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Abstract. We show a new general approach for constructing maliciously-
secure two-round oblivious transfer (OT). Specifically,we provide a generic
sequence of transformations to upgrade a very basic notion of two-round
OT, which we call elementary OT, to UC-secure OT. We then give simple
constructions of elementary OT under the Computational Diffie-Hellman
(CDH) assumption or the Learning Parity with Noise (LPN) assumption,
yielding the first constructions of malicious (UC-secure) two-round OT
under these assumptions. Since two-round OT is complete for two-round 2-
party andmulti-party computation in themalicious setting,wealso achieve
the first constructions of the latter under these assumptions.

1 Introduction

Oblivious transfer (OT) [Rab05,EGL85], is a fundamental primitive in cryptog-
raphy. An OT protocol consists of two parties: a sender and a receiver. The
sender’s input is composed of two strings (m0,m1) and the receiver’s input is a
bit c. At the end of the execution of the OT protocol, the receiver should only
learn the value mc, but should not learn anything about the other value m1−c.
The sender should gain no information about the choice bit c. This very simple
primitive is often used as the foundational building block for realizing secure
computation protocols [Yao82,GMW87]. Thus, the efficiency characteristics of
the OT protocol directly affect the efficiency of the resulting secure computation
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protocol. As such, several notions of OT, achieving varying security and efficiency
properties, have been devised (see e.g., [Lin16]). Ideally, we want to achieve a
simulation-based definition of OT, where we require that malicious behavior in
the real world can be simulated in an ideal world with an ideal OT functionality,
and even more desirably, we want to do so in the universal composability (UC)
framework [Can01].

OT in Two-Rounds. As the name suggests, a two-round OT protocols allows
the OT functionality to be implemented in just the minimal two-rounds of com-
munication. Namely, the receiver sends the first-round message based on her
input bit c. Next, using his input (m0,m1) and the first message of the proto-
col, the sender generates and sends the second-round message of the protocol.
Finally, the receiver uses the second-round protocol message to recover mc.

OT protocols that require only two rounds of communication are often desir-
able. Most importantly, two-round OT protocols are complete (necessary and suf-
ficient) for general two-round (i.e., round optima) two-party [Yao82] and multi-
party secure computation (2PC, MPC) [GS18,BL18] in both the semi-honest
and malicious settings. Unfortunately, constructing two-round OT is typically
much harder than constructing OT protocols with a larger round complexity. In
particular, by relying on ZK proofs, we can construct constant-round malicious
OT assuming only constant-round semi-honest OT and the latter follows from
essentially all known assumptions that imply public-cryptography. On the other
hand, no such equivalence is known for 2-round protocols since zero-knowledge
proofs add more round. Furthermore, we know that two-round simulation-secure
malicious OT is impossible in the plain model, and therefore we consider security
in the common reference string (CRS) model.

Assumptions. Over the years, tremendous progress has been made in construct-
ing both semi-honest and maliciously secure two-round OT protocols [CCM98,
NP01,AIR01,DHRS04,PVW08,HK12,BD18] from a wide variety of assump-
tions. However, there are still gaps in our understanding—namely, constructing
two-round OT typically requires stronger assumptions than what known to be
sufficient for just OT. This is especially true for the case of maliciously secure
OT. In this work, we attempt to bridge this gap. More specifically, we ask:

Can maliciously secure two-round OT and be based on the Computational
Diffie-Hellman (CDH) assumption or the Learning Parity with Noise
(LPN) assumption?

Since two-round malicious (UC) OT is complete for two-round malicious (UC)
2PC and MPC, the above is equivalent to asking whether the latter can be
instantiated under the CDH and LPN assumptions. While constructions of UC-
secure two-round OT under the Decisional Diffie-Hellman (DDH) assumption
and the Learning with Errors (LWE) assumption are known [PVW08], the ques-
tion of constructing the same under CDH and LPN has so far remained open.
Moreover, we do not even have two-round constructions under CDH or LPN
that satisfy any alternate weaker notions of malicious OT security that have
been previously proposed in the literature.
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1.1 Why Is Two-Round Maliciously Secure OT Difficult?

One reason that (two-round) OT is difficult to construct is that this notion
is even difficult to define. Simulation-based definitions of security are complex
and impose requirements that often seem stronger than necessary and hard to
achieve. Unlike (say) public-key encryption, where we have simple game-based
definitions that imply simulation-based (semantic) security, we do not have any
simpler definitions of malicious OT security that suffice for simulation. All prior
attempts from the literature to weaken the definition of OT security are still
complex and require some form of extraction/simulation. In particular, to mean-
ingfully define that the malicious receiver only learns one of the two sender values
m0,m1, all known definitions require that we can somehow extract the receiver’s
choice bit c from the first OT message and then argue that the second message
hides the value m1−c.

To meet any such extraction-based definition, we need to start with an OT
where the receiver’s choice bit is statistically committed in the first OT mes-
sage. This seems like a significant restriction. For example there is a natural
construction of OT from CDH due to Bellare and Micali [BM90], which achieves
semi-honest security in the standard model or a weak form of malicious security
in the random-oracle model. However, in this construction, the first message
only commits the receiver computationally to the choice bit and hence there is
no hope of extracting it. Therefore, it appears difficult to prove any meaningful
notion of malicious security without resorting to the random oracle model.

Overall, we are aware of only two approaches towards achieving maliciously-
secure OT. The first starts with semi-honest OT and then compiles it to mali-
cious OT using zero-knowledge proofs. Unfortunately, if we want two-round OT
we would need to use non-interactive zero-knowledge (NIZK) proofs and we do
not have instantiations of such NIZKs under many natural assumptions such as
CDH or LPN (or LWE). The other approach, used by Peikert, Vaikuntanathan
and Waters [PVW08] (and to some extent also e.g., [NP01,AIR01,BD18]) takes
advantage of a statistically “lossy” mode of DDH/LWE based encryption. Unfor-
tunately, we do not have any such analogous “lossy” mode for CDH/LPN based
encryption and therefore this approach too appears to be fundamentally stuck.

1.2 Our Results

In this work, we give a new general approach for constructing UC-secure two-
round OT.1 Specifically, we introduce an extremely weak and simple notion of
two-round OT, which we call elementary OT. This notion is defined via a game-
based definition and, in contrast to all prior notions of OT, does not rely on an
extractor. We then provide a series of generic transformations that upgrade the
security of elementary OT, eventually culminating in a UC-secure two-round OT.
These transformations are the main technically challenging contributions of the

1 Although we achieve UC security, it does not appear that achieving stand-alone
security would make our solutions significantly simpler.
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paper. Lastly, we show simple constructions of two-round elementary OT under
the Computational Diffie-Hellman (CDH) assumption or the Learning Parity
with Noise (LPN) assumption, yielding the first constructions of UC-secure two-
round OT under these assumptions. We rely on a variant of LPN with noise-rate
1/nε for some arbitrary constant ε > 1

2 .2

Applications to Two-Round MPC. As mentioned earlier, two-round OT is
known to be complete for constructing two-round MPC [GS18,BL18]. Thus, our
results also yield the first constructions of two-round malicious (UC-secure) MPC
under the Computational Diffie-Hellman (CDH) assumption or the Learning
Parity with Noise (LPN) assumption.

Open Problems. Interestingly, our generic transformations use garbled circuits
that make a non-black-box use of the underlying cryptographic primitives. We
leave it as an open problem to obtain a black-box construction or show the
impossibility thereof.

Follow-Up Work. Subsequently to our work, techniques and results of our
paper were used in some follow-up works. Lombardi et al. [LQR+19] used our
main result to obtain the first construction of maliciously-secure designated-
verifier NIZK (MDV-NIZK) from CDH. MDV-NIZK may be though of as a
two-round ZK protocol in the CRS model with a reusable first-round message.
Technically, [LQR+19] gives constructionist of MDV-NIZK from a combination
of key-dependent-message (KDM) secure private-key encryption for projection
functions and a receiver-extractable two-round OT protocol. (See Definition 15.)
They used the main result of our paper in order to realize their OT component.
(The KDM component is already known from CDH [BLSV18].) In another work,
Döttling, Garg and Malavolta [DGM19] use and extend techniques form our work
(especially those from Sect. 6) in order to build protocols for Malicious Laconic
Function Evaluation (among others).

2 Technical Overview

Our results are obtained via a sequence of transformations between various
notions of OT. We give an overview of this sequence in Fig. 1 and explain each
of the steps below. All of the notions of OT that we consider are two-round and
can rely on a common reference string (CRS), which is generated by a trusted
third party and given to both the sender and the receiver. For simplicity, we
often ignore the CRS in the discussion below.

