a random 2-by-1 column vector
k as the secret key of the hash function, and sets the public key pk to be
pk = (gy, gM·k). It then sends pk to the committer C.

Statistical Zaps and New Oblivious Transfer Protocols 679

– The committer C (with input bit b ∈ {0, 1}) samples a random 2-by-1 matrix
α, and uses pk to compute c = gαT ·M · g[0,b]. The committer sends c to the
verifier, and then compute ρ = gαT M·k.

– The receiver R parse c = gz, and computes H(k, c, b) = g(z−[0,b])·k. If
H(k, c, b) = ρ, then accept, otherwise reject.

We next informally argue the security of the above construction. Let us first
consider computational binding property. Intuitively, for any prover who wants
to compute two accepting last round messages ρ0, ρ1 for both b = 0 and b = 1, it
must compute the inverse of M, which requires that the prover knows the witness
y. More formally, to prove the computational binding property, we build a PPT
extractor that extracts y to derive a contradiction. Specifically, for any cheating
committer who can output two accepting ρ0, ρ1 for b = 0 and b = 1, we can divide
them to derive g[0,1]·k. If we parse k as k = (s, t), then this implies that given
(gy, gMk̇) = (gy, gsy, gsy+t), an efficient algorithm can compute g[0,1]·k = gt. We
can then divide it from gsy+t and derive gsy. This gives us an efficient adversary
for CDH.

To prove statistical hiding property, for any (potentially maliciously com-
puted) pk, the commitment of bit b ∈ {0, 1} is c = gαT ·M+[0,b]. Since the matrix
M is full rank, and α is uniformly random, we have that c is uniformly random.
Hence, the commitment statistically hides b.

Instantiating SHC from Statistical Sender-Private 2-round OT. We
next show a construction of SHC from any statistical sender-private 2-round OT
protocol (OT1,OT2,OT3), where OT3 denotes the receiver output computation
algorithm.

– In the first round, the receiver R samples a random string r of length �.
Then for each bit r[i], it invokes OT1 to generate a first round OT message
(ot1,i, sti) ← OT1(1λ, r[i]). The public key pk is set to be the tuple of messages
{ot1,i}i∈[�], while the private key k is set to be the tuple of private states
{sti}i∈[�].

– The committer C receives pk, and its input is a bit b. It first samples a random
string r′ of length �. For each position i ∈ [�], it generates the second round
OT messages ot2,i = OT2(ot1,i, r

′[i], r′[i] ⊕ b). The commitment c is set to be
the tuple of second round OT messages {ot2,i}i∈[�], and the opening ρ = r′.

– The verification process first computes H(k, c, b) as follows: parse k as
{sti}i∈[�], and the commitment c as {ot2,i}i∈[�]. Then, compute ρ0,i ←
OT3(ot2,i, sti), set ρ1,i = ρ0,i ⊕ r[i] for each i ∈ [�], and set {ρb,i}i∈[�] to
be the output of H(k, c, b). If this output equals ρ, accept, otherwise, reject.

To show the completeness of this protocol, from the construction of the com-
mitter, we know that ρ0,i = r′[i]⊕(r[i]·b). From the computation of H(k, c, b), we
have that ρb,i = ρ0,i⊕(r[i]·b) = (r′[i]⊕(r[i]·b))⊕(r[i]·b) = r′[i] = ρ. The statisti-
cal hiding property follows from the statistical hiding property of the underlying
OT. Finally, to show the construction is computational binding, our observa-
tion is that the construction of H always satisfies H(k, c, 0)⊕H(k, c, 1) = r.

680 V. Goyal et al.

Hence, any adversary breaking the computational binding property can also
find ρ0⊕ρ1 = H(k, c, 0)⊕H(k, c, 1) = r, given only the first round messages ot1,i.
This breaks the computational receiver privacy of the OT.

3 Preliminaries

For any two (discrete) probability distributions P and Q, let SD(P,Q) denote
statistical distance between P,Q. Let Z denote the set containing all integers.
For any positive integer q, let Zq denote the set Z/qZ. Let S be a discrete set,
and let U(S) denote the uniform distribution over S. Throughout the paper,
unless specified otherwise, we use λ to denote the security parameter.

3.1 Learning with Errors

We first recall the learning with errors (LWE) distribution.

Definition 1 (LWE distribution). For positive integer n and modulus q, and
an error distribution χ over Z, the LWE distribution As,χ is the following dis-
tribution. First sample a uniform random vector a ← Z

n
q , and an error e ← χ,

then output (a, 〈a, s〉 + e) ∈ Z
n
q × Zq.

Standard instantiations of LWE distribution usually choose χ to be discrete
Gaussian distribution over Z.

Definition 2 (Quasi-polynomial LWE Assumption). There exists a poly-
nomial n = n(λ) and a small real constant c ∈ (0, 1/2) such that for any non-
uniform probabilistic oracle adversary D(·)(·) that runs in time 2O(log4 λ), we
have

Advλ(D) =
∣
∣
∣Pr

[
DU(Zn

q ×Zq)(1λ) = 1
]

− Pr
[
s ← Z

n
q : DAs,χ(1λ) = 1

]∣∣
∣ < c

Where the adversary is given oracle access to the uniform distribution U(Zn
q ×Zq)

or the LWE distribution As,χ.

In the following Lemma 1, we show that quasi-polynomial LWE assumption
implies that any adversary running in a slower quasi-polynomial time can only
have inverse quasi-polynomial advantage. We defer the proof to the full version.

Lemma 1. Assuming quasi-polynomial hardness of LWE, for any non-uniform
probabilistic adversary D that runs in time 2O(log2 λ), we have

Advλ(D)=
∣
∣
∣Pr

[
DU(Zn

q ×Zq)(1λ)=1
]

− Pr
[
s ← Z

n
q : DAs,χ(1λ)=1

]∣∣
∣ < 2−Ω(log4 λ)

Statistical Zaps and New Oblivious Transfer Protocols 681

3.2 Computational Diffie-Hellman Assumption

Definition 3. Let G be a cyclic group of order q generated by g, where each
element of G can represented in a polynomial n = n(λ) number of bits. The CDH
assumption states that for any non-uniform PPT adversary A, there exists an
negligible function ν(λ) such that

Pr[x ← Zq, y ← Zq, z ← A(1λ, gx, gy) : z = gxy] < ν(λ)

3.3 Goldreich-Levin Hardcore Predicate

Definition 4. Let f be an one-way function from {0, 1}n → {0, 1}m, where
n = n(λ) and m = m(λ) are polynomials of λ. The Goldreich-Levin hardcore
predicate hc is defined as hc(x, r) = 〈x, r〉2, where x, r ∈ {0, 1}n, and 〈·, ·〉2 is
the inner product function modulo 2.

Theorem 3 (Goldreich-Levin Theorem [21], modified). If there exists an
PPT adversary A such that

Pr[x ← {0, 1}n, r ← {0, 1}n, b ← A(1λ, (f(x), r)) : b = hc(x, r)] > 1/2 + ε(λ)

where ε(λ) is an non-negligible function of λ, then there exits a PPT inverter A′

s.t.

Pr[x ← {0, 1}n, x′ ← A′(1λ, f(x)) : x′ = x] > ε′(λ)

where ε′(λ) is also an non-negligible function λ.

3.4 Statistical Zap Arguments

Zaps [15] are two-round witness indistinguishable proof systems with a public-
coin verifier message. Below, we define statistical Zap arguments, i.e., Zaps that
achieve statistical WI property and computational soundness.

Let P denote the prover and V denote the verifier. We use Trans(P(1λ, x, ω)
↔ V(1λ, x)) to denote the transcript of an execution between P and V, where
P and V both have input a statement x and P also has a witness ω for x.

Definition 5. Let L be a language in NP. We say that a two round protocol
〈P,V〉 with a public-coin verifier message is a statistical Zap argument for L if
it satisfies the following properties:

Completeness For every x ∈ L, and witness ω for x, we have that

Pr
[
Trans(P(1λ, x, ω) ↔ V(1λ, x)) is accepted by V]

= 1

Computational Soundness For any non-uniform probabilistic polynomial
time (cheating) prover P∗, there exists a negligible function ν(·) such that for
any x /∈ L, we have that Pr

[
Trans(P∗(1λ, x) ↔ V(1λ, x)) is accepted by V]

<
ν(λ).

682 V. Goyal et al.

Statistical Witness Indistinguishability For any (unbounded cheating) ver-
ifier V∗, there exists a negligible function ν(·) such that for every x ∈ L, and
witnesses ω1, ω2 for x, we have that

SD
(
Trans(P(1λ, x, ω1) ↔ V∗(1λ, x)),Trans(P(1λ, x, ω2) ↔ V∗(1λ, x))

)
< ν(λ)

3.5 Statistical Sender-Private Oblivious Transfer

Definition 6. A statistical sender-private oblivious transfer (OT) is a tuple of
algorithms (OT1,OT2,OT3):

OT1(1λ, b): On input security parameter λ, a bit b ∈ {0, 1}, OT1 outputs the first
round message ot1 and a state st.

OT2(1λ, ot1,m0,m1): On input security parameter λ, a first round message ot1,
two bits m0,m1 ∈ {0, 1}, OT2 outputs the second round message ot2.

OT3(1λ, ot2, st): On input security parameter λ, the second round message ot2,
and the state generated by OT1, OT3 outputs a message m.

We require the following properties:

Correctness For any b,m0,m1 ∈ {0, 1},

Pr
[
(ot1,st)←OT1(1

λ,b),ot2←OT2(1
λ,ot1,m0,m1),

m←OT3(1
λ,ot2,st)

: m = mb

]
= 1

Statistical Sender Privacy There exists a negligible function ν(λ) and an
deterministic exponential time extractor OTExt such that for any (potential
maliciously generated) ot1, OTExt(1λ, ot1) outputs a bit b ∈ {0, 1}. Then
for any m0,m1 ∈ {0, 1}, we have SD

(
OT2(1λ, ot1,m0,m1),OT2(1λ, ot1,mb,

mb)) < ν(λ).
Quasi-polynomial Pseudorandom Receiver’s Message For any b ∈ {0, 1},

let ot1 be the first round message generated by OT1(1λ, b). For any non-
uniform probabilistic adversary D that runs in time 2O(log2 λ), we have

Advλ(D) =
∣
∣
∣
∣ Pr

[D(1λ, ot1) = 1
]

− Pr
[
u ← {0, 1}|ot1| : D(1λ, u) = 1

] ∣
∣
∣
∣ < 2−Ω(log4 λ)

Lemma 2. Assuming quasi-polynomial hardness of LWE, there exists a statis-
tical sender private oblivious transfer scheme.

A statistical sender-private OT scheme from LWE was recently constructed
by [7]. Their construction satisfies correctness and statistical sender-privacy. Fur-
ther, the receiver’s message in their scheme is pseudorandom, assuming LWE. We
observe that assuming quasi-polynomial LWE and using Lemma1, their scheme
also satisfies quasi-polynomially pseudorandom receiver’s message property.

Statistical Zaps and New Oblivious Transfer Protocols 683

3.6 Correlation Intractable Hash Function

The following definition is taken verbatim from [38].

Definition 7 (Searchable Relation [38]). We say that a relation R ⊆ X ×Y
is searchable in size S if there exists a function f : X → Y that is implementable
as a Boolean circuit of size S, such that if (x, y) ∈ R then y = f(x).

Correlation intractable hash function is a family of keyed hash functions sat-
isfying the following property: for any searchable relation R, it is hard for a com-
putationally unbounded adversary to find an element x such that (x, f(x)) ∈ R.

Definition 8 (Correlation Intractable Hash Function, slightly mod-
ified from [38]). Correlation Intractable Hash Function (CIH) is a triple of
algorithms (KGen,FakeGen,H(·)(·)), with the following properties:

Let s = s(λ), � = �(λ), d = d(λ) be poly(λ)-bounded functions. Let {Rλ,s,�,d}λ

be a family of searchable relations, where each relation R ∈ Rλ,s,�,d is searchable
by a circuit of size s(λ), output length �(λ) and depth d(λ).

Statistical Correlation Intractable There exists a negligible function ν(·)
such that, for any relation R ∈ Rλ,s,�,d, and circuit Cλ that searches
for a witness for R, we have Pr[k ← FakeGen(1λ, 1|Cλ|, Cλ) : ∃x s.t.
(x,Hk(x)) ∈ R] < ν(λ).

Quasi-polynomial Pseudorandom Fake Key For any circuit Cλ with size
s, output length �, and depth d, KGen(1λ, 1|Cλ|) outputs an uniform random
string. Furthermore, for any non-uniform adversary D that runs in time
2O(log2 λ), we have

∣
∣
∣
∣
Pr

[

D(1λ, 1|Cλ|,KGen(1λ, 1|Cλ|)) = 1
]

− Pr
[

D(1λ, 1|Cλ|,FakeGen(1λ, 1|Cλ|, Cλ)) = 1
]
∣
∣
∣
∣
≤ 2−Ω(log4 λ)

Theorem 4. Assuming quasi-polynomial hardness of LWE, there exists a con-
struction of correlation intractable hash function with quasi-polynomial pseudo-
random fake key.

The construction of such a function is given in [8,38]. Specifically, we use the
construction of [38], which satisfies statistical correlation intractability. Moreover,
the FakeGen algorithm in their construction simply consists of some ciphertexts
that are pseudorandom assuming LWE. Thus, if we assume quasi-polynomial
hardness of LWE, their construction satisfies quasi-polynomial pseudorandom
fake key property.

For our application, we require a slightly stronger property than statistical
correlation intractability as defined above. Specifically, we require that the dis-
tinguishing probability in statistical correlation intractability is 2−λ for a special
class of relations.

We show in Lemma 3 that by using parallel repetition, we can construct a
CIH with the above property from any CIH.

684 V. Goyal et al.

Lemma 3 (Amplification of Statistical Correlation Intractability).
There exists a correlation intractable hash function (KGen,FakeGen,H(·)(·)) such
that the following additional property holds.

2−λ-Statistical Correlation Intractability Let {Cλ}λ be a family of Boolean
circuits, where Cλ has polynomial size s(λ), polynomial depth d(λ), and out-
puts a single bit. There exists a polynomial � = �(λ) such that the following
holds. Let

−−→
Cλ,� be the circuit

−→
Cλ(c1, c2, . . . , c�) = (Cλ(c1), Cλ(c2), . . . , Cλ(c�)),

then for large enough λ,

Pr
[
k ← FakeGen

(
1λ, 1|−−→

Cλ,�|,
−−→
Cλ,�

)
: ∃x s.t. Hk(x) =

−−→
Cλ,�(x)

]
< 2−λ

The CIH in [38] already satisfies the above property. In the full version, we
describe a generic transformation from any CIH to one that achieves the above
property.

4 Statistical Zap Arguments

4.1 Public Coin Statistical-Hiding Extractable Commitments

In this section, we start by defining and constructing a key building block in our
construction of statistical Zaps, namely, a statistical-hiding extractable commit-
ment scheme. The notion and its construction are adapted from [31], with some
slight modifications to fit in our application. The main difference between our
definition and that of [31] is that we require the first round message to be public
coin as opposed to private-coin.

Our syntax departs from the classical definition of commitment schemes. We
consider a tuple of four algorithms (Com1,FakeCom1,Com2,Dec), where Com1

corresponds to the honest receiver’s algorithm that simply outputs a uniformly
random string. Com2 corresponds to the committer’s algorithm that takes as
input a message m as well as a random string b′ of length μ and outputs a
commitment string. We require two additional algorithms: (1) FakeCom1 that
takes a binary string b of length μ as input and produces a first round message
that “hides” the string b, and (2) Dec that takes as input a transcript generated
using FakeCom1 and Com2 and outputs the committed message if the strings b
and b′ used for computing the transcript are equal.

Let C, R denote the committer and the receiver, respectively. We now proceed
to give a formal definition.

Definition 9. A public coin statistical-hiding extractable commitment is a tuple
(Com1,FakeCom1,Com2,Dec). The commit phase and open phase are defined as
follows.

Commitment Phase

Round 1 On input parameters (1λ, 1μ), R executes Com1 to sample a uniform
random string com1. R sends com1 to C.

Statistical Zaps and New Oblivious Transfer Protocols 685

Round 2 On input (1λ,m), C chooses b′ ← {0, 1}μ uniformly at random and
computes com2 ← Com2(1λ, 1μ, com1,b′,m; r) with randomness r. C sends
(b′, com2) to R.

Opening Phase
C sends the message and the randomness (m, r) to R. R checks if com2 =
Com2(1λ, 1μ, com1,b′,m; r).

We require the following properties of the commitment scheme.

Statistical Hiding There exists a negligible function ν(·), a deterministic expo-
nential time algorithm ComExt, and a randomized simulator Sim, such that
for any fixed (potentially maliciously generated) com1, ComExt(1λ, 1μ, com1)
outputs b ∈ {0, 1}μ, and for any b′ �= b, and m ∈ {0, 1}, we have

SD
(
Com2(1λ, 1μ, com1,b′,m),Sim(1λ, 1μ, com1)

)
< μ · ν(λ) (1)

Quasi-polynomial Pseudorandom Receiver’s Message For any b ∈
{0, 1}μ, FakeCom1(1λ, 1μ,b) and a uniform random string outputted by
Com(1λ, 1μ) are quasi-polynomially indistinguishable. Specifically, for any
non-uniform adversary D that runs in time 2O(log2 λ), we have

∣
∣
∣
∣ Pr[D(1λ, 1μ,Com1(1λ, 1μ)) = 1]

− Pr[D(1λ, 1μ,FakeCom1(1λ, 1μ,b)) = 1]
∣
∣
∣
∣ ≤ μ · 2−Ω(log4 λ)

Extractable FakeCom1 and Dec satisfy the following property. For any b ∈
{0, 1}μ, we have

Pr
[
(com1,st)←FakeCom1(1

λ,1μ,b),

com2←Com2(1
λ,1μ,com1,b,m)

: Dec(1λ, 1μ, st, com2) = m
]

= 1

Lemma 4. Assuming quasi-polynomial hardness of LWE, there exists a public
coin statistical-hiding extractable commitment scheme.

In the full version, we construct a public coin statistical hiding extractable
commitment by slightly modifying the commitment scheme of [31]. Their con-
struction already satisfies extractability and statistical hiding properties. How-
ever, their construction, as originally described, is private coin. We note that the
receiver’s message in their scheme simply consists of multiple receiver messages
of a statistical sender-private OT scheme. Then, by instantiating their construc-
tion with an OT scheme that satisfies quasi-polynomial pseudorandom receiver’s
message property (see Sect. 3.5), their scheme can be easily adapted to obtain a
public coin statistical-hiding extractable commitment. Specifically, in the modi-
fied construction, the honest receiver’s algorithm Com(1λ, 1μ) simply computes
a uniform random string, while FakeCom1 corresponds to the receiver algorithm
in the construction of [31].

686 V. Goyal et al.

4.2 Our Construction

In this section, we describe our construction of a statistical Zap argument system
for Graph Hamiltonicity, which is an NP-Complete problem.

Notation. We describe some notation that is used in our construction. Let
LHAM denote the Graph Hamiltonicity language over graphs G = (V,E) of n
vertices, where V denotes the set of vertices and E denotes the set of edges
in G. We slightly abuse notation and use G to denote its adjacency matrix
G = (Gi[s, t])s,t∈[n].

Let (Com1,FakeCom1,Com2,Dec) be a public coin statistical-hiding
extractable commitment scheme (Definition 9). We set the parameter μ of the
commitment scheme as Θ(log2 λ). Let (KGen,FakeGen,H(·)(·)) be a family of
CIH (Definition 8). We choose the polynomial � = �(λ) in Lemma 3 such that
the CIH is 2−λ-statistical correlation intractable.

Circuit Cst. Let Cst denote the following Boolean circuit.

Input: a n × n matrix c = (cs,t)s,t∈[n].
Output: a boolean value.

1. For any s, t ∈ [n], execute G[s, t] = Dec(1λ, 1μ, st, cs,t).
2. If G = (Gi[s, t])s,t∈[n] is a cycle graph, then output 0. Otherwise output 1.

For ease of exposition, we extend the notation Cst to a series of matrices
(c1, c2, . . . , c�). Specifically, Cst(c1, c2, . . . , c�) is defined as (Cst(c1), Cst(c2), . . . ,
Cst(c�)).

Construction. The verifier V and prover P are both given input the security
parameter λ and a graph G = (V,E) of n vertices. The prover is additionally
given as input a witness ω for G.

Round 1 Verifier V computes and sends uniform random strings (com1 ←
Com1(1λ, 1μ), k ← KGen(1λ, 1|Cst|), where Cst takes � separate n × n matrices
as input, and outputs � bits.

Round 2 Prover P does the following:
1. Choose a random b′ ← {0, 1}μ.
2. Compute � first round messages of Blum’s sigma protocol for Graph

Hamiltonicity. Specifically, for every i ∈ [�], first sample a random
cycle graph Gi = (Gi[s, t])s,t∈[n]. Next, for each s, t ∈ [n], compute
ci[s, t] ← Com2(1λ, 1μ, com1,b′, Gi[s, t]; r

(s,t)
i) using randomness r

(s,t)
i .

Finally let ci = (ci[s, t])s,t∈[n].
3. Compute (b1, b2, . . . , b�) = Hk(c1, . . . , c�).
4. For every i ∈ [�], compute the answer to challenge bi in Blum’s sigma

protocol. Specifically, if bi = 0, then set zi = (Gi, (r
(s,t)
i)s,t∈[n]). Else, if

bi = 1, then compute a one-to-one map φ : G → Gi such that φ(w) is the
cycle Gi, and set zi = (φ, (r(s,t)

i)(s,t)=φ(e),e/∈E).
5. Send Π = (b′, (ci)i∈[�], (zi)i∈[�]) to the verifier.

Statistical Zaps and New Oblivious Transfer Protocols 687

Verification Upon receiving the proof Π = (b′, (ci)i∈[�], (zi)i∈[�]), the verifier
first computes (b1, b2, · · · , b�) = Hk(c1, c2, . . . , c�), and then verifies each
copy (ci, bi, zi) of the proof as in Blum’s protocol. Specifically, if bi = 0,
then parse zi = (Gi, (r

(s,t)
i)s,t∈[n]) and check if ci = (Com2(1λ, 1μ, com1,

b′, Gi[s, t]; r
(s,t)
i)s,t∈[n] and Gi is a cycle graph. Otherwise if bi = 1, then parse

zi = (φ, (r(s,t)
i)(s,t)=φ(e),e/∈E) and check if φ is a one-to-one map, and for each

e /∈ E, and (s, t) = φ(e), check if ci[s, t] = Com2(1λ, 1μ, com1,b′, 0; r(s,t)
i). If

all of the checks succeed, then accept the proof, otherwise reject.

This completes the description of our construction. We defer the proof of
completeness and statistical witness indistinguishability to the full version. We
next prove that our construction satisfies computational soundness.

Theorem 5. The construction in Sect. 4.2 satisfies computational soundness.

Suppose G /∈ LHAM and there exists a cheating prover P∗ such that
Pr[P∗ succeeds] ≥ 1/λc for infinite many λ. Then for each such λ, there must
exist a b′

0 such that Pr[P∗ succeeds ∧ b′ = b′
0] ≥ λ−c2−μ, where b′ is outputted

by the cheating prover P∗ in the second round.

b′
0-Extractor Ext. We first describe an algorithm Ext that extracts a b′

0 from
any cheating prover P∗, such that Pr[P∗ succeeds ∧ b′ = b′

0] ≥ λ−c2−μ−1. Ext
receives oracle access to P∗.

1. Initialize an empty multiset S = {}.
2. For j ∈ [21.5μ], set fresh random tape for P∗. Compute and send uniformly

random first round message (Com1(1λ, 1μ), k ← KGen(1λ, 1|Cst|)) to P∗. Let
(b′(j), (c(j)i)i∈[�], (z

(j)
i)i∈[�]) be the response of P∗. Execute the verifier algo-

rithm; if verification succeeds, then append multiset S = S ∪ {b′(j)}.
3. Output b′

0 that appears for the maximum number of times in the multiset S.

In the sequel, we denote pλ = Pr[P∗ succeeds].

Lemma 5. The algorithm Ext runs in time O(21.5μ) = 2O(log2 λ). Furthermore,
with probability 1−exp(−Ω(20.5μpλ)), it outputs a b′

0 such that Pr[P∗ succeeds ∧
b′ = b′

0] ≥ pλ/2−μ−1.

We defer the proof of the Lemma 5 to the full version. Now we use the extrac-
tor Ext to build the following hybrids.

Hybrid H0: Compute b′
0 ← Ext(P∗). Generate uniformly random string

(com1 ← Com1(1λ, 1μ), k ← KGen(1λ, 1|Cst|)). Send (com1, k) to P∗. Let
(b′, (ci)i∈[�], (zi)i∈[�]) be the output of P∗.
If b′ = b′

0 and (b′, (ci)i∈[�], (zi)i∈[�]) passes the verification, then the hybrid
outputs 1, otherwise outputs 0.

688 V. Goyal et al.

Hybrid H1: Compute b′
0 ← Ext(P∗). Generate (com1, st) ← FakeCom(1λ, 1μ,b′

0),
k ← KGen(1λ, 1|Cst|). Send (com1, k) to P∗. Let (b′, (ci)i∈[�], (zi)i∈[�]) be the
output of P∗.
If b′ = b′

0 and (b′, (ci)i∈[�], (zi)i∈[�]) passes the verification, then the hybrid
outputs 1, otherwise output 0.

Hybrid H2: Compute b′
0 ← Ext(P∗). Generate (com1, st) ←

FakeCom(1λ, 1μ,b′
0), k ← FakeGen(1λ, 1|Cst|, Cst). Send (com1, k) to P∗. Let

(b′, (ci)i∈[�], (zi)i∈[�]) be the output of P∗.
If b′ = b′

0 and (b′, (ci)i∈[�], (zi)i∈[�]) passes the verification, then the hybrid
outputs 1, otherwise outputs 0.

This completes the description of the hybrids. We now prove Lemmas 6 and
7 to establish the indistinguishability of the hybrids.

Lemma 6. |Pr[H0 = 1] − Pr[H1 = 1]| < 2−Ω(log4 λ).

Proof. We prove this Lemma by relying on quasi-polynomial pseudorandom
receiver’s message property of the commitment scheme (Definition 9). We build
the following adversary D trying to distinguish the receiver’s message of com-
mitment scheme from random string.

D takes as input (1λ, 1μ, com1). Firstly, D computes b′
0 ← Ext(P∗).

Then, it generates k ← KGen(1λ, 1|Cst|) and sends (com1, k) to P∗. Let
(b′, (ci)i∈[�], (zi)i∈[�]) be the response of P∗. If b′ = b′

0 and (b, (ci)i∈[�], (zi)i∈[�])
passes the verification, then output 1. Otherwise output 0.

Now D(1λ, 1μ,Com1(1λ, 1μ)) simulates the environment of H0 for P∗. Hence,
Pr

[D(1λ, 1μ,Com1(1λ, 1μ)) = 1
]

= Pr[H0 = 1]. Also, D(1λ, 1μ,FakeCom(1λ, 1μ,

b′
0)) simulates the environment of H1. Hence, Pr

[D(1λ, 1μ,FakeCom1(1λ, 1μ,
b′
0)) = 1] = Pr[H1 = 1].

From Lemma 5, D runs in time 2O(log2 λ). Since the distributions Com(1λ, 1μ)
and FakeCom(1λ, 1μ,b′

0) are quasi-polynomially indistinguishable,

| Pr
[D(1λ, 1μ,Com1(1λ, 1μ)) = 1

]

− Pr
[D(1λ, 1μ,FakeCom1(1λ, 1μ,b′

0) = 1
] | < 2−Ω(log4 λ)

Thus, we derive that |Pr[H0 = 1] − Pr[H1 = 1]| ≤ 2−Ω(log4 λ). ��

Lemma 7. |Pr[H1 = 1] − Pr[H2 = 1]| < 2−Ω(log4 λ).

Proof. We prove this lemma by relying on quasi-polynomial pseudorandom fake
key property of CIH. We build adversary D trying to distinguish the fake CIH
key from uniform random string.

D takes as input (1λ, 1μ, k). It first computes b′
0 ← Ext(P∗). Next,

it generates com1 ← FakeCom1(1λ, 1μ,b′
0) and sends (com1, k) to P∗. Let

(b′, (ci)i∈[�], (zi)i∈[�]) be the response of P∗. If b′ = b′
0 and (b, (ci)i∈[�], (zi)i∈[�])

passes the verification, then output 1. Otherwise output 0.

Statistical Zaps and New Oblivious Transfer Protocols 689

Now D(1λ, 1|Cst|, k ← KGen(1λ, 1|Cst|)) simulates the environment of H1 for
P∗. Hence, Pr[D(1λ, 1|Cst|, k ← KGen(1λ, 1|Cst|)) = 1] = Pr[H1 = 1].

Also, D(1λ, 1|Cst|, k ← FakeGen(1λ, 1|Cst|, Cst)) simulates the environment of
H2. Hence, Pr[D(1λ, 1|Cst|, k ← FakeGen(1λ, 1|Cst|, Cst)) = 1] = Pr[H2 = 1].

From Lemma 5, D runs in time 2O(log2 λ). Since the distributions
KGen(1λ, 1|Cst|) and FakeGen(1λ, 1|Cst|, Cst) are quasi-polynomially indistinguish-
able, we have

| Pr[D(1λ, 1|Cst|, k ← KGen(1λ, 1|Cst|)) = 1]

− Pr[D(1λ, 1|Cst|, k ← FakeGen(1λ, 1|Cst|, Cst)) = 1]| < 2−Ω(log4 λ)

Thus, we derive |Pr[H1 = 1] − Pr[H2 = 1]| ≤ 2−Ω(log4 λ). ��
We now prove the following lemma to lower bound the probability that the

output of H2 is 1.

Lemma 8. Pr[H2 = 1] ≥ λ−c2−μ−2 − 2 · 2−Ω(log4 λ)

Proof. From Lemma 5, we have

Pr[H0 = 1] = Pr[b′
0 ← Ext(P∗) : P∗ succeeds ∧ b′ = b′

0]

≥ Pr
[
b′
0 ← Ext(P∗) : P∗ succeeds ∧ b′ = b′

0∧
Pr[P∗ succeeds ∧ b′ = b′

0] > pλ2−μ−1
]

= Pr[P∗ succeeds ∧ b′ = b′
0|Pr[P∗ succeeds ∧ b′ = b′

0] > pλ2−μ−1]

· Pr[b′
0 ← Ext(P∗) : Pr[P∗ succeeds ∧ b′ = b′

0] > pλ2−μ−1]

> λ−c2−μ−1 · (
1 − exp

(−Ω(20.5μpλ)
)) ≥ λ−c2−μ−2

Combining the above with the Lemmas 6 and 7, we have Pr[H2 = 1] ≥
λ−c2−μ−2 − 2 · 2−Ω(log4 λ). ��

In the remainder of the proof, we use the 2−λ-correlation intractability prop-
erty of the CIH to reach a contradiction. Towards this, we first show in the fol-
lowing lemma that H2 = 1 implies that there exists a ‘collision’ for CIH and Cst.
Specifically, we show that any accepting proof in hybrid H2 such that b′ = b′

0,
we can find a ‘collision’ for CIH and Cst.

Lemma 9. If hybrid H2 outputs 1, denote COM = (c1, c2, . . . , c�) in the accept-
ing proof. Then Hk(COM) = Cst(COM).

Proof. We will prove by contradiction. Denote (b1, b2, . . . , b�) = Hk(COM). Sup-
pose there is an i ∈ [�] such that bi �= Cst(ci). Now we consider two cases: (1).
bi = 0, Cst(ci) = 1, (2). bi = 1, Cst(ci) = 0.

For case (1), since bi = 0, zi must be of the form (Gi, (r
(s,t)
i)s,t∈[n]), where Gi

is a cycle graph, and ci[s, t] = Com2(1λ, 1μ, com1,b′, Gi[s, t]; r
(s,t)
i) for each s, t ∈

[n]. From the extractability property of the commitment scheme and b′ = b′
0,

690 V. Goyal et al.

we have Dec(1λ, 1μ, st, ci[s, t]) = Gi[s, t]. Since Gi is a cycle graph, Cst(ci) = 0.
Therefore, we reach a contradiction.

For case (2), since bi = 1, zi must be the form (φ, (r(s,t)
i)e/∈E,(s,t)=φ(e)),

where φ is a one-to-one map, and ci[s, t] = Com2(1λ, 1μ, com1,b′, 0; r(s,t)
i)

for each e /∈ E, (s, t) = φ(e). Let Gi[s, t] = Dec(1λ, 1μ, st, ci[s, t]) for each
s, t ∈ [n]. Since Cst(ci) = 0, Gi is a cycle graph. For each edge e′ = (s′, t′)
of the cycle graph, Gi[s′, t′] = 1. Now we will show that (φ−1(s′), φ−1(t′)) ∈
E. We show this by contradiction. Suppose (φ−1(s′), φ−1(t′)) /∈ E, then
ci[s′, t′] = Com2(1λ, 1μ, com1,b′, 0; r(s

′,t′)
i). From extractable property of com-

mitment scheme, Dec(1λ, 1μ, st, ci[s′, t′]) = 0, which implies Gi[s′, t′] = 0. Thus,
we find a contradiction. Hence, for each edge e in cycle graph Gi, φ−1(e) is an
edge in G. Now we have found a Hamiltonian cycle φ−1(Gi) ⊆ G, which is a
contradiction to G /∈ LHAM. ��

Combining Lemmas 8 and 9, we derive that

Pr
[
k ← FakeGen(1λ, 1|Cst|, Cst) : ∃COM,Hk(COM) = Cst(COM)

]

≥λ−c2−μ−2 − 2 · 2−Ω(log4 λ)

However, the above contradicts the 2−λ-statistical correlation intractability
of CIH.

5 Statistical Hash Commitments

Intuitively speaking, a statistical hash commitment (SHC) scheme is a two-round
statistical hiding commitment scheme, where the verification of the decommit-
ment is a simple equality check with a hash output (computed w.r.t. a hashing
algorithm associated with the scheme).

Definition 10. A statistical hash commitment scheme is a tuple of algorithms
(KGen,Com,H, C,R). It proceeds as follows.

Round 1 R executes (pk, k) ← KGen(1λ), and sends pk to C.
Round 2 C’s input is a bit b ∈ {0, 1}. Compute (c, ρ) ← Com(pk, b) and send c

to R.
Opening C sends (b, ρ) to the R.
Verification R accepts iff ρ is equal to H(k, c, b).

We require the scheme to satisfy the following properties.

Completeness For any b ∈ {0, 1}, we have

Pr
[
(pk, k) ← KGen(1λ), (c, ρ) ← Com(pk, b) : ρ = H(k, c, b)

]
= 1

Statistical Zaps and New Oblivious Transfer Protocols 691

Computational Binding We say that the commitment scheme is computa-
tional binding, if for any non-uniform probabilistic polynomial time adversary
A, there exists a negligible function ν(·) such that

Adv(A)
Δ
= Pr

[

(pk, k) ← KGen(1λ), (c, ρ0, ρ1) ← A(1λ, pk) : ρ0=H(k,c,0)∧
ρ1=H(k,c,1)

]

< ν(λ)

Statistical Hiding For any (maliciously generated) pk, there exists a negligible
function ν(λ) such that SD (c0, c1) ≤ ν(λ), where (cb, ρb) ← Com(pk, b) for
every b ∈ {0, 1}. If ν(λ) = 0, then we say that the scheme is perfectly hiding.

5.1 Construction from CDH

Let q be an integer, and G = 〈g〉 be a cyclic group generated by g of order q.

Construction. We describe our construction of the SHC scheme.

KGen(1λ) Randomly sample s, t ← Zq, and x ← G. Output (pk = (x, gs, xs ·
gt), k = (s, t)).

Com(pk, b) Parse pk as (x, a1, a2) ∈ G×G. Randomly sample u, v ← Zq. Output
(c = (gu · xv, gv · gb), ρ = au

1 · av
2).

H(k, c, b) Parse c as (z1, z2) ∈ G×G, and parse k as (s, t). Output zs
1 · (z2 · g−b)t.

We now prove the properties of this construction. We defer the proof of
completeness to the full version.

Lemma 10 (Computational Binding). Assuming CDH, the above construc-
tion of SHC is computational binding.

Proof. For any n.u. probabilistic polynomial time adversary A, we construct the
following adversary A′ for CDH problem.

Adversary A′(1λ, gs, gy). Sample u ← Zq uniformly at random. Set x =
gy, pk = (x, gs, gu). Execute (c, ρ0, ρ1) ← A(1λ, pk). Output gu · ρ−1

0 · ρ1.
We now prove that Pr[a ← A′(1λ, gs, gy) : a = gsy] ≥ Adv(A). Since in

our construction, pk = (x, gs, xs · gt), where t is uniformly random. The second
component of pk is uniformly random over G. Hence, the distributions of pk in
real execution and the adversary A′ are identical.

Now for any u ∈ Zq, there exists an unique t′ ∈ Zq such that xs · gt′
= gu.

Then, for adversary A′, we have

Pr[a = gsy] = Pr[gu · ρ−1
0 · ρ1 = gsy] = Pr[gt′

= ρ0 · ρ−1
1]

≥Pr [ρ0 = H(k, c, 0) ∧ ρ1 = H(k, c, 1)] = Adv(A)

where k = (s, t′). By the hardness of CDH, we conclude that Adv(A) is
negligible. ��
Lemma 11 (Perfect Hiding). The Construction 5.1 is perfect hiding.

Proof. For any fixed pk = (x, a1, a2), since v is uniformly random, gv · gb is
uniformly random. Furthermore, conditioned on gv · gb, since u is uniformly
random, gu · xv is also uniformly random. Hence, c is uniformly random over
G × G. ��

692 V. Goyal et al.

5.2 Construction from Any 2-round Statistical Sender-Private OT

We now describe our construction of SHC from statistical sender-private OT.
Let � = �(λ) be a polynomial in λ, and let (OT1,OT2,OT3) be any statistical
sender private 2-round OT scheme.

KGen(1λ) Randomly sample r ← {0, 1}�.
For i ∈ [�], execute (ot1,i, sti) ← OT1(1λ, r[i]).
Output pk = ((ot1,i)i∈[�], k = (sti)i∈[�]).

Com(pk, b ∈ {0, 1}) Parse pk as (ot1,i)i∈[�]. Randomly sample r′ ← {0, 1}�.
For i ∈ [�], execute ot2,i ← OT2(ot1,i, r

′[i], r′[i] ⊕ b).
Output (c = (ot2,i)i∈[�], ρ = r′).

H(k, c, b) Parse k = (sti)i∈[�], c = (ot2,i)i∈[�].
For i ∈ [�], Let ρ0,i ← OT3(sti, ot2,i).
Let ρb = (ρ0,i ⊕ (r[i] · b))i∈[�].
Output ρb.

We defer the proof of completeness and statistical hiding property to the full
version Below, we prove computational binding.

Lemma 12 (Computational Binding). Assuming computational indistin-
guishability of OT1, the above construction of SHC is computational binding.

Proof. For any PPT adversary A trying to break the computational binding
property, we construct the following hybrids.

Hybrid H0 Randomly sample r ← {0, 1}�. For i ∈ [�], execute (ot1,i, sti) ←
OT1(1λ, r[i]). Let pk = (ot1,i)i∈[�]. Execute (c, ρ0, ρ1) ← A(1λ, pk). If
ρ0 ⊕ ρ1 = r, then output 1, otherwise output 0.

Hybrid Hi∗
0.5 Randomly sample r ← {0, 1}�. For 1 ≤ i ≤ i∗, execute (ot1,i, sti)

← OT1(1λ, 0). For i∗ < i ≤ �, execute (ot1,i, sti) ← OT1(1λ, r[i]). Let pk =
(ot1,i)i∈[�]. Execute (c, ρ0, ρ1) ← A(1λ, pk). If ρ0 ⊕ ρ1 = r, then output 1,
otherwise output 0.

Hybrid H1 Randomly sample r ← {0, 1}�. For i ∈ [�],
execute (ot1,i, sti) ← OT1(1λ, 0). Let pk = (ot1,i)i∈[�]. Execute (c, ρ0, ρ1) ←
A(1λ, pk). If ρ0 ⊕ ρ1 = r, then output 1, otherwise output 0.

Lemma 13. Pr[H0 = 1] ≥ Adv(A).

Proof. From the construction of H, we now that H(k, c, 0)⊕H(k, c, 1) = r.
Hence, when A wins the security game, (c, ρ0, ρ1) ← A(1λ, pk) with ρ0 =
H(k, x, 0)∧ ρ1 = H(k, x, 1) implies ρ0 ⊕ ρ1 = H(k, x, 0) ⊕ H(k, x, 1) = r. ��
Lemma 14. Hybrid H0 and Hybrid H0

0.5 are identical. Furthermore, there exits
a negligible function ν(λ) such that for each i = 0, . . . , � − 1, |Pr[Hi∗

0.5 = 1] −
Pr[Hi∗+1

0.5 = 1]| < ν(λ).

Statistical Zaps and New Oblivious Transfer Protocols 693

Proof. When i∗ = 0, all ot1,i are generated in the same way as in Hybrid H0, for
all i ∈ [�]. Hence, Hybrid H0 and Hybrid H0

0.5 are identical.
To show Hi∗

0.5 ≈ Hi∗+1
0.5 , we consider the following adversary D for receiver’s

computational privacy.

D(1λ, ot1) Randomly sample r ← {0, 1}�. For i ∈ [�] \ {i∗ + 1}, let (ot1,i, sti) ←
OT1(1λ, r[i]). If r[i∗ + 1] = 0, then let (ot1,i∗+1, sti∗+1) ← OT1(1λ, 0), other-
wise let ot1,i∗+1 = ot1. Let pk = (ot1,i)i∈[�]. Execute (c, ρ0, ρ1) ← A(1λ, pk).
If ρ0 ⊕ ρ1 = r, then output 1, otherwise output 0.

If ot1 is generated from OT1(1λ, 0), then D simulates the environment of
Hi∗+1

0.5 for A. Hence, Pr[Hi∗+1
0.5 = 1] = Pr[(ot1, st) ← OT1(1λ, 0) : D(1λ, ot1) = 1].

If ot1 is generated from OT1(1λ, 1), then D simulates the environment of Hi∗
0.5

for A. Hence, Pr[Hi∗
0.5 = 1] = Pr[(ot1, st) ← OT1(1λ, 1) : D(1λ, ot1) = 1].

From the indistinguishability of ot1, we know that the right hand ot01 gener-
ated by OT1(1λ, 0) and ot11 generated by OT1(1λ, 1) are indistinguishable. Hence,
there exits a negligible function ν(λ) such that |Pr[Hi∗

0.5 = 1] − Pr[Hi∗+1
0.5 = 1]| <

ν(λ). ��
Lemma 15. Hybrid H�

0.5 is identical to H1. Furthermore, Pr[H1 = 1] = 1/2�.

Proof. When i∗ = �, we know that all ot1,i are generated in the same way as in
Hybrid H1. Hence, H�

0.5 and H1 are identical.
In Hybrid H1, pk is completely independent of r. Hence, Pr[H1 = 1] =

Pr[ρ0 ⊕ ρ1 = r] = 1/2�. ��
By the hybrid argument, combining Lemmas 13, 14, and 15, we have

Adv(A) < neg(λ). ��
We defer the proof of statistical hiding property to the full version.

6 Three Round Statistical Receiver-Private Oblivious
Transfer

We start by presenting the definition for 3-round statistical receiver-private obliv-
ious transfer. We capture statistical receiver privacy via a game-based defini-
tion. We consider two definitions to capture computational sender privacy: a
game-based definition that intuitively requires that any malicious receiver who
interacts with an honest sender can only learn one of its two inputs, and a
distinguisher-dependent simulation based definition. We defer the formal treat-
ment of the latter as well as the proof of implication from the former to the
latter definition to the full version.

Definition 11 (3-round Statistical Receiver-Private Oblivious Trans-
fer). A 3-round oblivious transfer is a tuple of algorithms (OT1,OT2,OT3,OT4),
which specify the following protocol.

Round 1 The sender S computes (ot1, stS) ← OT1(1λ) and sends ot1 to the
receiver R.

694 V. Goyal et al.

Round 2 The receiver R with input β ∈ {0, 1}, computes (ot2, stR) ←
OT2(1λ, ot1, β) and sends ot2 to S.

Round 3 S with input (m0,m1) ∈ {0, 1}2 computes ot3 ← OT3(1λ,
ot2, stS ,m0,m1) and sends ot3 to the receiver.

Message Decryption The receiver computes m′ ← OT4(1λ, ot1, ot3, stR).

We require the protocol to satisfy the following properties.

Correctness2 For any β ∈ {0, 1}, (m0,m1) ∈ {0, 1}2, we have

Pr

⎡

⎣
(ot1,stS)←OT1(1

λ)

(ot2,stR)←OT2(1
λ,ot1,β)

ot3←OT3(1
λ,ot2,stS ,m0,m1)

m′←OT4(1
λ,ot1,ot3,stR)

: m′ = mβ

⎤

⎦ = 1

Game-Based Statistical Receiver-Privacy For any (potentially maliciously
generated) ot∗1, denote (ot(0)2 , st

(0)
R) ← OT2(1λ, ot∗1, 0), and (ot(1)2 , st

(1)
R) ←

OT2(1λ, ot∗1, 1). Then we have SD(ot(0)2 , ot
(1)
2) < ν(λ), where ν(·) is a neg-

ligible function.
Game-Based Computational Sender-Privacy For any probabilistic polyno-

mial time distinguisher A0,A1, and any probabilistic polynomial time mali-
cious receiver R∗, we define the following games.
Interact with R∗ The challenger plays the role of an honest sender for the

first round and the second round with the malicious receiver R∗. Specifi-
cally, the challenger executes (ot1, stS) ← OT1(1λ). Then send ot1 to R∗.
Then the receiver R∗ sends ot∗2 to the challenger.

Game G0(m0,m1) This game interact with adversary A0. In the beginning,
the adversary A0 is given input View(R∗). Then the challenger samples
b0 ← {0, 1} at random, and send ot3 ← OT3(1λ, ot∗2, stS ,mb,m1) to A0.
Finally A0 outputs a bit b′

0. If b0 = b′
0, then we say A0 wins the game.

Game G1(m0,m1) This game interact with adversary A1. In the beginning,
the adversary A1 is given input View(R∗). Then the challenger samples
b1 ← {0, 1} at random, and send ot3 ← OT3(1λ, ot∗2, stS ,m0,mb) to A1.
Finally A1 outputs a bit b′

1. If b1 = b′
1, then we say A1 wins the game.

We define the following advantage

Adv(A0,A1,R∗) Δ=EView(R∗)

[
min

{

max
m0,m1∈{0,1}

(∣
∣
∣
∣Pr[A0(View(R∗)) winsG0(m0,m1)]− 1

2

∣
∣
∣
∣

)
,

max
m0,m1∈{0,1}

(∣
∣
∣
∣Pr[A1(View(R∗)) winsG1(m0,m1)]− 1

2

∣
∣
∣
∣

)}]

We say the oblivious transfer scheme is game-based computational sender-
secure, if for any probabilistic polynomial time distinguisher A0,A1, and any
probabilistic polynomial time malicious receiver R∗, there exist a negligible
function ν(·) such that Adv(A0,A1,R∗) < ν(λ).

2 We can relax the definition to be statistical correctness, which only requires the
probability to be 1 − negl(λ).

Statistical Zaps and New Oblivious Transfer Protocols 695

6.1 Our Construction

We now describe a generic transformation from SHC scheme to three-round
statistical receiver-private oblivious transfer.

Construction. Let (KGen,Com,H, C,R) be an SHC scheme. Let hc denote the
Goldreich-Levin hardcore predicate [21]. The 3-round statistical receiver-private
oblivious transfer proceeds as follows.

OT1(1λ) Execute (pk, k) ← KGen(1λ). Let ot1 = pk, stS = k.
OT2(1λ, ot1, β) Parse ot1 = pk. Run (c, ρ) ← Com(pk, β). Output ot2 = c, stR =

ρ.
OT3(1λ, ot2, stS ,m0,m1) Parse ot2 = c, and stS = k. For any b ∈ {0, 1}, sample

rb ← {0, 1}λ, encrypt mb as cb = (hc(H(k, c, b), rb) ⊕ mb, rb). Output ot3 =
(c0, c1).

OT4(1λ, ot1, ot3, stR) Parse ot1 = pk, ot3 = (c0, c1), and stR = ρ. Parse cβ as
cβ = (uβ , rβ). Output m′ = uβ ⊕ hc(ρ, rβ).

We now prove the required properties of the protocol. We defer the proof of
correctness to the full version.

Lemma 16 (Statistical Receiver-Privacy). If the underlying SHC is sta-
tistical (resp. perfect) hiding, then the construction above is statistical (resp.
perfect) receiver-private.

Proof. From the statistical hiding property of the SHC scheme, for any pk, we
have SD(ot02, ot

1
2) ≤ neg(λ), where (otb2, ρ

b) ← Com(pk, b) for any b ∈ {0, 1}.
Hence, for any ot1, OT2(1λ, ot1, 0) and OT2(1λ, ot1, 1) are statistically (resp.
perfectly) close. ��
Lemma 17 (Game-based Computational Sender-Privacy). If the under-
lying SHC scheme is computational binding, then the 3-round oblivious transfer
constructed above is game-based computational sender-private.

Proof. For any probabilistic polynomial time adversary A0,A1 and any proba-
bilistic polynomial time malicious receiver R∗ with Adv(A0,A1,R∗) > δ, where
δ is a non-negligible function of λ. Then, with probability at least δ/2 over
View(R∗),

∃ m0 ∈ {0, 1}2,m1 ∈ {0, 1}2 :
∣
∣
∣
∣Pr[A0(View(R∗)) wins G0(m0)] − 1

2

∣
∣
∣
∣ >

δ

2
∧

∣
∣
∣
∣Pr[A1(View(R∗)) wins G1(m1)] − 1

2

∣
∣
∣
∣ >

δ

2

Denote this fraction of View(R∗) as GOOD. Randomly sample m0,m1 ← {0, 1}2.
With probability 1/16, we have m0 = m0 ∧ m1 = m1.

From Goldreich-Levin Theorem [21], there exits two inverters A′
0,A′

1 such
that A′

0 takes input (View(R∗), r0, hc(H(k, c, 1), r1) ⊕ m1, r1), output x′
0. A′

1

takes input (View(R∗), r1, hc(H(k, c, 0), r0) ⊕ m0, r0), output x′
1. Furthermore,

696 V. Goyal et al.

the inverters A′
0,A′

1 satisfy the property that for any v ∈ GOOD and m0 =
m0 ∧ m1 = m1, Pr[x′

0 = H(k, c, 0)] > δ′ and Pr[x′
1 = H(k, c, 1)] > δ′, where

δ′ = δ′(λ) is a non-negligible function. We construct the following adversary A
to attack the computational binding property of the SHC scheme.

Adversary A(1λ, pk). Set random coins and execute R∗. Send R∗ the first round
message ot1 = pk, then R∗ replies ot∗2. Sample r0 ← {0, 1}λ, b1 ← {0, 1}, r1 ←
{0, 1}λ, then execute x′

0 ← A′
0(View(R∗), r0, b1, r1). Sample r′

1 ← {0, 1}λ, b0 ←
{0, 1}, r′

0 ← {0, 1}λ, then execute x′
1 ← A′

1(View(R∗), r′
1, b0, r

′
0). Output (c =

ot∗2, x
′
0, x

′
1). We now prove that the advantage of A satisfies

Adv(A) = Pr
[
(pk, k) ← KGen(1λ), (c, ρ0, ρ1) ← A(1λ, pk) : ρ0=H(k,c,0)∧

ρ1=H(k,c,1)

]
≥ δ · δ′2

128
Hybrids H0 (pk, k) ← KGen(1λ). Set random coins and execute R∗. R∗ replies

ot∗2. Sample r0 ← {0, 1}λ, r1 ← {0, 1}λ. Let b1 = hc(H(k, c, 1), r1) ⊕ m1.
Execute x′

0 ← A′
0(View(R∗), r0, b1, r1). Sample r′

0 ← {0, 1}λ, r′
1 ← {0, 1}λ.

