
On Instantiating the Algebraic Group
Model from Falsifiable Assumptions

Thomas Agrikola1(B), Dennis Hofheinz2(B), and Julia Kastner2

1 Karlsruhe Institute of Technology, Karlsruhe, Germany
thomas.agrikola@kit.edu

2 ETH Zürich, Zürich, Switzerland
{hofheinz,julia.kastner}@inf.ethz.ch

Abstract. We provide a standard-model implementation (of a relax-
ation) of the algebraic group model (AGM, [Fuchsbauer, Kiltz, Loss,
CRYPTO 2018]). Specifically, we show that every algorithm that uses
our group is algebraic, and hence “must know” a representation of its
output group elements in terms of its input group elements. Here, “must
know” means that a suitable extractor can extract such a representation
efficiently. We stress that our implementation relies only on falsifiable
assumptions in the standard model, and in particular does not use any
knowledge assumptions.

As a consequence, our group allows to transport a number of results
obtained in the AGM into the standard model, under falsifiable assump-
tions. For instance, we show that in our group, several Diffie-Hellman-like
assumptions (including computational Diffie-Hellman) are equivalent to
the discrete logarithm assumption. Furthermore, we show that our group
allows to prove the Schnorr signature scheme tightly secure in the ran-
dom oracle model.

Our construction relies on indistinguishability obfuscation, and hence
should not be considered as a practical group itself. However, our results
show that the AGM is a realistic computational model (since it can be
instantiated in the standard model), and that results obtained in the
AGM are also possible with standard-model groups.

Keywords: Indistinguishability obfuscation · Algebraic group model ·
Schnorr signatures

1 Introduction

The generic group model. In order to analyze the plausibility and relative strength
of computational assumptions in cyclic groups, Shoup [38] and Maurer [31] have

Work done while all authors were at Karlsruhe Institute of Technology.
T. Agrikola and J. Kastner—Supported by ERC Project PREP-CRYPTO 724307.
D. Hofheinz—Supported by ERC Project PREP-CRYPTO 724307, and by DFG
project GZ HO 4534/4-2.

c© International Association for Cryptologic Research 2020
A. Canteaut and Y. Ishai (Eds.): EUROCRYPT 2020, LNCS 12106, pp. 96–126, 2020.
https://doi.org/10.1007/978-3-030-45724-2_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-45724-2_4&domain=pdf
https://doi.org/10.1007/978-3-030-45724-2_4

On Instantiating the Algebraic Group Model from Falsifiable Assumptions 97

proposed the generic group model (GGM). In the GGM, any adversary can only
interact with the modeled group through an oracle. In particular, all computa-
tions in that group must be explicitly expressed in terms of the group operation.
To prevent an adversary from locally performing computations, that adversary
gets to see only truly random strings (in [38]) or independent handles (in [31]) as
representations of group elements.1

The discrete logarithm and even many Diffie-Hellman-style problems are hard
generically (i.e., when restricting group operations in the above way) [32,38].
Hence, the only way to break such a generically hard assumption in a con-
crete group is to use the underlying group representation in a nontrivial way. In
that sense, the GGM can be very useful as a sanity check for the validity of a
given assumption, or even the security of a given cryptographic scheme. How-
ever, generic groups cannot be implemented: there exist cryptographic schemes
that are secure in the GGM, but insecure when instantiated with any concrete
group [15].

The algebraic group model. The algebraic group model (AGM, [21]) is a relax-
ation of the GGM that tries to avoid impossibilities as in [15] while preserving
the GGM’s usefulness. Specifically, the AGM only considers algebraic (rather
than generic) adversaries. An algebraic adversary A can make arbitrary use of
the representation of group elements, but must supply an explicit decomposi-
tion for any of its output group elements in terms of input group elements. In
other words, A must also output an explanation of how any group element in
its output was computed from its input using the group operation.

Now [21] show that many GGM proofs only use this type of algebraicity of an
adversary, and carry over to the AGM. At the same time, GGM impossibilities
like [15] do not apply to the AGM, since algebraic adversaries are able to work
with the actual group (and not only with random or abstract representations of
group elements).

The AGM and knowledge assumptions. The AGM is closely related to the
notions of knowledge assumptions and extractability. To illustrate, assume that
for any (possibly non-algebraic) adversary A, we can find an extractor E that
manages to extract from A a decomposition of A’s output in terms of A’s input.
Then, composing E and A yields an algebraic adversary Aalg. In this situation,
we can then say that without loss of generality, any adversary can be assumed to
be algebraic.2 Conversely, any algebraic adversary by definition yields the results
of such an extraction in its output.

This observation also provides a blueprint to instantiating the AGM: simply
prove that any adversary A can be replaced by an algebraic adversary Aalg, pos-
sibly using an extraction process as above. If this extraction requires A’s code

1 Other black-box abstractions of groups with similar ramifications exist [6,34].
2 This observation about algebraic adversaries has already been made in [9,35]. Also,

similar but more specific knowledge assumptions have been used to prove concrete
cryptographic constructions secure, e.g., [4,14,16,25].

98 T. Agrikola et al.

and randomness but no other trapdoor, we obtain an AGM instantiation based
on a knowledge assumption such as the knowledge of exponent assumption [14].
Indeed, this was recently done by [30] under a very strong generalized version of
the knowledge of exponent assumption. Unfortunately, such knowledge assump-
tions are not falsifiable in the sense of Naor [33]. It is thus not entirely clear
how to assess the plausibility of such a universal and strong knowledge assump-
tion. Naturally, the question arises whether an AGM implementation inherently
requires such strong and non-falsifiable assumptions. Or, more generally:

Can we achieve knowledge-type properties
from falsifiable assumptions?

Note that in the AGM, the discrete logarithm assumption implies the existence
of extractable one-way functions (EOWFs) with unbounded auxiliary input. The
existence of such EOWFs, however, conflicts with the existence of indistinguisha-
bility obfuscation, [5]. Due to this barrier, we can only hope for an instantiation
of some suitably relaxed variant of the AGM from falsifiable assumptions.

Our strategy: private extraction. There is also another way to instantiate the
AGM: show that it is possible to extract a decomposition of A’s outputs from
these outputs and a suitable (secret) extraction trapdoor. In other words, our idea
is to avoid non-falsifiable knowledge assumptions by assuming that extraction
requires a special trapdoor that can be generated alongside the public parameters
of the group. This entails a number of technical difficulties (see below), but allows
us to rely entirely on falsifiable assumptions.

Specifically, our main result is an algebraic wrapper that transforms a given
cyclic group into a new one which allows for an extraction of representations.
More specifically, an element of the new group carries an encrypted representa-
tion of this group element relative to a fixed basis (i.e., set of group elements).
Upon group operations, this representation is updated, and a special trapdoor
(generated alongside the public parameters) allows to extract it.

Our results. Our strategy allows us to retrieve several AGM results (from [21,22])
in the standard model, in the sense that the group can be concretely implemented
from falsifiable assumptions.3 In particular, we show that in our group,

– the discrete logarithm assumption, the computational Diffie-Hellman assump-
tion, the square Diffie-Hellman assumption, and the linear-combination Diffie-
Hellman assumption (see [21]) are all equivalent,

3 Note that by “standard model”, we mean that the group itself is formulated without
idealizations and can be concretely implemented. While our construction itself does
not rely on the ROM, we still can transfer some ROM proofs in the AGM to ROM
proofs using our concrete group instantiation. We stress that a standard model
instantiation of the (full-fledged) AGM from very strong non-falsifiable assumptions
is already known due to [30].

On Instantiating the Algebraic Group Model from Falsifiable Assumptions 99

– the security of the Schnorr signature scheme [37] can be tightly reduced to
the discrete logarithm assumption escaping impossibility results due to [19].4

While, on a technical level, the AGM proofs from [21,22] need to be adapted,
the general AGM proof strategies (that rely on extraction) can be replicated.

Limitations. We note that not all known AGM proofs can be transported to
the standard model. For instance, [21] also prove the Boneh-Lynn-Shacham [7]
signature scheme tightly secure in the AGM. Their reduction relies on the fact
that the view of a signature forger is statistically independent of how simulated
signatures are prepared by the reduction. However, with our algebraic wrapper,
group elements (and thus BLS signatures) always carry an encrypted represen-
tation of how they were generated. In this case, our private extraction strategy
also reveals additional (statistical, computationally hidden) information to an
adversary. This additional information is problematic in the AGM-based BLS
proof of [21]. We believe it is an interesting open problem to obtain a tight
security proof for the BLS scheme with our group.5

Furthermore, as we will detail below, the amount of information we can
extract from a group element is limited by the size of that group element. In
particular, in settings in which no a-priori bound on the size of a desired algebraic
representation is known, our techniques do not apply. This can be problematic,
e.g., for constructions that depend on q-type assumptions.

Our assumptions. We stress that our algebraic wrapper relies on a strong (but
falsifiable) computational assumption: the existence of subexponentially strong
indistinguishability obfuscation (subexp-iO).6 Additionally, we assume a re-
randomizable encryption scheme. Together with subexp-iO, this implies a num-
ber of other strong primitives that we use: a variant of probabilistic iO (see [11]),
fully homomorphic encryption (see [11]), and dual-mode non-interactive zero-
knowledge (see [27]).

Interpretation. Due to their inefficiency, we view algebraic wrappers not as a tool
to obtain practical cryptographic primitives. Rather, we believe that algebraic
wrappers show that the AGM is a useful and realistic abstraction and not merely
an idealized model which heuristically captures known adversaries: we show that
AGM proofs can be replicated in the standard model, and even without resorting
to knowledge assumptions.

4 Tight security reductions provide a tight relation between the security of crypto-
graphic schemes and the hardness of computational problems. Apart from their
theoretical importance, tight reductions are also beneficial for practice, since they
allow smaller keylength recommendations.

5 We note that impossibility results for tight reductions of schemes like BLS (e.g., [12])
do not apply in our case, as the representation of our group elements is not unique.

6 We note that iO and knowledge assumptions contradict each other [5]. However, we
stress that the notion of private extractability we obtain does not contradict iO.

100 T. Agrikola et al.

On implementing idealized models. Replacing idealized (heuristic) models with
concrete standard-model implementations is a widely studied intriguing prob-
lem. A well-known example for this is the line of work on programmable hash
functions. A programmable hash function due to [26] is a cryptographic primitive
which can be used to replace random oracles in several cryptographic schemes.
Following their introduction, a line of work [20,28,29] leveraged multi-linear
maps or indistinguishability obfuscation to transport proofs from the random
oracle model to the standard model. Our results can be interpreted as following
this endeavor by leveraging indistinguishability obfuscation to replace the AGM
with a standard model implementation (from falsifiable assumptions). From this
angle, our algebraic wrapper relates to the AGM as programmable hash func-
tions relate to the ROM.

1.1 Technical Overview

Algebraic wrappers. In the following, we speak of group schemes ([3], also called
encoding schemes in [23]) as a generalization of groups with potentially non-
unique encodings of group elements. This implies that a dedicated algorithm
is required to determine if two given group elements are equal.7 Our algebraic
wrapping process takes a group G (which we call “base group”) as input, and
outputs a new group scheme H which allows for an efficient extraction process.
Concretely, every H-element ̂h can be viewed as a G-element h ∈ G, plus auxil-
iary information aux .

