
Implementing Grover Oracles
for Quantum Key Search

on AES and LowMC

Samuel Jaques1(B), Michael Naehrig2(B), Martin Roetteler3,
and Fernando Virdia4

1 Department of Materials, University of Oxford, Oxford, UK
samuel.jaques@materials.ox.ac.uk

2 Microsoft Research, Redmond, WA, USA
mnaehrig@microsoft.com

3 Microsoft Quantum, Redmond, WA, USA
4 Information Security Group, Royal Holloway, University of London, Egham, UK

Abstract. Grover’s search algorithm gives a quantum attack against
block ciphers by searching for a key that matches a small number of
plaintext-ciphertext pairs. This attack uses O(

√
N) calls to the cipher to

search a key space of size N . Previous work in the specific case of AES
derived the full gate cost by analyzing quantum circuits for the cipher,
but focused on minimizing the number of qubits.

In contrast, we study the cost of quantum key search attacks under a
depth restriction and introduce techniques that reduce the oracle depth,
even if it requires more qubits. As cases in point, we design quantum
circuits for the block ciphers AES and LowMC. Our circuits give a lower
overall attack cost in both the gate count and depth-times-width cost
models. In NIST’s post-quantum cryptography standardization process,
security categories are defined based on the concrete cost of quantum
key search against AES. We present new, lower cost estimates for each
category, so our work has immediate implications for the security assess-
ment of post-quantum cryptography.

As part of this work, we release Q# implementations of the full Grover
oracle for AES-128, -192, -256 and for the three LowMC instantiations
used in Picnic, including unit tests and code to reproduce our quantum
resource estimates. To the best of our knowledge, these are the first two
such full implementations and automatic resource estimations.

Keywords: Quantum cryptanalysis · Grover’s algorithm · AES ·
LowMC · Post-quantum cryptography · Q# implementation

S. Jaques—Partially supported by the University of Oxford Clarendon fund.
S. Jaques and F. Virdia—This work was done while Fernando and Sam were interns
at Microsoft Research.
F. Virdia—Partially supported by the EPSRC and the UK government as part of
the Centre for Doctoral Training in Cyber Security at Royal Holloway, University of
London (EP/P009301/1).

c© International Association for Cryptologic Research 2020
A. Canteaut and Y. Ishai (Eds.): EUROCRYPT 2020, LNCS 12106, pp. 280–310, 2020.
https://doi.org/10.1007/978-3-030-45724-2_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-45724-2_10&domain=pdf
https://doi.org/10.1007/978-3-030-45724-2_10

Implementing Grover Oracles for Quantum Key Search on AES and LowMC 281

1 Introduction

The prospect of a large-scale, cryptographically relevant quantum computer has
prompted increased scrutiny of the post-quantum security of cryptographic primi-
tives. Shor’s algorithm for factoring and computing discrete logarithms introduced
in [45] and [46] will completely break public-key schemes such as RSA, ECDSA and
ECDH. But symmetric schemes like block ciphers and hash functions are widely
considered post-quantum secure. The only caveat thus far is a security reduction
due to key search or pre-image attacks with Grover’s algorithm [22]. As Grover’s
algorithm only provides at most a square root speedup, the rule of thumb is to sim-
ply double the cipher’s key size to make it post-quantum secure. Such conventional
wisdom reflects the asymptotic behavior and only gives a rough idea of the security
penalties that quantum computers inflict on symmetric primitives. In particular,
the cost of evaluating the Grover oracle is often ignored.

In their call for proposals to the standardization of post-quantum cryptogra-
phy [37], the National Institute of Standards and Technology (NIST) proposes
security categories for post-quantum public-key schemes such as key encapsula-
tion and digital signatures. Categories are defined by the cost of quantum algo-
rithms for exhaustive key search on the block cipher AES and collision search for
the hash function SHA-3, and measure the attack cost in the number of quantum
gates. Because the gate count of Grover’s algorithm increases with paralleliza-
tion, they impose a total upper bound on the depth of a quantum circuit, called
MAXDEPTH, and account for this in the gate counts. An algorithm meets the
requirements of a specific security category if the best known attack uses more
resources (gates) than are needed to solve the reference problem. Hence, a con-
crete and meaningful definition of these security categories depends on precise
resource estimates of the Grover oracle for key search on AES. Security cat-
egories 1, 3 and 5 correspond to key recovery against AES-128, AES-192 and
AES-256, respectively. The NIST proposal derives gate cost estimates from the
concrete, gate-level descriptions of the AES oracle by Grassl et al. [21]. Grassl
et al. aim to minimize the circuit width, i.e. the number of qubits needed.

Prior Work. Since the publication of [21], other works have studied quan-
tum circuits for AES, the AES Grover oracle and its use in Grover’s algorithm.
Almazrooie et al. [3] improve the quantum circuit for AES-128. As in [21], the
focus is on minimizing the number of qubits. The improvements are a slight
reduction in the total number of Toffoli gates and the number of qubits by using
a wider binary field inversion circuit that saves one multiplication. Kim et al. [29]
discuss time-space trade-offs for key search on block ciphers in general and use
AES as an example. They discuss NIST’s MAXDEPTH parameter and hence study
parallelization strategies for Grover’s algorithm to address the depth constraint.
They take the Toffoli gate depth as the relevant metric for the MAXDEPTH bound
arguing that it is a conservative approximation.

Recently, independent and concurrent to parts of this work, Langenberg et al.
[31] developed quantum circuits for AES that demonstrate significant improve-
ments over those presented in [21] and [3]. The main source of optimization is a

282 S. Jaques et al.

different S-box design derived from work by Boyar and Peralta in [10] and [11],
which greatly reduces the number of Toffoli gates in the S-box as well as its Tof-
foli depth. Another improvement is that fewer auxiliary qubits are required for the
AES key expansion. Again, this work aligns with the objectives in [21] to keep the
number of qubits small.

Bonnetain et al. [9] study the post-quantum security of AES within a new
framework for classical and quantum structured search. The work cites [21] for
deducing concrete gate counts for reduced-round attacks.

Our Contributions. We present implementations of the full Grover oracle for
key search on AES and LowMC in Q# [49], including full implementations of
the block ciphers themselves. In contrast to previous work [3,21] and [31], having
a concrete implementation allows us to get more precise, flexible and automatic
estimates of the resources required to compute these operations. It also allows
us to unit test our circuits, to make sure that the implementations are correct.

The source code is publicly available1 under a free license. We hope that it
can serve as a useful starting point for cryptanalytic work to assess the post-
quantum security of other schemes.

We review the literature on the parallelization of Grover’s algorithm [13,23,
29,55] to explore the cost of attacking AES and LowMC in the presence of a
bound on the total depth, such as MAXDEPTH proposed by NIST. We conclude
that using parallelization by dividing the search space is advantageous. We also
give a rigorous justification for the number of plaintext-ciphertext blocks needed
in Grover’s oracle in the context of parallelization. Smaller values than those
proposed by Grassl et al. [21] are sufficient, as is also pointed out in [31].

Our quantum circuit optimization approach differs from those in the previ-
ous literature [3,21] and [31] in that our implementations do not aim for the
lowest possible number of qubits. Instead, we designed them to minimize the
gate-count and depth-times-width cost metrics for quantum circuits under a
depth constraint. The gate-count metric is relevant for defining the NIST secu-
rity categories and the depth-times-width cost metric is a more realistic mea-
sure of quantum resources when quantum error correction is deployed. Favoring
lower depth at the cost of a slightly larger width in the oracle circuit leads to
costs that are smaller in both metrics than for the circuits presented in [3,21]
and [31]. Grover’s algorithm does not parallelize well, meaning that minimizing
depth rather than width is crucial to make the most out of the available depth.

To the best of our knowledge, our work results in the most shallow quantum
circuit of AES so far, and the first ever for LowMC. We chose to also implement
LowMC as an example of a quantum circuit for another block cipher. It is used
in the Picnic signature scheme [14,56], a round-2 candidate in the NIST stan-
dardization process. Thus, our implementation can contribute to more precise
cost estimates for attacks on Picnic and its post-quantum security assessment.

We present our results for quantum key search on AES in the context of the
NIST post-quantum cryptography standardization process and derive new and
1 https://github.com/microsoft/grover-blocks.

https://github.com/microsoft/grover-blocks

Implementing Grover Oracles for Quantum Key Search on AES and LowMC 283

lower cost estimates for the definition of the NIST security strength categories.
We see a consistent gate cost reduction between 11 and 13 bits, making it easier
for submitters to claim a certain quantum security category.

2 Finding a Block Cipher Key with Grover’s Algorithm

Given plaintext-ciphertext pairs created by encrypting a small number of mes-
sages under a block cipher, Grover’s quantum search algorithm [22] can be used
to find the secret key [54]. This section provides some preliminaries on Grover’s
algorithm, how it can be applied to the key search problem and how it parallelizes
under depth constraints.

2.1 Grover’s Algorithm

Grover’s algorithm [22] searches through a space of N elements; for simplicity, we
restrict to N = 2k right away and label elements by their indices in {0, 1}k. The
algorithm works with a superposition |ψ〉 = 2−k/2

∑
x∈{0,1}k |x〉 of all indices,

held in a register of k qubits. It makes use of an operator Uf for evaluating a
Boolean function f : {0, 1}k → {0, 1} that marks solutions to the search problem,
i.e. f(x) = 1 if and only if the element corresponding to x is a solution. When
applying the Grover oracle Uf to a state |x〉 |y〉 for a single qubit |y〉, it acts
as |x〉 |y〉 �→ |x〉 |y ⊕ f(x)〉 in the computational basis. When |y〉 is in the state
|ϕ〉 = (|0〉−|1〉)/√

2, then this action can be written as |x〉 |ϕ〉 �→ (−1)f(x) |x〉 |ϕ〉.
This means that the oracle applies a phase shift to exactly the solution indices.

The algorithm first prepares the state |ψ〉 |ϕ〉 with |ψ〉 and |ϕ〉 as above. It
then repeatedly applies the so-called Grover iteration G = (2 |ψ〉〈ψ| − I)Uf , an
operator that consists of the oracle Uf followed by the operator 2 |ψ〉〈ψ| − I,
which can be viewed as an inversion about the mean amplitude. Each iteration
can be visualized as a rotation of the state vector in the plane spanned by two
orthogonal vectors: the superposition of all indices corresponding to solutions
and non-solutions, respectively. The operator G rotates the vector by a constant
angle towards the superposition of solution indices. Let 1 ≤ M ≤ N be the
number of solutions and let 0 < θ ≤ π/2 such that sin2(θ) = M/N . Note that if
M 	 N , then sin(θ) is very small and θ ≈ sin(θ) =

√
M/N .

When measuring the first k qubits after j > 0 iterations of G, the success
probability p(j) for obtaining one of the solutions is p(j) = sin2((2j + 1)θ) [13],

which is close to 1 for j ≈ π
4θ . Hence, after

⌊
π
4

√
N
M

⌋
iterations, measurement

yields a solution with overwhelming probability of at least 1 − M
N .

Grover’s algorithm is optimal in the sense that any quantum search algorithm
needs at least Ω(

√
N) oracle queries to solve the problem [13]. In [55], Zalka

shows that for any number of oracle queries, Grover’s algorithm gives the largest
probability to find a solution.

284 S. Jaques et al.

2.2 Key Search for a Block Cipher

Let C be a block cipher with block length n and key length k; for a key K ∈
{0, 1}k denote by CK(m) ∈ {0, 1}n the encryption of message block m ∈ {0, 1}n

under the key K. Given r plaintext-ciphertext pairs (mi, ci) with ci = CK(mi),
we aim to apply Grover’s algorithm to find the unknown key K [54]. The Boolean
function f for the Grover oracle takes a key K as input, and is defined as
f(K) = 1 if CK(mi) = ci for all 1 ≤ i ≤ r, and f(K) = 0 otherwise.