Let b0 = hc(H(k, c, 0), r′
0) ⊕ m0. Execute x′

1 ← A′
1(View(R∗), r′

1, b0, r
′
0). If

ρ0 = H(k, c, 0) ∧ ρ1 = H(k, c, 1), then output 1; else output 0.
Hybrids H1 (pk, k) ← KGen(1λ). Set random coins and execute R∗. R∗ replies

ot∗2. Sample r0 ← {0, 1}λ, r1 ← {0, 1}λ. Let b1 ← {0, 1}. Execute x′
0 ←

A′
0(View(R∗), r0, b1, r1). Sample r′

0 ← {0, 1}λ, r′
1 ← {0, 1}λ. Let b0 ← {0, 1}.

Execute x′
1 ← A′

1(View(R∗), r′
1, b0, r

′
0). If ρ0 = H(k, c, 0)∧ρ1 = H(k, c, 1), then

output 1; else output 0.
Hybrids H2 (pk, k) ← KGen(1λ), (c, ρ0, ρ1) ← A(1λ, pk). If ρ0 = H(k, c, 0)∧ρ1 =

H(k, c, 1), then output 1; else output 0.

From the construction of A, the hybrids H1 and H2 are identical. Hence,
Adv(A) = Pr[H2 = 1] = Pr[H1 = 1]. Furthermore, in hybrids H1, with probabil-
ity 1/4, b1 = hc(H(k, c, 1), r1)⊕m1 ∧ b0 = hc(H(k, c, 0), r′

0)⊕m0. Conditioned on
such event, H0 and H1 are identical. Hence, Pr[H1 = 1] ≥ Pr[H0 = 1]/4. In hybrid
H0, the fraction of View(R∗) ∈ GOOD is at least δ/2. With probability 1/16, the
guess of m0,m1 is correct. With probability δ′2, both A′

0 and A′
1 inverts cor-

rectly. Hence, Adv(A) ≥ δ
2 · 1

16 · δ′2 · 1
4 = δ · δ′2/128. If δ(λ) is non-negligible, then

Adv(A) is also non-negligible. This contradicts with the computational binding
property of the SHC scheme. ��

Acknowledgement. The first author was supported in part by the NSF award
1916939, a gift from Ripple, a JP Morgan Faculty Fellowship, a PNC center for finan-
cial services innovation award, and a Cylab seed funding award. The second and third
author were supported in part by NSF SaTC award 1814919 and DARPA Safeware
W911NF-15-C-0213. The last author conducted part of the research while at the Simons
Institute for the Theory of Computing.

References

1. Aiello, B., Ishai, Y., Reingold, O.: Priced oblivious transfer: how to sell digital
goods. In: Pfitzmann, B. (ed.) EUROCRYPT 2001. LNCS, vol. 2045, pp. 119–135.
Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-44987-6 8

https://doi.org/10.1007/3-540-44987-6_8

Statistical Zaps and New Oblivious Transfer Protocols 697

2. Babai, L.: Trading group theory for randomness. In: 17th ACM STOC, Providence,
RI, USA, 6–8 May 1985, pp. 421–429. ACM Press (1985). https://doi.org/10.1145/
22145.22192

3. Badrinarayanan, S., Fernando, R., Jain, A., Khurana, D., Sahai, A.: Statistical
ZAP arguments. In: Canteaut, A., Ishai, Y. (eds.) EUROCRYPT 2020. LNCS,
vol. 12107, pp. 642–667. Springer, Heidelberg (2020)

4. Badrinarayanan, S., Garg, S., Ishai, Y., Sahai, A., Wadia, A.: Two-message witness
indistinguishability and secure computation in the plain model from new assump-
tions. In: Takagi, T., Peyrin, T. (eds.) ASIACRYPT 2017, Part III. LNCS, vol.
10626, pp. 275–303. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-
70700-6 10

5. Barak, B., Ong, S.J., Vadhan, S.: Derandomization in cryptography. In: Boneh, D.
(ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 299–315. Springer, Heidelberg (2003).
https://doi.org/10.1007/978-3-540-45146-4 18

6. Bitansky, N., Paneth, O.: ZAPs and non-interactive witness indistinguishability
from indistinguishability obfuscation. In: Dodis, Y., Nielsen, J.B. (eds.) TCC 2015,
Part II. LNCS, vol. 9015, pp. 401–427. Springer, Heidelberg (2015). https://doi.
org/10.1007/978-3-662-46497-7 16

7. Brakerski, Z., Döttling, N.: Two-message statistically sender-private OT from
LWE. In: Beimel, A., Dziembowski, S. (eds.) TCC 2018, Part II. LNCS, vol. 11240,
pp. 370–390. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-03810-6
14

8. Canetti, R., et al.: Fiat-Shamir: from practice to theory. In: Charikar, M., Cohen,
E. (eds.) 51st ACM STOC, Phoenix, AZ, USA, 23–26 June 2019, pp. 1082–1090.
ACM Press (2019). https://doi.org/10.1145/3313276.3316380

9. Canetti, R., Goldreich, O., Halevi, S.: The random oracle methodology, revisited
(preliminary version). In: 30th ACM STOC, Dallas, TX, USA, 23–26 May 1998,
pp. 209–218. ACM Press (1998). https://doi.org/10.1145/276698.276741

10. Cramer, R., Damg̊ard, I., Schoenmakers, B.: Proofs of partial knowledge and sim-
plified design of witness hiding protocols. In: Desmedt, Y.G. (ed.) CRYPTO 1994.
LNCS, vol. 839, pp. 174–187. Springer, Heidelberg (1994). https://doi.org/10.1007/
3-540-48658-5 19

11. Cramer, R., Shoup, V.: Universal hash proofs and a paradigm for adaptive chosen
ciphertext secure public-key encryption. In: Knudsen, L.R. (ed.) EUROCRYPT
2002. LNCS, vol. 2332, pp. 45–64. Springer, Heidelberg (2002). https://doi.org/10.
1007/3-540-46035-7 4

12. De Santis, A., Micali, S., Persiano, G.: Non-interactive zero-knowledge proof sys-
tems. In: Pomerance, C. (ed.) CRYPTO 1987. LNCS, vol. 293, pp. 52–72. Springer,
Heidelberg (1988). https://doi.org/10.1007/3-540-48184-2 5

13. Deng, Y., Goyal, V., Sahai, A.: Resolving the simultaneous resettability conjecture
and a new non-black-box simulation strategy. In: 50th FOCS, Atlanta, GA, USA,
25–27 October 2009, pp. 251–260. IEEE Computer Society Press (2009). https://
doi.org/10.1109/FOCS.2009.59

14. Döttling, N., Garg, S., Hajiabadi, M., Masny, D., Wichs, D.: Two-round oblivious
transfer from CDH or LPN. IACR Cryptology ePrint Archive 2019, 414 (2019)

15. Dwork, C., Naor, M.: Zaps and their applications. In: 41st FOCS, Redondo Beach,
CA, USA, 12–14 November 2000, pp. 283–293. IEEE Computer Society Press
(2000). https://doi.org/10.1109/SFCS.2000.892117

16. Dwork, C., Naor, M., Reingold, O., Stockmeyer, L.J.: Magic functions. In: 40th
FOCS, New York, NY, USA, 17–19 October 1999, pp. 523–534. IEEE Computer
Society Press (1999). https://doi.org/10.1109/SFFCS.1999.814626

https://doi.org/10.1145/22145.22192
https://doi.org/10.1145/22145.22192
https://doi.org/10.1007/978-3-319-70700-6_10
https://doi.org/10.1007/978-3-319-70700-6_10
https://doi.org/10.1007/978-3-540-45146-4_18
https://doi.org/10.1007/978-3-662-46497-7_16
https://doi.org/10.1007/978-3-662-46497-7_16
https://doi.org/10.1007/978-3-030-03810-6_14
https://doi.org/10.1007/978-3-030-03810-6_14
https://doi.org/10.1145/3313276.3316380
https://doi.org/10.1145/276698.276741
https://doi.org/10.1007/3-540-48658-5_19
https://doi.org/10.1007/3-540-48658-5_19
https://doi.org/10.1007/3-540-46035-7_4
https://doi.org/10.1007/3-540-46035-7_4
https://doi.org/10.1007/3-540-48184-2_5
https://doi.org/10.1109/FOCS.2009.59
https://doi.org/10.1109/FOCS.2009.59
https://doi.org/10.1109/SFCS.2000.892117
https://doi.org/10.1109/SFFCS.1999.814626

698 V. Goyal et al.

17. Even, S., Goldreich, O., Lempel, A.: A randomized protocol for signing contracts.
Commun. ACM 28(6), 637–647 (1985)

18. Feige, U., Lapidot, D., Shamir, A.: Multiple non-interactive zero knowledge proofs
based on a single random string (extended abstract). In: 31st FOCS, St. Louis,
MO, USA, 22–24 October 1990, pp. 308–317. IEEE Computer Society Press (1990).
https://doi.org/10.1109/FSCS.1990.89549

19. Fiat, A., Shamir, A.: How to prove yourself: practical solutions to identification
and signature problems. In: Odlyzko, A.M. (ed.) CRYPTO 1986. LNCS, vol. 263,
pp. 186–194. Springer, Heidelberg (1987). https://doi.org/10.1007/3-540-47721-7
12

20. Goldreich, O., Krawczyk, H.: On the composition of zero-knowledge proof systems.
SIAM J. Comput. 25(1), 169–192 (1996)

21. Goldreich, O., Levin, L.A.: A hard-core predicate for all one-way functions. In: 21st
ACM STOC, Seattle, WA, USA, 15–17 May 1989, pp. 25–32. ACM Press (1989).
https://doi.org/10.1145/73007.73010

22. Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game or a com-
pleteness theorem for protocols with honest majority. In: Aho, A. (ed.) 19th ACM
STOC, New York City, NY, USA, 25–27 May 1987, pp. 218–229. ACM Press
(1987). https://doi.org/10.1145/28395.28420

23. Goldreich, O., Oren, Y.: Definitions and properties of zero-knowledge proof sys-
tems. J. Cryptol. 7(1), 1–32 (1994). https://doi.org/10.1007/BF00195207

24. Goldwasser, S., Micali, S., Rackoff, C.: The knowledge complexity of interactive
proof-systems (extended abstract). In: 17th ACM STOC, Providence, RI, USA,
6–8 May 1985, pp. 291–304. ACM Press (1985). https://doi.org/10.1145/22145.
22178

25. Groth, J., Ostrovsky, R., Sahai, A.: Non-interactive zaps and new techniques for
NIZK. In: Dwork, C. (ed.) CRYPTO 2006. LNCS, vol. 4117, pp. 97–111. Springer,
Heidelberg (2006). https://doi.org/10.1007/11818175 6

26. Groth, J., Ostrovsky, R., Sahai, A.: Perfect non-interactive zero knowledge for NP.
In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 339–358. Springer,
Heidelberg (2006). https://doi.org/10.1007/11761679 21

27. Halevi, S., Hazay, C., Polychroniadou, A., Venkitasubramaniam, M.: Round-
optimal secure multi-party computation. In: Shacham, H., Boldyreva, A. (eds.)
CRYPTO 2018, Part II. LNCS, vol. 10992, pp. 488–520. Springer, Cham (2018).
https://doi.org/10.1007/978-3-319-96881-0 17

28. Halevi, S., Kalai, Y.T.: Smooth projective hashing and two-message oblivious
transfer. J. Cryptol. 25(1), 158–193 (2012). https://doi.org/10.1007/s00145-010-
9092-8

29. Jain, A., Kalai, Y.T., Khurana, D., Rothblum, R.: Distinguisher-dependent simula-
tion in two rounds and its applications. In: Katz, J., Shacham, H. (eds.) CRYPTO
2017, Part II. LNCS, vol. 10402, pp. 158–189. Springer, Cham (2017). https://doi.
org/10.1007/978-3-319-63715-0 6

30. Kalai, Y.T.: Smooth projective hashing and two-message oblivious transfer. In:
Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 78–95. Springer, Hei-
delberg (2005). https://doi.org/10.1007/11426639 5

31. Kalai, Y.T., Khurana, D., Sahai, A.: Statistical witness indistinguishability (and
more) in two messages. In: Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT 2018,
Part III. LNCS, vol. 10822, pp. 34–65. Springer, Cham (2018). https://doi.org/10.
1007/978-3-319-78372-7 2

https://doi.org/10.1109/FSCS.1990.89549
https://doi.org/10.1007/3-540-47721-7_12
https://doi.org/10.1007/3-540-47721-7_12
https://doi.org/10.1145/73007.73010
https://doi.org/10.1145/28395.28420
https://doi.org/10.1007/BF00195207
https://doi.org/10.1145/22145.22178
https://doi.org/10.1145/22145.22178
https://doi.org/10.1007/11818175_6
https://doi.org/10.1007/11761679_21
https://doi.org/10.1007/978-3-319-96881-0_17
https://doi.org/10.1007/s00145-010-9092-8
https://doi.org/10.1007/s00145-010-9092-8
https://doi.org/10.1007/978-3-319-63715-0_6
https://doi.org/10.1007/978-3-319-63715-0_6
https://doi.org/10.1007/11426639_5
https://doi.org/10.1007/978-3-319-78372-7_2
https://doi.org/10.1007/978-3-319-78372-7_2

Statistical Zaps and New Oblivious Transfer Protocols 699

32. Khurana, D., Sahai, A.: How to achieve non-malleability in one or two rounds. In:
Umans, C. (ed.) 58th FOCS, Berkeley, CA, USA, 15–17 October 2017, pp. 564–575.
IEEE Computer Society Press (2017). https://doi.org/10.1109/FOCS.2017.58

33. Kilian, J.: Founding cryptography on oblivious transfer. In: 20th ACM STOC,
Chicago, IL, USA, 2–4 May 1988, pp. 20–31. ACM Press (1988). https://doi.org/
10.1145/62212.62215

34. Lombardi, A., Vaikuntanathan, V., Wichs, D.: 2-message publicly verifiable WI
from (subexponential) LWE. IACR Cryptology ePrint Archive 2019, 808 (2019)

35. Lombardi, A., Vaikuntanathan, V., Wichs, D.: Statistical ZAPR arguments from
bilinear maps. In: Canteaut, A., Ishai, Y. (eds.) EUROCRYPT 2020. LNCS, vol.
12107, pp. 620–641. Springer, Heidelberg (2020)

36. Naor, M., Pinkas, B.: Efficient oblivious transfer protocols. In: Kosaraju, S.R. (ed.)
12th SODA, Washington, DC, USA, 7–9 January 2001, pp. 448–457. ACM-SIAM
(2001)

37. Pass, R.: Simulation in quasi-polynomial time, and its application to protocol com-
position. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656, pp. 160–176.
Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-39200-9 10

38. Peikert, C., Shiehian, S.: Noninteractive zero knowledge for NP from (plain) learn-
ing with errors. In: Boldyreva, A., Micciancio, D. (eds.) CRYPTO 2019, Part I.
LNCS, vol. 11692, pp. 89–114. Springer, Cham (2019). https://doi.org/10.1007/
978-3-030-26948-7 4

39. Rabin, M.O.: How to exchange secrets by oblivious transfer. Technical report TR-
81, Harvard University (1981)

40. Wolf, S., Wullschleger, J.: Oblivious transfer is symmetric. In: Vaudenay, S. (ed.)
EUROCRYPT 2006. LNCS, vol. 4004, pp. 222–232. Springer, Heidelberg (2006).
https://doi.org/10.1007/11761679 14

41. Yao, A.C.C.: How to generate and exchange secrets (extended abstract). In: 27th
FOCS, Toronto, Ontario, Canada, 27–29 October 1986, pp. 162–167. IEEE Com-
puter Society Press (1986). https://doi.org/10.1109/SFCS.1986.25

https://doi.org/10.1109/FOCS.2017.58
https://doi.org/10.1145/62212.62215
https://doi.org/10.1145/62212.62215
https://doi.org/10.1007/3-540-39200-9_10
https://doi.org/10.1007/978-3-030-26948-7_4
https://doi.org/10.1007/978-3-030-26948-7_4
https://doi.org/10.1007/11761679_14
https://doi.org/10.1109/SFCS.1986.25

Quantum II

Measure-Rewind-Measure: Tighter
Quantum Random Oracle Model Proofs

for One-Way to Hiding and CCA Security

Veronika Kuchta1, Amin Sakzad1(B), Damien Stehlé2,3, Ron Steinfeld1(B),
and Shi-Feng Sun1,4

1 Faculty of Information Technology, Monash University, Melbourne, Australia
{amin.sakzad,ron.steinfeld}@monash.edu

2 Univ. Lyon, EnsL, UCBL, CNRS, Inria, LIP, 69342 Lyon Cedex 07, France
3 Institut Universitaire de France, Paris, France

4 Data61, CSIRO, Canberra, Australia

Abstract. We introduce a new technique called ‘Measure-Rewind-
Measure’ (MRM) to achieve tighter security proofs in the quantum ran-
dom oracle model (QROM). We first apply our MRM technique to derive
a new security proof for a variant of the ‘double-sided’ quantum One-
Way to Hiding Lemma (O2H) of Bindel et al. [TCC 2019] which, for the
first time, avoids the square-root advantage loss in the security proof. In
particular, it bypasses a previous ‘impossibility result’ of Jiang, Zhang
and Ma [IACR eprint 2019]. We then apply our new O2H Lemma to
give a new tighter security proof for the Fujisaki-Okamoto transform for
constructing a strong (IND-CCA) Key Encapsulation Mechanism (KEM)
from a weak (IND-CPA) public-key encryption scheme satisfying a mild
injectivity assumption.

Keywords: QROM · Security proof · Public-key encryption

1 Introduction

Background. Correctly selecting secure parameters for quantum-resistant cryp-
tosystems requires understanding both the concrete quantum cost of attacks
against the underlying intractability assumption (e.g., LWE [20]), as well as the
concrete quantum cost of attacks against the cryptosystem itself. Ideally, one
would like a cryptosystem whose security is tightly related via a security proof
(or security reduction) to the intractability of a well-studied problem, so that
attacks against the cryptosystem of lower cost than those against the problem are
ruled out. Such tight proofs give confidence in the concrete security of practical
parameter choices based on the best known attacks against the underlying prob-
lem. Unfortunately, due to existing gaps in the understanding of security proofs
in the context of quantum adversaries, there are many practical post-quantum
cryptosystem candidates that lack such tight security proofs.
c© International Association for Cryptologic Research 2020
A. Canteaut and Y. Ishai (Eds.): EUROCRYPT 2020, LNCS 12107, pp. 703–728, 2020.
https://doi.org/10.1007/978-3-030-45727-3_24

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-45727-3_24&domain=pdf
https://doi.org/10.1007/978-3-030-45727-3_24

704 V. Kuchta et al.

A case in point is the Fujisaki-Okamoto (FO) CCA transform [9], which
is commonly applied in the design of practical public-key cryptosystems to
strengthen their security from chosen-plaintext security (IND-CPA) to chosen-
ciphertext security (IND-CCA), assuming the random oracle model (ROM)
for the underlying cryptographic hash functions. This transform and its vari-
ants [8,10,21,22] are used in all public-key encryption schemes and key-
establishment algorithms of the second round of the NIST PQC standardisa-
tion process [19]. Tight security proofs are known for FO variants against clas-
sical adversaries (in the classical ROM), meaning that an adversary breaking
the FO-transformed scheme in time T and advantage ε can be used to break
the underlying scheme in time ≈ T and advantage ≈ ε. Oppositely, no such
tight security proof for an all-purpose FO transform is known against quantum
attacks in the quantum random oracle model [6]. In the QROM, the adversary is
given quantum access to those hash functions modeled by random oracles. Note
that [21,26] described a transform from a deterministic encryption scheme that
enjoys a so-called disjoint simulatability property, to an IND-CCA public-key
encryption scheme, which is tight in the QROM. The assumptions for this tight
QROM transform are more stringent than those of the all-purpose FO trans-
form: only 2.5 out of 17 second round NIST proposals for public-key encryption
schemes claim that it is applicable to them [3,4,7],1 and at the cost of additional
assumptions.

Although a series of works [5,10–13,15,22] have provided improved analyses
of the FO transform, the existing QROM reductions are still not tight. The state-
of-the-art reductions essentially preserve the runtime, but the advantage degra-
dation only satisfies Adv(ACCA) ≤ O(qc·(Adv(BCPA))δ), where (c, δ) = (1/2, 1/2)
(versus the ideal tight result (c, δ) = (0, 1) that one could hope for), where
Adv(ACCA) and Adv(BCPA) respectively denote the distinguishing advantages of
the IND-CCA attack against the FO-transformed scheme and IND-CPA attack
against the original scheme, and q denotes the number of QROM queries made
by the attacker A. We note that previous techniques have mainly improved the
value of c, reducing it gradually from c = 3/2 down to c = 1/2. Regarding δ,
while it has been improved from 1/4 to 1/2, going further towards δ = 1 has
seemed challenging. Recently, it has even been conjectured infeasible, based on
an ‘impossibility result’ [14].

At the heart of these prior results has been the use of the ‘One-way to
Hiding’ (O2H) lemma, first given in [24]. All its versions so far inherently lead
to a ‘square-root advantage’ loss in the proofs of the FO transforms. The O2H
lemma can be formulated informally as follows. A quantum distinguisher AO2H

is given quantum access to an oracle O that implements either a random oracle
H : X → Y or a modified random oracle G : X → Y , where H and G are
identical on all except a single secret point x ∈ X: we have H(x′) = G(x′)
for all x′ �= x and H(x) = yH and G(x) = yG where yH , yG are independent
uniformly chosen random strings. The distinguisher is also given z = (zx =

1 In the case of [4], this holds for Streamlined NTRU Prime, but not for NTRU
LPRime.

Measure-Rewind-Measure: Tighter Quantum Random Oracle Model Proofs 705

enc(x), zH = yH , zG = yG), where enc is a one-way function (a deterministic
encryption scheme in the FO scenario).2 The goal of AO2H is to distinguish
whether the oracle O implements G or H, while making up to q queries to O
with depth at most d (where a depth of d means that AO2H splits its queries into
d bunches and all queries within each bunch are queried in parallel, so queries
in each bunch may depend on the answer to d − 1 previous query bunches, and
the total number of queries over all d bunches is at most q). An algorithm that
computes x from zx (by breaking the one-wayness of enc), queries O(x) and
compares the result to zH achieves an advantage Adv(AO

O2H) negligibly close
to 1. In the case of a classical access to O, no algorithm can do better. In the
quantum access case, all variants of the O2H lemma known so far suffer from
a square-root advantage loss. For example, the recent [5, Lemma 5] states that

Adv(AO
O2H) ≤ 2 ·

√
Adv(BG,H

OW). Here BG,H
OW (z) is a quantum attacker against

the one-wayness of enc, which is given oracle access for both G and H (these
oracles can be simulated given zx, and thus such an attacker implies an attacker
against the one-wayness of enc). The one-wayness attacker BG,H

OW constructed
in the proof of this O2H lemma (and all prior variants thereof) ‘only’ runs
AO2H and measures its queries. In particular, it does not ‘rewind’ AO2H to an
earlier state. Rewinding the state of an attacker to an earlier state is often
considered tricky in the quantum setting, due to the fact that measurement
operations are not reversible. The ‘impossibility result’ of [14] states that any
O2H lemma based on a one-wayness attacker that runs the distinguisher only
once and involves no rewinding, must incur a square-root advantage loss. Thus,
it has been suggested in [5,14] that the square-root advantage loss in the O2H
lemma may be unavoidable in the quantum setting.

Contributions. We present a novel quantum O2H lemma that, for the first time,
does not suffer from the square-root advantage loss in the reduction. Concretely,
we obtain a security bound of the form Adv(A) ≤ 4 · d · Adv(BG,H), where B is
the one-wayness attacker against the underlying one-way function enc.

To circumvent the ‘impossibility result’ of [14], we introduce a Measure-
Rewind-Measure (MRM) proof technique, which provides a new way to extract
the one-wayness secret x from the distinguisher. Rather than extracting x
directly by measuring the oracle queries of the distinguisher (as in prior works),
the MRM technique may also extract x from the distinguishing measurement of
the distinguisher. The latter distinguishing measurement knowledge extraction
is achieved by letting the distinguisher perform its distinguishing measurement,
and then rewinding the collapsed measured state back to the state of the oracle
query stage, to perform a second measurement and extract x. A comparison of
our O2H lemma security bounds and features with earlier O2H lemma variants
is provided in Table 1.

2 We use this definition of z for simplicity in this introduction. The actual formulation
of most prior O2H lemmas, as well as our new one, is more general and allows z to
have an arbitrary joint distribution with G, H, x, as well as allowing a set S of any
number of x’s on which G and H may differ, rather than just one.

706 V. Kuchta et al.

Table 1. Comparison of security bounds and features of our new O2H lemma with
earlier variants of the O2H lemma. The ‘Bound’ column shows the dependence of the
upper bound on the distinguisher advantage Adv(A) in terms of the One-Wayness
attacker advantage ε and A’s oracle query depth d ≤ q (where q is the total number of
queries). The ‘|S|’ column indicates the number of points on which G and H may differ,
the ‘BOW must know’ column shows the oracles available to the one-wayness attacker,
and the ‘Event’ column indicates the type of event used to define A’s advantage. Here
H \ S (resp. G \ S) refers to the restriction of H (resp. G) to the complementary set
of S, and 1S refers to the indicator function of S.

O2H variant Bound |S| BOW must know Event

Original [1,24] 2dε1/2 Arbitrary H or G Arbitrary

Semi-classical [1] 2d1/2ε1/2 Arbitrary (H \ S or G \ S) Arbitrary
and 1S

Double-sided [5] 2ε1/2 One H and G Arbitrary

This work 4dε Arbitrary H and G Efficiently checkable

Compared to prior O2H lemmas, our variant is the first to avoid the square-
root advantage loss. On the other hand, it constructs a one-wayness attacker
which in general requires oracle accesses to both G and H. Therefore, our lemma
is in the same setting as the ‘double-sided’ O2H lemma of [5], which makes it
less general than the semi-classical or original O2H lemmas. Nevertheless, it
still suffices for important applications (see below). Compared to the ‘double-
sided’ O2H lemma in [5], our variant is slightly less general in one respect and
more general in another. On the one hand, the classical event distinguished by
the O2H attacker A in [5] can be arbitrary, while we assume this event to be
efficiently checkable by A. ‘Efficiently checkable’ means that the distinguishing
advantage in the definition of the O2H Lemma is defined as the advantage of
A in the usual way, i.e., Adv(A) = |Pr[1 ← AG(z)] − Pr[1 ← AH(z)]|. This is
in contrast to the more general definition used in [5], which uses the advantage
|Pr[Ev : AG(z)] − Pr[Ev : AH(z)]| for any classical event Ev over the view of
A. There may not exist a computationally efficient algorithm to check whether
Ev has occurred. On the other hand, our O2H variant allows |S| (the number of
points on which G and H may differ) to be arbitrary, while in [5] it must contain
a single point.

As an important application of our O2H lemma, we present the first secu-
rity proof for the FO transform in the QROM which does not suffer from a
‘square-root’ advantage loss for non-deterministic schemes, i.e., it has the form
Adv(ACCA) ≤ O(qc · Adv(BCPA)δ), where δ = 1 rather than δ = 1/2 as in pre-
vious results (on the other hand, our proof currently gives a larger value of c
compared to earlier works, see below). A comparison of our FO security proof
bounds with earlier ones starting from IND-CPA non-deterministic weak schemes
is provided in Table 2. The ‘Security loss’ column of that table shows the num-
ber of extra bits of security required for the ‘weak scheme’ in order to guarantee

Measure-Rewind-Measure: Tighter Quantum Random Oracle Model Proofs 707

(via the security proof bound) a desired bit security of λ for the FO-transformed
scheme. To obtain the ‘security loss’ L, we define the indistinguishability bit
security of a scheme (against distinguishers that never output ⊥, which is the
class of attacks considered here) [17] as λ if the time to squared (conditional)
advantage ratio T/ε2 of any attack with time T ≤ 2λ is ≥ 2λ.3 We then choose
the smallest bit security Sweak of the ‘weak scheme’ so that the CCA security
bound for the CCA scheme implies a CCA bit security of the FO scheme to
be ≥ λ, and define the ‘security loss’ as L := Sweak − λ. We remark that our
bit security loss estimates in Table 2 assume that the classical bit security def-
initions in [17] are appropriate in the quantum setting, as we are not aware of
any research on bit security notions in the quantum setting. Note also that this
latter assumption does not impact the security bounds we prove in this paper
(which do not depend on this assumption); it only affects their interpretation in
Table 2 in terms of bit security.

We make the following remarks about Table 2. Whereas all previous proofs
for FO applied to non-deterministic IND-CPA weak schemes incurred at least a λ
bit security loss (due to the square-root advantage loss in the CCA bound), our
proof removes this λ bit overhead, and instead incurs a loss 4 log d that depends
only on the query depth d of the CCA distinguisher. In particular, this means
that our security proof is nearly tight for low query depth attacks (i.e., when
log d is much smaller than λ), its loss is less than λ bits for log d < λ/4. The
case of (relatively) low query depth attacks ruled out by our proof tends to be of
high practical interest, since it corresponds, for instance, to massively parallelized
attacks, which are the standard approach to deal with high computation costs in
practical cryptanalyses. An additional requirement of our scheme is injectivity,
but it turns out that it is commonly satisfied by many practical weak schemes,
as argued in [5]. We leave a detailed investigation of injectivity of the second
round PQC NIST KEM candidates [19] to future work (see [5, Appendix D] for a
short discussion). We also remark that although our work and [5] need the extra
injectiveness assumption, it gives a better bound than prior works for modular
FO proofs (those that decompose into a composition of two proofs: one for the T
transform and one for the U transform). The prior works in Table 2 can get the
same bound overall for FO but only via a direct proof for whole FO transform
(combining the T and U transforms). The reason we do not adapt prior FO
proofs that do not rely on the injectiveness property is that those proofs also
seem to require an O2H Lemma where the extractor works with single-sided
oracles for either G or H, rather than the G and H requirement we (and [5])
have in our ‘double-sided’ O2H Lemma.

Techniques. To explain our MRM security proof technique, we consider the
following example and explain the difficulty encountered by previous O2H proofs,
and then our observations leading to our MRM technique for resolving this
difficulty.

3 We note that [17] calls ε the ‘conditional advantage’ while ε2 is referred to as the
‘advantage’; we always refer to ‘conditional advantage’ ε as ‘advantage’.

708 V. Kuchta et al.

Table 2. Comparison of security bounds for FO-type non-deterministic IND-CPA to
IND-CCA transforms in the QROM. The ‘CCA bound’ column shows the dependence
of the upper bound on CCA attacker advantage Adv(A) against the FO-transformed
scheme in terms of the attacker advantage ε against the weak scheme transformed by
FO, and A’s oracle query depth d ≤ q (where q is the total number of random oracle
queries). For simplicity, in this table, we only take into account the dependence in ε,
and neglect other additive terms and (small) multiplicative constants. In all cases listed,
the run-time of the weak scheme attacker is within a constant factor of the run-time of
the CCA scheme. The required weak scheme security notion is shown in column ‘Weak
scheme’. The ‘Security loss’ column indicates the bit security loss of the CCA bound
(see text). Note that all the weak schemes are not required to enjoy perfect correctness
of decryption.

CCA bound Security loss Weak scheme

[10] q3/2 · ε1/4 3λ + 9 log q IND-CPA

[11,13,15] d1/2 · ε1/2 λ + log d IND-CPA

[5] d1/2 · ε1/2 λ + log d IND-CPA injective

This work d2 · ε 4 log d IND-CPA injective

Consider the following O2H distinguisher AO that makes 1 query (with depth
1) to its quantum oracle and makes a measurement on the resulting state to
distinguish whether O = H or O = G. The oracle input (first) and output
(second) registers are denoted by in and out. Given z = (enc(x),H(x)), the
distinguisher AO prepares in the input register in a superposition of the form∑

x′∈X

√
px′ |x′〉 and queries O to get the state

|ψO〉 =
∑

x′∈X

√
px′ |x′, O(x′)〉 =

√
px|x,O(x)〉 +

∑
x′ �=x

√
px′ |x′, O(x′)〉,

where
∑

x′∈X px′ = 1. Let |ψ �=x〉 :=
∑

x′ �=x

√
px′

1−px
|x′,H(x′)〉. Recalling that G

and H differ only on x, we are in one of the following two cases:

|ψH〉 =
√

px|ψH
x 〉 +

√
1 − px|ψ �=x〉 and |ψG〉 =

√
px|ψG

x 〉 +
√

1 − px|ψ �=x〉,
with |ψH

x 〉 := |x,H(x)〉 and |ψG
x 〉 := |x,G(x)〉.

Since the amplitude of in = |x〉 in |ψH〉 is
√

px, measuring the input
register in for A’s query would give the secret x with probability Adv(B) =
Pr[Min=|x〉|ψO〉] = px. This is in fact the strategy of the one-wayness adversary
B constructed from A in prior O2H security proofs.

On the other hand, as observed in [14], the trace distance between |ψG〉
and |ψH〉 is

√
1 − (|ψG〉, |ψH〉)2 =

√
px and therefore there exists a projective

measurement MV = (MV , I −MV) (where MV is a projector on a subspace V of
the state space)4 that A can perform on |ψO〉 to distinguish the case O = H from
4 Here, we assume that A outputs 1 when the result of measurement space is a state

in subspace V .

Measure-Rewind-Measure: Tighter Quantum Random Oracle Model Proofs 709

O = G with distinguishing advantage Adv(A) = ‖MV |ψH〉‖2 − ‖MV |ψG〉‖2 =√
px (see [18, Chapter 9]). The existence of such a distinguisher with a square

root advantage
√

px led the authors of [5,14] to the suggestion that removing
the square-root loss from the O2H security reduction may be impossible in the
quantum setting.

Let us exhibit such the worst-case MV that A could use. Consider MV =
|v〉〈v| that projects the state on a single unit vector |v〉, with |v〉 defined as lying
on the plane spanned by |ψG〉 and |ψH〉, and at angle π/4+θ/2 from |ψG〉 if |ψH〉
is at angle θ from |ψG〉. Then Adv(A) = cos2(π/4 + θ/2) − cos2(π/4 − θ/2) =
sin θ =

√
px.

Our MRM technique for resolving the above conundrum stems from the
observation that to achieve its high

√
px advantage, the above example dis-

tinguisher A uses a measurement MV that itself encodes the secret x. Indeed, in
the measurement vector |v〉 the state in = |x〉 has amplitude ≈ 1/

√
2 when px

is small. Hence, as A can measure along |v〉, it must somehow store it and we
should be able to extract x from A with high probability by simply measuring
in of |v〉 in the computational basis.

The above idea raises the question of how to set up the system state to
be |v〉. The answer is simply to let A perform its distinguishing measurement
MV on |ψH〉.5 If the measurement is MV , the state collapses to the state
MV |ψH〉/‖MV |ψH〉‖. In the above example, this is |v〉 with probability ≈ 1/2
when px is small. In the standard quantum computational model, since A’s mea-
surement MV is not performed with respect to the computational basis (note that
|v〉 is a superposition of computational basis vectors), applying MV to the oracle
output state is implemented by A as a composition of a unitary UV followed by
a computational basis measurement Mβ of a qubit register β corresponding to
A’s output bit (where UV is designed so that it maps the state |v〉 to a state
with β = 1). Then, setting up the system state to be |v〉 actually consists in
running A with oracle H to obtain the state |ψH〉, applying UV followed by
A’s output qubit measurement Mβ , and if the result of the latter measurement
is β = 1, then rewinding the collapsed output state of A to the step before
the measurement by applying the inverse unitary U−1

V (so that effectively the
measurement projector MV = U−1

V Mβ=|1〉UV is applied on the state |ψH〉).
Overall, we obtain an efficient MRM-based quantum algorithm C to extract

x from A that works as follows for q = d = 1: run AH and query the H oracle
to set up the state |ψH〉, continue running A until it performs its measurement
MβUV and, if the result is β = |1〉, rewind A back to just after the query
by running U−1

V and apply measurement Min on the in register to extract x,
achieving overall success probability ≈ 1/4 for the above example distinguisher
A when px is small.

In our new O2H security proof, we show that (a slight variant of) the above
MRM extraction technique works for q = d = 1 in the case where MV is a general
measurement. More precisely, we show that the advantage of any distinguisher A

5 Our actual general reduction applies it to a uniform superposition 1
2
(|ψH〉 + |ψG〉);

see below.

710 V. Kuchta et al.

cannot exceed 4 · max(Adv(B),Adv(C)), where Adv(C) is the probability that
our MRM-based extractor recovers x, and Adv(B) = px is the probability that
the direct query measurement algorithm B recovers x. Our actual extraction
algorithm D therefore runs A twice: in the first run of A, algorithm D runs the
direct query measurement algorithm B to attempt to compute x, and in the
second run of A, algorithm D runs our MRM-based algorithm C to attempt to
compute x. By the above bound, the advantage of A is at most 4 times the
success probability of D.

The proof of our new O2H bound is based on re-writing Adv(A) :=
|‖MV |ψG〉‖2 − ‖MV |ψH〉‖2| as an inner product of the form

Adv(A) ≤
∣∣(|ψG〉 − |ψH〉,MV (|ψG〉 + |ψH〉)

)∣∣ .

At this point, we use the crucial fact that since G and H differ only on x,
|ψG〉 − |ψH〉 = |ψG

x 〉+ |ψH
x 〉 is a vector in the subspace E|x〉 of vectors with in =

|x〉, so it is unchanged by applying a projection Min=|x〉 onto E|x〉. Consequently,
the inner-product above can be rewritten as

Adv(A) ≤
∣∣(Min=|x〉(|ψG〉 − |ψH〉),Min=|x〉MV (|ψG〉 + |ψH〉)

)∣∣ .

Now, we observe that the norm ‖Min=|x〉(|ψG〉− |ψH〉)‖ of the vector on the left
of the inner-product is (up to a factor of 2) the square-root of the advantage px

of the direct measurement extraction algorithm B, whereas the norm

‖Min=|x〉MV (|ψG〉 + |ψH〉)‖ = ‖Min=|x〉U
−1
V Mβ=|1〉UV (|ψG〉 + |ψH〉)‖

of the vector on the right of the inner-product is (up to a factor of 2) the square-
root of the advantage of a variant of the MRM-based extraction algorithm C.
Applying the Cauchy-Schwarz inequality gives our bound

Adv(A) ≤ 4 ·
√
Adv(B) ·

√
Adv(C) ≤ 4 · max(Adv(B),Adv(C)),

for q = d = 1. We extend our O2H security proof to the case of any depth d ≥ 1
by applying a standard hybrid argument over d hybrid distributions in which the
oracle O is used only to answer the i-th depth of A, which leads to an additional
loss of a factor d in our bound on Adv(A).

We apply the new O2H lemma to the FO transform, by showing that a slight
variant of the proof of security for the FO �⊥ (‘implicit rejection’) variant based on
the ‘double-sided’ O2H lemma from [5] suffices for use with our new O2H lemma,
without any significant reduction cost. The reason we cannot directly plug in our
new ‘double-sided’ O2H lemma in the FO security proof of [5] is the limitation
of our new O2H lemma to ‘efficiently checkable’ events for the definition of
distinguisher A. Our modified proof applies the lemma with the event ‘A outputs
1’ instead. By the general tight equivalence results of [5, Theorem 5], we also
obtain an improved security proof for other variants FO⊥ (‘explicit rejection’)
and FO �⊥

m (key derived from message only).

Open problems. Our new O2H security proof for q = d = 1 oracle queries
crucially makes use of the fact that |ψG〉 − |ψH〉 is in the subspace of vectors

Measure-Rewind-Measure: Tighter Quantum Random Oracle Model Proofs 711

with in = |x〉. This property may no longer be satisfied after q > 1 queries, and
currently, we handle this difficulty via a hybrid argument that loses a factor q
in the advantage (in the presentation of our reduction we actually only lose a
factor d ≤ q that is the query depth, but in the worst-case we have d = q).
The security proofs of [1,5] make use of semi-classical oracles or a variant of
Zhandry’s quantum query recording technique [27] to reduce (or even eliminate)
the loss factor q in the advantage, but they do not seem to be easily compat-
ible with our MRM technique. An interesting open problem is to find an even
tighter security proof that combines our MRM technique with those techniques
to give a fully tight reduction for O2H in the quantum setting. Relaxing the
‘double-sided’ aspect of our O2H Lemma to a ‘single-sided’ variant (like the
original O2H Lemma [24]) is also left as an interesting question. Removing the
injectivity assumption and finding other applications for our O2H Lemma and
the underlying MRM technique are further questions left open by our work.

Additional related work. To the best of our knowledge, the use of quantum
circuit rewinding is novel in the context of the O2H Lemma, but there is a body
of work using different forms of quantum circuit rewinding in other applica-
tions, notably in the analysis of quantum security of zero-knowledge protocols.
Watrous [25] presented a quantum rewinding lemma, which is a procedure involv-
ing multiple ‘measure-rewind’ iterations with interleaved unitary gates, in order
to approximate a desired collapsed measured state with any desired fidelity. The
procedure assumes a near independence of the measurement probabilities on the
input state, which suffices to prove the zero-knowledge property of certain pro-
tocols. Our MRM technique does not make such near independence assumptions
(indeed the measurement distribution of the distinguisher may strongly depend
on the input state), but only applies one ‘measure-rewind-measure’ iteration.
Unruh [23] presented a form of rewinding extraction technique for proving sound-
ness of zero-knowledge proof of knowledge protocols against quantum attacks.
However, the purpose of rewinding there is to approximate the previous state
of the attacker while minimising the disturbance of the measurement, whereas
in our MRM technique, we actually want the measurement to disturb the state
in order to extract knowledge from the measurement vector. Later work by
Ambianis et al. [2] showed the necessity of restrictions of Unruh’s rewinding in
the context of quantum-secure proofs of knowledge.

2 Preliminaries

For a finite set H, we denote by H
$← H the sampling of a uniformly random

element H from H. If A is an algorithm, we denote by b ← A(z) the assignment
to b of the output of A run on input z.

Let C denote the set of complex numbers. For z ∈ C, we denote the absolute
value of z by |z| and the complex conjugate of z by z̄. The (complex) inner prod-
uct between two vectors |u〉 = (u0, . . . , un−1) and |v〉 = (v0, . . . , vn−1) in C

n is
denoted by (|u〉, |v〉) :=

∑
i ūi · vi. Let |v〉 ∈ C

n, then ‖|v〉‖ =
√

(|v〉, |v〉) denotes

712 V. Kuchta et al.

its Euclidean norm. For a linear transformation M , the Hermitian (adjoint)
operation on M is denoted by M†.

2.1 Quantum Computations

A qubit is a quantum system defined over {0, 1}. Given two orthonormal vectors
|0〉, |1〉, let S be the state space of a single qubit, namely

S =
{
α0|0〉 + α1|1〉 : |α0|2 + |α1|2 = 1, α0, α1 ∈ C

}
.

For an integer N ≥ 1, the state space of a quantum system (register) of N qubits
is the N -fold tensor product of S and is denoted by

S
⊗N =

⎧
⎨
⎩

∑
in∈{0,1}N

αin|in1〉 · · · |inN 〉 :
∑

in∈{0,1}N

|αin|2 = 1, αin ∈ C

⎫
⎬
⎭ .

For x = (x1, . . . , xN) ∈ {0, 1}N , the associated computational basis vec-
tor of S

⊗N is x = |x1〉|x2〉 · · · |xN 〉, and is denoted by |x〉. The set of all 2N

computational basis states {|x〉} forms an orthonormal basis for S
⊗N . A linear

combination |φ〉 =
∑

x∈{0,1}N αx|x〉 of computational basis states |x〉 is referred
to as a superposition of computational basis states. We refer to the weight αx

as the amplitude of |x〉 in state |φ〉.
Given the state |φin〉 ∈ S

⊗N of an N -qubit register in and a value y ∈ {0, 1}N ,
we denote by Min=|y〉 : S⊗N → S

⊗N the operator that applies the projection
|y〉〈y| map to the state |φin〉 of register in to get the new state |y〉〈y||φin〉.
This projector can be generalized to a projector MEV

onto a subspace EV =
{
∑

in∈V αin|in〉 : αin ∈ C} defined by a subset V ⊆ {0, 1}N , which applies the
projection map

∑
y∈V |y〉〈y| to a state |φin〉 ∈ S

⊗N . For example, for a subset
S ⊆ {0, 1}N , we define S⊕n := {in ∈ ({0, 1}N)n : ∃ i with ini ∈ S}, and then
MES⊕n is the projector onto subspace ES⊕n := {

∑
in∈S⊕n αin|in〉 : αin ∈ C}.

We use the same notation for operators and projectors even if they are applied
to non-normalized vectors in C

N . It can be checked that any projector operator
MEV

is Hermitian (i.e., we have M† = M) and idempotent (i.e., we have M2 =
M).

A measurement in the computational basis on a register in that is in state
|φin〉 ∈ S

⊗N returns the measurement result y ∈ {0, 1}N with probability P =
‖Min=|y〉|φin〉‖2 and changes (‘collapses’) the state of in to |φ′

in〉 = Min=|y〉|φin〉
‖Min=|y〉|φin〉‖ .

Such a measurement of register in is denoted by Min. A general projective
measurement is defined by a set of projection operators {M1, . . . , Mn} where
Mi’s project onto subspaces Vi that are mutually orthogonal and whose sum is
the whole state space. For example, for any subspace V of S⊗N , we can define the
projective measurement MV = (MV , I −MV) where MV is the projector onto V
and I − MV is the projector onto the orthogonal complement of V . Any general
projective measurement can be implemented by composing a unitary operation
followed by a measurement in computational basis. Each measurement costs one
time unit.

Measure-Rewind-Measure: Tighter Quantum Random Oracle Model Proofs 713

A quantum algorithm executes a sequence of unitary gate operations for a
fixed set F containing Hadamard, phase, CNOT and π/8 gates. Each gate is also
counted as one unit of time. The overall time taken to perform a quantum algo-
rithm A is denoted by TA. An efficient quantum algorithm runs a polynomial-
time (in N) sequence of gate operations or measurements.

Given a function H : X → Y = {0, 1}N , a quantum-accessible oracle O of H
is modeled by a unitary transformation UH operating on two registers in, out
with state spaces S⊗N , in which |x, y〉 is mapped to |x, y⊕H(x)〉, where ⊕ denotes
XOR group operation on Y . A quantum algorithm with quantum random oracle
O performs a mix of classical and quantum unitary algorithms. This can be
efficiently converted, up to a constant factor overhead and same number of oracle
queries [18], to a purely unitary algorithm that applies a unitary followed by a
final set of measurements. A purely unitary algorithm making q oracle queries
to O is denoted by (OUi)

q
i=1, where Ui is a unitary operation applied before the

i-th call to oracle O. Following [5], we model a quantum algorithm A making
parallel queries to a quantum oracle O as a quantum algorithm making d ≤ q
queries to an oracle O⊗n consisting of n = q/d parallel copies of oracle O. Given
an input state of n pairs of in/out registers |x1〉|y1〉 · · · |xn〉|yn〉, the oracle of
O⊗n maps it to the state |x1〉|y1 ⊕ O(x1)〉 · · · |xn〉|yn ⊕ O(xn)〉. We call d the
algorithm’s query depth, n the parallelization factor, and q = n · d the total
number of oracle queries.

2.2 Original One-Way to Hiding (O2H) Lemma

We now recall the One-Way to Hiding (O2H) Lemma, as stated in [1] (this
formulation generalizes Unruh’s original O2H Lemma [24]).

Lemma 2.1. ([1, Theorem 3]). Let G,H : X → Y be random functions, z
be a random value, and S ⊆ X be a random set such that G(x) = H(x) for
every x /∈ S. The tuple (G,H, S, z) may have an arbitrary joint distribution.
Furthermore, let AH be a quantum oracle algorithm which queries H with depth
at most d. Let Event be an arbitrary classical event. Define the oracle algorithm
BH(z) as follows: sample i

$← {0, . . . , d − 1}; run AH(z) until just before its i-th
round of queries to H; measure all query input registers in the computational
basis, and output the set T of measurement outcomes. Then

Adv(A) ≤ 2d
√

Adv(B) and |
√

Pleft −
√

Pright| ≤ 2d
√

Adv(B),

where Adv(A) := |Pleft − Pright| with

Pleft := Pr[Event : AH(z)], Pright := Pr[Event : AG(z)],

and
Adv(B) := Pr[S ∩ T �= ∅ : T ← BH(z)].

714 V. Kuchta et al.

3 Main Results

The following result will prove useful later on in the proof of Lemma3.2.

Lemma 3.1. For any vectors |φ1〉 and |φ2〉, we have

|‖|φ1〉‖2 − ‖|φ2〉‖2| ≤ |(|φ1〉 − |φ2〉, |φ1〉 + |φ2〉)|.

Proof. Let x1 = |φ1〉 − |φ2〉 and x2 = |φ1〉 + |φ2〉. Then, we have:
∣∣∣∣
‖x1 + x2‖2

4
− ‖x1 − x2‖2

4

∣∣∣∣ =
|(x1 + x2, x1 + x2) − (x1 − x2, x1 − x2)|

4
= |Real((x1, x2))| ≤ |(x1, x2)|,

where Real(z) denotes the real part of a complex number z. ��

3.1 O2H with Measure-Rewind-Measure (MRM)

We first describe the fixed input version of our result, where G,H, S, z are all
fixed, and then we extend it to case of random G,H, S, z. Note that below, the
value z can depend on G,H, S, so can serve to provide the adversary with a ‘hint’
about G,H, S (for instance, in our application later on, the value z contains an
encryption of S).

Lemma 3.2 (Fixed O2H with MRM). Let G,H : X → Y be fixed functions,
z be a fixed value, and S ⊆ X be a fixed set such that G(x) = H(x) for every
x /∈ S. Furthermore, let AO be a quantum oracle algorithm which queries an
oracle O with depth d. Then we can construct unitary algorithms {AO

i (z)}0≤i<d,
{BG,H

i (z)}0≤i<d, and {CG,H
i (z)}0≤i<d with TAO

i
≈ TAO , TBG,H

i
� TAO

i
and

TCG,H
i

≈ 2 · TAO
i
(for all i) and such that

Adv(AO) ≤
d−1∑
i=0

Adv(AO
i), (1)

and (for all i):

Adv(AO
i) ≤ 4

√
Adv(BG,H

i) · Adv(CG,H
i)

≤ 4max{Adv(BG,H
i),Adv(CG,H

i)}. (2)

Here Adv(AO) := |Pleft − Pright| with

Pleft := Pr[1 ← AH(z)], Pright := Pr[1 ← AG(z)],
Adv(AO

i) := |Pr[1 ← AH
i (z)] − Pr[1 ← AG

i (z)]|,
Adv(BG,H

i) := Pr[S ∩ TBi
�= ∅ : TBi

← BG,H
i (z)],

and
Adv(CG,H

i) := Pr[S ∩ TCi
�= ∅ : TCi

← CG,H
i (z)].