Intuitively, aux carries (encrypted) information that allows to express h as
a linear combination of fixed base elements b1, . . . , bn ∈ G. The corresponding
decryption key (generated alongside the group parameters) allows to extract this
information, and essentially yields the information any algebraic adversary (in
the sense of the AGM) would have to provide for any output group element.
However, we are facing a number of technical problems:

(a) The group operation algorithm should update aux (in the sense that the
linear combinations encrypted in the input elements should be added).

(b) Validity of aux should be ensured (so that no adversary can produce an
H-element from which no valid linear combination can be extracted from
aux).

(c) It should be possible to switch the basis elements b1, . . . , bn to an
application-dependent basis. (For instance, to prove a signature scheme like
Schnorr’s [37] secure, one would desire to set the basis vectors to elements
from an externally given computational challenge.)

(d) To preserve tightness of reductions from the AGM (which is necessary in
some of our applications), it should be possible to re-randomize group ele-
ment encodings statistically.

7 That is, formally, the group is defined as the quotient set of all well-formed bitstrings
modulo the equivalence relation induced by the equality test.

On Instantiating the Algebraic Group Model from Falsifiable Assumptions 101

Our solution largely follows the group scheme from [3]. In particular, (a) will be
solved by encrypting the coefficients z1, . . . , zn with h =

∑

i bzi
i using a homo-

morphic encryption scheme in aux . Hence, such coefficient vectors can be added
homomorphically during the group operation. For (b), we will add a suitable
non-interactive zero-knowledge proof of consistency in aux .8 For (c), we adapt
a “switching” lemma from [3]. In [3], that lemma allows to switch between two
different representations of the same group element, but under a fixed basis. In
our case, we show that similar techniques allow to also switch the group elements
that form this basis. This switching property already implies a notion of com-
putational re-randomizability. Finally, for (d), we introduce a re-randomization
lemma using techniques from (c) in conjunction with a novel notion for proba-
bilistic iO.

At this point, one main conceptual difference to the line of work [1,3,17] is
that the basis elements b1, . . . , bn appear as part of the functionality of the new
group scheme H, not only in a proof. In particular, our construction must be able
to deal with arbitrary bi that are not necessarily randomly chosen. This issue is
dealt with by additional linear randomization of the base group elements.

Another main conceptual difference to [1,3,17] is the notion of statistical
re-randomizability of group elements. The group schemes from [1,3,17] do not
satisfy this property. This will be resolved by developing a stronger notion of
statistically correct probabilistic iO which may be of independent interest.

We note, however, that our techniques are inherently limited in the following
sense: our extraction can only extract as much information as contained in (the
auxiliary information of) group elements. Technically speaking, we cannot treat
settings in which the size of the basis b1, . . . , bn is not known in advance (e.g.,
in case of constructions based on q-type assumptions).

Applications. The applications we consider have already been considered for the
AGM in [21,22]. Hence, in this description, we focus on the technical differences
that our extraction approach entails for these proofs.

First, recall that in the AGM by [21], an adversary outputs an algebraic rep-
resentation of each output group element to the basis of its input group elements.
Therefore, this basis depends also on the respective security game. On the other
hand, in security proofs with our algebraic wrapper, a reduction needs to select
such a basis in advance. The appropriate selection of such a basis is one of the
main challenges when transferring proofs from the AGM to our setting. Namely,
even though the basis as well as the representation of each group element is hid-
den, the choice of representations will still be information-theoretically known to
the adversary. Therefore, security games that are identically distributed in the
AGM might only be computationally indistinguishable in the wrapper, depend-
ing on the choice of a basis.

When transferring proofs from the AGM to our new group scheme, we thus
use a technique we call symmetrization to extend the basis in such a way that

8 Note that this approach is related to [8] in the sense that we restrict the homomorphic
operations an adversary can perform on encodings by requiring a consistency proof.

102 T. Agrikola et al.

security games are identically distributed in the relevant situations. In a nutshell,
symmetrization achieves a uniform way to express challenge elements across most
games of a security proof, and yields statistical security guarantees.

Another challenge is the implementation of tight security reductions in the
wrapper. In some security reductions, the basis of the group and the algebraic
representations of oracle responses need to be switched in order to be able to
extract a useful algebraic representation. However, as we only achieve compu-
tationally indistinguishable group element representations, switching the rep-
resentations of q oracle responses would lead to a q-fold computational loss,
compromising the tightness of the reduction.

We show that it is possible to circumvent this loss by constructing oracle
responses via the group operation from so-called origin elements, reducing the
number of elements whose representation gets switched to a constant. In a nut-
shell, we derive many coordinated oracle answers from just few group elements
(the “origin elements”), such that switching these origin elements affects (and
changes) all oracle answers.

1.2 Related Work

This work builds upon the line of work [1,3,17] who build group schemes from iO.
[3] lays the conceptual foundations for the construction of group schemes with
non-unique encodings from iO and uses this framework to equip groups with
multilinear maps. [17] extends this approach by allowing partial evaluations of
the multilinear map yielding a graded encoding scheme. In contrast to [1,3,17]
does not extend the functionality of an underlying group, but builds a group
scheme with reduced functionality (group elements lack a unique representation).
The resulting group scheme allows to mimic commonly used proof techniques
from the generic group model. This is demonstrated by proving the validity of
an adaptive variant of the Uber assumption family [10] in the constructed group
scheme. Our results can hence be viewed as an extension of [1].

[30] make a first step towards instantiating the AGM. The authors identify
an equivalence between the AGM and a very strong generalized version of the
knowledge of exponent assumption [14], thus giving rise to the first instantiation
of the AGM.

Roadmap

In Sect. 2, we recall some preliminaries and develop the mentioned variant of
probabilistic iO. In Sect. 3, we present our notion of algebraic wrappers and give
an iO-based instantiation. Section 4 contains results transported from the AGM
to our wrapper setting, along with a description of how AGM proof techniques
can be adapted. In the full version of this paper [2], we provide (besides further
standard definitions and more motivation) an analysis of the Schnorr-signed
ElGamal encryption scheme with our algebraic wrapper.

On Instantiating the Algebraic Group Model from Falsifiable Assumptions 103

2 Preliminaries

Notation

Throughout this paper λ denotes the security parameter. For a natural number
n ∈ N, [n] denotes the set {1, . . . , n}. A function negl : N → R is negligible in
λ if for every constant c ∈ N, there exists a bound nc ∈ R, such that for all
n ≥ nc, |negl(n)| ≤ n−c. Given a finite set S, the notation x ← S means a
uniformly random assignment of an element of S to the variable x. Given an
algorithm A, the notation y ← A(x) means evaluation of A on input of x with
fresh random coins and assignment to the variable y. The notation AO indicates
that the algorithm A is given oracle access to O. Given a random variable B,
supp(B) denotes the support of B.

Let G be a finite cyclic group with generator g and order p. For x ∈ Zp, the
notation [x]

G
denotes the group element gx. Note that using this notation does

not imply knowledge of x. Let K be a field and V be a vector space over K of
finite dimension n. For i ∈ [n], ei denotes the vector which carries 1 in its i-th
entry and 0 in all other entries.

In game based proofs, out i denotes the output of game Gi.

2.1 Subset Membership Problem

Let L = (Lλ)λ∈N be a family of families of languages L ⊆ Xλ in a universe
Xλ = X. Further, let R be an efficiently computable witness relation, such that
x ∈ L if and only if there exists a witness w ∈ {0, 1}poly(|x|) with R(x,w) = 1 (for
a fixed polynomial poly). We assume that we are able to efficiently and uniformly
sample elements from L together with a corresponding witness, and that we are
able to efficiently and uniformly sample elements from X \ L.

Definition 1 (Subset membership problem, [13]). A subset membership
problem L ⊆ X is hard, if for any PPT adversary A, the advantage

Advsmp
L,A (λ) := Pr[x ← L : A(1λ, x) = 1] − Pr[x ← X \ L : A(1λ, x) = 1]

is negligible in λ.

We additionally require that for every L and every x ∈ L, there exists exactly
one witness r ∈ {0, 1}∗ with R(x,w) = 1. Note that given a cyclic group G of
prime order p in which DDH is assumed to hold, the Diffie-Hellman language
L[(1,x)]

G
:= {[(y, xy)]

G
| y ∈ Zp} (for randomly chosen generators [1]

G
, [x]

G
)

satisfies this definition. Another instantiation of Definition 1 is the language con-
taining all commitments to a fixed value using a perfectly binding commitment
scheme with unique opening.

104 T. Agrikola et al.

2.2 Dual-mode NIWI

A dual-mode NIWI proof system is a variant of NIWI proofs [18] offering two
computationally indistinguishable modes to setup the common reference string
(CRS). A binding mode CRS provides perfect soundness guarantees whereas a
hiding mode CRS provides perfect witness indistinguishability guarantees.

Definition 2 (Dual-mode NIWI proof system (syntax), [3,24]). A dual
mode non-interactive witness-indistinguishable (NIWI) proof system for a rela-
tion R is a tuple of PPT algorithms Π = (Setup,HSetup,Prove,Verify,Ext).

Setup(1λ). On input of 1λ, Setup outputs a perfectly binding common reference
string crs and a corresponding extraction trapdoor td ext.

HSetup(1λ). On input of 1λ, HSetup outputs a perfectly hiding common reference
string crs.

Prove(crs, x, w). On input of the CRS crs, a statement x and a corresponding
witness w, Prove produces a proof π.

Verify(crs, x, π). On of the CRS crs, a statement x and a proof π, Verify outputs
1 if the proof is valid and 0 otherwise.

Ext(td ext, x, π). On input the extraction trapdoor td ext, a statement x and a proof
π, Ext outputs a witness w.

We require Π to satisfy the CRS indistinguishability, perfect completeness, per-
fect soundness, perfect extractability and perfect witness-indistinguishability.

For a more detailed definition, we refer the reader to the full version [2].
There are several instantiations of dual-mode NIWI proof systems satisfying the
above definition (or statistical variants), [24,27,36].

2.3 Probabilistic Indistinguishability Obfuscation

Let C = (Cλ)λ∈N be a family of sets Cλ of probabilistic circuits. A circuit sampler
for C is defined as a family of (efficiently samplable) distributions S = (Sλ)λ∈N,
where Sλ is a distribution over triplets (C0, C1, z) with C0, C1 ∈ Cλ such that
C0 and C1 take inputs of the same length and z ∈ {0, 1}poly(λ).

Definition 3 (X-ind sampler, [11]). Let X(λ) be a function upper bounded
by 2λ. The class SX-ind of X-ind samplers for a circuit family C contains all
circuit samplers S = (Sλ)λ∈N for C such that for all λ ∈ N, there exists a set
Xλ ⊆ {0, 1}∗ with |X | ≤ X(λ), such that

X-differing inputs. With overwhelming probability over the choice of
(C0, C1, z) ← Sλ, for every x �∈ Xλ, for all r ∈ {0, 1}m(λ), C0(x; r) = C1(x; r).

X-indistinguishability. For all (non-uniform) adversaries A, the advantage

X(λ) ·
(

Pr[Expsel-ind
S,A (λ) = 1] − 1

2

)

On Instantiating the Algebraic Group Model from Falsifiable Assumptions 105

is negligible, where Expsel-ind
S,A (λ) requires A to statically choose an input,

samples circuits C0, C1 (and auxiliary information z) afterwards, evaluates
the circuit Cb (for randomly chosen b) on the adversarially chosen input (let
the output be y) and outputs 1 if A on input of (C0, C1, z, y) guesses b cor-
rectly.

Definition 4 (Probabilistic indistinguishability obfuscation for a class
of samplers S (syntax), [11]). A probabilistic indistinguishability obfuscator
(pIO) for a class of samplers S is a uniform PPT algorithm piO, such that
correctness and security with respect to S hold.