Possibly, there exist other keys than K that encrypt the known plaintexts to
the same ciphertexts. We call such keys spurious keys. If their number is known
to be, say M − 1, the M -solution version of Grover’s algorithm has the same
probability of measuring each spurious key as measuring the correct K.

Spurious Keys. We assume that under a fixed key K, the map {0, 1}n →
{0, 1}n,m �→ CK(m) is a pseudo-random permutation; and under a fixed mes-
sage block m, the map {0, 1}k → {0, 1}n,K �→ CK(m) is a pseudo-random func-
tion. Now let K be the correct key, i.e. the one used for the encryption. It follows
that for a single message block of length n, PrK �=K′ (CK(m) = CK′(m)) = 2−n.

This probability becomes smaller when the equality condition is extended to
multiple blocks. Given r distinct messages m1, . . . , mr ∈ {0, 1}n, we have

Pr
K �=K′

((CK(m1), . . . , CK(mr)) = (CK′(m1), . . . , CK′(mr))) =
r−1∏

i=0

1
2n − i

, (1)

which is ≈2−rn for r2 	 2n. Since the number of keys different from K is
2k − 1, we expect the number of spurious keys for an r-block message to be
≈(2k − 1)2−rn. Choosing r such that this quantity is very small ensures with
high probability that there is a unique key and we can parameterize Grover’s
algorithm for a single solution.

Remark 1. Grassl et al. [21, §3.1] work with a similar argument. They take the
probability over pairs (K ′,K ′′) of keys with K ′ �= K ′′. Since there are 22k − 2k

such pairs, they conclude that about (22k − 2k)2−rn satisfy the above condition
that the ciphertexts coincide on all r blocks. But this also counts pairs of keys for
which the ciphertexts match each other, but do not match the images under the
correct K. Thus, using the number of pairs overestimates the number of spurious
keys and hence the number r of message blocks needed to ensure a unique key.

Based on the above heuristic assumptions, one can determine the probability
for a specific number of spurious keys. Let X be the random variable whose
value is the number of spurious keys for a given set of r message blocks and
a given key K. Then, X is distributed according to a binomial distribution:
Pr(X = t) =

(
2k−1

t

)
pt(1 − p)2

k−1−t, where p = 2−rn. We use the Poisson limit
theorem to conclude that this is approximately a Poisson distribution with

Pr(X = t) ≈ e− 2k−1
2rn

(2k − 1)t(2−rn)t

t!
≈ e−2k−rn 2t(k−rn)

t!
. (2)

Implementing Grover Oracles for Quantum Key Search on AES and LowMC 285

The probability that K is the unique key consistent with the r plaintext-
ciphertext pairs is Pr(X = 0) ≈ e−2k−rn

. Thus we can choose r such that rn is
slightly larger than k; rn = k + 10 gives Pr(X = 0) ≈ 0.999. In a block cipher
where k = b · n is a multiple of n, taking r = b + 1 will give the unique key K
with probability at least 1 − 2−n, which is negligibly close to 1 for typical block
sizes. If rn < k, then K is almost certainly not unique. Even rn = k − 3 gives
less than a 1% chance of a unique key. Hence, r must be at least
k/n�.

The case k = rn, when the total message length is equal to the key length,
remains interesting if one aims to minimize the number of qubits. The probability
for a unique K is Pr(X = 0) ≈ 1/e ≈ 0.3679, and the probability of exactly one
spurious key is the same. Kim et al. [29, Equation (7)] describe the success
probability after a certain number of Grover iterations when the number of
spurious keys is unknown. The optimal number of iterations gives a maximum
success probability of 0.556, making it likely that the first attempt will not find
the correct key and one must repeat the algorithm.

Depth Constraints for Cryptanalysis. In this work, we assume that any
quantum adversary is bounded by a constraint on its total depth for running
a quantum circuit. In its call for proposals to the post-quantum cryptography
standardization effort [37], NIST introduces the parameter MAXDEPTH as such a
bound and suggests that reasonable values are between 240 and 296. Whenever an
algorithm’s overall depth exceeds this bound, parallelization becomes necessary.
We do assume that MAXDEPTH constitutes a hard upper bound on the total depth
of a quantum attack, including possible repetitions of a Grover instance.

In general, an attacker can be assumed to have a finite amount of resources,
in particular a finite time for an attack. This is equivalent to postulating an
upper bound on the total depth of a quantum circuit as suggested by NIST.
Unlike in the classical case, the required parallelization increases the gate cost
for Grover’s algorithm, which makes it important to study attacks with bounded
depth.

We consider it reasonable to expect that the overall attack strategy is guar-
anteed to return a solution with high probability close to 1 within the given
depth bound. E.g., a success probability of 1/2 for a Grover instance to find the
correct key requires multiple runs to increase the overall probability closer to 1.
These runs, either sequentially or in parallel, need to be taken into account for
determining the overall cost and must respect the depth limit. While this setting
is our main focus, it can be adequate to allow and cost a quantum algorithm
with a success probability noticeably smaller than 1. Where not given in this
paper, the corresponding analysis can be derived in a straightforward manner.

2.3 Parallelization

There are different ways to parallelize Grover’s algorithm. Kim et al. [29] describe
two, which they denote as inner and outer parallelization. Outer paralleliza-
tion runs multiple instances of the full algorithm in parallel. Only one instance

286 S. Jaques et al.

must succeed, allowing us to reduce the necessary success probability, and hence
number of iterations, for all. Inner parallelization divides the search space into
disjoint subsets and assigns each subset to a parallel machine. Each machine’s
search space is smaller, so the number of necessary iterations shrinks.

Zalka [55] concludes that in both cases, one only obtains a factor
√

S gain in
the number of Grover iterations when working with S parallel Grover oracles, and
that this is asymptotically optimal. Compared to many classical algorithms, this
is an inefficient parallelization, since we must increase the width by a factor of S
to reduce the depth by a factor of

√
S. Both methods avoid any communication,

quantum or classical, during the Grover iterations. They require communication
at the beginning, to distribute the plaintext-ciphertext pairs to each machine
and to delegate the search space for inner parallelization, and communication at
the end to collect the measured keys and decide which one, if any, is the true
key. The next section discusses why our setting favours inner parallelization.

Advantages of Inner Parallelization. Consider S parallel machines that we
run for j iterations, using the notation of Sect. 2.1, and a unique key. For a
single machine, the success probability is p(j) = sin2 ((2j + 1)θ). Using outer
parallelization, the probability that at least one machine recovers the correct
key is pS(j) = 1 − (1 − p(j))S . We hope to gain a factor

√
S in the number

of iterations, so instead of iterating
⌊

π
4θ

⌋
times, we run each machine for jS =⌊

π
4θ

√
S

⌋
iterations.

Considering some small values of S, we get S = 1 : p1(j1) ≈ 1, S = 2 :
p2(j2) ≈ 0.961 and S = 3 : p3(j3) ≈ 0.945. As S gets larger, we use a series
expansion to find that

pS(jS) ≈ 1 −
(

1 − π2

4S
+ O

(
1
S2

))S
S→∞−−−−→ 1 − e− π2

4 ≈ 0.915. (3)

This means that by simply increasing S, it is not possible to gain a factor
√

S
in the number of iterations if one aims for a success probability close to 1. In
contrast, with inner parallelization, the correct key lies in the search space of
exactly one machine. With jS iterations, this machine has near certainty of
measuring the correct key, while other machines are guaranteed not to measure
the correct key. Overall, we have near-certainty of finding the correct key. Inner
parallelization thus achieves a higher success probability with the same number
S of parallel instances and the same number of iterations.

Another advantage of inner parallelization is that dividing the search space
separates any spurious keys into different subsets and reduces the search prob-
lem to finding a unique key. This allows us to reduce the number r of mes-
sage blocks in the Grover oracle and was already observed by Kim et al. [29]
in the context of measure-and-repeat methods. In fact, the correct key lies
in exactly one subset of the search space. If the spurious keys fall into dif-
ferent subsets, the respective machines measure spurious keys, which can be
discarded classically after measurement with access to the appropriate number

Implementing Grover Oracles for Quantum Key Search on AES and LowMC 287

of plaintext-ciphertext pairs. The only relevant question is whether there is a
spurious key in the correct key’s subset of size 2k/S. The probability for this is

SKP(k, n, r, S) =
∑∞

t=1 Pr(X = t) ≈ 1−e− 2k−rn

S , using Eq. (2) with 2k replaced
by 2k/S. If k = rn, this probability is roughly 1/S when S gets larger. In general,
high parallelization makes spurious keys irrelevant, and the Grover oracle can
simply use the smallest r such that SKP(k, n, r, S) is less than a desired bound.

3 Quantum Circuit Design

Quantum computation is usually described in the quantum circuit model. This
section describes our interpretation of quantum circuits, methods and criteria
for quantum circuit design, and cost models to estimate quantum resources.

3.1 Assumptions About the Fault-Tolerant Gate Set
and Architecture

The quantum circuits we are concerned with in this paper operate on qubits.
They are composed of so-called Clifford+T gates, which form a commonly
used universal fault-tolerant gate set exposed by several families of quantum
error-correcting codes. The primitive gates consist of single-qubit Clifford gates,
controlled-NOT (CNOT) gates, T gates, and measurements. We make the stan-
dard assumption of full parallelism, meaning that a quantum circuit can apply
any number of gates simultaneously so long as these gates act on disjoint sets of
qubits [8,23].

All quantum circuits for AES and LowMC described in this paper were
designed, tested, and costed in the Q# programming language [49], which sup-
ports all assumptions discussed here. We adopt the computational model pre-
sented in [25]. The Q# compiler allows us to compute circuit depth automatically
by moving gates around through a circuit if the qubits it acts on were previously
idle. In particular, this means that the depth of two circuits applied in series may
be less than the sum of the individual depths of each circuit. The Q# language
allows the circuit to allocate auxiliary qubits as needed, which adds new qubits
initialized to |0〉. If an auxiliary qubit is returned to the state |0〉 after it has been
operated on, the circuit can release it. Such a qubit is no longer entangled with
the state used for computation and the circuit can now maintain or measure it.

Grover’s algorithm is a far-future quantum algorithm, making it difficult
to decide on the right cost for each gate. Previous work assumed that T gates
constitute the main cost [3,21,31]. They are exceptionally expensive for a surface
code [19]; however, for a future error-correcting code, T gates may be transversal
and cheap while a different gate may be expensive. Thus, we present costs for
both counting T gates only, and costing all gates equally. For most of the circuits,
these concerns do not change the optimal design.

We ignore all concerns of layout and communication costs for the Grover
oracle circuit. Though making this assumption is unrealistic for a surface code,
where qubits can only interact with neighboring ones, other codes may not have

288 S. Jaques et al.

these issues. A single oracle circuit uses relatively few logical qubits (<220),
so these costs are unlikely to dominate. This allows us to compare our work
with previous proposals, which also ignore these costs. This also implies that
uncontrolled swaps are free, since the classical controller can simply track such
swaps and rearrange where it applies subsequent gates.

While previous work on quantum circuits for AES such as [3,21] and [31]
mainly uses Toffoli gates, we use AND gates instead. A quantum AND gate
has the same functionality as a Toffoli gate, except the target qubit is assumed
to be in the state |0〉, rather than an arbitrary state. We use a combination2

of Selinger’s [44] and Jones’ [28] circuits to express the AND gate in terms of
Clifford and T gates. This circuit uses 4 T gates and 11 Clifford gates in T -depth
1 and total depth 8. It uses one auxiliary qubit which it immediately releases,
while its adjoint circuit is slightly smaller.