Measure-Rewind-Measure: Tighter Quantum Random Oracle Model Proofs 715

Proof. Let O⊗n
G and O⊗n

H be the n-wise parallel quantum oracles for G and H,
respectively. As in [5, Lemma 5], we define another quantum oracle O⊗n

G,H , which
is used to put the sum and difference of O⊗n

G and O⊗n
H in superposition, entangled

with another bit b. This can be configured so that the additional bit register b
decides which oracle is in use. Concretely, we define

O⊗n
G,H := (O⊗n

H ⊗ |+〉〈+|) + (O⊗n
G ⊗ |−〉〈−|),

where |+〉 = |0〉+|1〉√
2

and |−〉 = |0〉−|1〉√
2

. Therefore, the oracle O⊗n
G,H maps the state

|ψ〉|+〉 to the state O⊗n
H (|ψ〉)|+〉 and the state |ψ〉|−〉 to the state O⊗n

G (|ψ〉)|−〉.
As observed in [5], it can be efficiently implemented by applying a Hadamard
gate before and after a conditional evaluation map that applies OH if b = 0
and OG if b = 1. By setting the b bit register to start in the superposition state
|+〉+|−〉√

2
= |0〉, and applying O⊗n

G,H we get a state with the sum and differences
of the oracle output states entangled with the bit b:

O⊗n
G,H(|ψ〉|0〉) =

1√
2

·
(
O⊗n

H (|ψ〉)|+〉 + O⊗n
G (|ψ〉)|−〉

)

=
1
2

·
(
O⊗n

H |ψ〉 + O⊗n
G |ψ〉

)
⊗ |0〉

+
1
2

·
(
O⊗n

H |ψ〉 − O⊗n
G |ψ〉

)
⊗ |1〉. (3)

Looking ahead, we will use the above bit b in algorithms Bi and Ci and aim to
measure b = 1 in the former and b = 0 in the latter, so that we get the difference
and sum states, respectively, in the remaining registers.

We now present our hybrid algorithms for i ∈ {0, . . . , d− 1}. The i-th hybrid
pair of algorithms for A corresponds to running A with its first i oracle calls
answered with O⊗n

H , A’s (i + 1)-th call answered by O⊗n
O where O ∈ {G,H} is

A’s oracle, and A’s final d − (i + 1) calls answered using O⊗n
G . The extraction

algorithms Bi and Ci detailed below will run A similarly except with the (i+1)-th
query answered with the superposition oracle O⊗n

G,H . We define the four hybrid
algorithms below. Recall that the total number of quantum oracle queries of
A equals q = n · d, where n is the parallelization factor, and that A applies a
unitary Uj in between its (j − 1)-th and j-th oracle call.

– Algorithm AO
i for O ∈ {O⊗n

H , O⊗n
G }. This algorithm starts with 0’s in regis-

ters |aux〉
⊗n

i=1(|ini〉|outi〉)|β〉, where aux is A’s auxiliary working register,
and β ∈ {0, 1} is A’s output bit. Algorithm AO

i first runs (O⊗n
H Uj)i

j=1 to
get to state |st2i,i〉, then runs OUi+1 to get to state |st2i+2,i〉, and finally
performs (O⊗n

G Uj)d
j=i+2, which takes us to state |st2d,i〉. This is finalized by a

unitary operation Ud+1, which gives state |st2d+1,i〉, to which the output bit
measurement Mβ is applied. The algorithm outputs the measurement result
bit β.

– Algorithm BG,H
i . This algorithm starts with one extra bit register as input

compared to previous algorithm. The first 2n + 2 registers are exactly the

716 V. Kuchta et al.

same as those in AO
i and the last register is devoted to bit b to implement

O⊗n
G,H . All registers are initialized to 0. Then, this algorithm runs (O⊗n

H Uj)i
j=1

(giving a state |st′2i,i〉), then applies O⊗n
G,HUi+1 (giving a state |st′2i+2,i〉), and

then performs a measurement Mb of the b register (i.e., just after the (i+1)-th
oracle call). If the result of this measurement is 1, then a measurement Min

of the oracle’s input register in = (in1, . . . , inn) is conducted. This can also
be seen as n parallel measurements Min1 . . .Minn

. The algorithm terminates
by outputting the results of the measurements.

– Algorithm CG,H
i . This algorithm has the same registers as the previous

one. All registers are initialized to 0. This algorithm applies (O⊗n
H Uj)i

j=1,
O⊗n

G,HUi+1, (O⊗n
G Uj)d

j=i+2 and Ud+1. The states after applying those opera-
tions are called |st′′2i,i〉, |st′′2i+2,i〉, |st′′2d,i〉 and |st′′2d+1,i〉, respectively. Then
the measurements Mb, and Mβ are applied. If the result of Mb equals 0
and the result of Mβ equals 1, then the following (rewinding) transforma-
tions are applied back to the point just after the (i + 1)-th oracle call: U†

d+1,
((O⊗n

G Uj)†)d
j=i+2, resulting in states called |st′′′2d,i〉, and |st′′′2i+2,i〉, respectively.

Finally, a measurement with respect to in is performed, and the algorithm
outputs the result of the measurement.

One can check that TAO
i

≈ TAO , TBG,H
i

� TAO
i

and that TCG,H
i

≈ TBG,H
i

+2(TAO
i

−
TBG,H

i
) ≤ 2 · TAO

i
.

We have AO=G
0 = AG, AO=H

d−1 = AH and AO=H
i = AO=G

i+1 for 0 ≤ i ≤ d − 2
(here and in the following, we use the shorthand O = G and O = H for O = O⊗n

G

and O = O⊗n
H respectively). This implies that:

Adv(A) = |Pr[1 ← AG] − Pr[1 ← AH]|
= |Pr[1 ← AO=G

0] − Pr[1 ← AO=H
d−1]|

=

∣∣∣∣∣
d−1∑
i=0

(
Pr[1 ← AO=G

i] − Pr[1 ← AO=H
i]

)∣∣∣∣∣

≤
d−1∑
i=0

∣∣Pr[1 ← AO=G
i] − Pr[1 ← AO=H

i]
∣∣

=
d−1∑
i=0

Adv(AO
i),

where the first and the last equalities are obtained based on the definitions,
the second equality is the result of a simple telescopic argument, and the only
inequality follows from the triangle inequality. This proves (1).

We now proceed to prove (2). Fix 0 ≤ i ≤ d − 1. Let

Wi := Ud+1(O⊗n
G Uj)d

j=i+2,

|ψi,F 〉 := |stO=H
2i+2,i〉 − |stO=G

2i+2,i〉,
|ψi,B〉 := W †

i Mβ=|1〉Wi(|stO=H
2i+2,i〉 + |stO=G

2i+2,i〉).

Measure-Rewind-Measure: Tighter Quantum Random Oracle Model Proofs 717

We first study Adv(AO
i). We have:

|Pr[1 ← AO=H
i] − Pr[1 ← AO=G

i]|
=

∣∣‖Mβ=|1〉|stO=H
2d+1,i〉‖2 − ‖Mβ=|1〉|stO=G

2d+1,i〉‖2
∣∣

≤
∣∣(Mβ=|1〉(|stO=H

2d+1,i〉 − |stO=G
2d+1,i〉),Mβ=|1〉(|stO=H

2d+1,i〉 + |stO=G
2d+1,i〉)

)∣∣ (4)

=
∣∣(Mβ=|1〉Wi|ψi,F 〉,Mβ=|1〉Wi(|stO=H

2i+2,i〉 + |stO=G
2i+2,i〉)

)∣∣ (5)

=
∣∣∣
(
|ψi,F 〉,W †

i M†
β=|1〉Mβ=|1〉Wi(|stO=H

2i+2,i〉 + |stO=G
2i+2,i〉)

)∣∣∣
= |(|ψi,F 〉, |ψi,B〉)| (6)
= |(Min∈S⊕n |ψi,F 〉, |ψi,B〉)| (7)

=
∣∣∣
(
Min∈S⊕n |ψi,F 〉,M†

in∈S⊕n |ψi,B〉
)∣∣∣ (8)

≤ ‖Min∈S⊕n |ψi,F 〉‖ · ‖M†
in∈S⊕n |ψi,B〉‖, (9)

where (4) follows from Lemma 3.1, (5) is obtained based on the definitions of
AO

i and |ψi,F 〉, (6) employs the fact that Mβ=|1〉 is a Hermitian and idempotent
transformation and the definition of |ψi,B〉, (8) uses the fact that Min∈S⊕n is
idempotent, and (9) follows from the Cauchy-Schwarz inequality. Finally, the
equality in (7) exploits the fact that |ψi,F 〉 may have non-zero amplitudes only
for computational basis vectors in ∈ S⊕n (we recall that S⊕n is the set of n-
dimensional vectors in having at least one component in the set S on which H
and G differ). To see the latter fact, one can write

|stO2i+2,i〉 =
∑

in∈S⊕n,out

αin,out|in1〉|out1 ⊕ O(in1)〉 · · · |inn〉|outn ⊕ O(inn)〉

+
∑

in∈S⊕n,out

αin,out|in1〉|out1 ⊕ O(in1)〉 · · · |inn〉|outn ⊕ O(inn),

with S⊕n = {0, 1}N ·n \ S⊕n. From this, we deduce that difference vector |ψi,F 〉
only has a component along S⊕n, as the sum over S⊕n (and out) is identical
for both |stG2i+2,i〉 and |stH2i+2,i〉.

Based on the definitions of O⊗n
G,H , BG,H

i and CG,H
i , and the superposition

property (3), the following holds:

|st′2i+2,i〉 = |st′′2i+2,i〉 =
1
2

(
|ψi,F 〉|1〉 + (|stO=H

2i+2,i〉 + |stO=G
2i+2,i〉)|0〉

)
. (10)

On the one hand, we have

Adv(BG,H
i) = Pr[S ∩ TBi

�= ∅, TBi
← BG,H

i (z)]

=

∥∥∥∥∥Min∈S⊕n

Mb=|1〉|st′2i+2,i〉
‖Mb=|1〉|st′2i+2,i〉‖

∥∥∥∥∥
2

· ‖Mb=|1〉|st′2i+2,i〉‖2

=
∥∥∥∥Min∈S⊕n

|ψi,F 〉|1〉
‖|ψi,F 〉|1〉‖

∥∥∥∥
2

·
∥∥∥∥

1
2
|ψi,F 〉|1〉

∥∥∥∥
2

(11)

=
1
4
‖Min∈S⊕n |ψi,F 〉‖2, (12)

718 V. Kuchta et al.

where (11) follows from (10). On the other hand, by definition of CG,H
i , we have

that:

|st′′′2i+2,i〉 =
W †

i Mβ=|1〉Mb=|0〉Wi|st′′2i+2,i〉
‖Mβ=|1〉Mb=|0〉Wi|st′′2i+2,i〉‖

=
W †

i Mβ=|1〉WiMb=|0〉|st′′2i+2,i〉
‖Mβ=|1〉WiMb=|0〉|st′′2i+2,i〉‖

, (13)

=
|ψi,B〉|0〉

‖|ψi,B〉|0〉‖ , (14)

where (13) holds since Mb=|0〉 does not have any effect on Ud+1 nor on
(UjO

⊗n
G)d

j=i+2 and hence it commutes with Wi, and (14) is obtained using (10)
and the definition of |ψi,R〉. Finally, one can write:

Adv(CG,H
i) = Pr[S ∩ TCi

�= ∅, TCi
← CG,H

i (z)]

= ‖M†
in∈S⊕n |st′′′2i+2,i〉‖2 · ‖Mβ=|1〉Mb=|0〉Wi|st′′2i+2,i〉‖2

= ‖M†
in∈S⊕n |st′′′2i+2,i〉‖2 · ‖W †

i Mβ=|1〉WiMb=|0〉|st′′2i+2,i〉‖2 (15)

=
∥∥∥∥M†

in∈S⊕n

|ψi,B〉|0〉
‖|ψi,B〉|0〉‖

∥∥∥∥
2

·
∥∥∥∥

1
2
|ψi,B〉|0〉

∥∥∥∥
2

(16)

=
1
4
‖M†

in∈S⊕n |ψi,B〉‖2, (17)

where (15) holds true as W †
i is a unitary operation and Mb=|0〉 commutes

with Wi, and (16) follows from (14). Substituting (12) and (17) into (9)
proves (2). ��

We now extend our O2H Lemma to the random case.

Lemma 3.3 (Random O2H with MRM). Let G,H : X → Y be ran-
dom functions, z be a random value, and S ⊆ X be a random set such that
G(x) = H(x) for every x /∈ S. The tuple (G,H, S, z) may have arbitrary joint
distribution. Furthermore, let AO be a quantum oracle algorithm which queries
oracle O with query depth d. Then we can construct an algorithm DG,H(z) such
that TDG,H � 3 · TAO and

Adv(AO) ≤ 4d · Adv(DG,H).

Here Adv(AO) := |Pleft − Pright| with

Pleft := Pr
H,z

[1 ← AH(z)], Pright := Pr
G,z

[1 ← AG(z)],

and
Adv(DG,H) := Pr

G,H,S,z
[T ∩ S �= ∅ : T ← DG,H(z)].

Proof. We first construct DG,H on input z as follows:

Measure-Rewind-Measure: Tighter Quantum Random Oracle Model Proofs 719

– Sample i
$← {0, . . . , d − 1},

– Run BG,H
i (z) and CG,H

i (z) to obtain TBi
and TCi

, respectively, and
– Return T := TBi

∪ TCi
.

The run-time bound follows from Lemma3.2, which states that TBG,H
i

� TAO and
TCG,H ≈ 2·TAO . In the following, when we do not explicitly state the subscripts of
probabilities or expectations, it means that they are over the internal randomness
of the quantum algorithms only. Now, for fixed G,H, S, z, let

PBi∨Ci
i (G,H, S, z) := Pr[(TBi

∩ S �= ∅) ∨ (TCi
∩ S �= ∅) :

TBi
← BG,H

i (z), TCi
← CG,H

i (z)].

With the above definition, we can write:

E
G,H,S,z

[
PBi∨Ci

i (G,H, S, z)
]

≥ E
G,H,S,z

[
max

{
Adv(BG,H

i),Adv(CG,H
i)

}]

≥ 1
4

E
G,H,S,z

[Adv(AO
j)], (18)

where the first inequality uses the fact that, for any two events E1 and E2,
we have Pr[E1 ∨ E2] ≥ max{Pr[E1],Pr[E2]}, and the second one follows from
Lemma 3.2. We now investigate the advantage of algorithm D:

Adv(DG,H) =
∑

j

Pr[i = j] · E
G,H,S,z

[
P

Bj∨Cj

j (G,H, S, z)
]

≥ 1
4d

∑
j

E
G,H,S,z

[Adv(AO
j)]

≥ 1
4d

· Adv(AO),

where the first and second inequalities follow from (18) and Lemma 3.2, respec-
tively. ��

4 Tighter IND-CCA Proofs for Fujisaki-Okamoto KEMs

Here, we apply our results from Sect. 3 to prove IND-CCA security of the Fujisaki-
Okamoto FO �⊥ transform, which takes an IND-CPA secure public-key encryption
scheme (PKE) and applies a composition of the T transform [10] and the U �⊥

transform [10,13] to produce an IND-CCA secure Key Encapsulation Mechanism
(KEM). Our QROM security proof for FO �⊥ is obtained by adapting the proof
in [5] to work with our new O2H lemma.

4.1 Security Definitions

We recall standard definitions related to PKEs, KEMs and pseudo-random func-
tions (PRFs) in the full version of the paper [16]. Here we recall less standard

720 V. Kuchta et al.

definitions that will be needed in the analysis of the transform to an IND-CCA
KEM.

We start with the definitions of a valid ciphertext and a security property
called “finding failing ciphertext” (FFC). The latter was introduced in [5] to
capture a decryption error requirement on the dPKE scheme needed for the
IND-CCA security of the U �⊥ transform (recalled below). Notice that the success
event of the FFC experiment is not efficiently checkable, which may at first sight
seem incompatible with our O2H lemma; looking ahead, this event corresponds
to the Fail event in the proof of Theorem4.6, which we handle without invoking
our O2H lemma.

Definition 4.1 (Valid Ciphertext). Let P = (KeyGen,Encr,Decr) be a deter-
ministic PKE. We call a ciphertext c ∈ C valid for a public key pk if there exists
a message m ∈ M such that c = Encr(pk,m).

Definition 4.2 (Finding Failing Ciphertext). Let P = (KeyGen,Encr,Decr)
be a PKE and A be an adversary executing an attack against the finding failing
ciphertext property (FFC), as specified by the following experiment:

1. H
$← H

2. (pk, sk) ← KeyGen(λ)
3. L ← AH(pk)
4. return [∃m ∈ M, c ∈ L : Encr(pk,m) = c ∧ Decr(sk, c) �= m]

The advantage of A in the above experiment is defined as:

AdvFFCP (A) := Pr[1 ← ExptFFCP (A)].

In the analysis of the U �⊥ transform, we will also need a dPKE satisfying the
following injectivity property.

Definition 4.3 (Injectivity of a dPKE). Let η ≥ 0. A dPKE scheme P =
(KeyGen,Encr,Decr) is η-injective if

Pr[Encr(pk, ·) is not injective: (pk, sk) ← KeyGen(1λ),H $← H] ≤ η.

4.2 Transforms

In [10], the authors showed how to build a transform T which converts
any rPKE scheme P = (KeyGen,Encr,Decr) into a dPKE scheme T (P, G) =
(KeyGen,Encrd,Decr) using a hash function G : M → R, where R is the space
of random coins of rPKE’s Encr algorithm. In [5], the authors proved the fol-
lowing security reduction from IND-CPA security of rPKE to OW-CPA security
of T (P, G). We use this result as is, since it does not suffer from a square-root
advantage loss.

Measure-Rewind-Measure: Tighter Quantum Random Oracle Model Proofs 721

Theorem 4.4 ([5, Theorem 1]). Let P be an rPKE with message space M and
randomness space R. Let G : M → R be a quantum-accessible random oracle.
Let A be a OW-CPA adversary against P′ = T (P, G). Suppose that A queries G
at most q times with query depth at most d. Then we can construct an IND-CPA
adversary B, running in time ≈ TA, such that:

AdvOW-CPA
P′ (A) ≤ (d + 2) ·

(
AdvIND-CPA

P (B) +
8 · (q + 1)

|M|

)
.

The following result provides a bound on the FFC advantage for a scheme
obtained via the transform above.

Lemma 4.5 ([5, Lemma 6]). Let P = (KeyGen,Encr,Decr) be a δ-correct
rPKE with messages in M and randomness in R. Let G : M → R be a random
oracle, so that T (P, G) := (KeyGen,Encr1,Decr) is a derandomized version of P.
Suppose that T (P, G) is η-injective. Let A be an FFC adversary against T (P, G)
which makes at most q queries to G with query depth at most d and returns a
list of at most qdec ciphertexts. Then

AdvFFCT (P,G)(A) ≤ ((4d + 1)δ +
√

3η) · (q + qdec) + η.

We now recall the U �⊥ transform from [10]. It converts a dPKE P =
(KeyGenP,Encr,Decr) into a KEM K = (KeyGen,Encaps,Decaps) using a pseudo-
random function F : KF × C → K and a hash function H : M × C → K for given
key spaces KF and K. Here M and C denote the message and cipher spaces of P.
The PRF is used in case the ciphertext happens to be invalid. The transform is
defined by the following three algorithms:

– KeyGen(1λ). On input a security parameter λ, this algorithm runs (pk, skP)

← KeyGenP(1λ), samples a random key prfk
$← KF and sets sk = (skP, prfk).

The algorithm returns a pair of public and secret keys (pk, sk).
– Encaps(pk). On input a public key pk, this algorithm samples a random

message m
$← M, encrypts it running the encryption algorithm of P, i.e.,

c ← Encr(pk,m), and computes a hash value k ← H(m, c). It outputs (k, c).
– Decaps(sk, c). This algorithm parses sk as sk = (skP, prfk) and runs the decryp-

tion algorithm of P to decrypt c, i.e., m′ ← Decr(skP, c). If m′ = ⊥, then
it returns F(prfk, c). If m′ �= ⊥ but Encr(pk,m′) �= c, then it also returns
F(prfk, c). In all other cases (i.e., if m′ �= ⊥ and Encr(pk,m′) = c), it returns
H(m′, c).

4.3 Analysis of the U �⊥ Transform

We are now ready to state our main application of the O2H lemma from Sect. 3.
In the following theorem, we state that U �⊥(P,F,H) is an IND-CCA secure KEM
as long as the following four conditions are satisfied: (i) the dPKE scheme P is
OW-CPA secure, (ii) it is η-injective for a negligible η, (iii) it is FFC secure, and
(iv) F is a secure PRF. The latter is as in prior works: the improvement is in the
security loss.

722 V. Kuchta et al.

Theorem 4.6. Let H : M × C → K be a quantum-accessible random oracle,
F : KF × C → K be a PRF and P be an η-injective dPKE which does not depend
of H. Let U �⊥(P,F,H) be the KEM obtained by applying the U �⊥ transform to P,
F and H. Let A be an adversary against the IND-CCA security of U �⊥(P,F,H)
issuing at most q (quantum oracle) queries to H with query depth at most d,
and qdec classical queries to the decapsulation oracle.

Then, we can construct three algorithms whose run-times are � 3TA. These
algorithms are:

– a OW-CPA-adversary B1 against P,
– an FFC-adversary B2 against P, returning a list of at most qdec ciphertexts,
– a PRF-adversary B3 against F making qdec queries.

These algorithms satisfy the following:

AdvIND-CCA
U �⊥(P,F,H)(A) ≤ 4d · AdvOW-CPA

P (B1) + 6AdvFFCP (B2) + 2AdvPRFF (B3)

+ (4d + 6) · η.

Proof. Our proof uses a sequence of games. All six games in our proof are essen-
tially the same as in the proof of [5, Theorem 2], the only difference being the
analysis of Game 5 to apply our new O2H lemma instead of the O2H lemma
from [5]. For the sake of completeness, we present all the games.

In each of the following games, the probability space is partitioned into three
mutually exclusive classical outcomes (events) called Win, Lose and Draw, respec-
tively corresponding to A succeeding in its IND-CCA attack (b′ = b), failing
(b′ �= b) and a kind of intermediate outcome between the two, defined precisely
in Game 2. Outcome Draw is defined to have probability 0 in Games 0 and 1,
but in later games, whenever Draw occurs, the game continues and returns a
Draw in the end regardless of b and b′. In Game i (for i ∈ {0, . . . , 5}), we define
the attacker’s ‘score’ wi as

wi := Pr[Win : Game i] +
1
2

Pr[Draw : Game i]

=
1
2

+
1
2

(Pr[Win : Game i] − Pr[Lose : Game i]) ,

where the last equality comes from the fact that Win, Lose and Draw partition
the probability space in each game.

Game 0 (IND-CCA). This game is the original IND-CCA experiment against
U �⊥(P,F,H).

Game 1 (PRF is random). This game is the same as Game 0, except that
the simulator replaces the PRF F(prfk, ·) in the decapsulation algorithm by a

random function R
$← KC . We construct a PRF adversary B3 by replacing calls

to F(prfk, ·) by calls to B3’s oracle. Adversary B3 runs A and outputs 1 if A
wins the IND-CCA game and 0 otherwise. If B3’s oracle is F, then it simulates
Game 0, and if B3’s oracle is R, then it simulates Game 1. Therefore, we have

Measure-Rewind-Measure: Tighter Quantum Random Oracle Model Proofs 723

Pr[BF(k,·)
3 = 1] = Pr[Win : Game 0] and Pr[BR(·)

3 = 1] = Pr[Win : Game 1], and
hence

|w1 − w0| = AdvPRFF (B3).

Game 2 (Draw on fail). We let Fail be the (classical) event that at least one
query of A to the decapsulation oracle OD fails to decrypt a valid ciphertext.,
i.e., adversary A queries a c such that there exists some message m ∈ M such
that c = Encr(pk,m), but with Decr(sk, c) �= m. We also let Inj denote the
(classical) event that the encryption mapping Encr(pk, ·) is injective over the
message space M. In Game 2 and the subsequent games, we define the Draw
event as Draw := Fail ∨ ¬Inj (which implies ¬Draw := ¬Fail ∧ Inj). We define
di := Pr[Draw : Game i], for i ≥ 2. For i < 2, we define Draw as the empty event
and di = 0.

We have:

|w2 − w1| =
∣∣∣∣Pr[Win : Game 2] − Pr[Win : Game 1] +

d2

2

∣∣∣∣ ≤ d2
2

,

where the first equality holds since d1 = 0 and the inequality holds true as
−d2 ≤ Pr[Win : Game 2] − Pr[Win : Game 1] ≤ 0. Note that the simulator
may not be able to efficiently check whether Draw occurs, but the games will
not require the simulator to perform this check.

Game 3 (Reprogram H(m, c) to R(c)). This game differs from Game 2 by
reprogramming the hash function return value H(m, c) on input (m, c) to R(c)
if c = Encr(pk,m).

The change from Game 2 to Game 3 does not affect the probability of Win
and Draw so that w3 = w2 and d3 = d2. This is because in Game 3, the joint dis-
tribution of the oracle H and the attacker’s view remains the same as in Game 2,
as long as Draw does not occur. In particular, the distribution of H(m, c) for each
(m, c) remains uniformly random thanks to the uniformly random choice of R(c).
The H(m, c) values also remain independent for distinct pairs (m, c) �= (m′, c′)
if Draw does not occur, since the latter implies that Inj occurs (i.e., there do not
exist two distinct messages m �= m′ with c = Encr(pk,m) = Encr(pk,m′) = c′).
Also, if Draw does not occur, then for any ciphertext c queried to and failing
decryption by the Decaps oracle (meaning that Encr(pk,Decr(sk, c)) �= c), the
Decaps oracle returns a value R(c) that is statistically independent of the value
of H(m, c) for all messages m ∈ M (since if there would exist some m with
H(m, c) = R(c), i.e., Encr(pk,m) = c, it would imply that c is a valid ciphertext
which failed to decrypt in Decaps, so that Draw occurred).

Game 4 (Decapsulation oracle returns R(c)). This game is the same as
Game 3 except that Decaps is modified to output R(c) for all ciphertexts but
the challenge ciphertext (for the challenge ciphertext, it still outputs ⊥). Since
in Game 3, Decaps already responds in this way (as both F and H have been
reprogrammed to respond with R(c)), the values of w4, d4 are not affected, i.e.,
w4 = w3 and d4 = d3. The only change is that in Game 4 and onwards, the secret
key is not used anymore in the simulation. We conclude that all probabilities di

of Draw in Games 2 to 4 are the same.

724 V. Kuchta et al.

To bound this Draw probability, we construct an adversary B2 which, given a
public key pk, simulates Game 4 with A, and outputs the list L of A’s decapsula-
tion queries. Note that if the event Fail occurs, then L contains a valid ciphertext
c that fails decryption by Decr. Therefore, according to Definition 4.2, algorithm
B2 is an FFC adversary against P which runs in almost the same time as A and
has FFC advantage

AdvFFCP (B2) = Pr[Fail : Game 4]
≥ Pr[Draw : Game 4] − Pr[¬Inj : Game 4]
= d4 − η,

using the fact that P is η-injective. We conclude that

d2 = d3 = d4 ≤ AdvFFCP (B2) + η. (19)

Game 5 (Change shared secret). This game differs from Game 4 by chang-
ing the challenge shared secret k∗

b given to A to always be an independent uni-
formly random value r (whereas in Game 4, the challenge shared secret k∗

b was
chosen as an independent random value r = k∗

1 if b = 1 but chosen as R(c∗)
if b = 0). Additionally, if b = 0 then R(c∗) is reprogrammed to return r (i.e.,
H(m, c∗) = r for all messages m such that Encr(pk,m) = c∗; we denote by S∗

the set of such messages m), but if b = 1 then R(c∗) is not reprogrammed.
In fact, the change from Game 4 to Game 5 is purely conceptual and does not

change the joint distribution of the view of A. Indeed, in both games, if b = 0,
the input shared key k∗

0 to A is uniformly random and equal to H(m, c∗) = R(c∗)
for all m ∈ S∗. And in both games, if b = 1, the input shared key k∗

1 to A is
uniformly random and statistically independent of the uniformly random value
of H(m, c∗) = R(c∗) for all m ∈ S∗. Therefore, we have w5 = w4 and d5 = d4.

In Game 5, the distribution of the input z = (pk, c∗, k∗
b = r) to A is inde-

pendent of b, and the random oracle queried by A and the simulator is either
H if b = 1 (where H(m, c) = R(c) if Encr(pk,m) = c) or H ′ if b = 0, where
H ′ is equal to H on all inputs except those in the set S := {(m, c∗) : m ∈ S∗};
for inputs in S, H ′ returns r. The simulation in Game 5 runs in time ≈ TA.
Therefore, the algorithm A together with the simulator in Game 5 constitutes
an O2H distinguisher algorithm for distinguishing oracle H from H ′ with run-
time ≈ TA. Therefore, applying Lemma 3.3, we can construct algorithm D, with
run-time � 3TA and making oracle calls to H ′ and H, such that

Δ := |Pr[0 ← A : b = 0] − Pr[0 ← A : b = 1]|

=
∣∣∣Pr[0 ← AH′

] − Pr[0 ← AH]
∣∣∣

≤ 4d · Pr[T ∩ S �= ∅ : T
$← DH′,H(z)]. (20)

Using D, we can construct an algorithm B1 against the OW-CPA security of
P that given (pk, c∗, r), runs DH′,H and when D returns its output set T of
candidates for m∗, algorithm B1 tests each m ∈ T to check whether m ∈ S,

Measure-Rewind-Measure: Tighter Quantum Random Oracle Model Proofs 725

i.e., whether Encr(pk,m) = c∗, and returns any such m if it is found. Note that
TB1 ≈ TD. Further, algorithm B1 succeeds (i.e., outputs m∗) if T ∩S �= ∅, unless
¬Inj occurs (in the latter case, the output of B1 may be a different decryption
of c∗ than m∗). Since P is η-injective, we have

Pr[T ∩ S �= ∅ : T
$← DH′,H(pk, c∗)] ≤ AdvOW-CPA

P (B1) + η. (21)

On the other hand, in Game 5 we have:

2
∣∣∣∣w5 − 1

2

∣∣∣∣ = |Pr[Win : Game 5] − Pr[Lose : Game 5]|

=
∣∣∣∣
1
2

Pr[0 ← A ∧ ¬Draw : b = 0] +
1
2

Pr[0 ← A ∧ ¬Draw : b = 1]

−1
2

Pr[0 ← A ∧ ¬Draw : b = 1] − 1
2

Pr[1 ← A ∧ ¬Draw : b = 0]
∣∣∣∣

≤ 1
2
|Δ0,¬Draw| +

1
2
|Δ1,¬Draw|, (22)

where we define, for v ∈ {0, 1},

Δv,¬Draw := Pr[v ← A ∧ ¬Draw : b = 0] − Pr[v ← A ∧ ¬Draw : b = 1].

We further define:

Δv,Draw := Pr[v ← A ∧ Draw : b = 0] − Pr[v ← A ∧ Draw : b = 1],

which satisfies

|Δv,Draw| ≤ Pr[v ← A ∧ Draw : b = 0] + Pr[v ← A ∧ Draw : b = 1]
= 2 · (Pr[v ← A ∧ Draw ∧ b = 0] + Pr[v ← A ∧ Draw ∧ b = 1])
≤ 4 · Pr[Draw] = 4 · d5. (23)

Now, for v ∈ {0, 1}, observe that Δv,¬Draw + Δv,Draw = Δ, so we have, by the
triangle inequality, (23), (20) and (21):

Δv,¬Draw ≤ |Δ| + |Δv,Draw|

≤ 4d ·
(
AdvOW-CPA

P (B1) + η
)

+ 4d5. (24)

and plugging (24) into (22) for v ∈ {0, 1} gives
∣∣∣∣w5 − 1

2

∣∣∣∣ ≤ 2d ·
(
AdvOW-CPA

P (B1) + η
)

+ 2d5.

Summing up the differences of wi’s over all games, we get

AdvIND-CCA
U �⊥(P,F,H)(A) = 2|w0 − 1/2|

≤ 4d ·
(
AdvOW-CPA

P (B1) + η
)

+ 4d5 + 2d2 + 2AdvPRFF (B3)

≤ 4d · AdvOW-CPA
P (B1) + 6AdvFFCP (B2) + 2AdvPRFF (B3)

+ (4d + 6) · η,

where in the last line we plugged in the bound on d5 = d2 from (19). ��

726 V. Kuchta et al.

Combining Theorem 4.6 with Theorem 4.4 and Lemma 4.5, we immediately
obtain the following result for the IND-CCA security of the FO-transformed
scheme FO �⊥(P,F, G,H) = U�⊥(T (P, G),F,H) from the IND-CPA security of
scheme P.

Corollary 4.7. Let P be a δ-correct rPKE with message space M and random-
ness space R. Let G : M → R and H : M × C → K be quantum-accessible
random oracles, and F : KF × C → K be a PRF. Suppose that P′ = T (P, G) is
η-injective and let FO �⊥(P,F, G,H) = U�⊥(T (P, G),F,H). Let A be an adversary
against the IND-CCA security of FO �⊥(P,F, G,H) issuing at most qG (resp. qH)
quantum queries to G (resp. H) with query depth at most dG (resp. dH) and at
most qdec classical queries to the decapsulation oracle of FO �⊥(P,F, G,H).

Then, we can construct two algorithms whose run-times are � 3TA. These
algorithms are:

– an IND-CPA-adversary B1 against P,
– a PRF-adversary B2 against F issuing at most qdec queries.

These algorithms satisfy the following:

AdvIND-CCA
FO�⊥(P,F,G,H)(A) ≤ 8dH · (dG + 1) ·

(
AdvIND-CPA

P (B1) +
8 · (3qG + 1)

|M|

)

+ 6 · (3qG + qdec) ·
(
(8dG + 1) · δ +

√
3η

)

+ (4dH + 12) · η + 2AdvPRFF (B2).

Acknowledgments. This work was supported in part by BPI-France in the context of
the national project RISQ (P141580), by the European Union PROMETHEUS project
(Horizon 2020 Research and Innovation Program, grant 780701) and the Australian
Research Council Discovery Grant DP180102199. Part of this work was done while
Damien Stehlé was visiting the Simons Institute for the Theory of Computing.

References

1. Ambainis, A., Hamburg, M., Unruh, D.: Quantum security proofs using semi-
classical oracles. In: Boldyreva, A., Micciancio, D. (eds.) CRYPTO 2019. LNCS,
vol. 11693, pp. 269–295. Springer, Cham (2019). https://doi.org/10.1007/978-3-
030-26951-7 10

2. Ambainis, A., Rosmanis, A., Unruh, D.: Quantum attacks on classical proof sys-
tems: the hardness of quantum rewinding. In: 55th IEEE Annual Symposium on
Foundations of Computer Science, FOCS 2014, pp. 474–483 (2014)

3. Bernstein, D.J., et al.: Classic McEliece - supporting documentation. Submitted
to [19] (2019). https://classic.mceliece.org/nist/mceliece-20190331.pdf

4. Bernstein, D.J., Chuengsatiansup, C., Lange, T., van Vredendaal, C.: NTRU prime:
round 2 - supporting documentation. Submitted to [19] (2019). https://ntruprime.
cr.yp.to/nist/ntruprime-20190330.pdf

https://doi.org/10.1007/978-3-030-26951-7_10
https://doi.org/10.1007/978-3-030-26951-7_10
https://classic.mceliece.org/nist/mceliece-20190331.pdf
https://ntruprime.cr.yp.to/nist/ntruprime-20190330.pdf
https://ntruprime.cr.yp.to/nist/ntruprime-20190330.pdf

Measure-Rewind-Measure: Tighter Quantum Random Oracle Model Proofs 727

5. Bindel, N., Hamburg, M., Hövelmanns, K., Hülsing, A., Persichetti, E.: Tighter
proofs of CCA security in the quantum random oracle model. In: Hofheinz, D.,
Rosen, A. (eds.) TCC 2019. LNCS, vol. 11892, pp. 61–90. Springer, Cham (2019).
https://doi.org/10.1007/978-3-030-36033-7 3

6. Boneh, D., Dagdelen, Ö., Fischlin, M., Lehmann, A., Schaffner, C., Zhandry, M.:
Random oracles in a quantum world. In: Lee, D.H., Wang, X. (eds.) ASIACRYPT
2011. LNCS, vol. 7073, pp. 41–69. Springer, Heidelberg (2011). https://doi.org/10.
1007/978-3-642-25385-0 3

7. Chen, C., et al.: NTRU - supporting documentation. Submitted to [19] (2019).
https://ntru.org/f/ntru-20190330.pdf

8. Dent, A.W.: A designer’s guide to KEMs. In: Paterson, K.G. (ed.) Cryptogra-
phy and Coding 2003. LNCS, vol. 2898, pp. 133–151. Springer, Heidelberg (2003).
https://doi.org/10.1007/978-3-540-40974-8 12

9. Fujisaki, E., Okamoto, T.: Secure integration of asymmetric and symmetric encryp-
tion schemes. In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 537–554.
Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48405-1 34

10. Hofheinz, D., Hövelmanns, K., Kiltz, E.: A modular analysis of the Fujisaki-
Okamoto transformation. In: Kalai, Y., Reyzin, L. (eds.) TCC 2017. LNCS, vol.
10677, pp. 341–371. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-
70500-2 12

11. Hövelmanns, K., Kiltz, E., Schäge, S., Unruh, D.: Generic authenticated key
exchange in the quantum random oracle model. IACR Cryptology ePrint Archive
2018/928 (2018)

12. Jiang, H., Zhang, Z., Chen, L., Wang, H., Ma, Z.: IND-CCA-secure key encapsu-
lation mechanism in the quantum random oracle model, revisited. In: Shacham,
H., Boldyreva, A. (eds.) CRYPTO 2018. LNCS, vol. 10993, pp. 96–125. Springer,
Cham (2018). https://doi.org/10.1007/978-3-319-96878-0 4

13. Jiang, H., Zhang, Z., Ma, Z.: Key encapsulation mechanism with explicit rejection
in the quantum random oracle model. In: Lin, D., Sako, K. (eds.) PKC 2019.
LNCS, vol. 11443, pp. 618–645. Springer, Cham (2019). https://doi.org/10.1007/
978-3-030-17259-6 21

14. Jiang, H., Zhang, Z., Ma, Z.: On the non-tightness of measurement-based reduc-
tions for key encapsulation mechanism in the quantum random oracle model. IACR
Cryptology ePrint Archive 2019/494 (2019)

15. Jiang, H., Zhang, Z., Ma, Z.: Tighter security proofs for generic key encapsulation
mechanism in the quantum random oracle model. In: Ding, J., Steinwandt, R.
(eds.) PQCrypto 2019. LNCS, vol. 11505, pp. 227–248. Springer, Cham (2019).
https://doi.org/10.1007/978-3-030-25510-7 13

16. Kuchta, V., Sakzad, A., Stehlé, D., Steinfeld, R., Sun, S.-F.: Measure-rewind-
measure: tighter quantum random oracle model proofs for one-way to hiding and
CCA security. IACR Cryptology ePrint Archive 2020/xxx (2020). Full version of
this paper

17. Micciancio, D., Walter, M.: On the bit security of cryptographic primitives. In:
Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT 2018. LNCS, vol. 10820, pp. 3–28.
Springer, Cham (2018). https://doi.org/10.1007/978-3-319-78381-9 1

18. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information:
10th Anniversary Edition, 10th edn. Cambridge University Press, New York (2011)

19. NIST: Post-quantum cryptography standardization. https://csrc.nist.gov/
Projects/post-quantum-cryptography/

20. Regev, O.: On lattices, learning with errors, random linear codes, and cryptogra-
phy. In: 37th Annual ACM Symposium on Theory of Computing, pp. 84–93 (2005)

https://doi.org/10.1007/978-3-030-36033-7_3
https://doi.org/10.1007/978-3-642-25385-0_3
https://doi.org/10.1007/978-3-642-25385-0_3
https://ntru.org/f/ntru-20190330.pdf
https://doi.org/10.1007/978-3-540-40974-8_12
https://doi.org/10.1007/3-540-48405-1_34
https://doi.org/10.1007/978-3-319-70500-2_12
https://doi.org/10.1007/978-3-319-70500-2_12
https://doi.org/10.1007/978-3-319-96878-0_4
https://doi.org/10.1007/978-3-030-17259-6_21
https://doi.org/10.1007/978-3-030-17259-6_21
https://doi.org/10.1007/978-3-030-25510-7_13
https://doi.org/10.1007/978-3-319-78381-9_1
https://csrc.nist.gov/Projects/post-quantum-cryptography/
https://csrc.nist.gov/Projects/post-quantum-cryptography/

728 V. Kuchta et al.

21. Saito, T., Xagawa, K., Yamakawa, T.: Tightly-secure key-encapsulation mechanism
in the quantum random oracle model. In: Nielsen, J.B., Rijmen, V. (eds.) EURO-
CRYPT 2018. LNCS, vol. 10822, pp. 520–551. Springer, Cham (2018). https://doi.
org/10.1007/978-3-319-78372-7 17

22. Targhi, E.E., Unruh, D.: Post-quantum security of the Fujisaki-Okamoto and
OAEP transforms. In: Hirt, M., Smith, A. (eds.) TCC 2016. LNCS, vol. 9986, pp.
192–216. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53644-
5 8

23. Unruh, D.: Quantum proofs of knowledge. In: Pointcheval, D., Johansson, T. (eds.)
EUROCRYPT 2012. LNCS, vol. 7237, pp. 135–152. Springer, Heidelberg (2012).
https://doi.org/10.1007/978-3-642-29011-4 10

24. Unruh, D.: Revocable quantum timed-release encryption. In: Nguyen, P.Q.,
Oswald, E. (eds.) EUROCRYPT 2014. LNCS, vol. 8441, pp. 129–146. Springer,
Heidelberg (2014). https://doi.org/10.1007/978-3-642-55220-5 8

25. Watrous, J.: Zero-knowledge against quantum attacks. SIAM J. Comput. 39(1),
25–58 (2009)

26. Xagawa, K., Yamakawa, T.: (Tightly) QCCA-secure key-encapsulation mechanism
in the quantum random oracle model. In: Ding, J., Steinwandt, R. (eds.) PQCrypto
2019. LNCS, vol. 11505, pp. 249–268. Springer, Cham (2019). https://doi.org/10.
1007/978-3-030-25510-7 14

27. Zhandry, M.: How to record quantum queries, and applications to quantum indif-
ferentiability. In: Boldyreva, A., Micciancio, D. (eds.) CRYPTO 2019. LNCS, vol.
11693, pp. 239–268. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-
26951-7 9

https://doi.org/10.1007/978-3-319-78372-7_17
https://doi.org/10.1007/978-3-319-78372-7_17
https://doi.org/10.1007/978-3-662-53644-5_8
https://doi.org/10.1007/978-3-662-53644-5_8
https://doi.org/10.1007/978-3-642-29011-4_10
https://doi.org/10.1007/978-3-642-55220-5_8
https://doi.org/10.1007/978-3-030-25510-7_14
https://doi.org/10.1007/978-3-030-25510-7_14
https://doi.org/10.1007/978-3-030-26951-7_9
https://doi.org/10.1007/978-3-030-26951-7_9

Secure Multi-party Quantum
Computation with a Dishonest Majority

Yfke Dulek1,2(B), Alex B. Grilo1,3(B), Stacey Jeffery1,3(B),
Christian Majenz1,3(B), and Christian Schaffner1,2(B)

1 QuSoft, Amsterdam, The Netherlands
yfkedulek@gmail.com, abgrilo@gmail.com, smjeffery@gmail.com,

c.majenz@uva.nl
2 University of Amsterdam, Amsterdam, The Netherlands

c.schaffner@uva.nl
3 Centrum voor Wiskunde en Informatica, Amsterdam, The Netherlands

Abstract. The cryptographic task of secure multi-party (classical) com-
putation has received a lot of attention in the last decades. Even in the
extreme case where a computation is performed between k mutually
distrustful players, and security is required even for the single honest
player if all other players are colluding adversaries, secure protocols are
known. For quantum computation, on the other hand, protocols allow-
ing arbitrary dishonest majority have only been proven for k = 2. In this
work, we generalize the approach taken by Dupuis, Nielsen and Salvail
(CRYPTO 2012) in the two-party setting to devise a secure, efficient
protocol for multi-party quantum computation for any number of play-
ers k, and prove security against up to k − 1 colluding adversaries. The
quantum round complexity of the protocol for computing a quantum cir-
cuit of {CNOT,T} depth d is O(k · (d + log n)), where n is the security
parameter. To achieve efficiency, we develop a novel public verification
protocol for the Clifford authentication code, and a testing protocol for
magic-state inputs, both using classical multi-party computation.

1 Introduction

In secure multi-party computation (MPC), two or more players want to jointly
compute some publicly known function on their private data, without revealing
their inputs to the other players. Since its introduction by Yao [Yao82], MPC has
been extensively developed in different setups, leading to applications of both
theoretical and practical interest (see, e.g., [CDN15] for a detailed overview).

With the emergence of quantum technologies, it becomes necessary to under-
stand its consequences in the field of MPC. First, classical MPC protocols have
to be secured against quantum attacks. But also, the increasing number of
applications where quantum computational power is desired motivates proto-
cols enabling multi-party quantum computation (MPQC) on the players’ private
(possibly quantum) data. In this work, we focus on the second task. Informally,

c© International Association for Cryptologic Research 2020
A. Canteaut and Y. Ishai (Eds.): EUROCRYPT 2020, LNCS 12107, pp. 729–758, 2020.
https://doi.org/10.1007/978-3-030-45727-3_25

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-45727-3_25&domain=pdf
https://doi.org/10.1007/978-3-030-45727-3_25

730 Y. Dulek et al.

we say a MPQC protocol is secure if the following two properties hold: 1. Dis-
honest players gain no information about the honest players’ private inputs. 2.
If the players do not abort the protocol, then at the end of the protocol they
share a state corresponding to the correct computation applied to the inputs of
honest players (those that follow the protocol) and some choice of inputs for the
dishonest players.

MPQC was first studied by Crépeau, Gottesman and Smith [CGS02],
who proposed a k-party protocol based on verifiable secret sharing that is
information-theoretically secure, but requires the assumption that at most
k/6 players are dishonest. The fraction k/6 was subsequently improved to
<k/2 [BOCG+06] which is optimal for secret-sharing-based protocols due to
no-cloning. The case of a dishonest majority was thus far only considered for
k = 2 parties, where one of the two players can be dishonest [DNS10,DNS12,
KMW17]1. These protocols are based on different cryptographic techniques, in
particular quantum authentication codes in conjunction with classical MPC
[DNS10,DNS12] and quantum-secure bit commitment and oblivious transfer
[KMW17].

In this work, we propose the first secure MPQC protocol for any num-
ber k of players in the dishonest majority setting, i.e., the case with up to
k − 1 colluding adversarial players.2 We remark that our result achieves com-
posable security, which is proven according to the standard ideal-vs.-real defi-
nition. Like the protocol of [DNS12], on which our protocol is built, our pro-
tocol assumes a classical MPC that is secure against a dishonest majority, and
achieves the same security guarantees as this classical MPC. In particular, if
we instantiate this classical MPC with an MPC in the pre-processing model
(see [BDOZ11,DPSZ12,KPR18,CDE+18]), our construction yields a MPQC
protocol consisting of a classical “offline” phase used to produce authenticated
shared randomness among the players, and a second “computation” phase, con-
sisting of our protocol, combined with the “computation” phase of the classi-
cal MPC. The security of the “offline” phase requires computational assump-
tions, but assuming no attack was successful in this phase, the second phase has
information-theoretic security.

1.1 Prior Work

Our protocol builds on the two-party protocol of Dupuis, Nielsen, and Sal-
vail [DNS12], which we now describe in brief. The protocol uses a classical MPC
protocol, and involves two parties, Alice and Bob, of whom at least one is hon-
estly following the protocol. Alice and Bob encode their inputs using a technique
called swaddling : if Alice has an input qubit |ψ〉, she first encodes it using the
n-qubit Clifford code (see Definition 2.5), resulting in A(|0n〉⊗|ψ〉), for some ran-
dom (n+1)-qubit Clifford A sampled by Alice, where n is the security parameter.
1 In Kashefi and Pappa [KP17], they consider a non-symmetric setting where the

protocol is secure only when some specific sets of k − 1 players are dishonest.
2 In the case where there are k adversaries and no honest players, there is nobody

whose input privacy and output authenticity is worth protecting.

Secure Multi-party Quantum Computation with a Dishonest Majority 731

Then, she sends the state to Bob, who puts another encoding on top of Alice’s:
he creates the “swaddled” state B(A(|0n〉⊗|ψ〉)⊗|0n〉) for some random (2n+1)-
qubit Clifford B sampled by Bob. This encoded state consists of 2n + 1 qubits,
and the data qubit |ψ〉 sits in the middle.

If Bob wants to test the state at some point during the protocol, he simply
needs to undo the Clifford B, and test that the last n qubits (called traps) are
|0〉. However, if Alice wants to test the state, she needs to work together with
Bob to access her traps. Using classical multi-party computation, they jointly
sample a random (n + 1)-qubit Clifford B′ which is only revealed to Bob, and
compute a Clifford T := (I⊗n ⊗ B′)(A† ⊗ I

⊗n)B† that is only revealed to Alice.
Alice, who will not learn any relevant information about B or B′, can use T to
“flip” the swaddle, revealing her n trap qubits for measurement. After checking
that the first n qubits are |0〉, she adds a fresh (2n + 1)-qubit Clifford on top of
the state to re-encode the state, before computation can continue.

Single-qubit Clifford gates are performed simply by classically updating the
inner key: if a state is encrypted with Cliffords BA, updating the decryption key
to BAG† effectively applies the gate G. In order to avoid that the player holding
the inner key B skips this step, both players keep track of their keys using a
classical commitment scheme. This can be encapsulated in the classical MPC,
which we can assume acts as a trusted third party with a memory [BOCG+06].

CNOT operations and measurements are slightly more involved, and require
both players to test the authenticity of the relevant states several times. Hence,
the communication complexity scales linearly with the number of CNOTs and
measurements in the circuit.

Finally, to perform T gates, the protocol makes use of so-called magic states.
To obtain reliable magic states, Alice generates a large number of them, so
that Bob can test a sufficiently large fraction. He decodes them (with Alice’s
help), and measures whether they are in the expected state. If all measurements
succeed, Bob can be sufficiently certain that the untested (but still encoded)
magic states are in the correct state as well.

Extending two-party computation to multi-party computation. A nat-
ural question is how to lift a two-party computation protocol to a multi-party
computation protocol. We discuss some of the issues that arise from such an
approach, making it either infeasible or inefficient.

Composing ideal functionalities. The first naive idea would be trying to split the
k players in two groups and make the groups simulate the players of a two-party
protocol, whereas internally, the players run k

2 -party computation protocols for
all steps in the two-party protocol. Those k

2 -party protocols are in turn realized
by running k

4 -party protocols, etc., until at the lowest level, the players can run
actual two-party protocols.

Trying to construct such a composition in a black-box way, using the ideal
functionality of a two-party protocol, one immediately faces a problem: at the
lower levels, players learn intermediate states of the circuit, because they receive

732 Y. Dulek et al.

plaintext outputs from the ideal two-party functionality. This would immediately
break the privacy of the protocol. If, on the other hand, we require the ideal two-
party functionality to output encoded states instead of plaintexts, then the size
of the ciphertext will grow at each level. The overhead of this approach would be
O(nlog k), where n � k is the security parameter of the encoding, which would
make this overhead super-polynomial in the number of players.

Naive extension of DNS to multi-party. One could also try to extend [DNS12]
to multiple parties by adapting the subprotocols to work for more than two
players. While this approach would likely lead to a correct and secure protocol
for k parties, the computational costs of such an extension could be high.