For a more detailed definition, we refer the reader to the full version [2].
[11] present the to date only known construction of pIO for X-ind samplers

over the family of all polynomial sized probabilistic circuits.

2.4 Re-randomizable and Fully Homomorphic Encryption

We define an IND-CPA secure PKE scheme as a tuple of PPT algorithms PKE =
(KGen,Enc,Dec) in the usual sense. Furthermore, without loss of generality, we
assume that sk is the random tape used for key generation. Therefore, making
the random tape of KGen explicit, we write (pk , sk) = KGen(1λ; sk).

A re-randomizable PKE scheme additionally provides an algorithm Rerand
which re-randomizes a given ciphertext perfectly.

Finally, a fully homomorphic PKE scheme additionally provides an algorithm
Eval which given the public key pk , an circuit C (expecting a inputs from the
message space) and a ciphertexts C1, . . . , Ca, produces a ciphertext encrypting
C(Dec(sk , C1), . . . ,Dec(sk , Ca)).

Due to [11], probabilistic indistinguishability obfuscation in conjunction
with (slightly super-polynomially secure) perfectly correct and perfectly re-
randomizable public-key encryption yields a perfectly correct and perfectly re-
randomizable fully homomorphic encryption scheme.

We refer the reader to the full version [2] for more detailed definitions.

2.5 Statistically Correct Input Expanding pIO

Looking ahead, instead of computationally correct pIO, we require a notion
of statistically correct pIO, i.e. statistical closeness between evaluations of the
original (probabilistic) circuit and the obfuscated (deterministic) circuit. Clearly,
in general, this is impossible since the obfuscated circuit is deterministic and
hence has no source of entropy other than its input. However, as long as a
portion of the circuit’s input is guaranteed to be outside the view of the adversary
(and has sufficiently high min-entropy), the output of the obfuscated circuit and
the actual probabilistic circuit can be statistically close. Therefore, we compile
probabilistic circuits such that they receive an auxiliary input aux but simply
ignore this input in their computation. Even though the obfuscated circuit is
deterministic, the auxiliary input can be used as a source of actual entropy.

106 T. Agrikola et al.

First try. We recall that the pIO construction from [11] obfuscates a probabilistic
circuit C by using IO to obfuscate the deterministic circuit C(x) := C(x;FK(x)).
A natural idea to achieve statistical correctness is to modify this construction
such that the auxiliary input aux is directly XORed on the random tape which
is derived using F , i.e. to obfuscate the circuit C(x, aux ;FK(x) ⊕ aux). For uni-
form auxiliary input aux , statistical correctness follows immediately. However,
security breaks down. Consider two circuits C1 and C2 such that C1 outputs
the first bit on its random tape and C2 outputs the second bit on its random
tape. Since C1 and C2 produce identical output distributions, it is desirable that
a probabilistic indistinguishability obfuscator conceals which of the two circuits
was obfuscated. However, this construction admits a successful attack. An adver-
sary can evaluate the obfuscated circuit Λ on inputs (x, aux) and (x, aux ⊕ 1).
If both evaluations yield identical outputs, C2 was obfuscated, otherwise C1 was
obfuscated.

Using an extracting PRF. Our construction of statistically correct pIO applies an
extracting puncturable PRF on the entire input (including the auxiliary input) of
the circuit to derive the random tape for the probabilistic circuit. An extracting
PRF guarantees that PRF outputs are uniformly distributed (even given the
PRF key) as long as the input has high min-entropy. This is achieved using a
universal hash function and the leftover hash lemma. For more details, we refer
the reader to the full version [2].

Let {Cλ}λ∈N be a family of sets Cλ of probabilistic circuits of polynomial size
p(λ) expecting inputs from {0, 1}n′(λ) and randomness from {0, 1}r(λ). Let E�

denote a compiler which on input of a probabilistic circuit C ∈ Cλ appends �(λ)
input gates (without any additional edges) to the original circuit. The expanded
circuit ̂C is of size p′(λ) = p(λ) + �(λ), expects inputs from {0, 1}n′(λ)+�(λ) and
randomness from {0, 1}r(λ). We refer to these additional input bits as auxiliary
input aux ∈ {0, 1}�(λ).

Our input expanding pIO scheme satisfies similar correctness and security
properties as defined in [11] but additionally guarantees statistical correctness.

Definition 5 (�-expanding pIO for the class of samplers S). An �-
expanding probabilistic indistinguishability obfuscator for the class of samplers
S over C = (Cλ)λ∈N is a uniform PPT algorithm piO�

� , satisfying the following
properties.

Input expanding correctness. For all PPT adversaries A, all circuits C ∈ C,
∣

∣

∣Pr[AOC(·,·)(1λ, C) = 1] − Pr[Λ ← piO�
� (1

p(λ), C) : AOΛ(·,·)(1λ, C) = 1]
∣

∣

∣

is negligible, where the oracles must not be called twice on the same input
(x, aux).

OC(x, aux)
r ← {0, 1}m

return C(x; r)

OΛ(x, aux)
return Λ(x, aux)

On Instantiating the Algebraic Group Model from Falsifiable Assumptions 107

Security with respect to S. For all circuit samplers S ∈ S, for all PPT
adversaries A, the advantage

Advpio-ind(�)
piO�

� ,S,A (λ) :=
∣

∣

∣ Pr
[

(C0, C1, z) ← S(1λ) : A(1λ, C0, C1, z, piO�
� (1

p(λ), C0)) = 1
]

−Pr
[

(C0, C1, z) ← S(1λ) : A(1λ, C0, C1, z, piO�
� (1

p(λ), C1)) = 1
] ∣

∣

∣

is negligible in λ.
Support respecting. For all circuits C ∈ Cλ, all inputs x ∈ {0, 1}n′(λ), all

aux ∈ {0, 1}�(λ), all Λ ∈ supp(piO�
� (1

p(λ), C)), Λ(x, aux) ∈ supp(C(x)).
Statistical correctness with error 2−e(λ). For all C ∈ Cλ and all joint

distributions (X1,X2) over {0, 1}n′(λ) × {0, 1}�(λ) with average min-entropy
�(λ) ≥ ˜H∞(X2 | X1) > m(λ) + 2e(λ) + 2, the statistical distance between

{

Λ ← piO�
� (1

p(λ), C) : (Λ,Λ(X1,X2))
}

and
{

Λ ← piO�
� (1

p(λ), C) : (Λ,C(X1;Um(λ)))
}

is at most 2−e(λ).

We note that setting � := 0 recovers the original definition of pIO for
X-ind samplers due to [11]. Looking ahead, our application does not require
input expanding correctness.

Let S be a circuit sampler and let ̂S denote the circuit sampler which calls S
and outputs �-expanded circuits. Unfortunately, if S is an X-ind sampler does
not imply that ̂S also satisfies the requirements to be an X-ind sampler. On
a high level this is because ̂X(λ) := X(λ) · 2�(λ) is necessary for ̂S to satisfy
the X-differing inputs property. Then, however, X-indistinguishability of S does
not suffice to prove ̂X-indistinguishability of ̂S. Thus, we introduce the notion
of �-expanding X-ind samplers.

Definition 6 (�-expanding X-ind sampler). Let S be a circuit sampler.
With ̂S we denote the circuit sampler which on input of 1p(λ)+�(λ) samples
(C0, C1, z) ← S(1p(λ)) and outputs the circuits ̂C0 := E�(C0), ̂C1 := E�(C1)
and auxiliary information ẑ := (C0, C1, z). The class SX-(�)-ind

� of �-expanding
X-ind samplers for a circuit family C contains all circuit samplers S = (Sλ)λ∈N

for C such that the circuit sampler ̂S is an X-ind sampler according to Defini-
tion 3, i.e. ̂S ∈ SX-ind.

On a high level, we instantiate the construction of pIO for X-ind samplers due
to [11] with a suitably extracting puncturable pseudorandom function (pPRF).
By suitably extracting we mean that the PRF output is guaranteed to be sta-
tistically close to uniform randomness as long as the average min-entropy of
the input of the PRF is sufficiently high. Such a pPRF can be constructed by
composing a pPRF with a universal hash function.

108 T. Agrikola et al.

Theorem 1. Let e be an efficiently computable function. Let F be a sub-
exponentially secure special extracting PRF family with distinguishing advantage
2−λε

(for some constant ε) and error 2−e(λ) mapping n(λ) = n′(λ) + �(λ) bits
to m(λ) bits which is extracting if the input average min-entropy is greater than
m(λ) + 2e(λ) + 2. Then, there exists a statistically correct input expanding pIO
piO�

� for the class of samplers SX-(�)-ind
� .

For additional explanations and a formal proof, we refer the reader to the
full version [2].

3 How to Simulate Extraction – Algebraic Wrappers

In order to instantiate the AGM, we need to first find a way to conceptualize what
it means to be a group in a cryptographic sense. This is captured by the notion of
a group scheme or encoding scheme, [23]. In a nutshell, a group scheme provides
an interface of algorithms abstracting the handling of a cryptographic group. As
we want to prove hardness of certain problems based on hardness assumptions
in an already existing base group, we incorporate this existing group into our
group scheme.

More specifically, we introduce the concept of an algebraic wrapper, i.e. a
group scheme that allows to extract a representation which – similar to the
AGM – can be used in a security reduction. A similar approach has already
been taken by [30]. [30] define their group scheme as a linear subspace of G × G

for an existing group G in such a way that the Generalized Knowledge of Expo-
nent Assumption (GKEA) can be used to extract a representation (membership
can for instance be tested via a symmetric pairing). Hence, that group scheme
can also be viewed as an extension, or a wrapper, for the underlying base group.
However, [30] relies on GKEA in the base group which more or less directly yields
an equivalence between algebraic groups and GKEA. The existence of algebraic
groups, however, implies the existence of extractable one-way functions with
unbounded auxiliary input (since the AGM allows an additional unstructured
input from {0, 1}∗) which in turn conflicts with the existence of indistinguisha-
bility obfuscation, [5]. Due to this contradiction and the difficulty to assess the
plausibility of knowledge-type assumptions, we strive for a weaker model which
can purely be based on falsifiable assumptions.

Extraction trapdoors. In [30], extraction is possible as long as the code and the
randomness which where used to produce a group element are known. Since we
strive to avoid knowledge-type assumptions, we need to find a different mecha-
nism of what enables extraction. We observe that in order to reproduce proof
strategies from the algebraic group model, extraction is only necessary during
security reductions. Since the reduction to some assumption in the base group
is in control of the group parameters of the wrapper, the reduction may use
corresponding trapdoor information which we define to enable extraction. We
call this notion private extractability.

On Instantiating the Algebraic Group Model from Falsifiable Assumptions 109

3.1 Group Schemes

A group scheme or encoding scheme [23] abstracts the properties of mathemat-
ical groups used in cryptography. Group schemes have recently been studied in
[1,3,17,30]. In contrast to traditional groups, group elements are not bound to
be represented by a unique bitstring (henceforth referred to as encoding). This
allows to encode auxiliary information inside group elements.

