
OptORAMa: Optimal Oblivious RAM

Gilad Asharov1(B), Ilan Komargodski2, Wei-Kai Lin3, Kartik Nayak4,
Enoch Peserico5, and Elaine Shi3

1 Bar-Ilan University, 52900 Ramat Gan, Israel
gilad.asharov@biu.ac.il

2 NTT Research, Palo Alto, CA 94303, USA
ilan.komargodski@ntt-research.ac.il

3 Cornell University, Ithaca, NY 14850, USA
w1572@cornell.edu, runting@gmail.com

4 Duke University, Durham, NC 27708, USA
kartik@cs.duke.edu

5 Università degli Studi di Padova, Padova, PD, Italy
enoch@dei.unipd.it

Abstract. Oblivious RAM (ORAM), first introduced in the ground-
breaking work of Goldreich and Ostrovsky (STOC ’87 and J. ACM ’96)
is a technique for provably obfuscating programs’ access patterns, such
that the access patterns leak no information about the programs’ secret
inputs. To compile a general program to an oblivious counterpart, it is
well-known that Ω(log N) amortized blowup is necessary, where N is the
size of the logical memory. This was shown in Goldreich and Ostrovksy’s
original ORAM work for statistical security and in a somewhat restricted
model (the so called balls-and-bins model), and recently by Larsen and
Nielsen (CRYPTO ’18) for computational security.

A long standing open question is whether there exists an optimal
ORAM construction that matches the aforementioned logarithmic lower
bounds (without making large memory word assumptions, and assuming
a constant number of CPU registers). In this paper, we resolve this prob-
lem and present the first secure ORAM with O(log N) amortized blowup,
assuming one-way functions. Our result is inspired by and non-trivially
improves on the recent beautiful work of Patel et al. (FOCS ’18) who
gave a construction with O(log N · log log N) amortized blowup, assum-
ing one-way functions.

One of our building blocks of independent interest is a linear-time
deterministic oblivious algorithm for tight compaction: Given an array
of n elements where some elements are marked, we permute the ele-
ments in the array so that all marked elements end up in the front of the
array. Our O(n) algorithm improves the previously best known deter-
ministic or randomized algorithms whose running time is O(n · log n) or
O(n · log log n), respectively.

Keywords: Oblivious RAM · Randomized algorithms · Tight
compaction

c© International Association for Cryptologic Research 2020
A. Canteaut and Y. Ishai (Eds.): EUROCRYPT 2020, LNCS 12106, pp. 403–432, 2020.
https://doi.org/10.1007/978-3-030-45724-2_14

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-45724-2_14&domain=pdf
https://doi.org/10.1007/978-3-030-45724-2_14

404 G. Asharov et al.

1 Introduction

Oblivious RAM (ORAM), first proposed by Goldreich and Ostrovsky [22,23],
is a technique to compile any program into a functionally equivalent one, but
whose memory access patterns are independent of the program’s secret inputs.
The overhead of an ORAM is defined as the (multiplicative) blowup in runtime
of the compiled program. Since Goldreich and Ostrovsky’s seminal work, ORAM
has received much attention due to its applications in cloud computing, secure
processor design, multi-party computation, and theoretical cryptography (for
example, [7,19–21,34–36,39,44,46,47,51–53]).

For more than three decades, the biggest open question in this line of work
is regarding the optimal overhead of ORAM. Goldreich and Ostrovsky’s original
work [22,23] showed a construction with O(log3 N) blowup in runtime, assuming
the existence of one-way functions, where N denotes the memory size consumed
by the original non-oblivious program. On the other hand, they proved that any
ORAM scheme must incur at least Ω(log N) overhead, but their lower bound
is restricted to schemes that treat the contents of each memory word as “indi-
visible” (see Boyle and Naor [8]) and make no cryptographic assumptions. In a
recent work, Larsen and Nielsen [30] showed that Ω(log N) overhead is necessary
for all online ORAM schemes,1 even ones that use cryptographic assumptions
and might perform non-trivial encodings on the contents of the memory. Since
Goldreich and Ostrovsky’s work, a long line of research has been dedicated to
improving the asymptotic efficiency of ORAM [10,25,29,45,48,50]. Prior to our
work, the best known scheme, allowing computational assumptions, is the ele-
gant work by Patel et al. [40]: they showed the existence of an ORAM with
O(log N · log log N) overhead, assuming one-way functions. In comparison with
Goldreich and Ostrovksy’s original O(log3 N) result, Patel’s result seems tanta-
lizingly close to matching the lower bound, but unfortunately we are still not
there yet and the construction of an optimal ORAM continues to elude us even
after more than 30 years.

1.1 Our Results: Optimal Oblivious RAM

We resolve this long-standing problem by showing a matching upper bound
to Larsen and Nielsen’s [30] lower bound: an ORAM scheme with O(log N)
overhead and negligible security in λ, where N is the size of the memory and
λ is the security parameter, assuming one-way functions. More concretely, we
show:2

1 An ORAM scheme is online if it supports accesses arriving in an online manner, one
by one. Almost all known schemes have this property.

2 Note that for the (sub-)exponential security regime, e.g., failure probability of 2−λ

or 2−λε

for some ε ∈ (0, 1), perfectly secure ORAM schemes [12,16] asymptotically
outperform known statistically or computationally secure constructions assuming
that N = poly(λ).

OptORAMa: Optimal Oblivious RAM 405

Theorem 1.1. Assume that there is a PRF family that is secure against any
probabilistic polynomial-time adversary except with a negligible small probability
in λ. Assume that λ ≤ N ≤ T ≤ poly(λ) for any fixed polynomial poly(·), where
T is the number of accesses. Then, there is an ORAM scheme with O(log N)
overhead and whose security failure probability is upper bounded by a suitable
negligible function in λ.

In the aforementioned results and throughout this paper, unless otherwise
noted, we shall assume a standard word-RAM where each memory word has at
least w = log N bits, i.e., large enough to store its own logical address. We assume
that word-level addition and boolean operations can be done in unit cost. We
assume that the CPU has constant number of private registers. For our ORAM
construction, we additionally assume that a single evaluation of a pseudorandom
function (PRF), resulting in at least word-size number of pseudo-random bits,
can be done in unit cost.3 Note that all earlier computationally secure ORAM
schemes, starting with the work of Goldreich and Ostrovsky [22,23], make the
same set of assumptions. Additionally, we remark that our result can be made
statistically secure if one assumes a private random oracle to replace the PRF
(the known logarithmic ORAM lower bound [22,23,30] still hold in this setting).
Finally, we note that our construction suffers from huge constants due to the
use of certain expander graphs; improving the concrete constant is left for future
work.

In the full version [5], we provide a comparison with previous works, where
we make the comparison more accurate and meaningful by explicitly stating the
dependence on the error probability (which was assumed to be some negligible
functions in previous works).

1.2 Our Results: Optimal Oblivious Tight Compaction

Closing the remaining log log N gap for ORAM turns out to be highly challeng-
ing. Along the way, we actually construct an important building block, that is,
a deterministic, linear-time, oblivious tight compaction algorithm. This result is
an important contribution on its own, and has intimate connections to classical
algorithms questions, as we explain below.

Tight compaction is the following task: given an input array of size n con-
taining either real or dummy elements, output a permutation of the input array
where all real elements appear in the front. Tight compaction can be considered
as a restricted form of sorting, where each element in the input array receives a 1-
bit key, indicating whether it is real or dummy. One näıve solution for tight com-
paction, therefore, is to rely on oblivious sorting to sort the input array [2,24];
unfortunately, due to recent lower bounds [17,33], we know that any oblivious
sorting scheme must incur Ω(n · log n) time on a word-RAM, either assuming

3 Alternatively, if we use number of IOs as an overhead metric, we only need to assume
that the CPU can evaluate a PRF internally without writing to memory, but the
evaluation need not be unit cost.

406 G. Asharov et al.

that the algorithm treats each element as “indivisible” [33] or assuming that the
famous Li-Li network coding conjecture [32] is true [17].

A natural question, therefore, is whether we can do asymptotically better
than just näıvely sorting the input. It turns out that this question is related
to a line of work in the classical algorithms literature, that is, the design of
switching networks and routing on such networks [2,4,6,18,42,43]. First, a line of
combinatorial works showed the existence of linear-sized super-concentrators [41,
42,49], i.e., switching networks with n inputs and n outputs such that vertex-
disjoint paths exist from any k elements in the inputs to any k positions in
the outputs. One could leverage a linear-sized super-concentrator construction
to obliviously route all the real elements in the input to the front of the output
array deterministically and in linear time (by routing elements along the routes),
but it is not clear yet how to find routes (i.e., a set of vertex-disjoint paths) from
the real input positions to the front of the output array.

In an elegant work in 1996, Pippenger [43] showed a deterministic, linear-
time algorithm for route-finding but unfortunately the algorithm is not oblivi-
ous. Shortly afterwards, Leighton et al. [31] showed a probabilistic algorithm that
tightly compacts n elements in O(n·log log λ) time with 1−negl(λ) probability—
their algorithm is almost oblivious except for leaking the number of reals and
dummies. After Leighton et al. [31], this line of work remained somewhat stag-
nant for almost two decades. Only recently, did we see some new results: Mitchell
and Zimmerman [38] as well as Lin et al. [33] showed how to achieve the same
asymptotics as Leighton et al. [31] but now making the algorithm fully oblivious.

In this paper, we give an explicit construction of a deterministic, oblivious
algorithm that tightly compacts any input array of n elements in linear time, as
stated in the following theorem:

Theorem 1.2 (Linear-time oblivious tight compaction). There is a determinis-
tic, oblivious tight compaction algorithm that compacts n elements in O(�D/w� ·
n) time on a word-RAM where D is the bit-width for encoding each element and
w ≥ log n is the word size.

Our algorithm is not comparison-based and not stable and this is inherent.
Specifically, Lin et al. [33] recently showed that any stable, oblivious tight com-
paction algorithm (that treats elements as indivisible) must incur Ω(n·log n) run-
time, where stability requires that the real elements in the output must appear in
the same order as the input. Further, due to the well-known 0-1 principle [1,15],
any comparison-based tight compaction algorithm must incur at least Ω(n·log n)
runtime as well.4

Not only our ORAM construction relies on the above compaction algorithm
in several key points, but it is a useful primitive independently. For example,
we use our compaction algorithm to give a perfectly oblivious algorithm that

4 Although the algorithm of Leighton et al. [31] appears to be comparison-based, it is
in fact not since the algorithm must tally the number of reals/dummies and make
use of this number.