First, note that in such an extension, each party would need to append n trap
qubits to the encoding of each qubit, causing an overhead in the ciphertext size
that is linear in k. Secondly, in this naive extension, the players would need to
create Θ(2k) magic states for T gates (see Sect. 2.5), since each party would need
to sequentially test at least half of the ones approved by all previous players.

Notice that in both this extension and our protocol, a state has to pass by
the honest player (and therefore all players) in order to be able to verify that it
has been properly encoded.

1.2 Our Contributions

Our protocol builds on the work of Dupuis, Nielsen, and Salvail [DNS10,DNS12],
and like it, assumes a classical MPC, and achieves the same security guarantees
as this classical MPC. In contrast to a naive extension of [DNS12], requiring
Θ(2k) magic states, the complexity of our protocol, when considering a quantum
circuit that contains, among other gates, g gates in {CNOT,T} and acts on w
qubits, scales as O((g + w)k).

In order to efficiently extend the two-party protocol of [DNS12] to a general
k-party protocol, we make two major alterations to the protocol:

Public authentication test. In [DNS12], given a security parameter n, each
party adds n qubits in the state |0〉 to each input qubit in order to authenticate
it. The size of each ciphertext is thus 2n + 1. The extra qubits serve as check
qubits (or “traps”) for each party, which can be measured at regular intervals:
if they are non-zero, somebody tampered with the state.

In a straightforward generalization to k parties, the ciphertext size would
become kn + 1 per input qubit, putting a strain on the computing space of each
player. In our protocol, the ciphertext size is constant in the number of players: it
is usually n+1 per input qubit, temporarily increasing to 2n+1 for qubits that
are involved in a computation step. As an additional advantage, our protocol
does not require that all players measure their traps every time a state needs to
be checked for its authenticity.

To achieve this smaller ciphertext size, we introduce a public authentication
test. Our protocol uses a single, shared set of traps for each qubit. If the protocol
calls for the authentication to be checked, the player that currently holds the

Secure Multi-party Quantum Computation with a Dishonest Majority 733

state cannot be trusted to simply measure those traps. Instead, she temporarily
adds extra trap qubits, and fills them with an encrypted version of the content of
the existing traps. Now she measures only the newly created ones. The encryption
ensures that the measuring player does not know the expected measurement
outcome. If she is dishonest and has tampered with the state, she would have
to guess a random n-bit string, or be detected by the other players. We design
a similar test that checks whether a player has honestly created the first set of
traps for their input at encoding time.

Efficient magic-state preparation. For the computation of non-Clifford
gates, the [DNS12] protocol requires the existence of authenticated “magic
states”, auxiliary qubits in a known and fixed state that aid in the computation.
In a two-party setting, one of the players can create a large number of such
states, and the other player can, if he distrusts the first player, test a random
subset of them to check if they were honestly initialized. Those tested states are
discarded, and the remaining states are used in the computation.

In a k-party setting, such a “cut-and-choose” strategy where all players want
to test a sufficient number of states would require the first party to prepare
an exponential number (in k) of authenticated magic states, which quickly gets
infeasible as the number of players grows. Instead, we need a testing strategy
where dishonest players have no control over which states are selected for testing.
We ask the first player to create a polynomial number of authenticated magic
states. Subsequently, we use classical MPC to sample random, disjoint subsets
of the proposed magic states, one for each player. Each player continues to
decrypt and test their subset of states. The random selection process implies that,
conditioned on the test of the honest player(s) being successful, the remaining
registers indeed contain encrypted states that are reasonably close to magic
states. Finally, we use standard magic-state distillation to obtain auxiliary inputs
that are exponentially close to magic states.

1.3 Overview of the Protocol

We describe some details of the k-player quantum MPC protocol for circuits con-
sisting of classically-controlled Clifford operations and measurements. Such cir-
cuits suffice to perform Clifford computation and magic-state distillation, so that
the protocol can be extended to arbitrary circuits using the technique described
above. The protocol consists of several subprotocols, of which we highlight four
here: input encoding, public authentication test, single-qubit gate application,
and CNOT application. In the following description, the classical MPC is treated
as a trusted third party with memory3. The general idea is to first ensure that
initially all inputs are properly encoded into the Clifford authentication code,
and to test the encoding after each computation step that exposes the encoded
3 The most common way to achieve classical MPC against dishonest majority is in

the so called pre-processing model, as suggested by the SPDZ [BDOZ11] and MAS-
COT [KOS16] families of protocols. We believe that these protocols can be made
post-quantum secure, but that is beyond the scope of this paper.

734 Y. Dulek et al.

qubit to an attack. During the protocol, the encryption keys for the Clifford
authentication code are only known to the MPC.

Input encoding. For an input qubit |ψ〉 of player i, the MPC hands each
player a circuit for a random (2n + 1)-qubit Clifford group element. Now player
i appends 2n “trap” qubits initialized in the |0〉-state and applies her Clifford.
The state is passed around, and all other players apply their Clifford one-by-
one, resulting in a Clifford-encoded qubit F (|ψ〉 ∣

∣02n
〉

) for which knowledge of
the encoding key F is distributed among all players. The final step is our public
authentication test, which is used in several of the other subprotocols as well. Its
goal is to ensure that all players, including player i, have honestly followed the
protocol.

The public authentication test (details). The player holding the state
F (|ψ〉 ∣

∣02n
〉

) (player i) will measure n out of the 2n trap qubits, which should
all be 0. To enable player i to measure a random subset of n of the trap qubits,
the MPC could instruct her to apply (E ⊗Xr)(I⊗Uπ)F † to get E(|ψ〉 |0n〉)⊗|r〉,
where Uπ permutes the 2n trap qubits by a random permutation π, and E is a
random (n + 1) qubit Clifford, and r ∈ {0, 1}n is a random string. Then when
player i measures the last n trap qubits, if the encoding was correct, she will
obtain r and communicate this to the MPC. However, this only guarantees that
the remaining traps are correct up to polynomial error.

To get a stronger guarantee, we replace the random permutation with an
element from the sufficiently rich yet still efficiently samplable group of invertible
transformations over F

2n, GL(2n, F2). An element g ∈ GL(2n, F2) maybe be
viewed as a unitary Ug acting on computational basis states as Ug |x〉 = |gx〉
where x ∈ {0, 1}2n. In particular, Ug

∣
∣02n

〉

=
∣
∣02n

〉

, so if all traps are in the
state |0〉, applying Ug does not change this, whereas for non-zero x, Ug |x〉 =
|x′〉 for a random x′ ∈ {0, 1}2n. Thus the MPC instructs player i to apply
(E ⊗ Xr)(I ⊗ Ug)F † to the state F (|ψ〉 ∣

∣02n
〉

), then measure the last n qubits
and return the result, aborting if it is not r. Crucially, (E ⊗ Xr)(I ⊗ Ug)F † is
given as an element of the Clifford group, hiding the structure of the unitary
and, more importantly, the values of r and g. So if player i is dishonest and
holds a corrupted state, she can only pass the MPC’s test by guessing r. If
player i correctly returns r, we have the guarantee that the remaining state is a
Clifford-authenticated qubit with n traps, E(|ψ〉 |0n〉), up to exponentially small
error.

Single-qubit Clifford gate application. As in [DNS12], this is done by simply
updating encryption key held by the MPC: If a state is currently encrypted with
a Clifford E, decrypting with a “wrong” key EG† has the effect of applying G
to the state.

CNOT application. Applying a CNOT gate to two qubits is slightly more
complicated: as they are encrypted separately, we cannot just implement the
CNOT via a key update like in the case of single qubit Clifford gates. Instead, we
bring the two encoded qubits together, and then run a protocol that is similar
to input encoding using the (2n + 2)-qubit register as “input”, but using 2n

Secure Multi-party Quantum Computation with a Dishonest Majority 735

additional traps instead of just n, and skipping the final authentication-testing
step. The joint state now has 4n + 2 qubits and is encrypted with some Clifford
F only known to the MPC. Afterwards, CNOT can be applied via a key update,
similarly to single-qubit Cliffords. To split up the qubits again afterwards, the
executing player applies (E1 ⊗ E2)F †, where E1 and E2 are freshly sampled by
the MPC. The two encoded qubits can then be tested separately using the public
authentication test.

1.4 Open Problems

Our results leave a number of exciting open problems to be addressed in future
work. Firstly, the scope of this work was to provide a protocol that reduces
the problem of MPQC to classical MPC in an information-theoretically secure
way. Hence we obtain an information-theoretically secure MPQC protocol in the
preprocessing model, leaving the post-quantum secure instantiation of the latter
as an open problem.

Another class of open problems concerns applications of MPQC. For instance,
classically, MPC can be used to devise zero-knowledge proofs [IKOS09] and
digital signature schemes [CDG+17].

An interesting open question concerning our protocol more specifically is
whether the CNOT sub-protocol can be replaced by a different one that has
round complexity independent of the total number of players, reducing the quan-
tum round complexity of the whole protocol. We also wonder if it is possible to
develop more efficient protocols for narrower classes of quantum computation,
instead of arbitrary (polynomial-size) quantum circuits.

Finally, it would be interesting to investigate whether the public authenti-
cation test we use can be leveraged in protocols for specific MPC-related tasks
like oblivious transfer.

1.5 Outline

In Sect. 2, we outline the necessary preliminaries and tools we will make use
of in our protocol. In Sect. 3, we give a precise definition of MPQC. In Sect. 4,
we describe how players encode their inputs to setup for computation in our
protocol. In Sect. 5 we describe our protocol for Clifford circuits, and finally, in
Sect. 6, we show how to extend this to universal quantum circuits in Clifford+T.

2 Preliminaries

2.1 Notation

We assume familiarity with standard notation in quantum computation, such as
(pure and mixed) quantum states, the Pauli gates X and Z, the Clifford gates H
and CNOT, the non-Clifford gate T, and measurements.

736 Y. Dulek et al.

We work in the quantum circuit model, with circuits C composed of elemen-
tary unitary gates (of the set Clifford+T), plus computational basis measure-
ments. We consider those measurement gates to be destructive, i.e., to destroy
the post-measurement state immediately, and only a classical wire to remain.
Since subsequent gates in the circuit can still classically control on those mea-
sured wires, this point of view is as general as keeping the post-measurement
states around.

For a set of quantum gates G, the G-depth of a quantum circuit is defined as
the minimal number of layers such that in every layer, gates from G do not act
on the same qubit.

For two circuits C1 and C2, we write C2 ◦ C1 for the circuit that consists of
executing C1, followed by C2. Similarly, for two protocols Π1 and Π2, we write
Π2 � Π1 for the execution of Π1, followed by the execution of Π2.

We use capital letters for both quantum registers (M , R, S, T, . . .) and
unitaries (A, B, U , V , W, . . .). We write |R| for the dimension of the Hilbert
space in a register R. The registers in which a certain quantum state exists, or
on which some map acts, are written as gray superscripts, whenever it may be
unclear otherwise. For example, a unitary U that acts on register A, applied
to a state ρ in the registers AB, is written as UAρABU†, where the registers
U† acts on can be determined by finding the matching U and reading the grey
subscripts. Note that we do not explicitly write the operation I

B with which U
is in tensor product. The gray superscripts are purely informational, and do not
signify any mathematical operation. If we want to denote, for example, a partial
trace of the state ρAB , we use the conventional notation ρA.

For an n-bit string s = s1s2 · · · sn, define Us := Us1 ⊗ Us2 ⊗ · · · ⊗ Usn . For
an n-element permutation π ∈ Sn, define Pπ to be the unitary that permutes n
qubits according to π:

Pπ |ψ1〉 ... |ψn〉 =
∣
∣ψπ(1)

〉

...
∣
∣ψπ(n)

〉

.

We use [k] for the set {1, 2, . . . , k}. For a projector Π, we write Π for its
complement I − Π. We use τR := I/|R| for the fully mixed state on the register
R.

Write GL(n, F) for the general linear group of degree n over a field F . We
refer to the Galois field of two elements as F2, the n-qubit Pauli group as Pn,
and the n-qubit Clifford group as Cn. Whenever a protocol mandates handing
an element from one of these groups, or more generally, a unitary operation, to
an agent, we mean that a (classical) description of the group element is given,
e.g. as a normal-form circuit.

Finally, for a quantum operation that may take multiple rounds of inputs
and outputs, for example an environment E interacting with a protocol Π, we
write E � Π for the final output of E after the entire interaction.

Secure Multi-party Quantum Computation with a Dishonest Majority 737

2.2 Classical Multi-party Computation

At this point, we are unaware of any formal analysis of the post-quantum security
of existing classical multi-party computation schemes. Establishing full post-
quantum security of classical multi-party computation is outside the scope of
this paper, but we discuss some possible directions in the full version. For the
purpose of this paper, we assume that a post-quantum secure classical multi-
party computation is available.

Throughout this paper, we will utilize the following ideal MPC functionality
as a black box:

Definition 2.1 (Ideal classical k-party stateful computationwith abort).
Let f1, ..., fk and fS be public classical deterministic functions on k + 2 inputs.
Let a string s represent the internal state of the ideal functionality. (The first time
the ideal functionality is called, s is empty.) Let A � [k] be a set of corrupted
players.

1. Every player i ∈ [k] chooses an input xi of appropriate size, and sends it
(securely) to the trusted third party.

2. The trusted third party samples a bit string r uniformly at random.
3. The trusted third party computes fi(s, x1, ..., xk, r) for all i ∈ [k] ∪ {S}.
4. For all i ∈ A, the trusted third party sends fi(s, x1, ..., xk, r) to player i.
5. All i ∈ A respond with a bit bi, which is 1 if they choose to abort, or 0

otherwise.
6. If bj = 0 for all j, the trusted third party sends fi(s, x1, ..., xk, r) to the other

players i ∈ [k]\A and stores fS(s, x1, ..., xk, r) in an internal state register
(replacing s). Otherwise, he sends an abort message to those players.

2.3 Pauli Filter

In our protocol, we use a technique which alters a channel that would act jointly
on registers S and T , so that its actions on S are replaced by a flag bit into a
separate register. The flag is set to 0 if the actions on S belong to some set P,
or to 1 otherwise. This way, the new channel “filters” the allowed actions on S.

Definition 2.2 (Pauli filter). For registers S and T with |T | > 0, let UST be
a unitary, and let P ⊆ ({0, 1}log |S|)2 contain pairs of bit strings. The P-filter of
U on register S, denoted PauliFilterSP(U), is the map T → TF (where F is some
single-qubit flag register) that results from the following operations:

1. Initialize two separate registers S and S′ in the state |Φ〉〈Φ|, where |Φ〉 :=
(

1√
2
(|00〉 + |11〉)

)⊗ log |S|
. Half of each pair is stored in S, the other in S′.

2. Run U on ST .
3. Measure SS′ with the projective measurement {Π, I − Π} for

Π :=
∑

(a,b)∈P

(

XaZb
)S |Φ〉〈Φ| (ZbXa

)

.

If the outcome is Π, set the F register to |0〉〈0|. Otherwise, set it to |1〉〈1|.

738 Y. Dulek et al.

The functionality of the Pauli filter becomes clear in the following lemma,
which we prove in the full version by straightforward calculation:

Lemma 2.3. For registers S and T with |T | > 0, let UST be a unitary, and
let P ⊆ ({0, 1}log |S|)2. Write U =

∑

x,z(X
xZz)S ⊗ UT

x,z. Then PauliFilterSP(U)
equals the map

(·) �→
∑

(a,b)∈P
UT

a,b(·)U†
a,b ⊗ |0〉〈0|F +

∑

(a,b) �∈P
UT

a,b(·)U†
a,b ⊗ |1〉〈1|F

A special case of the Pauli filter for P = {(0log |S|, 0log |S|)} is due to Broadbent
and Wainewright [BW16]. This choice of P represents only identity: the opera-
tion PauliFilterP filters out any components of U that do not act as identity on
S. We will denote this type of filter with the name IdFilter.

In this work, we will also use XFilterS(U), which only accepts components
of U that act trivially on register S in the computational basis. It is defined by
choosing P = {0log |S|} × {0, 1}log |S|.

Finally, we note that the functionality of the Pauli filter given in Definition 2.2
can be generalized, or weakened in a sense, by choosing a different state than
|Φ〉〈Φ|. In this work, we will use the ZeroFilterS(U), which initializes SS′ in the
state |00〉log |S|, and measures using the projector Π = |00〉〈00|. It filters U by
allowing only those Pauli operations that leave the computational-zero state (but
not necessarily any other computational-basis states) unaltered:

(·) �→ UT
0 (·)U†

0 ⊗ |0〉〈0|F +
∑

a�=0

UT
a (·)U†

a ⊗ |1〉〈1|F ,

where we abbreviate Ua :=
∑

b Ua,b. Note that for ZeroFilterS(U), the extra
register S′ can also be left out.

2.4 Clifford Authentication Code

The protocol presented in this paper will rely on quantum authentication. The
players will encode their inputs using a quantum authentication code to prevent
the other, potentially adversarial, players from making unauthorized alterations
to their data. That way, they can ensure that the output of the computation is
in the correct logical state.

A quantum authentication code transforms a quantum state (the logical state
or plaintext) into a larger quantum state (the physical state or ciphertext) in
a way that depends on a secret key. An adversarial party that has access to
the ciphertext, but does not know the secret key, cannot alter the logical state
without being detected at decoding time.

Secure Multi-party Quantum Computation with a Dishonest Majority 739

More formally, an authentication code consists of an encoding map
EncM→MT

k and a decoding map DecMT→M
k , for a secret key k, which we usually

assume that the key is drawn uniformly at random from some key set K. The
message register M is expanded with an extra register T to accommodate for
the fact that the ciphertext requires more space than the plaintext.

An authentication code is correct if Deck ◦ Enck = I. It is secure if the
decoding map rejects (e.g., by replacing the output with a fixed reject symbol
⊥) whenever an attacker tried to alter an encoded state:

Definition 2.4 (Security of authentication codes [DNS10]). Let (EncM→MT
k ,

DecMT→M
k) be a quantum authentication scheme for k in a key set K. The scheme

is ε-secure if for all CPTP maps AMTR acting on the ciphertext and a side-
information register R, there exist CP maps Λacc and Λrej such that Λacc + Λrej

is trace-preserving, and for all ρMR:
∥
∥
∥Ek∈K [Deck (A (Enck (ρ)))] −

(

ΛR
acc(ρ) + |⊥〉〈⊥|M ⊗ TrM

[

ΛR
rej (ρ)

])
∥
∥
∥
1

� ε.

A fairly simple but powerful authentication code is the Clifford code:

Definition 2.5 (Clifford code [ABOE10]). The n-qubit Clifford code is
defined by a key set Cn+1, and the encoding and decoding maps for a C ∈ Cn+1:

EncC(ρM) := C(ρM ⊗ |0n〉〈0n|T)C†,

DecC(σMT) := 〈0n|T C†σC |0n〉 + |⊥〉〈⊥|M ⊗ TrM

⎡

⎣
∑

x�=0n

〈x|C†σC |x〉
⎤

⎦ .

Note that, from the point of view of someone who does not know the Clifford
key C, the encoding of the Clifford code looks like a Clifford twirl (see the full
version) of the input state plus some trap states.

We prove the security of the Clifford code in the full version.

2.5 Universal Gate Sets

It is well known that if, in addition to Clifford gates, we are able to apply any
non-Clifford gate G, then we are able to achieve universal quantum computation.
In this work, we focus on the non-Clifford T gate (or π/8 gate).

In several contexts, however, applying non-Clifford gates is not straightfor-
ward for different reasons: common quantum error-correcting codes do not allow
transversal implementation of non-Clifford gates, the non-Clifford gates do not
commute with the quantum one-time pad and, more importantly in this work,
neither with the Clifford encoding.

740 Y. Dulek et al.

In order to concentrate the hardness of non-Clifford gates in an offline pre-
processing phase, we can use techniques from computation by teleportation if
we have so-called magic states of the form |T〉 := T |+〉. Using a single copy of
this state as a resource, we are able to implement a T gate using the circuit in
Fig. 1. The circuit only requires (classically controlled) Clifford gates.

|ψ〉

T |+〉 Xc Pc

c

T |ψ〉

Fig. 1. Using a magic state |T〉 = T |+〉 to implement a T gate.

The problem is how to create such magic states in a fault-tolerant way. Bravyi
and Kitaev [BK05] proposed a distillation protocol that allows to create states
that are δ-close to true magic states, given poly(log(1/δ)) copies of noisy magic-
states. Let

∣
∣T⊥〉

= T |−〉. Then we have:

Theorem 2.6 (Magic-state distillation [BK05]). There exists a circuit of
CNOT-depth ddistill(n) � O(log(n)) consisting of pdistill(n) � poly (n) many
classically controlled Cliffords and computational-basis measurements such that
for any ε < 1

2

(

1 − √

3/7
)

, if ρ is the output on the first wire using input

(

(1 − ε) |T〉 〈T| + ε
∣
∣T⊥〉 〈

T⊥∣
∣
)⊗n

, (1)

then 1 − 〈T| ρ |T〉 � O
(

(5ε)nc)

, where c = (log2 30)−1 ≈ 0.2.

As we will see in Sect. 6, our starting point is a bit different from the input
state required by Theorem 2.6. We now present a procedure that will allow us
to prepare the states necessary for applying Theorem 2.6 (see Circuit 2.8). We
prove Lemma 2.7 in the full version.

Lemma 2.7. Let VLW = span{Pπ(|T〉⊗m−w ∣
∣T⊥〉w) : w �
, π ∈ Sm}, and

let ΠLW be the orthogonal projector onto VLW . Let Ξ denote the CPTP map
induced by Circuit 2.8. If ρ is an m-qubit state such that Tr(ΠLW ρ) � 1 − ε,
then

∥
∥Ξ(ρ) − (|T〉 〈T|)⊗t

∥
∥
1

� O

(

m
√

t

(

m

)O((m/t)c/2)

+ ε

)

,

for some constant c > 0.

Circuit 2.8 (Magic-state distillation). Given an m-qubit input state
and a parameter t < m:

1. To each qubit, apply Ẑ := PX with probability 1
2 .

2. Permute the qubits by a random π ∈ Sm.

Secure Multi-party Quantum Computation with a Dishonest Majority 741

3. Divide the m qubits into t blocks of size m/t, and apply magic-state
distillation from Theorem 2.6 to each block.

Remark 2.9. Circuit 2.8 can be implemented with (classically controlled) Clif-
ford gates and measurements in the computational basis.

3 Multi-party Quantum Computation: Definitions

In this section, we describe the ideal functionality we aim to achieve for multi-
party quantum computation (MPQC) with a dishonest majority. As noted in
Sect. 2.2, we cannot hope to achieve fairness: therefore, we consider an ideal
functionality with the option for the dishonest players to abort.

Definition 3.1 (Ideal quantum k-party computation with abort). Let C
be a quantum circuit on W ∈ N>0 wires. Consider a partition of the wires into the
players’ input registers plus an ancillary register, as [W] = Rin

1 �· · ·�Rin
k �Rancilla,

and a partition into the players’ output registers plus a register that is discarded
at the end of the computation, as [W] = Rout

1 � · · · � Rout
k � Rdiscard. Let IA � [k]

be a set of corrupted players.

1. Every player i ∈ [k] sends the content of Rin
i to the trusted third party.

2. The trusted third party populates Rancilla with computational-zero states.
3. The trusted third party applies the quantum circuit C on the wires [W].
4. For all i ∈ IA, the trusted third party sends the content of Rout

i to player i.
5. All i ∈ IA respond with a bit bi, which is 1 if they choose to abort, or 0

otherwise.
6. If bi = 0 for all i, the trusted third party sends the content of Rout

i to the other
players i ∈ [k]\IA. Otherwise, he sends an abort message to those players.

In Definition 3.1, all corrupted players individually choose whether to abort
the protocol (and thereby to prevent the honest players from receiving their
respective outputs). In reality, however, one cannot prevent several corrupted
players from actively working together and sharing all information they have
among each other. To ensure that our protocol is also secure in those scenarios,
we consider security against a general adversary that corrupts all players in IA,
by replacing their protocols by a single (interactive) algorithm A that receives
the registers Rin

A := R � ⊔

i∈IA Rin
i as input, and after the protocol produces

output in the register Rout
A := R � ⊔

i∈IA Rout
i . Here, R is a side-information

register in which the adversary may output extra information.
We will always consider protocols that fulfill the ideal functionality with

respect to some gate set G: the protocol should then mimic the ideal functionality
only for circuits C that consist of gates from G. This security is captured by the
definition below.

742 Y. Dulek et al.

C

Π

P1
. . . P� A

E

ΠMPQC
C,A C

I

. . . S

E

IMPQC
C,S

(1) (2)

Fig. 2. (1) The environment interacting with the protocol as run by honest players
P1, . . . , P�, and an adversary who has corrupted the remaining players. (2) The envi-
ronment interacting with a simulator running the ideal functionality.

Definition 3.2 (Computational security of quantum k-party compu-
tation with abort). Let G be a set of quantum gates. Let ΠMPQC be a k-
party quantum computation protocol, parameterized by a security parameter n.
For any circuit C, set IA � [k] of corrupted players, and adversarial (inter-
active) algorithm A that performs all interactions of the players in IA, define
ΠMPQC

C,A : Rin
A �⊔

i�∈IA Rin
i → Rout

A �⊔

i�∈IA Rout
i to be the channel that executes the

protocol ΠMPQC for circuit C by executing the honest interactions of the players
in [k] \ IA, and letting A fulfill the role of the players in IA (See Fig. 2, (1)).

For a simulator S that receives inputs in Rin
A, then interacts with the ideal

functionalities on all interfaces for players in IA, and then produces output in
Rout

A , let IMPQC
C,S be the ideal functionality described in Definition 3.1, for circuit

C, simulator S for players i ∈ IA, and honest executions (with bi = 0) for players
i �∈ IA (See Fig. 2, (2)). We say that ΠMPQC is a computationally ε-secure
quantum k-party computation protocol with abort, if for all IA � [k], for all
quantum polynomial-time (QPT) adversaries A, and all circuits C comprised of
gates from G, there exists a QPT simulator S such that for all QPT environments
E, ∣

∣
∣Pr

[

1 ← (E � ΠMPQC
C,A)

]

− Pr
[

1 ← (E � IMPQC
C,S)

]∣
∣
∣ � ε.

Here, the notation b ← (E � (·)) represents the environment E, on input 1n,
interacting with the (real or ideal) functionality (·), and producing a single bit b
as output.

Remark 3.3. In the above definition, we assume that all QPT parties are poly-
nomial in the size of circuit |C|, and in the security parameter n.

We show in Sect. 6.2 the protocol ΠMPQC implementing the ideal functionality
described in Definition 3.1, and we prove its security in Theorem 6.5.

Secure Multi-party Quantum Computation with a Dishonest Majority 743

4 Setup and Encoding

4.1 Input Encoding

In the first phase of the protocol, all players encode their input registers qubit-
by-qubit. For simplicity of presentation, we pretend that player 1 holds a single-
qubit input state, and the other players do not have input. In the actual protocol,
multiple players can hold multiple-qubit inputs: in that case, the initialization is
run several times in parallel, using independent randomness. Any other player i
can trivially take on the role of player 1 by relabeling the player indices.

Definition 4.1 (Ideal functionality for input encoding). Without loss of
generality, let Rin

1 be a single-qubit input register, and let dim(Rin
i) = 0 for all

i �= 1. Let IA � [k] be a set of corrupted players.

1. Player 1 sends register Rin
1 to the trusted third party.

2. The trusted third party initializes a register T1 with |0n〉〈0n|, applies a random
(n + 1)-qubit Clifford E to MT1, and sends these registers to player 1.

3. All players i ∈ IA send a bit bi to the trusted third party. If bi = 0 for all
i, then the trusted third party stores the key E in the state register S of the
ideal functionality. Otherwise, it aborts by storing ⊥ in S.

The following protocol implements the ideal functionality. It uses, as a black
box, an ideal functionality MPC that implements a classical multi-party compu-
tation with memory.

Protocol 4.2 (Input encoding). Without loss of generality, let M := Rin
1 be

a single-qubit input register, and let dim(Rin
i) = 0 for all i �= 1.

1. For every i ∈ [k], MPC samples a random (2n + 1)-qubit Clifford Fi and
tells it to player i.

2. Player 1 applies the map ρM �→ F1

(

ρM ⊗ ∣
∣02n

〉〈

02n
∣
∣
T1T2

)

F †
1 for two n-

qubit (trap) registers T1 and T2, and sends the registers MT1T2 to player
2.

3. Every player i = 2, 3, ..., k applies Fi to MT1T2, and forwards it to player
i + 1. Eventually, player k sends the registers back to player 1.

4. MPC samples a random (n + 1)-qubit Clifford E, random n-bit strings r
and s, and a random classical invertible linear operator g ∈ GL(2n, F2).
Let Ug be the (Clifford) unitary that computes g in-place, i.e., Ug |t〉 =
|g(t)〉 for all t ∈ {0, 1}2n.

5. MPC givesa

V := (EMT1 ⊗ (XrZs)T2)(I ⊗ (Ug)T1T2)(Fk · · · F2F1)†

to player 1, who applies it to MT1T2.
6. Player 1 measures T2 in the computational basis, discarding the measured

wires, and keeps the other (n + 1) qubits as its output in Rout
1 = MT1.

744 Y. Dulek et al.

7. Player 1 submits the measurement outcome r′ to MPC, who checks
whether r = r′. If so, MPC stores the key E in its memory-state reg-
ister S. If not, it aborts by storing ⊥ in S.

a As described in Sect. 2.1, the MPC gives V as a group element, and the adver-
sary cannot decompose it into the different parts that appear in its definition.

If MPC aborts the protocol in step 7, the information about the Clifford encoding
key E is erased. In that case, the registers MT1 will be fully mixed. Note that this
result differs slightly from the ‘reject’ outcome of a quantum authentication code
as in Definition 2.4, where the message register M is replaced by a dummy state
|⊥〉〈⊥|. In our current setting, the register M is in the hands of (the possibly
malicious) player 1. We therefore cannot enforce the replacement of register M
with a dummy state: we can only make sure that all its information content
is removed. Depending on the application or setting, the trusted MPC can of
course broadcast the fact that they aborted to all players, including the honest
one(s).

To run Protocol 4.2 in parallel for multiple input qubits held by multiple
players, MPC samples a list of Cliffords Fi,q for each player i ∈ [k] and each
qubit q. The Fi,q operations can be applied in parallel for all qubits q: with k
rounds of communication, all qubits will have completed their round past all
players.

We will show that Protocol 4.2 fulfills the ideal functionality for input
encoding:

Lemma 4.3. Let ΠEnc be Protocol 4.2, and IEnc be the ideal functionality
described in Definition 4.1. For all sets IA � [k] of corrupted players and all
adversaries A that perform the interactions of players in IA with Π, there exists
a simulator S (the complexity of which scales polynomially in that of the adver-
sary) such that for all environments E,

|Pr[1 ← (E � ΠEnc
A)] − Pr[1 ← (E � IEnc

S)| � negl (n) .

Note that the environment E also receives the state register S, which acts as the
“output” register of the ideal functionality (in the simulated case) or of MPC (in
the real case). It is important that the environment cannot distinguish between
the output states even given that state register S, because we want to be able to
compose Protocol 5.4 with other protocols that use the key information inside
S. In other words, it is important that, unless the key is discarded, the states
inside the Clifford encoding are also indistinguishable for the environment.

We provide just a sketch of the proof for Lemma 4.3, and refer to the full
version for its full proof.

Proof (sketch). We divide our proof into two cases: when player 1 is honest, or
when she is dishonest.

For the case when player 1 is honest, we know that she correctly prepares the
expected state before the state is given to the other players. That is, she appends
2n ancilla qubits in state |0〉 and applies the random Clifford instructed by the

Secure Multi-party Quantum Computation with a Dishonest Majority 745

classical MPC. When the encoded state is returned to player 1, she performs the
Clifford V as instructed by the MPC. By the properties of the Clifford encoding,
if the other players acted dishonestly, the tested traps will be non-zero with
probability exponentially close to 1.

The second case is a bit more complicated: the first player has full control over
the state and, more importantly, the traps that will be used in the first encoding.
In particular, she could start with nonzero traps, which could possibly give some
advantage to the dishonest players later on the execution of the protocol.

In order to prevent this type of attack, the MPC instructs the first player to
apply a random linear function Ug on the traps, which is hidden from the players
inside the Clifford V . If the traps were initially zero, their value does not change,
but otherwise, they will be mapped to a random value, unknown by the dishonest
parties. As such, the map Ug removes any advantage that the dishonest parties
could have in step 7 by starting with non-zero traps. Because any nonzero trap
state in T1T2 is mapped to a random string, it suffices to measure only T2 in
order to be convinced that T1 is also in the all-zero state (except with negligible
probability). This intuition is formalized in the full version.

Other possible attacks are dealt with in a way that is similar to the case
where player 1 is honest (but from the perspective of another honest player).

In the full proof (see the full version), we present two simulators, one for
each case, that tests (using Pauli filters from Sect. 2.3) whether the adversary
performs any such attacks during the protocol, and chooses the input to the
ideal functionality accordingly. See Fig. 3 for a pictorial representation of the
structure of the simulator for the case where player 1 is honest.

MPC

P1

R R

A

F2
. . . Fk

JEnc

P1 S
F ′
2 F ′

k. . .|Φ〉⊗(2n+1)

R

A(F ′
2, . . . , F

′
k)

(F ′
k . . . F ′

2)†
Bell

b2 . . . bk

Fig. 3. On the left, the adversary’s interaction with the protocol ΠEnc, ΠEnc
A in case

player 1 is the only honest player. On the right, the simulator’s interaction with JEnc,
JEnc
S . It performs the Pauli filter IdFilterMT1T2 on the adversary’s attack on the encoded

state.

4.2 Preparing Ancilla Qubits

Apart from encrypting the players’ inputs, we also need a way to obtain encoded
ancilla-zero states, which may be fed as additional input to the circuit. Since
none of the players can be trusted to simply generate these states as part of
their input, we need to treat them separately.

746 Y. Dulek et al.

In [DNS12], Alice generates an encoding of |0〉〈0|, and Bob tests it by entan-
gling (with the help of the classical MPC) the data qubit with a separate |0〉〈0|
qubit. Upon measuring that qubit, Bob then either detects a maliciously gener-
ated data qubit, or collapses it into the correct state. For details, see [DNS12,
Appendix E].

Here, we take a similar approach, except with a public test on the shared
traps. In order to guard against a player that may lie about the measurement
outcomes during a test, we entangle the data qubits with all traps. We do so using
a random linear operator, similarly to the encoding described in the previous
subsection.

Essentially, the protocol for preparing ancilla qubits is identical to Proto-
col 4.2 for input encoding, except that now we do not only test whether the
2n traps are in the |0〉〈0| state, but also the data qubit: concretely, the linear
operator g acts on 2n + 1 elements instead of 2n. That is,

V := (E ⊗ P)Ug(Fk · · · F2F1)†.

As a convention, Player 1 will always create the ancilla |0〉〈0| states and encode
them. In principle, the ancillas can be created by any other player, or by all
players together.

Per the same proof as for Lemma 4.3, we have implemented the following
ideal functionality, again making use of a classical MPC as a black box.

Definition 4.4 (Ideal functionality for encoding of |0〉〈0|). Let IA � [k]
be a set of corrupted players.

1. The trusted third party initializes a register T1 with |0n〉〈0n|, applies a random
(n + 1)-qubit Clifford E to MT1, and sends these registers to player 1.

2. All players i ∈ IA send a bit bi to the trusted third party. If bi = 0 for all
i, then the trusted third party stores the key E in the state register S of the
ideal functionality. Otherwise, it aborts by storing ⊥ in S.

5 Computation of Clifford and Measurement

After all players have successfully encoded their inputs and sufficiently many
ancillary qubits, they perform a quantum computation gate-by-gate on their
joint inputs. In this section, we will present a protocol for circuits that consist
only of Clifford gates and computational-basis measurements. The Clifford gates
may be classically controlled (for example, on the measurement outcomes that
appear earlier in the circuit). In Sect. 6, we will discuss how to expand the
protocol to general quantum circuits.

Concretely, we wish to achieve the functionality in Definition 3.1 for all cir-
cuits C that consist of Clifford gates and computational-basis measurements. As
an intermediate step, we aim to achieve the following ideal functionality, where
the players only receive an encoded output, for all such circuits:

Secure Multi-party Quantum Computation with a Dishonest Majority 747

Definition 5.1 (Ideal quantum k-party computation without decod-
ing). Let C be a quantum circuit on W wires. Consider a partition of the wires
into the players’ input registers plus an ancillary register, as [W] = Rin

1 � · · · �
Rin

k �Rancilla, and a partition into the players’ output registers plus a register that
is discarded at the end of the computation, as [W] = Rout

1 � · · · � Rout
k � Rdiscard.

Let IA � [k] be the set of corrupted players.

1. All players i send their register Rin
i to the trusted third party.

2. The trusted third party instantiates Rancilla with |0〉〈0| states.
3. The trusted third party applies C to the wires [W].
4. For every player i and every output wire w ∈ Rout

i , the trusted third party
samples a random (n+1)-qubit Clifford Ew, applies ρ �→ Ew(ρ⊗|0n〉〈0n|)E†

w

to w, and sends the result to player i.
5. All players i ∈ IA send a bit bi to the trusted third party.

(a) If bi = 0 for all i, all keys Ew and all measurement outcomes are stored
in the state register S.

(b) Otherwise, the trusted third party aborts by storing ⊥ in S.

To achieve the ideal functionality, we define several subprotocols. The sub-
protocols for encoding the players’ inputs and ancillary qubits have already
been described in Sect. 4. It remains to describe the subprotocols for (classically-
controlled) single-qubit Clifford gates (Sect. 5.1), (classically controlled) CNOT
gates (Sect. 5.2), and computational-basis measurements (Sect. 5.3).

In Sect. 5.5, we show how to combine the subprotocols in order to compute
any polynomial-sized Clifford+measurement circuit. Our approach is inductive
in the number of gates in the circuit. The base case is the identity circuit, which
is essentially covered in Sect. 4. In Sects. 5.1–5.3, we show that the ideal func-
tionality for any circuit C, followed by the subprotocol for a gate G, results
in the ideal functionality for the circuit G ◦ C (C followed by G). As such, we
can chain together the subprotocols to realize the ideal functionality in Defini-
tion 5.1 for any polynomial-sized Clifford+measurement circuit. Combined with
the decoding subprotocol we present in Sect. 5.4, such a chain of subprotocols
satisfies Definition 3.1 for ideal k-party quantum Clifford+measurement compu-
tation with abort.

In Definition 5.1, all measurement outcomes are stored in the state register
of the ideal functionality. We do so to ensure that the measurement results
can be used as a classical control to gates that are applied after the circuit C,
which can be technically required when building up to the ideal functionality
for C inductively. Our protocols can easily be altered to broadcast measurement
results as they happen, but the functionality presented in Definition 5.1 is the
most general: if some player is supposed to learn a measurement outcome m�,
then the circuit can contain a gate Xm� on an ancillary zero qubit that will be
part of that player’s output.

748 Y. Dulek et al.

5.1 Subprotocol: Single-Qubit Cliffords

Due to the structure of the Clifford code, applying single-qubit Clifford is simple:
the classical MPC, who keeps track of the encoding keys, can simply update the
key so that it includes the single-qubit Clifford on the data register. We describe
the case of a single-qubit Clifford that is classically controlled on a previous
measurement outcome stored in the MPC’s state. The unconditional case can be
trivially obtained by omitting the conditioning.

Protocol 5.2 (Single-qubit Cliffords). Let Gm� be a single-qubit Clif-
ford to be applied on a wire w (held by a player i), conditioned on a mea-
surement outcome m�. Initially, player i holds an encoding of the state on
that wire, and the classical MPC holds the encoding key E.

1. MPC reads result m� from its state register S, and updates its internally
stored key E to E((Gm�)† ⊗ I⊗n).

If m� = 0, nothing happens. To see that the protocol is correct for m� = 1, con-
sider what happens if the state E(ρ ⊗ |0n〉〈0n|)E† is decoded using the updated
key: the decoded output is

(E(G† ⊗ I⊗n))†E(ρ ⊗ |0n〉〈0n|)E†(E(G† ⊗ I⊗n)) = GρG† ⊗ |0n〉〈0n| .

Protocol 5.2 implements the ideal functionality securely: given an ideal imple-
mentation IC for some circuit C, we can implement Gm� ◦ C (i.e., the circuit C
followed by the gate Gm�) by performing Protocol 5.2 right after the interaction
with IC .

Lemma 5.3. Let Gm� be a single-qubit Clifford to be applied on a wire w (held
by a player i), conditioned on a measurement outcome m�. Let ΠGm� be Pro-
tocol 5.2 for the gate Gm� , and IC be the ideal functionality for a circuit C as
described in Definition 5.1. For all sets IA � [k] of corrupted players and all
adversaries A that perform the interactions of players in IA, there exists a sim-
ulator S (the complexity of which scales polynomially in that of the adversary)
such that for all environments E,

Pr[1 ← (E � (ΠGm� � IC)A)] = Pr[1 ← (E � IGm�◦C
S)].

Proof (sketch). In the protocol ΠGm� � IC , an adversary has two opportunities
to attack: once before its input state is submitted to IC , and once afterwards.
We define a simulator that applies these same attacks, except that it interacts
with the ideal functionality IGm� ◦C .

Syntactically, the state register S of IC is provided as input to the MPC in
ΠGm� , so that the MPC can update the key as described by the protocol. As
such, the output state of the adversary and the simulator are exactly equal. We
provide a full proof in in the full version.

Secure Multi-party Quantum Computation with a Dishonest Majority 749

5.2 Subprotocol: CNOT Gates

The application of two-qubit Clifford gates (such as CNOT) is more complicated
than the single-qubit case, for two reasons.

First, a CNOT is a joint operation on two states that are encrypted with sepa-
rate keys. If we were to classically update two keys E1 and E2 in a similar fashion
as in Protocol 5.2, we would end up with a new key (E1⊗E2)(CNOT1,n+2), which
cannot be written as a product of two separate keys. The keys would become
‘entangled’, which is undesirable for the rest of the computation.

Second, the input qubits might belong to separate players, who may not
trust the authenticity of each other’s qubits. In [DNS12], authenticity of the
output state is guaranteed by having both players test each state several times.
In a multi-party setting, both players involved in the CNOT are potentially
dishonest, so it might seem necessary to involve all players in this extensive
testing. However, because all our tests are publicly verified, our protocol requires
less testing. Still, interaction with all other players is necessary to apply a fresh
‘joint’ Clifford on the two ciphertexts.

Protocol 5.4 (CNOT). This protocol applies a CNOT gate to wires wi

(control) and wj (target), conditioned on a measurement outcome m�. Sup-
pose that player i holds an encoding of the first wire, in register M iT i

1, and
player j of the second wire, in register M jT j

1 . The classical MPC holds the
encoding keys Ei and Ej.

1. If i �= j, player j sends their registers M jT j
1 to player i. Player i now

holds a (2n + 2)-qubit state.
2. Player i initializes the registers T i

2 and T j
2 both in the state |0n〉〈0n|.

3. For all players h, MPC samples random (4n+2)-qubit Cliffords Dh, and
gives them to the respective players. Starting with player i, each player h
applies Dh to M ijT ij

12,
a and sends the state to player h + 1. Eventually,

player i receives the state back from player i − 1. MPC remembers the
applied Clifford

D := Di−1Di−2 · · · D1DkDk−1 · · · Di.

4. MPC samples random (2n+1)-qubit Cliffords Fi and Fj, and tells player
i to apply

V := (Fi ⊗ Fj)CNOTm�
1,2n+2(E

†
i ⊗ I⊗n ⊗ E†

j ⊗ I⊗n)D†.

Here, the CNOT acts on the two data qubits inside the encodings.
5. If i �= j, player i sends M jT j

12 to player j.
6. Players i and j publicly test their encodings. The procedures are identical,

we describe the steps for player i:
(a) MPC samples a random (n + 1)-qubit Clifford E′

i, which will be the
new encoding key. Furthermore, MPC samples random n-bit strings
si and ri, and a random classical invertible linear operator gi on F

2n
2 .

750 Y. Dulek et al.

(b) MPC tells player i to apply

Wi := (E′
i ⊗ (XriZsi)T i

2)UT i
12

gi F †
i .

Here, Ugi
is as defined in Protocol 4.2.

(c) Player i measures T i
2 in the computational basis and reports the n-bit

measurement outcome r′
i to the MPC.

(d) MPC checks whether r′
i = ri. If it is not, MPC sends abort to all

players. If it is, the test has passed, and MPC stores the new encoding
key E′

i in its internal memory.

a We combine subscripts and superscripts to denote multiple registers: e.g., T ij
12

is shorthand for T i
1T

i
2T

j
1 T j

2 .

Lemma 5.5. Let ΠCNOTm� be Protocol 5.4, to be executed on wires wi and wj,
held by players i and j, respectively. Let IC be the ideal functionality for a circuit
C as described in Definition 5.1. For all sets IA � [k] of corrupted players and
all adversaries A that perform the interactions of players in IA, there exists a
simulator S (the complexity of which scales polynomially in that of the adversary)
such that for all environments E,

∣
∣
∣Pr[1 ← (E � (ΠCNOTm� � IC)A)] = Pr[1 ← (E � ICNOTm� ◦C

S)]
∣
∣
∣ � negl (n) .

Proof (sketch). There are four different cases, depending on which of players i
and j are dishonest. In the full version, we provide a full proof by detailing the
simulators for all four cases, but in this sketch, we only provide an intuition for
the security in the case where both players are dishonest.

It is crucial that the adversary does not learn any information about the keys
(Ei, Ej , E

′
i, E

′
j), nor about the randomizing elements (ri, rj , si, sj , gi, gj). Even

though the adversary learns Wi,Wj , and V explicitly during the protocol, all
the secret information remains hidden by the randomizing Cliffords Fi, Fj , and
D.

We consider a few ways in which the adversary may attack. First, he may
prepare a non-zero state in the registers T i

2 (or T j
2) in step 2, potentially intending

to spread those errors into M iT i
1 (or M jT j

1). Doing so, however, will cause Ugi
(or

Ugj
) to map the trap state to a random non-zero string, and the adversary would

not know what measurement string r′
i (or r′

j) to report. Since gi is unknown to
the adversary, it suffices to measure T i

2 in order to detect any errors in T i
12.

Second, the adversary may fail to execute its instructions V or Wi ⊗ Wj

correctly. Doing so is equivalent to attacking the state right before or right after
these instructions. In both cases, however, the state in M iT i

1 is Clifford-encoded
(and the state in T i

2 is Pauli-encoded) with keys unknown to the adversary, so
the authentication property of the Clifford code prevents the adversary from
altering the outcome.

The simulator we define in the full version tests the adversary exactly for the
types of attacks above. By using Pauli filters (see Definition 2.2), the simulator

Secure Multi-party Quantum Computation with a Dishonest Majority 751

checks whether the attacker leaves the authenticated states and the trap states
T i
2 and T j

2 (both at initialization and before measurement) unaltered. In the full
proof, we show that the output state of the simulator approximates, up to an
error negligible in n, the output state of the real protocol.

5.3 Subprotocol: Measurement

Measurement of authenticated states introduces a new conceptual challenge. For
a random key E, the result of measuring E(ρ⊗|0n〉〈0n|)E† in a fixed basis is in no
way correlated with the logical measurement outcome of the state ρ. However,
the measuring player is also not allowed to learn the key E, so they cannot
perform a measurement in a basis that depends meaningfully on E.

In [DNS10, Appendix E], this challenge is solved by entangling the state
with an ancilla-zero state on a logical level. After this entanglement step, Alice
gets the original state while Bob gets the ancilla state. They both decode their
state (learning the key from the MPC), and can measure it. Because those states
are entangled, and at least one of Alice and Bob is honest, they can ensure
that the measurement outcome was not altered, simply by checking that they
both obtained the same outcome. The same strategy can in principle also be
scaled up to k players, by making all k players hold part of a big (logically)
entangled state. However, doing so requires the application of k−1 logical CNOT
operations, making it a relatively expensive procedure.

We take a different approach in our protocol. The player that performs the
measurement essentially entangles, with the help of the MPC, the data qubit
with a random subset of the traps. The MPC later checks the consistency of the
outcomes: all entangled qubits should yield the same measurement result.

Our alternative approach has the additional benefit that the measurement
outcome can be kept secret from some or all of the players. In the description
of the protocol below, the MPC stores the measurement outcome in its internal
state. This allows the MPC to classically control future gates on the outcome.
If it is desired to instead reveal the outcome to one or more of the players, this
can easily be done by performing a classically-controlled X operation on some
unused output qubit of those players.

Protocol 5.6 (Computational-basis measurement). Player i holds an
encoding of the state in a wire w in the register MT1. The classical MPC
holds the encoding key E in the register S.

1. MPC samples random strings r, s ∈ {0, 1}n+1 and c ∈ {0, 1}n.
2. MPC tells player i to apply

V := XrZsCNOT1,cE
†

to the register MT1, where CNOT1,c denotes the unitary
∏

i∈[n] CNOT
ci
1,i

(that is, the string c dictates with which of the qubits in T1 the M register
will be entangled).

752 Y. Dulek et al.

3. Player i measures the register MT1 in the computational basis, reporting
the result r′ to MPC.

4. MPC checks whether r′ = r ⊕ (m,m · c) for some m ∈ {0, 1}.a If so, it
stores the measurement outcome m in the state register S. Otherwise, it
aborts by storing ⊥ in S.

5. MPC removes the key E from the state register S.
a The · symbol represents scalar multiplication of the bit m with the string c.

Lemma 5.7. Let C be a circuit on W wires that leaves some wire w � W
unmeasured. Let IC be the ideal functionality for C, as described in Defini-
tion 5.1, and let Π be Protocol 5.6 for a computational-basis measurement on
w. For all sets IA � [k] of corrupted players and all adversaries A that perform
the interactions of players in IA, there exists a simulator S (the complexity of
which scales polynomially in that of the adversary) such that for all environments
E,

∣
∣Pr[1 ← (E � (Π � IC)A)] − Pr[1 ← (E � I ◦C

S)]
∣
∣ � negl (n) .

Proof (sketch). The operation CNOT1,c entangles the data qubit in register M
with a random subset of the trap qubits in register T1, as dictated by c. In step 4
of Protocol 5.6, the MPC checks both for consistency of all the bits entangled by
c (they have to match the measured data) and all the bits that are not entangled
by c (they have to remain zero).

In the full version, we show that checking the consistency of a measurement
outcome after the application of CNOT1,c is as good as measuring the logical
state: any attacker that does not know c will have a hard time influencing the
measurement outcome, as he will have to flip all qubits in positions i for which
ci = 1 without accidentally flipping any of the qubits in positions i for which
ci = 0. See the full version for a full proof that the output state in the real and
simulated case are negligibly close.

5.4 Subprotocol: Decoding

After the players run the computation subprotocols for all gates in the Clifford
circuit, all they need to do is to decode their wires to recover their output. At
this point, there is no need to check the authentication traps publicly: there is
nothing to gain for a dishonest player by incorrectly measuring or lying about
their measurement outcome. Hence, it is sufficient for all (honest) players to
apply the regular decoding procedure for the Clifford code.

Below, we describe the decoding procedure for a single wire held by one of
the players. If there are multiple output wires, then Protocol 5.8 can be run in
parallel for all those wires.

Protocol 5.8 (Decoding). Player i holds an encoding of the state w in
the register MT1. The classical MPC holds the encoding key E in the state
register S.

Secure Multi-party Quantum Computation with a Dishonest Majority 753

1. MPC sends E to player i, removing it from the state register S.
2. Player i applies E to register MT1.
3. Player i measures T1 in the computational basis. If the outcome is not

0n, player i discards M and aborts the protocol.