Formally, a group scheme H consists of the algorithms (GGenH,SamH,
ValH,AddH,EqH,GetIDH). A group generation algorithm GGenH, which given 1λ,
samples group parameters ppH. A sampling algorithm SamH, given the group
parameters and an additional parameter determining the exponent of the desired
group element, produces an encoding corresponding to that exponent. A valida-
tion algorithm ValH, given the group parameters and a bitstring, decides whether
the given bitstring is a valid encoding. The algorithm AddH implements the group
operation, i.e. expects the group parameters and two encodings as input and pro-
duces an encoding of the resulting group element. Since group elements do not
necessarily possess unique encodings, the equality testing algorithm EqH enables
to test whether two given encodings correspond to the same group element (with
respect to the given group parameters). Note that EqH(ppH, ·) defines an equiv-
alence relation on the set of valid bitstrings. Finally, again compensating for
the non-unique encodings, a group scheme describes a “get-identifier” algorithm
which given the group parameters and an encoding of a group element, pro-
duces a bitstring which is unique for all encodings of the same group element.9

Note that EqH(ppH, a, b) can be implemented using GetIDH by simply comparing
GetIDH(ppH, a) and GetIDH(ppH, b) as bitstrings. The “get-identifier” algorithm
compensates for the potential non-uniqueness of encodings and allows to extract,
for instance, symmetric keys from group elements.

For a group scheme it is required that the quotient set

{a ∈ {0, 1}∗ | ValH(ppH, a) = 1}/EqH(ppH, ·)

equipped with the operation defined via AddH(ppH, ·, ·) defines a mathematical
group (with overwhelming probability over the choice of ppH ← GGenH(1λ)). We
say that an a is (an encoding of) a group element (relative to ppH), written as
a ∈ H, if and only if ValH(ppH, a) = 1.

A group scheme requires that encodings corresponding to the same group
element are computationally indistinguishable as formalized by the “Switching
Lemma(s)” in [1,3,17].

Due to the non-uniqueness of encodings, we henceforth use the notation ̂h to
denote an encoding of a group element.

3.2 An Algebraic Wrapper

Given a cyclic group, an algebraic wrapper is a group scheme which equips
a given group G with a notion of extractability while preserving its group
9 Previous work refers to this algorithm as “extraction algorithm”. However, in order

not to overload the word “extraction”, we rename this algorithm in this work.

110 T. Agrikola et al.

structure and complexity theoretic hardness guarantees. In particular, we achieve
a property which we refer to as “private extractability” with respect to a given
set of group elements in the base group. More precisely, the group generation
algorithm expects group parameters ppG of the base group together with a set
of group elements [b]

G
∈ G

n in that base group, henceforth referred to as basis,
and produces group parameters ppH of the wrapper group together with a cor-
responding trapdoor τH. This trapdoor enables to extract a representation with
respect to the basis [b]

G
from every encoding. Looking ahead, this property will

allow to implement proof strategies of the algebraic group model, [21].
More precisely, encodings can be seen to always carry computationally hid-

den representation vectors with respect to the basis [b]
G
. The private extraction

recovers this representation vector. Given the trapdoor, we require that it is
possible to “privately” sample encodings which carry a specific dictated rep-
resentation vector. We require that publicly sampled encodings and privately
sampled encodings are computationally indistinguishable. We refer to this prop-
erty as “switching”. In order to preserve tightness of security reductions when
implementing AGM proofs with our algebraic wrapper, we require a statistical
re-randomization property. Furthermore, we require that representation vectors
compose additively (in Z

n
p) with the group operation and do not change when

encodings are re-randomized.
Let Bn

pp
G

:= {([1]
G

, [x2]G , . . . , [xn]
G
)ᵀ ∈ G

n | x2, . . . , xn ∈ Z
×
p } be the set

of what we call “legitimate basis vectors”. Note that we require the first group
element to be the generator of the group. This is necessary to allow public
sampling.

Definition 7 (Algebraic wrapper for G). An algebraic wrapper H for G

is a tuple of PPT algorithms (GGenH,SamH,ValH,AddH,EqH,GetIDH,RerandH,
PrivSamH,PrivExtH,UnwrapH) such that (GGenH,SamH,ValH,AddH,EqH,GetIDH)
constitutes a group scheme and the following properties are satisfied.

G-wrapping. The algorithm UnwrapH(ppH, ·) is deterministic and for all ppG ∈
supp(GGenG(1λ)), all [b]

G
∈ Bn

pp
G
, all (ppH, τH) ∈ supp(GGenH(ppG, [b]

G
)),

UnwrapH(ppH, ·) defines a group isomorphism from H to G.
Extractability. The algorithm PrivExtH is deterministic. Furthermore, for all

ppG ∈ supp(GGenG(1λ)), all [b]
G

∈ Bn
pp

G
, all (ppH, τH) ∈ supp(GGenH(ppG,

[b]
G
)), all ̂h ∈ H, we require that PrivExtH always extracts a representa-

tion of [x]
G

with respect to [b]
G
, i.e. for z := PrivExtH(τH,̂h), [zᵀ · b]

G
=

UnwrapH(ppH,̂h).
Correctness of extraction. For all ppG ∈ supp(GGenG(1λ)), all [b]

G
∈

Bn
pp

G
, all (ppH, τH) ∈ supp(GGenH(ppG, [b]

G
)), all ̂h0, ̂h1 ∈ H, we require

that private extraction respects the group operation in the sense that for
all ̂h2 ∈ supp(AddH(ppH, ̂h0, ̂h1)), z(i) := PrivExtH(τH, ̂hi) satisfy z(2) =
z(0) + z(1). Furthermore, for all ppG ∈ supp(GGenG(1λ)), all [b]

G
∈ Bn

pp
G
,

all (ppH, τH) ∈ supp(GGenH(ppG, [b]
G
)), all ̂h ∈ H, we require that re-

randomization does not interfere with private extraction in the sense that
for all ̂h′ ∈ supp(RerandH(ppH,̂h)), PrivExtH(τH,̂h) = PrivExtH(τH, ̂h′).

On Instantiating the Algebraic Group Model from Falsifiable Assumptions 111

Correctness of sampling. For all ppG ∈ supp(GGenG(1λ)), all [b]
G

∈ Bn
pp

G
, all

(ppH, τH) ∈ supp(GGenH(ppG, [b]
G
)), we require that

– for all v ∈ Z
n
p , Pr[PrivExtH(τH,PrivSamH(τH,v)) = v] = 1, and

– for all x ∈ Zp, Pr[PrivExtH(τH,SamH(ppH, x · e1)) = x · e1] = 1.
k-Switching. We say a PPT adversary A is a legitimate k-switching adversary

if on input of base group parameters ppG, A outputs two bases ([b](j)
G

)j∈{0,1}
and two lists comprising k representation vectors (v(j),(i))i∈[k],j∈{0,1} (and an
internal state st) such that [b](0)

G
, [b](1)

G
∈ Bn

pp
G

and v(0),(i),v(1),(i) ∈ Z
n
p for

some n ∈ N and all i ∈ [k] and
[

(v(0),(i))ᵀ · b(0)
]

G
=

[

(v(1),(i))ᵀ · b(1)
]

G
for

all i ∈ [k].
For all legitimate k-switching PPT adversaries A,

Advk-switching
H,A (λ) :=

∣

∣

∣Pr[Expk-switching
H,A,0 (λ) = 1] − Pr[Expk-switching

H,A,1 (λ) = 1]
∣

∣

∣

is negligible, where Expk-switching
H,A,b (λ) (for b ∈ {0, 1}) is defined in Fig. 1.

Statistically re-randomizable. We say an unbounded adversary A is a legit-
imate re-randomization adversary if on input of base group parameters ppG,
A outputs [b]

G
and a state st such that [b]

G
∈ Bn

pp
G

and, in a second phase,

A on input of (ppH, τH, st) outputs two valid encodings ̂h0, ̂h1 (and a state st)
such that PrivExtH(τH, ̂h0) = PrivExtH(τH, ̂h1).
For all unbounded legitimate re-randomization adversaries A,

Advrerand
H,A (λ) :=

∣

∣Pr[Exprerand
H,A,0 (λ) = 1] − Pr[Exprerand

H,A,1 (λ) = 1]
∣

∣ ≤ 1
2λ

,

where Exprerand
H,A,b (λ) (for b ∈ {0, 1}) is defined in Fig. 1.

Exprerand
H,A,b (λ)

pp
G

← GGenG(1λ)
([b]

G
, st) ← A(1λ, pp

G
)

(pp
H
, τH) ← GGenH(ppG, [b]

G
)

(ĥ0, ĥ1, st) ← A(pp
H
, τH, st)

h ← RerandH(ppH, hb)
return (h, st)

Expk-switching
H,A,b (λ)

pp
G

← GGenG(1λ)
([b](j)

G
)j∈{0,1},

(v(j),(i))i∈[k],j∈{0,1}, st
)

← A(1λ, pp
G
)

(pp
H
, τH) ← GGenH(ppG, b

G
)

h∗
i ← PrivSamH(τH,v(b),(i))

Fig. 1. The re-randomization and k-switching games.

For simplicity we require that encodings are always in {0, 1}penc(λ) for a fixed
polynomial penc(λ).

The k-switching property allows to simultaneously switch the representation
vectors of multiple group element encodings. It is necessary to switch all encod-
ings simultaneously since private sampling can only be simulated knowing the
trapdoor τH which is not the case in Expk-switching

H,A,b (λ).

112 T. Agrikola et al.

3.3 Construction

Our construction follows the ideas from [1,3,17]. Let GGenG be a group generator
for a cyclic group G. Let T D be a family of hard subset membership problems.
Let FHE = (KGen,Enc,Dec,Eval,Rerand) be a perfectly correct and perfectly
re-randomizable fully homomorphic public-key encryption scheme. Let ppG be
group parameters for G and [Ω]

G
∈ G

n for some n ∈ N. Let TD ⊆ X be a
subset membership problem from T D and y ← X \ TD and pk be a public
key for FHE. For ease of notation, we define pars := (ppG, TD, y, pk , [Ω]

G
). Let

Π := (Setup,Prove,Verify,HSetup,Ext) be a perfectly complete, perfectly sound
and perfectly witness-indistinguishable dual-mode NIZK proof system for the
language

L :=
{

y := (pars, [x]
G

, C)
∣

∣ ∃w : (y, w) ∈ R := R1 ∨ R2 ∨ R3

}

.

The relations R1,R2,R3 are defined as follows.

R1 =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

(

(pars, [x]
G

, C), (sk ,v)
)

∣

∣

∣

∣

∣

∣

∣

∣

KGen(1λ; sk) = (pk , sk)
∧ Dec(sk , C) = v
∧ [Ωᵀ · v]

G
= [x]

G

⎫

⎪

⎪

⎬

⎪

⎪

⎭

R2 =

{

(

(pars, [x]
G

, C), (r,v)
)

∣

∣

∣

∣

∣

Enc(pk ,v; r) = C
∧ [Ωᵀ · v]

G
= [x]

G

}

R3 =
{ (

(pars, [x]
G

, C), (wy)
) ∣

∣

∣ (y, wy) ∈ RTD

}

With m′(λ) we denote a polynomial upper bound on the number of random
bits FHE.Rerand(1λ, ·, ·) expects and with m′′(λ) we denote a polynomial upper
bound on the number of random bits Π.Prove(1λ, ·, ·, ·) expects. Let �(λ) :=
m′(λ) + m′′(λ) + 2(λ + 1) + 3. Let piO be a pIO scheme for the class of samplers
SX-ind and let piO�

� be an �-expanding pIO scheme for the class of samplers
SX-(�)-ind

� . Further, let padd(λ) denote a polynomial upper bound on the size of
addition circuits and prerand(λ) denote a polynomial upper bound on the size of
re-randomization circuits which are used during the proof, see the full version
[2] for details.