3.2 Automated Resource Estimation and Unit Tests

One incentive for producing full implementations of the Grover oracle and its
components is to obtain precise resource estimates automatically and directly
from the circuit descriptions. Another incentive is to test the circuits for correct-
ness and to compare results on classical inputs against existing classical software
implementations that are known (or believed) to be correct. Yet quantum circuits
are in general not testable, since they rely on hardware yet to be constructed.
To partially address this issue, the Q# compiler can classically simulate a subset
of quantum circuits, enabling partial test coverage. We thus designed our cir-
cuits such that this tool can fully classically simulate them, by using X, CNOT,
CCNOT, SWAP, and AND gates only, together with measurements (denoted
throughout as M “gates”). This approach limits the design space since we cannot
use true quantum methods within the oracle. Yet, it is worthwhile to implement
components that are testable and can be fully simulated to increase confidence
in the validity of resource estimates deduced from such implementations.

As part of the development process, we first implemented AES (resp.
LowMC) in Python3, and tested the resulting code against the AES implemen-
tation in PyCryptodome 3.8.2 [39] (resp. the C++ reference implementation
in [33]). Then, we proceeded to write our Q# implementations (running on the
Dotnet Core version 2.1.507, using the Microsoft Quantum Development Kit
version 0.7.1905.3109), and tested these against our Python3 implementations,
by making use of the IQ# interface (see [35,36]. For the Q# simulator to run,
we are required to use the Microsoft QDK standard library’s Toffoli gate for
evaluating both Toffoli and AND gates, which results in deeper than necessary
circuits. We also have to explicitly SWAP values across wires, which costs 3
CNOT gates, rather than simply keeping track of the necessary free rewiring.
Hence, to mitigate these effects, our functions admit a Boolean flag indicating
whether the code is being run as part of a unit test by the simulator, or as part

2 We thank Mathias Soeken for providing the implementation of the AND gate circuit.

Implementing Grover Oracles for Quantum Key Search on AES and LowMC 289

of a cost estimate. In the latter case, Toffoli and AND gate designs are auto-
matically replaced by shallower ones, and SWAP instructions are disregarded as
free (after manually checking that this does not allow for incompatible circuit
optimizations). All numbers reporting the total width of a circuit include the
initial number of qubits plus the maximal number of temporarily allocated aux-
iliary qubits within the Q# function. For numbers describing the total depth,
all gates such as Clifford gates, CNOT and T gates as well as measurements are
assigned a depth of 1.

The AND and Toffoli gate designs we chose use measurements, hence CNOT,
1-qubit Clifford, measurement and depth counts are probabilistic. The Q# sim-
ulator does not currently support PRNG seeding for de-randomizing the mea-
surements,3 which means that estimating differently sized circuits with the same
or similar depth (or re-estimating the same circuit multiple times) may result in
slightly different numbers. We also note that the compiler is currently unable to
optimize a given circuit by, e.g., searching through small circuit variations that
may result in functionally the same operation at a smaller cost (say by allowing
better use of the circuit area).

3.3 Reversible Circuits for Linear Maps

Linear maps f : Fn
2 → F

m
2 for varying dimensions n and m are essential building

blocks of AES and LowMC. In general, such a map f , expressed as multiplication
by a constant matrix Mf ∈ F

m×n
2 , can be implemented as a reversible circuit

on n input wires and m additional output wires (initialized to |0〉), by using an
adequate sequence of CNOT gates: if the (i, j)-th coefficient of Mf is 1, we set
a CNOT gate targeting the i-th output wire, controlled on the j-th input wire.

Yet, if a linear map g : Fn
2 → F

n
2 is invertible, one can reversibly compute

it in-place on the input wires via a PLU decomposition of Mg, Mg = P · L ·
U [51, Lecture 21]. The lower- and upper-triangular components L and U of the
decomposition can be implemented as described above by using the appropriate
CNOT gates, while the final permutation P does not require any quantum gates
and instead, is realized by appropriately keeping track of the necessary rewiring.
While rewiring is not easily supported in Q#, the same effect can be obtained by
defining a custom REWIRE operation that computes an in-place swap of any two
wires when testing an implementation, and that can be disabled when costing it.
We note that such decompositions are not generally unique, but it is not clear
whether sparser decompositions can be consistently obtained with any particular
technique. For our implementations, we adopt the PLU decomposition algorithm
from [51, Algorithm 21.1], as implemented in SageMath 8.1 [48].

3.4 Cost Metrics for Quantum Circuits

For a meaningful cost analysis, we assume that an adversary has fixed constraints
on its total available resources, and a specific cost metric they wish to minimize.
Most importantly, we assume a total depth limit Dmax as explained in Sect. 2.2.
3 https://github.com/microsoft/qsharp-runtime/issues/30, visited 2019-08-24.

https://github.com/microsoft/qsharp-runtime/issues/30

290 S. Jaques et al.

In this paper, we use the two cost metrics that are considered by Jaques and
Schanck in [25]. The first is the total number of gates, the G-cost. It assumes
non-volatile (“passive”) quantum memory, and therefore models circuits that
incur some cost with every gate, but no cost is incurred in time units during
which a qubit is not operated on.

The second cost metric is the product of circuit depth and width, the DW -
cost. This is a more realistic cost model when quantum error correction is neces-
sary. It assumes a volatile (“active”) quantum memory, which incurs some cost
to correct errors on every qubit in each time step, i.e. each layer of the total cir-
cuit depth. In this cost model, a released auxiliary qubit would not require error
correction, and the cost to correct it could be omitted. But we assume an efficient
strategy for qubit allocation that avoids long idle periods for released qubits and
thus choose to ignore this subtlety. Instead, we simply cost the maximum width
at any point in the oracle, times its total depth. For both cost metrics, we can
choose to count only T -gates towards gate count and depth, or count all gates
equally.

The Cost of Grover’s Algorithm. As in Sect. 2.1, let the search space have
size N = 2k. Suppose we use an oracle G such that a single Grover iteration
costs GG gates, has depth GD, and uses GW qubits. Let S = 2s be the number of
parallel machines that are used with the inner parallelization method by dividing
the search space in S disjoint parts (see Sect. 2.3). In order to achieve a certain
success probability p, the required number of iterations can be deduced from
p ≤ sin2((2j + 1)θ) which yields jp =

⌈
(arcsin

(√
p
)
/θ − 1)/2

⌉ ≈ arcsin
(√

p
)
/2 ·

√
N/S. Let cp = arcsin

(√
p
)
/2, then the total depth of a jp-fold Grover

iteration is
D = jpGD ≈ cp

√
N/S · GD = cp2

k−s
2 GD cycles. (4)

Note that for p ≈ 1 we have cp ≈ c1 = π
4 . Each machine uses jpGG ≈ cp

√
N/S ·

GG = cp2
k−s
2 GG gates, i.e. the total G-cost over all S machines is

G = S · jpGG ≈ cp

√
N · S · GG = cp2

k+s
2 GG gates. (5)

Finally, the total width is W = S ·GW = 2sGW qubits, which leads to a DW -cost

DW ≈ cp

√
N · S · GDGW = cp2

k+s
2 GDGW qubit-cycles. (6)

These cost expressions show that minimizing the number S = 2s of parallel
machines minimizes both G-cost and DW -cost. Thus, under fixed limits on depth,
width, and the number of gates, an adversary’s best course of action is to use the
entire depth budget and parallelize as little as possible. Under this premise, the
depth limit fully determines the optimal attack strategy for a given Grover oracle.
Limits on width or the number of gates simply become binary feasibility criteria
and are either too tight and the adversary cannot finish the attack, or one of the
limits is loose. If one resource limit is loose, we may be able to modify the oracle
to use this resource to reduce depth, lowering the overall cost.

Implementing Grover Oracles for Quantum Key Search on AES and LowMC 291

Optimizing the Oracle Under a Depth Limit. Grover’s full algorithm
parallelizes so badly that it is generally preferable to parallelize within the oracle
circuit. Reducing its depth allows more iterations within the depth limit, thus
reducing the necessary parallelization.

Let Dmax be a fixed depth limit. Given the depth GD of the oracle, we are
able to run jmax = �Dmax/GD� Grover iterations of the oracle G. For a target
success probability p, we obtain the number S of parallel instances to achieve
this probability in the instance whose key space partition contains the key from
p ≤ sin2((2jmax + 1)

√
S/N) as

S =

⌈
N · arcsin2

(√
p
)

(2 · �Dmax/GD� + 1)2

⌉

≈ c2
p2

k G2
D

D2
max

. (7)

Using this in Eq. (5) gives a total gate count of

G = c2
p2

k GDGG

Dmax
gates. (8)

It follows that for two oracle circuits G and F, the total G-cost is lower for G if
and only if GDGG < FDFG. That is, we wish to minimize the product GDGG.
Similarly, the total DW -cost under the depth constraint is

DW = c2
p2

k G
2
DGW

Dmax
qubit-cycles. (9)

Here, we wish to minimize G2
DGW of the oracle circuit to minimize total DW -

cost.

4 A Quantum Circuit for AES

The Advanced Encryption Standard (AES) [15,16] is a block cipher standardized
by NIST in 2001. Using the notation from [15], AES is composed of an S-box, a
Round function (with subroutines ByteSub, ShiftRow, MixColumn, AddRound-
Key; with the last round slightly differing from the others), and a KeyExpansion
function (with subroutines SubByte, RotByte). Three different instances of AES
have been standardized, for key lengths of 128, 192 and 256 bits. Grassl et al. [21]
describe their quantum circuit implementation of the S-box and other compo-
nents, resulting in a full description of all three instances of AES (but no testable
code has been released). Grassl et al. take care to reduce the number of auxiliary
qubits required, i.e. reducing the circuit width as much as possible. The recent
improvements by Langenberg et al. [31] build on the work by Grassl et al. with
similar objectives.

In this section, we describe our implementation of AES in the quantum pro-
gramming language Q# [49]. Some of the components are taken from the descrip-
tion in [21], while others are implemented independently, or ported from other
sources. We take the circuit description from [21] as the basis for our work and

292 S. Jaques et al.

compare to the results in [31]. In general, we aim at reducing the depth of the
AES circuit, while limitations on width are less important. Width restrictions
are not explicitly considered by the NIST call for proposals [37, § 4.A.5].

The internal state of AES contains 128 bits, arranged in four 32-bit (or 4-byte)
words. In the rest of this section, when referring to a ‘word’, we intend a 4-byte
word. In all tables below, we denote by #CNOT, the number of CNOT gates, by
#1qCliff the number of 1-qubit Clifford gates, by #T the number of T gates, by
#M the number of measurement operations and by width the number of qubits.

S-box, ByteSub and SubByte. The AES S-box is a transformation that
inverts the input as an element of F256, and maps 0 to 0. The S-box is the only
source of T gates in a quantum circuit of AES. On classical hardware, it can be
implemented easily using a lookup-table. Yet, on a quantum computer, this is not
efficient (see [5,32] and [20]). Alternatively, the inversion can be computed either
by using some variant of Euclid’s algorithm (taking care of the special case of 0),
or by applying Lagrange’s theorem and raising the input to the (|F×

256| − 1)th

power (i.e. the 254th power), which incidentally also takes care of the 0 input.
Grassl et al. [21] suggest an Itoh-Tsujii inversion algorithm [24], following [4],
and compute all required multiplications over F2[x]/(x8 + x4 + x3 + x + 1). This
idea had already been extensively explored in the vast4 literature on hardware
design for AES, and requires a different construction of F256 to be most effective.
Following this lead, we port the S-box circuit by Boyar and Peralta from [11] to
Q#. The specified linear program combining AND and XOR operations can be
easily expressed as a sequence of equivalent CNOT and AND operations (we use
cheaper T -depth-1 AND gates [28,44] instead of T -depth-1 CCNOT gates [44]).
Cost estimates for the AESS-box are in Table 1. We compare to our own Q#
implementation of the S-box circuits from [21] and [31]. ByteSub is a state-wide
parallel application of the S-box, requiring new output auxiliary qubits to store
the result, while SubByte is a similar word-wide application of the S-box.