Lemma 5.9. Let C be a circuit on W wires that leaves a single wire w � W
(intended for player i) unmeasured. Let IC be the ideal functionality for C, as
described in Definition 5.1, and let IMPQC

C be the ideal MPQC functionality for
C, as described in Definition 3.1. Let ΠDec be Protocol 5.8 for decoding wire w.
For all sets IA � [k] of corrupted players and all adversaries A that perform the
interactions of players in IA, there exists a simulator S (the complexity of which
scales polynomially in that of the adversary) such that for all environments E,

Pr[1 ← (E � (ΠDec � IC)A)] = Pr[1 ← (E � IMPQC
C,S)].

Proof (sketch). If player i is honest, then he correctly decodes the state received
from the ideal functionality IC . A simulator would only have to compute the
adversary’s abort bit for IMPQC

C based on whether the adversary decides to abort
in either IC or the MPC computation in ΠDec.

If player i is dishonest, a simulator S runs the adversary on the input state
received from the environment before inputting the resulting state into the ideal
functionality IMPQC

C . The simulator then samples a key for the Clifford code and
encodes the output of IMPQC

C , before handing it back to the adversary. It then
simulates ΠDec by handing the sampled key to the adversary. If the adversary
aborts in one of the two simulated protocols, then the simulator sends abort to
the ideal functionality IMPQC

C .

5.5 Combining Subprotocols

We show in this section how to combine the subprotocols of the previous sections
in order to perform multi-party quantum Clifford computation.

Recalling the notation defined in Definition 3.1, let C be a quantum circuit
on W ∈ N>0 wires, which are partitioned into the players’ input registers plus an
ancillary register, as [W] = Rin

1 �· · ·�Rin
k �Rancilla, and a partition into the players’

output registers plus a register that is discarded at the end of the computation,
as [W] = Rout

1 �· · ·�Rout
k �Rdiscard. We assume that C is decomposed in a sequence

G1, ..., Gm of operations where each Gi is one of the following operations:

– a single-qubit Clifford on some wire j ∈ [M];
– a CNOT on wires j1, j2 ∈ [M] for j1 �= j2;
– a measurement of the qubit on wire j in the computational basis.

In Sects. 4 and 5.1–5.3, we have presented subprotocols for encoding single qubits
and perform these types of operations on single wires. The protocol for all players
to jointly perform the bigger computation C is simply a concatenation of those
smaller subprotocols:

754 Y. Dulek et al.

Protocol 5.10 (Encoding and Clifford+measurement computa-
tion). Let C be a Clifford+measurement circuit composed of the gates
G1, . . . , Gm on wires [W] as described above.

1. For all i ∈ [k] and j ∈ Rin
i , run Protocol 4.2 for the qubit in wire j.

2. For all j ∈ Rancilla, run Protocol 4.2 (with the differences described in
Sect. 4.2).

3. For all j ∈ [m]:
(a) If Gj is a single-qubit Clifford, run Protocol 5.2 for Gj.
(b) If Gj is a CNOT, run Protocol 5.4 for Gj.
(c) If Gj is a computational-basis measurement, run Protocol 5.6 for Gj.

4. For all i ∈ [k] and j ∈ Rout
i , run Protocol 5.8 for the qubit in wire j.

Lemma 5.11. Let ΠCliff be Protocol 5.10, and ICliff be the ideal functionality
described in Definition 3.1 for the special case where the circuit consists of (a
polynomial number of) Cliffords and measurements. For all sets IA � [k] of
corrupted players and all adversaries A that perform the interactions of play-
ers in IA with Π, there exists a simulator S (the complexity of which scales
polynomially in that of the adversary) such that for all environments E,

|Pr[1 ← (E � ΠCliff
A)] − Pr[1 ← (E � ICliff

S)| � negl (n) .

Proof. The proof by induction on m is given in the full version.

6 Protocol: MPQC for General Quantum Circuits

In this section, we show how to lift the MPQC for Clifford operations (as laid
out in Sects. 4 and 5) to MPQC for general quantum circuits.

The main idea is to use magic states for T gates, as described in Sect. 2.5. Our
main difficulty here is that the magic states must be supplied by the possibly
dishonest players themselves. We solve this problem in Sect. 6.1 and then in
Sect. 6.2, we describe the MPQC protocol for universal computation combining
the results from Sects. 5 and 6.1.

6.1 Magic-State Distillation

We now describe a subprotocol that allows the players to create the encoding of
exponentially good magic states, if the players do not abort.

Our subprotocol can be divided into two parts. In the first part, player 1 is
asked to create many magic states, which the other players will test. After this
step, if none of the players abort during the testing, then with high probability
the resource states created by player 1 are at least somewhat good. In the sec-
ond part of the subprotocol, the players run a distillation procedure to further
increase the quality of the magic states.

Secure Multi-party Quantum Computation with a Dishonest Majority 755

Protocol 6.1 (Magic-state creation). Let t be the number of magic
states we wish to create. Let
 := (t + k)n.

1. Player 1 creates
 copies of |T〉 and encodes them separately using Pro-
tocol 4.2 (jointly with the other players).

2. MPC picks random disjoint sets S2, . . . , Sk ⊆ [
] of size n each.
3. For each i ∈ 2, . . . , k, player i decodes the magic states indicated by Si

(see Protocol 5.8), measures in the {|T〉 ,
∣
∣T⊥〉}-basis and aborts if any

outcome is different from |T〉.
4. On the remaining encoded states, the players run Protocol 5.10 for multi-

party computation of Clifford circuits (but skipping the input-encoding
step) to perform the magic-state distillation protocol described in Pro-
tocol 2.8. Any randomness required in that protocol is sampled by the
classical MPC.

We claim that Protocol 6.1 implements the following ideal functionality for
creating t magic states, up to a negligible error:

Definition 6.2 (Ideal functionality for magic-state creation). Let t be
the number of magic states we wish to create. Let IA � [k] be a set of corrupted
players.

1. For every i ∈ IA, player i sends a bit bi to the trusted third party.
(a) If bi = 0 for all i, the trusted third party samples t random (n + 1)-qubit

Clifford Ej for 1 � j � t, and sends Ej(|T〉 ⊗ |0n〉) to Player 1.
(b) Otherwise, the trusted third party sends abort to all players.

2. Store the keys Ej, for 1 � j � t in the state register S of the ideal function-
ality.

Lemma 6.3. Let ΠMS be Protocol 6.1, and IMS be the ideal functionality
described in Definition 6.2. For all sets IA � [k] of corrupted players and all
adversaries A that perform the interactions of players in IA with Π, there exists
a simulator S (the complexity of which scales polynomially in that of the adver-
sary) such that for all environments E,

∣
∣Pr[1 ← (E � ΠMS

A)] − Pr[1 ← (E � IMS
S)

∣
∣ � negl (n) .

We prove this lemma in the full version.

6.2 MPQC Protocol for Universal Quantum Computation

Finally, we present our protocol for some arbitrary quantum computation. For
this setting, we extend the setup of Sect. 5.5 by considering quantum circuits
C = Gm...G1 where Gi can be single-qubit Cliffords, CNOTs, measurements or,
additionally, T gates.

For that, we will consider a circuit C ′ where each gate Gi = T acting on
qubit j is then replaced by the T-gadget presented in Fig. 1, acting on the qubit
j and a fresh new T magic state.

756 Y. Dulek et al.

Protocol 6.4 (Protocol for universal MPQC). Let C be a polynomial-
sized quantum circuit, and t be the number of T-gates in C.

1. Run Protocol 6.1 to create t magic states.
2. Run Protocol 5.10 for the circuit C ′, which is equal to the circuit C,

except each T gate is replaced with the T-gadget from Fig. 1.

Theorem 6.5. Let ΠMPQC be Protocol 6.4, and IMPQC be the ideal functionality
described in Definition 3.1. For all sets IA � [k] of corrupted players and all
adversaries A that perform the interactions of players in IA with Π, there exists a
simulator S (the complexity of which scales polynomially in that of the adversary)
such that for all environments E,

|Pr[1 ← (E � ΠMPQC
A)] − Pr[1 ← (E � IMPQC

S)| � negl (n) .

Proof. Direct from Lemmas 5.11 and 6.3.

6.3 Round Complexity and MPC Calls

Recall that we are assuming access to an ideal (classical) MPC functionality
defined in Definition 2.1. One MPC call can produce outputs to all players
simultaneously. In this section, we analyze the number of rounds of quantum
communication, and the number of calls to the classical MPC. The actual imple-
mentation of the classical MPC is likely to result in additional rounds of classical
communication.

In the way we describe it, Lemma 4.2 encodes a single-qubit input (or an
ancilla |0〉 state) using k rounds of quantum communication and O(1) MPC
calls. Note that this protocol can be run in parallel for all input qubits per
player, simultaneously for all players. Hence, the overall number of communica-
tion rounds for the encoding phase remains k, and the total number of calls to
the MPC is O(w) where w is the total number of qubits.

Lemma 5.2 for single-qubit Cliffords, Lemma 5.6 for measuring in the com-
putational basis and Lemma 5.8 for decoding do not require quantum communi-
cation and use O(1) MPC calls each, whereas Lemma 5.4 for CNOT requires at
most k+2 rounds of quantum communication, and makes O(1) MPC calls. Over-
all, Lemma 5.10 for encoding and Clifford+measurement computation require
O(dk) rounds of quantum communication and O(w+g) calls to the MPC, where
d is the CNOT-depth of the quantum circuit, and g is the total number of gates
in the circuit.

Lemma 6.1 for magic-state creation encodes
 := (t + k)n qubits in paral-
lel using k rounds of quantum communication (which can be done in parallel
with the actual input encoding) and O((t + k)n) MPC calls. Then a circuit
of size pdistill(n) and CNOT-depth ddistill(n) classically controlled Cliffords and
measurements is run on each of the t blocks of n qubits each, which can be
done in parallel for the t blocks, requiring O(k · ddistill(n)) rounds of quantum
communication and O(tn · pdistill(n)) calls to the MPC.

Secure Multi-party Quantum Computation with a Dishonest Majority 757

Eventually, all T-gate operations in the original circuit C are replaced by the
T-gadget from Fig. 1, resulting in one CNOT and classically controlled Cliffords.
Overall, our Lemma 6.4 for universal MPQC requires O(k·(ddistill(n)+d)) rounds
of quantum communication and O(tn · pdistill(n) + w + g) calls to the classical
MPC, where d is the {CNOT,T}-depth of the circuit, w is the total number of
qubits and g is the total number of gates in the circuit.

We notice that instead of evaluating each Clifford operation gate-by-gate, we
could evaluate a general w-qubit Clifford using O(k) rounds of quantum com-
munication, similarly to the CNOT protocol. This could improve the parameter
d to be the T depth of the circuit, at the cost of requiring significantly more
communication per round.

Acknowledgments. We thank Frédéric Dupuis, Florian Speelman, and Serge Fehr
for useful discussions, and the anonymous EUROCRYPT referees for helpful com-
ments and suggestions. CM is supported by an NWO Veni Innovational Research Grant
under project number VI.Veni.192.159. SJ is supported by an NWO WISE Fellowship,
an NWO Veni Innovational Research Grant under project number 639.021.752, and
QuantERA project QuantAlgo 680-91-03. SJ is a CIFAR Fellow in the Quantum Infor-
mation Science Program. CS and CM were supported by a NWO VIDI grant (Project
No. 639.022.519). Part of this work was done while YD, AG and CS were visiting the
Simons Institute for the Theory of Computing.

References

[ABOE10] Aharonov, D., Ben-Or, M., Eban, E.: Interactive proofs for quantum com-
putations. In: ICS 2010 (2010)

[BDOZ11] Bendlin, R., Damg̊ard, I., Orlandi, C., Zakarias, S.: Semi-homomorphic
encryption and multiparty computation. In: Paterson, K.G. (ed.) EURO-
CRYPT 2011. LNCS, vol. 6632, pp. 169–188. Springer, Heidelberg (2011).
https://doi.org/10.1007/978-3-642-20465-4 11

[BK05] Bravyi, S., Kitaev, A.: Universal quantum computation with ideal Clifford
gates and noisy ancillas. Phys. Rev. A 71, 022316 (2005)

[BOCG+06] Ben-Or, M., Crépeau, C., Gottesman, D., Hassidim, A., Smith, A.: Secure
multiparty quantum computation with (only) a strict honest majority. In:
FOCS 2006 (2006)

[BW16] Broadbent, A., Wainewright, E.: Efficient simulation for quantum mes-
sage authentication. In: Nascimento, A.C.A., Barreto, P. (eds.) ICITS 2016.
LNCS, vol. 10015, pp. 72–91. Springer, Cham (2016). https://doi.org/10.
1007/978-3-319-49175-2 4

[CDE+18] Cramer, R., Damg̊ard, I., Escudero, D., Scholl, P., Xing, C.: SPDZ2k : effi-
cient MPC mod 2k for dishonest majority. In: Shacham, H., Boldyreva,
A. (eds.) CRYPTO 2018. LNCS, vol. 10992, pp. 769–798. Springer, Cham
(2018). https://doi.org/10.1007/978-3-319-96881-0 26

[CDG+17] Chase, M., et al.: Post-quantum zero-knowledge and signatures from
symmetric-key primitives. In: CCS 2017 (2017)

[CDN15] Cramer, R., Damg̊ard, I., Nielsen, J.B.: Secure Multiparty Computation
and Secret Sharing. Cambridge University Press, Cambridge (2015)

https://doi.org/10.1007/978-3-642-20465-4_11
https://doi.org/10.1007/978-3-319-49175-2_4
https://doi.org/10.1007/978-3-319-49175-2_4
https://doi.org/10.1007/978-3-319-96881-0_26

758 Y. Dulek et al.

[CGS02] Crépeau, C., Gottesman, D., Smith, A.: Secure multi-party quantum com-
putation. In: STOC 2002 (2002)

[DNS10] Dupuis, F., Nielsen, J.B., Salvail, L.: Secure two-party quantum evaluation
of unitaries against specious adversaries. In: Rabin, T. (ed.) CRYPTO 2010.
LNCS, vol. 6223, pp. 685–706. Springer, Heidelberg (2010). https://doi.org/
10.1007/978-3-642-14623-7 37

[DNS12] Dupuis, F., Nielsen, J.B., Salvail, L.: Actively secure two-party evaluation
of any quantum operation. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO
2012. LNCS, vol. 7417, pp. 794–811. Springer, Heidelberg (2012). https://
doi.org/10.1007/978-3-642-32009-5 46

[DPSZ12] Damg̊ard, I., Pastro, V., Smart, N., Zakarias, S.: Multiparty computation
from somewhat homomorphic encryption. In: Safavi-Naini, R., Canetti, R.
(eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 643–662. Springer, Heidelberg
(2012). https://doi.org/10.1007/978-3-642-32009-5 38

[IKOS09] Ishai, Y., Kushilevitz, E., Ostrovsky, R., Sahai, A.: Zero-knowledge proofs
from secure multiparty computation. SIAM J. Comput. 39(3), 1121–1152
(2009)

[KMW17] Kashefi, E., Music, L., Wallden, P.: The quantum cut-and-choose technique
and quantum two-party computation. arXiv preprint arXiv:1703.03754
(2017)

[KOS16] Keller, M., Orsini, E., Scholl, P.: MASCOT: faster malicious arithmetic
secure computation with oblivious transfer. In: CCS 2016 (2016)

[KP17] Kashefi, E., Pappa, A.: Multiparty delegated quantum computing. Cryp-
tography 1(2), 12 (2017)

[KPR18] Keller, M., Pastro, V., Rotaru, D.: Overdrive: making SPDZ great again.
In: Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT 2018. LNCS, vol. 10822,
pp. 158–189. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-
78372-7 6

[Yao82] Yao, A.C.-C.: Protocols for secure computations (extended abstract). In:
FOCS 1982 (1982)

https://doi.org/10.1007/978-3-642-14623-7_37
https://doi.org/10.1007/978-3-642-14623-7_37
https://doi.org/10.1007/978-3-642-32009-5_46
https://doi.org/10.1007/978-3-642-32009-5_46
https://doi.org/10.1007/978-3-642-32009-5_38
http://arxiv.org/abs/1703.03754
https://doi.org/10.1007/978-3-319-78372-7_6
https://doi.org/10.1007/978-3-319-78372-7_6

Efficient Simulation of Random States
and Random Unitaries

Gorjan Alagic1,2(B), Christian Majenz3,4(B), and Alexander Russell5

1 QuICS, University of Maryland, College Park, MD, USA
galagic@gmail.com

2 NIST, Gaithersburg, MD, USA
3 QuSoft, Amsterdam, The Netherlands

4 Centrum Wiskunde & Informatica, Amsterdam, The Netherlands
christian.majenz@cwi.nl

5 Department of Computer Science and Engineering,
University of Connecticut, Storrs, CT, USA

acr@cse.uconn.edu

Abstract. We consider the problem of efficiently simulating random
quantum states and random unitary operators, in a manner which is
convincing to unbounded adversaries with black-box oracle access.

This problem has previously only been considered for restricted adver-
saries. Against adversaries with an a priori bound on the number of
queries, it is well-known that t-designs suffice. Against polynomial-time
adversaries, one can use pseudorandom states (PRS) and pseudorandom
unitaries (PRU), as defined in a recent work of Ji, Liu, and Song; unfor-
tunately, no provably secure construction is known for PRUs.

In our setting, we are concerned with unbounded adversaries.
Nonetheless, we are able to give stateful quantum algorithms which sim-
ulate the ideal object in both settings of interest. In the case of Haar-
random states, our simulator is polynomial-time, has negligible error,
and can also simulate verification and reflection through the simulated
state. This yields an immediate application to quantum money: a money
scheme which is information-theoretically unforgeable and untraceable.
In the case of Haar-random unitaries, our simulator takes polynomial
space, but simulates both forward and inverse access with zero error.

These results can be seen as the first significant steps in developing a
theory of lazy sampling for random quantum objects.

1 Introduction

1.1 Motivation

Efficient simulation of randomness is a task with countless applications, ranging
from cryptography to derandomization. In the setting of classical probabilistic
computation, such simulation is straightforward in many settings. For example, a
random function which will only be queried an a priori bounded number of times
t can be perfectly simulated using a t-wise independent function [30]. In the case
of unbounded queries, one can use pseudorandom functions (PRFs), provided
c© International Association for Cryptologic Research 2020
A. Canteaut and Y. Ishai (Eds.): EUROCRYPT 2020, LNCS 12107, pp. 759–787, 2020.
https://doi.org/10.1007/978-3-030-45727-3_26

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-45727-3_26&domain=pdf
https://doi.org/10.1007/978-3-030-45727-3_26

760 G. Alagic et al.

the queries are made by a polynomial-time algorithm [16]. These are examples
of stateless simulation methods, in the sense that the internal memory of the
simulator is initialized once (e.g., with the PRF key) and then remains fixed
regardless of how the simulator is queried. Against arbitrary adversaries, one
must typically pass to stateful simulation. For example, the straightforward and
well-known technique of lazy sampling suffices to perfectly simulate a random
function against arbitrary adversaries; however, the simulator must maintain a
list of responses to all previous queries.

Each of these techniques for simulating random classical primitives has a
plethora of applications in theoretical cryptography, both as a proof tool and for
cryptographic constructions. These range from constructing secure cryptosys-
tems for encryption and authentication, to proving security reductions in a wide
range of settings, to establishing security in idealized models such as the Random
Oracle Model [7].

Quantum randomness. As is well-known, quantum sources of randomness
exhibit dramatically different properties from their classical counterparts [8,23].
Compare, for example, uniformly random n-bit classical states (i.e., n-bit strings)
and uniformly random n-qubit (pure) quantum states. A random string x is
obviously trivial to sample perfectly given probabilistic classical (or quantum)
computation, and can be copied and distributed arbitrarily. However, it is also
(just as obviously) deterministic to all parties who have examined it before. By
contrast, a random state |ϕ〉 would take an unbounded amount of information
to describe perfectly. Even if one manages to procure such a state, it is then
impossible to copy due to the no-cloning theorem. On the other hand, parties
who have examined |ϕ〉 many times before, can still extract almost exactly n
bits of randomness from any fresh copy of |ϕ〉 they receive – even if they use the
exact same measurement procedure each time.

The differences between random classical and random quantum maps are
even more stark. The outputs of a classical random function are of course classical
random strings, with all of the aforementioned properties. Outputs which have
already been examined become effectively deterministic, while the rest remain
uniformly random and independent. This is precisely what makes efficient sim-
ulation possible via lazy sampling. A Haar-random unitary U queried on two
inputs |ψ〉 and |φ〉 also produces (almost) independent and uniformly random
states when queried, but only if the queries are orthogonal, i.e., 〈ψ | φ〉 = 0.
Unitarity implies that overlapping queries must be answered consistently, i.e.,
if 〈ψ | φ〉 = δ then 〈(Uψ) | (Uφ)〉 = δ. This possibility of querying with a dis-
tinct pure state which is not linearly independent from previous queries simply
doesn’t exist for classical functions.

We emphasize that the above differences should not be interpreted as quan-
tum random objects simply being “stronger” than their classical counterparts.
In the case of classical states, i.e. strings, the ability to copy is quite useful,
e.g., in setting down basic security definitions [2,3,9] or when rewinding an algo-
rithm [14,28,29]. In the case of maps, determinism is also quite useful, e.g., for
verification in message authentication.

Efficient Simulation of Random States and Random Unitaries 761

1.2 The Problem: Efficient Simulation

Given the dramatic differences between classical and quantum randomness, and
the usefulness of both, it is reasonable to ask if there exist quantum analogues
of the aforementioned efficient simulators of classical random functions. In fact,
given the discussion above, it is clear that we should begin by asking if there
even exist efficient simulators of random quantum states.

Simulating random states. The first problem of interest is thus to efficiently
simulate the following ideal object: an oracle IS(n) which contains a description
of a perfectly Haar-random n-qubit pure state |ϕ〉, and which outputs a copy of
|ϕ〉 whenever it is invoked. We first make an obvious observation: the classical
analogue, which is simply to generate a random bitstring x ← {0, 1}n and then
produce a copy whenever asked, is completely trivial. In the quantum case,
efficient simulation is only known against limited query algorithms (henceforth,
adversaries.)

If the adversary has an a priori bound on the number of queries, then state
t-designs suffice. These are indexed families {|ϕk,t〉 : k ∈ Kt} of pure states
which perfectly emulate the standard uniform “Haar” measure on pure states,
up to the first t moments. State t-designs can be sampled efficiently, and thus
yield a stateless simulator for this case [5]. A recent work of Ji, Liu and Song
considered the case of polynomial-time adversaries [18]. They defined a notion
of pseudorandom states (PRS), which appear Haar-random to polynomial-time
adversaries who are allowed as many copies of the state as they wish. They also
showed how to construct PRS efficiently, thus yielding a stateless simulator for
this class of constrained adversaries [18]; see also [10].

The case of arbitrary adversaries is, to our knowledge, completely unex-
plored. In particular, before this work it was not known whether simulating
IS(n) against adversaries with no a priori bound on query or time complexity
is possible, even if given polynomial space (in n and the number of queries)
and unlimited time. Note that, while the state family constructions from [10,18]
could be lifted to the unconditional security setting by instantiating them with
random instead of pseudorandom functions, this would require space exponential
in n regardless of the number of queries.

Simulating random unitaries. In the case of simulating random unitaries,
the ideal object is an oracle IU (n) which contains a description of a perfectly
Haar-random n-qubit unitary operator U , and applies U to its input whenever
it is invoked. The classical analogue is the well-known Random Oracle, and can
be simulated perfectly using the aforementioned technique of lazy sampling. In
the quantum case, the situation is even less well-understood than in the case of
states.

For the case of query-limited adversaries, we can again rely on design tech-
niques: (approximate) unitary t-designs can be sampled efficiently, and suffice for
the task [11,21]. Against polynomial-time adversaries, Ji, Liu and Song defined

762 G. Alagic et al.

the natural notion of a pseudorandom unitary (or PRU) and described candi-
date constructions [18]. Unfortunately, at this time there are no provably secure
constructions of PRUs. As in the case of states, the case of arbitrary adversaries
is completely unexplored. Moreover, one could a priori plausibly conjecture that
simulating IU might even be impossible. The no-cloning property seems to rule
out examining input states, which in turn seems to make it quite difficult for a
simulator to correctly identify the overlap between multiple queries, and then
answer correspondingly.

Extensions. While the above problems already appear quite challenging, we
mention several natural extensions that one might consider. First, for the case of
repeatedly sampling a random state |ϕ〉, one would ideally want some additional
features, such as the ability to apply the two-outcome measurement {|ϕ〉〈ϕ|,1−
|ϕ〉〈ϕ|} (verification) or the reflection 1− 2|ϕ〉〈ϕ|. In the case of pseudorandom
simulation, these additional features can be used to create a (computationally
secure) quantum money scheme [18]. For the case of simulating random unitaries,
we might naturally ask that the simulator for a unitary U also has the ability to
respond to queries to U−1 = U†.

1.3 This Work

In this work, we make significant progress on the above problems, by giving the
first simulators for both random states and random unitaries, which are convinc-
ing to arbitrary adversaries. We also give an application of our sampling ideas:
the construction of a new quantum money scheme, which provides information-
theoretic security guarantees against both forging and tracing.

We begin by remarking that our desired simulators must necessarily be
stateful, for both states and unitaries. Indeed, since approximate t-designs have
Ω((22n/t)2t) elements (see, e.g., [25] which provides a more fine-grained lower
bound), a stateless approach would require superpolynomial space simply to
store an index from a set of size Ω((22n/t(n))2t(n)) for all polynomials t(n).

In the following, we give a high-level overview of our approach for each of
the two simulation problems of interest.

Simulating random states. As discussed above, we wish to construct an
efficient simulator ES(n) for the ideal oracle IS(n). For now we focus on simu-
lating the procedure which generates copies of the fixed Haar-random state; we
call this IS(n).Gen. We first note that the mixed state observed by the adversary
after t queries to IS(n).Gen is the expectation of the projector onto t copies of
|ψ〉. Equivalently, it is the (normalized) projector onto the symmetric subspace
Symn,t of (C2n

)⊗t:

τt = Eψ∼Haar|ψ〉〈ψ|⊗t ∝ ΠSymtC2n . (1)

Recall that Symn,t is the subspace of (C2n

)⊗t of vectors which are invariant
under permutations of the t tensor factors. Our goal will be to maintain an

Efficient Simulation of Random States and Random Unitaries 763

entangled state between the adversary A and our oracle simulator ES such that
the reduced state on the side of A is τt after t queries. Specifically, the joint
state will be the maximally entangled state between the Symn,t subspace of the
t query output registers received by A, and the Symn,t subspace of t registers
held by ES. If we can maintain this for the first t queries, then it’s not hard to
see that there exists an isometry V t→t+1 which, by acting only on the state of
ES, implements the extension from the t-fold to the (t + 1)-fold joint state.

The main technical obstacle, which we resolve, is showing that V t→t+1 can be
performed efficiently. To achieve this, we develop some new algorithmic tools for
working with symmetric subspaces, including an algorithm for coherent prepa-
ration of its basis states. We let A denote an n-qubit register, Aj its indexed
copies, and At = A1 · · · At t-many indexed copies (and likewise for B.) We also
let {|Sym(α)〉 : α ∈ S↑

n,t} denote a particular orthonormal basis set for Symn,t,
indexed by some set S↑

n,t (see Sect. 3 for definitions of these objects.)

Theorem 1. For each n and t, there exists a polynomial-time quantum algo-
rithm which implements an isometry V = V t→t+1 from Bt to At+1B

t+1 such
that, up to negligible trace distance,

(1At ⊗ V)
∑

α∈S↑
n,t

|Sym(α)〉At |Sym(α)〉Bt =
∑

β∈S↑
n,t+1

|Sym(β)〉At+1 |Sym(β)〉Bt+1 .

Above, V is an operator defined to apply to a specific subset of registers
of a state. When no confusion can arise, in such settings we will abbreviate
1 ⊗ V —the application of this operator on the entire state—as simply V .

It will be helpful to view V t→t+1 as first preparing |0n〉At+1 |0n〉Bt+1 and
then applying a unitary U t→t+1 on At+1B

t+1. Theorem 1 then gives us a way
to answer Gen queries efficiently, as follows. For the first query, we prepare a
maximally entangled state |φ+〉A1B1 across two n-qubit registers A1 and B1,
and reply with register A1. Note that Symn,1 = C

2n

. For the second query, we
prepare two fresh registers A2 and B2, both in the |0n〉 state, apply U1→2 on
A2B1B2, return A2, and keep B1B2. For the t-th query, we proceed similarly,
preparing fresh blank registers At+1Bt+1, applying U t→t+1, and then outputting
the register At+1.

With this approach, as it turns out, there is also a natural way to respond
to verification queries Ver and reflection queries Reflect. The ideal functionality
IS.Ver is to apply the two-outcome measurement {|ϕ〉〈ϕ|,1 − |ϕ〉〈ϕ|} corre-
sponding to the Haar-random state |ϕ〉. To simulate this after producing t sam-
ples, we apply the inverse of U t−1→t, apply the measurement {|02n〉〈02n|,1 −
|02n〉〈02n|} to AtBt, reapply U t−1→t, and then return At together with the mea-
surement outcome (i.e., yes/no). For IS.Reflect, the ideal functionality is to
apply the reflection 1− 2|ϕ〉〈ϕ| through the state. To simulate this, we perform
a sequence of operations analogous to Ver, but apply a phase of −1 on the |02n〉
state of AtBt instead of measuring.

Our main result on simulating random states is to establish that this col-
lection of algorithms correctly simulates the ideal object IS, in the following
sense.

764 G. Alagic et al.

Theorem 2. There exists a stateful quantum algorithm ES(n, ε) which runs in
time polynomial in n, log(1/ε), and the number of queries q submitted to it, and
satisfies the following. For all oracle algorithms A,

∣∣∣Pr
[
AIS(n) = 1

]
− Pr

[
AES(n,ε) = 1

]∣∣∣ ≤ ε.

A complete description of our construction, together with the proofs of
Theorems 1 and 2, are given in Sect. 3.

We remark that, if one can give a certain mild a-priori bound on the number of
queries that will be made to the state sampler, an alternative construction1 based
on the compressed oracle technique of Zhandry [31] and the aforementioned
work by Ji, Liu and Song [18] becomes possible. We describe this construction
in Sect. 3.3.

Application: untraceable quantum money. To see that the efficient state
sampler leads to a powerful quantum money scheme, consider building a scheme
where the bank holds the ideal object IS. The bank can mint bills by IS.Gen,
and verify them using IS.Ver. As each bill is guaranteed to be an identical and
Haar-random state, it is clear that this scheme should satisfy perfect unforge-
ability and untraceability, under quite strong notions of security.

By Theorem 7, the same properties should carry over for a money scheme
built on ES, provided ε is sufficiently small. We call the resulting scheme Haar
money. Haar money is an information-theoretically secure analogue of the scheme
of [18], which is based on pseudorandom states. We remark that our scheme
requires the bank to have quantum memory and to perform quantum communi-
cation with the customers. However, given that quantum money already requires
customers to have large-scale, high-fidelity quantum storage, these additional
requirements seem reasonable.

The notions of correctness and unforgeability (often called completeness and
soundness) for quantum money are well-known (see, e.g., [1].) Correctness asks
that honestly generated money schemes should verify, i.e., Ver(Mint) should
always accept. Unforgeability states that an adversary with k bills and oracle
access to Ver should not be able to produce a state on which Ver⊗k+1 accepts.
In this work, we consider untraceable quantum money (also called “quantum
coins” [24].) We give a formal security definition for untraceability, which states
that an adversary A with oracle access to Ver and Mint cannot do better than
random guessing in the following experiment:

1. A outputs some candidate bill registers {Mj} and a permutation π;
2. b ← {0, 1} is sampled, and if b = 1 the registers {Mj} are permuted by π;

each candidate bill is verified and the failed ones are discarded;
3. A receives the rest of the bills and the entire internal state of the bank, and

outputs a guess b′ for b.

Theorem 3. The Haar money scheme HM, defined by setting
1 We thank Zvika Brakerski for pointing out this alternative approach.

Efficient Simulation of Random States and Random Unitaries 765

1. HM.Mint = ES(n, negl(n)).Gen
2. HM.Ver = ES(n, negl(n)).Ver

is a correct quantum money scheme which satisfies information-theoretic
unforgeability and untraceability.

One might reasonably ask if there are even stronger definitions of security for
quantum money. Given its relationship to the ideal state sampler, we believe that
Haar money should satisfy almost any notion of unforgeability and untraceabil-
ity, including composable notions. We also remark that, based on the structure
of the state simulator, which maintains an overall pure state supported on two
copies of the symmetric subspace of banknote registers, it is straightforward to
see that the scheme is also secure against an “honest but curious” or “specious”
[15,26] bank. We leave the formalization of these added security guarantees to
future work.

Sampling Haar-random unitaries. Next, we turn to the problem of simulat-
ing Haar-random unitary operators. In this case, the ideal object IU(n) initially
samples a description of a perfectly Haar-random n-qubit unitary U , and then
responds to two types of queries: IU.Eval, which applies U , and IU.Invert, which
applies U†. In this case, we are able to construct a stateful simulator that runs
in space polynomial in n and the number of queries q, and is exactly indistin-
guishable from IU(n) to arbitrary adversaries. Our result can be viewed as a
polynomial-space quantum analogue of the classical technique of lazy sampling
for random oracles.

Our high-level approach is as follows. For now, suppose the adversary A only
makes parallel queries to Eval. If the query count t of A is a priori bounded,
we can simply sample an element of a unitary t-design. We can also do this
coherently: prepare a quantum register I in uniform superposition over the index
set of the t-design, and then apply the t-design controlled on I. Call this efficient
simulator EUt. Observe that the effect of t parallel queries is just the application
of the t-twirling channel T (t) to the t input registers [11], and that EUt simulates
T (t) faithfully. What is more, it applies a Stinespring dilation2 [27] of T (t) with
dilating register I.

Now suppose A makes an “extra” query, i.e., query number t+1. Consider an
alternative Stinespring dilation of T (t), namely the one implemented by EUt+1

when queried t times. Recall that all Stinespring dilations of a quantum channel
are equivalent, up to a partial isometry on the dilating register. It follows that
there is a partial isometry, acting on the private space of EUt, that transforms
the dilation of T (t) implemented by EUt into the dilation of T (t) implemented
by EUt+1. If we implement this transformation, and then respond to A as pre-
scribed by EUt+1, we have achieved perfect indistinguishability against the addi-
tional query. By iterating this process, we see that the a priori bound on the
2 The Stinespring dilation of a quantum channel is an isometry with the property that

the quantum channel can be implemented by applying the isometry and subsequently
discarding an auxiliary register.

766 G. Alagic et al.

number of queries is no longer needed. We let EU denote the resulting simulator.
The complete construction is described in Construction 4 below.

Our high-level discussion above did not take approximation into account.
All currently known efficient constructions of t-designs are approximate. Here,
we take a different approach: we will implement our construction using exact
t-designs. This addresses the issue of adaptive queries: if there exists an
adaptive-query distinguisher with nonzero distinguishing probability, then by
post-selection there also exists a parallel-query one via probabilistic telepor-
tation. This yields that the ideal and efficient unitary samplers are perfectly
indistinguishable to arbitrary adversaries.

Theorem 4. For all oracle algorithms A, Pr
[
AIU(n) = 1

]
= Pr

[
AEU(n) = 1

]
.

The existence of exact unitary t-designs for all t is a fairly recent result. It
follows as a special case of a result of Kane [19], who shows that designs exist for
all finite-dimensional vector spaces of well-behaved functions on path-connected
topological spaces. He also gives a simpler result for homogeneous spaces when
the vector space of functions is invariant under the symmetry group action. Here,
the number of elements of the smallest design is bounded just in terms of the
dimension of the space of functions. The unitary group is an example of such a
space, and the dimension of the space of homogeneous polynomials of degree t in
both U and U† can be explicitly derived, see e.g. [25]. This yields the following.

Corollary 1. The space complexity of EU(n) for q queries is bounded from above
by 2q(2n + log e) + O(log q).

An alternative approach. We now sketch another potential approach to lazy
sampling of unitaries. Very briefly, this approach takes a representation-theoretic
perspective and suggests that the Schur transform [6] could lead to a polynomial-
time algorithm for lazy sampling Haar-random unitaries. The discussion below
uses tools and language from quantum information theory and the representation
theory of the unitary and symmetric groups to a much larger extent than the
rest of the article, and is not required for understanding our main results.

We remark that the analogous problem of lazy sampling a quantum oracle
for a random classical function was recently solved by Zhandry [31]. One of the
advantages of Zhandry’s technique is that it partly recovers the ability to inspect
previously made queries, an important feature of classical lazy sampling. The key
insight is that the simulator can implement the Stinespring dilation of the oracle
channel, and thus record the output of the complementary channel.3 As the
classical function is computed via XOR, changing to the Z

n
2 -Fourier basis makes

the recording property explicit. It also allows for an efficient implementation.
In the case of Haar-random unitary oracles, we can make an analogous obser-

vation. Consider an algorithm that makes t parallel queries to U . The relevant
Fourier transform is now over the unitary group, and is given by the Schur
3 The complementary channel of a quantum channel maps the input to the auxiliary

output of the Stinespring dilation isometry.

Efficient Simulation of Random States and Random Unitaries 767

transform [6]. By Schur-Weyl duality (see e.g. [13]), the decomposition of
(
C

2n)⊗t

into irreducible representations is given by
(
C

d
)⊗t ∼=

⊕

λ�dt

[λ] ⊗ Vλ,d. (2)

Here λ
d t means λ is any partition of t into at most d parts, [λ] is the Specht
module of St, and Vλ,d is the Weyl module of U(d), corresponding to the partition
λ, respectively. By Schur’s lemma, the t-twirling channel acts as

T (t) =
⊕

λ�dt

id[λ] ⊗ ΛVλ,d
, (3)

where id is the identity channel, and Λ = Tr(·)τ with the maximally mixed state
τ is the depolarizing channel. We therefore obtain a Stinespring dilation of the
t-twirling channel as follows. Let B̃, B̃′ be registers with Hilbert spaces

HB̃ = HB̃′ =
⊗

λ�dt

Vλ,d (4)

and denote the subregisters by B̃λ and B̃′
λ, respectively. Let further |φ+〉B̃B̃′

be the standard maximally entangled state on these registers, and let C be a
register whose dimension is the number of partitions of t (into at most 2n parts).
Define the isometry

V̂AtB̃→AtB̃C =
⊕

λ�dt

FVλ,dB̃λ
⊗ I[λ] ⊗ |λ〉C (5)

In the above equation Vλ,d and [λ] are understood to be subspaces of At, the
identity operators on B̃μ, μ �= λ are omitted and F is the swap operator. By (3),
a Stinespring dilation of the t-twirling channel is then given by

VAt→AtB̃B̃′C = V̂AtB̃→AtB̃C |φ+〉B̃B̃′ . (6)

By the equivalence of all Stinespring dilations, the exists an isometry WB̂t→B̃B̃′C
that transforms the state register of EU(n) after t parallel queries so that the
global state is the same as if the Stinespring dilation above had been applied to
the t input registers. But now the quantum information that was contained in
the subspace Vλ,d of the algorithm’s query registers can be found in register B̃λ.

1.4 Organization

The remainder of the paper is organized as follows. In Sect. 2, we recall some basic
notation and facts, and some lemmas concerning coherent preparation of certain
generic families of quantum states. The proofs for these lemmas are given in the
full version [4]. We also describe stateful machines, which will be our model for
thinking about the aforementioned ideal objects and their efficient simulators. In
Sect. 3 we describe our efficient simulator for Haar-random states, and in Sect. 4
we describe our polynomial-space simulator for Haar-random unitaries. We end
by describing the Haar money scheme and establishing its security in Sect. 5.

768 G. Alagic et al.

2 Preliminaries

Given a fixed-size (e.g., n-qubit) register A, we will use A1, A2, . . . to denote
indexed copies of A. We will use At to denote a register consisting of t indexed
copies of A, i.e., At = A1A2 · · · At. Unless stated otherwise, distances of quantum
states are measured in the trace distance, i.e., d(ρ, σ) = 1

2‖ρ−σ‖1 where ‖X‖1 =
Tr

[√
X†X

]
. Distances of unitary operators are measured in the operator norm.

We will frequently apply operators to some subset of a larger collection of
registers. In that context, we will use register indexing to indicate which registers
are being acted upon, and suppress identities to simplify notation. The register
indexing will also be suppressed when it is clear from context. For example, given
an operator XA→B and some state ρ on registers A and C, we will write X(ρ)
in place of (X ⊗ 1C)(ρ) to denote the state on BC resulting from applying X
to the A register of ρ.

We let |φ+〉AA′ denote the maximally entangled state on registers A and A′.
For a linear operator X and some basis choice, we denote its transpose by XT .

Lemma 1 (Mirror lemma; see, e.g., [22]). For XA→B a linear operator,

XA→B |φ+〉AA′ =

√
dim(B)
dim(A)

XT
B′→A′ |φ+〉BB′ .

2.1 Unitary Designs

Let μn be the Haar measure on the unitary group U(2n). We define the Haar
t-twirling channel T (t)

Haar by

T (t)
Haar(X) =

∫

U(2n)

U⊗tX
(
U⊗t

)† dμ(U). (7)

For a finite subset D ⊂ U(2n), we define the t-twirling map with respect to D
as

T (t)
D (X) =

1
|D|

∑

U∈D

U⊗tX
(
U⊗t

)†
. (8)

An n-qubit unitary t-design is a finite set D ⊂ U(2n) such that

T (t)
D = T (t)

Haar(X) (9)

Another twirling channel is the mixed twirling channels with � applications
of the unitary and t − � applications of it’s inverse,

T (�,t−�)
Haar (Γ) =

∫

U(2n)

U⊗� ⊗
(
U⊗(t−�)

)†
Γ

(
U⊗�

)† ⊗ U⊗(t−�)dμ(U). (10)

The mixed twirling channel T (�,t−�)
D for a finite set D ⊂ U(2n) is also defined

analogous to Eq. (8). As our definition of unitary t-designs is equivalent to one
based on the expectation values of polynomials (see, e.g., [21]), we easily obtain
the following.

Efficient Simulation of Random States and Random Unitaries 769

Proposition 1. Let D be an n-qubit unitary t-design and 0 ≤ � ≤ t. Then

T (�,t−�)
Haar = T (�,t−�)

D (11)

Finite exact unitary t-designs exist. In particular, one can apply the following
theorem to obtain an upper bound on their minimal size. Here, a design for a
function space W on a topological space X with measure μ is a finite set D ⊂ X
such that the expectation of a function f ∈ W is the same whether it is taken
over X according to μ or over the uniform distribution on D.

Theorem 5 ([19], Theorem 10). Let X be a homogeneous space, μ an invari-
ant measure on X and W a M -dimensional vector subspace of the space of real
functions on X that is invariant under the symmetry group of X, where M > 1.
Then for any N > M(M − 1), there exists a W -design for X of size N . Fur-
thermore, there exists a design for X of size at most M(M − 1).

The case of unitary t-designs is the one where X = U(2n) is acting on itself (e.g.,
on the left), μ is the Haar measure, and W is the vector space of homogeneous
polynomials of degree t in both U and U†4. The dimension of this space is

Mt =
(

22n + t − 1
t

)2

≤
(

e(22n + t − 1)
t

)t

, (12)

see e.g. [25]. We therefore get

Corollary 2. For all n, there exists an exact n-qubit unitary t-design with a
number of elements which is at most

(
e(22n + t − 1)

t

)2t

.

2.2 Real and Ideal Stateful Machines

We will frequently use stateful algorithms with multiple “interfaces” which allow
a user to interact with the algorithm. We will refer to such objects as stateful
machines. We will use stateful machines to describe functionalities (and imple-
mentations) of collections of oracles which relate to each other in some way.
For example, one oracle might output a fixed state, while another oracle reflects
about that state.

Definition 1 (Stateful machine). A stateful machine S consists of:

– A finite set Λ, whose elements are called interfaces. Each interface I ∈ Λ has
two fixed parameters nI ∈ N (input size) and mI ∈ N (output size), and a
variable tI initialized to 1 (query counter.)

4 The output of the twirling channel (7) is a matrix of such polynomials.

770 G. Alagic et al.

– For each interface I ∈ Λ, a sequence of quantum algorithms {S.Ij : j =
1, 2, . . . }. Each S.Ij has an input register of nI qubits, an output register
of mI qubits, and is allowed to act on an additional shared work register
R (including the ability to add/remove qubits in R.) In addition, each S.Ij

increments the corresponding query counter tI by one.

The typical usage of a stateful machine S is as follows. First, the work register
R is initialized to be empty, i.e., no qubits. After that, whenever a user invokes
an interface S.I and supplies nI qubits in an input register M , the algorithm
S.ItI is invoked on registers M and R. The contents of the output register are
returned to the user, and the new, updated work register remains for the next
invocation. We emphasize that the work register is shared between all interfaces.

We remark that we will also sometimes define ideal machines, which behave
outwardly like a stateful machine but are not constrained to apply only maps
which are implementable in finite space or time. For example, an ideal machine
can have an interface that implements a perfectly Haar-random unitary U , and
another interface which implements U†.

2.3 Some State Preparation Tools

We now describe some algorithms for efficient coherent preparation of certain
quantum state families. The proofs for the following lemmas can be found in the
full version [4]. We begin with state families with polynomial support.

Lemma 2. Let |ϕ〉 =
∑

x∈{0,1}n ϕ(x)|x〉 be a family of quantum states whose
amplitudes ϕ have an efficient classical description ϕ̃, and such that |{x : ϕ(x) �=
0}| ≤ poly(n). Then there exists a quantum algorithm P which runs in time
polynomial in n and log(1/ε) and satisfies ‖P|ϕ̃〉|0n〉 − |ϕ̃〉|ϕ〉‖2 ≤ ε.

Given a set S ⊂ {0, 1}n, we let

|S〉 :=
1√
|S|

∑

x∈S

|x〉 and |S̄〉 :=
1√

2n − |S|
∑

x∈{0,1}\S

|x〉

denote the states supported only on S and its set complement S̄, respectively.
Provided that S has polynomial size, we can perform coherent preparation of
both state families efficiently: the former by Lemma 2 and the latter via the
below.

Lemma 3. Let S ⊂ {0, 1}n be a family of sets of size poly(n) with efficient
description S̃, and let ε > 0. There exists a quantum algorithm P which runs in
time polynomial in n and log(1/ε) and satisfies

∥∥∥P|S̃〉A|0n〉B − |S̃〉A|S̄〉B

∥∥∥
2

≤ ε.

Finally, we show that if two orthogonal quantum states can be prepared,
then so can an arbitrary superposition of the two.

Efficient Simulation of Random States and Random Unitaries 771

Lemma 4. Let |ζ0,j〉, |ζ1,j〉 be two familes of n-qubit quantum states such that
〈ζ0,j | ζ1,j〉 = 0 for all j, and such that there exists a quantum algorithm Pb which
runs in time polynomial in n and log(1/ε) and satisfies ‖Pb|j〉|0n〉−|j〉|ζb,j〉‖2 ≤ ε
for b ∈ {0, 1}.

For z0, z1 ∈ C such that |z0|2 + |z1|2 = 1, let z̃ denote a classical description
of (z0, z1) to precision at least ε. There exists a quantum algorithm Q which runs
in time polynomial in n and log(1/ε) and satisfies

∥∥Q|j〉|z̃〉|0n〉 − |j〉|z̃〉
(
z0|ζ0,j〉 + z1|ζ1,j〉

)∥∥
2

≤ ε. (13)

3 Simulating a Haar-Random State Oracle

3.1 The Problem, and Our Approach

We begin by defining the ideal object we’d like to emulate. Here we deviate
slightly from the discussion above, in that we ask for the reflection oracle to also
accept a (quantum) control bit.

Construction 1 (Ideal state sampler). The ideal n-qubit state sampler is an
ideal machine IS(n) with interfaces (Init,Gen,Ver,CReflect), defined as follows.

1. IS(n).Init: takes no input; samples a description ϕ̃ of an n-qubit state |ϕ〉
from the Haar measure.

2. IS(n).Gen: takes no input; uses ϕ̃ to prepare a copy of |ϕ〉 and outputs it.
3. IS(n).Ver: receives n-qubit input; uses ϕ̃ to apply the measurement {|ϕ〉〈ϕ|,

1−|ϕ〉〈ϕ|}; return the post-measurement state and output acc in the first case
and rej in the second.

4. IS(n).CReflect: receives (n + 1)-qubit input; uses ϕ̃ to implement the con-
trolled reflection Rϕ := |0〉〈0| ⊗ 1 + |1〉〈1| ⊗ (1 − 2 |ϕ〉〈ϕ|) about |ϕ〉.

We assume that Init is called first, and only once; the remaining oracles can
then be called indefinitely many times, and in any order. If this is inconvenient
for some application, one can easily adjust the remaining interfaces to invoke
Init if that has not been done yet. We remark that Ver can be implemented with
a single query to CReflect.

Lemma 5. Ver can be simulated with one application of CReflect.

Proof. Prepare an ancilla qubit in the state |+〉 and apply reflection on the
input controlled on the ancilla. Then apply H to the ancilla qubit and measure
it. Output all the qubits, with the ancilla interpreted as 1 = acc and 0 = rej. ��

Our goal is to devise a stateful simulator for Construction 1 which is efficient.
Efficient here means that, after t total queries to all interfaces (i.e., Init, Gen, Ver,
and CReflect), the simulator has expended time polynomial in n, t, and log(1/ε).

As described in Sect. 1.3, our approach will be to ensure that, for every t, the
state shared between the adversary A and our stateful oracle simulator ES will
be maximally entangled between two copies of the t-fold symmetric subspace

772 G. Alagic et al.

Symn,t: one held by A, and the other by ES. The extension from the t-fold to
the (t + 1)-fold joint state will be performed by an isometry V t→t+1 which acts
only on the state of ES and two fresh n-qubit registers At+1 and Bt+1 initialized
by ES. After V is applied, At+1 will be given to A. As we will show, V can be
performed efficiently using some algorithmic tools for working with symmetric
subspaces, which we will develop in the next section. This will yield an efficient
way of simulating Gen. Simulation of Ver and CReflect will follow without much
difficulty, as outlined in Sect. 1.3.

3.2 Some Tools for Symmetric Subspaces

A basis for the symmetric subspace. We recall an explicit orthonormal
basis of the symmetric subspace (see, e.g., [18] or [17].) Let

S↑
n,t =

{
α ∈ ({0, 1}n)t

∣∣∣α1 ≤ α2 ≤ ... ≤ αt

}
(14)

be the set of lexicographically-ordered t-tuples of n bit strings. For each α ∈ S↑
n,t,

define the unit vector

|Sym(α)〉 =

⎛

⎝t!
∏

x∈{0,1}n

fx(α)!

⎞

⎠
− 1

2 ∑

σ∈St

|ασ(1)〉|ασ(2)〉...|ασ(t)〉. (15)

Here, fx(α) is the number of times the string x appears in the tuple α. The set
{|Sym(α)〉 : α ∈ S↑

n,t} is an orthonormal basis for Symt
C

2n

. We remark that the
Schmidt decomposition of |Sym(α)〉 with respect to the bipartition formed by
the t-th register vs. the rest is given by

|Sym(α)〉 =
∑

x∈{0,1}n

√
fx(α)

t
|Sym(α−x)〉|x〉, (16)

where α−x ∈ S↑
n,t−1 is the tuple α with one copy of x removed.

Some useful algorithms. We now describe some algorithms for working in
the above basis. Let A and B denote n-qubit registers. Recall that Aj denotes
indexed copies of A and that At denotes A1A2 · · · At, and likewise for B. In our
setting, the various copies of A will be prepared by the oracle simulator and then
handed to the query algorithm at query time. The copies of B will be prepared
by, and always remain with, the oracle simulator.