Our algebraic wrapper H is composed of the PPT algorithms (GGenH,
SamH,ValH,AddH,EqH,RerandH,PrivExtH,PrivSamH,GetIDH,UnwrapH) which
are defined in Figs. 2a and 2b. We note that the algorithm ValH which is evalu-
ated inside CAdd and Crerand only requires a certain part of the public parameters
as input. In particular, ValH does not depend on ΛAdd and Λrerand.

During “honest” use of our algebraic wrapper, encodings carry proofs pro-
duced for relation R1 or relation R2. Relation R2 enables sampling without
knowledge of any trapdoors. Re-randomized encodings always carry proofs for
relation R1. Relation R3 is a trapdoor branch enabling simulation. Note that
during “honest” use of the algebraic wrapper y �∈ TD and, hence, due to perfect
soundness of Π, there exists no proof for relation R3.

On Instantiating the Algebraic Group Model from Falsifiable Assumptions 113

GGenH(ppG, [b]
G
= [(b1, . . . , bn)ᵀ]G)

α1 := 1, α2, . . . , αn ← Z
×
p

[Ω]
G
:= ([b1]α1

G
, . . . , [bn]αn

G
)ᵀ

(pk , sk) ← FHE.KGen(1λ)
crs ← Π.Setup(1λ),TD ← T D, y ← TD

ΛAdd ← piO(1padd(λ), CAdd)
Λrerand ← piO�

� (1
prerand(λ), Crerand)

pars := (pp
G
, TD, y, pk , [Ω]

G
)

pp
H
:= (crs, pars, ΛAdd, Λrerand)

τH := (pp
H
, sk , α1, . . . , αn, [b]

G
)

return (pp
H
, τH)

SamH(ppH,v ∈ Z
n
p)

C = Enc(pk ,v; r)
[x]

G
:= [Ωᵀ · v]

G

π = Prove(crs, (pars, [x]
G

, C), (r,v))
return ĥ := ([x]

G
, C, π)H

ValH(ppH, ĥ)
parse x̂ =: ([x]

G
, C, π)H

return Π.Verify(crs, (pars, [x]
G

, C), π)

Unwrap
H
(pp

H
, ĥ)

if ¬ValH((crs, pars), ĥ) then
return ⊥

parse ĥ =: ([x]
G

, C, π)H
return [x]

G

Eq
H
(pp

H
, ĥ1, ĥ2)

if ∃j ∈ [2] : ¬ValH((crs, pars), ĥj) then
return ⊥

parse ĥi =: ([xi]G , Ci, πi)H
return [x1]G = [x2]G

GetIDH(ppH, ĥ)

if ¬ValH((crs, pars), ĥ) then
return ⊥

parse ĥ =: ([x]
G

, C, π)H
return [x]

G

AddH(ppH, ĥ1, ĥ2)

return ΛAdd(ĥ1, ĥ2)

CAdd[pars, crs, sk](ĥ1, ĥ2; r)

if ∃j ∈ [2] : ¬ValH((crs, pars), ĥj) then
return ⊥

parse ĥi =: ([xi]G , Ci, πi)H
[xout]G := [x1]G · [x2]G
Cout ← FHE.Eval(pk , C(+)[Zn

p], C1, C2)
// C(+)[Zn

p] computes addition in Z
n
p

vi ← Dec(sk , Ci)
vout := v1 + v2

πout ← Prove(crs,
(pars, [xout]G , Cout), (sk ,vout))

return ĥout := ([xout]G , Cout, πout)

(a) Definition of the algorithms GGenH, SamH,ValH,Eq
H
,GetIDH,AddH,Unwrap

H
and the

circuit CAdd.

PrivSamH(τH,v ∈ Z
n
p)

v∗ := (v1 · α−1
1 , . . . , vn · α−1

n)ᵀ

[x]
G
:= [bᵀ · v]

G
= [Ωᵀ · v∗]

G

C = Enc(pk ,v∗; r)
π = Prove(crs, (pars, [x]

G
, C), (sk ,v∗))

return ([x]
G

, C, π)H

PrivExtH(τH, ĥ)

if ¬ValH(ppH, ĥ) then
return ⊥

parse ĥ =: ([x]
G

, C, π)H
(v1, . . . , vn)ᵀ =: v = Dec(sk , C)
return (v1 · α1, . . . , vn · αn)ᵀ

RerandH(ppH, ĥ)

u ← {0, 1}�(λ)

return Λrerand(ĥ, u)

Crerand[pars, crs, sk](ĥ; r1, r2)

if ¬ValH((crs, pars), ĥ) then
return ⊥

parse ĥ =: ([x]
G

, C, π)H
v := Dec(sk , C)
Cout := FHE.Rerand(pk , C; r1)
πout ← Prove(crs,

(pars, [x]
G

, Cout), (sk ,v); r2)
return ĥout := ([x]

G
, Cout, πout)H

(b) Definition of the algorithms PrivSamH,PrivExtH,RerandH and the circuit Crerand.

Fig. 2. Algorithms of our algebraic wrapper construction.

114 T. Agrikola et al.

Differences to [1,3,17]. [3,17] introduce similar constructions of a group scheme
featuring a multilinear map and of a graded encoding scheme, respectively. More
precisely, [3,17] equip a base group with encodings carrying auxiliary information
which can be used (in an obfuscated circuit) to “multiply in the exponent”. We
observe that these constructions already wrap a given base group in the sense
that “unwrapping” encodings yields a group isomorphism to the base group.

Our construction builds upon these group schemes. In order to enable
extractability with respect to a dynamically chosen basis10, our group parame-
ters must be generated depending on that basis.

This modification, however, comes at the cost of the multilinear map func-
tionality. This is because any implementation of a multilinear map requires
knowledge of discrete logarithms of each group element encoding to a fixed gen-
erator. This is undesirable for our purposes, since we want to be able to use
sets of group elements as basis which we do not know discrete logarithms of (for
instance group elements provided by a reduction). Thus, we have to give up the
multiplication functionality.

Furthermore, looking ahead, we crucially require that the basis can be altered
via computational game hops during proofs. We solve this problem by linearly
perturbing the given basis [b]

G
(except for its first entry to enable meaningful

public sampling). We refer to this perturbed basis as [Ω]
G
. Our group element

encodings are defined to carry representation vectors with respect to [Ω]
G
. By

construction of CAdd, these representation vectors are treated homomorphically
by the group operation.

To preserve tightness of security reductions, we additionally introduce a sta-
tistical re-randomization mechanism.

As opposed to [1,3,17] uses a quite different approach. In [1], the group
scheme is constructed from scratch, meaning there is no necessity for an under-
lying group. The consequences are twofold. On one hand, very strong decisional
assumptions can be proven to hold in the resulting group scheme. On the other
hand, however, the group scheme from [1] lacks a GetIDH algorithm limiting its
applicability.

Theorem 2. Let (i) GGenG be a group generator for a cyclic group G,
(ii) T D be a family of hard subset membership problems, (iii) FHE =
(KGen,Enc,Dec,Eval,Rerand) be a perfectly correct and perfectly re-randomizable
fully homomorphic public-key encryption scheme, (iv) Π := (Setup,Prove,Verify,
HSetup,Ext) be a perfectly complete, perfectly sound and perfectly witness-
indistinguishable dual-mode NIZK proof system for the language L, (v) piO be a
pIO scheme for the class of samplers SX-ind and (vi) piO�

� be an �-expanding pIO
scheme for the class of samplers SX-(�)-ind

� . Then, H defined in Figs. 2a and 2b
is an algebraic wrapper.

Here we provide a formal proof of the statistical re-randomization property
and a high-level idea for the remaining properties. For a formal analysis of the
remaining properties, we refer the reader to the full version [2].
10 With basis we mean a set of group elements in the base group.

On Instantiating the Algebraic Group Model from Falsifiable Assumptions 115

Proof (sketch). Since piO is support respecting, the algorithms defined in Fig. 2a
equip the base group G with non-unique encodings but respect its group struc-
ture. Thus, the tuple (GGenH,SamH,ValH,EqH,AddH,GetIDH) forms a group
scheme such that UnwrapH(ppH, ·) defines a group isomorphism from H to G.
Therefore, H satisfies G-wrapping. Extractability follows (more or less) directly
by the soundness of the consistency proof and correctness of FHE. Correctness of
extraction follows by construction and the correctness of FHE and the fact that
piO and piO�

� are support respecting. Correctness of sampling follows directly by
correctness of FHE.

Since our construction builds upon techniques developed in [3], we also
employ similar strategies to remove information about the secret decryption
key from the public group parameters ppH. To prove k-switching, we next use
the IND-CPA security of FHE to remove all information about the basis from
the group element encodings. Finally, the only remaining information about the
basis used to setup the group parameters resides in [Ω]

G
which thus looks uni-

formly random to even an unbounded adversary.
A crucial technical difference to previous work [1,3,17] is the ability to sta-

tistically re-randomize encodings. The key ingredient enabling this is our statis-
tically correct pIO scheme due to Theorem 1.

Lemma 1. The group scheme H defined in Figs. 2a and 2b satisfies statistical
re-randomizability.

Proof (of Lemma 1). The circuit Crerand takes inputs from {0, 1}penc(λ) and
expects a randomness from {0, 1}m′(λ) × {0, 1}m′′(λ). We recall that piO�

� is an
�-expanding pIO scheme for �(λ) = m′(λ)+m′′(λ)+2(λ+1)+3. Since for every
distribution X1 over {0, 1}penc(λ), ˜H∞(U�(λ) | X1) = �(λ) > m′(λ) + m′′(λ) +
2(λ + 1) + 2, the statistical distance between

{

Λrerand ← piO�
� (Crerand) : (Λrerand, Λrerand(X1,X2))

}

and
{

Λrerand ← piO�
� (Crerand) : (Λrerand, Crerand(X1;Um′(λ)+m′′(λ)))

}

is at most 2−(λ+1).
Let ̂h0 =: ([x0]G , C0, π0)H, ̂h1 =: ([x1]G , C1, π1)H ∈ H be the encodings cho-

sen by the adversary A. Since A is a legitimate re-randomization adversary,
PrivExtH(τH, ̂h0) = PrivExtH(τH, ̂h1). Due to perfect correctness of FHE and since
α1, . . . , αn ∈ Z

×
p are invertible, Dec(sk , C0) = Dec(sk , C1). Due to perfect re-

randomizability of FHE, the ciphertexts produced by Crerand(̂h0) and Crerand(̂h1)
are identically distributed. Furthermore, since Crerand(̂hb) produces the consis-
tency proof using the witness (sk ,Dec(sk , Cb)), the distributions produced by
Crerand(̂h0) and Crerand(̂h1) are identical. Therefore, Advrerand

H,A (λ) ≤ 2 · 2−(λ+1) =
2−λ.

Note that since G has unique encodings, A is unable to extract auxiliary
information from the encodings of UnwrapH(ppH,̂h). This is crucial since such
auxiliary information may be used to distinguish whether ̂h0 or ̂h1 was used to
derive ̂h.
�

116 T. Agrikola et al.

4 How to Use Algebraic Wrappers – Implementing
Proofs from the AGM

In the following, we demonstrate how proof techniques from the algebraic group
model can be implemented with our algebraic wrapper. Mainly, we want to use
the extracted representation provided by the algebraic wrapper in a similar way
as in AGM proofs. We adapt the proofs of Diffie-Hellman assumptions from [21]
in Sect. 4.1 as well as the proof for the EUF-CMA security of Schnorr signatures
from [22] in Sect. 4.2. Before we demonstrate how to use the algebraic wrapper,
we sketch two modifications which will be necessary when we replace the AGM
with the algebraic wrapper.