Table 1. Comparison of our reconstruction of the original [21] S-box circuit with the
one from [10] as used in [31] and the one in this work based on [11]. In our implemen-
tation of [10] from [31], we replace CCNOT gates with AND gates to allow a fairer
comparison.

Operation #CNOT #1qCliff #T #M T -depth Full depth Width

[21] S-box 8683 1028 3584 0 217 1692 44

[10] S-box 818 264 164 41 35 497 41

[11] S-box 654 184 136 34 6 101 137

4 E.g. see [10,12,27,38,40–43,52,53].

Implementing Grover Oracles for Quantum Key Search on AES and LowMC 293

Remark 2. Langenberg et al. [31] independently introduced a new AES quantum
circuit design using the S-box circuit proposed in [10]. They also present a Pro-
jectQ [47] implementation of the S-box, albeit without unit tests. We ported their
source code to Q#, tested and costed it. For a fairer comparison, we replaced
their CCNOT gates with the AND gate design that our circuits use. Cost esti-
mates can be found in Table 1. Overall, the [11] S-box leads to a more cost
effective circuit for our purposes in both the G-cost and DW -cost metrics, and
hence we did not proceed further in our analysis of costs using the [10] design.
Note that the results obtained here differ from the ones presented in [31, §3.2].
This is due to the difference in counting gates and depth. While [31] counts Tof-
foli gates, the Q# resource estimator costs at a lower level of T gates and also
counts all gates needed to implement a Toffoli gate.

ShiftRow and RotByte. ShiftRow is a permutation on the full 128-bit AES
state, happening across its four words [15, §4.2.2]. As a permutation of qubits, it
can be entirely encoded as rewiring. As in [21], we consider rewiring as free and
do not include it in our cost estimates. Similarly, RotByte is a circular left shift
of a word by 8 bits, and can be implemented by appropriate rewiring as well.

MixColumn. The operation MixColumn interprets each word in the state as
a polynomial in F256[x]/(x4 + 1). Each word is multiplied by a fixed polynomial
c(x) [15, § 4.2.3]. Since the latter is coprime to x4 + 1, this operation can be
seen as an invertible linear transformation, and hence can be implemented in
place by a PLU decomposition of a matrix in F

32×32
2 . To simplify this tedious

operation, we use SageMath [48] code that performs the PLU decomposition, and
outputs equivalent Q# code. Note that [21] describes the same technique, while
achieving a significantly smaller design than the one we obtain (ref. Table 2),
but we were not able to reproduce these results. However, highly optimized,
shallower circuits have been proposed in the hardware design literature such
as [7,18,26,30,50]. Hence, we chose to use one of those and experiment with a
recent design by Maximov [34]. Both circuits are costed independently in Table 2.
Maximov’s circuit has a much lower depth, but it only reduces the total depth,
does not reduce the T -depth (which is already 0) and comes at the cost of an
increased width. Our experiments show that without a depth restriction, it seems
advantageous to use the in-place version to minimize both G-cost and DW -cost
metrics, while for a depth restricted setting, Maximov’s circuit seems better due
to the square in the depth term in Eq. (9).

Table 2. Comparison of an in-place implementation of MixColumn (via PLU decom-
position) versus the recent shallow out-of-place design in [34].

Operation #CNOT #1qCliff #T #M T -depth Full depth Width

In-place MixColumn 1108 0 0 0 0 111 128

[34] MixColumn 1248 0 0 0 0 22 318

294 S. Jaques et al.

AddRoundKey. AddRoundKey performs a bitwise XOR of a round key to the
internal AES state and can be realized with a parallel application of 128 CNOT
gates, controlled on the round key qubits and targeted on the state qubits. Grassl
et al. [21] and Langenberg et al. [31] use the same approach.

KeyExpansion. Key expansion is one of the two sources of T gates in the
design of AES, and hence might have a strong impact on the overall efficiency
of the circuit. A simple implementation of KeyExpansion would allocate enough
auxiliary qubits to store the full expanded key, including all round keys. This is
easy to implement with relatively low depth, but uses more qubits than necessary.
The authors of [21] amortize this width cost by caching only those key bytes that
require S-box evaluations. Instead, we minimize width by not requiring auxiliary
qubits at all. At the same time, we reduce the depth in comparison with the naive
key expansion using auxiliary qubits for all key bits as described above.

Let |k〉0 denote the AES key consisting of Nk ∈ {4, 6, 8} key words and |k〉i

the i-th set of Nk consecutive round key words. The first such block |k〉1 can
be computed in-place as shown in the appropriately sized circuit in Fig. 1. This
circuit produces the i-th set of Nk key words from the (i − 1)-th set. Note that
for AES-128, these sets correspond to the actual round keys as the key size is

|k0〉i−1

|k1〉i−1

|k2〉i−1

|k3〉i−1 RotByte

� SubByte

RotByte†

RC |k0〉i
|k1〉i
|k2〉i
|k3〉i

(a) AES-128 in-place key expansion step producing the i-th round key.

|k0〉i−1

|k1〉i−1

|k2〉i−1

|k3〉i−1

|k4〉i−1

|k5〉i−1

|k6〉i−1

|k7〉i−1 RotByte

� SubByte

RotByte†

RC

SubByte

|k0〉i
|k1〉i
|k2〉i
|k3〉i
|k4〉i
|k5〉i
|k6〉i
|k7〉i

(b) AES-256 in-place key expansion step producing the i-th set of 8 round key words.

Fig. 1. In-place AES key expansion for AES-128 and AES-256, deriving the ith set of
Nk round key works from the (i − 1)th. AES-192 is identical to AES-128, but with 6 key
words. Each |kj〉i represents the jth word of |k〉i. SubByte takes the input state on the
top wire, and returns the output on the bottom wire, while � SubByte takes inputs on
the bottom wire, and returns outputs on the top. Dashed lines indicate wires that are
not used in the � SubByte operation. RC is the round constant addition, implemented
by applying X gates as appropriate.

Implementing Grover Oracles for Quantum Key Search on AES and LowMC 295

equal to the block size, for AES-192 and AES-256, each round key set generates
more words than needed in a single round key. The full operation mapping
|k〉i−1 �→ |k〉i is denoted by KE. As for the two larger key sizes, each round only
needs parts of these sets of round key words, we specify KEl

j to denote the part
of the operation KE that produces the words j . . . l of the new set, disregarding
other words. KEl

j can be used as part of the round strategy described below
to only compute as many words of the round key as necessary, resulting in an
overall narrower and shallower circuit.

Remark 3. In addition to improving the S-box circuit over [21], Langenberg et al.
[31, §4] demonstrate significant savings by reducing the number of qubits and the
depth of key expansion. This is achieved by an improved scheduling of key expan-
sion during AES encryption, namely by computing round key words only at the
time they are required and un-computing them early. While their method is based
on the one in [21] using auxiliary qubits for the round keys, our approach works
completely in place and reduces width and depth at the same time.

Round, FinalRound and Full AES. To encrypt a message block using AES-
128 (resp. -192, -256), we initially XOR the input message with the first 4 words
of the key, and then execute 10 (resp. 12, 14) rounds consisting of ByteSub,
ShiftRow, MixColumn (except in the final round) and AddRoundKey. The quan-
tum circuits for AES we propose follow the same blueprint with the exception
that key expansion is interleaved with the algorithm in such a way that the
operations KEl

j only produce the key words that are immediately required.
The resulting circuits are shown in Fig. 2. For formatting reasons, we omit

the repeating round pattern and AES-256, and only represent a subset of the
full set of qubits used. In AES-128, each round is identical until round 9. In
AES-192 rounds 5, 8 and 11 use the same KE call and order as round 2; rounds
6 and 9 do as round 3; rounds 7 and 10 do as round 4. In AES-256, rounds 4,
6, 8, 10, 12 (resp. 5, 7, 9, 11, 13) use the same KE call and order as round 2
(resp. 3). Cost estimates for the resulting AES encryption circuits are in Table 3.
In contrast to [21] and [31], we aim to reduce circuit depth, hence un-computing
of rounds is delayed until the output ciphertext is produced. For easier testability
and modularity, the Round circuit is divided into two parts: a ForwardRound
operator that computes the output state but does not clean auxiliary qubits, and
its adjoint. For unit-testing Round in isolation, we compose ForwardRound with
its adjoint operator. For testing AES, we first run all ForwardRound instances
without auxiliary qubit cleaning, resulting in a similar ForwardAES operator,
copy out the ciphertext, and then undo the ForwardAES operation.

Table 3 presents results for the AES circuit for both versions of MixColumn,
the in-place implementation using a PLU decomposition as well as Maximov’s
out-of-place, but lower depth circuit. We use both because each has advantages
for different applications. The full depth corresponds to GD as in Sect. 3.4 and
Sect. 2.3, while width corresponds to GW . While for AES-128 and AES-192,
GDGW is smaller for the in-place implementation, G2

DGW is smaller for Maxi-
mov’s circuit. Hence, Sect. 2.3 indicates Maximov’s circuit gives a lower DW -cost

296 S. Jaques et al.

under a depth restriction. If there is no depth restriction, the in-place design has
a lower DW -cost.

Table 3. Circuit cost estimates for the AES operator, using the [11] S-box and for Mix-
Column design (“MC”) either in-place (“IP”) or Maximov’s [34] (“M”). The apparently
inconsistent T -depth is discussed under T -depth.

Operation MC #CNOT #1qCliff #T #M T -depth Full depth Width

AES-128 IP 291150 83116 54400 13600 120 2827 1785

AES-192 IP 328612 93160 60928 15232 120 2987 2105

AES-256 IP 402878 114778 75072 18768 126 3353 2425

AES-128 M 293730 83236 54400 13600 120 2094 2937

AES-192 M 331752 93280 60928 15232 120 1879 3513

AES-256 M 406288 114318 75072 18768 126 1955 4089

T -depth. Every round of AES (as implemented in Fig. 2) computes at least
one layer of S-boxes as part of ByteSub, which must later be uncomputed. We
would thus expect the T -depth of n rounds of AES to be 2n times the T -depth
of the S-box. Instead, Table 3 shows smaller depths. We find this effect when
using either the AND circuit or the unit-testable CCNOT implementation. To
test if this is a bug, we used a placeholder S-box circuit which has an arbitrary
T -depth d and which the compiler cannot parallelize. This “dummy” AES design
had the expected T -depth of 2n ·d. Thus we believe the Q# compiler found non-
trivial parallelization between components of the S-box and the surrounding
circuit. This provides a strong case for full explicit implementations of quantum
cryptanalytic algorithms in Q# or other languages that allow automatic resource
estimates and optimizations; in our case the T -depth of AES-256 is 25% less than
naively expected. Unfortunately, Q# cannot yet generate full circuit diagrams,
so we do not know exactly where the parallelization takes place5.

5 A Quantum Circuit for LowMC

LowMC [1,2] is a family of block ciphers aiming for low multiplicative complexity
circuits. Originally designed to reduce the high cost of binary multiplication in
the MPC and FHE scenarios, it has been adopted as a fundamental component
by the Picnic signature scheme (see [14] and [56]) proposed for standardization
as part of the NIST process for standardizing post-quantum cryptography.

To achieve low multiplicative complexity, LowMC uses an S-box layer of
AND-depth 1, which contains a user-defined number of parallel 3-bit S-box com-
putations. In general, any instantiation of LowMC comprises a specific number
of rounds. Each round calls an S-box layer, an affine transformation, and a

5 https://github.com/microsoft/qsharp-runtime/issues/31, visited 2019-09-03.

https://github.com/microsoft/qsharp-runtime/issues/31

Implementing Grover Oracles for Quantum Key Search on AES and LowMC 297

|k〉
0

|m
〉 |0〉 |0〉
. . .

|0〉 |0〉

K
E

N
k
−
1

0 B
S

SR
M
C

K
E

N
k
−
1

0 B
S

SR
M
C

. .
.