Elementary OT. We begin by defining an extremely weak and simple notion of
OT, called elementary OT. The receiver uses her choice bit c to generate a first
round message otr. The sender then uses otr to generate a second-round message
ots together with two values y0, y1. The receiver gets ots and uses it to recover
the value yc. Note that, unlike in standard OT, the sender does not choose the
2 This is marginally stronger than the variant used in constructing public-key encryp-

tion due to Alekhnovich [Ale03], which relies on a noise-rate 1/Θ(n1/2).
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Fig. 1. Sequence of transformations leading to our results.

two values y0, y1 himself, but instead generates them together with ots. (One
may think of this as analogous to the distinction between key-encapsulation
and encryption.) The security of elementary OT is defined via the following two
game-based requirements:

1. Receiver Security: The receiver’s choice bit c is computationally hidden by
the first-round OT message otr.

2. Sender Security: A malicious receiver who creates the first-round message otr
maliciously and is then given an honestly generated second-round message ots
cannot simultaneously output both of the values y0, y1 except with negligible
probability.

Note that elementary OT provides a very weak notion of sender security. Firstly,
it only provides unpredictability, rather than indistinguishability, based security
– the malicious receiver cannot output both values y0, y1, but may learn some
partial information about each of the two values. Second of all, it does not require
that the there is a consistent bit w such that the value yw is hidden from the
malicious receiver – it may be that, even after the receiver maliciously chooses
otr, for some choices of ots she learns y0 and for other choices she learns y1. We
fix the second issue first.

From Elementary OT to Search OT. We define a strengthening of elemen-
tary OT, which we call search OT. The syntax and the receiver security remain
the same. For sender security, we still keep an unpredictability (search) based
security definition. But now we want to ensure that, for any choice of the mali-
cious receiver’s message otr, there is a consistent bit w such that yw is hidden.
We want to capture this property without requiring the existence of an (even
inefficient) extractor that can find such w. We do so as follows. For any choice
of the malicious receiver’s first message otr (along with all her random coins
and the CRS), we define two probabilities ε0, ε1 which denote the probability of
the receiver outputting y0 and y1 respectively, taken only over the choice of ots.
We require that for any polynomial p, with overwhelming probability over the
receiver’s choices, at least one of ε0 or ε1 is smaller than 1/p. In particular, this
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means that with overwhelming probability over the malicious receiver’s choice
of otr, there is a fixed and consistent bit w such that the receiver will be unable
to recover yw from the sender’s message ots. Note that the value w may not be
extractable (even inefficiently) from otr alone since the way that w is defined is
“adversary-dependent”.

To go from elementary OT to search OT, we rely on techniques from “hard-
ness amplification”. The difficulty of using a search-OT adversary to break
elementary-OT security is that a search-OT adversary can, for example, have
ε0 = ε1 = 1

2 , but for half the value of ots it outputs the correct y0 and for half it
outputs the correct y1, yet it never output both correct values simultaneously.
However, if we could ensure that ε0, ε1 are both much larger than 1

2 , then this
could not happen. We use hardness amplification to achieve this. In particular,
we construct search OT scheme from elementary OT by having the sender gen-
erate λ (security parameter) different second-round messages of the elementary
OT and set the search OT values to be the concatenations OTS = (ots1, . . . , otsλ)
and Y0 = (y1

0 , . . . , y
λ
0 ), Y1 = (y1

1 , . . . , y
λ
1 ). By hardness amplification, if for some

choice of otr the malicious receiver can separately predict each of Y0, Y1 with
probability better than some inverse polynomial 1/p, then that means it can
separately predict each of the components y0, y1 with extremely high probabil-
ity > 3

4 , and by the union bound, can therefore predict both components y0, y1
simultaneously with probability > 1

4 .

From Search OT to Indistinguishability OT. Next, we define a notion that
we call indistinguishability OT. Here, just like in standard OT, the sender gets
to choose his two values m0,m1 himself, rather than having the scheme generate
values y0, y1 for him, as was the case in elementary and search OT. The receiver
security remains the same as in elementary and search OT: the receiver’s choice
bit c is hidden by her first-round message otr. The sender security is defined in
a similar manner to search OT, except that we now require indistinguishability
rather than unpredictability. In particular, the malicious receiver chooses two
values m0,m1 and a maliciously generated otr. For any such choice, we define two
probabilities ε0, ε1, where εb denotes the receiver’s advantage, calculated only
over the random coins of the sender, in distinguishing between ots generated
with the messages (m0,m1) versus (m′

0,m
′
1) where m′

b is uniformly random
and m′

1−b = m1−b. We require that for any polynomial p, with overwhelming
probability over the receiver’s choices, at least one of ε0 or ε1 is smaller than
1/p. In particular, this means that, with overwhelming probability, the malicious
receiver’s choice of otr fixes a consistent bit w such that the receiver does not
learn anything about mw.

To go from search OT to indistinguishability OT with 1-bit values m0,m1,
we rely on the Goldreich-Levin hardcore bit [GL89]. In particular, we use search
OT to generate ots along with values y0, y1 and then use the Goldreich-Levin
hardcore bits of y0, y1 to mask m0,m1 respectively. To then allow for multi-bit
values m0,m1, we simply have the sender send each bit separately, by reusing
the same receiver message otr for all bits.
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From Indistinguishability OT to Weak SFE. Next, we generalize from
OT and define a weak form of (two-round) secure function evaluation (weak-
SFE). Here, there is a receiver with an input x and a sender with a circuit
f . The receiver learns the output f(x) in the second round. We define a very
simple (but weak) game-based notion of malicious security, without relying on
a simulator or extractor:

– Receiver Security: The receiver’s first-round message hides the input x from
the sender.

– Sender Security: A malicious receiver cannot distinguish between any two
functionally equivalent circuits f0, f1 used by the sender.

We show how to compile indistinguishability OT to weak SFE. Indeed, the con-
struction is the same as the standard construction of (standard) SFE from (stan-
dard) OT: the receiver sends first-round OT messages corresponding to the bits
of the input x and the sender creates a garbled circuit for f and uses the two
input labels as the values for the second-round OT messages.

The proof of sender security, however, is very different than that for the
standard construction of SFE from OT, which relies on extracting the receiver’s
OT choice bits. Instead, we rely on technical ideas that are similar to and
inspired by those recently used in the context of distinguisher-dependent simu-
lation [JKKR17] and have a sequence of hybrids that depends on the adversary.
More concretely, indistinguishability OT guarantees that for each input wire,
there is some bit w such that the adversary cannot tell if we replace the label for
w by uniform. However, this bit w is defined in an adversary-dependent manner.
This effectively allows us to extract the adversary’s OT choice bits. Therefore,
we have a sequence of adversary-dependent hybrids where we switch the OT val-
ues used by the sender and replace the labels for the bits w by random values.
We then rely on garbled circuit security to argue that garblings of f0 and f1 are
indistinguishable, and conclude that the adversary’s advantage is negligible.

Formalizing the above high-level approach is the most technically involved
component of the paper.

From Weak SFE to OT with UC Sender Security. We show how to
go from weak SFE to an OT scheme that has UC-security for the sender. In
particular, this means we can extract the choice bit c from the receiver’s first-
round message otr and simulate the sender’s second-round message ots given
only mc, without knowing the “other” value m1−c. For the receiver’s secu-
rity, we maintain the same indistinguishability-based requirement as in elemen-
tary/search/indistinguishability OT, which guarantees that the choice bit c is
hidden by the first-round OT message otr. We refer to this as a “half-UC OT”
for short. This is the first step where we introduce a simulation/extraction based
notion of security.

Our compiler places a public-key pk of a public-key encryption (PKE) scheme
to the CRS. The receiver encrypts her choice bit c under pk using randomness
r and sends the resulting ciphertext ct = Epk(c; r) as part of her first-round OT
message. At the same time, the receiver and sender run an instance of weak SFE,
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where the receiver’s input is x = (c, r) and the sender’s circuit is fpk,ct,m0,m1(c, r),
which output mc if ct = Epk(c; r) and ⊥ otherwise. The indistinguishability-based
security of the receiver directly follows from that of the SFE and the PKE, which
together guarantees that c is hidden by the first-round message. To argue UC
security of the sender, we now extract the receiver’s bit c by decrypting the
ciphertext ct. If ct is an encryption of c then fpk,ct,m0,m1 is functionally equivalent
to fpk,ct,m′

0,m′
1

where m′
c = mc and m′

1−c is replaced by an arbitrary value, say all
0s. Therefore, we can simulate the sender’s second-round OT message by using
the circuit fpk,ct,m′

0,m′
1
, which only relies on knowledge of mc without knowing

m1−c, and weak SFE security guarantees that this is indistinguishable from the
real world.

From UC Sender Security to Full UC OT. Finally, we show how to use an
OT scheme with UC-security of the sender and indistinguishability-based secu-
rity for the receiver (“half-UC OT”) to get a full UC-secure OT. In particular,
this means that we need to simulate the receiver’s first-round message without
knowing c and extract two values m0,m1 from a malicious sender such that, if
the receiver’s bit was c, he would get mc.