Proposition 2. For each n, t and ε = 2−poly(n,t), there exists an efficiently
implementable unitary USym

n,t on At such that for all α ∈ S↑
n,t, USym

n,t |α〉 =
|Sym(α)〉 up to trace distance ε.

Efficient Simulation of Random States and Random Unitaries 773

Proof. Clearly, the operation

|Sym(α)〉|β〉 �→ |Sym(α)〉|β ⊕ α〉 (17)

is efficiently implementable exactly, by XORing the classical sort function of the
first register into the second register.

Let us now show that the operation |α〉 �→ |α〉|Sym(α)〉 is also efficiently
implementable (up to the desirable error) by exhibiting an explicit algorithm.
We define it recursively in t, as follows. For t = 1, Sym(x) = x for all x ∈ {0, 1}n,
so this case is simply the map |x〉 �→ |x〉|x〉. Suppose now the operation |α〉 �→
|α〉|Sym(α)〉 can be implemented for any α ∈ S↑

n,t−1. The t-th level algorithm
will begin by applying

|α〉 �→ |α〉
∑

x∈{0,1}n

√
fx(α)

t
|x〉.

Since fx(α) is nonzero for only t-many x ∈ {0, 1}n, this can be implemented effi-
ciently by Lemma 2. Next, we perform |α〉|x〉 �→ |α〉|x〉|α−x〉. Using the algorithm
for t − 1, we then apply |α〉|x〉|α−x〉 �→ |α〉|x〉|α−x〉|Sym(α−x)〉, and uncompute
α−x. By (16), we have in total applied |α〉 �→ |α〉|Sym(α)〉 so far. To finish the
t-th level algorithm for approximating |α〉 �→ |Sym(α)〉, we simply apply (17) to
uncompute α from the first register. ��

Theorem 6 (Restatement of Theorem 1). For each n, t and ε = 2−poly(n,t),
there exists an efficiently implementable isometry V t→t+1 from Bt to At+1B

t+1

such that, up to trace distance ε,

V :
∑

α∈S↑
n,t

|Sym(α)〉At |Sym(α)〉Bt �−→
∑

β∈S↑
n,t+1

|Sym(β)〉At+1 |Sym(β)〉Bt+1 .

We expect the techniques used here to generalize to other irreducible represen-
tations of the unitary group.

Proof. We describe the algorithm assuming all steps can be implemented per-
fectly. It is straightforward to check that each step can be performed to a suffi-
cient accuracy that the accuracy of the entire algorithm is at least ε.

We will need a couple of simple subroutines. First, given α ∈ S↑
n,t and x ∈

{0, 1}n, we define α+x to be the element of S↑
n,t+1 produced by inserting x at

the first position such that the result is still lexicographically ordered. One can
perform this reversibly via |α〉|0n〉|x〉 �→ |α〉|x〉|x〉 �→ |α+x〉|x〉. Second, we will
need to do coherent preparation of the state

|ψα〉 =
∑

x∈{0,1}n

√
1 + fx(α)

2n + t
|x〉. (18)

For any given α ∈ S↑
n,t, the state |ψα〉 can be prepared via the preparation

circuit for the two orthogonal components of the state whose supports are

774 G. Alagic et al.

{x : fx(α) > 0} and {x : fx(α) = 0}. These two components can be prepared
coherently using Lemmas 2 and 3, respectively. Their superposition can be pre-
pared with Lemma 4. All together, we get an algorithm for |α〉|0n〉 �→ |α〉|ψα〉.

The complete algorithm is a composition of several efficient routines. We
describe this below, explicitly calculating the result for the input states of inter-
est. For readability, we omit overall normalization factors.

∑

α

|Sym(α)〉At |Sym(α)〉Bt

�−→
∑

α

|Sym(α)〉At |0n〉|Sym(α)〉Bt |0n〉 add working registers

�−→
∑

α

|Sym(α)〉At |0n〉|α〉Bt |0n〉 apply
(
USym

n,t

)† to Bt

�−→
∑

α,x

√
1 + fx(α)

2n + t
|Sym(α)〉At |x〉|α〉Bt |0n〉 prepare |ψα〉

�−→
∑

α,x

√
1 + fx(α)

2n + t
|Sym(α)〉At |x〉|α+x〉Bt+1 insert x into α

�−→
∑

α,x

√
1 + fx(α)

2n + t
|Sym(α)〉At |x〉At+1 |Sym(α+x)〉Bt+1 apply USym

n,t+1 to Bt+1

To see that the last line above is the desired result, we observe that we can
index the sum in the last line above in a more symmetric fashion: the sum is just
taken over all pairs (α, β) such that the latter can be obtained from the former
by adding one entry (i.e., the string x). But that is the same as summing over all
pairs (α, β), such that the former can be obtained from the latter by removing
one entry.

∑

α,x

√
1 + fx(α)

2n + t
|Sym(α)〉At |x〉At+1 |Sym(α+x)〉Bt+1

=
∑

β,x

√
fx(β)
2n + t

|Sym(β−x)〉At |x〉At+1 |Sym(β)〉Bt+1

=
√

t

2n + t

∑

β

(
∑

x

√
fx(β)

t
|Sym(β−x)〉At |x〉At+1

)
|Sym(β)〉Bt+1

=
√

t

2n + t

∑

β

|Sym(β)〉At+1 |Sym(β)〉Bt+1 .

Here, the last equality is (16), and the prefactor is the square root of the quotient
of the dimensions of the t- and (t+1)-copy symmetric subspaces, as required for
a correct normalization of the final maximally entangled state. ��

Efficient Simulation of Random States and Random Unitaries 775

3.3 State Sampler Construction and Proof

Construction 2 (Efficient state sampler). Let n be a positive integer and
ε a negligible function of n. The efficient n-qubit state sampler with precision ε
is a stateful machine ES(ε, n) with interfaces (Init,Gen,Reflect), defined below.
For convenience, we denote the query counters by t = tGen and q = tReflect in the
following.

1. ES(ε, n).Init: prepares the standard maximally entangled state |φ+〉A1B1 on
n-qubit registers A1 and B1, and stores both A1 and B1.

2. ES(ε, n).Gen: On the first query, outputs register A1. On query t, takes as
input registers Bt−1 and produces registers AtB

t by applying the isometry
V t−1→t from Theorem 6 with accuracy ε2−(t+2q); then it outputs At and stores
Bt.

3. ES(ε, n).CReflect: On query q with input registers CA∗, do the following
controlled on the qubit register C: apply

(
U t−1→t

)†, a unitary implemen-
tation of V t−1→t, with accuracy ε2−(t+2(q−1)), in the sense that V t−1→t =
U t−1→t|02n〉AtBt

, with A∗ playing the role of At. Subsequently, apply a phase
−1 on the all-zero state of the ancilla registers At and Bt, and reapply U t−1→t,
this time with accuracy ε2−(t+2(q−1)+1).

We omitted defining ES.Ver since it is trivial to build from CReflect, as
described in Lemma 5. By Theorem 6, the runtime of ES(ε, n) is polynomial
in n, log(1/ε) and the total number of queries q that are made to its various
interfaces.

We want to show that the above sampler is indistinguishable from the ideal
sampler to any oracle algorithm, in the following sense. Given a stateful machine
C ∈ {IS(n),ES(n, ε)} and a (not necessarily efficient) oracle algorithm A, we
define the process b ← AC as follows:

1. C.Init is called;
2. A receives oracle access to C.Gen and C.CReflect;
3. A outputs a bit b.

Theorem 7. For all oracle algorithms A and all ε > 0 that can depend on n in
an arbitrary way,

∣∣∣Pr
[
AIS(n) = 1

]
− Pr

[
AES(n,ε) = 1

]∣∣∣ ≤ ε. (19)

Proof. During the execution of ES(ε, n), the i-th call of V t−1→t (for any t) incurs
a trace distance error of at most ε2−i. The trace distance between the outputs
of AES(ε, n) and AES(0, n) is therefore bounded by

∑∞
i=1 ε2−i = ε. It is thus

sufficient to establish the theorem for ES(0, n).
For any fixed q, there exists a stateful machine ÊS(0, q, n) which is perfectly

indistinguishable from IS(n) to all adversaries who make a maximum total
number q of queries. The Init procedure of ÊS(0, q, n) samples a random element
Ui from an exact unitary 2q-design D2q = {Ui}i∈I . Queries to Gen are answered

776 G. Alagic et al.

with a copy of Ui|0〉, and Reflect is implemented by applying 1 − 2Ui|0〉〈0|U†
i .

It will be helpful to express ÊS(0, q, n) in an equivalent isometric form. In this
form, the initial oracle state is |η〉 = |I|−1/2

∑
i∈I |i〉B̂ . Gen queries are answered

using the B̂-controlled isometry

V̂ t→t+1

B̂→B̂At+1
=

∑

i∈I

|i〉〈i|B̂ ⊗ Ui|0〉At+1 . (20)

Reflect queries are answered by

V̂ Reflect
B̂A∗→B̂A∗ =1 − 2

∑

i∈I

|i〉〈i|B̂ ⊗ Ui|0〉〈0|A∗U†
i (21)

=1 − 2V̂ t→t+1

B̂→B̂A∗

(
V̂ t→t+1

)†

B̂A∗→B̂
. (22)

Now suppose A is an arbitrary (i.e., not bounded-query) algorithm mak-
ing only Gen queries. We will show that after q queries, the oracles ES(0, n)
and ÊS(0, q, n) are equivalent, and that this holds for all q. We emphasize that
ES(0, n) does not depend on q; we can thus apply the equivalence for the appro-
priate total query count qtotal after A has produced its final state, even if qtotal is
determined only at runtime. It will follow that ES(0, n) is equivalent to IS(n).

To show the equivalence betwen ES(0, n) and ÊS(0, q, n), we will demon-
strate a partial isometry V switch,t that transforms registers Bt of ES(0, n) (after
t Gen queries and no Reflect queries) into the register B̂ of ÊS(0, q, n), in such a
way that the corresponding global states on AtBt and AtB̂ are mapped to each
other. The isometry is partial because its domain is the symmetric subspace of
C

2n ⊗t
. It is defined as follows:

V switch,t

Bt→B̂
=

√
dSymtCd2n

|I|
∑

i∈I

(
〈0|UT

i

)⊗t

Bt ⊗ |i〉B̂ . (23)

To verify that this is indeed the desired isometry, we calculate:

(
〈0|UT

i

)⊗t

Bt |φ+
Sym〉AtBt =

√
2nt

dSymtC2n

(
〈0|UT

i

)⊗t

Bt ΠSym
Bt |φ+〉AtBt (24)

=

√
2nt

dSymtC2n

(
〈0|UT

i

)⊗t

Bt |φ+〉AtBt (25)

=

√
2nt

dSymtC2n
(〈0|)⊗t

Bt ⊗ (Ui)
⊗t
At |φ+〉AtBt (26)

=

√
1

dSymtC2n
(Ui|0〉)⊗t

At . (27)

Here we have used the fact that
(
〈0|UT

i

)⊗t is in the symmetric subspace in the
second equality, and the third and forth equality are applications of the Mirror
Lemma (Lemma 1) with d = d′ = 2nt, and d = 1, d′ = 2nt, respectively.

Efficient Simulation of Random States and Random Unitaries 777

We have hence proven the exact correctness of ES(0, n) without the Reflect
interface. Note that the global state after t queries to ES(0, n).Gen is the maxi-
mally entangled state of two copies of the t-fold symmetric subspace; of course,
this is only true up to actions performed by the adversary, but those trivially
commute with maps applied only to the oracle registers. As the global state is
in the domain of V switch,t

Bt→B̂
, we obtain the equation

V̂ t→t+1

B̂→B̂At+1
V switch,t

Bt→B̂
= V switch,t+1

Bt+1→B̂
V t→t+1

Bt→Bt+1At+1
. (28)

More precisely, we observe that the two sides of the above have the same effect
on the global state, and then conclude that they must be the same operator by
the Choi-Jamoi�lkowski isomorphism.

Recalling that V switch,t is partial with the symmetric subspace as its domain,
we see that Eq. (28) is equivalent to

(
V switch,t+1

Bt+1→B̂

)†
V̂ t→t+1

B̂→B̂At+1
V switch,t

Bt→B̂
=ΠSymt+1

C
2n

Bt+1 V t→t+1
Bt→Bt+1At+1

(29)

=V t→t+1
Bt→Bt+1At+1

ΠSymt
C

2n

Bt . (30)

By taking the above equality times its adjoint, we arrive at

(
V switch,t

Bt→B̂

)† (
V̂ t→t+1

B̂→B̂At+1

)†
V switch,t+1

Bt+1→B̂

(
V switch,t+1

Bt+1→B̂

)†
V̂ t→t+1

B̂→B̂At+1
V switch,t

Bt→B̂

= ΠSymt
C

2n

Bt

(
V t→t+1

Bt→Bt+1At+1

)†
V t→t+1

Bt→Bt+1At+1
ΠSymt

C
2n

Bt . (31)

By Eq. (28), the range of V̂ t→t+1

B̂→B̂At+1
V switch,t

Bt→B̂
is contained in the range of

V switch,t+1

Bt+1→B̂
⊗ 1At+1 . We can thus simplify as follows:

(
V switch,t

Bt→B̂

)† (
V̂ t→t+1

B̂→B̂At+1

)†
V̂ t→t+1

B̂→B̂At+1
V switch,t

Bt→B̂

=ΠSymt
C

2n

Bt

(
V t→t+1

Bt→Bt+1At+1

)†
V t→t+1

Bt→Bt+1At+1
ΠSymt

C
2n

Bt . (32)

Now observe that both sides of the above consist of a projection operator “sand-
wiched” by some operation. These two projection operators are precisely the
projectors which define the reflection operators of ÊS(0, q, n) (on the left-hand
side) and ES(0, n) (on the right-hand side.) We thus see that Eq. (32) shows
that applying ES(0, n).Reflect is the same as switching to ÊS(0, q, n), applying
ÊS(0, q, n).Reflect, and then switching back to ES(0, n). The same holds for the
controlled versions ES(0, n).CReflect and ÊS(0, n).CReflect.

This completes the proof of the exact equality between the stateful machines
IS(n) and ES(0, n). The approximate case follows as argued above. ��

It turns out that if we have an a priori bound of the form q = O(
√

2nε) on
the number of queries that will be made to our state sampler, in relation to the

778 G. Alagic et al.

number of qubits n and the desired accuracy ε, there is also an alternative pro-
tocol, due to Zvika Brakerski. The approach is based on Zhandry’s compressed
oracle technique and the work by Ji, Liu and Song. In [18] and in [10] one can
find the following theorem for the two mentioned phase variants, respectively.

Theorem 8 (Lemma 1 in [18], respectively Theorem 1.2 in [10]). Let H :
{0, 1}n → {0, 1}n be a random function. Then k copies of the n-qubit quantum
state

|ψH〉 = 2−n/2
∑

x∈{0,1}n

ωH(x)|x〉 (33)

are statistically indistinguishable from k copies of a Haar random quantum state
up to error O(k2/2n), for ω = e

2πi
2n , respectively ω = −1.

Let now EF(n, n) be the stateful machine with interfaces Init and Query simu-
lating a random function from n bits to n bits that was given in [31]. Then we
get the following

Corollary 3. Let ES′(n) be the following stateful machine:

– ES′(n).Init is equal to EF(n, n).Init.
– ES′(n).Gen produces a copy of |ψH〉, simulating H using a single query to

EF(n, n).Query.
– ES′(n).CCReflect implements the controlled reflection about |ψH〉, simulating

H using two queries to EF(n, n).Query.

For all oracle algorithms A making q that make q queries and that can depend
on n in an arbitrary way,

∣∣∣Pr
[
AIS(n) = 1

]
− Pr

[
AES′(n) = 1

]∣∣∣ ≤ O(q2/2n). (34)

4 Simulating a Haar-Random Unitary Oracle

4.1 The Problem, and Our Approach

We begin by defining the ideal object we’d like to emulate. This ideal object
samples a Haar-random unitary U , and then answers two types of queries: queries
to U , and queries to its inverse U†.

Construction 3 (Ideal unitary sampler). Let n be a positive integer. The
ideal unitary sampler is an ideal machine IU(n) with interfaces (Init,Eval, Invert),
defined as follows.

1. IU(n).Init: takes no input; samples a description Ũ of a Haar-random n-qubit
unitary operator U .

2. IU(n).Eval: takes n-qubit register as input, applies U and responds with the
output;

3. IU(n).Invert: takes n-qubit register as input, applies U−1 and responds with
the output.

Below, we construct a stateful machine that runs in polynomial space (and
the runtime of which we don’t characterize), and that is indistinguishable from
IU(n) for arbitrary query algorithms.

Efficient Simulation of Random States and Random Unitaries 779

Our approach. It turns out that the solution of a much easier task comes to our
help, namely simulating a Haar random unitary for an algorithm that makes an a
priori polynomially bounded number t of queries. In this case we can just pick a
unitary t-design, sample an element from it and answer the up to t queries using
this element. As in the proof of Theorem 7, we can also construct an isometric
stateful machine version of this strategy: Instead of sampling a random element
from the t-design, we can prepare a quantum register in a superposition, e.g.
over the index set of the t-design (Init), and then apply the t-design element
(Eval) or its inverse (Invert) controlled on that register.

Now consider an algorithm that makes t parallel queries to a Haar random
unitary (for ease of exposition let us assume here that the algorithm makes no
inverse queries). The effect of these t parallel queries is just the application of
the t-twirling channel (or the mixed twirling channel defined in Eq. (10)) to the
t input registers. The t-design-based isometric stateful machine simulates this
t-twirling channel faithfully. What is more, it applies a Stinespring dilation of the
t-twirling channel, the dilating register being the one created by initialization.

Now suppose we have answered t queries using the t-design-based machine,
and are now asked to answer another, still parallel, query. Of course we cannot,
in general, just answer it using the t-design, as its guarantees only hold for t
applications of the unitary. But all Stinespring dilations of a quantum channel
are equivalent in the sense that there exists a (possibly partial) isometry acting
on the dilating register of one given dilation, that transforms it into another
given dilation. So we can just apply an isometry that transforms our t-design
based Stinespring dilation into a t+1-design based one, and subsequently answer
the t + 1st query using a controlled unitary.

4.2 Construction and Proof

We continue to describe a stateful machine that simulates IU(n) exactly and has
a state register of size polynomial in n and the total number of queries q that an
algorithm makes to its Eval and Invert interfaces. The existence of the required
unitary t-designs is due to Corollary 2.

We recall our conventions for dealing with many copies of fixed-sized registers.
We let A denote an n-qubit register, we let Aj denote indexed copies of A, and
we let At denote A1A2 · · · At. In this case, the various copies of A will be the
input registers of the adversary, on which the simulator will act. The oracle will
now hold a single register B̂t whose size will grow with the number of queries t.
This register holds an index of an element in a t-design.

For the construction below, we need the following quantum states and opera-
tors. For a positive integer n, choose a family of n-qubit unitary designs {Dt}t∈N,
where Dt = {Ut,i}i∈It

is a unitary t-design. Let B̂t be a register of dimension
|It| and define the uniform superposition over indices

|ηt〉B̂t
=

1√
|It|

∑

i∈It

|i〉B̂t
. (35)

780 G. Alagic et al.

For nonnegative integers t, t′, �, define the unitaries

V
(t,t′,�)
At′ B̂t

=
∑

i∈It

(Ut,i)
⊗�
A1A2...A�

⊗
(
U†

t,i

)⊗t′−�

A�+1A�+2...At′
⊗ |i〉〈i|B̂t

. (36)

These isometries perform the following: controlled on an index i of a t-design
Ut,i, apply Ut,i to � registers and U†

t,i to t′ − � registers. For us it will always be
the case that t′ ≤ t, since otherwise the t-design property no longer makes the
desired guarantees on the map V .

We also let W
(t,�)

B̂t→B̂t+1
be an isometry such that

V
(t+1,t,�)

AtB̂t+1
|ηt+1〉B̂t+1

= WB̂t→B̂t+1
V

(t,t,�)

AtB̂t
|ηt〉B̂t

(37)

for � = 0, ..., t. The isometry W always exists, as all Stinespring dilations are iso-
metrically equivalent, and both V

(t,t,�)

AtB̂t
|ηt〉B̂t

and V
(t+1,t,�)

AtB̂t+1
|ηt+1〉B̂t+1

are Stine-

spring dilations of the mixed twirling channel T (t,�) by the t-design property.
We are now ready to define the space-efficient unitary sampler.

Construction 4 (Space-efficient unitary sampler). Let n be a positive inte-
ger and {Dt}t∈N a family of n-qubit unitary t-designs Dt = {Ut,i}i∈It

, with
|It| = 2poly(n,t). Define a stateful machine EU(n, ε) with interfaces (Init,Eval,
Invert) as follows. The machine will maintain counters te (the number of Eval
queries), ti (the number of Invert queries), and t := te + ti.

1. EU(n).Init: Prepares the state |η1〉B̂1
and stores it.

2. EU(n).Eval:
– If t = 0, apply V

(1,1,1)

A1B̂1
, where A1 is the input register.

– If t > 0, apply W
(t,te)

B̂t→B̂t+1
to the state register and subsequently apply

V t+1,1,1

At+1B̂t+1
, where At+1 is the input register.

3. IU(n).Invert:
– If t = 0, apply V

(1,1,0)

A1B̂1
, where A1 is the input register.

– If t > 0, apply W
(t,te)

B̂t→B̂t+1
to the state register and subsequently apply

V t+1,1,0

At+1B̂t+1
, where At+1 is the input register.

We want to show that the above sampler is indistinguishable from the ideal
sampler to any oracle algorithm, in the following sense. Given a stateful machine
C ∈ {IU(n),EU(n, ε)} and a (not necessarily efficient) oracle algorithm A, we
define the process b ← AC as follows:

1 C.Init is called;
2 A receives oracle access to C.Eval and C.Invert;
3 A outputs a bit b.

Theorem 9. For all oracle algorithms A

Pr
[
AIU(n) = 1

]
= Pr

[
AEU(n,ε) = 1

]
. (38)

Efficient Simulation of Random States and Random Unitaries 781

Proof. We begin by proving the following claim by induction. The claim states
that the theorem holds for adversaries who only make parallel queries.

Claim. For all x ∈ {0, 1}t, let V
(x)

At→AtB̂t
be the isometry that is implemented

by making t parallel queries to EU(n, ε), where the i-th query is made to the
Eval interface if xi = 1 and to the Invert interface if xi = 0. Let further σ ∈ St

be a permutation such that σ.x = 11...100...0, where the lower dot denotes the
natural action of St on strings of length t. Then

V
(x)

At→AtB̂t
= σ−1

At V
(t,t,�)

AtB̂t
|ηt〉B̂t

, (39)

where σ acts by permuting the t registers.

Proof. For t = 1, the claim trivially holds. Now suppose the claim holds for t−1.
By definition of the Eval and Invert interfaces,

V
(x)

At→AtB̂t
= V t,1,xt

AtB̂t
W

(t,�)

B̂t−1→B̂t
V

(x[1;t−1])

At−1→At−1B̂t−1
, (40)

where x[a,b] = xaxa+1...xb. By the induction hypothesis, we have

V
(x[1;t−1])

At−1→At−1B̂t−1
= σ̂−1

At−1V
(t−1,t−1,�−xt)

At−1B̂t−1
|ηt−1〉B̂t−1

(41)

for an appropriate permutation σ̂ ∈ St−1. By the design property of Dj for
j = t, t − 1 and the definition of W (t,�) we obtain

T (t−1,�−xt)
Dt−1

= T (t−1,�−xt)
Dt

⇔ W
(t−1,�)

B̂t−1→B̂t
V

(t−1,t−1,�−xt)

At−1B̂t−1
|ηt−1〉B̂t−1

= V
(t,t−1,�−xt)

At−1B̂t
|ηt−1〉B̂t

⇔ W
(t,�)

B̂t−1→B̂t
σ̂−1

At−1V
(t−1,t−1,�−xt)

At−1B̂t−1
|ηt−1〉B̂t−1

= σ̂−1
At−1V

(t,t−1,�−xt)

At−1B̂t
|ηt−1〉B̂t

.

(42)

Here we have used the fact that the permutation and W (t−1,�) commute because
they act on disjoint sets of registers. Putting Eqs. (40), (41) and (42) together,
it follows that

V
(x)

At→AtB̂t
= V t,1,xt

AtB̂t
σ̂−1

At−1V
(t,t−1,�−xt)

At−1B̂t
|ηt〉B̂t

. (43)

But clearly
V t,1,xt

AtB̂t
σ̂−1

At−1V
(t,t−1,�−xt)

At−1B̂t
= σ−1

At V
(t,t,�)

AtB̂t
(44)

For an appropriate permutation σ that consists of applying σ̂ and then sorting
in xt correctly.

The generalization to adaptive algorithms is done via post-selection: Given an
algorithm A with some oracles O1, O2, ..., Ok, consider non-adaptive algorithm Ã
that first queries the oracles a sufficient number of times, each of the queries being

782 G. Alagic et al.

made with the first half of a maximally entangled state as input. Subsequently
the adaptive adversary is run, answering the queries by performing the sender’s
part of the standard quantum teleportation with the input playing the role of the
state to be teleported, and the second half of one of the maximally entangled
states playing the role of the sender’s half of the entangled resource state for
teleportation. Conditioned on the event that all the Pauli corrections in all the
teleportation protocols are equal to the identity, the output of Ã is equal to the
output of A.

Now consider the case where k = 2 and O1 and O2 are the Eval and Invert
interfaces of EU(n, 0), or IU(n). As the output of Ã is exactly the same in the two
cases, the same holds for the version of Ã where we condition, on the outcome
that all the Pauli corrections in all the teleportation protocols are equal to the
identity, which proves the theorem. ��

Using Corollary 2 and the above, we get the following upper bound on the
space complexity of lazy sampling Haar random unitaries.

Corollary 4. The space complexity S of simulating IU(n) as a function of n
and the number of queries q is bounded from above by the logarithm of number
of elements in any family of exact n-qubit unitary q-designs, and hence

S(n, q) ≤ 2q(2n + log e) + O(log q). (45)

Proof. According to Corollary 2, There exists an exact unitary q-design such
that 2q log

(
e(22n+q−1)

q

)
≤ 2q(2n + log e) qubits suffice to coherently store the

index of an element from it. The only additional information that EU(n) needs
to store is how many direct and inverse queries have been answered, which can
be done using log q bits. ��

Our results suggest two possible approaches to devise a time-efficient lazy
sampler for Haar random unitaries. The most promising one is to use the same
approach as for the state sampler and explicitly constructing the update isom-
etry, possibly using explicit bases for the irreducible representations of U(2n),
or using the Schur transform [6]. The other one would be to use the t-design
update method described above, but using efficient approximate t-designs, e.g.
the ones constructed in [11]. This would, however, likely require a generaliza-
tion of the Stinespring dilation continuity result from [20] to so-called quantum
combs [12]. In addition, we would need to show that the transition isometries, i.e.
the approximate analogue of the isometries W (t,�) from Construction 4, are effi-
ciently implementable. We leave the exploration of these approaches for future
work.

5 Application: Untraceable Quantum Money

5.1 Untraceable Quantum Money

Our definition of quantum money deviates somewhat from others in the litera-
ture [1,18]. We allow the bank to maintain an internal quantum register, we do

Efficient Simulation of Random States and Random Unitaries 783

not require that the money states are pure, and we allow adversaries to apply
arbitrary (i.e., not necessarily efficiently implementable) channels.

Definition 2 (Quantum money). A quantum money scheme is a family of
stateful machines M indexed by a security parameter λ, and having two inter-
faces:

1. Mint: receives no input, outputs an n-qubit register;
2. Ver: receives an n-qubit register as input, outputs an n-qubit register together

with a flag {acc, rej},

satisfying the following two properties:

– correctness: ‖Ver ◦ Mint − 1 ⊗ |acc〉〈acc|‖ ≤ negl(λ);5

– unforgeability: for all channels Λ with oracle, and all k ≥ 0,

Pr
[
acck+1 ← flag|Ver⊗k+1 ◦ ΛVer ◦ Mint⊗k

]
≤ negl(λ),

where flag| denotes discarding all registers except Ver flags.

It is implicit in the definition that n is a fixed polynomial function of λ, and
that all relevant algorithms are uniform in λ.

Next, we define untraceability for quantum money schemes.

Definition 3 (Untraceability game). The untraceability game Untraceλ

[M,A] between an adversary A and a quantum money scheme M at security
parameter λ proceeds as follows:

1. set up the trace: A(1λ) receives oracle access to Ver and Mint, and outputs
registers M1, M2, . . . , Mk and a permutation π ∈ Sk;

2. permute and verify bills: b ← {0, 1} is sampled, and if b = 1 the registers
M1 · · · Mk are permuted by π. Ver is invoked on each Mj; the accepted registers
are placed in a set M while the rest are discarded;

3. complete the trace: A receives M and the entire internal state of M, and
outputs a guess b′ ∈ {0, 1}.

The output of Untraceλ[M,A] is δbb′ ; in the case b = b′, we say that A wins.

Definition 4 (Untraceable quantum money). A quantum money scheme
M is untraceable if, for every algorithm A,

Pr [1 ← Untraceλ[M,A]] ≤ 1
2

+ negl(λ).

The intuition behind the definition is as follows. In general, one might con-
sider a complicated scenario involving many honest players and many adver-
saries, where the goal of the adversaries is to trace the movement of at least one
5 Note that it is understood that this inequality should hold no matter which interfaces

have been called in between the relevant Mint and Ver calls.

784 G. Alagic et al.

bill in transactions involving at least one honest player. Tracing in transactions
involving only adversaries is of course trivial. The first natural simplification is to
view all the adversaries as a single adversarial party; if that party cannot trace,
then neither can any individual adversary. Next, we assume that honest players
will verify any bills they receive immediately; obviously, if they do not do this,
and then participate in transactions with the adversary, then tracing is again
trivial. We thus arrive at the situation described in the game: the adversary is
first allowed to create candidate bills arbitrarily, including storing information
about them and entangling them with additional registers, before handing them
to honest players who may or may not perform some transactions; the goal of
the adversary is to decide which is the case, with the help of the bank. Note that
one round of this experiment is sufficient in the security game, as an adversary
can always use the Ver and Mint oracles to simulate additional rounds.

One might reasonably ask if there are even stronger definitions of untraceabil-
ity than the above. Given its relationship to the ideal state sampler, we believe
that Haar money, defined below, should satisfy almost any notion of untraceabil-
ity, including composable notions. We also remark that, based on the structure
of the state simulator, which maintains an overall pure state supported on two
copies of the symmetric subspace of banknote registers, it is straightforward to
see that the scheme is also secure against an “honest but curious” or “specious”
[15,26] bank. We leave the formalization of these added security guarantees to
future work.

5.2 Haar Money

Next, we show how the lazy state sampler (Construction 2) yields untrace-
able quantum money. The construction follows the idea of [18] sample a single
(pseudo)random quantum state and hand out copies of it as banknotes.

Construction 5 (Haar money). Let n be a positive integer and ε > 0. The
Haar scheme HM(n, ε) is defined as follows:

– Mint: on first invocation, instantiate ES := ES(n, ε) by running ES.Init. On
all invocations, output result of ES.Gen;

– Ver: apply ES.Ver; in the acc case, call Mint and output the result; in the rej
case, output 0n.

We remark that, while Construction 2 does not explicitly include a Ver inter-
face, one can easily be added by Lemma 5.

Proposition 3. Haar money is an untraceable quantum money scheme.

Proof. We need to show three properties: completeness, unforgeability, and
untraceability. For the completeness and unforgeability properties, observe that
Theorem 7 implies that the adversary’s view is indistinguishable (up to neg-
ligible terms) if we replace the efficient state sampler ES with the ideal IS.
Once we’ve made that replacement, completeness follows from the definition of

Efficient Simulation of Random States and Random Unitaries 785

IS.Gen and IS.Ver, and unforgeability follows from the complexity-theoretic
no-cloning theorem [1].

For untraceability, it is of course true that IS is obviously untraceable. How-
ever, we cannot simply invoke Theorem 7 to conclude the same about ES, since
the adversary will receive the state of the bank at the end of the game. Instead,
we argue as follows. Consider step 2 (permute and verify bills) in the untrace-
ability game Untraceλ[HM,A]. An equivalent way to perform this step is to (i)
verify all the registers first, (ii) discard the ones that fail verification, and then
(iii) apply the permutation, conditioned on the challenge bit b. Steps (i) and (ii)
are applied always and in particular do not depend on b. However, after (i) and
(ii) have been applied, by the definition of ES the joint state of the bank and
all the Mj ∈ M (and indeed all verified bills in existence) is negligibly far from
the state |φ+

Sym〉, i.e., the maximally entangled state on the symmetric subspace.
This state is clearly invariant under permutation of the money registers, and in
particular under the permutation of the registers in M selected by the adver-
sary. We emphasize that this invariance holds for the entire state (including the
bank.) As the remainder of the game experiment is simply some channel applied
to that state, and this channel does not depend on b, the result follows. ��

While Haar money is an information-theoretically unforgeable and untrace-
able quantum money scheme, it is easy to see that the quantum money scheme
devised in [18] is computationally unforgeable and untraceable.

Acknowledgments. The authors thank Zvika Brakerski for suggesting the alternative
construction based on compressed oracles. We thank Yi-Kai Liu, Carl Miller, and Fang
Song for helpful comments on an earlier draft. CM thanks Michael Walter for discus-
sions about t-designs. CM was funded by a NWO VIDI grant (Project No. 639.022.519)
and a NWO VENI grant (Project No. VI.Veni.192.159). GA acknowledges support from
NSF grant CCF-1763736. GA was supported by the Dutch Research Council (NWO)
through a travel grant - 040.11.708. AR acknowledges support from NSF grant CCF-
1763773.

References

1. Aaronson, S., Christiano, P.: Quantum money from hidden subspaces. In: Proceed-
ings of the Forty-Fourth Annual ACM Symposium on Theory of Computing, pp.
41–60. ACM (2012)

2. Alagic, G., Gagliardoni, T., Majenz, C.: Can you sign a quantum state. Cryptology
ePrint Archive, Report 2018/1164 (2018). https://eprint.iacr.org/2018/1164

3. Alagic, G., Gagliardoni, T., Majenz, C.: Unforgeable quantum encryption. In:
Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT 2018. LNCS, vol. 10822, pp. 489–
519. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-78372-7 16

4. Alagic, G., Majenz, C.,. Russell, A.: Efficient simulation of random states and
random unitaries. arXiv preprint arXiv:1910.05729 (2019)

5. Ambainis, A., Emerson, J.: Quantum t-designs: t-wise independence in the quan-
tum world. In: Proceedings of the Twenty-Second Annual IEEE Conference on
Computational Complexity, CCC 2007, pp. 129–140. IEEE Computer Society,
Washington, DC (2007)

https://eprint.iacr.org/2018/1164
https://doi.org/10.1007/978-3-319-78372-7_16
http://arxiv.org/abs/1910.05729

786 G. Alagic et al.

6. Bacon, D., Chuang, I.L., Harrow, A.W.: Efficient quantum circuits for Schur and
Clebsch-Gordan transforms. Phys. Rev. Lett. 97, 170502 (2006)

7. Bellare, M., Rogaway, P.: Random oracles are practical: a paradigm for designing
efficient protocols. In: Proceedings of the 1st ACM Conference on Computer and
Communications Security, CCS 1993, pp. 62–73. ACM, New York (1993)

8. Bennett, C., Brassard, G.: Quantum cryptography: public key distribution and coin
tossing. In: Proceedings of the International Conference on Computers, Systems,
and Signal Processing, pp. 175–179 (1984)

9. Boneh, D., Zhandry, M.: Quantum-secure message authentication codes. In:
Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS, vol. 7881, pp.
592–608. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-38348-
9 35

10. Brakerski Z., Shmueli O.: (Pseudo) random quantum states with binary phase.
arXiv preprint arXiv:1906.10611 (2019)

11. Brandão, F.G.S.L., Harrow, A.W., Horodecki, M.: Local random quantum cir-
cuits are approximate polynomial-designs. Commun. Math. Phys. 346(2), 397–434
(2016). https://doi.org/10.1007/s00220-016-2706-8

12. Chiribella, G., D’Ariano, G.M., Perinotti, P.: Quantum circuit architecture. Phys.
Rev. Lett. 101, 060401 (2008)

13. Christandl, M.: The structure of bipartite quantum states-insights from group
theory and cryptography. Ph.D. thesis, University of Cambridge (2006)

14. Don, J., Fehr, S., Majenz, C., Schaffner, C.: Security of the Fiat-Shamir transfor-
mation in the quantum random-oracle model. In: Boldyreva, A., Micciancio, D.
(eds.) CRYPTO 2019. LNCS, vol. 11693, pp. 356–383. Springer, Cham (2019).
https://doi.org/10.1007/978-3-030-26951-7 13

15. Dupuis, F., Nielsen, J.B., Salvail, L.: Secure two-party quantum evaluation of uni-
taries against specious adversaries. In: Rabin, T. (ed.) CRYPTO 2010. LNCS,
vol. 6223, pp. 685–706. Springer, Heidelberg (2010). https://doi.org/10.1007/978-
3-642-14623-7 37

16. Goldreich, O., Goldwasser, S., Micali, S.: How to construct random functions. J.
ACM 33(4), 792–807 (1986)

17. Harrow, A.W.: The church of the symmetric subspace. arXiv e-prints
arXiv:1308.6595, August 2013

18. Ji, Z., Liu, Y.-K., Song, F.: Pseudorandom quantum states. In: Shacham, H.,
Boldyreva, A. (eds.) CRYPTO 2018. LNCS, vol. 10993, pp. 126–152. Springer,
Cham (2018). https://doi.org/10.1007/978-3-319-96878-0 5

19. Kane, D.: Small designs for path-connected spaces and path-connected homoge-
neous spaces. Trans. Am. Math. Soc. 367(9), 6387–6414 (2015)

20. Kretschmann, D., Schlingemann, D., Werner, R.F.: The information-disturbance
tradeoff and the continuity of Stinespring’s representation. IEEE Trans. Inf. Theory
54(4), 1708–1717 (2008)

21. Low, R.A.: Pseudo-randomness and learning in quantum computation. arXiv
preprint arXiv:1006.5227 (2010)

22. Majenz, C.: Entropy in quantum information theory - communication and cryp-
tography. arXiv e-prints arXiv:1810.10436, October 2018

23. Mayers, D., Yao, A.: Self testing quantum apparatus. Quantum Inf. Comput. 4(4),
273–286 (2004)

24. Mosca, M., Stebila, D.: Quantum coins. In: Error-Correcting Codes, Finite Geome-
tries and Cryptography, vol. 523, pp. 35–47 (2010)

25. Roy, A., Scott, A.J.: Unitary designs and codes. Des. Codes Cryptogr. 53(1), 13–31
(2009). https://doi.org/10.1007/s10623-009-9290-2

https://doi.org/10.1007/978-3-642-38348-9_35
https://doi.org/10.1007/978-3-642-38348-9_35
http://arxiv.org/abs/1906.10611
https://doi.org/10.1007/s00220-016-2706-8
https://doi.org/10.1007/978-3-030-26951-7_13
https://doi.org/10.1007/978-3-642-14623-7_37
https://doi.org/10.1007/978-3-642-14623-7_37
http://arxiv.org/abs/1308.6595
https://doi.org/10.1007/978-3-319-96878-0_5
http://arxiv.org/abs/1006.5227
http://arxiv.org/abs/1810.10436
https://doi.org/10.1007/s10623-009-9290-2

Efficient Simulation of Random States and Random Unitaries 787

26. Salvail, L., Schaffner, C., Sotáková, M.: On the power of two-party quantum cryp-
tography. In: Matsui, M. (ed.) ASIACRYPT 2009. LNCS, vol. 5912, pp. 70–87.
Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-10366-7 5

27. Stinespring, W.F.: Positive functions on C*-algebras. Proc. Am. Math. Soc. 6(2),
211–216 (1955)

28. Unruh, D.: Quantum proofs of knowledge. In: Pointcheval, D., Johansson, T. (eds.)
EUROCRYPT 2012. LNCS, vol. 7237, pp. 135–152. Springer, Heidelberg (2012).
https://doi.org/10.1007/978-3-642-29011-4 10

29. Watrous, J.: Zero-knowledge against quantum attacks. SIAM J. Comput. 39(1),
25–58 (2009)

30. Wegman, M.N., Carter, J.L.: New hash functions and their use in authentication
and set equality. J. Comput. Syst. Sci. 22(3), 265–279 (1981)

31. Zhandry, M.: How to record quantum queries, and applications to quantum indif-
ferentiability. In: Boldyreva, A., Micciancio, D. (eds.) CRYPTO 2019. LNCS, vol.
11693, pp. 239–268. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-
26951-7 9

https://doi.org/10.1007/978-3-642-10366-7_5
https://doi.org/10.1007/978-3-642-29011-4_10
https://doi.org/10.1007/978-3-030-26951-7_9
https://doi.org/10.1007/978-3-030-26951-7_9

Quantum-Access-Secure Message
Authentication via Blind-Unforgeability

Gorjan Alagic1(B), Christian Majenz2(B), Alexander Russell3, and Fang Song4

1 QuICS, University of Maryland, and NIST, Gaithersburg, MD, USA
galagic@gmail.com

2 QuSoft and Centrum Wiskunde & Informatica, Amsterdam, The Netherlands
c.majenz@uva.nl

3 Department of Computer Science and Engineering, University of Connecticut,
Storrs, CT, USA

acr@cse.uconn.edu
4 Department of Computer Science and Engineering, Texas A&M University,

College Station, TX, USA
fang.song@tamu.ed

Abstract. Formulating and designing authentication of classical mes-
sages in the presence of adversaries with quantum query access has been
a longstanding challenge, as the familiar classical notions of unforgeabil-
ity do not directly translate into meaningful notions in the quantum
setting. A particular difficulty is how to fairly capture the notion of “pre-
dicting an unqueried value” when the adversary can query in quantum
superposition.

We propose a natural definition of unforgeability against quantum
adversaries called blind unforgeability . This notion defines a function to
be predictable if there exists an adversary who can use “partially blinded”
oracle access to predict values in the blinded region. We support the pro-
posal with a number of technical results. We begin by establishing that
the notion coincides with EUF-CMA in the classical setting and go on to
demonstrate that the notion is satisfied by a number of simple guiding
examples, such as random functions and quantum-query-secure pseudo-
random functions. We then show the suitability of blind unforgeability
for supporting canonical constructions and reductions. We prove that the
“hash-and-MAC” paradigm and the Lamport one-time digital signature
scheme are indeed unforgeable according to the definition. To support
our analysis, we additionally define and study a new variety of quantum-
secure hash functions called Bernoulli-preserving.

Finally, we demonstrate that blind unforgeability is strictly stronger
than a previous definition of Boneh and Zhandry [EUROCRYPT ’13,
CRYPTO ’13] and resolve an open problem concerning this previous def-
inition by constructing an explicit function family which is forgeable yet
satisfies the definition.

1 Introduction

Large-scale quantum computers will break widely-deployed public-key cryptog-
raphy, and may even threaten certain post-quantum candidates [6,9,10,12,23].
c© International Association for Cryptologic Research 2020
A. Canteaut and Y. Ishai (Eds.): EUROCRYPT 2020, LNCS 12107, pp. 788–817, 2020.
https://doi.org/10.1007/978-3-030-45727-3_27

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-45727-3_27&domain=pdf
https://doi.org/10.1007/978-3-030-45727-3_27

Quantum-Secure Message Authentication 789

Even elementary symmetric-key constructions like Feistel ciphers and CBC-
MACs become vulnerable in quantum attack models where the adversary is
presumed to have quantum query access to some part of the cryptosystem [16–
18,22]. As an example, consider encryption in the setting where the adversary
has access to the unitary operator |x〉|y〉 �→ |x〉|y⊕fk(x)〉, where fk is the encryp-
tion or decryption function with secret key k. While it is debatable if this model
reflects physical implementations of symmetric-key cryptography, it appears nec-
essary in a number of generic settings, such as public-key encryption and hashing
with public hash functions. It could also be relevant when private-key primitives
are composed in larger protocols, e.g., by exposing circuits via obfuscation [21].
Setting down appropriate security definitions in this quantum attack model is
the subject of several threads of recent research [8,13].

In this article, we study authentication of classical information in the
quantum-secure model. Here, the adversary is granted quantum query access
to the signing algorithm of a message authentication code (MAC) or a digital
signature scheme, and is tasked with producing valid forgeries. In the purely
classical setting, we insist that the forgeries are fresh, i.e., distinct from previous
queries to the oracle. When the function may be queried in superposition, how-
ever, it’s unclear how to meaningfully reflect this constraint that a forgery was
previously “unqueried.” For example, it is clear that an adversary that simply
queries with a uniform superposition and then measures a forgery—a feasible
attack against any function—should not be considered successful. On the other
hand, an adversary that uses the same query to discover some structural property
(e.g., a superpolynomial-size period in the MAC) should be considered a break.
Examples like these indicate the difficulty of the problem. How do we correctly
“price” the queries? How do we decide if a forgery is fresh? Furthermore, how can
this be done in a manner that is consistent with these guiding examples? In fact,
this problem has a natural interpretation that goes well beyond cryptography:
What does it mean for a classical function to appear unpredictable to a quantum
oracle algorithm? 1

Previous approaches. The first approach to this problem was suggested by
Boneh and Zhandry [7]. They define a MAC to be unforgeable if, after making
q queries to the MAC, no adversary can produce q + 1 valid input-output pairs
except with negligible probability. We will refer to this notion as “PO security”
(PO for “plus one,” and k-PO when the adversary is permitted a maximum of k
queries). Among a number of results, Boneh and Zhandry prove that this notion
can be realized by a quantum-secure pseudorandom function (qPRF).

Another approach, due to Garg, Yuen and Zhandry [14] (GYZ), considers a
function one-time unforgeable if only a trivial “query, measure in computational
basis, output result” attack2 is allowed. Unfortunately, it is not clear how to

1 The related notion of “appearing random to quantum oracle algorithms” has a sat-
isfying definition, which can be fulfilled efficiently [29].

2 Technically, the Stinespring dilation [25] of a computational basis measurement is
the most general attack.

790 G. Alagic et al.

extend GYZ to two or more queries. Furthermore, the single query is allowed
in a limited query model with an non-standard restriction.3 Zhandry recently
showed a separation between PO and GYZ by means of the powerful tool of
obfuscation [31].

It is interesting to note that similar problems arise in encryption schemes of
quantum data and a convincing solution was recently found [2,3]. However, it
relies on the fact that for quantum messages, authentication implies secrecy. This
enables “tricking” the adversary by replacing their queries with “trap” plaintexts
to detect replays. As unforgeability and secrecy are orthogonal in the classical
world, adversaries would easily recognize the spoofed oracle. This renders the
approach of [2,3] inapplicable in this case.

Unresolved issues. PO security, the only candidate definition of quantum-
secure unforgeability in the general, multi-query setting, appears to be insuf-
ficient for several reasons. First, as observed in [14], it is a priori unclear if
PO security rules out forging on a message region A while making queries to a
signing oracle supported on a disjoint message region B. Second, there may be
unique features of quantum information, such as the destructiveness of quantum
measurement, which PO does not capture. In particular, quantum algorithms
must sometimes “consume” (i.e., fully measure) a state to extract some useful
information, such as a symmetry in the oracle. There might be an adversary
that makes one or more quantum queries but then must consume the post-query
states completely in order to make a single, but convincing, forgery.

Surprisingly, prior to this work none of these plausible attack strategies have
been exploited to give a separation between PO and “intuitive security.”

2 Summary of Results

A new definition: Blind-unforgeability. To address the above mentioned
issues, and in light of the concrete “counterexample” presented below as Con-
struction 8, we develop a new definition of many-time unforgeability we call
“blind-unforgeability” (or BU). In this approach we examine the behavior of
adversaries in the following experiment. The adversary is granted quantum ora-
cle access to the MAC, “blinded” at a random region B. Specifically, we set B to
be a random ε-fraction of the message space, and declare that the oracle function
will output ⊥ on all of B.

BεMack(x) :=

{
⊥ if x ∈ Bε,

Mack(x) otherwise.

Given a MAC (Mac,Ver), an adversary A, and A-selected parameter ε, the “blind
forgery experiment” is:

3 Compared to the standard quantum oracle for a classical function, GYZ require the
output register to be empty prior to the query.

Quantum-Secure Message Authentication 791

1. Generate key k and random blinding Bε;
2. Produce candidate forgery (m, t) ← ABεMack(1n).
3. Output win if Verk(m, t) = acc and m ∈ Bε; otherwise output rej.

Definition 1. A MAC is blind-unforgeable (BU) if for every adversary (A, ε),
the probability of winning the blind forgery experiment is negligible.

In this work, BU will typically refer to the case where A is an efficient
quantum algorithm (QPT) and the oracle is quantum, i.e., |x〉|y〉 �→ |x〉|y ⊕
BεMack(x)〉. We will also consider q-BU, the information-theoretic variant where
the total number of queries is a priori fixed to q. We remark that the above defi-
nition is also easy to adapt to other settings, e.g., classical security against PPT
adversaries, quantum or classical security for digital signatures, etc.

We remark that one could define a variant of the above where the adversary
is allowed to describe the blinding distribution, rather than it being uniform.
However, this is not a stronger notion. By a straightforward argument, an adver-
sary wins in the chosen-blinding BU game if and only if it wins with a uniform
ε-blinding for inverse-polynomial ε. Indeed, the adversary can just simulate its
chosen blinding herself, and this still succeeds with inverse polynomial probabil-
ity when interacting with a standard-blinded oracle (see Theorem2 below).

Results about blind-unforgeability. To solidify our confidence in the new
notion, we collect a series of results which we believe establish BU as a definition
of unforgeability that captures the desired intuitive security requirement. In par-
ticular, we show that BU is strictly stronger than previous candidate definitions,
and that it classifies a wide range of representative examples (in fact, all exam-
ples examined thus far) as either forgeable or unforgeable in a way that agrees
with cryptographic intuition.

Relations and characterizations. First, we show that BU correctly classifies
unforgeability in the classical-query setting: it is equivalent to the classical
unforgeability notion of EUF-CMA (existential unforgeability against chosen-
message attack). Then, we show that it implies PO.

Theorem 1. If a function family is BU-unforgeable, then it is PO-unforgeable.

One key technical component of the proof is a general simulation theorem,
which tightly controls the deviation in the behavior of an algorithm when sub-
jected to the BU experiment.

Theorem 2. Let A be a quantum query algorithm making at most T queries.
Let f : X → Y be a function, Bε a random ε-blinding subset of X, and for each
B ⊂ X, let gB a function with support B. Then

E
Bε

∥∥Af (1n) − Af⊕gBε (1n)
∥∥
1

≤ 2T
√

ε.

This result can be viewed as strong evidence that algorithms that pro-
duce “good forgeries” in any reasonable sense will also win the BU experiment.

792 G. Alagic et al.

Specifically, adversaries that produce “good forgeries” will not be disturbed too
much by blinding, and will thus in fact also win the BU experiment with non-
negligible probability.

We can formulate and prove this intuition explicitly for a wide class of adver-
saries, as follows. Given an oracle algorithm A, we let supp(A) denote the union
of the supports of all the queries of A, taken over all choices of oracle function.

Theorem 3 (informal). Let A be QPT and supp(A) ∩ R = ∅ for some R �= ∅.
Let Mac be a MAC, and suppose AMack(1n) outputs a valid pair (m,Mack(m))
with m ∈ R with noticeable probability. Then Mac is not BU secure.