K
E

N
k
−
1

0 B
S

SR

|k〉
1
0

. . . |c〉

R
ou

nd
1

R
ou

nd
2

R
ou

nd
10

(a
)
A
E
S-
12

8
op

er
at
io
n.

|k〉
0 | m
〉 |0〉 | 0〉 | 0〉 |0〉 | 0〉 |0〉 |0〉 | 0〉
. . .

|0〉 | 0〉

K
E

1 0

B
S

SR
M
C

K
E

5 2

B
S

SR
M
C

K
E

3 0

B
S

SR
M
C

K
E

5 4

B
S

K
E

1 0

SR
M
C

. .
.

K
E

3 0

B
S

SR

|k〉
1
2

. . . |c 〉

R
ou

nd
1

R
ou

nd
2

R
ou

nd
3

R
ou

nd
4

R
ou

nd
12

(b
)
A
E
S-
19

2
op

er
at
io
n.

F
ig
.
2
.
C

ir
cu

it
sk

et
ch

es
fo

r
th

e
A

E
S
-1

2
8

a
n
d

A
E

S
-1

9
2

o
p
er

a
ti

o
n
.
E

a
ch

w
ir

e
u
n
d
er

th
e

|k〉
0

la
b
el

re
p
re

se
n
ts

4
w

o
rd

s
o
f
th

e
k
ey

fo
r
A

E
S
-1

2
8

a
n
d

2
w

o
rd

s
fo

r
A

E
S
-1

9
2
.
E

a
ch

su
b
se

q
u
en

t
w

ir
e

(i
n
it

ia
ll
y

la
b
el

ed
|m

〉a
n
d

|0〉
)

re
p
re

se
n
ts

4
w

o
rd

s.
C

N
O

T
g
a
te

s
b
et

w
ee

n
w

o
rd

-s
iz

ed
w

ir
es

sh
o
u
ld

b
e

re
a
d

a
s

m
u
lt

ip
le

p
a
ra

ll
el

C
N

O
T

g
a
te

s
a
p
p
li
ed

b
it
w

is
e

(e
.g

.
a
t

th
e

b
eg

in
n
in

g
o
f

A
E

S
-1

9
2

th
e

in
te

n
ti

o
n

is
o
f

X
O

R
in

g
1
2
8

b
it

s
fr

o
m

|k〉
0

o
n
to

th
e

st
a
te

).
B

S
st

a
n
d
s

fo
r

B
y
te

S
u
b
,
S
R

fo
r

S
h
if
tR

ow
a
n
d

M
C

fo
r

M
ix

C
o
lu

m
n
.
F
o
r

A
E

S
-1

2
8
,
th

e
ci

rc
u
it

sh
ow

s
a
n

in
-p

la
ce

im
p
le

m
en

ta
ti

o
n

o
f
M

ix
C

o
lu

m
n
,
w

h
il
e

fo
r

A
E

S
-1

9
2
,
it

u
se

s
a
n

o
u
t-

o
f-
p
la

ce
v
er

si
o
n

li
k
e

M
a
x
im

ov
’s

M
ix

C
o
lu

m
n

li
n
ea

r
p
ro

g
ra

m
[3

4
].

298 S. Jaques et al.

round key addition. Key-scheduling can either be precomputed or computed on
the fly. In this work, we study the original LowMC design. This results in a
sub-optimal circuit, which can clearly be improved by porting the more recent
version from [17] instead. Even for the original LowMC, our work shows that the
overhead from the cost of the Grover oracle is very small, in particular under the
T -depth metric. Since LowMC could be standardized as a component of Picnic,
we deem it appropriate to point out the differences in Grover oracle cost between
different block ciphers and that generalization from AES requires caution.

In this section we describe our Q# implementation of the LowMC instances
used as part of Picnic. In particular, Picnic proposes three parameter sets, with
(key size,block size, rounds) ∈ {(128, 128, 20), (192, 192, 30), (256, 256, 38)}, all
with 10 parallel S-boxes per substitution layer.

S-box and S-boxLayer. The LowMCS-box can be naturally implemented
using Toffoli (CCNOT) gates. In particular, a simple in-place implementation
with depth 5 (T -depth 3) is shown in Fig. 3, alongside a T -depth 1 out-of-place
circuit, both of which were produced manually. Costs for both circuits can be
found in Table 4. We use the CCNOT implementation with no measurements
from [44]. For LowMC inside of Picnic, the full S-boxLayer consists of 10 parallel
S-boxes run on the 30 low order bits of the state.

|a〉
|b〉
|c〉

|a+ bc〉
|a+ b+ ac〉
|a+ b+ c+ ab〉

(a) LowMC in-place S-box.

|a〉
|b〉
|c〉
|0〉
|0〉
|0〉
|x〉
|y〉
|z〉

|a〉
|b〉
|c〉
|0〉
|0〉
|0〉
|x+ a+ bc〉
|y + a+ b+ ac〉
|z + a+ b+ c+ ab〉

(b) LowMC T -depth 1 S-box.

Fig. 3. Alternative quantum circuit designs for the LowMCS-box. The in-place design
requires auxiliary qubits as part of the concrete CCNOT implementation.

Table 4. Cost estimates for a single LowMCS-box circuit, following the two designs
proposed in Fig. 3. We note that the circuit size may seem different at first sight due
to Fig. 3 not displaying the concrete CCNOT implementation.

Operation #CNOT #1qCliff #T #M T -depth Full depth Width

In-place S-box 50 6 21 0 3 23 7

Shallow S-box 60 6 21 0 1 11 13

Implementing Grover Oracles for Quantum Key Search on AES and LowMC 299

LinearLayer, ConstantAddition and AffineLayer. AffineLayer is an affine
transformation applied to the state at every round. It consists of a matrix mul-
tiplication (LinearLayer) and the addition of a constant vector (ConstantAd-
dition). Both matrix and vector are different for every round and are prede-
fined constants that are populated pseudo-randomly. ConstantAddition is imple-
mented by applying X gates for entries of the vector equal to 1. In Picnic, for
every round and every parameter set, all LinearLayer matrices are invertible
(due to LowMC’s specification requirements), and hence we use a PLU decom-
position for matrix multiplication (Sect. 3.3). Cost estimates for the first round
affine transformation in LowMC as used in Picnic are in Table 5.

Table 5. Costs for in-place circuits implementing the first round (R1) AffineLayer
transformation for the three instantiations of LowMC used in Picnic.

Operation #CNOT #1qCliff #T #M T -depth Full depth Width

AffineLayer L1 R1 8093 60 0 0 0 2365 128

AffineLayer L3 R1 18080 90 0 0 0 5301 192

AffineLayer L5 R1 32714 137 0 0 0 8603 256

KeyExpansion and KeyAddition. To generate the round keys rki, in each
round i the LowMC key k is multiplied by a different key derivation pseudo-
random matrix KMi. For Picnic, each KMi is invertible, so we compute rki

from rki−1 as rki = KMi · KM−1
i−1 · rki−1. We compute this in-place using

a PLU decomposition of KMi · KM−1
i−1. This saves matrix multiplications and

qubits compared to computing rki directly. We call this operation KeyExpansion.
KeyAddition is equivalent to AddRoundKey in AES, and is implemented the
same way. Cost estimates for the first round key expansion in LowMC as used
in Picnic can be found in Table 6.

Table 6. Costs for in-place circuits implementing the first round (R1) KeyExpansion
operation for the three instantiations of LowMC used in Picnic.

Operation #CNOT #1qCliff #T #M T -depth Full depth Width

KeyExpansion L1 R1 8104 0 0 0 0 2438 128

KeyExpansion L3 R1 18242 0 0 0 0 4896 192

KeyExpansion L5 R1 32525 0 0 0 0 9358 256

Round and LowMC. The LowMC round sequentially applies S-boxLayer,
AffineLayer and KeyAddition to the state. Our implementation also runs Key-
Expansion before AffineLayer. For a full LowMC encryption, we first add the
LowMC key k to the message to produce the initial state, then run the specified
number of rounds on it. Costs of the resulting encryption circuit are in Table 7.

300 S. Jaques et al.

Table 7. Costs for the full encryption circuit for LowMC as used in Picnic.

Operation #CNOT #1qCliff #T #M T -depth Full depth Width

LowMC L1 689944 4932 8400 0 40 98699 991

LowMC L3 2271870 9398 12600 0 60 319317 1483

LowMC L5 5070324 14274 15960 0 76 693471 1915

6 Grover Oracles and Key Search Resource Estimates

Equipped with Q# implementations of the AES and LowMC encryption cir-
cuits, this section describes the implementation of full Grover oracles for both
block ciphers. Eventually, based on the cost estimates obtained automatically
from these Q# Grover oracles, we provide quantum resource estimates for full key
search attacks via Grover’s algorithm. Beyond comparing to previous work, our
emphasis is on evaluating algorithms that respect a total depth limit, for which we
consider NIST’s values for MAXDEPTH from [37]. This means we must parallelize.
We use inner parallelization via splitting up the search space, see Sect. 2.3.

6.1 Grover Oracles

As discussed in Sect. 2.2 and Sect. 2.3, we must determine the parameter r, the
number of known plaintext-ciphertext pairs that are required for a successful
key-recovery attack. The Grover oracle encrypts r plaintext blocks under the
same candidate key and computes a Boolean value that encodes whether all r
resulting ciphertext blocks match the given classical results. A circuit for the
block cipher allows us to build an oracle for any r by simply fanning out the
key qubits to the r instances and running the r block cipher circuits in parallel.
Then a comparison operation with the classical ciphertexts conditionally flips
the result qubit and the r encryptions are un-computed. Figure 4 shows the
construction for AES and r = 2, using the ForwardAES operation from Sect. 4.

|k〉0
|m1〉

|m2〉

|−〉

|0〉
|0〉

|0〉

FwAES

FwAES

FwAES†

FwAES†
|0〉
|0〉

|0〉

|k〉0
|m1〉

|m2〉

|−〉

Fig. 4. Grover oracle construction from AES using two message-ciphertext pairs.
FwAES represents the ForwardAES operator described in Sect. 4. The middle operator
“=” compares the output of AES with the provided ciphertexts and flips the target
qubit if they are equal.

Implementing Grover Oracles for Quantum Key Search on AES and LowMC 301

The Required Number of Plaintext-Ciphertext Blocks. The explicit
computation of the probabilities in Eq. (1) shows that using r = 2 (resp. 2,
3) for AES-128 (resp. -192, -256) guarantees a unique key with overwhelming
probability. The probabilities that there are no spurious keys are 1 − ε, where
ε < 2−128, 2−64, and 2−128, respectively. Grassl et al. [21, § 3.1] used r = 3,
r = 4 and r = 5, respectively. Hence, these values are too large and the Grover
oracle can work correctly with fewer full AES evaluations.

If one is content with a success probability lower than 1, it suffices to use
r =
k/n� blocks of plaintext-ciphertext pairs. In this case, it is enough to use
r = 1, 2, and 3 for AES-128, -192, -256, respectively. Langenberg et al. [31] also
propose these values. As an example, if we use r = 1 for AES-128, the probability
of not having spurious keys is 1/e ≈ 0.368, which could be a high enough chance
for a successful attack in certain scenarios, e.g., when there is a strict limit on
the width of the attack circuit. Furthermore, when a large number of parallel
machines are used in an instance of the attack, as discussed in Sect. 2.3, even the
value r = 1 can be enough in order to guarantee with high probability that the
relevant subset of the key space contains the correct key as a unique solution.