OptORAMa: Optimal Oblivious RAM 407

randomly permutes arrays of n elements in (worst-case) O(n · log n) time. All
previously known such constructions have some probability of failure.

2 Technical Roadmap

We give a high-level overview of our results. In Sect. 2.1 we provide a high-level
overview of our ORAM construction which uses an oblivious tight compaction
algorithm. In Sect. 2.2 we give a high-level overview of the techniques underlying
our tight compaction algorithm.

2.1 Oblivious RAM

In this section we present a high-level description of the main ideas and tech-
niques underlying our ORAM construction. Full details are given later in the
corresponding technical sections.

Hierarchical ORAM. The hierarchical ORAM framework, introduced by Goldre-
ich and Ostrovsky [22,23] and improved in subsequent works (e.g., [10,25,29]),
works as follows. For a logical memory of N blocks, we construct a hierarchy of
hash tables, henceforth denoted T1, . . . , TL where L = log N . Each Ti stores 2i

memory blocks. We refer to table Ti as the i-th level. In addition, we store next
to each table a flag indicating whether the table is full or empty. When receiving
an access request to read/write some logical memory address addr, the ORAM
proceeds as follows:

– Read phase. Access each non-empty levels T1, . . . , TL in order and perform
Lookup for addr. If the item is found in some level Ti, then when accessing all
non-empty levels Ti+1, . . . , TL look for dummy.

– Write back. If this operation is read, then store the found data in the read
phase and write back the data value to T0. If this operation is write, then
ignore the associated data found in the read phase and write the value pro-
vided in the access instruction in T0.

– Rebuild: Find the first empty level �. If no such level exists, set � := L.
Merge all {Tj}0≤j≤� into T�. Mark all levels T1, . . . , T�−1 as empty and T� as
full.

For each access, we perform log N lookups, one per hash table. Moreover, after
t accesses, we rebuild the i-th table �t/2i� times. When implementing the hash
table using the best known oblivious hash table (e.g., oblivious Cuckoo hash-
ing [10,25,29]), building a level with 2k items obliviously requires O(2k ·log(2k)) =
O(2k · k) time. This building algorithm is based on oblivious sorting, and its
time overhead is inherited from the time overhead of the oblivious sort proce-
dure (specifically, the best known algorithm for obliviously sorting n elements
takes O(n · log n) time [2,24]). Thus, summing over all levels (and ignoring the
log N lookup operations across different levels for each access), t accesses require
∑log N

i=1

⌈
t
2i

⌉ · O(2i · i) = O(t · log2 N) time. On the other hand, lookup takes

408 G. Asharov et al.

essentially constant time per level (ignoring searching in stashes which introduce
an additive factor) and thus O(log N) per access. Thus, there is an asymmetry
between build time and lookup time, and the main overhead is the build.

The work of Patel et al. [40]. Classically (e.g., [10,22,23,25,29]), oblivious hash
tables were built to support (and be secure for) every input array. This required
expensive oblivious sorting, causing the extra logarithmic factor. The key idea of
Patel et al. [40] is to modify the hierarchical ORAM framework to realize ORAM
from a weaker primitive: an oblivious hash table that works only for randomly shuf-
fled input arrays. Patel et al. describe a novel oblivious hash table such that building
a hash table containing n elements can be accomplished without oblivious sorting
and consumes only O(n · log log λ) total time5 and lookup consumes O(log log n)
total time. Patel et al. argue that their hash table construction retains security not
necessarily for every input, but when the input array is randomly permuted, and
moreover the input permutation must be unknown to the adversary.

To be able to leverage this relaxed hash table in hierarchical ORAM, a
remaining question is the following: whenever a level is being rebuilt in the
ORAM (i.e., a new hash table is being constructed), how do we make sure that
the input array is randomly and secretly shuffled? A näıve answer is to employ an
oblivious random permutation to permute the input, but known oblivious ran-
dom permutation constructions require oblivious sorting which brings us back to
our starting point. Patel et al. solve this problem and show that there is no need
to completely shuffle the input array. Recall that when building some level T�,
the input array consists of only unvisited elements in tables T0, . . . , T�−1 (and
T� too if � is the largest level). Patel et al. argue that the unvisited elements
in tables T0, . . . , T�−1 are already randomly permuted within each table and the
permutation is unknown to the adversary. Then, they presented a new algo-
rithm, called multi-array shuffle, that combines these arrays to a shuffled array
within O(n · log log λ) time, where n = |T0| + |T1| + . . . + |T�−1|.6 The algorithm
is somewhat involved, randomized, and has a negligible probability of failure.

The blueprint. Our construction builds upon and simplifies the construction of
Patel et al. To get better asymptotic overhead, we improve their construction in
two different aspects:

1. We show how to implement our variant of multi-array shuffle (called inter-
sperse) in O(n) time. Specifically, we show a new reduction from intersperse
to tight compaction.

2. We develop a hash table that supports build in O(n) time assuming that the
input array is randomly shuffled. The lookup is O(1), ignoring time spent on
looking in stashes. Achieving this is rather non-trivial: first we use a “packing”

5 λ denotes the security parameter. Since the size of the hash table n may be small, here
we separate the security parameter from the hash table’s size.

6 The time overhead is a bit more complicated to state and the above expression is for
the case where |Ti| = 2|Ti−1| for every i (which is the case in a hierarchical ORAM
construction).

OptORAMa: Optimal Oblivious RAM 409

style trick to construct oblivious Cuckoo hash tables for small sizes where
n ≤ poly log λ, achieving linear-time build and constant-time lookup. Relying
on the advantage we gain for problems of small sizes, we then show how to
solve problems of medium and large sizes, again relying on oblivious tight
compaction as a building block. The bootstrapping step from medium to
large is inspired by Patel et al. [40] at a very high level, but our concrete
construction differs from Patel et al. [40] in many technical details.

We describe the core ideas behind these improvements next. In Sect. 2.1.1,
we present our multi-array shuffle algorithm. In Sect. 2.1.2, we show how to
construct a hash table for shuffled inputs achieving linear build time and constant
lookup.

2.1.1 Interspersing Randomly Shuffled Arrays
Given two arrays, I1 and I2, of size n1, n2, respectively, where each array is
randomly shuffled, our goal is to output a single array that contains all elements
from I1 and I2 in a randomly shuffled order. Ignoring obliviousness, we could first
initialize an output array of size n = n1 +n2, mark exactly n1 random locations
in the output array, and place the elements from I1 arbitrarily in these locations.
The elements from I2 are placed in the unmarked locations.7 The challenge is
how to perform this placement obliviously, without revealing the mapping from
the input array to the output array.

We observe that this routing problem is exactly the “reverse” problem of
oblivious tight compaction, where one is given an input array of size n containing
keys that are 1-bit and the goal is to sort the array such that all elements with
key 0 appear before all elements with key 1. Intuitively, by running this algorithm
“in reverse”, we obtain a linear time algorithm for obliviously routing marked
elements to an array with marked positions (that are not necessarily at the front).
Since we believe that this procedure is useful in its own right, we formalize it
independently and call it oblivious distribution. The full details appear in the
full version [5].

2.1.2 An Optimal Hash Table for Shuffled Inputs
In this section, we first describe a warmup construction that can be used to build
a hash table in O(n ·poly log log λ) time and supports lookups in O(poly log log λ)
time. We will then get rid of the additional poly log log λ factor in both the build
and lookup phases.

Warmup: oblivious hash table with poly log log λ slack. Intuitively, to build
a hash table, the idea is to randomly distribute the n elements in the input
into B := n/poly log λ bins of size poly log λ in the clear. The distribution is
done according to a pseudorandom function with some secret key K, where an

7 Note that the number of such assignments is
(

n
n1,n2

)
. Assuming that each array is

already permuted, the number of possible outputs is
(

n
n1,n2

) · n1!n2! = n!.

410 G. Asharov et al.

element with address addr is placed in the bin with index PRFK(addr). Whenever
we lookup for a real element addr′, we access the bin PRFK(addr′); in which case,
we might either find the element there (if it was originally one of the n elements
in the input) or we might not find it in the accessed bin (in the case where the
element is not part of the input array). Whenever we perform a dummy lookup,
we just access a random bin.

Since we assume that the n balls are secretly and randomly distributed to
begin with, the build procedure does not reveal the mapping from original ele-
ments to bins. However, a problem arises in the lookup phase. Since the total
number of elements in each bin is revealed, accessing in the lookup phase all
real keys of the input array would produce an access pattern that is identical to
that of the build process, whereas accessing n dummy elements results in a new,
independent balls-into-bins process of n balls into B bins.

To this end, we first throw the n balls into the B bins as before, revealing
loads n1, . . . , nB . Then, we sample new secret loads L1, . . . , LB corresponding to
an independent process of throwing n′ := n · (1 − 1/poly log λ) balls into B bins.
By a Chernoff bound, with overwhelming probability Li < ni for every i ∈ [B].
We extract from each bin arbitrary ni − Li balls obliviously and move them to
an overflow pile (without revealing the Li’s). The overflow pile contains only
n/poly log λ elements so we use a standard Cuckoo hashing scheme such that it
can be built in O(m · log m) = O(n) time and supports lookups effectively in
O(1) time (ignoring the stash).8 The crux of the security proof is showing that
since the secret loads L1, . . . , LB are never revealed, they are large enough to
mask the access pattern in the lookup phase so that it looks independent of the
one leaked in the build phase.

We glossed over many technical details, the most important ones being how
the bin sizes are truncated to the secret loads L1, . . . , LB , and how each bin is
being implemented. For the second question, since the bins are of O(poly log λ)
size, we support lookups using a perfectly secure ORAM constructions that
can be built in O(poly log λ · poly log log λ) and looked up in O(poly log log λ)
time [12,16] (this is essentially where our poly log log factor comes from in this
warmup). The first question is solved by employing our linear time tight com-
paction algorithm to extract the number of elements we want from each bin.

The full details of the construction appear in Sect. 5.

Remark 2.1 (Comparison of the warmup construction with Patel et al. [40]).
Our warmup construction borrows the idea of revealing loads and then sampling
new secret loads from Patel et al. However, our concrete instantiation is different
and this difference is crucial for the next step where we get an optimal hash table.
Particularly, the construction of Patel et al. has log log λ layers of hash tables
of decreasing sizes, and one has to look for an element in each one of these
hash tables, i.e., searching within log log λ bins. In our solution, by tightening
the analysis (that is, the Chernoff bound), we show that a single layer of hash
tables suffices; thus, lookup accesses only a single bin. This allows us to focus on
optimizing the implementation of a bin towards the optimal construction.
8 We refer to the full version [5] for background information on Cuckoo hashing.