Before we give our actual construction, it is useful to examine a naive pro-
posal and why it fails. In the naive proposal, the sender commits to both val-
ues m0,m1 using an extractable commitment (e.g., PKE where the public key
is in the CRS); the parties use a half-UC OT where the sender puts the two
decommitments as his OT values and also sends the commitments as part of
the second-round OT message. We can extract two values m0,m1 from the com-
mitment and are guaranteed that the receiver either outputs the value mc or ⊥
(if the decommitment he receives via the underlying OT is incorrect). But we
are unable to say which of the two cases will occur. This is insufficient for full
security.

We solve the above problem via two steps:

– We first give a solution using a two-round zero-knowledge (ZK) argument and
an extractable commitment (both in the CRS model). The sender and receiver
run the half-UC OT protocol where the receiver uses her choice bit c and the
sender uses his two values m0,m1. In the first round, the receiver also sends
the first-round verifier message of the ZK argument. In the second round,
the sender also commits to his two messages m0,m1 using an extractable
commitment and uses the ZK argument system to prove that he computed
the second-round OT message correctly using the same values m0,m1 as in
the commitment. This provides UC security for the receiver since, if the ZK
argument verifies, we can extract the values m0,m1 from the commitment and
know that the receiver would recover the correct value mc. The transformation
also preserves UC security for the sender since the ZK argument can be
simulated.

– We then show how to construct a two-round ZK argument using half-UC OT.
We rely on a Σ-protocol for NP where the prover sends a value a, receives
a 1-bit challenge b ∈ {0, 1}, and sends a response z; the verifier checks that
the transcript (a, b, z) is valid for the statement being proved and accepts or
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rejects accordingly. We can compile a Σ-protocol to a two-round ZK argument
using OT. The verifier sends a first-round OT message for a random bit b.
The prover chooses a and computes both responses z0, z1 corresponding to
both possible values of the challenge b; he then sends a and uses z0, z1 as the
values for the second-round OT message. The verifier recovers zb from the OT
and checks that (a, b, zb) is a valid transcript of the Σ-protocol. We repeat
this in parallel λ (security parameter) times to get negligible soundness error.
It turns out that we can prove ZK security by relying on the UC-security for
the sender; we can extract the OT choice bits b in each execution and then
simulate the Σ-protocol transcript after knowing the challenge bit b. It would
also be easy to prove soundness using UC-security for the receiver, but we
want to only rely on a “half-UC” OT where we only have indistinguishability
security of the receiver. To solve this, we rely on a special type of “extractable”
Σ-protocol [HL18] in the CRS model, where, for every choice of a there is
a unique “bad challenge” b such that, if the statement is false, there exists
a valid response z that results in a valid transcript (a, b, z). Furthermore,
this unique bad challenge b should be efficiently extractable from a using
a trapdoor to the CRS. Such “extractable” Σ-protocols can be constructed
from only public-key encryption. If the Σ-protocol is extractable and the OT
scheme has indistinguishability-based receiver security then the resulting two-
round ZK is computationally sound. This is because, the only way that the
prover can succeed is if in each of the λ invocations he chooses a first message
a such that the receiver’s OT choice bit b is the unique bad challenge for
a, but this means that the prover can predict the receiver’s OT choice bits
(the reduction uses the trapdoor for the Σ-protocol to extract the unique bad
challenge from a).

Combined together, the above two steps give a general compiler from half-UC
OT to fully secure UC OT.

Instantiation from CDH. We now give our simple instantiation of elementary
OT under the CDH assumption. The construction is based on a scheme of Bellare
and Micali [BM90], which achieves a weak form of malicious security in the
random-oracle model. Our protocol is somewhat simplified and does not require
a random oracle. Recall that the CDH assumption states that, given a generator
g of some cyclic group G of order p, along with values ga, gb for random a, b ∈ Zp,
it is hard to compute gab.

The CRS of the OT scheme consists of A = ga for random a ∈ Zp. The
receiver with a choice bit c computes two value hc = gr and h1−c = A/hc

for a random r ∈ Zp and sends otr := h0 as the first-round OT message. The
sender computes h1 = A/h0. It chooses a random b ∈ Zp, sets ots := B = gb as
the second-round message, and generates the two values y0 = hb

0, y1 = hb
1. The

receiver outputs ŷc = Br.
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This ensures correctness since ŷc = Br = gbr = hb
c = yc. Also, h0 is uniformly

random over G no matter what the receiver bit c is, and therefore this provides
(statistic) indistinguishability-based receiver security. Lastly, we argue that we
get elementary OT security for the sender, meaning that a malicious receiver
cannot simultaneously compute both y0, y1. Note that the only values seen by
the malicious receiver during the game are A = ga, B = gb. If the receiver
outputs y0 = hb

0, y1 = hb
1 = (A/h0)b then we can use these values to compute

y0 · y1 = Ab = gab, which breaks CDH.

Instantiation from LPN. We also give a simple instantiation of elementary
OT under the LPN assumption. This construction closely mirrors the CDH one.
We use a variant of the LPN problem with noise-rate 1/nε for an arbitrary
constant ε > 1

2 . We also rely on a variant of the LPN problem where the secret
is chosen from the error distribution, which is known to be equivalent to standard
LPN where the secret is uniformly random [ACPS09]. In particular this variant
of the LPN problem states that, for a Bernoulli distribution Bρ which outputs 1
with probability ρ = 1/nε, and for A ← Z

n×n
2 , s, e ← Bn

ρ , the values (A, sA + e)
are indistinguishable from uniformly random values.

The CRS of the OT scheme consists of a tuple (A, v) where A ← Z
n×n
2 and

v ← Z
n
2 . The receiver chooses x, e ← Bn

ρ and sets hc = Ax + e and h1−c =
v − hc and sends otr = h0 as the first-round OT message. The sender computes
h1 = h0 + v, chooses S,E ← Bλ×n

ρ where λ is the security parameter and sends
ots := B = SA + E as the second-round OT message. The sender computes the
values y0 = Sh0, y1 = Sh1. The receiver outputs ŷc = Bx.

This ensures correctness with a small inverse-polynomial error probability.
In particular, yc = Shc = S(Ax + e) = Bx + Se − Ex = ŷc + (Se − Ex)
where Ex + Se = 0 except with a small error probability, which we can make
an arbitrarily small inverse polynomial in λ by setting n to be a sufficiently
large polynomial in λ. The receiver’s (computational) indistinguishability-based
security holds under LPN since h0 is indistinguishable from uniform no matter
what c is. We also get elementary OT security for the sender under the LPN
assumption. A malicious receiver only sees the values A, v and B = SA + E
during the game. If the receiver outputs y0 = Sh0, y1 = Sh1, then we can use
it to compute y0 + y1 = S(h0 + h1) = Sv. But, since S is hard to compute
given A,B, we can argue that Sv is indistinguishable form uniform under the
LPN assumption, by thinking of the i’th of Sv as a Goldreich-Levin hardcore
bit for the i’th row of S. Therefore, is should be hard to output Sv except with
negligible probability.

The fact that we get a small (inverse polynomial) error probability does
not affect the security of the generic transformations going from elementary
OT to indistinguishability OT for 1-bit messages. Then, when we go from 1-
bit messages to multi-bit messages we can also use an error-correcting code to
amplify correctness and get a negligible correctness error.
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3 Preliminaries

Notation. We use λ for the security parameter. We use
c≡ to denote compu-

tational indistinguishability between two distributions and use ≡ to denote two
distributions are identical. For a distribution D we use x

$←− D to mean x is
sampled according to D and use y ∈ D to mean y is in the support of D. For
a set S we overload the notation to use x

$←− S to indicate that x is chosen
uniformly at random from S.

3.1 Basic Inequalities

Lemma 1 (Markov Inequality for Advantages). Let A(Z) and B(Z) be
two random variables depending on a random variable Z and potentially addi-
tional random choices. Assume that |PrZ [A(Z) = 1] − PrZ [B(Z) = 1]| ≥ ε ≥ 0.
Then

Pr
Z

[|Pr[A(Z) = 1] − Pr[B(Z) = 1]| ≥ ε/2] ≥ ε/2.

Proof. Let a := PrZ [|Pr[A(Z) = 1] − Pr[B(Z) = 1]| ≥ ε/2]. We have ε ≤
a × 1 + (1 − a) × ε/2. Since 0 ≤ 1 − a ≤ 1, we obtain ε ≤ a + ε/2. The inequality
now follows. �	
Theorem 2 (Hoeffding Inequality). Let X1, . . . , XN ∈ [0, 1] be i.i.d. random
variables with expectation E[X1]. Then it holds that

Pr

[∣∣∣∣∣ 1
N

∑
i

Xi − E[X1]

∣∣∣∣∣ > δ

]
≤ 2e−2Nδ2

.

3.2 Standard Primitives

Definition 3 (PKE). The notion of CPA security for a PKE scheme PKE =
(KeyGen,E,Dec) is standard. We say that PKE is perfectly correct if Pr[∃(m, r)

s.t. Dec(sk,E(pk,m; r)) �= m] = negl(λ), where (pk, sk) $←− KeyGen(1λ).