The LowMC parameter sets we consider here all have k = n. Therefore, r = 2
plaintext-ciphertext pairs are enough for all three sets (k ∈ {128, 192, 256}).
Then, the probability that the key is unique is 1 − ε, where ε < 2−k, i.e. this
probability is negligibly close to 1. With high parallelization, r = 1 is sufficient
for a success probability very close to 1.

Grover Oracle Cost for AES. Table 8 shows the resources needed for the
full AES Grover oracle for the relevant values of r ∈ {1, 2, 3}. Even without
parallelization, more than 2 pairs are never required for AES-128 and AES-192.
The same holds for 4 or more pairs for AES-256.

Table 8. Costs for the AES Grover oracle operator for r = 1, 2 and 3 plaintext-
ciphertext pairs. “MC” is the MixColumn design, either in-place (“IP”) or Maxi-
mov’s [34] (“M”).

Operation MC r #CNOT #1qCliff #T #M T -depth Full depth Width

AES-128 IP 1 292313 84428 54908 13727 121 2816 1665

AES-192 IP 1 329697 94316 61436 15359 120 2978 1985

AES-256 IP 1 404139 116286 75580 18895 126 3353 2305

AES-128 IP 2 585051 169184 109820 27455 121 2815 3329

AES-192 IP 2 659727 188520 122876 30719 120 2981 3969

AES-256 IP 2 808071 231124 151164 37791 126 3356 4609

AES-256 IP 3 1212905 347766 226748 56687 126 3347 6913

AES-128 M 1 294863 84488 54908 13727 121 2086 2817

AES-192 M 1 332665 94092 61436 15359 120 1879 3393

AES-256 M 1 407667 116062 75580 18895 126 1951 3969

AES-128 M 2 589643 168288 109820 27455 121 2096 5633

AES-192 M 2 665899 188544 122876 30719 120 1890 6785

AES-256 M 2 815645 231712 151164 37791 126 1952 7937

AES-256 M 3 1223087 346290 226748 56687 126 1956 11905

302 S. Jaques et al.

Grover Oracle Cost for LowMC. The resources for our implementation of
the full LowMC Grover oracle for the relevant values of r ∈ {1, 2} are shown in
Table 9. No setting needs more than r = 2 plaintext-ciphertext pairs.

Table 9. Cost estimates for the LowMC Grover oracle operator for r = 1 and 2
plaintext-ciphertext pairs. LowMC parameter sets are as used in Picnic.

Operation r #CNOT #1qCliff #T #M T -depth Full depth Width

LowMC L1 1 690961 5917 8908 191 41 98709 1585

LowMC L3 1 2273397 10881 13364 286 61 319323 2377

LowMC L5 1 5072343 16209 16980 372 77 693477 3049

LowMC L1 2 1382143 11774 17820 362 41 98707 3169

LowMC L3 2 4547191 21783 26732 576 61 319329 4753

LowMC L5 2 10145281 32567 33964 783 77 693483 6097

6.2 Cost Estimates for Block Cipher Key Search

Using the cost estimates for the AES and LowMC Grover oracles from Sect. 6.1,
this section provides cost estimates for full key search attacks on both block
ciphers. For the sake of a direct comparison to the previous results in [21] and [31],
we first ignore any limit on the depth andpresent the same setting as in theseworks.
Then, we provide cost estimates with imposed depth limits and the consequential
parallelization requirements.

Comparison to Previous Work. Table 10 shows cost estimates for a full
run of Grover’s algorithm when using

⌊
π
4 2k/2

⌋
iterations of the AES Grover

operator without parallelization. We only take into account the costs imposed
by the oracle operator Uf (in the notation of Sect. 2.1) and ignore the costs of
the operator 2 |ψ〉〈ψ| − I. If the number of plaintext-ciphertext pairs ensures a
unique key, this number of operations maximizes the success probability psucc to
be negligibly close to 1. For smaller values of r such as those proposed in [31],
the success probability is given by the probability that the key is unique.

The G-cost is the total number of gates, which is the sum of the first three
columns in the table, corresponding to the numbers of 1-qubit Clifford and CNOT
gates, T gates and measurements. Table 10 shows that the G-cost is always better
in our work when comparing values for the same AES instance and the same value
for r. The same holds for the DW -cost as we increase the width by factors less than
4 and simultaneously reduce the depth by more than that.

Table 11 shows cost estimates for LowMC in the same setting. Despite
LowMC’s lowermultiplicative complexity and a relatively lower number ofT gates,
the large number of CNOT gates leads to overall higher G-cost and DW -cost than
AES, as we count all gates.

Implementing Grover Oracles for Quantum Key Search on AES and LowMC 303

Cost Estimates Under a Depth Limit. Tables 13a and b show cost estimates
for running Grover’s algorithm against AES and LowMC under a given depth
limit. This restriction is proposed in the NIST call for proposals for standardiza-
tion of post-quantum cryptography [37]. We use the notation and example values
for MAXDEPTH from the call. Imposing a depth limit forces the parallelization of
Grover’s algorithm, which we assume uses inner parallelization, see Sect. 2.3.

The values in the table follow Sect. 3.4. Given cost estimates GG, GD and
GW for the oracle circuit, we determine the maximal number of Grover iterations
that can be carried out within the MAXDEPTH limit. Then the required number S
of parallel instances is computed via Eq. (7) and the G-cost and DW -cost follow
from Eqs. (8) and (9). The number r of plaintext-ciphertext pairs is the minimal
value such that the probability SKP for having spurious keys in the subset of
the key space that holds the target key is less than 2−20.

Table 10. Comparison of cost estimates for Grover’s algorithm with
⌊

π
4
2k/2

⌋
AES ora-

cle iterations for attacks with high success probability, disregarding MAXDEPTH. CNOT
and 1-qubit Clifford gate counts are added to allow easier comparison to the previous
work from [21,31], who report both kinds of gates under “Clifford”. [31] uses the S-box
design from [10]. “IP MC” (resp. “M’s MC”) means the oracle uses an in-place (resp.
Maximov’s [34]) MixColumn design. The circuit sizes for AES-128 (resp. -192, -256) in
the second block have been extrapolated from Grassl et al. by multiplying gate counts
and circuit width by 1/3 (resp. 1/2, 2/5), while keeping depth values intact. ps reports
the approximate success probability.

Grassl et al. [21]

Scheme r #Clifford #T #M T -depth Full depth Width G-cost DW -cost ps

AES-128 3 1.55 · 286 1.19 · 286 0 1.06 · 280 1.16 · 281 2 953 1.37 · 287 1.67 · 292 1

AES-192 4 1.17 · 2119 1.81 · 2118 0 1.21 · 2112 1.33 · 2113 4 449 1.04 · 2120 1.44 · 2125 1

AES-256 5 1.83 · 2151 1.41 · 2151 0 1.44 · 2144 1.57 · 2145 6 681 1.62 · 2152 1.28 · 2158 1

Extrapolation of Grassl et al. [21] to lower r

AES-128 1 1.03 · 285 1.59 · 284 0 1.06 · 280 1.16 · 281 984 1.83 · 285 1.11 · 291 1/e

AES-192 2 1.17 · 2118 1.81 · 2117 0 1.21 · 2112 1.33 · 2113 2 224 1.04 · 2119 1.44 · 2124 1

AES-256 2 1.46 · 2150 1.13 · 2150 0 1.44 · 2144 1.57 · 2145 2 672 1.30 · 2151 1.02 · 2157 1/e

Langenberg et al. [31]

AES-128 1 1.46 · 282 1.47 · 281 0 1.44 · 277 1.39 · 279 865 1.10 · 283 1.17 · 289 1/e

AES-192 2 1.71 · 2115 1.68 · 2114 0 1.26 · 2109 1.23 · 2111 1 793 1.27 · 2116 1.08 · 2122 1

AES-256 2 1.03 · 2148 1.02 · 2147 0 1.66 · 2141 1.61 · 2143 2 465 1.54 · 2148 1.94 · 2154 1/e

This work (with “in-place” MixColumn)

AES-128 1 1.13 · 282 1.32 · 279 1.32 · 277 1.48 · 270 1.08 · 275 1665 1.33 · 282 1.76 · 285 1/e

AES-128 2 1.13 · 283 1.32 · 280 1.32 · 278 1.48 · 270 1.08 · 275 3329 1.34 · 283 1.75 · 286 1

AES-192 2 1.27 · 2115 1.47 · 2112 1.47 · 2110 1.47 · 2102 1.14 · 2107 3969 1.50 · 2115 1.11 · 2119 1

AES-256 2 1.56 · 2147 1.81 · 2144 1.81 · 2142 1.55 · 2134 1.29 · 2139 4609 1.84 · 2147 1.45 · 2151 1/e

AES-256 3 1.17 · 2148 1.36 · 2145 1.36 · 2143 1.55 · 2134 1.28 · 2139 6913 1.38 · 2148 1.08 · 2152 1

This work (with “in-place” MixColumn), using Grassl et al. [21] values for r

AES-128 3 1.69 · 283 1.97 · 280 1.97 · 278 1.48 · 270 1.09 · 275 4993 1.00 · 284 1.32 · 287 1

AES-192 4 1.27 · 2116 1.47 · 2113 1.47 · 2111 1.47 · 2102 1.15 · 2107 7937 1.50 · 2116 1.11 · 2120 1

AES-256 5 1.95 · 2148 1.13 · 2146 1.13 · 2144 1.55 · 2134 1.28 · 2139 11521 1.15 · 2149 1.81 · 2152 1

304 S. Jaques et al.

Table 11. Cost estimates for Grover’s algorithm with
⌊

π
4
2k/2

⌋
LowMC oracle itera-

tions for attacks with high success probability, without a depth restriction.

Scheme r # CNOT #1qCliff #T #M T -depth Full depth Width G-cost DW -cost ps

LowMC L1 1 1.04 · 283 1.13 · 276 1.71 · 276 1.17 · 271 1.01 · 269 1.18 · 280 1585 1.06 · 283 1.83 · 290 1/e

LowMC L3 1 1.70 · 2116 1.04 · 2109 1.28 · 2109 1.75 · 2103 1.50 · 2101 1.91 · 2113 2377 1.72 · 2116 1.11 · 2125 1/e

LowMC L5 1 1.90 · 2149 1.55 · 2141 1.63 · 2141 1.14 · 2136 1.89 · 2133 1.04 · 2147 3049 1.91 · 2149 1.55 · 2158 1/e

LowMC L1 2 1.04 · 284 1.13 · 277 1.71 · 277 1.11 · 272 1.01 · 269 1.18 · 280 3169 1.06 · 284 1.83 · 291 1

LowMC L3 2 1.70 · 2117 1.04 · 2110 1.28 · 2110 1.77 · 2104 1.50 · 2101 1.91 · 2113 4753 1.72 · 2117 1.11 · 2126 1

LowMC L5 2 1.90 · 2150 1.56 · 2142 1.63 · 2142 1.20 · 2137 1.89 · 2133 1.04 · 2147 6097 1.91 · 2150 1.55 · 2159 1

The impact of imposing a depth limit on the key search algorithm can directly
be seen by comparing, for example Table 13a with Table 10 in the case of AES.
Key search against AES-128 without depth limit has a G-cost of 1.34 · 283 gates
and a DW -cost of 1.75 · 286 qubit-cycles. Now, setting MAXDEPTH = 240 increases
both the G-cost and the DW -cost by a factor of roughly 234 to 1.07 · 2117 gates
and 1.76 · 2120 qubit-cycles. For MAXDEPTH = 264, the increase is by a factor of
roughly 210. We note that for MAXDEPTH = 296, key search on AES-128 does not
require any parallelization.