OptORAMa: Optimal Oblivious RAM 411

Oblivious hash table with linear build time and constant lookup time. In the
warmup construction, (ignoring the lookup time in the stash of the overflow
pile9), the only super-linear operation that we have is the use of a perfectly
secure ORAM, which we employ for bins of size O(poly log λ). In this step, we
replace this with a data structure with linear time build and constant time
lookup: a Cuckoo hash table for lists of polylogarithmic size.

Recall that in a Cuckoo hash table each element receives two random bin
choices (e.g., determined by a PRF) among a total of ccuckoo · n bins where
ccuckoo > 1 is a suitable constant. During build-time, the goal is for all elements
to choose one of the two assigned bins, such that every bin receives at most one
element. At this moment it is not clear how to accomplish this build process,
but suppose we can obliviously build such a Cuckoo hash table in linear time,
then the problem would be solved. Specifically, once we have built such a Cuckoo
hash table, lookup can be accomplished in constant time by examining both bin
choices made by the element (ignoring the issue of the stash for now). Since the
bin choices are (pseudo-)random, the lookup process retains security as long as
each element is looked up at most once. At the end of the lookups, we can extract
the unvisited elements through oblivious tight compaction in linear time—it
is not hard to see that if the input array is randomly shuffled, the extracted
unvisited elements appear in a random order too.

Therefore the crux is how to build the Cuckoo hash table for poly-
logarithmically-sized, randomly shuffled input arrays. Our observation is that
classical oblivious Cuckoo hash table constructions can be split into three steps:
(1) assigning two possible bin choices per element, (2) assigning either one of
the bins or the stash for every element, and (3) routing the elements according
to the Cuckoo assignment. We delicately handle each step separately:

1. For step (1) the n = poly log λ elements in the input array can each evaluate
the PRF on its associated key, and write down its two bin choices (this takes
linear time).

2. Implementing step (2) in linear time is harder as this step is dominated by
a sequence of oblivious sorts. To overcome this, we use the fact that the
problem size n is of size poly log λ. As a result, the index of each item and
its two bin choices can be expressed using O(log log λ) bits which means
that a single memory word (which is log λ bits long) can hold O

(
log λ

log log λ

)

many elements’ metadata. We can now apply a “packed sorting” type of
idea [3,11,14,28] where we use the RAM’s word-level instructions to perform
SIMD-style operations. Through this packing trick, we show that oblivious
sorting and oblivious random permutation (of the elements’ metadata) can
be accomplished in O(n) time!

9 For the time being, the reader need not worry about how to perform lookup in the
stash. Later, when we use our oblivious Cuckoo hashing scheme in the bigger hash
table construction, we will merge the stashes of all Cuckoo hash tables into a single
one and treat the merged stash specially.

412 G. Asharov et al.

3. Step (3) is classically implemented using oblivious bin distribution which
again uses oblivious sorts. Here, we cannot use the packing trick since we
operate on the elements themselves, so we use the fact that the input array
is randomly shuffled and just route the elements in the clear.

There are many technical issues we glossed over, especially related to the fact
that the Cuckoo hash tables are of size ccuckoo · n bins, where ccuckoo > 1. This
requires us to pad the input array with dummies and later to use them to fill the
empty slots in the Cuckoo assignment. Additionally, we also need to get rid of
these dummies when extracting the set of unvisited element. All of these require
several additional (packed) oblivious sorts or our oblivious tight compaction.

We refer the reader to Sect. 6 for the full details of the construction.

2.1.3 Additional Technicalities
The above description, of course, glossed over many technical details. To obtain
our final ORAM construction, there are still a few concerns that have not been
addressed. First, recall that we need to make sure that the unvisited elements in
a hash table appear in a (pseudo-)random order such that we can make use of
this residual randomness to re-initialize new hash tables faster. To guarantee this
for the Cuckoo hash table that we employ for poly log λ-sized bins, we need that
the underlying Cuckoo hash scheme we employ satisfy an additional property
called the “indiscriminating bin assignment” property: specifically, we need that
the two pseudo-random Cuckoo-bin choices for each element do not depend on
the order in which they are added, their keys, or their positions in the input
array. In our technical sections later, this property will allow us to do a coupling
argument and prove that the residual unvisited elements in the Cuckoo hash
table appear in random order.

Additionally, some technicalities remain in how we treat the smallest level of
the ORAM and the stashes. The smallest level in the ORAM construction cannot
use the hash table construction described earlier. This is because elements are
added to the smallest level as soon as they are accessed and our hash table does
not support such an insertion. We address this by using an oblivious dictionary
built atop a perfectly secure ORAM for the smallest level of the ORAM. This
incurs an additive O(poly log log λ) blowup. Finally, the stashes for each of the
Cuckoo hash tables (at every level and every bin within the level) incur O(log λ)
time. We leverage the techniques from Kushilevitz et al. [29] to merge all stashes
into a common stash of size O(log2 λ), which is added to the smallest level when
it is rebuilt.

On deamortization. As the overhead of our ORAM is amortized over several
accesses, it is natural to ask whether we can deamortize the construction to
achieve the same overhead in the worst case, per access. Historically, Ostro-
vsky and Shoup [39] deamortized the hierarchical ORAM of Goldreich and
Ostrovsky [23], and related techniques were later applied on other hierarchical
ORAM schemes [10,26,29]. Unfortunately, the technique fails for our ORAM as
we explain below (it fails for Patel et al. [40], as well, by the same reason).

OptORAMa: Optimal Oblivious RAM 413

Recall that in the hierarchical ORAM, the i-th level hash table stores 2i

keys and is rebuilt every 2i accesses. The core idea of existing deamortization
techniques is to spread the rebuilding work over the next sequence of 2i ORAM
accesses. That is, copy the 2i keys (to be rebuilt) to another working space while
performing lookup on the same level i to fulfill the next 2i accesses. However,
plugging such copy-while-accessing into our ORAM, an adversary can access a
key in level i right after the same level is fully copied (as the copying had no
way to foresee future accesses). Then, in the adversarial eyes, the copied keys are
no longer randomly shuffled, which breaks the security of the hash table (which
assumes that the inputs are shuffled). Indeed, in previous works, where hash
tables were secure for every input, such deamortization works. Deamortizing
our construction is left as an open problem.

2.2 Tight Compaction

Recall that tight compaction can be considered as a restricted form of sorting,
where each element in the input array receives a 1-bit key, indicating whether it
is real or dummy. The goal is to move all the real elements in the array to the
front obliviously, and without leaking how many elements are reals. We show a
deterministic algorithm for this task.

Reduction to loose compaction. Pippenger’s self-routing super-concentrator con-
struction [43] proposes a technique that reduces the task of tight compaction
to that of loose compaction. Informally speaking, loose compaction receives as
input a sparse array, containing a few real elements and many dummy elements.
The output is a compressed output array, containing all real elements but the
procedure does not necessarily remove all the dummy elements. More concretely,
we care about a specific form of loose compactor (parametrized by n): consider a
suitable bipartite expander graph that has n vertices on the left and n/2 vertices
on the right where each node has constant degree. At most 1/128 fraction of the
vertices on the left will receive a real element, and we would like to route all
real elements over vertex-disjoint paths to the right side such that every right
vertex receives at most 1 element. The crux is to find a set of satisfying routes in
linear time and obliviously. Once a set of feasible routes have been identified, it
is easy to see that performing the actual routing can be done obliviously in lin-
ear time (and for obliviousness we need to route a dummy element over an edge
that bears 0 load). During this process, we effectively compress the sparse input
array (represented by vertices on the left) by 1/2 without losing any element.

Using Pippenger’s techniques [43] and with a little extra work, we can derive
the following claim—at this point we simply state the claim while deferring
algorithmic details to subsequent technical sections. Below D denotes the number
of bits it takes to encode an element and w denotes the word size:

Claim: There exist appropriate constants C,C ′ > 6 such that the follow-
ing holds: if we can solve the aforementioned loose compaction problem
obliviously in time T (n) for all n ≤ n0, then we can construct an oblivious
algorithm that tightly compacts n elements in time C · T (n) + C ′ · �D/w� · n
for all n ≤ n0.

414 G. Asharov et al.

As mentioned, the crux is to find satisfying routes for such a “loose compactor”
bipartite graph obliviously and in linear time. Achieving this is non-trivial: for
example, the recent work of Chan et al. [12] attempted to do this but their
route-finding algorithm requires O(n log n) runtime—thus Chan et al. [12]’s
work also implies a loose compaction algorithm that runs in time O(n log n +
�D/w� · n). To remove the extra log n factor, we introduce two new ideas, pack-
ing, and decomposition—in fact both ideas are remotely reminiscent of a line of
works in the core algorithms literature on (non-comparison-based, non-oblivious)
integer sorting on RAMs [3,14,28] but obviously we apply these techniques to a
different context.

Packing: linear-time compaction for small instances. We observe that the offline
route-finding phase operates only on metadata. Specifically, the route-finding
phase receives the following as input: an array of n bits where the i-th bit
indicates whether the i-th input position is real or dummy. If the problem size
n is small, specifically, if n ≤ w/ log w where w denotes the width of a memory
word, we can pack the entire problem into a single memory word (since each
element’s index can be described in log n bits). In our technical sections we will
show how to rely on word-level addition and boolean operations to solve such
small problem instances in O(n) time. At a high level, we follow the slow route-
finding algorithm by Chan et al. [12], but now within a single memory word, we
can effectively perform SIMD-style operations and we exploit this to speed up
Chan et al. [12]’s algorithm by a logarithmic factor for small instances.

Relying on the above Claim that allows us to go from loose to tight, we
now have an O(n)-time oblivious tight compaction algorithm for small instances
where n ≤ w/ log w; specifically, if the loose compaction algorithm takes C0 · n
time, then the runtime of the tight compaction would be upper bounded by
C · C0 · n + C ′ · �D/w� · n ≤ C · C0 · C ′ · �D/w� · n.

Decomposition: bootstrapping larger instances of compaction. With this loga-
rithmic advantage we gain in small instances, our hope is to bootstrap larger
instances by decomposing larger instances into smaller ones.

Our bootstrapping is done in two steps—as we calculate below, each time we
bootstrap, the constant hidden inside the O(n) runtime blows up by a constant
factor; thus it is important that the bootstrapping is done for only O(1) times.