Definition 4 (Garbled Circuits). A garbling scheme for a class of circuits
C with n-bit inputs consists of (Garble,Eval,Sim) with the following correctness
and security properties.

– Correctness: for all C ∈ C, x ∈ {0, 1}n, we have Pr[Eval(Ĉ,GarbleInput(�lb
0
,

�lb
1
, x)) = C(x)] = 1, where (Ĉ, �lb

0
, �lb

1
) $←− Garble(1λ,C), �lb

0
:= (lb01, . . . , lb

0
n),

�lb
1

:= (lb11, . . . , lb
1
n) and we define GarbleInput(�lb

0
, �lb

1
, x) := (lbx11 , . . . , lbxn

n ).

– Security: For any C ∈ C and x ∈ {0, 1}n: (Ĉ,GarbleInput(�lb
0
, �lb

1
, x))

c≡
Sim(1λ,C(x)), where (Ĉ, �lb

0
, �lb

1
) $←− Garble(1λ,C).
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4 Definitions of Two-Round Oblivious Transfer

A two-round oblivious transfer (OT) protocol (we use the definition
from [BGI+17]) is given by algorithms (Setup,OT1,OT2,OT3), where the setup

algorithm Setup generates a CRS value crs
$←− Setup(1λ).3 The receiver runs the

algorithm OT1 which takes crs and a choice bit c ∈ {0, 1} as input and outputs
(otr, st). The receiver then sends otr to the sender, who obtains ots by evaluat-
ing OT2(1λ, otr,m0,m1), where m0 and m1 (such that m0,m1 ∈ {0, 1}λ) are its
inputs. The sender then sends ots to the receiver who obtains mc by evaluating
OT3(1λ, st, ots).

4.1 Correctness

We say that a two-round OT scheme is perfectly correct, if with probability
1−negl(λ) over the choice of crs $←− Setup(1λ) the following holds: for every choice
bit c ∈ {0, 1} of the receiver and input messages m0 and m1 of the sender, and for
any (otr, st) ∈ OT1(crs, c) and ots ∈ OT2(crs, otr,m0,m1), we have OT3(st, ots) =
mc. (Recall that x ∈ D for a distributions D means that x is in the support of D.)

4.2 Receiver’s Security Notions

We consider two notions of receiver’s security—namely, notions that require
security against a malicious sender. We describe them next.

Receiver’s indistinguishability security. For every non-uniform polynomial-
time adversary A: |Pr[A(crs,OT1(crs, 0)) = 1] − Pr[A(crs,OT1(crs, 1)) = 1]| =

negl(λ), where crs $←− Setup(1λ).

Receiver’s UC-Security. We work in Canetti’s UC framework with static cor-
ruptions [Can01]. We assume familiarity with this model. We use Z for denoting
the underlying environment. For a real protocol Π and an adversary A, we use
EXECΠ,A,Z to denote the real-world ensemble. Also, for an ideal functionality F
and an adversary S we denote IDEALF,S,Z to denote the ideal-world ensemble.

We say that an OT protocol OT is receiver-UC secure if for any adversary
A corrupting the sender, there exists a simulator S such that for all environ-
ments Z:

IDEALFOT,S,Z
c≡ EXECOT,A,Z ,

where the ideal functionality FOT is defined in Fig. 2. (We will follow the same
style as in [CLOS02,PVW08].)

3 Some variants of two-round OT do not need a CRS. In this case, we will assume
Setup as the identity function.
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OT interacts with an ideal sender S and an ideal receiver R.

1. On input (sid, sender,m0,m1) from the sender, store (m0,m1).
2. On input (sid, receiver, b), check if a pair of inputs (m0,m1) has been

already recorded for session sid; if so, send mb to R and send sid to the
adversary and halt; else, send nothing.

Fig. 2. Ideal functionality FOT

Since our OT protocols are in the CRS model, we also give the FCRS idea
functionality below (Fig. 3).

D
CRS: parameterized over a distribution D, run by parties P1, . . . , Pn,

and an adversary S:
– Whenever receiving message a message (sid, Pi, Pj) from party Pi, sam-

ple crs
$←− D and send (sid, crs) to Pi and send (sid, crs, Pi, Pj) to S.

Whenever receiving the message (sid, Pi, Pj) from Pj , send (sid, crs) to
Pj and S.

Fig. 3. Ideal functionality FD
CRS [CR03]

4.3 Sender’s Security Notions

We consider several different notions of sender’s security that we define below.
In the first two notions of security, namely elementary and search notions, we
change the syntax of OT2 a bit. More specifically, instead of taking m0 and m1 as
input, OT2 outputs two masks y0 and y1 where the receiver only gets yc, where
c is the receiver’s choice bit.

Sender’s Elementary Security. The elementary sender security corresponds
to the weakest security notion against a malicious receiver that is considered
in this work. This notion requires that the receiver actually compute both the
strings y0 and y1 used by the sender. Let A = (A1,A2) be an adversary. Consider
the following experiment Expλ

eOT(A):

1. Run crs
$←− Setup(1λ).

2. Run (otr, st) $←− A1(1λ, crs)
3. Compute (ots, y0, y1)

$←− OT2(crs, otr)
4. Compute (y∗

0, y
∗
1)

$←− A2(st, ots) and output 1 iff (y∗
0, y

∗
1) = (y0, y1)



Two-Round Oblivious Transfer from CDH or LPN 781

We say that a scheme satisfies eOT security if Pr[Expλ
eOT(A) = 1] = negl(λ).

Sender’s Search Security. Next, we consider the search security notion. In
this stronger security notion, the adversary is expected to still compute both
y0 and y1 but perhaps not necessarily at the same time. More formally, let
A = (A1,A2) be an adversary where A2 outputs a message y∗. Consider the
following experiment Expcrs,r,wsOT (A), indexed by a crs, random coins r ∈ {0, 1}λ

and a bit w ∈ {0, 1}.

1. Run (otr, st) $←− A1(1λ, crs; r)

2. Compute (ots, y0, y1)
$←− OT2(crs, otr)

3. Compute y∗ $←− A2(st, ots, w) and output 1 iff y∗ = yw

We say a PPT adversary A breaks the sender search privacy if there exist a
non-negligible function ε such that

Pr
crs,r

[Pr[Expcrs,r,0sOT (A) = 1] > ε and Pr[Expcrs,r,1sOT (A) = 1] > ε] > ε,

where crs
$←− Setup(1λ) and r

$←− {0, 1}λ.

Sender’s Indistinguishability Security (iOT). Moving on, we consider the
sender’s indistinguishability security notion (or the iOT notion for short). In this
notion, we require that the receiver does not learn any information about either
m0 or m1. More formally, let A = (A1,A2) be an adversary where A2 outputs a
bit s. Consider the following experiment Expcrs,r,w,b

iOT (A), indexed by a crs, random
coins r ∈ {0, 1}λ, a bit w ∈ {0, 1} and a bit b ∈ {0, 1}.

1. Run (m0,m1, otr, st)
$←− A1(1λ, crs; r)

2. If b = 0 compute ots
$←− OT2(crs, otr,m0,m1)

3. Otherwise, if b = 1 compute ots
$←− OT2(crs, otr,m′

0,m
′
1) where m′

w
$←− {0, 1}n

and m′
1−w = m1−w.

4. Compute and output s
$←− A2(st, ots)

Define the advantage of A as Advcrs,r,wiOT (A) = |Pr[Expcrs,r,w,0
iOT (A) = 1] −

Pr[Expcrs,r,w,1
iOT (A) = 1]|. We say a PPT adversary A breaks the sender’s indistin-

guishability security if there exist a non-negligible function ε such that

Pr
crs,r

[Advcrs,r,0iOT (A) > ε and Advcrs,r,1iOT (A) > ε] > ε,

where crs
$←− Setup(1λ) and r

$←− {0, 1}λ.
In the experiment above, if the two messages m0 and m1 are single-bits, then

call the notion bit iOT. Otherwise, we call the notion string iOT.

Sender’s UC-Security. We say that an OT protocol OT is sender-UC secure
if for any adversary A corrupting the receiver, there exists a simulator S such
that for all environments Z:
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IDEALFOT,S,Z
c≡ EXECOT,A,Z ,

where the ideal functionality FOT is defined in Fig. 2.

Definition 5. For X ∈ {elementary, search, indistinguishability}, we call a
two-round OT scheme X -secure if it has sender’s X security and receiver’s indis-
tinguishability security. Moreover, we call a two-round OT scheme UC-secure if
it has sender’s UC-security and receiver’s UC-security.

5 Transformations for Achieving Sender’s
Indistinguishability

In this section, we give a sequence of transformations which leads us to sender’s
indistinguishability security, starting with sender’s elementary security.