Implications for Post-quantum Security Categories. The security
strength categories 1, 3 and 5 in the NIST call for proposals [37] are defined
by the resources needed for key search on AES-128, AES-192 and AES-256,
respectively. For a cryptographic scheme to satisfy the security requirement at
a given level, the best known attack must take at least as many resources as key
search against the corresponding AES instance.

As guidance, NIST provides a table with gate cost estimates via a formula
depending on the depth bound MAXDEPTH. This formula is deduced as follows:
assume that non-parallel Grover search requires a depth of D = x ·MAXDEPTH for
some x ≥ 1 and the circuit has G gates. Then, about x2 machines are needed
that each run for a fraction 1/x of the time and use roughly G/x gates in order
for the quantum attack to fit within the depth budget given by MAXDEPTH while
attaining the same attack success probability. Hence, the total gate count for
a parallelized Grover search is roughly (G/x) · x2 = G · D/MAXDEPTH. The cost
formula reported in the NIST table (also provided in Table 12 for reference) is
deduced by using the values for G-cost and depth D from Grassl et al. [21].

The above formula does not take into account that parallelization often allows
us to reduce the number of required plaintext-ciphertext pairs, resulting in a
G-cost reduction for search in each parallel Grover instance by a factor larger
than x. Note also that [37, Footnote 5] mentions that using the formula for very
small values of x (very large values of MAXDEPTH such that D/MAXDEPTH < 1,
where no parallelization is required) underestimates the quantum security of
AES. This is the case for AES-128 with MAXDEPTH = 296.

In Table 12, we compare NIST’s numbers with our gate counts for parallel
Grover search. Our results for each specific setting incorporate the reduction

Implementing Grover Oracles for Quantum Key Search on AES and LowMC 305

of plaintext-ciphertext pairs through parallelization, provide the correct cost if
parallelization is not necessary and use improved circuit designs. The table shows
that for most situations, AES is less quantum secure than the NIST estimates
predict. For each category, we provide a very rough approximation formula that
could be used to replace NIST’s formula. We observe a consistent reduction in
G-cost for quantum key search by 11–13 bits.

Since NIST clearly defines its security categories 1, 3 and 5 based on the
computational resources required for key search on AES, the explicit gate counts
should be lowered to account for the best known attack. This would mean that
it is now easier for submitters to claim equivalent security, with the exception of
category 1 with MAXDEPTH = 296. A possible consequence of our work is that some
of the NIST submissions might profit from slightly tweaking certain parameter
sets to allow more efficient implementations, while at the same time satisfying
the (now weaker) requirements for their intended security category.

Remark 4. The G-cost results in Table 13b show that key recovery against the
LowMC instances we implemented requires at least as many gates as key recovery
against AES with the same key size. If NIST replaces its explicit gate cost
estimates for AES with the ones in this work, these LowMC instances meet the
post-quantum security requirements as defined in the NIST call [37]. On the
other hand, the same results show that they do not meet the explicit gate count
requirements for the original NIST security categories. For example, LowMC L1
can be broken with an attack having G-cost 1.25 · 2123 when MAXDEPTH = 240,
while the original bound in category 1 requires a scheme to not be broken by an
attack using less than 2130 gates. In all settings considered here, a LowMC key
can be found with a slightly smaller G-cost than NIST’s original estimates for
AES, again with the exception when no parallelization is needed. The margin
is relatively small. We cannot finalize conclusions about the relative security of
LowMC and AES until quantum circuits for LowMC are optimized as much as
the ones for AES.

Table 12. Comparison of our cost estimate results with NIST’s approximations based
on Grassl et al. [21]. The approximation column displays NIST’s formula from [37]
and a rough approximation to replace the NIST formula based on our results. Under
MAXDEPTH = 296, AES-128 is a special case as the attack does not require any paral-
lelization and the approximation underestimates its cost.

NIST security G-cost for MAXDEPTH (log2)

Category Source 240 264 296 Approximation

1 AES-128 [37] 130.0 106.0 74.0 2170/MAXDEPTH

This work 117.1 93.1 ∗83.4 ≈2157/MAXDEPTH

3 AES-192 [37] 193.0 169.0 137.0 2233/MAXDEPTH

This work 181.1 157.1 126.1 ≈2221/MAXDEPTH

5 AES-256 [37] 258.0 234.0 202.0 2298/MAXDEPTH

This work 245.5 221.5 190.5 ≈2285/MAXDEPTH

306 S. Jaques et al.

Table 13. Cost estimates for parallel Grover key search against block ciphers under
a depth limit MAXDEPTH with inner parallelization (see Sect. 2.3). MD is MAXDEPTH, r is
the number of plaintext-ciphertext pairs used in the Grover oracle, S is the number of
subsets into which the key space is divided, SKP is the probability that spurious keys
are present in the subset holding the target key, W is the qubit width of the full circuit
and D the full depth. Each of the S candidate keys measured from the Grover search
are classically checked against plaintext-ciphertext pairs. AES-128, -192, and -256 need
2, 2, and 3 such pairs, respectively, while LowMC needs 2 pairs for all sizes.

Scheme MD r S log2 (SKP) D W G-cost DW -cost

AES-128 240 1 1.28 · 269 −69.36 1.00 · 240 1.76 · 280 1.07 · 2117 1.76 · 2120

AES-192 240 1 1.04 · 2133 −69.05 1.00 · 240 1.72 · 2144 1.09 · 2181 1.72 · 2184

AES-256 240 1 1.12 · 2197 −69.16 1.00 · 240 1.08 · 2209 1.39 · 2245 1.08 · 2249

AES-128 264 1 1.28 · 221 −21.36 1.00 · 264 1.76 · 232 1.07 · 293 1.76 · 296

AES-192 264 1 1.04 · 285 −21.05 1.00 · 264 1.72 · 296 1.09 · 2157 1.72 · 2160

AES-256 264 1 1.12 · 2149 −21.16 1.00 · 264 1.08 · 2161 1.39 · 2221 1.08 · 2225

AES-128* 296 2 1.00 · 20 −∞ 1.08 · 275 1.63 · 211 1.34 · 283 1.75 · 286

AES-192 296 2 1.05 · 221 −∞ 1.00 · 296 1.74 · 233 1.09 · 2126 1.74 · 2129

AES-256 296 2 1.12 · 285 −85.16 1.00 · 296 1.09 · 298 1.39 · 2190 1.09 · 2194

(a) Grover oracle for AES

Scheme MD r S log2 (SKP) D W G-cost DW -cost

LowMC L1 240 1 1.40 · 280 −80.48 1.00 · 240 1.08 · 291 1.25 · 2123 1.08 · 2131

LowMC L3 240 1 1.83 · 2147 −147.87 1.00 · 240 1.06 · 2159 1.65 · 2190 1.06 · 2199

LowMC L5 240 1 1.08 · 2214 −214.11 1.00 · 240 1.61 · 2225 1.99 · 2256 1.61 · 2265

LowMC L1 264 1 1.40 · 232 −32.48 1.00 · 264 1.08 · 243 1.25 · 299 1.08 · 2107

LowMC L3 264 1 1.83 · 299 −99.87 1.00 · 264 1.06 · 2111 1.65 · 2166 1.06 · 2175

LowMC L5 264 1 1.08 · 2166 −166.11 1.00 · 264 1.61 · 2177 1.99 · 2232 1.61 · 2241

LowMC L1 296 2 1.00 · 20 −∞ 1.18 · 280 1.55 · 211 1.06 · 284 1.83 · 291

LowMC L3 296 1 1.83 · 235 −35.87 1.00 · 296 1.06 · 247 1.65 · 2134 1.06 · 2143

LowMC L5 296 1 1.08 · 2102 −102.11 1.00 · 296 1.61 · 2113 1.99 · 2200 1.61 · 2209

(b) Grover oracle for LowMC

7 Future Work

This work’s main focus is on exploring the setting proposed by NIST where quan-
tum attacks are limited by a total bound on the depth of quantum circuits. Previ-
ous works [3,21,31] aim to minimize cost under a tradeoff between circuit depth
and a limit on the total number of qubits needed, say a hypothetical bound
MAXDEPTH. Depth limits are not discussed when choosing a Grover strategy. Since
it is somewhat unclear what exact characteristics and features a future scalable

Implementing Grover Oracles for Quantum Key Search on AES and LowMC 307

quantum hardware might have, quantum circuit and Grover strategy optimiza-
tion with the goal of minimizing different cost metrics under different constraints
than MAXDEPTH could be an interesting avenue for future research.

We have studied key search problems for a single target. In classical crypt-
analysis, multi-target attacks have to be taken into account for assessing the
security of cryptographic systems. We leave the exploration of estimating the
cost of quantum multi-target attacks, for example using the algorithm by
Banegas and Bernstein [6] under MAXDEPTH (or alternative regimes), as future
work.

Further, implementing quantum circuits for cryptanalysis in Q# or another
quantum programming language for concrete cost estimation is worthwhile to
increase confidence in the security of proposed post-quantum schemes. For exam-
ple, quantum lattice sieving and enumeration appear to be prime candidates.

Acknowledgements. We thank Chris Granade and Bettina Heim for their help with
the Q# language and compiler, Mathias Soeken and Thomas Häner for general discus-
sions on optimizing quantum circuits and Q#, Mathias Soeken for providing the AND
gate circuit we use, and Daniel Kales and Greg Zaverucha for their input on Picnic
and LowMC.

References

1. Albrecht, M.R., Rechberger, C., Schneider, T., Tiessen, T., Zohner, M.: Ciphers
for MPC and FHE. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015. LNCS,
vol. 9056, pp. 430–454. Springer, Heidelberg (2015). https://doi.org/10.1007/978-
3-662-46800-5 17

2. Albrecht, M.R., Rechberger, C., Schneider, T., Tiessen, T., Zohner, M.: Ciphers
for MPC and FHE. Cryptology ePrint Archive, Report 2016/687 (2016)

3. Almazrooie, M., Samsudin, A., Abdullah, R., Mutter, K.N.: Quantum reversible
circuit of AES-128. Quantum Inf. Process. 17(5), 1–30 (2018). https://doi.org/10.
1007/s11128-018-1864-3

4. Amento, B., Steinwandt, R., Roetteler, M.: Efficient quantum circuits for binary
elliptic curve arithmetic: reducing T-gate complexity. arXiv:1209.6348 (2012)

5. Babbush, R., et al.: Encoding electronic spectra in quantum circuits with linear T
complexity. Phys. Rev. X 8(4), 041015 (2018)

6. Banegas, G., Bernstein, D.J.: Low-communication parallel quantum multi-target
preimage search. In: Adams, C., Camenisch, J. (eds.) SAC 2017. LNCS, vol. 10719,
pp. 325–335. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-72565-
9 16

7. Banik, S., Funabiki, Y., Isobe, T.: More results on shortest linear programs. Cryp-
tology ePrint Archive, Report 2019/856 (2019)

8. Beals, R., et al.: Efficient distributed quantum computing. Proc. Roy. Soc. A Math.
Phys. Eng. Sci. 469, 20120686 (2013)

9. Bonnetain, X., Naya-Plasencia, M., Schrottenloher, A.: Quantum security analysis
of AES. IACR Trans. Symmetric Cryptol. 2019(2), 55–93 (2019)

10. Boyar, J., Peralta, R.: A new combinational logic minimization technique with
applications to cryptology. In: Festa, P. (ed.) SEA 2010. LNCS, vol. 6049, pp. 178–
189. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13193-6 16

https://doi.org/10.1007/978-3-662-46800-5_17
https://doi.org/10.1007/978-3-662-46800-5_17
https://doi.org/10.1007/s11128-018-1864-3
https://doi.org/10.1007/s11128-018-1864-3
http://arxiv.org/abs/1209.6348
https://doi.org/10.1007/978-3-319-72565-9_16
https://doi.org/10.1007/978-3-319-72565-9_16
https://doi.org/10.1007/978-3-642-13193-6_16

308 S. Jaques et al.

11. Boyar, J., Peralta, R.: A small depth-16 circuit for the AES S-Box. In: Gritzalis,
D., Furnell, S., Theoharidou, M. (eds.) SEC 2012. IAICT, vol. 376, pp. 287–298.
Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-30436-1 24

12. Boyar, J., Find, M.G., Peralta, R.: Small low-depth circuits for cryptographic appli-
cations. Crypt. Commun. 11(1), 109–127 (2018). https://doi.org/10.1007/s12095-
018-0296-3

13. Boyer, M., Brassard, G., Høyer, P., Tapp, A.: Tight bounds on quantum searching.
Fortschr. Phys. 46(4–5), 493–505 (1998)

14. Chase, M., et al.: Post-quantum zero-knowledge and signatures from symmetric-
key primitives. In: ACM CCS 2017. ACM (2017)

15. Daemen, J., Rijmen, V.: AES proposal: Rijndael (1999)
16. Daemen, J., Rijmen, V.: Specification for the advanced encryption standard (AES).