1. Medium instances: n ≤ (w/ log w)2. For medium instances, our idea is to
divide the input array into

√
n segments each of B :=

√
n size. As long as

the input array has only n/128 or fewer real elements, then at most
√

n/4
segments can be dense, i.e., each containing more than

√
n/4 real elements

(1/4 is loose but sufficient). We rely on tight compaction for small instances to
move the dense segments in front of the sparse ones. For each of 3

√
n/4 sparse

segments, we next compress away 3/4 of the space using tight compaction for
small instances. Clearly, the above procedure is a loose compaction and con-
sumes at most 2 ·C ·C ′ ·C0 · �D/w� ·n+6�D/w� ·n ≤ 2.5 ·C ·C ′ ·C0 · �D/w� ·n
runtime.

OptORAMa: Optimal Oblivious RAM 415

So far we have constructed a loose compaction algorithm for medium
instances. Using the aforementioned Claim, we can in turn construct an algo-
rithm that obliviously and tightly compacts a medium-sized instance of size
n ≤ (w/ log w)2 in time at most 3C2 · C ′ · C0 · �D/w� · n.

2. Large instances: arbitrary n. We can now bootstrap to arbitrary choices of n
by dividing the problem into m := n/(w

log w)2 segments where each segment
contains at most (w

log w)2 elements. Similar to the medium case, at most 1/4
fraction of the segments can have real density exceeding 1/4—which we call
such segments dense. As before, we would like to move the dense segments
in the front and the sparse ones to the end. Recall that Chan et al. [12]’s
algorithm solves loose compaction for problems of arbitrary size m in time
C1 · (m log m + �D/w�m) Thus due to the above claim we can solve tight
compaction for problems of any size m in time C ·C1 ·(m log m+�D/w�·m)+
C ′ ·�D/w�·m. Thus, in O(�D/w�·n) time we can move all the dense instances
to the front and the sparse instances to the end. Finally, by invoking medium
instances of tight compaction, we can compact within each segment in time
that is linear in the size of the segment. This allows us to compress away 3/4
of the space from the last 3/4 segments which are guaranteed to be sparse.
This gives us loose compaction for large instances in O(�D/w�·n) time—from
here we can construct oblivious tight compaction for large instances using the
above Claim.10

Remark 2.2. In our formal technical sections later, we in fact directly use loose
compaction for smaller problem sizes to bootstrap loose compaction for larger
problem sizes (whereas in the above version we use tight compaction for smaller
problems to bootstrap loose compaction for larger problems). The detailed algo-
rithm is similar to the one described above: it requires slightly more complicated
parameter calculation but results in better constants than the above more intuitive
version.

Organization. In Sect. 3 we highlight several building blocks that are necessary
for our construction. In Sect. 4 we describe our oblivious tight compaction algo-
rithm informally (due to lack of space). In Sect. 5 we provide our construction of
hash table for shuffled input for long size inputs, and in Sect. 6 we provide our
construction of hash table for small size input, i.e., how we organize the bins.
Our ORAM construction is provided in Sect. 7.

3 Oblivious Building Blocks

Our ORAM construction uses many building blocks, some of which new to this
work and some of which are known from the literature. The building blocks are

10 We omit the concrete parameter calculation in the last couple of steps but from the
calculations so far, it should be obvious by now that the there is at most a constant
blowup in the constants hidden inside the big-O notation.

416 G. Asharov et al.

listed next. Due to lack of space, we just mention the building blocks and refer
the reader to the full paper [5] for formal definitions.

Oblivious Sorting Algorithms: We state the classical sorting network of Ajtai
et al. [2] and present a new oblivious sorting algorithm that is more efficient in
settings where each memory word can hold multiple elements.

Oblivious Random Permutations: We show how to perform efficient oblivi-
ous random permutations in settings where each memory word can hold multiple
elements.

Oblivious Bin Placement: We state the known results for oblivious bin place-
ment of Chan et al. [10,13].

Oblivious Hashing: We present the formal functionality of a hash table that
is used throughout our work. We also state the resulting parameters of a simple
oblivious hash table that is achieved by compiling a non-oblivious hash table
inside an existing ORAM construction. Due to its importance, we provide some
high level of the functionality here.

In a nutshell, the functionality of hash function supports three commands:
A “constructor” Build(I), receiving an array of n pairs of key/value (ki, vi). The
array I is assumed to be randomly shuffled, and the instruction builds some inter-
nal structure for supporting fast (and oblivious) future accesses. Then, the con-
struction supports several Lookup(k) instructions, where if k ∈ I then the cor-
responding v should be returned, and otherwise ⊥ is returned. Importantly, the
Lookup should also support fictitious lookups, i.e., supports k = ⊥. The construc-
tion should not leak whether k ∈ I, k 	∈ I or k = ⊥. Finally, the hash function also
supports the “destructor” function Extract() – which returns a permuted array
of size n consisting of all elements in I that were not accessed padded with dum-
mies. The security definition requires that the joint distribution of access pattern,
where the adversary can choose the sequence of instructions and the inputs to the
instructions, is simulatable. The only restriction is that the adversary cannot ask
for the same key more than once. We call this functionality “oblivious hash table
for non-recurrent lookups”, see full paper for formal definition.

Oblivious Cuckoo Hashing: We present and overview the state-of-the-art
constructions of oblivious Cuckoo hash tables. We state their complexities and
also make minor modifications that will be useful to us later.

Oblivious Dictionary: We present and analyze a simple construction of a
dictionary that is achieved by compiling a non-oblivious dictionary (e.g., a red-
black tree) inside an existing ORAM construction.

Oblivious Balls-into-Bins Sampling: We present an oblivious sampling of
the approximated bin loads of throwing independently n balls into m bins, which
uses the binomial sampling of Bringmann et al. [9].

Oblivious Tight Compaction: As was mentioned in the introduction, one
of our main contributions is a deterministic linear time procedure (in the balls
and bins model) for the following problem: given an input array containing n

OptORAMa: Optimal Oblivious RAM 417

balls, each of which marked with a 1-bit label that is either 0 or 1, output a
permutation of the array such that all the 1 balls are moved to the front.

Intersperse: Given two arrays that are assumed to be randomly shuffled I0, I1
of sizes n0, n1, resp., we show a procedure Interspersen0+n1

(I0‖I1, n0, n1) that
returns a random permutation of I0‖I1. We generalize it also for interspersing
k arrays Intersperse(k)n1,...,nk

(I1‖ . . . ‖Ik), each of which is randomly shuffled, and
for interspersing real and dummy elements IntersperseRD, assuming that the real
elements are randomly shuffled but in which we have no guarantee of the relative
positions of the real elements with respect to the dummy ones. In all of these
variants, the goal is to return a random permutation of all elements in the input
array, while the assumption on the input helps to reduces the running time.

Notation. Throughout the paper, we use the notation δA-secure PRF to mean
that for every (non-uniform) probabilistic polynomial-time algorithm A has
advantage at most δA in distinguishing an output of the PRF from random.
We additionally say that an algorithm is (1 − δA)-oblivious if no (non-uniform)
probabilistic polynomial-time algorithm A can distinguish its access pattern
from a simulated one with probability better than δA. Formal definitions appear
in the full paper.

4 Oblivious Tight Compaction in Linear Time

Our tight compaction algorithm works in two main steps. We first reduce the
problem (in linear time) to a relaxed problem called loose compaction. Here,
one is given an array I with n elements in which it is guaranteed that at most
n/� elements are real for some constant � > 2, and the goal is to return an
array of size n/2 that contain all the real elements. Second, we implement loose
compaction in linear time.

Reducing tight compaction to loose compaction. Given an input array I of n
elements in which some are marked 0 and the rest are marked 1, we first count
the number of total elements marked 0 in the input array, and let c be this
number. The first observation is that all 0-elements in the input array that reside
in locations 1, . . . , c, and all 1-elements in locations c+1, . . . , n are already placed
correctly. Thus, we just need to handle the rest of the elements which we call
the misplaced ones. The number of misplaced elements marked 0 equals to the
number of misplaced elements marked 1, and all we have to do is to (obliviously)
swap between each misplaced 0-element with a distinct misplaced 1-element.

The main idea here is to perform the swaps along the edges of a bipartite
expander graph. Consider a bipartite expander graph where the left nodes are
associated with the elements. The edges of the graph are the access pattern of
our algorithm. We will swap two misplaced elements that have a different mark
if they have a common neighbor on the right. To make sure this algorithm runs

418 G. Asharov et al.

in linear time, the graph has to be d-regular for d = O(1) and that the list
of neighbors of every node can be computed using O(1) basic operations. Such
explicit expander graphs are known to exist (for example, Margulis [37]).

Using the expansion properties of the graph, we can upper bound the num-
ber of misplaced elements that were not swapped by this process: at most n/�
for some � > 2. Thus, we can invoke loose compaction where we consider the
remaining misplaced element as real elements and the rest being dummy. This
process reduced the problem from n elements to n/2 and we proceed in recur-
sion to swap the misplaced elements on that first half of the array, until all
0-elements and 1-elements are swapped. (The reduction is of logarithmic depth
and the problem size is shrunk by a factor two in each step so the complexity is
linear overall.)

Loose compaction. The loose compaction algorithm LooseCompaction� receives
as input an array I consisting of n balls, where at most n/� are real and the
rest are dummies for some � > 2. The goal is to return an array of size n/2
where all the real balls reside in the returned array. In this algorithm we again
use a bipartite expander and combine it with ideas coming from the matching
algorithm of Pippenger [43]. The main idea of the procedure is to first distribute
the real balls to many bins, while ensuring that no bin consists of too many real
balls. Then, as all bins have small load, we can merge several bins together and
compact the array, as required.

The input/output of step 1, namely of the balanced distribution, is as follows.
The input is an array I of size n that we interpret as n/B bins of size B each
(simply by considering the array I[(i − 1) · B + 1, . . . , iB] as the i-th bin, for
i = 1, . . . , n/B). If a bin contains more than B/4 real balls, then we call it
“dense”, and otherwise we call it “sparse”. Our goal is to distribute all dense
bins in I into another array I′ of size n which we think about as split into n/B
bins of size B each. The procedure computes which target bins in I′ we should
distribute each one of the dense bins in I, such that, the distribution would be
balanced. In particular, the balanced distribution guarantees that no bin in I′

receives more than B/4 real balls. Let us explain why this balanced distribution
is enough.

After the balanced distribution, we can compact the arrays I, I′ into an array
of size n/2 by “folding”: Interpret I = (I0, I1), I′ = (I′

0, I
′
1) where |I0| = |I1| =

|I′
0| = |I′

1| and each array consists of n/(2B) bins of size B; Then, for every
i = 1, . . . , n/(2B), we merge all real balls in (I0,i, I1,i, I′

0,i, I
′
1,i) into a bin of size

B. As no bin consists of more than B/4 real balls, there is enough “room” in
I0. We then output the concatenation of all these n/(2B) bins, i.e., we return
an array of size n/2.