5.1 From Elementary OT to Search OT

We rely on a result of [CHS05] on hardness amplification of weakly verifiable
puzzles. In such puzzles, a puzzle generator can efficiently verify solutions but
others need not be able to; we rely on a restricted case where the solution is
unique and the puzzle generator generates the puzzle with the solution. The
result essentially says that solving many puzzles is much harder than solving a
single puzzle. For simplicity, we state a simplified version of their result (restate-
ment of Lemma 1 in [CHS05]) with a restricted range of parameters. It shows
that, if there is a “weak solver” that has some inverse polynomial advantage in
solving λ puzzles simultaneously, then there is an “amplified solver” that has
extremely high advantage (arbitrarily close to 1) in solving an individual puzzle.

Lemma 6 (Hardness Amplification [CHS05]). For every polynomial p and
every constant δ > 0 there exists a PPT algorithm Amp such that the following
holds for all sufficiently large λ ∈ N. Let G be some distribution over pairs
(puzzle, solution) ← G. Let WS be a “weak solver” such that

Pr[WS(puzzle1, . . . , puzzleλ) = (solution1, . . . , solutionλ)] ≥ 1/p(λ)

where (puzzlei, solutioni)
$←− G for i ∈ {1, . . . , λ}. Then

Pr[AmpWS,G(1λ, puzzle∗) = solution∗] ≥ δ

where (puzzle∗, solution∗) $←− G.

Construction of Search OT. Let Π = (Setup,OT1,OT2,OT3) be an elemen-
tary OT. We construct a search OT scheme Π ′ = (Setup,OT1,OT

′
2,OT

′
3) as

follows:
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– (ots′, Y0, Y1)
$←− OT′

2(otr
′): Sample (otsi, yi

0, y
i
1)

$←− OT2(crs, otr) for i =
1, . . . , λ. Output ots′ = (ots1, . . . , otsλ) and Y0 = (y10, . . . , y

λ
0 ), Y1 =

(y11, . . . , y
λ
1 ).

– Y
$←− OT′

3(ots
′, st): Parse ots′ = (ots1, . . . , otsλ). Let yi

$←− OT3(otsi, st) for
i = 1, . . . , λ. Output Y = (y1, . . . , yλ).

Theorem 7. If Π is an elementary OT then Π ′ described above is a search OT.

The proof can be found in the full version of the paper.

5.2 From Search OT to Bit iOT

Let Π = (Setup,OT1,OT2,OT3) be a search OT with message length n = n(λ).
We construct an iOT scheme Π ′ = (Setup,OT′

1,OT
′
2,OT

′
3) with 1-bit message

as follows:

– (otr′, st′) $←− OT′
1(crs, b): Let (otr, st) $←− OT1(crs, b). Output otr′ = otr, st′ =

(st, b).

– ots′ $←− OT′
2(otr

′,m0,m1): Sample (ots, y0, y1)
$←− OT2(crs, otr). Choose

s0, s1
$←− {0, 1}n. For b ∈ {0, 1}, let cb = 〈yb, sb〉 ⊕ mb. Output ots′ =

(ots, s0, s1, c0, c1).

– M
$←− OT′

3(st
′, ots′): Parse ots′ = (ots, s0, s1, c0, c1), st′ = (st, b). Let y

$←−
OT3(ots, st). Output M = cb ⊕ 〈y, sb〉.

Theorem 8. If Π is a search OT then Π ′ is an iOT with 1-bit messages.

The proof can be found in the full version of the paper.

5.3 From Bit iOT to String iOT

Let Π = (Setup,OT1,OT2,OT3) be an iOT scheme with 1 bit messages. Then,
we construct an iOT scheme Π ′ = (Setup,OT′

1,OT
′
2,OT

′
3) with message length

n = n(λ) as follows:

– (otr′, st′) $←− OT′
1(crs, b): Let (otr, st) $←− OT1(crs, b). Output otr′ = otr, st′ =

st.
– ots′ $←− OT′

2(otr
′,m0,m1): For each i ∈ [n], sample ots(i)

$←−
OT2(crs, otr,m

(i)
0 ,m

(i)
1 ), where m

(i)
0 and m

(i)
1 are the ith bits of m0 and m1,

respectively. Output ots′ = {ots(i)}i∈[n].

– M
$←− OT′

3(ots
′, st′): Parse ots′ = {ots(i)}, st′ = (st, b). Let M (i) $←−

OT3(ots(i), st) and output M .

Theorem 9. If Π is iOT with 1-bit messages then Π ′ is an iOT with messages
of length n.

The proof can be found in the full version of the paper.



784 N. Döttling et al.

6 Weak Secure Function Evaluation

In this section, we will define our notion of weak secure function evaluation and
provide instantiations of the new notion.

6.1 Definitions

Definition 10. A weak secure function evaluation scheme wSFE for a function
class F consists of four PPT algorithms (Setup,Receiver1,Sender,Receiver2) with
the following syntax.

Setup(1λ): Takes as input a security parameter and outputs a common reference
string crs

Receiver1(crs, x): Takes as input a common reference string crs and an input x
and outputs a message z1 and a state st

Sender(crs, f, z1): Takes as input a common reference string crs, a function f ∈ F
and a receiver message z1 and outputs a sender message z2

Receiver2(st, z2): Takes as input a state st and a sender message z2 and outputs
a value y.

We require the following properties.

– Correctness: It holds for any λ, any f ∈ F and any x in the domain of f
that

Receiver2(st,Sender(crs, f, z1)) = f(x),

where crs
$←− Setup(1λ) and (z1, st)

$←− Receiver1(crs, x)
– Receiver Privacy: Let A = (A1,A2) be an adversary where A2 outputs a

bit and let the experiment ExpRP (A) be defined as follows:

• Compute crs
$←− Setup(1λ)

• Compute (x0, x1)
$←− A1(crs)

• Choose b
$←− {0, 1}

• Compute z∗
1

$←− Receiver1(crs, xb)

• Compute b′ $←− A2(crs, z∗
1)

• If b′ = b output 1, otherwise 0
Define AdvRP (A) = |Pr[ExpRP (A) = 1] − 1/2|. We say that wSFE has
computational receiver privacy, if it holds for all PPT adversaries A that
AdvRP (A) < negl(λ). Likewise, we say that wSFE has statistical receiver
privacy, if it holds for all unbounded (non-uniform) adversaries A that
AdvRP (A) < negl(λ).

– Sender Privacy: Let A = (A1,A2) be an adversary where A2 outputs a bit
and let the experiment ExpSP (A) be defined as follows:

• Compute crs
$←− Setup(1λ)

• Compute (f0, f1, z1)
$←− A1(crs)

• Choose b
$←− {0, 1}
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• Compute z∗
2

$←− Sender(crs, fb, z1)
• Compute b′ $←− A2(crs, z∗

2)
• If b′ = b output 1, otherwise 0

Define AdvSP (A) = |Pr[ExpSP (A) = 1] − 1/2|. We say that wSFE has com-
putational sender privacy, if it holds for all PPT adversaries A = (A1,A2)
which output equivalent functions f0 ≡ f1 in the first stage that AdvSP (A) <
negl(λ). Likewise, we say that wSFE has statistical sender privacy, if it holds
for all unbounded (non-uniform) adversaries A which output equivalent func-
tions f0 ≡ f1 in the first stage that AdvSP (A) < negl(λ).

6.2 wSFE for All Circuits from iOT and Garbled Circuits

Let iOT = (Setup,OT1,OT2,OT3) be an iOT protocol and let (Garble,Eval) be a
garbling scheme. Overloading notation, assume that if �x = (x1, . . . , xn) ∈ {0, 1}n

is an input vector, then OT1(crs, �x) = (OT1(crs, x1), . . . ,OT1(crs, xn)). Similarly,
if �m0 = (m0,1, . . . ,m0,n) and �m1 = (m1,1, . . . ,m1,n) are two vectors of messages,
then denote

OT2(crs, �otr, �m0, �m1) = (OT2(crs, otr
1, m0,1, m1,1), . . . ,OT2(crs, otr

n, m0,n, m1,n))

The scheme wSFE is given as follows.

Setup(1λ): Compute and output crs
$←− iOT.Setup(1λ)

Receiver1(crs, �x ∈ {0, 1}n): Compute ( �otr, �st
′) $←− iOT.OT1(crs, �x). Output z1

$←−
�otr and st

$←− �st
′.

Sender(crs, z1 = �otr,C):
– Compute (Ĉ, �lb

0
, �lb

1
) $←− Garble(1λ,C)

– Compute �ots
$←− iOT.OT2(crs, �otr, �lb

0
, �lb

1
).

– Output z2
$←− ( �ots, Ĉ).

Receiver2(st = �st
′
, z2):

– Parse z2 = ( �ots, Ĉ).
– Compute �lb

$←− iOT.OT3(�st
′
, �ots)

– Compute m
$←− Eval(Ĉ, �lb).

– Output m

Correctness. We will briefly argue that the scheme is correct. Thus, let
crs

$←− iOT.Setup(1λ) and ( �otr, �st) $←− iOT.OT1(crs, �x). Further let (Ĉ, �lb
0
, �lb

1
) $←−

Garble(1λ,C) and �ots
$←− iOT.OT2(crs, �otr, �lb

0
, �lb

1
). By the correctness of iOT it

holds that
�lb = iOT.OT3(�st, �ots) = GarbleInput(�lb

0
, �lb

1
, �x).