Federal Information Processing Standards Publication 197 (2001)
17. Dinur, I., Kales, D., Promitzer, A., Ramacher, S., Rechberger, C.: Linear equiv-

alence of block ciphers with partial non-linear layers: application to LowMC. In:
Ishai, Y., Rijmen, V. (eds.) EUROCRYPT 2019. LNCS, vol. 11476, pp. 343–372.
Springer, Cham (2019). https://doi.org/10.1007/978-3-030-17653-2 12

18. Ekdahl, P., Johansson, T., Maximov, A., Yang, J.: A new SNOW stream cipher
called SNOW-V. Cryptology ePrint Archive, Report 2018/1143 (2018)

19. Fowler, A.G., Mariantoni, M., Martinis, J.M., Cleland, A.N.: Surface codes:
towards practical large-scale quantum computation. Phys. Rev. A 86, 032324
(2012)

20. Gidney, C.: Windowed quantum arithmetic. arXiv preprint arXiv:1905.07682
(2019)

21. Grassl, M., Langenberg, B., Roetteler, M., Steinwandt, R.: Applying Grover’s algo-
rithm to AES: quantum resource estimates. In: Takagi, T. (ed.) PQCrypto 2016.
LNCS, vol. 9606, pp. 29–43. Springer, Cham (2016). https://doi.org/10.1007/978-
3-319-29360-8 3

22. Grover, L.K.: A fast quantum mechanical algorithm for database search. In: STOC
1996. ACM (1996)

23. Grover, L.K., Rudolph, T.: How significant are the known collision and element
distinctness quantum algorithms? QIC 4(3), 201–206 (2004)

24. Itoh, T., Tsujii, S.: A fast algorithm for computing multiplicative inverses in
GF(2m) using normal bases. Inf. Comput. 78(3), 171–177 (1988)

25. Jaques, S., Schanck, J.M.: Quantum cryptanalysis in the RAM model: claw-finding
attacks on SIKE. In: Boldyreva, A., Micciancio, D. (eds.) CRYPTO 2019. LNCS,
vol. 11692, pp. 32–61. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-
26948-7 2

26. Jean, J., Moradi, A., Peyrin, T., Sasdrich, P.: Bit-sliding: a generic technique for
bit-serial implementations of SPN-based primitives. In: Fischer, W., Homma, N.
(eds.) CHES 2017. LNCS, vol. 10529, pp. 687–707. Springer, Cham (2017). https://
doi.org/10.1007/978-3-319-66787-4 33

27. Jeon, Y.-S., Kim, Y.-J., Lee, D.-H.: A compact memory-free architecture for the
AES algorithm using resource sharing methods. JCSC 19, 1109–1130 (2010)

28. Jones, C.: Low-overhead constructions for the fault-tolerant Toffoli gate. Phys.
Rev. A 87(2), 022328 (2013)

29. Kim, P., Han, D., Jeong, K.C.: Time-space complexity of quantum search algo-
rithms in symmetric cryptanalysis: applying to AES and SHA-2. Quantum Inf.
Process. 17(12), 1–39 (2018). https://doi.org/10.1007/s11128-018-2107-3

30. Kranz, T., Leander, G., Stoffelen, K., Wiemer, F.: Shorter linear straight-line pro-
grams for MDS matrices. IACR Trans. Symm. Cryptol. 2017(4), 188–211 (2017)

https://doi.org/10.1007/978-3-642-30436-1_24
https://doi.org/10.1007/s12095-018-0296-3
https://doi.org/10.1007/s12095-018-0296-3
https://doi.org/10.1007/978-3-030-17653-2_12
http://arxiv.org/abs/1905.07682
https://doi.org/10.1007/978-3-319-29360-8_3
https://doi.org/10.1007/978-3-319-29360-8_3
https://doi.org/10.1007/978-3-030-26948-7_2
https://doi.org/10.1007/978-3-030-26948-7_2
https://doi.org/10.1007/978-3-319-66787-4_33
https://doi.org/10.1007/978-3-319-66787-4_33
https://doi.org/10.1007/s11128-018-2107-3

Implementing Grover Oracles for Quantum Key Search on AES and LowMC 309

31. Langenberg, B., Pham, H., Steinwandt, R.: Reducing the cost of implementing
AES as a quantum circuit. Cryptology ePrint Archive, Report 2019/854 (2019)

32. Low, G.H., Kliuchnikov, V., Schaeffer, L.: Trading T-gates for dirty qubits in state
preparation and unitary synthesis. arXiv preprint arXiv:1812.00954 (2018)

33. LowMC: LowMC/lowmc at e847fb160ad8ca1f373efd91a55b6d67f7deb425 (2019).
https://github.com/LowMC/lowmc/tree/e847fb160ad8ca1f373efd91a55b6d67f7deb425

34. Maximov, A.: AES MixColumn with 92 XOR gates. Cryptology ePrint Archive,
Report 2019/833 (2019)

35. Microsoft: Getting started with Python and Q# — Microsoft Docs (2019). https://
docs.microsoft.com/en-us/quantum/install-guide/python

36. Microsoft: microsoft/iqsharp: Microsoft’s IQ# server (2019). https://github.com/
microsoft/iqsharp

37. NIST: Submission requirements and evaluation criteria for the Post-Quantum
Cryptography standardization process (2016)

38. Nogami, Y., Nekado, K., Toyota, T., Hongo, N., Morikawa, Y.: Mixed bases for
efficient inversion in F((22)2)2 and conversion matrices of SubBytes of AES. In:
Mangard, S., Standaert, F.-X. (eds.) CHES 2010. LNCS, vol. 6225, pp. 234–247.
Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15031-9 16

39. PyCryptodome: Welcome to PyCryptodome’s documentation - PyCryptodome
3.8.2 documentation (2019). https://pycryptodome.readthedocs.io/en/stable/
index.html

40. Reyhani-Masoleh, A., Taha, M., Ashmawy, D.: New area record for the AES com-
bined S-box/inverse S-box. In: ARITH. IEEE (2018)

41. Reyhani-Masoleh, A., Taha, M., Ashmawy, D.: Smashing the implementation
records of AES S-box. TCHES 2018, 298–336 (2018)

42. Rijmen, V.: Efficient implementation of the Rijndael S-box. Katholieke Universiteit
Leuven, Dept. ESAT, Belgium (2000)

43. Satoh, A., Morioka, S., Takano, K., Munetoh, S.: A compact rijndael hardware
architecture with S-Box optimization. In: Boyd, C. (ed.) ASIACRYPT 2001. LNCS,
vol. 2248, pp. 239–254. Springer, Heidelberg (2001). https://doi.org/10.1007/3-
540-45682-1 15

44. Selinger, P.: Quantum circuits of T -depth one. Phys. Rev. A 87, 042302 (2013)
45. Shor, P.W.: Algorithms for quantum computation: discrete logarithms and factor-

ing. In: FOCS 1994, pp. 124–134. IEEE Computer Society (1994)
46. Shor, P.W.: Polynomial-time algorithms for prime factorization and discrete loga-

rithms on a quantum computer. SIAM J. Comput. 26(5), 1484–1509 (1997)
47. Steiger, D.S., Häner, T., Troyer, M.: ProjectQ: an open source software framework

for quantum computing. Quantum 2(49), 10–22331 (2018)
48. Stein, W., et al.: Sage Mathematics Software Version 8.1 (2017)
49. Svore, K.M., et al.: Q#: enabling scalable quantum computing and development

with a high-level DSL. In: RWDSL@CGO 2018 (2018)
50. Tan, Q.Q., Peyrin, T.: Improved heuristics for short linear programs. Cryptology

ePrint Archive, Report 2019/847 (2019)
51. Trefethen, L., Bau, D.: Numerical Linear Algebra. Other Titles in Applied Math-

ematics. SIAM, Philadelphia (1997)
52. Ueno, R., Homma, N., Sugawara, Y., Nogami, Y., Aoki, T.: Highly efficient GF (28)

inversion circuit based on redundant GF arithmetic and its application to AES
design. In: Güneysu, T., Handschuh, H. (eds.) CHES 2015. LNCS, vol. 9293, pp.
63–80. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-48324-4 4

http://arxiv.org/abs/1812.00954
https://github.com/LowMC/lowmc/tree/e847fb160ad8ca1f373efd91a55b6d67f7deb425
https://docs.microsoft.com/en-us/quantum/install-guide/python
https://docs.microsoft.com/en-us/quantum/install-guide/python
https://github.com/microsoft/iqsharp
https://github.com/microsoft/iqsharp
https://doi.org/10.1007/978-3-642-15031-9_16
https://pycryptodome.readthedocs.io/en/stable/index.html
https://pycryptodome.readthedocs.io/en/stable/index.html
https://doi.org/10.1007/3-540-45682-1_15
https://doi.org/10.1007/3-540-45682-1_15
https://doi.org/10.1007/978-3-662-48324-4_4

310 S. Jaques et al.

53. Wei, Z., Sun, S., Hu, L., Wei, M., Boyar, J., Peralta, R.: Scrutinizing the tower
field implementation of the F28 inverter - with applications to AES, Camellia, and
SM4. Cryptology ePrint Archive, Report 2019/738 (2019)

54. Yamamura, A., Ishizuka, H.: Quantum cryptanalysis of block ciphers (algebraic sys-
tems, formal languages and computations), vol. 1166, pp. 235–243 (2000). https://
repository.kulib.kyoto-u.ac.jp/dspace/bitstream/2433/64334/1/1166-29.pdf

55. Zalka, C.: Grover’s quantum searching algorithm is optimal. Phys. Rev. A 60(4),
2746 (1999)

56. Zaverucha, G., et al.: Picnic. Technical report, NIST (2017)

https://repository.kulib.kyoto-u.ac.jp/dspace/bitstream/2433/64334/1/1166-29.pdf
https://repository.kulib.kyoto-u.ac.jp/dspace/bitstream/2433/64334/1/1166-29.pdf

	Implementing Grover Oracles for Quantum Key Search on AES and LowMC
	1 Introduction
	2 Finding a Block Cipher Key with Grover's Algorithm
	2.1 Grover's Algorithm
	2.2 Key Search for a Block Cipher
	2.3 Parallelization

	3 Quantum Circuit Design
	3.1 Assumptions About the Fault-Tolerant Gate Set and Architecture
	3.2 Automated Resource Estimation and Unit Tests
	3.3 Reversible Circuits for Linear Maps
	3.4 Cost Metrics for Quantum Circuits

	4 A Quantum Circuit for AES
	5 A Quantum Circuit for LowMC
	6 Grover Oracles and Key Search Resource Estimates
	6.1 Grover Oracles
	6.2 Cost Estimates for Block Cipher Key Search

	7 Future Work
	References