Balanced distribution of the dense bins. The distribution of dense bins in I
into I′ relies (again) on a good expander graph. Fixing a proper constant ε, we
consider a dε-regular graph Gε,n/B = (L,R,E) with |L| = |R| = n/B, where
L corresponds to I, R corresponds to I′ and we let B = dε/2. Let S ⊂ L be
the set of dense bins in L. We look for a (B,B/4)-matching for S: We look for

OptORAMa: Optimal Oblivious RAM 419

a set of edges M ⊆ E such that (1) from every bin in S there are at least B
out edges, and (2) for every bin in R there are at most B/4 incoming edges.
Given such a matching M , every dense bin in I can be distributed to I′ while
guaranteeing that no bin in I′ will have load greater than B/4, while the access
pattern corresponds to edges in the graph which is public and known to the
adversary.

Computing the matching. We first describe a non-oblivious algorithm for finding
the matching; the algorithm is due to Pippenger [43]. Let m = |L| = |R|.11
The algorithm proceeds in rounds, where initially all dense vertices in L are
“unsatisfied”, and in each round:

1. Each unsatisfied dense vertex u ∈ L: Send a request to each one of the
neighbors of u.

2. Each vertex v ∈ R: If v receives more than B/4 requests in this round, it
replies with “negative” to all the requests it received in this round. Otherwise,
it replies “positive” to all requests it received.

3. Each unsatisfied dense vertex u ∈ L: If u received more than B posi-
tive replies then take these edges to the matching and change the status to
“satisfied”.

The output is the edges in the matching. In each round, there are O(m) trans-
mitted messages, where each message is a single bit. Using properties of the
expander graphs, in each round the number of unsatisfied vertices decreases by
a factor of 2. Thus, the algorithm proceeds in O(log m) rounds, and the total
runtime of the algorithm is O(m).12 However, the algorithm is non-oblivious.

Oblivious slow matching (for any m). A simple way to make this algorithm
oblivious (as observed by [12]) is by sending a message from every vertex in L to
the relevant vertices in R in each round, that is, even a vertex is satisfied it still
sends fictitious messages in the proceeding rounds. In particular, in each round
the algorithm hides whether a vertex v ∈ L is in the set of satisfied vertices
(v /∈ L′) or is still unsatisfied (v ∈ L′), and in fact, we run each iteration on the
entire graph. This results in algorithm that takes overall O(m · log m) time.

Oblivious fast matching (for small m). When m is really small, we use the
packing trick. Concretely, when m ≤ w

log w , where w is the word size, all the
information required for the algorithm can be packed into O(1) words. Thus,
when accessing information related to one node u ∈ L, we can access at the
same time all the information regarding all other nodes in L. This enables us
to hide which node is being visited (i.e., whether a node is in L′ or not) and
therefore the algorithm can now just visit the nodes in L′ and does not have to
make fictitious accesses on the entire graph. As a result, when m is small (as
above) we are able to compute the matching in O(m) word-level operations.
11 Note that we are working here with a parameter m and not n, as m is the number

of vertices in the graph G – e.g., the number of bins and not the number of balls.
12 The set of unsatisfied vertices (in L) and its neighboring set (in R) are both stored

in double-linked lists to visit and remove efficiently.

420 G. Asharov et al.

Combining slow match and fast match. We achieve loose compaction as follows:

– Given the array I of size n and word size w = Ω(log n), we first break it into
blocks of size p2 = (w/ log w)2, and our goal is to move all “dense” blocks to
the beginning of the array. We find the matching obliviously using the “slow”
matching algorithm, that takes O(m · log m) = O

(
n
p2 · log n

p2

)
time, which

is linear. Then, compaction given the matching (by folding) takes O(n). By
running this compaction twice we get an output of size n/4, consisting of all
dense blocks of size p2.

– At this point, we want to run compaction on each one of the sparse blocks in
I (where again, blocks are of size p2) independently, and then take only the
result of the compaction of each block for the remaining part of the output
array.
In order to run the compaction on each block of size p2, we perform the same
trick again. We break each instance into p sub-blocks of a smaller size p, and
mark each sub-block as dense or sparse. As the number of sub-blocks we have
in each instance is p = w/ log w, we can find the matching using the fast
matching algorithm. Note that as previously, we did not handle the real balls
in the sparse sub-blocks.

– Finally, we have to solve compaction of all sparse sub-blocks of the previous
step. Each sparse sub-block is of size p = w/ log w, and thus can be solved in
linear time using the fast matching algorithm.

The final output consists of the following: (i) The output of compaction of
the dense block in I (to total size n/4), and (ii) a compaction of each one of
the sparse blocks in I (sums up together to n/4). Note that each one of these
sparse blocks (of size p2), by itself, is divided to p sub-blocks (each of size p)
and its compaction consists of (i) a compaction of its dense sub-blocks; and (ii)
a compaction of each one of its sparse sub-blocks.

We refer to the full version [5] for the formal description and analysis.

5 BigHT: Oblivious Hashing for Non-Recurrent Lookups

The hash table construction we describe in this section suffers from poly log log λ
extra multiplicative factor in Build and Lookup (which lead to similar overhead in
the impliedORAMconstruction).Nevertheless, this hash table serves as a first step
and we will get rid of the extra factor in Sect. 6. Hence, the parameter of expected
bin load μ = log9 λ is seemingly loose in this section but is necessary later in Sect. 6
(to apply Cuckoo hash). Additionally, note that this hash table captures and sim-
plifies many of the ideas in the oblivious hash table of Patel et al. [40] and can be
used to get an ORAM with similar overhead to theirs.

OptORAMa: Optimal Oblivious RAM 421

Construction 5.1: Hash Table for Shuffled Inputs
Procedure BigHT.Build(I):

– Input: An array I = (a1, . . . , an) containing n elements, where each ai is
either dummy or a (key, value) pair denoted (ki, vi), where both the key k
and the value v are D-bit strings where D := O(1) · w.

– Input assumption: The elements in the array I are uniformly shuffled.
– The algorithm:

1. Let μ := log9 λ, ε := 1
log2 λ

, δ := e− log λ·log log λ, and B := �n/μ�.
2. Sample PRF key. Sample a random PRF secret key sk.
3. Directly hash into major bins. Throw the real ai = (ki, vi) into B bins

using PRFsk(ki). If ai = dummy, throw it to a uniformly random bin. Let
Bin1, . . . ,BinB be the resulted bins.

4. Sample independent smaller loads. Samplea the load of throwing n′ balls
into B bins with failure probability δ, where n′ = n · (1 − ε). Let
(L1, . . . , LB) be the resulted loads. If there exists i ∈ [B] such that
||Bini| − μ| > 0.5 · εμ or

∣
∣
∣Li − n′

B

∣
∣
∣ > 0.5 · εμ, then abort.

5. Create major bins. Allocate new arrays (Bin′
1, . . . ,Bin

′
B), each of size μ.

For every i, iterate in parallel on both Bini and Bin′
i, and copy the first Li

elements in Bini to Bin′
i. Fill the empty slots in Bin′

i with dummy. (Li is
not revealed during this process, by continuing to iterate over Bini after
we cross the threshold Li.)

6. Create overflow pile. Obliviously merge all of the last |Bini|−Li elements
in each bin Bin1, . . . ,BinB into an overflow pile:

• For each i ∈ [B], replace the first Li positions with dummy.
• Concatenate all of the resulting bins and perform oblivious tight com-

paction on the resulting array such that the real balls appear in the
front. Truncate the outcome to be of length εn.

7. Prepare an oblivious hash table for elements in the overflow pile by calling
the Build algorithm of the (1 − O(δ) − δA

PRF)-oblivious Cuckoo hashing
scheme (see Building blocks, Section 3) parameterized by δ (recall that
δ = e−Ω(log λ·log log λ)) and the stash size log(1/δ)/ log n. Let OF = (OFT,
OFS) denote the outcome data structure. Henceforth, we use OF.Lookup
to denote a lookup operation to this oblivious Cuckoo hashing scheme.

8. Prepare data structure for efficient lookup. For i = 1, . . . , B, call
näıveHT.Build(Bin′

i) on each major bin to construct an oblivious hash
table, and let OBini denote the outcome for the i-th bin.

– Output: The algorithm stores in the memory a state that consists of (OBin1,
. . . ,OBinB ,OF, sk).

Procedure BigHT.Lookup(k):

– Input: The secret state (OBin1, . . . ,OBinB ,OF, sk), and a key k to look for
(that may be ⊥, i.e., dummy).

– The algorithm:
1. Call v ← OF.Lookup(k).

422 G. Asharov et al.

2. If k = ⊥, choose a random bin i
$←[B] and call OBini.Lookup(⊥).

3. If k 	= ⊥ and v 	= ⊥ (i.e., v was found in OF), choose a random bin i
$←[B]

and call OBini.Lookup(⊥).
4. If k 	= ⊥ and v = ⊥ (i.e., v was not found in OF), let i := PRFsk(k) and

call v ← OBini.Lookup(k).
– Output: The value v.

Procedure BigHT.Extract():

– Input: The secret state (OBin1, . . . ,OBinB,OF, sk).
– The algorithm:

1. Let
T = OBin1.Extract()‖OBin2.Extract()‖ . . . ‖OBinB .Extract()‖OF.Extract().

2. Perform oblivious tight compaction on T , moving all the real balls to the
front. Truncate the resulting array at length n. Let X be the outcome of
this step.

3. Call X′ ← IntersperseRDn(X), to get a permutation of X.
– Output: X′.

a See the full paper for more information on how to perform this step oblivi-
ously.

We claim that our construction obliviously implements the hash table func-
tionality for every sequence of instructions with non-recurrent lookups between
two Build operations and as long as the input array to Build is randomly and
secretly shuffled.

Theorem 5.2. Assume a δA
PRF-secure PRF. Then, Construction 5.1 (1 − n2 ·

e−Ω(log λ·log log λ) − δA
PRF)-obliviously implements the hash table functionality (see

Sect. 3) for all n ≥ log11 λ, assuming that the input array (of size n) for Build is
randomly shuffled. Moreover,

– Build and Extract each take O
(
n · poly log log λ + n · log n

log2 λ

)
time; and

– Lookup takes O(poly log log λ) time in addition to linearly scanning a stash of
size O(log λ).