The symmetrization technique. Information-theoretically, the basis11 the alge-
braic wrapper enables extraction for, as well as the representation vectors inside
group element encodings are known to the adversary. However, several security
reductions in [21] employ case distinctions where different reduction algorithms
embed their challenge in different group elements. For instance, in the CDH
game, the discrete logarithm challenge Z can be embedded either in [x]

H
or [y]

H
,

leading to two different security reductions. Due to the ideal properties of the
AGM, both reductions simulate identically distributed games.

However, transferring this strategy directly using algebraic wrappers fails,
since the two reductions are information-theoretically distinguishable depending
on the choice of basis. An unbounded adversary who knows which game he is
playing could therefore influence the representation of his output in such a way
that it always becomes impossible for the reduction to use the representation
to compute the discrete logarithm. We call such a situation a bad case. It is
necessary that the different reduction subroutines have mutually exclusive bad
cases, so that extraction is always possible in at least one game type. Thus, we
need find a way that even these representations (and the basis used to generate
ppH) are identically distributed.

We therefore introduce a proof technique which we call symmetrization. We
extend the basis and group element representations in such a way that the games
played by different reduction subroutines are identically distributed (as they
would be in the AGM). This is done by choosing additional base elements to
which the reduction knows the discrete logarithm (or partial logarithms), so that
these additional base elements do not add any unknowns when solving for the
discrete logarithm. With this technique, we achieve that the games defined by
the different reduction algorithms are identically distributed but entail different
mutually-exclusive bad cases. For the CDH reduction, this means that both
challenge elements [x]

H
and [y]

H
are contained in the basis, so that it is not

known to the adversary which one is the reduction’s discrete logarithm challenge.
This allows to adopt the proofs from AGM.

11 With basis we mean the set of group elements in the base group to which we can
extract.

On Instantiating the Algebraic Group Model from Falsifiable Assumptions 117

The origin element trick. Applying the algebraic wrapper to AGM proofs where
an oracle (e.g. a random oracle or a signing oracle) is present, entails the need
to change the representation vectors of all oracle responses. One possibility to
realize this is to apply Q-switching, where Q denotes a polynomial upper bound
on the number of oracle queries. However, as the switching property only provides
computational guarantees, this naive approach results in a non-tight reduction.
Since we are interested in preserving the tightness of AGM proofs when applying
the algebraic wrapper, we use so-called origin elements from which we construct
the oracle responses using the group operation. This enables to use n-switching
for a constant number n of origin elements instead of Q-switching for Q oracle
responses.

Limitations of our techniques. While our algebraic wrapper provides an extrac-
tion property that is useful for many proofs in the AGM, it also has its limi-
tations. Mainly, the base elements to which the PrivExt algorithm can extract
need to be fixed at the time of group parameter generation. Therefore, we cannot
mimic reductions to assumptions with a variable amount of challenge elements,
where extraction needs to be possible with respect to all these challenge elements.
For instance, q-type assumptions which are used in [21] to prove CCA1-security
of ElGamal and the knowledge-soundness of Groth’s ZK-SNARK.

Furthermore, there are security proofs in the AGM that rely on the rep-
resentation used by the reduction being information-theoretically hidden from
the adversary. An example for this is the tight reduction for the BLS scheme
from [21]. As the reduction can forge a signature for any message, it relies on
the representations provided by the adversary being different from what the
reduction could have computed on its own. In the AGM, it is highly unlikely
that the adversary computes the forged signature in the exact same way as the
reduction simulates the signing oracle, because the reduction does not provide
the adversary with an algebraic representation. However, since we need to be
able to extract privately from group element encodings, the group elements out-
put by the reduction information theoretically contain algebraic representations.
Therefore, information-theoretically, an adversary sees how the reduction sim-
ulates hash responses and signatures, and thus could provide signatures with a
representation that is useless to the reduction.

This problem is circumvented in the Schnorr proof in Sect. 4.2 due to the
representation provided by the adversary already being fixed by the time it
receives a challenge through the Random Oracle. We leave it as an open problem
to transfer the BLS proof to the algebraic wrapper.

Another limitation is that due to the reduction being private, we cannot use
the extraction in reductions between problems in the same group. That is, our
wrapper does not allow for “multi-step” reductions as in the AGM.

4.1 Diffie-Hellman Assumptions

We show how to adapt the security reductions for Diffie-Hellman problems from
[21] to our algebraic wrapper (see Fig. 3 for the definitions). The main proof

118 T. Agrikola et al.

idea, namely to use the representation of the adversary’s output to compute the
discrete logarithm, stays the same; however, due to the nature of our wrapper,
we need to apply the symmetrization technique to achieve the same distributions
as in the AGM.

cdh
x, y ← Zp

s ← A([1]
G

, [x]
G

, [y]
G
)

return s = [xy]
G

sqdh
x ← Zp

s ← A([1]
G

, [x]
G
)

return s = x2

lcdh
x, y ← Zp

u, v, w, s ← A([1]
G

, [x]
G

, [y]
G
)

return s = u x2 + v xy + w y2

Fig. 3. The different types of Diffie-Hellman games shown in [21]

Theorem 3. Let G be a group where the discrete logarithm is hard. Then, the
computational Diffie-Hellman assumption holds in an algebraic wrapper H for G

of dimension ≥ 3.

We sketch the proof here and refer the reader to the full version [2] for the
full proof.

G0

pp
G

← GGenG(1λ)
β2, β3 ← Zp

(pp
H
, τH) ← GGenH(ppG, ([1]

G
, [β2]G , [β3]G)

ᵀ)
x, y ← Zp

1̂ = RerandH(ppH, SamH(ppH, 1))
x̂ = RerandH(ppH, SamH(ppH, x))
ŷ = RerandH(ppH, SamH(ppH, y))
s ← A(pp

H
, 1̂, x̂, ŷ)

return Eq
H
(x̂y, s)

G1

pp
G

← GGenG(1λ)
X ← G

z ← Zp

(pp
H
, τH) ← GGenH(ppG, ([1]

G
, [x]

G
, [y]

G
)ᵀ)

1̂ = RerandH(ppH, SamH(ppH, 1))
x̂ = RerandH(ppH,PrivSamH(τH, (0, 1, 0)ᵀ))
y = RerandH(ppH,PrivSamH(τH, (0, 0, 1)ᵀ))
s ← A(pp

H
, 1, x, y)

Fig. 4. The CDH games used in the security proof. G0 corresponds to the honest CDH-
game. Games of type G1 allow the reduction to embed its discrete logarithm challenge
and extract a useful representation.

On Instantiating the Algebraic Group Model from Falsifiable Assumptions 119

Proof (sketch). We use an algebraic wrapper with basis [1]
G

, [x]
G

, [y]
G
. Initially,

we perform game hops starting from the CDH game (where every encoding
carries representation vectors in the first component), see G0 in Fig. 4 and reach
a game, where the encodings produced as CDH challenge carry representation
vectors of e1, e2 and e3, respectively, see G1 in Fig. 4. These game hops are
justified by 2-switching and rerand.

The reduction flips a coin whether to embed the DLOG challenge Z as [x]
G

or [y]
G
, i.e. it applies the symmetrization technique. In both cases, the view of

the CDH adversary is identical. When the CDH adversary outputs a solution,
the reduction is able to compute the discrete logarithm of the embedded DLOG
challenge from the representation vector extracted from the solution.
�

We additionally show the following in the full version [2].

Theorem 4. Let G be a group where the discrete logarithm is hard. Then, the
square Diffie-Hellman assumption holds in an algebraic wrapper H of dimension
≥ 2 for G.

Theorem 5. Let G be a group where DLOG is hard and H be an algebraic
wrapper of dimension ≥ 3 for G. Then, the linear-combination Diffie-Hellman
problem is hard in H.

4.2 Schnorr Signatures

We apply the algebraic wrapper to mimic the proof of tight EUF-CMA security
of Schnorr Signatures from [22].

Theorem 6. Let GGenG be a group generator for a cyclic group G such that
DLOG is hard relative to GGenG and let H be an algebraic wrapper of dimension
≥ 2 for G. Then, the Schnorr signature scheme in H (Fig. 5) is tightly EUF-
CMA secure in the random oracle model.

More precisely, for all PPT adversaries A, there exists a PPT adversary B
and a legitimate switching adversary A′′ both running in time T (B) ≈ T (A) +
(qs + qh) · poly(λ) and T (A′′) ≈ T (A) + (qs + qh) · poly(λ) such that

Adveuf-cma
Σschnorr,A (λ) ≤ AdvDLOG

B,G (λ) + Adv1-switching
A′′,H (λ) +

O(qs(qs + qh))
2λ

,

where qh is a polynomial upper bound on the number of random oracle queries,
qs is a polynomial upper bound on the number of signing queries and poly is a
polynomial independent of qs and qh.

120 T. Agrikola et al.

KGen(pp
H
)

x ← Zp

1̂ := RerandH(ppH, SamH(ppH, 1))
X̂ := RerandH(ppH, SamH(ppH, x))
pk := (pp

H
, 1̂, X̂)

sk := (pk , x)
return (pk , sk)

Sign(sk , m)
r ← Zp

R̂ ← RerandH(ppH, SamH(ppH, r))
c := H(R̂, m)
s := r + c · x mod p
return σ := (R̂, s)

Ver(pk = (pp
H
, 1, X), m, σ = (R, s))

c := H(R, m)

Fig. 5. The Schnorr signature scheme Σschnorr. Note that to compensate for the non-
uniqueness of group element encodings, the (random oracle) hash value of a group
element encoding is computed for the unique identifier produced by GetIDH(pp

H
, ·).

Expeuf-cma
Σschnorr,A(λ)

pp
G

← GGenG(1λ)
(pp

H
, τH) ← GGenH(ppG, ([1]

G
, [β2]G)

ᵀ)
x ← Zp

ξ1 ← RerandH(ppH, SamH(ppH, 1))
ξ2 ← RerandH(ppH, SamH(ppH, x))
pk := (pp

H
, ξ1, ξ2)

Q := ∅, T := []
(m∗, R̂∗, s∗) ← AH,Sign(1λ, pk)
if m∗ ∈ Q then return 0
c∗ = H(R∗, m∗)

H(R̂, m)

if T [(GetIDH(ppH, R̂), m)] = ⊥ then
T [(GetIDH(ppH, R̂), m)] ← Zp

return T [(GetIDH(ppH, R̂), m)]

Sign(m)
r ← Zp

R̂ ← RerandH(ppH, SamH(ppH, r))
c := H(R, m)
s := r + cx

:

Fig. 6. The EUF-CMA game for Schnorr signatures. Note that β2 can be chosen arbi-
trarily.

Proof. We use the origin element trick to avoid using qs-switching (see
Definition 7) which would compromise tightness of the reduction. Figure 6 shows
the EUF-CMA game with Schnorr signatures instantiated with the algebraic
wrapper. We note that for groups with non-unique encodings, the hash function
hashes the unique identifier returned by GetIDH, hence, encodings corresponding
to the same group element are mapped to the same hash value. The reduction
uses a table T to keep track of previously made hash queries and their responses,
as well as a set Q to keep track of the messages the adversary has requested sig-
natures for.