Furthermore, by the correctness of the garbling scheme (Garble,Eval) it holds
that

m = Eval(Ĉ, �lb) = Eval(Ĉ,GarbleInput(�lb
0
, �lb

1
, �x)) = C(�x),

and we get that wSFE is correct.
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Receiver Privacy. We will first establish receiver privacy of wSFE.

Theorem 11. Assume that iOT has receiver indistinguishability security. The
wSFE has receiver privacy.

The proof can be found in the full version of the paper.

Sender Privacy. We will now proceed to show sender privacy of wSFE against
malicious receivers.

Theorem 12. Assuming that iOT has indistinguishability sender privacy and
that (Garble,Eval) is a simulation secure garbling scheme, it holds that wSFE has
sender privacy.

The proof can be found in the full version of the paper.

7 Sender-UC OT from wSFE

In this section we will provide a two-round OT protocol with sender’s UC security
and receiver’s indistinguishability security from any CPA-secure PKE and a two-
round wSFE for a specific class of functions.

Let PKE := (KeyGen,E,Dec) be a PKE scheme and let wSFE be a two-round
wSFE, i.e. wSFE := (Setup,Receiver1,Sender,Receiver2), for a function class F
defined as follows: any function in this class is of the form C[pk, ct,m0,m1],
parameterized over a public key pk, a ciphertext ct and two messages m0 and
m1, and is defined as follows:

C[pk, ct,m0,m1](b, r): If PKE.E(pk, b; r) = ct, output mb; otherwise ⊥.

Construction 13 (Sender-UC OT). The OT-protocol is based on the above
two primitives PKE and wSFE, and is described as follows.

Setup(1λ): Compute crs′ $←− wSFE.Setup(1λ) and (pk, sk) $←− PKE.KeyGen(1λ).
Output crs := (crs′, pk).

OT1(crs = (crs′, pk), b): Choose r
$←− {0, 1}λ and compute ct

$←− PKE.E(pk, b; r).

Set �x := (b, r) and compute (z1, st)
$←− wSFE.Receiver1(crs′, �x). Output otr :=

(ct, z1) as the OT message and st as the private state.

OT2(crs, otr,m0,m1): Parse crs = (crs′, pk), otr = (ct, z1) and compute z2
$←−

wSFE.Sender(crs′,C[pk, ct,m0,m1], z1). Output ots := z2.
OT3(st, ots): Let z2 := ots. Compute and output Receiver2(st, z2).

Theorem 14. Assuming PKE is CPA-secure and perfectly correct (Defini-
tion 3), and that wSFE satisfies correctness, receiver privacy and sender pri-
vacy (Definition 10), then the OT given in Construction 13 provides receiver’s
indistinguishability security and sender’s UC security.
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The proof can be found in the full version of the paper.
Finally, we mention that the OT protocol constructed in Construction 13

satisfies a receiver-extractability property, which was (implicitly) used in the
proof of sender’s UC security. Since we will use this definition later, we formalize
it below.

Definition 15. We say that an OT protocol (Setup,OT1,OT2,OT3) has receiver
extractability if the setup algorithm Setup(1λ) in addition to crs also outputs a
trapdoor key σ and if there is a PPT algorithm Extract, for which the following
holds: for any stateful PPT adversary A := (A1,A2), assuming (m0,m1, otr)

$←−
A1(crs) and b = Extract(σ, otr), then A2 cannot distinguish between the outputs
of OT2(crs, otr, (m0,m1)) and OT2(crs, otr, (mb,mb)).

8 2-Round ZK from Sender-UC OT and Σ-Protocols

In this section we give a two-round (statement-independent) ZK protocol against
malicious verifiers in the CRS model based on a special type of Σ-protocols and
an OT with sender’s UC-security and receiver’s indistinguishability security.

We first start by defining the properties we require of our Σ-protocol, and will
then define the notion of statement-independent ZK protocols that we would like
to achieve. Our notion of Σ-protocols is what Holmgren and Lombardi [HL18]
called extractable Σ-protocols, defined as follows.

Definition 16 (Extractable Σ-protocols [HL18]). A CRS-based Σ-protocol
(Setup,P,V,Extract,Sim) for a language L ∈ NP is a three-round argument sys-
tem between a prover P := (P1,P2) and a verifier V, where the prover is the
initiator of the protocol and where the verifier’s only message is a random bit
b ∈ {0, 1}. The setup algorithm (crs, σ) $←− Setup(1λ) returns a CRS value crs
together with an associated trapdoor key σ. The trapdoor key σ will only play a
role in the extractability requirement. We require the following properties:

– Completeness: For all λ, all (x,w) ∈ R (where R is the underlying relation), we

have Pr[V(crs, x, a, b, z) = 1] = 1, where the probability is taken over (crs, σ) $←−
Setup(1λ), (a, st) $←− P1(crs, x,w), b

$←− {0, 1} and z
$←− P2(st, b).

– Special soundness and extractability: For any value crs generated as (crs, σ) $←−
Setup(1λ), any x /∈ L and any (possibly malicious) first-round message
a, there exists at most one b ∈ {0, 1} for which there exists z such that
V(crs, x, a, b, z) = 1. Moreover, for such parameters, this unique value of b
(if any) can be computed efficiently as Extract(σ, x, a).

– Honest-verifier zero knowledge: For any value crs generated as (crs, σ) $←−
Setup(1λ), any b ∈ {0, 1} and any (x,w) ∈ R:

(crs, x, a, b, z)
c≡ (crs, x, a′, b, z′), (1)

where (a, st) $←− P1(crs, x,w), z $←− P2(st, b) and (a′, z′) $←− Sim(crs, x, b).
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We will now define out notion of CRS-based two-round statement-independent
ZK. Informally, a two-round ZK protocol is statement-independent if the veri-
fier’s message in the protocol is independent of the statement being proven.

Definition 17 (Two-round statement-independent zero knowledge). A
two-round zero-knowledge argument system for a language L ∈ NP with a
corresponding relation R in the CRS model consists of four PPT algorithms
ZK = (Setup,P,V := (V1,V2),Sim := (Sim1,Sim2)), defined as follows. The
setup algorithm Setup on input 1λ outputs a value crs. The verifier algorithm
V1(crs) on input crs returns a message msgv together with a private state st.
We stress that the verifier does not take as input any statement x, hence the
“statement-independent” name. The prover algorithm P(crs, x,w,msgv) on input
crs, a statement x with a corresponding witness w and a verifier’s message msgv,
outputs a message msgp. Finally, the algorithm V2(st, x,msgp) outputs a bit b.
We require the following properties.

– Completeness: For all (x,w) ∈ L we have Pr[V2(st, x,msgp) = 1] = 1, where

crs
$←− Setup(1λ), (msgv, st) $←− V1(crs) and msgp

$←− P(crs, x,w,msgv).
– Adaptive soundness: No PPT malicious prover can convince an honest verifier

of a false statement, even if the statement is chosen adaptively after seeing crs
and the verifier’s (statement-independent) message. Formally, for any PPT
adversary P∗ the following holds: Pr[V2(st, x,msgp) = 1 ∧ x /∈ L] = negl(λ),

where crs
$←− Setup(1λ), (msgv, st) $←− V1(crs), (x,msgp) $←− P∗(crs,msgv).

– Adaptive Malicious Zero-Knowledge (ZK): Let V∗ = (V∗
1,V

∗
2) be a stateful

two-phase adversary where V∗
2 outputs a bit. Let the experiment ExpZK(V∗)

be defined as follows:
1. Choose b

$←− {0, 1}
2. If b = 0, sample crs

$←− Setup(1λ). Else, sample (crs, σ) $←− Sim1(1λ).

3. Let (x,w,msgv) $←− V∗
1(crs). If R(x,w) = 0, then halt.

4. If b = 0, let msgp
$←− P(crs, x,w,msgv). Else, let msgp

$←− Sim2(σ, x,msgv).

5. Compute b′ $←− V∗
2(msgp).

6. If b′ = b output 1, otherwise 0.
Define AdvZK(V∗) = |Pr[ExpZK(V∗) = 1] − 1/2|. We say that the scheme is
zero-knowledge if for all PPT adversaries V∗, AdvZK(V∗) = negl(λ).

Construction 18 (Two-round ZK). Let OT := (Setup,OT1,OT2,OT3)
be an OT protocol and let SIGM := (Setup,P,V,Extract,Sim) be an
extractable Σ-protocol for a language L ∈ NP (Definition 16). We give a two-
round ZK protocol ZK := (Setup,P,V := (V1,V2)) for L as follows. The con-
struction is parameterized over a polynomial r := r(λ), which we will instantiate
in the soundness proof.

– ZK.Setup(1λ): Run crsot
$←− OT.Setup(1λ) and (crssig, σ) $←− SIGM.Setup(1λ).