In particular, if log11 λ ≤ n ≤ poly(λ), then hash table is (1 −
e−Ω(log λ·log log λ) − δA

PRF)-obliviously and consumes O(n · poly log log λ) time for
the Build and Extract phases; and Lookup consumes O(poly log log λ) time in
addition to linearly scanning a stash of size O(log λ).

The proof of security is given in the full version [5].

Remark 5.3. As we mentioned, Construction 5.1 is only the first step towards
the final oblivious hash table that we use in the final ORAM construction. We
make significant optimizations in Sect. 6. We show how to improve upon the Build
and Extract procedures from O(n·poly log log λ) to O(n) by replacing the näıveHT

OptORAMa: Optimal Oblivious RAM 423

hash table with an optimized version (called SmallHT) that is more efficient for
small lists. Additionally, while it may now seem that the O(log λ)-stash overhead
of Lookup is problematic, we will “merge” the stashes for different hash tables in
our final ORAM construction and store them again in an oblivious hash table.

6 SmallHT: Oblivious Hashing for Small Bins

In Sect. 5, we constructed an oblivious hashing scheme for randomly shuffled
inputs where Build and Extract consumes n · poly log log λ time and Lookup con-
sumes poly log log λ. The extra poly log log λ factors arise from the oblivious hash-
ing scheme (denoted näıveHT) which we use for each major bin of size ≈ log9 λ.
To get rid of the extra poly log log λ factors, in this section, we will construct
a new oblivious hashing scheme for poly log λ-sized arrays which are randomly
shuffled. In our new construction, Build and Extract takes linear time and Lookup
takes constant time (ignoring the stash which we will treat separately later).

As mentioned in Sect. 2.1, the key idea is to rely on packed operations such
that the metadata phase of Build (i.e., the cuckoo assignment problem) takes
only linear time—this is possible because the problem size n = poly log λ is
small. The more tricky step is how to route the actual balls into their destined
location in the hash-table. We cannot rely on standard oblivious sorting to per-
form this routing since this would consume a logarithmic extra overhead. Instead,
we devise a method to directly place the balls into the destined location in the
hash-table in the clear—this is safe as long as the input array has been padded
with dummies to the output length, and randomly shuffled; in this way only a
random permutation is revealed. A technicality arises in realizing this idea: after
figuring out the assigned destinations for real elements, we need to expand this
assignment to include dummy elements too, and the dummy elements must be
assigned at random to the locations unoccupied by the reals. At a high level, this
is accomplished through a combination of packed oblivious random permutation
and packed oblivious sorting over metadata.

We first describe two helpful procedures (mentioned in Sect. 2.1.2) in
Sects. 6.1 and 6.2. Then, in Sect. 6.3, we give the full description of the Build,
Lookup, and Extract procedures (Construction 6.5). Throughout this section, we
assume for simplicity that n = log9 λ (while in reality n ∈ log9 λ ± log7 λ).

6.1 Step 1 – Add Dummies and Shuffle

We are given a randomly shuffled array I of length n that contains real and
dummy elements. In Algorithm 6.1, we pad the input array with dummies to
match the size of the hash-table to be built. Each dummy will receive a unique
index label, and we rely on packed oblivious random permutation to permute
the labeled dummies. Finally, we rely on Intersperse on the real balls to make
sure that all elements, including reals and dummies, are randomly shuffled.

More formally, the output of Algorithm 6.1 is an array of size ncuckoo =
ccuckoo ·n+log λ, where ccuckoo is the constant required for Cuckoo hashing, which

424 G. Asharov et al.

contains all the real elements from I and the rest are dummies. Furthermore,
each dummy receives a distinct random index from {1, . . . , ncuckoo − nR}, where
nR is the number of real elements in I. Assuming that the real elements in I are
a-priori uniformly shuffled, then the output array is randomly shuffled.

Algorithm 6.1: Shuffle the Real and Dummy Elements
Input: An input array I of length n consisting of real and dummy elements.
Input Assumption: The real elements among I are randomly shuffled.
The algorithm:

1. Count the number of real elements in I. Let nR be the output.
2. Write down a metadata array MD of length ncuckoo, where the first nR

elements contain only a symbol real, and the remaining ncuckoo−nR elements
are of the form (⊥, 1), (⊥, 2), . . . , (⊥, ncuckoo − nR), i.e., each element is a ⊥
symbol tagged with a dummy index.

3. Run packed oblivious random permutation (see Section 3)on MD, packing
O

(
w

log n

)
elements into a single memory word. Run oblivious tight com-

paction on the resulting array, moving all the dummy elements to the end.
4. Run tight compaction on the input I to move all the real elements to the

front.
5. Obliviously write down an array I′ of length ncuckoo, where the first nR

elements are the first nR elements of I and the last ncuckoo −nR elements are
the last ncuckoo − nR elements of MD, decompressed to the original length
as every entry in the input I.

6. Run Intersperse on I′ letting n1 := nR and n2 := ncuckoo − nR. Let X denote
the outcome (permuted) array.

Output: The array X.

Claim 6.2. Algorithm 6.1 fails with probability at most e−Ω(
√

n) and completes
in O(n + n

w · log3 n) time. Specifically, for n = log9 λ and w ≥ log3 log λ, the
algorithm completes in O(n) time and fails with probability e−Ω(log9/2 λ).

Proof. All steps except the oblivious random permutation in Step 3 incur O(n)
time and are perfectly correct by construction. Each element of MD can be
expressed with O(log n) bits, so the packed oblivious random permutation incurs
O

(
(n · log3 n)/w

)
time and has failure probability at most e−Ω(

√
n).

6.2 Step 2 – Evaluate Assignment with Metadata Only

We obliviously emulate the Cuckoo hashing procedure, but doing it directly on
the input array is too expensive (as it incurs oblivious sorting inside) so we do
it directly on metadata (which is short since there are few elements), and use
the packed version of oblivious sort (see Sect. 3). At the end of this step, every

OptORAMa: Optimal Oblivious RAM 425

element in the input array should learn which bin (either in the main table or
the stash) it is destined for. Recall that the Cuckoo hashing consists of a main
table of ccuckoo · n bins and a stash of log λ bins.

Algorithm 6.3: Evaluate Cuckoo Hash Assignment on Metadata
Input: An array MDX of length ncuckoo = ccuckoo ·n+log λ, where each element
is either dummy or a pair (choicei,1, choicei,2), where choicei,b ∈ [ccuckoo · n] for
every b ∈ {1, 2}, and the number of real pairs is at most n.
Remark: All oblivious sorting in the algorithm below will be instantiated using
packed oblivious sorting (including those called by cuckooAssign and oblivious
bin placement).
The algorithm:

1. Run the indiscriminate oblivious Cuckoo assignment algorithm cuckooAssign
with parameter δ = e− log λ log log λ (where cuckooAssign is formally de-
scribed in the full paper) and let AssignX be the result. For every i
for which MDX[i] = (choicei,1, choicei,2), we have that AssignX[i] ∈
{choicei,1, choicei,2} ∪ Sstash, i.e., either one of the two choices or the stash
Sstash = [ncuckoo] \ [ccuckoo · n]. For every i for which MDX[i] is dummy we
have that AssignX[i] = ⊥.

2. Run oblivious bin placement on AssignX, and let Occupied be the output
array (of length ncuckoo). For every index j we have Occupied[j] = i if
AssignX[i] = j for some i. Otherwise, Occupied[j] = ⊥.

3. Label the i-th element in AssignX with a tag t = i for all i. Run oblivious
sorting on AssignX and let ˜Assign be the resulting array, such that all real
elements appear in the front, and all dummies appear at the end, and ordered
by their respective dummy-index (i.e. given in Algorithm 6.1, Step 2).

4. Label the i-th element in Occupied with a tag t = i for all i. Run oblivious
sorting on Occupied and let ˜Occupied be the resulting array, such that
all occupied bins appear in the front and all empty bins appear at the end
(where each empty bin contains an index (i.e., a tag t) of an empty bin in
Occupied).

5. Scan both arrays ˜Assign and ˜Occupied in parallel, updating the destined
bin of each dummy element in ˜Assign with the respective tag in ˜Occupied
(and each real element pretends to be updated).

6. Run oblivious sorting on the array ˜Assign (back to the original ordering
in the array AssignX) according to the tag labeled in Step 3. Update the
assignments of all dummy elements in AssignX according to the output
array of this step.

Output: The array AssignX.

426 G. Asharov et al.

Our input for this step is an array MDX of length ncuckoo := ccuckoo ·n+log λ
which consists of pairs of bin choices (choice1, choice2), where each choice is an
element from [ccuckoo ·n]∪{⊥}. The real elements have choices in [ccuckoo ·n] while
the dummies have ⊥. This array corresponds to the bin choices of the original
elements in X (using a PRF) which is the original array I after adding enough
dummies and randomly shuffling that array.

To compute the bin assignments we start with obliviously assigning the bin
choices of the real elements in MDX. Next, we obliviously assign the remaining
dummy elements to the remaining available locations. We do so by a sequence
of oblivious sort algorithms. See Algorithm 6.3.

Claim 6.4. For n ≥ log9 λ, Algorithm 6.3 fails with probability at most
e−Ω(log λ·log log λ) and completes in O

(
n · (1 + log3 n

w)
)

time. Specifically, for

n = log9 λ and w ≥ log3 log λ, Algorithm 6.3 completes in O(n) time.

Proof. The input arrays is of size ncuckoo = ccuckoo ·n+log λ and the arrays MDX,
AssignX, Occupied, ˜Occupied, ˜Assign are all of length at most ncuckoo and
consist of elements that need O(log ncuckoo) bits to describe. Thus, the cost of
packed oblivious sort is O((ncuckoo/w) · log3 ncuckoo) ≤ O((n · log3 n)/w). The
linear scans take time O(ncuckoo) = O(n). The cost of the cuckooAssign from
Step 1 has failure probability e−Ω(log λ·log log λ) and it takes time O((ncuckoo/w) ·
log3 ncuckoo) ≤ O((n · log3 n)/w).

6.3 SmallHT Construction

The full description of the construction is given next. It invokes Algorithms 6.1
and 6.3.

Construction 6.5: SmallHT – Hash table for Small Bins

Procedure SmallHT.Build(I):

– Input: An input array I of length n consisting of real and dummy elements.
Each real element is of the form (k, v) where both the key k and the value v
are D-bit strings where D := O(1) · w.