On Instantiating the Algebraic Group Model from Falsifiable Assumptions 121

G1 G2 G3 G4 G5

pp
G

← GGenG(1λ)
(pp

H
, τH) ← GGenH(ppG, ([1]

G
,

[β2]G [x]
G
)ᵀ)

x ← Zp

ξ1 ← RerandH(ppH, SamH(ppH, 1))
ξ2 ← RerandH(ppH, SamH(ppH, x)

PrivSamH(τH, (x, 0)))
pk := (pp

H
, ξ1, ξ2)

Q := ∅, T := [] U := []

(m∗, R̂∗, s∗) ← AH,Sign(1λ, pk)
if m∗ ∈ Q then return 0

if U [(GetIDH(ppH, R̂∗), m∗)] �= ⊥ then

(γ∗, ζ∗) := U [(GetIDH(ppH, R̂∗), m∗)]

if ζ∗ = −T [(GetIDH(ppH, R̂∗), m∗)] then return 0

c∗ = H(R̂∗, m∗)
return Eq

H
(pp

H
, SamH(ppH, s), R̂∗ · ξc∗

2)

H(R̂, m)

if T [(GetIDH(ppH, R̂), m)] = ⊥ then
T [(GetIDH(ppH, R̂), m)] ← Zp

U [(GetIDH(ppH, R̂), m)] = PrivExtH(τH, R̂)

return T [(GetIDH(ppH, R̂), m)]

Sign(m)
r c, s ← Zp

R̂1 ← SamH(ppH, r)

c := H(R̂1, m)

s := r + cx

R̂2 ← RerandH(ppH, SamH(ppH, s − cx))

R̂2 ← RerandH(ppH, ξs
1 · ξ−c

2)

R̂2 = RerandH(ppH, ξs
1 · ξ−c

2)

if T [(GetIDH(ppH, R̂2), m)] = ⊥ then

T [(GetIDH(ppH, R̂2), m)] := c

else
abort

Fig. 7. Games G1, G2, G3. Boxed content happens in the corresponding games and
following games if no replacement is defined. The randomness for signatures is drawn
using an x-component in G1. G1 is identically distributed to Expeuf-cma

Σschnorr,A(λ). In G2,
the second origin element is sampled through private sampling and the random part of
the signatures is generated through origin elements. G2 is statistically close to G1 due
to re-randomizability. In G3, we switch the basis and representation of ξ2; this hop is
justified by 1-switching.

Game hop from Expeuf-cma
Σschnorr,A(λ) � G1. Since r = s − cx mod p and hence

GetIDH(ppH, ̂R1) = GetIDH(ppH, ̂R2), these two games are identically distributed.

Game hop G1 � G2. In G2 (see Fig. 7), we construct ̂R2 from origin elements
through the group operation instead of sampling. This game hop is justified
by the re-randomizability of the algebraic wrapper. A reduction to this property
works as a series of qs +1 hybrids where H0 is G1, where qs denotes a polynomial
upper bound on the number of signing queries. In Hi, the first i signature queries
are answered as in G2 and the i+1-th to qs-th signature queries are answered as
in G1. In the last hybrid, the public key is also changed to private sampling. If
there is an (unbounded) adversary that distinguishes Hi and Hi+1, the reduction
A′ uses this adversary to attack the re-randomizability as follows. On input of

122 T. Agrikola et al.

base group parameters ppG, A′ picks a basis ([1]
G

, [β2]G) and gives it to the
rerand challenger. It receives public parameters and the trapdoor. Then, it
simulates Hi to the adversary for the first i signature queries, i.e. it samples
̂R2,j ← RerandH(ppH, ξ

sj

1 · ξ
−cj

2) for j < i. For the i + 1-th signature query, A′

sends the two elements ̂h0 = SamH(ppH, si+1 − ci+1 · x) and ̂h1 = ξ
si+1
1 · ξ

−ci+1
2

to the challenger and receives a challenge ̂C. It uses this challenge ̂C as R̂2,i+1

to answer the i + 1-th hash query and responds to the remaining queries as in
Hi+1, i.e. it samples ̂Rj ← RerandH(ppH,SamH(ppH, sj − cj · x)) for j > i + 1.
Depending on the challenge encoding ̂C, A′ either simulates Hi or Hi+1 perfectly
and outputs the output of the corresponding game.

In hybrid Hqs
, all signature queries are answered as in game G2. The last step

to game Hqs+1 = G2 changes how ξ2 (which is part of the public key) is sampled.
An adversary distinguishing Hqs

and Hqs+1 can be used to build an adversary
A′ in rerand similarly as above. More precisely, A′ outputs the encodings ̂h0 ←
SamH(ppH, x) and ̂h1 ← PrivSamH(τH, x) (note that τH is known during the
rerand game) and uses the challenge encoding from the rerand challenger as
ξ2. We note that this last game hop paves the way to apply 1-switching.

Due to correctness of sampling and correctness of extraction, the representa-
tion vectors of the elements used in the rerand game are identical and hence A′

is a legitimate adversary in the rerand game and its advantage is upper bounded
by 1

2λ . Therefore,

|Pr [out1 = 1] − Pr [out2 = 1]| ≤ qs + 1
2λ

.

Game hop G2 � G3. In game G3 (see Fig. 7) we switch the basis and the rep-
resentation of the origin element ξ2. This game hop is justified by 1-switching.
Let A be an adversary distinguishing G2 and G3. We construct an adversary A′′

on 1-switching as follows. Initially, A′′ on input of ppG, outputs [b](G2)
G

=
[(1, β2)ᵀ]

G
and [b](G3)

G
= [(1, x)ᵀ]

G
and the representation vectors v(G2) :=

(x, 0)ᵀ and v(G3) := (0, 1)ᵀ. In return, A′′ receives public parameters ppH and an
encoding ̂C and samples ξ2 ← RerandH(ppH, ̂C). The trapdoor τH is not necessary
to simulate G3 and G4 (except for sampling ξ2). Hence, A′′ perfectly simulates
G3 or G4 for A depending on the challenge provided by the 1-switching chal-
lenger. Thus, |Pr[out3 = 1] − Pr[out2 = 1]| ≤ Adv1-switching

H,A′′ (λ). Note that A′′ is
a legitimate switching adversary since [(1, β2)]G ·(x, 0)ᵀ = [x]

G
= [(1, x)]

G
·(0, 1)ᵀ

and hence Adv1-switching
H,A′′ (λ) is negligible.

Game hop G3 � G4. In G4 (see Fig. 7), we introduce a list U to keep track of
the representations of group elements used in Random Oracle queries. The games
G3 and G4 differ in the fact that G4 extracts the representation vectors contained
in the encoding of a group element when this group element message tuple is
queried for the first time and stores this representation in a list. Furthermore,
G4 introduces an abort condition which is triggered if the representation of ̂R∗
originally used to query the random oracle on (̂R∗,m∗) already contained the

On Instantiating the Algebraic Group Model from Falsifiable Assumptions 123

response in the second component ζ∗. This corresponds to the game hop from
G0 to G1 in [22]. The game only aborts if the hash T [(GetIDH(ppH, ̂R∗),m∗)] is
the same as the second component ζ∗ of the representation extracted from ̂R∗.
Since the hash T [(GetIDH(ppH, ̂R∗),m∗)] is chosen uniformly at random after the
representation (γ∗, ζ∗) is fixed, the probability that an unbounded adversary
can find such an (̂R∗,m∗) is upper bounded by qh

p ≤ qh

2λ , where qh denotes
a polynomial upper bound on the number of random oracle queries. Hence,
|Pr[out4 = 1] − Pr[out3 = 1]| ≤ qh

2λ .

Game hop G4 � G5. In game G5 (see Fig. 7), we change how signature queries
are answered such that it is not necessary anymore to know the discrete logarithm
of the public key. This game hop corresponds to the hop from G1 to G2 in [22]. On
one hand, since GetIDH(ppH, ̂R1) = GetIDH(ppH, ̂R2), replacing ̂R1 with ̂R2 does
not change the distribution. On the other hand, as we are only able to answer
a signing query if we can program the random oracle at (̂R2,m) (for randomly
chosen ̂R2), the signing oracle has to abort in case the hash was already queried
before. Since ̂R2 is a independently sampled uniformly random group element,
this happens only with probability 1

p ≤ 1
2λ . Hence, by a union bound, this abort

occurs at most with probability qs(qs+qh)
2λ cases, where qs denotes a polynomial

upper bound on the number of signing queries and qh denotes a polynomial upper
bound on the number of random oracle queries. Conditioned on the event that
no abort occurs, G4 and G5 are distributed identically. Hence, by the Difference
Lemma due to Shoup [39], we have |Pr[out5 = 1] − Pr[out4 = 1]| ≤ qs(qs+qh)

2λ .
As in [22], on extraction of the initial representation (γ∗, ζ∗) of ̂R∗ from a valid
signature (̂R∗, s∗) output by the adversary, the reduction can use that ̂R∗ =
[γ∗]

H
· [ζ∗ · z]

H
= [s∗ − c∗ · z]

H
. Therefore,

z =
s∗ − γ∗

ζ∗ − c∗ .

Due to the added check in G4, an adversary can only win G4 or G5 when
ζ∗ − c∗ �= 0 which concludes the proof.
�

Acknowledgments. We would like to thank the anonymous reviewers of EC20 for
many helpful comments and for pointing out an error in previous versions of Lemma 1
and the proof of the switching property.

References

1. Agrikola, T., Hofheinz, D.: Interactively secure groups from obfuscation. In:
Abdalla, M., Dahab, R. (eds.) PKC 2018, Part II. LNCS, vol. 10770, pp. 341–
370. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-76581-5 12

2. Agrikola, T., Hofheinz, D., Kastner, J.: On instantiating the algebraic group model
from falsifiable assumptions. Cryptology ePrint Archive, Report 2020/070 (2020).
https://eprint.iacr.org/2020/070

https://doi.org/10.1007/978-3-319-76581-5_12
https://eprint.iacr.org/2020/070

124 T. Agrikola et al.

3. Albrecht, M.R., Farshim, P., Hofheinz, D., Larraia, E., Paterson, K.G.: Multilinear
maps from obfuscation. In: Kushilevitz, E., Malkin, T. (eds.) TCC 2016-A, Part
I. LNCS, vol. 9562, pp. 446–473. Springer, Heidelberg (2016). https://doi.org/10.
1007/978-3-662-49096-9 19

4. Bellare, M., Palacio, A.: The knowledge-of-exponent assumptions and 3-round zero-
knowledge protocols. In: Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp.
273–289. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-28628-
8 17

5. Bitansky, N., Canetti, R., Paneth, O., Rosen, A.: On the existence of extractable
one-way functions. In: Shmoys, D.B. (ed.) 46th ACM STOC, pp. 505–514. ACM
Press, May/June 2014

6. Boneh, D., Lipton, R.J.: Algorithms for black-box fields and their application to
cryptography. In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109, pp. 283–297.
Springer, Heidelberg (1996). https://doi.org/10.1007/3-540-68697-5 22

7. Boneh, D., Lynn, B., Shacham, H.: Short signatures from the Weil pairing. J.
Cryptol. 17(4), 297–319 (2004). https://doi.org/10.1007/s00145-004-0314-9

8. Boneh, D., Segev, G., Waters, B.: Targeted malleability: homomorphic encryption
for restricted computations. In: Goldwasser, S. (ed.) ITCS 2012, pp. 350–366. ACM,
January 2012

9. Boneh, D., Venkatesan, R.: Breaking RSA may not be equivalent to factoring.
In: Nyberg, K. (ed.) EUROCRYPT 1998. LNCS, vol. 1403, pp. 59–71. Springer,
Heidelberg (1998). https://doi.org/10.1007/BFb0054117