Return crs := (crsot, crssig).
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– ZK.V1(crs := (crsot, crssig)): For each i ∈ [r], sample bi
$←− {0, 1}. Let

( �otr, �stot)
$←− OT1(crsot,�b), where �b := (b1, . . . , br). Return (msgv, st), where

msgv := �otr is the message to the prover P, and st := (b1, . . . , br, �stot) is the
private state.

– ZK.P(crs := (crsot, crssig), x,w,msgv): For each i ∈ [r] sample (ai, stsi)
$←−

SIGM.P1(crssig, x,w). For each i ∈ [r] and b ∈ {0, 1}, form zi,b
$←−

SIGM.P2(stsi, b), which is the prover’s last message in the Σ-protocol when his
first message was ai and when the verifier’s challenge bit is b. Return msgp :=
(�a,OT2(crsot, �otr, �z0, �z1)), where �a := (a1, . . . , ar), �z0 := (z1,0, . . . , zr,o) and
�z1 := (z1,1, . . . , zr,1).

– ZK.V2(st, x,msgp): Parse st := (b1, . . . , br, �stot), msgp := (�a, �ots) and �a :=
(a1, . . . , ar). Let (z1, . . . , zr) = OT3(�stot, �ots). Return 1 if for all i ∈ [r]:
SIGM.V(crssig, x, ai, bi, zi) = 1. Otherwise, return 0.

Theorem 19. Assuming that SIGM := (Setup,P,V,Extract,Sim) is an
extractable Σ-protocol for a language L (Definition 16) and OT :=
(Setup,OT1,OT2,OT3) provides sender’s UC-security and receiver’s indistin-
guishability security, then the protocol ZK given in Construction 18 satisfies
completeness, adaptive soundness and adaptive malicious zero knowledge for L.

The proof can be found in the full version of the paper.

9 UC-Secure OT from Sender-UC OT and Zero
Knowledge

We will now show how to build a UC-secure OT scheme (with both receiver’s
and sender’s UC security) from the combination of a CPA-secure PKE scheme, a
CRS-based two-round statement-independent ZK protocol, and a two-round OT
scheme with sender’s UC-security and receiver’s indistinguishability security.

Let PKE := (KeyGen,E,Dec) be the PKE scheme, (Setup,OT1,OT2,OT3)
be the base two-round OT scheme and ZK = (Setup,P,V := (V1,V2),Sim :=
(Sim1,Sim2)) be a two-round statement-independent ZK protocol for the lan-
guage Lpk,crsot,otr ∈ NP, parameterized over a public key pk of the PKE scheme,
a CRS value crsot of the OT scheme and an OT-receiver’s message otr, defined
as follows:

Lpk,crsot,otr =
{
(ct0, ct1, ots) | ∃(m0,m1, r0, r1, r) s.t.

ct0 = E(pk,m0; r0), ct1 = E(pk,m1; r1), ots = OT2(crsot, otr,m0,m1; r)
}
. (2)

Construction 20 (UC-secure OT). We build OT′ := (Setup′,OT′
1,OT

′
2,

OT′
3) from the above primitives as follows.

Setup′(1λ): Sample (pk, sk) $←− PKE.Gen(1λ), crsot
$←− OT.Setup(1λ) and crszk

$←−
ZK.Setup(1λ). Output crs := (pk, crsot, crszk).
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OT′
1(crs, b): Parse crs := (pk, crsot, crszk). Sample (otr, stot)

$←− OT1(crsot, b) and

(msgv, stzk)
$←− ZK.V1(crszk). Output otr′ := (otr,msgv) as the message to the

sender and output st := (stot, stzk) as the private state.
OT′

2(crs, otr
′,m0,m1): Parse crs := (pk, crsot, crszk) and otr′ := (otr,msgv). Sam-

ple r, r0, r1
$←− {0, 1}∗. Let ct0 := E(pk,m0; r0), ct1 = E(pk,m1; r1), and ots =

OT2(crsot, otr,m0,m1; r). Set x := (ct0, ct1, ots) and w := (m0,m1, r0, r1, r).

Output ots′ := (ct0, ct1, ots,msgp), where msgp
$←− ZK.P(crszk, x,w,msgv).

OT′
3(st, ots

′): Parse st := (stot, stzk), ots′ := (ct0, ct1, ots,msgp) and let x :=
(ct0, ct1, ots). If ZK.V2(stzk, x,msgp) �= 1, then return ⊥. Otherwise, return
OT3(stot, ots).

Theorem 21. Assuming that OT := (Setup,OT1,OT2,OT3) provides sender’s
UC-security and receiver’s indistinguishability security, that PKE := (KeyGen,E,
Dec) is a CPA-secure scheme, and that ZK is a two-round ZK protocol for the lan-
guage L described in Eq. 2, then the OT protocol OT′ given in Construction 20 sat-
isfies completeness and UC security.

The proof can be found in the full version of the paper.

10 Instantiations from CDH and LPN

10.1 Instantiation from CDH

We first give a construction of elementary OT from CDH. In fact, we show that
the construction also already directly satisfies the stronger notion of search OT
security. The protocol is given in Fig. 4.

Definition 22 (Computational Diffie-Hellman (CDH) assumption). Let
G be a group-generator scheme, which on input 1λ outputs (G, p, g), where G

is the description of a group, p is the order of the group which is always a
prime number and g is a generator of the group. We say that G is CDH-hard
if for any PPT adversary A: Pr[A(G, p, g, ga1 , ga2) = ga1a2 ] = negl(λ), where

(G, p, g) $←− G(1λ) and a1, a2
$←− Zp.

Lemma 23. The protocol in Fig. 4 satisfies statistical receiver’s indistinguisha-
bility security.

Proof. The distribution of the receiver’s message h0 = grX−c is uniformly ran-
dom over the group G no matter that the receiver’s bit c is. �	
Lemma 24. The protocol in Fig. 4 satisfies sender’s elementary security based
on the CDH assumption.
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Sender(X): Receiver(X, c):CRS: X := gx

r ← Zp

h0 := grX−c

h1 := h0X

otr := h0

s ← Zp

S := gs ots := S

output yc := hs
c = Sroutput y0 := hs

0, y1 := hs
1

Fig. 4. Elementary and search OT from CDH.

Proof. Let there be a PPT adversary A that breaks the elementary security
of the sender. Then we are able to construct a PPT adversary B that breaks
the CDH assumption. Recall that A receives a CRS X = gx, sends a group
element h0, receives S = gs for a uniform s, and succeeds if he outputs y0 = hs

0,
y1 = hs

1 = (h0X)s. Our adversary against the CDH assumption receives G,
p, g, A1 := ga1 , A2 := ga2 from his challenger, gives CRS X := A1 to A,
receives h0, gives S := A2 to A, receives y0, y1 and outputs y1/y0. If A succeeds
then y0 = hs

0 = ha2
0 , y1 = hs

1 = (h0X)s = hb
0A

a2
1 = ha2

0 ga1a2 and therefore
y1/y0 = ga1a2 , meaning that B succeeds in solving CDH. �	

The above two lemmas already show that the scheme in Fig. 4 is a elementary
OT scheme and we can then rely on our black-box transformations from the
previous sections to then get UC secure OT under CDH assumption. Therefore,
the following Theorem follows as a corollary.

Theorem 25. Under the CDH assumption there exists a 2-round UC OT.

Although the above lemmas already suffice to show the above corollary, we
note that we can actually show something stronger about the scheme in Fig. 4.
Not only does it satisfy sender’s elementary security, it already also satisfies the
stronger notion of sender’s search security. To show this, we implicitly rely on
the random self-reducibility of the CDH problem.

Lemma 26. The protocol in Fig. 4 satisfies sender’s search security based on
the CDH assumption.

Proof. Let there be an adversary A = (A1,A2) with

Pr
crs,r

[Pr[Expcrs,r,0sOTiOT(A) = 1] > ε and Pr[Expcrs,r,1sOTiOT(A) = 1] > ε] > ε,

the we can construct an adversary A′ that solves CDH at least with probability
ε3. A′ receives a CDH challenge G, p, g, A1, A2. It sets crs X := A1, chooses
random coins r and invokes A1 which outputs a state st and OT message otr =
h0. A′ samples d1, d2 ← Zp, defines S0 := A2 · gd1 , S1 := A2 · gd2 and invokes for
i ∈ {0, 1} A2(st, Si, i) which outputs yi. A′ returns solution (hd1

0 ·y1)/(hd2
0 ·y0·Ad2

1 )
to the CDH challenger.
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With probability ε, crs X and random coins r are good, i.e.
Pr[Expcrs,r,0sOTiOT(A) = 1] > ε and Pr[Expcrs,r,1sOTiOT(A) = 1] > ε. We condition on
that being the case. Since S0 and S1 are independent, it holds with probability
ε2 that A2 is successful for input (st, S0, 0) and input (st, S1, 1). Conditioned on
that being the case, y0 = hs0

0 = ha2+d1
0 and y1 = hs1

1 = (h0 · A1)d2+a2 . Therefore
it holds that the submitted CDH solution is

hd1
0 · y1

hd2
0 · y0 · Ad1

1

=
hd1
0 · (h0 · A1)d2+a2

hd2
0 · ha2+d1

0 · Ad2
1

= Aa2
1 .