– Input Assumption: The real elements among I are randomly shuffled.
– The algorithm:

1. Run Algorithm 6.1 (prepare real and dummy elements) on input I, and
receive back an array X.

2. Choose a PRF key sk where PRF maps {0, 1}D → [ccuckoo · n].
3. Create a new metadata array MDX of length n. Iterate over the the

array X and for each real element X[i] = (ki, vi) compute two values
(choicei,1, choicei,2) ← PRFsk(ki), and write (choicei,1, choicei,2) in the i-
th location of MDX. If X[i] is dummy, write (⊥,⊥) in the i-th location
of MDX.

OptORAMa: Optimal Oblivious RAM 427

4. Run Algorithm 6.3 on MDX to compute the assignment for every element
in X. The output of this algorithm, denoted AssignX, is an array of
length n, where in the i-th position we have the destination location of
element X[i].

5. Route the elements of X, in the clear, according to AssignX, into an
array Y of size ccuckoo · n and into a stash S.

– Output: The algorithm stores in the memory a secret state consists of the
array Y, the stash S and the secret key sk.

Procedure SmallHT.Lookup(k):

– Input: A key k that might be dummy ⊥. It receives a secret state that
consists of an array Y, a stash S, and a key sk.

– The algorithm:
1. If k 	= ⊥:

(a) Evaluate (choice1, choice2) ← PRFsk(k).
(b) Visit Ychoice1 ,Ychoice2 and the stash S to look for the key k. If found,

remove the element by overwriting ⊥. Let v∗ be the corresponding
value (if not found, set v∗ := ⊥).

2. Otherwise:
(a) Choose random (choice1, choice2) independently at random from

[ccuckoo · n].
(b) Visit Ychoice1 ,Ychoice2 and the stash S and look for the key k. Set

v∗ := ⊥.
– Output: Return v∗.

Procedure SmallHT.Extract().

– Input: The algorithm has no input; It receives the secret state that consists
of an array Y, a stash S, and a key sk.

– The algorithm:
1. Perform oblivious tight compaction on Y‖S, moving all the real elements

to the front. Truncate the resulting array at length n. Let X be the
outcome of this step.

2. Call X′ ← IntersperseRDn(X) to get a permuted array.
– Output: The array X′.

We prove that our construction obliviously implements the oblivious hash
table functionality for every sequence of instructions with non-recurrent lookups
between two Build operations, assuming that the input array for Build is ran-
domly shuffled.

Theorem 6.6. Assume a δA
PRF-secure PRF. Suppose that n = log9 λ and w ≥

log3 log λ. Then, Construction 6.5 (1 − n · e−Ω(log λ·log log λ) − δA
PRF)-obliviously

implements the non-recurrent hash table functionality assuming that the input
for Build (of size n) is randomly shuffled. Moreover, Build and Extract incur
O(n) time, Lookup has constant time in addition to linearly scanning a stash of
size O(log λ).

428 G. Asharov et al.

Proof. The proof of security is given in the full version [5]. We proceed with the
efficiency analysis. The Build operation executes Algorithm 6.1 that consumes
O(n) time (by Claim 6.2), then performs additional O(n) time, then executes
Algorithm 6.3 that consumes O(n) time (by Claim 6.4), and finally performs
additional O(n) time. Thus, the total time is O(n). Lookup, by construction,
incurs O(1) time in addition to linearly scanning the stash S which is of size
O(log λ). The time of Extract is O(n) by construction.

6.4 CombHT: Combining BigHT with SmallHT

We use SmallHT in place of näıveHT for each of the major bins in the BigHT
construction from Sect. 5. Since the load in the major bin in the hash table
BigHT construction is indeed n = log9 λ, this modification is valid. Note that
we still assume that the number of elements in the input to CombHT, is at least
log11 λ (as in Theorem 5.2).

However, we make one additional modification that will be useful for us later
in the construction of the ORAM scheme (Sect. 7). Recall that each instance of
SmallHT has a stashS of size O(log λ) and so Lookupwill require, not only searching
an element in the (super-constant size) stash OFS of the overflow pile from BigHT,
but also linearly scanning the super-constant size stash of the corresponding major
bin. To this end, we merge the different stashes of the major bins and store the
merged list in an oblivious Cuckoo hash (denoted as CombS later). (A similar idea
has also been applied in several prior works [13,25,27,29].) This results with a new
hash table scheme we call CombHT. See the full version [5] for precise details.

7 Oblivious RAM

In this section, we utilize CombHT in the hierarchical framework of Goldreich
and Ostrovsky [23] to construct our ORAM scheme. We denote by λ the security
parameter. For simplicity, we assume that N , the size of the logical memory, is
a power of 2. Additionally, we assume that w, the word size is Θ(log N).

ORAM Initialization. Our structure consists of one dictionary D (see Sect. 3),
and O(log N) levels numbered �+1, . . . , L respectively, where � = �11 log log λ�,
and L = �log N� is the maximal level.

– The dictionary D is an oblivious dictionary storing 2�+1 elements.
– Each level i ∈ {�+1, . . . , L} consists of an instance, called Ti, of the oblivious

hash table CombHT from Sect. 6.4 that has capacity 2i.

Additionally, each level is associated with an additional bit fulli, where 1 stands
for full and 0 stands for available. Available means that this level is currently
empty and does not contain any blocks, and thus one can rebuild into this level.
Full means that this level currently contains blocks, and therefore an attempt to
rebuild into this level will effectively cause a cascading merge. In addition, there
is a global counter ctr that is initialized to 0.

OptORAMa: Optimal Oblivious RAM 429

Construction 7.1: Oblivious RAM Access(op, addr, data).

Input: op ∈ {read,write}, addr ∈ [N] and data ∈ {0, 1}w.
Secret state: The dictionary D, levels T�+1, . . . , TL, the bits full�+1, . . . , fullL
and counter ctr.
The algorithm:

1. Initialize found := false, data∗ := ⊥.
2. Perform fetched := D.Lookup(addr). If fetched 	= ⊥, then set found := true.
3. For each i ∈ {� + 1, . . . , L} in increasing order, do:

(a) If found = false:
i. Run fetched := Ti.Lookup(addr) with the following modifications:

– Do not visit the stash of OF.
– Do not visit the stash of CombS.

(below, these stashes (OFS,CombSS) are merged into previous levels.)
ii. If fetched 	= ⊥, let found := true and data∗ := fetched.

(b) Else, Ti.Lookup(⊥).
4. If found = false, i.e., this is the first time addr is being accessed, set data∗ = 0.
5. Let (k, v) := {(addr, data∗)} if this is a read operation; else let (k, v) := {(addr,

data)}. Insert (k, (�,⊥, v)) into oblivious dictionary D using D.Insert(k, (�,⊥,
v)).

6. Increment ctr by 1. If ctr ≡ 0 mod 2�, perform the following.
(a) Let j be the smallest level index such that fullj = 0 (i.e., available). If all

levels are marked full, then j := L. In other words, j is the target level
to be rebuilt.

(b) Let U := D.Extract()‖T�+1.Extract()‖ . . . ‖Tj−1.Extract() and set j∗ := j−
1. If all levels are marked full, then additionally let U := U‖TL.Extract()
and set j∗ := L. (Here, Extract() of CombHT does not extract the element
from the stashes.)

(c) Run Intersperse
(j∗−�)

2�+1,2�+1,2�+2,...,2j∗ (U) (see Section 3). Denote the output

by Ũ. If j = L, then additionally do the following to shrink Ũ to size
N = 2L:
i. Run the tight compaction on Ũ moving all real elements to the front.

Truncate Ũ to length N .
ii. Run Ũ ← IntersperseRDN (Ũ) to get a permuted U.

(d) Rebuild the jth hash table with the 2j elements from Ũ via Tj :=
CombHT.Build(Ũ) and let OFS,CombSS be the associated stashes (of size
O(log λ) each). Mark fullj := 1.
i. For each element (k, v) in the stash OFS, run D.Insert(k, v).
ii. For each element (k, v) in the stash CombSS, run D.Insert(k, v).

(e) For i ∈ {�+1, . . . , j −1}, reset Ti to be empty structure and set fulli := 0.

Output: Return data∗.

The next theorem is proven in the full version [5].

430 G. Asharov et al.

Theorem 7.2. Let N ∈ N be the capacity of ORAM and λ ∈ N be a
security parameter. Assume a δA

PRF-secure PRF. For any number of queries
T = T (N,λ) ≥ N , Construction 7.1 (1 − T · N2 · e−Ω(log λ·log log λ) − δA

PRF)-
obliviously implements the ORAM functionality. Moreover, the construction has
O

(
log N ·

(
1 + log N

log2 λ

)
+ log9 log λ

)
amortized time overhead.

Acknowledgments. We are grateful to Hubert Chan, Kai-Min Chung, Yue Guo,
and Rafael Pass for helpful discussions. This work is supported in part by a Simons
Foundation junior fellow award awarded to G.A., an AFOSR Award FA9550-18-1-
0267, NSF grant CNS-1601879, a DARPA Brandeis award, a Packard Fellowship, a
Sloan Fellowship, Google Faculty Research Awards, a VMware Research Award, and
a Baidu Research Award. G.A. and I.K. were with Cornell Tech during most this
research.