10. Boyen, X.: The uber-assumption family. In: Galbraith, S.D., Paterson, K.G. (eds.)
Pairing 2008. LNCS, vol. 5209, pp. 39–56. Springer, Heidelberg (2008). https://
doi.org/10.1007/978-3-540-85538-5 3

11. Canetti, R., Lin, H., Tessaro, S., Vaikuntanathan, V.: Obfuscation of probabilistic
circuits and applications. In: Dodis, Y., Nielsen, J.B. (eds.) TCC 2015, Part II.
LNCS, vol. 9015, pp. 468–497. Springer, Heidelberg (2015). https://doi.org/10.
1007/978-3-662-46497-7 19

12. Coron, J.-S.: On the exact security of full domain hash. In: Bellare, M. (ed.)
CRYPTO 2000. LNCS, vol. 1880, pp. 229–235. Springer, Heidelberg (2000).
https://doi.org/10.1007/3-540-44598-6 14

13. Cramer, R., Shoup, V.: Universal hash proofs and a paradigm for adaptive chosen
ciphertext secure public-key encryption. In: Knudsen, L.R. (ed.) EUROCRYPT
2002. LNCS, vol. 2332, pp. 45–64. Springer, Heidelberg (2002). https://doi.org/10.
1007/3-540-46035-7 4

14. Damg̊ard, I.: Towards practical public key systems secure against chosen ciphertext
attacks. In: Feigenbaum, J. (ed.) CRYPTO 1991. LNCS, vol. 576, pp. 445–456.
Springer, Heidelberg (1992). https://doi.org/10.1007/3-540-46766-1 36

15. Dent, A.W.: Adapting the weaknesses of the random oracle model to the generic
group model. In: Zheng, Y. (ed.) ASIACRYPT 2002. LNCS, vol. 2501, pp. 100–109.
Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-36178-2 6

16. Dent, A.W.: The cramer-shoup encryption scheme is plaintext aware in the stan-
dard model. In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp.
289–307. Springer, Heidelberg (2006). https://doi.org/10.1007/11761679 18

17. Farshim, P., Hesse, J., Hofheinz, D., Larraia, E.: Graded encoding schemes
from obfuscation. In: Abdalla, M., Dahab, R. (eds.) PKC 2018, Part II. LNCS,
vol. 10770, pp. 371–400. Springer, Cham (2018). https://doi.org/10.1007/978-3-
319-76581-5 13

18. Feige, U., Shamir, A.: Witness indistinguishable and witness hiding protocols. In:
22nd ACM STOC, pp. 416–426. ACM Press, May 1990

https://doi.org/10.1007/978-3-662-49096-9_19
https://doi.org/10.1007/978-3-662-49096-9_19
https://doi.org/10.1007/978-3-540-28628-8_17
https://doi.org/10.1007/978-3-540-28628-8_17
https://doi.org/10.1007/3-540-68697-5_22
https://doi.org/10.1007/s00145-004-0314-9
https://doi.org/10.1007/BFb0054117
https://doi.org/10.1007/978-3-540-85538-5_3
https://doi.org/10.1007/978-3-540-85538-5_3
https://doi.org/10.1007/978-3-662-46497-7_19
https://doi.org/10.1007/978-3-662-46497-7_19
https://doi.org/10.1007/3-540-44598-6_14
https://doi.org/10.1007/3-540-46035-7_4
https://doi.org/10.1007/3-540-46035-7_4
https://doi.org/10.1007/3-540-46766-1_36
https://doi.org/10.1007/3-540-36178-2_6
https://doi.org/10.1007/11761679_18
https://doi.org/10.1007/978-3-319-76581-5_13
https://doi.org/10.1007/978-3-319-76581-5_13

On Instantiating the Algebraic Group Model from Falsifiable Assumptions 125

19. Fleischhacker, N., Jager, T., Schröder, D.: On tight security proofs for Schnorr
signatures. J. Cryptol. 32(2), 566–599 (2019). https://doi.org/10.1007/s00145-019-
09311-5

20. Freire, E.S.V., Hofheinz, D., Paterson, K.G., Striecks, C.: Programmable hash func-
tions in the multilinear setting. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013,
Part I. LNCS, vol. 8042, pp. 513–530. Springer, Heidelberg (2013). https://doi.
org/10.1007/978-3-642-40041-4 28

21. Fuchsbauer, G., Kiltz, E., Loss, J.: The algebraic group model and its applications.
In: Shacham, H., Boldyreva, A. (eds.) CRYPTO 2018, Part II. LNCS, vol. 10992,
pp. 33–62. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-96881-0 2

22. Fuchsbauer, G., Plouviez, A., Seurin, Y.: Blind Schnorr signatures in the algebraic
group model. Cryptology ePrint Archive, Report 2019/877 (2019). http://eprint.
iacr.org/2019/877

23. Garg, S., Gentry, C., Halevi, S.: Candidate multilinear maps from ideal lattices.
In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS, vol. 7881, pp.
1–17. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-38348-9 1

24. Groth, J., Sahai, A.: Efficient non-interactive proof systems for bilinear groups.
In: Smart, N. (ed.) EUROCRYPT 2008. LNCS, vol. 4965, pp. 415–432. Springer,
Heidelberg (2008). https://doi.org/10.1007/978-3-540-78967-3 24

25. Hada, S., Tanaka, T.: On the existence of 3-round zero-knowledge protocols. In:
Krawczyk, H. (ed.) CRYPTO 1998. LNCS, vol. 1462, pp. 408–423. Springer, Hei-
delberg (1998). https://doi.org/10.1007/BFb0055744

26. Hofheinz, D., Kiltz, E.: Programmable hash functions and their applications. J.
Cryptol. 25(3), 484–527 (2012). https://doi.org/10.1007/s00145-011-9102-5

27. Hofheinz, D., Ursu, B.: Dual-mode NIZKs from obfuscation. In: Gal-
braith, S.D., Moriai, S. (eds.) ASIACRYPT 2019. LNCS, vol. 11921, pp.
311–341. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-34578-5 12.
https://eprint.iacr.org/2019/475

28. Hohenberger, S., Sahai, A., Waters, B.: Full domain hash from (leveled) multilinear
maps and identity-based aggregate signatures. In: Canetti, R., Garay, J.A. (eds.)
CRYPTO 2013, Part I. LNCS, vol. 8042, pp. 494–512. Springer, Heidelberg (2013).
https://doi.org/10.1007/978-3-642-40041-4 27

29. Hohenberger, S., Sahai, A., Waters, B.: Replacing a random oracle: full domain
hash from indistinguishability obfuscation. In: Nguyen, P.Q., Oswald, E. (eds.)
EUROCRYPT 2014. LNCS, vol. 8441, pp. 201–220. Springer, Heidelberg (2014).
https://doi.org/10.1007/978-3-642-55220-5 12

30. Kastner, J., Pan, J.: Towards instantiating the algebraic group model. Cryptology
ePrint Archive, Report 2019/1018 (2019). https://eprint.iacr.org/2019/1018

31. Maurer, U.: Abstract models of computation in cryptography. In: Smart, N.P. (ed.)
Cryptography and Coding 2005. LNCS, vol. 3796, pp. 1–12. Springer, Heidelberg
(2005). https://doi.org/10.1007/11586821 1

32. Maurer, U., Wolf, S.: Lower bounds on generic algorithms in groups. In: Nyberg,
K. (ed.) EUROCRYPT 1998. LNCS, vol. 1403, pp. 72–84. Springer, Heidelberg
(1998). https://doi.org/10.1007/BFb0054118

33. Naor, M.: On cryptographic assumptions and challenges. In: Boneh, D. (ed.)
CRYPTO 2003. LNCS, vol. 2729, pp. 96–109. Springer, Heidelberg (2003). https://
doi.org/10.1007/978-3-540-45146-4 6

34. Nechaev, V.I.: Complexity of a determinate algorithm for the discrete logarithm.
Math. Notes 55(2), 165–172 (1994). https://doi.org/10.1007/BF02113297

https://doi.org/10.1007/s00145-019-09311-5
https://doi.org/10.1007/s00145-019-09311-5
https://doi.org/10.1007/978-3-642-40041-4_28
https://doi.org/10.1007/978-3-642-40041-4_28
https://doi.org/10.1007/978-3-319-96881-0_2
http://eprint.iacr.org/2019/877
http://eprint.iacr.org/2019/877
https://doi.org/10.1007/978-3-642-38348-9_1
https://doi.org/10.1007/978-3-540-78967-3_24
https://doi.org/10.1007/BFb0055744
https://doi.org/10.1007/s00145-011-9102-5
https://doi.org/10.1007/978-3-030-34578-5_12
https://eprint.iacr.org/2019/475
https://doi.org/10.1007/978-3-642-40041-4_27
https://doi.org/10.1007/978-3-642-55220-5_12
https://eprint.iacr.org/2019/1018
https://doi.org/10.1007/11586821_1
https://doi.org/10.1007/BFb0054118
https://doi.org/10.1007/978-3-540-45146-4_6
https://doi.org/10.1007/978-3-540-45146-4_6
https://doi.org/10.1007/BF02113297

126 T. Agrikola et al.

35. Paillier, P., Vergnaud, D.: Discrete-log-based signatures may not be equiva-
lent to discrete log. In: Roy, B. (ed.) ASIACRYPT 2005. LNCS, vol. 3788, pp.
1–20. Springer, Heidelberg (2005). https://doi.org/10.1007/11593447 1

36. Peikert, C., Shiehian, S.: Noninteractive zero knowledge for NP from (plain) learn-
ing with errors. In: Boldyreva, A., Micciancio, D. (eds.) CRYPTO 2019, Part I.
LNCS, vol. 11692, pp. 89–114. Springer, Cham (2019). https://doi.org/10.1007/
978-3-030-26948-7 4

37. Schnorr, C.P.: Efficient signature generation by smart cards. J. Cryptol. 4(3), 161–
174 (1991). https://doi.org/10.1007/BF00196725

38. Shoup, V.: Lower bounds for discrete logarithms and related problems. In: Fumy,
W. (ed.) EUROCRYPT 1997. LNCS, vol. 1233, pp. 256–266. Springer, Heidelberg
(1997). https://doi.org/10.1007/3-540-69053-0 18

39. Shoup, V.: Sequences of games: a tool for taming complexity in security proofs.
Cryptology ePrint Archive, Report 2004/332 (2004). http://eprint.iacr.org/2004/
332

https://doi.org/10.1007/11593447_1
https://doi.org/10.1007/978-3-030-26948-7_4
https://doi.org/10.1007/978-3-030-26948-7_4
https://doi.org/10.1007/BF00196725
https://doi.org/10.1007/3-540-69053-0_18
http://eprint.iacr.org/2004/332
http://eprint.iacr.org/2004/332

	On Instantiating the Algebraic Group Model from Falsifiable Assumptions
	1 Introduction
	1.1 Technical Overview
	1.2 Related Work

	2 Preliminaries
	2.1 Subset Membership Problem
	2.2 Dual-mode NIWI
	2.3 Probabilistic Indistinguishability Obfuscation
	2.4 Re-randomizable and Fully Homomorphic Encryption
	2.5 Statistically Correct Input Expanding pIO

	3 How to Simulate Extraction – Algebraic Wrappers
	3.1 Group Schemes
	3.2 An Algebraic Wrapper
	3.3 Construction

	4 How to Use Algebraic Wrappers – Implementing Proofs from the AGM
	4.1 Diffie-Hellman Assumptions
	4.2 Schnorr Signatures

	References