Hence, A′ solves CDH with at least probability ε3. �	

10.2 Instantiation from LPN

We now give an instantiation of an elementary OT under the learning parity with
noise (LPN) assumption with noise rate ρ = n−ε for ε > 1

2 . This protocol only
achieves imperfect correctness, with an inverse-polynomial failure probability,
but we argue that this is sufficient to get UC OT with negligible error probability.

Definition 27 (Learning Parity with Noise). For a uniform s ∈ Z
n
2 , oracle

OLPN outputs samples of the form a, z = as + e, where a
$←− Z

n
2 and Bernoulli

distributed noise term e
$←− Bρ for parameter ρ. Oracle Ouniform outputs uniform

samples a, z ∈ Z
n
2 × Z2. We say Learning with Parity (LPN) for dimension n

and noise distribution Bρ is hard iff for any ppt adversary A,

|Pr[AOLPN(1n) = 1] − Pr[AOuniform(1n) = 1]| ≤ negl.

In the following, we will use a variant of LPN, where the secret is sampled
from the noise distribution rather than the uniform distribution and the first
sample is errorless. This variant is known to be as hard as standard LPN. The
two following lemmata give a more precise relation between LPN and its above
described variant.

Lemma 28 ([BLP+13], Lemma 4.3). There is an efficient reduction from
LPN with dimension n and noise distribution Bρ to LPN where the first sample
is errorless with dimension n − 1 and noise distribution Bρ that reduces the
advantage by at most probability 2−n.

Lemma 29 ([ACPS09] Adaptation of Lemma 2). LPN samples of the from

a, as + e with uniform a, s ∈ Z
n
2 and e

$←− Bρ can be efficiently transformed

into samples a′, a′s′ + e, where s′ $←− Bn
ρ and uniform a′ ∈ Z

n
2 . This also holds

when e = 0, i.e. first is errorless LPN. The same transformation maintains the
uniformity of samples in Z

n
2 × Z2.

Proof (Proof Sketch). The transformation queries LPN samples A, zA = As+ es

until A ∈ Z
n×n
2 is invertible. Then, A−1, A−1zA = s+A−1es will allow mapping

LPN samples a, z = as + e to samples with secret s′ = es by computing the
new sample a′ = aA−1, z + aA−1zA = a′s′ + e. In the case where e = 0, i.e. an
errorless LPN sample, the resulting sample will also be errorless. �	
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Sender(A, v): Receiver(A, v, c):CRS: (A, v) ∈ Z
n×(n+1)
2

x, e ← Bn
ρ

h0 := Ax+ e+ cv

h1 := h0 + v

otr := h0

S,E ← Bλ×n
ρ

Z := SA+ E
ots := Z

output yc := Zxoutput y0 := Sh0, y1 := Sh1

Fig. 5. Elementary OT from LPN with imperfect correctness.

Lemma 30. The protocol in Fig. 5 satisfies receiver’s indistinguishability secu-
rity based on the LPN assumption with dimension n and noise distribution Bρ.

Proof. The receiver’s bit c is masked by an LPN sample Ax + e. Therefore,
distinguishing the case c = 0 versus c = 1 is equivalent to breaking LPN. �	
Lemma 31. The protocol in Fig. 5 satisfies sender’s elementary OT security
based on the LPN assumption with dimension n − 1 and noise distribution Bρ.

Proof. We use a hybrid version of first is errorless LPN with a secret sampled
from the noise distribution which is hard based on standard LPN with the same
noise distribution and dimension n − 1, see Lemma 28 and Lemma 29. Hybrid
LPN is as hard as standard LPN losing a factor 1

λ in the advantage.
Let there be a malicious receiver that outputs y0, y1 with probability ε > negl

then there is a LPN distinguisher A that breaks hybrid first is errorless LPN
with advantage ε. A operates as follows. It receives a LPN challenge v,A, zv, Z
and sets CRS to A, v. After receiving h0, it sends Z to the malicious receiver
and obtains y0, y1. If y0 + y1 = zv it outputs 1 otherwise 0.

Let Z = SA + E, zv = Sv, then A faithfully simulates the actual protocol.
With probability ε, the malicious receiver will output (y0, y1) = (Sh0, Sh1). In
this case y0 + y1 = Sv equals zv and A will output 1. In the uniform case, i.e.
ZA and zv are uniform, hence the malicious receiver can output y0, y1 such that
y0 +y1 = zv at most with probability 2−λ. Hence A breaks LPN with advantage
ε
λ − 2−λ > negl. �	
Lemma 32 (Imperfect Correctness). Let a sender and a receiver interact in
the protocol in Fig. 5 with parameter ρ ≤ 1

nε , for constant 1 > ε > 1
2 . Then with

overwhelming probability 1 − negl(λ) over the coins of the receiver (i.e., x, e) we
have the following probability of correctness over the coins of the sender (i.e.,
S,E):

Pr
S,E

[Shc = Zx] ≥ 1 − 4λn1−2ε,

where 4λn1−2ε can be an arbitrary 1
poly(λ) for a suitable choice of n = poly(λ).
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Proof. The protocol is correct iff the receivers output Zx matches the senders
output Shc. By construction, Zx = SAx+Ex, whereas Shc = SAx+Se. Hence
correctness holds when Ex − Se = 0.

By Chernoff,
Pr[|x| > 2ρn ∨ |e| > 2ρn] ≤ 2e− ρn

3 ,

which is negligible for ε < 1. Given that |x| ≤ 2ρn, for all rows ei of E, eix
is distributed as the sum of at most 2ρn Bernoulli variables with parameter ρ.
Hence, by a union bound over the 2ρn variables Prei

[eix = 1] ≤ 2ρ2n. Using
another union bound over all λ rows yields PrE [Ex �= 0 ∈ Z

λ
2 ] ≤ 2λρ2n. Because

of symmetry,
Pr
E,S

[Ex − Se = 0] ≥ 1 − 4λρ2n.

�	

Dealing with Imperfect Correctness. The above gives us an elementary OT
scheme with imperfect correctness under LPN: with overwhelming probability
over the coins of the receiver, we have a 1/p(λ) error-probability over the coins
of the sender, where we can choose p(λ) to be an arbitrary polynomial. For
concreteness we set p(λ) = λ2, so the error probability is 1/λ2. We outline
how to leverage the series of generic transformations from the previous sections
to get UC OT with a negligible correctness error. This requires only minor
modifications throughout.

Elementary OT → Search OT (Theorem 7): This transformation performs
a λ-wise parallel repetition on the sender message and therefore, by the union
bound, increases the correctness error from 1/λ2 to 1/λ. Security is unaf-
fected.

Search OT → bit-iOT (Theorem 8): This transformation preserves the cor-
rectness error of 1/λ. Security is unaffected.

bit-iOT → string iOT (Theorem 9): Here, we can modify the transformation
slightly and first encode the strings using an error-correcting code and have
the receiver apply error correction. Since each bit has an independent error
probability of 1/λ, we can set the parameters of the error-correcting code to
get an exponentially small error probability, say 2−2λ. Security is unaffected
by this modification.

Imperfect → Perfect Correctness: The above gives a scheme where, with
overwhelming probability over the receiver’s coins, we have a 2−2λ error prob-
ability over the sender’s coins. However, our definition of OT correctness in
Sect. 4.1 requires a stronger notion of perfect correctness: with overwhelming
over the receiver’s coins and the CRS, all choices of the sender coins yield
the correct output. This is needed in two places: (1) In the construction of
2-round ZK arguments (Theorem 19), we rely on extractable commitments,
which in turn require a PKE with perfect correctness (Definition 3). Con-
structing PKE from OT requires the same perfect correctness for the OT. (2)
In the construction of UC OT from Sender-UC OT and ZK (Theorem 21) we
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also need the underlying Sender-UC OT to have perfect correctness. This is
because we rely on the fact that if a malicious sender computes the second-
round OT message correctly with some choice of random coins (which he
proves via the ZK argument), then the receiver gets the correct value.
We can generically achieve such perfect correctness, using an idea similar to
the one behind Naor’s commitments [Nao90]. We add an additional random
value r∗ to the CRS. The sender computes his second-round OT message by
relying on a pseudorandom generator G and setting the random coins to be
G(s) ⊕ r∗ where s is small seed of length (e.g.,) λ. By a counting argument,
with overwhelming probability over r∗ and the receiver’s random coins, there
is no choice of the sender’s coins s that results in an error. Security is preserved
by relying on the security of the PRG.

Combining the above, the following theorem follows as a corollary.

Theorem 33. Under the LPN assumption with noise rate ρ = n−ε for ε > 1
2

there exists a 2-round UC OT.
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