References

1. https://en.wikipedia.org/wiki/Sorting network
2. Ajtai, M., Komlós, J., Szemerédi, E.: An O(n log n) sorting network. In: ACM

STOC, pp. 1–9 (1983)
3. Andersson, A., Hagerup, T., Nilsson, S., Raman, R.: Sorting in linear time? In:

ACM STOC, pp. 427–436 (1995)
4. Arora, S., Leighton, T., Maggs, B.: On-line algorithms for path selection in a

nonblocking network. In: ACM STOC (1990)
5. Asharov, G., Komargodski, I., Lin, W.-K., Nayak, K., Peserico, E., Shi, E.:

Optorama: optimal oblivious RAM. IACR Cryptology ePrint Archive 2018:892
(2018)

6. Batcher, K.E.: Sorting networks and their applications. In: American Federation
of Information Processing Societies: AFIPS Conference Proceedings, vol. 32, pp.
307–314 (1968)

7. Bindschaedler, V., Naveed, M., Pan, X., Wang, X., Huang, Y.: Practicing oblivious
access on cloud storage: the gap, the fallacy, and the new way forward. In: ACM
CCS, pp. 837–849 (2015)

8. Boyle, E., Naor, M.: Is there an oblivious RAM lower bound? In: ACM ITCS, pp.
357–368 (2016)

9. Bringmann, K., Kuhn, F., Panagiotou, K., Peter, U., Thomas, H.: Internal DLA:
efficient simulation of a physical growth model. In: Esparza, J., Fraigniaud, P.,
Husfeldt, T., Koutsoupias, E. (eds.) ICALP 2014, Part I. LNCS, vol. 8572, pp.
247–258. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-43948-
7 21

10. Hubert Chan, T.-H., Guo, Y., Lin, W.-K., Shi, E.: Oblivious hashing revisited,
and applications to asymptotically efficient ORAM and OPRAM. In: Takagi, T.,
Peyrin, T. (eds.) ASIACRYPT 2017, Part I. LNCS, vol. 10624, pp. 660–690.
Springer, Cham (2017). https://doi.org/10.1007/978-3-319-70694-8 23

11. Hubert Chan, T.-H., Guo, Y., Lin, W.-K., Shi, E.: Cache-oblivious and data-
oblivious sorting and applications. In: SODA, pp. 2201–2220 (2018)

12. Hubert Chan, T.-H., Nayak, K., Shi, E.: Perfectly secure oblivious parallel RAM.
In: Beimel, A., Dziembowski, S. (eds.) TCC 2018, Part II. LNCS, vol. 11240, pp.
636–668. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-03810-6 23

https://en.wikipedia.org/wiki/Sorting_network
https://doi.org/10.1007/978-3-662-43948-7_21
https://doi.org/10.1007/978-3-662-43948-7_21
https://doi.org/10.1007/978-3-319-70694-8_23
https://doi.org/10.1007/978-3-030-03810-6_23

OptORAMa: Optimal Oblivious RAM 431

13. Hubert Chan, T.-H., Shi, E.: Circuit OPRAM: unifying statistically and computa-
tionally secure ORAMs and OPRAMs. In: Kalai, Y., Reyzin, L. (eds.) TCC 2017,
Part II. LNCS, vol. 10678, pp. 72–107. Springer, Cham (2017). https://doi.org/10.
1007/978-3-319-70503-3 3

14. Paul, J.C., Simon, W.: Decision trees and random access machines (1980)
15. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms,

3rd edn, pp. 428–436. MIT Press, Cambridge (2009)
16. Damg̊ard, I., Meldgaard, S., Nielsen, J.B.: Perfectly secure oblivious RAM with-

out random oracles. In: Ishai, Y. (ed.) TCC 2011. LNCS, vol. 6597, pp. 144–163.
Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-19571-6 10

17. Farhadi, A., Hajiaghayi, M.T., Larsen, K.G., Shi, E.: Lower bounds for external
memory integer sorting via network coding. In: ACM STOC (2019)

18. Feldman, P., Friedman, J., Pippenger, N.: Non-blocking networks. In: ACM STOC,
pp. 247–254 (1986)

19. Fletcher, C.W., van Dijk, M., Devadas, S.: A secure processor architecture for
encrypted computation on untrusted programs. In: Seventh ACM Workshop on
Scalable Trusted Computing, pp. 3–8. ACM (2012)

20. Fletcher, C.W., Ren, L., Kwon, A., van Dijk, M., Devadas, S.: Freecursive ORAM:
[nearly] free recursion and integrity verification for position-based oblivious RAM.
In: ACM ASPLOS, pp. 103–116 (2015)

21. Gentry, C., Halevi, S., Jutla, C., Raykova, M.: Private database access with HE-
over-ORAM architecture. In: Malkin, T., Kolesnikov, V., Lewko, A.B., Polychron-
akis, M. (eds.) ACNS 2015. LNCS, vol. 9092, pp. 172–191. Springer, Cham (2015).
https://doi.org/10.1007/978-3-319-28166-7 9

22. Goldreich, O.: Towards a theory of software protection and simulation by oblivious
RAMs. In: ACM STOC, pp. 182–194 (1987)

23. Goldreich, O., Ostrovsky, R.: Software protection and simulation on oblivious
RAMs. J. ACM 43(3), 431–473 (1996)

24. Goodrich, M.T.: Zig-zag sort: a simple deterministic data-oblivious sorting algo-
rithm running in O(N Log N) time. In: ACM STOC, pp. 684–693 (2014)

25. Goodrich, M.T., Mitzenmacher, M.: Privacy-preserving access of outsourced data
via oblivious RAM simulation. In: Aceto, L., Henzinger, M., Sgall, J. (eds.) ICALP
2011, Part II. LNCS, vol. 6756, pp. 576–587. Springer, Heidelberg (2011). https://
doi.org/10.1007/978-3-642-22012-8 46

26. Goodrich, M.T., Mitzenmacher, M., Ohrimenko, O., Tamassia, R.: Oblivious RAM
simulation with efficient worst-case access overhead. In: Proceedings of the 3rd
ACM Workshop on Cloud Computing Security Workshop, CCSW 2011, pp. 95–
100 (2011)

27. Goodrich, M.T., Mitzenmacher, M., Ohrimenko, O., Tamassia, R.: Privacy-
preserving group data access via stateless oblivious RAM simulation. In: SODA,
pp. 157–167 (2012)

28. Hagerup, T., Shen, H.: Improved nonconservative sequential and parallel integer
sorting. Inf. Process. Lett. 36(2), 57–63 (1990)

29. Kushilevitz, E., Lu, S., Ostrovsky, R.: On the (in)security of hash-based oblivious
RAM and a new balancing scheme. In: SODA, pp. 143–156 (2012)

30. Larsen, K.G., Nielsen, J.B.: Yes, there is an oblivious RAM lower bound!. In:
Shacham, H., Boldyreva, A. (eds.) CRYPTO 2018, Part II. LNCS, vol. 10992, pp.
523–542. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-96881-0 18

31. Leighton, F.T., Ma, Y., Suel, T.: On probabilistic networks for selection, merging,
and sorting. Theory Comput. Syst. 30(6), 559–582 (1997)

https://doi.org/10.1007/978-3-319-70503-3_3
https://doi.org/10.1007/978-3-319-70503-3_3
https://doi.org/10.1007/978-3-642-19571-6_10
https://doi.org/10.1007/978-3-319-28166-7_9
https://doi.org/10.1007/978-3-642-22012-8_46
https://doi.org/10.1007/978-3-642-22012-8_46
https://doi.org/10.1007/978-3-319-96881-0_18

432 G. Asharov et al.

32. Li, Z., Li, B.: Network coding: the case of multiple unicast sessions (2004)
33. Lin, W.-K., Shi, E., Xie, T.: Can we overcome the n log n barrier for oblivious

sorting? In: SODA (2019)
34. Liu, C., Wang, X.S., Nayak, K., Huang, Y., Shi, E.: ObliVM: a programming

framework for secure computation. In: IEEE S&P (2015)
35. Lu, S., Ostrovsky, R.: Distributed oblivious RAM for secure two-party compu-

tation. In: Sahai, A. (ed.) TCC 2013. LNCS, vol. 7785, pp. 377–396. Springer,
Heidelberg (2013). https://doi.org/10.1007/978-3-642-36594-2 22

36. Maas, M., et al.: PHANTOM: practical oblivious computation in a secure proces-
sor. In: ACM CCS, pp. 311–324 (2013)

37. Margulis, G.A.: Explicit constructions of concentrators. Probl. Pereda. Inf. 9(4),
71–80 (1973)

38. Mitchell, J.C., Zimmerman, J.: Data-oblivious data structures. In: STACS, pp.
554–565 (2014)

39. Ostrovsky, R., Shoup, V.: Private information storage. In: ACM STOC, pp. 294–
303 (1997)

40. Patel, S., Persiano, G., Raykova, M., Yeo, K.: Oblivious RAM with logarithmic
overhead. In: IEEE FOCS, Panorama (2018)

41. Pinsker, M.S.: On the complexity of a concentrator. In: 7th International Teletraffic
Conference (1973)

42. Pippenger, N.: Superconcentrators. SIAM J. Comput. 6(2), 298–304 (1977)
43. Pippenger, N.: Self-routing superconcentrators. J. Comput. Syst. Sci. 52(1), 53–60

(1996)
44. Ren, L., Yu, X., Fletcher, C.W., van Dijk, M., Devadas, S.: Design space exploration

and optimization of path oblivious RAM in secure processors. In: ACM ISCA, pp.
571–582 (2013)

45. Shi, E., Hubert Chan, T.-H., Stefanov, E., Li, M.: Oblivious RAM with O((logN)3)
worst-case cost. In: Lee, D.H., Wang, X. (eds.) ASIACRYPT 2011. LNCS, vol.
7073, pp. 197–214. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-
642-25385-0 11

46. Stefanov, E., Shi, E.: Oblivistore: high performance oblivious cloud storage. In:
IEEE S&P, pp. 253–267 (2013)

47. Stefanov, E., Shi, E., Song, D.X.: Towards practical oblivious RAM. In: NDSS
(2012)

48. Stefanov, E., et al.: Path ORAM: an extremely simple oblivious RAM protocol.
In: ACM CCS, pp. 299–310 (2013)

49. Valiant, L.G.: Graph-theoretic properties in computational complexity. J. Comput.
Syst. Sci. 13(3), 278–285 (1976)

50. Wang, X., Hubert Chan, T.-H., Shi, E.: Circuit ORAM: on tightness of the
Goldreich-Ostrovsky lower bound. In: ACM CCS, pp. 850–861 (2015)

51. Wang, X.S., Huang, Y., Hubert Chan, T.-H., Shelat, A., Shi, E.: SCORAM: obliv-
ious RAM for secure computation. In: ACM CCS, pp. 191–202 (2014)

52. Williams, P., Sion, R., Tomescu, A.: PrivateFS: a parallel oblivious file system. In:
ACM CCS (2012)

53. Zahur, S., et al.: Revisiting square-root ORAM: efficient random access in multi-
party computation. In: IEEE S&P, pp. 218–234 (2016)

https://doi.org/10.1007/978-3-642-36594-2_22
https://doi.org/10.1007/978-3-642-25385-0_11
https://doi.org/10.1007/978-3-642-25385-0_11

	OptORAMa: Optimal Oblivious RAM
	1 Introduction
	1.1 Our Results: Optimal Oblivious RAM
	1.2 Our Results: Optimal Oblivious Tight Compaction

	2 Technical Roadmap
	2.1 Oblivious RAM
	2.2 Tight Compaction

	3 Oblivious Building Blocks
	4 Oblivious Tight Compaction in Linear Time
	5 BigHT: Oblivious Hashing for Non-Recurrent Lookups
	6 SmallHT: Oblivious Hashing for Small Bins
	6.1 Step 1 – Add Dummies and Shuffle
	6.2 Step 2 – Evaluate Assignment with Metadata Only
	6.3 SmallHT Construction
	6.4 CombHT: Combining BigHT with SmallHT

	7 Oblivious RAM
	References