Blind-unforgeable MACs. Next, we show that several natural constructions sat-
isfy BU. We first show that a random function is blind-unforgeable.

Theorem 4. Let R : X → Y be a random function such that 1/|Y | is negligible.
Then R is a blind-unforgeable MAC.

By means of results of Zhandry [29] and Boneh and Zhandry [7], this leads
to efficient BU-secure constructions.

Corollary 1. Quantum-secure pseudorandom functions (qPRF) are BU-secure
MACs, and (4q+1)-wise independent functions are q-BU-secure MACs.

We can then invoke a recent result about the quantum-security of domain-
extension schemes such as NMAC and HMAC [24], and obtain variable-length
BU-secure MACs from any qPRF.

In the setting of public verification, we show that the one-time Lamport
signature scheme [19] is BU-secure, provided that the underlying hash function
family R : X → Y is modeled as a random oracle.

Theorem 5. Let R : X → Y be a random function family. Then the Lamport
scheme LR is BU against adversaries which make one quantum query to LR and
poly-many quantum queries to R.

Hash-and-MAC. Consider the following natural variation on the blind-forgery
experiment. To blind F : X → Y , we first select a hash function h : X → Z
and a blinding set Bε ⊆ Z; we then declare that F will be blinded on x ∈ X
whenever h(x) ∈ Bε. We refer to this as “hash-blinding.” We say that a hash
function h is a Bernoulli-preserving hash if, for every oracle function F , no QPT
can distinguish between an oracle that has been hash-blinded with h, and an
oracle that has been blinded in the usual sense. Recall the notion of collapsing
from [27].

Theorem 6. Let h : X → Y be a hash function. If h is Bernoulli-preserving
hash, then it is also collapsing. Moreover, against adversaries with classical ora-
cle access, h is a Bernoulli-preserving hash if and only if it is collision-resistant.

We apply this new notion to show security of the Hash-and-MAC construc-
tion Πh = (Mach,Verh) with Mach

k(m) := Mack(h(m)).

Theorem 7. Let Π = (Mack,Verk) be a BU-secure MAC with Mack : X → Y ,
and let h : Z → X a Bernoulli-preserving hash. Then Πh is a BU-secure MAC.

Quantum-Secure Message Authentication 793

We also show that the Bernoulli-preserving property can be satisfied by pseu-
dorandom constructions, as well as a (public-key) hash based on lossy functions
from LWE [20,26].

A concrete “counterexample” for PO. Supporting our motivation to devise
a new unforgeability definition, we present a construction of a MAC which is
forgeable (in a strong intuitive sense) and yet is classified by PO as secure.

Construction 8. Given a triple k = (p, f, g) where p ∈ {0, 1}n and f, g :
{0, 1}n → {0, 1}n, define Mk : {0, 1}n+1 → {0, 1}2n by

Mk(x) =

⎧⎪⎨
⎪⎩

02n x = 0‖p,

0n‖f(x′) x = 0‖x′, x′ �= p,

g(x′ mod p)‖f(x′) x = 1‖x′.

Define gp(x) := g(x mod p) and consider an adversary that queries only on
messages starting with 1, as follows:∑

x,y

|1, x〉X |0n〉Y1 |y〉Y2 �−→
∑
x,y

|1, x〉X |gp(x)〉Y1 |y ⊕ f(x)〉Y2 ; (1)

discarding the first qubit and Y2 then yields
∑

x |x〉|gp(x)〉, as
∑

y |y⊕f(x)〉Y2 =∑
y |y〉Y2 . One can then recover p via period-finding and output (0‖p, 02n). We

emphasize that the forgery was queried with zero amplitude. In practice, we can
interpret it as, e.g., the attacker queries only on messages starting with “From:
Alice” and then forges a message starting with “From: Bob”. Despite this, we
can show that it is PO-secure.

Theorem 9. The family Mk (for uniformly random k = (p, f, g)) is PO-secure.

The PO security of M relies on a dilemma the adversary faces at each query:
either learn an output of f , or obtain a superposition of (x, g(x))-pairs for Fourier
sampling. Our proof shows that, once the adversary commits to one of these two
choices, the other option is irrevocably lost. Our result can thus be understood
as a refinement of an observation of Aaronson: quantumly learning a property
sometimes requires uncomputing some information [1]. Note that, while Aaron-
son could rely on standard (asymptotic) query complexity techniques, our prob-
lem is quite fragile: PO security describes a task which should be hard with q
queries, but is completely trivial given q + 1 queries. Our proof makes use of a
new quantum random oracle technique of Zhandry [30].

EUF-CMA
[7]⇐⇒ PO

Proposition 2⇐⇒ BU

Unforgeability against classical adversaries

PO
Corollary 2

�=⇒
⇐=

Theorem 1
BU

Observation
�=⇒
⇐=

Corollary 1
qPRF

Unforgeability against quantum adversaries

Fig. 1. Relationship between different unforgeability notions

794 G. Alagic et al.

A straightforward application of Theorem3 shows that Construction 8 is BU-
insecure. In particular, we have the following.

Corollary 2. There exists a PO-secure MAC which is BU-insecure.

The relationship between BU, PO some other notions are visualized in Fig. 1.

3 Preliminaries

Basic notation, conventions. Given a finite set X, the notation x ∈R X will
mean that x is a uniformly random element of X. Given a subset B of a set X,
let χB : X → {0, 1} denote the characteristic function of B, i.e., χB(x) = 1 if
x ∈ B and χB(x) = 0 else. When we say that a classical function F is efficiently
computable, we mean that there exists a uniform family of deterministic classi-
cal circuits which computes F . We will consider three classes of algorithms: (i)
unrestricted algorithms, modeling computationally unbounded adversaries, (ii)
probabilistic poly-time algorithms (PPTs), modeling classical adversaries, and
(iii) quantum poly-time algorithms (QPTs), modeling quantum adversaries. We
assume that the latter two are given as polynomial-time uniform families of cir-
cuits. For PPTs, these are probabilistic circuits. For QPTs, they are quantum
circuits, which may contain both unitary gates and measurements. We will often
assume (without loss of generality) that the measurements are postponed to the
end of the circuit, and that they take place in the computational basis. Given an
algorithm A, we let A(x) denote the (in general, mixed) state output by A on
input x. In particular, if A has classical output, then A(x) denotes a probability
distribution. Unless otherwise stated, the probability is taken over all random
coins and measurements of A, and any randomness used to select the input x.
If A is an oracle algorithm and F a classical function, then AF (x) is the mixed
state output by A equipped with oracle F and input x; the probability is now
also taken over any randomness used to generate F .

We will distinguish between two ways of presenting a function F : {0, 1}n →
{0, 1}m as an oracle. First, the usual “classical oracle access” simply means that
each oracle call grants one classical invocation x �→ F (x). This will always be
the oracle model for PPTs. Second, “quantum oracle access” will mean that each
oracle call grants an invocation of the (n+m)-qubit unitary gate |x〉|y〉 �→ |x〉|y⊕
F (x)〉. For us, this will always be the oracle model for QPTs. Note that both QPTs
and unrestricted algorithms could in principle receive either oracle type.

We will need the following lemma. We use the formulation from [8, Lemma
2.1], which is a special case of a more general “pinching lemma” of Hayashi [15].

Lemma 1. Let A be a quantum algorithm and x ∈ {0, 1}∗. Let A0 be another
quantum algorithm obtained from A by pausing A at an arbitrary stage of exe-
cution, performing a partial measurement that obtains one of k outcomes, and
then resuming A. Then Pr[A0(1n) = x] ≥ Pr[A(1n) = x]/k.

We denote the trace distance between states ρ and σ by δ(ρ, σ). Recall its
definition via the trace norm, i.e., δ(ρ, σ) = (1/2)‖ρ − σ‖1. When ρ and σ are
classical states, the trace distance is equal to the total variation distance.

Quantum-Secure Message Authentication 795

Quantum-secure pseudorandomness. A quantum-secure pseudorandom
function (qPRF) is a family of classical, deterministic, efficiently-computable
functions which appear random to QPT adversaries with quantum oracle access.

Definition 2. An efficiently computable function family f : K × X → Y is a
quantum-secure pseudorandom function (qPRF) if, for all QPTs D,∣∣∣ Pr

k∈RK

[Dfk(1n) = 1
]− Pr

g∈RFY
X

[Dg(1n) = 1
]∣∣∣ ≤ negl(n).

Here FY
X denotes the set of all functions from X to Y . The standard “GGM+GL”

construction of a PRF yields a qPRF when instantiated with a quantum-secure
one-way function [29]. One can also construct a qPRF directly from the Learning
with Errors assumption [29]. If we have an a priori bound on the number of
allowed queries, then a computational assumption is not needed.

Theorem 10. (Lemma 6.4 in [7]). Let q, c ≥ 0 be integers, and f : K ×X →
Y a (2q+c)-wise independent family of functions. Let D be an algorithm making
no more than q quantum oracle queries and c classical oracle queries. Then

Pr
k∈RK

[Dfk(1n) = 1
]

= Pr
g∈RFY

X

[Dg(1n) = 1
]
.

PO-unforgeability. Boneh and Zhandry define unforgeability (against quantum
queries) for classical MACs as follows [7]. They also show that random functions
satisfy this notion.

Definition 3. Let Π = (KeyGen,Mac,Ver) be a MAC with message set X. Con-
sider the following experiment with an algorithm A:

1. Generate key: k ← KeyGen(1n).
2. Generate forgeries: A receives quantum oracle for Mack, makes q queries, and

outputs a string s;
3. Outcome: output win if s contains q + 1 distinct input-output pairs of Mack,

and fail otherwise.

We say that Π is PO-secure if no adversary can succeed at the above experiment
with better than negligible probability.

The Fourier Oracle. Our separation proof will make use of a new technique of
Zhandry [30] for analyzing random oracles. We briefly describe this framework.

A random function f from n bits to m bits can be viewed as the outcome
of a quantum measurement. More precisely, let HF =

⊗
x∈{0,1}n HFx

, where
HFx

∼= C
2m

. Then set f(x) ← MFx
(ηF) with ηF = |φ0〉〈φ0|⊗2n

, |φ0〉 = 2− m
2∑

y∈{0,1}m |y〉, and where MFx
denotes the measurement of the register Fx in

the computational basis. This measurement commutes with any CNOTA:B gate
with control qubit A in Fx and target qubit B outside Fx. It follows that, for any
quantum algorithm making queries to a random oracle, the output distribution
is identical if the algorithm is instead run with the following oracle:

796 G. Alagic et al.

1. Setup: prepare the state ηF .
2. Upon a query with query registers X and Y , controlled on X being in state

|x〉, apply (CNOT⊗m)Fx:Y .
3. After the algorithm has finished, measure F to determine the success of the

computation.

We denote the oracle unitary defined in step 2 above by UO
XY F . Having

defined this oracle representation, we are free to apply any unitary UH to
the oracle state, so long as we then also apply the conjugated query unitary
UH(CNOT⊗m)Fx:Y U†

H in place of UO
XY F . We choose UH = H⊗m2n

, which means
that the oracle register starts in the all-zero state now. Applying Hadamard to
both qubits reverses the direction of CNOT, i.e., HA ⊗HBCNOTA:BHA ⊗HB =
CNOTB:A, so the adversary-oracle-state after a first query with query state
|x〉X |φy〉Y is

|x〉X |φy〉Y |0m〉⊗2n �−→ |x〉X |φy〉Y |0m〉⊗(lex(x)−1)|y〉Fx
|0m〉⊗(2n−lex(x)), (2)

where lex(x) denotes the position of x in the lexicographic ordering of {0, 1}n,
and we defined the Fourier basis state |φy〉 = H⊗m|y〉. In the rest of this section,
we freely change the order in which tensor products are written, and keep track
of the tensor factors through the use of subscripts. This adjusted representation
is called the Fourier oracle (FO), and we denote its oracle unitary by

UFO
XY F =

(
H⊗m2n

)
F

UO
XY F

(
H⊗m2n

)
F

.

An essential fact about the FO is that each query can only change the number
of non-zero entries in the FO’s register by at most one. To formalize this idea,
we define the “number operator” NF =

∑
x∈{0,1}n(1−|0〉〈0|)Fx

⊗1⊗(2n−1). The
number operator can also be written in its spectral decomposition,

NF =
2n∑
l=0

lPl where Pl =
∑
r∈Sl

|r〉〈r|,

Sl =
{

r ∈ ({0, 1}m)2
n
∣∣∣|{x ∈ {0, 1}n|rx �= 0}| = l

}
.

Note that the initial joint state of a quantum query algorithm and the oracle (in
the FO-oracle picture described above) is in the image of P0. The following fact
is essential in working with the Fourier Oracle; the proof is given in AppendixA.

Lemma 2. The number operator satisfies
∥∥[NF , UFO

XY F

]∥∥
∞ = 1. In particular,

the joint state of a quantum query algorithm and the oracle after the q-th query
is in the kernel of Pl for all l > q.

Quantum-Secure Message Authentication 797

4 The New Notion: Blind-Unforgeability

Formal definition. For ease of exposition, we begin by introducing our new
security notion in a form analogue to the standard notion of existential unforge-
ability under chosen-message attacks, EUF-CMA. We will also later show how to
extend our approach to obtain a corresponding analogue of strong unforgeability.
We begin by defining a “blinding” operation. Let f : X → Y and B ⊆ X. We let

Bf(x) =

{
⊥ if x ∈ B,

f(x) otherwise.

We say that f has been “blinded” by B. In this context, we will be particularly
interested in the setting where elements of X are placed in B independently at
random with a particular probability ε; we let Bε denote this random variable.
(It will be easy to infer X from context, so we do not reflect it in the notation.)

Next, we define a security game in which an adversary is tasked with using
a blinded MAC oracle to produce a valid input-output pair in the blinded set.

Definition 4. Let Π = (KeyGen,Mac,Ver) be a MAC with message set X. Let
A be an algorithm, and ε : N → R≥0 an efficiently computable function. The
blind forgery experiment BlindForgeA,Π(n, ε) proceeds as follows:
1. Generate key: k ← KeyGen(1n).
2. Generate blinding: select Bε ⊆ X by placing each m into Bε independently

with probability ε(n).
3. Produce forgery: (m, t) ← ABεMack(1n).
4. Outcome: output 1 if Verk(m, t) = acc and m ∈ Bε; otherwise output 0.

We say that a scheme is blind-unforgeable if, for any efficient adversary, the
probability of winning the game is negligible. The probability is taken over the
choice of key, the choice of blinding set, and any internal randomness of the
adversary. We remark that specifying an adversary requires specifying (in a
uniform fashion) both the algorithm A and the blinding fraction ε.

Definition 5. A MAC Π is blind-unforgeable (BU) if for every polynomial-time
uniform adversary (A, ε), Pr

[
BlindForgeA,Π(n, ε(n)) = 1] ≤ negl(n).

We also define the “q-time” variant of the blinded forgery game, which is
identical to Definition 4 except that the adversary is only allowed to make q
queries to BεMack in step (3). We call the resulting game BlindForgeq

A,Π(n, ε),
and give the corresponding definition of q-time security (now against computa-
tionally unbounded adversaries).

Definition 6. A MAC Π is q-time blind-unforgeable (q-BU) if for every q-query
adversary (A, ε), we have Pr

[
BlindForgeq

A,Π(n, ε(n)) = 1] ≤ negl(n).

The above definitions are agnostic regarding the computational power of the
adversary and the type of oracle provided. For example, selecting PPT adver-
saries and classical oracles in Definition 5 yields a definition of classical unforge-
ability; we will later show that this is equivalent to standard EUF-CMA. The
main focus of our work will be on BU against QPTs with quantum oracle access,
and q-BU against unrestricted adversaries with quantum oracle access.

798 G. Alagic et al.

Some technical details. We now remark on a few details in the usage of BU.
First, strictly speaking, the blinding sets in the security games above cannot be
generated efficiently. However, a pseudorandom blinding set will suffice. Pseudo-
random blinding sets can be generated straightforwardly using an appropriate
pseudorandom function, such as a PRF against PPTs or a qPRF against QPT. A
precise description of how to perform this pseudorandom blinding is given in the
proof of Corollary 3. Note that simulating the blinding requires computing and
uncomputing the random function, so we must make two quantum queries for
each quantum query of the adversary. Moreover, verifying whether the forgery is
in the blinding set at the end requires one additional classical query. This means
that (4q + 1)-wise independent functions are both necessary and sufficient for
generating blinding sets for q-query adversaries (see [7, Lemma 6.4]). In any
case, an adversary which behaves differently in the random-blinding game ver-
sus the pseudorandom-blinding game immediately yields a distinguisher against
the corresponding pseudorandom function.

The Blinding Symbol. There is some flexibility in how one defines the blinding
symbol ⊥. In situations where the particular instantiation of the blinding symbol
might matter, we will adopt the convention that the blinded version Bf of
f : {0, 1}n → {0, 1}� is defined by setting Bf : {0, 1}n → {0, 1}�+1, where
Bf(m) = 0�||1 if m ∈ B and Bf(m) = f(m)||0 otherwise. One advantage of this
convention (i.e., that ⊥ = 0�||1) is that we can compute on and/or measure the
blinded bit (i.e., the (
 + 1)-st bit) without affecting the output register of the
function. This will also turn out to be convenient for uncomputation.

Strong Blind-Unforgeability. The security notion BU given in Definition 5 is an
analogue of simple unforgeability, i.e., EUF-CMA, for the case of a quantum-
accessible MAC/Signing oracle. It is, however, straightforward to define a corre-
sponding analogue of strong unforgeability, i.e., SUF-CMA, as well.

The notion of strong blind-unforgeability, sBU, is obtained by a simple adjust-
ment compared to BU: we blind (message, tag) pairs rather than just messages.
We briefly describe this for the case of MACs. Let Π = (KeyGen,Mac,Ver)
be a MAC with message set M , randomness set R and tag set T , so that
Mack : M × R → T and Verk : M × T → {acc, rej} for every k ← KeyGen.
Given a parameter ε and an adversary A, the strong blind forgery game pro-
ceeds as follows:

1. Generate key: k ← KeyGen; generate blinding: select Bε ⊆ M × T by placing
pairs (m, t) in Bε independently with probability ε;

2. Produce forgery: produce (m, t) by executing A(1n) with quantum oracle
access to the function

BεMack;r(m) :=

{
⊥ if (m,Mack(m; r)) ∈ Bε,

Mack(m; r) otherwise.

where r is sampled uniformly for each oracle call.
3. Outcome: output 1 if Verk(m, t) = acc ∧ (m, t) ∈ Bε; otherwise output 0.

Quantum-Secure Message Authentication 799

Security is then defined as before: Π is sBU-secure if for all adversaries A (and
their declared ε), the success probability at winning the above game is negligi-
ble. Note that, for the case of canonical MACs, this definition coincides with
Definition 5, just as EUF-CMA and SUF-CMA coincide in this case.

5 Intuitive Security and the Meaning of BU

In this section, we gather a number of results which build confidence in BU as
a correct definition of unforgeability in our setting. We begin by showing that a
wide range of “intuitively forgeable” MACs (indeed, all such examples we have
examined) are correctly characterized by BU as insecure.

Intuitively forgeable schemes. As indicated earlier, BU security rules out any
MAC schemes where an attacker can query a subset of the message space and
forge outside that region. To make this claim precise, we first define the query
support supp(A) of an oracle algorithm A. Let A be a quantum query algorithm
with oracle access to the quantum oracle O for a classical function from n to m
bits. Without loss of generality A proceeds by applying the sequence of unitaries
OUqOUq−1...U1 to the initial state |0〉XY Z , followed by a POVM E . Here, X and
Y are the input and output registers of the function and Z is the algorithm’s
workspace. Let |ψi〉 be the intermediate state of of A after the application of
Ui. Then supp(A) is defined to be the set of input strings x such that there
exists a function f : {0, 1}n → {0, 1}m such that 〈x|X |ψi〉 �= 0 for at least one
i ∈ {1, ..., q} when O = Of .

Theorem 11. Let A be a QPT such that supp(A) ∩ R = ∅ for some R �= ∅. Let
Mac be a MAC, and suppose AMack(1n) outputs a valid pair (m,Mack(m)) with
m ∈ R with non-negligible probability. Then Mac is not BU-secure.

To prove Theorem 11, we will need the following theorem, which controls the
change in the output state of an algorithm resulting from applying a blinding
to its oracle. Given an oracle algorithm A and two oracles F and G, the trace
distance between the output of A with oracle F and A with oracle G is denoted
by δ(AF (1n),AG(1n)). Given two functions F, P : {0, 1}n → {0, 1}m, we define
the function F ⊕ P by (F ⊕ P)(x) = F (x) ⊕ P (x).

Theorem 12. Let A be a quantum query algorithm making at most T queries,
and F : {0, 1}n → {0, 1}m a function. Let B ⊆ {0, 1}n be a subset chosen
by independently including each element of {0, 1}n with probability ε, and P :
{0, 1}n → {0, 1}m be any function with support B. Then

EB

[
δ
(AF (1n),AF⊕P (1n)

)] ≤ 2T
√

ε.

The proof is a relatively straightforward adaptation of a hybrid argument
in the spirit of the lower bound for Grover search [5]. We provide the complete
proof in the full version [4]. We are now ready to prove Theorem 11.

800 G. Alagic et al.

Proof (of Theorem 11). Let A be a quantum algorithm with supp(A) for any
oracle. By our hypothesis,

p̃ := Prk,(m,t)←AMack (1n) [Mack(m) = t ∧ m /∈ supp(A)] ≥ n−c ,

for some c > 0 and sufficiently large n. Since supp(A) is a fixed set, we can think
of sampling a random Bε as picking B0 := Bε ∩ supp(A) and B1 := Bε ∩ supp(A)
independently. Let “blind” denote the random experiment of A running on Mack

blinded by a random Bε: k,Bε, (m, t) ← ABεMack(1n), which is equivalent to
k,B0, B1, (m, t) ← AB0Mack(1n). The probability that A wins the BU game is

p := Pr
blind

[f(m) = t ∧ m ∈ Bε] ≥ Pr
blind

[f(m) = t ∧ m ∈ B′]

≥ Pr
blind

[f(m) = t ∧ m ∈ B′ | m /∈ supp(A)] · Pr
blind

[m /∈ supp(A)]

= Pr
f,B0

(m,t)←ABf

[f(m) = t ∧ m /∈ supp(A)] · Pr
f,B′

(m,t)←ABf

[m ∈ B′|m /∈ supp(A)]

≥ (p̃ − 2T
√

ε
)
ε ≥ p̃3

27T 2
.

Here the second-to-last step follows from Theorem 12; in the last step, we chose
ε = (p̃/3T)2. We conclude that A breaks the BU security of the MAC. ��

Relationship to other definitions. As we will show in Sect. 7, PO fails to
capture certain prediction algorithms. It does, however, capture a natural family
of attacks and should hence be implied by a good security notion. In this section
we show that our new definition, BU, indeed implies PO. To this end, we first
introduce a natural weaker variant of BU that we call measured BU, or mBU.

Definition 7. The measured ε-blinded oracle for a function f : {0, 1}n →
{0, 1}m is the oracle that first applies the ε-blinded oracle for f and then performs
the projective measurement |⊥〉〈⊥| vs. 1− |⊥〉〈⊥|. A scheme Π is measured-BU,
or mBU, secure, if for all ε > 0 and all QPT adversaries A, the winning proba-
bility in the BU game when provided with a measured ε-blinded oracle instead of
a ε-blinded oracle, is negligible.

A straightforward reduction argument shows that BU implies mBU.

Proposition 1. Let Π be a BU (k − BU)-secure MAC. Then Π is mBU (k −
mBU)-secure.

Proof. Let A be an mBU-adversary against Π. We construct a BU-adversary A′

against Π as follows. A′ runs A. For each query that A makes to the measured
ε-blinded oracle, A′ queries the ε-blinded oracle and performs the “blinded or
not” measurement before returning the answer to A. Clearly the probabilities
for A′ winning the BU and for A winning the mBU game are the same. ��

Quantum-Secure Message Authentication 801

For the following proof we need a generalization of Zhandry’s superposition
oracle technique to functions drawn from a non-uniform distribution. Such has
been developed in detail in [11]. As for the proof of Theorem21, we do not need
the more complicated (but efficiently implementable) compressed oracle. Hence
we introduce only the basic non-uniform superposition oracle. The generalization
is straight-forward. In [30], a uniformly random function f : {0, 1}n → {0, 1}m

is sampled by preparing 2n m-qubit uniform superposition states. The measure-
ment that performs the actual sampling is delayed, which allows for new ways
of analyzing the behavior of a query algorithm by inspecting the oracle registers.
Here, we woudl like to use the superposition oracle representation for the indi-
cator function 1Bε

: {0, 1}n → {0, 1} of the blinding set Bε. This is a Boolean
function with Pr [1Bε

(x) = 1] = ε independently for all x ∈ {0, 1}n.
We will sample 1Bε

by preparing 2n qubits in the state

|ηε
0〉 =

√
1 − ε|0〉 +

√
ε|1〉, (3)

i.e., we prepare the 2n-qubit oracle register F in the state(
|ηε

0〉⊗2n
)

F
=

⊗
x∈{0,1}⊗n

|ηε
0〉Fx

. (4)

We will refrain from fourier-transforming any registers, so if the adversaries
query registers are X and B (the input register and the blinding bit register),
the oracle unitary is just given by

UStO =
∑

x∈{0,1}n

|x〉〈x|X ⊗ CNOTFx:B. (5)

We can also define the generalization of the projectors P�. To this end we com-
plete |ηε

0〉 to an orthonormal basis by introducing the state

|ηε
1〉 =

√
ε|0〉 − √

1 − ε|1〉. (6)

Let further Uε be the unitary such that Uε|i〉 = |ηε
i 〉. The generalization of

P� is now defined by P ε
� = UεP�U

†
ε . As UStO is a sum of terms that each act

non-trivially only on one out of the 2n Fx registers, the analogue of Lemma 2
clearly holds, i.e., if |ψq〉 is the joint algorithm-oracle state after q queries to the
superposition oracle for 1Bε

, then P ε
� |ψq〉 = 0 for all
 > q.

We are now ready to prove that BU security implies PO security.

Theorem 13. Let Π be a BU-secure MAC. Then Π is PO-secure.

Proof. According to Proposition 1, Π is mBU secure. It therefore suffices to find
a reduction from breaking mBU to breaking PO. Let A be a q query PO adversary
against Π, i.e., an algorithm that makes q queries and outputs q +1 pairs (xi, ti)
with the goal that ti = Mack(xi) for all i = 1, ..., q + 1. We construct an mBU-
adversary A′ as follows. The adversary A′ runs A, answering the queries using
the measured ε-blinded oracle for Mack. If for any of the queries the result is ⊥,

802 G. Alagic et al.

A′ aborts. In this case we formally define A’s output to be ⊥. After (and if) A
has finished by outputting q +1 candidate message-tag pairs (mi, ti), A′ chooses
i ∈R {1, ..., q + 1} and outputs (mi, ti).

According to Theorem2, the trace distance between the distribution of the
q + 1 candidate message tag pairs that A outputs only changes by δ = 2q

√
ε

in total variational distance when run with the measured ε-blinded oracle as
done as a subroutine of A′. It follows that with at least probability pA

succ − δ, all
q+1 outputs of A ar valid message-tag-pairs, where pA

succ is the probability with
which A wins the PO game when provided with an unblinded Mack-oracle.

For the rest of the proof we instantiate the blinding set using the super-
position oracle described above. In this case, the measured ε-blinded oracle is
implemented as follows. On input registers X and Y , create a blank qubit regis-
ter B and query the blinding function 1Bε

on XB. Measure B to obtain b (the
blinding bit). If b = 1, query the Mack-oracle on XY , otherwise add ⊥ to Y .
For the q-query algorithm A′, q queries are made to the superposition blinding
oracle. Afterwards the oracle register F is measured in the computational basis
to determine whether the output is blinded or not.

We continue by finding a lower bound on the probability that the message
output by A′ is blinded. To that end, consider the modified game, where after A′

has finished, but before measuring the oracle register F , we compute the small-
est index i ∈ {1, ..., q + 1} such that Fxi

is in state |η(ε)
0 〉 in superposition into

an additional register. Such an index always exists. This is because P ε
� |ψ〉 = 0

for all
 > q, where |ψ〉 is the joint adversary-oracle state after the execution
of A′. Hence |ψ〉 is a superposition of states |β〉 =

⊗
x∈{0,1}n |ηε

βx
〉 for strings

β ∈ {0, 1}2n

of Hamming weight at most q. Now we measure the register to
obtain an outcome i0. But given outcome i0, the register Fmi0

is in state |ηε
0〉.

Now the oracle register is measured to determine the blinding set Bε ⊂ {0, 1}n.
The computation together with the measurement implements a (q + 1)-outcome
projective measurement on F . The probability that mi0 is blinded is ε indepen-
dently, so the success probability in the modified game is

p̃A′
succ ≥ ε

(
pA
succ − 2q

√
ε
)

q + 1
. (7)

Finally, we can apply Lemma 1 to conclude that adding the measurement has
not decreased the success probability by more than a factor 1/(q + 1), to con-
clude that the success probability of A′ in the unmodified mBU game is lower-
bounded by

pA′
succ ≥ ε

(
pA
succ − 2q

√
ε
)

(q + 1)2
. (8)

Choosing ε =
(
pA
succ/3q

)2 we obtain

Quantum-Secure Message Authentication 803

pA′
succ ≥

(
pA
succ

)3
27q2(q + 1)2

. (9)

In particular we have that pA′
succ is non-negligible if psucc was non-negligible. ��

1-BU also implies the notion by Garg et al. [14], see the full version [4].
In the purely classical setting, our notion is equivalent to EUF-CMA. Also,

sBU from Sect. 4 implies SUF-CMA.

Proposition 2. A MAC is EUF-CMA if and only if it is blind-unforgeable
against classical adversaries.

Proof. Set Fk = Mack. Consider an adversary A which violates EUF-CMA. Such
an adversary, given 1n and oracle access to Fk (for k ∈R {0, 1}n), produces a
forgery (m, t) with non-negligible probability s(n); in particular, |m| ≥ n and m
is not among the messages queried by A. This same adversary (when coupled
with an appropriate ε) breaks the system under the blind-forgery definition.
Specifically, let p(n) be the running time of A, in which case A clearly makes no
more than p(n) queries, and define ε(n) = 1/p(n). Consider now a particular k ∈
{0, 1}n and a particular sequence r of random coins for AFk(1n). If this run of A
results in a forgery (m, t), observe that with probability at least (1−ε)p(n) ≈ e−1

in the choice of Bε, we have Fk(q) = BεFk(q) for every query q made by A. On
the other hand, Bε(m) = ⊥ with (independent) probability ε. It follows φ(n, εn)
is at least εs(n)/e = Ω(s(n)/p(n)).

On the the other hand, suppose that (A, ε) is an adversary that breaks
blind-unforgeability. Consider now the EUF-CMA adversary A′Fk(1n) which sim-
ulates the adversary A(·)(1n) by answering oracle queries according to a locally-
simulated version of BεFk; specifically, the adversary A′ proceeds by drawing
a subset Bε(n) ⊆ {0, 1}∗ as described above and answering queries made by A
according to BεF . Two remarks are in order:

– When x ∈ Bε, this query is answered without an oracle call to F (x).
– A′ can construct the set Bε “on the fly,” by determining, when a particular

query q is made by A, whether q ∈ Bε and “remembering” this information
in case the query is asked again (“lazy sampling”).

With probability φ(n, ε(n)) A produces a forgery on a point which was not
queried by A′, as desired. It follows that A produces a (conventional) forgery
with non-negligible probability when given Fk for k ∈R {0, 1}n. ��

6 Blind-Unforgeable Schemes

Random schemes. We now show that suitable random and pseudorandom
function families satisfy our notion of unforgeability.

Theorem 14. Let R : X → Y be a uniformly random function such that 1/|Y |
is negligible in n. Then R is a blind-forgery secure MAC.

804 G. Alagic et al.

Proof. For simplicity, we assume that the function is length-preserving; the proof
generalizes easily. Let A be an efficient quantum adversary. The oracle BεR
supplied to A during the blind-forgery game is determined entirely by Bε and
the restriction of R to the complement of Bε. On the other hand, the forgery
event

ABεFk(1n) = (m, t) ∧ |m| ≥ n ∧ Fk(m) = t ∧ BεFk(m) = ⊥
depends additionally on values of R at points in Bε. To reflect this decomposition,
given R and Bε define Rε : Bε → Y to be the restriction of R to the set
Bε and note that—conditioned on BεR and Bε—the random variable Rε is
drawn uniformly from the space of all (length-preserving) functions from Bε

into Y . Note, also, that for every n the purported forgery (m, t) ← ABεR(1n) is
a (classical) random variable depending only on BεR. In particular, conditioned
on Bε, (m, t) is independent of Rε. It follows that, conditioned on m ∈ Bε, that
t = Rε(m) with probability no more than 1/2n and hence φ(n, ε) ≤ 2−n, as
desired. ��

Next, we show that a qPRF is a blind-unforgeable MAC.

Corollary 3. Let m and t be poly(n), and F : {0, 1}n × {0, 1}m → {0, 1}t a
qPRF. Then F is a blind-forgery-secure fixed-length MAC (with length m(n)).

Proof. For a contradiction, let A be a QPT which wins the blind forgery game for
a certain blinding factor ε(n), with running time q(n) success probability δ(n).
We will use A to build a quantum oracle distinguisher D between the qPRF F
and the perfectly random function family F t

m with the same domain and range.
First, let k = q(n) and let H be a family of (4k + 1)-wise independent func-

tions with domain {0, 1}m and range {0, 1, . . . , 1/ε(n)}. The distinguisher D first
samples h ∈R H. Set Bh := h−1(0). Given its oracle Of , D can implement the
function Bhf (quantumly) as follows:

|x〉|y〉 �→|x〉|y〉|Hx〉|δh(x),0〉 �→ |x〉|y〉|Hx〉|δh(x),0〉|f(x)〉
�→|x〉|y ⊕ f(x) · (1 − δh(x),0)〉|Hx〉|δh(x),0〉|f(x)〉
�→|x〉|y ⊕ f(x) · (1 − δh(x),0)〉.

Here we used the CCNOT (Toffoli) gate from step 2 to 3 (with one control bit
reversed), and uncomputed both h and f in the last step. After sampling h, the
distinguisher D will execute A with the oracle Bhf . If A successfully forges a
tag for a message in Bh, A′ outputs “pseudorandom”; otherwise “random.”

Note that the function Bhf is perfectly ε-blinded if h is a perfectly random
function. Note also that the entire security experiment with A (including the
final check to determine if the output forgery is blind) makes at most 2k quan-
tum queries and 1 classical query to h, and is thus (by Theorem10) identically
distributed to the perfect-blinding case.

Finally, by Theorem14, the probability that D outputs “pseudorandom”
when f ∈R F t

m is negligible. By our initial assumption about A, the proba-
bility that D outputs “pseudorandom” becomes δ(n) when f ∈R F . It follows
that D distinguishes F from perfectly random. ��

Quantum-Secure Message Authentication 805

Next, we give a information-theoretically secure q-time MACs (Definition 6).

Theorem 15. Let H be a (4q + 1)-wise independent function family with range
Y , such that 1/|Y | is a negligible function. Then H is a q-time BU-secure MAC.

Proof. Let (A, ε) be an adversary for the q-time game BlindForgeq
A,h(n, ε(n)),

where h is drawn from H. We will use A to construct a distinguisher D between
H and a random oracle. Given access to an oracle O, D first runs A with the
blinded oracle BO, where the blinding operation is performed as in the proof
of Corollary 3 (i.e., via a (4q + 1)-wise independent function with domain size
1/ε(n)). When A is completed, it outputs (m,σ). Next, D queries O on the
message m and outputs 1 if and only if O(m) = σ and m ∈ B. Let γO be the
probability of the output being 1.

We consider two cases: (i) O is drawn as a random oracle R, and (ii) O
is drawn from the family H. By Theorem 10, since D makes only 2q quantum
queries and one classical query to O, its output is identical in the two cases.
Observe that γR (respectively, γH) is exactly the success probability of A in
the blind-forgery game with random oracle R (respectively, H). We know from
Theorem 14 that γR is negligible; it follows that γH is as well. ��

Several domain-extension schemes, including NMAC (a.k.a. encrypted cas-
cade), HMAC, and AMAC, can transform a fixed-length qPRF to a qPRF that
takes variable-length inputs [24]. As a corollary, starting from a qPRF, we also
obtain a number of quantum blind-unforgeable variable-length MACs.

Lamport one-time signatures. The Lamport signature scheme [19] is a EUF-
1-CMA-secure signature scheme, specified as follows.

Construction 16 (Lamport signature scheme, [19]). For the Lamport sig-
nature scheme using a hash function family h : {0, 1}n × {0, 1}n → {0, 1}n, the
algorithms KeyGen,Sign and Ver are specified as follows. KeyGen, on input 1n,
outputs a pair (pk, sk) with

sk = (sj
i)i∈{1,...,n},j=0,1, with sj

i ∈R {0, 1}n, and (10)

pk =
(

k,
(
pj

i

)
i∈{1,...,n},j=0,1

)
, with k ∈ {0, 1}n and pj

i = hk

(
sj

i

)
. (11)

The signing algorithm is defined by Signsk(x) = (sxi
i)i∈{1,...,n} where xi, i =

1, ..., n are the bits of x. The verification procedure checks the signature’s consis-
tency with the public key, i.e., Verpk(x, s) = 0 if pxi

i = hk(si) and Verpk(x, s) = 0
else.

We now show that the Lamport scheme is 1-BU secure in the quantum ran-
dom oracle model.

Theorem 17. If in Construction 16, h is modeled as a quantum-accessible ran-
dom oracle, it is 1-BU secure.

806 G. Alagic et al.

We give a brief sketch of the proof; for details, see AppendixA. The proof uses
arguments analogous to the classical proof. This is made possible through the use
of the Fourier oracle technique (from Sect. 3) for both h and sk. The latter can be
understood as a uniformly random function sk : {0, ..., n − 1} × {0, 1} → {0, 1}n.
Subsequently we perform “forensics” on the oracle database after the adversary
has finished, in a similar way as in the proof of Theorem21. Let us first argue
that an adversary A that makes a signing query but no queries to h and outputs
(m,σ) does not succeed except with negligible probability. If m is blinded, then
there is at least one bit of m where the corresponding part of sk (and hence the
correct signature) is independent of σ. While this is only true in superposition,
we can break this superposition using an n-outcome measurement on the sk-
register, which does not change the success probability by much according to
Lemma 1.

For the general case, we observe that queries to h do not help, because they
will only have negligible support on the unqueried parts of sk. Concretely, we
show that the commutator of the oracle unitary for h and the projector on the
uniform superposition state (the initial state of the oracle register holding a part
of sk) is small in operator norm, which implies that an untouched sk register
remains untouched except with negligible amplitude, even in superposition.

A simple proof of the PO-security of a random function can be given using a
similar idea; see the full version [4].

Hash-and-MAC. To authenticate messages of arbitrary length with a fixed-
length MAC, it is common practice to first compress a long message by a
collision-resistant hash function and then apply the MAC. This is known as
Hash-and-MAC. However, when it comes to BU-security, collision-resistance may
not be sufficient. We therefore propose a new notion, Bernoulli-preserving hash,
generalizing collision-resistance in the quantum setting, and show that it is suf-
ficient for Hash-and-MAC with BU security. Recall that, given a subset B of a
set X, χB : X → {0, 1} denotes the characteristic function of B.

Definition 8 (Bernoulli-preserving hash). Let H : X → Y be an efficiently
computable function family. Define the following distributions on subsets of X:

1. Bε : generate Bε ⊆ X by placing x ∈ Bε independently with probability ε.
Output Bε.

2. BH
ε : generate Cε ⊆ Y by placing y ∈ Cε independently with probability ε.

Sample h ∈ H and define Bh
ε := {x ∈ X : h(x) ∈ Cε}. Output Bh

ε .

We say that H is a Bernoulli-preserving hash if for all adversaries (A, ε),∣∣∣ Pr
B←Bε

[AχB (1n) = 1] − Pr
B←BH

ε

[AχB (1n) = 1]
∣∣∣ ≤ negl(n).

The motivation for the name Bernoulli-preserving hash is simply that select-
ing Bε can be viewed as a Bernoulli process taking place on the set X, while Bh

ε

can be viewed as the pullback (along h) of a Bernoulli process taking place on Y .

Quantum-Secure Message Authentication 807

We show that the standard, so-called “Hash-and-MAC” construction will
work w.r.t. to BU security, if we instantiate the hash function with a Bernoulli-
preserving hash. Recall that, given a MAC Π = (Mack,Verk) with message set
X and a function h : Z → X, there is a MAC Πh := (Mach

k ,Verhk) with message
set Z defined by Mach

k = Mack ◦ h and Verhk(m, t) = Verk(h(m), t).

Theorem 18 (Hash-and-MAC with Bernoulli-preserving hash).
Let Π = (Mack,Verk) be a BU-secure MAC with Mack : X → Y , and let h : Z →
X a Bernoulli-preserving hash. Then Πh is a BU-secure MAC.

The proof follows in a straightforward way from the definitions of BU and
Bernoulli-preserving hash; the details are in the full version [4].

In AppendixB, we also provide a number of additional results about
Bernoulli-preserving hash functions. These results can be summarized as follows.

Theorem 19. We prove the following about Bernoulli-preserving hash func-
tions.

– If H is a random oracle or a qPRF, then it is a Bernoulli-preserving hash.
– If H is 4q-wise independent, then it is a Bernoulli-preserving hash against

q-query adversaries.
– Under the LWE assumption, there is a (public-key) family of Bernoulli-

preserving hash functions.
– If we only allow classical oracle access, then the Bernoulli-preserving property

is equivalent to standard collision-resistance.
– Bernoulli-preserving hash functions are collapsing (another quantum gener-

alization of collision-resistance proposed in [27]).

7 The Problem with PO-Unforgeability

Our search for a new definition of unforgeability for quantum-secure authentica-
tion is partly motivated by concerns about the PO security notion [7]. In this
section, we make these concerns concrete by pointing out a significant security
concern not addressed by this definition. Specifically, we demonstrate a MAC
which is readily broken with an efficient attack, and yet is PO secure. The attack
queries the MAC with a superposition over a particular subset S of the message
space, and then forges a valid tag for a message lying outside S.

One of the intuitive issues with PO is that it might rule out adversaries that
have to measure, and thereby destroy, one or more post-query states to produce
an interesting forgery. Constructing such an example seems not difficult at first.
For instance, let us look at one-time PO, and construct a MAC from a qPRF f
by sampling a key k for f and a superpolynomially-large prime p, and setting

Mack,p(m) =

{
0n if m = p,

(fk(m mod p)) otherwise.
(12)

This MAC is forgeable: a quantum adversary can use a single query to perform
period-finding on the MAC, and then forge at 0n. Intuitively, it seems plausible

808 G. Alagic et al.

that the MAC is 1-PO secure as period-finding uses a full measurement. This is
incorrect for a somewhat subtle reason: identifying the hidden symmetry does
not necessarily consume the post-query state completely, so an adversary can
learn the period and a random input-output-pair of the MAC simultaneously.
As shown in the full version [4] this is a special case of a fairly general situation,
which makes establishing a proper PO “counterexample” difficult.

A counterexample to PO. Another intuitive problem with PO is that using
the contents of a register can necessitate uncomputing the contents of another
one. We exploit this insufficiency in the counterexample below. Consider the
following MAC construction.

Construction 20. Given k = (p, f, g, h) where p ∈ {0, 1}n is a random period
and f, g, h : {0, 1}n → {0, 1}n are random functions, define Mk : {0, 1}n+1 →
{0, 1}2n by

Mk(x) =

⎧⎪⎨
⎪⎩

g(x′ mod p)‖f(x′) x = 1‖x′,
0n‖h(x′) x = 0‖x′, x′ �= p,

02n x = 0‖p.

Consider an adversary that queries as follows∑
x,y

|1, x〉X |0n〉Y1 |y〉Y2 �−→
∑
x,y

|1, x〉X |gp(x)〉Y1 |y ⊕ f(x)〉Y2 , (13)

and then discards the first qubit and the Y2 register; this yields
∑

x |x〉|gp(x)〉.
The adversary can extract p via period-finding from polynomially-many such
states, and then output (0‖p, 02n). This attack only queries the MAC on messages
starting with 1 (e.g., “from Alice”), and then forges at a message which starts
with 0 (e.g., “from Bob.”) We emphasize that the forgery was never queried, not
even with negligible amplitude. It is thus intuitively clear that this MAC does
not provide secure authentication. And yet, despite this obvious and intuitive
vulnerability, this MAC is in fact PO-secure.

Theorem 21. The MAC from Construction 20 is PO-secure.

The proof of this theorem can be found in the full version [4]. The proof idea
is as follows. The superposition oracle technique outlined in Sect. 3 achieves some-
thing that naively seems impossible due to the quantum no-cloning theorem: it
records on which inputs the adversary has made non-trivial4 queries. The infor-
mation recorded in this way cannot, in general be utilized in its entirety – after
all, the premise of the superposition oracle is that the measurement MF that
samples the random function is delayed until after the algorithm has finished,
but it still has to be performed. Any measurement M′ that does not commute

4 For the standard unitary oracle for a classical function, a query has no effect when
the output register is initialized in the uniform superposition of all strings.

Quantum-Secure Message Authentication 809

with MF and is performed before MF , can disturb the outcome of MF . If how-
ever, M′ only has polynomially many possible outcomes, that disturbance is at
most inverse polynomial according to Lemma 1.

Here, we sample the random function f using a superposition oracle, and we
chose to use a measurement M′ to determine the number of nontrivial queries
that the adversary has made to f , which is polynomial by assumption. Random
functions are PO-secure [7], so the only way to break PO security is to output
(0‖p, 02n) and q other input-output-pairs. Querying messages that start with
0 clearly only yields a negligible advantage in guessing p by the Grover lower
bound, so we consider an adversary querying only on strings starting with 1. We
distinguish two cases, either the adversary makes or exactly q non-trivial queries
to f , or less than that. In the latter case, the success probability is negligible
by the PO-security of f and h. In the former case, we have to analyze the
probability that the adversary guesses p correctly. f is not needed for that, so the
superposition oracle register can be used to measure the set of q queries that the
adversary made. Using an inductive argument reminiscent of the hybrid method
[5] we show that this set is almost independent of p, and hence the period is equal
to the difference of two of the queried inputs only with negligible probability. But
if that is not the case, the periodic version of g is indistinguishable from a random
function for that adversary which is independent of p.

It’s not hard to see that the MAC from Construction 20 is not GYZ-secure.
Indeed, observe that the forging adversary described above queries on messages
starting with 0 only, and then forges successfully on a message starting with 1.
If the scheme was GYZ secure, then in the accepting case, the portion of this
adversary between the query and the final output would have a simulator which
leaves the computational basis invariant. Such a simulator cannot change the
first bit of the message from 0 to 1, a contradiction.

By Theorem 11, this PO-secure MAC is also not BU-secure.

Corollary 4. The MAC from Construction 20 is BU-insecure.

Acknowledgements. CM thanks Ronald de Wolf for helpful discussions on query
complexity. GA acknowledges support from NSF grant CCF-1763736. CM was funded
by a NWO VIDI grant (Project No. 639.022.519) and a NWO VENI grant (Project
No. VI.Veni.192.159). FS acknowledges support from NSF grant CCF-1901624. AR
acknowledges support from NSF grant CCF-1763773.

A Technical Proofs

The Fourier Oracle number operator. We now restate and prove Lemma 2.

Lemma 3. The number operator satisfies
∥∥[NF , UFO

XY F

]∥∥
∞ = 1. In particular,

the joint state of a quantum query algorithm and the oracle after the q-th query
is in the kernel of Pl for all l > q.

810 G. Alagic et al.

Proof. Let |ψ〉XY EF be an arbitrary query state, where X and Y are the query
input and output registers, E is the algorithm’s internal register and F is the
FO register. We expand the state in the computational basis of X,

|ψ〉XY EF =
∑

x∈{0,1}n

p(x)|x〉X |ψx〉Y EF . (14)

Now observe that UFO
XY F |x〉X |ψx〉Y EF = |x〉X

(
C̃NOT

⊗m
)

Y :Fx

|ψx〉Y EF with

C̃NOTA:B = HACNOTA:BHA, and therefore

[
NF , UXY F

]
|x〉X |ψx〉Y EF = |x〉X

[
NF ,

(
C̃NOT

⊗m
)

Y :Fx

]
|ψx〉Y EF

= |x〉X

[
(1 − |0〉〈0|)Fx

,

(
C̃NOT

⊗m
)

Y :Fx

]
|ψx〉Y EF .

It follows that∥∥∥[NF ,UXY F

]
|ψ〉XY EF

∥∥∥
2

(15)

=
∑

x∈{0,1}n

p(x) ‖[NF , UXY F] |ψx〉Y EF ‖2

=
∑

x∈{0,1}n

p(x)

∥∥∥∥∥
[
(1 − |0〉〈0|)Fx

,

(
C̃NOT

⊗m
)

Y :Fx

]
|ψx〉Y EF

∥∥∥∥∥
2

≤
∥∥∥∥∥
[
(1 − |0〉〈0|)F0n ,

(
C̃NOT

⊗m
)

Y :F0n

]∥∥∥∥∥
∞

, (16)

where we have used the definition of the operator norm and the normalization
of |ψ〉XY EF in the last line. For a unitary U and a projector P , it is easy to
see that ‖[U,P]‖∞ ≤ 1, as [U,P] = PU(1 − P) − (1 − P)UP is a sum of two
operators that have orthogonal support and singular values smaller or equal
to 1. We therefore get ‖[NF , UXY F] |ψ〉XY EF ‖2 ≤ 1, and as the state |ψ〉 was
arbitrary, this implies

∥∥[NF , UXY F]
∥∥

∞ ≤ 1. The example from Eq. (2) shows
that the above is actually an equality. The observation that PlηF = 0 for all
l > 0 and an induction argument proves the second statement of the lemma.

BU-security of Lamport. In this section, we provide the full proof of Theo-
rem 17, showing that the Lamport construction is BU-secure in the QROM.

Proof. We implement the random oracle h as a superposition oracle with register
F . In the 1-BlindForge experiment we execute the sampling part of the key gener-
ation by preparing a superposition as well. More precisely, we can just prepare 2n
n-qubit registers Sj

i in a uniform superposition, with the intention of measuring

Quantum-Secure Message Authentication 811

them to sample sj
i in mind. We are talking about a classical one-time signature

scheme, and all computation that uses the secret key is done by an honest party,
and is therefore classical. It follows that the measurement that samples sj

i com-
mutes with all other operations which are implemented as quantum-controlled
operations controlled on the secret key registers, i.e., we can postpone it to the
very end of the 1-BlindForge experiment, just like the measurement that samples
an actual random oracle using a superposition oracle. The joint state |ψ0〉 with
oracle register F and secret key register SK = (Sj

i)i∈{1,...,n},j=0,1 is now in a
uniform superposition, i.e.,

|ψ0〉SKF = |φ0〉⊗2n
SK ⊗ |φ0〉⊗2n

F . (17)

To subsequently generate the public key, the superposition oracle for h is queried
on each of the Sj

i with an empty output register P j
i , producing the state

|ψ1〉SKPKF equal to

2−2n2 ∑
sj

i ∈{0,1}n

pj
i ∈{0,1}n

i∈{1,...,n},j=0,1

⎛
⎜⎜⎝ ⊗

i∈{1,...,n}
j=0,1

|sj
i 〉Sj

i

⎞
⎟⎟⎠⊗

⎛
⎜⎜⎝ ⊗

i∈{1,...,n}
j=0,1

|pj
i 〉P j

i

⎞
⎟⎟⎠⊗ |fsk,pk〉F ,

where |fsk,pk〉F is the superposition oracle state where Fsj
i

is in state |pj
i 〉 and

all other registers are still in state |φ0〉. Then the registers P j
i are measured to

produce an actual, classical, public key that can be handed to the adversary.
Note that there is no hash function key k now, as it has been replaced by the
random oracle. Treating the public key as classical information from now on and
removing the registers PK, the state takes the form

|ψ2(pk)〉SKF = 2−n2 ∑
sj

i ∈{0,1}n

i∈{1,...,n},j=0,1

⎛
⎜⎜⎝ ⊗

i∈{1,...,n}
j=0,1

|sj
i 〉Sj

i

⎞
⎟⎟⎠⊗ |fsk,pk〉F , (18)

Now the interactive phase of the 1-BlindForge experiment can begin, and we
provide both the random oracle h and the signing oracle (that can be called
exactly once) as superposition oracles using the joint oracle state |ψ2(pk)〉 above.
The random oracle answers queries as described in Sect. 3. The signing oracle,
when queried with registers XZ with Z = Z1...Zn, applies CNOT⊗n

S
xi
i :Zi

, i =
1, ..., n controlled on X being in the state x /∈ Bε.

Now suppose A, after making at most one query to Sign and an arbitrary
polynomial number of queries to h, outputs a candidate message signature pair
(x0, z0) with z0 = z01‖...‖z0n. If x0 /∈ Bε, A has lost. Suppose therefore that
x0 ∈ Bε. We will now make a measurement on the oracle register to find an index
i such that S

x0
i

i has not been queried. To this end we first need to decorrelate SK
and F . This is easily done, as the success test only needs computational basis

812 G. Alagic et al.

measurement results from the register SK, allowing us to perform any controlled
operation on F controlled on SK. Therefore we can apply the operation ⊕pj

i

followed by H⊗n to the register Fsj
i

controlled on Sj
i being in state |sj

i 〉, for all
i = 1, ..., n and j = 0, 1. For an adversary that does not make any queries to h,
this has the effect that all F -registers are in state |φ0〉 again now.

We can equivalently perform this restoring procedure before the adversary
starts interaction, and answer the adversary’s h-queries as follows. Controlled on
the adversary’s input being equal to one of the parts sj

i of the secret key, answer
with the corresponding public key, otherwise use the superposition oracle for h.

For any fixed secret key register Sj
i , the unitary that is applied upon an

h-query has hence the form

U ′
h = U⊥ +

∑
x∈{0,1}n

(Ux − U⊥)|x〉〈x|X |x〉〈x|Sj
i

(19)

= U⊥ +
∑

x∈{0,1}n

|x〉〈x|X |x〉〈x|Sj
i
(Ux − U⊥), (20)

where the second equality follows because the unitaries U⊥ and Ux are controlled
unitaries with X and Sj

i part of the control register. Using the above equation
we derive a bound on the operator norm of the commutator of this unitary and
the projector onto |φ0〉,

‖[U ′
h, |φ0〉〈φ0|]‖∞

= 2−n/2

∥∥∥∥∥∥
∑

x∈{0,1}n

(
(Ux − U⊥)|x〉〈x|X |x〉〈φ0|Sj

i
− |x〉〈x|X |φ0〉〈x|Sj

i
(Ux − U⊥)

)∥∥∥∥∥∥
∞

= 2−n/2 max
x∈{0,1}n

∥∥∥((Ux − U⊥)|x〉〈x|X |x〉〈φ0|Sj
i

− |x〉〈x|X |φ0〉〈x|Sj
i
(Ux − U⊥)

)∥∥∥
∞

≤ 2 · 2−n/2,

where the second equality follows again because U⊥ and Ux are controlled uni-
taries with X and Sj

i part of the control register.
It follows that a query to h does not decrease the number of registers Sj

i that
are in state |φ0〉, except with probability 8n · 2−n.

As we assume that x0 is blinded, we have that for any message x /∈ Bε,
there exists an i ∈ {1, ..., n} such that xi �= x0

i . But A interacts with a blinded
signing oracle, i.e., controlled on his input being not blinded, it is forwarded
to the signing oracle, otherwise ⊥ is XORed into his output register. Therefore
only non-blinded queries have been forwarded to the actual signing oracle, so
the final state is a superposition of states in which the register SK has at least n
subregisters Sj

i are in state |φ0〉, and at least one of them is such that x0
i = j. We

can therefore apply an n-outcome measurement to the oracle register to obtain

an index i0 such that S
x0

i0
i0

is in state |φ0〉. By Lemma 1, this implies that A’s
forgery is independent of si0 , so A’s probability of succeeding in BlindForge is
negligible. ��

Quantum-Secure Message Authentication 813

B More on Bernoulli-Preserving Hash

In this section, we prove several results about Bernoulli-preserving hash func-
tions. Recalling Definition 8, we refer to blinding according to Bε as “uniform
blinding,” and blinding according to BH

ε as “hash blinding.” First, we show that
random and pseudorandom functions are Bernoulli-preserving, and that this
property is equivalent to collision-resistance against classical queries.

Lemma 4. Let H : X → Y be a function such that 1/|Y | is negligible. Then

1. If H is a random oracle or a qPRF, then it is a Bernoulli-preserving hash.
2. If H is 4q-wise independent, then it is a Bernoulli-preserving hash against

q-query adversaries.

Proof. The claim for random oracles is obvious: by statistical collision-resistance,
uniform blinding is statistically indistinguishable from hash-blinding. The
remaining claims follow from the observation that one can simulate one quantum
query to χBh

ε
using two quantum queries to h (see, e.g., the proof of Corollary 3).

��
Theorem 22. A function h : {0, 1}∗ → {0, 1}n is Bernoulli-preserving against
classical-query adversaries if and only if it is collision-resistant.

Proof. First, the Bernoulli-preserving hash property implies collision-resistance:
testing whether two colliding inputs are either (i) both not blinded or both
blinded, or (ii) exactly one of them is blinded, yields always outcome (i) when
dealing with a hash-blinded oracle and a uniformly random outcome for a blinded
oracle and ε = 1/2. On the other hand, consider an adversary A that has inverse
polynomial distinguishing advantage between blinding and hash-blinding, and
let x1, ..., xq be it’s queries. Assume for contradiction that with overwhelming
probability h(xi) �= h(xj) for all xi �= xj . Then with that same overwhelming
probability the blinded and hash blinded oracles are both blinded independently
with probability ε on each xi and are hence statistically indistinguishable, a con-
tradiction. It follows that with non-negligible probability there exist two queries
xi �= xj such that h(xi) = h(xj), i.e., A has found a collision. ��

Bernoulli-preserving hash from LWE. We have observed that any qPRF
is a Bernoulli-preserving hash function, which can be constructed from various
quantum-safe computational assumption (e.g., LWE). Nonetheless, qPRF typi-
cally does not give short digest, which would result in long tags, and it requires
a secret key.5

Here we point out an alternative construction of a public Bernoulli-preserving
hash function based on the quantum security of LWE. In fact, we show that the
collapsing hash function in [26] is also Bernoulli-preserving hash. This construc-
tions relies on a lossy function family F : X → Y and a universal hash function
5 In practice, it is probably more convenient (and more reliable) to instantiate a qPRF

from block ciphers, which may not be ideal for message authentication.

814 G. Alagic et al.

G = {gk : Y → Z}k∈K. A lossy function family admits two types of keys: a lossy
key s ← Dlos and an injective key s ← Dinj , which are computationally indistin-
guishable. Fs : X → Y under a lossy key s is compressing, i.e., |im(Fs)| � |Y |;
whereas under an injective key s, Fs is injective. We refer a formal definition
to [26, Definition 2], and an explicit construction based on LWE to [20]. There
exist efficient constructions for universal hash families by various means [28].
Then one constructs a hash function family H = {hs,k} by hs,k := gk ◦ Fs

with public parameters generated by s ← Dlos, k ← K. The proof of Bernoulli-
preserving for this hash function is similar to Unruh’s proof that H is collapsing;
see the full version [4].

Relationship to collapsing. Finally, we relate Bernoulli-preserving hash to
another quantum generalization of classical collision-resistance: the collapsing
property. Collapsing hash functions are particularly relevant to post-quantum
signatures. We first define the collapsing property (slightly rephrasing Unruh’s
original definition [27]) as follows. Let h : X → Y be a hash function, and let
SX and SXY be the set of quantum states (i.e., density operators) on registers
corresponding to the sets X and X×Y , respectively. We define two channels from
SX to SXY . First, Oh receives X, prepares |0〉 on Y , applies |x〉|y〉 �→ |x〉|y⊕h(x)〉,
and then measures Y fully in the computational basis. Second, O′

h first applies
Oh and then also measures X fully in the computational basis.

Oh : |x〉X
h�−→ |x, h(x)〉X,Y

measure Y�−→ (ρy
X , y) ,

O′
h : |x〉X

h�−→ |x, h(x)〉X,Y
measure X&Y�−→ (x, y) .

If the input is a pure state on X, then the output is either a superposition over
a fiber h−1(s) × {s} of h (for Oh) or a classical pair (x, h(x)) (for O′

h) .

Definition 9 (Collapsing). A hash function h is collapsing if for any single-
query QPT A, it holds that

∣∣Pr[AOh(1n) = 1] − Pr[AO′
h(1n) = 1]

∣∣ ≤ negl(n) .

To prove that Bernoulli-preserving hash implies collapsing, we need a tech-
nical fact. Recall that any subset S ⊆ {0, 1}n is associated with a two-outcome
projective measurement {ΠS ,1−ΠS} on n qubits defined by ΠS =

∑
x∈S |x〉〈x|.

We will write ΞS for the channel (on n qubits) which applies this measurement.

Lemma 5. Let S1, S2, . . . , Scn be subsets of {0, 1}n, each of size 2n−1, chosen
independently and uniformly at random. Let ΞSj

denote the two-outcome mea-
surement defined by Sj, and denote their composition Ξ̃ := ΞScn

◦ ΞScn−1 ◦
· · · ◦ ΞS1 . Let Ξ denote the full measurement in the computational basis. Then
Pr
[
Ξ̃ = Ξ

] ≥ 1 − 2−εn , whenever c ≥ 2 + ε with ε > 0,

A proof is given in the full version [4]. We remark that, to efficiently imple-
ment each ΞS with a random subset S, we can sample hi : [M] → [N] from a
pairwise-independent hash family (sampling an independent hi for each i), and
then define x ∈ S iff. h(x) ≤ N/2. For any input state

∑
x,z αx,z|x, z〉, we can

compute

Quantum-Secure Message Authentication 815

∑
x,z

αx,z|x, z〉 �→
∑
x,z

|x, z〉|b(x)〉, where b(x) := h(x)
?≤ N/2,

and then measure |b(x)〉. Pairwise independence is sufficient by Theorem 10
because only one quantum query is made.

Theorem 23. If h : X → Y is Bernoulli-preserving, then it is collapsing.

Proof. Let A be an adversary with inverse-polynomial distinguishing power in
the collapsing game. Choose n such that X = {0, 1}n. We define k = cn hybrid
oracles H0,H1, . . . , Hk, where hybrid Hj is a channel from SX to SXY which acts
as follows: (1) adjoin |0〉Y and apply the unitary |x〉X |y〉Y �→ |x〉X |y⊕h(x)〉Y ; (2)
measure the Y register in the computational basis; (3) repeat j times: (i) select
a uniformly random subset S ⊆ X of size 2n−1; (ii) apply the two-outcome
measurement ΞS to the X register; (4) output registers X and Y .

Clearly, H0 is identical to the Oh channel in the collapsing game. By Lemma 5,
Hk is indistinguishable from the O′

h. By our initial assumption and the triangle
inequality, there exists a j such that∣∣Pr[AHj (1n) = 1] − Pr[AHj+1(1n) = 1]

∣∣ ≥ 1/poly(n). (21)

We now build a distinguisher D against the Bernoulli-preserving property
(with ε = 1/2) of h. It proceeds as follows: (1) run A(1n) and place its query
state in register X; (2) simulate oracle Hj on XY (use 2-wise independent hash
to select sets S); (3) prepare an extra qubit in the |0〉 state in register W , and
invoke the oracle for χB on registers X and W ; (4) measure and discard register
W ; (5) return XY to A, and output what it outputs.

We now analyze D. After the first two steps of Hj (compute h, measure
output register) the state of A (running as a subroutine of D) is given by∑

z

∑
x∈h−1(s)

αxz|x〉X |s〉Y |z〉Z .

Here Z is a side information register private to A. Applying the j measurements
(third step of Hj) results in a state of the form

∑
z

∑
x∈M βxz|x〉|s〉|z〉, where

M is a subset of h−1(s). Applying the oracle for χB into an extra register now
yields ∑

z

∑
x∈M

βxz|x〉|s〉|z〉|χB(x)〉W .

Now consider the two cases of the Bernoulli-preserving game.
First, in the “hash-blinded” case, B = h−1(C) for some set C ⊆ Y . This

implies that χB(x) = χC(h(x)) = χC(s) for all x ∈ M . It follows that W simply
contains the classical bit χC(s); computing this bit, measuring it, and discarding
it will thus have no effect. The state returned to A will then be identical to the
output of the oracle Hj . Second, in the “uniform blinding” case, B is a random
subset of X of size 2n−1, selected uniformly and independently of everything else
in the algorithm thus far. Computing the characteristic function of B into an

816 G. Alagic et al.

extra qubit and then measuring and discarding that qubit implements the chan-
nel ΞB , i.e., the measurement {ΠB ,1 − ΠB}. It follows that the state returned
to A will be identical to the output of oracle Hj+1.

By (21), it now follows that D is a successful distinguisher in the Bernoulli-
preserving hash game for h, and that h is thus not a Bernoulli-preserving hash.

��

References

1. Aaronson, S.: Quantum lower bound for recursive Fourier sampling. Quantum Inf.
Comput. 3(2), 165–174 (2003)

2. Alagic, G., Gagliardoni, T., Majenz, C.: Can you sign a quantum state? arXiv
preprint arXiv:1811.11858 (2018)

3. Alagic, G., Gagliardoni, T., Majenz, C.: Unforgeable quantum encryption. In:
Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT 2018. LNCS, vol. 10822, pp. 489–
519. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-78372-7 16

4. Alagic, G., Majenz, C., Russell, A., Song, F.: Quantum-secure message authenti-
cation via blind-unforgeability. arXiv preprint arXiv:1803.03761 (2020)

5. Bennett, C.H., Bernstein, E., Brassard, G., Vazirani, U.V.: Strengths and weak-
nesses of quantum computing. SIAM J. Comput. 26(5), 1510–1523 (1997)

6. Biasse, J.-F., Song, F.: Efficient quantum algorithms for computing class groups
and solving the principal ideal problem in arbitrary degree number fields. In: Pro-
ceedings of the Twenty-Seventh Annual ACM-SIAM Symposium on Discrete Algo-
rithms. SODA 2016, Philadelphia, PA, USA, pp. 893–902. Society for Industrial
and Applied Mathematics (2016)

7. Boneh, D., Zhandry, M.: Quantum-secure message authentication codes. In:
Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS, vol. 7881, pp. 592–
608. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-38348-9 35

8. Boneh, D., Zhandry, M.: Secure signatures and chosen ciphertext security in a
quantum computing world. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013.
LNCS, vol. 8043, pp. 361–379. Springer, Heidelberg (2013). https://doi.org/10.
1007/978-3-642-40084-1 21

9. Chen, L., et al.: Report on post-quantum cryptography. Technical report, National
Institute of Standards and Technology (2016)

10. Cramer, R., Ducas, L., Peikert, C., Regev, O.: Recovering short generators of prin-
cipal ideals in cyclotomic rings. In: Fischlin, M., Coron, J.-S. (eds.) EUROCRYPT
2016. LNCS, vol. 9666, pp. 559–585. Springer, Heidelberg (2016). https://doi.org/
10.1007/978-3-662-49896-5 20

11. Czajkowski, J., Majenz, C., Schaffner, C., Zur, S.: Quantum lazy sampling and
game-playing proofs for quantum indifferentiability. Cryptology ePrint Archive,
Report 2019/428 (2019). https://eprint.iacr.org/2019/428

12. Eisenträger, K., Hallgren, S., Kitaev, A., Song, F.: A quantum algorithm for com-
puting the unit group of an arbitrary degree number field. In: Proceedings of the
46th Annual ACM Symposium on Theory of Computing. STOC 2014, pp. 293–302.
ACM, New York (2014)

13. Gagliardoni, T., Hülsing, A., Schaffner, C.: Semantic security and indistinguishabil-
ity in the quantum world. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016. LNCS,
vol. 9816, pp. 60–89. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-
662-53015-3 3

http://arxiv.org/abs/1811.11858
https://doi.org/10.1007/978-3-319-78372-7_16
http://arxiv.org/abs/1803.03761
https://doi.org/10.1007/978-3-642-38348-9_35
https://doi.org/10.1007/978-3-642-40084-1_21
https://doi.org/10.1007/978-3-642-40084-1_21
https://doi.org/10.1007/978-3-662-49896-5_20
https://doi.org/10.1007/978-3-662-49896-5_20
https://eprint.iacr.org/2019/428
https://doi.org/10.1007/978-3-662-53015-3_3
https://doi.org/10.1007/978-3-662-53015-3_3

Quantum-Secure Message Authentication 817

14. Garg, S., Yuen, H., Zhandry, M.: New security notions and feasibility results for
authentication of quantum data. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017.
LNCS, vol. 10402, pp. 342–371. Springer, Cham (2017). https://doi.org/10.1007/
978-3-319-63715-0 12

15. Hayashi, M.: Optimal sequence of quantum measurements in the sense of Stein’s
lemma in quantum hypothesis testing. J. Phys. A: Math. Gen. 35(50), 10759 (2002)

16. Kaplan, M., Leurent, G., Leverrier, A., Naya-Plasencia, M.: Breaking sym-
metric cryptosystems using quantum period finding. In: Robshaw, M., Katz, J.
(eds.) CRYPTO 2016. LNCS, vol. 9815, pp. 207–237. Springer, Heidelberg (2016).
https://doi.org/10.1007/978-3-662-53008-5 8

17. Kuwakado, H., Morii, M.: Quantum distinguisher between the 3-round Feistel
cipher and the random permutation. In: Proceedings of IEEE International Sym-
posium on Information Theory, pp. 2682–2685, June 2010

18. Kuwakado, H., Morii, M.: Security on the quantum-type Even-Mansour cipher.
In: Proceedings of the International Symposium on Information Theory and Its
Applications, pp. 312–316. IEEE Computer Society (2012)

19. Lamport, L.: Constructing digital signatures from a one way function. Technical
report SRI-CSL-98, SRI International Computer Science Laboratory (1979)

20. Peikert, C., Waters, B.: Lossy trapdoor functions and their applications. In: Pro-
ceedings of the Fortieth Annual ACM Symposium on Theory of Computing, STOC
2008, pp. 187–196. ACM, New York (2008)

21. Sahai, A., Waters, B.: How to use indistinguishability obfuscation: deniable encryp-
tion, and more. In: Proceedings of the 46th Annual ACM Symposium on Theory
of Computing, STOC 2014, pp. 475–484. ACM (2014)

22. Santoli, T., Schaffner, C.: Using Simon’s algorithm to attack symmetric-key cryp-
tographic primitives. Quantum Inf. Comput. 17(1&2), 65–78 (2017)

23. Shor, P.W.: Polynomial-time algorithms for prime factorization and discrete loga-
rithms on a quantum computer. SIAM J. Comput. 26(5), 1484–1509 (1997)

24. Song, F., Yun, A.: Quantum security of NMAC and related constructions. In: Katz,
J., Shacham, H. (eds.) CRYPTO 2017. LNCS, vol. 10402, pp. 283–309. Springer,
Cham (2017). https://doi.org/10.1007/978-3-319-63715-0 10

25. Forrest Stinespring, W.: Positive functions on c*-algebras. Proc. Am. Math. Soc.
6(2), 211–216 (1955)

26. Unruh, D.: Collapse-binding quantum commitments without random oracles. In:
Cheon, J.H., Takagi, T. (eds.) ASIACRYPT 2016. LNCS, vol. 10032, pp. 166–195.
Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53890-6 6

27. Unruh, D.: Computationally binding quantum commitments. In: Fischlin, M.,
Coron, J.-S. (eds.) EUROCRYPT 2016. LNCS, vol. 9666, pp. 497–527. Springer,
Heidelberg (2016). https://doi.org/10.1007/978-3-662-49896-5 18

28. Vadhan, S.P.: Pseudo randomness. Found. Trends R© Theor. Comput. Sci. 7(1–3),
1–336 (2012)

29. Zhandry, M.: How to construct quantum random functions. In: Proceedings of the
53rd Annual Symposium on Foundations of Computer Science, FOCS 2012, pp.
679–687. IEEE Computer Society, Washington, DC (2012)

30. Zhandry, M.: How to record quantum queries, and applications to quantum indif-
ferentiability. In: Boldyreva, A., Micciancio, D. (eds.) CRYPTO 2019. LNCS, vol.
11693, pp. 239–268. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-
26951-7 9

31. Zhandry, M.: Quantum lightning never strikes the same state twice. In: Ishai, Y.,
Rijmen, V. (eds.) EUROCRYPT 2019. LNCS, vol. 11478, pp. 408–438. Springer,
Cham (2019). https://doi.org/10.1007/978-3-030-17659-4 14

https://doi.org/10.1007/978-3-319-63715-0_12
https://doi.org/10.1007/978-3-319-63715-0_12
https://doi.org/10.1007/978-3-662-53008-5_8
https://doi.org/10.1007/978-3-319-63715-0_10
https://doi.org/10.1007/978-3-662-53890-6_6
https://doi.org/10.1007/978-3-662-49896-5_18
https://doi.org/10.1007/978-3-030-26951-7_9
https://doi.org/10.1007/978-3-030-26951-7_9
https://doi.org/10.1007/978-3-030-17659-4_14

Author Index

Aggarwal, Divesh I-343
Agrawal, Shweta I-13, I-110
Agrikola, Thomas II-96
Alagic, Gorjan III-759, III-788
Aranha, Diego F. I-644
Asharov, Gilad II-403
Auerbach, Benedikt III-475

Badrinarayanan, Saikrishna III-642
Bag, Arnab I-612
Bao, Zhenzhen II-641
Bardet, Magali III-64
Basu Roy, Debapriya I-612
Batina, Lejla I-581
Beimel, Amos I-529
Belaïd, Sonia III-311
Bellare, Mihir II-3, III-507
Beullens, Ward III-183
Bonnetain, Xavier II-493
Brakerski, Zvika I-79, II-551
Briaud, Pierre III-64
Bros, Maxime III-64
Bünz, Benedikt I-677

Castryck, Wouter II-523
Chiesa, Alessandro I-738, I-769
Cohen, Ran II-828
Coron, Jean-Sébastien III-342
Corrigan-Gibbs, Henry I-44
Couteau, Geoffroy III-442
Cramer, Ronald I-499

D’Anvers, Jan-Pieter III-3
Daemen, Joan I-581
Dagand, Pierre-Évariste III-311
Davis, Hannah II-3
de Boer, Koen II-341
Dinur, Itai I-405, II-433
Dodis, Yevgeniy I-313
Döttling, Nico I-79, II-551, II-768
Ducas, Léo II-341, II-608
Dulek, Yfke III-729
Dunkelman, Orr I-250, I-280

Ephraim, Naomi I-707, III-125
Esser, Andre III-94

Fehr, Serge II-341
Fernando, Rex III-642
Fisch, Ben I-677
Fischlin, Marc III-212
Flórez-Gutiérrez, Antonio I-221
Fouque, Pierre-Alain III-34
Freitag, Cody I-707, III-125
Fuchsbauer, Georg II-63

Gaborit, Philippe III-64
Galbraith, Steven II-608
Garay, Juan II-129, II-828
Garg, Ankit I-373
Garg, Sanjam I-79, II-373, II-768
Ghazi, Badih II-798
Ghoshal, Ashrujit II-33
Giacon, Federico III-475
Goldwasser, Shafi II-373
Gong, Junqing III-278
Goyal, Vipul III-668
Grassi, Lorenzo II-674
Greuet, Aurélien III-342
Grilo, Alex B. III-729
Grosso, Vincent I-581
Günther, Felix II-3
Guo, Chun II-641
Guo, Jian II-641

Hajiabadi, Mohammad II-768
Hao, Yonglin I-466
Harasser, Patrick III-212
Hazay, Carmit II-184, III-599
Heath, David III-569
Hofheinz, Dennis II-96
Hosoyamada, Akinori II-249
Hu, Yuncong I-738

Jain, Aayush I-141, III-642
Jain, Abhishek III-668

Janson, Christian III-212
Jaques, Samuel II-280
Jayanti, Siddhartha II-159
Jeffery, Stacey III-729
Jin, Zhengzhong III-668

Kalai, Yael Tauman I-373
Kastner, Julia II-96
Katsumata, Shuichi III-379, III-442
Keller, Nathan I-250, I-280
Khurana, Dakshita I-373, III-642
Kiayias, Aggelos II-129
Kiltz, Eike III-475
Kim, Sam II-576
Kim, Seongkwang I-435
Kirchner, Paul III-34
Kogan, Dmitry I-44
Kolesnikov, Vladimir III-569
Komargodski, Ilan I-707, II-403, III-125
Kuchta, Veronika III-703

Lasry, Noam I-250
Leander, Gregor I-466
Lee, Byeonghak I-435
Lee, Jooyoung I-435
Li, Bao III-538
Libert, Benoît III-410
Lin, Huijia III-247
Lin, Wei-Kai II-403
Lombardi, Alex III-620
Lüftenegger, Reinhard II-674
Luo, Ji III-247

Majenz, Christian III-729, III-759, III-788
Malavolta, Giulio I-79, III-668
Maller, Mary I-738
Manohar, Nathan I-141
Manurangsi, Pasin II-798
Masny, Daniel II-768
Massolino, Pedro Maat Costa I-581
May, Alexander III-94
Meier, Willi I-466
Mercadier, Darius III-311
Mishra, Pratyush I-738
Morgan, Andrew II-216
Mukhopadhyay, Debdeep I-612
Musa, Saud Al III-538

Naehrig, Michael II-280
Naito, Yusuke II-705
Nandi, Mridul I-203
Nayak, Kartik II-403
Naya-Plasencia, María I-221, II-311
Neiger, Vincent III-64
Nielsen, Jesper Buus I-556
Nishimaki, Ryo III-379

Obremski, Maciej I-343
Ojha, Dev I-769
Orlandi, Claudio I-644
Ostrovsky, Rafail M. II-129
Othman, Hussien I-529

Pagh, Rasmus II-798
Panagiotakos, Giorgos II-129
Panny, Lorenz II-523
Papagiannopoulos, Kostas I-581
Pass, Rafael I-707, II-216, III-125, III-599
Passelègue, Alain III-410
Patranabis, Sikhar I-612
Peikert, Chris II-463
Pellet-Mary, Alice I-110
Peserico, Enoch II-403
Pinkas, Benny II-739
Plouviez, Antoine II-63
Polychroniadou, Antigoni II-216
Prest, Thomas II-608

Raghuraman, Srinivasan II-159
Rechberger, Christian II-674
Regazzoni, Francesco I-581
Ribeiro, João I-343
Rivain, Matthieu III-311
Roetteler, Martin II-280
Ronen, Eyal I-280
Rossi, Mélissa III-3
Rosulek, Mike II-739
Rotaru, Dragos II-674
Rotem, Lior III-155
Ruatta, Olivier III-64
Russell, Alexander III-759, III-788

Saha, Sayandeep I-612
Sahai, Amit I-141, III-642
Sakzad, Amin III-703

820 Author Index

Samwel, Niels I-581
Sasaki, Yu II-249, II-705
Schaffner, Christian III-729
Schofnegger, Markus II-674
Schrottenloher, André II-311, II-493
Segev, Gil III-155
Seurin, Yannick II-63
Shahaf, Ido III-155
Shamir, Adi I-250, I-280
Shi, Elaine II-403
Silverberg, Alice I-3
Simkin, Mark I-556
Simon, Thierry I-581
Siniscalchi, Luisa I-343
Song, Fang III-788
Song, Ling II-641
Spooner, Nicholas I-769
Stehlé, Damien III-703
Steinfeld, Ron III-703
Stepanovs, Igors III-507
Sugawara, Takeshi II-705
Sun, Shi-Feng III-703
Szepieniec, Alan I-677

Takahashi, Akira I-644
Tessaro, Stefano II-33
Tibouchi, Mehdi III-34
Tillich, Jean-Pierre III-64
Todo, Yosuke I-466
Trieu, Ni II-739

Ünal, Akın I-169
Ursu, Bogdan III-442

Vaikuntanathan, Vinod I-313, III-620
Vasudevan, Prashant Nalini II-373
Velingker, Ameya II-798
Venkitasubramaniam, Muthuramakrishnan

II-184, III-599
Vercauteren, Frederik II-523
Vesely, Noah I-738
Virdia, Fernando II-280, III-3
Visconti, Ivan I-343
Vyas, Nikhil II-159

Wallet, Alexandre III-34
Wang, Qingju I-466
Ward, Nicholas I-738
Wee, Hoeteck III-278, III-410
Weiss, Mor II-184
Wichs, Daniel I-313, II-768, III-620
Wintersdorff, Raphaël III-311
Wu, David J. III-410

Xing, Chaoping I-499

Yamada, Shota I-13, III-379
Yamakawa, Takashi III-379
Yanai, Avishay II-739
Yu, Wei III-538
Yu, Yang II-608, III-34

Zaverucha, Greg I-644
Zeitoun, Rina III-342
Zikas, Vassilis II-129, II-828

Author Index 821

	Preface
	Eurocrypt 2020
	Contents – Part III
	Asymmetric Cryptanalysis
	(One) Failure Is Not an Option: Bootstrapping the Search for Failures in Lattice-Based Encryption Schemes
	1 Introduction
	2 Preliminaries
	3 Lattice-Based Encryption
	3.1 Passively and Actively Secure Encryption
	3.2 Decryption Failures

	4 Failure Boosting Attack Technique
	5 Directional Failure Boosting
	5.1 Distributions
	5.2 Step 1: Estimating the Direction E
	5.3 Step 2: Finding Weak Ciphertexts
	5.4 Finalizing the Attack with Lattice Reduction

	6 Efficiency of Directional Failure Boosting
	6.1 Accuracy of the Estimate
	6.2 Estimating i, ft and i, ft
	6.3 Total Amount of Work and Queries

	7 Discussion and Variants
	7.1 Comparison with D'Anvers et al. ch1Danvers20182
	7.2 Minimizing the Number of Queries Instead
	7.3 Application to ss-ntru-pke and Improvement of Guo et al. ch1Guo2019

	References

	Key Recovery from Gram–Schmidt Norm Leakage in Hash-and-Sign Signatures over NTRU Lattices
	1 Introduction
	2 Preliminaries
	2.1 Gram–Schmidt Orthogonalization
	2.2 Parametric Statistics
	2.3 Discrete Gaussian Distributions
	2.4 Power-of-Two Cyclotomic Fields
	2.5 NTRU Lattices

	3 Hash-and-Sign over NTRU Lattices
	3.1 The KGPV Sampler and Its Variant

	4 Side-Channel Attack Against Trapdoor Samplers: A Roadmap
	5 Recovering Totally Positive Elements
	5.1 Case of the Power Basis
	5.2 Case of the Bit-Reversed Order Basis

	6 Side-Channel Leakage of the Gram–Schmidt Norms
	6.1 Leakage in the DLP Scheme
	6.2 Leakage in the Falcon Scheme

	7 Practical Attack Against the DLP Scheme
	7.1 Totally Positive Recovery with Noisy Inputs
	7.2 Practical Tweaks in the DLP Setting
	7.3 Experimental Results
	7.4 Precision Required on the Gram–Schmidt Norms

	8 Conclusion and Future Work
	References

	An Algebraic Attack on Rank Metric Code-Based Cryptosystems
	1 Introduction
	2 Notation
	3 Algebraic Modellings of the Decoding Problem
	3.1 Solving the MinRank Instance Using Kipnis-Shamir's Modelling
	3.2 Syndrome Modelling
	3.3 Ourivski-Johansson's Modelling

	4 Gröbner Bases and Degree Falls
	5 Degree Falls and Low Degree Equations
	5.1 Degree Falls from the Kernel of the Jacobian
	5.2 Analysis of the Ideal MaxMinors(C2-C1 R)

	6 Experimental Results, Complexity Bounds, and Security
	6.1 Experimental Results
	6.2 Complexity Analysis and Security over F2

	7 Conclusion
	References

	Low Weight Discrete Logarithm and Subset Sum in 20.65n with Polynomial Memory
	1 Introduction
	2 Preliminaries
	3 A Generalized View on the BCJ Subset Sum Algorithm
	3.1 Improved Low Weight DLP Algorithm

	4 Subset Sum in 20.65n with Polynomial Space
	4.1 Nested Collision Subset Sum in 20.649n
	4.2 Improved Nested Collision Subset Sum in 20.645n
	4.3 Experiments for Our 20.649n Subset Sum Algorithm

	References

	Verifiable Delay Functions
	Continuous Verifiable Delay Functions
	1 Introduction
	1.1 Our Results
	1.2 Related Work

	2 Technical Overview
	2.1 Adapting Pietrzak's VDF
	2.2 Constructing a Continuous VDF
	2.3 The Efficiency of Our Construction

	3 Preliminaries
	3.1 Verifiable, Sequential, and Iteratively Sequential Functions
	3.2 Repeated Squaring Assumption
	3.3 Number Theory Facts

	4 Interactive Proof for Repeated Squaring
	4.1 Protocol

	5 Unique Verifiable Delay Function
	5.1 Construction

	6 Continuous Verifiable Delay Function
	6.1 Construction

	References

	Generic-Group Delay Functions Require Hidden-Order Groups
	1 Introduction
	1.1 Our Contributions
	1.2 Related Work
	1.3 Overview of Our Approach
	1.4 Paper Organization

	2 Preliminaries
	2.1 Generic Groups and Algorithms
	2.2 Generic-Group Delay Functions

	3 Our Impossibility Result
	4 Extending Our Impossibility Result to the Multilinear Setting
	4.1 Generic Multilinear Groups
	4.2 Proof of Theorem4.1

	5 Additional Extensions
	A Fast Internal Computation via Smith Normal Forms
	References

	Signatures
	Sigma Protocols for MQ, PKP and SIS, and Fishy Signature Schemes
	1 Introduction
	2 Preliminaries
	2.1 Hard Problems
	2.2 Commitment Schemes

	3 Sigma Protocols with Helper
	4 Proving Knowledge of a Solution to a System of Quadratic Equations
	5 Proving Knowledge of a Solution to a (inhomogeneous) PKP Instance
	6 Removing the Helper
	7 Optimizations
	8 Signature Schemes
	8.1 Fiat-Shamir Transform
	8.2 MUDFISH
	8.3 SUSHSYFISH

	9 Zero Knowledge Proofs for Lattice Statements
	9.1 Generalizing to Subgroup IPKP
	9.2 Embedding ISIS into IPKP
	9.3 Concrete Examples and Comparison to Previous Works

	References

	Signatures from Sequential-OR Proofs
	1 Introduction
	1.1 OR-Proofs
	1.2 Applications of OR-Proofs
	1.3 Non-programmable Random Oracles
	1.4 Sequential-OR Proofs
	1.5 Our Results
	1.6 Further Related Work
	1.7 Extension to the Quantum Random Oracle Model

	2 Preliminaries
	2.1 Basic Notation
	2.2 Random Oracle Model
	2.3 Languages and Relations
	2.4 Interactive Protocols
	2.5 3PC-Protocols and -Protocols

	3 Parallel-OR Proofs
	4 Sequential-OR Proofs
	4.1 Protocol
	4.2 Sequential-OR Signatures
	4.3 Example: Post-Quantum Ring Signatures

	5 Impossibility of Parallel-OR Signatures in the Non-programmable Random Oracle Model
	6 Security in the Quantum Random Oracle Model
	References

	Attribute-Based Encryption
	Compact Adaptively Secure ABE from k-Lin: Beyond NC1 and Towards NL
	1 Introduction
	2 Technical Overview
	2.1 1-ABE from Arithmetic Key Garbling and IPFE Schemes
	2.2 Full-Fledged ABE via IPFE
	2.3 1-ABE for Logspace Turing Machines

	3 Preliminaries
	3.1 Bilinear Pairing and Matrix Diffie-Hellman Assumption
	3.2 Attribute-Based Encryption
	3.3 Function-Hiding Slotted Inner-Product Functional Encryption

	4 Arithmetic Key Garbling Scheme
	5 1-ABE for ABPs
	References

	Adaptively Secure ABE for DFA from k-Lin and More
	1 Introduction
	1.1 Our Results
	1.2 Technical Overview
	1.3 Discussion

	2 Preliminaries
	2.1 Attribute-Based Encryption
	2.2 Prime-Order Groups

	3 DFA, NFA, and Their Relationships
	4 Semi-adaptively Secure ABE for NFAp
	4.1 Basis
	4.2 Scheme
	4.3 Game Sequence
	4.4 Initializing
	4.5 Switching Secret Keys II
	4.6 Finalize

	5 Adaptively Secure ABE for EQ-Restricted NFAp and DFA
	5.1 Scheme
	5.2 Proof of Main Theorem

	References

	Side-Channel Security
	Tornado: Automatic Generation of Probing-Secure Masked Bitsliced Implementations
	1 Introduction
	2 Technical Background
	2.1 Usuba
	2.2 tightPROVE

	3 Extending tightPROVE to the Register-Probing Model
	3.1 Model of Computation
	3.2 Security Notions
	3.3 Security Reductions in the Register Probing Model
	3.4 Verification in the Register Probing Model

	4 Tornado: Automating Slicing and Masking
	4.1 Addition of Refresh Gadgets
	4.2 Optimizations

	5 Evaluation
	5.1 tightPROVE+
	5.2 Baseline Performance Evaluation
	5.3 Masking Benchmarks

	6 Conclusion
	References

	Side-Channel Masking with Pseudo-Random Generator
	1 Introduction
	2 Definitions and Previous Work
	2.1 Private Circuits
	2.2 PINI and t-SNI Security
	2.3 r-wise Independent PRG: Definition and Construction
	2.4 Robust PRG: Definition and Trivial Construction
	2.5 Application to Private Circuits
	2.6 Locality Refreshing
	2.7 Composing -local Gadgets

	3 Improving the Locality of the Multiplication Gadget
	3.1 First Construction with Internal Locality Refreshing (SecMultILR)
	3.2 Second Construction with Less Randomness (SecMultILR2)
	3.3 Formal Verification of Locality and Security

	4 Private Circuits with Multiple PRGs Without Robustness
	4.1 Security with Multiple PRGs
	4.2 Extended Security Model: PINI-R
	4.3 Constant Locality with Respect to a Randomness Subset
	4.4 First Construction: Multiple PRGs with SecMultFLR
	4.5 Second Construction: Multiple PRGs with SecMultILR

	5 Application to AES
	5.1 The AES Circuit and the Rivain-Prouff Countermeasure
	5.2 Implementation with Single Robust PRG
	5.3 Implementation with Multiple PRGs

	A Concrete Implementation
	B The SecMult Gadget
	References

	Non-Interactive Zero-Knowledge
	Compact NIZKs from Standard Assumptions on Bilinear Maps
	1 Introduction
	1.1 Background
	1.2 Our Result
	1.3 Technical Overview
	1.4 Related Work

	2 Definitions
	2.1 Preliminaries on Bilinear Maps
	2.2 Non-interactive Zero-Knowledge Arguments
	2.3 NC1 Circuits and Monotone Formulae

	3 KP-ABE with Compact Ciphertexts
	3.1 Preliminaries
	3.2 Construction
	3.3 Security

	4 Compact Constrained Signature
	4.1 Constrained Signature
	4.2 Construction and Security

	5 Compact NIZK from Compact Constrained Signatures
	5.1 Main Construction
	5.2 Variants of Our NIZK

	References

	New Constructions of Statistical NIZKs: Dual-Mode DV-NIZKs and More
	1 Introduction
	1.1 Our Results
	1.2 Technical Overview

	2 Preliminaries
	2.1 NIZKs in the Hidden-Bits Model
	2.2 Designated-Verifier NIZKs and Dual-Mode NIZKs

	3 Dual-Mode Hidden-Bits Generators and Dual-Mode DV-NIZKs
	3.1 Dual-Mode DV-NIZK from Dual-Mode HBG

	4 Dual-Mode HBGs from the k-Lin Assumption
	4.1 Dual-Mode Hidden-Bits Generator from k-Lin
	4.2 Publicly-Verifiable Hidden-Bit Generators from Pairings
	4.3 Dual-Mode HBG with Malicious Security from k-Lin

	5 Instantiations and Extensions
	References

	Non-interactive Zero-Knowledge in Pairing-Free Groups from Weaker Assumptions
	1 Introduction
	1.1 Our Contribution
	1.2 Our Techniques – First Construction
	1.3 Our Techniques – Second Construction
	1.4 Organization

	2 Preliminaries
	2.1 Non-interactive Zero-Knowledge
	2.2 Verifiable Pseudorandom Generators
	2.3 Correlation-Intractable Hash Functions
	2.4 -Protocol
	2.5 Secret Key Variant of ElGamal
	2.6 Low-Depth Pseudorandom Generators

	3 NIZK Based on the Security of CDH and Strong OW-KDM Security of ElGamal
	3.1 -Protocol for the Diffie-Hellman Language
	3.2 Correlation-Intractable Hash Function H
	3.3 NIZK for LDH via RH-Correlation-Intractability
	3.4 VPRG from NIZK for LDH

	4 NIZK from Insecurity of CDH and Strong OW-KDM Security of ElGamal
	4.1 -Protocol for the Language of Almost-Short Elements
	4.2 Correlation-Intractable Hash Function
	4.3 NIZK for the Almost-Short Language via RH'-Correlation-Intractability
	4.4 A Commitment Scheme from the Short-Exponent Discrete Logarithm Assumption
	4.5 A VPRG from NIZK for the Almost Short Language and the SEDL Assumption

	References

	Public-Key Encryption
	Everybody's a Target: Scalability in Public-Key Encryption
	1 Introduction
	1.1 Our Results
	1.2 Generic Bounds on Multi-Instance GapCDH: Technical Details
	1.3 Related Work and Future Directions

	2 Preliminaries
	2.1 Notation
	2.2 Generic/Algebraic Group Model
	2.3 Key-Encapsulation Mechanisms

	3 Multi-Instance Security
	3.1 Key Encapsulation in the Multi-Instance Setting
	3.2 Advantage Relations for Different m and n
	3.3 Scaling Factor
	3.4 Multi-Instance Diffie-Hellman-Type Problems

	4 Hashed ElGamal in the Multi-Instance Setting
	4.1 Hashed-ElGamal Key Encapsulation
	4.2 Multi-Instance Security of Hashed ElGamal
	4.3 Scaling Factor of Hashed ElGamal for Different Parameters

	5 Generic Hardness of the Multi-Instance Gap Discrete Logarithm Problem
	5.1 Polycheck Discrete Logarithm and Search-by-Hypersurface Problem
	5.2 Generic Hardness of High-Granularity (m,n)-d-PolyDL

	6 Generic Hardness of the Multi-Instance Gap Computational Diffie-Hellman Problem
	6.1 Generic Hardness of High-Granularity (m,n)-GapCDH
	6.2 Generic Hardness of Medium-Granularity (m,n)-GapCDH
	6.3 Generic Hardness of Low-Granularity (m,n)-GapCDH

	References

	Security Under Message-Derived Keys: Signcryption in iMessage
	1 Introduction
	2 Preliminaries
	3 Signcryption
	4 Encryption Under Message Derived Keys
	4.1 Syntax, Correctness and Security of EMDK
	4.2 iMessage-Based EMDK Scheme

	5 Design and Security of iMessage
	5.1 iMessage-Based Signcryption Scheme IMSG-SC
	5.2 Parameter-Choice Induced Attacks on Privacy of iMessage
	5.3 Authenticity of iMessage
	5.4 Privacy of iMessage
	5.5 Concrete Security of iMessage

	References

	Double-Base Chains for Scalar Multiplications on Elliptic Curves
	1 Introduction
	2 Preliminaries
	2.1 Elliptic Curves
	2.2 DBCs

	3 The Number of DBCs
	3.1 The Structure of the Set Containing All DBCs
	3.2 The Number of DBCs
	3.3 The Number of DBCs for Large b or t

	4 Hamming Weight of DBCs
	4.1 The Range of the Leading Term of Optimal DBCs and Canonic DBCs
	4.2 A Lower Bound on the Hamming Weights of DBCs

	5 Dynamic Programming Algorithm to Produce Optimal DBCs
	5.1 Basics for Dynamic Programming Algorithm
	5.2 Dynamic Programming to Compute an Optimal DBC
	5.3 The Time Complexity and Space Complexity of Algorithm2

	6 Equivalent Representatives for Large Numbers
	6.1 Use Equivalent Representatives in Algorithm2
	6.2 Dynamic Programming Using Equivalent Representatives k-th
	6.3 Comparison of These Algorithms
	6.4 The Hamming Weights and Leading Terms of Canonic DBCs and Optimal DBCs

	7 Comparison of Scalar Multiplications
	8 Conclusion
	References

	Zero-Knowledge
	Stacked Garbling for Disjunctive Zero-Knowledge Proofs
	1 Introduction
	1.1 Use Cases: Hash Trees and Existence of Bugs in Program Code
	1.2 Key Contributions
	1.3 Preliminaries
	1.4 High-Level Approach
	1.5 Generality of Top-Level Clauses
	1.6 Related Work
	1.7 Comparison with Prior Work

	2 Notation
	3 Our Privacy-Free Stacked Garbling Construction
	3.1 Reference Evaluation
	3.2 Garble
	3.3 Encode
	3.4 Evaluate
	3.5 Decode
	3.6 Verify
	3.7 Generalizing to Diverse Clauses

	4 Proofs of Security
	4.1 Correctness
	4.2 Soundness
	4.3 Verifiability

	5 Instantiating Our Scheme
	6 Performance Evaluation
	6.1 Experiment 1: Merkle Tree Proof (JKO Comparison Focus)
	6.2 Experiment 2: Merkle Tree Building (NIZK Comparison Focus)
	6.3 Experiment 3: Scaling to Many Clauses

	7 Proving Existence of Bugs in Program Code
	7.1 Snippet Instrumentation

	References

	Which Languages Have 4-Round Fully Black-Box Zero-Knowledge Arguments from One-Way Functions?
	1 Introduction
	1.1 Our Techniques

	2 Preliminaries
	2.1 Fully Black-Box Constructions
	2.2 Interactive Systems

	3 Implausibility of 4-Round BB ZK Arguments from OWFs
	3.1 Main Result

	References

	Statistical ZAPR Arguments from Bilinear Maps
	1 Introduction
	1.1 Technical Overview
	1.2 Organization

	2 Preliminaries
	2.1 Witness Indistinguishable Arguments

	3 Tools for the Main Construction
	3.1 Non-Interactive Statistical Zero Knowledge Arguments
	3.2 Locally Zero Knowledge Proofs
	3.3 Sometimes-Binding Statistically Hiding (SBSH) Commitments

	4 Construction of Statistical ZAPR Arguments
	4.1 Description
	4.2 Proof of Theorem 3

	References

	Statistical ZAP Arguments
	1 Introduction
	1.1 Our Results

	2 Overview of Techniques
	2.1 A Simple Two-Message Public-Coin Computational WI Argument
	2.2 Using Correlation-Intractable Hashing with Statistically Hiding Extractable Commitments
	2.3 Statistically Hiding Extractable Commitments
	2.4 Statistical ZAP Arguments
	2.5 Organization

	3 Preliminaries
	3.1 Correlation Intractable Hash Functions
	3.2 Oblivious Transfer
	3.3 Proof Systems

	4 Extractable Commitments
	4.1 Definitions
	4.2 Protocol

	5 Our Statistical WI Protocol
	5.1 Modified Blum Protocol
	5.2 Statistical ZAPs
	5.3 Statistical SPS Zero Knowledge

	References

	Statistical Zaps and New Oblivious Transfer Protocols
	1 Introduction
	1.1 Our Results

	2 Technical Overview
	2.1 Statistical Zap Arguments
	2.2 Three Round Statistical Receiver-Private OT

	3 Preliminaries
	3.1 Learning with Errors
	3.2 Computational Diffie-Hellman Assumption
	3.3 Goldreich-Levin Hardcore Predicate
	3.4 Statistical Zap Arguments
	3.5 Statistical Sender-Private Oblivious Transfer
	3.6 Correlation Intractable Hash Function

	4 Statistical Zap Arguments
	4.1 Public Coin Statistical-Hiding Extractable Commitments
	4.2 Our Construction

	5 Statistical Hash Commitments
	5.1 Construction from CDH
	5.2 Construction from Any 2-round Statistical Sender-Private OT

	6 Three Round Statistical Receiver-Private Oblivious Transfer
	6.1 Our Construction

	References

	Quantum II
	Measure-Rewind-Measure: Tighter Quantum Random Oracle Model Proofs for One-Way to Hiding and CCA Security
	1 Introduction
	2 Preliminaries
	2.1 Quantum Computations
	2.2 Original One-Way to Hiding (O2H) Lemma

	3 Main Results
	3.1 O2H with Measure-Rewind-Measure (MRM)

	4 Tighter IND-CCA Proofs for Fujisaki-Okamoto KEMs
	4.1 Security Definitions
	4.2 Transforms
	4.3 Analysis of the U Transform

	References

	Secure Multi-party Quantum Computation with a Dishonest Majority
	1 Introduction
	1.1 Prior Work
	1.2 Our Contributions
	1.3 Overview of the Protocol
	1.4 Open Problems
	1.5 Outline

	2 Preliminaries
	2.1 Notation
	2.2 Classical Multi-party Computation
	2.3 Pauli Filter
	2.4 Clifford Authentication Code
	2.5 Universal Gate Sets

	3 Multi-party Quantum Computation: Definitions
	4 Setup and Encoding
	4.1 Input Encoding
	4.2 Preparing Ancilla Qubits

	5 Computation of Clifford and Measurement
	5.1 Subprotocol: Single-Qubit Cliffords
	5.2 Subprotocol: CNOT Gates
	5.3 Subprotocol: Measurement
	5.4 Subprotocol: Decoding
	5.5 Combining Subprotocols

	6 Protocol: MPQC for General Quantum Circuits
	6.1 Magic-State Distillation
	6.2 MPQC Protocol for Universal Quantum Computation
	6.3 Round Complexity and MPC Calls

	References

	Efficient Simulation of Random States and Random Unitaries
	1 Introduction
	1.1 Motivation
	1.2 The Problem: Efficient Simulation
	1.3 This Work
	1.4 Organization

	2 Preliminaries
	2.1 Unitary Designs
	2.2 Real and Ideal Stateful Machines
	2.3 Some State Preparation Tools

	3 Simulating a Haar-Random State Oracle
	3.1 The Problem, and Our Approach
	3.2 Some Tools for Symmetric Subspaces
	3.3 State Sampler Construction and Proof

	4 Simulating a Haar-Random Unitary Oracle
	4.1 The Problem, and Our Approach
	4.2 Construction and Proof

	5 Application: Untraceable Quantum Money
	5.1 Untraceable Quantum Money
	5.2 Haar Money

	References

	Quantum-Access-Secure Message Authentication via Blind-Unforgeability
	1 Introduction
	2 Summary of Results
	3 Preliminaries
	4 The New Notion: Blind-Unforgeability
	5 Intuitive Security and the Meaning of BU
	6 Blind-Unforgeable Schemes
	7 The Problem with PO-Unforgeability
	A Technical Proofs
	B More on Bernoulli-Preserving Hash
	References

	Author Index

